
Compressing data for generalized linear

regression

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Technischen Universität Dortmund

an der Fakultät Statistik

Simon Omlor

Dortmund

2022

Referees:

Dr. Alexander Munteanu

Prof. Dr. Katja Ickstadt

Date of submission: 03.03.2023

i

Acknowledgments

I would like to thank to Dr. Alexander Munteanu for guiding my research and advising me. I would like

to thank Prof. Dr. Katja Ickstadt for helpful discussions. Also, I would like to thank my family for always

supporting me and my friends who read over the manuscript and gave helpful hints.

ii

iii

Abstract

In this thesis we work on algorithmic data and dimension reduction techniques to solve scalability issues

and to allow better analysis of massive data. For our algorithms we use the sketch and solve paradigm as

well as some initialization tricks. We will analyze a tradeoff between accuracy, running time and storage.

We also show some lower bounds on the best possible data reduction factors. While we are focusing on

generalized linear regression mostly, logistic and p-probit regression to be precise, we are also dealing with two

layer Rectified Linear Unit (ReLU) networks with logistic loss which can be seen as an extension of logistic

regression, i.e. logistic regression on the neural tangent kernel. We present coresets via sampling, sketches via

random projections and several algorithmic techniques and prove that our algorithms are guaranteed to work

with high probability.

First, we consider the problem of logistic regression where the aim is to find the parameter β maximizing

the likelihood. We are constructing a sketch in a single pass over a turnstile data stream. Depending on some

parameters we can tweak size, running time and approximation guarantee of the sketch. We also show that

our sketch works for other target functions as well.

Second, we construct an ε-coreset for p-probit regression, which is a generalized version of probit regression.

Therefore we first compute the QR decomposition of a sketched version of our dataset in a first pass. We

then use the matrix R to compute an approximation of the ℓp-leverage scores of our data points which we

use to compute sampling probabilities to construct the coreset. We then analyze the negative log likelihood

of the p-generalized normal distribution to prove that this results in an ε-coreset.

Finally, we look at two layer ReLU networks with logistic loss. Here we show that using a coupled

initialization we can reduce the width of the networks to get a good approximation down from γ−8 (Ji and

Telgarsky, 2020) to γ−2 where γ is the so called separation margin. We further give an example where we

prove that a width of γ−1 is necessary to get less than constant error.

iv

Contents

1 Introduction and motivation 1

1.1 Data compression . 1

1.2 Neural networks . 2

1.3 Problems considered in this manuscript . 2

1.4 Outline and results . 2

1.5 Publications . 3

2 Preliminaries 5

2.1 General notation . 5

2.2 Input formats . 5

2.3 Basics on linear algebra . 6

2.4 Probability distributions and common inequalities . 8

2.5 Data reduction methods . 11

2.6 Linear regression, logistic regression and p-probit regression 16

2.7 Artificial neural networks . 18

2.7.1 Two-layer ReLU networks . 19

2.8 Convex optimization . 21

2.8.1 Gradient and Hessian Matrix for p-probit regression 22

2.9 Related work . 24

3 Sketching for logistic regression 31

3.1 Setting and notations . 31

3.2 The algorithm . 32

3.2.1 Motivation . 32

3.2.2 Parameters . 32

3.2.3 Pseudo code . 33

3.2.4 Description of the algorithm . 34

3.2.5 Idea of the analysis . 34

3.2.6 Outline of the analysis . 35

3.3 High level description of the analysis . 35

3.4 Analysis . 38

3.4.1 Assumptions . 38

3.4.2 Estimating the small parts of f . 39

3.4.3 Estimating ∥z+∥1 . 41

3.4.4 Analysis for a single level . 42

v

3.4.5 Heavy hitters . 47

3.4.6 Contraction bounds for a single point . 49

3.4.7 Net argument . 50

3.4.8 Dilation bounds . 51

3.5 Main result . 55

3.6 Extension to linear ℓ1-regression . 56

3.6.1 Dilation bounds for ℓ1 . 56

3.6.2 Net argument . 58

3.7 Extension to logistic regression with variance-based regularization 59

3.8 Lower bound . 64

4 ℓp-leverage score sampling for p-probit regression 67

4.1 Setting and notations . 67

4.2 The algorithm . 67

4.2.1 High level description . 67

4.2.2 Pseudo code . 68

4.3 Analysis . 68

4.3.1 Outline of the analysis . 68

4.3.2 Tails of the p-generalized normal distribution . 69

4.3.3 Properties of g . 73

4.3.4 Bounding the VC-Dimension . 78

4.3.5 Bounding the Sensitivities . 81

4.3.6 Well Conditioned Bases and Approximate Leverage Scores 82

4.4 Main Results . 85

5 Reducing the width of two layer ReLU networks 87

5.1 Setting and notations . 87

5.2 The initialization and its motivation . 88

5.3 Outline of the analysis . 89

5.4 Main assumption and examples . 89

5.4.1 Main assumption . 89

5.4.2 Example 1: orthonormal unit vectors . 94

5.4.3 Example 2: Two differently labeled points at distance b 94

5.4.4 Example 3: Constant labels . 95

5.4.5 Example 4: The hypercube . 96

5.5 Lower bounds for log width . 98

5.5.1 Example 5: Alternating points on a circle . 98

vi

5.5.2 Lower Bounds . 100

5.6 Upper bound . 102

5.7 On the construction of U . 105

5.7.1 Tightness of the construction of U . 105

5.7.2 The two dimensional case (upper bound) . 106

6 Conclusion and open problems 108

6.1 Sketching for logistic regression . 108

6.2 ℓp-leverage score sampling for probit regression . 109

6.3 Reducing the width of two layer ReLU networks . 109

7 Bibliography 111

vii

1 Introduction and motivation

With improving hardware and increasing amounts of computation power as well as increasing storage sizes

the amount of available data often is massive also known as the phenomenon of Big Data.

Analyzing data has become an important job for computers in the twenty-first century, be it for spotting

diseases in a pandemic, efficient finances, machine learning task, such as autonomous driving or to determine

the best ways to save energies. Thus always improving algorithms have been developed to deal with data

more accurately and more efficiently. However with the increasing amounts of data, which are helpful at

first glance as the laws of large numbers and central limit theorems tell us the more data we have the more

accurate are our predictions, even the best algorithms are unable to deal with the large amounts of data.

Either they are too slow or the memory used is not sufficient. Hence an efficient preprocessing is needed.

Efficient preprocessing is not only helpful from a practical view point it also helps us to understand

the mathematics behind the possible distributions of the parameters with respect to the optimized target

function.

This thesis provides new methods to compress data without losing important information with respect

to different target functions and analyzes the amount of compression as well as the running time and the

approximation guarantee.

1.1 Data compression

In the last century a lot of algorithms have been developed to analyze datasets. While these work well on

small and medium size datasets, they become inefficient as the size of the dataset starts to grow. To deal

with this data compression is used. More precisely before running the algorithm to get an accurate analysis

we first run a fast algorithm that drops unimportant data and merges similar data points.

Sketch and solve paradigm (Woodruff (2014); Munteanu (2023))

The following idea which will be used in Section 3 as well as Section 4 is the sketch and solve paradigm:

We consider a data matrix X ∈ Rn×d. The task is to find a parameter β ∈ Rd such that f(Xβ) is minimized

for some function f . Thus our goal is to find a mapping Π which maps X to much smaller dataset Π(X),

also called coreset. More precisely Π(X) will usually be in Rn′×d where n′ ≪ n with some additional weights

w ∈ Rn′ such that for all β ∈ B we have that f(Xβ) ≈ fw(X ′β) where fw is a weighted version of f .

We are using the following three techniques to compress the data:

• Linear sketching: The idea of sketching is that we apply some random projection to our data. More

precisely given a data matrix X ∈ Rn×d we multiply X with a random matrix S ∈ Rm×n to get a new

smaller dataset X ′ = SX ∈ Rm×d with similar properties, i.e f(Xβ) ≈ f(X ′β) holds for some loss

function f .

1

• Subsampling: Sampling is a well known method for reducing the size of datasets. The most commonly

used sampling method is uniform sampling where each point is sampled with the same probability.

However we will focus on sensitivity sampling where important points have a higher chance of getting

picked while unimportant points get dropped and frequent points, which individually are less likely to

get picked, get a high weight if picked to indicate their frequency.

• Dimension reduction: When considering two layer ReLU-networks a clever initialization allows us to

use a smaller inner layer for good convergence which can be seen as a compressed version of the so

called (infinite dimensional) neural tangent kernel.

1.2 Neural networks

Neural networks have been a popular topic in recent research. While they perform well in practice little is

known in theory. They are usually trained given some training data and then they can give predictions for

new input points using matrix multiplication and activation functions. In this manuscript we will have a look

at two layer ReLU networks in particular with rectified linear unit (ReLU) function. In Section 2 we will give

a precise definition for those.

1.3 Problems considered in this manuscript

In everything what follows we are considering a fixed dataset X ∈ Rn×d. We also have a vector of target

values y ∈ Rn corresponding to the dataset. In some cases there is an equivalent instance where all labels are

equal and we will omit y in this case.

For the first set of problems we are given a target function f and our goal is to find a significantly smaller

dataset X ′ such that f(X ′β) ≈ f(Xβ). Here following functions f are considered:

• logistic regression;

• ℓ1-regression;

• variance-based regularized logistic regression;

• p-probit regression

Second we consider neural networks. Here we do not shrink the dataset (X, y) itself but rather the number

of neurons needed in the middle layer.

1.4 Outline and results

The remaining manuscript is structured into Chapters 2 – 6 dealing with the following content summarized

below.

2

• Section 2 In this section we introduce general notations. We continue with some basic definitions and

results from linear algebra. Then we state the used probability distributions as well as some well known

inequalities. Afterwards we give a brief introduction into sketching and sensitivity sampling. We then

continue by giving the definitions of some regression models and two layer ReLU networks. We then

state the problems we consider and mention some of the related work.

• Section 3 Here we introduce our first algorithm to construct a sketch for logistic regression. The

algorithm works in a single pass over a turnstile datastream. We show that there is a tradeoff between

size, running time and approximation guarantee. More precisely we show that with linear running

time in the number of non zero entries of our dataset we can get a weak 1-sketch (see Definition 2.18)

in expectation, which can be used to compute a 2-approximation. If we allow the sketch size to be

exponential in ε−1 we can get down to a weak ε-sketch, which can be used to compute a (1 + ε)-

approximation. Last with some increased running time we can get a sketch of very small size with

constant approximation guarantee. More precisely we can get arbitrarily close to size linear in d. For

the details see Theorem 1. We conclude the section by showing that the algorithm also works for

ℓ1-regression as well as variance-based regularized logistic regression (see Theorem 2 and Theorem 3).

• Section 4 In this section we focus on p-generalized probit regression. We show that we can approximate

the so called ℓp-leverage scores which can be used as sampling probabilities up to some scalar to

construct an ε-coreset if the dataset is µ-complex for some µ ≥ 1. To show this we analyze the negative

log-likelihood of p-generalized normal distribution and determine its non-asymptotic tail behavior.

• Section 5 Here we consider two layer ReLU networks with logistic loss on the output layer. By using

coupled initialization we can improve the upper bound on the width of the networks to get an arbitrarily

small error down from Õ(γ−8) (Ji and Telgarsky, 2020) to Õ(γ−2) where γ is a parameter introduced

in (Ji and Telgarsky, 2020) We also improve the lower bounds to Ω(γ−1) reducing the gaps between the

bounds even further.

• Section 6 Last we recap our results and state directions for future research.

1.5 Publications

The present manuscript is based on the following publications:

• Section 3 is based on Munteanu et al. (2021),

Alexander Munteanu, Simon Omlor, and David P. Woodruff. Oblivious sketching for logistic regression.

In Proceedings of the 38th International Conference on Machine Learning, pages 7861–7871, 2021

and on Munteanu et al. (2023),

Alexander Munteanu, Simon Omlor, and David P. Woodruff. Almost linear constant-factor sketch-

3

ing for ℓ1 and logistic regression. In Proceedings of the 11th International Conference on Learning

Representations, 2023. to appear

• Section 4 is based on Munteanu et al. (2022a),

Alexander Munteanu, Simon Omlor, and Christian Peters. p-Generalized probit regression and scalable

maximum likelihood estimation via sketching and coresets. In Proceedings of the 25th International

Conference on Artificial Intelligence and Statistics, pages 2073–2100, 2022a

• Section 5 is based on Munteanu et al. (2022b),

Alexander Munteanu, Simon Omlor, Zhao Song, and David Woodruff. Bounding the width of neural

networks via coupled initialization - a worst case analysis. In International Conference on Machine

Learning, pages 16083–16122, 2022b

All authors contributed equally and are stated in alphabetical order. My main focus was on the technical

parts. Experiments in the stated papers were done by research assistants and guided by us. In (Munteanu

et al., 2022b) two loss functions are considered, the logistic loss and the squared loss. We (Munteanu, Omlor,

Woodruff) focused on the logistic loss while the squared loss was analyzed by our coauthors and is only

mentioned in the related work section in this manuscript.

4

2 Preliminaries

In this section we will describe the notations we use in this thesis. We will also recall some basic definitions,

important theorems, as well as some motivation and literature overview. Readers that are familiar with those

might skip this chapter entirely.

2.1 General notation

We are using the following notations:

• We use N to denote the natural numbers including 0.

• For x ∈ R we use the notation R≥x := {y ∈ R | y ≥ x}. Similarly we define R>x,R≤x and R<x.

• For a natural number n ≥ 1 we set [n] := {1, 2, . . . n}.

• We use In ∈ Rn×n to indicate the identity matrix of dimension n.

• We use X ∈ Rn×d and y ∈ Rn for our data matrix and observations. By xi ∈ Rd we denote the i-th

row of X.

• Our goal is to minimize a target function which is of the form f(X, y, β) =
∑︁n

i=1 g(xi, y, β), where g is

the loss function of individual points. If we have a weight vector w ∈ Rn then the target function is

changed to fw(X, y, β) =
∑︁n

i=1 wig(xi, y, β).

• If z ∈ Rn then z+ ∈ Rn is the vector with z+
i = zi if zi ≥ 0 and z+

i = 0 otherwise.

• For a matrix X ∈ Rn×d we denote by nnz(X) the number of non zero entries of X.

• T = poly(d) means that there exists a constant c ≥ 1 such that T = Θ(dc).

2.2 Input formats

Streaming [see, e.g., Muthukrishnan (2005) for a survey]

In the streaming model we receive our data row by row in a fixed order. We can go through our data

multiple times and the approximation guarantee has to be achieved only at the end algorithm. However

the data might be saved externally and going over it can take some time thus one our goal is to reduce the

memory and the number of passes we need.

Online algorithms In the online setting each data point can only be accessed once and we need to achieve

our approximation guarantee at any time. Thus we need to do computations continuously during accessing

the points to be able to make final decisions at any time. For more details on online algorithms we refer to

(Borodin and El-Yaniv, 2005).

5

Turnstile datastreams We follow the description of turnstile datastreams from (Munteanu, 2018): In this

model we initialize a matrix A to the all-zero matrix. The stream consists of (key, value) updates of the form

(i, j, v), meaning that Aij will be updated to Aij + v. A single entry can be defined by a single update or by

a subsequence of not necessarily consecutive updates. For instance, a sequence . . . , (i, j, 27), . . . , (i, j, −5), . . .

will result in Aij = 22. Deletions are possible in this setting by using negative updates matching previous

insertions. At first glance this model might seem technical or unnatural but we stress that for dealing with

unstructured data, the design of algorithms working in the turnstile model is of high importance.

2.3 Basics on linear algebra

ℓp-Norm

Definition 2.1. (Golub and Van Loan (2013)) Given a vector v ∈ Rn and p ∈ [1, ∞) the ℓp-norm of v is

given by

∥v∥p =
(︄

n∑︂
i=1

|vi|p
)︄1/p

and ∥v∥∞ = limp→∞ (
∑︁n

i=1 |vi|p)1/p

Note that for any two vectors x, y ∈ Rn Hölder’s inequality states that xT y ≤ ∥x∥p∥y∥q for any p, q ∈ [1, ∞]

with 1
p + 1

q = 1. A special case is the is the Cauchy Schwarz inequality (see Golub and Van Loan (2013))

which states that

xT y ≤ ∥x∥2∥y∥2.

Ky-Fan norm The following norm is useful when we are only interested in the large values of a vector. It

was used before in (Clarkson and Woodruff, 2015) and is an adaptation of the k-th Ky-Fan-norm for matrixes

which is given by the sum of the k largest eigenvalues of the matrix.

Definition 2.2. Given a vector v ∈ Rn let T be the set of the k entries of v with the largest absolute value.

Then the k-th Ky-Fan norm of v is defined by

∥v∥Kf(k) =
∑︂
vi∈T

|vi|.

Note that the k-th Ky-Fan norm of v is equal to k-th Ky-Fan-norm of the diagonal matrix Dv with

(Dv)ii = vi and (Dv)ij = 0 if i ̸= j.

Orthonormal matrixes and the QR-decomposition

6

Definition 2.3. (Golub and Van Loan (2013)) A Matrix U ∈ Rn×d with columns u(1), . . . , u(d) is called

orthonormal if

• For any i ∈ [d] it holds that ∥u(i)∥2 = 1;

• For any i, j ∈ [d] with i ̸= j it holds that ⟨u(i), u(j)⟩ = 0.

A matrix is orthonormal if and only if UT U = Id.

Proposition 2.4 (QR-decomposition). Golub and Van Loan (2013) For any matrix X ∈ Rn×d there exist

matrices R ∈ Rd×d and Q ∈ Rn×d such that X = QR, Q is orthonormal. If X is of full rank then R is

invertible.

Leverage scores

Definition 2.5. (Dasgupta et al. (2009)) Given a matrix X ∈ Rn×d with rows x1 . . . , xn we define the i-th

ℓp-leverage score of X by

ui := sup
β∈Rd\{0}

|xiβ|p∑︁n
j=1 |xjβ|p

= sup
β∈Rd,∥β∥2=1

|xiβ|p∑︁n
j=1 |xjβ|p

= max
β∈Rd,∥β∥p=1

|xiβ|p∑︁n
j=1 |xiβ|p

.

Here the last equality follows as {β ∈ Rd, ∥β∥2 = 1} is a compact set.

Leverage scores are in some sense the importance scores for the ℓp-norm for the rows of X. The roots of

ℓ2 leverage scores go back to (Cook, 1977). They are useful for sampling algorithms when looking at target

functions close to the p-th power of the ℓp-norm. One way of getting an exact bound for the ℓ2-leverage

scores which are the most commonly used leverage score is to look at the QR-decomposition of X = QR and

determine the squared ℓ2-norm of the corresponding rows of Q. We will later prove this.

Well conditioned basis One can approximate the ℓp leverage scores using an orthonormal basis for

the column space of X. Unfortunately this gives only an nc-approximation for p ̸= 2. We thus work with

a generalization to so called well-conditioned bases. An (α, β, p)-well-conditioned basis V is a basis that

preserves the norm of each vector well, as detailed in the following definition.

Definition 2.6 (Dasgupta et al. (2009)). Let X be an n × m matrix of rank d, let p ∈ [1, ∞), and let q be its

dual norm, i.e., q ∈ (1, ∞] satisfying 1
p + 1

q = 1. Then an n × d matrix V is an (α, β, p)-well-conditioned

basis for the column space of X if

(1) ∥V ∥p :=
(︂∑︁

i≤n,j≤d |Vij |p
)︂1/p

≤ α, and

(2) for all z ∈ Rd, ∥z∥q ≤ β∥V z∥p.

We say that V is a p-well-conditioned basis for the column space of X if α and β are dO(1), independent

of m and n.

7

A prominent example of a well-conditioned basis is the aforementioned orthonormal basis for ℓ2, which

can be obtained by QR-decomposition (or SVD) in O(nd2) time. Such a basis Q is (
√

d, 1, 2)-well-conditioned,

since ∥Q∥F =
√

d and ∥Qz∥2 = ∥z∥2 due to rotational invariance of the ℓ2-norm. For general p there exist so

called Auerbach bases (Auerbach, 1930) with α = d and β = 1 (for a proof see (Woodruff and Yasuda, 2023)),

and approximations thereof can be computed in time O(nd5 log n) via Löwner–John ellipsoids (Clarkson,

2005; Dasgupta et al., 2009).

We can bound the leverage scores in terms of the row-wise p-norms of such a basis.

Lemma 2.7. Let V be an (α, β, p)-well-conditioned basis for the column space of X and let ui be the

ℓp-leverage score of row i. Then it holds for all i ∈ [n] that ui ≤ βp∥vi∥p
p. As a direct consequence we have∑︁n

i=1 ui ≤ βp∥V ∥p
p ≤ (αβ)p.

Proof. We have by a change of basis

ui = sup
z∈Rd\{0}

|(Xz)i|p

∥Xz∥p
p

= sup
z∈Rd\{0}

|(V z)i|p

∥V z∥p
p

.

Now assume that z attains the value supz∈Rd\{0}
|(V z)i|p

∥V z∥p
p

. Then we get by using Hölder’s inequality and the

properties of V that

ui = |(V z)i|p

∥V z∥p
p

≤ βp|(V z)i|p

∥z∥p
q

≤
βp∥vi∥p

p∥z∥p
q

∥z∥p
q

= βp∥vi∥p
p.

2.4 Probability distributions and common inequalities

Normal distribution The normal distribution (or Gaussian distribution) with mean µ ∈ R and variance

σ2 ∈ R≥0 is given via a density function (see for instance Johnson et al. (1994))

φ(r) = 1√
2πσ2

· exp
(︃

−|r − µ|2

2σ2

)︃

for r ∈ R. The cdf of the normal distribution then is given by

Φ(r) =
∫︂ r

−∞
φ(t) dt

For higher dimensions the normal distribution can be extended to the multivariate normal distribution with

mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d using the density function (see for instance Kotz et al. (2004))

φ̃(y) =
exp

(︁
− 1

2 · (y − µ)T Σ−1(y − µ)
)︁√︁

(2π)d det(Σ)

8

for y ∈ Rd. For us the only important case will be when Σ is a diagonal matrix, i.e. all coordinates are

independent of each other.

p-generalized normal distribution (see for instance Kleiber and Kotz (2003); Subbotin (1923)) The

p-generalized normal distribution is a generalization of the normal distribution so that the exponent in the

the density function behaves like a polynomial of degree p ∈ R≥0 rather than 2. The cdf of the p-generalized

normal distribution (Kalke and Richter (2013))is given by

Φp(r) = p1−1/p

2Γ(1/p)

∫︂ r

−∞
exp(−|t|p/p) dt

where Γ(r) =
∫︁∞

0 tr−1e−t dt is the gamma function.

Bernoulli distribution (see for instance Johnson et al. (1994))

The Bernoulli distribution Bern is the distribution with

P (y = 1) = p and P (y = 0) = 1 − p

for some parameter p ∈ [0, 1].

Binomial distribution (see for instance Johnson et al. (1994))

The binomial distribution is the distribution we get from multiple added Bernoulli random variables with

parameter p. We have that

P (y = k) =
(︃

n

k

)︃
pk(1 − p)n−k

for k ∈ {0, 1 . . . n}.

Concentration inequalities

Lemma 2.8 (Markov’s inequality Pishro-Nik (2014)). Let X be a positive random variable. Then for any

a ∈ R>0 it holds that

P (X ≥ a) ≤ E(X)
a

.

Lemma 2.9, 2.10 and 2.11 concern tail bounds for random scalar variables. Lemma 2.13 is helpful for

proving lower bounds.

Lemma 2.9 (Chernoff bound Chernoff (1952)). Let X =
∑︁n

i=1 Xi, where Xi = 1 with probability pi and

9

Xi = 0 with probability 1 − pi, and all Xi are independent. Let µ = E[X] =
∑︁n

i=1 pi. Then

Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀1 > δ > 0; (1)

Pr[X ≤ (1 − δ)µ] ≤ exp(−δ2µ/2), ∀0 < δ; (2)

Pr[X ≥ (1 + δ)µ] ≤ exp(−δµ/3), ∀δ ≥ 1; (3)

Lemma 2.10 (Hoeffding bound Hoeffding (1963)). Let X1, · · · , Xn denote n independent bounded random

variables in [ai, bi]. Let X =
∑︁n

i=1 Xi. Then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp
(︃

− 2t2∑︁n
i=1(bi − ai)2

)︃
.

Lemma 2.11 (Bernstein’s inequality Bernstein (1924)). Let X1, · · · , Xn be independent zero-mean random

variables. Suppose that |Xi| ≤ M almost surely, for all i. Then, for all positive t,

Pr
[︄

n∑︂
i=1

Xi > t

]︄
≤ exp

(︄
− t2/2∑︁n

j=1 E[X2
j] + Mt/3

)︄
.

Lemma 2.12 (Anti-concentration of the Gaussian distribution). Let X ∼ N (0, σ2), that is, the probability

density function of X is given by φ(x) = 1√
2πσ2 e− x2

2σ2 . Then

Pr[|X| ≤ t] ≤ 4
5 · t

σ
.

Proof. It holds that

Pr[|X| ≤ t] = 2 ·
∫︂ t

x=0

1√
2πσ2

e− x2
2σ2 dx ≤ 2√

2πσ2
· t ≤ 4t

5σ
.

Lemma 2.13 (Feller (1943)). Let Z be a sum of independent random variables, each attaining values in

[0, 1], and let σ =
√︁

Var(Z) ≥ 200. Then for all t ∈ [0, σ2

100] we have

Pr[X ≥ E[X] + t] ≥ c · exp(−t2/(3σ2))

where c > 0 is some fixed constant.

The following is useful when dealing with binomially distributed random variables.

Lemma 2.14. Let y be a binomially distributed random variable with parameters n, p. Let n′ ∈ N. Then if

10

n′ ≥ pn we have that

P (|y − pn| > n′) ≤ 2 exp (−n′/3)

Else if n′ = εpn we have that

P (|y − pn| > n′) ≤ 2 exp (−εn′/3)

Proof. Note that E(y) = pn. Using the Chernoff bound we get that if n′ ≥ pn

P (|y − pn| > n′) ≤ 2 exp(−(n′/np)np/3) ≤ 2 exp(−n′/3).

If n′ = εpn the Chernoff bound implies that

P (|y − pn| > n′) ≤ 2 exp(−ε2np/3) = 2 exp (−εn′/3) .

2.5 Data reduction methods

Coresets and Subspace embeddings We give a short introduction into data reduction methods. Our

data reduction methods are used to construct coresets and skechtes which are smaller data sets with similar

properties:

Definition 2.15. (cf. Munteanu and Schwiegelshohn (2018)) A weighted ε-coreset C = (X ′, w) for a function

f is a matrix X ′ ∈ Rk×d together with a weight vector w ∈ Rk
>0 such that for all β ∈ Rd it holds that

|fw(X ′β) − f(Xβ)| ≤ ε · f(Xβ).

Coresets have been a popular topic in research in the last years. They are useful in practice when it comes

to big data and they are also interesting from a theoretic perspective giving us information how large sets

can grow without redundant information for a given optimization function. For a detailed survey of coresets,

see (Munteanu and Schwiegelshohn, 2018).

Using a coreset we can find an approximate solution to the problem of finding β minimizing f(Xβ).

Corollary 2.16. Let (X ′, w) be a weighted ε-coreset for f . Let β̃ ∈ argminβ∈Rd fw(X ′β). Then it holds that

f(Xβ̃) ≤ (1 + 3ε) minβ∈Rd f(Xβ).

Proof. Let β∗ ∈ argminβ∈Rd f(Xβ). Since (X ′, w) is a coreset we have by Definition 2.15 and using the

11

optimality of β̃ for the coreset that

f(Xβ̃) ≤ fw(X ′β̃)/(1 − ε) ≤ fw(X ′β∗)/(1 − ε)

≤ f(Xβ∗)(1 + ε)/(1 − ε) ≤ f(Xβ∗)(1 + 3ε).

One of the first problems where coresets where considered is the squared loss. One way to construct

coresets for the ℓ2 norm are subspace embeddings:

Definition 2.17. Given a matrix X ∈ Rn×d, an integer k < n and a parameter ε ∈ (0, 1/2] an ε-subspace

embedding is a matrix Π ∈ Rk×n such that for any β ∈ Rd it holds that

(1 − ε)∥Xβ∥2
2 ≤ ∥ΠXβ∥2

2 ≤ (1 + ε)∥Xβ∥2
2.

Coresets have the advantage that they have a good approximation guarantee for any parameter vector β.

If we just aim to approximate the optimal β given our data it suffices if the target value of the optimal β is

preserved or well approximated and no parameter vector gets significantly better than before. Thus we will

also consider weak (weighted) sketches which have only weaker guarantees than coresets but are sufficient for

approximating the optimal β and can be constructed via random linear maps.

Definition 2.18. Given a dataset (X, w), a subset V ⊂ Rd, a > 1 and ε, δ > 0, a weak weighted (V, a, ε)-

sketch C = (X ′, w′) for f is a matrix X ′ ∈ Rk×d of the form X ′ = SX for some S ∈ Rk×n together with a

weight vector w′ ∈ Rk
>0 such that it holds simultaneously that: For all β ∈ V we have

fw′(X ′β) ≥ (1 − ε)fw(Xβ)

and for β∗ ∈ V minimizing fw(Xβ) it holds that

fw′(X ′β∗) ≤ afw(Xβ∗).

Further for any β ∈ Rd \ V it holds that

fw′(X ′β) > min
β∈V

fw′(X ′β).

For us the following two methods are of particular interest to construct coresets.

Random projections To get a subspace embedding one often multiplies X with a random matrix. We

present some of these random matrices.

12

JL-Transformation The first random matrix we consider consists of O(ln(n)) Gaussians. It can be

used to approximate the ℓ2-norm.

Lemma 2.19 (Johnson Lindenstrauss transformation). (Johnson and Lindenstrauss (1984)) Let 0 < ε, δ ≤

1/2. Let G ∈ Rd×k be a matrix consisting of k ∈ O(ε−2 ln(n/δ)) random Gaussian vectors. Let X ∈ Rn×d.

Then, with probability 1 − δ, for all i ∈ [n] it holds that

∥xiG∥2 = (1 ± ε) ∥xi∥2.

Linear Sketching The idea of (linear) sketching is to multiply our data matrix X ∈ Rn×d with a sparse

random matrix S ∈ Rn′×n. Linear sketching uses much sparser matrices than the JL transformation, therefore

the number of rows is also larger than for JL transformations. This way it is faster but requires more space,

or in other words there is a tradeoff between the size of the random matrix and thus the running time and

the number n′ of rows of the sketch X ′. For a detailed work on sketching see for instance (Woodruff, 2014).

The Count sketch (Charikar et al. (2004))

Given a data set X the idea of the count sketch is to go over all datapoints xi once and for each i ∈ [n]

to choose one of N buckets as well as a random sign in {−1, 1}, both uniformly at random. In the end or

rather in the process of adding each element to its bucket all elements are multiplied with their random sign

and added up to the remaining elements in the same bucket. This can also be depicted as multiplying with

a matrix Π ∈ Rk×n which has a single non-zero entry at each column which is either 1 or −1 each with

probability 1/2. Note that this can be done via a random hashing map and thus can be done on a turnstile

stream. The count sketch is faster than most other random matrices like the so called Rademacher Matrix

(cf. Verbin and Zhang (2012)) or the so called Randomized Hadamard Transform (cf. Ailon and Liberty

(2009)) but the dimension k in order to achieve its guarantees is also slightly larger.

The following calculations give us an idea why the count sketch and other methods using random signs

preserve the ℓ2-norm:

Consider any two vectors u, v ∈ Rd and let σ be a random sign. Then it holds that

E(∥u + σv∥2
2) = 1

2 ⟨u + v, u + v⟩ + 1
2 ⟨u − v, u − v⟩

= 1
2 (⟨u + v, u + v⟩ + ⟨u − v, u − v⟩)

= 1
2 (⟨u, u⟩ + 2⟨u, v⟩ + ⟨v, v⟩ + ⟨u, u⟩ − 2⟨u, v⟩ + ⟨v, v⟩)

= ⟨u, u⟩ + ⟨v, v⟩ = ∥u∥2 + ∥v∥2.

The Count-Min sketch The Count-Min Sketch (Cormode and Muthukrishnan (2005)) works similarly

to the count sketch but there is no random sign. This way directions are preserved but the ℓ2 norm is no

longer guaranteed to be preserved. The Count-Min Sketch was previously used for frequency analysis, as it

13

preserves the ℓ0-norm, i.e the number of distinct elements. We will use it for problems where directions are

important as those are also preserved to some extent when using the Count-Min Sketch which is not the case

for the Count sketch.

Matrix representation of the Count and Count-Min sketch For both of the mentioned sketches

there exists a matrix representation: The sketching matrix Π can be constructed as follows: First let D ∈ Rn×n

be the diagonal matrix with Dii = 1 or Dii = −1 each with probability 1/2 for the count sketch and D = In

for the Count-Min sketch. Further let h : [n] → [n′] be a random map where h hashes each entry of [n] to one

of n′ buckets uniformly at random. Set Ψ ∈ Rn′×n to be the matrix where Ψh(i)i = 1 and Ψji = 0 if j ̸= h(i).

Then the matrix representation is given by Π = ΨD (Clarkson and Woodruff, 2017).

Sketching for M-estimators Clarkson and Woodruff (2015) developed another sketching algorithm

that works for a class of the so called M -estimators. The idea is that elements get mapped to different levels

(with exponentially increasing probabilities) and then the Count sketch is applied to elements at the same

level. In Section 3 we will discuss a modification of their algorithm in detail.

Subsampling Sampling algorithms pick some of the elements of the dataset to create a smaller dataset.

We consider uniform sampling where each element is picked with the same probability as well as sampling

algorithms where different elements can have different sampling probabilities, which is also known under

the name of importance sampling. In the second case we also have weights to compensate for different

probabilities. More precisely if each element i is picked with probability pi the weight of xi is wi = 1
pi

if i is

picked.

Uniform sampling Picking k elements uniformly at random is called uniform sampling. Uniform

sampling works well if the dataset is of bounded complexity. More precisely if there are no elements that are

much more important than most of the other elements then uniform sampling works well.

Leverage score sampling For leverage score sampling the sampling probabilities are proportional

(or close to proportional) to the leverage scores. ℓp-leverage score sampling preserves the ℓp-norm up to a

small error. Note that it is also possible to use the square root of the ℓ2 leverage scores to get a coreset that

preserves the ℓ1-norm. For more details see (Munteanu et al., 2018).

Sensitivity sampling framework Another more general sampling approach is sensitivity sampling.

We first give the definition of sensitivities and the VC-dimension and afterwards we state one of the main

results from sensitivity sampling.

14

Definition 2.20. (Langberg and Schulman (2010)) Consider a family of functions F = {g1, . . . , gn} mapping

from Rd to [0, ∞) and weighted by w ∈ Rn
>0. The sensitivity of gi for fw(x) =

∑︁n
i=1 wigi(x) is

ςi = sup wigi(x)
fw(x) (4)

where sup is over all x ∈ Rd with fw(x) > 0. If this set is empty then ςi = 0. The total sensitivity is

S =
∑︁n

i=1 ςi.

The sensitivity of a point bounds the maximal relative contribution to the target function the point can

have. Computing the sensitivities is often intractable and necessitates approximating the original optimization

problem close to optimality. However, this is the problem that we want to solve, see Braverman et al. (2021).

Fortunately, for our applications it suffices to obtain a reasonable upper bound for the sensitivities.

Definition 2.21. A range space is a pair R = (F , ranges) where F is a set and ranges is a family of subsets

of F . The VC dimension ∆(R) of R is the size |G| of the largest subset G ⊆ F such that G is shattered by

ranges, i.e.,

|{G ∩ R | R ∈ ranges}| = 2|G|.

Definition 2.22. Let F be a finite set of functions mapping from Rd to R≥0. For every x ∈ Rd and r ∈ R≥0,

let

rangeF (x, r) = {f ∈ F | f(x) ≥ r},

and

ranges(F) = {rangeF (x, r) | x ∈ Rd, r ∈ R≥0},

and

RF = (F , ranges(F))

be the range space induced by F .

The VC-dimension can be thought of something similar to the dimension of our problem. For example the

VC-dimension of the set of hyperplane classifiers in Rd is d + 1 (Kearns and Vazirani, 1994). The sensitivity

scores were combined with a theory on the VC-dimension of range spaces in (Feldman and Langberg, 2011;

Braverman et al., 2021). We use a more recent version of Feldman et al. (2020).

Proposition 2.23. (Feldman et al., 2020) Consider a family of functions F = {f1, . . . , fn} mapping from

Rd to [0, ∞) and a vector of weights w ∈ Rn
>0. Let ε, δ ∈ (0, 1/2). Let si ≥ ςi. Let S =

∑︁n
i=1 si ≥ S. Given

si one can compute in time O(|F|) a set R ⊂ F of

O

(︃
S

ε2

(︃
∆ ln S + ln

(︃
1
δ

)︃)︃)︃

15

weighted functions such that with probability 1 − δ, we have for all x ∈ Rd simultaneously⃓⃓⃓⃓
⃓⃓∑︂
fi∈F

wifi(x) −
∑︂

fi∈R

uifi(x)

⃓⃓⃓⃓
⃓⃓ ≤ ε

∑︂
fi∈F

wifi(x),

where each element of R is sampled i.i.d. with probability pj = sj

S from F , ui = Swj

sj |R| denotes the weight

of a function fi ∈ R that corresponds to fj ∈ F , and where ∆ is an upper bound on the VC dimension of

the range space RF∗ induced by F∗ obtained by defining F∗ to be the set of functions fj ∈ F , where each

function is scaled by Swj

sj |R| .

Reservoir samplers Assume we want to sample k elements of [n] such that each element i ∈ [n] is sampled

with probability pi = max{k · si

S } where S =
∑︁n

i=1 si. However we want to do this in the online setting or

in a single pass and we can only compute si and do not know S in advance. Here one can use a weighted

reservoir sampler Chao (1982). The idea of the reservoir sampler is to sample the first k elements and then

each further to sample each element i sample i with probability si

Si
where Si =

∑︁i
j=1 Si replacing a random

other element.

2.6 Linear regression, logistic regression and p-probit regression

Linear models/regression Groß (2003)

Let X ∈ Rn×d be some data set together with observations y ∈ Rn. A linear model assumes that Y

depends on X in the following way:

Y = Xβ + ξ

where ξ is noise variable whose entries usually follow a normal distribution and β ∈ Rd. More precisely we

have that Y ∼ N (Xβ, σ2In) for some σ ∈ R≥0. Then we have that Y is distributed via the following density

function:

f(Y) = φ̃(Xβ − Y).

Generalized linear models/regression McCullagh and Nelder (1989)

Again we have some data set X ∈ Rn×d with observations Y ∈ Rn. A general linear model assumes that

h(E(Y)) = Xβ

for some link function h : R → R. If h is the identity then we have a linear model. However generalized linear

models can also be used to model functions with more complex behaviors or those which are taking only

values in a limited range like Bernoulli or Binomial variables.

16

Logistic regression For logistic regression we have that the link function is given by h(r) = ln(r
1+r)

McCullagh and Nelder (1989); Hilbe (2009). The logistic model is useful to learn to predict the probability of

an event to happen based on independent observations. For instance what is the likelihood of someone passing

a test given some features such as time spent learning etc. The assumption then is that Yi ∼ Bern(ri) where

ri = exp(xiβ)
1+exp(xiβ) for some β. We are using labels yi ∈ {−1, 1} rather than yi ∈ {0, 1} to simplify notations.

Then the likelihood of any β ∈ Rd for our dataset (X, y) is given by

n∏︂
i=1

exp(yixiβ)
1 + exp(yixiβ) .

Taking the negative logarithm we get that the negative log likelihood, the logistic loss, is given by

L(β|X, y) = − ln
(︄

n∏︂
i=1

exp(yixiβ)
1 + exp(yixiβ)

)︄

=
n∑︂

i=1
− ln

(︃
exp(yixiβ)

1 + exp(yixiβ)

)︃

=
n∑︂

i=1
ln (1 + exp(−yixiβ)) .

Variance regularized logistic regression Variance-based regularization was proposed in (Maurer and

Pontil, 2009; Duchi and Namkoong, 2019; Yan et al., 2020) to decrease the generalization error. We view our

data set as n realizations of a random variable (Z, Y), where each (xi, yi) is drawn i.i.d. from an unknown

distribution D. Then the expected value of the negative log-likelihood (on the empirical sample) for any fixed

β equals E(ℓ(−Y Zβ)) = 1
n L(β|X, Y). The variance is given by

Var(ℓ(−Y Zβ)) = E(ℓ(−Y zβ)2) − E(ℓ(−Y Zβ))2 = 1
n

∑︁n
i=1 ℓ(−yixiβ)2 −

(︁ 1
n

∑︁n
i=1 ℓ(−yixiβ)

)︁2

We also introduce a regularization parameter λ ∈ R≥0. Then our objective is to minimize

E(ℓ(−Y Zβ)) + λ

2 Var(ℓ(−Y Zβ)).

p-probit regression In the probit model we have that h(r) = Φ−1
2 (r)(McCullagh and Nelder, 1989). We

generalized the probit model to the p-probit regression where we have that h(r) = Φ−1
p (r) for p ∈ [1, ∞)

Munteanu et al. (2022a) and applications are similar to logistic regression. In fact 1-probit regression has

similar tail behavior as logistic regression but differs in the region close to 0.

The likelihood of any β ∈ Rd for our dataset (X, y) is given by

n∏︂
i=1

Φp(yixiβ).

17

Taking the negative logarithm we get that the negative log likelihood, the p-probit loss, is given by

− ln
(︄

n∏︂
i=1

Φp(yixiβ)
)︄

=
n∑︂

i=1
− ln (Φp(yixiβ)) .

Labels Note that for both problems, logistic regression as well as p-probit regression the labels are always

appearing as a scalar of the datapoints themselves. Thus it is convenient to substitute x′
i = −yixi. This

way we have that the negative log likelihood is given by
∑︁n

i=1 g(x′
i) where either g(r) = ln(1 + er) or

g = − ln(Φp(−r)).

µ-complexity In contrast to the ℓp loss (
∑︁n

i=1 ∥xiβ − y∥p
p) both, the logistic and the p-probit loss, are

asymmetric functions. As a consequence some of the well known data reduction methods like the count sketch

do not work for them. Further small coresets do not exist in general (Munteanu et al., 2018), we will use the

following parameter which has been in introduced in (Munteanu et al., 2018) and generalized in (Munteanu

et al., 2022a).

Definition 2.24. Let X ∈ Rn×d be any matrix and let p ∈ [1, ∞). We define

µp(X) = sup
β∈Rd\{0}

∑︁
xiβ>0 |xiβ|p∑︁
xiβ<0 |xiβ|p

.

We say that X is µ-complex if max{µ1(X), µ2(X)} ≤ µ if considering (variance regularized) logistic regression

or if µp(X) ≤ µ if considering p-probit regression.

2.7 Artificial neural networks

Artificial neural networks are another popular method for predictions. For a more detailed description we

refer to (Blum et al., 2020). An artificial network consists of several layers each consisting of one or multiple

nodes. Two adjacent layers are connected via edges, each equipped with a weight. In addition each layer

except the first layer is equipped with an activation function. The first layer is called input layer and the last

layer output layer.

More formally an r layer neural network is given by a vector of matrices (W1, . . . Wr) and a vector of

activation function (f1, . . . , fr) where Wi ∈ Rni×ni−1 with ni being the number of nodes in layer i and

fi : R → R. Given an input x ∈ Rn0 we iteratively define the value of the nodes. The values of the nodes

in the input layer are equal to the coordinates of xi. The values of the nodes of any other layer i > 0 are

computed by multiplying the vector we get by the previous layer i − 1 with Wi and applying the activation

function to all coordinates.

Even though neural networks are known to perform well in practice little is known in theory due to

their complexity. As our goal is to analyze two layer networks with the ReLU activation function for binary

classification we will in the following restrict to those.

18

x1

x2

x3

xd

...
...

v1 = f1(w1x)

v2 = f1(w2x)

vm = f1(wmx)

out = f2(
∑m

j=1 ajvj)

w11

w12

w1m

w21

w22

w2m

w3m

wdm

wd2

wd1

w31 w32
a1

a2

am

Figure 1: A two layer network with d input nodes and one output node. The rows of the matrix W1 are
given by wi and W2 is the vector with the entries aj .

2.7.1 Two-layer ReLU networks

As the name already suggests a two-layer ReLU network consists of two layers and the input layer. The

activation function of the first layer is the ReLU function ϕ : R → R with ϕ(r) = max{r, 0} and the activation

function of the output layer is the identity function. Our inputs are given as d dimensional vectors. We use

m to denote the number of nodes in the inner layer, also called the width of the network and we just have a

single node at the output layer. We denote the the first sets of weights between the input layer and the first

layer by W ∈ Rn×d and the weight between first and second layer by a ∈ Rm .

We follow a standard problem formulation Du et al. (2019c); Song and Yang (2019); Ji and Telgarsky

(2020). The output function of our network is given by

f(x, W, a) = 1√
m

m∑︂
s=1

asϕ (⟨ws, x⟩) , (5)

where x ∈ Rd is an input point, w1, . . . , wm ∈ Rd are weight vectors in the first (hidden) layer, i.e. the rows

of W and a1, . . . , am ∈ {−1, +1} are weights in the second layer.

Loss function In order to train a neural network we need a loss function. Our general goal is to reduce the

loss of the network to below an arbirtrarily small ε > 0. The loss of the networks also gives an upper bound

of the number of misclassified points as any misclassified point has a bounded minimum contribution to the

loss function. In this work, we mainly focus the binary cross-entropy (logistic) loss which is arguably the

most well-studied for binary classification. We note that for regression squared loss is the most considered

loss function which is also considered in (Munteanu et al., 2022b).

19

As before we are given a set of n input data points and corresponding labels, denoted by

{(x1, y1), . . . , (xn, yn)} ⊂ Rd × {−1, 1}.

As in Du et al. (2019c); Song and Yang (2019); Ji and Telgarsky (2020), we make a standard normalization

assumption. The labels are restricted to yi ∈ {−1, +1}. For simplicity, we assume that ∥xi∥2 = 11, ∀i ∈ [n].

We also define the output function on input xi to be fi(W) = f(xi, W, a).

We consider the objective function R:

R(W) = 1
n

n∑︂
i=1

ℓ(yifi(W))

where the individual logistic loss is defined as ℓ(r) = ln(1 + exp(−r)).

For logistic loss, we can compute the gradient of R in terms of wr ∈ Rd

∂R(W)
∂wr

=
n∑︂

i=1

− exp(−yif(W, xi, a))
1 + exp(−yif(W, xi, a))yiarxi1w⊤

r xi≥0 (6)

We apply gradient descent to optimize the weight matrix W with the following standard update rule,

Wt+1 = Wt − η
∂R(Wt)

∂Wt
, (7)

where 0 < η ≤ 1 determines the step size.

The neural tangent kernel (NTK) The NTK was introduced by Jacot et al. (2018). The NTK is a

useful tool for analyzing convergence of the training of neural networks. Given a weight matrix W and a sign

vector a the finite NTK is defined by KW : Rd × Rd → R with

KW (x, x′) = ·
m∑︂

j=1

⟨︃
∂f(x, W, a)

∂wj
,

∂f(x′, W, a)
∂wj

⟩︃
.

Given a Gaussian random initialization for a sufficiently large width m it can be shown that the NTK is

almost constant during the gradient descent, i.e. it stay close to the infinite NTK which is defined by

K(x, x′) = E

⎛⎝ m∑︂
j=1

⟨︃
∂f(x, W, a)

∂wj
,

∂f(x′, W, a)
∂wj

⟩︃⎞⎠ .

1We adopt the assumption for a concise presentation, but we note it can be resolved by weaker constant bounds 0 < lb ≤
∥xi∥ ≤ ub, introducing a constant ub/lb factor, cf. Du et al. (2019c), or otherwise the data can be rescaled and padded with an
additional coordinate to ensure ∥xi∥ = 1, cf. Allen-Zhu et al. (2019a).

20

In our case the infinite NTK is given by

K(x, x′) = Ew∼N (0,Id)[x⊤x′1[⟨x, w⟩ > 0, ⟨x′, w⟩ > 0]].

In previous works it has been shown that if m is large enough, then the finite NTK stays close to the infinite

NTK during the gradient descent. We will show how a clever initialization allows us to achieve the same with

a much smaller width, allowing us in some sense a notable dimension reduction of the finite NTK.

Separation margin The separation margin γ was introduced by Ji and Telgarsky (2020). It is used as a

parameter to get upper bounds on the width necessary to guarantee that the gradient descent algorithm

converges to a network of arbitrarily small error.

Definition 2.25. Given a data set (X, Y) ∈ Rn×d × Rn and a map v̄ ∈ FB we set

γv̄ = γv̄(X, Y) := min
i∈[n]

yi

∫︂
⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z).

We say that v̄ is optimal if γv̄ = γ(X, Y) := maxv̄′∈FB
γv̄′ .

The authors of (Ji and Telgarsky, 2020) were able to show that by introducing γ it is possible to get an

upper bound on the width of the network that is polynomial in γ but polylogarithmic in n, ε and δ, i.e. the

width has no polynomial factor in those in it.

2.8 Convex optimization

Most of the functions considered in this manuscript are convex: A function f : X → R is convex if for all

x, x′ ∈ X and t ∈ [0, 1] it holds that f(tx + (1 − t)x′) ≤ tf(x) + (1 − t)f(x′). A local minimum of a convex

function is also a global minimum thus for convex functions it suffices to find a local minimum. For a book

on convex optimization we refer to (Nesterov, 2003) and (Bubeck, 2015).

Gradient descent Given any differentiable function f : Rd → R (in most cases it suffices if the function is

differentiable almost everywhere) and a step size ηi ∈ (0, ∞) for each i ∈ N the gradient descent is a method

to determine a local minimum of f . Let ∇f be the gradient of f . Given a starting point x0 ∈ Rd the i-th

output of the gradient descent is given via

xi+1 = xi − ηi∇f.

If the step size is not too large the gradient descent converges to a local minimum under certain conditions.

Note that if f is convex then any local minimum is a global minimum.

21

Gradient of the logistic loss function Recall that the logistic loss is given by f(Xβ) =
∑︁n

i=1 ln(1 +

exp(xiβ)). First note that the derivative of ℓ(r) = ln(1 + exp(r)) is given by

d

dr
ℓ(r) = exp(r)

1 + exp(r) = 1
1 + exp(−r) .

Thus the gradient of f(Xβ) is given by

∇f = ∂

∂β
f(Xβ)

=
n∑︂

i=1
ℓ′(xiβ) · xi

=
n∑︂

i=1

1
1 + exp(−xiβ) · xi.

Newton-Raphson method The optimization of f can also be done by applying the Newton-Raphson

method (Bubeck, 2015), an iterative procedure that starts at an initial guess β(0) and successively applies the

following update rule:

β(t) = β(t−1) −
(︃

∂2f(β(t−1))
∂β∂βT

)︃−1

· ∂f(β(t−1))
∂β

,

where
(︂

∂2f(β(t−1))
∂β∂βT

)︂−1
refers to the inverse of the Hessian matrix of f , evaluated at β(t−1), and ∂f(β(t−1))

∂β refers

to the gradient of f , evaluated at β(t−1). The idea behind this procedure is, broadly speaking, to approximate

f locally around β(t) by its second degree Taylor-polynomial and then analytically find the minimum of this

polynomial. The minimum of this local polynomial approximation of f is then used iteratively as a basis for

the next step of the Newton-Raphson algorithm.

2.8.1 Gradient and Hessian Matrix for p-probit regression

In the following we derive the gradient and the Hessian matrix of f . Since f is a sum of the function g

evaluated at different points, it makes sense to first determine the derivative of g. To this end φp(r) is the

density function of the (standardized) p-generalized normal distribution function, cf. (Dytso et al., 2018;

Kalke and Richter, 2013):

φp(r) = p1−1/p

2Γ(1/p) exp(−|r|p/p).

22

We proceed by using the chain rule as follows:

d

dr
g(r) = d

dr
− ln (Φp(−r)) = d

dr
ln
(︃

1
1 − Φp(r)

)︃
= (1 − Φp(r)) · d

dr

(︃
1

1 − Φp(r)

)︃
= (1 − Φp(r)) · (−1)

(1 − Φp(r))2 · d

dr
(1 − Φp(r))

= (−1)
1 − Φp(r) · (−1) · φp(r)

= φp(r)
1 − Φp(r) ,

We can use this result to calculate the gradient of f :

∂

∂β
fw(Xβ) = ∂

∂β

n∑︂
i=1

wig(xiβ)

=
n∑︂

i=1
wixig

′(xiβ)

=
n∑︂

i=1
wixi

φp(xiβ)
1 − Φp(xiβ)

Next, we need to determine the Hessian matrix of f . To this end, we again start by finding the second

derivative of g, this time using the quotient rule.

d2

dr2 g(r) = d

dr

φp(r)
1 − Φp(r)

=
φ′

p(r)(1 − Φp(r)) − φp(r) · (−1) · φp(r)
(1 − Φp(r))2

= (−1) · sgn(r) · |r|p−1 · φp(r)(1 − Φp(r)) − φp(r) · (−1) · φp(r)
(1 − Φp(r))2

= [φp(r)]2 − sgn(r)|r|p−1 · φp(r) · (1 − Φp(r))
(1 − Φp(r))2

=
(︃

φp(r)
1 − Φp(r)

)︃2
− sgn(r)|r|p−1 · φp(r)

1 − Φp(r)

= φp(r)
1 − Φp(r)

(︃
φp(r)

1 − Φp(r) − sgn(r)|r|p−1
)︃

= g′(r) · (g′(r) − sgn(r)|r|p−1)

We can now use this result to find the Hessian matrix of f . Recall that xi are row vectors in our paper and

23

thus each xT
i xi is a d × d-matrix.

∂2

∂β∂βT
fw(Xβ) =

n∑︂
i=1

∂2

∂β∂βT
wig(xiβ)

=
n∑︂

i=1
wix

T
i xig

′(xiβ)(g′(xiβ) − sgn(xiβ)|xiβ|p−1)

=
n∑︂

i=1
wix

T
i xi

φp(xiβ)
1 − Φp(xiβ)

(︃
φp(xiβ)

1 − Φp(xiβ) − sgn(xiβ)|xiβ|p−1
)︃

.

It can be shown, that fw(Xβ) is a convex function of β, and that the Newton-Raphson algorithm converges

to a global optimum when applied to a convex function (Bubeck, 2015). The optimization procedure thus

converges to the maximum likelihood estimate β̂ ∈ argminβ∈Rd fw(Xβ) provided it exists.

Jensens inequality

Lemma 2.26 (Jensens inequality). Jensen (1906) Let f : R → R be any convex function. Further let

x1, . . . xn ∈ R be arbitrary points and λ1, . . . , λn ∈ [0, 1] with
∑︁n

i=1 λi = 1. Then it holds that

n∑︂
i=1

λif(xi) ≥ f(
n∑︂

i=1
λixi)

2.9 Related work

Coresets Coresets as a data reduction method have been studied for logistic regression before (Huggins

et al. (2016); Tolochinsky et al. (2022); Munteanu et al. (2018); Tukan et al. (2020); Samadian et al. (2020)).

Those results often rely on regularization as a means to obtain small coresets. This changes the sampling

distribution such that they do not generally apply to the unregulated setting that we study. The above coreset

constructions usually require random access to the data and are thus not directly suitable for streaming

computations. Even where row-order processing is permissible, at least two passes are required, one for

calculating or approximating the probabilities and another for subsampling and collecting the data, since the

importance sampling distributions usually depend on the data. A widely cited general scheme for making

static (or multi-pass) constructions streamable in one pass is the Merge & Reduce framework (Bentley

and Saxe (1980)). However, this comes at the cost of additional polylogarithmic overhead in the space

requirements and also in the update time. The latter is a severe limitation when it comes to high velocity

streams that occur for instance in large scale physical experiments such as the large hadron collider, where up

to 100 GB/s need to be processed and data rates are anticipated to grow quickly to several TB/s in the near

future Rohr (2018). While the amortized insertion time of Merge & Reduce is constant for some problems,

in the worst case Θ(log n) repeated coreset constructions are necessary for the standard construction to

propagate through the tree structure; see e.g. Feldman et al. (2020). This poses a prohibitive bottleneck in

high velocity applications. Any data that passes and cannot be processed in real time will be lost forever.

24

Another limitation of coresets and the Merge & Reduce scheme is that they work only in insertion streams,

where the data is presented row-by-row. However it is unclear how to construct coresets when the data comes

in column-wise order, e.g., when we first obtain the incomes of all individuals, then receive their heights

and weights, etc. A similar setting arises when the data is distributed vertically on numerous sites Stolpe

et al. (2013). Sensor networks are another example where each sensor is recording only a single or a small

subset of features (columns), e.g., each at one of many different production stages in a factory. Also the

usual form of storing data in a table either row- or column-wise is not appropriate or efficient for extremely

massive databases. The data is rather stored as a sequence of (key, value) pairs in an arbitrary order in big

unstructured databases (Gessert et al. (2017); Siddiqa et al. (2017)).

The only work that can be simulated in a turnstile stream to tackle the extreme settings described above,

is arguably Samadian et al. (2020) via uniform subsampling. Their coreset size is roughly Θ(d
√

n) and works

only when the problem is regularized very strongly such that the loss function is within constant factors

to the regularizer, and thus widely independent of the input data. Consequently, the contribution of each

point becomes roughly equal and thus makes uniform sampling work. However, those arguments do not work

for unconstrained logistic regression, where each single point can dominate the cost and thus no sublinear

compression below Ω(n) is possible in the worst case, as was shown in (Munteanu et al. (2018)). To cope with

this situation, the authors of Munteanu et al. (2018) introduced a complexity parameter µ that is related

to the statistical modeling of logistic regression, and is a useful measure for capturing the complexity of

compressing the dataset A for logistic regression. They developed a coreset construction of size Õ(µd3/2√
n).

The coreset size was reduced to poly(µd log n) but only at the cost of even more row-order passes to compute

repeatedly a coreset from a coreset, O(log log n) times. Although calculating their sampling distribution can

be simulated in a row-order stream, the aforementioned limitation to two passes is an unsolved open problem,

which will be dealt with in this manuscript.

Data oblivious sketching Data oblivious sketches have been developed for many problems in computer

science, see (Phillips, 2017) for an extensive survey. The seminal work of Sarlós (2006) opened up the toolbox

of sketching for numerical linear algebra and machine learning problems, such as linear regression and low

rank approximation, cf. (Woodruff, 2014). We note that oblivious sketching is very important to obtain data

stream algorithms in the turnstile model (Muthukrishnan, 2005) and there is evidence that linear sketches

are optimal for such algorithms under certain conditions (Li et al., 2014; Ai et al., 2016). The classic works

on ℓ2 regression have been generalized to other ℓp norms (Sohler and Woodruff, 2011; Woodruff and Zhang,

2013) by combining sketching as a fast but inaccurate preconditioner and subsequent sampling to achieve the

desired (1 + ε)-approximation bounds. Those works have been generalized further to so-called M -estimators,

i.e., Huber (Clarkson and Woodruff, 2015) or Tukey regression loss (Clarkson et al., 2019), that share nice

properties such as symmetry and homogeneity leveraged in previous works on ℓp norms. In a recent work

Mai et al. (2023) present oblivious sketching algorithms for sparse regression and show that subsampling does

25

not work for sparse regression. They present upper and lower bounds for the sketching dimension various loss

functions such as sparse ℓp-regression, sparse ReLU and hinge-like functions and LASSO regression with ℓ1

regularization.

ℓ1 regression Specifically for ℓ1, the first sketching algorithms used random variables drawn from 1-stable

(Cauchy) distributions to estimate the norm (Indyk, 2006). It is possible to get concentration and a (1 ± ε)-

approximation in near-linear space by using a median estimator. However, in a regression setting this

estimator leads to a non-convex optimization problem in the sketch space. Since we want to preserve convexity

to facilitate efficient optimization in the sketch space, we focus on sketches that work with an ℓ1 estimator

for solving the ℓ1 regression problem in the sketch space in order to obtain a constant approximation for the

original ℓ1 problem. With this restriction, it is possible to obtain a contraction bound with high probability

so as to union bound over a net, but it is impossible to obtain high probability for the dilation. Indeed,

subspace embeddings for the ℓ1 norm have Θ̃(d) dilation (Woodruff and Zhang, 2013; Li et al., 2021b; Wang

and Woodruff, 2022) hiding polylogarithmic terms. Further, 1 + ε dilation is only known to be possible when

mapping to exp(O(1/ε)) dimensions (Brinkman and Charikar, 2005), even for single vectors as in (Indyk,

2006). We thus focus on obtaining an O(1) approximation in this manuscript. Previous work had either larger

O(log(d)) distortion (by an argument in the proof of Lemma 7 of Sohler and Woodruff (2011), see Problem 1

in (Woodruff, 2021)) or larger poly(d) factors (Indyk, 2006; Sohler and Woodruff, 2011). We note that there

is a (1 + ε)-approximation algorithm by Sohler and Woodruff (2011) that works in a turnstile data stream by

running two sketches in parallel, one for preconditioning and another that performs ℓ1-row-sampling from the

sketch (Andoni et al., 2009). However, it has a worse poly(d log(n)/ε) update time and sketching dimension,

see Theorem 13 of (Sohler and Woodruff, 2011). An advantage of our sketch is that it uses only random

{0, 1}-entries, which have better computational and implicit storage properties (Alon et al., 1986, 1999; Rusu

and Dobra, 2007). More importantly, our approach works for both, ℓ1 and logistic regression simultaneously,

where for the latter no near-linear sketching dimension was known to be possible due to the fact that sketches

for ℓ1 cannot track the sign information of coordinates, which is crucial for preserving any multiplicative

error for the asymmetric logistic regression loss function.

Generalized linear models (GLMs) It is important to extend the works on linear regression to more

sophisticated and expressive statistical learning problems, such as generalized linear models (McCullagh

and Nelder, 1989). Unfortunately, taking this step led to impossibility results. Namely, approximating the

regression problems on a succinct sketch for strictly monotonic functions such as logistic loss (Munteanu

et al., 2018) or heavily imbalanced asymmetric functions such as Poisson regression loss (Molina et al., 2018)

allows one to design a low-communication protocol for the Indexing problem that contradicts its Ω(n)

bit randomized one-way communication complexity (Kremer et al., 1999). This implies an Ω̃(n) sketching

dimension for these problems. To circumvent this worst-case limitation for logistic regression, Munteanu

et al. (2018) introduced a natural data dependent parameter µ that can be used to bound the complexity of

26

compressing data for logistic regression and related probit regression (Munteanu et al., 2022a). This was

used for developing our very first oblivious sketching algorithm for GLMs, specifically for logistic regression

(Munteanu et al., 2021), with a large polylogarithmic number of rows for mild µ-complex data. Munteanu

et al. (2023) improved this sketching algorithm by giving, the only near-linear sketching dimension in d and

µ for logistic regression. This sketching dimension was previously only known to be possible by Lewis weight

sampling Mai et al. (2021) where in exchange the dependence on µ was quadratic, and crucially their sketch

is not oblivious so cannot be implemented in a turnstile data stream, with positive and negative updates

to the entries of the input point set. For lower bounds, an Ω(d) dependence is immediate since mapping to

fewer than d dimensions contracts non-zero vectors in the null-space of the sketching matrix to zero. An Ω(µ)

lower bound is immediate from the streaming lower bound of Munteanu et al. (2018) where µ = n and was

recently generalized by Woodruff and Yasuda (2023) to more natural examples with smaller µ.

Variance-based regularization Regularization techniques have been proposed in the literature for many

purposes. Most such techniques are used to reduce to the effective dimension of statistical problems or limit

their expressivity to avoid overfitting. Regularization was also proposed to relax the problem of sketching

logistic regression problem. In an extreme setting where the regularizer dominates the objective function, the

contributions of input data points do not differ significantly. To address the bias-variance tradeoff in machine

learning problems in a more meaningful way and to provably reduce the generalization error of models, Maurer

and Pontil (2009) proposed to integrate a data-dependent variance-based regularization into the objective

function. Since this results in a non-convex optimization problem even for convex objectives, Duchi and

Namkoong (2019); Yan et al. (2020) used optimization tricks to reformulate a convex variant with additional

parameters that can be integrated into standard hyperparameter tuning. Interestingly, this data-dependent

regularization – in contrast to standard regularization – does not relax the sketching problem but makes it

more complicated, requiring in the case of logistic regression a combination of ℓ1 and ℓ2 geometries to be

preserved. We show that our sketching approach is capable of dealing with both simultaneously.

p-generalized normal distribution and p-probit regression The p-generalized normal distribution

was introduced by Subbotin (1923) and became widely popular in the late twentieth century (Goodman and

Kotz, 1973; Osiewalski and Steel, 1993; Johnson et al., 1994). We refer to (Dytso et al., 2018) for an extensive

survey on applications and analytical properties of the generalized normal distribution. Among other results,

this reference provides an asymptotic characterization of the tails of generalized normal distributions, which

we concretize in a non-asymptotic way, similar to the classic work of Gordon (1941) on the standard normal

distribution. Another nice property is the decomposability into independent marginals, which characterizes

the class of multivariate generalized normal distributions (Sinz et al., 2009; Dytso et al., 2018). In summary,

the class of p-generalized normal distributions naturally extends the standard normal distribution and retains

several of its useful and desirable analytical properties. Hereby, it offers more parametric flexibility allowing

for tails that are either heavier (p < 2) or lighter (p > 2) than normal (p = 2) which makes it an excellent

27

choice in many modeling scenarios (Dytso et al., 2018).

Most related to our work (Munteanu et al. (2022a)) are coreset and sketching algorithms for linear

ℓp regression (Clarkson, 2005; Dasgupta et al., 2009; Sohler and Woodruff, 2011; Meng and Mahoney,

2013; Woodruff and Zhang, 2013; Clarkson et al., 2016), which aims at minimizing ∥Zβ − Y ∥p, and can

be seen as a standard linear model Y = Zβ + ξ, where the error term η follows a p-generalized normal

distribution1. The earlier works relied on subsampling according to ℓp norms derived from a well-conditioned

basis, whose approximation posed the computational bottleneck. Subsequent works improved the previous

results significantly by approximating those bases via fast linear sketching techniques. To our knowledge, we

are the first to study coresets and sketching for ℓp regression in the setting of generalized linear models. The

authors of (Woodruff and Yasuda, 2023) also, subsequently to our work, consider p-probit regression. They

are using ℓp-Lewis weights to construct a coreset. Note that the computation of ℓp-Lewis weights consumes a

significant amount of time. The ℓp-Lewis weights can also be computed using an online algorithm but the

size of the resulting coreset depends on the condition number of the data matrix.

Two layer ReLU networks The theory of neural networks is a huge and quickly growing field. Here we

only give a brief summary of the work most closely related to ours.

Convergence results for neural networks with random inputs. Assuming the input data points

are sampled from a Gaussian distribution is often done for proving convergence results (Zhong et al. (2017b);

Li and Yuan (2017); Zhong et al. (2017a); Ge et al. (2018); Bakshi et al. (2019); Chen et al. (2022)). A more

closely related work is the work of Daniely (2020) who introduced the coupled initialization technique, and

showed that Õ(n/d) hidden neurons can memorize all but an ε fraction of n random binary labels of points

uniformly distributed on the sphere. Similar results were obtained for random vertices of a unit hypercube

and for random orthonormal basis vectors. In contrast to our work, this reference uses stochastic gradient

descent, where the nice assumption on the input distribution gives rise to the 1/d factor; however, this

reference achieves only an approximate memorization. We note that full memorization of all input points

is needed to achieve an error arbitrarily close to zero, and Ω(n) neurons are needed for worst case inputs.

Similarly, though not necessarily relying on random inputs, Bubeck et al. (2020) shows that for well-dispersed

inputs, the neural tangent kernel (with ReLU network) can memorize the input data with Õ(n/d) neurons.

However, their training algorithm is neither a gradient descent nor a stochastic gradient descent algorithm,

and also their network consists of complex weights rather than real weights. One motivation of our work is to

analyze standard algorithms such as gradient descent. In this work, we do not make any input distribution

assumptions; therefore, these works are incomparable to ours. In particular, random data sets are often

well-dispersed inputs that allow smaller width and tighter concentration, but are hardly realistic. In contrast,

we conduct worst case analyses to cover all possible inputs, which might not be well-dispersed.

Convergence results of neural networks for binary classification with logistic loss. When
1The connection is not explicitly elaborated in those references.

28

considering classification with cross-entropy (logistic) loss, the maximum separation margin γ (see Definition

2.25 for a formal definition) is one of the main parameters determining the necessary size of the width.

Previous separability assumptions on an infinite-width two-layer ReLU network in Cao and Gu (2019, 2020)

and on smooth target functions in Allen-Zhu et al. (2019a) led to polynomial dependencies between the

width m and the number n of input points. The work of Nitanda et al. (2019) relies on the NTK separation

mentioned above and improved the dependence, but was still polynomial.

A recent work of Ji and Telgarsky (2020) gives the first convergence result based on an NTK analysis

where the direct dependence on n, i.e., the number of points, is only poly-logarithmic. Specifically, they show

that as long as the width of the neural network is polynomially larger than 1/γ and log n, then gradient

descent can achieve zero training loss.

Convergence results for neural networks with squared loss. There is a body of work studying

convergence results of over-parameterized neural networks with squared loss Li and Liang (2018); Du et al.

(2019c); Allen-Zhu et al. (2019c,b); Du et al. (2019b); Allen-Zhu et al. (2019a); Song and Yang (2019); Arora

et al. (2019b,a); Cao and Gu (2019); Zou and Gu (2019); Du et al. (2019a); Lee et al. (2020); Huang and

Yau (2020); Chen and Xu (2020); Brand et al. (2021); Li et al. (2021a); Song et al. (2021); Ailon and Shit

(2022). One line of work explicitly works on the neural tangent kernel Jacot et al. (2018) with kernel matrix

K. Note that most of these papers consider the squared loss function rather than the logistic loss. However

the analysis often is very similar. This line of work shows that as long as the width of the neural network

is polynomially larger than n/λmin(K), then one can achieve zero training error. Another line of work

instead assumes that the input data points are not too “collinear”, where this is formalized by the parameter

δ = mini ̸=j{∥xi − xj∥2, ∥xi + xj∥2}2 Li and Liang (2018); Oymak and Soltanolkotabi (2020). These works

show that as long as the width of the neural network is polynomially larger than 1/δ and n, then one can

train the neural network to achieve zero training error. The work of Song and Yang (2019) shows that the

over-parameterization m = Ω(λ−4n4) suffices for the same regime we consider3. Additional work claims that

even a linear dependence is possible, though it is in a different setting. E.g., Kawaguchi and Huang (2019)

show that for any neural network with nearly linear width, there exists a trainable data set. Although their

width is small, this work does not provide a general convergence result. Similarly, Zhang et al. (2021) use a

coupled LeCun initialization scheme that also forces the output at initialization to be 0. This is shown to

improve the width bounds for shallow networks below n neurons. However, their convergence analysis is local

and restricted to cases where it remains unclear how to find globally optimal or even approximate solutions.

Munteanu et al. (2022b) instead focus on cases where gradient descent provably optimizes up to arbitrary

small error, for which we give a lower bound of Ω(n). Note that the part of (Munteanu et al., 2022b) which

focuses on squared loss has been done by coauthors independently using the same initialization.

Other than considering over-parameterization in first-order optimization algorithms, such as gradient
2This is also sometimes called the separability of data points.
3Although the title of Song and Yang (2019) is quadratic, n2 is only achieved when the finite sample kernel matrix deviates

from its limit in norm only by a constant α w.h.p., and the inputs are well-dispersed with constant θ, i.e., |⟨xi, xj⟩| ≤ θ/
√

n for
all i ̸= j. In general, Song and Yang (2019) only achieve a bound of n4.

29

References Width m Iterations T Loss function
Ji and Telgarsky (2020) O(γ−8 log n) O(ε−1γ−2(

√
log n + log(1/ε))2) logistic loss

Our work (Theorem 5) O(γ−2 log n) O(ε−1γ−2log2(1/ε)) logistic loss
Ji and Telgarsky (2020) Ω(γ−1/2) N/A logistic loss
Our work (Lemma 5.11) Ω(γ−1 log n) N/A logistic loss
Du et al. (2019c) O(λ−4n6) O(λ−2n2 log(1/ε)) squared loss
Song and Yang (2019) O(λ−4n4) O(λ−2n2 log(1/ε)) squared loss
Munteanu et al. (2022b) O(λ−2n2) O(λ−2n2 log(1/ε)) squared loss

Table 1: Summary of our results and comparison to previous work. The improvements are mainly in the
dependence on the parameters λ, γ, n affecting the width m. None of the results depend on the dimension
d, except the lower bounds, which require d ≥ 2. We note that the difference between regimes comes from
different properties of the loss functions that affect the convergence rate, cf. Nitanda et al. (2019).

descent, Brand et al. (2021) show convergence results via second-order optimization, such as Newton’s method.

Their running time also relies on m = Ω(λ−4n4), which is the state-of-the-art width for first-order methods

Song and Yang (2019), and it was noted that any improvement to m would yield an improved running time

bound.

Munteanu et al. (2022b) presented in this thesis continues and improves those lines of research on

understanding two-layer ReLU networks. A comparison of our results to the most closely related work is

given in Table 1.

30

3 Sketching for logistic regression

In this section we focus on our sketching algorithm for logistic regression. We first state the setting, the

algorithm and its motivation. Then we go into the analysis. Last we finish with some similar target functions

for which one can also construct a sketch using our algorithm and a worst case example for variance-based

regularized logistic regression.

3.1 Setting and notations

Recall that we are given a data matrix X ∈ Rn×d with rows xi ∈ Rd for i ∈ [n] and a label vector y ∈ Rn for

ℓ1-regression. For logistic regression and variance-based regularized logistic regression labels yi are folded in

xi as described in Subsection 2.6. Our goal is to find a weak weighted (V, a, ε)-sketch (X ′, w) (see Definition

2.18) for the following target functions:

f1(Xβ) = 1
n

n∑︂
i=1

ℓ(xiβ) logistic regression;

∥Xβ − y∥1 ℓ1-regression;

f(Xβ) = 1
n

n∑︂
i=1

ℓ(xiβ) + λ

2n

n∑︂
i=1

ℓ(xiβ)2 − λ

2

(︄
1
n

n∑︂
i=1

ℓ(xiβ)
)︄2

vbrlr

where ℓ(r) = ln(1 + er) = ln(er(e−r + 1)) = r + ℓ(−r) and vbrlr stands for variance-based regularized logistic

regression.

Note that the weighted versions are given by

f1w(Xβ) = 1
n

n∑︂
i=1

wiℓ(xiβ) logistic regression;

∥Xβ − y∥1w =
n∑︂

i=1
wi|xiβ − yi| =

n∑︂
i=1

|wixiβ − wiyi| ℓ1-regression;

fw(Xβ) = 1
n

n∑︂
i=1

wiℓ(xiβ) + λ

2n

n∑︂
i=1

wiℓ(xiβ)2 − λ

2

(︄
1
n

n∑︂
i=1

wiℓ(xiβ)
)︄2

vbrlr.

Further note that we can split f into three functions f1(Xβ), f2(Xβ) = λ
2n

∑︁n
i=1 ℓ(xiβ)2, and f3(Xβ) =

λ
2
(︁ 1

n

∑︁n
i=1 ℓ(xiβ)

)︁2 = λ
2 f1(Xβ)2. As described in Section 2.6 the term f2(Xβ) + f3(Xβ) can also be

interpreted as a variance regularization.

31

3.2 The algorithm

3.2.1 Motivation

Our sketching algorithm was first published in (Munteanu et al., 2021) inspired by the algorithm presented

in (Clarkson and Woodruff, 2015) and it is to our knowledge the first oblivious sketching algorithm for

generalized linear regression. The idea is that we take multiple uniform samples of different sizes and apply

the Count-Min sketch to those which is the main difference to the algorithm of (Clarkson and Woodruff,

2015) where the Count sketch is applied. This can also be interpreted by multiplying with a sketching matrix

of the form

S =

⎡⎢⎢⎢⎢⎢⎢⎣
S0

S1
...

Shm

⎤⎥⎥⎥⎥⎥⎥⎦ .

Here each Si ∈ RN×n has at most one single entry 1 in each column and all other entries are 0. More precisely

each row of Si corresponds to a subsample of [n] of size roughly n
bi for some b > 2 where j ∈ [n] is part of

the sample if there is a 1 in the j-th column of Si and the row with the 1 is picked uniformly at random

which corresponds to applying the Count-Min sketch to the sample. Entries in the same rows are added up,

meaning the rows of X are in the same bucket. As our first bounds were suboptimal we viewed the analysis

from a different point of view. In this manuscript we present an updated version (Munteanu et al. (2023)) of

the algorithm we first presented in (Munteanu et al., 2021) which improves both the approximation guarantee

as well as the sketch size. More precisely with minor modifications in the algorithm but major modifications

in the analysis we show that the size of the sketch can be reduced from roughly Õ(µ7d5) to Õ(µ2d3), while

improving the O(1) approximation guarantee in expectation from at least 8 to roughly 2 for either the logistic

or ℓ1 loss. The most important modifications are:

• Instead of having an uniform sampling separately we use the last level of our sketch as uniform sampling;

• We are modifying level 0 as well as its analysis;

• We give a detailed analysis of each level to get a better idea of what elements are preserved and which

elements have a contribution at each level allowing as to get better bounds on the parameters.

3.2.2 Parameters

Practical parameters Our sketch consists of hm + 1 = O(log n) levels. In each level we take a subsample

of the rows i ∈ [n] at a different rate and hash the sampled items uniformly to a number of buckets. All

items that are mapped to the same bucket are added up. This corresponds to a CountMin sketch (Cormode

and Muthukrishnan, 2005) applied to the subsample taken at each level.

More specifically, we will use the following parameters:

32

• hm: the number of levels,

• Nh: the number of buckets at level h,

• ph: the probability that any element xi is sampled at level h.

Our goal it to build a sketch X ′ ∈ Rn′×d where n′ =
∑︁hm

i=0 Nh. If all levels have the same number N of

buckets we have that n′ = (hm + 1)N .

Theoretical parameters Besides the mentioned parameters that are crucial for describing the algorithm

there are a bunch of theoretical parameters for the analysis determining the values of the practical parameters:

• ε: the relative error for the contraction bounds,

• δ: the allowed failure probability,

• d: the number of features,

• n: the number of rows,

• b: the relative difference between the sample sizes of two adjacent levels, i.e. ph = bph+1,

• m1: negative logarithm of the failure probability for the contraction bound.

3.2.3 Pseudo code

Algorithm 1 Oblivious sketching algorithm for logistic regression.
Input: Data X ∈ Rn×d, number of rows k = N · hm + Nu, parameters b > 1, s ≥ 1 where N = s · N ′ for
some N ′ ∈ N;
Output: weighted Sketch C = (X ′, w) ∈ Rk×d with k rows.;

1: for h = 0 . . . hm do ▷ construct levels 1, . . . hm of the sketch
2: initialize sketch X ′

h = 0 ∈ RN×d at level h;
3: initialize weights wh = bh · 1 ∈ RN at level h;
4: set w0 = w0

s ; ▷ adapt weights on level 0 to sparsity s
5: for i = 1 . . . n do ▷ sketch the data
6: for l = 1 . . . s do ▷ densify level 0
7: draw a random number Bi ∈ [N ′];
8: add xi to the ((l − 1) · N ′ + Bi)-th row of X ′

0;
9: assign xi to level h ∈ [1, hm − 1] with probability ph = 1

bh ;
10: draw a random number Bi ∈ [N];
11: add xi to the Bi-th row of X ′

h;
12: add xi to uniform sampling level hm with probability phm = 1

bhm
;

13: Set X ′ = (X ′
0, X ′

1, . . . X ′
hm

);
14: Set w = (w0, w1, . . . whm);
15: return C = (X ′, w);

33

3.2.4 Description of the algorithm

As we read the input, we sample each element xi for each level h ≤ hm with probability ph. The sampling

probabilities are exponentially decreasing, i.e., ph+1 = ph/b for some b ∈ R with b > 1. The weight of any

bucket at level h is set to 1/ph. At level hm, we have phm
= Nhm

n . It thus corresponds to a uniform subsample

and the number of buckets is equal to the number of rows that are sampled, i.e., Nu := Nhm ≈ nphm =: npu.

At level 0 we sample all rows, i.e., p0 = 1 and the number of buckets is either the same as for the levels

h ∈ (0, hm) or less. Consequently level 0 is a standard CountMin sketch of the entire data. Note that here we

will also show an alternative version, where at level 0 rows are sampled multiple times. All levels h ∈ (0, hm),

or in other words all levels but level 0 and level hm, have the same number of buckets Nh = N . For the exact

details we refer to the analysis. The idea of our algorithm is that for each fixed β ∈ Rd we can partition the

rows of Xβ into weight classes depending on their contribution to the objective function. Each level catches a

certain range of weight classes if their total contribution is large enough. For example level hm will represent

all small weight classes and level 0 will represent the so-called heavy hitters, i.e. rows that can have a large

contribution to the target function.

In order to get an arbitrarily good approximation we will also present the possibility setting the number

of buckets at level 0 at random.

3.2.5 Idea of the analysis

The logistic loss function can be split into two parts:

ℓ(r) = ln(1 + er) = ln(er(e−r + 1)) = r + ℓ(−r).

We will use this split as follows: Let z = Xβ ∈ Rn. Then it holds that

f1(z) =
∑︂
zi>0

ℓ(zi) +
∑︂
zi≤0

ℓ(zi) =
∑︂
zi>0

zi +
n∑︂

i=1
ℓ(−|zi|). =: ∥z+∥1 + fs(z)

where z+ ∈ Rn
≥0 is the vector that we get by setting all negative coordinates of z to 0.

We will show that our sketch approximates both parts well. For the first part will split the values of z+

into different weight classes W0, W1 . . . such that all elements in the same weight class roughly have the same

contribution to ∥z+∥1. We will show that for each weight class Wq that has a non negligible contribution to

∥z+∥1 there is one level of our sketch which has the same (weighted) contribution to f1w(X ′β) up to a factor

of 1 ± ε. Further there are only few (depending on the size of the sketch) other levels where Wq has a non

negligible contribution. More precisely weight classes with small entries will be well represented in higher

levels but their contribution at small level will be small and weight classes with large entries will be well

34

represented in lower levels. The largest entries, the heavy hitters, for instance will be well represented in level

0 and will not be present at higher levels.

The second part fs will be captured by the uniform sample at level hm. The remaining levels will only

have a negligible contribution to the second part.

3.2.6 Outline of the analysis

The pattern of our analysis is as follows:

1) We fix a point z = Xβ as described before.

2) We prove that the contraction bounds, i.e. f1w(X ′β) ≥ (1 − ε)f1(z), hold with exponentially small

failure probability.

3) We show that there is a net such that if the contraction bound holds for any point of the net, then it

holds for any parameter vector β.

4) Lastly, using Markov’s inequality (Lemma 2.8) again fixing z we show that we have that E(f1w(X ′β)) ≤

kf1(z) for some value k implying we have dilation bounds with constant probability.

5) For ℓ1 regression and variance based regularized logistic regression the ideas and the proofs are similar

but need mostly technical adaptations. We will thus outline the changes in the analysis.

We first start by analyzing fs here and then turn our attention to ∥z+∥1. For the later before proving

contraction and dilation bounds we explain some theory of the weight classes and each level individually:

1) There exists a subset Q∗ such that the contribution of all weight classes not in Q∗ is negligible.

2) For each level there exists an interval Qh such that for all q ∈ Qh ∩ Q∗ the contribution of Wq is

preserved up to an relative error of ε with exponentially small failure probability.

3) For each level there exists an interval Q′
h such that for all q /∈ Q′

h the contribution of Wq is 0 with

failure probability bounded by δ/hm.

3.3 High level description of the analysis

We start by splitting the functions f1 and f2 into multiple parts:

Lemma 3.1. It holds that

nf1(Xβ) =
∑︂

xiβ>0
|xiβ| +

n∑︂
i=1

ℓ(−|xiβ|)

and similarly we have that

nf2(Xβ) =
∑︁

xiβ>0 |xiβ|2 + 2
∑︁

xiβ>0 ℓ(−|xiβ|) · |xiβ| +
∑︁n

i=1 ℓ(−|xiβ|)2.

35

Proof. Note that for r ∈ R it holds that

ℓ(r) = ln (1 + er) = ln
(︁(︁

e−r + 1
)︁

er
)︁

= ln
(︁
e−r + 1

)︁
+ ln(er) = ℓ(−r) + r.

Now the first equation follows immediately by

ℓ(xiβ) = xiβ + ℓ(−xiβ) = |xiβ| + ℓ(−|xiβ|) for xiβ > 0 and

ℓ(−|xiβ|) = ℓ(xiβ) for xiβ ≤ 0.

Further we have that

(xiβ + ℓ(−xiβ))2 = (xiβ)2 + 2ℓ(−xiβ)xiβ + ℓ(−xiβ)2.

Thus the second equality follows by substituting ℓ(xiβ)2 with

|xiβ|2 + 2ℓ(−|xiβ|)|xiβ| + ℓ(−|xiβ|)2 = (xiβ)2 + 2ℓ(−xiβ)xiβ + ℓ(−xiβ)2

for xiβ > 0 and ℓ(−|xiβ|)2 for xiβ ≤ 0.

This can be used in the following way: if all xiβ make only small contributions then uniform sampling

performs well. This is not the case for all parts of f but it holds for some ’small’ parts of f that appear in

the splitting introduced in Lemma 3.1.

Next we deal with the remaining ’large’ parts of f . We will first analyze the approximation for a single β.

To this end fix β ∈ Rd and set z = Xβ. Our goal is to approximate ∥z+∥1 :=
∑︁

i:zi>0 zi. We assume w.l.o.g.

that ∥z∥1 = 1. We can do this since we are only interested in the relative values of the coordinates, i.e. |zi|
∥z∥1

In order to prove that ∥(Sz)+∥1 approximates ∥z+∥1 well, we define weight classes: given q ∈ N we set

W +
q = {i ∈ [n] | zi ∈ (2−q−1, 2−q]}.

Our analysis applies with slight adaptations to ℓ1 regression preserving ∥z∥1 for the residual vector z = Xβ −y.

Next we give a high level description for preserving ∥z+∥1 needed for logistic loss:

Contraction bounds Our first goal is to show that it holds that f1w(X ′β) ≥ (1 − ε)f1(z) with failure

probability bounded by roughly exp(−m1), i.e. exponentially small allowing us to use the union bound

over a net of exponential size. We set qm = log2(n(µ+1)
ε) = O(ln(n)) as n ≥ max{µ, ε−1}. We say that

W +
q is important if ∥W +

q ∥1 ≥ ε′ := ε
µqm

and set Q∗ = {q ≤ qm | Wq is important }. The idea is that the

remaining weight classes can only have negligible contributions to ∥z+∥1, so it suffices to analyze Q∗. To

prove the contraction bound for z, i.e., that ∥(Sz)+∥1 ≥ (1 − cε)∥z+∥1 holds for an absolute constant c, it

36

suffices to show that the contributions of important weight classes are preserved. For a bucket B we set

G(B) :=
∑︁

j∈B zj and G+(B) = max{G(B), 0}. In fact, we show that for each level h, there exists an ’inner’

interval Qh = [qh(2), qh(3)] such that if W +
q for q ∈ Qh is important, then there exists a subset W ∗

q ⊆ W +
q

such that each element of W ∗
q is sampled at level h and such that each i ∈ W ∗

q is in a bucket containing no

other element of any W ∗
q′ for any q′ ∈ [qm] and

∑︁
i∈W ∗

q
G(Bi) ≥ (1 − ε)∥W +

q ∥1 · ph, where Bi is the bucket at

level h containing zi. Since the weight of all buckets at level h is equal to p−1
h we have that the contribution

of W ∗
q is indeed at least (1 − ε)∥W +

q ∥1. The choice of our parameters then guarantees that
⋃︁

Qh = N and

thus for any important weight class there is at least one level where it is well represented.

Net argument Finally, we construct a net of size |Nk| = exp(O(d log(n))). We ensure that the contraction

bound holds for each fixed net point z ∈ Nk with failure probability at most δ
|Nk| which will dominate –

among other parameters – the size of our sketch. By a union bound the contraction result holds for the entire

net with probability at least 1 − δ. The net is sufficiently fine, such that we can conclude the contraction

bound by relating all other points z = Xβ ∈ Rn to their closest point in the net.

Dilation bounds Our second goal is to show that with any probability P ∈ [0, 1] it holds that f1w(X ′β) ≤

kP f1(z) for some number kP ∈ [1, ∞) depending only on P if f(z) ≤ (1 − ε)f(0). More precisely we will show

that the expected contribution of any weight class is at most k∥W +
q ∥1 for some k which is either constant

or 1 + ε depending on the sketch size. We then apply Markov’s inequality to get kP . In contrast to the

contraction bounds we will not get an exponentially small failure probability here but we only need top apply

the dilation bounds to the optimum β∗. Note that to get below k = 2 we apply a random shift at level 0, i.e.,

we choose the number of buckets at level 0 randomly. We investigate again each level separately and prove

that for each level h there exists an ’outer’ interval Q′
h = [qh(1), qh(4)] such that for any q /∈ Q′

h the weight

class Wq makes no contribution at level h at all. More specifically we show that no element of Wq appears at

level h for q < qh(1) and that for any bucket B at level h that contains only elements of
⋃︁

q>qh(4) Wq it holds

that G(B) ≤ 0. For the later fact we use that f(z) ≤ (1 − ε)f(0) implies that the negative elements of z sum

up to a larger absolute value than the positive entries of z even if some larger negative entries are removed.

Then we show that if N is large enough it holds that for each q ∈ N there are at most k levels h such

that q ∈ Q′
h and that the expected contribution of any weight class at any level is bounded by ∥W +

q ∥1.

We conclude that the expected contribution of any weight class is at most k∥W +
q ∥1. Increasing the size of

N increases the size of an ’inner’ interval [qh(2), qh(3)] =: Qh ⊂ Q′
h while the size of Q′

h remains (almost)

unchanged such that |Q′
h|/|Qh| approaches 1. As a consequence, this also decreases the number of indices

q ∈ N that appear in two intervals of the form Q′
h. More precisely, we show that for each c ∈ N we can

increase N in such a way that only a 1/c fraction of the weight classes appear in two of those intervals. Note

that all weight classes that appear only in a single Q′
h have an expected contribution of ∥W +

q ∥1. However

those appearing in Q′
h for two different h have an an expected contribution of up to 2∥W +

q ∥1. Thus to reduce

the expected contribution of any weight class below 2 we apply a random shift at level 0, implicitly setting

37

q0(3) randomly in an appropriate way such that the probability of any weight class being in two sets of the

form Q′
h is at most 1

c and thus the expected contribution of any weight class Wq is bounded by at most

(1 + 1/c)∥W +
q ∥1.

Extension to variance-based regularized logistic regression We show that our algorithm also

approximates the variance well under the assumption that roughly f1(Xβ) ≤ ln(2). We stress that this

assumption does not rule out the existence of good approximations. Indeed, even the minimizer is contained,

since we have that minβ∈Rd f(Xβ) ≤ f(0) = f1(0) = ln(2). Focusing on a single z = Xβ, we need to show

that
∑︁

i:zi>0 z2
i is approximated well, which is done very similarly to the analysis for

∑︁
i:zi>0 zi sketched

above, but with several adaptions to account for the squared loss function. We note that the increased

sketching dimension in terms of
√

n comes from the inter norm inequality ∥x∥1 ≤
√

n∥x∥2.

We also give a lower bound by giving an example where the size of our sketch needs to be at least Ω(
√

n).

However this does not rule out other methods that may allow a lower sketching dimension. For example

Count-sketch is known to work for ℓ1 and ℓ2 norms simultaneously within polylogarithmic size (Clarkson and

Woodruff, 2015). But we stress that the standard sketches from the literature do not work for asymmetric

functions since they confuse the signs of contributions leading to unbounded errors for our objective function

or even for plain logistic regression, see (Munteanu et al., 2021).

3.4 Analysis

3.4.1 Assumptions

For technical reasons we make the following assumption:

Assumption 3.1. We assume that:

hm = min
{︃

i ∈ N | Mi

bN
≤ 12 ln(n)

}︃
(8)

qm = O(ln(n)) (9)

N ≥ 18 · 32m1qmµ2/ε6 (10)

b = Nε5

32m1qmµ
≥ 18µ

ε
(11)

m1 = ln(δ−1) + O(d ln(n))) (12)

pu ≥ 64µm1

ε2n
. (13)

Since we want our sketch to have fewer than n rows we will also assume that n ≥ ε−1, µ, d, δ−1. We also

assume that ε ≤ 1/4.

38

3.4.2 Estimating the small parts of f

Lemma 3.1 can be used in the following way: if all xiβ make only small contributions then uniform sampling

performs well. This is not the case for all parts of f but it holds for some ’small’ parts of f that appear in

the splitting introduced in Lemma 3.1. More precisely we get the following lemma:

Lemma 3.2. For arbitrary i ∈ [n] it holds that ℓ(−|xiβ|) < 1 and also 2ℓ(−|xiβ|)|xiβ| + ℓ(−|xiβ|)2 ≤ 3.

Proof. First observe that ℓ(−|xiβ|) ≤ ℓ(0) = ln(2) < 1, proving the first part of the lemma.

Next note that

ℓ(−|xiβ|) = ln(1 + exp(−|xiβ|)) =
∫︂ 1+exp(−|xiβ|)

1

1
t

dt

≤
∫︂ 1+exp(−|xiβ|)

1
1 dt = exp(−|xiβ|).

Using that ln(t) ≤ |t| for all t > 0 we conclude that

ℓ(−|xiβ|)|xiβ| ≤ exp(ln(|xiβ|) − |xiβ|) ≤ e0 = 1.

Now combining everything we get that

2ℓ(−|xiβ|)|xiβ| + ℓ(−|xiβ|)2 ≤ 2 + 12 ≤ 3.

Next we note that the optimal value of f(Xβ) is bounded from below:

Lemma 3.3. For all β ∈ Rd it holds that nf(Xβ) ≥ nf1(Xβ) ≥ ln(2)n
µ (1 + ln(µ)) = Ω

(︂
n
µ (1 + ln(µ))

)︂
.

Proof. First we show that there is a monotonically rising function hℓ : [0, ∞) → [ln(2), 1) such that it holds

that ℓ(−r) = hℓ(r) exp(−r). To see this note that for any r ≥ 1 it holds that ln(r) =
∫︁ r

1
1
y dy. Next note that

the function hℓ(r) =
∫︁ 1+e−r

1
1
y dy

e−r determining the average value of 1
y in the interval [1, 1 + e−r] is a monotone

rising function as 1
y is a monotonically falling function for y ∈ [0, ∞). Further we have that h(0) = ln(2) and

h(r) ≤ 1 as 1
y ≤ 1 for y ∈ [1, 2]. Then our first claim follows as for r ≥ 0 we have

ℓ(−r) = ln(1 + e−r) =
∫︂ 1+e−r

1

1
y

dy = hℓ(r)e−r.

Next using this fact we get

f1(z) ≥ ln(2)(
∑︂

i

exp(min{zi, 0}) + ∥z+∥1).

39

Since exp(v) is convex, Jensen’s inequality implies

∑︂
i

exp(min{zi, 0}) = n
∑︂

i

1
n

exp(min{zi, 0}) ≥ n exp(1
n

∑︂
i

min{zi, 0}).

Using this argument we get for y = ∥z−∥1
n that

∑︁
i exp(min{zi, 0}) ≥ n exp(−y). Recall that ∥z+∥1 ≥ yn

µ

holds by definition of µ.

We conclude that nf1(z) ≥ ln(2)(n exp(−y) + yn
µ). The function (n exp(−y) + yn

µ) is minimized over y if

its first derivative is zero, i.e., if

n exp(−y) = n

µ

which is equivalent to y = ln(µ). Hence nf(z) ≥ ln(2)
(︂

n
µ + n ln(µ)

µ

)︂
.

We use the previous two lemmas to show that our sketch approximates the given parts of f well enough

with high probability. To this end, we set g1(t) = ℓ(−|t|), g2(t) = 2ℓ(−|t|)|t|+ℓ(−|2t|) and g(t) = g1(t)+λg2(t).

We set µz = ∥z−∥1
∥z+∥1

. Note that µz ≤ µ.

The following Lemma is needed only in the case that b ≤ µ
ε .

Lemma 3.4. Given any β ∈ Rd with failure probability at most 2 exp(−m1) the event E0 holds that⃓⃓⃓⃓
⃓⃓ n′∑︂

i=1
wig(x′

iβ) −
n∑︂

i=1
g(xiβ)

⃓⃓⃓⃓
⃓⃓ ≤ ε · max

{︄
n∑︂

i=1
g(xiβ), n

2µ

}︄
≤ εf(Xβ).

Proof of Lemma 3.4. We first show that the contribution to
∑︁n′

i=1 wig(x′
iβ) of the levels other than hm is

small.

Therefore note that the (relative) total weight of all buckets in a level less than hm is at most
∑︁hmax

h=1 b−h =

b−1 · 1−b−hmax

1−b−1 ≤ 2
b ≤ ε

9µ by Assumption 3.1. Thus by Lemma 3.2 and Lemma 3.3 we have that

n′∑︂
i=1

wig(x′
iβ)1wi/n<1 ≤

n′∑︂
i=1

3wi · 1wi/n<1 ≤ ε

3µ
≤ ε

3 · f(Xβ).

Now let k ∈ {1, 2}. For i ∈ [n], consider the random variable Xi = gk(zi) if zi is at level hm, and Xi = 0

otherwise. Then we have

E = E

(︄
n∑︂

i=1
Xi

)︄
=

n∑︂
i=1

pugk(zi) = pu

n∑︂
i=1

gk(xiβ).

Further we have Xi ≤ 3 by Lemma 3.2. It holds that

E

(︄
n∑︂

i=1
X2

i

)︄
=

n∑︂
i=1

pugk(zi)2 ≤ pu

n∑︂
i=1

3g(xiβ) = 3E.

40

We set

L = pu · max
{︄

n∑︂
i=1

gk(xiβ), n

2µ

}︄
≥ E.

By Assumption 3.1 we have that pu ≥ 64µm1
ε2n . By Lemma 3.2 it holds that Xi ≤ 3. Thus, using Bernstein’s

inequality we get that

P

(︄⃓⃓⃓⃓
⃓

n∑︂
i=1

Xi − E

⃓⃓⃓⃓
⃓ ≥ ε

3 · L

)︄
≤ exp

(︃
−ε2L2/8
3E + E

)︃
= exp

(︃
−ε2L

32

)︃
≤ exp

(︃
−ε2pun/µ

64

)︃
≤ exp(−m1).

Using the union bound for k = 1 and k = 2 yields that

P

⎛⎝⃓⃓⃓⃓⃓⃓ n′∑︂
i=1

wig(x′
iβ) −

n∑︂
i=1

g(xiβ)

⃓⃓⃓⃓
⃓⃓ >

2ε

3 · max
{︄

n∑︂
i=1

g(xiβ), n

2µ

}︄⎞⎠ ≤ 2 exp(−m1).

By Lemma 3.3 we have f(Xβ) ≥ n
2µ . It also holds that f(Xβ) ≥

∑︁n
i=1 g(xiβ). We thus conclude that

max
{︂∑︁n

i=1 g(xiβ), n
2µ

}︂
≤ f(Xβ).

Combining everything gives us⃓⃓⃓⃓
⃓⃓ n′∑︂

i=1
wig(x′

iβ) −
n∑︂

i=1
g(xiβ)

⃓⃓⃓⃓
⃓⃓ ≤ ε · max

{︄
n∑︂

i=1
g(xiβ), n

2µ

}︄
≤ εf(Xβ).

3.4.3 Estimating ∥z+∥1

Here we deal with the remaining ’large’ parts of f . We will first analyze the approximation for a single β.

To this end fix β ∈ Rd and set z = Xβ. Our goal is to approximate ∥z+∥1 :=
∑︁

i:zi>0 zi where z+ ∈ Rn
≥0

is the vector that we get by setting all negative coordinates of z to 0. We assume w.l.o.g. that ∥z∥1 = 1.

In order to prove that ∥(Sz)+∥1 approximates ∥z+∥1 well, we define weight classes: given q ∈ N we set

W +
q = {i ∈ [n] | zi ∈ (2−q−1, 2−q]}. Before proving the contraction bounds we will analyze how weight classes

can contribute at individual levels. Our analysis applies with slight adaptations to ℓ1 regression preserving

∥z∥1 for the residual vector z = Xβ − Y . Recall that that W +
q is important if ∥W +

q ∥1 ≥ ε′ := ε
µqm

and

Q∗ = {q ≤ qm | Wq is important } where qm = log2(n(µ+1)
ε). The following lemma shows that the total

contribution of the weight classes that are not important is negligible:

41

Lemma 3.5. It holds that
∑︁

q∈Q∗ ∥W +
q ∥1 ≥ (1 − 2ε)∥z+∥1.

Proof of Lemma 3.5. First note that

∑︂
|zi|<2−qm

|zi| ≤ n · ε

(µ + 1)n = ε/(µ + 1).

Second note that
∑︁

q≤qm,q /∈Q∗ ∥W +
q ∥1 ≤ qm · ε

(µ+1)qm
≤ ε/(µ + 1). By the µ-condition we have that

∥z−∥1 ≤ µ∥z+∥1 and thus we get that 1 = ∥z−∥1 + ∥z+∥1 ≤ µ∥z+∥1 + ∥z+∥1. Consequently, ∥z+∥1 ≥ 1
µ+1

and

∑︂
q∈Q∗

∥W +
q ∥1 =

∑︂
q∈N

∥W +
q ∥1 −

∑︂
q /∈Q∗,q≤qm

∥W +
q ∥1 −

∑︂
q>qm

∥W +
q ∥1 ≥ ∥z+∥1 − 2ε

(µ + 1) ≥ (1 − 2ε)∥z+∥1.

3.4.4 Analysis for a single level

Fix h ∈ [0, hm]. Our goal in this subsection and the following subsection is to analyze one level individually.

More precisely we look at the number of rows ending up in the level, as well as which weight classes can have a

notable contribution as well as the weight classes that are likely to have their contribution preserved up to small

error, if they contain enough elements or contain heavy hitters, which we show is the same as being important.

More precisely we establish bounds qh(1) < qh(2) < qh(3) < qh(4) such that if q ∈ [qh(2), qh(3)] then, if Wq

is important, then its contribution is preserved in this level up to a small error for q /∈ Q′
h = [qh(1), qh(4)]

then the contribution of the weight class to the level is negligible. We will later use this to determine the

probabilities phi
in such a way that q0(2) = 0 and we have qhi

(3) = qhi+1(2) to guarantee that for any

important weight class there is a level where its contribution is preserved. For q ∈ Q′
h \ Qh we will show

later that the expected contribution is bounded by ∥Wq∥1. However it is likely or at least possible that the

contribution is both lower or higher so in particular we cannot get a sufficient bound failure probability of

having a preserved contribution here. Thus our goal here is to make |Q′
h|

|Qh| as small as possible.

As the weight classes with heavy hitters do not need to contain a large number of elements we will deal

with them in the subsection that follows after this one, where we will have look at level 0 specifically.

First consider the number of elements at a fixed level h. We can view it as a binomial random variable

with parameters n and ph since the probability for any row to appear at level h is ph. Since we fix h in this

subsection, we set M = Mh = phn, p = ph = M
n and N = Nh. We set U ⊂ [n] to be the set of elements that

are sampled at level h. We also set µz =
∑︁

zi<0
|zi|∑︁

zi>0
|zi|

≤ µ.

Our main lemma is the following:

42

Lemma 3.6. With probability at least 1 − δ
hm

the weight classes Wq with either

q ≥ q(M,N)(4) := log2
(︁
γ−1

2
)︁

:= log2(2N ln(Nhmax/δ)
pε2) or

q ≤ q(M,N)(1) := log2

(︃
µzδ

phm

)︃

have zero contribution to
∑︁

B G+(B), i.e., for any bucket B we have
∑︁

zi∈B\Ir
zi ≤ 0 where Ir = {i ∈

[n] | zi ∈ Wq, q ∈ [q(M,N)(1), q(M,N)(4)]}.

Further, with failure probability at most exp(−Ω(m1)) there exists, for each q ∈ [q(M,N)(2), q(M,N)(3)],

where

q(M,N)(2) := log2

(︃
8qmµzm1

ε3p

)︃
and

q(M,N)(3) := log2

(︃
Nε2

4p

)︃
,

a set W ∗
q such that

∑︁
i∈W ∗

q
G(Bi) ≥ (1 − ε)2∥W +

q ∥1 · M
n .

It thus holds that

q(M,N)(2) − q(M,N)(1) = log2

(︃
8qmm1hm

ε3δ

)︃
q(M,N)(3) − q(M,N)(2) = log2

(︃
Nε5

32m1µqm

)︃
=: log2(b)

q(M,N)(4) − q(M,N)(3) = log2

(︃
8 ln(Nhm/δ)

ε4

)︃
.

If N = M then we set q(M,N)(3) = q(M,N)(4) = ∞. If M = n then we set q(M,N)(1) = q(M,N)(2) = 0. We

set qh(i) = q(Mh,Nh)(i) for i ∈ {1, 2, 3, 4} and Qh = [qh(2), qh(3)] to be the well-approximated weight classes,

and Q′
h = [qh(1), qh(4)] to be the relevant weight classes at level h.

We further define the following threshold and set:

γ1 := p

3m1

Y1 := {i ∈ [n] | |zi| ≥ γ1}

Here Y1 is the ‘set of large elements’. We set Bh to be the set of all buckets at level h. Recall that m1 ∈ R

is a lower bound on the negative logarithm of the failure probability, which we will need later when union

bounding over all failure probabilities. Also recall that G(B) =
∑︁

i∈B zi is the sum of all rows in a bucket B.

The following lemma yields the inner bounds, i.e., bounds for qh(2) and qh(3), which are the weight class

indices that are well represented by U and will later be used to prove the contraction bound. The first two

items show that there are at most εN buckets at level h that either contain a large element or have a large

sum of small contributions. The third item shows that if Wq has sufficiently many elements, then there exists

43

a large subset W ∗
q where each element is in a bucket with no other large entry such that ∥W ∗

q ∥1 is close to

∥W +
q ∥1 · M

n . The fourth item shows that
∑︁

zi∈W ∗
q

G(Bi) is close to ∥W ∗
q ∥1.

Lemma 3.7. The following claims hold:

1) |Y1 ∩ U | ≤ εN/2 with failure probability at most exp(−m1);

2) Let B = {B ∈ Bh |
∑︁

i∈B\Y1
|zi| ≤ 4p

εN }. Then |B| ≥ (1− ε
2)N with failure probability at most exp(−m1);

3) Assume that q ≥ log2(8qmµzm1
ε3p) and that W +

q is important or |Wq| ≥ 8m1ε−2 · p−1. Then with failure

probability at most exp(−m1) there exists W ∗
q ⊂ W +

q ∩ B such that ∥W ∗
q ∥1 ≥ (1 − ε)2∥W +

q ∥1 · p and

each element of W ∗
q is in a bucket in B containing no other element of Y1;

4) If q ≤ log2(Nε2

4p) and W ∗
q as in 3) exists, then with failure probability at most exp(−m1) it holds that∑︁

i∈W ∗
q

G(Bi) ≥ (1 − ε)∥W ∗
q ∥1.

Proof. 1) Note that |Y1| ≤ γ−1
1 since ∥z∥1 = 1 and that we can view |Y1 ∩ U | as a binomial random variable

with parameters |Y1| and p = M
n . Thus, the expected number of elements of Y1 at level h is bounded by

|Y1| · M
n ≤ p

γ1
= 3m1 ≤ εN

4 since N ≥ 12m1 (see Assumption 3.1). Thus, we get by Lemma 2.14 that

P

(︃
|Y1 ∩ U | ≥ εN

2

)︃
≤ P

(︃
|Y1 ∩ U | − |Y1| · p ≥ εN

4

)︃
≤ P (|Y1 ∩ U | − |Y1| · p ≥ 3m1)

≤ exp (−3m1/3) ≤ exp(−m1).

2) For i ∈ T = [n] \ Y1 we set Xi = |zi| if i ∈ U and Xi = 0 otherwise. Since
∑︁

i∈T |zi| ≤ ∥z∥1 = 1 we

have that E(
∑︁

i∈T Xi) = p ·
∑︁

i∈T |zi| ≤ p. Since all ‘large elements’ are in Y1 we have that Xi < γ1 for all

i ∈ [n] and thus

E

(︄∑︂
i∈T

X2
i

)︄
=
∑︂
i∈T

p|zi|2 ≤
∑︂
i∈T

pγ1|zi| = pγ1
∑︂
i∈T

|zi| ≤ pγ1.

Using Bernstein’s inequality we get

P

(︄∑︂
i∈T

Xi ≥ 2p

)︄
≤ exp

(︃
− p2/2

pγ1 + pγ1/3

)︃
≤ exp

(︃
− p

3γ1

)︃
= exp(−m1).

This implies that
∑︁

i∈T Xi ≤ 2p with failure probability at most exp(−m1). Now if
∑︁

i∈T Xi ≤ 2p then there

can be at most εN
2 buckets B with G(B \ Y1) ≥ 4p

εN .

3) First note that if q ≥ log2(8qmµzm1
ε3p) is important then 2−q · |W +

q | ≥ ∥W +
q ∥1 ≥ ε

qmµz
, which implies

that |W +
q | ≥ 2qε

qmµz
≥ 8m1ε−2 · p−1. Assume that all entries of Y1 \ W +

q have been assigned and let B′ ⊂ B be

the buckets of B with no elements from Y1 \ W +
q . By 1) and 2) there are at least (1 − ε)N buckets in B′. For

zi ∈ W +
q consider the random variable that takes the value Zi = zi if i ∈

⋃︁
B∈B′ B and Zi = 0 otherwise.

44

Set Z =
∑︁

zi∈W +
q

Zi. We have Zi = zi if element i is sampled at level h and sent to a bucket in B′, which

happens with probability at least p · (1−ε)N
N = (1 − ε)p. We thus have for the expected value of Z that

E(Z) ≥ (1 − ε)p · ∥W +
q ∥1 ≥ (1 − ε)p · 2−q−1 · |W +

q | ≥ (1 − ε) · 2−q−1 · 8m1ε−2

≥ 2−q · 3m1ε−2.

Further, the maximum value of any Zi is 2−q and the probability that Zi = zi is upper bounded by p.

Consequently, the variance of Z is bounded by

∑︂
zi∈W +

q

E(Z2
i) ≤

∑︂
zi∈W +

q

pz2
i ≤ 2−q

∑︂
zi∈W +

q

pzi = 2−qE(Z).

Using Bernstein’s inequality we get that

P
(︁
Z < (1 − ε)2p · ∥W +

q ∥1
)︁

≤ P (Z − E(Z) > εE(Z))

≤ exp
(︃

−ε2E(Z)2/2
2−qE(Z) + 2−qεE(Z)/3

)︃
≤ exp

(︃
−ε2E(Z)
3 · 2−q

)︃
≤ exp (−m1) .

We set W ∗
q = {zi ∈ W +

q | Zi = zi}.

4) By 2) and 3) we have that any entry zi ∈ W ∗
q is in a bucket B with

∑︁
j∈B\{i} |zj | ≤ 4p

εN . Thus, we

have for zi ≥ 4p
ε2N that

∑︁
j∈Bi

zj ≥ zi − 4p
εN ≥ (1 − ε)zi. Now we conclude

∑︂
i∈W ∗

q

G(Bi) ≥
∑︂

i∈W ∗
q

(1 − ε)zi = (1 − ε)∥W ∗
q ∥1.

Note that if all buckets contain only a single element then we can remove the condition q ≤ log2(Nε2

4p).

Hence, we can set q(M,N)(3) = q(M,N)(4) = ∞ if N = M (respectively, h = hm).

Next we are going to prove the outer bounds qh(1) and qh(4), which are important for the dilation

bound. For the outer bounds, i.e., the borders of the interval of weight classes that can have a non-negligible

contribution to U , we need the following parameters defining the set of small elements:

γ2 := pε2

3N ln(Nhmax/δ)

Y2 = {i ∈ [n] | |zi| ≤ γ2}

45

We further set E to be the expected value of an entry chosen uniformly at random from Y2.

The following Lemma contains two parts. The first part shows that if the sum of all small entries of z

(here the term ’small’ is depending on the level) is negative and the absolute value is at least ε/n, or in

other words if restrict to the small elements of z the negative terms outweight the positive parts at least

slightly, then any bucket containing only those elements will have a negative value as well with high enough

probability. The second part shows that with high probability the level does not contain any ’large’ elements

which is due to the fact that the number of large elements is limited.

Lemma 3.8. The following hold:

1) If E ≤ −ε/n, then for any bucket B that contains only elements of Y2, we have G(B) =
∑︁

i∈B zi ≤ 0

with failure probability at most δ
Nhmax

.

2) U contains no element i with zi ≥ phmax
δ with failure probability at most µzδ

hmax
.

Proof. 1) First consider a single bucket B containing only elements of Y2. For i ∈ [n], let Xi be a random

variable that attains the value Xi = zi if i ∈ B and Xi = 0 otherwise. The expected value of G(B) =
∑︁

i∈[n] Xi

is E′ := n · p
N · E ≤ − pε

N . Further, we have that

E

⎛⎝∑︂
i∈[n]

X2
i

⎞⎠ =
∑︂
i∈Y2

p

N
· z2

i ≤ γ2 ·
∑︂
i∈Y2

p

N
· |zi| = γ2

p

N

since all Xi are bounded by γ2 by assumption. Thus, applying Bernstein’s inequality yields

P (G(B) > 0) ≤ P

⎛⎝∑︂
i∈[n]

Xi − E′ ≥ |E′|

⎞⎠ ≤ exp
(︃

−|E′|2/2
γ2

p
N + γ2|E′|/3

)︃

≤ exp
(︃

−ε · p/(N)
2γ2(p/(N |E′|) + 1/3)

)︃
≤ exp

(︃
−ε · p/(N)

2γ2(ε−1 + 1/3)

)︃
≤ exp

(︃
−ε2 · p/(N)

3γ2

)︃
≤ exp

(︃
− ln

(︃
Nhmax

δ

)︃)︃
= δ

Nhmax
.

2) Recall that
∑︁

zi>0 zi ≤ 1/µz. Thus, there are at most nδ
µzMhmax

entries with zi ≥ Mhmax
nδ . The expected

number of those entries in U is thus at most nδ
µzMhmax

· M
n ≤ δ

hmax
, which also upper bounds the probability

of at least one entry with zi ≥ Mhmax
nδ being contained in U .

Putting both lemmas together we get all bounds qh(i) except q0(2). Since the weight classes containing

the heavy hitters are not necessarily large enough to get exponentially small probabilities we handle those in

46

the next subsection.

3.4.5 Heavy hitters

In this subsection we will analyze the level containing all entries. Our goal is to show that we can indeed set

q0(2) = 0 in Lemma 3.6. Let U be as before and assume that M = n. If for q ≥ log2(8qmµm1
ε3) the weight

class Wq is important, we have seen that there is a W ∗
q which represents Wq. Thus we only need to look at

the remaining weight classes which can be important even though they do not contain enough elements to

guarantee for a subset W ∗
q to exist with high enough probability.

Let Q0 = {q ≤ log2(8qmµm1
ε3)} be the the set of indices of weight classes containing only large elements.

We set H =
⋃︁

q∈Q0
Wq to be the class of heavy hitters.

We first give properties of the ℓp leverage scores for p ∈ [1, ∞). Note that the important cases for us in

this section are p = 1 and in the later part of the section also p = 2.

We let u ∈ Rn
≥0 denote the vector whose coordinates ui denote the i-th ℓ1-leverage scores, i.e., ui =

maxβ∈Rd
|xiβ|∑︁

j∈[n]
|xjβ|

. For p ∈ [1, ∞) we set Gp(z) =
∑︁n

i=1 |zi|p

Lemma 3.9. Let u(p) ∈ Rn be the vector whose coordinates u
(p)
i denote the i-th ℓp-leverage scores, i.e.,

ui = maxβ∈Rd\{0}
|xiβ|p∑︁

j∈[n]
|xjβ|p

. If u
(p)
i is the k-th largest coordinate of u(p), then for z in the subspace

spanned by the columns of X it holds that |zi|p ≤ dp

k Gp(z) and
∑︁n

i=1 u
(p)
i = dp. In particular we have that

|zi| ≤ d
k G(z) and

∑︁n
i=1 ui = d. If p = 2 then it holds that |zi| ≤ d

k G2(z) and
∑︁n

i=1 u
(2)
i = d.

Proof. By Dasgupta et al. (2009) there exists a so-called Auerbach basis Q of A with the following properties.

It holds that ∥Qx∥p ≥ ∥x∥q for all x ∈ Rd where q is the dual norm of p and
∑︁

ij |Qij |p ≤ d. Note that by a

change of basis

ui = max
x∈Rd\{0}

|(Ax)i|p

∥Ax∥p
p

= max
x∈Rd\{0}

|(Qx)i|p

∥Qx∥p
p

.

Thus |zi|p = |Qix|p ≤ (∥Qi∥p∥x∥q)p ≤ (∥Qi∥p∥Qx∥p)p and it follows that
∑︁

i ui ≤
∑︁

i ∥Qi∥p
p =

∑︁
ij |Qij |p ≤

dp.

Consequently the k-th largest coordinate of z can be at most |zp| ≤ upG(Qx) ≤ d
k G(Qx) = d

k G(z). For

p = 2 an orthonormal basis Q fulfills ∥Qx∥p ≥ ∥x∥q for all x ∈ Rd and
∑︁

ij |Qij |p ≤ d. Thus using the same

proof as above gives us the desired result for p = 2.

Lemma 3.10. Let Y3 = {i | ui ≥ γ3} where γ3 = ε3

8qmµm1
. Further, for j ∈ Y3 let Cj = {B |

∑︁
i∈B\{j} ui ≥

εγ3}. Let Y ′
3 = {j ∈ Y3 | j ∈ B0 \ Cj} If N0 ≥ max{ 2d2µ

γ3ε2 , 2 ln(κ−1)d2

γ3εκ } for κ ∈ (0, 1/2), then with probability

1 − 2κ, it holds that
∑︁

j∈Y3\Y ′
3

uj ≤ 2εµ−1.

Proof. We split the set Y3 into two parts. One contains the elements with the largest leverage scores

and the other one consisting of the remaining elements with smaller leverage scores. Consider the set

47

L0 = {j ∈ Y3 | uj ≥ γ} where γ = ε
µ ln(κ) . By Lemma 3.9 it holds that

∑︁n
i=1 ui ≤ d and thus there can be at

most d/γ elements in L0 and d
εγ3

buckets B with
∑︁

i∈B ui ≥ εγ3. Thus the probability of any element j ∈ L0

being assigned to a bucket of Cj is bounded by d
εγ3N0

· d
γ ≤ κ.

Let L1 = {j ∈ Y3 | uj < γ}. For j ∈ L1 let Xj be the random variable with Xj = uj if j is placed in a

bucket in Cj and Xj = 0 else. We have that the probability that Xj = uj is at most d
γ3εN0

and that |L1| ≤ d
γ3

.

Thus using Lemma 3.9 we have that

E(
∑︂

j∈L1

Xj) ≤
∑︂

j∈L1

uj · d

γ3εN0
= d2

γ3εN0
≤ εµ−1.

Further we have that

E(
∑︂

j∈L1

X2
j) ≤

∑︂
j∈L1

u2
j · d

γ3εN0
≤
∑︂

j∈L1

uj · dγ

γ3εN0
≤ d2γ

γ3εN0
≤ εµ−1γ/2.

using the fact that d2/(εN0) ≤ εγ/2. Further using ln(κ) ≥ εµ−1γ and Bernstein’s inequality we have that

Pr(
∑︂

j∈L1

Xj ≥ 2εµ−1) ≤ exp
(︃

− ε2µ−2

εµ−1γ/2 + εµ−1γ/3

)︃
≤ exp(−εµ−1γ) ≤ exp(ln(κ)) = κ.

We apply Lemma 3.10 with κ = δ. We denote by E1 the event that
∑︁

j∈Y3\Y ′
3

uj ≥ 2ε. By Lemma 3.10

E1 holds with probability at least 1 − δ for an appropriate N = N0 = max{ d2µ
γ3ε2 , 2 ln(δ)d2

γ3εδ } = d2qmµ2m1
δε5 =

O(d2qmµm1
δε5). For any entry zi ∈ H we have zi ≥ γ3 and thus by Lemma 3.9, we have i ∈ Y3. It remains to

show that the remaining entries in the buckets containing a heavy hitter only have a small contribution.

Lemma 3.11. Assume E1 holds. For any i ∈ H ∩ Y ′
3 we have G(Bi) ≥ (1 − ε)zi. Further it holds that∑︁

i∈Y3\Y ′
3

|zi| ≤ 2εµ−1.

Proof. Let zi ∈ H ∩ Y ′
3 . By E1 we have that

∑︁
j∈B\{i} uj ≤ εγ3 ≤ εzi. We conclude that

G(Bi) ≥ zi −
∑︂

j∈Bi\{i}

|zj | ≥ zi −
∑︂

j∈Bi\{i}

uj ≥ zi − εzi ≥ (1 − ε)zi.

The second part of the claim follows as |zj | ≤ uj for any j ∈ [n].

Heavy hitters - alternative version There is another way of handling heavy hitters. Using it we can

reduce the sketch size at the cost of running time. The idea is that each row gets sampled multiple times.

We will look into two versions here with a trade off between running time and sketch size.

In the first version we replace level 0 by the following sketch: We have h0 sub levels 0.1, . . . 0.h0 for

h0 = ⌈ 3 ln(γ−1
3 δ−1))
ε ⌉. Each sub level consists of N ≥ N ′′

0 := 6γ−1
3 dε−1 ≥ 6|Y3|dε−1 = O(dm1µqm

ε4) buckets.

Now each row i gets mapped to exactly one bucket of each sub level. As a consequence we no longer need to

48

guarantee that all heavy hitters are separated from all other big elements but instead we guarantee that for

any heavy hitter zi there exist at least (1 − ε)h0 sub levels where zi is in a bucket with no other big element.

To compensate each row being in multiple buckets we set the weight of each bucket to be 1
h0

.

We denote by Bi(ℓ) the bucket of sub level ℓ containing zi.

Lemma 3.12. With failure probability at most δ the event E ′
1 holds, that for any i ∈ Y3, there exists a set

L ⊆ [h0] of at least (1 − ε)h0 sub levels ℓ ∈ [h0] such that the bucket Bi(ℓ) /∈ Cj = {B |
∑︁

i∈B\{j} ui ≥ εγ3}.

Proof. Fix i ∈ Y3. Since there are N = 2|Y3|dε−1 using Lemma 3.10 there can be at most a fraction of 1/2 of

the buckets at each sub level in Ci. Let Xj be the random variable with Xj = 1 if Bi(j) ∈ Cj and Xj = 0

otherwise. Note that Xj is a Bernoulli random variable with p = ε. Thus we can apply the Chernoff bound

to
∑︁h0

j=1 Xj :

P

⎛⎝ h0∑︂
j=1

Xj > εh0

⎞⎠ ≤ exp(−h0ε/6) ≤ δ

|Y3|

and thus there exists a set L ⊆ [h0] of at least (1 − ε)h0 sub levels ℓ ∈ [h0] such that the bucket Bi(ℓ) /∈ Cj .

Now using the union bound we get that with failure probability at most δ this holds for all i ∈ Y3 that i.

Then we get using the same proof as for Lemma 3.11:

Lemma 3.13. Assume E ′
1 holds. Then for any element i ∈ H it holds that

∑︁h0
ℓ=1 G+(Bi(ℓ)) ≥ (1 − 2ε)h0zi.

Heavy hitters - alternative version 2 The idea of the second alternative version is that each row gets

sampled multiple times as in the alternative version but this time we do have different sub levels but instead

just sample each element multiple times. More precisely, each row i gets sampled in s = 8m1qmµ/ε2 buckets

at level 0. Technically we are getting rid of heavy hitters this way since the maximum leverage score in the

instance created this way is at most 1/s as we are sketching X̃ where each row of X appears s times and thus

each entry of z̃ = X̃β appears at least s times. To compensate the fact that each element appears multiple

times, we set the weight of buckets of level 0 to w0 = 1/s.

3.4.6 Contraction bounds for a single point

We set Uh to be the rows zi sampled at level h. Combining previous subsections we get the following lemma:

Lemma 3.14. Assume that E1 holds. Denote by z′
i the i-th row of SXβ for i ∈ n′. Then with failure

probability at most (2hm + 2qm)e−m1 it holds that

∑︂
i∈n′,z′

i
≥0

wiz
′
i ≥ (1 − 6ε)∥(Xβ)+∥1.

49

Proof. By Lemma 3.7 and Lemma 3.11 we have that for each important weight class W +
q there exists a

subset W ∗
q ⊆ Uh with

∑︁
i∈W ∗

q
G(Bi) ≥ (1 − ε)2∥W +

q ∥1ph with failure probability at most (2hm + 2qm)e−m1 .

For q ∈ QH we can set W ∗
q = W +

q ∩ Y ′
3 . Note that it holds that

∑︁
i∈Y3\Y ′

3
|zi| ≤ 2εµ−1 by Lemma 3.11. Then

using Lemma 3.5 we get

∑︂
i∈n′,z′

i
≥0

wiz
′
i ≥

∑︂
q∈Q∗

p−1
h

∑︂
i∈W ∗

q

G(Bi)

≥
∑︂

q∈Q∗

(1 − ε)2∥W +
q ∥1 − 2εµ−1

≥ (1 − 2ε)(1 − ε)2∥(Xβ)+∥1 − 2εµ−1 ≥ (1 − 6ε)∥(Xβ)+∥1.

3.4.7 Net argument

To get a weak weighted sketch we need the contraction bounds not just for a single solution but for all β ∈ Rd.

Thus we will construct a net N such that if a slightly stronger contraction bound holds for any β ∈ N then

the contraction bound holds for any β ∈ Rd. For now we ignore the variance regularization and focus only on

f1, i.e., on plain logistic regression. We first show that if the distance of two vectors v, v′ ∈ Rn is small then

|f1(v) − f1(v′)| is also small.

The next two lemmas show that if the contraction bound holds for some β then it holds for any β′ close

to β.

Lemma 3.15. For any v, v′ ∈ Rn with ∥v − v′∥1 ≤ ε it holds that |f1(v) − f1(v′)| ≤ ε.

Proof. Since ℓ′(v) = ev

ev+1 ≤ 1 we get that

|f1(v) − f1(v′)| ≤
n∑︂

i=1
|ℓ(vi) − ℓ(v′

i)| ≤
n∑︂

i=1
|vi − v′

i| = ∥v − v′∥1

which proves the lemma.

Lemma 3.16. Assume that for β ∈ Rd it holds that |f1(X ′β) − f1(Xβ)| ≤ ε. Then for any β′ ∈ Rd with

∥Xβ − Xβ′∥1 ≤ ε/(bhmhm) it holds that |f1(Xβ′) − f1(X ′β′)| ≤ 3ε.

Proof. It holds that ∥X ′(β − β′)∥1 = ∥SX(β − β′)∥1 ≤ bhmhm∥X(β − β′)∥1 ≤ ε since for each i ∈ [n] there

are at most hm columns j such that Sij ̸= 0 and each entry of S is bounded by bhm . Thus, using the triangle

inequality and applying Lemma 3.15 yields

|f1(Xβ′) − f1(X ′β′)| ≤ |f1(X ′β′) − f1(X ′β)| + |f1(X ′β) − f1(Xβ)| + |f1(Xβ) − f1(Xβ′)|

≤ ε + ε + ε ≤ 3ε.

50

We are now ready to construct our net:

Lemma 3.17. There exists a net N ⊂ Rd of size |N | = exp (O(d ln(n))) such that for any point y ∈ Rd with

∥Xy∥1 ≤ nµ there exists a point y′ ∈ N such that ∥Xy′ − Xy∥1 ≤ ε
µbhmax hm

.

Proof. We set

N =
{︃

β = v · ε

dbhmhm
| v ∈ Zd with ∥v∥∞ ≤ dnµbhmaxhm

ε

}︃
. (14)

Then for any y ∈ R with ∥Xy∥1 ≤ nµ the point Xy′ = ⌊ dbhm hm

ε · Xy⌋ · ε
dbhm hm

is in N and it holds that

∥Xy − Xy′∥1 ≤ d · ε
dbhm hm

= ε
bhm hm

. Further we have |N | ≤
(︂

d2nµb2hm h2
m

ε2

)︂d

= exp (O(d ln(n)).

Combining Lemma 3.16 and Lemma 3.17 we get:

Lemma 3.18. There exists a net N ⊂ Rd with |N | = exp (O(d ln(n))) such that if |f1(X ′β) − f1(Xβ)| ≤ ε

holds for any β ∈ N , then for any β′ ∈ Rd with ∥Xβ′∥1 ≤ nµ it holds that |f1(X ′β′) − f1(Xβ′)| ≤ 3ε.

3.4.8 Dilation bounds

In this subsection we prove the dilation bounds. More precisely we will will show that for any weight class

Wq the expected contribution to ∥(X ′β)+∥ is bounded by k∥Wq∥1 for some k.

First we show that for any good β ∈ R, i.e. β with f1(Xβ) ≤ n ln(2), assumption of Lemma 3.8 1)

is fulfilled. Given β ∈ Rd and z = Xβ set Z0 = Z0(β) ⊂ Z = {z1, . . . , zn} to be the set of the (1 − ε)n

largest entries ordered by absolute value. In other words, we remove the εn smallest entries. Similarly we set

Z1 = Z1(β) ⊂ Z to be the set of the (1 − 2ε)n largest entries. Again we assume that ∥z∥1 = 1. Our next goal

is to show that if f1(z) is small then
∑︁

zi∈Z0
zi remains negative even if we remove the smallest entries. Here

small means negative with large absolute value.

Lemma 3.19. If f1(Xβ) < (1 − 2ε)f1(0) then it holds that

∑︂
zi∈Z0,zi≤0

|zi| ≥ (1 + ε)
∑︂
zi≥0

|zi|

Proof. Let X1 denote the matrix X where the columns not corresponding to an entry of Z1 are removed.

We denote by f1̃ the function nf1 restricted to |Z1| entries, i.e., f1̃(Xβ) =
∑︁

xi∈X1
ℓ(xiβ). Since ℓ is always

larger than 0, removing 2εn entries can only reduce nf1. We thus have that

f1̃(0) = (1 − 2ε)nf1(0) ≥ nf1(Xβ) = nf1(Z) ≥ f1̃(Z1).

Now consider the function φ(r) = f1̃(r · Xβ). Note that the derivative of φ at zero is given by φ′(0) =∑︁
xi∈X1

e0

e0+1 · xiβ = 1
2 ·
∑︁

zi∈Z1
zi. Since f1̃ is convex φ is also convex. In particular this means that

51

f1̃(Xβ) < f1̃(0) implies φ′(0) < 0. Thus it must hold that
∑︁

zi∈Z1
zi < 0, or equivalently,

∑︁
zi∈Z1,zi<0 |zi| >∑︁

zi∈Z1,zi>0 |zi|. Since all entries in Z0 \ Z1 are less than or equal to any entry in Z0, we have that

∑︂
zi∈Z0,zi<0

|zi| ≥ 1
1 − ε

∑︂
zi∈Z1,zi<0

|zi| ≥ (1 + ε)
∑︂
zi>0

|zi|.

Next we show how we can use the outer bound qh(1) and qh(4) to bound the expected contribution of Wq

by proving that the expected contribution of Wq at any level with qh(1) < q < qh(4) is bounded by ∥Wq∥1

and by 0 otherwise. The following lemma gives us an upper bound on the expected value of G+(Z).

Lemma 3.20. If for all i ≤ hm − 1 it holds that q(MiNi)(4) < q(Mi+kNi+k)(1) and N0 ≥ N ′
0, then the expected

contribution of any weight class Wq is at most k · ∥Wq∥1.

Proof. Consider a weight class W +
q . For any level h it follows by Lemma 3.6 that if q /∈ [q(MhNh)(1), q(MhNh)(4)]

then W +
q has zero contribution at level h, i.e., either there are no elements of W +

q at level h or we have

W +
q ⊂ Y1 and for any bucket B of level h it holds that

∑︁
i∈Y1∩B zi ≤ 0. At any level the expected

contribution of W +
q is bounded by p−1

h ·
∑︁

i∈W +
q

phzi = ∥W +
q ∥1. This upper bound would be tight if all

entries of Z were positive. Hence, the expected contribution of W +
q is upper bounded by the number of levels

h with q ∈ [q(MhNh)(1), q(MhNh)(4)]. Since q(MhNh)(1) and q(MhNh)(4) are monotonically increasing in h, it

follows that if q(MiNi)(4) < q(Mi+kNi+k)(1) then any q can be contained in at most k intervals of the form

[q(MhNh)(1), q(MhNh)(4)], concluding the lemma. See Figure 2 for an illustration.

h = 0

h = 1

h = 2

h = hm

q0(2) = 0 q0(3) q0(4)

q1(2)q1(1) q1(3) q1(4)

q2(1) q2(2) q2(3) q2(4)

qhm
(1) qhm

(2) qhm
(3) = qm

. . .

q

Wq is relevant at levels 0, 1, 2.

Wq is well represented at level 1.
If the green and the blue block do not touch i.e. if qh−1(4) < qh+1(1),
then the expected contribution of any weight class is at most twice its
original contribution.

Figure 2: Illustration of Lemma 3.20 and Lemma 3.21.

Lemma 3.20 can be used to show that the expected contribution of any weight class to G+(Z) is at most

twice its total weight:

Lemma 3.21. If we choose Ni = N := max{N ′
0,

2048m2
1µ ln(Nhm/δ)q2

mhm

ε12δ } for all i ∈ [hm], and Mi solving the

equation q(Mi−1,N)(3) = q(Mi,N)(2) then the expected contribution of any weight class Wq is at most 2∥Wq∥1.

Proof. We set qi(j) = q(MiNi)(j). We first show that q(i+2)(1) − qi(4) can be expressed using the terms

qi+1(3) − qi+1(2), (qi+2(2) − qi+2(1)) and (qi(4) − qi(3)), which are the same for each i if the number of

52

buckets at each level is identical, i.e., for all j ≤ hq it holds that Nj = Ni. Observe that

q(i+2)(1) − qi(4) = qi+2(2) + qi+2(1) − qi+2(2) − (qi(3) + qi(4) − qi(3))

= qi+2(2) − qi(3) − (qi+2(2) − qi+2(1)) − (qi(4) − qi(3))

= qi+1(3) − qi+1(2) − (qi+2(2) − qi+2(1)) − (qi(4) − qi(3)).

Figure 2 illustrates those three terms. Using Lemma 3.6 we can bound the sum of the two subtracted terms

by

(qi+2(2) − qi+2(1)) + (qi(4) − qi(3)) = log2

(︃
8qmm1hm

ε3δ

)︃
+ log2

(︃
8 ln(Nhm/δ)

ε3

)︃
= log2

(︃
64m1 ln(Nhm/δ)qmhm

ε7δ

)︃
.

By Lemma 3.6 we have that qi+1(3) − qi+1(2) ≥ log2

(︂
Nε5

32m1µqm

)︂
. Thus, combining both equations we get

that

q(i+2)(1) − qi(4) = log2

(︃
Nε5

32m1µqm

)︃
− log2

(︃
64m1 ln(Nhm/δ)qmhm

ε7δ

)︃
= log2

(︃
Nε12δ

2048m2
1µ ln(Nhm/δ)q2

mhm

)︃
.

If N ≥ 2048m1µ ln(Nhm/δ)q2
mhm

ε12δ then we have q(i+2)(1) − qi(4) ≥ 0 and thus by Lemma 3.20, the expected

contribution of any weight class Wq is at most 2∥Wq∥1.

If N <
2048m2

1µ ln(Nhm/δ)q2
mhm

ε12δ we have the following adaptation of previous lemma:

Lemma 3.22. If for some k ∈ N we choose Ni = N ≥ 32m1µqm

ε5 ·
(︂

64m1 ln(Nhm/δ)qmhm

ε7δ

)︂1/(k−1)
for all i ∈ [hm],

and Mi solving the equation q(Mi−1,N)(3) = q(Mi,N)(2), then the expected contribution of any weight class Wq

is at most k∥Wq∥1.

Proof. We generalize the proof of Lemma 3.21. We can substitute q(i+k)(1) − qi(4) as follows:

q(i+k)(1) − qi(4) = q(i+k)(1) − q(i+k)(2) + qi(3) − qi(4) + q(i+k)(2) − qi(3)

= q(i+k)(2) − qi(3) − (q(i+k)(2) − q(i+k)(1)) − (qi(4) − qi(3))

= q(i+k−1)(3) − qi+1(2) − (q(i+k)(2) − q(i+k)(1)) − (qi(4) − qi(3))

=
k−1∑︂
j=1

q(i+j)(3) − qi+j(2) − (q(i+k)(2) − q(i+k)(1)) − (qi(4) − qi(3)).

53

The difference to the proof of Lemma 3.21 is the telescoping sum. We have that

k−1∑︂
j=1

q(i+j)(3) − qi+j(2) = (k − 1) · log2

(︃
Nε5

32m1µqm

)︃
= log2

(︄(︃
Nε5

32m1µqm

)︃k−1)︄
.

Thus if N ≥ 32m1µqm

ε5 ·
(︂

64m1 ln(Nhm/δ)qmhm

ε7δ

)︂1/(k−1)
we have that

k−1∑︂
j=1

q(i+j)(3) − qi+j(2) ≥ log2

(︃
64m1 ln(Nhm/δ)qmhm

ε7δ

)︃
.

Further note that (qi+2(2)− qi+2(1))+(qi(4)− qi(3)) = log2

(︂
64m1 ln(Nhm/δ)qmhm

ε7δ

)︂
as before. We conclude

that q(i+k)(1) − qi(4) > 0. Consequently, applying Lemma 3.20 finishes the proof.

Next we want to show how we can reduce the expected contribution of all weight classes below 2∥Wq∥1.

To this end we first increase the number of buckets at each level so as to get

log2

(︃
Nε5

32m1µqm

)︃
≥ k log2

(︃
64m1 ln(Nhm/δ)qmhm

ε7δ

)︃
.

Note that the expected contribution of any important weight class W +
q is at least ∥W +

q ∥1. Moreover, the

above choice ensures that all but a k-th fraction of weight classes have an expected contribution of exactly

∥W +
q ∥1, and only the remaining k-th fraction has a larger expected contribution that crucially is still bounded

by 2∥W +
q ∥1. Then the last step is to add a random shift so that the probability of each weight class W +

q for

having an expected contribution of 2∥W +
q ∥1 is at most 1

k . To simplify notation we set N ′
1 = 32m1µqm

ε5 and

N ′
2 = 64m1 ln(n)qmhm

ε7δ and assume that n ≥ Nkhm/δ.

Lemma 3.23. Let γ = 1
k < 1 for some k ∈ N. Assume that N0 is chosen uniformly at random from

N (1), . . . N (1/γ) where N (i) = N ′
0 · N ′i

2 . Further let Ni = N = N ′
1 · N ′k+1

2 for any i > 0. Then the expected

contribution of any weight class W +
q is at most (1 + γ)∥W +

q ∥1.

Proof. First note that

log2

(︃
Nε5

32m1µqm

)︃
− k log2

(︃
64m1µ ln(n)qmhm

ε7δ

)︃
= log2(N/N ′

1) − log2(N ′k
2) ≥ 0.

This shows that the relation of weight classes that are relevant on two levels to the weight classes that

are relevant on only one level is 1 : k. By choosing N0 at random we introduce a shift by i log2(N ′
2),

which is the maximal length of a block [qi−1(1), qi(4)]. Hence, for each q ∈ N there can be only one

i such that q is relevant in two levels. This implies that the expected contribution of W +
q is at most

k−1
k · ∥W +

q ∥1 + 1
k · 2∥W +

q ∥1 = (1 + 1
k)∥W +

q ∥1.

54

3.5 Main result

Our main result is the following:

Theorem 1. Let X ∈ Rn×d be a µ-complex matrix for bounded µ < n. Let ε, δ > 0 and let a > 1 and

let nnz(X) be the number of non zero entries of X. Then there is a distribution over sketching matrices

S ∈ Rr×n and a corresponding weight vector w ∈ Rr, for which X ′ = SX can be computed in T time in a

single pass over a turnstile data stream such that (X ′, w) is a weak weighted (Rd, α, ε)-sketch for f1 with

failure probability at most P , where

1. r = O(µ2d1+c ln(n)2+4c) for any constant c > 0, T = O(d ln(n)µ · nnz(X)), and α and P are constant,

2. r = O(µ2d3 ln(n)9

ε11δ), T = O(nnz(X)), α = 1 + (1 + ε)a and P = δ + 1
a ;

3. r = O(d3 ln(n)5µ2

δε6) + 32dµ ln(n)2

ε5 · (64d ln(n)4

ε7δ)1+ε−1 , T = O(nnz(X)), α = (1 + aε), and P = δ + 1
a .

Proof. If β = 0 is a 1 − 2ε approximation, then we get the dilation bounds for free since f1w(X ′β) = ln(2) =

f1(Xβ). Otherwise let β∗ be the minimizer of f1(Xβ). Note that β∗ satisfies the assumption of Lemma 3.19.

1) We fix constants ε = 1/8 and δ = 1/8.

We use the second alternative approach for handling heavy hitters and define Mi and Ni as in Lemma

3.22 for some constant k = 1 + 1
c and set hm = min{i | Mi ≤ N}.

By Lemma 3.22 the expected contribution of any weight class is at most k∥Wq∥1. Thus using Markov’s

inequality we can bound f1w(SXβ∗) ≤ akf1(Xβ∗) with probability 1
a for any a ∈ N. In other words, it is

constant with constant probability. By our choice of Mi and Ni, the contraction bounds hold for any Xβ

with failure probability at most (2hm + 2qm + 2)e−m1 by combining Lemma 3.14 and Lemma 3.4. Setting

m1 = O(d ln(n)) and using Lemma 3.18 we get that the contraction bounds hold for all β ∈ Rd with

∥Xβ∥1 ≤ nµ. We note that the contraction bounds can be extended to any β ∈ Rd since f1(Xβ) ≈ ∥Xβ∥1

if ∥Xβ∥1 > nµ. We refer to (Munteanu et al., 2021) for details. Further note that qi(2) < qi(3), and thus

hm ≤ log2(2qm) = O(ln(n)). The number of buckets at each level is N = 32m1µqm

(1/8)5 · (64m1 ln(Nhm/δ)qmhm

(1/8)7)c.

We specify the number r of rows of SX, which is r = hmN . Since hm, qm = O(ln(n)) and m1 = O(d ln(n))

we get that r = O(µ2d1+c ln(n)2+4c). The running time of our algorithm is O(µd ln(n)nnz(X)) since each

row xi gets assigned to O(µd ln(n)) buckets.

2) Next we show that with r = O(µ2d4 ln(n)7

ε12δ) and T = O(nnz(X)) we can get an approximation factor of

α = 1 + (1 + ε)a and failure probability of P = δ + 1
a . There are only a few differences compared to the proof

of the first part: instead of Lemma 3.22 we use Lemma 3.21. Hence we need the number of buckets to be

N = max
{︃

N ′
0,

2048m2
1µ2 ln(Nhm/δ)q2

mhm

ε12δ

}︃
= 2048m2

1µ2 ln(Nhm/δ)q2
mhm

ε12δ
.

Consequently we have that r = hmN = O(µ2d4 ln(n)7

ε12δ). Since every row gets assigned to O(1) buckets the

running time is O(nnz(X)). Now assume that the contraction bound holds for β∗. Then Y = f1w(SXβ∗) −

55

(1 − ε)f1(Xβ∗) is a positive random variable with expected value at most (1 + ε)f1(Xβ∗), and thus using

Markov’s inequality gives us that Y > a(1 + ε)f1(Xβ∗) holds with probability at most 1
a . Hence it follows

that f1w(SXβ∗) ≤ f1(Xβ∗) + a(1 + ε)f1(Xβ∗) with failure probability at most 1
a .

3) The proof is again similar to 2). The only difference is that we use Lemma 3.23 instead of Lemma

3.21. Hence the number of buckets at each level is bounded by N = max{N ′
0, N ′

1 · N ′1+ε−1

2 }. Thus

r = hmN = O(d2hmq2
mµ2m2

1
δε7 + 32dµ ln(n)2

ε5 · (64d ln(n)4

ε7δ)1+ε−1).

Note that if µ is not too large, i.e. µ ∈ O((d log3(n))c) then we can get a linear upper bound of the sketch

size also in terms of µ. This has been worked out in (Munteanu et al., 2023).

3.6 Extension to linear ℓ1-regression

For ℓ1 regression, where the objective is ∥Xβ − y∥1, we have

Theorem 2. Let X ∈ Rn×d and let Y ∈ Rn. Let ε, δ > 0 and let a > 1. Then there is a distribution

over sketching matrices S ∈ Rr×n and a corresponding weight vector w ∈ Rr, for which X ′ = S[X, Y] can

be computed in T time in a single pass over a turnstile data stream such that (X ′, w) is a weak weighted

(Rd, α, ε)-sketch for ℓ1-regression with failure probability at most P , where

1. r = O(d1+c ln(n)3+5c) for any constant 1 ≥ c > 0, T = O(d ln(n)nnz(X)), and α = 1 + 1
c and P are

constant,

2. r = O(d3 ln(n)5

δε7) + 32d ln(n)3

ε5 · (64d ln(n)5

ε6δ)1+ε−1 , T = O(nnz(X)), α = (1 + aε), and P = δ + 1
a .

In the following we discuss the changes in the proofs:

The sketching algorithm is the same as before and also the analysis is very similar to the previous part.

We start with a fixed point z = (X, −y)β′, where β′ = (β, 1) ∈ Rd and analyze Sz. Again we assume that

∥z∥1 = 1. Instead of weight classes W +
q we use weight classes Wq = {i ∈ [n] | |zi| ∈ (2−q−1, 2−q]}. Since we

are only dealing with absolute values, which are symmetric, we no longer need to parameterize by µ. We can

continue to use the same definitions for qh(1), qh(2) and qh(3) when setting µ in those bounds to be 1. We

will only slightly change qh(3) since we will need another trick to prove the second outer bound q′
h(4).

3.6.1 Dilation bounds for ℓ1

When looking at logistic regression we had that for any any good β ∈ R, i.e. β with f1(Xβ) ≤ n ln(2),

assumption of Lemma 3.8 1) is fulfilled. For ℓ1-regression this is no longer the case. Thus for approximating

ℓ1 we need a different approach for qh(4) when bounding the contribution of small entries at each level. The

idea is, similar as in (Clarkson and Woodruff, 2015), to use a Ky-Fan norm argument to remove the smallest

contributions from the ℓ1-norm. At a fixed level h we put Bh to be the set of buckets at level h and B′
h to be the

set of buckets with the p2q′
h(3) ≤ εN

hm
largest entries with respect to |G(B)| where q′

h(3) := ln(min{ εN
2hm

, Nε2

4 }).

56

We further define

K(h) =
∑︂

B∈B′
h

|G(B)|.

Since
⋃︁

q∈[qh(2),q′
h

(3)] W ∗
q contains at most p2q′

h(3) elements, we have that K(h) ≥ ∥W ∗
q ∥1. We set q′

h(4) =

ln(3Nhm ln Nhm/δ
pε). Set Y2 = Y2(h) = {i ∈ [n] | |zi| ≤ γ2 := cp

N ln(Nhm/δ) } to be the set of small elements at

level h.

Lemma 3.24. With failure probability at most δ
hmN it holds that for any bucket B at level h we have that

∑︂
i∈B∩Y2

|zi| ≤ max
{︃

2 · p · ∥Y2∥1

N
,

p

N

(︃
∥Y2∥1 + ε

hm

)︃}︃

Proof. Fix a bucket B at level h. For i ∈ Y2 let Xi = zi if i ∈ B and Xi = 0 otherwise. Then we have

E := E(
∑︁

i∈Y2
Xi) = p·∥Y2∥1

N . Further we have E(
∑︁

i∈Y2
X2

i) =
∑︁

i∈Y2
p
N · z2

i ≤ γ2p
N ·

∑︁
i∈Y2

|zi| = γ2E. We

set λ = max{E, ε
Nhm

} Then using Bernstein’s inequality we get that

P (
∑︂
i∈Y2

Xi ≥ E + λ) ≤ exp
(︃

−λ2/2
γ2E + γ2E/3

)︃

≤ exp
(︃

−λ2/2
γ2λ + γ2λ/3

)︃
≤ exp

(︃
−λ

3γ2

)︃
≤ exp

(︃
−pε

3Nhmγ2

)︃
≤ exp (− ln(Nhm/δ)) ≤ δ

hmN
.

Lemma 3.25. With failure probability at most δ it holds that

∑︂
h≤hm

∑︂
i∈Y2(h)∩

⋃︁
B∈B′

h

B

zi ≤ ε

Proof. Using the union bound over the event from Lemma 3.24 over all Nhm buckets, using that |B′
h| ≤

εN/2hm and max{2 · ∥Y2∥1,
(︂

∥Y2∥1 + ε
hm

)︂
} ≤ 2 we get that

∑︂
i∈Y2(h)∩

⋃︁
B∈B′

h

B

zi ≤ εN

2hm
· 2p

N
≤ ε

hm
.

57

holds for every level h with failure probability at most δ. Summing up over all levels we get that

∑︂
h∈hm

∑︂
i∈Y2(h)∩

⋃︁
B∈B′

h

B

zi ≤ ε.

We have the following lemmas using similar proofs as in the previous section:

Lemma 3.26. If for some k ∈ N we choose Ni = N ≥ 32m1qmhm

ε5 ·
(︂

64m1 ln(Nhm/δ)qmh2
m

ε6δ

)︂1/(k−1)
for all

i ∈ [hm] and Mi solving the equation q(Mi−1,N)(3) = q(Mi,N)(2), then the expected contribution of any weight

class Wq is at most (k + ε)∥Wq∥1.

Here the additional ε comes from Lemma 3.24.

We setN ′′
0 = N ′

0, N ′′
1 = 32m1qmhm

ε5 and N ′′
2 = 64m1 ln(Nhm/δ)qmh2

m

ε6δ and assume that n ≥ Nkhm/δ.

Lemma 3.27. Let γ = 1
k < 1 for some k ∈ N. Assume that N0 is chosen uniformly at random from

N (1), . . . N (1/γ) where N (i) = N ′′
0 · N ′′i

2 . Further let Ni = N = N ′′
1 · N ′′k+1

2 for any i > 0. Then the expected

contribution of any weight class Wq is at most (1 + γ)∥Wq∥1.

3.6.2 Net argument

For β ∈ Rd+1 we set g1(β) = ∥(X, −y)β)∥1 and g2(β) = ∥(SX, −Sy)β)∥1

Lemma 3.28. Assume that for β ∈ Rd+1 it holds that |g1(β) − g2(β)| ≤ ε. Then for any β′ ∈ Rd with

∥Xβ − Xβ′∥1 ≤ ε/(bhmhm) it holds that |g1(β′) − g2(β′)| ≤ 3ε.

Proof. It holds that ∥X ′(β − β′)∥1 = ∥SX(β − β′)∥1 ≤ bhmhm∥X(β − β′)∥1 ≤ ε since for each i ∈ [n]

there are at most hm columns j such that Sij ≠ 0 and each entry of S is bounded by bhm . Also note that

∥gi(v) − gi(v′)∥1 ≤ ∥v − v′∥1 holds for any two vectors v, v′ ∈ Rd+1. Thus, using the triangle inequality yields

|g1(β′) − g2(β′)| ≤ |g2(β′) − g2(β)| + |g2(β) − g1(β)| + |g1(β) − g1(β′)|

≤ ε + ε + ε ≤ 3ε.

Lemma 3.29. There exists a net N ⊂ Rd with |N | = exp (O(d ln(n))) such that if |g1(β) − g2(β)| ≤ εg1(β)

holds for any β ∈ N then for any β′ ∈ Rd+1 it holds that |g1(β′) − g2(β′)| ≤ 3εg1(β′).

Proof. We set

N =
{︃

β = v · ε

dbhmhm
| v ∈ Zd with ∥v∥∞ ≤ dbhmhm

ε

}︃
. (15)

58

Then it holds that for any β ∈ Rd+1 with g1(β) = 1 the point (X, −y)β′ = ⌊ dbhm hm

ε · (X, −y)β)⌋ · ε
dbhm hm

is in

N and it holds that ∥(X, −y)β′∥1 ≤ d · ε
dbhm hm

= ε
bhm hm

. Using Lemma 3.28 it holds that |g1(β′) − g2(β′)| ≤

3ε ≤ 3εg1(β). Further we have |N | ≤
(︂

dbhm hm

ε

)︂2d

= exp (O(d ln(n)). Now for any r ∈ R and β ∈ Rd+1 with

g1(β) = 1 we have that |g1(rβ) − g2(rβ)| = |rg1(β) − rg2(β)| = r|g1(β) − g2(β)| ≤ 3εr.

3.7 Extension to logistic regression with variance-based regularization

For the variance-based regularization, where we consider the full objective function f(Xβ), we have

Theorem 3. Let X ∈ Rn×d be a µ-complex matrix for bounded µ < n. Let ε, δ > 0, let a > 1 and set

V = {Xβ | f1(Xβ) ≤ ln(2)(1 − ε)}. Then there is a distribution over sketching matrices S ∈ Rr×n and a

corresponding weight vector w ∈ Rr, for which X ′ = SX can be computed in T time in a single pass over

a turnstile data stream such that (X ′, w) is a weak weighted (V, α, ε)-sketch for f with failure probability at

most P , where

• r = O(n0.5+cµd2 ln3(n)
ε5 · max{d, ln(n), ε−1, δ−1, µ} + d3µ2 ln(n)3√

n
δε6), for arbitrary constant 1 ≥ c > 0,

T = O(nnz(X)), α = 1 + 1
c , and P = δ + 1

a .

In this section we show that our algorithm also approximates the variance well under the assumption

that roughly f1(Xβ) ≤ ln(2). We stress that this assumption does not rule out the existence of good

approximations. Indeed, even the minimizer is contained, since we have that minβ∈Rd f(Xβ) ≤ f(0) =

f1(0) = ln(2) and f(Xβ) ≥ f1(Xβ) holds for any β ∈ Rd. Again we focus on a single z = Xβ first. What

remains to show is that
∑︁

i:zi>0 z2
i is approximated well. We set H(z) =

∑︁n
i=1 z2

i , H+(z) =
∑︁

i:zi>0 z2
i and

h(y) = y2

H+(z) . By µ-complexity we get that H+(z) ≥ H(z)
µ . We define W 2

q = {i ∈ [n] | h(zi) ∈ (2−q−1, 2q]}

and W 1
q = {i ∈ [n] | zi

∥z∥1
∈ (2−q−1, 2q]}. As the argument is almost the same as in the section before, we

will only note the differences. We will also use the same definition of importance, i.e., a weight class W 2
q

is important if H+(W 2
q) ≥ ε

qmµ . Similar to the previous analysis we have that if W 2
q is important then

|W 2
q | ≥ ε2q

qmµ . With those adapted definitions we proceed by adapting the main lemmas of Section 3.4.3 that

finally yield Theorem 3.

Lemma 3.30. For any zi ∈ W 2
q there exists q′ ≤ (q − 1)/2 + ln(n)/2 such that zi ∈ W 1

q′ .

Proof. It is well known that ∥z∥1 ≤
√

n∥z∥2. We conclude that

zi

∥z∥1
≥ zi√

n∥z∥2
= 1√

n

z2
i

∥z∥2
2

/︂√︄ z2
i

∥z∥2
2

≥ 1√
n

· 2−q−1

2−(q−1)/2 .

Now taking the logarithm proves the lemma.

59

Contraction bounds Recall that:

γ1 := p

3m1

Y1 := {i ∈ [n] | |zi| ≥ γ1}

Here Y1 is the set of ‘large elements’. We redefine µz =
∑︁

zi>0
z2

i∑︁
zi<0

z2
i

Lemma 3.31. The following hold:

1) |Y1 ∩ U | ≤ εN/2 with failure probability at most exp(−m1);

2) Let B = {B ∈ Bh |
∑︁

i∈B\Y1
|zi| ≤ 4p

εN }. Then |B| ≥ (1 − ε/2)N with failure probability at most

exp(−m1);

3) Assume that q ≥ log2(8qmµzm1
ε3p)) and that W 2

q is important or that |Wq| ≥ 8m1ε−2 · p−1. Then with

failure probability at most exp(−m1) there exists W ∗
q ⊂ W 2

q ∩ B such that ∥W ∗
q ∥1 ≥ (1 − ε)2∥W +

q ∥1 · p

and each element of W ∗
q is in a bucket in B containing no other element of Y1;

4) If q ≤ log2(Nε2
√

n4p
) and W ∗

q as in 3) exists, then with failure probability at most exp(−m1) it holds that∑︁
i∈W ∗

q
G(Bi) ≥ (1 − ε)∥W ∗

q ∥1.

The proof is verbatim to the proof of Lemma 3.7. For the 4th part we use Lemma 3.30 to reduce the

problem to the weight class W 1
q . This causes an additional term of 1√

n
in the logarithm of q3(M, N).

We also have a change in q4(M, N). More precisely we need two additional factors of ε in γ2:

γ2 := Mε4

2Nn ln(Nhmax/δ)

Y2 = {i ∈ [n] | |zi| ≤ γ2}: Set of small elements;

Y +
2 = {i ∈ [n] | |zi| ≤ γ2, zi ≤ 0}: Set of small negative elements;

Y −
2 = {i ∈ [n] | zi ≤ γ2, zi ≥ 0}: Set of small positive elements;

Further we set A :=
∑︁

zi≥0 zi, A′ =
∑︁

zi∈Y −
2

|zi|, A1 =
∑︁

zi∈Y +
2

|zi| and A2 = A − A1 ≥ 0.

Lemma 3.32. If A′ ≥ A(1 + ε) then for any bucket B that contains only elements of Y2 we have that

G(B) =
∑︁

i∈B zi ≤ M
Nn · (−A2) with failure probability at most δ

Nhmax
.

Proof. Let Xi be the random variable attaining value zi if i ∈ B and 0 otherwise, for i ∈ [n]. The expected

value for G(B) =
∑︁

i∈[n] Xi is E′ := M
nN · (A′ − A1). Further we have that

E(
∑︂
i∈[n]

X2
i) =

∑︂
i∈Y2

M

nN
· z2

i ≤ M

nN
·
∑︂
i∈Y2

γ2zi ≤ γ2M

nN

60

since all Xi are bounded by γ2 by assumption. Applying Bernstein’s inequality thus yields

P (G(B) > 0) ≤ P

⎛⎝∑︂
i∈[n]

Xi − E′ ≥ ε|E′|

⎞⎠ ≤ exp
(︃

−ε2|E′|2/2
γ2 · M/(nN) + εγ2|E′|/3

)︃

≤ exp
(︃

−ε3 · M/(nN)/2
γ2(M/(nNE′) + ε/3)

)︃
= exp

(︃
−ε3 · M/(nN)/2

γ2ε−1((A′ − A1) + 1/3)

)︃
≤ exp

(︃
−ε4 · M/(nN)

2γ2

)︃
≤ exp

(︃
− ln

(︃
Nhmax

δ

)︃)︃
= δ

Nhmax
.

Note that εE′ ≤ ε · M
nN · (A′ − A1) ≤ ε · M

nN · A and thus E(
∑︁

i∈[n] X2
i) + εE′ ≤ M

nN · (−A′ + A1 + εA) ≤
M
nN · (−A2).

Our main lemma thus changes to:

Lemma 3.33. With probability at least 1 − δ
hm

the weight classes W 2
q for q ≥ q(M,N)(4) := log2(γ−1

2) :=

log2(2Nn ln(Nhm/δ)
Mε4) and q ≤ q(M,N)(1) := log2(nδ

Mhm
) have zero contribution to

∑︁
B G+(B), i.e., for any

bucket B we have
∑︁

zi∈B\Ir
zi ≤ 0 where Ir = {i ∈ [n] | zi ∈ Wq, q ∈ [q(M,N)(1), q(M,N)(4)]}. Further, with

failure probability at most exp(−m1), for each log2(8qmµm1n
ε3M)) =: q(M,N)(2) ≤ q ≤ q(M,N)(3) := log2(Nnε2

4Mm1
√

n
)

there exists W ∗
q such that

∑︁
i∈W ∗

q
G(Bi) ≥ (1 − ε)2∥W 2

q ∥2 · M
n . Thus it holds that:

q(M,N)(2) − q(M,N)(1) = log2

(︃
8qmm1hm

ε3δ

)︃
q(M,N)(3) − q(M,N)(2) = log2

(︃
Nε5

32m1µqm
√

n

)︃
=: log2(b)

q(M,N)(4) − q(M,N)(3) = log2

(︃
8 ln(Nhm/δ

√
n)

ε6

)︃
.

If N = M then we set q(M,N)(3) = q(M,N)(4) = ∞. If M = n then we set set q(M,N)(1) = q(M,N)(2) = 0.

We set qh(i) = q(Mh,Nh)(i) for i ∈ {1, 2, 3, 4} and Qh = [qh(2), qh(3)] to be the well-approximated weight

classes and Q′
h = [qh(1), qh(4)] to be the relevant weight classes at level h. Note that q(M,N)(1) and q(M,N)(2)

stay the same as before.

Heavy hitters The important changes to note here are that we need to replace Lemma 3.10 with an

appropriate lemma for the ℓ2-leverage scores and there is an additional factor of 1√
n

.

Lemma 3.34. Let Y3 = {i | u
(2)
i ≥ γ3} where γ3 = ε3

8qmµm1
. Further, for j ∈ Y3 let Cj = {B |

∑︁
i∈B\{j} ui ≥

εγ3/
√

n}. Let Y ′
3 = {j ∈ Y3 | j ∈ B0 \Cj} If N0 ≥ max{ 2d2µ

γ3ε2 , 2 ln(κ−1)d2

γ3εκ } for κ ∈ (0, 1/2), then with probability

61

1 − 2κ, it holds that
∑︁

j∈Y3\Y ′
3

u
(2)
j ≤ 2εµ−1.

We denote by E2 the event that the event described in Lemma 3.34 holds. By Lemma 3.34, E2 holds with

probability at least 1 − δ for an appropriate N = N
(2)
0 O(d2qmµ2m1

√
n

δε6). For any entry zp ∈ H we have zp ≥ γ3

and thus by Lemma 3.9, we have p ∈ Y3 and for any entry p /∈ Y4 we have zp < γ3 · γ4.

Lemma 3.35. Assume E2 holds. Then for any zi ∈ H we have G(Bi) ≥ (1 − ε)zi. Further for it holds that∑︁
j∈Y3\Y ′

3
z2

j ≤ 2εµ−1∥z∥2
2.

The proofs of Lemma 3.34 and Lemma 3.35 are similar to the proofs of Lemma 3.10 and Lemma 3.11.

Contraction bounds for a single point

Lemma 3.36. Assume that E2 holds. Denote by z′
i the i-th row of SXβ for i ∈ n′. Then with failure

probability at most (2hm + 2qm)e−m1 it holds that

∑︂
i∈n′,z′

i
≥0

wiz
′
i ≥ (1 − 12ε)G+(Xβ).

Here we loose additional factors of ε for the following reason: assume that for some zi > 0 we have

∥Bi∥1 ≥ (1 − 6ε)zi then it holds that ∥Bi∥2
1 ≥ (1 − 12ε)z2

i .

Dilation bounds Here we have to cope with the additional factor of
√

n. Recall that if we choose Mi

solving the equation q(Mi−1,N)(3) = q(Mi,N)(2) then it holds that

q(i+2)(1) − qi(4) = qi+1(3) − qi+1(2) − (qi+2(2) − qi+2(1)) − (qi(4) − qi(3)).

We now have

qi+1(3) − qi+1(2) = log2

(︃
Nε5

32
√

nm1µqm

)︃

and

(qi+2(2) − qi+2(1)) + (qi(4) − qi(3)) = log2

(︃
64m1 ln(Nhm/δ)qmhm√

nε9δ

)︃
.

Further there is a change in Lemma 3.20 as we have to deal with possible overhead coming from the

square function. We set R = {i|2−qh(1) > zi > 2−qh(4)} to be the set of relevant (positive) elements and

WR = {zi | i ∈ R}.

Lemma 3.37. If
∑︁n

i=1 zi ≤ 0 and for all i ≤ hm − 1 it holds that q(MiNi)(4) < q(Mi+kNi+k)(1) and N0 ≥ N ′
0,

then the expected contribution of any weight class Y ′
1 is at most k · ∥WR∥2

2.

62

Proof. Fix a level h and a bucket B at level h. Recall that
∑︁

i∈R zi ≤ A2 = A − A1 =
∑︁

i,zi≥2−qh(4) zi. Note

that by Lemma 3.32 we have that
∑︁

i∈Y ′
1 ∩B ≤ ph(−A2)

N . Let Zi be the random variable where Zi = zi if i ∈ R

is assigned to B and 0 otherwise. Then the expected value of Z = max{0,
∑︁n

i=1 Zi} is ph

N · A2. Thus it holds

that

E(max{G(B), 0}2) ≤ E

(︄
Z − ph(−A2)

N

2
)︄

≤ E
(︁
(Z − E(Z))2)︁

= Var(Z) ≤ ∥WR∥2
2.

Lemma 3.21 and Lemma 3.22 can be adapted as follows:

Lemma 3.38. If we choose Ni = N := max{N
(2)
0 ,

√
32qmµm1n0.75

ε2.5 } for all i ∈ [hm] and Mi solving the

equation q(Mi−1,N)(3) = q(Mi,N)(2) then the expected contribution of any weight class Wq is at most 2∥Wq∥1.

Proof. The proof uses a different idea as before: since N is large enough, we only need 2 levels. More precisely

we want to achieve M2 = N . By our choice of M2 this means

log2

(︃
8qmµm1n

ε3N

)︃
= q(N,N)(2) = q(n,N)(3) = log2

(︃
Nnε2

4n
√

n

)︃

or equivalently

N =
√︃

32qmµm1n1.5

ε5 =
√

32qmµm1n0.75

ε2.5 .

Lemma 3.39. If for some k ∈ N we choose Ni = N ≥ 32m1µqm

ε5 ·
(︂

64m2
1 ln(n)qmhm

√
n

ε9δ

)︂1/(k−1)
for all i ∈ [hm]

and Mi solving the equation q(Mi−1,N)(3) = q(Mi,N)(2) then the expected contribution of any weight class Wq

is at most k∥Wq∥1.

The proof is the same as for Lemma 3.22.

Net argument

Lemma 3.40. For any v, v′ ∈ Rn with ∥v − v′∥1 ≤ ε it holds that |f2(v) − f2(v′)| ≤ (f1(v) + ε)ε.

Proof. We have that (ℓ2)′(v) = ev

ev+1 · ℓ(v) ≤ ℓ(v). Further since ℓ′(v) ≤ 1 we have that for any ν ∈ [0, 1] it

holds that |ℓ(v + ν(v′ − v)) − ℓ(v)| ≤ (ℓ(v) + ε)ε. Thus we get that

|f2(v) − f2(v′)| ≤ 1
n

·
n∑︂

i=1
|ℓ(vi)2 − ℓ(v′

i)2| ≤ 1
n

·
n∑︂

i=1
(ℓ(v) + ε)ε = (f1(v) + ε)ε

which proves the lemma.

63

Lemma 3.41. Assume that for β ∈ Rd it holds that |f2(X ′β) − f2(Xβ)| ≤ ε. Then for any β′ ∈ Rd with

∥Xβ − Xβ′∥1 ≤ ε/(bhmhm) it holds that |f2(Xβ′) − f2(X ′β′)| ≤ ε + 2(f1(Xβ′) + ε)ε.

Proof. It holds that ∥X ′(β − β′)∥1 = ∥SX(β − β′)∥1 ≤ bhmhm∥X(β − β′)∥1 ≤ ε since for each i ∈ [n] there

are at most hm columns j such that Sij ̸= 0 and each entry of S is bounded by bhm . Thus, by the triangle

inequality and applying Lemma 3.40 yields

|f2(Xβ′) − f2(X ′β′)| ≤ |f2(X ′β′) − f2(X ′β)| + |f2(X ′β) − f2(Xβ)| + |f2(Xβ) − f2(Xβ′)|

≤ (f1(Xβ′) + ε)εb−hm + ε + (f1(Xβ′) + ε)ε ≤ ε + 2(f1(Xβ′) + ε)ε.

Combining Lemma 3.17 and Lemma 3.41 we get:

Lemma 3.42. There exists a net N ⊂ Rd with |N | = exp (O(d ln(n))) such that if |f1(X ′β) − f1(Xβ)| ≤ ε

holds for any β ∈ N then for any β′ ∈ Rd with ∥Xβ′∥1 ≤ nµ it holds that |f2(X ′β′) − f2(Xβ′)| ≤

ε(f2(Xβ′) + f1(Xβ′)).

Proof of Theorem 3 The proof of Theorem 3 works as the proof of Theorem 1, replacing the old lemmas

with the new ones.

3.8 Lower bound

We note that the increased sketching dimension in terms of
√

n comes from the inter norm inequality

∥x∥1 ≤
√

n∥x∥2. Lemma 3.43 shows that there is no way to get around a factor of
√

n using the CountMin-

sketch. The proof gives an example where
√

n is attained even for obtaining a superconstant (in µ)

approximation. It does not rule out the existence of some other method that allows a lower sketching dimension.

For example Count-sketch is known to work for ℓ1 and ℓ2 norms simultaneously within polylogarithmic size

(Clarkson and Woodruff, 2015). But we stress that the standard sketches from the literature do not work

for asymmetric functions since they confuse the signs of contributions leading to unbounded errors for our

objective function or even for plain logistic regression, see (Munteanu et al., 2021).

The following lemma shows that there is no way to get around a factor of
√

n using the CountMin-sketch.

It constructs an input where
√

n is attained even for obtaining a superconstant (in µ) approximation.

Lemma 3.43. There exists a µ-complex data example X where our sketch with o(
√

n) rows fails to approximate

f . Specifically, if λ = 1 it holds for the optimizer β̃ ∈ argminβ∈Rd f(SXβ) that f(Xβ̃) = ω(ln(µ)2) ·

minβ∈Rd f(Xβ).

64

Proof. Fix µ > 10 and consider the following data

x0 = (
√

n)

xi = (−1) for i ∈
[︃
1, n − n

µ

]︃
xi = (1) for i > n − n

µ

As the example is 1-dimensional we only need to check the ratio for β = 1 and β = −1 in order to compute µ

as multiplying with a scalar does dot not change the ratio between the sum of all positive points and the sum

of all negative points. Also note that the ratio is inverted for β = −1 thus if the ratio is positive for β = 1 we

do not need to check it for β = −1. Note that for β = 1 and z = Xβ it holds that
∑︁

zi>0 zi =
√

n + n
µ and∑︁

zi<0 |zi| = n(1 − 1
µ) ≥

√
n + n

µ if n is sufficiently large. We thus have

µ1(X) =
n
(︂

1 − 1
µ

)︂
√

n + n
µ

≤ n
n
µ

= µ

Further we have that
∑︁

zi>0 z2
i = n + n

µ ≤ 2n and
∑︁

zi<0 |zi| = n(1 − 1
µ) ≈ n. Consequently we get that

µ2(X) =
n + n

µ

n
(︂

1 − 1
µ

)︂ ≤ 2 < µ

Since d = 1 this proves that our our example is 2µ-complex. Note that the following four facts hold for any

level h:

• If for some c we have that ph ≤ 1/b then with probability 1/b row x0 is not sampled at level h. In

particular this implies that x0 is only present at level 0 with high probability, i.e. probability at least∑︁hm

h=1 ph ≤ 2
b ;

• If x0 is in a bucket with 3
√

n ≥ 2
√

n/(1 − 2
µ) elements then with high probability G(B0) ≤ 0;

• If Nh

n ≪ ph ≪ 1 then with high probability G(B) < 0 for any bucket at level h since the µ−1
µ · n ≫ n

µ

negative elements cancel all positive rows;

• If h = hm then roughly µ−1
µ · Nu are −1 and Nu

µ are 1.

All of these follow from the Chernoff bounds using Lemma 2.14. Thus if N0 ≪
√

n/3 then X ′ = SX mimics

the instance X \ {x0}, i.e. the instance X with point x0 removed, as x0 is only appearing at level 0 where it

is canceled by the other points. More precisely X ′ consists of roughly n′ − n′

µ copies of the point −1 and n′

µ

copies of the point 1. After multiplying with the weights we are back to roughly n − n
µ times the point −1

and n
µ times the point 1. To keep the presentation simple we only consider the instance X ′ = −(X \ {x0}).

The proof works the same for other sketched instances that we obtain using the above facts. Consider the

65

function

nf1(X ′r) = (n − n

µ
) · ℓ(−r) + n

µ
· ℓ(r) = n · ℓ(−r) + nr

µ
.

Thus, we have f1(X ′r) = ℓ(−r) + r
µ . Using that ℓ(r) < r + 1 for all r > 0 we get

nf(X ′r) = nf1(X ′r) +
n∑︂

i=1
(xi − f1(X ′r))2

≤ n · ℓ(−r) + nr

µ
+ n(r + 1)2

µ
+ (n − n

µ
) · ℓ(−2r)

≤ 2n · ℓ(−r) + nr

µ
+ n(r + 1)2

µ
.

Using that ℓ(−r) ≤ e−r it holds that

f(X ′r) ≤ 2e−r + r

µ
+ (r + 1)2

µ
.

Taking the derivative we get

f ′(X ′r) ≤ −2e−r + 1
µ

+ 2(r + 1)
µ

.

which is 0 if and only if r = − ln(2r+3
µ) + ln(2) = Ω(ln(µ)). This implies that for r̃ = argminr∈Rf(Xr) we

have that r̃ = Ω(ln(µ)). Now consider our original loss function f(Xr̃). Here we have that

nf(Xr) = nf1(Xr) +
n∑︂

i=1
(xi − f1(Xr))2 ≥ n · ℓ(−r) + nr

µ
+ (

√
n · r)2/2

≥ n · r2/2.

In particular we have that f(Xr̃) = Ω(ln(µ)2). However for r∗ minimizing f(Xr) we have that nf(Xr) ≤

f(0) = ln(2) = O(1).

66

4 ℓp-leverage score sampling for p-probit regression

In this section we present and analyze a sampling algorithm to construct an (1 + ε)-coreset for p-probit

regression.

4.1 Setting and notations

Recall that we are given a data matrix X ∈ Rn×d with rows xi ∈ Rd for i ∈ [n]. Labels will again be omitted

as pointed out in Subsection 2.6. Our goal is to find a weighted ε-coreset (X ′, w) (see Definition 2.15) for the

following target function:

fw(Xβ) =
n∑︂

i=1
− ln(Φp(−xiβ)) · wi.

where

Φp(x) = p1−1/p

2Γ(1/p)

∫︂ x

−∞
exp(−|t|p/p) dt, x ∈ R, p > 0.

is the p-generalized normal distribution. We omit the subscript whenever the weights are uniform, i.e., wi = 1

for all i ∈ [n]. Moreover, to simplify notations we define the individual loss function

g(r) = − ln(Φp(−r)). (16)

4.2 The algorithm

4.2.1 High level description

Before getting into the details we outline the Algorithm:

1. We make a first pass to sketch the data for the purpose of estimating their individual importance.

2. We make another pass to subsample the data proportional to their importance to obtain a coreset.

3. We solve the reduced problem on the coreset using a standard algorithm for convex optimization.

The first two steps are covered by Algorithm 2. This approach implements the sensitivity sampling

framework (see Section 2.5). Recall that the importance measure that it builds upon is called sensitivity,

which measures the worst case contribution of each input point to the objective function. For efficiency reasons

we first compute a sketch of the data in one pass. In the second pass, the sketch is used to approximate the

ℓp leverage scores, which upper bound the sensitivities of the input points. Hereby, we pass them one-by-one

to a reservoir sampler to obtain the coreset. Finally, we can solve the original problem approximately using

gradient descent or other standard methods for convex optimization (see Bubeck, 2015) on the resulting

coreset.

For a more detailed description see the following pseudo code or the proof of Theorem 4.

67

4.2.2 Pseudo code

Algorithm 2 Coreset algorithm for p-generalized probit regression.
Input: data X ∈ Rn×d, number of rows k.;
Output: coreset C = (X ′, w) ∈ Rk×d with k rows.;

1: Initialize sketch X ′′ = 0 ∈ Rn′×d, (where n′ = O(d2) for p ≤ 2 or n′ = O(n1− 2
p log n · poly(d)) for p > 2);

2: for i = 1 . . . n do
3: Draw a random number Bi ∈ [n′]; ▷ hash to bucket Bi

4: Draw a random number σi ∈ {−1, 1}; ▷ random sign
5: if p ̸= 2 then
6: Draw a random number λi ∼ exp(1); ▷ ℓp embedding
7: σi = σi/λ

1/p
i .

8: X ′′
Bi

= X ′′
Bi

+ σi · xi. ▷ sketch
9: Compute the QR-decomposition of X ′′ = QR.; ▷ well-conditioned basis

10: Initialize coreset X ′ = 0 ∈ Rk×d ▷ coreset points
11: Initialize weights w = 0 ∈ Rk; ▷ coreset weights
12: Initialize k independent weighted reservoir samplers Sj , sampling row X ′

j , for each j ∈ [k];
13: Initialize G = I ∈ Rd×d; ▷ Identity matrix
14: if p = 2 and ln n < d then
15: Draw G ∈ Rd×ln n with Gij ∼ N(0, 1

ln n); ▷ JL-embedding
16: for i = 1 . . . n do
17: Compute qi = ∥xi(R−1G)∥p

p; ▷ ℓp-leverage score approximation
18: for j = 1 . . . k do
19: Feed si = qi + 1/n to Sj ; ▷ unnormalized sampling probabilities
20: if Sj samples xi then
21: wj = 1/(k · si); ▷ unnormalized weights
22: X ′

j = xi; ▷ save row identity in the coreset
23: w = w ·

∑︁n
i=1 si; ▷ normalize weights

24: return C = (X ′, w);

4.3 Analysis

In the subsection we will analyze the target function and the algorithm.

4.3.1 Outline of the analysis

Our analysis is structured as follows:

We first analyze our loss function.

1) We then look at the tail behavior of the negative logarithm of p-generalized normal distribution and

prove that it behaves non-asymptotically for all r roughly like rp on the positive part of the reals and

like exp(−|r|p) on the negative part.

2) We then prove important properties of the individual loss function g itself that we need to bound

sensitivities and VC-dimension

68

3) Next we look at the range space of the function space F = {gxi,w | w ∈ R≥0, i ∈ [n]} where gx,w(β) =

wg(xβ). We show that, when limiting the number of the weights, we can bound both the sensitivities

and the VC-dimension and thus are able to use the sensitivity framework described in Section 2.5.

4) Then we show how to approximate the ℓp-leverage scores which are used as bounds for the sensitivities.

5) Last we combine everything to prove our main result.

4.3.2 Tails of the p-generalized normal distribution

For the normal distribution Φ2(r) = 1√
2π

·
∫︁ r

−∞ exp(−|t|2

2) Gordon (1941) proved that for any r ≥ 0 it holds

that

r

r2 + 1 · 1√
2π

· exp
(︃

−r2

2

)︃
≤ Φ2(−r) ≤ 1

r
· 1√

2π
· exp

(︃
−r2

2

)︃

or equivalently

(︃
1 − 1

r2 + 1

)︃
· 1

r
· 1√

2π
· exp(−r2

2) ≤ Φ2(−r) ≤ 1
r

· 1√
2π

· exp(−r2

2).

In this section we generalize the analysis to the p-generalized normal distribution. We will present two

proofs to show a similar result for general p. More precisely we show that

|Φp(−r) − r−(p−1) exp
(︂

−rp

p

)︂
|

exp
(︂

−rp

p

)︂ ∈ O(r−p)

for r ≥ 0. The first proof gives a slightly weaker result but helps us understanding the integral appearing in

in the generalized normal distribution. The second proof is less intuitive but gives a tighter result.

In this subsection we always assume that r ≥ 0. For our first approach we consider the functions

f1(r) = rp−1 ∫︁∞
r

exp(−|t|p/p) dt and the function h1(r) = exp(−|r|p/p)−f1(r)
exp(−|r|p/p) . Note that we have that

f1(r) = (1 − h1(r)) exp(−|r|p/p)

69

and that

h1(r) = exp(|r|p/p)(exp(−|r|p/p) − f1(r))

= exp(|r|p/p)
(︃∫︂ ∞

r

tp−1 exp(−tp/p) dt − rp−1
∫︂ ∞

r

exp(−|t|p/p) dt

)︃
=
∫︂ ∞

r

(tp−1 − rp−1) exp(−(tp − rp)/p) dt

=
∫︂ ∞

0
((r + t)p−1 − rp−1) exp(−((r + t)p − rp)/p) dt.

Lemma 4.1. The following claims hold:

1 For p = 1 we have that h1(r) = 0 for all r;

2 For p = 2 it holds that h1 is a monotonically decreasing function;

3 It holds that h1(r) ≤ (p − 1)r−p.

To prove this Lemma we need the following Lemma:

Lemma 4.2. For any a, b ∈ R≥0 and p ≥ 1 it holds that (a + b)p ≥ ap + pap−1b.

Proof. First assume that a ≥ b. Using Newton’s generalized binomial theorem we get that

(a + b)p = ap + pap−1b + p(p − 1)
2! ap−2b2 + · · · .

If p is an integer all terms are positive and the Lemma follows. If p is not an integer then at least the first

three terms are positive. More precisely the first ⌈p⌉ terms are positive. Note that for k ≥ ⌊p⌋ the sequence

ak = |(p)k|
k! · ap−kbk, where (p)k = p(p − 1) · · · (p − k + 1), is monotonically decreasing as ak+1 = |p−k|

k+1 · b
a · ak

and both |p−k|
k+1 and b

a are less than 1 for k ≥ ⌊p⌋. Thus the sum
∑︁

k=⌊p⌋
(p)k

k! · ap−kbk is greater or equal to

zero as the first term is positive, the sign of the terms is alternating and the absolute value of the terms is

decreasing. We conclude that (a + b)p ≥ ap + pap−1b.

Now assume that b ≥ a. Then by the same argumentation as above we have that (a + b)p ≥ bp + pbp−1a.

If p ≥ 2 then we have that bp−1a ≥ ap−1b and thus bp + pbp−1a ≥ ap + pap−1b. To show the inequality for

p ∈ (1, 2) note that bp + pbp−1a ≥ ap + pap−1b is equivalent to

bp − ap ≥ p(ap−1b − bp−1a).

The last inequality follows by

bp − ap =
∫︂ b

a

ptp−1 dt ≥ (b − a)pap−1 = p(bap−1 − ap) ≥ p(bap−1 − bp−1a).

70

Proof. 1) Note that for p = 1 and r ≥ 0 we have that f1(r) =
∫︁∞

r
exp(−|t|) dt = exp(−r) which implies that

h1(r) = 0 for any r ≥ 0.

2) For p = 2 and r ≥ 0 we have that

h1(r) = exp(−r2/2) − f1(2)
exp(−r2/2) =

∫︂ ∞

0
((r + t) − r) exp(−((r + t)2 − r2)/2) dt =

∫︂ ∞

0
t exp(−(t2/2 + rt) dt

which is monotonically decreasing in r.

3)For any p ≥ 1 we have that (t + r)p − rp ≥ rp + ptrp−1 − rp = ptrp−1 by Lemma 4.2. Further recall

that for any function f : R → R the derivative d
dr

∫︁∞
r

f(t) dt equals limt→∞ f(t) − f(r) if the integral is finite.

We conclude that

h1(r) =
∫︂ ∞

0
((r + t)p−1 − rp−1) exp(−((r + t)p − rp)/p) dt

= − d

dr

∫︂ ∞

0
exp(−((r + t)p − rp)/p) dt

≥ − d

dr

∫︂ ∞

0
exp(−trp−1) dt

= − d

dr

(︃
− 1

rp−1 · exp(−trp−1)
)︃⃓⃓⃓⃓
⃓
∞

0

= − d

dr

1
rp−1 = (p − 1)r−p.

Now using that f1(r) = (1 − h1(r)) exp(−|r|p/p) we get:

Corollary 4.3. It holds that
(︁
1 − p−1

rp

)︁
· p1−1/p

2Γ(1/p) exp(−|r|p/p) ≤ Φp(−r) ≤ 1
r · p1−1/p

2Γ(1/p) exp(−|r|p/p).

For our second approach we consider h(r) := exp(|r|p/p)
∫︁∞

r
exp(−|t|p/p) dt. This approach is similar to

the approach of Gordon (1941) for the case p = 2, i.e., the standard normal distribution.

Lemma 4.4. The following holds for any r > 0:

h′(r) = rp−1h(r) − 1; (17)

h′′(r) = (p − 1)rp−2h(r) + rp−1h′(r); (18)

h′′(r) = rp + p − 1
r

h′(r) + p − 1
r

; (19)

h′′′(r) =
(︃

1 + p

rp + p − 1 + p − 2
rp

)︃
rp−1h′′(r) − (p − 1)prp−2

rp + p − 1 ; (20)

h(r) > 0; (21)

h′(r) < 0; (22)

h(r) <
1

rp−1 (23)

71

Further if r ≥ 1 or if p ≥ 2 and r > 0 then it holds that

h′′(r) ≥ 0; (24)

h(r) ≥ r

rp + p − 1 . (25)

Proof. Equations (17) and (18) can be derived by a direct calculation of the derivatives. Note that (17) is

equivalent to

h(r) = h′(r) + 1
rp−1 (26)

Equation (19) follows by substitution of (26) in (18). Equation (18) is equivalent to

h(r) = h′′(r)
(p − 1)rp−2 − r

p − 1h′(r) (27)

To get (20) we first note that by (17) and then (27) it holds

p − 1
r2 h′(r) = p − 1

r2 (rp−1h(r) − 1)

= p − 1
r2 rp−1h(r) − p − 1

r2

= h′′(r)
r

− rp−2h′(r) − p − 1
r2 . (28)

Further note that (19) is equivalent to

h′(r) = rh′′(r)
rp + p − 1 − p − 1

rp + p − 1 (29)

Taking the derivative of (19) and using the equations (28) and (29) we get

h′′′(r) = (p − 1)rp−2h′(r) − p − 1
r2 h′(r) + rp−1h′′(r)

+ p − 1
r

h′′(r) − p − 1
r2

(28)= prp−2h′(r) + rp−1h′′(r) + p − 2
r

h′′(r)

(29)= prp−2 ·
(︃

r

rp + p − 1h′′(r) − p − 1
rp + p − 1

)︃
+ rp−1h′′(r) + p − 2

r
h′′(r)

=
(︃

1 + p

rp + p − 1 + p − 2
rp

)︃
rp−1h′′(r)

− (p − 1)prp−2

rp + p − 1 .

72

Equation (21) follows since all terms appearing in h(r) are positive.

For (22) we note that

rp−1h(r) = exp(rp/p)
∫︂ ∞

r

rp−1 exp(−|t|p/p) dt

< exp(rp/p)
∫︂ ∞

r

p

p
tp−1 exp(−|t|p/p) dt

= exp(rp/p) · exp(−rp/p) = 1 (30)

and thus (23) follows from dividing by rp−1 and (22) also follows from (30) using Equation (17).

Next we prove (24): For r ≥ 1 it holds that
(︂

1 + p
rp+p−1 + p−2

rp

)︂
rp−1 > 0. Now let r0 ≥ 1. Assume for the

sake of contradiction that h′′(r0) < 0. Then using (20) we also get h′′′(r0) ≤
(︂

1 + p
rp+p−1 + p−2

rp

)︂
rp−1h′′(r0) <

0. Thus we have h′′(r) < h′′(r0) for all r > r0. Consequently h′ is also strictly decreasing by a rate of at least

h′′(r0) starting at r0. This implies that there exists r′ > r0 with h(r′) < 0, which contradicts (21) and thus

(24) follows. Lastly (25) follows by substitution of (17) in (18) and using (24).

4.3.3 Properties of g

In this section we will determine useful properties of g where g(r) = − ln(Φp(−r)). Recall from Section 2.8.1

that

g′(r) = φp(r)
1 − Φ(r) = exp(−|r|p/p)∫︁∞

r
exp(−|t|p/p) dt

= 1
exp(|r|p/p)

∫︁∞
r

exp(−|t|p/p) dt
> 0.

For r ∈ R with r ≥ 0 we can omit the absolute value bars. Note that 1
g′(r) = exp(|r|p/p)

∫︁∞
r

exp(−|t|p/p) dt =

h(r). Our aim is to characterize the tail behavior of the p-generalized normal distribution.

Lemma 4.5. The function g is convex and strictly increasing. Further for any r ≥ 0 we have

g′(r) ≥ rp−1,

for any r ≥ 1 we have

g′(r) ≤ rp−1 + p − 1
r

.

and there exists a constant c1 > 0 such that

g(r) ≥ c1e−2|r|p/p

73

for any r < 0.

Proof. First note that g = − ln(Φp(−r)) is strictly increasing since Φ(−r) ∈ (0, 1) is strictly decreasing for

increasing r and − ln(t) is strictly increasing for decreasing t. Next consider r ≥ 0. Then g′′(r) =
(︂

1
h(r)

)︂′
=

− h′(r)
h(r)2 > 0 by (22) thus g is convex on [0, ∞). For r < 0 we have derived in Section 2.8.1 that

g′′(r) = g′(r)(g′(r) − sgn(r)|r|p−1).

For r < 0 all terms are positive. Thus g(r) is convex for all r ∈ R. The bounds for g′ follow immediately by

the bounds for h from Lemma 4.4 (23) and (25).

Now, for r < −1 using the Taylor series of − ln(t) at t = 1, the normalizing constant

Cp =
∫︂ ∞

−∞
exp(−|t|p/p) dt = 2Γ(1/p)

p1−1/p

and Equation (25) we have

g(r) = − ln
(︃

1 − C−1
p

∫︂ ∞

−r

exp(−|t|p/p) dt

)︃
≥ C−1

p

∫︂ ∞

−r

exp(−|t|p/p) dt

≥ C−1
p exp(−(−r)p/p) · −r

(−r)p + p − 1 ≥ exp(−2(−r)p/p)
pCp

.

For any r ∈ [−1, 0] we have g(r) ≥ g(−1) ≥ g(−1) exp(−2(−r)p/p). Thus for c1 = min{g(−1), 1/(pCp)} we

have g(r) ≥ c1 exp(−(−r)p/p).

These properties can be used to prove the following lemma:

Lemma 4.6. Set G+
p (r) = rp

p if r ≥ 0 and G+
p (r) = 0 if r < 0. There exists c2 > 0 depending only on p such

that for any ε ∈ (0, e−1) and any r ∈ R it holds that

G+
p (r) ≤ g(r) ≤ (1 + ε)G+

p (r) + c2 ln
(︂p

ε

)︂
. (31)

Proof. For r < 0 we have g(r) > 0 = G+
p (r). For r ≥ 0 by using Lemma 4.5 we get

g(r) ≥ g(0) +
∫︂ r

0
g′(t) dt ≥ g(0) +

∫︂ r

0
tp−1 dt

= g(0) + G+
p (r) ≥ G+

p (r).

For the second inequality we split the domain of g into three parts: First since g is monotonically increasing

74

for any r, we have g(r) ≤ g(1) for r ∈ (−∞, 1]. For r ≥ 1, by using Lemma 4.5, it holds that

g(r) ≤ g(1) +
∫︂ r

1
tp−1 + p − 1

t
dt

= g(1) + G+
p (r) − 1

p
+ (p − 1) ln(r). (32)

Now consider r ∈ (1, r0] where r0 = p3

ε3 . Then we have

g(r) ≤ g(1) + G+
p (r) + (p − 1) ln(r0) = g(1) + G+

p (r) + 3(p − 1) ln
(︂p

ε

)︂
Our last step is to show that for r > r0 it holds that (p − 1) ln(r) ≤ εG+

p (r). We assume without loss of

generality that ε−1 ≥ 2. Now the equation

εG+
p (r) = ε

rp

p
≥ (p − 1) ln(r)

is equivalent to

exp
(︃

εrp

p2 − p

)︃
≥ r.

Note that rp ≥ r holds since r ≥ r0 > 1 and thus we get for any r = ar0 with a ≥ 1 that

exp
(︃

εrp

p2 − p

)︃
≥ exp

(︃
εr

p2

)︃
≥ exp

(︃
εar0

p2

)︃
≥ exp

(︂ap

ε2

)︂
≥ exp

(︂
2a · p

ε

)︂
≥ ar0 = r.

The last inequality follows from the fact that e2az ≥ az3 always holds in our case where z ≥ 2 and a ≥ 1.

Consequently it holds for any r ∈ [r0, ∞) that

g(r) ≤ g(1) + G+
p (r) + (p − 1) ln(r) ≤ g(1) + (1 + ε)G+

p (r).

Combining all three inequalities we note that for any r ∈ R it holds that

g(r) ≤ g(1) + (1 + ε)G+
p (r) + (p − 1) ln

(︃
p3

ε3

)︃
= (1 + ε)G+

p (r) +
(︃

g(1)
ln(p/ε) + 3(p − 1)

)︃
ln
(︂p

ε

)︂
≤ (1 + ε)G+

p (r) + c2 ln
(︂p

ε

)︂
where c2 := (g(1) + 3(p − 1)) ≥ (g(1)

ln(p/ε) + 3(p − 1)) holds, since ε−1 ≥ e and p ≥ 1.

For the p probit loss we can get a similar result as for the logistic loss in Lemma 3.3:

75

Lemma 4.7. Assume X ∈ Rn×d is µ-complex. Then we have for any β ∈ Rd that

f(Xβ) = Ω
(︃

n

µ
(1 + ln(µ))

)︃
.

Proof. Let z = Xβ. For r ≤ 0 we have g(r) ≥ c1e−2|r|p/p by Lemma 4.5. For r ≥ 0 we have g(r) =

g(0) +
∫︁ r

0 g′(t) dt. Recall that

g′(t) = 1
h(t) ≥ tp−1

and thus

g(r) ≥ g(0) +
∫︂ r

0
tp−1 dt = g(0) + rp

p
. (33)

Set z− = 1
n

∑︁
zi≤0 |zi|p and z+ = 1

n

∑︁
zi≥0 |zi|p ≥ z−

µ . We set z− ∈ Rn to be the vector with z−
i = zi if zi < 0

and z−
i = 0 else. Using convexity of e−r we can apply Jensens inequality to conclude that

f(Xβ) =
n∑︂

i=1
g(zi)

≥
n∑︂

i=1
min{g(zi), g(0)} +

∑︂
zi≥0

∫︂ zi

0
tp−1 dt

≥
n∑︂

i=1
ce−2|z−

i
|p/p + 1

p

∑︂
zi≥0

zp
i

≥ nc1e−2(z−)/p + nz+

p

≥ nc1e−2(z−)/p + nz−

µp
.

Taking the derivative of ℓ(r) = nc1e−(r)/p + nr
µp , i.e. ℓ′(r) = n

p (−c1e−2(r)/p + 1
µ) which is 0 if r

p = ln(c1µ)/2.

Thus it holds that

f(Xβ) ≥ ℓ(z−) ≥ n

2µ
(1 + ln(c1µ))

which is exactly what we needed to show.

Using similar arguments as in the previous lemma we can further show the following:

Lemma 4.8. Let β∗ ∈ Rd be the minimizer of minβ∈Rd f(Xβ). Then there exists some constants c0 such

that the following hold:

1) It holds that ∥Xβ∗∥p
p ≤ pn ln(c0µ);

2) For any β ∈ Rd with ∥Xβ∥p
p ≥ pn ln(2c0µ) + εnµ/2 it holds that f(Xβ) ≥ f(Xβ∗)(1 + ε).

76

Proof. For r ≤ 0 we have that g′(r) ≤ φp(r)/2 ≤ c0 exp(−|r|p/p) for some constant c0 as 1 − Φp(r) ≤ 1/2.

For r ≥ 0 we have that g′(r) ≥ rp−1 by Lemma 4.5.

1) This follows by using the same argumentation as in the proof of Lemma 4.7: We set β = β∗/∥Xβ∗∥p

and z = Xβ. Now consider the function f1(r) = f(Xβr1/p) =
∑︁n

i=1 g(xiβr1/p). We have that

f ′
1(r) =

n∑︂
i=1

zir
1/p−1

p
· g′(zir

1/p)

=
∑︂
zi≥0

zir
1/p−1

p
· g′(zir

1/p) +
∑︂
zi<0

zir
1/p−1

p
· g′(zir

1/p)

≥
∑︂
zi≥0

zir
1/p−1

p
· (zir)p−1 − r1/p−1

∑︂
zi<0

c0|zi| exp(−|zir|p/p)

=
∑︂
zi≥0

zp
i

p
− r1/p−1

∑︂
zi<0

c0|zi| exp(−|zi|pr/p).

Set z− = ∥z∥p
p/n. Observe that

∑︁
zi<0 c0|zi| exp(−|zi|pr/p) ≤ c0z− exp(−z−r/p) ≤ c0

n · exp(−r/np). Using

the convexity of the exponential function as in previous proof we get that for r ≥ 1 it holds that

f ′
1(r) ≥ ∥z+∥p

p − c0z−n exp(−z−r/p) ≥ 1
µ

− c0 exp(−r/pn).

Consequently for r > rm := pn ln(c0µ) we have that f ′
1(r) > 0 and thus, as for Xβr = Xβ∗ it holds that

f ′
1(r) = 0, it must hold that

∥Xβ∗∥p
p ≤ ∥Xβr1/p

m ∥p
p = rm = 1 · pn ln(c0µ).

2) We are using the same argumentation as in 1) but here we consider any β with ∥β∥p
p = 1. Define f1(r)

as before. Using the equation from part 1) we get that for r ≥ pn ln(2c0µ) it holds that f ′
1(r) ≥ 1

2µ . Since

f(Xβ∗) ≤ f(0) = n ln(2) < n we conclude that if r ≥ pn ln(2c0µ) + εnµ/2 it holds that

f(Xβr) ≥ f(Xβrm) +
∫︂ r

rm

f ′
1(t)dt ≥ f(Xβ∗)(1 + ε).

Consequently the optimum β cannot be large and any β with f(Xβ) ≤ f(Xβ∗)(1 + ε) must be close to

β∗:

Corollary 4.9. For any β ∈ Rd with ∥Xβ − Xβ∗∥p
p ≥ 2pn ln(2c0µ) + εnµ/2 it holds that f(Xβ) ≥

f(Xβ∗)(1 + ε).

77

4.3.4 Bounding the VC-Dimension

In order to apply the sensitivity framework we need to bound both, the VC-dimension of the appropriate

range space as well as the sensitivities. In this subsection we look at the VC-dimension. We do not know

any bounds on the VC-dimension of the range space of the function space F = {gx,w | w ∈ R≥0, x ∈ Rd}

where gx,w(β) = wg(xβ). However if we limit the number of weights w allowed then we are able to bound

the VC-dimension. Thus order to bound the VC-dimension of the range space induced by the weighted set

of functions we reduce the number of distinct weights considered. We first round all sensitivities to their

closest power of 2. The new total sensitivity S′ is at most twice the old sensitivity S. Next we increase all

sensitivities smaller than S
n to S

n . The new sensitivity is at most S′ + n · S/n = 3S. The next step is to split

the data into high sensitivity points and low sensitivity points.

Lemma 4.10. Let I1 be the index set of all data points with si > s0 := µSc ln(pε−1)
εn for some constant

c ∈ R>0. Then for all β ∈ Rd it holds that

∑︂
i∈I1

G+
p (xiβ) ≤

∑︂
i∈I1

g(xiβ) ≤ (1 + ε)
∑︂
i∈I1

G+
p (xiβ) + ε · n

µ
.

Proof. We set c = c2 as in Lemma 4.6. Note that there are at most S
s0

= εn
c ln(pε−1)µ points in I1. Thus the

lemma follows by applying Lemma 4.6 to each point in I1.

As a consequence we get the following corollary:

Corollary 4.11. Let I2 = [n] \ I1. Further let (X ′, w) ∈ Rn′×d × Rn′ with rows x′
i = xπ(i) for some mapping

π : [n′] → [n]. We set I ′
1 = {i ∈ [n′] | π(i) ∈ I1} and similarly I ′

2 = {i ∈ [n′] | π(i) ∈ I2}. Further define

f̃w(X ′β) =
∑︁

i∈I′
2

wig(x′
iβ) +

∑︁
i∈I′

1
wiG

+
p (x′

iβ) and by f̃(Xβ) =
∑︁

i∈I2
g(xiβ) +

∑︁
i∈I1

G+
p (xiβ). Assume

that for all β ∈ Rd it holds

|f̃w(X ′β) − f̃(Xβ)| ≤ εf̃(Xβ) (34)

and
∑︁

i∈I′
1

wi ≤ 2S
s0

. Further assume that ε ≤ 1
4 . Then (X ′, w) is a 7ε-coreset for the original f .

Proof of Corollary 4.11. Observe that by triangle inequality

|fw(X ′β) − f(Xβ)| ≤ |fw(X ′β) − f̃w(X ′β)| + |f̃w(X ′β) − f̃(Xβ)| + |f̃(Xβ) − f(Xβ)| (35)

By Lemma 4.10 it holds that

f̃(Xβ) ≤ f(Xβ) ≤ f̃(Xβ) + ε
∑︂
i∈I1

G+
p (xiβ) + ε · n

µ

≤ f̃(Xβ) + 2εf(Xβ)

78

We thus have that

|f̃(Xβ) − f(Xβ)| ≤ 2εf(Xβ).

Analogously to Lemma 4.10, using the bounded size of
∑︁

i∈I′
1

wi and the assumption (34) one can show that

f̃w(X ′β) ≤ fw(X ′β) ≤ f̃w(X ′β) + ε
∑︂
i∈I′

1

wiG
+
p (x′

iβ) +
∑︂
i∈I′

1

wi · c2 ln
(︂p

ε

)︂
≤ f̃w(X ′β) + εf̃w(X ′β) + 2S

s0
· c2 ln

(︂p

ε

)︂
(34)
≤ f̃w(X ′β) + ε(1 + ε)f̃(Xβ) + 2ε

n

µ

≤ f̃w(X ′β) + 2εf̃(Xβ) + 2εf(Xβ)

≤ f̃w(X ′β) + 4εf(Xβ)

and thus we have

|fw(X ′β) − f̃w(X ′β)| ≤ 4εf(Xβ).

Now combining everything into Equation (35) yields

|fw(X ′β) − f(Xβ)| ≤ |fw(X ′β) − f̃w(X ′β)| + |f̃w(X ′β) − f̃(Xβ)| + |f̃(Xβ) − f(Xβ)|

≤ 4εf(Xβ) + εf̃(Xβ) + 2εf(Xβ)

≤ 7εf(Xβ)

and thus (X ′, w) is a 7ε-coreset.

Before we continue showing that for the set of functions that we consider, the VC-dimension is not too

large, we show that the assumption made in Corollary 4.11 that
∑︁

i∈I′
1

wi ≤ 2S
s0

is reasonable, i.e., that it

holds with high probability in our context:

Lemma 4.12. Assume, as in the context of Proposition 2.23, that for R with |R| = k where each element of

R is sampled i.i.d. with probability pj = sj

S from F and wi = S
sj |R| = 1

kpj
denotes the weight of a function

fi ∈ R that corresponds to fj ∈ F . Then with probability at least 1 − 1
k it holds that

∑︁
i∈I′

1
wi ≤ 2S

s0
.

Proof of Lemma 4.12. Let xπ(i) be the ith element of R. We set Zi = wπ(i) if π(i) ∈ I1 and Zi = 0 otherwise.

Then λ = E(Zi) =
∑︁

j∈I1
pjwj =

∑︁
j∈I1

pj
1

kpj
= |I1|

k . Recall from Lemma 4.10 that |I1| ≤ S
s0

and for j ∈ I1

we have sj > s0. For the variance it follows

E[(Zi − λ)2] = E[Z2
i] − E[Zi]2 ≤ E[Z2

i] =
∑︂
j∈I1

pjw2
j =

∑︂
j∈I1

1
k2pj

≤
∑︂
j∈I1

S

k2s0
= |I1| · S

k2s0
≤ S2

s2
0k2 .

79

Thus by independence of the Zi the variance of Z =
∑︁k

i=1 Zi is bounded by S2

s2
0k

. Now applying Chebyshev’s

inequality yields

P

(︃
Z ≥ 2 · S

s0

)︃
≤ P

(︃
Z − E(Z) ≥ S

s0

)︃
≤ Var(Z)

S/s0
≤ S2/(s2

0k)
S2/s2

0
= 1

k
.

By the technical Corollary 4.11 our goal of obtaining a coreset for f reduces to obtaining a coreset for the

substitute function

f̃(Xβ) =
∑︂

i∈[n]\I1

g(xiβ) +
∑︂
i∈I1

G+
p (xiβ).

To this end we set F1 = {wiG
+
i | i ∈ I1} where G+

i (β) = G+
p (xiβ) and F2 = {wigi | i ∈ I2 = [n] \ I1} where

gi(β) = g(xiβ). Further we set F = F1 ∪ F2 and show that the VC-dimension of F can be bounded as

desired:

Lemma 4.13. For the VC-dimension ∆ of RF we have

∆ ≤ (d + 1)
(︁
log2

(︁
µcε−2)︁+ 2

)︁
= O(d log(µ/ε)).

Proof. First note that for any G ⊆ F1, β ∈ Rd and r ∈ R it holds that rangeF1(β, r) ∩ G = rangeG(β, r). We

show that the VC-dimension of RF1 is at most d + 1. Indeed, it holds that rangeF1(β, r) = F1 if r ≤ 0 since

all weights are positive and G+
p is also positive. Otherwise we have that

rangeF1(β, r) = {wiG
+
i ∈ F1 | wiG

+
i (β) ≥ r}

= {wiG
+
i ∈ F1 | wi(xiβ)p/p ≥ r ∧ xiβ > 0}

=
{︄

wiG
+
i ∈ F1 | xiβ ≥

(︃
pr

wi

)︃1/p
}︄

.

We conclude that for G ⊆ F1 it holds that

|{G ∩ R | R ∈ ranges(F1)}| = |{rangeG(β, r) | β ∈ Rd, r ∈ R>0} ∪ {rangeG(β, r) | β ∈ Rd, r ∈ R≤0}|

=
⃓⃓⃓{︂{︂

wiG
+
i ∈ G | xiβ ≥ (pr/wi)1/p

}︂
| β ∈ Rd, r ∈ R≥0

}︂
∪ {G}

⃓⃓⃓
≤ |{{wiG

+
i ∈ G | xiβ − s ≥ 0} | β ∈ Rd, s ∈ R}|

which corresponds to a set of affine hyperplane classifiers β ↦→ 1xiβ−s≥0, which have VC-dimension d + 1

(Kearns and Vazirani, 1994). Thus, the induced range space RF1 has VC-dimension at most d + 1.

Next consider F2. Note that g is a strictly monotonic and thus also invertible function. First fix a weight

80

v ∈ R>0 and let Fv = {wigi | wi = v}. We have

rangeFv
(β, r) = {wigi ∈ Fv | wigi(β) ≥ r}

=
{︂

wigi ∈ Fv | xiβ ≥ g−1
(︂ r

v

)︂}︂
which corresponds to a set of points shattered by the affine hyperplane classifier β ↦→ 1xiβ−g−1(r

v)≥0

and thus the VC-dimension of the induced range space RFv
is at most d + 1. Let W be the set of all

weights for functions in F2. Since all weights are powers of 2, and we have S
n ≤ v ≤ µSc ln(pε−1)

εn it holds

that|W | ≤ log2(µc ln(pε−1)
ε) ≤

(︁
log2

(︁
µcε−2)︁+ 2

)︁
. Now we claim that the VC-dimension of RF is at most

(|W | + 1)(d + 1) as F = F1 ∪
⋃︁

v∈W Fv. Assume for the sake of contradiction that there exists G ⊂ F

such that |G| > (|W | + 1)(d + 1) and G is shattered by the ranges of F . Then by the pigeonhole principle

G′ = G ∩ F ′ > d + 1 for some F ′ ∈ {F1} ∪
⋃︁

v∈W {Fv}. But due to the pairwise disjointness of all of F1 and

Fv, G′ must be shattered by the ranges of F ′, which contradicts that their VC-dimension is bounded by

d + 1, cf. Lemma 11 in (Munteanu et al., 2018).

4.3.5 Bounding the Sensitivities

In this subsection we bound the sensitivities. Therefore recall that ℓp-leverage scores of X are defined by

uj = supβ∈Rd\{0}
|xjβ|p∑︁n

i=1
|xiβ|p

, cf. (Dasgupta et al., 2009). Also recall that the supremum is attained by some

β ∈ Rd since

sup
β∈Rd\{0}

|xjβ|p∑︁n
i=1 |xiβ|p

= sup
β∈Rd\{0}

∥β∥p
2 · |xjβ/∥β∥2|p

∥β∥p
2 ·
∑︁n

i=1 |xiβ/∥β∥2|p
= sup

β∈Rd,∥β∥2=1

|xjβ|p∑︁n
i=1 |xiβ|p

and {β ∈ Rd | ∥β∥2 = 1} is a compact set. We also note that up ≤ 1 always holds. The ℓp-leverage scores can

be used to bound the sensitivities:

Lemma 4.14. There is a constant cs such that the sensitivity ζi of xi, i ∈ [n] for f̃ is bounded by

ζi ≤ csµ

(︃
1
n

+ ui

)︃

Proof of Lemma 4.14. First note that by Lemma 4.7 it holds that f(Xβ) ≥ n
µ and thus by Lemma 4.10

f̃(Xβ) ≥ f(Xβ) − ε
∑︁

i∈I1
(xiβ) − ε · n

µ ≥ f(Xβ)
2 ≥ n

2µ holds for small enough ε ≤ 1/4. Thus for any β with

xiβ ≤ 1 we have (xiβ)
f̃(Xβ) ≤ g(xiβ)

f̃(Xβ) ≤ g(1)
n/2µ = 2g(1) µ

n .

Further for β with xiβ > 1 it holds that g(xiβ) ≤ c3(xiβ)p for some constant c3 ≤ 2g(1) + 1 since by

81

Lemma 3.1 and using p−1
t ≤ p − 1 for t ≥ 1 it holds that

g(xiβ) = g(1) +
∫︂ xiβ

1
g′(t) dt

≤ g(1) +
∫︂ xiβ

1
tp−1 + p − 1

t
dt

≤ g(1) +
∫︂ xiβ

1
tp−1 + p − 1 dt

≤ g(1) +
∫︂ xiβ

1
tp−1 + (p − 1)tp−1 dt

≤ g(1) +
∫︂ xiβ

1
ptp−1 dt

= g(1) + (xiβ)p − 1 ≤ (g(1) + 1)(xiβ)p.

Also note that by definition of µ it holds that

1∑︁
xjβ>0 |xjβ|p(1 + µ) ≤ 1∑︁

xjβ>0 |xjβ|p +
∑︁

xjβ<0 |xjβ|p
= 1∑︁n

j=1 |xjβ|p

and thus
1∑︁

xjβ>0 |xjβ|p
≤ 1 + µ∑︁n

j=1 |xjβ|p
.

Now setting c3 = 2g(1) + 1 and using f̃(Xβ) ≥
∑︁

xjβ>0
|xjβ|p

p =
∑︁n

j=1(xjβ) we get

(xiβ)
f̃(Xβ)

≤ g(xiβ)
f̃(Xβ)

≤ c3

1/p
· |xiβ|p∑︁

xjβ>0 |xjβ|p
≤ pc3(1 + µ)ui ≤ 2pc3µui := csµui.

Combining both bounds gives us the bound for ζi.

4.3.6 Well Conditioned Bases and Approximate Leverage Scores

In order to approximate the leverage scores we will need well conditioned bases:

An (α, β, p)-well-conditioned basis V is a basis that preserves the norm of each vector well, in the sense

that its entry-wise p norm ∥V ∥p ≤ α and for all z ∈ Rd : ∥z∥q ≤ β∥V z∥p, where q denotes the dual norm to

p, i.e., 1
p + 1

q = 1, see Definition 2.6. We will first state the properties of the (α, β, p)-well-conditioned basis

and then we describe how to compute the basis.

Lemma 4.15. Let V be an (α, β, p)-well-conditioned basis for the column space of X. Then it holds for all

i ∈ [n] that ui ≤ βp∥vi∥p
p. As a direct consequence we have

∑︁n
i=1 ui ≤ βp∥V ∥p

p ≤ (αβ)p = dO(p).

Proof. We have by a change of basis

ui = sup
z∈Rd\{0}

|(Xz)i|p

∥Xz∥p
p

= sup
z∈Rd\{0}

|(V z)i|p

∥V z∥p
p

.

82

Now assume that z attains the value supz∈Rd\{0}
|(V z)i|p

∥V z∥p
p

. Then we get by using Hölder’s inequality and the

properties of V that

ui = |(V z)i|p

∥V z∥p
p

≤ βp|(V z)i|p

∥z∥p
q

≤
βp∥vi∥p

p∥z∥p
q

∥z∥p
q

= βp∥vi∥p
p.

An (α, β, p)-well-conditioned basis can be computed using sketching techniques.

Lemma 4.16. (Woodruff and Zhang, 2013; Clarkson and Woodruff, 2017) There exists a random embedding

matrix Π ∈ Rn′×n and γ = O(d log(d)) such that

∀β ∈ Rd : 1
γ1/p

∥Xβ∥p ≤ ∥ΠXβ∥q ≤ γ1/p∥Xβ∥p

holds with constant probability, where

(q, n′) =

⎧⎪⎨⎪⎩(2, O(d2)) if p ∈ [1, 2]

(∞, O(n1− 2
p log n(d log d)1+ 2

p + d5+4p)) if p ∈ (2, ∞).

For p = 2 we have γ = 2. Further ΠX can be computed in O(nnz(X)) time.

The sketching matrix Π can be constructed as follows: First let D ∈ Rn×n be the diagonal matrix with

Dii = 1 or Dii = −1 each with probability 1/2. Further let h : [n] → [n′] be a random map where h hashes

each entry of [n] to one of n′ buckets uniformly at random. Set Ψ ∈ Rn′×n to be the matrix where Ψh(i)i = 1

and Ψji = 0 if j ̸= h(i). For p = 2 it suffices to take Π = ΨD (Clarkson and Woodruff, 2017). Otherwise if

p ̸= 2 let E be a diagonal matrix with Eii = 1/λ
1/p
i where λi ∼ exp(1) is drawn from a standard exponential

distribution and set Π = ΨDE (Woodruff and Zhang, 2013).

Lemma 4.17. Munteanu (2018) If Π satisfies Lemma 4.16 and ΠX = QR is the QR-decomposition of ΠX

then V = XR−1 is an (α, β, p)-well-conditioned basis for the columnspace of X, where for γ = O(d log(d))

we have

(α, β) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(
√

2d,
√

2), for p = 2

(dγ1/p, γ1/p), for p ∈ [1, 2)

(dγ1/p, dγ1/p), for p ∈ (2, ∞).

Proof. We are going to use the fact that Q = ΠXR is an orthonormal basis. Let ei for i ∈ [d] denote the ith

83

standard basis vector. We define (R−1)(i) to be the ith column of R−1. We have

∥V ∥p =
⃦⃦
XR−1⃦⃦

p
=
⃦⃦⃦⃦
⃦X

d∑︂
i=1

(R−1)(i)eT
i

⃦⃦⃦⃦
⃦

p

=
⃦⃦⃦⃦
⃦

d∑︂
i=1

X(R−1)(i)eT
i

⃦⃦⃦⃦
⃦

p

≤
d∑︂

i=1

⃦⃦⃦
X(R−1)(i)eT

i

⃦⃦⃦
p

=
d∑︂

i=1

⃦⃦⃦
X(R−1)(i)

⃦⃦⃦
p

(36)

Now suppose p ∈ (2, ∞).

(36) ≤ γ1/p
d∑︂

i=1

⃦⃦⃦
ΠX(R−1)(i)

⃦⃦⃦
∞

≤ γ1/p
√

d

(︄
d∑︂

i=1

⃦⃦⃦
ΠX(R−1)(i)

⃦⃦⃦2

∞

)︄ 1
2

≤ γ1/p
√

d

(︄
d∑︂

i=1

⃦⃦⃦
ΠX(R−1)(i)

⃦⃦⃦2

2

)︄ 1
2

≤ γ1/p
√

d

⎛⎜⎜⎝ d∑︂
i=1

⃦⃦⃦
Q(i)

⃦⃦⃦2

2⏞ ⏟⏟ ⏞
=1

⎞⎟⎟⎠
1
2

= γ1/pd

For arbitrary z ∈ Rd it holds that

∥z∥q ≤
√

d ∥z∥2 =
√

d ∥Qz∥2 =
√

d
⃦⃦
ΠXR−1z

⃦⃦
2 ≤ d

⃦⃦
ΠXR−1z

⃦⃦
∞ ≤ dγ1/p ∥V z∥p .

Consequently V is (γ1/pd, γ1/pd, p)-well-conditioned.

Next suppose p ∈ [1, 2). Again we bound

(36) ≤ γ1/p
d∑︂

i=1

⃦⃦⃦
ΠX(R−1)(i)

⃦⃦⃦
2

≤ γ1/p
√

d

(︄
d∑︂

i=1

⃦⃦⃦
ΠX(R−1)(i)

⃦⃦⃦2

2

)︄ 1
2

≤ γ1/p
√

d

⎛⎜⎜⎝ d∑︂
i=1

⃦⃦⃦
Q(i)

⃦⃦⃦2

2⏞ ⏟⏟ ⏞
=1

⎞⎟⎟⎠
1
2

= γ1/pd

Also, since p ≤ 2, the dual norm satisfies q ≥ 2. Fix an arbitrary z ∈ Rd. It follows that

∥z∥q ≤ ∥z∥2 = ∥Qz∥2 =
⃦⃦
ΠXR−1z

⃦⃦
2 ≤ γ1/p ∥V z∥p .

It follows that V is even (γ1/pd, γ1/p, p)-well-conditioned in this case.

Finally suppose p = 2, where the entry-wise matrix norm is the Frobenius norm ∥ · ∥F . We have

∥V ∥2
F =

d∑︂
i=1

⃦⃦⃦
V (i)

⃦⃦⃦2

2
=

d∑︂
i=1

⃦⃦⃦
(XR−1)(i)

⃦⃦⃦2

2
≤

d∑︂
i=1

2
⃦⃦⃦
(ΠXR−1)(i)

⃦⃦⃦2

2

= 2
d∑︂

i=1

⃦⃦⃦
Q(i)

⃦⃦⃦2

2
= 2d.

84

Thus we have ∥V ∥F =
√

2d. Since p = q = 2 we have for any β ∈ Rd that

∥z∥q = ∥z∥2 = ∥Qz∥2 =
⃦⃦
ΠXR−1z

⃦⃦
2 ≤

√
2 ∥V z∥p .

Consequently V is a (
√

2d,
√

2, p)-well-conditioned in this case.

4.4 Main Results

Our main result shows that if µ is small, then there exists a small coreset C. In fact, the size of C does not

depend on n at all and it can be computed efficiently in two passes over the data:

Theorem 4. If X ∈ Rn×d is µ-complex for any fixed p ∈ [1, ∞) then with constant probability we can compute

an ε-coreset C = (X ′, w) for p-probit regression of size k = O(S
ε2 (d ln(ε−1µ) ln S)) in two passes over the

data, where

S =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O (µd) , for p = 2

O
(︁
µdp(d log d)2)︁ , for p ∈ [1, 2)

O
(︁
µd2p(d log d)2)︁ , for p ∈ (2, ∞).

Algorithm 2 runs in O(nnz(X)d + poly(d)) time for p ∈ [1, 2] and in O(nnz(X)d + poly(d)n1− 2
p log n) time

for p > 2, were nnz denotes the number of non-zeros.

Proof. We first describe Algorithm 2 and its running time: First we apply our sketching matrix Π from Lemma

4.16 to compute ΠX in time O(nnz(X)) in one pass over the data. The number of rows is n′ = O(d2) for

p ∈ [1, 2] and n′ = O(n1− 2
p log n poly(d)) for p > 2. Then we calculate the QR-decomposition of ΠX = QR

in time O(d4) respectively in time O(n1− 2
p log n poly(d)) depending on the value of p, which is faster than

O(nd2) without sketching. In a second pass over the data we compute the row norms ∥vi∥p
p = ∥xiR

−1∥p
p

used in our sampling probabilities. We set si = 1
n + βp∥vi∥p

p. By Lemma 2.7, S0 = 1 + (αβ)p is an upper

bound for
∑︁n

i=1 si. Next we set s′
i = max{2⌈log2(si)⌉, S0

n }, i.e. we round si to the next power of 2 such that

S′ =
∑︁n

i=1 s′
i ≤ 2S0 + n · S0

n = 3S0. As we calculate those values, we can feed the point xi augmented with

the corresponding sampling weight s′
i directly to k independent copies of a weighted reservoir sampler (Chao,

1982). The latter is an online algorithm and updates its sample in constant time. The second pass takes

O(nnz(X)d+poly(d)) time for p ∈ [1, 2], respectively O(nnz(X)d+poly(d) n1− 2
p log n) for p > 2. Lemma 4.14

yields S =
∑︁

i∈[n] csµ(1/n + ui) = O(µ
∑︁

i∈[n] ui) and by Lemma 2.7 we have that
∑︁

i∈[n] ui ≤ (αβ)p = dO(p)

where the values of α, β are detailed in Lemma 4.17. Using Lemmas 4.13, 4.14, and 2.7 to bound the

parameters of Proposition 2.23 we get for the substitute function f̃ that ∀β : |f̃w(X ′β) − f̃(Xβ)| ≤ εf̃(Xβ)

with probability at least 1 − δ. By Corollary 4.11 and Lemma 4.12 this implies with high probability that

(X ′, w) is a 7ε-coreset for f . Folding the constant into ε completes the proof.

85

In the case p = 2, which is of special importance since it corresponds to the standard probit regression

model, we have the following improvements:

Corollary 4.18. Consider the setting of Theorem 4, for p = 2. The running time can be reduced to

O(nnz(X) log n + poly(d)). Moreover there exists a single pass online algorithm that runs in time O(nd2 +

poly(d)) and computes a coreset of size

O

(︃
µd2 ln(∥X∥2)

ε2 ln(ε−1µ) ln(µd ln(∥X∥2))
)︃

,

where ∥X∥2 denotes the largest singular value of X.

Proof of Corollary 4.18. If p = 2 and d = ω(ln n), we can use a Johnson–Lindenstrauss transform, i.e., a

matrix G ∈ Rd×m where m = O(ln(n)) and whose entries are i.i.d. Gij ∼ N(0, 1
m) (Johnson and Lindenstrauss,

1984) to compute a 1
2 -approximation to the row norms: We have ∥v′

i∥2
2 := ∥xi(R−1G)∥2

2 ≥ ∥xiR
−1∥2

2/2 for

all i ∈ [n] simultaneously with constant probability. The running time reduces to O(nnz(X) ln(n) + poly(d)).

The online algorithm is obtained by running the online ℓ2 leverage score algorithm of Chhaya et al. (2020)

that recently extended the previous work of Cohen et al. (2020). Each row update takes O(d2) time except

for at most O(d) updates that take O(d3) time, implying O(nd2 + poly(d)) total running time. The slightly

increased coreset size results from an increase of the total sensitivity by at most log(∥X∥2) due to the online

procedure (Chhaya et al., 2020).

The coreset of Theorem 4 or Corollary 4.18 can then be used to compute a (1 + ε)-approximation for the

optimal maximum likelihood estimator for β by Corollary 2.16.

86

5 Reducing the width of two layer ReLU networks

In this section we focus on reducing the width of two layer ReLU networks that is necessary to get an

arbitrarily small training error and thus also an arbitrarily small number of missclassifications. We first state

the setting, the initialization consisting of coupled random Gaussian vectors at the first layer with alternating

labels at the second layer, which allows us to reduce the width of the network and its motivation. Then we

state our main assumption, that the separation margin γ is bounded. We follow up with some intuition for

the separation margin as well as some examples where it can be computed explicitly. Next we prove some

lower bounds. Then we go into the analysis for the upper bound. Last we finish showing that our analysis is

in some sense tight.

5.1 Setting and notations

We consider a set of data points x1, . . . , xn ∈ Rd with ∥xi∥2 = 1 and labels y1, . . . , yn ∈ {−1, 1}. The two

layer network is parameterized by m ∈ N, a ∈ Rm and W ∈ Rm×d as follows: we set the output function

f(x, W, a) = 1√
m

m∑︂
s=1

asϕ (⟨ws, x⟩) ,

closely comparable to Ji and Telgarsky (2020). In the output function, ϕ(v) = max{0, v} denotes the ReLU

function for v ∈ R. To simplify notation we set fi(W) = f(xi, W, a). Further we set ℓ(v) = ln(1 + exp(−v))

to be the logistic loss function. We use a random initialization W0, a0 given in Definition 5.1. Our goal is to

minimize the empirical risk of W given by

R(W) = 1
n

n∑︂
i=1

ℓ (yifi(W)) .

To accomplish this, we use a standard gradient descent algorithm. More precisely for t ≥ 0 we set

Wt+1 = Wt − η∇R(Wt)

for some step size η. Further, it holds that

∇R(W) = 1
n

n∑︂
i=1

yi∇fi(W)ℓ′ (yifi(W)) .

Moreover, we use the following notation

f
(t)
i (W) := ⟨∇fi(Wt), W ⟩

87

and

R(t)(W) :=
n∑︂

i=1
ℓ
(︂

yif
(t)
i (W)

)︂
.

Note that ∂fi(W)
∂ws

= 1√
m

as1[⟨ws, xi⟩ > 0]xi. In particular the gradient is independent of ∥ws∥2, which will be

crucial in our improved analysis.

5.2 The initialization and its motivation

Definition 5.1 (Coupled Initialization). We initialize the network weights as follows:

• For each r = 2i − 1, we choose wr to be a random Gaussian vector drawn from N (0, I).

• For each r = 2i − 1, we sample ar from {−1, +1} uniformly at random.

• For each r = 2i, we choose wr = wr−1.

• For each r = 2i, we choose ar = −ar−1.

We note this coupled initialization appeared before in Daniely (2020) for analyzing well-spread random

inputs on the sphere. The initialization is chosen in such a way as to ensure that for each of the n input

points, the initial value of the network is always 0. This is crucial for our analysis, and is precisely what

allows us to use arbitrarily large weight vectors. Indeed, a large number of normalized weight vectors were

there precisely to ensure that the initial value of the network is small in previous works. One might worry

that our initialization causes the weights to be dependent. Indeed, each weight vector occurs exactly twice in

the hidden layer. We are able to show that this dependence does not cause problems for our analysis. In

particular, the separation margin in the NTK-induced feature space required for convergence in previous

work can be shown to still hold, since such analyses are loose enough to accommodate such dependencies.

Now, we have a similar initialization as in previous work, but since we no longer have normalized weight

vectors, we can show that we can change the learning rate of gradient descent from that in previous work and

it no longer needs to be balanced with the initial value, since the latter is 0. This ultimately allows for us to

use a smaller width (i.e., value of m) in our analyses. For r ∈ [m], we have

∂f(W, x, a)
∂wr

= arx1w⊤
r x≥0. (37)

In particular scaling wr large enough will guarantee that 1w⊤
r x≥0 and thus ∂f(W,x,a)

∂wr
does not change during

the gradient descent which is one of the main arguments in the analysis. The other important point about

the initialization is that if the width is large enough then there is a direction improving all predictions by

the separation margin γ. This is not necessarily exactly the same direction as the gradient but its existence

ensures that the gradient will continue improve the loss of the network. The fact that ∂f(W,x,a)
∂wr

does not

88

change will guarantee that this directions always exists even after the weight vectors changed by applying the

gradient descent.

5.3 Outline of the analysis

The analysis part of this chapter is built up as follows:

1) We first describe our main assumption that the separation margin is bounded and prove some properties

regarding the separation margin.

2) We then give some examples of instances where we can bound the separation margin.

3) We then prove our lower bounds on the width of two layer ReLU network needed to converge to an

arbitrarily good solution using one of the examples we give.

4) Next we prove the upper bound for the width.

5) Last we prove a tightness result for our analysis and show how a different analysis improves the upper

bound in the two dimensional case.

The first two points here can be seen as a motivation and explanation of the setting we are working in

and with and the remaining points are the theoretical analysis of our main results.

5.4 Main assumption and examples

5.4.1 Main assumption

Here, we define the parameter γ > 0 which was also used in Ji and Telgarsky (2020). Intuitively, γ determines

the separation margin of the NTK. Let B = Bd = {x ∈ Rd | ∥x∥2 ≤ 1} be the unit ball in d dimensions.

We set FB to be the set of functions f mapping from dom(f) = Rd to range(f) = B. Let µN denote the

Gaussian measure on Rd, specified by the Gaussian density with respect to the Lebesgue measure on Rd.

Definition 5.2. Given a data set (X, Y) ∈ Rn×d × Rn and a map v̄ ∈ FB we set

γv̄ = γv̄(X, Y) := min
i∈[n]

yi

∫︂
⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z).

We say that v̄ is optimal if γv̄ = γ(X, Y) := maxv̄′∈FB
γv̄′ .

We note that maxv̄′∈FB
γv̄′ always exists since FB is a set of bounded functions on a compact subset of

Rd. We make the following assumption, which is also used in Ji and Telgarsky (2020):

Assumption 5.1. It holds that γ = γ(X, Y) > 0.

89

Before we prove our main results we show some properties of v̄ to develop a better understanding of our

assumption. The following lemma shows that the integral can be viewed as a finite sum over certain cones in

Rd. Given U ⊆ {1, 2, . . . , n} = [n] we define the cone

C(U) := {x ∈ Rd | ⟨x, xi⟩ > 0 if and only if i ∈ U}.

Note that C(∅) = {x ∈ Rd | ⟨x, xi⟩ ≤ 0 for all i ∈ [n]} and that Rd =
⋃̇︁

U⊆[n]C(U) as for any point

x ∈ Rd there is exactly one set U = Ux = {i ∈ [n] | ⟨x, xi⟩ > 0} such that x ∈ C(U). Further we set P (U) to

be the probability that a random Gaussian is an element of C(U) and PU to be the probability measure of

random Gaussians z ∼ N (0, I) restricted to the event that z ∈ C(U). The following lemma shows that we do

not have to consider each mapping in FB but it suffices to focus on a specific subset. More precisely we can

assume that v̄ is constant on the cones C(U). In particular this means we can assume v̄(z) = v̄(cz) for any

z ∈ Rd and scalar c > 0 and that v̄ is locally constant.

Lemma 5.3. Let v̄ ∈ FB. Then there exists v̄′ such that γv̄′ = γv̄ and v̄′ is constant on C(U) for any

U ⊆ [n].

Proof. Observe that for any distinct U, U ′ ⊆ [n] the cones C(U) and C(U ′) are disjoint since for any x ∈ Rd

the cone C(Ux) containing x is given by Ux = {i ∈ [n] | ⟨x, xi⟩ > 0}. Further we have that
⋃︁

U⊆[n] C(U) = Rd

since any x ∈ Rd is included in some C(Ux). Thus for any i ∈ [n] we have

yi

∫︂
⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z) = yi

∑︂
U⊆[n]

P (U)
∫︂

⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0] dPU (z)

= yi

∑︂
U⊆[n],i∈U

P (U)
∫︂

⟨v̄(z), xi⟩ dPU (z)

= yi

∑︂
U⊆[n],i∈U

P (U) ⟨xi,

∫︂
v̄(z) dPU (z)⟩.

Hence defining v̄′(x) = P (Ux)
∫︁

v̄(z) dPUx(z) satisfies

yi

∫︂
⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z) = yi

∫︂
⟨v̄′(z), xi⟩1[⟨xi, z⟩ > 0] µN (z)

and since ∥v̄(z)∥2 ≤ 1 it follows that ∥v̄′(z)∥2 ≤ 1 for all z ∈ Rd.

Next we give an idea how the dimension d can impact γ. We show that in the simple case, where Rd can

be divided into orthogonal subspaces, such that each data point xi is an element of one of the subspaces,

there is a helpful connection between a mapping v̄ ∈ FB and the mapping that v̄ induces on the subspaces.

Lemma 5.4. Assume there exist orthogonal subspaces V1, . . . Vs of Rd with Rd =
⨁︁

j≤s Vj such that for each

i ∈ [n] there exists j ∈ [s] such that xi ∈ Vj. Then the following two statements hold:

90

Part 1. Assume that for each j ∈ [s] there exists γj > 0 and v̄j ∈ FB such that for all xi ∈ Vj we have

yi

∫︂
⟨v̄j(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z) ≥ γj .

Then for each ρ ∈ Rs with ∥ρ∥2 = 1 there exists v̄ ∈ FB with

min
i∈[n]

yi

∫︂
⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z) ≥ min

j∈[s]
ρjγj .

Part 2. Assume that v̄ maximizes the term

γ∗ = min
i∈[n]

yi

∫︂
⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z),

and that γ∗ > 0. Given any vector z ∈ Rd we denote by pj(z) ∈ Vj the projection of z onto Vj. Let

ρ′
j = maxz∈Rd ∥pj(v̄(z))∥2. Then for all j ∈ [s] the mapping v̄j(z) = pj(v̄(z))

ρ′
j

maximizes

γj = min
xi∈Vj

yi

∫︂
⟨v̄j(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z)

and it holds that ∥v̄j(z)∥2 ≤ 1 for all z ∈ Rd. In other words if v̄ is optimal for (X, Y) then v̄j is optimal for

(Xj , Yj) where Xj = {xi ∈ Vj | i ∈ [n]} with the corresponding labels, i.e., yxi
= yi.

Proof. Part 1.

Since applying the projection pj onto Vj to any point z ∈ Rd does not change the scalar product of z

and xi ∈ Vj , i.e., ⟨xi, z⟩ = ⟨xi, pj(z)⟩, we can assume that for all z ∈ Rd we have v̄j(z) ∈ Vj . Let z ∈ Rd. We

define v̄(z) :=
∑︁s

j=1 ρj v̄j(z). Then by orthogonality

∥v̄(z)∥2
2 =

s∑︂
j=1

ρ2
j∥v̄j(z)∥2

2 ≤
s∑︂

j=1
ρ2

j · 1 = 1.

Thus it holds that v̄ ∈ FB . Further we have ⟨xi, v̄(z)⟩ =
∑︁s

k=1 ρk⟨xi, v̄k(z)⟩ = ρj⟨xi, v̄j(z)⟩ for xi ∈ Vj again

by orthogonality it holds that

yi

∫︂
⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z) = ρjyi

∫︂
⟨v̄j(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z) ≥ ρjγj .

Part 2.

For the sake of contradiction assume that there are k ≤ s and v̄∗
k ∈ FB such that

γ∗
k = min

xi∈Vk

yi

∫︂
⟨v̄k(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z) = γk + ε

for some ε > 0. Using Part 1. we can construct a new mapping v̄′ ∈ FB by using the mappings v̄j defined in

91

the lemma for j ̸= k, and exchange v̄k by v̄∗
k. Also as in Part 1 let ρj = ρ′

j + ε′ for j ̸= k and ρk = ρ′
k − 2 sε′

ρ′
k

with ε′ = min{ ρ′2
k

4s ,
ρ′2

k ε
4(γk+ε)s }. Then we have

2s + sε′ + 4s2 ε′

ρ′2
k

≤ 4s.

Subtracting 4s and multiplying with ε′ gives us

2sε′ + sε′2 − 4sε′ + 4
(︃

sε′

ρ′
k

)︃2
≤ 0.

Hence it holds that

s∑︂
j=1

ρ2
j ≤

⎛⎝∑︂
j ̸=k

(ρ′2
j + 2ε′ + ε′2)

⎞⎠+ ρ′2
k − 4sε′ + 4

(︃
sε′

ρ′
k

)︃2

≤

⎛⎝ s∑︂
j=1

ρ′2
j

⎞⎠+ 2sε′ + sε′2 − 4sε′ + 4
(︃

sε′

ρ′
k

)︃2
≤

s∑︂
j=1

ρ′2
j ≤ 1.

For any xi ∈ Vj with j ̸= k we have by orthogonality as in Part 1.

yi

∫︂
⟨v̄′(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z) = ρjyi

∫︂
⟨v̄j(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z)

= (ρ′
j + ε′)yi

∫︂
⟨v̄j(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z).

Further we have

min
xi∈Vk

yi

∫︂
⟨v̄′(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z) = ρkγ∗

k

= (ρ′
k − 2 s

ρk
ε′)(γk + ε)

≥ ρ′
kγk − 2s

ρ′
k

· ρ′2
k ε

4(γk + ε)s (γk + ε) + ρ′
kε

= ρ′
kγk + ρ′

kε

2 .

We conclude again by orthogonality that

yi

∫︂
⟨v̄′(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z) = ρjyi

∫︂
⟨v̄′

j(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z)

> min
j

ρ′
jγj

= γ∗

and thus v̄′ contradicts the maximizing choice of v̄.

92

As a direct consequence we get that the problem of finding an optimal v̄ for the whole data set can be

reduced to finding an optimal v̄j for each subspace.

Corollary 5.5. Assume there exist orthogonal subspaces V1, . . . Vs of Rd with Rd =
⨁︁

j≤s Vj such that for

each i ∈ [n] there exists j ∈ [s] with xi ∈ Vj. For j ∈ [s] let (Xj , Yj) denote the data set consisting of all

data points (xi, yi) where xi ∈ Vj. Then v̄ is optimal for (X, Y) if and only if for all j ∈ [s] the mapping v̄j

defined in Lemma 5.4 is optimal for (Xj , Yj) and γv̄ =
∑︁

j∈[s] γjρ∗
j where ρ∗ = argmaxρ∈Ss−1 minj∈[s] ρjγj.

Proof. One direction follows immediately by Lemma 5.4 2) the other direction is a direct consequence of the

formula given in Lemma 5.4 1).

The following bound for γ simplifies calculations in some cases of interest. It also gives us a natural

candidate for an optimal v̄ ∈ FB . Given an instance (X, Y) recall that Uz = {i ∈ [n] | ⟨z, xi⟩ > 0}. We set

v̄0(z) =
∑︁

i∈[n]∩Uz
xiyi

∥
∑︁

i∈[n]∩Uz
xiyi∥2

. (38)

We note that v̄0(z) is not optimal in general but if instances have certain symmetry properties, then v̄0(z) is

optimal.

Lemma 5.6. For any subset S ⊆ [n] it holds that

γ ≤
∑︂

U⊆[n]

P (U) 1
|S|

⃦⃦⃦⃦
⃦ ∑︂

i∈S∩U

xiyi

⃦⃦⃦⃦
⃦

2

Proof. By Lemma 5.3 there exists an optimal v̄ that is constant on C(U) for all U ⊆ [n]. For x ∈ U let

zU = v̄(x). Then by using an averaging argument and the Cauchy–Schwarz inequality we get

γ ≤ 1
|S|
∑︂
i∈S

yi

∫︂
⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z)

= 1
|S|
∑︂
i∈S

yi

∑︂
U⊆[n],i∈U

P (U)⟨xi, zU ⟩

= 1
|S|

∑︂
U⊆[n]

P (U)⟨
∑︂

i∈S∩U

yixi, zU ⟩

≤
∑︂

U⊆[n]

P (U) 1
|S|

⃦⃦⃦⃦
⃦ ∑︂

i∈S∩U

xiyi

⃦⃦⃦⃦
⃦

2

.

Finally we give an idea of how two points and their distance impacts the cones and their hitting

probabilities.

93

Lemma 5.7. Let x1, x2 ∈ Sd−1 be two points with ⟨x1, x2⟩ > 0 and ∥x1 − x2∥2 = b > 0. Set V ′
1 = {x ∈

Rd | ⟨x1, x⟩ > 0 ≥ ⟨x2, x⟩}. Then for a random Gaussian z we have z ∈ V ′
1 with probability P (V ′

1) where
b
7 ≤ P (V ′

1) ≤ b
5 . Further for any z with ∥z∥2 = 1 it holds that |⟨x1, z⟩ − ⟨x2, z⟩| ≤ b.

Proof. We define V1 = {x ∈ R | ⟨x1, x⟩ > 0}. Then P (V1) = 1
2 since for a random Gaussian z it holds that

⟨x1, z⟩ > 0 with probability 1
2 . Since the space spanned by x1 and x2 is 2-dimensional, we can assume that

x1 and x2 are on the unit circle and that x1 = (1, 0) and x2 = (cos(φ), sin(φ)) for φ ≤ π
2 . Note that P (V ′

1) is

given by b′

2π where b′ = φ is the length of the arc connecting x1 and x2 on the circle. Since b is the Euclidean

distance and thus the shortest distance between x1 and x2 we have b ≤ b′. Further it holds that

h(φ) := b′

b
= φ√︁

(1 − cos(φ))2 + sin(φ)2
= φ√︁

2 − 2 cos(φ)
.

Then h′(φ) is positive on (0, π
2], so h(φ) is monotonously non-decreasing, and thus h(φ) ≤ h(π

2) = (π/2)√
2 = π√

8

and b′ ≤ b · π√
8 . Consequently for P (V ′

1) = b′

2π we have that

b

7 ≤ b

2π
≤ P (V ′

1) ≤ b

2π
· π√

8
≤ b

5 .

For the second part we note that for any z with ∥z∥2 = 1 we get

|⟨z, x1⟩ − ⟨z, x2⟩| = |⟨z, x1 − x2⟩| ≤ ∥z∥2∥x1 − x2∥2 = 1 · b

by using the Cauchy–Schwarz inequality.

5.4.2 Example 1: orthonormal unit vectors

Let us start with a simple example first: let ei ∈ Rd be the i-th unit vector. Let n = 2d, xi = ei for i ≤ d

and xi = −ei−d otherwise with arbitrary labels. First consider the instance (Xi, Yi) created by the points xi

and xi+d for i ≤ d. Then we note that v̄i sending any point z with ⟨z, ei⟩ > 0 to eiyi and any other point to

−eiyi+d is optimal since it holds that γi = γv̄i
(Xi, Yi) =

∫︁
1 · 1[⟨xi, z⟩ > 0] dµN (z) = 1

2 . Since the subspaces

Vi = span{ei} are orthogonal we can apply Corollary 5.5 with vector ρ = (1√
d
)d. Thus the optimal γ for our

instance is 1
2

√
d
.

5.4.3 Example 2: Two differently labeled points at distance b

The next example is a set of two points x1, x2 ∈ Rd with y1 = 1 = −y2 and ⟨x1, x2⟩ > 0. Let U1 = {1}, U2 =

{2}, U = {1, 2} and V1 = {x ∈ R | ⟨x1, x⟩ > 0}. Then P (U) = P (V1) − P (U1) ≥ 1
2 − b

5 by Lemma 5.7 and

P (U1) = P (U2) = P (V1) − P (U) ≤ 1
2 − (1

2 − b
5) = b

5 . For an illustration see Figure 3.

By Lemma 5.3 we can assume that there exists an optimal v̄ which is constant on C(U) and constant on

C(Ui) for i ∈ {1, 2}, i.e., that v̄(z) = z′ ∈ B for all z ∈ C(U) and v̄(z) = z′′ ∈ B for all z ∈ C(U1).

94

x1

x2

C(U1)

C(U2)

C(U)

Figure 3: a) Two points x1 and x2 on the sphere. C(U) is the cone consisting of vectors having positive
scalar product with both points. The cone C(Ui) consists of vectors having positive scalar product with xi

but negative scalar product with the other point. b) The probability P (Ui) of a random Gaussian being in
the cone C(Ui) is exactly the length of the shortest arc on the circle (which is close to the Euclidean distance)
connecting the points, divided by 2π.

By Lemma 5.7 we have |⟨x1, z′⟩ − ⟨x2, z′⟩| ≤ b. Consequently since x1 and x2 have different labels there

exists at least one i ∈ {1, 2} with ⟨z′, xi⟩yi ≤ b/2 since ⟨z′, x1⟩ ≥ b/2 implies −⟨z′, x2⟩ ≤ −⟨z′, x1⟩+ |⟨x1, z′⟩−

⟨x2, z′⟩| ≤ −b/2 + b = b/2 . Then by Lemma 5.3 we have

yi

∫︂
⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z) ≤ P (U) · ⟨z′, xi⟩ + P (Ui) · ⟨z′′, xi⟩

≤ 1
2 · b

2 + b

5 · 1

≤ b

2 .

5.4.4 Example 3: Constant labels

Let X be any data set and let Y be the all 1s vector. Then for v̄(z) = z
∥z∥2

it holds that

yi

∫︂
⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z) = yi

∫︂ ⟨︃
z

∥z∥2
, xi

⟩︃
1[⟨xi, z⟩ > 0] dµN (z) ∗= Ω

(︃
1√
d

)︃
.

Thus we have γ(X, Y) = Ω
(︂

1√
d

)︂
. We note that ∗ is a well-known fact, see Blum et al. (2020). Since we

consider only a fixed xi, we can assume that yixi equals the first standard basis vector e1. We are interested

in the expected projection of a uniformly random unit vector z
∥z∥2

in the same halfspace as e1.

95

We give a short proof for completeness: note that z
∥z∥2

= (z1, . . . , zd)/
√︂∑︁d

i=1 z2
i with zi ∼ N (0, 1),

is a uniformly random unit vector u. By Jensen’s inequality we have E[
√︂∑︁d

i=1 z2
i] ≤

√︂
E[
∑︁d

i=1 z2
i] =√︂∑︁d

i=1 E[z2
i] =

√
d. Thus, with probability at least 3/4 it holds that

√︂∑︁d
i=1 g2

i ≤ 4
√

d, by a Markov bound.

Also, |zi| ≥
√

2 · erf−1(1/2) holds with probability at least 1/2, since the right hand side is the median of the

half-normal distribution, i.e., the distribution of |zi|, where zi ∼ N (0, 1). Here erf denotes the the Gauss

error function.

By a union bound over the two events it follows with probability at least 1 − 1
2 − 1

4 = 1
4 that

|ui| = |zi|/

⌜⃓⃓⎷ d∑︂
i=1

z2
i ≥

√
2 · erf−1(1/2)/(4

√
d).

Consequently E[|ui|] ≥ 1
4 ·

√
2 · erf−1(1/2)/(4

√
d) = Ω(1/

√
d) and thus

yi

∫︂ ⟨︃
z

∥z∥2
, xi

⟩︃
1[⟨xi, z⟩ > 0] dµN (z) = 1

2E[|ui|] = Ω(1/
√

d).

5.4.5 Example 4: The hypercube

In the following example we use xi for the i-th coordinate of x ∈ Rd rather than for the i-th data point. We

consider the hypercube X = {− 1√
d
, + 1√

d
}d with different labelings. Given x ∈ X we set Sx = {i ∈ [d] | xi =

− 1√
d
} and σ(x) = |Si|.

Majority labels First we consider the data set X ′ = X \ {x ∈ X | σ(x) = d
2 } and assign yx = −1 if

σ(x) > d
2 and yx = −1 if σ(x) < d

2 . Note that d − 2σ(x) < 0 holds if and only if yx = −1. Let xc ∈ X be

the constant vector that has all coordinates equal to 1/
√

d. Now, if we fix v̄(z) = xc for any z, then for all

x ∈ X ′ we have that

yx

∫︂
⟨v̄(z), x⟩1[⟨x, z⟩ > 0] dµN (z) = yx

2 · d − 2σ(x)
d

≥ 1
2 · 1

d
.

Hence it follows that γ(X ′, Y) ≥ 1
2d

Parity labels Second we consider the case where yx = (−1)σ(x). Then we get the following bounds for γ:

Lemma 5.8. Consider the hypercube with parity labels.

1) If d is odd, then γ = 0.

2) If d is even, then γ > 0.

Proof. 1): First note that the set Z = {z ∈ Rd | ∃x ∈ X with ⟨x, z⟩ = 0} is a null set with respect to the

Gaussian measure µN . Fix any coordinate i ≤ d. W.l.o.g. let i ̸= 1. Given x ∈ M := { 1√
d
} × {− 1√

d
, 1√

d
}d−2

consider the set S(x) = {(1√
d
, x), (− 1√

d
, x), (1√

d
, −x), (− 1√

d
, −x)}. Note that X is the disjoint union X =

96

⋃̇︁
x∈M S(x). Further since d − 1 is even, it holds that y(1√

d
,x) = y(1√

d
,−x) = −y(− 1√

d
,−x) = −y(− 1√

d
,x). Let

z ∈ Z and let Uz = {x′ ∈ X | ⟨z, x′⟩ > 0}. W.l.o.g. let ⟨z, (1√
d
, x)⟩ > 0. Then we have ⟨z, x′⟩ > 0 for exactly

one x′ ∈ {(− 1√
d
, x), (1√

d
, −x)} and ⟨z, (− 1√

d
, −x)⟩ < 0. Now since y(1√

d
,x)(1√

d
, x)i = −y(1√

d
,x)(−1, x)i =

−y(1√
d

,x)(1, −x)i we conclude that for all x ∈ M it holds that

∑︂
x′∈S(x)∩Uz

(x′yx′)i = 1√
d

+
(︃

− 1√
d

)︃
= 0

and thus we get

∑︂
x∈X∩Uz

(xyx)i =
∑︂
x∈M

∑︂
x′∈S(x)∩Uz

(xyx)i = 0.

Thus by Corollary 5.6 it holds that γ = 0.

2): Consider the set M comprising the middle points of the edges, i.e., M = {x ∈ {− 1√
d
, 0, 1√

d
}d | xi =

0 for exactly one coordinate i ∈ [d]}. Observe that for any x ∈ X and z ∈ M the dot product d · ⟨x, z⟩ is an

odd integer and thus |⟨x, z⟩| ≥ 1/d. Hence, for the cone C(Uz) containing z we have P (Uz) > 0.

Now fix z ∈ M and let i ∈ [d] be the coordinate with zi = 0. Recall σ(z) = |{k ∈ [d] | zk = − 1√
d
}|

and set v̄(z) = ei · σ(z) · (−1)d/2+1. Let j ∈ [d] be any coordinate other than i and consider the pairs

{v, w} ⊂ X where v ∈ X with vj = zj , ⟨v, z⟩ > 1/d and w = v − 2vjej . We denote the union of all those

pairs by V ′. The points v and w have the same entry at coordinate i but different labels. Hence it holds that∑︁
(v,w)∈V ′ viyv + wiyw = 0.

Next consider the set of remaining vectors with ⟨v, z⟩ > 0 which is given by V = {x ∈ X | xj =

zj and ⟨x, z⟩ = 1/d}. For all x ∈ V with xi = 1√
d

it holds that σ(x) = σ(z) − (d
2 − 1) = σ(z) · (−1)d/2+1 since

the projection of x to Rd−1 that results from removing the i-th entry of x, has Hamming distance (d
2 − 1)

to z projected to Rd−1, and vice versa for all x ∈ V with xi = −1/
√

d we have that σ(x) = σ(z) · (−1)d/2.

Hence for x ∈ V it holds that yxv̄(z) = ei · σ(z) · (−1)d/2+1 = ei · sgn(xi) and thus we have

∑︂
x∈X∩Uz

yx⟨x, v̄(z)⟩ =
∑︂
x∈V

yx⟨x, v̄(z)⟩ +
∑︂

(v,w)∈V ′

yv⟨v, v̄(z)⟩ + yw⟨w, v̄(z)⟩

=
∑︂
x∈V

sgn(xi)⟨x, ei⟩ + 0

=
∑︂
x∈V

1√
d

= 2
(︃

d − 1
d/2 − 1

)︃
1√
d

since the number of elements x ∈ V with xi = 1/
√

d is the same as the number of elements x′ ∈ V with

x′
i = −1/

√
d. More specifically, it equals the number of points with Hamming distance (d

2 −1) to the projection

of z onto Rd−1, which is
(︁

d−1
d/2−1

)︁
since the i-th coordinate is fixed and we need to choose d/2 − 1 coordinates

that differ from the remaining coordinates of z. Let P > 0 be the probability that a random Gaussian is in the

97

same cone C(U) as z for some z ∈ M . Then by symmetry it holds that γv̄ = P · 2
(︁

d−1
d/2−1

)︁
· 1√

d
· 1

|X| > 0.

5.5 Lower bounds for log width

5.5.1 Example 5: Alternating points on a circle

Next consider the following set of n points for n divisible by 4:

xk =
(︁
cos
(︁ 2kπ

n

)︁
, sin

(︁ 2kπ
n

)︁)︁
and yk = (−1)k. Intuitively, defining v̄ to send z ∈ Rd to the closest point of our

data set X multiplied by its label, gives us a natural candidate for v̄. However, applying Lemma 5.3 gives us

a better mapping that also follows from Equation (38), and which is optimal by Lemma 5.6:

Define the set S = {x ∈ R2 | ∃xi ∈ X, α ≥ 0: x = αxi} Now, for any z ∈ Rd \ S there exists a unique iz such

that z ∈ Cone({xiz
, xiz+1}). We set rz = xiz yiz +xiz+1yiz+1

∥xiz −xiz+1∥2
. We define the function v̄ : Rd → Rd by

v̄(z) =

⎧⎪⎨⎪⎩0 z ∈ S

(−1)n/4+1rz otherwise.

Observe that for i = iz we have

rz =
(︃

cos
(︃

2π

2n
· (i − n

2 + 1)
)︃

, sin
(︃

2π

2n
· (i − n

2 + 1)
)︃)︃

= (−1)i

(︃
sin
(︃

(i + 1)2π

2n

)︃
, − cos

(︃
(i + 1)2π

2n

)︃)︃
.

Figure 4 shows how v̄(z) is constructed for n = 12. We note that v̄ = v̄0 holds almost surely, which in

particular implies the optimality of v̄, cf. Equation (38). For computing γ we need the following lemma.

+

-

+

-

+

-

+

-

+

-

+

-

z

C(Uz)

v̄(z)

x0

x1

x2

x3

x4

v̄(z1)

v̄(z2)

v̄(z3)

v̄(z4)

C(x0, x1)

C(x1, x2)

C(x2, x3)

C(x3, x4)

z1

z2

z3
z4

...

..
.

Figure 4: The left picture shows how v̄(z) is constructed: we subtract the vector x3 which is labeled −1 from the
vector x2 which is labeled 1. We obtain rz after rescaling to unit norm. Since n/4 = 3 is odd we have v̄(z) = rz.
The right picture demonstrates the values of v̄(z) that are relevant for computing yi

∫︁
⟨v̄(z), xi⟩1[⟨xi, z⟩ >

0]dµN (z) for the single point xi = (0, 1). Here we have yi⟨xi, v̄(zj)⟩ = (−1)j−1 cos
(︂

(2j−1)π
2n

)︂
. The same

argument can be repeated on the left side of the half circle.

We found the result in a post on math.stackexchange.com but could not find it in published literature

98

and so we reproduce the full proof from StEx (2011) for completeness of presentation.

Lemma 5.9 (StEx (2011)). For any a, b ∈ R and ñ ∈ N it holds that

ñ−1∑︂
k=0

cos(a + kb) = cos(a + (ñ − 1)b/2) sin(ñb/2)
sin(b/2) .

Proof. We use i to denote the imaginary unit defined by the property i2 = −1. From Euler’s identity we

know that cos(a + kb) = Re(ei(a+kb)) and sin(a + kb) = Im(ei(a+kb)). Then

ñ−1∑︂
k=0

cos(a + kb) =
ñ−1∑︂
k=0

Re
(︂

ei(a+kb)
)︂

= Re
(︄

ñ−1∑︂
k=0

ei(a+kb)

)︄

= Re
(︄

eia
ñ−1∑︂
k=0

(eib)k

)︄

= Re
(︃

eia 1 − eibñ

1 − eib

)︃
= Re

(︃
eia eibñ/2(e−ibñ/2 − eibñ/2)

eib/2(e−ib/2 − eib/2)

)︃
= cos(a + (ñ − 1)b/2) sin(ñb/2)

sin(b/2) .

Lemma 5.10. For all i ∈ [n] it holds that

yi

∫︂
⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0]dµN (z) = Ω

(︃
1
n

)︃
.

Proof. We set n′ = n/4. Note that by symmetry the value of the given integral is the same for all i ∈ [n].

Thus it suffices to compute yi

∫︁
⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0]dµN (z) = γ for xi = (0, 1), and note that i = n/4

for this special choice. See Figure 4 for an illustration of the following argument. For a fixed z ∈ R2

consider the cone Cone({xiz
, xiz+1} = Cone({xj , xj+1}) ⊂ {x ∈ R2 | ⟨x, (0, 1)⟩ > 0}. Then j ∈ [0, n

2 − 1] and

⟨v̄(z), xi⟩ = (−1)n/4+1⟨rz, xi⟩ = (−1)n/4+1(−1)j+1 cos((2j+1)2π
2n) since yi = (−1)n/4. Further, for j ≤ n

4 − 1

it holds that

⟨v̄(z), xi⟩ = (−1)n/4(−1)j cos
(︃

(2j + 1)2π

2n

)︃
= yi(−1)j cos

(︃
(2j + 1)2π

2n

)︃
,

99

and by using the symmetry of cos we get

(−1)n/4(−1)(n/2)−j−1 cos
(︃

(2(n/2) − 2j − 1)2π

2n

)︃
= yi(−1)j+1

(︃
− cos

(︃
(2j + 1)2π

2n

)︃)︃
= yi(−1)j cos

(︃
(2j + 1)2π

2n

)︃
.

Now assume w.l.o.g. that n ≥ 8. Further we set ñ = (n′ − 1)/2 and b = 4π
n = 4π

4n′ . By using Lemma 5.9 and

the Taylor series expansion of cos(·) and sin(·) we get

γ = 1
n

⎛⎝2
n′∑︂

k=1
cos
(︃

(2k − 1)π
4n′

)︃
(−1)k−1

⎞⎠
= 2

n

⎛⎝⌈(n′−1)/2⌉∑︂
k=0

cos
(︃

(4k + 1)π
4n′

)︃
−

⌊(n′−1)/2⌋∑︂
k=0

cos
(︃

(4k + 3)π
4n′

)︃⎞⎠
∗
≥ 2

n

(︃
cos(π/n + (ñ − 1)b/2) sin(ñb/2)

sin(b/2) − cos(3π/n + (ñ − 1)b/2) sin(ñb/2)
sin(b/2)

)︃

= 2
n

⎛⎜⎜⎜⎝
=Θ(b)⏟ ⏞⏞ ⏟

(cos(π/n + (ñ − 1)b/2) − cos(3π/n + (ñ − 1)b/2))
=1−Θ(b)⏟ ⏞⏞ ⏟

sin(ñb/2)
sin(b/2)

⎞⎟⎟⎟⎠
= 2

n

(︃
Θ(b)
Θ(b)

)︃
= 2

n
Θ(1) = Ω(n−1).

∗ when n′ is odd then we have an exact equality.

5.5.2 Lower Bounds

Lemma 5.11. If m = o(n log(n)) then with constant probability over the random initialization of W0 it holds

for any weights V ∈ Rm×d that yi⟨V, ∇fi(W0)⟩ ≤ 0 for at least one i ∈ [n].

Proof. We set x−i := xn−i for i ≥ 0. Consider the set {xi, xi+1, xi+2, xi+3} for i with i mod 4 = 0. For any

s let Ai,s denote the event that

1[⟨xi, ws⟩ > 0] = 1[⟨xi+1, ws⟩ > 0] = 1[⟨xi+2, ws⟩ > 0] = 1[⟨xi+3, ws⟩ > 0].

If there exists i ∈ {0, 4, . . . , n − 4} such that for all s ∈ [m] the event Ai,s is true then at least one

of the points xi, xi+1, xi+2, xi+3 is misclassified. To see this, note that there exists ρ ∈ R4
>0 such that

ρ1xi + ρ3xi+2 − (ρ2xi+1 + ρ4xi+3) = 0 since the line connecting xi and xi+3 crosses the line segment between

100

xi+2 and xi+4. Now let S = {s ∈ [m] | ⟨xi, ws⟩ > 0}. If the event Ai,s is true for all s ∈ [m] then it holds that

0 =
∑︂

s∈[m],⟨xi,ws⟩>0

⟨ρ1xi + ρ3xi+2 − (ρ2xi+1 + ρ4xi+3), ws⟩

=
3∑︂

j=0

∑︂
s∈[m],⟨xi,ws⟩>0

ρjyi+j⟨xi+j , ws⟩

=
3∑︂

j=0
ρj

∑︂
s∈[m],⟨xi+j ,ws⟩>0

yi+j⟨xi+j , ws⟩

and since ρj > 0 it must hold
∑︁

s∈[m],⟨xi+j ,ws⟩>0 yi+j⟨xi+j , ws⟩ ≤ 0 for at least one j ∈ {0, . . . , 3}.

Note that Ai,s is false with probability 2 · 3
n , namely if ws

∥ws∥2
is between the point xi+n/4 and xi+3+n/4

or between the points xi−n/4 and xi+3−n/4. We denote the union of these areas by Zi. Further these areas

are disjoint for different i, i′ ∈ {0, 4, . . . n/4}. Now, as we have discussed above, we need at least one Ai,s

to be false for each i. This occurs only if for each i there exists at least one s such that ws

∥ws∥2
∈ Zi. Let T

be the minimum number of trials needed to hit every one of the n′ := n/4 regions Zi. This is the coupon

collector’s problem for which it is known Erdős and Rényi (1961) that for arbitrary c ∈ R it holds that

Pr[T < n′ log n′ + cn′] = exp(− exp(−c)) as n′ → ∞. Thus for sufficiently large n′ and c = −1 we have

Pr[T > n′ log n′ − n′] > 1 − e−e > 0.9.

Indeed we can show an even stronger result:

Lemma 5.12. Let ε ≥ 0. Any two-layer ReLU neural network with width m < (1 − ε)n/6 − 2 misclassifies

more than εn/3 points of the alternating points on the circle example.

Proof. Set D = {x ∈ R2 | ∥x∥1 = 1}. Given parameters W and a consider the function f : R2 → R given

by f(x) = 1√
m

∑︁m
s=1 asφ (⟨ws, x⟩). Note that the points x′

i = xi

∥xi∥1
∈ D do not change their order along the

ℓ1 sphere and thus by definition of (xi, yi) have alternating labels. Also note that f(xi) > 0 if and only if

f(x′
i) > 0. Further note that the restriction of f to D denoted f|D is a piecewise linear function. More precisely

the gradient ∂f
∂x = 1√

m

∑︁m
s=1 as1[⟨ws, x⟩ > 0]ws can only change at the points (1, 0), (0, 1), (−1, 0), (0, −1)

and at points orthogonal to some ws for s ≤ m. Since for each ws there are exactly two points on D that are

orthogonal to ws this means the gradient changes at most 2m + 4 times. Now for i divisible by 3 consider the

points xi, xi+1, xi+2. If the gradient does not change in the interval induced by xi and xi+2 then at least one

of the three points is misclassified. Hence if 2m + 4 < (1 − ε) n
3 then strictly more than an (ε/3)-fraction of

the n points is misclassified.

101

5.6 Upper bound

We use the following initialization, see Definition 5.1: we set m = 2m′ for some natural number m′. Put

ws,0 = ws+m′,0 = βw′
s where w′

s ∼ N (0, Id), β ∈ R is an appropriate scaling factor to be defined later and

ai = 1 for i < m′ and ai = −1 for i ≥ m′. We note that to simplify notations the ai are permuted compared

to Definition 5.1, which does not make a difference. Further note that ∂f
∂ws

= ∂f
∂w′

s
.

The goal of this section is to show our main theorem:

Theorem 5. Given an error parameter ε ∈ (0, 1/10) and any failure probability δ ∈ (0, 1/10), let ρ =

2 · γ−1 · ln(4/ε). Then if

m = 2m′ ≥ 2γ−2 · 8 ln(2n/δ),

β = 4·2ρ2n
√

m
5εδ and η = 1 we have with probability at most 1 − 3δ over the random initialization that

1
T

∑︁T −1
t=0 R(Wt) ≤ ε, where T = ⌈2ρ2/ε⌉.

Before going in to the details of the proof of Theorem 5 we give a short outline: The idea of the proof is

that at any time during the gradient descent there exists a good direction improving the prediction of all

points. We first prove that this direction exists in the beginning and that the scalar product of the initial

weight vectors and our data points is large enough so that the sign of the scalar product does not change at

any time with high probability. We then state a helpful Lemma from (Ji and Telgarsky, 2020) which allows

us to show the convergence to a good solution if the mentioned good direction exists. Last we prove the

bounds on the number of steps needed to convergence to a good solution.

Our first lemma shows that with high probability there is a good separator at initialization, similar to Ji

and Telgarsky (2020).

Lemma 5.13. If m′ ≥ 8 ln(2n/δ)
γ2 then there exists U ∈ Rm×d with ∥us∥2 ≤ 1√

m
for all s ≤ m, and ∥U∥F ≤ 1,

such that with probability at least 1 − δ it holds simultaneously for all i ≤ n that

yif
(0)
i (U) ≥ γ

2

Proof. We define U by us = as√
m

v̄(ws,0). Observe that

µi = Ew∼N (0,Id) [yi⟨v̄(w), xi⟩]1 [⟨xi, w⟩ > 0]] ≥ γ

by assumption. Further since ws,0 = ws+m′,0 = βw′
s,0 and a2

s = 1, we have asus = as+m′us+m′ for s ≤ m′.

Also by Lemma 5.3 we can assume that v̄(ws,0) = v̄(w′
s,0). Thus

yif
(0)
i (U) = 1

m′

m′∑︂
s=1

yi⟨v̄(ws,0), xi⟩1 [⟨xi, ws,0⟩ > 0]

is the empirical mean of i.i.d. random variables supported on [−1, +1] with mean µi. Therefore by Hoeffding’s

102

inequality (Lemma 2.10), using m′ ≥ 8 ln(2n/δ)
γ2 it holds that

Pr
[︂
yif

(0)
i (U) ≤ γ

2

]︂
≤ Pr

[︂
|yif

(0)
i (U) − µi| ≥ µi

2

]︂
≤ 2 exp

(︃
−2µ2

i m′2/4
m′ · 4

)︃
≤ 2 exp

(︃
−γ2m′

8

)︃
≤ δ

n

Applying the union bound proves the lemma.

Lemma 5.14. With probability 1 − δ it holds that |⟨xi, ws,0⟩| > 2ρ2

ε
√

m
for all i ∈ [n] and s ∈ [m]

Proof. By anti-concentration of the Gaussian distribution (Lemma 2.12), we have for any i

Pr
[︃
|⟨xi, ws,0⟩| ≤ 2ρ2

ε
√

m

]︃
= Pr

[︃
|⟨xi, w′

s,0⟩| ≤ 2ρ2

βε
√

m

]︃
≤ 2ρ2

βε
√

m

4
5

≤ δ

mn
.

Thus applying the union bound proves the lemma.

Lemma 5.15. For all i ∈ [n] it holds that fi(W0) = 0

Proof. Since as = −as+m′ we have

fi(W0) =
m∑︂

s=1

1√
m

asφ (⟨ws,0, xi⟩) =
m′∑︂

s=1

1√
m

(as + as+m′)φ (⟨ws,0, xi⟩) = 0.

Further we need the following lemma proved in Ji and Telgarsky (2020).

Lemma 5.16 (Lemma 2.6 in Ji and Telgarsky (2020)). For any t ≥ 0 and W̄ , if ηt ≤ 1 then

ηtR(Wt) ≤ ∥Wt − W̄∥2
F − ∥Wt+1 − W̄∥2

F + 2ηtR
(t)(W̄).

Consequently, if we use a constant step size η ≤ 1 for 0 ≤ τ < t, then

η
∑︂
τ<t

R(Wτ) ≤ η
∑︂
τ<t

R(Wτ) + ∥Wt − W̄∥2
F ≤ ∥W0 − W̄∥2

F + 2η
∑︂
τ<t

R(τ)(W̄).

Now we are ready to prove the main theorem:

Proof of Theorem 5. With probability at least 1 − 2δ there exists U as in Lemma 5.13 and also the statement

of Lemma 5.14 holds. We set W̄ = W0 + ρU . First we show that for any t < T and any s ∈ [m] we have

103

∥ws,t − ws,0∥2 ≤ 2ρ2

ε
√

m
. Observe that |ℓ′(v)| = | −e−v

1+e−v | ≤ 1 since e−v > 0 for all v ∈ R. Thus for any t ≥ 0 we

have

∥ws,t − ws,0∥2 ≤
∑︂
τ<t

1
n

n∑︂
i=1

|ℓ′(yifi(Wτ))|
⃦⃦⃦⃦

∂fi

∂ws,t

⃦⃦⃦⃦
2

≤
∑︂
τ<t

1
n

n∑︂
i=1

1 · 1√
m

≤ t√
m

.

Consequently we have ∥ws,t − ws,0∥2 ≤ 2ρ2

ε
√

m
for t < T = ⌈ 2ρ2

ε ⌉.

Next we prove that for any t < T we have R(t)(W̄) < ε/4. Since ln(1 + r) ≤ r for any r, the logistic loss

satisfies ℓ(z) = ln(1 + exp(−z)) ≤ exp(−z), and it is sufficient to prove that for any 1 ≤ i ≤ n we have

yi⟨∇fi(Wt), W̄ ⟩ ≥ ln
(︂ε

4

)︂
.

Note that

yi⟨∇fi(Wt), W̄ ⟩ = yi⟨∇fi(Wt), W0⟩ + yiρ⟨∇fi(Wt), U⟩

= yi⟨∇fi(Wt), W0⟩ + yi⟨∇fi(W0), W0⟩ − yi⟨∇fi(W0), W0⟩ + yiρ⟨∇fi(Wt), U⟩

= yi⟨∇fi(W0), W0⟩ + yi⟨∇fi(Wt) − ∇fi(W0), W0⟩ + yiρ⟨∇fi(Wt), U⟩.

For the first term we have yi⟨∇fi(W0), W0⟩ = yifi(W0) = 0 by Lemma 5.15. For the second term we note

that |⟨xi, ws,0⟩ − ⟨xi, ws,t⟩| = |⟨xi, ws,0 − ws,t⟩| ≤ ∥xi∥2∥ws,0 − ws,t∥2 ≤ 2ρ2

ε
√

m
. Thus 1 [⟨xi, ws,0⟩ > 0] ̸=

1 [⟨xi, ws,t⟩ > 0] can only hold if |⟨xi, ws,0⟩| ≤ 2ρ2

ε
√

m
which is false for all i, s by Lemma 5.14. Hence it holds

that

∂fi

∂ws,t
= 1√

m
as1 [⟨xi, ws,t⟩ > 0] xi = 1√

m
as1 [⟨xi, ws,0⟩ > 0] xi = ∂fi

∂ws,0

and consequently ∇fi(Wt) = ∇fi(W0). It follows for the second term that

yi⟨∇fi(Wt) − ∇fi(W0), W0⟩ = 0.

Moreover by Lemma 5.13 for the third term it follows

yiρ⟨∇fi(Wt), U⟩ = yiρ⟨∇fi(W0), U⟩ ≥ ρ
γ

2 .

Thus yi⟨∇fi(Wt), W̄ ⟩ ≥ ρ γ
2 ≥ ln(4/ε) since ρ = 2γ−1 · ln(4/ε). Consequently it holds that R(t)(W̄) < ε/4.

104

Now using T = ⌈ 2ρ2

ε ⌉ applying Lemma 5.16 with step size η = 1 gives us the desired result:

1
T

∑︂
t<T

R(Wt) ≤ ∥W0 − W̄∥2
F

T
+ 2

T

∑︂
τ<T

R(t)(W̄)

= ∥ρU∥2
F

T
+ 2

T

∑︂
τ<T

R(t)(W̄)

≤ ε

2 + ε

2
≤ ε.

5.7 On the construction of U

5.7.1 Tightness of the construction of U

We note that for the construction of U used in the upper bound of Lemma 5.13 m′ ≥ 8 ln(2n/δ)
γ2 is

tight in the following sense: For v̄ ∈ FB, the natural estimator of γ is given by the empirical mean
1
m

∑︁m′

s=1 yi⟨v̄(ws,0), xi⟩]1 [⟨xi, ws,0⟩ > 0]. The following lemma shows that using this estimator, the bound

given in Lemma 5.13 is tight with respect to the squared dependence on γ up to a constant factor. In

particular we need m = Ω(γ−2 log(n)) if we want to use the union bound over all data points.

Lemma 5.17. Fix the choice of us = as√
m

v̄(ws) for s ∈ [m]. Then for each γ0 ∈ (0, 1) there exists an instance

(X, Y) and v̄(z) ∈ FB, such that for each i ∈ [n] it holds with probability at least Pm = c exp
(︁
−8m′γ2/3

)︁
for

an absolute constant c > 0 that

yif
(0)
i (U) = 1

m′

m′∑︂
s=1

yi⟨v̄(ws,0), xi⟩]1 [⟨xi, ws,0⟩ > 0] ≤ 0.

Proof of Lemma 5.17. Consider Example 5.5.1. Recall that γ(X, Y) = Θ(1/n). Choose a sufficiently large

n, divisible by 8, such that γ(X, Y) ≤ γ0. Note that the mapping v̄ that we constructed, has a high

variance since for any i, the probability that a random Gaussian z satisfies ⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0] ≥ 1√
2

as well as the probability that ⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0] ≤ − 1√
2 are equal to 1

8 . To see this, note that

|⟨v̄(z), xi⟩| ≥ 1√
2 if ⟨z, xi⟩ < 1√

2 and in this case ⟨v̄(z), xi⟩ is negative with probability 1
2 . Thus the variance of

Zs = yi⟨v̄(ws,0), xi⟩]1 [⟨xi, ws,0⟩ > 0] is at least 1√
22 · 2

8 = 1
8 . Observe that the random variable Z ′

s = 1
2 (1−Zs)

attains values in [0, 1]. Further the expected value of Z ′
s is 1

2 (1 − γ), and the variance is at least 1
32 . Now

set Z =
∑︁m′

s=1 Z ′
s and note that yif

(0)
i (U) = 1

m′

∑︁m′

s=1 yi⟨v̄(ws,0), xi⟩]1 [⟨xi, ws,0⟩ > 0] ≤ 0 holds if and only if

Z ≥ m′

2 = E(Z)+ m′γ
2 . By Lemma 5.12 we know that yif

(0)
i (U) = 1

m′

∑︁m′

s=1 yi⟨v̄(ws,0), xi⟩]1 [⟨xi, ws,0⟩ > 0] ≤

0 is true for at least one i ∈ [n] if m ≤ n
6 − 3. Now choosing n large enough this implies we only need to show

105

the result for m′ ≥ 2002 · 32. Hence we can apply Lemma 2.13 to Z and get

Pr[Z ≥ E(Z) + m′γ

2] ≥ c exp
(︃

−m′2γ2/

(︃
4 · 3m′

32

)︃)︃
= c exp

(︁
−8m′γ2/3

)︁
for m′γ

2 ≤ 1
100

m′

32 or equivalently γ ≤ 1
1600 which holds if n is large enough.

Thus we need that m = Ω(ln(n/δ)
γ2) for the given error probability if we construct U as in Lemma 5.13.

5.7.2 The two dimensional case (upper bound)

In the following we show how we can improve the construction of U in the special case of d = 2 such that

m = O
(︁
γ−1 (ln(4n/δ) + ln(4/ε))

)︁
suffices for getting the same result as in Theorem 5. We note that the only place where we have a dependence

on γ−2 is in Lemma 5.13. It thus suffices to replace it by the following lemma that improves the dependence

to γ−1 in the special case of d = 2:

Lemma 5.18. Let (X, Y) be an instance in d = 2 dimensions. Then there exists a constant K > 1 such

that for m ≥ Kln(n/δ)
γ with probability 1 − 2δ there exists U ∈ Rm×d with ∥us∥2 ≤ 1√

m
for all s ≤ m, and

∥U∥F ≤ 1, such that

yif
(0)
i (U) ≥ γ

4

for all i ≤ n.

Proof. The proof consists of three steps. The first step is to construct a net X ′ that consists only of ‘large

cones of positive volume’ such that for each data point x there exists a point x′ ∈ X ′ whose distance from x

on the circle is at most b = γ
4 : Let n′ = ⌈2π/b⌉ and consider the set

X ′′ = {x ∈ R2 | x = (cos(j/n′), sin(j/n′)), j ∈ N}.

Given x ∈ X we define g(x) ∈ argminx′∈X′′∥x − x′∥2 and h(x) ∈ argminx′∈X′′\{g(x)}∥x − x′∥2, where ties

are broken arbitrarily. We set X ′ = {g(x) | x ∈ X} ∪ {h(x) | x ∈ X}. We note that the distance on the

circle between two neighboring points in X ′ is a multiple of 2π
n′ . This implies that for any cone C(V) between

consecutive points in X ′ with P (V) > 0 we have P (V) ≥ 1/n′ ≥ b/7 and ∥x − g(x)∥2 ≤ b
2 . Further note that

there are at most |X ′| ≤ 2n cones of this form.

The second step is to construct a separator (us)s≤m ∈ Rm×d: Let v̄ ∈ FB be optimal for (X, Y), i.e.,

γ = γ(X, Y) = γv̄. As in Lemma 5.3 construct v̄′ ∈ FB with E[⟨v̄′(z), x′⟩ | z ∈ C(V)] = E[⟨v̄(z), x′⟩ | z ∈ C(V)]

where v̄′ is constant for any cone of the form C(V). Using the Chernoff bound (2.9) we get with failure

106

probability at most 2 exp(1
8 · b

7 · m′) = 2 exp(1
224 · γ · m′) that the number nV of points wj,0 in C(V) lies in

the interval [P (V)m
2 , 2P (V)m]. Now using m′ ≥ 224γ−1 log(2n

δ) and applying a union bound we get that

this holds for all cones of the form C(V) with failure probability at most 2δ. For wj ∈ C(V) we define

uj = aj
v̄′(wj)√

m
· P (V)m

2nV
. Since nV ∈ [P (V)m

2 , 2P (V)m] it follows that ∥uj∥2 ≤ ∥v̄′(wj)∥2√
m

≤ 1√
m

and consequently

∥U∥F ≤ 1. Moreover we have

∑︂
s∈[m],ws,0∈C(V)

asus = P (V)m · 1
2
√

m
· v̄′(V),

where we set v̄′(V) to be equal to v̄′(z), which is constant for any z ∈ C(V).

The third step is to prove that U is a good separator for (X, Y): To this end, let x ∈ X and x′ = g(xi).

If xi = x′ then

yif
(0)
i (U) = yi

1√
m

m∑︂
s=1

as⟨us, xi⟩1 [⟨xi, ws,0⟩ > 0]

= yi
1√
m

∑︂
V ⊆X′,x′∈V

∑︂
s∈[m],ws,0∈C(V)

as⟨us, xi⟩

= yi
1

2m

∑︂
V ⊆X′,x′∈V

P (V)m · ⟨v̄′(V), xi⟩

= yi
1
2E[⟨v̄(z), xi⟩1 [⟨xi, z⟩ > 0]]

= yi
1
2

∫︂
⟨v̄(z), xi⟩1[⟨xi, z⟩ > 0]dµN (z) ≥ γ

2 .

Otherwise if xi ̸= x′ then there is exactly one cone C(V1) with z ∈ C(V1) such that ⟨x′, z⟩ < 0 and ⟨xi, z⟩ > 0

and exactly one cone C(V2) with z ∈ C(V2) such that ⟨x′, z⟩ > 0 and ⟨x, z⟩ < 0. Recall that P (Vi) = 1
n′ ≤ b

for i = 1, 2. We set M = {V ⊆ [n′] | x′ ∈ V, V /∈ {V1, V2}}. Then it holds that

yif
(0)
i (U) = 1√

m

m∑︂
s=1

yi⟨us, xi⟩1 [⟨xi, ws,0⟩ > 0]

≥ 1√
m

⎛⎝∑︂
V ∈M

∑︂
s∈[m],ws,0∈C(V)

yi⟨us, xi⟩ −
∑︂

s∈[m],ws,0∈C(V1)

|⟨us, xi⟩|

⎞⎠
≥ 1√

m

⎛⎝∑︂
V ∈M

∑︂
ws,0∈C(V)

yi⟨us, xi⟩ +
∑︂

ws,0∈C(V2)

|⟨us, xi⟩| −
∑︂

s∈[m],ws,0∈C(V2)

|⟨us, xi⟩| − 1
2
√

m
P (V1)m

⎞⎠
≥ 1√

m

(︃√
m

2 E[yi⟨v̄(z), xi⟩1 [⟨xi, z⟩ > 0]] − 1
2
√

m
P (V2)m − 1

2
√

m
P (V1)m

)︃
= 1

2 (E[yi⟨v̄(z), xi⟩1 [⟨xi, z⟩ > 0]] − 2b) ≥ 1
2

(︂
γ − γ

2

)︂
= γ

4 .

107

6 Conclusion and open problems

We summarize the main results of the present manuscript and pose related open questions.

6.1 Sketching for logistic regression

We have introduced the to our knowledge first data oblivious sketch for logistic regression. The sketch

consists of multiple levels and each level is a Count-Min sketch of a subsample of the data where the size

of the subsample depends on the level. We show that the optimal solution computed on the sketch is a

good approximation to the optimal solution on the original data. More precisely we can get a constant

approximation with sketch size almost linear in the dimension d in almost linear running time (in n). Further

we can get a (2 + ε)-approximation in expectation with sketch size polynomial in the dimension d, ln(n) and ε

in linear running time. Last we can get a (1 + ε)-approximation with sketch size exponential in ε−1 in linear

running time.

We then showed that our sketch can also be used for ℓ1-regression as well as variance-based regularized

logistic regression. For ℓ1-regression the size of our sketch is close to linear in d and is constructed only by

multiplying a random matrix to the orignal data matrix.

Our main contributions are not only the results themselves but also the in depth analysis. Here we

first fix a parameter β and divide the vector z = Xβ into several weight classes similarly as in (Clarkson

and Woodruff, 2015). We showed that the contraction bounds hold by showing that for any weight class

with a notable contribution there is a level that preserves the contribution. We then apply a standard net

argument to get the contraction bound for all possible parameter vectors. Moreover to achieve the dilation

bounds we show that for any weight class there are only few levels where the weight class can have a non

zero contribution. To get the approximation ratio below 2 in expectation we then apply random shift by

choosing the size of the first level at random.

There are mainly two possibilities for future research. The first one is to improve the analysis (and

possibly the algorithm itself) further reducing sketch size, approximation and/or running time. In particular

it might be possible to reduce the dependence of d here by using a different net argument. The second future

research direction is to look at other target functions such as Poisson regression, p-probit regression, etc. to

see how well the sketch performs and to summarize the set of functions our sketch performs well on. Note

that it is likely that the more closely the target function is to the ℓ1-norm the better the sketch will perform.

More precisely if the elements with large contribution to the target function also have a large contribution

to the ℓ1 norm and the other elements behave uniform then it is likely that our sketch will work on those

functions as well.

108

6.2 ℓp-leverage score sampling for probit regression

Using sensitivity sampling we constructed an ε-coreset for p-generalized sketching. More precisely we analyzed

both, the tail behavior of p-generalized normal distribution in a similar manner as (Gordon, 1941) the

standard normal distribution as well as the log-likelihood of the p-probit model, to show that the sensitivity

scores with respect to the log-likelihood of the p-probit model are proportional to the ℓp-leverage scores

plus 1
n . Moreover by rounding the weights we were able to show the VC-dimension of the function space

with rounded weights is bounded by O(d log(µ/ε)). The same technique can also be used to reduce the

VC-dimension used in (Munteanu et al., 2018) from O(d log(n)) to O(d log(µ/ε)) completely removing the

dependency on n. Using a first pass over the data we used a sketching algorithm invented by (Woodruff and

Zhang, 2013) to get a sketch of the data preserving the ℓp-norm up to some factor. In a second pass over the

data, we computed an approximation to the ℓp-leverage scores and sampling probabilities and plug the into a

reservoir sampler. Using the sensitivity framework (Braverman et al., 2021; Feldman, 2020) we proved that

this yields an ε-coreset.

There are a couple of questions that remain open. Similar to logistic regression there is no upper bound

of the VC dimension of the range space of the function space considered in the analysis, i.e. F = {wgx | x ∈

Rd, w ∈ R≥0} (where gx(β) = − ln(Φp(−xβ)), known. We get around this by limiting the number of weights

however it would be interesting to know whether the VC dimension is d which would further improve our

analysis. Moreover it might be possible to use a different net argument such as in (Musco et al., 2022) to

get an even lower dependence on d in the size of our coreset. More generally it would be desirable to know

whether it is possible to construct a coreset that works for multiple values of p. Finally one might also look at

the problem from a Bayesian perspective as suggested in (Geppert et al., 2017). Here instead of optimizing

at the negative log likelihood we look at the distribution of β’s we get by the the likelihoods of β. Can we

bound the Wasserstein distance between the original distribution and the distribution on the coreset?

6.3 Reducing the width of two layer ReLU networks

Finally we studied two layer ReLU networks. Here we analyzed the performance of gradient descent coupled

initialization. For this initialization technique, which appeared before independently in (Daniely, 2020), we

showed that using this initialization technique we can get the required width to get an error of less than

ε down from Õ(γ−8)(Ji and Telgarsky (2020)) to Õ(γ−2) for any instance with separation margin γ. We

further gave some intuition to get a better understanding of the parameter γ by stating and proving some

properties as well as giving examples where bounds for γ can be obtained. Using one of these examples we

also gave a lower bound of Ω(γ−1) for the width of any two layer ReLU network achieving an error of less

than ε. We further proved lower bounds of Ω(γ−1 log(n)) and Ω(γ−2 log(n)) for parts of our analysis.

There remains a gap of Ω(γ−1) and Õ(γ−2) in the bound on the width. For the 2-dimensional case we

have seen, that a width of Õ(γ−1) suffices however it remains open whether this is true for any d > 2. Note

109

that the squared dependence on γ−1 comes from the Hoeffding bound. In order to get rid of it in the case

d = 2 we used a different approach to proof the existence of a good direction on the NTK. As the structure of

point sets in higher dimensional spaces becomes much more complex it is unclear whether a similar approach

could work here. On the other hand in (Daniely, 2020) it was noticed that with higher dimension the upper

bound on the width for random points on the sphere becomes even less, being Õ(n/d), so it might even be

possible that with higher dimensions the width necessary for convergence is even less than just Õ(γ−1) if all

subsets of the dataset of size d are of rank d.

Further it would be interesting to also consider networks of higher depths as done in (Seleznova and

Kutyniok, 2022) to see if it is possible to get sparser networks in this setting as well by using coupled

initialization.

110

7 Bibliography

Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff. New characterizations in turnstile streams with applications.

In 31st Conference on Computational Complexity, pages 20:1–20:22, 2016.

Nir Ailon and Edo Liberty. Fast dimension reduction using Rademacher series on dual BCH codes. Discrete

& Computational Geometry, 42:615–630, 2009.

Nir Ailon and Supratim Shit. Efficient NTK using dimensionality reduction. CoRR, abs/2210.04807, 2022.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized neural

networks, going beyond two layers. In Advances in Neural Information Processing Systems, pages 6155–6166,

2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-

parameterization. In Proceedings of the 36th International Conference on Machine Learning, pages

242–252, 2019b.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural networks.

In Conference on Neural Information Processing Systems, 2019c.

Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for the maximal

independent set problem. Journal of Algorithms, 7(4):567–583, 1986.

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments.

Journal of Computer and System Sciences, 58(1):137–147, 1999.

Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David P. Woodruff. Efficient sketches for earth-mover

distance, with applications. In 50th Annual IEEE Symposium on Foundations of Computer Science, pages

324–330, 2009.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On exact

computation with an infinitely wide neural net. Advances in Neural Information Processing Systems, 2019a.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization

and generalization for overparameterized two-layer neural networks. In 34th Conference on Computational

Complexity, 2019b.

Herman Auerbach. On the area of convex curves with conjugate diameters. PhD thesis, University of Lwów,

1930.

Ainesh Bakshi, Rajesh Jayaram, and David P. Woodruff. Learning two layer rectified neural networks in

polynomial time. In Conference on Learning Theory, pages 195–268, 2019.

111

Jon Louis Bentley and James B. Saxe. Decomposable searching problems I: Static-to-dynamic transformation.

Journal of Algorithms, 1(4):301–358, 1980.

Sergei Bernstein. On a modification of Chebyshev’s inequality and of the error formula of Laplace. Ann. Sci.

Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

Avrim Blum, John Hopcroft, and Ravi Kannan. Foundations of Data Science. Cambridge University Press,

2020.

Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge University Press,

2005.

Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized) neural

networks in near-linear time. In 12th Innovations in Theoretical Computer Science Conference, 2021.

Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, and Samson Zhou. Efficient coreset

constructions via sensitivity sampling. In Asian Conference on Machine Learning, volume 157, pages

948–963, 2021.

Bo Brinkman and Moses Charikar. On the impossibility of dimension reduction in l1. Journal of the ACM,

52(5):766–788, 2005.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in Machine

Learning, 8(3-4):231–357, 2015.

Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, and Dan Mikulincer. Network size and size of the weights in

memorization with two-layers neural networks. In Advances in Neural Information Processing Systems,

2020.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep neural

networks. In Advances in Neural Information Processing Systems, pages 10835–10845, 2019.

Yuan Cao and Quanquan Gu. Generalization error bounds of gradient descent for learning over-parameterized

deep ReLU networks. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 3349–3356,

2020.

Min-Te Chao. A general purpose unequal probability sampling plan. Biometrika, 69(3):653–656, 1982.

Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data streams. Theor.

Comput. Sci., 312(1):3–15, 2004.

Lin Chen and Sheng Xu. Deep neural tangent kernel and Laplace kernel have the same RKHS. arXiv preprint

arXiv:2009.10683, 2020.

112

Sitan Chen, Adam R Klivans, and Raghu Meka. Learning deep ReLU networks is fixed-parameter tractable.

In IEEE 62nd Annual Symposium on Foundations of Computer Science, pages 696–707, 2022.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations.

The Annals of Mathematical Statistics, pages 493–507, 1952.

Rachit Chhaya, Jayesh Choudhari, Anirban Dasgupta, and Supratim Shit. Streaming coresets for symmetric

tensor factorization. In Proceedings of the 37th International Conference on Machine Learning, pages

1855–1865, 2020.

Kenneth L. Clarkson. Subgradient and sampling algorithms for ℓ1 regression. In Proceedings of the 16th

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 257–266, 2005.

Kenneth L. Clarkson and David P. Woodruff. Sketching for M -estimators: A unified approach to robust

regression. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pages

921–939, 2015.

Kenneth L. Clarkson and David P Woodruff. Low-rank approximation and regression in input sparsity time.

Journal of the ACM, 63(6):1–45, 2017.

Kenneth L. Clarkson, Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, Xiangrui Meng, and

David P. Woodruff. The fast Cauchy transform and faster robust linear regression. SIAM Journal on

Computing, 45(3):763–810, 2016.

Kenneth L. Clarkson, Ruosong Wang, and David P. Woodruff. Dimensionality reduction for Tukey regression.

In Proceedings of the 36th International Conference on Machine Learning, pages 1262–1271, 2019.

Michael B. Cohen, Cameron Musco, and Jakub Pachocki. Online row sampling. Theory of Computing, 16:

1–25, 2020.

R. Dennis Cook. Detection of influential observation in linear regression. Technometrics, 19(1):15–18, 1977.

Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its

applications. Journal of Algorithms, 55(1):58–75, 2005.

Amit Daniely. Neural networks learning and memorization with (almost) no over-parameterization. In

Advances in Neural Information Processing Systems, 2020.

Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W. Mahoney. Sampling algorithms

and coresets for ℓp regression. SIAM Journal of Computing, 38(5):2060–2078, 2009.

Simon S. Du, Kangcheng Hou, Russ R. Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu Xu.

Graph neural tangent kernel: Fusing graph neural networks with graph kernels. Advances in Neural

Information Processing Systems, 32, 2019a.

113

Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global minima

of deep neural networks. In Proceedings of the 36th International Conference on Machine Learning, 2019b.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-

parameterized neural networks. In 7th International Conference on Learning Representations, 2019c.

John C. Duchi and Hongseok Namkoong. Variance-based regularization with convex objectives. Journal of

Machine Learning Research, 20:68:1–68:55, 2019.

Alex Dytso, Ronit Bustin, H. Vincent Poor, and Shlomo Shamai. Analytical properties of generalized Gaussian

distributions. Journal of Statistical Distributions and Applications, 5:1–40, 12 2018.

Paul Erdős and Alfréd Rényi. On a classical problem of probability theory. Magyar Tud. Akad. Mat. Kutató

Int. Közl., 6:215–220, 1961.

Dan Feldman. Core-sets: An updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, 10(1), 2020.

Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data. In

Proceedings of the 43rd ACM Symposium on Theory of Computing, pages 569–578, 2011.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning Big Data into tiny data: Constant-size

coresets for k-means, PCA, and projective clustering. SIAM Journal of Computing, 49(3):601–657, 2020.

William Feller. Generalization of a probability limit theorem of Cramér. Trans. Am. Math. Soc., 54:361–372,

1943.

Rong Ge, Jason D. Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape design.

In International Conference on Learning Representations, 2018.

Leo N. Geppert, Katja Ickstadt, Alexander Munteanu, Jens Quedenfeld, and Christian Sohler. Random

projections for Bayesian regression. Statistics and Computing, 27(1):79–101, 2017.

Felix Gessert, Wolfram Wingerath, Steffen Friedrich, and Norbert Ritter. NoSQL database systems: a survey

and decision guidance. Computer Science - Research and Development, 32(3-4):353–365, 2017.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Irwin R. Goodman and Samuel Kotz. Multivariate θ-generalized normal distributions. Journal of Multivariate

Analysis, 3(2):204–219, 1973.

Robert D. Gordon. Values of Mills’ ratio of area to bounding ordinate and of the normal probability integral

for large values of the argument. The Annals of Mathematical Statistics, 12(3):364–366, 1941.

Jürgen Groß. Linear regression, volume 175. Springer Science & Business Media, 2003.

114

Joseph M. Hilbe. Logistic regression models. Chapman and Hall/CRC, 2009.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American

Statistical Association, 58(301):13–30, 1963.

Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hierarchy. In

International Conference on Machine Learning, pages 4542–4551, 2020.

Jonathan H. Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable Bayesian logistic

regression. In Proceedings of the 29th Annual Conference on Neural Information Processing Systems, pages

4080–4088, 2016.

Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computation.

Journal of the ACM, 53(3):307–323, 2006.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence and generalization

in neural networks. In Proceedings of the 32nd International Conference on Neural Information Processing

Systems, pages 8580–8589, 2018.

Johan Ludwig William Valdemar Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes.

Acta mathematica, 30(1):175–193, 1906.

Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve arbitrarily small

test error with shallow ReLU networks. In International Conference on Learning Representations, 2020.

Norman L. Johnson, Samuel Kotz, and Narayanaswamy Balakrishnan. Continuous univariate distributions,

Volume 1. Wiley & Sons, 2nd edition, 1994.

William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.

Contemporary Mathematics, 26(1):189–206, 1984.

S. Kalke and W.-D. Richter. Simulation of the p-generalized Gaussian distribution. Journal of Statistical

Computation and Simulation, 83(4):641–667, 2013.

Kenji Kawaguchi and Jiaoyang Huang. Gradient descent finds global minima for generalizable deep neural

networks of practical sizes. In 57th Annual Allerton Conference on Communication, Control, and Computing,

pages 92–99, 2019.

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning Theory. MIT Press,

Cambridge, 1994.

Christian Kleiber and Samuel Kotz. Statistical size distributions in economics and actuarial sciences. John

Wiley & Sons, 2003.

115

Samuel Kotz, Narayanaswamy Balakrishnan, and Norman L Johnson. Continuous multivariate distributions,

Volume 1: Models and applications, volume 1. John Wiley & Sons, 2004.

Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication complexity. Computa-

tional Complexity, 8(1):21–49, 1999.

Michael Langberg and Leonard J. Schulman. Universal ε-approximators for integrals. In Proceedings of the

Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 598–607, 2010.

Jason D. Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, and Zheng Yu. Generalized leverage score sampling for

neural networks. In Advances in Neural Information Processing Systems, 2020.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning on non-iid

features via local batch normalization. In International Conference on Learning Representations, 2021a.

Yi Li, Huy L. Nguyen, and David P. Woodruff. Turnstile streaming algorithms might as well be linear

sketches. In Symposium on Theory of Computing,, pages 174–183, 2014.

Yi Li, David P. Woodruff, and Taisuke Yasuda. Exponentially improved dimensionality reduction for ℓ1:

Subspace embeddings and independence testing. In Conference on Learning Theory, pages 3111–3195,

2021b.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient descent

on structured data. In Advances in Neural Information Processing Systems, 2018.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with ReLU activation. In

Advances in Neural Information Processing Systems, pages 597–607, 2017.

Tung Mai, Cameron Musco, and Anup Rao. Coresets for classification - simplified and strengthened. In

Advances in Neural Information Processing Systems, pages 11643–11654, 2021.

Tung Mai, Alexander Munteanu, Cameron Musco, Anup B. Rao, Chris Schwiegelshohn, and David P.

Woodruff. Optimal sketching bounds for sparse linear regression. In Proceedings of the 26th International

Conference on Artificial Intelligence and Statistics, 2023.

Andreas Maurer and Massimiliano Pontil. Empirical Bernstein bounds and sample-variance penalization. In

Proc. of the 22nd Conference on Learning Theory, 2009.

P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman & Hall, London, 1989.

Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in input-sparsity time and

applications to robust linear regression. In Proceedings of the 21st Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 91–100, 2013.

116

Alejandro Molina, Alexander Munteanu, and Kristian Kersting. Core dependency networks. In Proceedings

of the Thirty-Second AAAI Conference on Artificial Intelligence, pages 3820–3827. AAAI Press, 2018.

Alexander Munteanu. On large-scale probabilistic and statistical data analysis. PhD thesis, Technische

Universität Dortmund, 2018.

Alexander Munteanu. Coresets and sketches for regression problems on data streams and distributed data. In

Machine Learning under Resource Constraints, Volume 1 - Fundamentals, pages 85–98. De Gruyter, 2023.

Alexander Munteanu and Chris Schwiegelshohn. Coresets-methods and history: A theoreticians design

pattern for approximation and streaming algorithms. Künstliche Intelligenz, 32(1):37–53, 2018.

Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, and David P. Woodruff. On coresets for logistic

regression. In Advances in Neural Information Processing Systems, pages 6562–6571, 2018.

Alexander Munteanu, Simon Omlor, and David P. Woodruff. Oblivious sketching for logistic regression. In

Proceedings of the 38th International Conference on Machine Learning, pages 7861–7871, 2021.

Alexander Munteanu, Simon Omlor, and Christian Peters. p-Generalized probit regression and scalable

maximum likelihood estimation via sketching and coresets. In Proceedings of the 25th International

Conference on Artificial Intelligence and Statistics, pages 2073–2100, 2022a.

Alexander Munteanu, Simon Omlor, Zhao Song, and David Woodruff. Bounding the width of neural networks

via coupled initialization - a worst case analysis. In International Conference on Machine Learning, pages

16083–16122, 2022b.

Alexander Munteanu, Simon Omlor, and David P. Woodruff. Almost linear constant-factor sketching for ℓ1

and logistic regression. In Proceedings of the 11th International Conference on Learning Representations,

2023. to appear.

Cameron Musco, Christopher Musco, David P. Woodruff, and Taisuke Yasuda. Active linear regression for ℓp

norms and beyond. In 63rd IEEE Annual Symposium on Foundations of Computer Science, pages 744–753,

2022.

S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends in Theoretical

Computer Science, 1(2), 2005.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science &

Business Media, 2003.

Atsushi Nitanda, Geoffrey Chinot, and Taiji Suzuki. Gradient descent can learn less over-parameterized

two-layer neural networks on classification problems. arXiv preprint arXiv:1905.09870, 2019.

117

Jacek Osiewalski and Mark F. J. Steel. Robust Bayesian inference in ℓq-spherical models. Biometrika, 80(2):

456–460, 1993.

Samet Oymak and Mahdi Soltanolkotabi. Toward moderate overparameterization: Global convergence

guarantees for training shallow neural networks. IEEE Journal on Selected Areas in Information Theory, 1

(1):84–105, 2020.

Jeff M. Phillips. Coresets and sketches. In Handbook of Discrete and Computational Geometry, pages

1269–1288. Chapman and Hall/CRC, 3rd edition, 2017.

Hossein Pishro-Nik. Introduction to probability, statistics, and random processes. Kappa Research LLC, 2014.

David Rohr. Data processing and online reconstruction. arXiv preprint arXiv:1811.11485, 2018.

Florin Rusu and Alin Dobra. Pseudo-random number generation for sketch-based estimations. ACM

Transactions on Database Systems, 32(2):1–48, 2007.

Alireza Samadian, Kirk Pruhs, Benjamin Moseley, Sungjin Im, and Ryan R. Curtin. Unconditional coresets

for regularized loss minimization. In The 23rd International Conference on Artificial Intelligence and

Statistics,, pages 482–492, 2020.

Tamás Sarlós. Improved approximation algorithms for large matrices via random projections. In Proceedings

of the 47th Annual IEEE Symposium on Foundations of Computer Science, pages 143–152, 2006.

Mariia Seleznova and Gitta Kutyniok. Neural tangent kernel beyond the infinite-width limit: Effects of depth

and initialization. In International Conference on Machine Learning, pages 19522–19560, 2022.

Aisha Siddiqa, Ahmad Karim, and Abdullah Gani. Big Data storage technologies: A survey. Frontiers of

Information Technology & Electronic Engineering, 18(8):1040–1070, 2017.

Fabian Sinz, Sebastian Gerwinn, and Matthias Bethge. Characterization of the p-generalized normal

distribution. Journal of Multivariate Analysis, 100(5):817–820, 2009.

Christian Sohler and David P. Woodruff. Subspace embeddings for the ℓ1-norm with applications. In

Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), pages 755–764, 2011.

Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix Chernoff bound. arXiv

preprint arXiv:1906.03593, 2019.

Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-parameterized neural

networks? Advances in Neural Information Processing Systems, 2021.

StEx StEx. How can we sum up sin and cos series when the angles are in arithmetic progression? https:

//math.stackexchange.com/questions/17966/, 2011. Accessed: 2021-05-21.

118

 https://math.stackexchange.com/questions/17966/
 https://math.stackexchange.com/questions/17966/

Marco Stolpe, Kanishka Bhaduri, Kamalika Das, and Katharina Morik. Anomaly detection in vertically

partitioned data by distributed core vector machines. In Machine Learning and Knowledge Discovery in

Databases - European Conference, pages 321–336, 2013.

Mikhail F. Subbotin. On the law of frequency of error. Matematicheskii Sbornik, 31(2):296–301, 1923.

Elad Tolochinsky, Ibrahim Jubran, and Dan Feldman. Generic coreset for scalable learning of monotonic

kernels: Logistic regression, sigmoid and more. In 39th International Conference on Machine Learning,

pages 21520–21547, 2022.

Murad Tukan, Alaa Maalouf, and Dan Feldman. Coresets for near-convex functions. In Advances in Neural

Information Processing Systems, 2020.

Elad Verbin and Qin Zhang. Rademacher-sketch: A dimensionality-reducing embedding for sum-product

norms, with an application to earth-mover distance. In Automata, Languages, and Programming - 39th

International Colloquium, pages 834–845, 2012.

Ruosong Wang and David P. Woodruff. Tight bounds for ℓ1 oblivious subspace embeddings. ACM Transactions

on Algorithms, 18(1):8:1–8:32, 2022.

David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends in Theoretical

Computer Science, 10(1-2):1–157, 2014.

David P. Woodruff. Problem set (+ solution), 2021. http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/

teaching/15859-fall21/ps3.pdf, Solution: http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/

teaching/15859-fall21/hw3Solutions.pdf, Accessed: 5-18-2022.

David P Woodruff and Taisuke Yasuda. Online Lewis weight sampling. In Proceedings of the 2023 Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 4622–4666, 2023.

David P. Woodruff and Qin Zhang. Subspace embeddings and ℓp-regression using exponential random

variables. In Proceedings of the 26th Annual Conference on Learning Theory, pages 546–567, 2013.

Yan Yan, Yi Xu, Lijun Zhang, Xiaoyu Wang, and Tianbao Yang. Stochastic optimization for non-convex

inf-projection problems. In Proceedings of the 37th International Conference on Machine Learning, pages

10660–10669, 2020.

Jiawei Zhang, Yushun Zhang, Mingyi Hong, Ruoyu Sun, and Zhi-Quan Luo. When expressivity meets

trainability: Fewer than n neurons can work. In Advances in Neural Information Processing Systems, pages

9167–9180, 2021.

Kai Zhong, Zhao Song, and Inderjit S. Dhillon. Learning non-overlapping convolutional neural networks with

multiple kernels. arXiv preprint arXiv:1711.03440, 2017a.

119

http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall21/ps3.pdf
http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall21/ps3.pdf
http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall21/hw3Solutions.pdf
http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall21/hw3Solutions.pdf

Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, and Inderjit S. Dhillon. Recovery guarantees for

one-hidden-layer neural networks. In 34th International Conference on Machine Learning, 2017b.

Difan Zou and Quanquan Gu. An improved analysis of training over-parameterized deep neural networks. In

Advances in Neural Information Processing Systems, pages 2053–2062, 2019.

120

	Introduction and motivation
	Data compression
	Neural networks
	Problems considered in this manuscript
	Outline and results
	Publications

	Preliminaries
	General notation
	Input formats
	Basics on linear algebra
	Probability distributions and common inequalities
	Data reduction methods
	Linear regression, logistic regression and p-probit regression
	Artificial neural networks
	Two-layer ReLU networks

	Convex optimization
	Gradient and Hessian Matrix for p-probit regression

	Related work

	Sketching for logistic regression
	Setting and notations
	The algorithm
	Motivation
	Parameters
	Pseudo code
	Description of the algorithm
	Idea of the analysis
	Outline of the analysis

	High level description of the analysis
	Analysis
	Assumptions
	Estimating the small parts of f
	Estimating |z+|1
	Analysis for a single level
	Heavy hitters
	Contraction bounds for a single point
	Net argument
	Dilation bounds

	Main result
	Extension to linear l1-regression
	Dilation bounds for
	Net argument

	Extension to logistic regression with variance-based regularization
	Lower bound

	lp-leverage score sampling for p-probit regression
	Setting and notations
	The algorithm
	High level description
	Pseudo code

	Analysis
	Outline of the analysis
	Tails of the p-generalized normal distribution
	Properties of g
	Bounding the VC-Dimension
	Bounding the Sensitivities
	Well Conditioned Bases and Approximate Leverage Scores

	Main Results

	Reducing the width of two layer ReLU networks
	Setting and notations
	The initialization and its motivation
	Outline of the analysis
	Main assumption and examples
	Main assumption
	Example 1: orthonormal unit vectors
	Example 2: Two differently labeled points at distance b
	Example 3: Constant labels
	Example 4: The hypercube

	Lower bounds for log width
	Example 5: Alternating points on a circle
	Lower Bounds

	Upper bound
	On the construction of U
	Tightness of the construction of U
	The two dimensional case (upper bound)

	Conclusion and open problems
	Sketching for logistic regression
	lp-leverage score sampling for probit regression
	Reducing the width of two layer ReLU networks

	Bibliography

