
A Lingualization Strategy for
Knowledge Sharing in Large-Scale DevOps

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r I n g e n i e u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund

an der Fakultät für Informatik

von

Tim Tegeler

Dortmund

2023



Tag der mündlichen Prüfung:

23. März 2023

Dekan:

Prof. Dr.-Ing. Gernot A. Fink

Gutachter:

Prof. Dr. Bernhard Steffen

Prof. Dr. Dr. h.c. Martin Wirsing

ii



In memory of

Franz-Josef Tegeler
* 1953 – † 2001

iii



iv



Acknowledgements

First and foremost, I would like to thank Bernhard Steffen for supervising my dissertation. He
was the one who inspired me to pursue a Ph.D. alongside my job at that time and later offered
me the opportunity to work full-time at his chair to finish my dissertation. Our conceptual and
technical discussions challenged me more than one time, but they were essential to sharpen my
ideas and to avoid mistakes upfront.

Many thanks also go to Martin Wirsing for co-supervising my dissertation and motivating me
to go the extra mile. The same applies to Sven Jörges, who advised me in the early stages of
this dissertation. In addition to that, I would like to thank Heinrich Müller for chairing and
Ben Hermann for completing my doctoral committee.

Furthermore, I want to thank Falk Howar for mentoring me during my studies and helpful
advice whenever I needed it. This also applies to Julia Rehder, who plays a vital part at the
chair and always has a friendly ear for me and my colleagues.

I consider Steve Boßelmann and Stefan Naujokat my senior advisors who welcomed me to the
chair and helped me find my place in the group. Thank you for your advice and the countless
hours that we worked together on research papers and software projects. In the same breath,
I wish to acknowledge Steven Smyth and Dominic Wirkner, not only for their exceptional
organization and construction of my amazing doctoral mortarboard, but also for their endless
support and close teamwork on a daily basis.

Special appreciation go to my colleagues, Alexander Bainczyk, Daniel Busch, Marcus Frohme,
Frederik Gossen, Marc Jasper, Dawid Kopetzki, Michael Lybecait, Alnis Murtovi, Johannes
Neubauer, Oliver Rüthing, Barbara Steffen, and Philip Zweihoff. You proofed that not only
software development is team work, but research as well. I enjoy the great atmosphere and
environment in which we study, work and celebrate together.

In addition to that, I would like to mention Jonas Schürmann and Sebastian Teumert whom
I had the pleasure to supervise during their Master’s and Bachelor’s thesis, respectively. Al-
though I was your supervisor, you have taught me as much as I may have taught you. I’m
very happy that both of you are my colleagues now. I’m curious about your future careers and
scientific achievements.

I want to extend my gratitude to the Lonnemann family and the team of the Creios GmbH for
supporting me at the early stages of my career and allowing me to pursue my Ph.D. in part-
time. Furthermore, I want to thank my former colleagues Simon Zuelsdorf and Marcel Willnow
for almost seven years of teamwork, which turned into friendships.

Finally, I want to thank my parents Marianne and Meinhard for their never-ending support
throughout my educational career. You believed in me when others did not.

v



vi



Abstract

DevOps has become a generally accepted practice for software projects in the last decade and
approaches certain shortcomings of the agile software development and the steadily gaining
popularity of cloud infrastructure. While it shifts more and more responsibilities towards
software engineering teams, the prevailing opinion is to keep DevOps teams small to reduce
the complexity of inter-team communication. In circumstances where products outgrow the
performance capability of a single team, microservice architecture enables multiple DevOps
teams to contribute to the same application and meet the increased requirements. Since DevOps
teams operate typically self-sufficiently and more or less independently inside an organization,
such large-scale DevOps environments are prone to knowledge-sharing barriers.

Textual Domain-Specific Languages (DSLs) are one of the cornerstones of DevOps and enable
key features like automation and infrastructure provisioning. Nonetheless, most commonly
accepted DSLs in the context of DevOps are cumbersome and have a steep learning curve. Thus,
they fall short of their potential to truly enable cross-functional collaboration and knowledge
sharing, not only between development and operation, but to the whole organization. DevOps
teams require tools and DSLs, that treat knowledge sharing and reuse as a first-class citizen,
in order to operate sufficiently on a large scale. However, developing DSLs is still presumed as
an expensive task which can easily offset the resulting benefits.

This dissertation presents a lingualization strategy for addressing the challenge of knowledge
sharing in large-scale DevOps. The basic idea is to provide custom-tailored Domain-Specific
Modeling Languages (DSMLs) that target single phases of the DevOps lifecycle and ease the
DevOps adoption for newly formed teams. The paradigm of Language-Driven Engineering
(LDE) bridges the semantic gap between stakeholders by custom-tailored DSMLs and thus is
a natural fit for knowledge sharing.

Key to a successful practice of LDE is as a new class of stakeholders. In the context of
large-scale DevOps, language development can be realized by so-called Meta DevOps teams.
Those teams, which themselves practice DevOps internally, manage a centralized repository of
small DSMLs and offer them as a service. DevOps teams act as the customers of the Meta
DevOps teams and can request new features or complete new DSMLs and provide feedback
to already existing DSMLs. The presented Rig modeling environment serves as an exemplary
DSML that targets the purpose of Continuous Integration and Deployment (CI/CD), one of
the most important building blocks of DevOps. Rig comes with an associated code generator
to fully-generate CI/CD workflows from graphical models. Those graphical models provide an
executable documentation and assist knowledge-sharing between stakeholders.

The fundamental modeling concepts of the lingualization strategy are evaluated against pre-
viously published requirements by Bordeleau et al. on a DevOps modeling framework in an
industrial context. In addition to that, Rig is evaluated based on results of a workshop during
the 6th International School on Tool-Based Rigorous Engineering of Software Systems. Both
evaluations yield encouraging results and demonstrate the potential of the lingualization strat-
egy to break down knowledge-sharing barriers in large-scale DevOps environments.

vii



viii



Attached Publications

This enumeration contains the publications, which are part of this dissertation, and introduces
a special way of reference (e.g. [AP I: [152]]) in order to distinguish them from other literature.
They have already been published in cooperation with other authors. Section 1.2 briefly outlines
the content of each publication alongside comments of my contribution.

I Tim Tegeler, Frederik Gossen, and Bernhard Steffen. A Model-driven Approach to
Continuous Practices for Modern Cloud-based Web Applications. In: 2019 9th
International Conference on Cloud Computing, Data Science Engineering (Confluence).
2019. doi: 10.1109/CONFLUENCE.2019.8776962: Below cited as [AP I: [152]]

II Tim Tegeler and Jonas Schürmann. Evolve: Language-Driven Engineering in Indus-
trial Practice. In: Electronic Communication of the European Association of Software
Science and Technology, (2018). doi: 10.14279/tuj.eceasst.78.1089: Below cited as
[AP II: [153]]

III Jonas Schürmann, Tim Tegeler, and Bernhard Steffen. Guaranteeing Type Consis-
tency in Collective Adaptive Systems. In: Leveraging Applications of Formal Meth-
ods, Verification and Validation: Engineering Principles. 2020. doi: 10.1007/978-3-
030-61470-6_19: Below cited as [AP III: [139]]

IV Tim Tegeler, Sebastian Teumert, Jonas Schürmann, Alexander Bainczyk, Daniel Busch,
and Bernhard Steffen. An Introduction to Graphical Modeling of CI/CD Work-
flows with Rig. In: Leveraging Applications of Formal Methods, Verification and Vali-
dation. 2021. doi: 10.1007/978-3-030-89159-6_1: Below cited as [AP IV: [154]]

V Philip Zweihoff, Tim Tegeler, Jonas Schürmann, Alexander Bainczyk, and Bernhard Stef-
fen. Aligned, Purpose-Driven Cooperation: The Future Way of System De-
velopment. In: Leveraging Applications of Formal Methods, Verification and Validation.
2021. doi: 10.1007/978-3-030-89159-6_27: Below cited as [AP V: [181]]

VI Tim Tegeler, Steve Boßelmann, Jonas Schürmann, Steven Smyth, Sebastian Teumert, and
Bernhard Steffen. Executable Documentation: From Documentation Languages
to Purpose-Specific Languages. In: Leveraging Applications of Formal Methods, Ver-
ification and Validation. 2022. doi: 10.1007/978-3-031-19756-7_10: Below cited as
[AP VI: [151]]

VII Sebastian Teumert, Tim Tegeler, Jonas Schürmann, Daniel Busch, and Dominic Wirkner.
Evaluation of Graphical Modeling of CI/CD Workflows with Rig. In: Leveraging
Applications of Formal Methods, Verification and Validation. 2022. doi: 10.1007/978-
3-031-19756-7_21: Below cited as [AP VII: [157]]

ix

https://doi.org/10.1109/CONFLUENCE.2019.8776962
https://doi.org/10.14279/tuj.eceasst.78.1089
https://doi.org/10.1007/978-3-030-61470-6_19
https://doi.org/10.1007/978-3-030-61470-6_19
https://doi.org/10.1007/978-3-030-89159-6_1
https://doi.org/10.1007/978-3-030-89159-6_27
https://doi.org/10.1007/978-3-031-19756-7_10
https://doi.org/10.1007/978-3-031-19756-7_21
https://doi.org/10.1007/978-3-031-19756-7_21


x



Contents

1 Introduction 1
1.1 My Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Context of Attached Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 DevOps 9
2.1 Continuous Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Large-Scale DevOps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Container Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Knowledge Sharing in Large-Scale DevOps 17
3.1 Domain-Specific Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Lingualization Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Purpose-Specific Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Code Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 mindset-supporting IDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Organizational Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7 The Knowledge Sharing Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Graphical Modeling with Rig 33
4.1 Rig Is a Cinco Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Meta-Level Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Evaluation 41
5.1 Modeling Concepts of the Lingualization Strategy . . . . . . . . . . . . . . . . . 41
5.2 Numbers on the Effect of Graphical Modeling with Rig . . . . . . . . . . . . . . 44

6 Related Work 49
6.1 Knowledge Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 MD* in the Context of DevOps . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Conclusion 53
7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

References 59

Online References 71

xi



xii



Chapter 1

Introduction

“Data expands to fill the space available for storage.”
— Parkinson’s Law of Data [158]

In the past, programs were typically written in a single programming language on one computer
by a single person [30]. Since then, software systems have gone beyond the scope of what once
has been labeled “large computer programs” [14] and have blown up all three dimensions. They
are developed in teams, run distributed on potentially unlimited amount of machines and are
composed of different programming languages [30, 82].

This evolution forced software developers to continuously improve and adapt to the latest
practices, ever since the NATO Software Engineering Conferences 50 years ago [35]. In the
last decades, Agile became a popular term for a set of practices to approach the challenges
of collaborative software development [35] and rapid requirements changes [65]. The rise of
cloud infrastructure gave developers easy access to scalable computing resources [130]. Both
trends are considered the main driver for another popular practice, called DevOps [37]. DevOps
approaches the challenge of cross-functional teams and removes the barrier between develop-
ment and operations [65]. At the same time, microservice architecture enabled decomposi-
tion of monolithic applications into smaller pieces and allowed independent DevOps teams
to contribute to the same application [7], by using their own tool stack and the appropriate
programming language for their use case.

However, globally operating online platforms have become so complex that the effort of con-
tinuous development and maintenance outgrew the productivity of small-scale projects [42].
Such environments with multiple self-organized teams are called large-scale Agile or respec-
tively large-scale DevOps [42]. Since DevOps teams are typically independent units inside an
organization that build and run their own service in a much broader ecosystem, large-scale
DevOps is prone to ‘knowledge silos’ [42].

Despite the fact that knowledge is considered a competitive advantage [126, 133] and knowledge
sharing is an important activity of knowledge management [26, 133, 110] in general, knowledge
silos continue to exist in organizations. Such silos emerge when knowledge, like “skills, infor-
mation, expertise, experience [or] intelligence” [110], is not actively shared among peers. This
bad practice can originate from various issues inside an organization: Employees are not willing
to share knowledge to protect their own position, team affiliation creates natural knowledge
barriers, and organizations are not prioritizing knowledge sharing, accompanied by the lack of
knowledge sharing infrastructure.

Knowledge sharing is also a prominent demand in the twelve principles behind the Agile man-
ifesto [57], as the following two principles illustrate: “Business people and developers must
work together daily throughout the project.” [12] and “The most efficient and effective method
of conveying information to and within a development team is face-to-face conversation.” [12]

1



Chapter 1. Introduction

Accordingly, DevOps considers sharing “one of [. . . ] four pillars” [65] and literature assumes
that its practice successfully diffuses knowledge inside a team [37]. Nevertheless, knowledge
sharing in large-scale DevOps between teams is an ongoing challenge [142, 65]. Since DevOps
is more pragmatism than science, it did not receive “much attention from research” [167], but
has already been addressed in popular novels like the The Phoenix Project (cf. [81, 80]).

This dissertation is motivated by the following area of conflict: Firstly, Dingsøyr et al. list
“Knowledge sharing and improvement” [43] as one of eight research challenges in the context of
large-scale Agile, while Agile itself lacks general knowledge sharing practices [133]. Secondly,
knowledge sharing barriers can threaten the success of software projects or even whole organiza-
tions. Finally, if the team size of agile projects should be kept small [10, 7] to reduce complexity
of communication [42], how can knowledge be shared efficiently in large-scale environments?

Literature on knowledge management in the context of Agile software development [133] lists
two higher-level types of sharing strategies: On the one hand, the personalization strategy,
which describes knowledge sharing in a network of people, via synchronous communication and
personal interaction, and on the other hand, the codification strategy, which uses computer-
based tools and repositories to store and access knowledge. In the context of large-scale DevOps,
a distinction can also be made between inter -team and intra-team knowledge sharing. Intra-
team means sharing within a team while inter-team is sharing among/between teams [69]. Due
to the fact that multiple teams imply a higher number of participants, it is a trivial finding
that sharing knowledge among multiple teams is more difficult than within a team. Applying
the personalization strategy will eventually face scaling challenges.

In contrast to this, the asynchronous nature of the codification strategy (cf. [41]) allows the
extraction of knowledge “from the person who developed it, made independent of that per-
son, and reused for various purposes” [63]. This implies, as a synonym for programming, “a
transformation of some original formulation into a different usually more cryptic form” [140].
However, this ‘cryptic form’ is necessary in order to be processed and persisted by a computer,
but might not be the best representation for humans and requires a visual presentation.

This dissertation presents a holistic approach to the challenge of efficient knowledge sharing
in large-scale DevOps. The foundation of this approach is a lingualization strategy which goes
beyond the simple ‘codification‘ of knowledge and makes it immediately applicable through a
special form of Domain-Specific Modeling Languages (DSMLs) [91, 56]. It follows the princi-
ple of Language-Driven Engineering (LDE) [146] and shows how this strategy can iteratively
be implemented, when practicing DevOps, to let knowledge sharing become a key factor of
organizational success.

1.1 My Contribution

In the course of my Ph.D. studies, I have spent the first two years in part-time. While I have
started my studies at the Chair of Programmingsystems at the TU Dortmund University, I was
still employed in the software industry at the Creios GmbH, where I was mainly responsible
for Research and Development. I was in charge of several web application projects, always with
the focus on introducing new technology and approaches, while improving the overarching
development workflow.

Since the business model of the Creios GmbH was focused on providing Software-as-a-Service
during my time in the company, the software not only had to be developed but also operated
in-house. Hence, I proposed DevOps as our default software development methodology and

2



1.1. My Contribution

DevOps

enhance

drive
Domain-Specific

Modeling Languages

Figure 1.1: Reciprocal interaction of Domain-Specific Modeling Languages and DevOps

successfully adopted it for ongoing and new projects. At the same time, I came in touch
with graphical DSMLs at the Chair of Programmingsystems. I was given the opportunity
to contribute my years of practical experience to improve the management and development
workflow of the aforementioned DSMLs projects.

This duality gave me valuable insight in both academic and industrial projects, and let me dis-
cover challenges that arose in both worlds. From my perspective, long-living academic projects
often lack coordination of source code changes that come from various contributions, for in-
stance final year projects and student project groups. Thus, they have a high potential of
benefiting from project management, well-structured branching models, and (build) automa-
tion. In contrast to projects in academia which are not used in production, industrial projects
run into danger to accumulate technical debt, especially if the software is in daily use and a
corner stone of the companies’ success. Bridging the gap between research and industry is the
motivation of my scientific contribution.

In my talk “Continuous Practices in the Context of Model-Driven System Development” at the
Doctoral Symposium of the ISoLA Conference in 2018 [89], I have illustrated the aforemen-
tioned observation and proposed the idea of approaching the challenges of academic projects
in the Domain of DSML with the benefits of industrial software development methodologies
like DevOps and vice versa. Figure 1.1 shows the envisaged reciprocal interaction. Since this
starting point, I have made the following scientific contributions:

• Sketching the concept of a DSML including a first draft of a language design for Continuous
Integration and Deployment (CI/CD) workflows, cf. [AP I: [152]].

• Developing a family of textual Domain-Specific Languages (DSLs), establishing them in
my industrial projects at the Creios GmbH and evaluating the results, cf. [AP II: [153]].

• Supervising the implementation of Rig, a mindset-supporting IDE (mIDE) for modeling
CI/CD workflows which builds upon the aforementioned language design, cf. [AP IV: [154]].

• Organizing a workshop on graphical modeling of CI/CD with Rig at the 6th Interna-
tional School on Tool-Based Rigorous Engineering of Software Systems [97], cf. Sec-
tion 5.1, and cooperatively evaluating Rig based on the gathered data of this workshop,
cf. [AP VII: [157]].

• Evaluating the modeling concepts of the lingualization strategy against criteria of a mod-
eling engineering framework for DevOps which were postulated and published by Borde-
leau et al. in [18], c.f. Section 5.1.

• Extending the scope of LDE from a pure development perspective, to a holistic approach
that incorporates the operational part of DevOps as a first-class citizen, cf. [AP VI: [151]].

3



Chapter 1. Introduction

DSMLs as a Service

Meta DevOps
Team 1

Meta DevOps
Team 2

Meta DevOps
Team N

DevOps
Team 1

DevOps
Team 2

DevOps
Team N

Knowledge Creation

Kn
ow

le
dg

e 
Ap

pl
ic

at
io

n

Knowledge Storage

Kn
ow

le
dg

e 
D

is
co

ve
ry

Knowledge 
Barrier

Knowledge 
Barrier

Figure 1.2: Knowledge sharing cycle of the lingualization strategy

The summarizing contribution of my dissertation is a lingualization strategy for knowledge
sharing via DSMLs in large-scale DevOps environments that are prone to inter-team knowledge
barriers. In the following chapters I will address the challenges that arise from practicing large-
scale DevOps, and propose an organizational wide approach of how DSML can be developed
to support the transfer of knowledge between independent DevOps teams. Beforehand, I will
give a brief overview on the lingualization strategy in the remainder of this section alongside
Figure 1.2.

DevOps teams in large-scale DevOps are more or less self-administering teams that are re-
sponsible for developing single components or services in a larger system. Accounted for by
the uniqueness requirements of each subproject, it is hardly possible to foresee how to adopt
DevOps as the software development methodology for a given project and which phases of the
DevOps lifecycle (cf. Figure 2.3) take preference. The maturity of DevOps adoption is very
likely to vary between teams in a large-scale environment and the independence of DevOps

4



1.2. Context of Attached Publications

teams increase the chance of inter-team knowledge barriers. As a result, new assembled teams
face the challenge of adopting DevOps without directly benefiting from the experience and
lessons learned of more mature teams.

The fundamental idea of the lingualization strategy is based on a continual knowledge sharing
cycle by tapping into the experience of mature DevOps teams and help recent constituted teams
to benefit from the existing knowledge. Textual DSMLs as part of the as-code movement [88],
greatly influenced the practice of DevOps [37] and are widely accepted to support processes
of the DevOps lifecycle, like build automation or infrastructure provisioning. Thus, it is my
opinion that they are a promising medium to store, share and apply discovered knowledge,
especially in the context of DevOps.

Key for the success of this knowledge sharing cycle are dedicated teams that are responsible for
discovering innovative knowledge from existing teams and developing custom-tailored DSMLs
that can help other teams to adopt certain phases of the DevOps lifecycle with less effort. I
coined the term Meta DevOps teams for this “new class of stakeholders” [146]. As Figure 1.2
shows, Meta DevOps teams are located (on the meta level) above DevOps teams, since they
are responsible for language development and don’t participate in regular projects. This is
a reminiscence of the term Meta model [72, 112, 92]. Furthermore, it is my opinion that
DevOps as a software engineering methodology is a natural fit for language development (cf.
Section 3.2). Hence the name Meta DevOps. In order to keep the entry barrier low for regular
DevOps teams, such Meta DevOps teams provide the developed DSMLs as a web-based service.

The following chapters will elaborate on this sketch of the lingualization strategy and are struc-
tured as follows: Chapter 2 introduces the most important topics on DevOps and identifies the
main issues in large-scale DevOps. Afterwards Chapter 3 builds the theoretically background
of the lingualization strategy. Based on this background Chapter 4 presents a proof of con-
cept of the lingualization strategy alongside Rig, an mIDE for modeling CI/CD workflows. In
addition of the evaluation of Rig, supported modeling concepts of the lingualization strategy
are evaluated against the criteria of a modeling engineering framework for DevOps in Chap-
ter 5. Related work in the context of knowledge sharing strategies and other model-driven
approaches in the domain of DevOps are discussed in Chapter 6. Lastly, Chapter 7 concludes
my dissertation by discussing limitations of the lingualization strategy and future work.

1.2 Context of Attached Publications

This section presents the context of the attached publications, highlights content that is im-
portant for the remainder of this dissertation and outlines my contribution of each publication.

A Model-driven Approach to Continuous Practices for Modern Cloud-based
Web Applications

[AP I: [152]] presents a graphical language for the modeling of Continuous Integration and
Deployment workflows and the full code generation of textual configurations. It argues that
writing correct CI/CD configurations manually remains an error-prone task at the time of
writing, due to the lack of reuse, non-existing coding assistance and limited testing possibilities.
The presented approach of graphical modeling and automated generation, allows reuse through
parametrizing of predefined model elements, reducing the error-proneness by a strict model
syntax, and enables advanced verification features like model-checking. Although the paper is
motivated by the example of modern cloud-based web applications, the approach of modeling

5



Chapter 1. Introduction

CI/CD is generally applicable for all types of applications. The graphical language and code
generator are developed using the Cinco Meta Tooling Suite [113] and initiated the Rig project.

The presented concepts were discussed among all authors, but I came up with the initial idea
of creating a graphical language for CI/CD workflows. Frederick Gossen and I created the first
prototype of this language. I was main author of section 1, 2, 3, 4 and co-authored section 5,
6 and 7.

Evolve: Language-Driven Engineering in Industrial Practice

[AP II: [153]] introduces a toolkit and a family of textual DSL to reduce the labour of application
developers by generating recurring modules and boilerplate code in an industrial project. The
paper documents the impact of the DSLs on the development process and shows a reduction of
24% handwritten source code. A strong focus on CI/CD helped to quickly deliver new language
versions to the application developers.

It was my idea of bringing LDE to industrial practice and to initiate the Evolve project. The
toolkit, the DSL and the automated delivery process have been primarily implemented by
myself. The presented concepts in this paper were discussed among both authors. I was main
author of all sections.

Guaranteeing Type Consistency in Collective Adaptive Systems

[AP III: [139]] presents an approach how to guarantee type safety in collective adaptive systems
by an external DSL called Type-Safe Functional GraphQL (TFG), that extends the query
language of GraphQL. It evaluates queries against an existing GraphQL schema to spot type-
errors, during generation time of the queries, during compile time of the target language and
during runtime of the client application. The paper is structured alongside an exemplary
request against the GraphQL API of GitHub and concludes how executable DSLs like TFG
can support the shift left paradigm of DevOps where spotting errors as early as possible in the
development process is vital.

TFG was implemented by Jonas Schürmann as part of his Master’s thesis [137], which I su-
pervised. The presented concepts in this paper were discussed among all authors. I was main
author of section 1, 7, 8, and co-authored section 2.

An Introduction to Graphical Modeling of CI/CD Workflows with Rig

[AP IV: [154]] illustrates graphical modeling of CI/CD workflows with Rig. It was the cor-
nerstone of a workshop at the 6th International School on Tool-Based Rigorous Engineering of
Software Systems [97] as part of a lecture focussing an international group of Ph.D. students.
The paper is motivated by an example of a manually ‘programmed’ CI/CD configuration of
the TodoMVC [120] and an equivalent graphical workflow modeled in Rig. It discusses how a
graphical modeling language helps to abstract from the actual textual configuration and how
a code generator can take away error-prone traits of the target language.

It was my idea to organize the aforementioned workshop on CI/CD workflows which initiated
the writing of this introductory paper of Rig. The presented concepts of this paper were
discussed among all authors. I was main author of sections 1, 2, 4, 7, 8. The Rig implementation
has been primarily done by Sebastian Teumert.

6



1.2. Context of Attached Publications

Aligned, Purpose-Driven Cooperation: The Future Way of System
Development

[AP V: [181]] discusses the challenge of aligning space, time and mindset in collaborative
system development. The paper presents state-of-the-art cloud IDEs that already address
the alignment of space and time and argues how LDE can integrate the mindset of different
stakeholders, by dedicated Purpose-Specific Languages (PSLs) in the development process.
This three-dimensional alignment problem is approached by the sketch of a web-based Cinco
environment, that is realized by modern cloud native technology and driven by the DevOps
lifecycle.

The presented concepts of this paper were discussed among all authors. I co-authored the
sections 1, 2, 6 and was main author of section 2.1.

Executable Documentation: From Documentation Languages to
Purpose-Specific Languages

[AP VI: [151]] presents the approach of executable documentation and shows how the domain-
specific notation of graphical languages can be turned into fully-fledged modeling languages.
The paper demonstrates this approach in the domain of DevOps, alongside GitLab’s visual-
ization for documenting executed CI/CD workflows. By applying the concept of LDE, this
graphical notation is incorporated into a custom-tailored PSL and shipped as part of an Inte-
grated Modeling Environment called Rig. This allows domain experts to model (i.e. document)
CI/CD workflows in their well-known notation — instead of using cumbersome textual lan-
guages — and subsequently execute the model to generate CI/CD configurations.

I designated executable documentation as the term for the presented concept in this paper and
contributed the DevOps perspective of executable documentation in practice. The presented
concepts of this paper were discussed among all authors. I was main author of section 3.0 and
4 and co-authored section 1, 2, 3.3, 5 and 6.

Evaluation of Graphical Modeling of CI/CD Workflows with Rig

[AP VII: [157]] evaluates Rig based on pipeline data gathered during a workshop at the 6th
International School on Tool-Based Rigorous Engineering of Software Systems [97]. The paper
formulates three research questions that are derived from the initial idea of graphical modeling
of CI/CD workflows (cf. [AP I: [152]]) and discussed them alongside the interpreted pipeline
data. The data leads to the conclusion that graphical modeling has the potential to reduce
trial-and-error, eliminate syntax errors and lower the entry barrier, when compared with textual
DSLs. In addition to this, the workshop setup and related lessons learned are illustrated to
help the planning of future workshops, before the paper concludes with threats to validity.

Sebastian Teumert gathered and subsequently evaluated the accrued data from the aforemen-
tioned workshop, but it was my idea of embedding the results in broader evaluation of the
overall workshop that constituted this paper. The presented evaluation, interpretation and
threats of validity were discussed among all authors. I was main author of section 4 and
co-authored section 1, 2, 3, 6, 7 and 9.

7



8



Chapter 2

DevOps

“Some people get stuck on the word ‘devops,’ thinking that it’s just about develop-
ment and operations working together.”
— Patrick Debois [37]

In contrast to the Agile Manifesto [12], there is no concluding definition of DevOps [167].
The concrete practice of DevOps is unique to the organization, the use-case and the involved
humans [35] in a project. Nevertheless, to the best of my knowledge, literature and research
agree on the basic idea of DevOps as a technological, cultural and organizational shift [35].
The following section will give a ‘snapshot of DevOps’ [35] in the context of this dissertation
and outline important aspects for the challenge of knowledge sharing in large-scale DevOps.

Business organizations are typically composed of different departments [93], in order to seg-
regate duties, simplify controlling, and ensuring compliance [37]. Each department serves a
specific role (e.g. accounting, sales, and human resources) inside the organization and employs
its own staff with certain jobs. Software companies adopted this style of organizational struc-
ture and group employees by their expertise/qualification in separated departments [37]. As
a consequence, software projects pass through different departments or i.e. phases [167] dur-
ing their life span: In simplified terms, sales acquires a project, product management gathers
requirements, development implements functionality and operations runs the system. Such
waterfall-style software development methodology [14, 35] is prone to the loss of knowledge, es-
pecially during the transition between departments (cf. Figure 2.1). Following the practices of
DevOps, organizations are structured alongside projects (cf. Figure 2.2), and the affiliation to a
department takes a back seat. Hence, it reduces hierarchical structures [65] and organizational
barriers [37].

The evolution of DevOps is driven by the higher release frequency of Agile Software Develop-
ment and the emergence of cloud computing [37]. Although the general availability of cloud
computing and its managed infrastructure virtualization let to sophisticated technologies like
infrastructure-as-code, the ideas and the practice of DevOps are well-suited for traditional un-
managed on-premise solutions as well. DevOps can be considered an extension of Agile [65]
that exceeds the scope of the development process [35]. The term DevOps itself is a portman-
teau composed of development and operations [65]. Debois pointed out in [37], that is goes
beyond both activities and must apply to whole organizations. It is not uncommon to include
business stakeholders [167] as well, but this is out of scope of this dissertation.

The traditional four pillars of DevOps1 are culture, automation, measurement and sharing [37,
65]. Afterwards, they have been expanded by the aspect of lean and summarized under the
term CALMS [167], which highlights the Agile roots of DevOps.

1It is worth mentioning that [35] proposes the alternative pillars collaboration, affinity, tools and scaling with
a focus on so-called ‘effective DevOps’.

9



Chapter 2. DevOps

Business Development Operations

Req Source Application

Knowledge Barrier Knowledge Barrier

Business

Req Application

Knowledge Barrier

DevOps

System

System

Figure 2.1: Traditional workflow (top) and DevOps workflow (bottom)

Culture represents the importance of cooperation across all areas through the whole lifecycle
of a software project. Instead of aiming at self-seeking local solutions, members from different
departments should acknowledge the concerns of their counterparts and come to accommoda-
tion that suits all. Debois et al. [37] demand two major adaptions to overcome the department
barriers: On one hand, operations must be involved from the very beginning of the planning
phase to recognize operational requirements early on. On the other hand, developers should
practice (job) rotation with operations to assist in the event of a failure. Creating such a
positive culture through cooperation is key for a true cross-functional collaboration.

Automation is the technological ‘glue’ between development and operation, and one dimension
of the DevOps maturity model presented in [107]. In order to successfully automate tasks, the
deep knowledge and the seamless integration of broad knowledge from both sides is necessary.
Automation can be applied to small every day activities and even to complex and error-prone
tasks. It culminates in the practice of Continuous Integration and Deployment (CI/CD) where
pipelines automatically provision complete testing and production environments [37] (cf. Sec-
tion 2.1). This includes not only contributions made to the application’s source code, but
modifications of the entire system.

Lean aims at simplifying and optimizing the manufacturing processes of a software system
by elimination of waste [123, 173, 94]. Part of this practice is to minimize code contribu-
tions to discrete changes [167] and to maximize the Archimedian Points, “things that do not
change” [148], while altering source code. Smaller steps improve the controllability and pre-
dictability of changes [148]. They reduce unnecessary ‘noise’ from feedback loops and allow a
higher frequency of releases. As a result, the increased quality of the whole lifecycle and the
improved delivery pace contributes to the business value of a project.

Measurement is the key element in order to improve a software project. Feedback (automated
and manual) helps to reveal limitations and to schedule priorities of future development work.
Debois et al. [37] picture an overarching measurement strategy of a system which includes both
lower-level metrics and higher-level metrics. Lower-level metrics (e.g. hardware workload, error
rate) let DevOps teams to observe health and stability of the system, while high-level metrics
or respectively key performance indicators [55] (e.g. daily sales, user registrations) provide an
insight into customer satisfaction and the business-wise success of a system. All metrics should
be available to everyone in the team [37] and its result must be incorporated into the next
version of the software.

10



Operation

DevelopmentProject

Project

Organization

Development Operation

Operator

Developer

Developer

Operator

Organization

Project Project

Developer

Operator

Developer

Operator

Figure 2.2: Traditional organizational structure (left) and DevOps structure (right)

Sharing enables the alignment and understanding of cross-functional teams. Knowledge si-
los (i.e. knowledge barriers, cf. Figure 2.2), which were a typical result of traditional project
workflows, are threatening the performance and resiliency of a team, not only when it comes
to incidents. Sharing involves project knowledge (e.g. functionality or requirements) and also
system knowledge, like the configuration of production environments [37]. A well performing
team shares best practices in order to ease the transition between development and operation.

Organizational structure is just a starting point when adopting DevOps. Transition from a
traditional software development methodology (e.g. waterfall) [14] with occasional releases and
limited project lifetime, to an ongoing and continuous development with rapid releases [167],
requires a fundamental change of current practice.

Since DevOps is not a one-size-fits all approach and requires a custom adaption to local con-
ditions of project or organization [35, 167], this dissertation won’t address concrete tools or
solutions for the most part, but focus on the practice on a broader level. DevOps operates
alongside an infinite continuous collaboration (cf. Figure 2.3) lifecycle [176] with consecutive
phases that capture the CALMS components.

Plan is the virtual starting point of the DevOps lifecycle. In the context of a novel project, it
focuses on the planning of the first iteration with the goal of groundwork and less functional-
ity. During a running and well established project, the results of the previous Monitor and
Continuous Feedback phase are evaluated and scheduled for the nth iteration.

Create summarizes both development and operational work. Scheduled issues from the pre-
vious stage can be resolved by joined collaborations. This involves the full range from new
features to major infrastructure adjustments. Development environments enable the local ex-
ecution of (unit) tests and the examination of the whole application.

Continuous Delivery aims at fully automated releases that are stored in a repository and
are ready for deployment [35]. This is realized by so-called pipelines that produce executable
artifacts from source code. It relates to Continuous Integration (CI) that builds the application
from scratch and performs test execution to ensure that new contributions do not break the
pipeline.

11



Chapter 2. DevOps

Deployment

Mo
nit
or

FeedbackCo
nti
nu
ou
s

Continuous
Pla
n

Create

Dev Ops
C
on
tin
uo
us

C
ollaboration

De
live
ry

Figure 2.3: Continuous collaboration in the DevOps lifecycle (cf. [5, 79])

(Continuous) Deployment takes over where the previous stage ended and deploys the pre-
pared releases to target environments. In the context of DevOps, teams use distinct environ-
ments for different purposes, like tests or demonstration. The deployment to the production
environment takes the same path (i.e. pipeline) as the other environments.

Monitor visualizes the impact of applied changes to the production environment and uncovers
potential regressions. As mentioned earlier in this section (cf. CALMS), this can include low-
level and high-level metrics and should be open to all team members, independent of their
expertise.

Continuous Feedback is the last stage in the DevOps lifecycle and marks the transition to
the (n+ 1)th iteration. It gathers all the ‘learned lessons’ of the nth iteration. Part of this is
the feedback from all stakeholders from the business to the end user.

Although Figure 2.3 may create the impression that lifecycle phases are assigned to a single
department, based on their placement in the loop (left Dev, right Ops), both professions are
accountable for a successful DevOps practice. To conclude, DevOps promotes transparency
between all stakeholders and aims at uncovering issues as early as possible during the systems’
lifecycle (i.e shift left) by reducing the time to production, emphasizing testing to spot errors
automatically, improving the reliability of the deployment process, and optimizing the response
to incidents [9].

2.1 Continuous Practices

This section aims to define related terms in the context of CI/CD that are often used syn-
onymously in both literature and research. While the coinage of the term Continuous Inte-
gration (CI) is often attributed to an article of Martin Fowler from 2000 [177, 152, 51], later
Fowler himself refers to Kent Beck’s Extreme Programming methodology [11, 52] in a revised
article from 2006 [50]. The slightly different definitions of Continuous Deployment (CD) may
root in two independent developments of very similar concepts how to continuously deliver
software by Jez Humble and David Farley, and Tim Fitz [82]. It is not in the scope of this
section to finally resolve the origin of each term, but to present definitions that take effect for
the upcoming chapters.

12



2.2. Large-Scale DevOps

Continuous Integration

Fetch

Continuous Delivery Continuous Deployment

Push Compile PackageTest UploadCommit  Testing Staging Production

Figure 2.4: Schematic outline of jobs in a CI/CD pipeline

This dissertation considers Continuous Practices as an umbrella term for CI, Continuous De-
livery (CDE) and CD [141]. At the higher level those practices aim at increasing the quality
of software development, ensuring stability of software systems, and reducing costs of software
projects [163]. Although the concrete practice of those three terms is unique to related projects
and applied programming languages, they can be distinguished by their primary goal:

• CI aims at supporting the integration of a steady stream of changes in an existing code
base by relying on automated dependency fetching, compiling and extensive (unit) testing.

• CDE aims at the delivery of compiled and packaged applications by uploading it to a
central repository as a ready-to-deploy artifact.

• CD aims at the deployment of the former delivered artifact into deployment environments
for testing purposes and ‘all the way up’ to the real production system for a continuous
go-live.

In addition to this triad of practices, the term pipeline is also overloaded and often used am-
biguously in the context of CI/CD [AP IV: [154]]. Looking forward towards Chapter 4 of this
dissertation, an explicit definition is necessary. [AP IV: [154]] proposes the introduction of the
terms workflow and configuration as a distinction to pipeline: A workflow is the comprehensive
model of all designated pipelines of a project. The execution of a concrete pipeline is instan-
tiated from this workflow and depends on a variety of configurable factors (e.g. branch name,
commit tags) that are evaluated by the CI/CD provider, especially when changes are published
to the source code repository or when triggered by scheduled events (e.g. nightly builds).

Pipelines (cf. Figure 2.4) are composed of one or more jobs, where every job is (preferably)
responsible for a single task, like fetching software libraries or compiling source code. They
are the elemental entity in this context, since jobs are typically realized as shell scrips, which
denies a semantic insight to the CI/CD engine. Jobs of a pipeline form a Directed Acyclic Graph
(DAG) based on their dependencies on each other. For example, a job which is responsible for
compiling the source code depends on the former fetched libraries.

Nowadays, a workflow is typically serialized in a textual configuration, often in form of a data-
serialization language like YAML [13] and stored in the root folder of the project. This follows
the general as-code movement where additional configuration, like infrastructure specification,
is stored as text alongside the actual application’s source code [88, 58, 170].

2.2 Large-Scale DevOps

The philosophy of Agile Software Development (ASD) and DevOps favors small teams, in order
to reduce the complexity of communication [179, 171]. As a result, software projects that are
practicing DevOps must scale by the number of teams. Dingsøyr et al. list in their taxonomy
of scale large-scale projects with two to nine teams, and very large-scale projects with more

13



Chapter 2. DevOps

GUI

Logic

Data

DevOps
Team

User

(a) Monolith

DevOps
Team 1

DevOps
Team 2

DevOps
Team N

Microservice
1

Microservice
2

Microservice
N

Orchestration

User

GUI

(b) Microservices Architecture

Figure 2.5

than nine teams [42]. For reasons of simplification, this dissertation won’t distinguish between
large-scale and very large-scale in the further course and use the term large-scale for projects
with multiple teams.

When applications mature, features accumulate and teams are growing, the project mainte-
nance and coordination of change requests [7] is steadily increasing. As a result organizations
struggle to scale teams in monolithic projects accordingly. In response to the demand of orga-
nizational and technological scaling, organizations are migrating applications from monoliths
to microservices architectures [36, 127].

Monolithic applications are composed of tightly coupled layers (e.g. Data, Logic and GUI),
that are traditionally developed by a single team (cf. Figure 2.5a) and more importantly in
this context, packaged and deployed as a single artifact. When practicing small-scale DevOps,
the team is responsible for developing and operating the whole stack, from Database to GUI.
Although the modular monolith approach allows the decoupling of layered monolithic applica-
tions into seperated modules with the benefit of “parallel development”, the deployment as a
single artifact left horizontal scaling remain a challenge [31].

In the context of web applications, microservices architecture became popular around 2015 [7]
as an evolution of Service Oriented Architecture (SOA) [98, 100] to restrict services to being
‘small’ [178]. Microservices architectures enable multiple self-organized teams to work together
on the same application (cf. Figure 2.5b), without getting in each other’s way. In contrast to
the modular monolith, which is often used as an intermediate step when transitioning towards
microservices [60], it makes not only “parallel development” but “seperated deployment” [31]
possible. A microservice takes over a single use case (e.g. user registration) and provides this
service to the whole application via an Application Programming Interface (API), typically

14



2.3. Container Virtualization

based on the Hypertext Transfer Protocol (HTTP). As long as the developed microservice
complies with the API specification, the team is independent in their choice of tools and
software stack. As a consequence, applications are not assembled of tightly coupled layers, but
are composed of independent and distributed building blocks. As a side effect, microservices
architecture fulfills the philosophy of ASD and DevOps for small teams [10, 7]. If performed
right, microservices architecture paves the way for large-scale DevOps.

2.3 Container Virtualization

A key technology for the realization of Continuous Practices (CP) in particular and the success
of DevOps in general is container virtualization. Containers are being used for lightweight
infrastructure provisioning during the whole DevOps lifecycle (cf. Figure 2.3), from local de-
velopment environments in the creation phase, via the execution of CI/CD jobs, through to
containerized deployments and monitoring. Although container virtualization was not a new
concept, first the launch of Docker in 2013 gradually established containers as mainstream [48].
Docker is still one of the most influential solutions in this area (cf. [76, 27, 66]), thus the fol-
lowing introduction of container virtualization is greatly influenced by Docker’s concept and
terminology.

In contrast to ‘heavy’ virtual machines that rely on emulated hardware, ‘light’ containers
run processes directly in the kernel of the host’s operating system [48]. In addition to that,
containers require considerably less resources since they are designed to execute just single
processes instead of the numerous processes involved in a virtualized operating systems [48].
This resource efficiency allows hosts to start containers from so-called container images, without
the overhead of hardware emulation.

In the case of Docker, container images are built from blueprints that are called Docker-
files. Dockerfiles are textual configurations, written in Docker’s own Domain-Specific Lan-
guage (DSL) [66], and contain the structural design of an image in a sequence of basic state-
ments (e.g. creating directories, copying artifacts or downloading dependencies). Most of those
statements create new cacheable image layers on top of each other (cf. build step in Figure 2.6).
Images, whose Dockerfiles begin with the same commands, can leverage the cache and reuse
previously built layers up to the first statement that differs. Built images are persisted in local
registries based on the above-mentioned image layers. (cf. store step in Figure 2.6).

The starting point of a Dockerfile is usually a statement that references a previously built
image. This can be one of the provided base images (e.g. Alpine Linux, Ubuntu), official
images of servers or programming languages which provide preconfigured functionality (e.g.
nginx, Python), and all kinds of unofficial private or public third-party images. Besides local
registries, images can be also pushed to and pulled from remote registries. Such distributed
registries provide a convenient way of continuously delivering (cf. Section 2.1) applications
including their run-time environment as container images.

Containers are instantiated and run from present container images (cf. run step in Figure 2.6).
As already indicated, they provide a complete run-time environment alongside the actual ap-
plication [76], which includes a compatible file system, external libraries or drivers. When
instantiated, the container engine adds a seperated and mutable layer for the container on top
of the existing and immutable layers provided by the image. This allows the executed process
a read-write access to persist arbitrary data. Multiple independent containers can be instanti-
ated from the same image (for example for realizing horizontal scaling) where every container
is provided a distinct read-write layer (cf. Containers in Figure 2.6) and holds it’s own state.

15



Chapter 2. DevOps

Dockerfile

store

run

(Container)
Image

build

Registry

...

...

Layer 1

Layer N

Statement 1
...
...

Statement N

Containers

Layer N+1

Layer 1
...

Layer N
...

Figure 2.6: Terminology of container virtualization with Docker

In summary, container virtualization is a comfortable method to quickly deliver applications in
form of containers. However, modern applications, especially when realized by microservices
(cf. Section 2.2), are composed of more than one service. Complying with best-practices of
isolating services by container virtualization, will lead to (at least) one container per service.
As a consequence, such multi-container applications require orchestration to interoperate prop-
erly. This includes the provisioning of resources like processing power, memory, storage and
networking. Attempting orchestration manually would be error-prone and not cost-effective in
the long run.

Container orchestration systems support the textual definition of multi-container applications
and automate their deployment, scaling and resource provisioning. Since Kubernetes has be-
come the de-facto standard for production-grade use cases [27], the remainder of this section
will briefly introduce the main terms needed for later chapters. Kubernetes allows engineers
to describe applications deployments in a declarative configuration [27]. Intermediate steps
(e.g. stopping containers, pulling images, and starting containers), between the current and the
desired deployment state are automatically derived and executed. As many as-code approaches
in the domain of DevOps, Kubernetes configurations rely on YAML.

Kubernetes is designed to run as a cluster composed of multiple physical or virtual nodes [134].
Nodes provide the actual hardware resources and handle the workload of deployed applica-
tions. Deployments are not directly realized by containers, but by so-called pods. “Pods [. . . ]
are the smallest deployment artifact in Kubernetes cluster” [27]. They allow the creation of
tightly coupled groups of containers which share hardware resources and are deployed to the
same node [27]. Grouping containers in a pod is needed when container communication can-
not be realized exclusively via networking and must run on the same node in order to work
together [134]. Containers that are isolated into different pods, exists in their own pod’s vir-
tual network and cannot directly communicate to each other. Kubernetes supports network
communications to container APIs via services [134], which can be discovered by containers in
the private network of the cluster.

Kubernetes and Docker are not only key for automating infrastructure provisioning, but for
reducing edge-cases by bridging the gap between local and remote environments [28]. Their as-
code approach makes operational knowledge explicit and allows, in cooperation with CI/CD, to
observe how even complex applications are built, tested, delivered, deployed and orchestrated.

16



Chapter 3

Knowledge Sharing in Large-Scale DevOps

“We’re on the same team . . . now we share the same information and tools.”
— Eric Shamow [37]

Since DevOps is not a one-size-fits-all approach to every project [6, 35], software engineers face
major challenges while adopting it to their project. Development and operations of a system
are more separated than ever before [37]. A successful practice is therefore highly dependent
on craftsmanship and skill level of the involved software engineers and system administrators.
Tacit or protected knowledge [41], for instance due to knowledge hoarding [124], contributes to
the problem and teams run into danger to ‘reinvent the wheel’. As a result, the full potential
of large-scale DevOps is often not exhausted in reality.

The practice of DevOps postulates sharing (cf. CALMS in Chapter 2) and treats it as a
first-class citizen in intra-team knowledge exchange, especially between developers and oper-
ators. Developers and operators own deep knowledge of their field of expertise, but in order
to smoothly cooperate, they also need broad knowledge of their counterpart (cf. Figure 3.1).
To successfully ‘blur the lines’ [136] experts must share their own deep knowledge and create
an overlapping broad knowledge. In a sense, developers ‘become’ operators and vice versa
(cf. [73]). The interface between the broad knowledge of both sides is crucial for a successful
adoption of DevOps practices (e.g. automation) and the key aspect to prevent knowledge silos.

OperationsDevelopment

Broad Knowledge

D
eep Know

ledge

Broad Knowledge

D
eep Know

ledge

Figure 3.1: T-shaped knowledge in the context of DevOps

Although DevOps aims at breaking down knowledge silos by applying cross-functional teams,
the implied independence of a DevOps team inside an organization makes it vulnerable to be-
come a cross-functional knowledge silo itself. Hence, large-scale DevOps is prone to inter-team
knowledge barriers (cf. Figure 3.2), which can threaten software projects and whole organi-
zations in the long run. Thus, managing knowledge “is one of the most important things a
distributed team can do. Not only does it remove communication barriers among team mem-
bers, but it also increases the ease and efficiency with which they transfer information.” [124]

17



Chapter 3. Knowledge Sharing in Large-Scale DevOps

DevOps
Team 1

DevOps
Team 2

DevOps
Team N

Microservice
1

Microservice
2

Microservice
N

Orchestration

Knowledge Barrier Knowledge Barrier

User

GUI

Figure 3.2: Knowledge barrier in large-scale DevOps

This dissertation holds the view that especially large-scale DevOps needs a knowledge culture
“that enables and motivates people to create, share and utilize knowledge for the benefit and
enduring success of the organization.” [118]

Large-scale DevOps has a great potential for applying the codification strategy for knowledge
sharing. DevOps teams have to face the same initial difficulties and challenges when adopting
the DevOps lifecycle (cf. Figure 2.3). Although existing approaches for general cases can be
applied, the challenge is the transfer of related “knowledge from their source to where it is
needed” [90]. Especially sharing deep knowledge is not a trivial task, since it requires an
in-depth understanding of the involved context [15].

The goal of the codification strategy is to make knowledge explicit [41] by transferring it into
a digital format, persist it via databases and provide easy access to the organization [63].
Modern software documentation approaches (e.g. JavaDoc [71] or Doxygen [46]) have adopted
this strategy and integrate documentation as part of the software’s source code nowadays.
Corresponding toolkits create documentation, as standalone software itself, from the annotated
source code: Interactive Wikis, for example in the form of web applications, support efficient
knowledge discovering and give insight into even the smallest components of a software product.

18



3.1. Domain-Specific Languages

compile

test

package deliver

Figure 3.3: Sketch of a CI/CD workflow

Thereby, online accessible documentation has become the norm, while physical copies are more
and more unusual [24, 162]. As a side note, codification enables also human and computer
readable documentation (e.g. OpenAPI [119]).

Nevertheless, it is a well known problem that documentation is misleading, incomplete or out-
dated [22, 1]. This roots in individual, cultural, technological and organizational barriers [110].
The “lack of time” [110] is a major individual barrier, since documentation is not prioritized by
agile teams. Following the Agile Manifesto [12], their focus lies more on “working software” than
on “comprehensive documentation”. Although documentation is often a major requirement by
product owners, organizations might not understand knowledge as a competitive advantage
and do not provide proper IT infrastructure for knowledge exchange.

3.1 Domain-Specific Languages

Domain-Specific Languages (DSLs) have the potential to enable cross-functional collaboration,
not only between development and operations on the intra-team level, but to the whole or-
ganization on the inter-team level. In DevOps, they have their origin in the provisioning of
agile infrastructure [37], but find their way into additional areas of the DevOps lifecycle, like
Continuous Integration and Deployment (CI/CD). Most CI/CD providers create custom DSLs,
on top of YAML [13], for serializing workflow configurations [152, 154].

In general DSLs are more expressive and easier to use [104, 39], compared to General-Purpose
Languages. However, most DSLs in this context are still cumbersome, generally textual and
have a steep learning curve [156]. Thus, they fall short of their potential of leveraging abstrac-
tion and acting as the interface between broad knowledge and deep knowledge.

When approaching a cross-cutting issue like deployment automation, usually the intensive
collaboration between experts is necessary in order to be successful. This requires an overall,
but broader alignment on the levels of why, what and how . Experts, especially from different
areas, must be able to discuss and to understand each other on both the why and what level.
In other words, they must speak the same language and use the same terminology, while the
how level is of secondary importance initially. For example, when creating CI/CD workflows
it is not yet important how they are implemented, but is crucial to understand why they are
helpful and what they are.

First sketches of a CI/CD workflow (cf. Figure 3.3) could even be drawn on a piece of paper
to align coworkers and convey the idea of an automated deployment. The concrete realization

19



Chapter 3. Knowledge Sharing in Large-Scale DevOps

General / Why

Accurate / HowSimple / What

Domain-Specific Languages

Software EngineeringBu
sin

es
s E

ng
ine

er
ing

Figure 3.4: Based on Thorngate’s tradeoff (cf. [160, 145])

must then be performed manually by specialists and needs the deep knowledge of the underlying
technology (e.g. build tools, containerization, etc.). A resulting solution is hardly reusable, and
the knowledge that originates from this process is difficult to share.

The barrier between planning (what) and implementation (how) is a traditional area of conflict
(cf. Figure 3.4), resulting from the conceptual difference between Business Engineering and
Software Engineering [145]. It is even further attributable to Thorngate’s tradeoff between
generality, accuracy and simplicity [160], where only two of the tree features can be satisfied
at the same time.

Trading generality for accuracy and simplicity [104, 39], enables DSLs to bridge the gap be-
tween broad knowledge and deep knowledge in a specific domain. By dismissing the technology-
centric view (i.e. how level) [96, 140] on a domain, a well-designed declarative DSL grants non-
specialist access to the broad knowledge by providing a clear representation of the what level
(cf. [146]). Code generators that are attached to a DSL enable fully-automatic compilation
from the what level to the how level. The deep knowledge of the specialist is now materialized
in the code generator [94] and allows the reuse or sharing of the knowledge. The interplay
of language and generator solves the problem of out-dated documentation since instances of a
DSL are both documentation and executable artifact at the same time.

The development of a DSL is still considered an expensive or difficult task [104, 78, 39, 113].
In order to be able to develop a DSL, not only domain knowledge but expertise in language
development is necessary [104]. Furthermore, economic reasons have to be factored in before
creating a new DSL [104]. DevOps at large scale justifies the upfront investment in language de-
velopment for practices of the DevOps lifecycle (cf. Figure 2.3), especially when those practices,
such as automation, can be generally applied to most projects.

3.2 Lingualization Strategy

This dissertation proposes a rigorous approach to knowledge sharing in the domain of the Dev-
Ops lifecycle, by applying the ideas of Language-Driven Engineering (LDE) towards language-
driven knowledge sharing. It culminates in a lingualization strategy which goes far beyond the
codification strategy for knowledge. Instead of ‘just‘ storing knowledge (e.g. as documentation
or in databases), the lingualization strategy aims at bringing knowledge to life through plain
and simple Domain-Specific Modeling Languages (DSMLs).

20



3.2. Lingualization Strategy

DSMLs as a Service

Meta DevOps
Team 1

Meta DevOps
Team 2

Meta DevOps
Team N

DevOps
Team 1

DevOps
Team 2

DevOps
Team N

Contribution

Utilize

Feedback

Figure 3.5: Providing DSMLs as a Service in large-scale DevOps

The term lingualization is generally defined as the “act of representing something as a text in
some language” [59], but the strategy presented here considers not just textual, but in particular
graphical languages as an excellent way of representing knowledge. Several positive character-
istics, that are beneficial for knowledge sharing, are awarded to graphical models in contrast
to textual notations (cf. [74]): They have a potential for greater expressiveness [84], flattening
the learning curve [135] and allow humans to ‘process’ their representation in parallel [108].

Nevertheless, while the following will focus almost entirely on DSMLs, which in contrast to
traditional textual DSLs make use of graphical models, the decision whether implementing a
textual or graphical language should be solely based on the actual use-case. [AP II: [153]]
shows how a family of textual DSLs were developed on-demand in an industrial setting to
reduce verbose and reoccurring boilerplate code of a web-based application. An organization-
wide adaption to other projects successfully replicated the former results and showcased the
idea of knowledge sharing through DSLs between teams. Another example is demonstrated in
[AP III: [139]] where a textual DSL extends GraphQL to guarantee type consistency.

Key to the lingualization strategy is a profitable language development which keeps knowledge
sharing at low cost [133]. Like knowledge management, language development should not be
an isolated task (cf. [63]), but a global objective of organizations practicing large-scale DevOps.
Language development should be considered the prioritized way of sharing knowledge. As the

21



Chapter 3. Knowledge Sharing in Large-Scale DevOps

DSML
Repository

Utilize

Feedback

Meta DevOps
Teams

DevOps
Teams

DeployBuild ... Deliver

DSMLs as a Service

Deliver ... Build

5

1a
2

3

4

1b

Figure 3.6: Detailed workflow of providing DSMLs as a Service

aforementioned characteristics promise, sharing knowledge through DSMLs is an efficient way
to learn from each other (cf. [37]). They are comprising the what and how level. If treated right,
DSMLs could even become first class citizens in the development environment and important
building blocks of their DevOps lifecycle/ecosystem.

In reality DevOps teams already take on greater responsibilities than traditional software de-
velopment teams (cf. Chapter 2). They face not only the development of software anymore,
but are supposed to cover operational tasks as well. Thus, their focus lays primarily on the
development of maintainable and operable systems. While they are successfully practicing
intra-team knowledge sharing, inter-team knowledge sharing might be interpreted as an addi-
tional burden. Even with the reduced cost due to LDE, such small and specialized teams would
be overloaded with the task of language development. The organizational structure has to be
reconsidered and must represent the importance of the lingualization strategy of knowledge
sharing as a competitive advantage (cf. Figure 3.5).

Dedicated Meta DevOps teams can unburden the existing DevOps teams and meet the demand
of LDE to create “a new class of stakeholders” [146] for language development. Meta DevOps
teams do not participate in the development of end-user applications, but it is their task
to enable inter-team knowledge sharing in large-scale DevOps by applying the lingualization
strategy. Knowledge that is worth to share and compatible with the lingualization strategy will
be cast into a DSML and published organization wide. Thus, knowledge is not just accessible
to all teams in the organization but directly reusable thanks to the interplay of DSML and
code generator.

Since Mernik et al. defined decisions, analysis, design, implementation, and deployment as the
DSL development phases [104], it is a natural fit that Meta DevOps teams practice DevOps as
their software development methodology. For a more detailed workflow, cf. Figure 3.6: Meta
DevOps teams plan new features of their maintained DSMLs based of the continuous feedback
(cf. 5 in Figure 3.6) from language users, e.g. feature requests. Feedback is stored as user
stories and analysed to drive the future development. Using automated CI/CD workflows, new
versions of a DSML are continuously built and delivered (cf. 1a in Figure 3.6) to a centralized
DSML repository (cf. 2 in Figure 3.6). This organization-wide repository allows early adopters
(cf. [102]) and testers to try new versions before the actual release of a DSML. Stable versions
are deployed (cf. 3 in Figure 3.6) as a service and made available for regular use (cf. 4 in
Figure 3.6) to all DevOps teams.

Meta DevOps needs cross-domain experts that have experience in projects driven by DevOps,
to be aware of needs and requirements, and language developers that know how to implement

22



3.3. Purpose-Specific Languages

and deploy DSMLs. Nevertheless, regular DevOps teams are not excluded from participating
in the knowledge sharing process by providing DSMLs. Advanced DevOps teams can deliver
their own DSML using the same workflow (cf. 1b in Figure 3.6) as Meta DevOps teams.

3.3 Purpose-Specific Languages

Up to this point, this dissertation uses the common terms of DSL and DSML to describe the
class of ‘programming’ languages that have the potential for a lingualization strategy. DSMLs
adopt terms of their target domains and make them an integral part of their language. This
domain specificity can already have a positive impact on sharing knowledge through models [49],
but if the ‘bounded context’ [49] is not well-defined, a DSML runs into danger to gradually
cover too many aspects of its target domain and thus, looses an initial simplicity. Following
the LDE approach the lingualization strategy focuses on the more narrow term purposes [151].

For instance, one could picture the DevOps lifecycle and its practice of continual improve-
ment [75] as a domain of interests. In the wild, working DevOps lifecycles are often impro-
vised [18] and usually a composition of numerous technologies to realize the consecutive phases
from planning to monitoring a software system. This involves knowledge of scripting languages,
protocols, virtualization and so on, which are forged together by manual labor. The deep knowl-
edge in different areas and a close cooperation of specialists is needed to make it work. An
attempt to cover this lifecycle to its full extent in a single DSML is almost an impossible task.

Approaching such a broad domain and trying to impose a comprehensive DSML on mature
DevOps teams would be met with individual resistance and technical difficulties, since “people
and processes don’t change overnight” [37]. The massive impact on the already working DevOps
lifecycle would come close to a big bang adoption [17], with all the included drawbacks. In order
to perform a successful lingualization strategy, DSML adoption must be a non-intrusive task.

Following LDE and it’s practice of divide and conquer [85], one can discover numerous of
purposes inside a domain, like DevOps, and create multiple Purpose-Specific Languages (PSLs)
instead of a single DSML. A DSML tries to cover a complete domain while a PSL serves just a
single purpose. PSLs are simpler and their focus is much narrower than DSMLs, which benefits
the knowledge sharing properties (i.e. ‘less is more’).

In this context, PSLs are in a sense a materialization of knowledge [94]. Instead of extracting
information from codified knowledge and manually applying it to a current case, PSLs bridge
the gap between what and how level by an explicit visualization and automated code-generation.
The domain knowledge or respectively purpose knowledge is embedded [126] in a concrete PSL,
and thus becomes independent of domain experts. During the development process of a PSL
knowledge is transferred from source to destination, which is a major challenge of general
knowledge management [90].

[AP VI: [151]] establishes the term executable documentation for the dual benefit that results
from a well-designed PSL that is accompanied by a code generator. Key for such an executable
documentation is the understandability of a PSL that allows experts from different backgrounds
to reason from a concrete model and draw conclusions for their responsibility in the project.
PSL-based executable documentation has the potential to improve the overlapping commu-
nication between different stakeholders, and to act as an interface with other organizational
units [171].

A tangible example of applying executable documentation in the context of DevOps are CI/CD
workflows. As already argued in Section 3.1 and illustrated in Figure 3.3, CI/CD workflows can

23



Chapter 3. Knowledge Sharing in Large-Scale DevOps

(a) GitLab’s graphical notation of an exemplary CI/CD pipeline

(b) CI/CD workflow based on the graphical notation of Figure 3.7a

Figure 3.7

be easily drawn on a piece of paper to outline its concrete graph structure. CI/CD providers
make use of this trait to document the outcome of executed CI/CD pipelines. Figure 3.7a
displays GitLab’s graph visualization of an exemplary pipeline, that represents the sketch of
Figure 3.3, with four connected jobs in which all jobs have been successfully completed. The
graph is read from left to right: While the jobs compile@continuous and test@continuous can be
independently executed in parallel, package@continuous and deliver@continuous are premised
on the result of previous jobs.

[AP VI: [151]] illustrates how this domain-specific notation of GitLab’s visualization can be
turned into a fully-fledged modeling language that not only supports the generation of CI/CD
configurations, but also the graphical documentation of the modelled workflow. Figure 3.7b
shows a model that reflects this visualization and especially addresses the execution order of
the including jobs via directed edges between the nodes compile, test, package and deliver. The
workflow is modelled in a graphical PSL that laid the foundation of the Rig project [AP I: [152]].
Chapter 4 will introduce Rig and further elaborate its PSL.

Such executable documentation benefits from the clear visualization and supports the knowl-
edge sharing by allowing to include models like Figure 3.7b as graphics directly in textual
documentation. In order to live up to those expectations, PSLs must avoid complexity by
aiming at declarative languages that communicate on the what level and hide technical or im-

24



3.3. Purpose-Specific Languages

(I) “Make each [PSL] do one thing well. To do a new job, build afresh rather than
complicate old [PSL] by adding new features.”

(II) “Expect every [PSL] to become integrated by another, as yet unknown, [PSL]. Don’t
clutter output with extraneous information. Avoid stringently columnar or binary
input formats. Don’t insist on interactive input.”

(III) “Design and build [PSLs], even [mIDEs], to be tried early, ideally within weeks.
Don’t hesitate to throw away the clumsy parts and rebuild them.”

Figure 3.8: Unix Philosophy [102] Applied to Language-Driven Engineering

plementation details, in other words the deep knowledge, in form of the how level. This can
be achieved by following LDE’s key features simplicity, service orientation [95], and the one-
thing approach [147, 95]. The Unix philosophy (cf. Figure 3.8), which was actually intended
for implementing traditional programs [102], endorses the mindset behind LDE and succinctly
expresses the essential rules for the lingualization strategy presented herein.

Simplicity is not just a characteristic that positively affects software maintainability from the
developer perspective [106], but impacts the success of applications or programming languages,
when compared to competitors, by an ease of use [105]. While especially enterprise software
tent to become more complex over time [23], it is the aspiration of lingualization strategy to
steadily provide easy to grasp PSLs, which are custom-tailored to the user’s needs. In order
to not lose simplicity over time, LDE offers two ways of achieving modularity for the language
user. A horizontal composition allows multiple PSLs to be integrated into each other, while
the vertical refinement transforms PSLs to more specific abstraction layers [146] and allows a
step-wise code generation to executable code along those layers [180].

This means for Meta DevOps teams, to already keep in mind while planing a PSL, that it does
not live in solitary. It is imagined as a service, to other components of a bigger system [98]
or, as already mentioned, horizontally integrated respectively vertically refined in the spirit
of LDE [146, 180]. Therefore, it is crucial to provide a well-designed and preferably stable
interface so that other components can use a PSL as a service. It is important not to over
specify a PSL to a particular issue, but maintaining a degree of generality, so it can be “used
a lot and solve a lot of problems” [39]. Finding the sweat spot between (custom) tailoring and
reusability will remain an ongoing challenge of Meta DevOps teams which emphasizes the need
for a cheap and fast language development.

In addition to simplicity and service orientation, the one-thing approach reduces complexity
by avoiding inconsistency. It advocates for a single source of truth during the system’s lifecy-
cle [95]. A central artifact, the ‘one-thing‘, e.g. in the form of a model, serves as the object
of observation to all stakeholders. Meeting the demand for simplicity, the artifact should be
understandable only with broad knowledge of DevOps team members. All changes are made
to the artifact and the implementation is generated from it. Furthermore, a PSL must allow
the serialization of the ‘one-thing‘ to support source control as first-class citizen, regardless of
whether it is a textual or a graphical language. Repositories enable the efficient collaboration
in a DevOps team [35], so even graphical languages should support a fitting serialization for-
mat (cf. GraText [92], MCaM [172]). Since the most conventional version control systems aim
at text-based documents, binary representations are disapproved. This textual representation
must be a compatible input to the code generator of the PSL, without any further preprocessing

25



Chapter 3. Knowledge Sharing in Large-Scale DevOps

I

S T
Input Output

Figure 3.9: The interplay of the three languages (S,I,T ) in a code generator (cf. [74, 68])

to support fundamental DevOps practices like CI/CD.

3.4 Code Generators

Similar to executable DSLs which can be interpreted or compiled [21], PSLs are shipped with
associated code generators that translate instances of a PSL to executable artifacts. Code
generation can be approached and realized in different ways (cf. [74] for a detailed list), but in
general, it involves three (programming) languages [74]. Their interplay can be represented in
a T-diagram (cf. Figure 3.9): Code generators take the source language S as their input, are
implemented by a language I and produce an output in a target language T.

Code generators abstract from technical details [74], and take away issues of the target language
which are only known to those who own deep knowledge in that field. They contain the essence
of experience on the how level (i.e. failings and successes) of domain experts and let others
benefit from it. [AP IV: [154]] addresses the “Norway Problem” in YAML [116], where the
Alpha-2 Code [70] of Norway ‘no’, if represented as an unescaped string, is interpreted as the
boolean value false, and shows how the code generator of Rig solves such issues related to the
target language.

This example illustrates, that code generators perform the ‘heavy lifting’ of knowledge reuse
and that the division of labour between different stakeholder is the corner stone of the lingual-
ization strategy. While PSL developers are very familiar with inconvenient traits of the target
language, PSL users do not have to be aware how they are avoided by the code generator and
can solely focus on realizing solutions by using the source language. In other words, Meta
DevOps teams materialize deep knowledge of the domain in the PSL, but even more impor-
tantly for a consistent and convenient usability, in the code generator. When issues arise, Meta
DevOps team can solve them once and for all on the meta level (cf. [148]) and easily provide
the fix to the DevOps teams using CI/CD. So instead of manually migrating knowledge from
codified documentation to their use-case by reinventing the wheel, DevOps teams gain advan-
tage from the materialized knowledge of PSLs and code generators. Thus, knowledge sharing
by the lingualization strategy accelerates not only the DevOps maturity of existing teams by
adopting more phases of the DevOps lifecycle, but gives newly formed teams a headstart when
introducing DevOps from scratch.

A distinctive feature of LDE is the more or less unrestricted numbers of code generators and
their interoperability to achieve simplicity for the language user. While the realization of hori-
zontal (composition) and vertical (refinement) interoperability [146, 180] is beyond the of scope
of the dissertation, it impacts the lingualization strategy in the following way. The simplicity
through modularization makes it convenient for DevOps teams, but potentially increases the

26



3.4. Code Generators

development effort for the Meta DevOps teams. In order to keep the development effort low,
code generators for the lingualization strategy must comply to global standards. Sven Jörges
lists in [74] five general and six specific requirements for code generators that serve as an ideal
baseline. The following discusses the most important requirements here and highlights their
value in the light of DevOps.

One major concern of practicing DevOps is the requirement of tested software. In line with
this, code generators should support validation by means of testing as a first-class citizen.
Testing must be straightforward, locally on development environments and remotely during
the Continuous Integration (CI) phase. It may sound like an obvious requirement, but deter-
ministic code generation is key for unit testing, so that it cannot be stressed enough. Especially
multithreading should be handled with care to not end up in non-deterministic results. A con-
venient strategy to meet this demand is pure generators (cf. pure functions) were the generator
has no side effects, and the generated code is only dependent on the input by the source
language. Maintaining test cases for discovered issues in combination with automated test
execution ensures that bugs are not reintroduced due to regressions.

Essential for exhausting the testing possibilities of code generators beyond unit testing, is the
concept of full-code generation. A concrete model contains all necessary information to generate
fully functional code [112], without any round-tripping or user interaction. While partial code
generation, would also support unit testing based on the generated code as return value, only
fully functional and executable code allows system testing of functional and non-functional
requirements.

When Meta DevOps teams start to build upon existing code generators (by horizontal compo-
sition or vertical refinement), they require a straightforward variant management and distinct
product lines. They must count on the stability of released versions and should be informed
about breaking changes in their interface. A common approach to encode the compatibility
of new releases (e.g. for software libraries), is semantic versioning [125]. Version strings are
composed of three parts called major, minor and patch (e.g. 3.1.2), each one with a different
meaning. While minor and patch represent backward compatible changes, an increment of
major indicates incompatible modifications.

Generated code is usually a black box to a language user. Nevertheless, a code generator
should aim at producing receiver oriented code that complies with common style guides of its
target language. While this is not a trivial task, due to the narrow focus of PSLs, it’s not
beyond the realm of possibility. Providing receiver oriented code does not end in itself, but
it eases testing and further processing by software development kits of the target language.
Static code analysis, like linters, can produce warnings based on low-quality code and help
to spot issues in the generator implementation. Most of those issues arise from template-
based generation (cf. [74, 84]), where code is directly generated as a stream of characters
by the interplay of implementation language and target language. An alternative approach
makes use of transformation rules [74, 84, 87]. Instead of generating source code directly, first
the generator transforms the input model of the source language to an output model of the
target language (e.g. abstract syntax tree) and second makes use of established methods in the
context of the target language to serialize the concrete code [74, 84]. In the context of receiver
oriented code, this approach is advantageous, since a valid model of the target language already
represents a syntactically correct program. Furthermore, if the source code representation is
not necessary, the output model representation allows a direct compilation of the program
without previously parsing.

In general, code generators must be expected to be executed in tool-chains like CI/CD pipelines

27



Chapter 3. Knowledge Sharing in Large-Scale DevOps

(Domain) Knowledge

Generator

PSL

mIDE

Simplicity

Figure 3.10: Stepwise simplification of domain knowledge by LDE

to enable automation in terms of DevOps. Container images are a suitable way to release
code generators and support headless generation (i.e. without a graphical user interface), since
CI/CD is often realized by container virtualization (cf. Sections 2.1 and 2.3). In combination
with the aforementioned requirements, automated tool-chains contribute to a rapid, but reliable
maintenance of code-generators, which are important for such a service-oriented approach.

3.5 mindset-supporting IDEs

Using a textual DSL or a general-purpose language, requires just a text editor to write source
code, and a compiler to create an executable program from the written source code. However,
developing applications this way is a tedious task which doesn’t meet the requirements on cost,
controllability and effectiveness (cf. [115]) of modern software development. In the worst case,
the text editor is even completely unaware of the used languages’ syntax, and the compiler is
the only mechanism to provide feedback to the developer.

In order to increase the productivity, Integrated Development Environments (IDEs) assist de-
velopers during development time [67] before the code is compiled. The functionality reaches
from basic features like source code highlighting and folding, to more sophisticated support,
like autocompletion and coding assistance [67]. Apart from data modeling with e.g. en-
tity–relationship model IDEs typically aim at general-purpose languages that are represented
as text.

Steffen et al. coined the term of mindset-supporting IDEs (mIDEs) in [146] as a special form of
IDEs, that support the development in a specific domain or for a specific purpose and put the
mindset of domain experts in the foreground. The flat learning curve of using an mIDE which
speaks the language of the domain experts, lets even novices participate during the software
development process. It comes shipped with extensive domain-specific tool support, which goes
beyond typical IDE support, to assist in using the PSL and executing the code generation.

An mIDE is paired with a corresponding PSL and code generator (cf. Figure 3.10). Actually, it
can be directly derived and generated from the meta-level specification of the PSL [113], which
will be addressed later in the dissertation (cf. Section 4.1). Meta DevOps teams are responsible
for the development of the whole stack and publish the mIDE as turnkey applications, which
doesn’t require additional setup of e.g. the code generator.

28



3.6. Organizational Infrastructure

In contrast to typical desktop applications, mIDEs in large-scale DevOps have specific non-
functional requirements on modularity, setup and resources. The seamless integration into
established tool chains is an absolute necessity for a successful adoption. To not hamper the
integration, the stack must be modular and loosely coupled. Language server (cf. [25]), code
generator and even the GUI should be decoupled in independent modules. Besides publishing
them as a bundle in an mIDE, those modules could then be deployed distributed and scaled
independently. Hence, providing them as e.g. container images with simple interfaces, would
enable the reuse of single components.

In order to standardize the provisioning of mIDEs, their implementation and architecture
should follow requirements related to the term cloud computing [103]. Delivering them as
fat binaries or as container images allows both local execution and remote deployment for
inter-organization usage. Web-technology lets full-blown applications run in a browser almost
instantly with zero setup [40] and enables mIDE as a service. It allows users to try mIDEs
without the burden of a complex installation [40].

For a dynamic use of PSLs in a software project, it is essential that mIDEs are lightweight and
do not stand in the way of the daily task. When working on independent, but interacting PSLs
in a service-oriented manner, engineers will use multiple mIDEs at the same time and could
run into resource limits. This is why mIDEs should have a fast boot-up time and their resource
footprint should be as small as possible.

3.6 Organizational Infrastructure

In [118] Oliver and Kandadi list IT infrastructure as one of ten key factors for the success of
organizational knowledge sharing. In this context IT infrastructure comprises both standard
communication technology (e.g. videoconferencing software) and more specific solutions to
knowledge sharing, like knowledge portals. Knowledge portals are central platforms for easy
browsing and retrieving codified knowledge [118]. Employees have access to a variety of tools
that simplify the work with the data. In order to support such major challenge, proper IT
infrastructure is needed on an organizational level [110]. Knowledge portals that are open to
the whole organization might have also a positive impact to prevent knowledge hoarding [118].

A comprehensive lingualization strategy for knowledge sharing has an equivalent, maybe even
greater, demand for IT infrastructure. Thus, the organizational overhead to provide this in-
frastructure is not to be neglected. While knowledge portals are often just operated by orga-
nizations so that employees can enter and access data, the lingualization strategy includes at
least the complete development cycle of mIDEs, PSLs and code generators. Besides the organi-
zational structure, with dedicated Meta DevOps teams (cf. Figure 3.5), IT infrastructure plays
an important role to enable knowledge sharing. Implementing a DevOps-based lingualization
strategy requires an interplay of multiple services (cf . Figure 3.11):

An important requirement of practicing DevOps are automated and reproducible builds of the
system (cf. [38]). In order to enable this, the source code repository must contain all information
that is needed for the build, which resembles the philosophy of the one-thing approach (cf. [147,
95]). This doesn’t mean that every dependency is stored as source code, but that a pointer is
present (e.g. pom.xml [3]) how to fetch dependencies during the build in the correct version.
The source code repository is the main work object for the teams and every change to the
source code of mIDE, PSL, code generator, etc. is committed there. This enables CI, which
automatically builds and tests changes on centralized environments.

29



Chapter 3. Knowledge Sharing in Large-Scale DevOps

mIDE 
Repository

CI/CD 
Runner

Source Code
Repository

mIDE as a Service

Continuous 
Integration

Continuous 
Delivery

Continuous

Deployment

Figure 3.11: IT infrastructure to continuously provide mIDEs as a Service

Such centralized environments can be called CI/CD Runner. The realization requires dedicated
machines whose only purpose is the execution of CI/CD tasks, like building, testing and deploy-
ing. Based on virtualization technology (e.g. by containers or virtual machines) reproducible
environments with all necessary software development kits can be instantiated on demand.
The definition of specialized environments which differ from standard solutions, should also be
available to team members and versioned alongside to the applications’ source code. In case of
Docker, this can be achieved by storing related Dockerfiles in the source code repository and
build custom container images through CI/CD in the same way as the application.

A central building block is the mIDE repository that contains all compiled artifacts that are
ready to use. It stores the available mIDEs and makes them accessible organization-wide. The
mIDE repository represents the organizational common knowledge (cf. [133]) that was discov-
ered by the lingualization strategy. Such mIDEs are released by successful run of Continuous
Delivery (CDE) pipelines. Following the demand of modularization (cf. Section 3.5), the repos-
itory doesn’t store just mIDEs, but all the decoupled modules for independent usage. For in-
stance, such repositories can be realized by Maven repository managers [3] in case of Java-based
modules, or by Docker registries [44] for containerized modules.

In order to make the adoption of PSLs easier, the lingualization strategy provides mIDEs
as a service to the whole organization. Continuous Deployment (CD) pipelines are deploying
compiled mIDEs from the repository to a central private cloud infrastructure. The modularized
architecture of mIDE, for instance as container images, require comprehensive provisioning and
orchestration (cf. Section 2.3), which can be realized by applying Kubernetes. Employees can
then use their corporate identity (i.e. single sign-on) to access the web-based service and start
using the PSL without additional setup.

[AP V: [181]] sketches the concept of Cloud mIDEs which has been further elaborated in the
dissertation of Philip Zweihoff [180]. Cloud mIDEs are web-based distributed environments and
feature real-time collaboration between different stakeholders through custom-tailored PSLs.
The centralized infrastructure based on cluster technology, allows the seamless transition be-
tween development and runtime environment. This concept lays the technical foundation for
the here presented mIDE as a service approach.

30



3.7. The Knowledge Sharing Process

mIDEs as a Service

Meta DevOps
Team 1

Meta DevOps
Team 2

Meta DevOps
Team N

DevOps
Team 1

DevOps
Team 2

DevOps
Team N

Knowledge Creation
Kn

ow
le

dg
e 

Ap
pl

ic
at

io
n

Knowledge Storage
Kn

ow
le

dg
e 

D
is

co
ve

ry

Figure 3.12: The four knowledge sharing activities of the lingualization strategy

3.7 The Knowledge Sharing Process

Ding et al. describe in [41] how the activity of knowledge representation in software documen-
tation can be mapped to a general knowledge management process. Figure 3.12 shows, inspired
by their mapping, a less complex classification of activities and illustrates how the four activi-
ties can be applied to the lingualization strategy as an interplay of producing and consuming
knowledge. The knowledge sharing process of the lingualization strategy takes place on the
organizational level and forms conceptually a continual improvement cycle (cf. [75]).

1. Knowledge Creation: Practicing DevOps is an ongoing process that has to be adapted
to emerging functional and non-functional requirements. So even mature DevOps teams
are compelled to continuously improve their practice, and gain more-and-more experience
on a daily basis, which is beneficial for less mature teams.

31



Chapter 3. Knowledge Sharing in Large-Scale DevOps

When novel teams start with the DevOps methodology and adopt first lifecycle phases,
it offers a precious opportunity to observe initial difficulties. Especially the impartiality
of novices in this context allow a neutral point of view, which is value knowledge for
advancing and innovating established practices.

The daily experience creates both explicit and tacit knowledge.

2. Knowledge Discovery: Meta DevOps teams have the responsibility to discover this
knowledge from mature and novel DevOps teams. As its name implies, explicit knowledge
is easier to discover than tacit knowledge. Solutions following the as-code approach, for
example, contain explicit knowledge and can be discovered by accessing related source
code repositories.

The challenge lies in the identification of tacit knowledge. In contrast to explicit knowl-
edge, discovering tacit knowledge requires personal interaction, since it “resides in people’s
head and is not easily visible and expressible” [41]. This can be realized by interviews
or by temporary participation of Meta DevOps team members in the daily work of Dev-
Ops teams. Ideally, DevOps teams do not stay passive in this context, but act as active
companions and call attention to knowledge that they consider worth sharing.

3. Knowledge Storage: Meta DevOps teams store the discovered knowledge by extracting
concrete purposes that can be implemented by single PSLs. If discovered knowledge
turns out to be rich of purposes, implementing a family of PSLs is preferred to a single
comprehensive PSL.

Following the lingualization strategy, the knowledge is stored or in other words materi-
alized as a pair of PSL and code generator. As illustrated in Figure 3.10 and described
in Section 3.5, custom-tailored mIDEs on top of PSLs simplify the modeling procedure.
The knowledge storage process is illustrated by Figure 3.6 in more detail from a workflow
perspective.

4. Knowledge Application: Providing the mIDEs as a service allows DevOps teams to
first test PSLs and evaluate if these serve their use-case without additional setup, and
thus finally apply materialized knowledge that otherwise might have stayed undiscovered.

Meta DevOps teams have to make sure that DevOps teams are kept updated of discovered
knowledge which is available in form of brand-new PSLs or improved versions with new
functions. This requires changelogs, newsletters, chat rooms and public communication
in the organization.

Naturally, knowledge sharing doesn’t end with providing a PSL, but is an ongoing process of
monitoring, developing, and deploying. In the context of PSL this resembles the path-up/tree-
down concept, presented in the dissertation of Steve Boßelmann [19]. During the discovery
activity, the knowledge moves the path from a DevOps team, which was responsible for the
knowledge creation, up to a Meta DevOps team. After the storage activity is concluded,
the knowledge travels the tree from the Meta DevOps team, which was responsible for the
knowledge storage, down to all DevOps teams.

32



Chapter 4

Graphical Modeling with Rig

“You build it, you run it.”
— Werner Vogels [117]

This chapter addresses the theoretical discussions from the previous chapters alongside an
exemplary, but real-world application called Rig. Rig [154, 155] is an mindset-supporting IDE
(mIDE) and graphical Purpose-Specific Language (PSL) for modeling Continuous Integration
and Deployment (CI/CD) workflows. Its name originates from the noun rigging, i.e. “lines and
chains used aboard a ship especially in working sail and supporting masts and spars” [129]
and the verb to rig, “to put in condition or position for use” [128]. Rig targets the phases
Continuous Delivery (three) and Continuous Deployment (four) of the DevOps lifecycle as
shown in Figure 2.3.

The initial idea of modeling CI/CD workflows in a graphical PSL has been published in
[AP I: [152]] and fully implemented by Sebastian Teumert as part of his Bachelor’s thesis [156].
Rig has been publicly introduced during the 6th International School on Tool-Based Rigorous
Engineering of Software Systems [97], where workshop participants had the opportunity to
graphically model CI/CD workflows. The associated introduction to Rig, including a hands-on
example of CI/CD for the TodoMVC application [120], can be found in [AP IV: [154]].

Before CI/CD providers introduced the possibility to configure workflows in a textual form,
early build automations were typically managed through dedicated Graphical User Interfaces
(GUIs) [58]. Such automations where isolated from the application’s source code and thus
hidden from ordinary developers.

Inherited from the general as-code movement, the introduction of textual workflow configura-
tions (cf. Section 2.1) brought several advantages to the practice of CI/CD [170]. Instead of
browsing a complex GUI to find the correct view for a certain setting, a textual representation
allows the entire configuration to be stored in a central place. Furthermore, a text file can
be stored, versioned and changed in the same way as other source code. This does not just
ease collaboration or auditing in general [170], but enables knowledge sharing [58] between
operation and development.

Although this type of configuration can already be labeled as domain-specific, it lacks basic
qualities of a Domain-Specific Language (DSL), like simplicity and accuracy (cf. [104, 54, 39]).
Workflows in this context are typically configured in cumbersome formats (cf. Section 2.1)
which are created based on languages for data serialization, e.g. YAML [AP IV: [154]]. A more
user-friendly textual PSL could already improve considerably the language-user’s experience,
but a graphical PSL can bring CI/CD, as the corner stone of practicing DevOps, to its full
potential.

[AP I: [152]] assumes that graphical models have the ability to share CI/CD knowledge and
bridge the gap between stakeholders, both on an intra-team and inter-team level. Although text

33



Chapter 4. Graphical Modeling with Rig

YAML

Java 
Xtend

Input Output

I

S T

Figure 4.1: T-diagram of Rig’s code generator (cf. Figure 3.9)

files are still ubiquitous in this context, CI/CD providers like GitLab recently start to visualize
workflows up-front and present possible pipelines while editing the textual configuration [122].
The idea behind Rig goes beyond the simple visualization of workflows and allows the direct
modeling in a graphical representation as Directed Acyclic Graphs (DAGs), without detouring
through textual configurations. The plain structure of a DAG lays the foundation of a clear
and accessible workflow description. Job relations in a workflow are well-defined by using a
graph structure which allows a straightforward derivation of their (execution) order.

4.1 Rig Is a Cinco Product

Representing CI/CD in a graph-based structure makes it a prime example for being developed
based on the Cinco Meta Tooling Suite [113, 32]. Although the realization of Rig as a Cinco
product is out of scope of this dissertation, the following paragraphs give a short overview of
the conceptional and technological background of Cinco. Refer to [AP I: [152]] for the high-
level approach and to [156] for an in-depth discussion of design decisions and implementation
details.

Cinco is a (meta) domain-specific Integrated Development Environment (IDE) to develop
mIDEs that support graph-based modeling languages for a concrete purpose (i.e. PSL) [113].
Resulting mIDEs are specified in Cinco’s own textual meta PSLs and called Cinco products.
Graphical editors as part of the mIDE are fully-generated from those high-level specifications
(cf. Figure 4.5), called metamodels [113]. In contrast to the turnkey generation of graphical
editors, the compilation of PSL instances to executable artifacts must be manually implemented
by the tool developer as a form of code generator (cf. Figure 4.1). Cinco supports Java and
Xtend natively as implementation language I out of the box and provides a traversable graph
structure to the generators’ interface. In the case of Rig, the code generator processes the
workflow as an instance of the graph source language S, derives the order of jobs and generates
YAML files as instances of the target language T [156].

Cinco’s fundamental mindset of empowering programmers and non-programmers to meet at
eye level during the development process — by a strict dedication to graphical PSLs [113] — is
a true enabler for knowledge sharing. This applies to various areas of information technology,
as the numerous example of Cinco products confirm [16, 20, 29, 113, 114, 174, 166], but
especially to (large-scale) DevOps, where bridging the gap between different stakeholders and

34



4.2. Integrability

Dockerfile

Statement 1

Statement 2

Statement 4a

Statement 3a Statement 3b

Statement 5b Statement 5c

Statement 4b

Statement 1
Statement 2

Statement 3a
Statement 4a

Dockerfile

Statement 1
Statement 2

Statement 3b
Statement 4b
Statement 5b

Dockerfile

Statement 1
Statement 2

Statement 3b

Statement 5c
Statement 4b

Figure 4.2: Conceptual sketch of the DockerPSL and the generation of Dockerfiles

teams is a necessity.

Cinco and its generated products (i.e. mIDEs) are built on top of the Eclipse Rich Client
plattform [101, 113] and make use of the Eclipse Modeling Framework [149]. That implies that
those mIDEs are classical desktop applications based on Java and do not yet fulfill the former
addressed requirement to provide them as a service. [AP V: [181]] shows how the concept of
Cloud IDEs can be extended and applied to the meta modeling approach of Cinco.

4.2 Integrability

As described in Section 3.3, one key feature of Language-Driven Engineering (LDE) is the
integrability of PSLs. This section illustrates three different types of integration by an example
of Rig and two additional PSLs in the area of container virtualization (cf. Section 2.3). Both
PSLs1 are built upon Cinco as well and originate from the Master’s thesis of Timo Walter [165],
which I co-supervised.

The first PSL targets the build process of container images and allows the graphical modeling
of the desired build steps. In contrast to the sequential representation of statements as textual
Dockerfiles, the DockerPSL allows the modeling in a tree structure (cf. Figure 4.2). Every node
represents a single build step and includes a textual statement of Docker’s DSL. Representing
Dockerfiles as trees have several advantages, which are briefly discussed in the following. Please
compare [165] for a comprehensive description of included features and design decisions.

A Dockerfile is typically the blueprint for a single image. Although Docker’s concept of multi-
stage builds involves the building of multiple images, these temporary images are just interme-
diate steps to reduce the layers (cf. Section 2.3) of the yielded image [45]. One single model of
the DockerPSL can host and generate a family of Dockerfiles with the same roots. Dockerfiles
with same statements can share the same path in the tree (cf. Statement 1 & Statement 2

1Timo Walter uses the traditional term DSL in [165], but this variance is neglected here in favor of readability.

35



Chapter 4. Graphical Modeling with Rig

Kubernetes Cluster

API 
(Pod)

Database 
(Pod)

Database 
(Service)

5432

API
(Service) 443

Database 
(Container)

5432

API 
(Container)

80

Figure 4.3: Exemplary sketch of the KubernetesPSL

in Figure 4.2). Sharing those statements traditionally would require a seperated Dockerfile
from which a named image is build. Inheriting Dockerfiles would need to reference the image
by its name and would build upon the cached layers. The DockerPSL allows sharing image
layers without pre-building partial images. The generator creates complete and self-contained
Dockerfiles, which can be transformed into images independently. Similar to pre-built images,
layers that have been already built and cached can be re-used in the same way as before.

Furthermore, the DockerPSL allows not only the reuse of layers inside a model, but can integrate
already existing models to inherit their statements as a root (cf. 4 in Figure 4.4). In addition to
that, modeler can natively add metadata and information about required dependencies to other
containers at run-time when the image is instantiated (e.g. an application container requires
a database container for persistence). The generator prefixes this information in a structured
manner as comments at the beginning of the Dockerfiles. This is not just a good practice in
general when distributing Dockerfiles, but extends the implicit knowledge sharing aspect of
creating container images from reproducible statements in a textual DSL.

The second PSL targets the generation of Kubernetes files and bridges the gap between the
automated building of container images and the orchestration of running containers. Its de-
sign is based on the graphics work originating from the official Kubernetes documentation
(cf. [159]). The flexible and powerful high-level specification languages of Cinco allowed not
only the adoption of the color schema, but especially the shape of language elements for the
KubernetesPSL: Clusters are represented as grey rectangles, pods as blue circles, services as
yellow rectangles and containers as green squares. This allows “modelers to perceive them-
selves as working directly with domain concepts” as Kelly & Tolvanen propose in [78] and the
expressiveness greatly reduces the entry barrier for beginners.

Figure 4.3 shows a sketch of a deployment for a simple microservice, providing a web-based
Application Programming Interface (API). The microservice consists of a database container
and an API container. Each container is embedded in a seperated pod, which allows the cluster
to place the pods on available worker nodes without any restrictions. Thus, the deployment
requires a database service in order to allow the API container to access the database’s network
port 5432 via the cluster’s private network. The Kubernetes cluster rectangle draws the line
between private and public communication. The API of the container should be accessible per
Hypertext Transfer Protocol (HTTP) publicly from the internet. This is why the API service
rectangle is placed not inside the cluster, but on it’s edge. It represents the port 80 of the API
container and opens the port 443 for secured connections to the outside.

36



4.2. Integrability

4

Docker 
PSL

Kubernetes
PSLRig

1

3

CI/CD
Configuration

Kubernetes
Configuration

Dockerfile

Deep Integration

Shallow Integration

Generation

2

Reuse

Figure 4.4: The integrability of PSLs by the example of Rig

Although Rig and both PSLs can be used as standalone solutions, they are conceptually de-
signed to be compatible to each other (cf. Figure 4.4). Jobs of CI/CD workflows are often
executed as containers where the job’s runtime is described by a container image. We can use
the DockerPSL to graphically model the Dockerfile from which the container image is built and
use it in Rig as our container image for the configuration (cf. 1 in Figure 4.4). In the context
of LDE, this is called a shallow integration, since Rig is not aware of the generation process of
the images or respectively the underlying Dockerfile.

As mentioned before, Kubernetes deployments are configured by multiple logical entities, like
pods and services, but rely on the lowest level on containers [27]. The KubernetesPSL allows
the usage of previously built container images and to reference models of the DockerPSL (cf.
2 in Figure 4.4) in pod configurations by prime references, a feature of Cinco. LDE calls this
deep integration, since the KubernetesPSL is natively aware of using another PSL.

In retrospective of the DevOps lifecycle and Section 2.1, CI/CD allows the automatic deploy-
ment of former delivered applications into deployment environments. When using Kubernetes
as deployment environment, a deployment is triggered by applying Kubernetes configurations
(serialized as YAML) against an existing cluster. This can be orchestrated by a Deploy job as
a last step of a CI/CD workflow (cf. Figure 3.6). The job is executed as a container, which
provides the Kubernetes client that applies the generated Kubernetes configurations (cf. 3 in
Figure 4.4). Similar to (cf. 1 in Figure 4.4) this is a shallow integration where just the generated
artifacts are used.

The purpose of graphically modeling container images and their subsequently orchestration can
be located mainly in the CI/CD phases of the DevOps lifecycle, but could also be used during
the creation phase on the local development machines. In line with the lingualization strategy
both PSLs should be maintained by Meta DevOps teams.

37



Chapter 4. Graphical Modeling with Rig

CINCO

3

2

1

Meta
DevOps 

Level

DevOps 
Level

Meta Meta
DevOps 

Level

Rig

Figure 4.5: Rig supports the creation of CI/CD workflows on three layers

The integration of different PSLs in the same domain has the potential benefits of support-
ing the discoverability of knowledge and making even implicit relationships between domain
elements transparent. This would allow stakeholders from different ‘backgrounds’ to easier un-
derstand how things are connected. Furthermore, the universality of the here presented PSLs
could create an additional synergetic effect. They can even be used to define, build and manage
the much-needed IT infrastructure for the lingualization strategy (cf. Section 3.6).

4.3 Meta-Level Bootstrapping

The development of Cinco and its products is intended as a multilayer approach that follows
a strict top-down refining process (cf. [113]). Subjacent levels have by design no impact on
superjacent levels. To put it simply, Cinco developers maintain the high-level specification
languages and release Cinco. Cinco users develop one or more graphical PSLs based on this
high-level specification languages and generate a Cinco product. Cinco product users model
in the including graphical PSLs and generate purpose-specific source code.

Generated Cinco products are independent mIDEs without any backflow to Cinco. Rig is
therefore unique in the landscape of Cinco products, since it can be shallowly integrated
(cf. Section 4.2) to all three layers of this development process (cf. Figure 4.5): The initial
intention of Rig was the generation of workflows for third-party projects (cf. 1 in Figure 4.5),
like monolithic applications, microservices or libraries, independently of their complexity or
technology stack. Nevertheless, this technology-agnostic approach allows Rig to be applied
reflexively and generate workflows for its own development (cf. 2 in Figure 4.5). In addition
to that, Rig can be even applied to build Cinco (cf. 3 in Figure 4.5) and as a consequence
improve the development process of its own meta level, like it is envisaged by LDE. This type
of shallow integration can be referred to as meta-level bootstrapping.

Figure 4.6 shows the CI/CD workflow of Cinco (cf. 3 in Figure 4.5) modeled in Rig. The goal
of the workflow is two-fold. Firstly it builds Cinco from the source code as an Eclipse-based

38



4.3. Meta-Level Bootstrapping

Figure 4.6: CI/CD workflow of Cinco modeled in Rig

(meta) mIDE and secondly delivers it as a container image to a container registry.

Following the approach of [AP I: [152]], workflows modeled in Rig are constructed against
targets (cf. nightly). Targets can be used to specify the intention of workflows and allow the
parametrization of entire pipelines. This feature comes in handy, if different deployment envi-
ronments (e.g. staging and production) should be deployed via parameterized, but analogous
pipelines. In this example, only a single target is present. The nightly target doesn’t represent a
deployment environment, but describes the workflow’s objective: The nightly build of Cinco.

Since a nightly build is usually responsible to automatically build and deliver software products
for short term testing of yesterday’s changes, created artifacts are rather disposable. As already
mentioned, targets allow the parametrization of pipelines based on values that are specific to
the target. Here, the nightly target specifies an anonymous string parameter with the value
of 1 days. Connecting the anonymous string parameter via dashed edges ( ) with the
Expire in property of the job artifacts, will propagate the value when the textual CI/CD
configuration is generated.

Left of the target, Figure 4.6 shows four sequentially arranged jobs. Each job is responsible for
a single task of the nightly build pipeline. Jobs are connected via solid edges ( ) which
form a DAG and determines their execution order. In this workflow the DAG is a simple
sequence of jobs. Jobs without any incoming solid edge are the starting point of a CI/CD
pipeline (in Figure 4.6 the test job), since they can be executed without any precondition.

After the test job executes Cinco’s test cases, the build job compiles the source code into a
complete mIDE and yields it in form of an archive as its artifact. This is important, since the
package job requires the artifact of the build job, in order to wrap the mIDE in a container
image that provides the runtime environment. The package job itself yields the container image
as its artifact, which is again an archive. Finally, the deliver job loads the artifact of the former
package job and pushes the container image to the container registry.

As discussed in Section 2.3, runtime environments of CI/CD jobs are often realized by container
images, which is not to be confused with the aforementioned artifacts. Jobs require certain
tools, in order to perform test, build or deliver tasks. For example, Cinco is a Maven project
and thus requires Maven as an executable in the runtime environment of the test and build
job. Rig allows the central definition of container images, which can be connected via dashed
edges to related jobs and therefore reused. This concept of reuse on the model level, is just one
example that demonstrates the simplicity and expressiveness of well-designed PSLs.

The meta-level approach of Cinco resolves a weak spot in the presented lingualization strategy

39



Chapter 4. Graphical Modeling with Rig

mIDEs as a Service

Meta DevOps
Team 1

Meta DevOps
Team 2

Meta DevOps
Team N

DevOps
Team 1

DevOps
Team 2

DevOps
Team N

Contribution

Utilize

Feedback

Potential 
Knowledge Barrier

Potential 
Knowledge Barrier

Cinco

Meta Meta
DevOps

Team

Figure 4.7: Potential knowledge barriers between meta DevOps teams

to overcome knowledge barriers between DevOps teams. When independently developing PSLs
on the meta level, how do we ensure that knowledge barriers do not resurface between Meta
DevOps teams? Providing a meta-level tooling suite, like Cinco, generalizes the language
development of the Meta DevOps teams and ensures the over-arching alignment (cf. Figure 4.7).
While this tool-stack alignment of the Meta DevOps teams contradicts DevOps’ own pursuit
of independent technology choices, the service orientation as conceptual background of Cin-
co [112] still allows language developers to integrate custom technology. As long as they comply
with the defined standards and interfaces of Cinco in general, the specialized knowledge is kept
to a minimum. The modular architecture of a cloud-based language development, described
in [AP V: [181]], can help to liberate the technology choices, always with the drawback of
potentially unshared knowledge.

As the term Meta Meta DevOps predicts, the team that develops Cinco should practice
DevOps as well and use Rig’s feature of meta-level bootstrapping to enhance their own DevOps
lifecycle (cf. Figure 4.5).

40



Chapter 5

Evaluation

“Beware of bugs in the above code; I have only proved it correct, not tried it.”
— Donald E. Knuth [86]

An evaluation of the presented lingualization strategy in all of it’s complexity, especially the
impact of the knowledge sharing aspect, goes beyond the boundaries of this dissertation. This
is due to three major reasons. First, the DevOps lifecycle itself is a complex construct and
varies a lot from one project to another, which aggravates comparability. Second, knowledge
sharing is not trivial to quantify and measuring the overall success requires long-term study.
Third, the large-scale of the approach includes DevOps (and Meta DevOps) teams with dozens
of different stakeholders which makes is challenging to find suitable industrial cases.

Nevertheless, the lingualization strategy is strongly based on the modeling concepts of Language-
Driven Engineering (LDE), which instead can be evaluated in the context of DevOps. Evaluat-
ing the modeling concepts first has by all means an added value, since it puts the foundation of
the lingualization strategy to the test, before more complex studies are conducted. In addition
to those theoretical reflections, evaluating an exemplary Purpose-Specific Language (PSL) in a
practical environment allows one to draw conclusions about the general eligibility of graphical
languages in the context of DevOps.

Thereby, the evaluation is structured as follows. For the first part, the evaluation of modeling
concepts in the context of the lingualization strategy is based upon requirements on a DevOps
modeling framework, derived from an industrial use-case which has been published in [18].
The second part of the evaluation focuses on Rig and reviews the results of a workshop in
the context of the lingualization strategy (cf. [AP VII: [157]]). Rig serves as a prime example
of PSLs since it features Continuous Integration and Deployment (CI/CD), one of the most
important concepts in DevOps.

5.1 Modeling Concepts of the Lingualization Strategy

The authors of [18] describe the absence of sufficient modeling techniques in the context of
DevOps and propose a modeling engineering framework. Although the authors argue in their
paper for a “complete modeling framework for DevOps” [18], which contradicts the belief of the
lingualization strategy, their requirements are a fitting set of criteria and lay the foundation to
evaluate the presented approach. Besides general concerns (RG1–5), they distinguish between
requirements on description (RD1–4) and analysis (RA1–6).

The requirements from [18] are listed in Table 5.1, where every row represents a single re-
quirement alongside a score from one (• ◦ ◦ ◦ ◦) to five (• • • • •). The score illustrates how
much the lingualization strategy complies with the related requirement. If a requirement is not
yet supported, it is marked with ×. The following of this chapter will comment every score

41



Chapter 5. Evaluation

Requirement Definition Score

G
en

er
al

RG1 Modeling of different aspects • • • • •
RG2 Model integration • • • • •
RG3 Tool integration • • • • •
RG4 Customization • • • • ◦
RG5 Different Viewpoints and perspectives • • • • ◦

D
es

cr
ip

ti
on RD1 Appropriate modeling techniques • • • • •

RD2 Description of the flows • • • • •
RD3 Specification of real-time properties • ◦ ◦ ◦ ◦
RD4 Specification of roles, methods and tools • • ◦ ◦ ◦

A
na

ly
si

s

RA1 Identification of constraints ×
RA2 Configurability of constraint analysis ×
RA3 Addition of new analysis and simulation techniques • • • • •
RA4 Support for time-based analysis and simulation ×
RA5 Investigation and evaluation of different alternatives ×
RA6 Support for tool and technology migration analysis • • • • •

Table 5.1: Scoring of the lingualization strategy; based on requirements published in [18]

and bring forward arguments how they come together. Every requirement analysis contains
three parts. A brief summary which describes the requirement is given, an evaluation of the
requirement in the context of this dissertation, and a conclusion of a final score.

General Requirements

RG1: This requirement describes the need for supporting the modeling of different aspects
included in the DevOps lifecycle. As illustrated in Section 3.3, the lingualization strategy aims
to break down the DevOps lifecycle by the different phases or respectively aspects into multiple
PSLs, which is technologically backed by LDE’s concept of horizontal composition and vertical
refinement. Thus, a • • • • • score is awarded.

RG2: If different aspects of the DevOps lifecycle are supported by different models, the support
of model integration is a necessity. Model integration is supported as a first-class citizen in
LDE. Section 4.2 presents how three exemplary PSL are integrated and distinguishes, as shown
in the example, between shallow and deep integration. Thus, a • • • • • score is awarded.

RG3: Every aspect of the DevOps lifecycle is related to concrete tools in this area. For
example, Continuous Delivery and Continuous Deployment are often realized by container vir-
tualization. In order to make use of such tools, an integration on model level is required. The
authors of [18] especially demand a “lightweight integration [. . . ], to increase agility [. . . ] and
enable fast turnarounds”. The aforementioned shallow integration is a synonym for “lightweight
integration” and, as described in Section 4.2, is used to integrate PSLs with Docker and Ku-
bernetes. Thus, a • • • • • score is awarded.

RG4: DevOps lifecycles are varying from one project to another in their concrete implemen-
tation and maturity. For that reason, modeling frameworks for DevOps require customization
support. Following the Unix philosophy [102], of making each PSL to do one thing well, the
lingualization strategy allows customization already on the language level, although it requires
additional effort by variant management and rigorous product lining in order to not lose track
(cf. Figure 3.9). Thus, a • • • • ◦ score is awarded.

42



5.1. Modeling Concepts of the Lingualization Strategy

RG5: The fundamental idea behind DevOps is the alignment of stakeholders from different
backgrounds and expertises. Naturally this must be addressed by a modeling approach in the
context of DevOps. The lingualization strategy embraces this requirement by providing small
declarative PSLs, that aim at simplicity to allow stakeholders from different backgrounds to
reason from the graphical representation. Furthermore, the vertical refinement concept of LDE
would allow Meta DevOps teams to implement transformations between compatible PSLs to
meet the stakeholders individual needs on representation. However, a support for different
viewpoints and perspectives is not supported out of the box. Thus, a • • • • ◦ score is awarded.

Description Requirements

RD1: As demanded in RG1, different aspects must be supported by models. This requires
the support of appropriate modeling techniques which have to suit the specific aspect. Among
others, the authors of [18] name BPMN and UML as examples. Cinco, the technological
foundation of LDE, provides Meta DevOps teams a meta tooling suite for convenient language
development and allows the creation of graphical languages that support existing modeling
techniques, such as CMMN (cf. [166]) or UML class diagrams (cf. [20]). In addition to that,
Cinco allows custom tailoring of PSL for specific use cases, as illustrated in Chapter 4 by the
example of Rig. Thus, a • • • • • score is awarded.

RD2: The DevOps lifecycle is a continuous improvement process that comprises numerous
of different steps in order to function properly. Solutions in this context require the support
of modeling information flows. The authors of [18] demand modeling techniques that go be-
yond documentation and communication, and allow models to be executed. As illustrated in
Chapter 4, Rig features the graphical modeling of CI/CD, which is of one of the most popular
workflows in the domain of DevOps. Model execution in the form of code generation is a corner
stone of the lingualization strategy and allows the transition from the what to the how level.
Sections 3.3 and 3.4 outline the conceptual details how language and code generation interplay
in this context. Thus, a • • • • • score is awarded.

RD3: As Figure 2.3 shows, monitoring and the continuous feedback play a central in the
DevOps lifecycle. This includes performance analysis, which requires, as described in [18], the
specification of real-time properties on the model level. Although Rig allows the configuration
of time-constraints for the validity of artifacts produced by CI/CD jobs, it is not yet supported
as native model concept. Thus, a • ◦ ◦ ◦ ◦ score is awarded.

RD4: This requirement demands the ability to specify roles, methods and tools in form of
models in order to support analysis and simulation of workflows. The lingualization strategy
addresses the challenge of knowledge sharing as a bottom-up approach, where single PSL are
developed by Meta DevOps team for concrete purposes. For that reason, a global model that
includes ‘all’ roles, methods or tools was not yet intended. However, the development of a PSL
that allows the modeling of a DevOps lifecycle with different phases is imaginable. Besides
the specification of roles, method, tools and other PSL can shallowly or deeply integrated (cf.
Section 4.2). Thus, a • • ◦ ◦ ◦ score is awarded.

Analysis Requirements

RA1, 2, 4 & 5 are all rated as ×, since no mentionable work that match the analysis and
simulation requirements of [18] has been published in the context of the lingualization strategy
at the time of writing.

43



Chapter 5. Evaluation

Essential for the analysis part of the requirement is the availability of runtime data produced
by the runtime environment. In order to support this kind of analysis as a native modeling
technique, runtime data must be made accessible by the runtime environment, aggregated by
the modeling environment and appropriately annotated as part of the model.

Using the example of Rig, the execution of CI/CD workflows produces runtime data such
as boolean outcomes if pipelines failed or succeeded and measurable quantities like the job
duration. Based on the service-oriented nature of Cinco, implementing client libraries for
public Application Programming Interfaces (APIs) of CI/CD providers (e.g. GitLab) would
allow the access and aggregation of data for each pipeline. Enhancing Rig in this way would
meet the analysis requirements of RA1 and RA4 for time-based analysis, since it aggregates
data “related to the notion of time” [18], highlights “time spent in the different elements of
the [work]flow” [18], and finally helps to “improve a [work]flow” [18]. Such backflow of runtime
information would allow the analysis directly in the mindset-supporting IDE (mIDE) and assist
the user in improving the workflow on the model level.

In order to support simulation of models, mIDEs require development environments, where
models and generated source code can be tested immediately without compromising produc-
tion environments. This development environment should closely resemble the production
environment, so that simulation outcomes are comparable and reliable. In the context of
Rig, executing CI/CD workflows in local development environments is still considered future
work [156]. [AP V: [181]] describes how the lines between development and different execu-
tion environment blur, which would support similar, but detached execution environments for
simulation and production usage conceptually out-of-the box.

RA3: Reducing the iteration time of the DevOps lifecycle in general and the execution time
of including workflows in particular (e.g. CI/CD), gets more and more difficult, which requires
the continuous adaptation of “new analysis techniques” [18]. LDE considers compatibility and
accessibility as first-level concerns, which is underpinned by it’s service orientation and vertical
refinement concept [146]. Especially the vertical refinement concept allows the transformation
of models in specific notations used by third-party analysis techniques, such as model checkers.
Thus, a • • • • • score is awarded.

RA6: The agility of the DevOps lifecycle should not just be reflected by the swift imple-
mentation of feature requests, but by the flexibility of tool integration or migration for the
lifecycle itself. Model execution by code generation, which has been already addressed in RD2,
is the enabler for tool migration in the context of the lingualization strategy. It allows the
support of more than just one target tool at the same time, without compromising existing
tool integrations or changing the meta model. Thus, a • • • • • score is awarded.

5.2 Numbers on the Effect of Graphical Modeling with Rig

The here presented evaluation of Rig is based on results of a workshop at the 6th International
School on Tool-Based Rigorous Engineering of Software Systems (STRESS) [97] as part of the
ISoLA Conference 2021 in Faliraki, Rhodes (Greece). Findings of this evaluation preluded
the 2nd DIME Days [99] with a retrospective on the aforementioned workshop, as part of the
ISoLA Conference 2022, which took place at the same site as 2021. The majority of this section
summarizes [AP VII: [157]] and presents the workshop setup, the research questions, the results
including a brief interpretation, and the discussion of the threats to validity.

44



5.2. Numbers on the Effect of Graphical Modeling with Rig

Workshop Setup

In order to establish a common understanding, the workshop was prefaced by presentations on
the topic of DevOps and CI/CD, before participants had the opportunity to experience Rig
in the hands-on part. For the hands-on part, the workshop organizers prepared three different
exercises, each one thematically building on the previous one. The exercises were provided as
a digital handout to the participants. Figures 5.1 to 5.3 show minial extracts of the exercises.

Exercise 1 – “Your first CI/CD Configuration“: The first exercise E1 served as an intro-
ductory one in the form of Hello World, so that participants got familiar with the creation of
CI/CD workflows and the execution of pipelines:

1 hello -world:
2 script: echo "Hello World"

Listing 5.1: CI/CD configuration that will print ‘Hello World’

Following the tradition of Hello World as the first exercise when learning to
program, we will create and run a CI/CD pipeline containing a single job which
will print ‘Hello World’. A complete and executable example can be found in
Listing 5.1.

Figure 5.1: Extract of E1 from the workshop handout

Exercise 2 – “Build and Deliver a Web Application“: The second exercise E2 comprised the
manual creation of CI/CD workflows for a simple web application called TodoMVC [120], with
the goal to successfully transfer a provided build script to a working CI/CD configuration:

1 #!/bin/bash
2

3 npm ci # Fetch dependencies like React
4 npm run build # Build the actual application
5 npm test # Run unit tests
6 npm run bundle # Bundle application and dependencies

Listing 5.2: Bash script that locally builds TodoMVC

TodoMVC is written in TypeScript, uses the React library and can be compiled
by Node.js and its package manager npm. To give you a starting point, please
have a look at Listing 5.2. This bash script contains all relevant commands to
build TodoMVC. Your task is to port this script and its commands (line 2–5)
into a .gitlab-ci.yml.

Figure 5.2: Extract of E2 from the workshop handout

45



Chapter 5. Evaluation

Exercise 3 – “CI/CD the Model-driven Way“: The third exercise E3 finally introduced
Rig as an alternative approach to create CI/CD workflows, alongside another exemplary web
application called Knobster [138]. Instead of providing a build script, this exercise provided a
working textual CI/CD configuration, which the participates have been asked to recreate using
Rig:

1 image: registry.gitlab.com/mazechazer/knobster
2

3 stages:
4 - test
5 - build
6

7 test:
8 stage: test
9 script:

10 - make test
11

12 build:
13 stage: build
14 script:
15 - make
16 artifacts:
17 paths:
18 - build

Listing 5.3: CI/CD configuration of Knobster

Now that you know how to write CI/CD configurations manually, we will
learn how we can use Rig to model CI/CD workflows and fully-generate
.gitlab-ci.yml files. Please have a look at the manually configured
.gitlab-ci.yml in Listing 5.3.

Figure 5.3: Extract of E3 from the workshop handout

Research Questions

The initial idea of a model-driven approach for CI/CD [AP I: [152]], and the actual imple-
mentation of Rig [156], promised positive impact in terms of reducing trial-and-error, featuring
correctness-by-construction and lowering the entry barrier for CI/CD as a whole. [AP VII: [157]]
summarizes these promises under the following three research questions:

Q1: Does Rig reduce the total amount of pipelines that are run until a working configuration
is reached?

Q2: Does Rig reduce the amount of invalid pipelines?

Q3: Does Rig reduce the amount of failing pipelines?

Results and Interpretation

Since the workshop was realized using GitLab and managed by the organizers in a centralized
group with single repositories for each exercise, the subsequent data analysis was straightfor-
ward. GitLab presents comprehensive statistics for each pipeline execution. The aggregated

46



5.2. Numbers on the Effect of Graphical Modeling with Rig

E1: Intro E2: TodoMVC E3: Knobster
T Total E + I 20 86 34
E Executed T − I 20 67 34
I Invalid T − E 0 19 0
S Successful T − F 20 26 23
U Unsuccessful E − S 0 41 11
F Failed I + U 0 60 11
TSR Total Success Rate S/T 100% 30.23% 67.65%
EFR Execution Failure Rate U/E 0% 61.19% 32.35%
IR Invalid Rate I/F 0% 31.67% 0%
P Participants 13 13 13

Table 5.2: Pipeline result statistics gathered after the workshop [AP VII: [157]]

data (cf. Table 5.2) showed three major findings when comparing the results of exercise E2
and E3:

• The total number of executed pipelines (T) dropped from 86 to 34, which indicates a
reduction of trial-and-error roundtrips.

• The rate of invalid pipelines (IR), e.g. due to syntax errors, dropped from 31.67% to 0%,
which indicates that the correctness-by-construction principle of Rig removes a complete
error class.

• The drop from 61.19% to 32.35% of failed pipelines (EFR), e.g. due to semantic er-
rors, indicates that participants require fewer trials before successfully creating a working
pipeline, which lowers the entry barrier.

Without going into too much detail, please cf. [AP VII: [157]] for a more comprehensive in-
terpretation, those results indicate that the research questions Q1–3 can be answered with
yes.

Discussion

The absence of failed pipelines (F) in E1 show that all participants succeeded on the intro-
ductory exercise without any abortive attempts. These results doesn’t allow to directly draw
conclusions, but they indirectly contribute to the validity of the numbers from E2 and E3,
since confounding effects due to the lack of experience with GitLab can almost be neglected.
Nevertheless, their validity have to be critically examined. Firstly, the sample group of only
13 participants is quite small, without a separate control group. Secondly, E2 and E3 feature
different web applications, which was intended to contribute to the workshop’s diversity, but
reduces the comparability of the findings. Finally, due to the lack of a prior survey, nothing is
known about the experience of the workshop participants in the domain of DevOps.

As illustrated in [AP VII: [157]], a more comprehensive study that addresses those threats to
validity have to be conducted in order to gather more reliable results. Furthermore, analysing
not only the binary result if pipelines succeed or fail, but the complexity and structure of
CI/CD workflows could be an interesting future field of research. In conclusion, the presented
findings are a positive observation that Rig is a step in the right direction of applying graphical
modeling to CI/CD and is encouraging to apply more such approaches to the DevOps domain.

47



48



Chapter 6

Related Work

“Any fool can write code that a computer can understand. Good programmers
write code that humans can understand.”
— Martin Fowler [53]

This chapter discusses existing work that is related to the approach presented in this dis-
sertation. Besides giving an overview of general knowledge sharing strategies, it compares
other model-driven approaches in the domain of DevOps with exemplary Purpose-Specific
Languages (PSLs) like Rig and with the concept of Language-Driven Engineering (LDE) as
the foundation of the lingualization strategy.

6.1 Knowledge Sharing

As stated before, efficient knowledge sharing is an ongoing challenge when practicing DevOps.
The literature on Agile and DevOps [35, 142] names numerous approaches of knowledge sharing
in practice, which the lingualization strategy doesn’t intend to replace, but to complement. This
section categorized them into four different classes (cf. Figure 6.1) based on their designate scope
of application (intra vs. inter) and chosen strategy (personalization vs. codification).

Intra / Personalization (QI) is the most basic type of knowledge sharing. It represents
the foundation of teamwork and is essential for a successful collaborative development process.
Team members have to continuously share knowledge with their peers in order to orchestrate
up-coming work. While sharing information via direct communication often happens spon-
taneously and is inseparable from everyday tasks, several methods exist to give this process
structure and regularity:

• Daily meetings as part of the Scrum development methodology [150], aim at sharing
short-term information about personal sprint progress through brief statements.

• Pair programming combines the method of problem-solving by (typically) two collabo-
rating engineers [169], with the welcoming side effect of knowledge exchange [168]. While
it is not limited by team membership, it is more uncommon in inter-team scenarios, since
different teams rarely work on the same piece of source code.

• In addition to this, job rotation enables team members to take over another role for a
period of time and gain insight to the knowledge of a different task (cf. [132]). It aims at
the mutual understanding by slipping into a role and fulfill the associated duties.

Inter / Personalization (QII) becomes a vital knowledge sharing strategy in projects with
distributed teams. Especially when practicing large-scale DevOps, where multiple independent
developed components have to work together.

49



Chapter 6. Related Work

QIV

QII

QIII

QI

Personalization 
Strategy

Codification 
Strategy

Intra-TeamInter-Team

Figure 6.1: Four quadrants of knowledge sharing strategies

• Scrum of Scrums are meetings to coordinate the work between multiple Agile Software
Development (ASD) teams, each one practicing Scrum itself [121]. It uses delegates
as proxies to reduce communication lines and spread knowledge. In this context the
Scaled Agile Framework serves an example for more structures approaches that “provide
guidance for scaling agile development across the enterprise” [161].

• Open communities (inside an organization), e.g. book clubs, share knowledge through
open communication between attendees. They are not aiming at producing solid results
or finalizing decisions, but rather the exchange of opinions and stories [142].

• Support lines, fall as well into the category of open communities and offer support from
senior engineers to junior engineers [142]. Although the support might be provided along-
side technical issues and suggestions are incorporated into working code, communication
is still the key aspect.

• Core teams are composed of representatives from each team in large-scale DevOps [7]. It
is in their responsibility to keep track of the ongoing development and make inter-team
decisions. Their focus lies on knowledge sharing through communication, but perform
updates to central components (e.g. Application Programming Interface (API) gateways)
in very special cases.

• In addition to the aforementioned job rotation, project rotation allows members to “ac-
quire new technical and business knowledge” [132] by rotating between different projects.

Intra / Codification (QIV) can be considered the type of knowledge sharing that represents
one of the corner stones of the DevOps practice. DevOps aims at both collaboration between
experts in the same team, and the automation of manual tasks.

• The as-code movement, as the name already implies, can be considered a typical rep-
resentative of codified knowledge. Before approaches like infrastructure-as-code became
mainstream practice, the provisioning of infrastructure was a manual operation [88] that
required deep knowledge in this domain. It was often hidden from developers and per-
formed by few administrators, everyone potentially following their own procedure. Per-
sisting server configurations as part of the applications source code repository shares
and documents the infrastructural knowledge with all stakeholders [35]. The approach
of executable code even let them directly apply this knowledge by triggering automated

50



6.2. MD* in the Context of DevOps

provision processes.

• In the sense of applicable knowledge, automated software testing falls also into this cat-
egory of knowledge sharing. This holds true especially for Unit Testing which aims at
verifying the public interface of a specific source code section, called unit (e.g. function
or class) [88]. While the testing of the unit’s functionality is the main purpose, using
source code to create test cases brings another advantage. Test cases show how a specific
unit is set up (i.e. instantiating an object from its class), how its interface is invoked and
which result is to be expected. Such examples are a good addition to the source code
documentation and give developers the knowledge how to use foreign source code.

Inter / Codification (QIII) is the closest type of knowledge sharing to the presented lin-
gualization strategy in this dissertation. It aims at aligning teams by materializing knowledge
in scalable and reusable components. Hence, the knowledge is independent of its originator
and can be applied in different contexts.

• Standardization committees discuss, establish and maintain global development stan-
dards. Those standards act as comprehensive guidelines for other teams when developing
components that must comply with existing interfaces and integrated in an overall sys-
tem [142].

• Cloud platform teams maintain a standardized tool portfolio and create templates for
kick-starting new projects (e.g. microservices) in selected programming languages [7] that
are designated for running in the cloud. Other ‘self-organized’ teams must choose from
that portfolio when creating applications.

• Domain-driven design considers modeling as a “way of structuring domain knowledge” [49]
in a distilled form which is used as the ubiquitous language. It advocates for using the
same language throughout the whole development process of a software project including
business and development, and provides strategic design practices for “maintaining model
integrity” [49] on an inter-team level.

6.2 MD* in the Context of DevOps

Lately, the model-driven community discovered DevOps more and more as a domain of interest.
As a result, a couple of MD*1 approaches, which target DevOps and related technologies, have
been published. This section gives an overview over such approaches and highlights similarities
and distinctions. They are listed in order of their publication date.

The DICER tool [4] provides a model-driven framework to support the development and op-
erations following DevOps practices. It combines a modeling environment with a deployment
service in the DICER IDE to design and deploy data-intensive application. The DICER IDE
is realized as a plugin for Eclipse and uses UML Deployment Diagrams as their modeling
language. In contrast to the more general approach of the presented lingualization strategy,
DICER focus especially on big data technologies [62]. Furthermore, their approach to DevOps
features primarily the design and deployment phases, while this dissertation advocates to cover
all phases of the DevOps lifecycle by an independent but integrable set of PSLs.

A family of modeling languages for developing and operating service-oriented applications is
presented in [127]. Their approach targets different roles in a DevOps team with interconnected

1Markus Völter introduced MD* as a broader term in [164] to summarize similar model-driven approaches
that use models as abstraction [127] and input for further processing, like validation or code generation.

51



Chapter 6. Related Work

languages for domain-, service-, and operation model. Similar to the lingualization strategy,
the authors emphasize the documentation aspect of models and apply multiple interconnected
but ‘viewpoint-specific’ languages to reduce their complexity. Although lowering the entry
barrier when learning new languages, is in accordance with the concept of LDE the presented
MD* approach is implemented by textual languages only. Furthermore, it remains unclear if
model processing is considered future work or if the presented approach already supports model
transformation into executable artifacts. In contrast to this, LDE considers model processing
(e.g. by a code generator) a vital requirement for the right to exist. The presented PSLs in
(cf. Chapter 4) support full-code generation (cf. [112]) which in case of Rig already had been
evaluated in [AP VII: [157]]. The results of the evaluation are summarized in Section 5.2.

DevOpsML [33] is a framework built on Ecore and the Eclipse Modeling Framework [149] to
apply MD* for DevOps. It aims at interconnecting model-based software engineering processes
with platforms that provide fundamental functions of the DevOps practice. Their approach
allows the specification of DevOps platforms including requirements and capabilities in dedi-
cated models. Based upon a linking language, processes and platforms are woven together. At
the time of writing, DevOpsML aims at documentation only and perceives model execution as
future work. In contrast to that, the exemplary PSLs presented in Chapter 4 are fully imple-
mented as functional mindset-supporting IDEs (mIDEs) with associated code generators. Rig,
as one of the examples, has been successfully evaluated in [AP VII: [157]] and has been used in
several projects to model Continuous Integration and Deployment (CI/CD) workflows, such as
the workflow for Cinco as illustrated in Figure 4.6. Furthermore, as described in Section 1.1,
the underlying concept of the lingualization strategy advocates for a reciprocal interaction
between DevOps and MD* and goes beyond the unidirectional approach of DevOpsML.

In their paper [143] the authors apply a model-driven workflow, based on their Language Ecosys-
tem for Modeling Microservice Architecture. They target two main challenges when adopting
DevOps for microservices architecture in small and medium-sized organizations (SMOs), which
they extract from a previous study: Maintaining a common architectural understanding, and
handling the complexity of deploying and operating microservice application. The lingualiza-
tion strategy can be distinguished from the presented approach based on three major charac-
teristics. Firstly, their workflow uses textual modeling languages and implements visualization
as a subsequent process, while LDE considers graphical models as first-class citizens. Secondly,
their approach tries to cover the development and operating process in a single workflow, while
the lingualization strategy emphasizes the need for loosely-coupled PSL to lower the general
hurdle of adoption. Thirdly, since their workflow aims at SMOs, language developers remain
external stakeholders and therefore are not actively involved in the continual improvement pro-
cess of application and languages. In contrast to that, the lingualization strategy introduces
the concept of Meta DevOps teams as language developers in large-scale environments.

StalkCD [47] is a model-driven framework for interoperable CI/CD pipeline definitions. It aims
at parsing different CI/CD configuration formats (e.g. Jenkins CI, GitLab CI) into in their
StalkCD DSL. Based on this uniform intermediate representation the presented framework
allows the analysis and transformation to other CI/CD configuration formats or even to the
BPMN (cf. [2]). In contrast to Rig, StalkCD doesn’t use graphical DSLs for the purpose of
active modeling, but solely for visualizing CI/CD configurations as BPMN.

The presented approach in [34] aims at transforming textual DevOps artifacts, independent of
the DevOps lifecycle phase, into models back and forth for consistency checking. In contrast to
the underlying LDE concept of this dissertation, they do not treat models as the single source
of truth (i.e. One Thing Approach) while they consider textual representation as the main
engineering artifact.

52



Chapter 7

Conclusion

“Eventually, programming should become a two-way conversation between the im-
precise human language and the precise, if unimaginative, machine.”
— Herbert D. Benington [14]

This dissertation discussed the challenge of knowledge sharing in large-scale software projects.
Especially projects that are based on a great number of agile DevOps teams, are running into
danger to create inter-team knowledge barriers. As indicated before, this is a direct consequence
of the intentional independence of DevOps teams, accompanied by the free choice of technology
when creating microservices and the various state of their lifecycle maturity.

The main contribution of this dissertation is the concept of a lingualization strategy (cf. Fig-
ure 7.1) for sharing knowledge in the context of the DevOpy lifecycle by following the principle
of Language-Driven Engineering (LDE) via custom tailored languages. Part of this concept is
the introduction of so-called Meta DevOps teams, whose sole purpose is the discovery and stor-
age of knowledge, by developing and distributing Purpose-Specific Languages (PSLs). Those
teams meet the demand of LDE for dedicated stakeholders that practice language development.

Besides the knowledge sharing aspect of the lingualization strategy, maintaining a family of
PSLs to support the complete DevOps lifecycle has the potential to make DevOps accessible
to a wider audience by advancing from as-code towards a practice of as-models in the future.

7.1 Limitations

Introducing a radical approach to the challenge of knowledge sharing naturally comes with
limitations and drawbacks. As already indicated in Section 3.3, the introduction of PSLs,
especially to well-performing projects with established processes, is not a trivial task. Migrating
from handwritten solutions to automated code-generation can be met with disapproval. In
particular when approaching a domain like DevOps where technical, cultural and organizational
challenges (cf. Chapter 2) blend into each other.

It is very likely that engineers initially prefer their own manually created solutions over third-
party suppliers for different reasons, even if they are provided by teams from the same organi-
zation. Engineers might have been devoted a lot of work and time to create work routines [61].
They could fear uncertainty [61] accompanied by the loss of influence. A degradation from
a developer to an ‘ordinary’ user might be perceived offensive [61]. The term “not invented
here syndrome” summarizes the refusal of external ideas and solutions [77] on the receiver’s
side of the knowledge [61]. While sociological challenges are not the focus of this dissertation,
eliminating initial prejudices by establishing and following guidelines of an incremental PSL
migration might serve as a promising strategy. Key to a successful incremental migration is a
stepwise adoption, in contrast to the direct changeover of a big bang approach [17].

53



Chapter 7. Conclusion

mIDEs as a Service

Meta DevOps
Team 1

Meta DevOps
Team 2

Meta DevOps
Team N

DevOps
Team 1

DevOps
Team 2

DevOps
Team N

Contribution

Utilize

Feedback

Cinco

Meta Meta
DevOps

Team

Microservice
1

Microservice
2

Microservice
N

Orchestration

User

GUI

Figure 7.1: Collaboration in the lingualization strategy (composed of Figures 3.2, 3.5 and 4.7)

54



7.2. Future Work

In addition to the skepticism of novel approaches, the fear of a technological lock-in might
represent an additional obstacle when introducing PSLs. The divide and conquer principle of
LDE enables DevOps teams to test and adopt PSLs without facing the threat of an overarching
technological lock-in effect. The intended interoperability between languages and services,
allows a free choice and combination of PSLs. Especially the shallow integration counteracts
the lock-in effect by providing a clear interface between existing solutions and generated code.
The presented DockerPSL is a good example, since it generates fully compatible Dockerfiles that
do not differ a lot from handwritten files. Resulting container images can be built, distributed
and instantiated like any other image.

Furthermore, early success when testing a PSL will convince and motivate to try other PSLs.
Therefore it is important that Meta DevOps teams eat their own dog food (cf. [64]) and showcase
successful practice of their PSLs. The successful tool chain integration into the DevOps process
makes it easier to convince other teams to adopt a certain PSL as well. The real life scenario
of bootstrapping by applying PSLs in order to create other PSLs is a compelling selling point.
This requires projects to be accessible to other teams in the organization, which also helps to
prevent the creation of tacit knowledge.

When promoting a custom tailored programming language for a specific purpose, one has to
keep in mind that not only creating this language, but learning this language is also time-
consuming. Even for experts that mastered different programming languages and for junior
developers that belong to the generation of digital natives [40], learning a new language is not
a trivial task. Based on the principles of LDE the lingualization strategy tries to create simple
and expressive languages, to keep the learning curve flat. Besides the language itself, mindset-
supporting IDEs (mIDEs) are playing an important role in creating a convenient modeling
experience by accommodating the stakeholders’ mindset. However, this doesn’t completely
take away the need for traditional knowledge sharing practices (cf. Section 6.1). Although the
lingualization strategy aims at simplicity, the introduction of a new language requires at least
basic documentation (codification strategy) as an entry point. Furthermore, workshops (per-
sonalization strategy) including presentations and hands-on courses can help to demonstrate
the usefulness of a new language. Experience during the 6th International School on Tool-
Based Rigorous Engineering of Software Systems [97] showed how a structured workshop with
incremental exercises eases the adoption process of a new tool like Rig (cf. [AP VII: [157]]).

A similar economical concern is raised by the decision of make or buy (cf. [83]). Before deciding
to create a new language Meta DevOps teams should consider existing solutions in the domain.
Practicing LDE already reduces the overhead of language development, but taking existing lan-
guages into account can be less expensive. Instead of creating a language from scratch, it might
be economically reasonable to support established projects. But Meta DevOps teams should
keep in mind, that such projects potentially exist in a bigger context and are supported by an
active community, which may take a critical view on change and modifications. Eventually,
this can prevent the language to become the perfect fit for the envisaged use-case.

7.2 Future Work

Applying PSL with the purpose of knowledge sharing raises interesting questions that are out of
scope of this dissertation. Nevertheless, this section covers some of the future work in different
areas.

The majority of this dissertation presents the lingualization strategy alongside the challenges of
Continuous Practices (CP) and infrastructure provisioning. They are representing the techno-

55



Chapter 7. Conclusion

logical crossover of development and operations, and thus play a special role during the DevOps
lifecycle. Nevertheless, exploring how PSLs can be applied to more phases of the DevOps life-
cycle is an interesting question. Projects like the GOLD Framework [144] target the domain of
business modeling by introducing a family of multi-level PSLs for different stakeholders. This
falls in line with Debois’ demand of aligning more types of stakeholders than just development
and operations during the development process [37]. Since GOLD is based on Cinco, a deep
integration with the previously presented PSLs (cf. Section 4.2) is entirely possible. This inte-
gration would allow a more seamless interaction between business and DevOps (cf. Figure 2.2)
and reduce knowledge barriers in the planning phase.

As this dissertation emphasizes, the lingualization strategy for knowledge sharing requires a
great amount of IT infrastructure on the organizational level and demands strong coordination
of involved services (cf. Section 3.6). In order to kick-start knowledge sharing, additional
overhead should be avoided, thus infrastructure provisioning and maintenance are realized by
modern but approved IT administration practices. However, as the lingualization strategy as a
holistic project evolves and developed PSLs in the domain of automation are maturing, a more
radical practice is conceivable. Future work should consider the potential effects of applying
PSL not only to DevOps team, Meta DevOps teams or Meta Meta DevOps teams, but to the
team(s) who are in fact responsible for layers of IT infrastructure layers below DevOps (e.g.
physical or virtual machines, networking and storage).

As prominent examples of security vulnerabilities (e.g. Heartbleed bug [8] and Log4j2 ex-
ploit [111]) underline, creating secure applications is not a trivial task. Especially web-based
systems constitute lucrative targets for attacks via the internet. Their publicly accessible inter-
face leaves them more vulnerable to exploits than private systems. DevOps’ aim for automated
software releases allows software engineers to quickly respond and automatically push security
patches into production. While this reactive response is crucial for exploits once they became
public, the term DevSecOps [131] summarizes a more proactive approach and treat security as
a first-class citizen during the development lifecycle. Since knowledge sharing was identified
in [131] as one of 13 attributes that are essential for a successful DevSecOps culture, it raises
the question if and how the presented lingualization strategy can support the transition from
DevOps to DevSecOps.

Organizations “extend their knowledge base access to the business partners and customers.
Though such access is restricted to certain areas, it is playing an important role in collaborative
product development, service delivery and project accomplishments” [118]. Companies that
are successfully practicing the lingualization strategy, should consider publishing mature and
successful PSLs as open source. This would go beyond the inter-team knowledge sharing and
allows organizations to contribute towards a cross-company knowledge transfer. This is not just
interesting to improve knowledge transfer in business areas where cross-company collaboration
is a necessity (i.e. logistics), but for companies to develop new business models by establishing
global standards upon PSLs. Contributing companies would benefit as early adopters of their
own standards and could provide “value-added services” [175] (e.g. consulting) by following
examples of successful business models in the area of open source software [109].

An essential challenge of future work is the comprehensive evaluation of the lingualization
strategy. While the idea of knowledge sharing presented here through PSLs is a proof of
concept, practice in real-world environments has to demonstrate its success in a long-run.
The aim at large-scale DevOps might make a formal study difficult to conduct. Nevertheless,
experiences with Rig during a workshop at the 6th International School on Tool-Based Rigorous
Engineering of Software Systems [97] yielded positive results and let us cautiously optimistic
that PSL lower the entry barrier for new technology and efficiently share knowledge.

56



List of Abbreviations

API Application Programming Interface

ASD Agile Software Development

CDE Continuous Delivery

CD Continuous Deployment

CI/CD Continuous Integration and Deployment

CI Continuous Integration

CP Continuous Practices

DAG Directed Acyclic Graph

DSL Domain-Specific Language

DSML Domain-Specific Modeling Language

GPL General-Purpose Language

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

LDE Language-Driven Engineering

OTA One Thing Approach

PSL Purpose-Specific Language

SMO small and medium-sized organization

SOA Service Oriented Architecture

TFG Type-Safe Functional GraphQL

mIDE mindset-supporting IDE

57



58



References

[1] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez, Laura
Moreno, Gabriele Bavota, and Michele Lanza. “Software Documentation Issues Un-
veiled”. In: 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). 2019, pp. 1199–1210. doi: 10.1109/ICSE.2019.00122.

[2] Thomas Allweyer. BPMN 2.0 - Business Process Model and Notation. Books on De-
mand, 2009. isbn: 9783839121344.

[4] Matej Artač, Tadej Borovšak, Elisabetta Di Nitto, Michele Guerriero, and Damian
A. Tamburri. “Model-Driven Continuous Deployment for Quality DevOps”. In: Pro-
ceedings of the 2nd International Workshop on Quality-Aware DevOps. QUDOS 2016.
Saarbrücken, Germany: Association for Computing Machinery, 2016, pp. 40–41. isbn:
9781450344111. doi: 10.1145/2945408.2945417.

[6] Zia Babar, Alexei Lapouchnian, and Eric Yu. “Modeling DevOps Deployment Choices
Using Process Architecture Design Dimensions”. In: The Practice of Enterprise Model-
ing. Ed. by Jolita Ralyté, Sergio España, and Óscar Pastor. Cham: Springer Interna-
tional Publishing, 2015, pp. 322–337. isbn: 9783319258973.

[7] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. “Microservices Architecture
Enables DevOps: Migration to a Cloud-Native Architecture”. In: IEEE Software 33.3
(2016), pp. 42–52.

[8] James Banks. “The Heartbleed bug: Insecurity repackaged, rebranded and resold”. In:
Crime, Media, Culture 11.3 (2015), pp. 259–279. doi: 10.1177/1741659015592792.

[9] Len Bass. “The Software Architect and DevOps”. In: IEEE Software 35.1 (2018), pp. 8–
10. doi: 10.1109/MS.2017.4541051.

[10] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A Software Architect’s Perspective.
Addison-Wesley Professional, 2015. isbn: 9780134049847.

[11] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Profes-
sional, 2000. isbn: 9780321278654.

[14] Herbert D. Benington. “Production of Large Computer Programs”. In: Annals of the
History of Computing 5.4 (1983), pp. 350–361. doi: 10.1109/MAHC.1983.10102.

[15] David Bennet and Alex Bennet. “The depth of knowledge: surface, shallow or deep?” In:
Vine 38.4 (Jan. 2008), pp. 405–420. issn: 0305-5728. doi: 10.1108/03055720810917679.

[16] Agata Berg, Cedric Perez Donfack, Julian Gaedecke, Eike Ogkler, Steffen Plate, Katha-
rina Schamber, David Schmidt, Yasin Sönmez, Florian Treinat, Jan Weckwerth, Patrick
Wolf, and Philip Zweihoff. PG 582 - Industrial Programming by Example. Tech. rep.
Dortmund, Germany: TU Dortmund University, 2015.

[17] Jesus Bisbal, Deirdre Lawless, Bing Wu, Jane Grimson, Vincent Wade, Ray Richard-
son, and Declan O’Sullivan. “An Overview of Legacy Information System Migration”.
In: Proceedings of Joint 4th International Computer Science Conference and 4th Asia
Pacific Software Engineering Conference. 1997, pp. 529–530. doi: 10.1109/APSEC.
1997.640219.

59

https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1145/2945408.2945417
https://doi.org/10.1177/1741659015592792
https://doi.org/10.1109/MS.2017.4541051
https://doi.org/10.1109/MAHC.1983.10102
https://doi.org/10.1108/03055720810917679
https://doi.org/10.1109/APSEC.1997.640219
https://doi.org/10.1109/APSEC.1997.640219


References

[18] Francis Bordeleau, Jordi Cabot, Juergen Dingel, Bassem S. Rabil, and Patrick Renaud.
“Towards Modeling Framework for DevOps: Requirements Derived from Industry Use
Case”. In: Software Engineering Aspects of Continuous Development and New Paradigms
of Software Production and Deployment. Ed. by Jean-Michel Bruel, Manuel Mazzara,
and Bertrand Meyer. Cham: Springer International Publishing, Jan. 2020, pp. 139–151.
isbn: 9783030393069.

[19] Steve Boßelmann. “Evolution of ecosystems for Language-Driven Engineering”. PhD
thesis. Dortmund, Germany: TU Dortmund University, 2023. doi: http://dx.doi.
org/10.17877/DE290R-23218.

[20] Steve Boßelmann, Markus Frohme, Dawid Kopetzki, Michael Lybecait, Stefan Naujokat,
Johannes Neubauer, Dominic Wirkner, Philip Zweihoff, and Bernhard Steffen. “DIME:
A Programming-Less Modeling Environment for Web Applications”. In: Leveraging Ap-
plications of Formal Methods, Verification and Validation: Discussion, Dissemination,
Applications. Ed. by Tiziana Margaria and Bernhard Steffen. Vol. 9953. Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2016, pp. 809–832. isbn:
9783319471693. doi: 10.1007/978-3-319-47169-3_60.

[21] Erwan Bousse and Manuel Wimmer. “Domain-Level Observation and Control for Com-
piled Executable DSLs”. In: 2019 ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems (MODELS). 2019, pp. 150–160. doi: 10.
1109/MODELS.2019.000-6.

[22] Lionel C. Briand. “Software Documentation: How Much is Enough?” In: Seventh Eu-
ropean Conference on Software Maintenance and Reengineering, 2003. 2003, pp. 13–15.
isbn: 0769519024. doi: 10.1109/CSMR.2003.1192406.

[23] Robert O. Briggs and Jay F. Nunamaker, Jr. “Special Section: The Growing Complexity
of Enterprise Software”. In: Journal of Management Information Systems 37.2 (2020),
pp. 313–315. doi: 10.1080/07421222.2020.1759339.

[24] R. John Brockmann. Writing better computer user documentation: From paper to hy-
pertext (version 2.0). John Wiley & Sons, Inc., 1990. isbn: 0471622591.

[25] Hendrik Bünder. “Decoupling Language and Editor – The Impact of the Language Server
Protocol on Textual Domain-Specific Languages”. In: MODELSWARD 2019: Proceed-
ings of the 7th International Conference on Model-Driven Engineering and Software
Development. Prague, Czech Republic: SCITEPRESS - Science and Technology Publi-
cations, Lda, 2019, pp. 129–140. isbn: 9789897583582.

[26] Vladimír Bureš. “Cultural Barriers in Knowledge Sharing”. In: E+M Ekonomics and
Management 6 (2003), pp. 57–62. issn: 1212-3609.

[27] Brendan Burns, Joe Beda, and Kelsey Hightower. Kubernetes: Up and Running: Dive
into the Future of Infrastructure. O’Reilly Media, 2019. isbn: 9781492046530.

[28] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes. “Borg,
Omega, and Kubernetes”. In: Communications of the ACM 59.5 (Apr. 2016), pp. 50–57.
issn: 0001-0782. doi: 10.1145/2890784.

[29] Mounir Chadli, Jin H. Kim, Kim G. Larsen, Axel Legay, Stefan Naujokat, Bernhard
Steffen, and Louis-Marie Traonouez. “High-level frameworks for the specification and
verification of scheduling problems”. In: Software Tools for Technology Transfer 20.4
(2017), pp. 397–422. doi: 10.1007/s10009-017-0466-1.

60

https://doi.org/http://dx.doi.org/10.17877/DE290R-23218
https://doi.org/http://dx.doi.org/10.17877/DE290R-23218
https://doi.org/10.1007/978-3-319-47169-3_60
https://doi.org/10.1109/MODELS.2019.000-6
https://doi.org/10.1109/MODELS.2019.000-6
https://doi.org/10.1109/CSMR.2003.1192406
https://doi.org/10.1080/07421222.2020.1759339
https://doi.org/10.1145/2890784
https://doi.org/10.1007/s10009-017-0466-1


References

[30] Robert Chatley, Alastair Donaldson, and Alan Mycroft. “The Next 7000 Programming
Languages”. In: Computing and Software Science: State of the Art and Perspectives. Ed.
by Bernhard Steffen and Gerhard Woeginger. Cham: Springer International Publishing,
2019, pp. 250–282. isbn: 9783319919089. doi: 10.1007/978-3-319-91908-9_15.

[31] Binildas Christudas. Practical Microservices Architectural Patterns: Event-Based Java
Microservices with Spring Boot and Spring Cloud. Berkeley, CA: Apress, 2019, pp. 21–
34. isbn: 9781484245019. doi: 10.1007/978-1-4842-4501-9.

[33] Alessandro Colantoni, Luca Berardinelli, and Manuel Wimmer. “DevOpsML: Towards
Modeling DevOps Processes and Platforms”. In: Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems: Com-
panion Proceedings. MODELS ’20. Virtual Event, Canada: Association for Computing
Machinery, Oct. 2020. isbn: 9781450381352. doi: 10.1145/3417990.3420203.

[34] Alessandro Colantoni, Benedek Horváth, Ákos Horváth, Luca Berardinelli, and Manuel
Wimmer. “Towards Continuous Consistency Checking of DevOps Artefacts”. In: 2021
ACM/IEEE International Conference on Model Driven Engineering Languages and Sys-
tems Companion (MODELS-C). Oct. 2021, pp. 449–453. isbn: 9781665424844. doi:
10.1109/MODELS-C53483.2021.00069.

[35] Jennifer Davis and Ryn Daniels. Effective DevOps: Building a Culture of Collaboration,
Affinity, and Tooling. O’Reilly Media, Inc., 2016. isbn: 1491926309.

[36] Omar Al-Debagy and Peter Martinek. “A Comparative Review of Microservices and
Monolithic Architectures”. In: 2018 IEEE 18th International Symposium on Computa-
tional Intelligence and Informatics (CINTI). 2018, pp. 149–154. isbn: 9781728111179.
doi: 10.1109/CINTI.2018.8928192.

[37] Patrick Debois, Jez Humble, Joanne Molesky, Eric Shamow, Lawrence Fitzpatrick,
Michael Dillon, Bill Phifer, and Dominica DeGrandis. “Devops: A Software Revolu-
tion in the Making?” In: Journal of Information Technology Management 24.8 (2011),
pp. 3–39.

[39] Tobias Dehling and Ali Sunyaev. “Domain-Specific Languages and Digital Preservation:
Supporting Knowledge-Management”. In: Management (2012), pp. 1273–1284.

[40] Davide Di Ruscio, Dimitris Kolovos, Juan de Lara, Alfonso Pierantonio, Massimo Tisi,
and Manuel Wimmer. “Low-code development and model-driven engineering: Two sides
of the same coin?” In: Software and Systems Modeling (Jan. 2022). issn: 1619-1374. doi:
10.1007/s10270-021-00970-2.

[41] Wei Ding, Peng Liang, Antony Tang, and Hans van Vliet. “Knowledge-based approaches
in software documentation: A systematic literature review”. In: Information and Soft-
ware Technology 56.6 (2014), pp. 545–567. issn: 0950-5849. doi: 10.1016/j.infsof.
2014.01.008.

[42] Torgeir Dingsøyr, Tor Erlend Fægri, and Juha Itkonen. “What Is Large in Large-Scale? A
Taxonomy of Scale for Agile Software Development”. In: Product-Focused Software Pro-
cess Improvement. Ed. by Andreas Jedlitschka, Pasi Kuvaja, Marco Kuhrmann, Tomi
Männistö, Jürgen Münch, and Mikko Raatikainen. Cham: Springer International Pub-
lishing, 2014, pp. 273–276. isbn: 9783319138350. doi: 10.1007/978-3-319-13835-
0_20.

[43] Torgeir Dingsøyr and Nils Brede Moe. “Research Challenges in Large-Scale Agile Soft-
ware Development”. In: SIGSOFT Software Engineering Notes 38.5 (Aug. 2013), pp. 38–
39. issn: 0163-5948. doi: 10.1145/2507288.2507322.

61

https://doi.org/10.1007/978-3-319-91908-9_15
https://doi.org/10.1007/978-1-4842-4501-9
https://doi.org/10.1145/3417990.3420203
https://doi.org/10.1109/MODELS-C53483.2021.00069
https://doi.org/10.1109/CINTI.2018.8928192
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1016/j.infsof.2014.01.008
https://doi.org/10.1016/j.infsof.2014.01.008
https://doi.org/10.1007/978-3-319-13835-0_20
https://doi.org/10.1007/978-3-319-13835-0_20
https://doi.org/10.1145/2507288.2507322


References

[47] Thomas F. Düllmann, Oliver Kabierschke, and André van Hoorn. “StalkCD: A Model-
Driven Framework for Interoperability and Analysis of CI/CD Pipelines”. In: 2021 47th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA).
Sept. 2021, pp. 214–223. isbn: 9781665427050. doi: 10.1109/SEAA53835.2021.00035.

[48] Michael Eder. “Hypervisor- vs. Container-based Virtualization”. In: Future Internet (FI)
and Innovative Internet Technologies and Mobile Communications (IITM) (June 2016).
doi: 10.2313/NET-2016-07-1_01.

[49] Eric J. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, 2004. isbn: 9780321125217.

[53] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. Refactor-
ing: Improving the Design of Existing Code. Addison-Wesley Professional, 1999. isbn:
0134757599.

[54] Martin Fowler and Rebecca Parsons. Domain-Specific Languages. Addison-Wesley /
ACM Press, 2011. isbn: 0321712943.

[55] Fiorenzo Franceschini, Maurizio Galetto, and Domenico Maisano. Management by Mea-
surement: Designing Key Indicators and Performance Measurement Systems. Springer
Science & Business Media, Jan. 2007. isbn: 9783540732112. doi: 10.1007/978-3-540-
73212-9.

[56] Ulrich Frank. “Domain-Specific Modeling Languages: Requirements Analysis and Design
Guidelines”. In: Domain Engineering: Product Lines, Languages, and Conceptual Models.
Ed. by Iris Reinhartz-Berger, Arnon Sturm, Tony Clark, Sholom Cohen, and Jorn Bettin.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 133–157. isbn: 9783642366543.
doi: 10.1007/978-3-642-36654-3_6.

[57] Shahla Ghobadi and Lars Mathiassen. “Perceived barriers to effective knowledge sharing
in agile software teams”. In: Information Systems Journal 26.2 (2016), pp. 95–125. doi:
10.1111/isj.12053.

[60] Nuno Gonçalves, Diogo Faustino, António Rito Silva, and Manuel Portela. “Monolith
Modularization Towards Microservices: Refactoring and Performance Trade-offs”. In:
2021 IEEE 18th International Conference on Software Architecture Companion (ICSA-
C). 2021, pp. 1–8. isbn: 9781665439107. doi: 10.1109/ICSA-C52384.2021.00015.

[61] David Grosse Kathoefer and Jens Leker. “Knowledge transfer in academia: an ex-
ploratory study on the Not-Invented-Here Syndrome”. In: The Journal of Technology
Transfer 37.5 (Oct. 2012), pp. 658–675. issn: 1573-7047. doi: 10.1007/s10961-010-
9204-5.

[63] Morten T Hansen, Nitin Nohria, and Thomas Tierney. “What’s Your Strategy for
Managing Knowledge”. In: vol. 77. 2. Butterworth-Heinemann Oxford, England, 1999,
pp. 106–116.

[64] Warren Harrison. “Eating Your Own Dog Food”. In: IEEE Software 23.3 (2006), pp. 5–7.
issn: 0740-7459. doi: 10.1109/MS.2006.72.

[65] Aymeric Hemon, Brian Fitzgerald, Barbara Lyonnet, and Frantz Rowe. “Innovative
Practices for Knowledge Sharing in Large-Scale DevOps”. In: IEEE Software 37.3 (2020),
pp. 30–37. issn: 0740-7459. doi: 10.1109/MS.2019.2958900.

62

https://doi.org/10.1109/SEAA53835.2021.00035
https://doi.org/10.2313/NET-2016-07-1_01
https://doi.org/10.1007/978-3-540-73212-9
https://doi.org/10.1007/978-3-540-73212-9
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1111/isj.12053
https://doi.org/10.1109/ICSA-C52384.2021.00015
https://doi.org/10.1007/s10961-010-9204-5
https://doi.org/10.1007/s10961-010-9204-5
https://doi.org/10.1109/MS.2006.72
https://doi.org/10.1109/MS.2019.2958900


References

[66] Jordan Henkel, Christian Bird, Shuvendu K. Lahiri, and Thomas Reps. “Learning from,
Understanding, and Supporting DevOps Artifacts for Docker”. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering. ICSE ’20. Seoul,
South Korea: Association for Computing Machinery, 2020, pp. 38–49. isbn: 9781450371216.
doi: 10.1145/3377811.3380406.

[67] Daqing Hou and Yuejiao Wang. “An Empirical Analysis of the Evolution of User-Visible
Features in an Integrated Development Environment”. In: Proceedings of the 2009 Con-
ference of the Center for Advanced Studies on Collaborative Research. CASCON ’09.
Ontario, Canada: IBM Corp., 2009, pp. 122–135. doi: 10.1145/1723028.1723044.

[68] Robin Hunter. The Design and Construction of Compilers. Wiley New York, 1981. isbn:
0471280542.

[72] Manfred A. Jeusfeld. “Metamodel”. In: Encyclopedia of Database Systems. Ed. by Ling
Liu and M. Tamer Özsu. Boston, MA: Springer US, 2009, pp. 1727–1730. isbn: 9780387399409.
doi: 10.1007/978-0-387-39940-9_898.

[73] Denis L. Johnston. “Scientists Become Managers-The ’T’-Shaped Man”. In: IEEE Engi-
neering Management Review 6.3 (1978), pp. 67–68. doi: 10.1109/EMR.1978.4306682.

[74] Sven Jörges. Construction and Evolution of Code Generators - A Model-Driven and
Service-Oriented Approach. Vol. 7747. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, Germany, 2013. isbn: 9783642361272. doi: 10.1007/978-3-642-
36127-2.

[75] Abhinav Krishna Kaiser. “Continual Improvement”. In: Become ITIL® 4 Foundation
Certified in 7 Days: Understand and Prepare for the ITIL Foundation Exam with Real-
life Examples. Berkeley, CA: Apress, 2021, pp. 249–270. isbn: 9781484263617. doi: 10.
1007/978-1-4842-6361-7_10.

[76] Hui Kang, Michael Le, and Shu Tao. “Container and Microservice Driven Design for
Cloud Infrastructure DevOps”. In: 2016 IEEE International Conference on Cloud Engi-
neering (IC2E). 2016, pp. 202–211. isbn: 9781509019618. doi: 10.1109/IC2E.2016.26.

[77] Ralph Katz and Thomas J. Allen. “Investigating the Not Invented Here (NIH) syndrome:
A look at the performance, tenure, and communication patterns of 50 R & D Project
Groups”. In: R&D Management 12.1 (1982), pp. 7–20. doi: 10.1111/j.1467-9310.
1982.tb00478.x. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1467-9310.1982.tb00478.x.

[78] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code
Generation. Wiley-IEEE Computer Society Press, Hoboken, NJ, USA, 2008. isbn: 0470036664.
doi: 10.1002/9780470249260.

[80] Gene Kim. The Unicorn Project: A Novel about Developers, Digital Disruption, and
Thriving in the Age of Data. IT Revolution Press, 2019. isbn: 9781942788775.

[81] Gene Kim, Kevin Behr, and George Spafford. The Phoenix Project: A Novel about IT,
DevOps, and Helping Your Business Win. IT Revolution Press, 2018. isbn: 9781942788300.

[82] Gene Kim, Jez Humble, Patrick Debois, John Willis, and Nicole Forsgren. The DevOps
Handbook: How to Create World-Class Agility, Reliability, & Security in Technology
Organizations. IT Revolution Press, 2021. isbn: 9781950508433.

[83] Peter G. Klein. “The Make-or-Buy Decision: Lessons from Empirical Studies”. In: Hand-
book of New Institutional Economics. Ed. by Claude Menard and Mary M. Shirley.
Boston, MA: Springer US, 2005, pp. 435–464. isbn: 9780387250922. doi: 10.1007/0-
387-25092-1_18.

63

https://doi.org/10.1145/3377811.3380406
https://doi.org/10.1145/1723028.1723044
https://doi.org/10.1007/978-0-387-39940-9_898
https://doi.org/10.1109/EMR.1978.4306682
https://doi.org/10.1007/978-3-642-36127-2
https://doi.org/10.1007/978-3-642-36127-2
https://doi.org/10.1007/978-1-4842-6361-7_10
https://doi.org/10.1007/978-1-4842-6361-7_10
https://doi.org/10.1109/IC2E.2016.26
https://doi.org/10.1111/j.1467-9310.1982.tb00478.x
https://doi.org/10.1111/j.1467-9310.1982.tb00478.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9310.1982.tb00478.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9310.1982.tb00478.x
https://doi.org/10.1002/9780470249260
https://doi.org/10.1007/0-387-25092-1_18
https://doi.org/10.1007/0-387-25092-1_18


References

[84] Anneke Kleppe. Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. 1st ed. Addison-Wesley Professional, 2008. isbn: 0321553454.

[85] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Search-
ing. Addison-Wesley, 1973. isbn: 020103803X.

[86] Donald E. Knuth. “The correspondence between Donald E. Knuth and Peter van Emde
Boas on priority deque”. 1977.

[87] Dawid Kopetzki. “Generation of Domain-Specific Language-to-Language Transforma-
tion Languages”. Dissertation. Dortmund, Germany: TU Dortmund University, 2019.
doi: 10.17877/DE290R-21179.

[88] Mohamed Labouardy. Pipeline as Code: Continuous Delivery with Jenkins, Kubernetes,
and Terraform. Manning, 2021. isbn: 9781638350378.

[89] Anna-Lena Lamprecht. “Track Introduction – Doctoral Symposium 2018”. In: Leverag-
ing Applications of Formal Methods, Verification and Validation. Verification. Ed. by
Tiziana Margaria and Bernhard Steffen. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2018, pp. 451–456. isbn: 9783030034214. doi: 10.
1007/978-3-030-03421-4_28.

[90] De Liu, Gautam Ray, and Andrew B. Whinston. “The Interaction Between Knowledge
Codification and Knowledge-Sharing Networks”. In: Information Systems Research 21.4
(2010), pp. 892–906. doi: 10.1287/isre.1080.0217.

[91] Janne Luoma, Steven Kelly, and Juha-Pekka Tolvanen. “Defining Domain-Specific Mod-
eling Languages: Collected Experiences”. In: 4th Workshop on Domain-Specific Modeling.
Citeseer. 2004.

[92] Michael Lybecait. “Meta-Model Based Generation of Domain-Specific Modeling Tools”.
Dissertation. Dortmund, Germany: TU Dortmund University, 2019. doi: 10.17877/
DE290R-20418.

[93] Sylvia Maduenyi, Adunola Oluremi Oke, Olatunji Fadeyi, and Akintunde M Ajagbe.
“Impact of Organisational Structure on Organisational Performance”. In: Nigeria: Thesis
Submitted to Covenant University (2015), pp. 354–356.

[94] Tiziana Margaria. “From Computational Thinking to Constructive Design with Simple
Models”. In: Leveraging Applications of Formal Methods, Verification and Validation.
Modeling. Ed. by Tiziana Margaria and Bernhard Steffen. Vol. 11244. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2018, pp. 261–278. isbn:
9783030034184. doi: 10.1007/978-3-030-03418-4_16.

[95] Tiziana Margaria and Bernhard Steffen. “Business Process Modelling in the jABC: The
One-Thing-Approach”. In: Handbook of Research on Business Process Modeling. Ed. by
Jorge Cardoso and Wil van der Aalst. IGI Global, 2009. doi: 10.4018/978-1-60566-
288-6.ch001.

[96] Tiziana Margaria and Bernhard Steffen. “From the How to the What”. In: Verified
Software: Theories, Tools, Experiments. Ed. by Bertrand Meyer and Jim Woodcock.
Vol. 4171. Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2008,
pp. 448–459. isbn: 9783540691471. doi: 10.1007/978-3-540-69149-5_48.

[97] Tiziana Margaria and Bernhard Steffen, eds. Leveraging Applications of Formal Meth-
ods, Verification and Validation - 10th International Symposium on Leveraging Appli-
cations of Formal Methods, ISoLA 2021, Rhodes, Greece, October 17-29, 2021, Pro-
ceedings. Vol. 13036. Lecture Notes in Computer Science. Cham: Springer, 2021. isbn:
9783030891589. doi: 10.1007/978-3-030-89159-6.

64

https://doi.org/10.17877/DE290R-21179
https://doi.org/10.1007/978-3-030-03421-4_28
https://doi.org/10.1007/978-3-030-03421-4_28
https://doi.org/10.1287/isre.1080.0217
https://doi.org/10.17877/DE290R-20418
https://doi.org/10.17877/DE290R-20418
https://doi.org/10.1007/978-3-030-03418-4_16
https://doi.org/10.4018/978-1-60566-288-6.ch001
https://doi.org/10.4018/978-1-60566-288-6.ch001
https://doi.org/10.1007/978-3-540-69149-5_48
https://doi.org/10.1007/978-3-030-89159-6


References

[98] Tiziana Margaria, Bernhard Steffen, and Manfred Reitenspieß. “Service-Oriented De-
sign: The Roots”. In: Proc. of the 3rd Int. Conf. on Service-Oriented Computing (ICSOC
2005), Amsterdam, The Netherlands. Vol. 3826. Lecture Notes in Computer Science.
Springer, 2005, pp. 450–464. isbn: 9783540308171. doi: 10.1007/11596141_34.

[99] Tiziana Margaria, Dominic Wirkner, Daniel Busch, Alexander Bainczyk, Tim Tegeler,
and Bernhard Steffen. “DIME Days (ISoLA 2022 Track Introduction)”. In: Leveraging
Applications of Formal Methods, Verification and Validation. Ed. by Tiziana Margaria
and Bernhard Steffen. Vol. 13702. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2022, pp. 367–373. isbn: 9783031197550. doi: 10.1007/978-
3-031-19756-7_20.

[100] Tiziana Margaria Margaria and Bernhard Steffen. “Service Engineering: Linking Busi-
ness and IT”. In: Computer 39.10 (2006), pp. 45–55. issn: 0018-9162. doi: 10.1109/MC.
2006.355.

[101] Jeff McAffer, Jean-Michel Lemieux, and Chris Aniszczyk. Eclipse Rich Client Platform.
2nd. Addison-Wesley Professional, 2010. isbn: 0321603788.

[102] M McIlroy, EN Pinson, and BA Tague. “UNIX Time-Sharing System”. In: The Bell
system technical journal 57.6 (1978), pp. 1899–1904.

[103] Peter Mell and Tim Grance. “The NIST Definition of Cloud Computing”. In: NIST
Special Publication 800-145 (2011). doi: 10.6028/NIST.SP.800-145.

[104] Marjan Mernik, Jan Heering, and Anthony M. Sloane. “When and How to Develop
Domain-specific Languages”. In: ACM Computing Surveys 37.4 (Dec. 2005), pp. 316–
344. issn: 0360-0300. doi: 10.1145/1118890.1118892.

[105] Maik Merten and Bernhard Steffen. “Simplicity Driven Application Development”. In:
Journal of Integrated Design and Process Science (SDPS) 17 (2013), pp. 9–23. doi:
10.3233/jid-2013-0008.

[106] Richard J. Mitchell and Institution of Electrical Engineers. Managing Complexity in
Software Engineering. Computing and Networks. Peregrinus, 1990. isbn: 9780863411717.

[107] Samer I. Mohamed. “DevOps shifting software engineering strategy Value based perspec-
tive”. In: IOSR Journal of Computer Engineering 17 (2015), pp. 51–57. issn: 2278-0661.

[108] Daniel Moody. “The “Physics” of Notations: Toward a Scientific Basis for Constructing
Visual Notations in Software Engineering”. In: IEEE Transactions on Software Engi-
neering 35.6 (2009), pp. 756–779. issn: 0098-5589. doi: 10.1109/TSE.2009.67.

[109] Neeshal Munga, Thomas Fogwill, and Quentin Williams. “The Adoption of Open Source
Software in Business Models: A Red Hat and IBM Case Study”. In: Proceedings of the
2009 Annual Research Conference of the South African Institute of Computer Scientists
and Information Technologists. SAICSIT ’09. Vanderbijlpark, Emfuleni, South Africa:
Association for Computing Machinery, 2009, pp. 112–121. isbn: 9781605586434. doi:
10.1145/1632149.1632165.

[110] Saravanan Nadason, Ram Al-Jaffri Saad, and Aidi Ahmi. “Knowledge Sharing and Bar-
riers in Organizations: A Conceptual Paper on Knowledge-Management Strategy”. In:
Indian-Pacific Journal of Accounting and Finance 1.4 (2017), pp. 32–41. doi: 10.52962/
ipjaf.2017.1.4.26.

[112] Stefan Naujokat. “Heavy Meta. Model-Driven Domain-Specific Generation of Generative
Domain-Specific Modeling Tools”. Dissertation. Dortmund, Germany: TU Dortmund
University, Aug. 2017. doi: 10.17877/DE290R-18076.

65

https://doi.org/10.1007/11596141_34
https://doi.org/10.1007/978-3-031-19756-7_20
https://doi.org/10.1007/978-3-031-19756-7_20
https://doi.org/10.1109/MC.2006.355
https://doi.org/10.1109/MC.2006.355
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.3233/jid-2013-0008
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1145/1632149.1632165
https://doi.org/10.52962/ipjaf.2017.1.4.26
https://doi.org/10.52962/ipjaf.2017.1.4.26
https://doi.org/10.17877/DE290R-18076


References

[113] Stefan Naujokat, Michael Lybecait, Dawid Kopetzki, and Bernhard Steffen. “CINCO: A
Simplicity-Driven Approach to Full Generation of Domain-Specific Graphical Modeling
Tools”. In: Software Tools for Technology Transfer 20.3 (2017), pp. 327–354. doi: 10.
1007/s10009-017-0453-6.

[114] Stefan Naujokat, Louis-Marie Traonouez, Malte Isberner, Bernhard Steffen, and Axel
Legay. “Domain-Specific Code Generator Modeling: A Case Study for Multi-faceted
Concurrent Systems”. In: Leveraging Applications of Formal Methods, Verification and
Validation. Technologies for Mastering Change. Ed. by Tiziana Margaria and Bernhard
Steffen. Vol. 8802. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 481–498. isbn: 9783662452349. doi: 10.1007/978-3-662-
45234-9_33.

[115] P. S. Newman. “Towards an integrated development environment”. In: IBM Systems
Journal 21.1 (1982), pp. 81–107. issn: 0018-8670. doi: 10.1147/sj.211.0081.

[117] Charlene O’Hanlon. “A Conversation with Werner Vogels: Learning from the Amazon
Technology Platform: Many Think of Amazon as ’That Hugely Successful Online Book-
store.’ You Would Expect Amazon CTO Werner Vogels to Embrace This Distinction,
but in Fact It Causes Him Some Concern.” In: Queue 4.4 (May 2006), pp. 14–22. issn:
1542-7730. doi: 10.1145/1142055.1142065.

[118] Stan Oliver and Kondal Reddy Kandadi. “How to develop knowledge culture in or-
ganizations? A multiple case study of large distributed organizations”. In: Journal of
knowledge management (2006). issn: 1367-3270. doi: 10.1108/13673270610679336.

[121] Maria Paasivaara, Casper Lassenius, and Ville T. Heikkilä. “Inter-Team Coordination in
Large-Scale Globally Distributed Scrum: Do Scrum-of-Scrums Really Work?” In: Pro-
ceedings of the ACM-IEEE International Symposium on Empirical Software Engineer-
ing and Measurement. ESEM ’12. Lund, Sweden: Association for Computing Machinery,
2012, pp. 235–238. isbn: 9781450310567. doi: 10.1145/2372251.2372294.

[123] M. Poppendieck and T. Poppendieck. Lean Software Development: An Agile Toolkit.
Agile Software Development Series. Pearson Education, 2003. isbn: 9780133812961.

[126] Laurence Prusak. “The Knowledge Advantage”. In: Planning Review 24.2 (Jan. 1996),
pp. 6–8. issn: 0094-064X. doi: 10.1108/eb054546.

[127] Florian Rademacher, Jonas Sorgalla, Sabine Sachweh, and Albert Zündorf. “Viewpoint-
Specific Model-Driven Microservice Development with Interlinked Modeling Languages”.
In: 2019 IEEE International Conference on Service-Oriented System Engineering (SOSE).
2019, pp. 57–66. isbn: 9781728114422. doi: 10.1109/SOSE.2019.00018.

[130] Matthew N.O. Sadiku, Sarhan M. Musa, and Omonowo D. Momoh. “Cloud Computing:
Opportunities and Challenges”. In: IEEE Potentials 33.1 (2014), pp. 34–36. issn: 0278-
6648. doi: 10.1109/MPOT.2013.2279684.

[131] Mary Sánchez-Gordón and Ricardo Colomo-Palacios. “Security as Culture: A System-
atic Literature Review of DevSecOps”. In: Proceedings of the IEEE/ACM 42nd Interna-
tional Conference on Software Engineering Workshops. New York, NY, USA: Associa-
tion for Computing Machinery, 2020, pp. 266–269. isbn: 9781450379632. doi: 10.1145/
3387940.3392233.

[132] Ronnie E. S. Santos, Fabio Q. B. da Silva, Cleyton V. C. de Magalhães, and Clevi-
ton V. F. Monteiro. “Building a Theory of Job Rotation in Software Engineering from
an Instrumental Case Study”. In: Proceedings of the 38th International Conference on
Software Engineering. ICSE ’16. Austin, Texas: Association for Computing Machinery,
2016, pp. 971–981. isbn: 9781450339001. doi: 10.1145/2884781.2884837.

66

https://doi.org/10.1007/s10009-017-0453-6
https://doi.org/10.1007/s10009-017-0453-6
https://doi.org/10.1007/978-3-662-45234-9_33
https://doi.org/10.1007/978-3-662-45234-9_33
https://doi.org/10.1147/sj.211.0081
https://doi.org/10.1145/1142055.1142065
https://doi.org/10.1108/13673270610679336
https://doi.org/10.1145/2372251.2372294
https://doi.org/10.1108/eb054546
https://doi.org/10.1109/SOSE.2019.00018
https://doi.org/10.1109/MPOT.2013.2279684
https://doi.org/10.1145/3387940.3392233
https://doi.org/10.1145/3387940.3392233
https://doi.org/10.1145/2884781.2884837


References

[133] Viviane Santos, Alfredo Goldman, and Cleidson RB De Souza. “Fostering effective inter-
team knowledge sharing in agile software development”. In: Empirical Software Engi-
neering 20.4 (2015), pp. 1006–1051. doi: 10.1007/s10664-014-9307-y.

[134] Gigi Sayfan. Mastering kubernetes. Packt Publishing Ltd, 2017. isbn: 9781788999786.

[135] Douglas C. Schmidt. “Guest Editor’s Introduction: Model-Driven Engineering”. In: IEEE
Computer 39.2 (2006), pp. 25–31.

[136] Tobias Schneider and A Wolfsmantel. “Achieving Cloud Scalability with Microservices
and DevOps in the Connected Car Domain.” In: Software Engineering (Workshops).
2016, pp. 138–141.

[137] Jonas Schürmann. “Functional Synthesis of Type-Safe GraphQL Communication Inter-
faces”. MA thesis. Dortmund, Germany: TU Dortmund University, Mar. 2021.

[139] Jonas Schürmann, Tim Tegeler, and Bernhard Steffen. “Guaranteeing Type Consistency
in Collective Adaptive Systems”. In: Leveraging Applications of Formal Methods, Veri-
fication and Validation: Engineering Principles. Ed. by Tiziana Margaria and Bernhard
Steffen. Vol. 12477. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2020, pp. 311–328. isbn: 9783030614706. doi: 10.1007/978-3-030-61470-
6_19.

[140] Bran Selić. “Design Languages: A Necessary New Generation of Computer Languages”.
In: Leveraging Applications of Formal Methods, Verification and Validation. Modeling.
Ed. by Tiziana Margaria and Bernhard Steffen. Lecture Notes in Computer Science.
Cham: Springer International Publishing, Nov. 2018, pp. 279–294. isbn: 9783030034177.
doi: 10.1007/978-3-030-03418-4_17.

[141] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. “Continuous Integration,
Delivery and Deployment: A Systematic Review on Approaches, Tools, Challenges and
Practices”. In: IEEE Access 5 (2017), pp. 3909–3943. issn: 2169-3536. doi: 10.1109/
ACCESS.2017.2685629.

[142] Darja Smite, Nils Brede Moe, Georgiana Levinta, and Marcin Floryan. “Spotify Guilds:
How to Succeed With Knowledge Sharing in Large-Scale Agile Organizations”. In: IEEE
Software 36.2 (2019), pp. 51–57. doi: 10.1109/MS.2018.2886178.

[143] Jonas Sorgalla, Philip Wizenty, Florian Rademacher, Sabine Sachweh, and Albert Zün-
dorf. “Applying Model-Driven Engineering to Stimulate the Adoption of DevOps Pro-
cesses in Small and Medium-Sized Development Organizations”. In: SN Computer Sci-
ence 2.6 (Sept. 2021), pp. 1–25. doi: 10.1007/s42979-021-00825-z.

[144] Barbara Steffen and Steve Boßelmann. “GOLD: Global Organization aLignment and
Decision - Towards the Hierarchical Integration of Heterogeneous Business Models”.
In: Leveraging Applications of Formal Methods, Verification and Validation. Industrial
Practice. Ed. by Tiziana Margaria and Bernhard Steffen. Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2018, pp. 504–527. isbn: 9783030034276.
doi: 10.1007/978-3-030-03427-6_37.

[145] Barbara Steffen, Falk Howar, Tim Tegeler, and Bernhard Steffen. “Agile Business En-
gineering: From Transformation Towards Continuous Innovation”. In: Leveraging Appli-
cations of Formal Methods, Verification and Validation. Ed. by Tiziana Margaria and
Bernhard Steffen. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2021, pp. 77–94. isbn: 9783030891596. doi: 10.1007/978-3-030-89159-
6_6.

67

https://doi.org/10.1007/s10664-014-9307-y
https://doi.org/10.1007/978-3-030-61470-6_19
https://doi.org/10.1007/978-3-030-61470-6_19
https://doi.org/10.1007/978-3-030-03418-4_17
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1109/MS.2018.2886178
https://doi.org/10.1007/s42979-021-00825-z
https://doi.org/10.1007/978-3-030-03427-6_37
https://doi.org/10.1007/978-3-030-89159-6_6
https://doi.org/10.1007/978-3-030-89159-6_6


References

[146] Bernhard Steffen, Frederik Gossen, Stefan Naujokat, and Tiziana Margaria. “Language-
Driven Engineering: From General-Purpose to Purpose-Specific Languages”. In: Com-
puting and Software Science: State of the Art and Perspectives. Ed. by Bernhard Steffen
and Gerhard Woeginger. Vol. 10000. LNCS. Springer, 2019. isbn: 9783319919089. doi:
10.1007/978-3-319-91908-9_17.

[147] Bernhard Steffen and Prakash Narayan. “Full Life-Cycle Support for End-to-End Pro-
cesses”. In: IEEE Computer 40.11 (2007), pp. 64–73. issn: 0018-9162. doi: 10.1109/
MC.2007.386.

[148] Bernhard Steffen and Stefan Naujokat. “Archimedean Points: The Essence for Mas-
tering Change”. In: LCNS Transactions on Foundations for Mastering Change (Fo-
MAC). Vol. 9960. I. Cham: Springer International Publishing, 2016, pp. 22–46. isbn:
9783319465081. doi: 10.1007/978-3-319-46508-1_3.

[149] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework (2nd Edition). Addison-Wesley, Boston, MA, USA, 2008. isbn:
0321331885.

[150] Jeff Sutherland and Ken Schwaber. “The scrum papers: Nuts, Bolts and Origins of an
Agile Process”. In: (2007).

[151] Tim Tegeler, Steve Boßelmann, Jonas Schürmann, Steven Smyth, Sebastian Teumert,
and Bernhard Steffen. “Executable Documentation: From Documentation Languages to
Purpose-Specific Languages”. In: Leveraging Applications of Formal Methods, Verifica-
tion and Validation. Ed. by Tiziana Margaria and Bernhard Steffen. Vol. 13702. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2022, pp. 174–
192. isbn: 9783031197550. doi: 10.1007/978-3-031-19756-7_10.

[152] Tim Tegeler, Frederik Gossen, and Bernhard Steffen. “A Model-driven Approach to
Continuous Practices for Modern Cloud-based Web Applications”. In: 2019 9th Interna-
tional Conference on Cloud Computing, Data Science Engineering (Confluence). 2019,
pp. 1–6. isbn: 9781538659335. doi: 10.1109/CONFLUENCE.2019.8776962.

[153] Tim Tegeler and Jonas Schürmann. “Evolve: Language-Driven Engineering in Industrial
Practice”. In: Electronic Communication of the European Association of Software Science
and Technology, 78 (2018). doi: 10.14279/tuj.eceasst.78.1089.

[154] Tim Tegeler, Sebastian Teumert, Jonas Schürmann, Alexander Bainczyk, Daniel Busch,
and Bernhard Steffen. “An Introduction to Graphical Modeling of CI/CD Workflows
with Rig”. In: Leveraging Applications of Formal Methods, Verification and Validation.
Ed. by Tiziana Margaria and Bernhard Steffen. Vol. 13036. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2021, pp. 3–17. isbn: 9783030891596.
doi: 10.1007/978-3-030-89159-6_1.

[156] Sebastian Teumert. “Visual Authoring of CI/CD Pipeline Configurations”. Bachelor’s
Thesis. Dortmund, Germany: TU Dortmund University, Apr. 2021.

[157] Sebastian Teumert, Tim Tegeler, Jonas Schürmann, Daniel Busch, and Dominic Wirkner.
“Evaluation of Graphical Modeling of CI/CD Workflows with Rig”. In: Leveraging Ap-
plications of Formal Methods, Verification and Validation. Ed. by Tiziana Margaria and
Bernhard Steffen. Vol. 13702. Lecture Notes in Computer Science. Cham: Springer In-
ternational Publishing, 2022, pp. 374–388. isbn: 9783031197550. doi: 10.1007/978-3-
031-19756-7_21.

[160] Warren Thorngate. “"In General" vs. "It Depends": Some Comments of the Gergen-
Schlenker Debate”. In: Personality and Social Psychology Bulletin 2.4 (1976), pp. 404–
410. doi: 10.1177/014616727600200413.

68

https://doi.org/10.1007/978-3-319-91908-9_17
https://doi.org/10.1109/MC.2007.386
https://doi.org/10.1109/MC.2007.386
https://doi.org/10.1007/978-3-319-46508-1_3
https://doi.org/10.1007/978-3-031-19756-7_10
https://doi.org/10.1109/CONFLUENCE.2019.8776962
https://doi.org/10.14279/tuj.eceasst.78.1089
https://doi.org/10.1007/978-3-030-89159-6_1
https://doi.org/10.1007/978-3-031-19756-7_21
https://doi.org/10.1007/978-3-031-19756-7_21
https://doi.org/10.1177/014616727600200413


References

[161] Oktay Turetken, Igor Stojanov, and Jos J. M. Trienekens. “Assessing the adoption level
of scaled agile development: a maturity model for Scaled Agile Framework”. In: Journal
of Software: Evolution and Process 29.6 (2017). issn: 2047-7473. doi: 10.1002/smr.
1796.

[162] Kathryn L. Turk and Michelle Corbin Nichols. “Online Help Systems: Technological
Evolution or Revolution?” In: Proceedings of the 14th annual international conference
on Systems documentation: Marshaling new technological forces: building a corporate,
academic, and user-oriented triangle. SIGDOC ’96. New York, USA: Association for
Computing Machinery, 1996, pp. 239–242. isbn: 0897917995. doi: 10.1145/238215.
238302.

[163] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir Filkov.
“Quality and Productivity Outcomes Relating to Continuous Integration in GitHub”.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ESEC/FSE 2015. New York, USA: Association for Computing Machinery, 2015, pp. 805–
816. isbn: 9781450336758. doi: 10.1145/2786805.2786850.

[164] Marcus Voelter. “MD* Best Practices”. In: Journal of Object Technology 8.6 (Sept. 2009).
(column), pp. 79–102. issn: 1660-1769. doi: 10.5381/jot.2009.8.6.c6.

[165] Timo Walter. “Entwicklung einer grafischen DSL für Docker und Kubernetes”. MA the-
sis. Dortmund, Germany: TU Dortmund University, Jan. 2020.

[166] Jan Weckwerth. “Cinco Evaluation: CMMN-Modellierung und -Ausführung in der Praxis”.
MA thesis. Dortmund, Germany: TU Dortmund University, 2016.

[167] Anna Wiedemann, Nicole Forsgren, Manuel Wiesche, Heiko Gewald, and Helmut Krc-
mar. “Research for Practice: The DevOps Phenomenon”. In: Commun. ACM 62.8 (July
2019), pp. 44–49. issn: 0001-0782. doi: 10.1145/3331138.

[168] Laurie Williams. “Integrating Pair Programming into a Software Development Process”.
In: Proceedings 14th Conference on Software Engineering Education and Training. ’In
search of a software engineering profession’ (Cat. No.PR01059). IEEE. 2001, pp. 27–36.
isbn: 0769510590. doi: 10.1109/CSEE.2001.913816.

[169] Laurie Williams, Robert R. Kessler, Ward Cunningham, and Ron Jeffries. “Strengthen-
ing the Case for Pair Programming”. In: IEEE Software 17.4 (2000), pp. 19–25. issn:
0740-7459. doi: 10.1109/52.854064.

[171] Ewelina Wińska and Włodzimierz Dąbrowski. “Software Development Artifacts in Large
Agile Organizations: A Comparison of Scaling Agile Methods”. In: Data-Centric Busi-
ness and Applications: Towards Software Development. Ed. by Aneta Poniszewska-
Marańda, Natalia Kryvinska, Stanisław Jarząbek, and Lech Madeyski. Vol. 4. Cham:
Springer International Publishing, 2020, pp. 101–116. isbn: 9783030347062. doi: 10.
1007/978-3-030-34706-2_6.

[172] Dominic Wirkner. “Merge-Strategien für Graphmodelle am Beispiel von jABC und Git”.
Diploma thesis. Dortmund, Germany: TU Dortmund University, Feb. 2015.

[173] James P. Womack, Daniel T. Jones, and Daniel Roos. The machine that changed the
world: The story of lean production–Toyota’s secret weapon in the global car wars that
is now revolutionizing world industry. Simon and Schuster, 2007. isbn: 0743299795.

69

https://doi.org/10.1002/smr.1796
https://doi.org/10.1002/smr.1796
https://doi.org/10.1145/238215.238302
https://doi.org/10.1145/238215.238302
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.5381/jot.2009.8.6.c6
https://doi.org/10.1145/3331138
https://doi.org/10.1109/CSEE.2001.913816
https://doi.org/10.1109/52.854064
https://doi.org/10.1007/978-3-030-34706-2_6
https://doi.org/10.1007/978-3-030-34706-2_6


References

[174] Nils Wortmann, Malte Michel, and Stefan Naujokat. “A Fully Model-Based Approach to
Software Development for Industrial Centrifuges”. In: Leveraging Applications of Formal
Methods, Verification and Validation: Discussion, Dissemination, Applications. Ed. by
Tiziana Margaria and Bernhard Steffen. Vol. 9953. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2016, pp. 774–783. isbn: 9783319471693. doi:
10.1007/978-3-319-47169-3_58.

[175] Ming-Wei Wu and Ying-Dar Lin. “Open Source Software Development: An Overview”.
In: Computer 34.6 (2001), pp. 33–38. issn: 1558-0814. doi: 10.1109/2.928619.

[176] Ravi Teja Yarlagadda. “DevOps and Its Practices”. In: International Journal of Creative
Research Thoughts (IJCRT), ISSN 9 (Mar. 2021). issn: 2320-2882.

[177] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bogdan
Vasilescu. “The Impact of Continuous Integration on Other Software Development Prac-
tices: A Large-Scale Empirical Study”. In: 2017 32nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). IEEE, 2017, pp. 60–71. isbn: 978-1-
5386-2684-9. doi: 10.1109/ASE.2017.8115619.

[178] Liming Zhu, Len Bass, and George Champlin-Scharff. “DevOps and Its Practices”. In:
IEEE Software 33.3 (Apr. 2016), pp. 32–34. issn: 0740-7459. doi: 10.1109/MS.2016.81.

[179] Ahmed Zia, Waleed Arshad, and Waqas Mahmood. “Preference in using agile develop-
ment with larger team size”. In: International Journal of Advanced Computer Science
and Applications 9.7 (2018), pp. 116–123.

[180] Philip Zweihoff. “Aligned and Collaborative Language-Driven Engineering”. Disserta-
tion. Dortmund, Germany: TU Dortmund University, 2022. doi: 10.17877/DE290R-
22594.

[181] Philip Zweihoff, Tim Tegeler, Jonas Schürmann, Alexander Bainczyk, and Bernhard
Steffen. “Aligned, Purpose-Driven Cooperation: The Future Way of System Develop-
ment”. In: Leveraging Applications of Formal Methods, Verification and Validation. Ed.
by Tiziana Margaria and Bernhard Steffen. Vol. 13036. Lecture Notes in Computer Sci-
ence. Cham: Springer International Publishing, 2021, pp. 426–449. isbn: 9783030891596.
doi: 10.1007/978-3-030-89159-6_27.

70

https://doi.org/10.1007/978-3-319-47169-3_58
https://doi.org/10.1109/2.928619
https://doi.org/10.1109/ASE.2017.8115619
https://doi.org/10.1109/MS.2016.81
https://doi.org/10.17877/DE290R-22594
https://doi.org/10.17877/DE290R-22594
https://doi.org/10.1007/978-3-030-89159-6_27


Online References

[3] Apache Maven Project. Best Practice - Using a Repository Manager. Online. url:
https://maven.apache.org/repository-management.html (visited on 01/15/2023).

[5] Atlassin. What is DevOps? Online. url: https://www.atlassian.com/devops (visited
on 01/15/2023).

[12] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and
Dave Thomas. Manifesto for Agile Software Development. Online. 2001. url: http:
//agilemanifesto.org (visited on 01/15/2023).

[13] Oren Ben-Kiki, Clark Evans, and Ingy döt Net. YAML Ain’t Markup Language (YAML™)
Version 1.2. Online. 2009. url: https://yaml.org/spec/1.2/spec.html (visited on
01/15/2023).

[32] Cinco SCCE Meta Tooling Suite. Online. url: http://cinco.scce.info (visited on
01/15/2023).

[38] Definition of Reproducible Builds. Online. url: https://reproducible-builds.org/
docs/definition/ (visited on 01/15/2023).

[44] Docker Inc. Docker Registry. Online. url: https://docs.docker.com/registry/
(visited on 01/15/2023).

[45] Docker Inc. Use multi-stage builds. Online. url: https://docs.docker.com/develop/
develop-images/multistage-build/ (visited on 01/15/2023).

[46] Doxygen. Online. url: https://www.doxygen.nl/index.html (visited on 01/15/2023).

[50] Martin Fowler. Continuous Integration. Online. May 2006. url: https://www.martinfowler.
com/articles/continuousIntegration.html (visited on 01/15/2023).

[51] Martin Fowler. Continuous Integration (original version). Online. Sept. 2000. url:
https://martinfowler.com/articles/originalContinuousIntegration.html (vis-
ited on 01/15/2023).

[52] Martin Fowler. ExtremeProgramming. Online. July 2013. url: https://www.martinfowler.
com/bliki/ExtremeProgramming.html (visited on 01/15/2023).

[58] GitLab Inc. What is pipeline as code? Online. url: https://about.gitlab.com/
topics/ci-cd/pipeline-as-code/ (visited on 01/15/2023).

[59] Glosbe. Lingualization. Online. url: https://glosbe.com/en/en/lingualization
(visited on 01/15/2023).

[62] Michele Guerriero. DICER: A Tool for Model Driven Infrastructure as Code of Data
Intensive Applications. Online. url: https://github.com/dice- project/DICER/
wiki/DICER:- A- Tool- for- Model- Driven- Infrastructure- as- Code- of- Data-
Intensive-Applications (visited on 01/15/2023).

[69] Inter- vs. Intra-: What is the Difference? Online. url: https://www.merriam-webster.
com/words-at-play/intra-and-inter-usage (visited on 01/15/2023).

71

https://maven.apache.org/repository-management.html
https://www.atlassian.com/devops
http://agilemanifesto.org
http://agilemanifesto.org
https://yaml.org/spec/1.2/spec.html
http://cinco.scce.info
https://reproducible-builds.org/docs/definition/
https://reproducible-builds.org/docs/definition/
https://docs.docker.com/registry/
https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/multistage-build/
https://www.doxygen.nl/index.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/originalContinuousIntegration.html
https://www.martinfowler.com/bliki/ExtremeProgramming.html
https://www.martinfowler.com/bliki/ExtremeProgramming.html
https://about.gitlab.com/topics/ci-cd/pipeline-as-code/
https://about.gitlab.com/topics/ci-cd/pipeline-as-code/
https://glosbe.com/en/en/lingualization
https://github.com/dice-project/DICER/wiki/DICER:-A-Tool-for-Model-Driven-Infrastructure-as-Code-of-Data-Intensive-Applications
https://github.com/dice-project/DICER/wiki/DICER:-A-Tool-for-Model-Driven-Infrastructure-as-Code-of-Data-Intensive-Applications
https://github.com/dice-project/DICER/wiki/DICER:-A-Tool-for-Model-Driven-Infrastructure-as-Code-of-Data-Intensive-Applications
https://www.merriam-webster.com/words-at-play/intra-and-inter-usage
https://www.merriam-webster.com/words-at-play/intra-and-inter-usage


Online References

[70] ISO 639-2 Registration Authority. Alpha-2 Code (no) Search Result - Codes for the
representation of names of languages (Library of Congress). Online. url: https://
www.loc.gov/standards/iso639-2/php/langcodes_name.php?iso_639_1=no (visited
on 01/15/2023).

[71] Javadoc Tool. Online. url: https://www.oracle.com/java/technologies/javase/
javadoc.html (visited on 01/15/2023).

[79] Kharnagy. File:Devops-toolchain.svg. Online. Sept. 2016. url: https : / / commons .
wikimedia.org/wiki/File:Devops-toolchain.svg (visited on 01/15/2023).

[111] National Vulnerability Database. NVD - CVE-2021-44228. Online. url: https://nvd.
nist.gov/vuln/detail/CVE-2021-44228 (visited on 01/15/2023).

[116] Colm O’Connor. The Norway Problem - why StrictYAML refuses to do implicit typing
and so should you. Online. url: https://hitchdev.com/strictyaml/why/implicit-
typing-removed/ (visited on 01/15/2023).

[119] OpenAPI Initiative. OpenAPI Specification v3.1.0. Online. Feb. 2021. url: https://
spec.openapis.org/oas/latest.html (visited on 01/15/2023).

[120] Addy Osmani, Sindre Sorhus, Pascal Hartig, Stephen Sawchuk, Colin Eberhardt, Sam
Saccone, Arthur Verschaeve, Fady Samir Sadek, and Gianni Chiappetta. TodoMVC -
Helping you select an MV* framework. Online. 2021. url: https://todomvc.com/
(visited on 01/15/2023).

[122] Pipeline Editor | GitLab. Online. 2022. url: https://docs.gitlab.com/ee/ci/
pipeline_editor/ (visited on 01/15/2023).

[124] Andra Postolache. Barriers to Knowledge Transfer and How to Overcome Them. Mar.
2020. url: https://www.quandora.com/barriers-knowledge-transfer-how-to-
overcome-them/ (visited on 01/15/2023).

[125] Tom Preston-Werner. Semantic Versioning 2.0.0. Online. June 2013. url: https://
semver.org/spec/v2.0.0.html (visited on 01/15/2023).

[128] Rig Definition & Meaning - Merriam-Webster. Online. url: https://www.merriam-
webster.com/dictionary/rig (visited on 01/15/2023).

[129] Rigging Definition & Meaning - Merriam-Webster. Online. url: https://www.merriam-
webster.com/dictionary/rigging (visited on 01/15/2023).

[138] Jonas Schürmann. Knobster. Online. url: https://knobster.jonas- schuermann.
name/ (visited on 01/15/2023).

[155] Sebastian Teumert. Rig | Low-Code CI/CD Modeling. Online. url: https://scce.
gitlab.io/rig/ (visited on 01/15/2023).

[158] The Free On-line Dictionary of Computing. Parkinson’s Law of Data. Online. 2003. url:
https://encyclopedia2.thefreedictionary.com/Parkinson%5C%27s+Law+of+Data
(visited on 01/15/2023).

[159] The Kubernetes Authors. Viewing Pods and Nodes. Online. url: https://v1-22.docs.
kubernetes.io/docs/tutorials/kubernetes- basics/explore/explore- intro/
(visited on 01/15/2023).

[170] Robert Williams. Pipelines-as-Code: How to improve speed from idea to production.
Online. url: https://about.gitlab.com/blog/2022/01/18/pipelines-as-code/
(visited on 01/15/2023).

72

https://www.loc.gov/standards/iso639-2/php/langcodes_name.php?iso_639_1=no
https://www.loc.gov/standards/iso639-2/php/langcodes_name.php?iso_639_1=no
https://www.oracle.com/java/technologies/javase/javadoc.html
https://www.oracle.com/java/technologies/javase/javadoc.html
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://hitchdev.com/strictyaml/why/implicit-typing-removed/
https://hitchdev.com/strictyaml/why/implicit-typing-removed/
https://spec.openapis.org/oas/latest.html
https://spec.openapis.org/oas/latest.html
https://todomvc.com/
https://docs.gitlab.com/ee/ci/pipeline_editor/
https://docs.gitlab.com/ee/ci/pipeline_editor/
https://www.quandora.com/barriers-knowledge-transfer-how-to-overcome-them/
https://www.quandora.com/barriers-knowledge-transfer-how-to-overcome-them/
https://semver.org/spec/v2.0.0.html
https://semver.org/spec/v2.0.0.html
https://www.merriam-webster.com/dictionary/rig
https://www.merriam-webster.com/dictionary/rig
https://www.merriam-webster.com/dictionary/rigging
https://www.merriam-webster.com/dictionary/rigging
https://knobster.jonas-schuermann.name/
https://knobster.jonas-schuermann.name/
https://scce.gitlab.io/rig/
https://scce.gitlab.io/rig/
https://encyclopedia2.thefreedictionary.com/Parkinson%5C%27s+Law+of+Data
https://v1-22.docs.kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/
https://v1-22.docs.kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/
https://about.gitlab.com/blog/2022/01/18/pipelines-as-code/

	Introduction
	My Contribution
	Context of Attached Publications

	DevOps
	Continuous Practices
	Large-Scale DevOps
	Container Virtualization

	Knowledge Sharing in Large-Scale DevOps
	Domain-Specific Languages
	Lingualization Strategy
	Purpose-Specific Languages
	Code Generators
	mindset-supporting IDEs
	Organizational Infrastructure
	The Knowledge Sharing Process

	Graphical Modeling with Rig
	Rig Is a Cinco Product
	Integrability
	Meta-Level Bootstrapping

	Evaluation
	Modeling Concepts of the Lingualization Strategy
	Numbers on the Effect of Graphical Modeling with Rig

	Related Work
	Knowledge Sharing
	MD* in the Context of DevOps

	Conclusion
	Limitations
	Future Work

	References
	Online References

