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Abstract

Model predictive control (MPC) has established itself as the standard method for the
control of complex nonlinear systems due to its ability to directly consider constraints
and uncertainties while optimizing a control objective. However, the application of
MPC requires repeatedly solving an optimal control problem online which can be com-
putationally prohibitive, especially for large systems, for systems with very high con-
trol sampling rates and for the implementation on embedded hardware.

This thesis presents deep neural networks (DNNs) as a means of enabling the im-
plementation of MPC algorithms when computation power is limited. The expressive
capabilities of DNNs are leveraged to closely approximate the control law implicitly
defined by the MPC problem. For the online application only evaluating the DNN, an
explicit function consisting of simple arithmetic operations, is required. This results in
speed-ups of several orders of magnitude in comparison to solving the MPC problem
online.

Throughout the thesis, we shed light onto various aspects that enable and motivate
the usage of DNNs as safe approximate MPC laws. Approaches to modify a DNN after
an initial learning phase such that the closed-loop performance is improved are pro-
posed. Further, methods that enable the analysis of the closed-loop behavior to ob-
tain both deterministic and probabilistic guarantees on the online operation regarding
safety, performance and stability are presented.

The efficacy of the proposed approaches is investigated for a wide range of case
studies includingapolymerization reactorof industrial complexity. Theanalysisshows
that the DNN controllers do not only outperform other approximate MPC approaches
in terms of control performance, memory footprint and evaluation times, but that DNN
controllers can even outperform the exact optimization-based MPCs when ideas from
reinforcement learning are used. Further it is shown that the DNN controllers can be
deployed on embedded hardware such as microcontrollers with small effort.
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Kurzzusammenfassung

Modelprädiktive Regelung (kurz: MPC) hat sich als die Standard-Methode zur Regel-
ung von komplexen nichtlinearen System etabliert, da es erlaubt Beschränkungen
und Unsicherheiten direkt zu berücksichtigen und zeitgleich eine Zielfunktion zu opti-
mieren. Dafür muss jedoch wiederholt ein Optimierungsproblem online gelöst werden.
Dies verhindert die Anwendung von MPC, wenn die Hardware nicht die nötige Rechen-
leistung aufbringt zur Berechnung einer Lösung innerhalb eines Zeitschritts.

In dieser Dissertation werden tiefe neuronale Netzwerke (kurz: DNNs) eingeführt
als eine Möglichkeit, um MPC-Algorithmen auf leistungsschwacher Hardware zu re-
alisieren. Dabei werden die repräsentativen Fähigkeiten von tiefen neuronalen Net-
zwerken genutzt, um das Regelgesetz, das implizit vom MPC-Optimierungsproblem
definiert wird, zu approximieren. Der approximative DNN-Regler kann mehrere Grös-
senordnungen schneller evaluiert werden als der optimierungs-basierte Regler, da
das DNN eine explizite Funktion bestehend aus simplen arithmetischen Operationen
darstellt.

Im Laufe der Dissertation werden verschiedenste Aspekte, die die Nutzung von
DNNs als effiziente approximative MPC-Regler ermöglichen und motivieren, vorge-
stellt. Dazu gehören Methoden zur Modifizierung eines gelernten DNN-Reglers, so-
dass die Performance optimiert wird, und Ansätze zur Analyse des geschlossenen
Regelkreises, die es ermöglichen sowohl probabilistische als auch deterministische
Garantien bezüglich Sicherheit, Performance und Stabilität zu erhalten.

Die Effektivität des vorgestellten Ansatzes wird für eine Vielzahl an Fallstudien un-
tersucht, unter anderem für einen Polymerisationsreaktor von industrieller Komplex-
ität. Die Untersuchungen zeigen, dass DNNs nicht nur andere approximative MPC
Methoden übertreffen bezüglich Regel-Performance, Speicherbedarf und Ausführ-
zeiten, sondern auch den ursprünglichen exakten MPC-Ansatz übertreffen können,
wenn Ideen aus dem Bereich des bestärkenden Lernens genutzt werden. Zusätzlich
wird gezeigt, dass die gelernten Regler mit wenig Aufwand auf eingebetteten Plattfor-
men wie Micro-Controllern implementiert werden können.
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Chapter 1

Introduction

1.1 Motivation

In times of rising emissions that drive the climate change and soaring energy prices,
advanced control and optimization are crucial tools for the development of the effi-
cient systems and processes of the future. In recent works, see [1] for an overview,
it was shown that leveraging state-of-the-art control approaches can lead to signif-
icantly reduced energy consumption, wear and emissions. One example that illus-
trates thepotential benefit of applyingadvancedmethods is the control of theheating,
ventilation and air conditioning system of a data center, whose energy consumption
could be reduced by 9% [2] by using an advanced approach, i.e. model predictive con-
trol (MPC), instead of PID controllers. But also the locomotion of quadruped robots at
moderate velocities up to 3ms−1 can be achieved via MPC [3].

In MPC, a mathematical model is used to predict the future behavior of the sys-
tem. Based on this prediction, an optimization problem is solved to derive the optimal
control inputs to be applied to the system. The major drawback of these advanced
optimization-based approaches is the necessity to solve a challenging optimization
problem online which can be prohibitive, especially if the computational hardware is
limited, or when the control sampling rate is very high.

To counteract this drawback, a lot of research effort has been devoted to the de-
velopment of methods that pre-compute the solutions of the optimization problems
offline and store the result on the control hardware and such avoid online optimiza-
tion. In online operation, the stored information can be used like a look-up table to
retrieve the optimal control input. But this class of approaches are only applicable to
small-scale systems due to the exponential growth of the look-up tables with respect
to the system size and the subsequent computationally prohibitive offline computa-
tion phase and significant memory requirements for the online implementation.

Inspired by the recent successes of deep learning to tackle a broad range of tasks,
in this thesis deep neural networks are explored as ameans to alleviate the disadvan-
tages of the existing MPC techniques.
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CHAPTER 1. INTRODUCTION

1.2 Scope of the thesis

The goal of this thesis is to introduce methods that broaden the range of applications
for which advanced control strategies can be deployed. The central challenge of im-
plementing an advanced controller such asMPC is the requirement to solve a complex
nonlinear optimization problemonline in every control instantwhichmight require po-
tent hardware and specific software, especially in case of operating uncertain and
nonlinear systems. Hence, the developed approach should avoid the need for online
optimization. An online optimization-free advanced control strategy would facilitate
the implementation due to the absence of complex optimization algorithms and and
the lower computational requirements enable the realization of MPC for fast systems
andcheapandcomputationally limitedhardware. Thedeployedcontrollers shoulden-
sure the robust satisfaction of process constraints at all times. Further, guarantees
on performance are desired as well as a stabilizing behavior in case of regularization
tasks.

These objectives are accomplished primarily by leveraging the recent advances in
the field of deep learning. The expressive capabilities of deepneural networks allow to
closely imitate the behavior of robust nonlinear model predictive control approaches
while only requiring a fraction of the computational power and memory. By combin-
ing ideas fromoutput rangeanalysis andwell-established control theoretic properties
or utilizing probabilistic tools, it is possible to provide guarantees on the closed-loop
operation.

The performance of the proposedmethodswill be analyzed via various challenging
case studies that will highlight its advantages in comparison to existing approaches
that were developed to render the usage of MPCmethods without online optimization
possible.

1.3 Structure and contribution

The thesis consists of three main parts which cover the theoretical basics of deep
learning-based MPC, deal specifically with methods to design and analyze the con-
trol of linear systems with neural network controllers and approaches that are more
suited for the operation of nonlinear systems. Each part will be introduced in detail in
the following before listing which sections are based on publications derived from the
research phase of the thesis.

1.3.1 Part I: Background

The first part introduces the challengeswhich are being tackled throughout the thesis
and the theoretical foundations which are used to derive the results presented in the
manuscript.

In Chapter 2, the general robust control problem and the corresponding ideal MPC
controller are introduced. Further, an overview of robust MPC techniques is provided
and a tractable approximation of the ideal controller, namely multi-stage MPC, and
an MPC approach that avoids online optimization for systems of moderate size and
complexity are presented. The contents of the chapter are derived from [4, 5].
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In Chapter 3, neural networks are introduced as a means of enabling the effi-
cient and optimization-free advanced control of complex systems. The introduction
includes a short overview of the history of deep learning from the early beginnings in
the middle of the 20th century to current achievements and presents the structure of
the feedforward neural networks used in this work. Further, it is described howmulti-
stageMPC can be used to generate the necessary data sets to obtain neural networks
via deep learning that closely imitate the behavior of the optimization-based MPCs.
Parts of this chapter are based on the publication [5].

1.3.2 Part II: Deep learning-based control for linear systems

The second part presents results that motivate the usage of deep neural networks
as controllers, in particular for linear systems, and presents methods that allow the
offline verification of learned controllers regarding safety and performance before de-
ployment.

Chapter 4 shows that for a commonclass ofmodel predictive control problems, the
solution can be exactly represented by deep neural networks with rectified linear unit
activations. The chapter is mainly based on the results published in [5].

In Chapter 5, it is highlighted that the main advantage of using deep neural net-
works is not their capability to exactly represent the solution of an MPC problem for
linear systems, but their ability to closely approximate thesolution inanefficientman-
ner. This enables the simple and fast application of advanced control methods where
online MPC is too slow or computationally challenging. As for the previous chapter,
the results of Chapter 5 are based on the results from [5].

For uncertain linear systems, it is possible to obtain deterministic guarantees on
closed-loop constraint satisfaction, performance and stability, as shown in Chapter 6.
The chapter is based on the contributions published in [6, 7].

1.3.3 Part III: Deep learning-based control for nonlinear systems

The third part deals with themore realistic and challenging case of nonlinear systems
where only incomplete state information is available and state estimation strategies
need to be applied to enable feedback control.

Chapter 7 deals with the case of output-feedback where not only the problem of
learning a controller, but also the learning of a state estimator and the directmapping
fromprevious outputs andmeasurements to the optimal control input is investigated.
The results used in this chapter were obtained in [8].

Chapter 8 makes use of the explicit nature of learning-based controllers and de-
tailedmodels to improve andadapt the learning-basedpolicy by leveraging ideas from
reinforcement learning. The results have originally been published in [9].

Due to the complex behavior of the uncertain nonlinear systems and the additional
uncertainty introduced by noise and measurements, obtaining deterministic guaran-
tees as presented for the linear case in Chapter 6 can be intractable. Therefore we
resort to methods that provide probabilistic guarantees on safety and performance
which are presented in Chapter 9. The contents of the chapter are based on the pub-
lication [4].
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CHAPTER 1. INTRODUCTION

1.3.4 Part IV: Conclusions and future work

The findings andmain results of the thesis are summarized in Chapter 10 by recapitu-
lating how the goal of realizing an advanced optimization-free controller was reached.
Finally, directions for future research are provided thatmight further facilitate the im-
plementation of efficient learning-based controllers and that might improve the per-
formance of the deployed deep neural network controllers.

1.4 Declaration on the reproduction of pre-published content

Parts of this thesis are based on already published and peer-reviewed works. An
overview on which publications have been used in which section of the thesis is given
the following and the corresponding publications are listed in the next paragraph.

Chapter 2 2.2 in parts from (modified) (D)

2.4 in parts from (modified) (D)

2.5 in parts from (modified) (A)

Chapter 3 3.2 in parts from (modified) (A)

3.3 in parts from (modified) (A)

Chapter 4 4.1 in parts from (modified) (A)

4.1 in parts from (modified) (A)

Chapter 5 5.1 in parts from (modified) (A)

5.2 in parts from (modified) (A)

Chapter 6 6.1 in parts from (modified) (B), (F)

6.2 in parts from (modified) (B), (F)

6.3 in parts from (modified) (B), (F)

6.5 in parts from (modified) (B)

6.7 in parts from (modified) (B), (F)

Chapter 7 7.1 in parts from (modified) (C)

7.2 in parts from (modified) (C)

7.3 in parts from (modified) (C)

7.4 in parts from (modified) (C)

Chapter 8 8.1 in parts from (modified) (E)

8.2 in parts from (modified) (E)

8.3 in parts from (modified) (E)

8.4 in parts from (modified) (E)
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8.5 in parts from (modified) (E)

Chapter 9 9.1 in parts from (modified) (D)

9.2 in parts from (modified) (D)

9.3 in parts from (modified) (D)

9.4 in parts from (modified) (D)

9.5 in parts from (modified) (D)

Publications

During the researchphase for this thesis, variousworkshavebeenpublished topresent
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Chapter 2

Model predictive control

Model predictive control (MPC) is a popular advanced control technique that can deal
with nonlinear systems and constraints while considering general control goals that
go beyond conventional set-point tracking tasks. More specifically, if robust MPC is
considered, it is possible to handle uncertainties that arise in the context of parame-
ter variations, disturbances and plant-modelmismatch. Despite these advantageous
properties which made MPC a popular advanced control method, one major obstacle
needs to be overcome to enable the application of MPC for a broader range of sys-
tems. The resulting computational complexity of the non-convex optimization prob-
lem - which needs to be solved online in every control interval - renders designing and
implementing a nonlinear model predictive controller a challenging and sometimes
even infeasible task.

In this chapter, we will specify the control performance that an ideal robust con-
troller should provide and present methods that approximate this ideal controller in a
more tractable fashion. First, the general principle of model predictive control is ex-
plained in Section 2.1, before introducing the optimization problem that encodes the
ideal behavior of a robust, but usually intractable control policy in Section 2.2. Ap-
proaches and basic techniques that enable the formulation of tractable robust opti-
mal control problemsarepresented inSection 2.3 before presentingmulti-stageMPC,
whichwill be used extensively throughout the thesis, in detail in Section 2.4. Amethod
that further reduces the computational requirements for applying MPC schemes by
completely avoiding online optimization, namely explicit MPC, is presented in Sec-
tion 2.5. The contents of this chapter are largely based on the publication [4].

2.1 Basic principle of model predictive control

Model predictive control is a control approachwhere amathematical model is used to
predict the future evolution of a system considering the current state of the system.
Based on the future evolution, the control objective and process constraints, an opti-
mization problem is formulatedwhose optimal solution provides either a control input
sequence or a policy that results in the optimal future behavior. The first element of
the sequence is applied to the real system, the new current state of the system is ob-
tained viameasurements and thewhole process is repeated at every control instance.
The MPC control strategy is illustrated in Fig. 2.1.
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CHAPTER 2. MODEL PREDICTIVE CONTROL

Figure 2.1: Two subsequent MPC steps.

The quality of the computed inputs is determined by the accuracy of the predic-
tion model. However, each mathematical model suffers from errors arising from un-
modelled dynamics, parameter variations or process noise and measurement noise.
It is therefore crucial to consider robust formulations that are capable of dealing with
these uncertainties.

2.2 Robust model predictive control problem

Handling uncertainty in the context of model predictive control is the main goal of ro-
bust MPC. In this thesis, we consider discrete-time nonlinear time-invariant systems
that are affected by uncertainties:

x+ = f(x, u, d), (2.1)
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2.2. ROBUSTMODEL PREDICTIVE CONTROL PROBLEM

where x ∈ R
nx are the states, u ∈ R

nu are the inputs, and d ∈ R
nd are uncertain

parameters and/or disturbances. Considering the uncertain parameters d, which are
contained in a set D ⊆ R

nd , is vital due to unavoidable plant-model mismatch. By
deploying a feedback controller µ : Rnx → R

nu the closed-loop behavior is described
by:

x+ = f(x, µ(x), d). (2.2)

One challenge of robust control is to ensure the satisfaction of the constraints for
all possible realizations of the uncertain values d ∈ D in closed-loop operation. In or-
der to formulate the constraints in the optimal control problem considering the state,
reachable sets can be leveraged. Based on the the system model f(·), the controller
µ(·), a set of initial conditions Xs ⊆ R

nx and the uncertainty set D, the reachable set
of the closed-loop (2.2) is defined as:

R(Xs,D, µ) :=
{

x+ ∈ R
nx |x+ = f(x, µ(x), d) ∀(x, d) ∈ Xs ×D

}

. (2.3)

The reachable set operator R(·) can also be applied repeatedly to obtain multi-step
reachable sets. There are several methods to compute such reachable sets. In the
caseof linear systemsandpolytopicuncertainty sets, theconsiderationof the vertices
of the uncertainty set and their propagation along the prediction horizon is enough to
computeanexact reachable set. In thenonlinear case, linearization techniques [10] or
ODEbounding techniques [11] canbeused toobtainguaranteedover-approximations.
Anotherpossibility for thepropagationofuncertainty is to resort toprobabilistic reach-
able sets as done in [12, 13].

For constraints that are affected by the control input, wemake use of output sets.
An output set is the entirety of control inputs that a controller provides for a set of
states. Output sets are defined - in a similar manner as reachable sets - with respect
to a set of initial conditions Xs and for a control policy µ(·) via:

Z(Xs, µ) := {u ∈ R
nu |u = µ(x) ∀x ∈ Xs} . (2.4)

The desired specifications for an ideal robust control policy can then be cast as an
optimization problem based on the reachable sets and output sets:

minimize
µideal(·)

J(X ,D, µideal, N) (2.5a)

subject to for all xinit ∈ X :

X0 = {xinit} , (2.5b)
for all k ∈ N[N−1] :

Xk+1 = R(Xk,D, µideal), (2.5c)
Uk = Z(Xk, µideal), (2.5d)
Xk ⊆ X , (2.5e)
Uk ⊆ U , (2.5f)
gcl(Xk,D, µideal) ≤ 0, (2.5g)

XN ∈ Xf, (2.5h)
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where N is the prediction horizon and (2.5a) is the objective function. The state con-
straints (2.5e) and control input constraints (2.5f) are expressed via the sets X ⊆ R

nx

and U ⊆ R
nu , respectively, and the closed-loop mixed constraints as an inequal-

ity (2.5g). The mixed constraints mean that the condition g(xk, uk, dk) ≤ 0 has to be
satisfied for all (xk, dk) ∈ Xk×D and corresponding uk = µideal(xk). The terminal con-
straint (2.5h) withXf ⊆ R

nx can be designed such that safety and stability is ensured.
Solving the ideal robustNMPCproblemdefined in (2.5), one obtains a recedinghorizon
policy µideal(·)which provides the optimal control input based on the initial state xinit.
But obtainingasolution for (2.5) is usually intractablemainly because theexact reach-
able and output setsmight be unknown and the ideal feedback law µideal(·) is difficult
to determine for all of X . However, various approaches that compute an approximate
solution to (2.5) based on simplifications exist. In the following several approaches
and techniques for the control of uncertain systems are shortly presented.

2.3 Robust control techniques

The first robust MPC approach was based on min-max optimization, a robust opti-
mization technique based on the findings in [14], and was introduced in [15]. In min-
max MPC, the objective is minimized for the worst-case realization of the uncertain-
ties while assuring that in no case the constraints are violated. The main drawback
of this approach is that the control problem is formulated in open-loop fashion. This
leads to very conservative results or renders theoptimizationproblem infeasible in the
case of larger uncertainties.

Closed-loop robustMPC tackles the problemof conservativeness by using the idea
that new informationwill be available in the future and hence the decisions can be up-
dated. In [16], the robust control problem is solved by optimizing over control policies
instead of optimizing over control inputs, leading however to intractable formulations
in the general case. An alternative and common approach to include recourse in the
problem formulation is to consider various scenarios, i.e. sequences of future realiza-
tions of the uncertainties, to consider a point-wise approximation of the true reach-
able sets. Since in each interval a new optimal control input will computed based on
the current state, the future evolution of the system can described by a tree structure,
the so-called scenario tree. In [17] the scenario tree is used in a min-max approach
which results in a significantly less conservative performance in comparison to [15].
However, the conservativeness of scenario tree-based approaches can be further re-
ducedwhen theprobability distributions of the uncertainties are known. One can then
minimize theexpectedvalueof thecost [18] - insteadof theworst-casecost -ordesign
a cost function which weighs the impact of each scenario according to the probability
of realization [19]. Due to these probabilistic considerations, the latter two methods
can be accounted to the family of stochastic MPC approaches.

Another common technique of stochasticMPCapproaches is to formulate the pro-
cess constraints as chance constraints. Instead of requiring the constraints to be
satisfied for all possible realizations of the uncertainty, the constraints only need
to be satisfied with a pre-specified probability [20]. This can render the application
of robust MPC methods possible when uncertainties and disturbances can be very
large or follow unbounded probability distributions. However, the scenario-based and
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stochasticMPCmethods result in challenging optimization problemsbecause various
scenarios need to be considered.

Tube-based approaches [21] simplify the challenge for robust control by decom-
posing the robust MPC problem into a nominal MPC and an ancillary controller. The
ancillary controller, often realized in the form of a an affine feedback, makes sure
that the real uncertain system stays within an invariant tube around the trajectory
planned by the nominal MPC. The invariant tube is further used to tighten the con-
straints of the nominal MPC such that robust constraint satisfaction of the overall
system is achieved. In the simplest version, the complexity of tube-based MPC is the
same as that of an MPC for certain systems. However, if an increased performance
is desired, the complexity grows as presented in [22] or [23] and in presence of large
uncertainties, the behavior of tube-based MPC can be conservative. To mitigate the
drawback of tube-base MPC and MPC formulations that use a scenario tree, meth-
ods have been developed that combine the twomethods [24]. This allows to trade-off
computational complexity and performance by considering the dominant uncertain-
ties in a scenario tree and by counteracting the effect of smaller uncertainties and
disturbances with the ancillary controller.

In this thesis,wewill leverageanMPC formulation that reliesonascenario treeand
which is usually calledmulti-stageMPC [19]. We choosemulti-stageMPC to approxi-
mate (2.5) for two reasons. First,multi-stage often exerts an improved performance in
practice because the feedback structure is not restricted to be affine, as usually done
in tube-based MPC and in other robust approaches [25]. And second, the complex
multi-stage optimization problem formulation will only be used in the offline phase -
where computational limitations are of no concern- to obtain the safe and efficient
deep learning-based neural network controllers whose design is the central goal of
the thesis.

2.4 Multi-stage MPC

Multi-stageMPC [26] or scenario tree-basedMPC [17, 18, 27] approximates the policy
defined in (2.5) byconsideringa finiteamountofpossible realizationsof theuncertain-
ties in a tree structure. This means that the true uncertainty set is approximated by a
discrete number of uncertainty realizations:

D ≈ D̃ = {d1, . . . , ds}, (2.6)

where s is thenumber of possible realizations of theuncertainty that are considered in
the tree. The considered realizations mean that each node branches s times at each
control instant which results in sk nodes at stage k. A reasonable strategy to build
a scenario tree is to consider as branches all possible combinations of the extreme
values of the uncertainty. A exemplary scenario tree where s = 2 possible uncertainty
realizations d1 and d2 are considered is illustrated in Fig. 2.2. The state x0,1 represents
the current state of the system and the possible evolutions of the system until a pre-
diction horizon ofN = 3 are formulated. To correctly model the temporal causality of
the feedback, the control inputs applied on branches originating from the same state
need to be equal.
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µms(x2,4), d2
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X̃ 0 = {x0,1}; X̃ 1 = {x1,1, x1,2}; X̃ 2 = {x2,1, . . . , x2,4}; X̃ 3 = {x3,1, . . . , x3,8};

Figure 2.2: Scenario tree representationwhen considering 2 realizations of the uncer-
tainty D̃ = {d1, d2} and a prediction horizon ofN = 3.

Using a scenario tree formulation, an approximation of the true reachable set can
be obtained as the convex hull of the set of all the nodes at a given stage, i.e.:

Xk ≈ Conv(X̃ k) = Conv





sk
⋃

i=1

xk,i



 , (2.7)

where Conv(·) denotes the convex hull of a set and xk,i denotes the node i of the tree
at stage k as depicted in Figure 2.2.

In the linear case with polytopic uncertainty, including the extreme values of the
uncertainty in D̃ guarantees an exact representation of the actual reachable set. In
the nonlinear case it is only an approximation and therefore we focus on the point-
wise approximation X̃ .
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x0,1

x1,2 x2,4 x3,4µms(x2,4), d2
µms(x1,2), d2

x2,3 x3,3µms(x2,3), d1
µms(x1,2), d1

µms(x0,1), d2

x1,1 x2,2 x3,2µms(x2,2), d2
µms(x1,1), d2

x2,1 x3,1µms(x2,1), d1
µms(x1,1), d1

µms(x0,1), d1

X̃ 0 = {x0,1}; X̃ 1 = {x1,1, x1,2}; X̃ 2 = {x2,1, . . . , x2,4}; X̃ 3 = {x3,1, . . . , x3,4};

Figure 2.3: Scenario tree representationwhen considering 2 realizations of the uncer-
tainty D̃ = {d1, d2}, a prediction horizon ofN = 3 and a robust horizon ofNrobust = 2.

Theoptimizationproblemthatshouldbesolvedateachsampling time toobtain the
multi-stageNMPC feedback policyµms(·) is formulated via (2.3) and (2.4) and given by:

minimize
µms(·)

ℓf(XN ) +
N−1
∑

k=0

ℓcl(Xk, µms), (2.8a)

subject to X̃ 0 = {xinit} , (2.8b)
for all k ∈ N

+
[N−1] :

X̃ k+1 = R(Xk, D̃, µms) (2.8c)

Ũk = Z(Xk̃, µms) (2.8d)

X̃ k ⊆ X , (2.8e)

Ũk ⊆ U , (2.8f)

gcl(X̃ k, D̃, µms) ≤ 0, (2.8g)

X̃N ⊆ Xf , (2.8h)

where (2.8a) approximates (2.5a) based on the closed-loop stage cost ℓ(·) and the ter-
minal cost ℓf(·). As can be seen from Fig. 2.2, the number of scenarios that need to be
considered in the scenario tree grows exponentially with the prediction horizon which
subsequently increases the complexity of (2.8). A common simplifying assumption is
to consider that the tree branches only up to a given stage (usually called robust hori-
zon) as portrayed in Fig. 2.3, which reduces the online computational requirements.
While this simplification introduces further errors in the approximation of the reach-
able sets at stages beyond the robust horizon, it achieves good results in practice [19].
It is alsopossible to achieve stability and robust constraint satisfaction guarantees for
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CHAPTER 2. MODEL PREDICTIVE CONTROL

a multi-stage MPC formulation [18, 28, 29], but its computational complexity grows
exponentially with the dimension of the uncertainty space.

Despite the simplifications introduced inmulti-stageNMPC to render the ideal ro-
bustmodel predictive control problem (2.5) tractable, (2.8) remains a challenging opti-
mization problem. For this reason, approaches have been developed that completely
remove the necessity to solve an optimization problem online for a certain class of
MPC problems.

2.5 Explicit MPC

The basic idea of explicit MPC approaches is - as the name indicates - to derive an
explicit expression for the solution of an MPC problem. Consider the discrete linear
time-invariant (LTI) system:

x+ = Ax+Bu, (2.9)

where A ∈ R
nx×nx is the system matrix, B ∈ R

nx×nu is the input matrix and the pair
(A,B) is controllable. The system description (2.9) can be for example derived by lin-
earizing a systemwith minor uncertainties at an operating point.

Usingastandardquadratic cost function, as is common in regularizationand track-
ing tasks, the following constrained finite time optimal control problemwith a horizon
ofN steps should be solved at each sampling time to obtain the MPC feedback law:

minimize
x,u

xTNPxN +

N−1
∑

k=0

xTkQxk + uTkRuk (2.10a)

subject to x0 = xinit, (2.10b)
for k ∈ N[N−1] : (2.10c)

xk+1 = Axk +Buk, (2.10d)
xk ∈ X , (2.10e)
uk ∈ U , (2.10f)

xN ∈ Xf, (2.10g)

where u = [uT0 , . . . , u
T
N−1]

T is a sequence of control inputs and x = [xT0 , . . . , x
T
N ]

T

is the corresponding state trajectory. The weighting matrices in the objective func-
tion (2.10a) are P ∈ R

nx×nx ,Q ∈ R
nx×nx andR ∈ R

nu×nu and chosen such that P ≽ 0
and Q ≽ 0 are positive semidefinite, and R ≻ 0 is positive definite. The state, ter-
minal and input constraints are bounded polytopic sets X := {x ∈ R

nx |Cxx ≤ cx},
Xf := {x ∈ R

nu |Cfu ≤ cf} and U := {u ∈ R
nu |Cuu ≤ cu} defined by the matrices

Cx ∈ R
nX×nx , Cf ∈ R

nf×nx , Cu ∈ R
nU×nu and the vectors cx ∈ R

nX , cf ∈ R
nf and

cu ∈ R
nU . The terminal cost defined by P as well as the terminal set Xf are usually

chosen in such a way that stability of the closed-loop system and recursive feasibility
of the optimization problem are guaranteed [30].

TheMPCproblem (2.10) is aquadratic programwhosesolution is apiecewiseaffine
(PWA) function in the state space defined on polytopes. The optimal solution only de-
pends on the current state xinit of the system [31]. Explicit MPC exploits this prop-
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2.5. EXPLICIT MPC

erty by precomputing the solution of (2.10) and storing the resulting function that fully
defines the MPC feedback law. The online evaluation of the explicit MPC law is then
reduced to finding the polytopic region in which the system is currently located and
applying the corresponding affine feedback law.

To obtain the PWA description of the solution of the MPC problem, (2.10) is refor-
mulated as a multi-parametric programming problem as given in [31, 32] that only
depends on the current system state xinit:

minimize
u

uTFu + xTinitGu + xTinitHxinit (2.11a)

subject to Ccu ≤ Txinit + cc, (2.11b)

where F ∈ R
Nnu×Nnu , G ∈ R

nx×Nnu , H ∈ R
nx×nx , Cc ∈ R

Nnineq×Nnu , T ∈ R
Nnineq×nx ,

cc ∈ R
Nnineq and nineq is the total number of inequalities in (2.10).

The PWA solution of the multi-parametric quadratic programming problem (2.11)
[31] is given by:

µexp(xinit) =















K1xinit +m1, if xinit ∈ H1,
...

Knrxinit +mnr , if xinit ∈ Hnr ,

(2.12)

with nr regions,Ki ∈ R
Nnu×nx andmi ∈ R

Nnu . Each regionHi is described by a poly-
tope

Hi = {x ∈ R
nx | Hix ≤ hi}, i ∈ N

+
[nr]

, (2.13)

where Hi ∈ R
ci×nx and hi ∈ R

ci describe the ci half-spaces of the i-th region. The
formulation (2.12) is defined on the bounded polytopic partition XΩ = ∪nri=1Hi with
int(Hi) ∩ int(Hj) = ∅ for all i ̸= j, where int(·) denotes the interior of a set.

However, explicit MPC can only be applied to systems of moderate size and com-
plexity. The main drawback of the explicit MPC formulation is that the number of re-
gions for an exact representation can grow exponentially with respect to the horizon
and number of constraints [31], which might render computing the PWA function in-
feasible or might result in stark memory requirements. The memory needed to store
the explicit MPC controller (2.12) can be approximated as

MEMµexp = ³bit ((nh (nx + 1)) + nuf (nxnu + nu)) , (2.14)

where nh is the number of unique hyperplanes , nuf is the number of unique feedback
laws and ³bit is the memory necessary to store a real number. It is only required to
consider the unique elements because many hyperplanes are shared by neighboring
regionsand the feedback lawscanbe identical for twoormorepolytopic regions. Since
for the actual implementation of the explicit MPC law only the input of the first time
step is needed, only the firstnu rows ofKj andmj for j ∈ N

+
[nuf]

have to be storedwhich
equals nxnu + nu numbers per unique feedback law. Some approaches try to coun-
teract themassivememory requirements by finding amore efficient representation of
the control law, e.g. by eliminating redundant regions [33] or byusingdifferentnumber
representations [34], but these methods have a negligible impact.
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Another major disadvantage of explicit MPC concerns the online application and
results also from theexponential growthof thepolytopic region. Theeffort required for
identifying the region in which the system state currently resides in order to apply the
correct affine feedback law can be significant. One method to reduce the complexity
of the so-called point location problem is the usage of binary search trees [35–39]
which introduce a tree structure where the nodes represent unique hyperplanes. At
each node, it is checked on which side of the hyperplane the state is until a leaf node
is reached. At the leaf node, a unique feedback law is identified and evaluated. This
method renders the online computational time logarithmic in the number of regions,
but precomputation times can be prohibitive or intractable for larger problems [40].

Since the application of explicit MPC is limited to systems of moderate size and
complexity, despite avoiding online optimization, a less restricted approach based
on artificial neural networks to obtain optimization-free MPC controllers will be pre-
sented in the next chapter.
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Chapter 3

Artificial neural networks

The field of machine learning has rapidly evolved in the recent decade and enabled
machines to excel in tasks that were thought of being only accessible to the human
mind. The crucial factor for this fast development besides the improved hardware are
the advancesmade in deep learning. Examples for the outstanding achievements are
the successful categorization of high-resolution image data sets consisting of more
than a million images into 1000 categories [41], learning to play Atari games by di-
rectly feeding the pixel output to a deep neural network [42] and the superhuman per-
formance in the game of Go [43, 44], a highly complex strategic board game. In the
following, the historical precursor of neural networks will be introduced in Section 3.1
before the structure and mathematical description of the deep neural networks used
throughout this thesis is explained in Section 3.2. The basic learning paradigm - imi-
tation learning - is presented in Section 3.3 that allows to adapt the parameters of a
deep neural network such that a desired input-output behavior is obtained. In Sec-
tion 3.4, it is presented how deep learning has been leveraged in the context of MPC
and how imitation learning can be used in combination with robust MPC formulations
to obtain broadly applicable explicit controllers.

3.1 Perceptron

The predecessor of the modern deep neural networks is the perceptron - a classifier
- which was introduced in 1943 by McCulloch and Pitts [45]. The basic idea of the
perceptron is to discriminate between two classes based on threshold logic. The per-
ceptron, depicted in Fig. 3.1, provides a binary output based on a fixed threshold b̄ ∈ R:

λp(x) =

{

1, if wTx > b̄,

0, else ,
(3.1)

where x ∈ R
nx is the input to the perceptron andw ∈ R

nx is the weight vector. In 1957
Frank Rosenblatt developed a learning rule [46] - inspired by the model for biological
learning proposed by Hebb [47] - to find the optimal weights for a perceptron. Despite
the neurological inspiration, the derived classifier from (3.1) is just a linear one. The
ability to handle more complex and nonlinear data sets is only obtained when at least
a second layer of perceptrons is introduced.
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Figure 3.1: Perceptron with 3 inputs.

3.2 Feed-forward neural networks

A feed-forward neural network is defined as a sequence of layers, each consisting of
several perceptrons (in this context also called neurons), which transforms input data
in a highly nonlinear fashion. The neural network function is a mapping µnn : Rnx →
R
nu of the form:

µnn(x; ¹, n0, . . . , nL+1) = λL+1 ◦
L
∏

l=1

(σl ◦ λl (zl−1)) , (3.2)

combining in each (hidden) layer an affine function:

λl(zl−1) =Wlzl−1 + bl, (3.3)

that processes the output of the previous layer zl−1, with a nonlinear activation func-
tion σl(·). The symbol ◦ denotes a function composition, e.g.

σl ◦ λl(zl−1) = σl(λl(zl−1)),

and
∑L

l=1 stands in this case for the L-time function composition. The output of each
layer is defined as:

zl = σl (Wlzl−1 + bl) , (3.4)

for l ∈ N
+
[L+1] and as z0 = x for the initial input layer. The parameter

¹ = {W1, b1, . . . ,WL+1, bL+1}
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3.2. FEED-FORWARD NEURAL NETWORKS

Figure3.2: Deepneural networkwithn0 = 3 inputs,nL+1 = 2outputsand threehidden
layers with n1 = n2 = n3 = 4 neurons each.

contains all the weightsWl ∈ R
nl×nl−1 and biases bl ∈ R

nl of the affine functions of
each layer l ∈ N

+
[L+1]. Each layer (3.3) of a deep neural network can be seen as a stack

of perceptrons with

Wl =











w1

...

wnl











and bl =











−b̄1
...

−b̄nl











,

which does provide a non-binary output that depends on the chosen activation func-
tion. The number of hidden layers is given by L and each layer contains nl, l ∈ N

+
[L],

neurons. If L ≥ 2, µnn(·) is described as a deep neural network and if L = 1 as a
shallow neural network. A deep neural network with three hidden layers, four neurons
per hidden layer, and three input and two output neurons is portrayed in Fig. 3.2. Com-
mon choices for the nonlinear activation functionσ(·) are rectifier linear units (ReLUs),
which compute the element-wise maximum between zero and the affine function of
the current layer l:

ReLU(λl(zl)) = max(0, λl(zl)), (3.5)

and the hyperbolic tangent:

tanh(λl(zl)) =
eλl(zl) − eλl(zl)

e−λl(zl) + e−λl(zl)
. (3.6)

The two activation functions are visualized in Fig. 3.3.

In this thesis, only feed-forward neural networks of the form (3.2) are consid-
ered. Alternative topologies such as recurrent neural networks [48, 49], where inter-
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tasks, the loss function is commonly defined as the mean squared error (MSE) be-
tween the output of the neural network and the output of the goal function:

MSE(T ; ¹) =
ntr
∑

i=1

∣

∣

∣

∣µnn(xi; ¹, ·)− µgoal(xi)
∣

∣

∣

∣

2

2
. (3.7)

Due to the highly nonlinear nature of the networks, developing methods to obtain
(near-) optimal weights and biases ¹∗ by solving

¹∗ = arg min
θ

MSE(T ; ¹) (3.8)

has been a challenging task.

The backbone of modern approaches to solve (3.8) are based on backpropagation.
Backpropagation uses the loss (3.7) and the chain-rule of differentiation to compute
the gradients of the weights and biases with respect to the loss (3.7). The gradient
information is then used in gradient-based optimization algorithms to update the pa-
rameters of the neural network. The general principles of backpropagation were al-
ready explored in the Sixties, see e.g. [61], but the first work in which the use of the
backpropagationalgorithmwasexplicitly proposed for the adaption of theparameters
of a neural network was published in 1974 [62] and further popularized in 1986 [63].

The above described training procedure, usually called imitation learning, illus-
trates why obtaining an exact neural network representation of the function to be ap-
proximated is usually intractable, even if the expressiveness of the neural network
structure is theoretically sufficient. First, the parameters are computed from sam-
ples, meaning that the goal function is only approximated point-wise. Second, due to
the highly nonlinear nature of artificial neural networks and the high-dimensional so-
lution space, i.e. the parameter space, solving (3.8) globally is usually intractable and
computationally less expensive gradient-basedmethods are exploited.

However, the near-optimal parameters obtained by leveraging the gradient-based
methods provide good results in practice and thus deep learning has been used in var-
ious ways in the context of MPC.

3.4 Deep learning-based MPC

The recent successes of deep learning have sparked a surge in research interest in
the field of control engineering on how to leverage the capabilities of deep neural net-
works. Hence, many approaches, despite being very different in nature, have been
coined (deep) learning-based MPC. In order to avoid any confusion, an overview of
model predictive control strategies that use deep learning is provided before present-
ing the in this thesismainly used approach of obtaining deep neural networks that im-
itate MPC laws. For a detailed survey of general machine learning-based approaches
in the field of robust control, see [64].
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3.4.1 Overview of deep learning-based MPC strategies

One class of methods apply deep learning for system identification [65] tasks. The
major of advantages of these approaches is that the cumbersome process of devel-
oping a first-principles model is avoided. Instead, the ubiquitous sensing capabili-
ties of modern plants and therefrom resulting data can be used to obtain an accurate
systemmodel in form of an artificial neural network that either represents the whole
model or difficult to model (nonlinear) dynamics [66, 67]. The identified model is then
used as the prediction model in a predictive control scheme. However, the usage of
Gaussian Processes [68] for system identification purposes ismore common than the
usage of neural networks becauseGaussian processes inherently provide uncertainty
measures which can be leveraged in a robust or stochastic MPC formulation [69, 70].
However, in this work we are interested in leveraging the strengths of deep learning to
obtain deep neural network controllers.

When deep neural networks are considered to directly approximate the solution
of MPC problems, two main approaches for obtaining learning-based neural network
controllers can be distinguished. The first approach is imitation learning, where the
neural network mimics the behavior of a demonstrator, often an optimization-based
controller like MPC [5, 71, 72]. The second method is reinforcement learning, where
the controller interacts with the system and adjusts its policy based on a received re-
ward to find an optimal policy [9, 73–77]. The results obtained with both methods
showed that the learning-based controllers exhibit competitive performance in com-
parison to optimization-based control methods while only requiring a fraction of the
computational andmemory requirements [5, 78].

Despite such promising results, obtaining guarantees for the safety and perfor-
mance are central challenge because the learning-based controller do not necessar-
ily inherit the same properties from the MPC demonstrator due to approximation er-
rors. Generally, three approaches for analyzing safety properties of neural network
controlled systems are followed.

The first classofapproaches isbasedon leveragingprobabilisticmethods tobound
the approximation error of the neural network controller with respect to the optimal
controller [72, 79] or to directly evaluate the closed-loop performance [4]. These ap-
proaches can also be applied for nonlinear systems, but no deterministic safety guar-
antees can be provided. One advantage of these probabilisticmethods is, that they do
not require an additional measure to apply the neural network controllers online and
hence are also explored in this thesis.

The second class of approaches is combining the control signal of a neural network
controller with optimization-basedmethods to guarantee safety, e.g. using projection
onto the feasible set [71, 80], using anMPC-based backup controller [81] or by taking
the output of the neural network controller to warm start an active-set solver [78].
While these approaches guarantee the deployment of safe control inputs, they still
require to solve a potentially challenging optimization problem online, at least when
the neural network controller provides an unsafe control input. Since one goal of this
thesis is to develop methods that enable the application of sophisticated control al-
gorithms without online optimization, these kind of approaches are not considered.

The third class of approaches, to which some techniques proposed in this thesis
belong to, is the offline deterministic verification of a learned neural network con-
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troller. Most approaches in this category are based on output-range analysis tech-
niques, see [82] for an overview. Output range analysis methods approximate the set
of outputs that a neural network generates for a given set of inputs. Output range
analysis has been originally used in classification tasks to robustify the decisions
against adversarial perturbations [83, 84] and were adapted in the control field to
verify closed-loop properties such as reachability of target sets and to identify robust
positive invariant sets of the closed loop [6, 84, 85]. An alternative deterministic verifi-
cation approach is based on directly comparing the piece-wise affine functions of the
explicit solution of certain MPC problems and an approximate neural network con-
troller with rectified linear unit activations. If the maximum approximation error and
the difference in Lipschitz constants between the MPC solution and the neural net-
work approximation is sufficiently small, stability and safetywithin a region of interest
can be guaranteed [86]. The main advantage of these approaches is that the neural
network controller can be directly applied in the closed-loop after the verification pro-
cedure with guarantees on safety and performance without any additional measures.
The main disadvantage is that the offline computational load can be significant, as it
requires solving complex and often non-convex optimization problems. However, be-
fore any of the safety analysismethods can be applied, the neural network controllers
need to be designed, e.g. by following the approach presented in the subsection.

3.4.2 Approximating MPC laws with deep neural networks

The usage of artificial neural networks as explicit MPC-like controllers has already
been proposed as early as in the mid 90-ies [87, 88], but technical limitations have
hindered the broad adoption of this approach. Apart from very restricted computa-
tional resources the lack of specialized deep learning toolboxes - such as Keras [89],
Tensorflow [90] and PyTorch [91] - which enable the straight-forward usage of state-
of-the-art solvers [92, 93]were far frombeingavailable. Modern-day technology facil-
itated the process of obtaining a deep neural network controller that closely approxi-
mates the behavior of a robust MPC controller. The approximate deep learning-based
controllers are obtained following three steps.

First, oneneeds todesign theMPC for the systemathand, e.g. amulti-stageNMPC
formulation (2.8) as done throughout this thesis. It is recommended, but not neces-
sary, to a priori consider the approximation error of the learning-based controllers by
modelling it as part of the uncertainties d ∈ D as proposed in [72]. The resulting MPC
is then used to generate the training data set

T = {(xinit,1, µms(xinit,1)), (xinit,2, µms(xinit,2)), . . . , (xinit,ntr , µms(xinit,ntr))} (3.9)

by solving (2.8) formany feasible initial states xinit,i ∈ X , i ∈ N
+
[ntr]

. Note that collecting
the samples from closed-loop trajectories usually results in a more efficient learning
[8, 78].
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The second step concerns finding control parameters ¹ of the deep neural network
µnn(x; ¹, ·) that minimize the approximation error defined in terms of the MSE (3.7)
based on the training data set T , i.e.

minimize
θ

1

ntr

ntr
∑

i=1

∣

∣

∣

∣µnn(xinit,i; ¹, ·)− µms(xinit,i)
∣

∣

∣

∣

2
. (3.10)

Theoptimizationproblem (3.10) is thenusually solvedbyapplyingmini-batchstochas-
tic gradient descent or related approaches.

The third and final step is the implementation of the neural network on the con-
trol hardware. One central advantage of neural network controllers is their simplicity
as the evaluation consists only of matrix-vector multiplications, vector additions and
simple nonlinear computations for the activation functions. This enables the straight-
forward deployment of advancedMPCstrategies for systemswith extremely high con-
trol sampling rate, such as power electronics [94] and plasma jets [95], and on hard-
ware with very limited computational abilities such as microcontrollers [4, 96] and
field programmable gate arrays [94, 97, 98].

In the remainder of this thesis, neural network controllers that were developed as
described above will be investigated. Theoretical connections betweenMPC laws and
neural networks will be established, approaches to modify the weights such that an
improved closed-loop performance is obtained and methods to derive probabilistic
and deterministic guarantees regarding the online operation, without installing any
additional safety measures, will be presented.
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Chapter 4

Exact representation of model
predictive control laws via deep
learning

A central motivation for the usage of deep neural network networks as explicit con-
trollers is that an exact representation of MPC laws can be achieved not only in the
limit - as stated in the universal approximation theorem [52] - but also in a construc-
tive way, as will be shown in this chapter.

First, the expressive capabilities of deep neural networks with ReLU activations
will be investigated in Section 4.1 before showing how these networks can exactly rep-
resent MPC laws in Section 4.2. The contributions of this chapter are based on the
findings published in [5].

4.1 Expressive capabilities of deep neural networks

In Section 2.5, it was shown that the MPC law for a linear system often constitutes a
piecewiseaffine function in thestate space. Thesame is true for deepneural networks
that use ReLUs (3.5) as the activation function.

Lemma 4.1. [99] Every neural network µnn(x; ¹, n0, . . . , nL+1) with input x ∈ R
nx de-

fined as in (3.2)with ReLUs (3.5) as activation functions and nl ≥ nx for all l ∈ N
+
[L] rep-

resents a piecewise affine function. In addition, a lower bound on the maximum number
of affine regions that the neural network represents is given by the following expression:

(

L−1
∏

l=1

⌊

n

nx

⌋nx

)

nx
∑

j=0

(

L

j

)

,

where n = min{n1, . . . , nL}.

Proof of Lemma 4.1. The neural network µnn(x; ¹, n0, . . . , nL+1) is a piecewise affine
functionbecause it only contains compositions of affine transformationswith apiece-
wise affine function (ReLUs). For the derivation of the maximum number of regions,
see [99].
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Figure 4.1: Number of regions with respect to the number of weights a neural network
can represent. The parameters for this plot were chosen to nx = n0 = 2, n1, . . . , nL =
10, L ∈ N[50] and nu = nL+1 = 4. ©[2020] IEEE.

Lemma4.1gives clear insightsaboutwhydeepnetworksareapromisingcandidate
to obtain explicit controllers andwhy they obtain a better performance to approximate
complex functions when compared to shallow networks as often observed in practice.
In particular, Lemma 4.1 implies that the number of affine regions that a neural net-
work can represent grows exponentially with the number of layers L as long as the
number of neurons in each hidden layer nl, l ∈ N

+
[L], is not smaller than the number of

inputs nx. The bound of Lemma 4.1 can be slightly improved if nl ≥ 3nx for all l ∈ N
+
[L]

as shown in [100]. Despite the fact that the expressive capacity, i.e. the maximum
number of linear regions that a deep neural network can theoretically represent, is
usually not reached in practice [101–104], deep neural networks achieve in general
better learning results in comparison to shallow neural networkswith comparable ex-
pressive capacity [103].

The number of parameters contained in ¹ that are necessary to fully describe the
neural networkµnn(x; ¹, n0, . . . , nL+1)aredeterminedby thedimensionsof theweights
and biases at each layer. Assuming that storing each number requires ³bit bits, the
total amount of memory necessary to store the neural network µnn(x; ¹, n0, . . . , nL+1)
can be computed as:

MEMµnn = ³bit

L+1
∑

l=1

((nl−1 + 1)nl) . (4.1)

Since MEMµnn only grows linearly with respect to the number of layers L, deep ReLU
networks can represent exponentiallymanymore linear regions than shallow ones for
a fixed amount ofmemory. This fact can be clearly seen in Fig. 4.1. We believe that this
observation, while somewhat obvious, is a very powerful result with important impli-
cations in control theory and constitutes one of the central motivations for the usage
of deep neural networks as explicit controllers.
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4.2 Exact representationofMPClawsviadeepneuralnetworks

This section shows how to design a deep neural network that can exactly represent an
explicit MPC feedback law (2.12) of the form µexp : [0, 1]nx → R

+,nu by only mapping
the current state xinit to the first optimal control input u∗0. Considering only the control
input of the first time step is sufficient, because after its application a new control
input trajectory u∗ is computed in the MPC setting.

We make use of two lemmas to derive specific bounds for a deep neural network
to be able to exactly represent any explicit MPC law µexp(·). The following lemma
from [105] is used.

Lemma 4.2. Every scalar piecewise affine function fPWA(x) : Rnx → R can be written
as the difference of two convex piecewise affine functions:

fPWA(x) = µ(x)− ¸(x), (4.2)

where µ(x) : Rnx → R has rγ regions and ¸(x) : Rnx → R has rη regions.

Proof of Lemma 4.2. See [105] or [106].

The following Lemma, presented in [107], gives specific bounds for the structure
that a deep neural network should have to be able to exactly represent a convex piece-
wise affine function.

Lemma 4.3. A convex piecewise affine function fPWA : [0, 1]nx → R
+ defined as the

point-wise maximum ofNaff affine functions:

f(x) = max
i∈N+

[Naff]

fi(x),

can be exactly represented by a deep ReLU network with widthnl = nx+1 for all l ∈ N
+
[L]

and depth L = Naff.

Proof of Lemma 4.3. See Theorem 2 from [107].

One of the main contributions of this chapter is given in the following theorem,
which states that any explicit MPC law of the form (2.12) with µexp(x) : [0, 1]nx → R

+,nu

can be represented by a deep ReLU neural network with a predetermined size.

Theorem 4.1. There always exist parameters ¹γ,i and ¹η,i for 2nu deep ReLU neural net-
works with depth rγ,i and rη,i, i ∈ N

+
[nu]

, and width nj = nx + 1 for all j ∈ N
+
[rγ,i]

and

j ∈ N
+
[rη,i]

, respectively, such that the vector of neural networks defined by











µnn(x; ¹γ,1, n0, . . . , nrγ,1+1)− µnn(x; ¹η,1, n0, . . . , nrη,1+1)
...

µnn(x; ¹γ,nu , n0, . . . , nrγ,nu+1)− µnn(x; ¹η,nu , n0, . . . , nrη,nu+1)











(4.3)

can exactly represent an explicit MPC law µexp(x) : [0, 1]
nx → R

+,nu .
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Proof of Theorem 4.1. Every explicitMPC lawµexp(x) : [0, 1]nx → R
+,nu canbe split into

one explicit MPC law per output dimension:

µ
(i)
exp(x) : [0, 1]

nx → R
+ ∀i ∈ N

+
[nu]

. (4.4)

Applying Lemma4.2 to allnuMPC laws, each one of themcanbe decomposed into two
convex scalar PWA functions:

µ
(i)
exp(x) = µi(x)− ¸i(x) ∀i ∈ N

+
[nu]

, (4.5)

where each µi(x) and each ¸i(x) are composed of rγi and rηi affine regions. The explicit
MPC law µexp(x) : [0, 1]nx → R

+,nu can thus be vectorized as

µexp(x) =











µ1(x)− ¸1(x)
...

µnu(x)− ¸nu(x)











. (4.6)

According to Lemma4.3, it is alwayspossible to findparameters ¹γ,i, ¹η,i for deepReLU
networks with width nl = nx + 1 for all l ∈ N

+
[L], depth L not larger than rγ,i and rη,i,

respectively, that can exactly represent the scalar convex functions µi(x) and ¸i(x).
This holds because any convex affine function with Naff regions can be described as
the point-wise maximum of Naff scalar affine functions. This means that each com-
ponent of the transformed explicit MPC law can be written as:

µi(x)− ¸i(x) = µnn(x; ¹γ,i, n0, . . . , , nrγ,i+1)− µnn(x; ¹η,i, n0, . . . , nrη,i+1), (4.7)

for all i ∈ N
+
[nu]

. Substituting (4.7) in (4.6) results in (4.3).

Theorem 4.1 requires that the piecewise affine function maps the unit hypercube
to the space of non-negative real numbers. Any explicit MPC law (2.12) can be written
in this form, as long as the invertible affine transformations defined in Assumption 4.1
exist. This result is formalized in Corollary 4.1.

Assumption 4.1. There exist two invertible affine transformations Ax : XΩ → [0, 1]nx

andAu : U → R
+,nu for an explicit control law (2.12) µexp,orig : XΩ → U such that

µexp,orig(x) = A
−1
u ◦ µexp(x̂), (4.8)

where x̂ = Ax ◦ x. The affine transformationsAx andAu always exist, when XΩ and U
are compact sets, as it is standard in control applications.

Corollary 4.1. If for a given explicit MPC solution (2.12) µexp,orig : XΩ → U , there exist
two invertible affine transformations such that Assumption 4.1 holds, then Theorem 4.1
can be applied to the transformed MPC solutionµexp(x̂) : [0, 1]

nx → R
+, nu (4.8). Hence,

such an explicit MPC solution of the form (2.12) can be exactly represented by two in-
vertible affine transformations and 2nu deep ReLU networks with width and depth as
defined in Theorem 4.1.
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Figure 4.2: PWA explicit MPC law µexp,orig(x) (left plot). Decomposition of µexp,orig(x)
into convex function µorig(x) = A−1

u ◦µ(x̂)andconcave function−¸orig(x) = −A
−1
u ◦¸(x̂)

with x̂ = Ax ◦ x (middle plots). The resulting exact representation µorig(x)− ¸orig(x) =
A−1
u ◦ (µnn(x̂; ¹γ , n0, . . . , nrγ )− µnn(x̂; ¹η, n0, . . . , , nrη)) via two deep neural networks is

shown on the right plot. ©[2020] IEEE.

The proof presented in [106] for the decomposition of a PWA function into the dif-
ference of two PWA functions is constructive, whichmeans that Theorem 4.1 gives ex-
plicit bounds for the construction of neural networks that can exactly represent any
explicit MPC of the form (2.12) with µexp(x) : [0, 1]nx → R

+,nu , considering only the first
step of the optimal control input sequence.

We illustrate Theorem 4.1 with a small example of an oscillator with the dynamics
(2.9) and the discrete systemmatrices

A =





0.5403 0.8415

0.8415 0.5403



 and B =





−0.4597

0.8415



 .

We chose the tuning parameters for (2.10) to P = 0, R = 1,Q = 2I and the horizon to
N = 1. The state constraints are given by |xi| ≤ 1 for i ∈ N

+
[2] and input constraints by

|u| ≤ 1. We used the toolboxMPT3 [108] to compute the explicit MPC controller which
has 5 regions and is illustrated in the left plot of Fig. 4.2. By applying two invertible
affine transformations (4.8), the algorithm given in [106] is used to decompose the
explicit MPC controller into the convex function µorig(x) = A−1

u ◦ µ(x̂) and the concave
function−¸orig(x) = −A−1

u ◦¸(x̂)with x̂ = Ax◦x, depicted in themiddleplotsof Fig. 4.2.
Both functions consist of rγ = rη = 3 regions. According to Theorem 4.1, two neural
networks µnn(x̂; ¹γ , 2, 3, 3, 3, 1) and µnn(x̂; ¹η, 2, 3, 3, 3, 1)with widths ni = nx+1 = 3 for
all i ∈ N

+
[rγ ]

and i ∈ N
+
[rη ]
, respectively, anddepths rγ = rη = 3areused to represent the

two convex functions. The parameter values of the networks ¹γ and ¹η are computed
as the minimizers of the mean squared error defined by:

¹γ = argmin
θγ

1

ntr

ntr
∑

i=1

||µnn(x̂i; ¹γ , n0, . . . , nrγ+1)− µ(x̂i)||
2
2, (4.9)

based on ntr = 1000 randomly chosen sampling points, collected in the set Tx =
{x1, x2, . . . , xntr}, for the functions µ(x̂) (and analogously for ¸(x̂)). The learned rep-
resentation of the neural networks

µorig(x)− ¸orig(x) = A
−1
u ◦ (µnn(x̂; ¹γ , n0, . . . , nrγ+1)− µnn(x̂; ¹η, n0, . . . , nrη+1))
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is shown in the right plot of Fig. 4.2, which is the same function as the original explicit
MPC controller. The training procedure is considered finished when the maximum er-
ror:

eprox = max
x̂∈T̂ x

|µexp(x̂)− (µ(x̂)− ¸(x̂))|,

where T̂ x = {Ax ◦x1,Ax ◦x2, . . . ,Ax ◦xntr}, is less than 0.001, which we consider to be
an exact representation of the transformed explicit MPC law. The study of the sample
complexity of random sampling points ntr that are necessary to obtain a given error
eprox is an interesting research topic, but it is out of the scope of this thesis.

This chapter showed that explicit MPC laws (2.12) can be exactly represented by
neural networks with ReLU activations and that deep neural networksmight be a very
efficient way to do so in terms of memory footprint and evaluation complexity. In the
next chapter we will analyze the performance of deep neural networks in comparison
to other approximate explicit MPC techniques.

34



Chapter 5

Efficient approximation of MPC
contral laws via deep learning

The previous chapter outlined two main connections between deep learning and ex-
plicit MPC. The first one is that deep neural networks can exactly represent an explicit
MPC law, and not only approximate it arbitrarily well for an increasing number of neu-
rons, as it is known from universal approximation theorems such as [55]. The second
connection is that, as shown in Lemma 4.1, the number of linear regions that deep
neural networks can represent grows exponentially with the number of layers.

While it is possible to know the structure of a network that can exactly represent a
givenexplicitMPC function, constructing suchanetworkmaybeprohibitive inpractice
due to the potentially large number of required hidden layers. We therefore believe
that the use of deep networks to achieve efficient approximations - instead of exact
representations - is the more promising idea.

In this chapter, we present existing approximate explicit MPC methods in Sec-
tion 5.1, before highlighting the efficacy of deep neural networks as approximateMPC
lawsby comparing it to other approximate explicitMPCapproaches in Section 5.2. The
results of this chapter are based on the publication [5].

5.1 Approximate explicit MPC

Aspointedout inSection2.5, themaindrawbackofexactexplicitMPC is thepotentially
exponential growth of polyhedral regions with respect to the number of constraints
and the horizon resulting in a demanding, potentially intractable offline computation
phase [40]. And if the explicit solution can be computed, the memory footprint can
be large and solving the point location problem in order to apply the correct feedback
law can be very challenging. Several methods have been developed to mitigate these
issues.

Apart from methods that find an optimized exact representation [33, 34], which
in most cases provide only minor simplifications, approaches that try to find efficient
approximations of the exact solution, see [109] for a review, allow tomore significantly
reduce the complexity of the resulting controller. The majority of the approximate
explicit MPC methods try to define a more tractable partitioning - in comparison to
standard explicit MPC (2.12) - on which the affine feedbacks are defined by using sim-
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plices [36, 110–112], lattice representation [113], a hypercubical partitioning [37] or
using thesimplerpartitioningofanexplicit controllerwithashorthorizonwhoseaffine
feedback laws are adapted such that it closely approximates the performance of the
MPC law with a long horizon [114].

All of the above mentioned approaches have in common that they mitigate the
drawbacks of explicit MPC, but do not provide a definitive solution to them. The oc-
currence of highly complex partitionings and the necessity of solving the point loca-
tion problem can be completely removed if a parametric approximation over the full
state space is used as in [115], where a stabilizing polynomial approximation of the
MPC law is proposed, or in [88, 116], where approximations based on neural networks
are presented. Inspired by the absence of the point location problem for parametric
approaches and the representative capabilities of deep neural networks, illustrated
in Section 4.1, we will highlight why using deep neural networks is a powerful method
to obtain resource-efficient and easy-to-apply approximate MPC laws.

5.2 Efficacy of deep learning-based explicit MPC

The potential of deep neural networks as an approximate explicit MPC approach is
illustrated with a simulation example modified from [117] and the classic example of
the inverted pendulumon a cart. TheMPCproblems can be expressed as a linearMPC
problem with a quadratic objective and polytopic constraints (2.10) and the goal is in
both cases to steer the system to the origin. Wewill compare theproposeddeep learn-
ing based MPC approach to three different approximate explicit MPCmethods and to
the exact explicit MPC in terms of closed-loop performance andmemory efficiency.

5.2.1 Approximation methods

The goal of approximate explicit MPC methods is to imitate the closed-loop behavior
of the exact MPC as closely as possible while reducing the effort in offline precompu-
tation and online application. We consider as the baseline an MPC formulation with
a prediction horizon of Nmax and use the resulting control law µexp,Nmax(·) to generate
the data set

T = {(xinit,1, µexp,Nmax(xinit,1)), (xinit,2, µexp,Nmax(xinit,2)), . . . , (xinit,ntr , µexp,Nmax(xinit,ntr))}

required to derive the approximate methods which are presented in the following.
The first two considered approximation methods both use artificial neural net-

works (3.2) as presented in Section 3.4.2. However, we distinguish here between shal-
low neural networks with only a single hidden layer and deep neural networks with
several hidden layers to emphasize the greater expressiveness of deep neural net-
works, as expressed in Lemma 4.1. The optimal parameters for the neural networks
are obtained by solving:

minimize
θ

1

ntr

∣

∣

∣

∣µnn(xinit,i, ¹, ·))− µexp,Nmax(xinit,i)
∣

∣

∣

∣

2

2
, (5.1)

and the memory requirements for storing the resulting controllers is given by (4.1).
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Table 5.1: Summary of algorithmsused, including exact explicit solutionµexp,N and the
approximations methods. ©[2020] IEEE.

Method Param. Explanation

µexp,Nmax(x) Nmax prediction horizon

µnn,n,L(x; ¹)

¹ weights and biases {Wl, bl} for all layers

n neurons in each hidden layer

L number of hidden layers

µpoly,p(x; ¹poly)
p degree of the polynomial

¹poly coefficients {a1,0,...,0, . . . , anu,p,...,p} for all terms

µsynth,N (x; ¹synth)
N prediction horizon

¹synth affine transformations {Ki,mi} for all regions

The first non-deep learning approach to approximate the explicit controller uses
multi-variate polynomials of the form µpoly,p : R

nx → R
nu with degree p:

µpoly,p(x; ¹poly) =

















p
∑

i1=0
. . .

p
∑

inx=0

(

a1,i1,...,inx

∏nx

j=1 x
ij
j

)

...
p
∑

i1=0
. . .

p
∑

inx=0

(

anu,i1,...,inx

∏nx

j=1 x
ij
j

)

















(5.2)

where ¹poly = {a1,0,...,0, . . . , anu,p,...,p} contains all coefficients. The coefficients of the
polynomials are computed by solving:

minimize
θpoly

1

ntr

ntr
∑

i=1

||µpoly,p(xinit,i; ¹poly)− µexp,Nmax(xinit,i)||
2. (5.3)

The memory footprint of a multi-variate polynomial is given by

MEMµpoly,p = ³bitnu(p+ 1)nx . (5.4)

The second non-deep learning method is similar to the approach in [114]. We use
the partitioning of an explicit MPC law with a shorter horizon N ≤ Nmax - and there-
fore less regions that define the resulting piecewise affine function - and adapt the
parameters

¹synth = {K1,m1, . . . ,Knr ,mnr}
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�1 �2 �1
Figure 5.1: Chain of masses connected via springs. ©[2020] IEEE.

such that the performance of the explicit MPC law defined with a horizon of Nmax is
approximated by solving the following optimization problem:

minimize
θsynth

1

ntr

ntr
∑

i=1

||µsynth,N (xinit,i; ¹synth)− µexp,Nmax(xinit,i)||
2. (5.5)

The optimized formulations µsynth,N : Rnx → R
nu are then given by:

µsynth,N (x; ¹synth) =















K1x+m1, if x ∈ H1,
...

Krx+mr, if x ∈ Hr.

(5.6)

The memory footprint of the optimized explicit MPC can be estimated as done for the
standard explicit MPC (2.14). All the considered controllers are summarized in Ta-
ble 5.1.

5.2.2 Case studies

Two examples to investigate the various introduced approximateMPC approaches are
introduced. The control goal for both case studies is to minimize the average settling
time (AST). The AST is defined as the time necessary to steer all states to the origin. A
state is considered tobeat the originwhen |xi| ≤ 1×10−2 for all i ∈ N

+
[nx]

. It is assumed
that all states of the systems can be measured.

Oscillating Masses (OM)

The first example represents two horizontally oscillatingmasses interconnected via a
spring where each one is connected via a spring to a wall. The system is illustrated in
Fig. 5.1. Both masses can only move horizontally and have a weight of 1 kg and each
spring has a constant of 1Nm−1. The states of each mass are its position, limited to
|s| ≤ 4m, and its velocity v, limited to |v| ≤ 10ms−1. A force limited by |u| ≤ 0.5N can
be applied to the right mass.
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Table 5.2: Comparison of the relative average settling time (rAST) for 10000 simulation
runs and memory footprint MEM(·) for different controllers for the oscillating masses
(OM) and inverted pendulum on cart (IP) example. ©[2020] IEEE.

OM µexp,7 µsynth,6 µsynth,3 µpoly,3 µnn,6,6 µnn,43,1

rAST [-] 1 1.020 1.113 1.407 1.015 1.125

MEM(·) [kB] 691.9 431.8 38.3 2.00 1.93 2.02

IP µexp,10 µsynth,7 µsynth,6 µpoly,3 µnn,10,6 µnn,120,1

rAST [-] 1 1.897 2.273 2.276 1.038 1.060

MEM(·) [kB] 444.7 191.5 137.1 2.00 4.77 5.63

5.2.3 Performance

The explicit MPC solutions µexp,7(·) (OM) and µexp,10(·) (IP) were used to generate the
training data for the approximation via neural networks (5.1), polynomials (5.2) and
simplified explicit MPC (5.6). Since both case studies include box input constraints, a
simple saturation was used to guarantee satisfaction of the input constraints for the
approximate controllers. For the rest of this section, the dependency of the controllers
on the state and on the parameters are dropped for the sake of readability. Addition-
ally, neural networks µnn(x; ¹, n0, . . . , nL+1) will be referred to by µnn,n,L as the width
of the hidden layers was chosen to be constant, i.e. nl = n for all l ∈ N

+
[L].

We investigated both examples OM and IP by simulating closed-loop trajectories
starting from randomly chosen initial values within the feasible state space. For each
initial value, the exactMPC controllerµexp,Nmax and the approximatemethodswere ap-
pliedand the correspondingaverageASTover all simulations computed. For both case
studies, the evaluation led to similar results, as it canbe seen in Table 5.2. Theaverage
ASTs are given relative to the average AST of the exact explicit controller with horizon
Nmax - as this performance is considered as the benchmark - and denoted as rAST.

The proposed deep neural networks µnn,6,6 and µnn,10,6 only use 0.23% and 1.07%
of thememory of the optimal solutionsµexp,7 andµexp,10while reaching an averageAST
that is only 1.5% and 3.8% longer than the exact solution. The deep neural network
clearly achieves the best trade-off between performance and memory requirements.
It is interesting to see that the shallow networks µnn,43,1 and µnn,120,1 with a slightly
larger memory footprint than the deep networks achieve considerably worse perfor-
mance. The results further show that a naive polynomial approximation of the explicit
MPC does not lead to good results as the performance that can be achieved with no
more than 2 kB is significantly worse than the other approximation methods. Even if
the optimized explicit MPC with the finest partition µsynth,6 and µsynth,7 is compared to
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Figure 5.3: Position of the first mass (top plot) and control inputs (bottom plot) for dif-
ferent control strategies for one exemplary closed-loop simulation of the oscillating
masses. ©[2020] IEEE.

thebenchmark, theproposeddeepneural networkperformsslightly better forOMand
clearly better for IP while having a much smaller memory footprint.

Fig. 5.3 and Fig. 5.4 show an example of the closed-loop trajectories obtained for
each type of controller for the two examples. It can be clearly seen that the polynomial
approximation with degree p = 3 cannot properly approximate the explicit controller.
The best results, which are almost identical to the exact explicit controller µexp,7 and
µexp,10, are obtained by the deep neural networks µnn,6,6 and µnn,10,6.

One method to reduce the memory requirements and especially the evaluation
time of the explicit MPC solutions [35] compared to a standard explicit MPC imple-
mentation are binary search trees. However, we have not included the corresponding
results for binary search trees for the given examples since computing them forN ≥ 3
with the toolbox MPT3 [108] was intractable. For shorter horizons, the binary search
tree led to a memory footprint reduction around 25%. For instance for the inverted
pendulum on a cart with horizon N = 2 the binary search tree led to a reduction of
21.9%, but it was not possible to solve problems with longer horizons.

The simulation results show that the proposed deep learning-based approximate
explicit MPC achieves better performance than other approximate explicitMPCmeth-
ods with significantly smaller memory requirements. The neural network controller
even shows similar performance as the exact explicit MPC approach while being sig-
nificantly simpler to implement, being applicable for system sizes at which explicit
MPC fails due to the exponential growth of the linear regions, and also being applica-
ble for nonlinear systems, as will be shown in Part III. This means that deep learning-
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Figure 5.4: Position of the pendulum (top plot) and control input (bottom plot) for dif-
ferent control strategies for oneexemplary closed-loopsimulationof the invertedpen-
dulum on a cart. ©[2020] IEEE.

based approximate MPC is the most promising option to enable advanced control
without online optimization for a broad range of control problems. Additionally, it is
possible to deterministically verify the safety and stability and to obtain guaranteed
performance bounds for the closed-loop operation, as will be shown in the following
chapter.
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Chapter 6

Deterministic guarantees for neural
network controllers

In the previous chapters, we showed the efficacy of using deep neural networks as ex-
plicit controllers to approximate the behavior of MPC policies. However, the learned
controllers do not necessarily inherit the sameproperties regarding safety andperfor-
mance from the imitated MPC due to approximation errors. In this chapter, methods
are presented that enable to verify if deterministic guarantees regarding safety and
performance hold for uncertain linear systemswhich are controlled by neural network
controllers.

In the first two sections, the central concepts used throughout this chapter to ob-
tain deterministic guarantees of the closed-loop operation of neural network con-
trolled systems are introduced. These concepts are the activation-based description
of ReLU networks, presented in Section 6.1 and output range analysis of neural net-
works, presented in Section 6.2. First, these concepts are used in Section 6.3 to verify
if a learned controller guarantees safe application within a candidate set in the state
space and in Section 6.4 is presented how these candidate sets can be obtained. Sec-
tion 6.5 shows how to prove asymptotically stabilizing closed-loop behavior and how
a neural network controller can be modified, such that it ensures optimal behavior in
the neighborhood of an equilibrium. Finally, the concepts are used in Section 6.6 to
compute worst-case performance bounds. The general approach to obtain determin-
istic guarantees of the online operation, consisting of the variousmethods introduced
in the previous sections, is summarized in Fig. 6.1 and applied for the case study of a
double integrator in Section 6.7 . The results in this chapter are largely based on the
publications [6, 7].

6.1 Activation-based description of ReLU networks

Neural networks constitute highly nonlinear and therefore complex to analyze func-
tions. In order to deterministically investigate the input-output behavior, it can be
helpful to leverage an alternative description of artificial neural networks. When neu-
ral networkswithReLUactivations (3.5) in thehidden layers are considered, it is possi-
ble to model the input-output behavior of the learned controller with binary variables
representing the activations of the neurons. A neuron is considered active if its output
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Design neu-
ral network

controller (Sub-
section 3.4.2)

Obtain candi-
date safe set
(Section 6.4)

Verify safety
of closed-loop
operation

(Section 6.3)

Derive closed-
loop per-
formance
guarantees
(Sections 6.5
and 6.6)

Figure 6.1: Scheme for certifying safety of neural network controllers with perfor-
mance guarantees based on output-range analysis.

is greater than zero, e.g. σl(·)(j) > 0 for the j-th neuron in the l-th layer, and inactive
else. The activation pattern indicates for all hidden layers which neurons are active
for a given input to the network and can be defined as:

Ψ(x) = {v1(x), . . . , vL(x)}, (6.1)

where the activations in each layer are computed via:

v
(i)
l (x) =

{

1 if (σl ◦ λl(zl−1))
(i) > 0,

0 else.
(6.2)

The resulting activation-based description of the neural network is then given by:

·(x,Ψ(x); ¹) = λL+1 ◦
L
∏

l=1

(vl(x)⊙ λl(zl−1)) , (6.3)

which is equivalent to the neural network description (3.2), i.e. ·(x,Ψ(x); ·) = µ(x; ·).
Neural networks with ReLU activations belong to the class of piecewise affine

functions as pointed out in Chapter 4. The neurons in the hidden layer can be seen as
hyperplanes [107] which in sum describe the polytopic partitioning of the input space
- which in case of neural network controllers is the state space R

nx - on which the
affine functions are defined. Consider an activation pattern Γ = Ψ(xfix) for a state
xfix ∈ R

nx . This activation pattern implicitly describes a polytopic region in the state
space in which xfix resides via:

HΓ := {x ∈ R
nx |Γ = Ψ(xfix)}, (6.4)

i.e. theunionof stateswhich share the sameactivationpattern. Theactivationpattern
Γ further defines a collection of hyperplanes via:

Hcol(Γ) := {−W
(i)
Γ,lx ≤ b

(i)
Γ,l | ∀ v

(i)
l = 1, ∀ l ∈ N

+
[L]}. (6.5)

The matricesWΓ,l and vectors bΓ,l describe the state-dependent affine function:

zl =WΓ,lx+ bΓ,l

=

l−1
∏

i=0

(vl−i ⊙Wl−i) ◦ x+

l
∑

i=1

(

∏

(vj ⊙Wj) ◦ vi ⊙ bi
)

,
(6.6)
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that the output of the l-th layer (3.4) represents for all x ∈ HΓ. By formulating amatrix
which contains all unique hyperplanes of (6.5), the minimum half-space representa-
tion of the corresponding polytopic region (6.4) is derived:

HΓ := {x ∈ R
nx |Hx ≤ h}, (6.7)

where H ∈ R
nH×nx , h ∈ R

nH and each row in H and h corresponds to one of the nH
non-redundant elements in (6.5), e.g. H(j) = −W

(j)
Γ,l and h

(j) = b
(j)
Γ,l, if v

(j)
l = 1. The

parametric description of the ReLU networks can be used for output range analysis.

6.2 Output range analysis

The central idea of output range analysis for neural networks is to verify if the output
set of a neural network (2.4), for improved readability of this chapter defined as:

µnn(Xs) = Z(Xs, µnn) := {u ∈ R
nu |u = µnn(x; ·) ∀x ∈ Xs} , (6.8)

belongs to a target set Utarget ⊆ R
nu for a given set of inputs Xs ⊆ R

nx . Output
range analysis enables answering the question by computing an over-approximation
Ũout ⊆ R

nu of µnn(Xs) and checking if Ũout ⊆ Utarget. The idea followed in this chapter
is to incorporate the systemdynamics in such an output range analysismethod to rig-
orously investigate the closed-loop properties of a neural network controlled system.

From themany existing output range analysis approaches, see [82] for a survey, we
chose to leverage the one presented in [83]. The approach encodes the input-output
behavior of a ReLU network as a mixed-integer linear problem (MILP). The MILP for-
mulation is preferred over approaches that use a relaxed convex problem formulation
(e.g. [84, 118]) because the MILP describes ReLU networks exactly and not only ap-
proximately.

The basic principle of the MILP formulation is exemplified for a hidden layer:

zl = max {0,Wlzl−1 + bl} , (6.9)

consisting of a single neuron (nl = 1). Assume that the output of the previous layer
zl−1 can take values in [zlb, zub]. Due to the max operator, we know that zl ≥ 0 and
zl ≥Wlzl−1+bl holds. Further, we know that zl =Wlzl−1+bl, if the neuron is activated
(vl = 1), and that zl = 0 for vl = 0. By leveraging the activation vl ∈ {0, 1} and choosing
a constantM which exceeds the largest possible absolute value the affine function
can take, i.e.:

M ≥ argmax
zl−1∈[zlb,zub]

|Wlzl−1 + bl| , (6.10)

the output behavior of the neuron (6.9) can be encoded as a mixed-integer linear fea-
sibility problem:

maximize
zl,vl,zl−1

1 (6.11a)

subject to zlb ≤ zl−1 ≤ zub, (6.11b)
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zl ≥Wlzl−1 + bl, (6.11c)
zl ≤Wlzl−1 + bl +M(1− vl) (6.11d)
zl ≥ 0, (6.11e)
zl ≤Mvl, (6.11f)
vl ∈ {0, 1}. (6.11g)

Every feasible solution of (6.11a) satisfies (6.9), i.e.:

z∗l = max
{

0,Wlz
∗
l−1 + bl

}

.

By extending (6.11a) such that all neurons of a neural network are considered, the
input-output behavior of the complete neural network can be analyzed.

Since the MILP formulation from [83] is an exact encoding, the computed over-
approximations of the real sets are tight in the sense of the following definition.

Definition 6.1. An intersection of half-spacesA := {p ∈ R
m | Cp ≤ c} with C ∈ R

n×m

and c ∈ R
n is a tight over-approximation of a set B ⊆ R

m, if:

Cb ≤ c ∀ b ∈ B, (6.12)

and if there exists a bi ∈ B for all i ∈ N
+
[n] such that:

C(i)bi = c(i). (6.13)

This means that each hyperplane of the polytopic set A intersects at least once
with the boundary of B without traversing the interior of B.

6.3 Verification of safe sets

The main goal of this chapter is to obtain a region in the state space for which the
operation of the neural network controlled system deterministically guarantees the
satisfaction of the control input and state constraints for all times. The a posteriori
verification process is required because the algorithms used to find the optimal pa-
rameters for the approximate neural network controller are stochastic and sampling-
based, and do therefore not guarantee a sufficient approximation quality - even if the
approximation error was modeled in the robust MPC formulation used for generating
the training data. The safety analysis is based on the future evolution of the neural
network controlled uncertain LTI system:

x+ = Ax+Bµnn(x) + Ed, (6.14)

whereµnn(·) is short forµnn(·; ¹, n0, . . . , nL+1), because theparameter set ¹ is assumed
to be fixed after the training phase. The closed-loop uncertain system can be used to
define the reachable set from a set of initial conditionsXs for the fixed uncertainty set
D as:

R(Xs) :=
⋃

x∈Xs

{

x+ ∈ R
nx |x+ = Ax+Bµnn(x) + Ed ∀ d ∈ D

}

. (6.15)
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To view the reachable set as a union of reachable states, in contrast to the set-based
formulation (2.3), will be used later in this section toprove thedeterministic properties
of the proposed verification approach. The reachable set operator R(·) can also be
leveraged to compute r-step reachable sets by applying it recursively:

Rr(Xs) =
r
∏

k=1

R(Xs)withR0(Xs) = Xs. (6.16)

The resulting sets contain all states that can be reached after r closed-loop steps.
Based on the r-step reachable set (6.16) and the output set (6.8), it is possible to

define requirements that a set in the state space must meet such that the applica-
tion of the neural network controller guarantees the satisfaction of constraints for all
times.

Definition6.2. Asafeset for theclosed-loopsystem(6.14) isdefinedasan intersection
of half-spaces in the state space:

Xsafe := {x ∈ R
nx |Csafex ≤ csafe}, (6.17)

with Csafe ∈ R
nsafe×nx and csafe ∈ R

nsafe , that satisfies the following conditions for the
first r steps:

µnn(Rk(Xsafe)) ⊆ U , ∀ k ∈ N[r−1], (6.18a)

Rk(Xsafe) ⊆ X , ∀ k ∈ N[r−1], (6.18b)

Rr(Xsafe) ⊆ Xsafe. (6.18c)

Lemma6.1. Each setXsafe satisfying the conditions in Definition 6.2 guarantees closed-
loop constraint satisfaction at all times, i.e. Rk(Xsafe) ⊆ X and µnn(Rk(Xsafe)) ⊆ U for
all k ∈ N[∞].

Proof. [Lemma 6.1] The conditions (6.18a) and (6.18b) directly guarantee satisfaction
of state and control input constraints for time steps k ∈ N[r−1]. Because the r-step
reachable set is a subset of the initial setXsafe as stated in (6.18c), it followswith (6.15)
that:

Rk(Xsafe) = Rk (Rr (Xsafe)) ∪Rk (Xsafe \ Rr(Xsafe)) ⊇ Rk(Rr(Xsafe)). (6.19)

This also means that each reachable set for a multiple of r steps is a subset of Xsafe:

Rj·r(Xsafe) ⊆ Xsafe ⊆ X ∀ j ∈ N[∞]. (6.20)

From (6.18b), (6.19) and (6.20) follows that

Rk(Rj·r(Xsafe)) ⊆ Rk(Xsafe) ⊆ X ∀ k ∈ N[r−1], ∀ j ∈ N[∞], (6.21)

which is equivalent to Rk(Xsafe) ⊆ X for all k ∈ N[∞]. Further follows from (6.21)
and (6.18a) that:

µnn (Rk(Rj·r(Xsafe))) ⊆ µnn(Rk(Xsafe)) ⊆ U ,
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for all j ∈ N[∞] and k ∈ N[r−1] and therefore µnn(Rk(Xsafe)) ⊆ U for all k ∈ N[∞].

In the following, we present how output range analysis can be used to compute
output sets and reachable sets in order to analyze if the conditions in Definition 6.2
hold.

6.3.1 Approximation of output sets

For the verification of (6.18a), we want to ensure that the real output set of the neural
network controller (6.8) satisfies µnn(Xs) ⊆ U . Because U is a polytope, it is sufficient
to check for each hyperplane individually if the bound can be violated, e.g. by solving:

maximize
x0,i,u0,i

C(i)
u u0,i (6.22a)

subject to Csx0 ≤ cs, (6.22b)
u0,i = µnn(x0,i). (6.22c)

If the solutions satisfy C(i)
u u∗0,i ≤ c

(i)
u for all i ∈ N

+
[nU ], where u

∗
0,iis the optimal solu-

tion of (6.22) whenC(i)
u is considered, then µnn(Xs) ⊆ U . The nonlinear neural network

constraint (6.22c) can be encoded via binary variables based on the parametric de-
scription of neural networks with ReLU activations (6.3) and the output range analysis
formulation presented in [83], as explained in Section 6.2. This means (6.22) can be
equivalently formulated as the mixed-integer linear program:

maximize
z,v,u0,i,x0,i

C(i)
u u0,i (6.23a)

subject to Csx0,i ≤ cs, (6.23b)
z0 = x0,i, (6.23c)
for all l ∈ N

+
[L] :

zl ≥Wlzl−1 + bl, (6.23d)
zl ≤Wlzl−1 + bl +M(1− vl), (6.23e)
zl ≥ 0, (6.23f)
zl ≤Mvl, (6.23g)
vl ∈ {0, 1}

nl , (6.23h)
u0,i =WL+1zL + bL+1, (6.23i)

where v = {v0, . . . , vL} and z = {z0, . . . , zL} are the collection of all activations and
outputs of the ReLU layers. The two variables z and v allow modeling the behavior of
the hidden ReLU layers of the neural network via the constraints (6.23d)-(6.23h) using
thebigMmethod [119, 120]. Inasimilar fashionas for (6.10), thevalueofM ∈ Rneeds
to be larger than ||Wlzl−1+bl||∞ for all l ∈ N

+
[L]. A quick estimate for a sufficiently large

value can be obtained by propagating the bounding box ofXs through the layers using
the norms ||Wl||∞, l ∈ N

+
[L]. The constraints (6.23b) and (6.23c) ensure that only states

inXs are considered and (6.23i) models the linear output layer. TheMILP (6.23) can be
used to approximate the real output set (6.8).
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these formulationscanbeextended to rigorously verify constraint satisfaction for gen-
eral polytopic input and state constraints. In the next subsection, the MILP (6.23) will
be extended with the closed-loop (6.14) to compute approximations of the reachable
sets.

6.3.2 Approximation of reachable sets

In order to analyze if conditions (6.18a) and (6.18b) are satisfied, the computation of
reachable sets of theuncertain LTI system is required. For the approximation of reach-
able sets (6.16), a similar approach can be followed as in the case of output sets by
extending the MILP formulation (6.23) with the description of the r-step reachable
set (6.16). For the approximation of the reachable sets, the matrix S ∈ R

ns×nx is con-
sidered, in which each row represents a hyperplane normal direction. The following
MILP needs to be solved for each of the ns hyperplanes in S:

maximize
z,v,u,d,xi

S(i)xr,i (6.25a)

subject to Csx0,i ≤ cs, (6.25b)
for all k ∈ N[r−1] :

zk,0 = xk,i, (6.25c)
for all l ∈ N

+
[L] :

vk,l ∈ {0, 1}
nl , (6.25d)

zk,l ≥Wlzk,l−1 + bl, (6.25e)
zk,l ≤Wlzk,l−1 + bl +M(1− vk,l), (6.25f)
zk,l ≥ 0, (6.25g)
zk,l ≤Mvk,l, (6.25h)

uk =WL+1zk,L + bL+1, (6.25i)
Cddk ≤ cd, (6.25j)
xk+1,i = Axk,i +Buk + dk, (6.25k)

where u = {u0, . . . , ur−1} is the control input trajectory and d = {d0, . . . , dr−1} is
the sequence of disturbance realizations. The constraint (6.25b) restricts the initial
state of the trajectory xi = {x0,i, . . . , xr,i} to the set of initial conditions Xs. The con-
straints (6.25c)-(6.25i) model the values of the binary variables v = {v0,1, . . . , vr−1,L}
and hidden layers z = {z0,0, . . . , zr−1,L} in each step k ∈ N[r−1] according to (6.3). The
closed-loop system trajectory is modelled via the constraints (6.25i)-(6.25k). By solv-
ing (6.25) the sequence of disturbance realizations and the initial state within Xs are
computed that push the state xr the furthest into the considered hyperplane normal
direction S(i) with respect to the closed-loop dynamics. The MILP (6.25) can be lever-
aged to define an operator that provides approximations of the r-step reachable set.

Definition 6.4. The set-based operator R̃r : R
nx → R

nx returns an intersection of
half-spaces which is defined as:

R̃r(S) = {x ∈ R
nx |Sx ≤ s∗} , (6.26)
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Figure6.3: Schematicoverviewof theclosed-loop (6.14) andvisualizationof theoutput
sets computed based on (6.23) and reachable sets derived via (6.25). The derived sets
enable the verification of safety features like closed-loop constraint satisfaction and
asymptotic stability.

where s∗ =
[

S(1)x∗r,1, . . . , S
(ns)x∗r,ns

]

contains the optimal values for solving (6.25) for
each hyperplane normal direction S(i) with i ∈ N

+
[ns]
.

Lemma6.3. The operator R̃r(·) (6.26)provides an over-approximation of the true r-step
reachable setRr(·) for a set of initial conditions Xs, i.e. R̃r(Xs) ⊇ Rr(Xs). In addition,
this over-approximation is tight according to Definition 6.1.

Proof. [Lemma 6.3] The constraints in (6.25) model every possible true trajectory x of
the closed-loop system starting in Xs. Because (6.25) is solved globally, the real tra-
jectory x∗i =

{

x∗0,i, . . . , x
∗
r,i

}

including the sequence of uncertainty realizationsd∗ ∈ Dr

is found for which xr reaches the maximum value in the normal direction of the i-
th hyperplane, i.e. S(i)xr,i ≤ S(i)x∗r,i for any trajectory x of length r starting in Xs
and any realization d ∈ Dr. Because the bound of the i-th hyperplane is chosen as
s∗,(i) = S(i)x∗r (6.26), we obtain Rr(Xs) ⊆ R̃r(Xs). This also means that the condi-
tions (6.12) and (6.13) defining a tight over-approximation are satisfied.

Two exemplary usages of the operator R̃r(·) are visualized in Fig. 6.3, where the ap-
proximate one step reachable set R̃1(Xs) is used in combination with Ũ(Xs) to estab-
lish control-invariance ofXs. The right part of Fig. 6.3 shows how R̃r(·) can be used to
verify that the r-step reachable set is contained in a desired target setXtarget, e.g. the
initial set Xs in order to verify (6.18c). The introduced operators can also be leveraged
to verify that a set of states satisfies all conditions of a safe set given in Defintion 6.2.

6.3.3 Verifying safety

The operators defined for approximating the real output set of the neural network con-
troller and reachable set of the neural network controlled uncertain LTI system can be
leveraged to verify, if a candidate set Xs is a safe set.

Theorem 6.1. If a set Xs ⊆ X satisfies the following closed-loop conditions in the first
r steps (6.14):

Ũ(R̃k(Xs)) ⊆ U , ∀ k ∈ N[r−1], (6.27a)
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R̃k(Xs) ⊆ X , ∀ k ∈ N[r−1], (6.27b)

R̃r(Xs) ⊆ Xs, (6.27c)

thenXs is a safe set as given in Definition 6.2.

Proof. [Theorem 6.1] Satisfaction of (6.18b) is guaranteed for k = 0 by the choice of
the candidate set Xs . From Lemma 6.3 and the conditions (6.27b) and (6.27c) follows
that Rk(Xs) ⊆ R̃k(Xs) ⊆ X for k ∈ N

+
[r−1] and Rr(Xs) ⊆ R̃r(Xs), which means that

conditions (6.18b) and (6.18c) are satisfied.
In order to show that (6.27a) implies (6.18a), we apply the operator for approximat-

ing the output sets to the over-approximation of the reachable set R̃k(Xs) and true
reachable setRk(Xs):

max
x0,i∈R̃k(Xs),
(6.23c) − (6.23i)

C(i)
u x1,i

= max











max
x0,i∈Rk(Xs),
(6.23c) − (6.23i)

C(i)
u x1,i, max

x0,i∈R̃k(Xs)\Rk(Xs),
(6.23c) − (6.23i)

C(i)
u x1,i











≥ max
x0,i∈Rk(Xs),
(6.23c) − (6.23i)

C(i)
u x1,i.

(6.28)

The equation (6.28) shows that Ũ(R̃k(Xs)) ⊇ Ũ(Rk(Xs)). Togetherwith Lemma6.2 and
condition (6.27a), it follows that

µnn(Rk(Xs)) ⊆ Ũ(Rk(Xs)) ⊆ Ũ(R̃k(Xs)) ⊆ U

for all k ∈ N[r−1], which means that (6.18a) is satisfied. Therefore,Xs satisfies all con-
ditions defining a safe set.

The procedure to investigate the safety of a candidate set based on Theorem 6.1,
summarized in Algorithm 1, can be simplified, if the input constraints are given as box
constraints:

U := {u ∈ R
nu | ulb ≤ u ≤ uub} , (6.29)

where ulb ∈ R
nu are the lower bounds and uub ∈ R

nu are the upper bounds. Satisfac-
tion of control input constraints can then be guaranteed constructively and therefore
does not need to be checked explicitly in each step k ∈ N[r−1].

Proposition 6.1. If the control input constraints are box constraints (6.29), each neural
network controllerµnn(x; ¹, n0, . . . , nL+1)withLhidden layers can be adapted such that
the modified neural network controller µnn,sat(x; ¹sat, n0, . . . , nLsat+1) with Lsat = L + 2
hidden layers satisfies (6.18a) for all x ∈ R

nx . In addition, the modified network outputs
the same output as the original network, if the output of the original network is input-
admissible, i.e. µnn,sat(x; ·) = µnn(x; ·) if ulb ≤ µnn(x; ·) ≤ uub. The first L layers of the
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Algorithm 1 Verifying the safety of a candidate set.
Require: µnn(·), rmax ≥ 1
1: Choose admissible candidate setXs ⊆ X and hyperplane normal directions via S
2: Set k ← 1 and r ← 0
3: while k ≤ rmax do
4: X ← R̃r(Xs)
5: U ← Ũ(X)
6: if U ⊆ U andX ⊆ Xs then
7: Set r ← k

8: break
9: else if U ⊆ U andX ⊆ X then
10: k ← k + 1
11: else
12: break
13: end if
14: end while
15: if r > 0 then
16: Xs is a safe set for µnn(·)
17: end if

modified controller are identical to the original controller, i.e. Wl = Wl,sat and bl = bl,sat
for l ∈ N

+
[L]. The weights of the layers L+ 1 to L+ 3 are given by:

WL+1,sat = −WL+1, bL+1,sat = uub − bL+1,

WL+2,sat = −I, bL+2,sat = uub − ulb,

WL+3,sat = I, bL+3,sat = ulb.

Proof. [Proposition 6.1] Consider the output of the L-th layer zL = ·(x,Ψ(x), L; ·),
which is identical for the original and the modified controller as the weights and bi-
ases up to the L-th layer are the same. The corresponding control input signal of the
original network is then given by

uorig =WL+1zL + bL+1.

Reformulating the output of the modified network with respect to the control input
signal of the original network, the following expression is derived:

unn,sat = max(−max(−uorig + uub, 0) + uub − ulb, 0) + ulb.

The possible outcome of each element

u
(i)
nn,sat =















u
(i)
ub, if u(i)orig ≥ u

(i)
ub,

ũ(i), if u(i)lb ≤ u
(i)
orig ≤ u

(i)
ub,

u
(i)
lb , if u(i)orig ≤ u

(i)
lb ,
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represent either the control input provided for the original, if admissible, or the control
input that is saturated according the box constraints.

The formulation of the mixed-integer problems presented in this section can also
be slightly adapted to not only verify given sets, but also search for safe sets. This idea
is presented in detail in the next section.

6.4 Computation of safe sets

In this section, we will leverage approximations of preimages to search for safe sets.
The preimage P(·) of a set are all states fromwhich the set of interest can be reached
in one closed-loop step:

P(Xs) := {x ∈ R
nx | ∃d ∈ D s.t. Ax+Bµnn(x) + Ed ∈ Xs} . (6.30)

The usage of preimages is especially promising when the closed-loop converges to a
region around an optimum. Analogously to the case of r-step reachable sets (6.16),
the r-step preimage can be defined by applying the operator P(·) r times recursively:

Pr(Xs) =
r
∏

k=1

P(Xs)with P0(Xs) = Xs. (6.31)

By slightlymodifying the formulation in (6.25), it is possible to compute the initial state
x0 with the largest value in the i-th hyperplane normal direction of S, for which an r-
step trajectory exists such that the final state xr belongs to the set of interest:

maximize
z,v,u,d,xi

S(i)x0,i (6.32a)

subject to Csxr,i ≤ cs, (6.32b)
(6.25c)− (6.25k).

In a similar manner as for the r-step reachable sets, an operator can be defined that
computes an approximation of the real preimages based on (6.32).

Definition 6.5. The set-based operator P̃r : R
nx → R

nx returns an intersection of
half-spaces which is defined as:

P̃r(Xs) = {x0 ∈ R
nx |Sx0 ≤ s

∗} , (6.33)

where s∗ =
[

S(1)x∗0,1, . . . , S
(ns)x∗0,ns

]

contains the optimal values for solving (6.32) for
each hyperplane normal direction S(i) with i ∈ N

+
[ns]
.

Lemma6.4. The operator P̃r(·) (6.33)provides an over-approximation of the true r-step
preimage Pr(·) for a set of initial conditions Xs, e.g. P̃r(Xs) ⊇ Pr(Xs). In addition, this
over-approximation is tight according to Definition 6.1.

Proof. [Lemma6.4] Theproof canbederived in the same fashionas for Lemma6.3 and
is therefore omitted.
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Algorithm 2 Searching for safe sets.
Require: µnn(·), rmax ≥ 1, rpre,max ≥ 1, admissible state space X
1: Choose initial set Xs and set of hyperplanes S
2: Set rpre ← 1 and XMRPI ← ∅
3: while rpre ≤ rpre,max do
4: X ← P̃r(Xs)
5: Xcand ← X ∩X
6: Follow Algorithm 1 with Xs ← Xcand to obtain r
7: if r > 0 then
8: Set X̃max ← Xcand , rmax ← r, and rpre ← rpre + 1
9: else
10: break
11: end if
12: end while
13: if X̃max ̸= ∅ then
14: X̃max is a safe set for µnn(·)
15: end if

The approach to search for an as large as possible safe set is is summarized in Al-
gorithm 2. The main idea is to start from a very simple initial set, for example a region
around the origin in case of regularization tasks, and to compute approximations of
the preimages using (6.33). Note that anymethod to approximate preimages could be
used alternatively. Each preimage is considered as a candidate safe set and verified
via Algorithm 1. From Theorem 6.1, it follows that a preimage is a safe set, when Algo-
rithm 1 terminates succesfully with r > 0.

6.5 Stability guarantees

Apart from safety, stability is of major interest in regularization control tasks. In pres-
ence of unknown disturbances, the methods presented in the previous chapters en-
able the approximation of aminimum robust positive invariant (RPI) set, if a minimum
RPI exists. However, the goal of this section is to establish asymptotic stability for
neural network controllers and hence we consider deterministic linear time-invariant
systems:

x+ = Ax+Bu, (6.34)

and assume that the pair (A,B) is stabilizable. The classical goal of optimal control is
to drive the system to the equilibrium xeq, which is assumed to be at the origin without
loss of generality, by minimizing a quadratic objective:

J =

∞
∑

k=0

xTkQxk + uTkRuk, (6.35)

where Q ∈ R
nx×nx ≽ 0 is a positive semi-definite matrix and R ∈ R

nu×nu ≻ 0 is a
positive definite matrix. If the optimal control problem is unconstrained, the optimal
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solution is given by the discrete-time infinite horizon linear-quadratic regulator (LQR),
where a state feedback law:

u = −Klqrx, (6.36)

isapplied. If polytopicstateconstraintsand inputconstraintsarepresent, theviolation-
free application of the LQR feedback law is reduced to a region around the originwhere
no constraints are active. The LQR admissible region is described as a polytopic set
[31]:

Hlqr := {x ∈ R
nx | Hlqrx ≤ hlqr}, (6.37)

whereHlqr ∈ R
nlqr×nx and hlqr ∈ R

nlqr .

6.5.1 Asymptotic stability

To establish asymptotic stability, it is necessary to prove convergence to the equilib-
rium xeq. To do so for neural network controllers, we first analyze the behavior in the
neighborhood of the origin.

Based on the activation pattern of the equilibrium region Γeq = Ψ(xeq), computed
via (6.1), the set of hyperplanes Hcol(Γeq) - which define the region around the equi-
librium implicitly described by the neural network - is derived through (6.5). By only
considering the unique hyperplanes inHcol(Γeq), the minimal half-space representa-
tion (6.7) of the polytopic region:

Heq = {x ∈ R
nx |Heqx ≤ heq}, (6.38)

inwhich the equilibrium resides for a given neural network controller, is obtained. Fol-
lowing (6.3) and (6.6), the policy of the neural network controller can be represented
for all x ∈ Heq as the affine state feedback:

·(x,Γeq; ¹) =WL+1(WΓeq,Lx+ bΓeq,L) + bL+1

=WL+1WΓeq,Lx+WL+1bΓeq,L + bL+1
(6.39)

whereWΓeq,L and bΓeq,L arederived from (6.6). This result canbe leveraged to formulate
conditions forwhich the feedback law (6.39) is stabilizing in the proximity of the origin.

Lemma 6.5. If the resulting bias of the neural network is zero, that is:

WL+1bΓeq,L + bL+1 = 0, (6.40)

and the resulting weight matrixWL+1WΓeq satisfies:

∥A+BWL+1WΓeq,L∥ < 1, (6.41)

then there exists a control-invariant set Has with a non-empty interior, such that the
neural network controller is stabilizing for all x ∈ Has.

56



6.5. STABILITY GUARANTEES

Proof. [Lemma 6.5] Consider the linear time-invariant system x+ = Ax + Bu and the
state-feedback u = −Kx satisfying

∥A−BK∥ < 1. (6.42)

The feedbackmatrixK provides asymptotically stable behavior inHK := {x ∈ R
nx | −

Kx ∈ U}. If a neural network controller admits an equal feedback in the equilibrium
region viaK = −WL+1WΓeq,L andWL+1bΓeq,L+ bL+1 = 0, this would also imply asymp-
totically stabilizing behavior of the neural network for all x ∈ HK . Since the neural
network controller only guarantees equilibrium feedback withinHeq, asymptotic sta-
bility can only be guaranteed for a control-invariant set:

Has ⊆ (Heq ∩HK).

Theorem6.2. If the neural network controller satisfies (6.40)and (6.41)and there exists
a r ∈ N for a set of initial conditions Xs such that R̃r(Xs) ⊆ Has, then the closed-loop
system x+ = Ax+Bµnn(x) is asymptotically stable for all x ∈ Xs.

Proof. [Theorem 6.2] Because (6.40) and (6.41) are satisfied, asymptotic stability for
all x ∈ Has follows from Lemma 6.5. SinceRr(Xs) ⊆ R̃r(Xs), as shown in Lemma 6.3,
and R̃r(Xs) ⊆ Has, the system reaches Has at least after r closed-loop steps for all
x ∈ Xs. Hence, µnn(·) guarantees asymptotic stability for all x ∈ Xs.

If the feedback defined by the neural network in the regionHeq is equal to the LQR
controller, then the neural network controller behaves optimally in the neighborhood
of the equilibrium point. This is formalized in the following result.

Corollary 6.1. Consider the feedback of the neural network controller in the neighbor-
hood of the origin (6.39) is equal to the LQR feedback:

·(x,Γeq; ¹) = −Klqrx

and there exists a r ∈ N such that R̃r(Xs) ⊆ Has. Then the system converges asymp-
totically to the equilibrium for all x ∈ Xs. In addition, for all x ∈ Has, the neural network
controller is optimal with respect to (6.35).

Proof. [Corollary 6.1] The LQR state feedback u = −Klqrx is the optimal solution with
respect to (6.35) for all x ∈ Hlqr :=

{

x ∈ R
nx | −Klqrx ∈ U

}

. If ·(x,Γeq; ¹) = −Klqrx,
the neural network controller provides the LQR feedback for all x ∈ Heq. Hence, the
neural network controller returns an LQR optimal control input with respect to (6.35)
forallx ∈ (Heq∩Hlqr). Because theLQRfeedback isaspecial caseofanasymptotically
stabilizing feedback:

Klqr ∈ {K ∈ R
nu×nx | ∥A−BK∥ < 1}, (6.43)

the proof for asymptotic stability and convergence to the stability setHas is analogous
to the proof of Lemma 6.5 and Theorem 6.2 by substituting K with Klqr and HK with
Hlqr.
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In general, a neural network controller does not satisfy the requirements (6.40)
and (6.41) for asymptotic stability. The next subsection shows an optimization-based
method to ensure that such requirements are satisfied.

6.5.2 LQR-optimized neural network controller

In this subsection, an optimization-basedmethod is presented tomodify a neural net-
work such that it provides the same feedback as an LQR controller in a region around
the equilibriumwithout changing the regions implicitly defined by theReLU layers and
without requiring a retraining of the neural network. The goal is that themodified con-
troller satisfies theconditionsof Theorem6.1. Themain idea is toonly adapt the values
of theweight and thebias in the linear output layerL+1, because the regions onwhich
theaffine functionsaredefined for aReLUnetworkare only depending on theLhidden
layers, as (6.5) shows.

Lemma 6.6. For every neural network controller µnn(x; ¹, ·), it is possible to find values
ŴL+1 for the weights of the final layer, such that

ŴL+1WΓeq,L = −Klqr, (6.44)

if the following requirements are satisfied:

rank(Aeq) = rank
([

Aeq beq

])

, (6.45a)

nunL ≥ rank (Aeq) , (6.45b)

where

Aeq =











W T
Γeq,L

0 0

0
. . . 0

0 0 W T
Γeq,L











and beq =











−K
(i)
lqr

T

...

−K
(nu)
lqr

T











.

Proof. [Lemma 6.6] Equation (6.44) can be reformulated as a system of linear equa-
tions AeqŴ vec = beq with Ŵ vec = [Ŵ

(1)
L+1, . . . , Ŵ

(nu)
L+1]

T ∈ R
nunL . A system of linear

equations admits at least one solution if conditions (6.45) are satisfied.

Based on this result we propose a systematic adaptation of the weights of the last
layer to ensure that LQR performance is achieved in a region around the equilibrium
point.

Theorem 6.3. If conditions (6.45) are satisfied, the convex optimization problem:

minimize
ŴL+1,b̂L+1

nu
∑

i=1

nL
∑

j=1

(

Ŵ
(i,j)
L+1 −W

(i,j)
L+1

)2

+

nu
∑

i=1

(

b̂
(i)

L+1 − b
(i)
L+1

)2

(6.46a)

subject to ŴL+1WΓeq,L = −Klqr, (6.46b)

ŴL+1bΓeq,L + b̂L+1 = 0, (6.46c)
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admits a solution which provides the weight Ŵ
∗
L+1 and bias b̂

∗

L+1 for the last layer, such
that µnn(x; ¹lqr, ·) = −Klqrx for all x ∈ Heq withWl,lqr =Wl and bl,lqr = bl for all l ∈ N

+
[L],

and WL+1,lqr = Ŵ
∗
L+1 and bL+1,lqr = b̂

∗

L+1, while minimizing the change in parameters
of the last layer.

Proof. [Theorem 6.3] If the conditions (6.45) are satisfied, Lemma 6.6 guarantees that
(6.46b) can always be satisfied. Condition (6.46c) can be satisfied for every ŴL+1 by
setting b̂L+1 = −ŴL+1bΓeq . This means that the feedback of the neural network con-
troller in the equilibrium region is equal to the LQR feedback if the weight and the bias
of the last layer are given by Ŵ

∗
L+1 and bias b̂

∗

L+1. Since the objective function (6.46a)
describes the change in the parameters of the last layer and the optimization is con-
vex, the optimal solution guarantees that the change is minimal.

Now that we have shown that neural network controllers can guarantee closed-
loop operation without constraint violations and asymptotically stabilizing behavior,
we investigate how performance guarantees can be derived.

6.6 Performance bounds

Another major aspect of controller analysis is the closed-loop performance. Consider
the stage and terminal cost as the objective in the mixed-integer formulation (6.25)
for a trajectory x of length r of the uncertain LTI system starting in Xs using a neural
network controller as described in (6.14). An upper bound for the worst-case cost in
closed-loop operation can be computed by solving the following problem:

maximize
z,v,u,d,x

r−1
∑

k=0

ℓ(xk, uk) + ℓf(xr) (6.47a)

subject to (6.25b)− (6.25k).

Usually, we are not only interested in performance guarantees for trajectories of finite
length, but in asymptotic performance guarantees like the average stage cost:

ℓr(x) =
1

r

r
∑

k=1

ℓ (xk, µnn (xk)) , (6.48)

with r → ∞. Since (6.47) becomes intractable for large values of r, the knowledge of
invariant sets can help mitigate this issue. If a robust positive invariant set XRPI :=
{x ∈ R

nx | HRPIx ≤ hRPI} exists, it is sufficient to consider a single closed-loop step
in:

maximize
z,v,ū0,d0,x̄0

ℓ(x̄0, ū0) (6.49a)

subject to HRPIx̄0 ≤ hRPI, (6.49b)
z0 = x̄0, (6.49c)
for all l ∈ N

+
[L] :

zl ≥Wlzl−1 + bl, (6.49d)
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zl ≤Wlzl−1 + bl +M(1− vl), (6.49e)
zl ≥ 0, (6.49f)
zl ≤Mvl, (6.49g)
vl ∈ {0, 1}

nl , (6.49h)
ū0 =WL+1zL + bL+1, (6.49i)

to bound the worst-case stage cost for all x ∈ XRPI as the system state will reside
withinXRPI for all times. The upper bound ℓ̄ of the asymptotic average stage cost (6.48)
is then obtained via the optimal solution x̄∗0 and ū

∗
0 of (6.49) as:

ℓ̄ = ℓ (x̄∗0, ū
∗
0) ≥ ℓ (x, µnn(x)) ∀x ∈ XRPI. (6.50)

The bound ℓ̄ can be leveraged to obtain the asymptotic worst-case performance for a
set of initial conditions Xs from which all trajectories converge to an RPI set.

Theorem 6.4. If the RPI setXRPI exists and is an r-step reachable set ofXs, the asymp-
totic average stage cost will converge to or descend below the solution ℓ̄ (6.50) of the
mixed-integer problem (6.49) for every closed-loop trajectory x = {x0, . . . , x∞} satisfy-
ing (6.14) and starting at x0 ∈ Xs.

Proof. [Theorem6.4]Consider some trajectoryxof length r̄ ≥ r starting inXs. Because
XRPI is robustly positive invariant and an r-step reachable set ofXs, i.e. Rr(Xs) ⊆ XRPI,
it follows that xk ∈ XRPI for all k ≥ r. Hence, the solution of (6.49) provides an upper
bound on the stage cost for all steps k ≥ r. The average cost for the trajectory is then
bounded by:

ℓr̄(x) =
1

r̄

(

r−1
∑

k=0

ℓ (xk, µnn (xk)) +

r̄
∑

k=r

ℓ (xk, µnn (xk))

)

≤
1

r̄





r−1
∑

j=1

ℓ(xj , µnn(xj)) + (r̄ + 1− r)ℓ̄



 .

From r̄ →∞ follows ℓ∞(x)→ ℓ̄.

Theorem (6.4) is especially effective if a minimum RPI set exists, as will be shown
in Section 6.7.

The various methods introduced in the previous sections are summarized in a
step-by-step scheme which enables the derivation of neural network controllers with
safety, performance and stability guarantees. The scheme consisting of 7 steps is il-
lustrated in Fig. 6.4.
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Formulate robust MPC problem
(anticipating learning-based ap-
proximation error) (Section 2.4)

Generate training data via
closed-loop simulations with
robust MPC controller (3.9)

Train neural network via
imitation learning (3.10)

If quadratic objective: Adapt weights
and bias in last layer to obtain
LQR-optimal behavior in region

around equilibrium (Subsection 6.5.2)

If box input constraints: Modify
neural network controller to guar-
antee control input constraint
satisfaction (Proposition 6.1)

Verify safety and/or stability via
computation of approximate

reachable sets and output sets
(Subsections 6.3.3 and 6.7.3)

Bound worst-case asymptotic
stage cost based on (approximate
minimum) RPI set (Section 6.6)

Figure 6.4: Detailed overview on how to leverage the introduced methods to obtain a
neural network controller with safety, performance and stability guarantees.
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6.7 Case studies

The proposed methods are illustrated and visualized via a simple two-dimensional
case study. We will follow the framework presented in Fig. 6.4 to obtain sets in which
the application of the neural network controller is safewith guarantees on the closed-
loop performance.

6.7.1 Double integrator

The systemmatrices (6.14) for the double integrator are given by

A =





1.000 0.100

0.000 1.000



 , B =





0.005

0.100



 andE =





0.100 0.000

0.000 0.100



 .

The state constraints and control input constraints are both box constraints withX =
{x ∈ R

nx | −3 ≤ x ≤ 3} and U = {u ∈ R
nu | −1 ≤ u ≤ 1}. The weight matrices for the

quadratic objective function (2.10a) are given byQ = 2I,R = I and P = 2I.

6.7.2 Deriving the neural network controller via imitation learning

We chose multi-stage MPC to generate data sets for imitation learning and included
the approximation error of the learned controller - estimated as ||µnn(x) − µms||

2
2 ≤

0.02 - in the scenario tree formulation. The multi-stage MPC controller was imple-
mented via do-mpc [122], a robust nonlinear MPC toolbox relying on CasADi [123],
a symbolic toolbox for automatic differentiation and IPOPT [124], an interior-point
solver.

We leveraged the method from [125] to compute the maximum robust control in-
variant set of the MPC formulation. For generating the learning data T , 500 ran-
dom initial stateswithin themaximum robust control invariant setwere sampled from
which 20 closed-loop steps were simulated, resulting in 10000 samples.

We considered a small network with a single hidden layer containing 15 neurons
to approximate the MPC law. The optimal network parameters for the learning-based
controllers were derived via (3.8) using Keras [89] and TensorFlow [90] with the ADAM
algorithm [92]. The resulting neural network controller and the regions that are im-
plicitly defined by the neurons in the hidden layer are portrayed in Fig. 6.5 including
the maximum robust control invariant set, the equilibrium region and the equilibrium
point xeq, i.e. the origin.

6.7.3 Asymptotic stability

In order to analyze asymptotic stability, we assume that there are no disturbances,
i.e. D = {0}. Asymptotic stability can be guaranteed if two conditions are met. First,
the closed-loop system needs to converge to Has ⊆

(

Hlqr ∩Heq
)

for all x ∈ Xs. The
stability set Has is computed via [125] as the maximum robust control invariant set
with state constraints x ∈

(

Hlqr ∩Heq
)

. Second, the neural network controller needs
to have a stabilizing feedback in Has. To find the weights and bias of the final layer
providing stabilizing feedback, i.e. the LQR feedback for all x ∈ Heq, problem (6.46)
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Part III

Deep learning-based control for
nonlinear systems
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Chapter 7

Learning-based output-feedback
control

In the previous part, deep neural networkswere used for the state-feedback control of
linear systems. Despite the technical ability of deep neural networks to exactly repre-
sent linear MPC solutions, the more practical approach is to leverage the representa-
tion capabilities to closely approximate complex functions such as the robust control
laws of uncertain nonlinear systems. In this chapter, it will be shown that deep neural
networks have the ability to act as an explicit output-feedback controller for systems
described by:

x+ = f(x, u, d),

y = h(x, u, d) + vy,
(7.1)

where y ∈ R
ny are the measurements and vy ∈ R

ny is the measurement noise.

In order to applyMPC-like strategies in the output-feedback case, an accurate es-
timate of the true state is required. Feed-forward neural networks can provide an es-
timate of the current state of a system based on past measurements and applied in-
puts bymirroring the behavior state estimation strategies likemoving horizon estima-
tion [128]. We also propose the simultaneous learning of the full estimator-controller
algorithm, i.e. the direct mapping from the currently obtained measurements to the
optimal control input.

The remainder of the chapter is organized as follows. In Section 7.1, moving hori-
zon estimation, an optimization-based state estimation approach is presented, which
is also used to generate the training data set for the learning-based state estimator.
The approach to obtain deep learning-based approximations of the robust output-
feedback controller and the nonlinear state estimator is illustrated in Section 7.2. Fi-
nally, we highlight the advantages of the proposedmethod by applying themethod for
an industrial-scale case study which is presented in Section 7.3. The findings in this
this chapter were initially presented in [8].
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7.1 Moving horizon estimation

The goal of moving horizon estimation (MHE) is to provide an accurate state estimate
xest based on Nest past measurement and Nest past inputs by solving an optimiza-
tion problem. The optimization problem to be solved shares a similar structure like
MPC formulations in the sense that both rely on a system model and use a shifting
time-window. But whereas theMPC formulation uses the systemmodel to predict the
future behavior of the system to derive optimal control inputs, MHE looks back in or-
der recover the past evolution including an accurate estimate of the current state. The
MHE problem is defined in nonlinear least-squares fashion:

minimize
x,dest,vx,vy

1

2
||x−Nest − xa||

2
Pa

+
1

2
||dest − dprev||

2
Pd

+
1

2

0
∑

k=−Nest

||vy,k||
2
Py

+
1

2

−1
∑

k=−Nest

||vx,k||
2
Px

(7.2a)

subject to for k ∈ {−Nest,−Nest + 1, . . . ,−1} :

xk+1 = f (xk, uk, dest) + vx,k, (7.2b)
0 ≥ gest(xk, uk, dest), (7.2c)

for k ∈ {−Nest,−Nest + 1, . . . , 0} :

yk = h(xk, uk, dest) + vy,k, (7.2d)
dest ∈ D, (7.2e)

where Pa ∈ R
nx×nx , Pd ∈ R

nd×nd , Py ∈ R
ny×ny and Px ∈ R

nx×nx are the weights for
the arrival cost, the parameter estimation, the distance between measurements and
computedmeasurements, and theprocessnoise vxwith thenotation ||x||2P = ||xTPx||.
The optimization variables are the estimated state trajectory x = {x−Nest , . . . , x0}, se-
quence of process noise vx = {vx,−Nest , . . . , vx,−1} with vx,k ∈ R

nx , sequence of mea-
surement noise vy = {vy,−Nest , . . . , vy,0} and the current parameter estimate dest. The
parameter estimate from the previous step is given by dprev and the parameters are
assumed to be constant, as the considered case study, that will be presented in Sec-
tion 7.3, is a semi-batch reactor with constant parameter values in each batch. If the
set to which the uncertainties belong is known, this information can be incorporated
via (7.2e). Estimating the values of the uncertain parameters is important in order to
obtain accurate state estimates. The constraints (7.2c) can be chosen differently in
comparison to their equivalents in themulti-stageMPC formulation because relaxing
the constraints for the MHE to enable accurate state estimation - even in the pres-
ence of minor constraint violations in the control task - can be beneficial. The values
in Pd should be chosen such that only the values of uncertain parameters are penal-
ized and not also the disturbances. To counteract the information loss due to the fi-
nitehorizon, thearrival cost (the first term in (7.2a)) includes information fromprevious
estimations via xa, which is the x∗−Nest+1 from the previous estimation. In the case of
output-feedback, the state estimate xest ∈ R

nx computed by the MHE, which is the
state at the last time in the considered time-window, i.e. xest = x∗0, is used as the
initial in the MPC formulation (2.8b) via xinit = xest.
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ThecombinationofMHEandMPC isapowerful choice toachievehigh-performance
output-feedbackcontrol that cansystematicallydealwithnonlinearsystemsandcon-
straints. Themain drawback of the combination is that, apart from the robust optimal
control problem, an additional computationally complex optimization problem to de-
rive a state estimate needs to be solved at each control instant, addingmore stress to
the potentially limited computational resources. To counteract these drawbacks, we
propose to not only approximate the optimal controller, but also the state estimator,
via deep neural networks.

7.2 Deep learning-based robust NMPC and MHE

The goal of this chapter is to use deep neural networks to derive an optimization-free
approach for the robust output-feedback control of uncertain nonlinear systems, As
for the case of approximating MPC controllers, we exploit that the optimization prob-
lem in (7.2) is parametric. The parameters that determine the solution of the MHE
problem are the past measurement and the input trajectory as well as the previously
estimated state andparameters. Becausewedonot only use deepneural networks as
controllers, but also as explicit state estimators, we define the neural networks here
in a more general form in comparison to (3.2), as:

µnn(xin; ¹, n0, . . . , nL+1) = λL+1 ◦
L
∏

l=1

(σl ◦ λl(zl−1)) , (7.3)

where zl−1 = σl(Wl−1zl−2 + bl−1), l ∈ {2, . . . , L + 1}, and z0 = xin is either the (esti-
mated) state of the system in case of the controller and the parameters of the MHE
problem (7.2) in case of the state estimator. The activation function used in this chap-
ter is the hyperbolic tangent:

σl(λl(·)) = tanh(λl(·)) =
eλl(·) − e−λl(·)

eλl(·) − e−λl(·)
, (7.4)

which is evaluated element-wise on the input vector.

7.2.1 Learning an approximate explicit representation

We consider three different neural network structures to approximate the functions
implicitly described by the output-feedback multi-stage NMPC problem (2.8), which
uses the state estimate as the initial state via xinit = xest, and by the MHE prob-
lem (7.2). The first two networks approximate directly either the MPC, leading to the
neural network controller (NNC), or the MHE, leading to the neural network estimator
(NNE). The third network simultaneously learns a controller and an estimator, leading
to the neural network estimator and controller (NNEC). The crucial part for learning
a good approximation of the MPC and MHE are the data sets, which need to contain
enough samples to enable the learned networks to achieve the desired approximation
accuracy, and more importantly the desired closed-loop performance, while having a
tractable size.
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For thedata generation,weuse closed-loop simulations, as opposed topurely ran-
dom sampling, quasi-random sampling [129] or gridding, to ensure that only samples
that represent situations occurring during operation of the system are included in the
data set. Every simulation step out of the ntr considered steps is fully described by a
tuple (sp, xest,p, xp, µms(xest,p), dp), where

sp =
[

xTa , y
T
−Nest

, . . . , yT0 , u
T
−Nest

, . . . , uT−1

]T

contains the arrival statexa, pastmeasurements y−Nest , . . . , y0 and the applied control
inputs u−Nest , . . . , u−1 used by the MHE to generate the state estimate xest,p, xp is the
current state of the system, µms(xest,p) is the optimal control input computed by the
multi-stageMPCbased on the state estimate and dp is the realization of the uncertain
parameters. These tuples enable the learning of anNNEandanNNCeither separately
or simultaneously.

The behavior of the MPC is approximated by the network µC : Rnx → R
nu and the

behavior of theMHE by µE : Rns → R
nx with ns = nx+Nest · (ny + nu). That is, the ap-

proximate MHE takes as input the trajectories of inputs and measurements of length
Nest as well as the previously estimated state as in the original MHE formulation. The
output of the approximate MHE is the current state estimate.

The third learning-based approach uses the same information as the network for
state estimation, but directly gives an optimal input in addition to the state estimate
which results in a mapping µEC : R

ns → R
nx+nu . The state estimates of NNE and

NNECwill be used afterNest− 1 steps as the arrival state xa in closed-loop operation.
The optimal weights and biases for each network are determined during training by
minimizing the following loss functions:

NNC : minimize
θ

1

ntr

ntr
∑

p=1

||µms(xest,p)− µC(xest,p)||
2
2 , (7.5a)

NNE : minimize
θ

1

ntr

ntr
∑

p=1

||xp − µE(sp)||
2
2 , (7.5b)

NNEC : minimize
θ

1

ntr

ntr
∑

p=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





xp

µms(xest,p)



− µEC(sp)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

. (7.5c)

It is interesting to note some differences between the training of the approxima-
tions of the control and estimation problems. While in (7.5a) the neural network sees
exactly the same data as the MPC in the closed-loop, in (7.5b) and (7.5c) we exploit
that the simulation-baseddata generation grants access to the real state. Becausexp
would be the result of a perfect estimation, we use it as the target instead of the state
xest,p estimatedby theMHE. Thepossible configurations for the output-feedback con-
trol task, combining optimization-based and learning-based methods, are visualized
in Fig. 7.1 where also MPC with state-feedback is presented, as it shows the perfor-
mance in the ideal case, e.g. when the estimator provides exact state estimates and
the MPC optimization problem is exactly solved.
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MHE MPC

SYS

NNE

MHE

MPC

NNC

NNE NNC

NNEC

MPC

Figure 7.1: Overview of the different configurations which can be built from MHE,
MPC and their neural network based approximations NNE and NNC. MPC via state-
feedback is also included which would represent the perfect estimator and NNEC is
using past measurements and control inputs to provide an optimal control input.

7.2.2 Sensitivity of the closed-loop system

Analyzing an output-feedback controlled system with uncertainty and measurement
noise is a difficult task. The complexity is increased when the impact of the learn-
ing process on the performance should be investigated because MPC and/or MHE
are substituted by their neural network approximations. Because the evolution of the
states can only be affected via the control inputs, the influence of the approximation
errors of the learning-based methods on the applied control input is crucial. The ap-
proximation errors for the neural network controller and the neural network estimator
for a sample at time k are defined as:

NNC : ¶Ck = ||µms(xk)− µC(xk)||
2
2 , (7.6)

NNE : ¶Ek = ||xk − µE(sk)||
2
2 . (7.7)

Both errors lead to sub-optimal performance, either directly due to near-optimal con-
trol inputs or indirectly through imperfect state estimates on which the control input
computation is based. The impact that the approximation error of the approximate
controller NNChas on the state trajectory can be analyzed based on the systemequa-
tion (7.1) by computing the following sensitivity:

Ju,k =
∂f(x, u, d)

∂u

∣

∣

∣

∣

xk,µms(xk),dk

. (7.8)
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The resulting changes in the successor state with respect to deviations to the optimal
input can then be approximated, using a first-order Taylor approximation, by:

x∗k+1 − x
C
k+1 ≈ Ju,k(µms(xk)− µC(xk)), (7.9)

where the successor states are defined based on (7.1) as:

x∗k+1 = f(xk, µms(xk), dk), (7.10)

when the input is derived from the exact multi-stage MPC formulation and as:

xCk+1 = f(xk, µC(xk), dk), (7.11)

when the approximate input obtained from the neural network controller is applied.

Quantifying the effects of the estimation quality on deviations from the optimal
control input cannot be handled as straightforwardly. Because the state estimate
xest,k is used in the robust MPC scheme as the initial state, it would be necessary to
compute the sensitivity of the optimal control problem with respect to the estimated
state. To circumvent this process, we exploit that the neural network controller is
an explicit function which approximates the solution of the optimal control problem.
When assuming state-feedback, the sensitivity of the successor state with respect to
the current estimated state can be approximated based on (7.11) as:

Jx,k =
∂f(xk, µC(xk), dk)

∂x

∣

∣

∣

∣

xk,dk

. (7.12)

The local first-order approximation of the deviation from the optimal successor state
due to estimation errors can then be written as:

x∗k+1 − x
E
k+1 ≈ Jx,k(xk − µE(sk)), (7.13)

where the sub-optimal successor state is derived frommulti-stageMPC using the es-
timate obtained from the neural network estimator:

x̃k+1 = f(xk, µms(µE(sk)), dk). (7.14)

The deviations ((7.9) and (7.13))from the optimal successor state due to the approx-
imation error in the learned controller (7.6) and learned estimator (7.7) can then be lo-
cally upper-bounded based on the maximum singular value, i.e. the spectral norm
ξmax(·), of the sensitivities ((7.8) and (7.12)) as:

||x∗k+1 − x
C
k+1||2 ≤ ξmax(Ju,k) · ¶

C
k , (7.15)

||x∗k+1 − x
E
k+1||2 ≤ ξmax(Jx,k) · ¶

E
k . (7.16)

Themain idea of this analysis is to illustrate that for the same approximation error
of the control (¶Ck ) and estimation problems (¶

E
k ), the effect on the closed-loop trajecto-

ries can be significantly different depending on the described sensitivities. This effect
can be clearly observed in the results presented in Section 7.4.
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If the maximum sensitivities and the maximum approximation errors out of all
samples are considered, a global estimate for the maximum deviation in the succes-
sor states can be computed. Probabilistic validation methods like those presented
in [130] can be applied to achieve rigorous probabilistic guarantees of the approxima-
tion errors.

7.3 Industrial polymerization reactor

For the analysis of the proposed approach we consider an industrial batch polymer-
ization reactor, which was first presented in [19]. The system can be described by the
following differential equations:

ṁW = ṁF ÉW,F

ṁA = ṁFÉA,F − kR1mA,R − kR2mAWTmA/mges,

ṁP = kR1mA,R + p1 kR2mAWTmA/mges,

ṁacc
A = ṁF,

ṪR = 1/(cp,Rmges) [ṁF cp,F (TF − TR) + ∆HRkR1mA,R

− kKA (TR − TS)− ṁAWT cp,R (TR − TEK)],

ṪS = 1/(cp,SmS) [kKA (TR − TS)− kKA (TS − TM)],

ṪM = 1/(cp,WmM,KW) [ṁM,KW cp,W

(

T INM − TM

)

+ kKA (TS − TM)],

Ṫ EK = 1/(cp,RmAWT) [ṁAWTcp,W (TR − TEK)

− ³ (TEK − TAWT) + kR2mAmAWT∆HR/mges], (7.17)

Ṫ AWT = [ṁAWT,KW cp,W (T INAWT − TAWT)

− ³ (TAWT − TEK)]/(cp,WmAWT,KW),

Ṫ adiab =
∆HR

mgescp,R
ṁA − (ṁW + ṁA + ṁP)

(

mA∆HR

m2
gescp,R

)

+ ṪR

where:
U = mP/(mA +mP),

mges = mW +mA +mP,

kR1 = k0e
−Ea

R(TR+273.15) (kU1 (1− U) + kU2U) ,

kR2 = k0e
−Ea

R(TEK+273.15) (kU1 (1− U) + kU2U) ,

kK = (mW kWS +mA kAS +mP kPS)/mges,

mA,R = mA −mAmAWT/mges,

which are discretized via orthogonal collocation on finite elements [131].
The states describing the systemaremass balances and product hold-ups for wa-

ter mW, monomer mA and polymer mP in the reactor and the total mass of monomer
that has been fed to the reactormacc

A . Further states include the temperatures of the
reactor TR, the vessel TS, the jacket TM, the fluid mix in the external heat exchanger
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TEK and the coolant flowing out of the external heat exchanger TAWT, which are used to
describe the energy balances of the system. The details including all the parameter
values can be found in [19] and the code is also publicly available1. The available con-
trol inputs are the feed flow ṁF, the coolant temperature at the inlet of the jacket T INM
and the coolant temperature at the inlet of the external heat exchangerT INAWT. An auxil-
iary variable which plays amajor role for the safe control of the reactor is Tadiab, which
describes the temperature that would be reached if the cooling fails. As an important
safety constraint, Tadiab always needs to be lower than a certain threshold.

In each batch, a fixed amount of polymer needs to be produced as fast possible,
which coincides withminimizing the batch time. At the same time, the constraints for
the safe operation of the reactor (Tadiab ≤ Tadiab,max), a high-quality product (TR,min ≤
TR ≤ TR,max) and the physical limitations of themanipulators need to be satisfied. The
two uncertain parameters are kU1 and kU1 and considered constant throughout one
batch.

7.4 Learning-basedoutput-feedbackcontrol for a semi-batch
polymerization reactor

This section highlights how the learning-based approximations were obtained and
presents the resulting performance for each one of the closed-loop configurations de-
picted in Fig. 7.1. A common and reasonable concern for the use of machine learning
in a closed-loop is related to the unexpected performance that can be obtained when
applied to situations that havenot been seenpreviously during training. To analyze the
robustness of both, the optimization-based and the learning-based approaches, we
present the results for the case when the intervals of parametric uncertainties and
possible initial conditions are larger than those used for training, or assumed in the
optimization-based formulations. We also show that the impact of the approximation
quality can be analyzed using the sensitivity considerations described in Section 7.2.

7.4.1 Data generation

For the generation of the training data we ran 200 simulations of the batch process
with MHE in connection with MPC, which corresponds to the second configuration in
Fig. 7.1. For the multi-stage NMPC scheme we used a prediction horizon of N = 20
and a robust horizon ofNr = 1with a sampling time of ts = 50 s. The MHE implemen-
tation used the same sampling time as the controller and the horizon was chosen to
Nest = 10 which was sufficient for the proper estimation of the uncertain parameters
kU1 and kU2 and subsequently provided good state estimates. For each simulation of
a batch, the initial state, the estimated initial state and the value of the uncertain pa-
rameters were varied according to the values given in the Training intervals column of
Table 7.1 following a uniform distribution. We used do-mpc [132] to generate the sim-
ulation results, as it supports multi-stage NMPC and MHE natively. The simulation
was carried out via the integrators provided by the SUNDIALS toolbox [133] ensuring a
high accuracy.

1https://www.do-mpc.com/en/latest/example_gallery/industrial_poly.html
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Table 7.1: Intervals of initial states and uncertainties as considered in the training pro-
cess and when the different methods are exposed to extended scenarios. The devia-
tion of the initial estimated state from real state is einit = xinit−xest Themeasurement
noise is zero-mean gaussian and fully described by the standard deviation. States
without measurement noise cannot be measured.

Param. Unit
Training intervals Extended intervals

Meas. noise
xinit einit xinit einit

mW kg [9900.0, 10100.0] [10.0, 10.0] [9800.0, 10200.0] [15.0, 15.0] 1.0

mA kg [851.0, 855.0] [2.0, 2.0] [848.0, 858.0] [4.0, 4.0] -

mP kg [26.0, 27.0] [0.5, 0.5] [22.0, 31.0] [0.5, 0.5] -

TR K [362.15, 364.15] [0.1, 0.1] [361.65, 364.65] [0.1, 0.1] 0.1

TS K [362.15, 364.15] [0.1, 0.1] [361.15, 365.15] [0.2, 0.2] 0.1

TM K [362.15, 364.15] [0.1, 0.1] [361.15, 365.15] [0.2, 0.2] 0.1

TEK K [306.15, 310.15] [0.1, 0.1] [304.15, 312.15] [0.2, 0.2] 0.1

TAWT K [306.15, 310.15] [0.1, 0.1] [304.15, 312.15] [0.2, 0.2] 0.1

mmonom kg [290.0, 210.0] [2.0, 2.0] [280.0, 320.0] [4.0, 4.0] 1.0

kU2 - [25.6, 38.4] [22.4, 41.6] -

kU1 - [3.2, 4.8] [2.8, 5.2] -

7.4.2 Training of neural networks

The 200 generated trajectories contain 23299 data tuples of which 90%were used for
training the different neural network approaches and 10%were reserved for comput-
ing the validation error. While for learning the NNC all tuples can be considered, the
number of available samples is reduced to 21299 for NNE and NNEC. Since in every
batch the first Nest = 10 tuples are used to initialize the input to the networks, there
are 200 · 10 = 2000 less data samples. The data was scaled such that the input and
output samples for the networks belonged to the unit hypercube. The training of the
neural networkswas carried out via Keras [89] relying on the Tensorflow [90] backend
using Adam [92] as the optimization algorithm.

The validation error throughout the training progress averaged over 20 training
runs, computed via (7.5), is visualized in Fig. 7.2. It can be seen that the validation error
decreases steadily for NNC while the curves for NNE and NNEC are characterized by
various peaks. The minor peaks are due to the stochastic nature of the optimization
algorithm and can also be seen for NNC. The major peaks show that small changes
in the network parameters might lead to a big change in the approximation quality,
which can be seen as an indicator of the fact that that learning an estimator is more
difficult problem than learning a controller. To take into account the complexity of the
learning task, the size of the network chosen for the controller was the smallest and
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Table 7.4: Performance comparison of the five considered estimation and control con-
figurations presented in Fig. 7.1. All configurations were simulated for the same 100
randomly generated uncertainty realizations using the extended intervals given in Ta-
ble 7.1.

Configuration
Batch time Violation TR Violation Tadiab

Avg. Min. Max. Avg. Max. Avg. Max.

SF +MPC 1.6199 1.4583 1.9167 0.0357 1.1692 0.0001 0.0124

MHE +MPC 1.6282 1.4583 1.9028 0.0401 1.2872 0.0015 0.2865

MHE + NNC 1.6722 1.4583 2.0417 0.0418 0.9633 0.0003 0.2078

NNE +MPC 1.5478 1.4028 1.7778 0.0371 1.7051 0.0202 2.8845

NNE + NNC 1.5329 1.4028 1.7639 0.0582 2.4689 0.0003 0.2281

NNEC 1.5565 1.3889 1.8333 0.6279 3.1819 0.0001 0.1138

7.4.5 Performance deterioration due to learning-based approximations

In the previous sections it was shown that the learning-based methods can achieve
a performance level comparable to the online optimization-basedmethods. This sec-
tion illustrates the fact that the same approximation error of a neural network estima-
tororaneuralnetworkcontroller canhaveaverydifferent influenceon theclosed-loop
performance.

Toanalyze thiseffect,wemakeuseof thesensitivitiesdescribed inSubsection7.2.2
and compute them for ntraj = 100 trajectories generated via state-feedback control
using the exact multi-stage MPC. For every step k ∈ N

+
[nsteps,i]

(except for the first

Nest) along the i-th trajectory, i ∈ N
+
[ntraj]

, the tuple (si,k, xi,k, µms(xi,k), di,k) is avail-
able, where xi,k is the current state of the system, di,k is the parameter realization and
si,k carries the information required for the estimator.

The local sensitivities with respect to errors in the computed input and errors in
the estimated state can be directly computed via (7.8) and (7.12). As shown in (7.15)
and (7.16), the maximum singular values of the sensitivities can be used to obtain an
approximate upper bound of the successor state error. The maximum singular value
occurring throughout all ntraj considered trajectories can be computed via:

ξmax,x = maximize
i∈N+

[ntraj]
,k∈N+

[nsteps,i]

(ξmax(Jx,i,k)) , (7.18a)

ξmax,u = maximize
i∈N+

[ntraj]
,k∈N+

[nsteps,i]

(ξmax(Ju,i,k)) , (7.18b)

where, with slight abuse of notation, Jx,i,k and Ju,i,k denote the sensitivities at the k-
th time step of the i-th trajectory. The average singular value along a trajectory can
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Table 7.5: The maximum and average approximation errors are computed based
on (7.7), (7.6) and (7.20). The maximum and average singular values are computed
via (7.18) and (7.19). The sub-optimality of the resulting control inputs for the three
considered configurations are given in (7.21).

NNE +MPC SF + NNC NNEC

¶max 1873.09 7054.83 15935.78

¶av 450.29 185.36 7500.17

ξmax 51887.967 100.00 -

ξav 1075.38 53.75 -

eu 1300.34 185.36 4116.96

provide further insights on the importance of the approximation errors, and can be
computed as:

ξav,x =
1

nsteps

ntraj
∑

i=1

nsteps,i
∑

k=1

ξav(Jx,i,k), (7.19a)

ξav,u =
1

nsteps

ntraj
∑

i=1

nsteps,i
∑

k=1

ξav(Ju,i,k), (7.19b)

where nsteps =
∑ntraj

i=1 nsteps,i. Table 7.5 shows that the average singular values of the
sensitivitywith respect to the state estimate ξav,x are higher than for the optimal input
ξav,u. This means that a given error in the approximation of NNE leads in general to
larger deviations from the optimal trajectory than for NNC.

The approximation errors for NNC and NNE are computed via (7.6) and (7.7). When
NNEC is considered, which has the largest network structure since it needs to learn
both the estimator and the controller, the approximation error for the k-th sample is
given as:

¶ECk =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





xk

u∗k



− µEC(sk)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

. (7.20)

Themaximum and average approximation errors for each network ¶i,j ∈ {¶Ci,j , ¶
E
i,j , ¶

EC
i,j }

can be analyzed in an equivalent fashion as the singular values. By replacing the
maximum singular values ξmax(J(·),i,j) in (7.18) and average singular values ξav(J(·),i,j)
in (7.19) with ¶i,j , the maximum approximation errors (¶max ∈ {¶Cmax, ¶

E
max, ¶

EC
max}) and

average approximation errors (¶av ∈ {¶Cav, ¶
E
av, ¶

EC
av }) are obtained. The values for the re-

sulting approximated errors are summarized in the upper half of Table 7.5. It can be
seen that approximation error of NNEC exceeds both the largest maximum and aver-
age approximation error of NNE and NNC. The maximum and the average approxima-
tion errors for NNC and NNE are of the same magnitude, but the significantly higher
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average sensitivity with respect to the state estimate means that replacing MHE with
NNE will lead to a larger performance deterioration than replacing MPC with NNC.

To directly quantify the effect of the approximation error in the closed-loop, we can
also compare the optimal input u∗i,k = µms(xi,k) to the sub-optimal inputs provided
when:

• applying NNC resulting in uCi,k = µC(xi,k);

• the optimal input is computed by solving (2.8) based on the estimate µE(si,k) re-
sulting in uEi,k = µms(µE(si,k));

• applying NNEC extracting the optimal control input uECi,k from µEC(si,k) =

[xTest,i,k, u
EC,T
i,k ]T .

The average root mean squared error of the euclidean distance of the approximate
control inputs from the optimal control inputs along all trajectories, denoted as eu, is
then defined by:

SF + NNC:
1

nsteps

ntraj
∑

i=1

nsteps,i
∑

j=1

||uCi,k − u
∗
i,k||2, (7.21a)

NNE +MPC:
1

nsteps

ntraj
∑

i=1

nsteps,i
∑

j=1

||uEi,k − u
∗
i,k||2, (7.21b)

NNEC:
1

nsteps

ntraj
∑

i=1

nsteps,i
∑

j=1

||uECi,k − u
∗
i,k||2. (7.21c)

The values for the 100 trajectories are summarized in the last row of Table 7.5. The
difference between the optimal input and the control input provided by NNEC is the
largest which is consistent with its inferior performance observed in Fig. 7.3. The de-
viation caused when the learning-based estimator is used is significantly larger than
the deviation caused by the learning-based controller, which confirms the importance
of the larger sensitivities despite similar average andmaximum approximation errors
(¶max, ¶av). This is also consistent with the better performance (smaller constraint vio-
lations) observed by theMHE+NNC configuration when compared to the NNE+MPC
configuration. Nevertheless, the configuration consisting of two learning-based ele-
ments (NNE + NNC) shows comparable performance to the optimization-based con-
figuration (MHE +MPC).

The three main messages of this chapter can be summarized as: i) both the con-
trol problem (MPC) as well as the estimation problem (MHE) can be properly approx-
imated using deep neural networks even for non-trivial case studies; ii) the perfor-
mance degradation obtained when exposed to previously unseen scenarios does not
have to be stronger than the degradation observed when solving the MPC and MHE
problems exactly under the same wrong assumptions about the possible scenarios;
iii) the training error is not a good indicator for the closed-loop performance of an ap-
proximate MHE or MPC as it is strongly affected by the sensitivities of the problem as
well as by the scaling factors used during training.

In the next chapter, we introduce an approach that further refines the behavior of
the purely imitation learning-based approximate controllers. By lending ideas from
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the field of reinforcement learning, the parameters of a neural network controller can
be improved, or adapted when the scenario changes, considering closed-loop trajec-
tories.
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Chapter 8

Reinforced approximate robust
nonlinear model predictive control

In general, two deep learning paradigms can be distinguished. The first approach,
called imitation learning, has been used successfully throughout this thesis, but suf-
fers from two major drawbacks. First, it is difficult to learn behavior that is not well
represented in the data, aswill be shown in the following. Second, newdata sets need
to be generatedwhenever the control task changes, whereas a classicalNMPC formu-
lation can be adapted in a straightforward manner.

In the field of reinforcement learning, the seconddeep learning paradigm, the con-
trol policy can be updated during operation as closed-loop information is included in
the learning process and adaptations to changes of the control tasks can be made
online. However, a very large number of data samples is typically necessary and the
consideration of critical constraints is not directly possible. By taking additionalmea-
sures like projecting onto the feasible space [134–138], constraint satisfaction can be
achieved. Another possibility to consider constraints and reduce the required num-
ber of data samples for a controller obtained via reinforcement learning is to consider
NMPCas theparametricpolicywithin the reinforcement learning framework. Thesen-
sitivity of the underlying optimization problems can be used to tune the parameters in
the NMPC formulation [139–141], but the computational load is high as each control
step requires solving an NMPC problem.

We propose to combine notions from imitation learning and reinforcement learn-
ing to counteract these drawbacks. The major advantages of the proposed approach
are: i) Controllers computed via imitation learning can be updated to changes in the
control task without having to learn a new controller, making it unnecessary to gen-
erate new data sets by repeatedly solving complex optimization problems; ii) The re-
sulting learning-based controller can even outperform an exact NMPC approach be-
cause thepolicy parametersareupdatedbasedon longsimulationswithahigh fidelity
model. Thus, better information about the desired closed-loop performance is intro-
duced that cannot be easily incorporated in an NMPC formulation with a limited pre-
diction horizon. We revisit the industrial-scale polymerization reactor introduced in
Chapter 7 to highlight the efficacy of the approach.

The remainder of the chapter is organizedas follows. InSection8.1 thegeneral set-
tings for the proposed method are introduced. The basic principles of reinforcement
learning are presented in Section 8.2. The main contribution - combining ideas from
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imitation learning and reinforcement learning - is presented in Section 8.3. In Sec-
tion 8.4 the polymerization reactor is recapitulated for which the proposed method is
extensively studied in Section 8.5. The results of this chapter are largely based on the
findings in [9].

8.1 Problem statement

In contrast to the previous chapter, where an output-feedback control task was an-
alyzed, we consider in this chapter general discrete-time nonlinear systems for the
state-feedback case:

x+ = f(x, u, d), (8.1)

where the uncertain parameters d ∈ R
nd follow the probability distribution Çd and

belong to the set D ⊆ R
nd . The nonlinear system (8.1) is controlled by a parametric

state-feedback policy µ : Rnx → R
nu , e.g. a deep neural network, defined as:

u = µ(x; ¹), (8.2)

where ¹ are the control policy parameters. Thus, the closed-loop behavior of the sys-
tem is described by

x+ = f(x, µ(x; ¹), d),

= fcl(x, d; ¹).
(8.3)

For a given initial state x0 ∈ Xinit ⊆ R
nx , that is drawn from the probability distri-

bution Çinit, and a sequence of length Nsim of realizations of the uncertainties d =
{d0, . . . , dNsim−1}, di ∼ Çd ∀i ∈ N[Nsim−1], the state trajectory x = {x0, . . . , xNsim} and
control input trajectory u = {u0, . . . , uNsim−1} are uniquely defined by (8.3). We there-
fore summarize the initial state and realization of uncertain parameters in a single
variable:

w = {xinit, d0, . . . , dNsim−1} , (8.4)

that is drawn from the probability distribution:

w ∼ Çw = Çinit × Çd × · · · × Çd,

and whose realizations belong to the set:

w ∈ W = Xinit ×D × · · · × D.

Further, we define a function that generates the resulting closed-loop trajectory for a
realization w ∼ Çw, a given system model f(·) and feedback controller µ(·), and the
number of simulations stepsNsim as:

Ξ(w;Nsim, f(·), µ(·)) = {x0, µ(x0; ¹), d0, x1, µ(x1; ¹), d1, . . . , xNsim}. (8.5)
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Thecontroller design task is to findpolicyparameters ¹ such that thecontrol inputs
optimize the closed-loop performance index:

ϕ(w;Nsim, f(·), µ(·; ¹)) : R
nx × R

nd × · · · × R
nd → R, (8.6)

which is defined as an arbitrary function over a finite time windowNsim that returns a
scalar based on the state and control input trajectories uniquely defined by (8.5).

To specify the optimal behavior of the parametric policy, we formulate an optimiza-
tion problem that follows a similar structure as for the ideal robust policy (2.5). The
optimal control parameters ¹̂ are then found by solving:

argmin
θ

E [ϕ(w;Nsim, f(·), µ(·; ¹))] (8.7a)

subject to X0 = Xinit, (8.7b)
for all k ∈ N[Nsim−1] :

Xk+1 = Rcl (Xk, f(·), µ(·; ¹)) , (8.7c)
0 ≥ gcl (Xk, µ(·; ¹)) , (8.7d)

0 ≥ gf (XN ) , (8.7e)

where (8.7a) is the expected value of the performance index for a trajectory of length
Nsim defined by a randomly drawn sample w ∼ Çw. However, solving (8.7) is usually
intractable due to the requirement to propagate reachable sets and arbitrary complex
probability distributions for nonlinear systems. The difficulty is even increased when
highly nonlinear neural networks are considered as the controllers.

The approach that has been followed throughout this thesis to obtain a parametric
controller - which approximately behaves as specified in (8.7) - was to design a multi-
stageNMPCwith thedesiredpropertieswhich is thenclosely imitatedby theparamet-
ric controller. But imitation learning often suffers from shortcomings due to imperfect
data and the neglection of the impact of approximation errors on the closed-loop be-
havior. Further, imitation learning requires generating a new data set for retraining
whenever the control task changes. We will use ideas from reinforcement learning to
approximately solve (8.7) and to counteract the drawbacks of parametric controllers
that were obtained through imitation learning.

8.2 Reinforcement learning

In reinforcement learning, the parametric controller µ(·; ¹) is usually called agent and
interacts with the system by applying a control input u = µ(x; ¹), called action in the
reinforcement learning context, to the system to obtain a stage reward

r(x, u) : Rnx × R
nu → R (8.8)

after each time-step. Two typesof policies aredistinguished. Stochastic policies [142]
describe a probability distribution in the control input space that depends on the cur-
rent state. The applied control input is then drawn from this distribution. Determin-
istic policies, as used throughout this chapter, will always provide the same control
input for a given state as the name indicates. In reinforcement learning, the system
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dynamics are typically described as a Markov Decision Process defined by transition
probabilities:

T (x+|x, u) : Rnx × R
nx × R

nu → R[0,1], (8.9)

from the state x to a successor state x+ under action u. The stochasticity is in-
duced by the probability density function Çd from which the uncertain parameters d
are drawn. In robust control, the possible realizations of the uncertain parameters
are directly considered, e.g. through the consideration of reachable sets or approxi-
mations. Note that deterministic transition functions, e.g. when no uncertain param-
eters are present, are a special case of stochastic transition functions which can be
described by:

T (x+|x, u) =

{

1 if x+ = f(x, u),

0 else.

Reinforcement learning tries to find the optimal parameters ¹̂ for the control policy
that maximize the expected accumulated rewards (8.8), also called return, by solving:

¹̂ = argmax
θ

E

[

Nsim
∑

k=0

µkr (xk, µ(xk; ¹))

]

, (8.10)

where µ ∈ R(0,1] is a discount factor to balance between short-term and long-term
rewards and Nsim describes the number of future steps to be considered. For con-
tinuous tasks, a large value for Nsim is chosen (Nsim → ∞), whereas for finite tasks,
usually called episodic tasks, Nsim is chosen according to the length of one episode.
Solving (8.10) exactly is usually intractable due to the highly nonlinear policy and the
probabilistic transition function. Hence, the problem can in general only be solved ap-
proximately, e.g. by collecting many data samples of the applied control inputs, tran-
sitions and obtained reward as described for various algorithms in [142]. Based on
the gathered information, the parameters of the parametric controller are updated
via gradient-based methods to improve the performance. One major drawback of re-
inforcement learning approaches is that the consideration of constraints is not as
straight-forward as for NMPC formulations and that many episodes are required to
obtain a satisfying result [143].

8.3 Reinforcing a parametric control policy

Wepropose to combine imitation learningand reinforcement learning toderive explicit
high-performance learning-basedcontrollers tomitigate thedrawbacksof onlyapply-
ing either of the two learning paradigms. The method is summarized in Fig. 8.1. First,
the policy parameters are randomly initialized as ¹init before the data set T , generated
by approximately solving (2.8) for various initial states, is used to update the policy pa-
rameters via imitation learning (3.8) providing the policy parameters ¹∗. One drawback
of imitation learning is itsdependenceonMPCschemes that relyona tractablepredic-
tion model, a prediction horizon that possibly provides suboptimal performance and
an objective function that only approximates the true performance index due to com-
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Figure 8.1: Proposed method to obtain high-performance learning-based controllers
with the three main steps described in each solid block. ©[2021] IEEE.

putational limitations. Additionally, imitation learning does not consider the closed-
loop behavior of the system. This means that during training of the imitation learn-
ing controller, an approximation error of the MPC problem that has no effect in the
closed-loop behavior is considered equal to an approximation error that has a criti-
cal influence in the closed-loop performance. By consideringwhole trajectories of the
closed-loop, these drawbacks can be mitigated.

For a parametric control policy (8.2), one can exploit that it possible to explicitly
describe the closed-loop behavior:

x+ = fhf(x, µ(x; ¹), dk),

= fhf,cl(x, d; ¹),
(8.11)

using a high fidelity model fhf(·) that is more accurate than the predictionmodel used
in an MPC formulation. Since the original problem (8.7) that implicitly describes the
optimal parameters for a parametric policy is intractable, we formulate a sampling-
based approximation. Generating a data set

S = {w1, w2, . . . , wNsc} (8.12)

by drawingNsc sampleswi ∼ Çw, i ∈ N
+
[Nsc]

, the approximate formulation is given by:

argmin
θ

Nsc
∑

j=1

ϕ(wj ;Nsim, fhf(·), µ(·; ¹)) (8.13a)

subject to for all j ∈ N
+
[Nsc]

:

x0,j = xinit,j , (8.13b)
for all k ∈ N[Nsim−1] :

xk+1,j = fhf,cl (xk,j , dk,j ; ¹) , (8.13c)
0 ≥ g (xk,j , µ(xk,j ; ¹)) , (8.13d)
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0 ≥ gf(xN,j). (8.13e)

But solving (8.13)may still be intractabledue to theoftenhighly nonlinear nature of the
parametric policies, especially in case of deep neural networks. Instead, we follow the
typical approach used in reinforcement learning of including the constraints (8.13d)
and (8.13e) as penalty terms in the cost (reward) function (8.13a), here described for a
single realization w:

ϕaug(w;Nsim, fhf(·), µ(·; ¹)) = ϕ(w;Nsim, ¹)

+

Nsim−1
∑

k=0

ρT max (0, gcl(xk, µ(·; ¹)))

+ ρTf max (0, gf(xNsim)) ,

(8.14)

where ρ ∈ R
ng and ρf ∈ R

nf are vectors to weigh the importance of the stage and
terminal constraints and xk denotes the state in the k-th time step of the trajectory
resulting from Ξ(w;Nsim, fhf(·), µ(·; ¹)) (8.5). We can then approximate the expected
value of the gradient of the augmented performance index with respect to ¹ by using
the augmented closed-loop performance index (8.14) for allNsc drawn scenarios. The
resulting gradient descent step to update the policy parameters is then given by:

¹ ← ¹ −
³

Nsc

Nsc
∑

j=1

∇θϕaug(wj ;Nsim, fhf(·), µ(·; ¹))), (8.15)

where ³ is the step-length. By repeatedly evaluating (8.15), problem (8.7) is approxi-
mately solved. The gradients (8.15) can be easily computed via automatic differenti-
ation. In machine learning, stochastic gradient descent with mini-batches is applied
for better convergence results [144]. Instead of considering all Nsc samples for the
update (8.15) at once, S is divided into subsets. One epoch of learning is terminated
after the gradient step update has been applied for every subset.

8.4 Industrial polymerization reactor

We revisit the industrial batch polymerization reactor which has been introduced in
detail in Section 7.3 to demonstrate the efficacy of the proposed approach. We shortly
recap the control goals and themost important constraints. For the exact differential
equations that govern the behavior of the system, consider (7.17).

The goal of the control is to produce mP,max = 20 600 kg of polymer mP per batch
as fast as possible while not using more than macc

A,max = 30 000 kg of monomer macc
A .

Two constraints are of major importance for a successful batch process. The reactor
temperature TR is required to stay between TR,min = 361.15K and TR,max = 365.15K to
ensure a high-quality product and the adiabatic temperature Tadiab should not exceed
Tadiab,max = 382.15K for a safe operation. The adiabatic temperature is the tempera-
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ture the reactor would reach due to the exothermic nature of the process if all cooling
fails. The state constraints are defined as:

TR,min ≤ TR ≤ TR,max,

Tadiab ≤ Tadiab,max,

Tmin ≤ TS, TM, TEK, TAWT ≤ Tmax,

macc
A ≤ macc

A,max,

(8.16)

where Tmin = 273.15K and Tmax = 373.15K. Themass balances and temperatures can
bemanipulated via the coolant temperature at the inlet of the external heat exchanger
T INAWT and at the inlet of the jacket T

IN
M , and via the feed flow ṁF. The bounds on the

control inputs are given by:

T INmin ≤ T
IN
AWT, T

IN
M ≤ T

IN
max,

ṁF,min ≤ ṁF ≤ ṁF,max,
(8.17)

where T INmin = 333.15K, T INmax = 373.15K, ṁF,min = 0 kgh−1, and ṁF,max = 30 000 kgh−1.
The two uncertain parameters kU1 and kU2, which describe the influence of the mass
proportionU on the reaction rates kR1 and kR2, are considered to be constant, but un-
known, for each batch. The code for the polymerization reactor is publicly available1.

8.5 Reinforced deep learning-based MPC for a semi-batch
polymerization reactor

For the performance assessment of the proposed approach, wewill consider two sce-
narios. In the first scenario, theuncertainparameters of thesimulated real systemwill
vary±20%, in the second scenario between±30%. Because theuncertain parameters
are constant for each batch, each closed-loop trajectory (8.11) is fully defined by the
initial state xinit and the realization of the uncertain parameters d. The intervals from
which the samples are drawn for the two different degrees of uncertainty are given in
Table 8.1. Oneadvantageof theproposedapproach is that in general high fidelitymod-
els can be used for the optimization of the policy parameters via reinforcing (8.15). But
for simplicity ofpresentationandanalysisof the results, theplantmodelused tosimu-
late the realsystem, thepredictionmodel used inMPCand thehigh fidelitymodel used
in the reinforcement are considered equal and each batch is aborted after amaximum
batch time of 3 hours.

8.5.1 Performance index

For the formulation of theperformance index, the general structure of (8.14) is applied.
Because the control input constraints (8.17) are given as box constraints, considering
them with a penalty term in the performance index can be avoided. The outputs pro-
vided by the neural network were saturated in the closed-loop formulation (8.11) via:

u = min(umax,max(umin, µ(x; ¹))). (8.18)

1https://www.do-mpc.com/en/latest/example_gallery/industrial_poly.html

91

https://www.do-mpc.com/en/latest/example_gallery/industrial_poly.html


CHAPTER 8. REINFORCED APPROXIMATE ROBUST NONLINEARMODEL PREDICTIVE
CONTROL

Table8.1: Intervals fromwhich the initial statexinit and the realizationsof theuncertain
parameters kU1 and kU2 are sampled from with uniform distribution. The adiabatic
temperature is explicitly defined by the values of the other states. ©[2021] IEEE.

state/parameter scenario lower bound upper bound unit

mW 9900.00 10100.00 kg

mA 851.00 855.00 kg

mP 26.00 27.00 kg

macc
A 362.15 364.15 kg

TR 362.15 364.15 K

TS 362.15 364.15 K

TM 306.15 310.15 K

TEK 306.15 310.15 K

TAWT 290.00 310.00 K

kU1
±20% 3.2 4.8 −

±30% 2.8 5.2 −

kU2
±20% 25.6 38.4 −

±30% 22.4 41.6 −

To avoid wasting educts, we include a rule that saturates the feed ṁF,k of the
learning-based controller if the necessary amount of monomermacc

A,max to produce the
desired amount of polymermP,max would be exceeded in the next step k + 1:

ṁF,k =

{

macc
A,max−m

acc
A,k

∆t , ifmacc
A,k +∆t · ṁF,k > macc

A,max,

ṁF,k, else.
(8.19)

Therefore the constraint macc
A ≤ macc

A,max does not need to be included in the perfor-
mance index.

The exact number of steps until a batch is finished can not be known beforehand,
henceNsim is chosen such that it exceeds the number of steps necessary for the com-
bination of uncertain parameters leading to the longest batch time. To avoid that the
performance index and its gradient are affected after the production goal has been
reached, an indicator function

i(xk) =

{

1, ifmP,k < mP,max,

0, else,
(8.20)
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is designed, which will be used to set all terms of the performance index to zero when
the required amount of polymer has been produced and hence the batch has ended.

Since wewant tomaximize the profit whilemeeting the quality and safety require-
ments, the performance index will consist of three parts. To operate the reactor in
the most profitable manner, it is desirable to minimize the batch time which can be
achieved by maximizing the amount of productmP that is generated in each step k:

ϕmP =

Nsim
∑

k=0

i(xk) · (mP,max −mP,k). (8.21)

To guarantee the safe operation of the reactor, wepenalize violations on the constraint
on Tadiab:

ϕTadiab =

Nsim
∑

k=0

i(xk) ·max(0, Tadiab,k − Tadiab,max). (8.22)

The performance index for the reactor temperature can be formulated similarly by ad-
ditionally incorporating the lower bound:

ϕTR =

Nsim
∑

k=0

i(xk) ·
(

max(0, TR,k − TR,max) +max(0, TR,min − TR,k)
)

. (8.23)

The augmented closed-loop performance indicator (8.14) is then given by:

ϕaug(w;Nsim, f(·), µ(·; ¹)) = ρmPϕmP + ρTadiabϕTadiab + ρTRϕTR , (8.24)

with the weighting factors ρmP = 1e − 5, ρTadiab = 1.0 and ρTR = 1.0. The weight-
ing factors were chosen such that satisfaction of the constraints was prioritized over
economic efficiency in the gradient step updates (8.15).

8.5.2 Parametric policy optimization

In the multi-stage NMPC formulation, we use as stage cost and terminal cost ℓ(·) =
ℓf(·) = −mP, a prediction horizon ofN = 20, a robust horizon ofNrobust = 1 and a con-
trol step width of 50 s for the polymerization reactor. Themulti-stage NMPC controller
wasused to generate thedata sets T20 and T30, each consisting of 350 closed-loop tra-
jectories that were simulated with uncertainty variations of±20%and±30%, respec-
tively, and that were accordingly represented in the scenario trees. By solving (3.8) for
T20 and T30 for deep neural networks containing L = 6 layers and nl = 30, l ∈ N

+
[L],

neurons per hidden layer, the updated initial policy parameter values ¹∗20 and ¹
∗
30 are

obtained in the imitation learning phase.
For the formulation of the closed-loop performance indicators, the polymerization

reactor was discretized using explicit Euler method. The considered trajectories con-
sisted ofNsim = 4900 Euler steps with a step width of 1.429 s, corresponding to 1/35 of
thecontroller stepwidth, enabling to consider batch timesofup to 1.94h. CasADi [123]
was used for the symbolic formulation of the closed-loop performance index and the
computation of the gradient update (8.15) via automatic differentiation.
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Table 8.2: Performance comparison of themulti-stageNMPCand four different neural
network controllers. All five controllers were simulated for the same 100 randomly
generated uncertainty realizations varying±20% (see Table 8.1). ©[2021] IEEE.

Controller
Scenario Reinforced

Batch time Violation TR Violation Tadiab

Type Name Average Minimum Maximum Average Maximum Average Maximum

MPC C1 ±20% ‡ 1.60208 1.48611 1.74800 0 0 0 0

NN

C2 ‡ ‡ 3.00000† 3.00000† 3.00000† 21.53376 23.32486 0 0

C3 ‡ ±20% 1.86944 1.66667 2.11111 0.00095 0.36908 0.00003 0.10385

C4 ±20% ‡ 1.77681 1.48611 2.70833 0.05800 2.73062 0.00007 0.02752

C5 ±20% ±20% 1.58222 1.47222 1.73611 0.00001 0.01265 0.00003 0.03761

† Influenced by the limit of three hours on the maximum batch time.
‡ The controller was not initialized via imitation learning or it was not reinforced.

The purely imitation learning-based controller µ(x; ¹∗20) manages to closely repli-
cate the behavior of the multi-stage NMPC for the first 1.5h (see Fig. 8.2 (d)), but
has difficulties to produce the desired amount of polymer mP, which results in long
batches of up to 2.7h. The reason for the unsatisfactory behavior in the final phase is
due to twoverydifferentbehaviorsof systemthat occur inonebatch. In the first phase,
the reactor is fed (ṁF > 0), whereas in the second phase at the end of the batch, no
feed is added (ṁF = 0). Since the second phase is relatively short in comparison, it
is underrepresented in the data set T20 which makes it difficult to learn via imitation
learning.

By reinforcing the neural network controller µ(x; ¹∗20) based on the scenarios S20
to derive µ(x; ¹̂20), the performance in the final phase of the batch is significantly im-
proved while avoiding the conservative performance obtained from direct reinforce-
ment learning, as Fig. 8.3 (e) shows. Even multi-stage NMPC is outperformed by
µ(x; ¹̂20) in terms of batch times with negligible violations of the bounds on reactor
temperature and adiabatic temperature. The advantage of the proposed approach is
that thewhole trajectory of abatch is considered for reinforcing thepolicy parameters,
while theNMPConly considersa timewindowof16.66min tocompute theoptimal con-
trol input.

The results show that controllers obtained from the proposed approach perform
better than purely imitation learning or reinforcement learning-based controllers be-
cause approximation errors originating from imitation learning can be corrected and
the very good initialization obtained via imitation learning is necessary to find high-
performance policy parameters. The performance can be even better than solving the
exactNMPConline, because the full batch and a high fidelitymodel can be considered
in the gradient step updates of the policy parameters.

8.5.4 Transfer learning to different control tasks

One major drawback of imitation learning-based controllers is the tedious process of
retraining the controller when the control task changes. The retraining process re-
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Table 8.3: Performance comparison of twomulti-stageNMPCand four neural network
controllers. All controllers were simulated for the same 100 randomly generated un-
certainty realizations varying±30% (see Table 8.1). ©[2021] IEEE.

Controller
Scenario Reinforced

Batch time Violation TR Violation Tadiab

Type Name Average Minimum Maximum Average Maximum Average Maximum

MPC
C1 ±20% ‡ 1.63194 1.37500 1.95833 0.00003 1.61907 0.00004 0.02487

C6 ±30% ‡ 1.65931 1.47222 1.95833 0 0 0 0

NN

C4 ±20% ‡ 2.02972† 1.47222 3.0000† 0.53613 6.31002 0.00104 0.46161

C7 ±20% ±30% 1.61416 1.44444 1.87500 0.00004 0.05500 0.00004 0.05878

C8 ±30% ‡ 1.66375 1.47222 1.94444 0.00002 0.01363 0.00058 0.08727

C9 ±30% ±30% 1.64736 1.47222 1.93056 0.00000 0.00165 0 0

† Influenced by the limit of three hours on the maximum batch time.
‡ The controller was not initialized via imitation learning or it was not reinforced.

this multi-stage NMPC has slightly longer batch times than NMPC and exhibits mi-
nor violations of the temperature constraints, while the reinforced version of the net-
work, µ(x; ¹̂30), completely avoids violations of the upper bound on Tadiab, has a max-
imum violation of less than 0.002K on the reactor temperature and has shorter batch
times than the NMPC controller. This highlights that the proposed method, i.e. com-
bining imitation learning and reinforcement learning, leads to high-performance ap-
proximate controllers. The controller µ(x; ¹̂mod) that was obtained by reinforcing the
weights ¹∗20 learned for the scenario with smaller uncertainties achieves after only 10
reinforcing gradient update steps a performance that is very close to µ(x; ¹̂30), show-
ing that the proposed approach can successfully adapt learned controllers to updated
control tasks, even for a challenging case study.

We have shown that combining imitation learning and reinforcement learning can
be an effective method to optimize the behavior of a parametric controller by taking
into account aspects that cannot be easily incorporated in an NMPC formulation, e.g.
because of the use of a short prediction horizon or a less complex prediction model.
Additionally, already learned controllers can be modified to a new task without gen-
erating a new data set, which avoids the need for solving many, potentially complex,
robust NMPC problems in order to generate an updated training data set.

Despite the satisfactory performance of the learning-based controllers, deriving
certificates regarding the closed-loop behavior is desirable, especially for safety crit-
ical applications. Due to the complexity and nonlinearity of the considered systems
and the presence of uncertainties, deriving deterministic guarantees regarding safety
andperformance, asshown inChapter6 for linear systems, isoften intractable. There-
fore, statistical methods will be leveraged in the next chapter to derive probabilistic
guarantees.
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Chapter 9

Probabilistic guarantees for
closed-loop operation

In theprevious chapters, itwasshown thatneural network controllers canbesuccess-
fully applied to control complex systems, even in the output-feedback case. However,
verfiably assessing closed-loop properties of approximate controllers, or any other
controller subject to random disturbances or estimation errors, is particularly chal-
lenging in the case of uncertain nonlinear systems. In the case, where the nonlinear-
ities are mild and can be covered by the uncertainty descriptions given in Chapter 6,
the corresponding verification methods introduced for linear systems can be applied.
But in general,more advancedmethods need to be leveraged to obtain safety andper-
formance certificates when nonlinear systems are considered.

The theory of randomized algorithms [146, 147] provides different schemes capa-
ble of addressing this issue. For example, statistical learning techniques can be used
to design stochastic model predictive controllers with probabilistic guarantees [148],
[149, 150]. Also, under a convexity assumption, convex scenario approaches [151] can
be used in the context of chance constrained MPC [152–154]. The main limitation of
the aforementioned approaches based on statistical learning results [146, 155] and
scenario based ones [151] is that the number of random scenarios that have to be
generated (sample complexity) grows with the dimension of the problem.

Probabilistic validation [130, 156], allowsone todetermine if a given controller sat-
isfies, with a prespecified probability of violation and confidence, the constraints. The
sample complexity in this case does not depend on the dimension of the problem, but
only on the required guaranteed probability of violation and confidence. Examples of
probabilistic verification approaches in the context of control of nonlinear uncertain
systems can be found, for example, in [130, 147, 157]. These techniques have also
been used for the probabilistic certification of the behavior of off-line approximations
of nonlinear control laws [72, 79].

The main contribution of this chapter is a novel validation scheme which is based
on the formulation of general closed-loop performance indicators that are not re-
stricted to binary functions as in [72] and canbe computed simulating the closed-loop
system with any given controller. We also provide sample complexity bounds that do
not grow with the size of the problem for the case of a finite family of design parame-
ters and general performance indicators. Our approach allows to discard a finite num-
ber of worst-case closed-loop simulations, improving significantly the applicability of
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the probabilistic validation scheme compared to existing works. The potential of the
presented approach is illustrated for a highly nonlinear towing kite system including a
real-time capable embedded implementation of an approximate, but probabilistically
safe, robust nonlinear model predictive controller on a low-cost microcontroller.

The chapter is organized as follows. The closed-loop performance indicators are
introduced in Section 9.1 and are used in a novel probabilistic validationmethodology
for arbitrary controllers in Section 9.2. In Section 9.3, the multi-stage NMPC formu-
lation is modified to anticipate the approximation error that results from learning via
constraint tightening. The case study is detailed in Section 9.4 for which the proba-
bilistic validation scheme is applied in Section 9.5.

9.1 Closed-loop performance indicators

As inChapter 7,weare interested in optimally controllinga class of nonlinear discrete-
time systems for which not all states can be measured and which is described by:

x+ = f(x, u, d),

y = h(x, u, d).
(9.1)

Themain difference in comparison to (7.1) is that themeasurement noise (vy) is incor-
porated in d ∈ R

nd , which contains all uncertainparameters anddisturbances, to ease
notation. Since not all states can be measured, a state estimate xest ∈ R

nx should be
computed based on past measurements and past inputs. It is assumed that the dis-
turbances d take values, with high probability, froma known setD. We further assume
the following.

Assumption 9.1. The nonlinear discrete-time system (9.1) is observable and control-
lable.

To ensure safety, the behavior of the closed-loop system should be such that gen-
eral nonlinear constraints:

g(x, u, d) ≤ 0, (9.2)

with g(·) ∈ R
ng , are satisfied at all times for a trajectory of the closed-loop system:

x+ = f(x, µ(xest), d), (9.3)

where µ : Rnx → R
nu is an arbitrary state-feedback controller and d is random real-

ization of the disturbance.

9.1.1 Closed-loop behavior

In this chapter, we will focus on the assessment of controllers and will assume that
a state estimate xest is provided. The goal of a controller µ(·) is that the closed-loop
trajectory of the uncertain nonlinear system obtains a desired performance level, i.e.
does not violate the predefined constraints, despite the presence of uncertainty, for
any initial state xinit in the set Xinit of feasible initial conditions, for any admissible
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initial estimation error xinit − xest and for any sequence of uncertainty realizations
{d0, d1, . . . , d∞}.

Determining if a given controller provides admissible closed-loop trajectories, un-
der the presence of nonlinearity and uncertainty, is in general an intractable prob-
lem [158]. Instead, we focus on the use of finite-time closed-loop performance in-
dicators that can be obtained by simulating the closed-loop system. The underlying
assumption is that accurate models which can be run a large number of times are
available so that statistical guarantees can be obtained. A closed-loop performance
indicator is defined as follows.

Definition9.1 (Closed-loop finite-timeperformance indicator). Let the set of variables

w = {xinit, xest, d0, . . . , dNsim−1} (9.4)

that contains an initial condition xinit, an initial state estimate xest, and a sequence
of uncertainty realizations {d0, . . . , dNsim−1} that also include themeasurement noise,
uniquely define the closed-loop trajectory

Ξ(w;Nsim, µ) = {x0, xest,0, µ(xest,0), d0, x1, µ(xest,1), d1, . . . , xNsim} (9.5)

obeying (9.3) givenacontrollerµ(·)anda finitenumberof closed-loopsimulationsteps
Nsim and where xest = xest,0 and xinit = x0. A closed-loop finite-time performance
indicator is a measurable function

ϕ(w;Nsim, µ) :W = R
nx × R

nx × R
nd × · · · × R

nd → R (9.6)

that takes as input all variables defining the closed-loop trajectories for a controller
µ(·) until timeNsim and returns a scalar as ameasure of the closed-loop performance.

Themain difference between the set of variables (9.4), the definition of the closed-
loop trajectory (9.5) and the performance indicator (9.6) in comparison to their coun-
terparts (see (8.4), (8.5) and (8.6)) defined for the state-feedback case in Chapter 8 is
that the state estimates need to be considered. Additionally, the formulation of the
the performance indicator (9.6) does not explicitly specify the used systemmodel (as
was done in (8.6)) as only a single model will be considered throughout this chapter.
In the following, further assumptions are made to enable the probabilistic analysis of
any feedback controller in closed-loop operation.

Assumption 9.2. There exists a simulator that is able to compute closed-loop trajecto-
ries defined by (9.3). In addition, there exists a known operator Φ : Rnx × R

nu × R
ny →

R
nx that provides the state estimation xest,k based on the previous estimate xest,k−1,

the current measurement yk and the currently applied control input uk. That is,

xest,k = Φ(xest,k−1, yk, uk). (9.7)

Assumption 9.2 implies that givenNsim and the controllerµ(·), the closed-loop tra-
jectories (9.5) are completelydeterminedbyanyset of variablesw that follow theprob-
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abilitydistributionÇw. Probabilistic validationnormally reliesonabinaryperformance
indicator that determines if the closed-loop is admissible or not. That is,

ϕ(w;Nsim, µ) =

{

0 if the closed-loop trajectory is admissible forw,
1 otherwise.

For this particular setting, one can resort to well-known results to obtain probabilistic
guarantees about the probability Prχw(ϕ(w;Nsim, µ)) of obtaining an admissible tra-
jectory or not when a realization w is drawn randomly from Çw. For a review on these
results, see [130]. See also [72], where Hoeffding’s inequality [159] is used to derive
probabilistic guarantees in the context of learning an approximate model predictive
controller.

In this thesis, we address a more general setting in which we do not circumscribe
the performance indicator to the class of binary functions. For example, we consider
the closed-loop finite-time performance indicator given by the largest value of any
component g(·)(i), i ∈ N

+
[ng ]
, of (9.2) along the closed-loop trajectory (9.5) as:

ϕ(w;Nsim, µ) = max
k∈N[Nsim−1],

i∈N+
[ng ]

g(xk, µ(xest,k), dk)
(i). (9.8)

Another possibility is to consider the average constraint violation as a performance
indicator. That is,

ϕ(w;Nsim, µ) =
1

Nsimng

Nsim−1
∑

k=0

ng
∑

i=1

max{0, g(xk, µ(xest,k), dk)(i)}. (9.9)

Moreover, inmanyapplications it is relevant toconsider indicators related to theclosed-
loop cost, such as an average stage cost:

ϕ(w;Nsim, µ) =
1

Nsim

Nsim-1
∑

k=0

ℓ(xk, µ(xest,k)), (9.10)

or any other combination. In the following section we address how to obtain proba-
bilistic guarantees on the random variable ϕ(w;Nsim, µ). The strength of the proposed
approach is that it can be used to basically verify any closed-loop performance mea-
sure probabilistically.

9.2 Probabilistic validation

Thederivedclosed-loopperformance indicators canbeused in the frameworkofprob-
abilistic validation [130, 147] to obtain probabilistic guarantees regarding the satis-
faction of a given set of control specifications. In this section we present a novel re-
sult that allows us to address the probabilistic validation of arbitrary control schemes
where the performance is influenced by hyper-parameters such as backoff parame-
ters or the control sampling time.
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9.2.1 Probabilistic performance indicator levels

We consider a finite family of controllers

µi(xest), i ∈ N
+
[F ],

corresponding to F different combinations of control hyper-parameter values. The
objective of this section is to provide a probabilistic validation scheme that allows us
to choose, from the F possible controllers, the one with the best probabilistic certifi-
cation for any given closed-loop finite-time performance indicator ϕ(w;Nsim, µi). For
simplicity in the notation, we denote the closed-loop finite-time performance indica-
tor obtained with the controller µi withNsim simulation steps as ϕi(w).

The stochastic variable w that defines the closed-loop trajectories follows the
probability distribution Çw from which it is possible to obtain independent identically
distributed (i.i.d.) samples that can be used to define probabilistic performance indi-
cator levels.

Definition 9.2 (Probabilistic performance indicator level). We say that µ ∈ R is a prob-
abilistic performance indicator level with violation probability ϵ ∈ (0, 1) for a samplew
drawn from Çw for the measurable function ϕ : W → R if the probability of violation
Prχw{·} satisfies

Prχw{ϕ(w) > µ} ≤ ϵ.

To obtain probabilistic performance indicator levels for the considered controllers
µi, i ∈ N

+
[F ], we generateNsc i.i.d. scenarios

wj = {x0,j , xest,0,j , d0,j , . . . , dNsim−1,j}, j ∈ N
+
[Nsc]

.

For a given controller µi, i ∈ N
+
[F ], and the uncertain realizations wj , j ∈ N

+
[Nsc]

,
one could simulate the closed-loop dynamics and obtain the performance indicator
corresponding to each uncertain realization:

vi = [ϕi(w1), ϕi(w2), . . . , ϕi(wNsc)]
T ∈ R

Nsc .

The largest value of the components of vi could serve as an empirical performance
level for the controllerµi provided that thenumber of considered scenariosNsc is large
enough [160]. Another possibility is to discard the q − 1 largest components of vi and
consider the largest of the remaining components as a (less conservative) empirical
performance indicator level (q equal to one corresponds to not discarding any com-
ponent) [161]. In the following we show how to choose Nsc such that the obtained
empirical performance indicator levels are, with high confidence 1 − ¶, probabilistic
performance indicator levels with probability of violation ϵ.

9.2.2 Sample complexity

Wefirstpresentageneralizationof thenotionof themaximumofacollectionof scalars.
This generalization is borrowed from the field of order statistics [162, 163], andwill al-
lowus to reduce the conservativeness that follows from the use of the standard notion
of max function. See also Section 3 of [161].
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Definition 9.3 (Generalized max function). Given the vector

v = [v1, v2, . . . , vNsc ]
T ∈ R

Nsc ,

and the integer q ∈ N
+
[Nsc]

wedenote the q-th largest valueof theobtainedperformance
indicators as

È(v, q) = v
(q)
+ ,

where the vector v+ = [v
(1)
+ , v

(2)
+ , . . . , v

(N)
+ ]T ∈ R

Nsc is obtained by rearranging the val-
ues of the components of v in a non-increasing order. That is,

v
(1)
+ ≥ v

(2)
+ ≥ . . . ≥ v

(Nsc−1)
+ ≥ v

(Nsc)
+ .

From v = [v1, . . . , vNsc ]
T ∈ R

Nsc the minimum and maximum value of the perfor-
mance indicator of the different scenario realizations is obtained via

È(v, 1) = maximize
i∈N+

[Nsc]

v(i) and È(v, Nsc) = minimize
i∈N+

[Nsc]

v(i),

respectively. Furthermore, È(v, 2) denotes the second largest value in v, È(v, 3) the
third largest one, and so forth. Please note that the notation È(v, q) does not need to
make explicitNsc, i.e. the number of components of v.

The next theorem provides a way to compute probabilistic performance levels for
a family of F controllers. The theorem constitutes a generalization of a similar result,
presented in [161] for the particular case F = 1. See also the seminal paper [160] for
the particularization of the result to the case q = 1, F = 1.

Theorem 9.1. Given the controllers µi, i ∈ N
+
[F ], and the integer q ≥ 1, suppose thatNsc

i.i.d. scenarios
wj = {x0,j , xest,0,j , d0,j , . . . , dNsim−1,j}, j ∈ N

+
[Nsc]

,

are generated. We denote with vi, i ∈ N
+
[F ], the vector of performance indicators corre-

sponding to the controller µi. That is,

vi = [ϕi(w1), ϕi(w2), . . . , ϕi(wNsc)]
T ∈ R

Nsc , i ∈ N
+
[F ].

Then, with probability no smaller than 1− ¶, we have a probability of violation

Prχw{ϕi(w) > È(vi, q)} ≤ ϵ, i ∈ N
+
[F ],

provided that q ∈ N
+
[Nsc]

and

q−1
∑

ζ=0





Nsc

·



 ϵζ(1− ϵ)Nsc−ζ ≤
¶

F
. (9.11)

In addition, (9.11) is satisfied if:

Nsc ≥
1

ϵ

(

q − 1 + ln
F

¶
+

√

2(q − 1) ln
F

¶

)

. (9.12)
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Proof. [Theorem9.1] Given the controller µi and µ ∈ R, we denoteEi(µ) the probability
of the event ϕi(w) > µ. That is,

Ei(µ) := Prχw{ϕi(w) > µ}.

The probability of generatingNsc i.i.d scenarios and obtaining an empirical probabilis-
tic performance level that does not meet the probabilistic specification on probability
of violation is denoted as the probability of asymptotic failure. We now make use of
Property 3 in [161], which states that, with probability no smaller than

1−

q−1
∑

ζ=0





Nsc

·



 ϵζ(1− ϵ)Nsc−ζ ,

we have
Ei(È(vi, q)) = Prχw{ϕi(w) > È(vi, q)} ≤ ϵ.

Thismeans that the probability of asymptotic failure Pr
χ
Nsc
w
{·} forNsc samplesw1, . . . ,

wNsc drawn from Çw satisfies

Pr
χ
Nsc
w
{Ei(È(vi, q)) > ϵ} ≤

r−q
∑

ζ=0





Nsc

·



 ϵζ(1− ϵ)Nsc−ζ := B(Nsc, ϵ, q − 1).

Consider now the probability ¶fail that, after drawing Nsc i.i.d. samples wj , j ∈ N
+
[Nsc]

,
one or more of the empirical performance indicator levels

µi = È(vi, q), i ∈ N
+
[F ],

are not probabilistic performance indicator levels with violation probability ϵ. We have

¶fail = Pr
χ
Nsc
w
{max
i∈N+

[F ]

Ei(È(vi, q)) > ϵ}

≤
F
∑

i=1

Pr
χ
Nsc
w
{Ei(È(vi, q)) > ϵ}

≤ F

q−1
∑

ζ=0





Nsc

·



 ϵζ(1− ϵ)Nsc−ζ ≤ ¶.

That is, ¶fail is smaller or equal than ¶ provided that (9.11) holds. This proves the first
claim of the property. The second one follows directly from Corollary 1 of [130], which
providesanexplicit numberNsc ofsamples thatguarantees thatabinomial expression
B(Nsc, ϵ, q − 1) is smaller than a given constant.

The major advantage of Theorem 9.1 is that a family of controllers can be evalu-
ated for the same Nsc samples. This is beneficial when the family of controllers can
be evaluated in parallel or when drawing samples is expensive, e.g. in experimental
setups. The number of required samples for the same probabilistic statement is sig-
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nificantly smaller aswhen all controllers would be evaluated in a sequential approach
as in [130, 164, 165].

Another advantage of Theorem 9.1 is if one is given a family of controllers µi, i ∈
N
+
[F ], one does not need to compute all the empirical performance indicator levels

È(vi, q), i ∈ N
+
[F ]. It is sufficient to findasingle one thatmeets thedesiredperformance

indicator levels. For example, if the performance indicator ϕi(w) is defined as the av-
erage constraint violation along the trajectory (9.9), then the controller µi provides an
admissible closed-loop trajectory forw if and only if ϕi(w) = 0. In this case, the empir-
ical performance indicator È(vi, q) corresponding toNsc i.i.d. scenarios is equal to 0 if
no more than q − 1 trajectories are non-admissible when applying the controller µi to
the scenarios. If Nsc is chosen according to (9.11) then Theorem 9.1 implies that with
probability no smaller than 1 − ¶, all the controllers µi, i ∈ N

+
[F ], providing È(vi, q) = 0

are such that
Prχw(ϕi(w) > 0) ≤ ϵ.

It is also important to remark that the cardinality F of the family of proposed con-
trollers has little effect on the sample complexityNsc because it appears into a loga-
rithm. See also Subsection 4.2 in [130] for other randomized approaches based on a
design space of finite cardinality.

Further, Theorem 9.1 can also be applied in the case when the performance indi-
cators only take binary values. This has been presented in a similar form in [166] and
was used for control design problems. See, for example, [157, 167].

9.3 Constraint tightening

The goal of this chapter is to derive a probabilistically safe robust output-feedback
controller in form of a neural network. By leveraging the definition of reachable sets of
the closed-loop system (2.3) and of output sets of feedback controllers (2.4), we can
adapt the ideal formulation of the robust control problem (2.5) to the robust output-
feedback NMPC problem:

minimize
µideal(·)

J(X0,D, µideal, N) (9.13a)

subject to X0 = {xest} ⊕ Eest, (9.13b)
for all k ∈ N[N−1] :

Xk+1 = R(Xk,D, µideal) (9.13c)
Uk = Z(Xk, µideal) (9.13d)
gcl(Xk,D, µideal) ≤ 0, (9.13e)

gf(XN ) ≤ 0, (9.13f)

where Eest ⊆ R
nx describes the set which contains the state estimation error (with

high probability).
Due to the intractability of the exact reachable and output sets, we use the multi-

stage NMPC formulation (2.8) to approximate (9.13) by explicitly taking into account a
finite set of realizations D̃ = {d1, d2, . . . , ds}, that contain the most important uncer-
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tainties that affect the system. Further, we neglect the estimation error, and obtain
the following multi-stage NMPC formulation:

minimize
µms(·)

ℓf(XN ) +
N−1
∑

k=0

ℓcl(Xk, µms), (9.14a)

subject to X0 = {xest} , (9.14b)
for all k ∈ N[N−1] :

Xk+1 = R(Xk, D̃, µms) (9.14c)
Uk = Z(Xk, µms) (9.14d)

gcl(Xk, D̃, µms) ≤ 0, (9.14e)
gf(XN ) ≤ 0, (9.14f)

where (9.14a) approximates the original objective (9.13a) based on explicitly consid-
ered scenarios in the set-based closed-loop stage cost:

ℓcl(Xk, µms) =
1

|Xk|

∑

xk∈Xk

ℓ(xk, µms(xk)), (9.15)

which is based on the standard stage cost ℓ(x, u), and the set-based terminal cost:

ℓf(XN ) =
1

|XN |

∑

xN∈XN

ℓf(x). (9.16)

Problem (9.14) can be also formulated such that a robust horizon is considered, see
Section 2.4 for more details.

Sinceaccounting for all possibleuncertaintiesandobtainingexact stateestimates
and reachable and output sets is virtually impossible, the multi-stage policy (9.14) is
affected by two sources of error in comparison to the ideal policy (9.13):

||µideal(xk)− µms(xest,k)|| ≤ ϵest + ϵms, (9.17)

where ϵest is the estimation andmeasurement error and ϵms is the error caused by the
approximation of the reachable set by a set of discrete scenarios. Because solving
themulti-stage NMPC problem (9.14) online is challenging, our goal is to approximate
the solution of themulti-stage NMPC problem (9.14) with a deep neural network (3.2).
This means that the resulting closed-loop will be controlled using the learning-based
feedback law µnn(·) which approximates the behavior of µms(·). This introduces an-
other error ϵapprox on top of those described in (9.17):

||µideal(xk)− µnn(xest,k)|| = ||µideal(xk)− µms(xest,k) + µms(xest,k)− µnn(xest,k)||

≤ ||µideal(xk)− µms(xest,k)||+ ||µms(xest,k)− µnn(xest,k)||

≤ ϵest + ϵms + ϵapprox.

(9.18)

Finding upper-bounds for each one of the errors to apply traditional robust NMPC
schemes is not possible for the general nonlinear case.
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Tocounteract thepossible errors ϵest, ϵms, and ϵapprox, an additional backoff ¸ ∈ R
ng

is used, following ideas fromtube-basedMPC, to tighten theoriginal constraintsof the
robust NMPC problem. The resulting multi-stage NMPC problem whose solution is to
be approximated via the neural network controllers is then described by:

minimize
µms,η(·)

ℓf(XN ) +
N−1
∑

k=0

ℓcl(Xk, µms,η), (9.19a)

subject to X0 = {xest}. (9.19b)
for all k ∈ N[N−1] :

Xk+1 = R(Xk, D̃, µms,η) (9.19c)
Uk = Z(Xk, µms,η) (9.19d)

gcl(Xk, D̃, µms,η) ≤ −¸, (9.19e)
gf(XN ) ≤ 0, (9.19f)
¸ ≥ 0, (9.19g)

where the constraints (9.19e) are relaxed to account for the various error sources.
Solving (9.19) online in each sampling instant would lead to the feedback controller
µms,η(·). We are however interested in the proposed approximate robustNMPCµnn,η(·)
that is obtained by training a deep neural network based on input-output data gener-
ated by solving (9.19) formany different initial conditions. Introducing a backoff ¸ does
not guarantee in general that the closed-loop satisfies the constraints. For this rea-
son, closed-loop constraint satisfaction is also not ensured a priori with any terminal
set defined via (9.19f). The probabilistic verification scheme presented in the previous
sections is applied to select the backoff parameter ¸ such that the criteria specified
by the designer are satisfied. The proposed methodology provides means to obtain
probabilistic guarantees on the performance indicators of interest of the closed-loop
uncertain system, as will be shown via the following example.

9.4 Towing kite

We investigate the optimal control of a kite which is used to tow a boat. The stable and
safe operation of the kite is challenging due to the highly nonlinear system dynamics,
uncertain parameters, strong influence from disturbances like wind speed and noisy
measurements. To develop optimal control schemes of a kite system, typicallymodels
with moderate complexity such as [152, 168] are considered because of the required
short sampling times. Although for our proposed strategy, also a high-fidelity models
could be considered since themajority of the computational load is shifted offline, we
consider a popular three-state model as presented in [169] to facilitate the compari-
sonof the resultswith previousworks. Wederive anapproximatedeep learning-based
controller from a robust NMPC formulation, which enables a very fast and easy eval-
uation of the controller even on computationally limited hardware. The idea of learn-
ing a controller for a kite has already been exploited in [170], where polynomial basis
functions were used to approximate the behavior of a human pilot based onmeasure-
ments.
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9.4.1 Kite model

In the context of NMPC, we focus on the model presented in [169] which consists of
three states, one control input and two uncertain parameters. The state evolution is
given by the ordinary differential equations of the three angles ¹kite, ϕkite and Èkite of
the spherical coordinate system describing the position of the kite:

¹̇kite =
va

LT

(

cosÈkite −
tan ¹kite

E

)

, (9.20a)

ϕ̇kite = −
va

LT sin ¹kite
sinÈkite, (9.20b)

È̇kite =
va

LT
ũ+ ϕ̇kite cos ¹kite, (9.20c)

where

va = v0E cos ¹kite, (9.20d)

E = E0 − c̃ũ
2. (9.20e)

The angle between wind and tether (zenith angle) is described by ¹kite, the angle be-
tween the vertical and the plane is denoted by ϕkiteandÈkiterepresents the orientation
of the kite. The three states can bemanipulated via the steering deflection ũ. The area
of the kite is denoted as A, and LT is the length of the tether. The effect of the wind
is denoted as va, which is strongly influenced by the wind speed v0, the first uncertain
parameter. The glide ratioE is dependent on thebaseglide ratioE0, the seconduncer-
tain parameter, and the magnitude of the steering deflection ũ [171]. The parameters
of the kite model are shown in the upper part of Table 9.1.

9.4.2 Wind model

The wind speed v0 is considered as a single uncertainty in (9.19), but the realizations
of the values are computed based on a simulation model. The underlying wind model
was presented in [172] and is described by:

v0 = vm + v̄N + σvcvpv, (9.21a)

where

σv = kσvvm, (9.21b)
v̄N = −σv/(2vm), (9.21c)
τF = Lv/vm, (9.21d)

KF =
√

1.49τF/Tv, (9.21e)
cv = KF /τF, (9.21f)
ṗv = −pv/τF + wtb, (9.21g)
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Table 9.1: Overview of themodel states and parameters and aswhich variable they are
considered in (9.19).

Symbol Type Values / Constraints Units Variable

ki
te
m
od
el

¹kite State [0, π2 ] rad x

ϕkite State [−π
2 ,

π
2 ] rad x

Èkite State [0, 2π] rad x

ũ Control input [−10, 10] N u

c̃ Known parameter 0.028 - -

´ Known parameter 0 rad -

ρ Known parameter 1 kgm−3 -

hmin Known parameter 100 m -

E0 Uncertain parameter unif(4, 6) - d

w
in
d
m
od
el

pv State - s

d
vi
a
v
0

kσv Known parameter 0.14 -

Lv Known parameter 100 m

Tv Known parameter 0.15 s

vm Uncertain parameter unif(7, 9) ms−1

wtb Uncertain parameter normal(0, 0.25) -

when the wind shear is neglected. The termwm gives the current average wind speed,
wtb is introduced as a white noise generator to model the short term turbulence and
pv,0 = normal(0, 0.25) is the initial state of the turbulence, where

xnormal = normal(κnormal, σnormal)

denotes that the variable xnormal follows a normal distribution with mean κnormal and
standard deviation σnormal. In a similar manner, xunif = unif(aunif, bunif)means that the
variable xunif follows a uniform distribution between aunif and bunif. An overview of the
parameters for thewindmodel is given in the lower part of Table 9.1. For further details
onmodeling assumptions and the choice of parameters the reader is referred to [172].

9.4.3 Extended Kalman Filter

We assume that we can measure the two angles ¹kite and ϕkite and the wind speed v0.
The operator Φk(·) mentioned in Assumption 9.2 is realized as an Extended Kalman
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Filter (EKF). The EKF restores an augmented state xaug = [¹kite, ϕkite, Èkite, E0, v0]
T in

each control instance from the measurements:

yaug = [¹kite + wθkite , ϕkite + wφkite , v0 + wv0 ]
T , (9.22)

with the zero-mean gaussian noises wθkite = normal(0, 0.01), wφkite = normal(0, 0.01)
and wv0 = normal(0, 0.05). The augmented state is initialized for all simulations as

xaug,0 = [¹kite,0 · ¶θkite , ϕkite,0 · ¶φkite , Èkite,0 · ¶ψkite , E0 · ¶E0 , v0(0) · ¶v0 ]
T ,

where all noises ¶(·) are drawn from normal(1, 0.05). Neither the estimates of the un-
certain parameters nor the measurement of the wind speed are used in the compu-
tations of the controller, because various possible realizations are considered in the
scenario treeof the robustNMPCapproach. The initial covariancematrix, theestimate
of the process noise and the measurement noise matrix are given by:

PEKF = diag([1× 10−2, 1× 10−2, 1× 10−2, 1.0, 2× 10−1),

QEKF = diag([1× 10−5, 1× 10−5, 1× 10−4, 1× 10−5, 3× 10−3]),

REKF = diag([1× 10−2, 1× 10−2, 5× 10−2]),

respectively, and the observer has a sampling time of tEKF = 0.05 s.

9.4.4 Objective, constraints and control settings

The goal of the control is to maximize the thrust of the tether defined by:

TF =
1

2
ρv20A cos

2 ¹kite(E + 1)
√

E2 + 1 · (cos ¹kite cos´ + sin ¹kite sin´ sinϕkite),

(9.23)

while maintaining a smooth control performance and satisfying the constraints. The
desired behavior is enforced in the stage cost:

ℓ(x, u) = −wFTF + wu(ũ− ũprev)
2, (9.24)

where wF = 1e − 4 and wu = 0.5 are weights and ũprev is the control input applied
in the previous control instant. The sampling time of the controller is tc = 0.15 s and
a prediction horizon of N = 40 steps was used in the formulation of the multi-stage
NMPC problem.

Throughout the operation of the kite it has to be ensured that the height of the kite:

hkite(x) = LT sin ¹kite cosϕkite, (9.25)

never falls below hmin = 100m. The height constraint is a critical constraint of the
control task since the best performance is obtainedwhen the kite is operated close to
hmin. Because of the error ϵms caused by the approximation of the reachable sets in
the multi-stage NMPC formulation, the errors due to a deep learning-based approxi-
mation ϵapprox as well as the errors related to estimation andmeasurement errors ϵest,
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constraint satisfaction can not be guaranteed. To cover the effect of the errors, the
backoff parameter ¸ > 0m is introduced and the height constraint:

hkite(x) > hmin + ¸, (9.26)

is formulated as a soft constraint to avoid numerical problems.
To build a multi-stage NMPC controller, we consider the combinations of the ex-

tremevaluesof thebaseglide ratioE0 ∈ [4, 6]and thewindspeedv0 ∈ [6ms−1, 10ms−1]
and a one-step robust horizon resulting in a total of four scenarios. The interval for
the wind speed is obtained by summarizing the possible effects of the uncertain wind
model parameters vm, pv(0) and wtb into the single uncertain variable v0.

9.4.5 Simulation

For the simulation of the system, it is assumed that the uncertain parameters E0

and wm are constant over a given closed-loop simulation and that wtb changes every
tc = 0.15 s. The values of the uncertain parameters are drawn from the probability
distribution described in Table 9.1.

9.5 Probabilistic verification of a towing kite

The proposed method for the probabilistic verification of controllers is analyzed for
the towing kite case study. The baseline controller for our investigations, which is
also used for the training data generation for the corresponding approximate neural
network controller µnn,η, is the exact multi-stage NMPC controller µms(xest, ¸) (9.19)
that derives its initial state estimate xest from the EKF based on the currentmeasure-
ment (9.22). Thismeans that the baseline controller is affectedby the estimation error
ϵest and the error ϵms caused by the discrete representation of the uncertainties in the
scenario tree and hence no formal guarantees on constraint satisfaction can be given.
To avoid numerical problems for the solver in case of violations, the critical height con-
straint (9.26) is implemented as a soft constraint.

9.5.1 Learning an approximate output-feedback robust NMPC controller

The training process of a neural network is determined by the quality of the data and
the chosen hyperparameters like activation function of the hidden layers and network
size. In the following, we discuss how the training data can be generated in a way that
reduces the number of samples that are needed to achieve a satisfactory approxima-
tion in comparison to a randomsampling. All considerednetworks usehyperbolic tan-
gent (tanh) (7.4) as activation function in the hidden layers and a linear output layer.

We consider two training data sets Tfeas and Topt, and two validation data setsVfeas
and Vopt. Each data set contains samples (xi, µms(xi, ¸)) corresponding to the numer-
ical solution of the multi-stage problem (9.19) at state xi. The subscript opt indicates
that the data was derived from optimal closed-loop trajectories, e.g.

Topt = {(xi, µms(xi)), . . . , (xNsim·Ntraj , µms(xNsim·Ntraj))}
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Table 9.2: Overview of the the parameter sampling via uniform distribution, normal
distribution, beta(2,5) and pareto(5) distribution and results of evaluating the ap-
proximate controller µnn with ¸ = 4m for 1388 randomly drawn scenarios w. The
measurement noise wmeas = [wθkite , wφkite , wψkite ]

T , the initial state of the turbulence
pv,0 = normal(0, 0.25), the white noise modelling the short term turbulences wtb =
normal(0, 0.25) and the initialization of the estimation vector xaug,0 is for all scenario
spaces identical.

distribution ¹kite,0 [°] ϕkite,0 [°] Èkite,0 [°] E0 [-] vm [ms−1] feasible traj. È(v, 4) [m]

Uniform (28.0,30.0) (-10.0,10.0) (-2.0,2.0) (4.0,6.0) (7.0,9.0) 1385/1388 -0.316

Normal (29.0,0.35) (0.0,3.5) (0.0,0.7) (5.0,0.35) (8.0,0.35) 1387/1388 -0.739

Beta (2.0,28.0) (20.0,-10.0) (4.0,-2.0) (2.0,4.0) (2.0,7.0) 1387/1388 -0.556

Pareto (5.0,28.0) (5.0,-10.0) (5.0,2.0) (5.0,4.5) (5.0,7.5) 1385/1388 -0.037

is composed ofNtraj state-feedback closed-loop simulations of lengthNsim using the
exact multi-stage NMPC (9.19) under the dynamics presented in (9.20), where the un-
certain parameters of the model and the initial conditions are drawn according to the
distributions given in Table 9.1 and first row of Table 9.2 respectively. The subscript
feasmeans that the data was obtained at randomly sampled states, e.g.

Tfeas = {(xi, µms(xi)), . . . , (xNs , µms(xntr))}

is obtained by sampling xi uniformly from the feasible state space and solving (9.19).
Since the trainingdata isgeneratedbasedonsimulations, theapplicationofoutput-

feedback via EKF is not necessary and not used for the data generation. Each trajec-
tory consists ofNsim = 400 simulation stepswhich results in a total simulation time of
tsim = Nsim · tc = 60 s. For Topt,Ntraj = 200 closed-loop runs were simulated leading to
Ntraj ·Nsim = 80000 data pairs and for the validationNtraj = 50 simulations were rolled
out, resulting inNtraj ·Nsim = 20000 samples in Vopt. For the data sets Tfeas and Vfeas,
80000 and 20000 random samples were drawn, respectively.

For the following investigations, we trained five deep networks with L = 6 layers
and nl = 30, l ∈ N

+
[L], neurons per layer on each training set and evaluated all five ob-

tainednetworks oneach validation set. By averaging the results over five networks the
impact of the stochastic learning is reduced. Training a deep neural network with the
datapairsTopt leads toa significantly smaller averagemeansquarederror (MSE)when
compared to the trainingusing the trainingdataTfeas, asFigure9.1 shows, because the
sampled space of optimal trajectories is smaller in comparison to the feasible space.

To investigate the impact of the training data set on the actual performance, the
networks are tested on the validation sets Vfeas and Vopt. The networks trained on
Tfeas perform better when evaluated on whole feasible space with an average MSE of
0.0048 in comparison to the networks trained on Topt with an average MSE of 0.2105.
But when the networks are evaluated on the space of optimal closed-loop trajecto-
ries via Vopt, the networks trained on Topt have a significantly smaller average MSE
of 0.0087 than networks trained on Tfeas with an average MSE of 0.1642. The fact that
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cording to (9.12). Hence, the family of controllers was evaluated for 1388 i.i.d. scenar-
ios wj , j ∈ N

+
[1388], and the results are summarized in Table 9.3.

If no backoff is considered (¸ = 0m) the exact multi-stage NMPC operates often
at the constraint bound which leads to small violations of the height constraint as ϵms
and ϵest are ignored. The corresponding approximate controller µnn,0 is additionally
affected by ϵapprox (9.18) which leads to violations of the height constraint inmore than
half of the scenarios when applied. Exemplary trajectories for the exact multi-stage
NMPC and the approximate controller for one scenario are visualized in Figure 9.2a.

By considering ¸ = 2m, the amount of violations can be significantly reduced to 8
scenarios, which shows the importance of the backoff parameter. However, the per-
formance of µnn,2 is not considered probabilistically safe because after discarding the
allowed number of worst-case simulation runs, we get È(v2, 4) = 0.273m > 0m.

With larger backoffs ¸ = 4m and ¸ = 6m, we obtain two probabilistically safe
controllers with performance indicator levels È(v3, 4) = −0.316m and È(v4, 6) =
−1.818m, respectively. For the same scenario w as in Figure 9.2a, the trajectories of
exactmulti-stage NMPCwith ¸ = 4mand µnn,4 are depicted in Figure 9.2b. Due to the
backoff, the kite is keeping a safety distance to the constraint bound and the impact
of ϵms and ϵest does not directly lead to constraint violations. Also the trajectory of the
approximate controller does not violate the trajectories despite being affected by the
additional approximation error ϵapprox. The preferred deep learning-based controller
is µnn,4 due to the higher average tether thrust TF provided.

By introducing a performance indicator level for the average thrust per simulation
run:

ϕTF(w;Nsim, µ) =
1

Nsim

Nsim-1
∑

k=0

−TF,k, (9.29)

where TF,k is the trust computed via (9.23) based on the k-th state of the trajectory
defined by w, it is possible to obtain probabilistic statements about the performance
in the same fashion as for violation of the height constraint. Using the parameters
¶ = 1 × 10−6, ϵ = 0.02, F = 4 and q = 4 we obtain, for the controller µnn,4, that with
confidence 1 − ¶, the probability that the average thrust for a simulation run of 60 s
duration is lower than 111.346 kN is not larger than ϵ = 0.02.

A smaller number of samples is required if the discarding parameter q is set equal
to 1. However, this leads tomore conservative results because violations of the height
constraint occur throughout the closed-loop simulations used for verification. This is
even worse when the performance index is a binary function determining if the tra-
jectories are admissible or not. In this case, the obtained results are often not in-
formative because in a binary setting with q = 1, a single violated trajectory out of
Nsc determines that the controller does notmeet the probabilistic constraints. Larger
values for q, alongwith the considerationof non-binary violationperformance indexes,
provide more informative results. One more advantage of the proposed probabilistic
method is that a family of controllers can be evaluated in parallel in the closed-loop
for the same set of sampled scenarios. This can reduce the verification effort signifi-
cantly, if drawing samples w from Çw is costly or the closed-loop experiments have a
long duration.
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Table 9.3: Comparison of the members of a deep learning-based based family of
controllers defined by F = 4 different choices of the backoff parameter ¸ =
{0m, 2m, 4m, 6m}. The parameters for the probabilistic safety certificate were cho-
sen to ϵ = 0.02 and ¶ = 1 × 10−6. The necessary number of samples for 3 discarded
worst-case runs (q = 4) isNsc = 1388 and computed via (9.12).

controller µnn,0 µnn,2 µnn,4 µnn,6

feasible trajectories 660/1388 1380/1388 1385/1388 1387/1388

È(v, 4) [m] (9.27) 1.682 0.273 -0.316 -1.818

TF (avg.) [kN] (9.29) 227.516 225.997 224.185 222.179

probabilistically safe No No Yes Yes

9.5.3 Robustness of the probabilistic validation scheme

All obtained probabilistic guarantees are only valid if the assumptions about the prob-
ability density functions (PDFs) of Çw from which the scenarios w are drawn are cor-
rect. For the verification, the Nsc closed-loop simulations were generated using the
dynamicspresented in (9.20)and thedifferentcontrollersµnn,η, ¸ ∈ {0m, 2m, 4m, 6m}.
The uncertain parameters of the model and the initial conditions were drawn accord-
ing to the distributions given in Table 9.1 and first row of Table 9.2 respectively.

To test the robustness of the probabilistic statements with respect to wrong as-
sumptions about the PDFs, the performance of the approximate controllers µnn,η is
evaluated using not the distribution of the first row of Table 9.2, but the second (nor-
mal distribution), the third (beta distribution) and the fourth one (pareto distribution).
The first parameter in the description of the beta distribution is the scaling and the
second parameter is the offset, e.g.

¹kite,0 = 2.0 · beta(2, 5) + 28.0.

The long-tailed pareto distribution is also described with two parameters, where the
first one is the tail index and the second one is the scaling, e.g.

¹kite,0 = pareto(5.0) + 28.0.

The possible extreme values of samples from the space of beta distributions Çw,beta
are identicalwith thosewhensampling fromthespaceofuniformdistributionsÇw, see
Figure9.3. In caseof sampling fromÇw,normal andÇw,pareto, whichhave infinite support,
the occurrence of values inw which exceed the bounds of the scenarios considered in
the robust MPC formulation and the verification scenarios is likely, which highlights
the importance of including the discarding parameter q. The four different considered
PDFs including the bounds applied in the NMPC formulation are shown in Figure 9.3
for the example base glade ratioE0.

The results corresponding to drawing 1388 scenarios from each of the distribu-
tions Çw,normal, Çw,beta and Çw,pareto, and evaluating the approximate controller µnn,4
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free of violations. This means the controller violates the height constraint in 0.86% of
the cases, which is less than the probabilistically guarantee ϵ = 0.02 chosen in Sub-
section 9.5.2, despite of the additional errors induced through the delay. If the per-
formance needs to be further improved for the hardware-in-the-loop setting, training
data for the controller could be generated where the deterministic tdelay is incorpo-
rated in the NMPC formulation. This is an additional advantage of the proposed ap-
proach, because the evaluation time of a given neural network is deterministic and
can be known in advance. Additional measures to counteract the impact of delayed
application of the control inputs such as advanced-step NMPC [173] or the real-time
iteration scheme [174] could be also incorporated in the original robust NMPC formu-
lation.
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Chapter 10

Conclusions and Future work

10.1 Conclusions

The main goal of this thesis was to develop a framework that allows the deployment
of robust nonlinear model predictive controllers while avoiding the challenging online
optimization. This goal has been achieved by leveraging the ability of deep neural net-
works to act as potent function approximators. By learning the solution of a robust
NMPC problem, the online application of the advanced control approach is reduced
from solving a complex optimization problem in every control instance to evaluating
the simple arithmetic functions which constitute the deep neural network. The three
parts of the thesis explored the theoretical background for designing deep neural net-
works that approximate a robust nonlinear model predictive control law andmethods
to obtain deterministic and probabilistic guarantees on the closed-loop operation of
neural network controlled systems.

The first part introduced the basic concepts, i.e. robust nonlinear model predic-
tive control in the form ofmulti-stage NMPC and artificial neural networks, that allow
to develop the framework in which learning-based explicit robust controllers can be
obtained for complex control tasks. Further, we cast light on the origins of neural net-
works and recent developments - both in the theoretical field as well as for applica-
tions - that motivate the usage of neural networks as explicit robust controllers and
present the neural network structure that was used throughout the thesis. In a final
step, themost commonly used approach to obtain neural network controllers, namely
imitation learning, is introduced as a general framework.

The second part investigated the properties of deep neural networkswhen applied
as controllers for linear systems. It was shown that deep neural networks are theo-
retically capable of exactly representing the solution ofmodel predictive control prob-
lems. However, the more significant use-case lies in the field of approximate explicit
MPC. Motivated by the exponentially growing representative capabilities with respect
to the depth of the network, deep neural networks were investigated as an approxi-
mate MPC approach which turned out be be a highly efficient method both in terms
of computational requirements for the online evaluation as well as memory footprint.
We could show that deep neural networks can be used as explicit controllers where
other methods such as exact explicit MPC fail due to intractable computations in the
offline phase or cumbersome evaluation in the online phase. Deep neural networks
significantly outperform other approximate explicit MPC methods with respect to the
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closed-loop performance and the requiredmemory footprint to store the controller on
a device, which can be critical for embedded applications. Furthermore, we presented
an approach that combines ideas from output range analysis of neural networks and
control theoretic properties that enables the deterministic analysis of the behavior
of a system controlled by a neural network controller. This approach can be used to
deterministically guarantee satisfaction of constraints at all times, compute a bound
on the worst-case performance and guarantee asymptotically stabilizing behavior in
closed-loop operation.

The third part dealt with the more challenging case of nonlinear systems with po-
tentially incomplete and noisy feedback information. First, we showed that deep neu-
ral networks can not only be used as an explicit controller for uncertain nonlinear sys-
tems, but also as an explicit state estimator by imitating state estimation strategies
like moving horizon estimation. The analysis of the impact of approximation errors, in
case of a learned controller and in case of a learned estimator, on the closed-loop
behavior based on sensitivities showed that the approximation error itself is not a
good indicator regarding the resulting closed-loop performance and additional steps
need to be considered. One way to improve the performance of the approximate con-
trollers is to leverage ideas from reinforcement learning because the performance of
MPCapproaches, fromwhich thedata for imitation learning isderived, is limitedby the
complexity of the models that can be considered in the optimization problem and the
length of the prediction horizon. Directly optimizing the closed-loop performance in a
reinforcement learning-based manner allows to consider data from detailed simula-
tors and significantly longer prediction horizons resulting in an improved performance
of the deep neural network controllers. The reinforcement learning-based approach
has also been successfully applied when the control task changed, which avoids fully
redesigning the approximate controller. However, the careful design of the approxi-
mate controllers does not ensure the satisfaction of the operational requirements of
the closed-loop system. Due to the complexity of analyzing uncertain nonlinear sys-
tems in presence of estimation errors and noise that are controlled by highly nonlin-
ear neural networks, we resorted to probabilistic approaches to obtain guarantees on
safety and performance. The developedmethod is based on closed-loop performance
indicators and allows to discard outliers, which results in amore informative and less
conservative verificationprocedure in comparison to the oftenusedbinary verification
methods. Further, the design of the verification approach allows to choose control pa-
rameters like the control sampling time or backoff parameters such that probabilistic
specifications are met.

In summary, it could be shown that the cheap-to-evaluate and memory-efficient
deep neural networks are an effectivemeans of obtaining explicit controllers that pro-
vide on par performancewith computationally challenging optimization-basedNMPC
controllers for systemsof significant complexity andsize. This enables theapplication
of advanced control algorithms onmachines with limited hardware resources such as
embedded devices, and for applications that require a very high control sampling rate.
Further, tools for deterministically and probabilistically verifying the safety and per-
formance of the learning-based controllers were presented.

However, two major disadvantages reside. The first drawback is that it is unclear
how many data samples have to be generated and which structure a neural network
must have in order to guarantee a priori the satisfaction of the desired control per-
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formance. The second drawback concerns the verification procedures. Even though
the verification is carried out offline, the number and complexity of the optimization
problems to be solved in the deterministic case and the number of simulations re-
quired with potentially highly accurate models to obtain probabilistic guarantees can
be challenging.

10.2 Future work

This thesis has shown that deep neural network are an effective tool to enable the de-
ployment of complex control strategieswhere classic optimization-based approaches
would fail. However, thereareseveral points that canbeaddressed to further facilitate
and improve the implementation and verification of the learning-based controllers.

When we consider imitation learning, the goal of the process is that the trained
neural network should approximate any feedback control law close enough such that
a specified behavior in closed-loop operation is guaranteed. Therefore itwould be very
beneficial to know inadvancewhich sizeandstructure theneural network shouldhave
in order to enable this close approximation.

Interlinkedwith the imitation learning problem is the generation of sufficiently rich
data sets. It is difficult to know a priori how many samples should be generated such
that a deep neural network can learn a close approximation. This issue could be tack-
ledby leveraging tools fromactive learning thatenable to locateareaswherenewsam-
ples provide the largest impact for learning a better closed-loop behavior.

When imitation learning is used to derive a neural network controller, the resulting
controller usually behaves in a similar fashion as the original NMPC. However, when
reinforcement learning is used obtain a neural network control and decision-making
algorithm, the resulting behavior is more difficult to predict because the control goals
need to be encoded in the loss function. One approach to shed light onto the inner
reasoning of the neural network is analysis via explainable artificial intelligence (XAI)
methods. XAI methods help to describe correlations between inputs of the network
and its outputs, which can be especially beneficial in a domain that is too complex
for human-designed logical controllers or optimization-based controllers. First steps
towards that direction have been published in [175] for the case study of a building
energy management system.
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