
The Integration of Multi-Color Taint-Analysis with
Dynamic Symbolic Execution for Java Web Application

Security Analysis

Dissertation

zur Erlangung des Grades eines

Doktors der Ingenieurswissenschaften

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Malte P. Mues

Dortmund
2023

Tag der mündlichen Prüfung: 02.03.2023
Dekan/Dekanin: Prof. Dr. Gernot A. Fink
Gutachter/Gutachterinnen:

Prof. Dr. Falk Howar
Prof. Dr. Dirk Beyer

Abstract
The view of IT security in today’s software development processes is changing. While IT
security used to be seen mainly as a risk that had to be managed during the operation
of IT systems, a class of security weaknesses is seen today as measurable quality aspects
of IT system implementations, e.g., the number of paths allowing SQL injection attacks.
Current trends, such as DevSecOps pipelines, therefore establish security testing in the
development process aiming to catch these security weaknesses before they make their
way into production systems. At the same time, the analysis works differently than in
functional testing, as security requirements are mostly universal and not project specific.
Further, they measure the quality of the source code and not the function of the system.
As a consequence, established testing strategies such as unit testing or integration testing
are not applicable for security testing. Instead, a new category of tools is required in
the software development process: IT security weakness analyzers. These tools scan
the source code for security weaknesses independent of the functional aspects of the
implementation. In general, such analyzers give stronger guarantees for the presence
or absence of security weaknesses than functional testing strategies. In this thesis, I
present a combination of dynamic symbolic execution and explicit dynamic multi-color
taint analysis for the security analysis of Java web applications. Explicit dynamic
taint analysis is an established monitoring technique that allows the precise detection of
security weaknesses along a single program execution path, if any are present. Multi-color
taint analysis implies that different properties defining diverse security weaknesses can
be expressed at the same time in different taint colors and are analyzed in parallel during
the execution of a program path. Each taint color analyzes its own security weakness
and taint propagation can be tailored in specific sanitization points for this color. The
downside of dynamic taint analysis is the single exploration of one path. Therefore, this
technique requires a path generator component as counterpart that ensures all relevant
paths are explored. Dynamic symbolic execution is appropriate here, as enumerating all
reachable execution paths in a program is its established strength. The Jaint framework
presented here combines these two techniques in a single tool. More specifically, the
thesis looks into SMT meta-solving, extending dynamic symbolic execution on Java
programs with string operations, and the configuration problem of multi-color taint
analysis in greater detail to enable Jaint for the analysis of Java web applications. The
evaluation demonstrates that the resulting framework is the best research tool on the
OWASP Benchmark. One of the two dynamic symbolic execution engines that I worked
on as part of the thesis has won gold in the Java track of SV-COMP 2022. The other
demonstrates that it is possible to lift the implementation design from a research specific
JVM to an industry grade JVM, paving the way for the future scaling of Jaint.

Keywords: Dynamic Symbolic Execution, Automated Software Testing, SMT Solving,
IT Security, Multi-Color Taint Analysis, Software Engineering, Software Verification.

iii

List of papers
I Jaint: A framework for user-defined dynamic taint-analyses based on

dynamic symbolic execution of Java programs
by Malte Mues, Till Schallau, and Falk Howar. In Integrated formal methods: 16th
International Conference, IFM 2020, Lugano, Switzerland, 2020. (In this document
cited as: [107])

II JDart: portfolio solving, breadth-first search and SMT-Lib strings (com-
petition contribution)
by Malte Mues and Falk Howar. In Tools and algorithms for the construction and
analysis of systems: 27th International Conference, TACAS 2021, Luxembourg
City, Luxembourg, 2021. (In this document cited as: [103])

III JDart: dynamic symbolic execution for Java bytecode (competition con-
tribution)
by Malte Mues and Falk Howar. In Tools and algorithms for the construction and
analysis of systems: 26th International Conference, TACAS 2020, Dublin, Ireland,
2020. (In this document cited as: [102])

IV Data-Driven Design and Evaluation of SMT Meta-Solving Strategies:
Balancing Performance, Accuracy, and Cost
by Malte Mues and Falk Howar. In ASE 2021. (In this document cited as: [100])

V GDart: An Ensemble of Tools for Dynamic Symbolic Execution on the
Java Virtual Machine (Competition Contribution)
by Malte Mues and Falk Howar. In Tools and algorithms for the construction
and analysis of systems: 28th International Conference, TACAS 2022, München,
Germany, 2022. (In this document cited as: [101])

VI SPouT: Symbolic Path Recording during Testing - a Concolic Executor
for the JVM
by Malte Mues, Falk Howar, and Simon Dierl. In 20th International Conference
on Software Engineering and Formal Methods, SEFM 2022, Berlin, Germany, 2022.
(In this document cited as: [105])

VII JConstraints: a library for working with logic expressions in Java
by Falk Howar, Fadi Jabbour, and Malte Mues. In Models, mindsets, meta: the
what, the how, and the why not?: Essays dedicated to Bernhard Steffen on the
occasion of his 60th birthday, Springer, Cham, 2019. (In this document cited
as: [77])

VIII Thoughts about using constraint solvers in action
by Malte Mues, Martin Fitzke, and Falk Howar. In Electronic communications of
the EASST 78, Berlin, Germany, 2020. (In this document cited as: [98])

iv

Comments on my participation
I Jaint: A framework for user-defined dynamic taint-analyses based on

dynamic symbolic execution of Java programs
I developed most of the ideas in close collaboration with Falk Howar. Till Schallau
joined and adapted the DSL to the MPS implementation. The first prototype
for combining multi-color dynamic taint analyses and dynamic symbolic execution
is mostly my contribution. The final version distributed along with the paper is
joint work with Till Schallau adapting his generator using the MPS framework. I
co-authored all sections of the paper.

II JDart: portfolio solving, breadth-first search and SMT-Lib strings (com-
petition contribution)
This work is our competition contribution with JDart at SV-COMP 2021. JDart
become second winner in the Java competition. With smaller modifications I
made to the binary for SV-COMP 2022, JDart becomes the winner of the Java
competition. I have implemented the portfolio solving strategy and implemented
all of the string analysis and CVC4 solver bindings. Falk Howar contributed the
new implementation of the constraint tree allowing for the breadth-first search. I
co-authored all sections of the paper.

III JDart: dynamic symbolic execution for Java bytecode (competition con-
tribution)
This work is our competition contribution with JDart at SV-COMP 2020. JDart
become third winner in the Java competition. The ideas presented have been
discussed among all authors of the paper. I co-authored all sections of the paper
and have done most of the preparation for participating with JDart at SV-COMP.

IV Data-Driven Design and Evaluation of SMT Meta-Solving Strategies:
Balancing Performance, Accuracy, and Cost
All ideas presented in the paper have been developed in discussions among the
authors. I have lead authored the paper in all sections except the parts around
Feautre-based Solver Selection, which has been lead authored by Falk Howar and
co-authored by myself. I have run most of the experiments, except those for solver
selection with the sklearn library. These have been conducted by Falk Howar. The
ASE commitee awarded an ACM Sigsoft Distinguished Paper Award for the paper.

V GDart: An Ensemble of Tools for Dynamic Symbolic Execution on the
Java Virtual Machine (Competition Contribution)
All ideas presented in the paper have been developed in discussions among the
authors. The implementation of GDart is joined work with Falk Howar. I lead
authored the paper. GDart participated in the Java track of SV-COMP 2022.
During the preparation, I participated actively in packaging the runscripts and
setup the infrastructure for running the experiements before the submission.

v

VI SPouT: Symbolic Path Recording during Testing - a Concolic Executor
for the JVM
All ideas presented in the paper have been developed in discussions among the
authors. I lead authored Section 2.3 and co-authored all other sections. The
implementation of SPouT is joined work with Falk Howar and part of the GDart
tool.

VII JConstraints: a library for working with logic expressions in Java
I co-authored all sections of the paper. The FEAL idea was originally discussed be-
tween Falk Howar and Fadi Jabbour and the implementation and experiments are
Fadi Jabbour’s contribution. I contributed more active to the general description
of the JConstraints library.

VIII Thoughts about using constraint solvers in action
This paper is a follow up to paper VII discussing various aspects of the integration
of SMT solvers into tools. The ideas have been discussed among the authors. I
lead authored the paper except for Section 4, which is based on of Martin Fitzke’s
bachelor thesis. I co-authored this section and have supervised Martin’s thesis.

vi

Other peer reviewed publications
– GWIT: A Witness Validator for Java based on GraalVM (Competition

Contribution)
by Malte Mues and Falk Howar. In Tools and algorithms for the construction
and analysis of systems: 28th International Conference, TACAS 2022, München,
Germany, 2022.

– The RERS challenge: towards controllable and scalable benchmark syn-
thesis
by Falk Howar, Marc Jasper, Malte Mues, David Schmidt, and Bernhard Steffen.
In International Journal on Software Tools for Technoloy Transfer, 23, Springer,
2021.

– Do Away with the Frankensteinian Programs! A Proposal for a Genuine
SE Education
by Simon Dierl, Falk Howar, Malte Mues, Stefan Naujokat, and Till Schallau. In
Third International Workshop on Software Engineering Education for the Next
Generation, SEENG 2021, Madrid, Spain, 2021.

– Identification of spurious labels in machine learning data sets using N-
version validation
by Malte Mues, Sebastian Gerard, and Falk Howar. In IEEE 23rd International
Conference on Intelligent Transportation Systems, ITSC 2020, Rhodes, Greece,
2020. (In this document cited as: [99])

– Teaching a project-based course at a safe distance: an experience report
by Malte Mues and Falk Howar. In IEEE 32nd Conference on Software Engineering
Education and Training, CSEE&T 2020, München, Germany, 2020.

– RERS 2019: combining synthesis with real-world models
by Marc Jasper, Malte Mues, Alnis Murtovi, Maximilian Schlüter, Falk Howar,
Bernhard Steffen, Markus Schordan, Dennis Hendriks, Ramon Schiffelers, Harco
Kuppens, and Frits W. Vaandrager. In Tools and algorithms for the construction
and analysis of systems: 25 years of TACAS: TOOLympics, TACAS 2019, Prague,
Czech Republic, 2019.

– Generating component interfaces by integrating static and symbolic
analysis, learning, and runtime monitoring
by Falk Howar, Dimitra Giannakopoulou, Malte Mues, and Jorge A. Navas. In
Leveraging applications of formal methods, verification and validation. Verification:
8th International Symposium,, ISoLA 2018, Limassol, Cyprus, 2018.

vii

– RERS 2018: CTL, LTL, and reachability
by Marc Jasper, Malte Mues, Maximilian Schlüter, Bernhard Steffen, and Falk
Howar. In Leveraging applications of formal methods, verification and validation.
Verification: 8th International Symposium,, ISoLA 2018, Limassol, Cyprus, 2018.

– Releasing the PSYCO: Using Symbolic Search in Interface Generation
for Java
by Malte Mues, Falk Howar, Kasper Luckow, Temesghen Kahsai, and Zvonimir
Rakamarić. In ACM SIGSOFT Software Engineering Notes 41, 6 (2017), 2017.

Other publications
– Can We Trust Theorem Provers for Industiral AI?
by Falk Howar and Malte Mues. In IEEE Software, 38 (6), IEEE, 2021.
(In this document cited as: [78])

viii

Acknowledgements
First, I thank Falk Howar for giving me the chance to embark on this adventurous
journey leading to this thesis. Apart from supervising me during this thesis project, I
learned countless things from you about academia during our time at TU Clausthal and
TU Dortmund. Your motivation and guidance kept me on track towards reaching my
thesis goal over this time. I really enjoyed our countless and fruitful discussions during
the last years.
Moreover, I have to thank Dirk Beyer and his team, especially Philipp Wendler and

Martin Spießl, for running SV-COMP and sharing their tool stack with us. Without
the VerifierCloud and BenchExec, the experiments in this thesis would have been much
harder. SV-COMP helped significantly to keep up the motivation over the last years.
Further, I thank Dirk for his feedback.
I thank the Automated Reasoning Group at AWS under the leadership of Byron Cook

for three awesome internships in the US. The internships with you allowed me to learn
more about the business side of automated verification tools. Further, I learned a lot
from my colleagues during this time. I am also thankful for the Amazon Research Award
granted to Falk Howar by the Automated Reasoning Group that supported my thesis
financially during the last phase.
I thank Simon Dierl, Till Schallau, and Richard Stewing for the joint research projects

during my time at TU Dortmund and the great collaboration. I am grateful for the
discussions with Barbara Steffen on the discussion about the economics of software
engineering during her time in our group.
I thank the students that worked closely with me during their theses. Especially,

Martin Fitzke for discussing with me many questions related to running experiments
on scale intensively, Oxana Warkentin for discussing normalization of SMT problems,
and Robert Delhougne for sharing his first experiments with the GraalVM as fuzzer for
Java Script. I also thank Sebastian Gerard for working with me on validating machine
learning benchmarks.
Then I thank Bernhard Steffen and Mark Jasper from the chair for programming

systems for inviting me to work with them on the RERS benchmark generation project.
Last but not least, I want to thank everyone from the chair for software engineering

and chair for programming systems for a great atmosphere and many fruitful discussions
in the coffee corner. I want to mention particularly Ute Joschko and Sevda Tarkun. Both
supported me in all organizational questions and manage our back office in an excellent
way. Further, I have to thank the team that has kept our servers up and running over
the last years.
For the fun time and moral support during the last years, I thank Alnis Murtovi and

Frederik Gossen.
Thank you all!

ix

Data Availability Statement
All software components developed by myself as part of this thesis are publicly available.
The experiments for this thesis are mainly run with the versions published along with
the original paper. All experiments are run using BenchExec [22] and the VerifierCloud1.
The Jaint framework is published on Zenodo in form of the Jaint artifact [106] accom-
paning Paper I [107]. The latest versions of GDart and JDart are available in their
competition version in the SV-COMP 2022 [21] reproduction package. I used them for
the experiments presented in this thesis. Further, the more recent development ver-
sions of these tools are found on GitHub in the space of the AQUA group2. The other
verifiers used in the experiments are also taken from the SV-COMP 2022 reproduction
package [21]. The reproduction package of this thesis [97] describes how to configure
these binaries for the experiments in Table 6.1 and the change to JBMC for Table 6.2.
For the applicable license to the different tools, I refer the interested reader to the license
files included with the different used tools. For Paper IV [100], the reproduction package
is published on Zenodo as well [104].

1We used a modified version from the original VerifierCloud Jar published at:
https://svn.sosy-lab.org/software/ivy/repository/org.sosy_lab/vcloud/
The modifications adress thesis specific additions to the included BenchExec version that allow to
run all tools used in this thesis.

2https://github.com/tudo-aqua/

x

https://svn.sosy-lab.org/software/ivy/repository/org.sosy_lab/vcloud/
https://github.com/tudo-aqua/

Contents
1 Introduction 1

1.1 Research problem addressed in this thesis 8
1.1.1 Dynamic Taint Analysis . 12
1.1.2 Dynamic Symbolic Execution . 17
1.1.3 SMT Constraint Solving . 20

1.2 Organization . 21

2 SMT Solving 22
2.1 Preliminary: SMT Problems . 22
2.2 SMT-Lib Theories relevant for DSE . 29
2.3 Bounded Solving . 31
2.4 Portfolio Solving . 34

3 Dynamic Symbolic Execution 36
3.1 Full Symbolic Encoding vs. Symbolic Execution vs. Dynamic Symbolic

Execution . 36
3.2 A Reference Design for Dynamic Symbolic Execution 44
3.3 The Concrete vs. Symbolic Tradeoff . 50

4 String Operation Encoding for DSE 54
4.1 SLJ a Tailored Subset of the Java String Library for DSE 57
4.2 JDart’s Bitvector Encoding SLBV . 63
4.3 The String Theory Encoding SLSMT . 65
4.4 Comparison and Open Challenges . 71

5 Jaint 76
5.1 Dynamic Multi-Color Taint Analysis . 76
5.2 DSE as Path Enumerator: From Fuzzing to Verification 80
5.3 Jaint’s Configuration Language . 83
5.4 Taint Propagation in Jaint: Taint and Value Monitors 84

6 Evaluation and Discussion 88
6.1 Empirical Experiments . 89

6.1.1 The SMT Solving Layer Performance 90
6.1.2 Empirical Evaluation of String Encodings 93
6.1.3 Evaluation of Jaint’s Performance 95

6.2 Discussion . 98
6.2.1 The SMT Solving Layer Performance 99

xi

Contents

6.2.2 DSE as Path Enumerator for Jaint 101
6.2.3 Jaint’s Performance and Scalability 102
6.2.4 Contribution to the Research Vision 103
6.2.5 Threats to Validity . 105

7 Conclusion and Future Work 106
7.1 Conclusion . 106
7.2 Future Work . 108

xii

List of Figures
1.1 Exploits of a Mom by Randall Munroe3 6

2.1 Meta-Solver patterns . 34

3.1 Symbolic execution tree of method foo 38
3.2 Intermediat Trees for Dynamic Symbolic Execution 42
3.3 The architecture of JDart as described by Luckow et al. [89] 45
3.4 The architecture of GDart as described in Paper V [101] 45
3.5 Guest VM to Host VM Delegtation . 46
3.6 Faced Method Delegation Pattern. 50

4.1 Constraint Tree with String Constraints. 55
4.2 Different String Encoding Backends. 55
4.3 The SLJ language. 57
4.4 The Constraint Tree for the StringConcatenation02 Example. 63
4.5 The charAt Execution Tree. 64
4.6 The Full Exploration Tree for the charAt Example. 68
4.7 Automaton for the Java regular expression “[A-Z][a-zA-Z]*”. 70

5.1 The Taint Flow Graph. 78

6.1 The Bounded Heuristic Chart. 91
6.2 The String Performance Comparison. 93
6.3 Jaint’s OWASP Scorecard. 96
6.4 Random Fuzzing vs. Dynamic Symbolic Execution 98

xiii

Listings

1.1 Example of an SQL Injection taken from the OWASP benchmark task 184 5
1.2 Example of strong control dependence taken from [12]. 13

2.1 Example of an SMT problem. 31
2.2 Example from Listing 2.1 with bound 10. 32

3.1 Example Method foo . 38
3.2 Bytecode for method foo . 38
3.3 The StringBuilderChars03 Example from the SV-COMP Java Track. 48
3.4 The checkIndex method part of the String class. 48
3.5 Bytecode of the StringBuilderChars03 Example. 48
3.6 An Unrestricted Driver. 51
3.7 A Restricted driver. 52
3.8 An example of socket use in Java. 53

4.1 Example of a Program with Strings. 55
4.2 The StringConcatenation02 example. 63
4.3 The StringBuilderChars03 example. 68
4.4 The compareTo Example. 69
4.5 The TokenTest02 Example. 71
4.6 The RegexMatches02 Example. 73
4.7 Example of deserialization from String to Float. 74

5.1 An SQL Injection Example from OWASP. 78
5.2 The TaintContainer. 85

xiv

List of Tables
4.1 The String Method Table. 58
4.2 Mapping from SLJ to SMT-Lib. 66
4.3 Indirect and not Mapped Functions from SLJ to SMT-Lib. 67

6.1 The Bounded Heuristic Table. 92
6.2 The String Performance Comparison . 94

xv

1 Introduction
The world around us is transforming step by step into a software-defined environment,
and during the twenty-first century this trend has not only continued but even speeded
up. Gutenberg’s invention of the letterpress was only 500 years ago. And the letterpress
with movable letters is often called the most important invention of the millennium, as it
made knowledge accessible to everyone at a low price. Today, stable and fast access to the
internet has in most places replaced printed information distributed on paper, taking
over the importance printing machines have possessed for the last 500 years. While
the internet has had many positive effects and helped bridge social distancing during
the corona pandemic, both data protection and attacks on personal data or critical
infrastructure have become easier. To name some examples: In 2020, a cyber attack
encrypted the IT systems at the university medical center of the University of Düsseldorf,
forcing the hospital to go out of service for several days, even with its emergency care1.
In May 2021, the Colonial Pipeline shut down after ransomware encrypted the billing
system. Colonial Pipeline Co. paid 75 bitcoins for the decryption tool. The pipeline
was offline for six days, impacting fuel supply in various East Coast areas in the US.
In August 2021, T-Mobile lost the data of more than 40 million customers, including
first name, last name, date of birth, and the SSN allowing an attacker to identify as this
person in many other places2. This information was an excellent starting step for further
social engineering attacks on individuals. While it affected only a small number of people
compared with the Equifax data breach in 2017, the repeated breaching of data makes
it harder for individuals to prevent identity theft. Equifax set up a program spanning
at least seven years to help affected individuals recover from identity theft linked with
the data breach3.

The Changing View of IT Security. The examples described above demonstrate
that securing modern software applications has become part of the product quality re-
quirement and is no longer only a matter of risk prevention. Traditionally, IT security
was seen as an aspect of risk management [60], depending on the protection goal for
specific usage of the software, and it was often considered part of operating the soft-
ware (cf. the very short sections related to security in the SWEBOK [30] compared to
functional testing). In these circumstances it was possible to ignore security risks in

1https://www.uniklinik-duesseldorf.de/ueber-uns/pressemitteilungen/detail/it-ausfall-a
n-der-uniklinik-duesseldorf {last accessed: Februar 2022}

2https://www.t-mobile.com/news/network/additional-information-regarding-2021-cyberatta
ck-investigation {last accessed: February 2022}

3https://www.ftc.gov/enforcement/cases-proceedings/refunds/equifax-data-breach-settlem
ent {last accessed: February 2022}

1

https://www.uniklinik-duesseldorf.de/ueber-uns/pressemitteilungen/detail/it-ausfall-an-der-uniklinik-duesseldorf
https://www.uniklinik-duesseldorf.de/ueber-uns/pressemitteilungen/detail/it-ausfall-an-der-uniklinik-duesseldorf
https://www.t-mobile.com/news/network/additional-information-regarding-2021-cyberattack-investigation
https://www.t-mobile.com/news/network/additional-information-regarding-2021-cyberattack-investigation
https://www.ftc.gov/enforcement/cases-proceedings/refunds/equifax-data-breach-settlement
https://www.ftc.gov/enforcement/cases-proceedings/refunds/equifax-data-breach-settlement

1 Introduction

the implementation of a software design, as the protection of the system was seen as an
operational task.
However, IT security breaches have started to evolve from a potential threat to a

significant financial risk. In the early 2000s, Garg et al. [68] working for Ernst & Young
estimated that the risk of security breaches would be priced into IT companies by mid
of 2005. Back then, they also highlighted that the real losses for a company around that
time were ten times higher than estimated by the company itself. While the estimates
in their study ranked at less than $2 million, real losses were already at that time
around $17-28 million. Today, there is a better estimate of the damage potential of
IT security breaches. Additionally, new regulatory guidelines such as GDPR in the EU
have intensified the game around IT security, as high fines add to the damage caused by
the breach. In October 2020, the Information Commissioner’s Office (ICO), enforcing
the GDPR law, fined British Airways £20 million for the breach of customer data of
400,000 customers4. The ICO explicitly argued that British Airways had not undertaken
sufficient action to mitigate the attack. This fine did not cover the cost of fixing the
breach itself or the (probable) costs of compensating customers.
So cyber security is a business risk leading to potentially large financial losses, and

lawmakers set incentives to invest upfront in order to avoid these risks. This raises the
question why cyber security is still a huge issue and not a solved problem by now. The
answer is threefold: First, it is a very complex problem, and the situation evolves quickly.
Second, there is a shortage of IT security specialists. Third, IT security is seen as a soft
non-functional requirement and not a measurable quality aspect of an implementation.
Establishing IT security is a complex challenge. The complexity results from the many

ways in which the security of a system can be compromised, and the evolution of new
attack vectors over time—variants that require frequent reevaluation of security design.
A system’s IT security assessment evolves over a software product’s lifetime. Selling
the product does not end the task of securing it. The Common Weakness Enumeration
(CWE) project5 is aimed at standardizing software patterns that manifest a potential
security weakness. Nevertheless, new vulnerabilities that exploit these known weakness
patterns in current software are reported every year to the CVE list6. Apparently, we —
as the software engineering community — are not very good at avoiding these weakness
patterns in software. At the same time, the list of known weaknesses grows over time. As
it is only possible to check the absence of known weaknesses from a software product and
the list of known weaknesses updates over time, the decision on the absence of weaknesses
is only valid for a certain period and needs to be renewed periodically. The Log4j security
breach in 2021, for example, demonstrates that even the security of established software
is not granted and that an existing weakness will eventually turn into an exploited
vulnerability. Furthermore, from a business perspective, IT security requires ongoing
investment in the product, while the development is often considered a project with a

4https://ico.org.uk/about-the-ico/news-and-events/news-and-blogs/2020/10/ico-fines-bri
tish-airways-20m-for-data-breach-affecting-more-than-400-000-customers/ {last accessed:
February 2022}

5https://cwe.mitre.org {last accessed: February 2022}
6cve.org {last accessed: February 2022}

2

https://ico.org.uk/about-the-ico/news-and-events/news-and-blogs/2020/10/ico-fines-british-airways-20m-for-data-breach-affecting-more-than-400-000-customers/
https://ico.org.uk/about-the-ico/news-and-events/news-and-blogs/2020/10/ico-fines-british-airways-20m-for-data-breach-affecting-more-than-400-000-customers/
https://cwe.mitre.org
cve.org

1 Introduction

clearly defined end.
The requirement for periodic reevaluation and security assessments leads to the second

problem. Someone has to do these. (ISC)2 estimates that 4.19 million cyber security
professionals established and maintained IT security worldwide in 20217. The same
study estimates a gap of 2.72 million additional persons to defend organizations’ critical
assets effectively—–the complexity of software weakness detection and the shortage in
the workforce influence each other. There is a shortage of professionals to keep up with
the demand. However, as a cyber security professional needs thorough knowledge and
understanding of security weaknesses and testing, it is difficult to train additional profes-
sionals quickly. As human labor does not cover the problem, automation can perhaps be
called to the rescue (e.g., the automated reasoning group at Amazon8, Project OneFuzz
at Microsoft9, or CodeQL on GitHub10). A very successful example of fuzzing is the
american fuzzy lop (AFL) project developed and kick-started at Google11. Fuzzing is
a semi-automated random security testing technique that successfully detects security
weaknesses—–at least AFL does. Fuzzing seems to be sufficiently mature and cheap
enough to be integrated into the new standards for automated security testing in mod-
ern software development processes: e.g., with the ISO/SAE 21434 (released in 2021),
security fuzzing has become part of the standard development process for automotive
software. Nevertheless, fuzzing, by design, only spots security weaknesses by chance. It
is an automated way of guiding human attention and not the final answer to the prob-
lem with security weaknesses encoded in software. Fuzzing is a good first step toward
security testing and thereby improving the security of existing IT implementations, but
it does not guarantee the absence of security weaknesses and cannot, therefore, certify
the security of products.
If automation of data processing becomes the defining aspect for establishing a reason-

able profit margin, excluding IT security weaknesses in an implementation is no longer
optional and has to become verifiable and measurable. Therefore, a system’s functional
correctness must be tightly coupled with assumptions on the security of its data. A
messenger platform promising end-to-end encryption fails in its main function (secure
communication) if an unencrypted data flow exists between the two ends. As a con-
sequence, the question how to prove the security of systems is a driving motivation
for the research presented in this thesis. In the near future, certifying the absence of
implementation-related IT security weaknesses in the software development process will
become the goal for any piece of software built to state-of-the-art standards.

A Taxonomy of Faults Leading to IT Security Vulnerabilities. Modern intercon-
nected systems have security threats resulting from faults in implementation (e.g., SQL

7https://www.isc2.org//-/media/ISC2/Research/2021/ISC2-Cybersecurity-Workforce-Study-2
021.ashx {last accessed: February 2022}

8https://www.amazon.science/latest-news/how-awss-automated-reasoning-group-helps-mak
e-aws-and-other-amazon-products-more-secure {last accessed: February 2022}

9https://www.microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-framework-open-s
ource-developer-tool-fix-bugs/ {last accessed: February 2022}

10https://codeql.github.com {last accessed: February 2022}
11https://github.com/google/AFL {last accessed: February 2022}

3

https://www.isc2.org//-/media/ISC2/Research/2021/ISC2-Cybersecurity-Workforce-Study-2021.ashx
https://www.isc2.org//-/media/ISC2/Research/2021/ISC2-Cybersecurity-Workforce-Study-2021.ashx
https://www.amazon.science/latest-news/how-awss-automated-reasoning-group-helps-make-aws-and-other-amazon-products-more-secure
https://www.amazon.science/latest-news/how-awss-automated-reasoning-group-helps-make-aws-and-other-amazon-products-more-secure
https://www.microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/
https://www.microsoft.com/security/blog/2020/09/15/microsoft-onefuzz-framework-open-source-developer-tool-fix-bugs/
https://codeql.github.com
https://github.com/google/AFL

1 Introduction

injection attacks) and faults allowing abuse of interconnection (e.g., Denial-of-Service
attacks). According to the fault taxonomy presented by Avizienis et al. [7] these are
only two of three classes of faults. These authors distinguish physical faults as a third
category apart from development and interaction faults. Physical faults cover IT secu-
rity weaknesses resulting from hardware modification, but they are beyond the scope of
this thesis, which focuses exclusively on software. Avizienis et al. [7] call an exploited
fault that has been used to compromise the IT security of a system active and a not
yet exploited fault dormant. In this thesis, I will follow the modern tradition and call a
dormant fault a security weakness. An active fault is a security vulnerability.

I will call the development faults in an implementation hard IT security weaknesses,
as their existence is verifiable during development, e.g., an SQL injection attack is al-
ways enabled by an implementation fault. Hence it is possible to prove the absence
of exploitable hard weaknesses in an implementation. In contrast, I will call the other
category soft IT security weaknesses, as these faults are not directly caused by the soft-
ware itself: e.g., a Denial-of-Service attack uses a system according to its specification
and does not exploit a weakness in the implementation; the security violation results
solely from the aggressive volume of requests during the attack on the system, abusing
the specified behavior of the system. Strategies for dealing with fraudulent requests are
part of the design but will require countermeasures during operation. This thesis focuses
on detecting or proving the absence of hard security weaknesses in the implementation,
which is a quantifiable quality measurement, at least for weaknesses listed in the CWE
database. More explicitly, I will focus here on securing the implementation of Java web
applications. Operational aspects, such as securing the execution on tamper-proof hard-
ware and preventing Denial-of-Service attacks, remain an IT security risk that requires
countermeasures in operational strategy.
So let’s look more into the hard security weaknesses of Java web applications. The

Open Web Application Security Project (OWASP) cultivates a list of the top ten web
application security concerns, the so-called OWASP Top Ten [143]. All of these are
detectable during development. When work on this thesis started, injection weaknesses
topped this list as the biggest risk factor in the 2017 version. In the newer 2021 version13,
however, they fall back to third place: broken access control and failing cryptography
have become bigger issues. Nevertheless, as detecting injection weaknesses is still a
widely-known problem and an appropriate example for the taint analysis domain, I
will use it as the driving case for explaining the security analysis developed in this
thesis. Listing 1.1 demonstrates such a possible injection weakness with an example
for SQL injection taken from the OWASP Benchmark, a set of tasks for measuring the
detection performance of security analysis tools for Java code. A web service handler
reads untrusted data from the web in the form of a request object (cf. line 6 and line 13),
processes this data (cf. line 16), and adds the data without proper sanitization to an
SQL query (cf. line 20). The resulting SQL query string is: INSERT INTO users
(username, password) VALUES (’foo’, ’<param>’) where <param> is a placeholder for

12https://github.com/OWASP-Benchmark/BenchmarkJava {last accessed: March 2022}
13https://owasp.org/Top10/ {last accessed: March 2022}

4

https://github.com/OWASP-Benchmark/BenchmarkJava
https://owasp.org/Top10/

1 Introduction

1. . .
2@WebServlet (value=”/ sq l i −00/BenchmarkTest00018”)
3public class BenchmarkTest00018 extends HttpServlet {
4. . .
5@Override
6public void doPost (HttpServletRequest request , HttpServletResponse response)
7throws ServletException , IOException {
8response . setContentType (” text /html ; charset=UTF−8”) ;
9String param = ”” ;
10java . u t i l . Enumeration<String> headers =
11request . getHeaders (”Test18”) ;
12i f (headers != null && headers . hasMoreElements ()) {
13param = headers . nextElement () ; // j us t grab f i r s t element
14}
15. . .
16param = java . net . URLDecoder . decode (param , ”UTF−8”) ;
17
18
19String sq l = ”INSERT INTO users (username , password) ”
20+ ”VALUES (’ foo ’ , ’ ” + param + ” ’) ” ;
21
22try {
23java . sq l . Statement statement =
24org . owasp . benchmark . he lpers . DatabaseHelper . getSqlStatement () ;
25int count = statement . executeUpdate (sq l) ;
26org . owasp . benchmark . he lpers .
27DatabaseHelper . outputUpdateComplete (sql , response) ;
28} catch (java . sq l . SQLException e) {
29i f (org . owasp . benchmark . he lpers . DatabaseHelper . hideSQLErrors) {
30response . getWriter () . pr int ln (
31”Error process ing request . ”
32) ;
33return ;
34}
35else throw new ServletException (e) ;
36}
37}
38}

Listing 1.1 Example of an SQL Injection taken from the OWASP benchmark task 1812

the content of the param variable in the example. A malicious requester of this web
service might inject arbitrary data to the SQL query by exploiting this weakness and
adding, e.g., the new user ”Mallory” to the database. The request has to complete the
actual value pair first before adding a new value to insert. An exploiting string is for
example: x’), (’Mallory’,’hack123. If this string is rendered into the existing snippet, the
resulting SQL query is: INSERT INTO users (username, password) VALUES (’foo’, ’x’),
(’Mallory’, ’hack123’). Most modern database systems create a second user ”Mallory”
with the password ”hack123” while executing this query. The successful exploit does
not merely change the password of “foo” but creates a new user. Consequently, an SQL
injection can be used as a first step to prepare the system for a further attack.

Security weaknesses like this SQL injection are well known to developers, who are,

14https://xkcd.com/327/

5

https://xkcd.com/327/

1 Introduction

Figure 1.1: Exploits of a Mom by Randall Munroe14

however, notoriously bad in avoiding them, making it necessary to run automated se-
curity checks. SQL injection weaknesses have become part of pop culture as the comic
in Figure 1.1 shows, and developers laugh about them. At the same time, as shown in
a recent study by Braz et al. [32]], developers are unlikely during code reviews to find
all injection weaknesses that result from improper input validation. They name inatten-
tion to security as one of the reasons why developers miss these weaknesses in the code
review. History teaches us that these weaknesses will likely be exploited eventually, as
the growing number of reported injection-related vulnerabilities in the CVE database
demonstrates each year15. In consequence, the best solution is to automate the secu-
rity audit and rerun it on every build. Automation makes it independent from human
alertness and attention and will hopefully lead to securer software in future.

The integration of security into the software delivery pipeline as automated tests is
an emerging trend built on top of the DevOps movement sometimes called DevSec-
Ops [108]16. Atlassian, a vendor of software development process management tools,
defines DevSecOps as the future of security and recommends that you use at least one
static analysis security testing (SAST) tool (e.g. [87, 136, 139]) and one dynamic analy-
sis security testing (DAST) (e.g. [70, 73, 109, 111]) tool in your CI pipeline17 to combine
the best of both worlds. Mainly driven by Hdiv18 and Contrast security19 a third cat-
egory of tools has been formed: interactive application security testing (IAST). IAST
tools are often presented as the silver bullet for analyzers in DevSecOps pipelines and
for protecting applications.
For explaining the challenges and problems of DAST, SAST, and IAST in more detail,

we compare these tools in different dimensions: soundness, completeness, precision, and
recall. Soundness describes the potential of an analysis to guarantee the absence of secu-
rity weaknesses in a software program. This means an analysis is sound if the program

15Go to https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=injection {last accessed: February
2022} for searching injection-related vulnerabilities in the CVE database.

16DevSecOps is sometimes also called SecDevOps or DevOpsSec, but I will refer to it as DevSecOps.
17https://www.atlassian.com/continuous-delivery/principles/devsecops {last accessed: Febru-

ary 2022}
18https://hdivsecurity.com/owasp-benchmark {last accessed: February 2022}
19https://www.contrastsecurity.com/owasp-benchmark{last accessed: February 2022}

6

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=injection
https://www.atlassian.com/continuous-delivery/principles/devsecops
https://hdivsecurity.com/owasp-benchmark
https://www.contrastsecurity.com/owasp-benchmark

1 Introduction

has no security weaknesses when the analysis claims that there are none. Completness
describes the property that if there is a security weakness in the program, the analysis
is capable of finding it. Achieving soundness is often easier than achieving complete-
ness. Soundness allows an analysis to find a security weakness that turns out to be a
false alarm. Completeness requires that any security weakness that is found is a true
security weakness. The ideal security analysis is both sound and complete, but this is
rarely achieved in practice. Soundness prevents an analysis from falsely claiming that an
insecure system is secure. Of the two, soundness is therefore seen as the more important.
Precision measures how many of the predicted security weaknesses are true alarms and
not false positives. A precise analysis reports only true positives. The final dimension,
recall, measures how many of the existing security weaknesses have been found by an
analysis. An analysis with perfect recall finds every security weakness. Let’s look, then,
into the characteristics of the three flavors of analyses regarding these dimensions.

Static Analysis Security Testing. SAST tools analyze the source code without
executing the code. Consider the example in Listing 1.1. The computation of a control
flow graph and computing the taint flow within the graph (e.g., the TAJ framework [139])
is one possibility for implementing a static analysis. An abstract interpretation engine
(cf. for a survey Cousot and Cousot [49]) is another common way of implementing
static analysis. The static analysis can only build models for the code available for
analysis. Suppose the code under analysis is solely the code snippet in Listing 1.1.
In that case, the static analysis has to make approximations for unknown code, e.g.,
the implementation of the getHeaders() function used in Line 11. Depending on the
scope of the approximation model used, the resulting analysis will underapproximate
or overapproximate the real program behavior at this point. This is the case, because
the result value of the missing function directly influences the executable branches in
the control flow graph. By design, this leads to the problem that the approximation is
wrong and the resulting analysis is unsound or incomplete. Therefore, SAST tools often
choose the sound solution of overapproximating the behavior. Consequently, they raise
false positive alarms requiring manual inspection after the analysis terminates. This
makes the analysis incomplete. . Underappoximations could be more precise (up to the
point where they are complete), but also miss potential security weaknesses (making the
analysis unsound). As missing a potential vulnerability is considered worse than raising a
false alarm, static analyses usually overapproximate the implementation, optimizing for
soundness at the cost of completeness. On the bright side, these tools are typically very
fast. As they overapproximate the concrete behavior in various places, they can often
analyze implementations that are still work in progress. This allows them to be used in
DevSecOps pipelines, as they are cheap to execute and applicable in early design stages.
Furthermore, filter rules eliminate known false positives from the output after manual
inspection, reducing the number of false positives. Therefore, SAST tools are proven to
deliver value in practice. Nevertheless, lowering the false positive rates is an ongoing
challenge to make their application cheaper and suitable for software development teams
that do not have access to IT security specialists for post-processing the results.

7

1 Introduction

Dynamic Analysis Security Testing. DAST tools summarize the group of black
box dynamic testing tools. Examples of techniques in this category are learning-based
testing (e.g., Fiterău-Broştean and Howar [65]), black box fuzzing (e.g., the previously
mentioned AFL project), and automated penetration testing (e.g., the OWASP ZAP
project20). These tools have in common that they analyze real observable behavior
without knowing any of the execution internals. This requires running the analysis
target; therefore, it is often impossible to analyze only parts of the system without using
complex mock setups similar to those required for integration testing. Moreover, these
techniques execute code and hence will eventually also execute a vulnerability. Therefore,
the system under test has to be run in a sandbox environment that allows a safe reset
even after a successful attack. The results will be precise as the analysis can test for
vulnerabilities using different strategies executing the tool. It is always possible that a
tool misses a vulnerability, so the analysis is unsound.
Interactive Application Security Testing. The industry, led by Contrast security
and Hdiv, drives the branding of IAST tools as the next generation of DAST and SAST
tools. They are typically implemented within a tool’s runtime, allowing access to any in-
formation available during execution. Passive IAST tools work as a monitor preventing
access during the execution and sometimes serve as a web application firewall (e.g., Tok-
Doc [85], or commercial products by Akamai 21). Active tools allow precise monitoring
during execution but require some input driver that is combined with the precise moni-
tors. The dynamic component guarantees precise alarms, making it a complete analysis.
Soundness depends entirely on the input generator. IAST tools have to overcome the
same challenges as DAST tools, because both techniques execute programs. From an
academic perspective, IAST tools are white-box DAST tools and techniques such as dy-
namic tainting (e.g., Livshits [86], or Song et al. [135]) and directed automated random
testing (cf. Godefroid [69]) fall in this area.

1.1 Research problem addressed in this thesis
We have seen so far that IT security weaknesses may be encoded in the source code of
a program, and I have presented the need, from a business perspective, for a software
development process that certifies the absence of such weaknesses. Given the current
shortage of trained IT security professionals, this process requires a high level of automa-
tion. Paired with the consideration of existing tools, this leads to the motivating vision
of this thesis:

I envision a development process, supported by automated tools, that prevents IT
security breaches caused by programming errors. The process does this by certifying

software products that are free from known security weaknesses.

SAST, DAST, and IAST tools work in this direction, but all of them currently have
weaknesses hindering full achievement of the goal. Given the current state of the art,
20https://www.zaproxy.org {last accessed: March 2022}
21https://www.akamai.com/de/products/app-and-api-protector {last accessed: February 2022}

8

https://www.zaproxy.org
https://www.akamai.com/de/products/app-and-api-protector

1 Introduction

there are two distinct approaches for advancing significantly toward the core certification
aspect of the research vision: combining SAST and DAST tools, and enhancing the
capabilities of IAST tools.

Option 1: Combining SAST and DAST tools. Because overapproximations leads
to false positives in SAST tools, they are not precise enough to certify the absence of
IT security weaknesses for programs in the general case. In theory, there is a sweet
spot allowing the creation of SAST tools with an overapproximation of the real problem
that does not report false positives in some of the use cases. Today’s tools are not at
this sweet spot, and it is hard to find the universal overapproximation that allows this
on all potential programs. Nevertheless, as a result of the overapproximations, SAST
tools are sound. In contrast, DAST tools are precise but miss too many examples, so
they do not guarantee soundness in their state today. Combining and balancing the
soundness of SAST tools with the precision of DAST tools is one possible research
direction toward the research vision. The required work has to focus on solving the
integration challenges between the designs of SAST and DAST tools allowing an efficient
exchange of information between the different tools.

Option 2: Enhancing the capabilities of IAST tools. IAST tools have demon-
strated their efficiency in monitoring execution along a concrete path and can guarantee
to find potential security weaknesses on the monitored path. They deliver an excellent
precision for certifying the absence of security weaknesses, as false positives will not be
an issue. But in the current state of the art, IAST tools do not give guarantees on
the absence of security weaknesses in the complete program, as they cannot guarantee
the execution of all feasible paths in the program, making them unsound. Therefore,
the required work involved for this research approach lies in pairing IAST tools with a
required counterpart that allows guarantees on the soundness of the analysis.

Other Aspects of the Research Vision. Choosing either option 1 or option 2 for
building the strategic certification core of the tool does not answer any of the questions
regarding the integration of the solution in the development process, the cost-efficiency of
the process, the presentation of security weaknesses to the user (e.g., a problem tackled
recently for SAST by Luo [90]), or the validation of the certificates (e.g., the SV-COMP
community invests significant effort in the validation of verification witnesses, a form of
certificate validation [19]). Each of these areas implies sufficient questions and material
for independent research projects contributing to the research vision. I have chosen in
this thesis to focus on the core certification tool, as finding a reliable method that either
provides guarantees on the absence of security weaknesses or detects them precisely is
a promising first step toward realization of my research vision. Answering the other
aspects mentioned will represent the next steps in integrating the proposed tool into the
development process, thus closing the gap between my thesis and my research vision.

Chosen Research Question and Solution Proposal. Between the two presented
options, I decided to invest in exploring the second option. Tightening the focus further, I
have chosen the JVM as a demonstration target because it is a modern virtual machine
with restricted memory access. The unrestricted memory access in assembly and C

9

1 Introduction

makes it significantly harder to certify security (e.g., see the argument proposed by
Slowinska and Bos [134] regarding pointer tainting). Certain guarantees can only be
given if assumptions on the runtime are made. Livshits [86] also argues in favor of
security analyses in the context of a managed runtime instead of discussing security on
the computation model of a modern CPU. Given that the usage of abstraction increases
in today’s software ecosystems, it is valid from my point of view to address required
assumptions on the runtime to achieve the research vision. In this thesis, my assumption
relies on the abstraction of the runtime provided by a JVM. For presentation in this
thesis, I focus on the security weaknesses in Java web applications running on top of
the JVM. However, the approach can be adapted to any other Java software.
As described above, the software under analysis is not only checked once but has to

be recertified after every newly discovered security weakness or any source code change.
Following the DevSecOps spirit, the answer to this question must be a method that can
be implemented as a tool with the potential to run most proofs in future automatically.
All these considerations combine to form the central research question of my thesis

How is it possible to prove the absence of a security weakness in the source code of a
Java web application by an automated tool, and if this is not possible, as there is a

security weakness in the code, how can this weakness be detected precisely by the tool?

Luckily, a well-researched monitoring technique already exists that can detect weak-
nesses in the dynamic execution of a single path: dynamic multi-color taint analysis. I
will explain the details of dynamic taint analysis and how it works in Chapter 5. Its
most important capability is detecting potentially harmful data flow on the currently
executed path. Dynamic tainting detects the malicious data flow as shown in the web
servlet example presented in Listing 1.1. The downside is that dynamic taint analysis
works only on the current path of concrete execution. Hence, it needs a driver technique
that executes taint analysis on every possible path in a web servlet that is part of the
web application under analysis. Dynamic symbolic execution is a source code analysis
technique that does exactly this: enumerating all paths reachable within a program from
a given entry point. Combining both techniques leads to the solution to the question
presented in this thesis:

The combination of dynamic multi-color taint analysis with dynamic symbolic
execution for the security analysis of Java web applications.

Dynamic multi-color taint analysis generates a precise counter-example that detects
a security weakness, if proof of the absence is impossible. This counter-example points
to the weakness, allowing an easy fix of the software under analysis. The high precision
of the results that describes the weakness makes this easier. Further, making a verdict
on the absence of weaknesses requires soundness in the analysis. An unsound analysis
cannot give the guarantees required for proving the absence of weaknesses in the source
code.
Constructing the suggested solution in this thesis combines knowledge from three

domains closely entangled in the analysis but with independent bodies of research in

10

1 Introduction

the past: dynamic taint analysis, dynamic symbolic execution, and SMT solving. This
thesis combines all three domains in the design of the analysis framework Jaint [107].
It is a framework for analyzing security weaknesses in Java web applications and can
prove the absence of weaknesses if the analysis terminates. Otherwise, Jaint detects
security weaknesses precisely. For building Jaint, I look in further detail for answers to
the following three questions, which contribute to the main research question as sketched
out below each of them:

DQ1: How is it possible to implement a precise and generic dynamic taint tracking
architecture for explicit tainting that is configurable for different analyses
and allows sanitization?

Configurable Multi-Color Taint Analysis. Dynamic taint analysis is well understood as
a monitoring technique for detecting security weaknesses. A major technical chal-
lenge for the analysis application is tailoring it to the context of the usecase by
configuration. For this thesis, I integrate an abstract taint analysis into the run-
time that allows configuration of the analysis later for different security weaknesses
rather than hard-coding the configuration. The configuration supports explicit san-
itization and the parallel execution of multiple configured analyses with a unique
taint color each. The taint tracking must be precise so that violations of the taint
policy result in precise counter examples.

DQ2: How is it possible to combine dynamic multi-color taint analysis with dy-
namic symbolic execution for the analysis of Java web applications?

Parallel Execution of Dynamic Symbolic Execution and Multi-Color Taint Analysis.
In its core idea, dynamic symbolic execution enumerates all possible paths of a
program, and the multi-color taint analysis scans for security vulnerabilities along
these paths. In the context of Jaint, these analyses are independent and are
implemented in the same runtime. As tainting is precise, it will detect security
vulnerabilities along a path. If the symbolic search terminates, all reachable paths
of the program under analysis are enumerated. Completing this process without
any taint property violations implies that they are not present in the reachable
state space of the program. This way, the approach proves the absence of security
vulnerabilities.
Dynamic symbolic execution is a powerful technique and has, in the existing lit-
erature, proven itself on Java programs working mainly with primitives (e.g., the
work by Luckow et al. [89]). At the same time, it is well known that analyzing
the paths of web applications requires support for string operations in the analysis
(cf., [35, 41, 120, 132]). Therefore, extending the capabilities of existing dynamic
symbolic execution engines for a program with strings is the main challenge tackled
in this area, enabling both analyses in combination.

DQ3: How precise is the analysis of Jaint and what implementation decisions
influence Jaint’s recall?

11

1 Introduction

SMT Meta-Solving Strategies. Dynamic symbolic execution relies critically in the back-
end on SMT solvers for symbolic reasoning. Consequently, the performance of the
SMT solving layer directly influences how often the symbolic search space is com-
pletely explored and whether Jaint delivers the promised guarantees regarding
recall and precision. Integrating reasoning on string operations in the symbolic
problems involves a new category of SMT solvers: string theory solvers. The
string theory of SMT-Lib is comparably complex and has led to a bouquet of
string theory solvers that focus on different aspects of string theory. Therefore, I
will look into SMT meta-solving strategies that combine multiple string solvers. As
a meta-solving strategy combines multiple solvers, it allows the dynamic symbolic
execution engine’s performance to be decoupled from a single solver’s performance.

The work presented in answer to these three driving questions makes it possible to
build Jaint and contributes to the journey of scaling the framework for the analysis of
real-world software. As we argue in Paper I [107], the analysis is precise as tainting does
not find false positives, and for the boundaries of the symbolic search space sound, if
the search terminates. Tailoring the search space adequately is a challenge in itself, not
discussed in detail in this thesis, but I will describe how the soundness of the analysis links
to the search space design. In the following pages, I will sketch the contributions made
in these three areas, summing up the state of the art first and then going on to discuss
the contributions and thus leading to an answer. Addressing these partially independent
challenges allows construction of a more powerful and scalable analysis engine at the
core of the Jaint framework. The framework forms the overarching context combining
all contributions in one answer to the main research question.

1.1.1 Dynamic Taint Analysis
Various papers in the existing literature describe the benefits of dynamic taint analysis
in general and for security as a specialty. For this thesis, I cannot discuss all of them.
Instead, I will present a selection of relevant previous work influencing this thesis.
The area of taint analysis is split into two main research directions regarding tool

building: dynamic taint analysis (e.g [45, 72, 73, 135]) and static taint analysis (e.g. [87,
139]). Additionally, some papers discuss the underlying theoretical foundations of taint
analysis (e.g. [12, 86, 124, 126, 127, 147]) and how this method might be formalized.
In the Jaint [107] framework, we have presented how dynamic taint analysis can be
combined with dynamic symbolic execution. Therefore, I will focus on discussing related
work on dynamic taint engines and the general theory about taint analysis. I will start
with the use cases of taint analysis before briefly discussing six specific challenges.

Application of Taint Analysis. Tainting, independent of the implementation as static
or dynamic analysis, is used for different application areas. There are three major areas
in which dynamic taint analysis is used: stack protection in assembly based languages
(e.g. [45, 67, 135]), preventing injection attack in web applications (e.g [72, 86, 109, 111]),
and tracking information flow (e.g. [5, 48, 64, 74, 124]). Livshits [86] mentioned this

12

1 Introduction

separation for the first time in his technical report about taint tracking in managed
runtimes, but this separation has not established itself in academia as a categorization

1output=0;
2i f (s ec re t==1000) {
3. . .
4output=1;
5}
6send (output) ;

Listing 1.2: Example of
strong control dependence
taken from [12].

for taint tracking work. Consequently, the challenges
are not well defined for these three areas, and they get
occasionally mixed up as all of them relate to taint track-
ing.
Challenges for Taint Analysis. I found six challenges
for taint analysis considered and discussed in the liter-
ature. Two of them do not apply for taint analysis of
Java programs or the given usecase, one is left as fu-
ture work for Jaint, and for the remaining three, I will
present the strategy to deal with them in this thesis:

1. Implicit Flow vs. Explicit Flow. Taint analysis marks data values and tracks the
flow of data from a sink to a source. The literature distinguishes mainly between
two types of taint: explicit and implicit taint flow (cf. Denning and Denning [57]
or Sabelfeld and Meyers [124]). Explicit taint analysis tracks the actual data
flow as the taint mark is linked to the data value itself and passed along with
any assignment. An explicit flow violation occurs if, e.g., a password is written
directly into a logging file. In contrast, indirect information leakage is gained
by observing the program during execution and learning about secret data from
observation. Taint analysis techniques targeting weaknesses using the indirect
information leakage are called implicit flow analyses. The following paragraph
briefly explains implicit flow in more detail, as it is often linked with information
flow and is specified as a core challenge for information flow analysis in general.
For this thesis, I will focus strictly on explicit taint flow, as it is the more common
case in the context of injection attacks. Implicit flow challenges are, then, beyond
the scope of this thesis, nor are they at the moment supported in Jaint.
The implicit flow problem describes an information leak from a program because an
attacker controls either a control flow or a data variable and uses this control to gain
information. Listing 1.2 shows an example made by Bao et al. [12] for strong control
dependency, a specialized form of implicit flow. This concrete example shows the
implicit flow between the secret variable and the output variable. If attackers know
the control flow, they can recreate the values from the secret variable observing
only the system output across multiple runs. This information leakage across
multiple executions in consequence of control structures is called implicit flow.
The strong control flow as a form of implicit flow leaks the precise secret value
over the control structure, while the weak control flow only establishes boundaries
for the interval restricting the domain of the secrete value. Bao et al. [12] discuss
the specialization of strong and weak control flow in greater detail. Moreover, they
describe its effect on dynamic taint analysis and start to define strong and weak
control flow dependencies for data flow. Independently of Bao et al. [12], The
implicit flow problem has been well known for nearly two decades. Sabelfeld and
Meyers [124] contributed significantly to the formal understanding of this problem.

13

1 Introduction

2. Pointer analysis. Substantial parts of the previous work related to dynamic taint
analysis have been done for the C, C++, and Assembly language stack. These lan-
guages always have to deal with pointers to memory addresses in the language. It
is constantly necessary to track whether the address is tainted or the value written
in the memory cell carries the taint. This tracking leads in different situations to
over- or undertainting depending on how it is realized (c.f. tainting in the SimpIL
language by Schwartz et al. [127]). Java does not possess pointers as the memory
access is more strongly controlled than in other lower-level languages. In conse-
quence, the discussion does not apply here. Nevertheless, I will briefly highlight
the importance of the use case for judging the impact of pointer analysis on the
suitability of taint analysis.
The impact of pointer tainting on the usefulness of the analysis depends on the
use case for the analysis. Techniques using tainting for tracking information flow
and detecting potential malware cannot overcome the pointer analysis problem in
a fulfilling way [39, 134]. In contrast, Dalton et al. [52] defend the efficiency of
pointer tainting for stack protection against other less efficient use cases presented
by Slowinska and Bos [134]. This discussion already shows how important the
domain is for judging whether pointer tainting is a problem for target analysis
or not. As explained in the previous paragraph, for analyzing JVM applications
pointer tainting does not apply because of JVM’s memory architecture.

3. Undertainting. Occasionally, a taint analysis does not propagate the taint marks
in places where they should be propagated for a sound analysis. In consequence,
the taint analysis misses a security weakness due to underapproximation of the real
taint flow. This fault in the analysis is called undertainting. There are various root
causes leading to undertainting. One cause is wrong assumptions in the analysis
specification: for example, sanitization functions that do not sanitize the input
as expected perform undertainting. Depending on the property that is the target
of the analysis, missing implicit flow tainting may be a reason for undertainting.
Moreover, increasing the precision of a taint analysis is a valid design goal for
applying undertainting by choice. Some of the solutions for more precise pointer
analysis, e.g., use undertainting to avoid tainting everything. A risk for under-
tainting in managed runtimes lies in models used to approximate the behavior of
code that is abstracted away from the runtime. For example, for a Java program,
it is very hard to tell whether a file is a link in the file system pointing to another
protected file or not. As a link points potentially to an arbitrary file, an overap-
proximating model would taint any file that is a potential target of the link. To
avoid spreading the taint marks across the complete file system, the undertainting
marks only the filename of the symbolic link and not any potential target. This
misses the requirement that the link target should have been tainted as well. The
problem is comparable to the problem of tainting pointers. Therefore, it is hard
to model data flow across the file system appropriately. Dealing with models for
system resources, e.g., the file system, and defining the right tainting strategy is
left as future work for the Jaint framework and is not addressed in this thesis.

14

1 Introduction

4. Overtainting and Implicit Sanitization. Overapproximations used in taint analyses
allow the tainting of data is tainted that cannot be reached by the data flow in a
real run. Overapproximation helps to reduce the state spaces, sometimes leading
to soundness, but also generates false positives, thus harming completeness.
Sanitization removes taint marks from data values. It is the most important coun-
termeasure to stop overtainting in systems. Sanitization exists in two forms: im-
plicit sanitization and explicit sanitization. Implicit sanitization occurs if math
functions compute constant values that cancel out the data flow. An example
of implicit sanitization given by Schwartz et al. [127] is the xor operation in x86
assembly: b = a ⊕ a. Taint flow has to stop on such byte codes for constant
results. I will discuss how Jaint deals with implicit sanitization in Section 5.1.
Explicit sanitization occurs if a function checks a parameter for a valid input do-
main. Determining the explicit sanitization functions for a program is a nontrivial
task. Some work has been conducted on automatically identifying sanitization
functions, e.g. [11, 76]. Nevertheless, the developer often has to name these ex-
plicitly if the framework supports sanitization. Therefore a human still needs to
provide input to prevent overtainting. Jaint’s configuration language (cf. Paper
I [106]) supports the definition of sanitization methods for each taint color, as will
be discussed in Section 5.3. The configuration names explicit sanitization points
in a humanly readable format.

5. Language Boundaries and the Right Place for Tracking. Taint analysis is im-
plemented in various places across the software stack. The right choice for the
implementation strategy depends on the target language and purpose. Today,
the race between software-defined taint tracking and hardware-accelerated taint
tracking seems to have been called. Yet given the ubiquity of cloud infrastructure,
allowing interception of arbitrary virtualization levels, deciding the right position
and way to integrate taint tracking into the software stack is still an unsolved
issue. For Jaint [107], we decided to instrument the JVM because it works and
allows interception of the Java program execution in all relevant parts for the
Jaint framework. Dalton et al. [50] claimed that instrumenting the interpreter
has the disadvantage that code behind the JNI requires custom wrappers that
establish security over the JNI boundary. In addition, they mention that multi-
threaded executables cannot be analyzed this way. Instead, their tool Raksha [50]
has been realized on FPGA boards as a special hardware implementation simu-
lating SPARC architecture. The tool tracks taint flow on the assembly level and
has achieved notable results [51]. However, building custom hardware, even on an
FPGA board, is a significant task. Moreover, today’s hardware landscapes tend
to diversify with the appearance of new ARM-based SoCs, for example, the M1
chip designed by Apple. Therefore, instrumenting the JVM seems more viable for
Jaint than simulating the CPU as FPGA and has worked well so far.
Other approaches focus on instrumenting the language interpreter, the byte code,
and a virtualized machine. The only language that features it as an official part of

15

1 Introduction

the environment so far is Perl [4]. PHP supports a taint mode in the environment
that can be enabled. Both implement taint analysis in the interpreter. Other
attempts are implementations in the form of a library, e.g. [46], in the hardware
architecture, e.g. [50], using virtualization support, e.g. [53, 75], in the runtime,
e.g. as we have done for Jaint [107], and by instrumenting the byte code, e.g. [67,
72, 135]. On the other hand, the downside of whole system analysis is the general
overhead, which has been decreased in recent years by improving tracking tech-
niques, but is still measurable (c.f. [67, 94, 95]). In most cases, dynamic tainting
is used for online analysis while running the program, e.g. [111]. In these cases,
the overhead is important, as it impacts the productivity of the software with the
given hardware resources.

6. Time of Detection vs. Time of Attack. The last problem presented in this thesis
is time of detection vs. time of attack. Jaint’s goal is the detection of weaknesses
before deployment so that they are always detected before they are exploited. I
will discuss this in more detail in Section 5.2 but will present the general problem
briefly now. If an attack is detected while the program is running or after the fact,
it might be already too late to prevent data loss or service agreement violations
(c.f. [127]). Stopping a program’s execution is only possible if the taint analysis
can interact with the executing environment (e.g., [111]). If the taint analysis is
a passive component detecting only the attack or works offline as in the Straight-
Taint [94] framework, the detection can only happen as a post-mortem analysis.
The remaining question is how to integrate the taint analysis into the development
process so that it can prevent attacks. BitBlaze [135] has a combination of dynamic
tainting with symbolic execution that allows analysis of the program during a test
phase. The author does not address the problem of integrating BitBlaze into the
software development process so that it detects security weaknesses before they are
exploited. The goal remains, therefore, to detect weaknesses and vulnerabilities
before they are used in an attack.

Contributions of this Thesis regarding Taint Analysis. The analysis engine
presented here is designed to find security weaknesses in Java source code implementing
the backend of a Java web application as described in the Jaint paper [107] (Paper I). It
is the first analysis that combines dynamic symbolic execution with dynamic multi-color
taint analysis for Java web applications. The closest existing approach is BitBlaze [135]
for x86 assembly, as it also has some kind of symbolic execution engine that partially
drives the taint analysis. However, as the x86 memory access is less restricted than
in the JVM, BitBlaze has to deal with many problems that are not relevant for Java,
mainly resulting from pointer analysis.
Jaint splits the taint engine in the JVM from its configuration for a particular analy-

sis focusing on usability. Such a split has also been proposed by Livshits et al. [87] using
PQL [92]. PQL’s design allows more complex analysis of programs in their static anal-
ysis engine used to evaluate PQL queries. Consequently, PQL is more expressive than
Jaint’s configuration language, but this expressiveness comes at the cost of complex-

16

1 Introduction

ity. Jaint uses a domain-specific language designed only to configure the multi-color
taint analysis. As it is a multi-color analysis, it is possible to define interdependent
analyses in the DSL and run them all simultaneously. This approach follows the consid-
eration of Metaprogramming as presented by Hunt and Thompson, especially the ideas
summarized as ”Tip 38: Put Abstraction in Code, Details in Metadata” [79, p. 145].
The analysis presented here does not track implicit flow. So, it is incomplete for

weaknesses that might exploit implicit flow. Moreover, the original Jaint [107] paper
does not mention the Time of Detection vs. Time of Attack problem. While Jaint still
supports explicit sanitization, I have reevaluated the decisions in this thesis compared to
the original paper regarding implicit sanitization. Chapter 5 discusses all these ideas in
greater detail. In what follows, I will present contributions made in the area of scaling
and improving the dynamic symbolic execution component used in Jaint.

1.1.2 Dynamic Symbolic Execution
Dynamic symbolic execution is used for path enumeration in the Jaint framework and
directly affects the soundness of the analysis. If dynamic symbolic execution misses
a branch it is supposed to enumerate, Jaint might claim a program as secure that
is not secure; therefore it is unsound. It is closely related to the more active area of
symbolic execution introduced by King [82] in the 1970s and is a very active research area.
Therefore, I cannot give an overview of every paper and different trends and challenges for
the symbolic execution of different programming languages (But I refer the interested
reader to the survey by Cadar and Sen [38] or more recently by Baldoni et al. [10]).
Instead, I will focus on the remaining challenges for the symbolic execution of Java
programs, together with a couple of milestones that seriously influenced the development
of JDart as part of this thesis, leading to the participation at SV-COMP 2020 [102]
(Paper III) and SV-COMP 2021 [103] (Paper II). Of course, the same consideration
influenced GDart [101] and the design of SPouT, GDart’s concolic executor [105].

State of the Art. From a theoretical viewpoint, symbolic execution closely relates to
model checking (for more details about model checking see the handbook by Clark et
al. [44]) and, as such, suffers from the state explosion problem in the same way as model
checking. The state explosion problem in model checking describes the problem that
different states with multiple possible transitions lead to an exponential growth of new
reachable states in every new iteration of the transition system, making it impossible
to model all of them precisely for model checking. Moreover, model checkers usually
describe the global system state. If the available memory for the system state is large,
this state space quickly becomes too large to describe in its entirety (cf. Chapter 1 of
Clark et al. [44]). Over time, much work has been invested in more efficient symbolic
encodings, reducing the impact of the state space explosion on model checking to enable
reasoning on more complex state spaces [24, 36, 71]. The landmarks are using symbolic
encodings [36], using SAT solvers instead of binary decision diagrams [24], and later using
the powerful SMT solvers (e.g. [71]). Working with logic encoding allowed the addition
of safe overapproximations that interpolate away irrelevant parts of the state space

17

1 Introduction

regarding the analysis property [93]. Jaffar et al. [80] have demonstrated how to combine
interpolation with dynamic symbolic execution to reduce the state space that requires
exploration during a dynamic symbolic execution run. Avgerinos et al. [6] combined
dynamic and static symbolic execution to leverage the strengths of both techniques
in a single tool. This starts running as a dynamic symbolic executor but switches at
branching points to static symbolic execution whenever it is possible to summarize the
effect of the branching decision symbolically. The symbolic summaries avoid forking the
dynamic symbolic execution into all possible branches, reducing the state space that
needs exploration. Unaffected by this progress in the theory, however, the three major
challenges for applying dynamic symbolic execution in practice remain reasoning about
unbounded heap data structures, path explosion, and expressiveness in constraint solving
as pointed out by Păsăreanu et al. [119].

On the tool side, symbolic execution engines evolved from dynamic symbolic execution
engines such as CUTE [130] that were developed as better unit test engines. CUTE
explores all the execution paths of a program, consuming inputs by executing a path
concretely and recording a symbolic representation that describes the constraints for
branch decisions during the run. Later, it negates some of the constraints and passes
them on to a constraint solver that computes new driving input values for a reexecution
of the program under test, taking another branch. However, CUTE was written before
SMT solvers emerged and therefore handles constraint solving in its own backend. Some
parts of the constraints may be replaced with concrete values, resulting in a relaxation of
the problem, which then becomes solvable. It is an early demonstration of the potential
of this technology, which highlights the tight interweaving of success in the analysis
enabled by success in the area of constraint solving.
Around the same time DART [69] appeared. In its core idea DART works similarly

to CUTE, except that it detects the interface of the program under test automatically
and generates the required drivers as a service for the user. Generating a driver method
that executes the software snippet under test in the desired way has also been reported
as an issue in dynamic taint analysis. Hence, this is a joint problem for both analysis
approaches. Godefroid et al. [69] show how dynamic execution overcomes situations
where the constraint solver cannot solve the path condition by using values obtained
from concrete execution at branching points. Symbolic execution alone is unable to
reason about software in such situations, as symbolic analysis cannot make any decision
without a constraint solver.

With the introduction of more powerful SMT solvers (led in 2008 by Z3 [56]), the
research area shifted back to pure symbolic execution. One of the popular symbolic
execution engines for C is Klee [37]. Klee has successfully analyzed major Linux tools.
The applicability of symbolic execution shifted from the problem of solving constraints
and executing the program at all to the area of dealing with system calls and library
calls that are out of scope for the current analysis. Klee solved this issue by providing
hand-coded symbolic models for different system calls.
For the java world, Symbolic PathFinder [118] (SPF) is the leading symbolic ex-

ecution engine. A few years later, Luckow et al. introduced JDart [89] as a dynamic
symbolic execution engine sharing Java PathFinder [142] as the instrumented JVM

18

1 Introduction

with SPF. Using SPF, Redelinghuys et al. [120] discussed different approaches for in-
tegrating string operations into the symbolic execution of programs. They present two
approaches for solving string constraints in a symbolic encoding: automatons and bitvec-
tor encoding. They also represent string operations in a newly introduced intermediate
data structure called a string graph: a hypergraph that uses integer and string vari-
ables in the vertices and describes how they are connected by an operation at the edges.
Apart from variables, vertices can also represent constants. These string graphs are
transformed into the input for either the automaton based solver or the bitvector based
solver. The authors concluded that neither of these two approaches is preferential over
the other for symbolic execution with string constraints. Instead, they concluded that
the integration between integer and string constraints in the solving procedure would
be the most important feature for using string constraints in symbolic execution Java
Ranger [133], a Java program analysis tool built on top of SPF, implemented ver-
titesting for Java and has shown that it is a powerful technique, but Java Ranger has
limited support for string operations. Overall, a good theoretical understanding in this
area leaves the question of how to leverage these results in tools that efficiently combine
all the different ideas. Above all it remains unknown how well the various approaches
and partial solutions for dynamic symbolic and symbolic execution work together.

Contributions of this Thesis regarding Dynamic Symbolic Execution. In this
thesis, I have worked extensively on pushing the boundaries of dynamic symbolic ex-
ecution for Java programs. The work focused in particular on the dynamic symbolic
execution engine JDart, when I was fortunate enough to be one of the team leading
JDart to a gold medal at SV-COMP 2022 [21]. With the introduction of GDart in
Paper V [101], we demonstrated that the concepts presented for JDart scale on an
industry-grade JVM (The GraalVM) advancing the scalability of dynamic symbolic
execution for Java. GDart bundles these items in more independent components. The
main new component involving the GraalVM is the concolic executor SPouT pre-
sented in Paper VI [105].
This thesis extends JDart for dynamic symbolic execution of programs with strings,

central for JDart’s success at SV-COMP and its application in Jaint. The SV-COMP
papers [102, 103] advertise the string extension to JDart on a high-level perspective.
Section 4 describes these in greater detail and explains how JDart generates the string
constraints. This represents a continuation of the work by Redelinghuys et al. [120],
considering the advances in the field of SMT solving. Especially, the evaluation demon-
strates how well today’s string theory performs in SMT solvers for encoding string oper-
ations during dynamic symbolic execution. Paper VI [105] describes the string encoding
in SPouT in more detail.
Moreover, this thesis extends JDart’s SMT constraints representation and makes

contributions in the area of using portfolio solvers in the search backend presented for
SV-COMP 2021 [103]. Section 2.3 describes the impact of model selection in the SMT
solver on dynamic symbolic execution and elicits additional quality requirements for
the model selection of an SMT solver in the context of dynamic symbolic execution.
Furthermore, it explains in futher detail the idea of bounded solvers for speeding up the

19

1 Introduction

performance of dynamic symbolic execution as presented briefly for SV-COMP 2020 in
Paper III [102]. The other dimension we use for bounding the search space is the design
of the driver method. Section 3.3 discusses the effects in greater detail and explains
how this technique abstracts away the execution environment with symbolic models.
Controlling which aspects of execution are deterministic and which are nondeterministic
is central for using Jaint [107] for the analysis of Java web servlets.

1.1.3 SMT Constraint Solving
Analyzing web applications has a long history, and solving string constraints is espe-
cially important for analyzing web applications, as these often process data in string
formats (e.g. [35, 41]). By their nature, web applications often use methods dealing
with string data and operations on strings. Christensen et al. [41] were one of the first
groups presenting reasoning on string operations in Java applications for security anal-
ysis. Automatons back the solving procedure. Later a proposal for a standardized SMT
format [27] evolved into the current version of Unicode constraints in the SMT-Lib [15]
language.
SMT solvers power many of the modern formal methods used in practice today. This

has been possible as this field has advanced constantly over the last decade. Especially
important for this thesis are the advances in the area of reasoning on string constraints
(e.g. [9, 16, 17, 26, 56, 121]). As explained by Chen et al. [40] in their introduction
to the Ostrich solver, there is, from a theoretical point of view, still a demand for
increasing the reliability and efficiency of string constraint solvers. Many solvers apply
heuristics with astonishing results but do not guarantee completion in every case. Chen
et al. raise the question of whether the benchmarks used in the area of string solving
are representative of the domain.
A follow-up question is how we should deal with SMT solvers in our tools to cover

bugs in implementation (as found recently by SMT solver validators [28, 91, 128, 144])
and variation in performance due to the heuristics used (e.g. [117, 123, 145]). The
answer is in general portfolio solving, but it is still an open question what kinds of
portfolio solvers exist and when we should use them. Caching used to be considered a
central point for improving SMT solving performance in symbolic execution. The Green
framework introduced this idea [141] and Brennan et al. [33] conducted some follow-up
work for caching string constraints. But caching requires constraint normalization and
computing these normalizations is expensive. Given the often fast solving times of SMT
solvers on the available benchmarks, caches have not become an answer to the problem
of performance variation. Portfolio solving seems more promising.

Contributions of this Thesis regarding SMT Solving. This thesis does not con-
tribute to the theory of SMT solvers or to the heuristics used. Instead, it focuses on
building the required engineering knowledge for using SMT solvers in tools.
One insight is that the SMT language has become a fourth-generation language for

tool builders applying formal methods. Consequently, in order to integrate them into
our tools we need suitable abstractions that fit into the language used for programming

20

1 Introduction

the analysis. As part of this thesis, I contributed to the engineering of JConstraints,
an abstraction library to work with SMT problems in Java. Paper VII [77] presents
JConstraints for the first time as an independent library, and I contributed to the
idea of comparing SMT languages with other fourth-generation languages embedded in
programming languages. I contributed furthermore to the description of JConstraints
in this paper.
Moreover, I worked on describing requirements for a constraint-solving service that

would simplify the usage of SMT solvers in tools. Paper VIII [98] presents these ideas.
This paper already mentions the need for empirical data to answer many decisions, es-
pecially to find the right fit between available resources, SMT solvers, and the workload
profile of SMT problems. This question is especially important for running the dynamic
symbolic execution of string programs. Paper IV [100] contains the contributions made
in abstracting combination patterns for SMT solvers, mining the required data for mak-
ing informed choices on the string solving capacity of a solver, and analyzing the data
for engineering a good portfolio solver for dynamic symbolic execution of programs with
strings. This includes a detailed discussion on the tradeoff between resource consump-
tion and correctness. Section 2.4 will extend this discussion with concrete examples and
tradeoff decisions leading to the portfolio solver for SV-COMP 2021 [103]. The exper-
iments in Section 6.1.1 demonstrate the impact of different SMT solvers on dynamic
symbolic execution.

1.2 Organization
The body of the thesis is organized into four chapters describing the contributions in the
three areas in more detail, with a further chapter of evaluation and discussion before the
concluding chapter. Chapter 2 presents the work, experiments, and insights developed in
the area of applying SMT solvers for tool building. Chapter 3 describes the preliminaries
for dynamic symbolic execution and implementation details of the architecture used
for JDart and GDart. In continuation, Chapter 4 goes on to present the advances
made for the dynamic symbolic execution of programs with strings and describes how
the driver method used influences the soundness of the analysis presented. The Jaint
framework is described in Chapter 5. This chapter first discusses in greater detail the
taint analysis problem, and then the different components of Jaint and how they interact
to realize the security analysis of Java web applications. The discussion of related
work, where appropriate, is also embedded in these four chapters. Chapter 6 evaluates
and discusses the contributions made in this thesis toward the research vision before
Chapter 7 concludes the thesis and provides an outlook on future work.

21

2 SMT Solving
This thesis analyzes software programs by transforming the programs into logical ab-
stractions and using automated reasoning to check whether properties encoded in the
same logic hold on these abstractions. All these abstractions are expressed as Satisfia-
bility modulo theories (SMT) problems, and SMT solvers decide these SMT problems.
In Section 2.1, I will briefly describe an SMT problem from a tool builder’s perspective,
focusing on how SMT problems can be used in analyses. In Section 2.2 I will then
briefly present the different theories defined in the standard SMT-Lib language required
for analyzing Java programs.
SMT problems are a variation of the more traditional 3-SAT problem, known to be

NP-complete. Therefore, decision procedures use heuristics rather than optimal deter-
ministic algorithms, which rely on random decisions for exploration strategies to speed
up problem-solving. From a user’s perspective, this raises different problems: models
might be chosen randomly, it is hard to predict a solver’s resource consumption, and—
independently of the theoretical outcome—solvers are allowed to give up on problems if
the heuristic cannot solve them. Section 2.3 describes the bounded solving heuristic for
influencing the model selection of solvers. This is a technique for improving interaction
with an SMT solver as sketched out in Paper III [102]. Section 2.3 explains it in greater
detail. Portfolio solving avoids the impact of the other two problems on tool architec-
ture, as discussed further in Section 2.4. It briefly shows important aspects of building
portfolio solvers discussed in detail in Paper IV [100].

2.1 Preliminary: SMT Problems
Programs use variables of different types. Each type T represents a different, potentially
infinite set (called the domain D of the type) of allowed values that might be assigned to
the variable during the execution. The program introduces restrictions on these variables
during its execution. Because of the restrictions, it might be impossible to assign certain
values of the original domain DT to a variable in the future of the current execution path,
e.g., if the program enforces an if-condition that an integer variable X is less than five.
The SMT language allows one to model these restrictions and the impact of a program
on the state space formed by its variables in logic. The resulting description in logic is
an SMT problem.

SMT solving is a theorem-proving technique that allows an automated decision for an
SMT problem P defined by a set of constraints C restricting the problem space (typically
called the domain D) respecting the semantics defined in a set of theories T . I will define
these terms below, but these are the main components of an SMT problem. A decision

22

2 SMT Solving

procedure solving such a problem is an SMT solver, and I will mention some of the main
solvers and a survey on decision procedures at the end of this section.

SMT Problems. The constraints in C are defined in the form of functions (cf. Defi-
nition 2.1). The functions establish a relationship between members of the domain D.
These members are either a concrete value from the domain—I call them constants in
this thesis if the value is known or variables if the value is unknown—or another func-
tion. The SMT language uses extensively function composition to express more complex
logical constraints, but every member in C must evaluate to a Boolean value. In the con-
text of an SMT problem, the Boolean true value is often called satisfiable and the false
value unsatisfiable. With this small modification, the Boolean value and operations work
within the SMT language as in any common Boolean algebra.

Definition 2.1. (Function) Functions are the basic building blocks for the constraint
set C. They are always defined over a Domain D representing a mapping from a tuple
of parameters to a single value. Consequently, the function signature looks similar to
(D× . . .×D) → D, but the tuple might also be empty. D is allowed to consist of a set of
subdomains, e.g., integers Z and the Boolean values B = {true, false}, but might be a
single domain as well. The function signature might restrict the function to accept only
certain subdomains of D as a type of parameter or the result value, e.g., >: Z×Z → B.
We differentiate two types of functions:

Constants and Variables Functions without parameters are called constants. They have
the signature () → D. There are two types of constants in the SMT-Lib language:
Fixed concrete values (called constants) represented by a literal of the domain D

and named placeholders for concrete values (called variables1).

Named Functions All functions with at least one parameter are called named functions.
The domain tuple has the same size as the number of parameters.

All functions have in common that they are written in infix notation. The parameters
follow the name. For example, the named function f : (D × D) → D is used later as
(f 0 1), if the constants zero and one are passed as a parameter to f.

As described in Definition 2.1, functions without parameters are constants. The named
placeholders work in our modeling as normal variables in any math problem. An SMT
solver assigns values from the respective domain to these variables whenever it is possible
to satisfy all constraints in the problem. As a consequence, it is often interesting which
variables a given SMT problem P contains. V (P) describes all variables in P .

Named functions can be either interpreted or uninterpreted. Uninterpreted functions
are allowed on arbitrary domains, and the only consideration made by the constraint

1A single variable is represented as a single character in this thesis for better readability of constraints
but arbitrary names are allowed as a variable’s name in the SMT language.

23

2 SMT Solving

solver is that the same parameters always generate the same output for one instance
of a function. This property is called functional consistency (for more details on un-
interpreted functions and functional consistency, I refer to Chapter 4 of Kroening &
Strichman [84]). Therefore, SMT solving allows any elements in domain D at the core
language, treating them as uninterpreted functions. Interpreted functions require an in-
terpretation semantic. This semantic is sometimes called an interpretation in the general
context of satisfiability (cf. Chapter 1 by Franco et. al in the Handbook of satisfiabil-
ity [23]). For the purposes of the present thesis, I will call the interpretation semantic
for one specific part of the domain a theory. As core component, SMT problems always
contain the Boolean algebra together with the logical support function distinct, equality,
imply, and exclusive or. Therefore, the Bool sort with the values true and false and an
interpretation of the operations not, =>, and, or, xor, =, and distinct following the
common logical interpretation is always available for any SMT problem. The SMT-Lib
language [14], a standardized format for specifying SMT problems, calls these operations
the core theory for SMT problems. Any other theory can be defined in addition to the
core theory, but it is included in any SMT problem as default theory. Section 2.2 dis-
cusses some more available theories in the SMT-Lib language. The set of used theories
defining the available interpretations for functions in an SMT problem is in this thesis
called T .
Given that all the constraints, the domain and the theories for a problem are defined,

the question to solve in an SMT problem is whether all functions in C can be evaluated
truly at the same time on the domain D respecting the interpretation of named functions
defined by the theories in T . Definition 2.2 summarizes the characteristics of an SMT
problem.

Definition 2.2. (SMT Problem) An SMT problem P is a triple (C,D, T) where

– C is a set of constraints that should be satisfied,
– D is a domain defining the problem space of the problem, and
– T is a set of theories, for interpreting the constraints on the given theory.

The central challenge in an SMT problem is to answer whether all constraints in C are
satisfiable. The answer is either yes (satisfiable or short sat and we write (D,T) |= C) or
no (unsatisfiable or short unsat and we write (D,T) ̸|= C). This answer always exists if
the theory is decidable. If the theory is partially or completely undecidable, the answer
for the specific problem might still be sat or unsat, but decision procedures are allowed
to give up on the problem and return unknown as well.

Let’s review these terms, then, on the following example, in order to understand a
problem in more detail:

Example 2.1. For this example, I will use the theory of normal integer arithmetic without
quantifiers. This theory is named QF_LIA in the SMT language. Domain D comprises
all possible integers Z in conjunction with the Boolean domain part of the core theory

24

2 SMT Solving

in the SMT language. The theory allows the usage of functors that are linear integer op-
erations: +,−,≤, <,>,≥, and in some corner cases multiplication ∗. The interpretation
of these functors is congruent with the semantics of normal integer operations. Now, we
can describe an example constraint set:

C = {(< 5 x), (≥ 19 x), (= y (+ x 4)), (≤ y z), (= z 13)}

Combining the constraint set with the domain and the theory, we get a triple defining the
problem Pexmp = (C,Z, {QF_LIA}). The problem describes a relation between three
variables x, y, z bounding their possible values by using some constants {4, 5, 19, 13} ∈ D.
The interpretations of the functions require that 5 should be less than x and x less or
equal to 19. y should be less or equal to z and 4 greater than x. Furthermore, z should be
equivalent to 13. The question is whether all these requirements can hold simultaneously,
given that x, y, and z are integers.
Definition 2.2 speaks of the satisfiability of a constraint. Today’s SMT solvers do not

only answer whether a problem is satisfiable, but also compute a model that proves the
satisfiability of the problem respecting the interpretation of different functors according
to the theories and domains involved. Let us start by explaining the intuition behind
the concept of a model using the problem Pexmp from the previous Example 2.1. Assume
the following assignment M for the variables V (Pexmp): M = (x → 6, y → 10, z → 13).
An SMT solver could claim that M is a model that satisfies Pexmp. To validate whether
M is truly a model, every constraint ci ∈ C must evaluate to true using the assignment
for the variables in M . (< 5 x) combined with the assignment M(x) = 6 evaluates to
true, as 6 is greater than 5; (≥ 19 x) evaluates true, as 6 is less than 19; (= y (+ x 4))
evaluates true, as 10 is equal to 6 plus 4; (≤ y z) evaluates true as 10 is less than 13;
and (= z 13) evaluates true as 13 equals 13. As all constraints evaluate to true, M
is a satisfying assignment for the problem in Example 2.1 and therefore a proof that
the problem is satisfiable. Following the ideas presented by Nieuwenhuis et al. [115],
Definition 2.3 defines a model for an SMT problem.

Definition 2.3. (SMT Model) An SMT problem P is satisfiable, if and only if there
exists at least one assignment M defining for every variable in V (P) a fixed return
value from D, so that all constraints in C evaluate to true given the interpretations for
the named functions in T . A satisfying assignment M is called a model for problem P

written M |=(D,T) C. If and only if no such assignment exists, an SMT problem P is
unsatisfiable.

Normally, the variables in an SMT problem are existentially quantified and it is suffi-
cient if one such assignment in the domain exists. Such problems are called quantifier-
free problems. Quantifier-free theories are normally prefixed with QF_ in their name.
Sometimes it is necessary to formulate a constraint that mixes all quantifiers with ex-
isting quantifiers. Problems containing both sorts of quantifiers are harder to solve and

25

2 SMT Solving

therefore clearly separated in the theory definition. Quantified theories are usually not
further prefixed.
SMT Solvers. Making the decision, whether a model exists or not for a given SMT
problem is the task of an SMT decision procedure embedded in an SMT solver. In the
1960s, Davis and Putnam [55] presented a decision procedure for boolean satisfiability
problems (later called SAT problems, in accordance with the common terminology in
the literature). Davis, Logemann, and Loveland [54] improved the procedure shortly
afterward and the resulting algorithm is known today as the Davis-Putnam-Logemann-
Loveland (DPLL)algorithm. An SAT problem is equivalent to an SMT problem using
only the boolean core theory. Roughly 45 years later, Nieuwenhuis et al.[115] described
the extension of the DPLL algorithm to the DPLL(T) algorithm, the current state-of-
the-art algorithm for architecting SMT solvers. The SMT solver community has made
tremendous progress on building SMT solvers using this pattern in the last decades,
most notably with the introduction of the widely used solvers Z3 [56] and cvc5 [13],
the successor of CVC4 [16]. To homogenize the SMT solver front ends, the SMT-Lib
language [14, 15] standardized the input language of an SMT problem together with the
theories to be supported by the solvers. SMT-Lib is a tremendous step in making SMT
solvers interchangeable with each other in tools and software projects relying on SMT
solvers.
The abstraction of an SMT solver defined in the SMT-Lib interface allows treatment

of SMT solvers as a black box in the context of this thesis. However, I will shortly intro-
duce the idea of the DPLL(T) framework and refer the interested reader to the book
by Kroening and Strichman [84] for a brief overview of examples of the underlying algo-
rithms used in the theory solvers. The book provides only a brief overview, explaining
the basics of some theories, e.g., uninterpreted functions, linear algebra, bit vectors, and
arrays, but stopping short of the algorithms used in theory solvers for string constraints,
an important theory in this thesis. This area is still under considerable development
and has led to many available theory solvers in the last ten years that complement the
explanation of the DPLL(T) framework by Kroening and Strichman, e.g., ABC [9],
Z3str4 [96], Z3str3 [17], Trau [1], Norn [2], and the theory solver in CVC4 [121].

In the following paragraphs I will briefly discuss the basic idea of DPLL(T). The
next section will discuss some of the included theories in SMT-Lib that are relevant for
DSE as presented in this thesis, together with strategies for designing the theory solvers
specific to these theories.
From DPLL to DPLL(T). DPLL takes as input an SAT problem and returns either
a model M , which is an assignment for all variables in the SAT problem, or affirms that
the problem is unsatisfiable if the algorithm terminates. Understanding DPLL requires
prior discussion of two special types of constraints: unit variables and pure variables.
Moreover, DPLL solves SAT problems in CNF encoding. I will explain these terms
with an example:

(A ∨ ¬B) ∧ (B ∨ ¬C) ∧ (¬A ∨D) ∧ E (2.1)

26

2 SMT Solving

Consider the SAT problem in Equation 2.1. As all clauses are connected by conjunc-
tion and each of the clauses only contains disjunction or a single variable, the problem is
expressed in the conjunctive normal form (CNF). Thus, for example, the Tseitin transfor-
mation [140] allows the transformation of any SAT problem into CNF. There, the CNF
limitation, as the expected input format to DPLL, does not limit applicability. The
variable E is a unit variable as the clause is only satisfiable if E is assigned a true value.
D and ¬C only occur in these constraints as true values (e.g., D) or in the negated form
(e.g., ¬C). Therefore, they are pure variables.

DPLL is a systematic search algorithm that tries out all possible assignments for the
variables involved in the SAT problem. Nieuwenhuis et al. [115] describe the search
heuristic using five transitions, and I will follow their idea in the following treatment, as
DPLL(T) extends this transition system. Without defining them formally, the five tran-
sitions are UnitPropagate, PureLiteral, Decide, FailState, and Backtrack.
DPLL starts with an empty model and assigns different variables step by step until the
model satisfies the SAT problem or the search terminates without a satisfying assign-
ment in the FailState transition. UnitPropagate satisfies a unit variable not yet
assigned in the model and simulates the effect on the remaining clauses. PureLiteral
satisfies a pure variable not yet assigned in the model and simulates the effect on the
remaining clauses. Decide makes a decision and assigns any of the still unassigned vari-
ables to true together with an annotation that this assignment is the result of a decision.
FailState terminates the search, if no further Backtrack is possible and the problem
is not satisfiable within the current assignment. Backtrack reverts the model chrono-
logically to the state before the last Decide transition. It then adds the false value for
this variable to the model, as the true value cannot lead to a satisfying assignment. It
is important to note that DPLL backtracks chronologically, and a bad decision made in
the first choice might require the exploration of a large area of the problem space before
it gets corrected. The priorities of transition are defined the same way that all Unit-
Propagate transitions must be enabled, before following the PureLiteral transtions.
If neither, UnitPropagate nor PureLiteral is possible, a Decide or Backtrack
transition will be used. If none of these is available, the FailState transition terminates
the search. So let’s solve Equation 2.1 using these transitions:

∅||(A ∨ ¬B) ∧ (B ∨ ¬C) ∧ (¬A ∨D) ∧ E UnitPropagate
E||(A ∨ ¬B) ∧ (B ∨ ¬C) ∧ (¬A ∨D) PureLiteral

E,¬C||(A ∨ ¬B) ∧ (¬A ∨D) PureLiteral
E,¬C,¬B||(¬A ∨D) PureLiteral

E,¬C,¬B,¬A||

In this example, the algorithm does no backtracking, because any decision is manda-
tory due either to a UnitPropagate or a PureLiteral transition. The resulting
model E,¬C,¬B,¬A satisfies the original problem. The chronological backtracking is
slow, and modern SAT solvers use a more advanced approach involving learning a con-

27

2 SMT Solving

flict clause, so they can backtrack further than just the last chronological decision and
add a clause containing the conflict leading to the backjump. This approach is known as
the conflict-driven clause learning (CDCL) algorithm. Nieuwenhuis et al. [115] respect
this in their transition approach by adding transitions for learning and forgetting clauses,
as well as a more powerful backjump transition. They call the resulting transition rule
set a DPLL system with learning. It describes the same approach as CDCL.
According to Nieuwenhuis et al. [115], DPLL(T) allows implementation in two flavors:

the eager and the lazy approach. The eager approach translates the constraints into
a boolean CNF problem using a satisfiability-preserving transformation. The resulting
CNF formula can be checked by an off-the-shelf SAT solver. However, the transformation
process is expensive and has to be completed before checking the resultant SAT problem.
In practice, the lazy approach performs better, and modern SMT solvers follow this
implementation strategy. The lazy approach replaces every theory related subclause with
a Boolean variable and computes a satisfying model for the relaxation of the original
problem. If the relaxation is unsatisfiable, the original problem is unsatisfiable as well.
Otherwise, a theory solver is used for checking whether the conjunction of all theory
subclauses is also satisfiable by a theory solver T as well (called the T -consistent check
for a model). Otherwise, the theory solver has to explain the inconsistency with a
theory lemma that excludes this invalid assignment in the future. With this lemma,
the algorithm backjumps and either finds a new model to check or proves the problem
unsatisfiable. As the lemmas are added to the original problem and guide the search in
the boolean problem, the formalization for the lazy version of DPLL(T) is a variant of
the DPLL system with learning. I will conclude this section, therefore, with an example
of applying the lazy DPLL(T) algorithm to the constraints in Equation 2.2 involving
linear integer arithmetic.

((> A 5) ∨ (< B 3)) ∧ ((> B A) ∨ (¬ (= C 4))) ∧ (> C 3) (2.2)

(Z ∨ Y) ∧ (X ∨ V) ∧W ;

Z = (> A 5), Y = (< B 3), X = (> B A), V = (¬ (= C 4)),W = (> C 3)
(2.3)

First, the lazy approach toDPLL(T) replaces the theory-related constraints with boolean
variables as shown in Equation 2.3. Next, an SAT solver computes a model, e.g., using
the DPLL algorithm. A possible model for this boolean problem is Z, X, W indepen-
dent of the values for Y and V. Next, the integer theory solver validates whether the
subproblem ((> A 5) ∧ (> B A) ∧ (> C 3)) is satisfiable and the model is, therefore,
T-consistent. This problem can be expressed, e.g., as a linear program solved with the
simplex algorithm (cf., e.g., Linear Programming by Chvátal [42] for an introduction to
linear programs and the simplex algorithm). As this subproblem is T-consistent, e.g.,
with the model M = {A = 6, B = 7, C = 4}, the equation is satisfiable and the DPLL(T)
algorithm returns.

28

2 SMT Solving

2.2 SMT-Lib Theories relevant for DSE
SMT-Lib defines seven major theories in version 2.6 [14] that the major SMT solvers
provide ready to use for logical modeling: Arrays, FixedSizeBitVectors, Core, Floating-
Point, Integers, Reals, and String. As described in the previous section, the core theory
involves equality, uninterpreted functions, and Boolean operations. For analyzing Java
programs as described in this thesis, we mainly require the FixedSizeBitVector, Floating-
Point, and string theory. As string theory encodes numeric constraints using integers,
Integer theory is technically also involved in the analysis but only for converting an
integer to a fixed size bitvector; so I’ll skip the presentation of integer theory here. The
remainder of this section will describe the theories used and indicate the algorithms used
in theory solvers.

FixedSizeBitvectors. Computers are discrete machines representing numbers in an
encoding called Two’s complement of a fixed size number of bits. Consequently, the
integer theory does not represent arithmetic computation semantics in most program-
ming languages (except when analyzing Python3 code). Instead, the fixed size bitvector
theory represents these computations, including a representation of the underflow and
overflow behavior observed in a CPU. Bit vectors of 32- and 64-bit size represent Java’s
integer and long values correspondingly.
The bit vector theory is well established and supported by many SMT solvers. The

named functions interpreted in the context of the bitvector theory are all prefixed with
bv, e.g., bvadd for adding two bitvectors or bvand for comparing bitvectors bitwise. Apart
from Z3 and CVC4—both have established themselves in this area—many other bitvec-
tor theory solvers are available, e.g., Boolector [114] and Bitwuzla [112]. The baseline
approach for solving bitvector constraints is flattening the bitvector operations to a
boolean formula solvable by an SAT solver. This technique is colloquially also called
bit-blasting (cf. Chapter 6.2 in Kroening and Strichman [84]). Bitvector theory specific
solvers advance in this area by developing better algorithms for this theory(e.g., Niemetz
and Preiner [113], Wintersteiger et al. [146]).

Floating-Point Theory. The analyses presented here use the floating-point theory
to represent float and double values from Java in SMT problems. The floating-point
expresses a value using some bits for a mantissa, some bits for an exponent, and an
additional bit for the sign. This way, floating-point numbers are expressed using a
bitvector. The Java language uses a 32-bit floating-point and a 64-bit floating-point
value following the IEEE 754 encoding format. The SMT-Lib floating-point theory
supports IEEE 754 encoding and a Float32 and Float64 data type that matches the
semantics of the Java types. Named functions interpreted by floating-point theory are
prefixed with fp., e.g., fp.add for adding two floating-point values.

Brain et al. [31] give a good overview of different approaches for solving constraints in
floating-point theory following the IEEE 754 format and presented SymFPU, the current
floating-point solver of cvc5, today’s successor of CVC4. They have shown that the
bit-blasting algorithm in SymFPU is performance-wise the best approach for solving
floating-point constraints at the moment. cvc5 led the quantified floating-point solving

29

2 SMT Solving

single query track of SMT-COMP 20212. The SymFPU theory solver backs up the
second best solver, which is cvc5’s precursor CVC4. For quantifier free floating-point
queries, Bitwuzla scored second in the single query track of SMT-COMP 20213.

Combination of Bitvector and Floating-Point Theory. Real-world applications
often use floating-point and bitvector numbers side by side, requiring reasoning about
SMT problems containing both theories. Sometimes, values are cast between these theo-
ries requiring reasoning on the same value in both theories. Most SMT solvers therefore
support a variant or extension of the Nelson-Oppen procedure [110] for combining dif-
ferent theory solvers (cf. Chapter 10 in Kroening and Strichman [84] for an explanation
of this procedure within their solver framework, and cf. Jovanović and Barrett [81]
for an example of an extension paving the way for the current theory combination in
cvc5.). Therefore, the Java analysis presented here therefore requires solvers that
support both theories and their combination. SMT-Lib defines interpretation to the
functions fp.to_ubv and fp.to_sbv for casting a floating-point value to an unsigned or
signed bitvector. For the other direction, SMT-Lib interprets the function to_fp and
to_fp_unsigned.

String Theory. Reasoning on string theory constraints is especially important for
analyzing Java Web applications (cf., e.g., [35, 41, 125]) as, e.g., the HTTP protocol
is string-based, and much information is exchanged as strings. String constraints can
either restrict the string value in a content constraint or the length of the string in a
numeric constraint. The string content is restricted using named functions interpreted
in the string theory for string operations and the regular expression language. These
function names start either with str., e.g., str.++ for the string concatenation, or re.,
e.g., re.++ for the concatenation of regular expressions. Further, there is the str.in_re
function that checks whether a string content matches a regular expression combining
the string and regular expression component of the string theory. The SMT-Lib maps
the length constraint part on the numeric integer arithmetic, while the content part is
mapped on the core string theory (cf. Bjørner et al. [27], Redelinghuys et al.[120]). In
the more modern SMT-Lib version, the resulting theory is called QF_SLIA or sometimes
QF_SNIA if nonlinear arithmetic operations are involved. Mixed quantifiers are not yet
allowed in this theory.
Java uses int values to describe the string length modeled using 32-bit bitvectors. As

SMT-Lib represents the string length using an integer value, comparing it with other
int values in the logical encoding requires casting the value to a 32-bit bitvector first.
Therefore, analyzing Java programs involving string requires tight linking between the
FixedSizeBitVector theory and the integer theory in the respective SMT solver4.

Both CVC4 [121] and Z3 [26] support string theory but there are also many theory-

2https://smt-comp.github.io/2021/results/fparith-single-query{last accessed: February 2022}
3https://smt-comp.github.io/2021/results/qf-fparith-single-query {last accessed: February

2022}
4Side Note: Interestingly, in the early proposals for the definition of SMT-Lib string theory [27], the

numeric arithmetic is mapped to bitvector theory and early prototypes of string theory solver support
the combination of string theory with bitvectors, e.g., Z3strBV [137].

30

https://smt-comp.github.io/2021/results/fparith-single-query
https://smt-comp.github.io/2021/results/qf-fparith-single-query

2 SMT Solving

specific solvers around—e.g., ABC [9] and Z3str4 [96]—that can complement the ca-
pabilities of CVC4 and Z3 in the string solving area (cf. our study in Paper IV [100]
on the performance of different string solvers). Regarding the algorithms, there are two
main concurring approaches used in string theory solvers today: representing string con-
straints as automatons or as numeric sequences. To give two examples: the book by
Bultan et al. [35] explains some ideas for solving string constraints using automatons as
in ABC. In contrast, Bjørner et al. [26] explain the reduction of string constraints to
integer problems implemented in Z3.

2.3 Bounded Solving
As defined in Definition 2.3, a model might be any appropriate assignment satisfying
the constraints without any further quality requirements. This makes perfect sense in
use cases requiring a yes-or-no decision but becomes a problem if the model provides
the values for driving a concrete analysis. When I started to work with Falk Howar
on extending JDart for the first SV-COMP 2020 submission leading to Paper III [102],
we stumbled across this issue. One of the SMT solvers gave us large numbers in the
SMT models leading to a large allocated array that exceeded the available memory. The
solution sketched here adds additional bounding constraints to the original problems
and modifies them with a heuristic. These bounds reduce the domain space, aiming
for smaller values. The remainder of the section extends the argument to aspects of
the model selection problem and its impact on dynamic symbolic execution. Further, it
explains why bounding reduces the impact of this problem.

1(declare−const X (_ BitVec 32))
2(as se r t (bvsge X #x00000008))

Listing 2.1: Example of an SMT problem.

Example. Let us consider the exam-
ple in Listing 2.1 for a better under-
standing of the effects. The listing de-
fines a single variableX from bitvector
theory with a width of 32 bits. Fur-
ther, it contains a single constraint enforcing that this variable is greater than 8 en-
coded as a signed bitvector with 32 bits expressed in hexadecimal encoding. There are
2 147 483 639 possible values to make this assignment valid for a signed 32-bit bitvec-
tor given the bitvector theory. Moreover, each of these values is a valid solution to
the problem. Using different SMT solvers, we get different answers as all solvers pick
a single example out of this large domain. Z3 answers this problem with the model
Mz3 = (X → #x00000008) which is the hexadecimal encoding for 8 and the smallest
possible value in this constraint that might be assigned to X. CVC4 answers the model
with the following assignment Mcvc4 = (x → #b01000000000000000000000000000000,
which is the binary encoding of 1 073 741 824 and somewhere in the middle of the possi-
ble value range. The bit pattern reveals a clear systematic bit flipping pattern from left
to right. The highest-order bit must be 0 to maintain a positive sign. Otherwise, the
constraint is violated. Setting the second highest bit to 1 solves the constraint. In terms
of the SMT semantic, both models are successful solutions to the problem.

Next, it is important to compare the potential impact of these two different models on

31

2 SMT Solving

an analysis. Assume that this SMT problem in Listing 2.1 enforces that a given array
should have at least eight entries and assume it is an int array costing four bytes per entry,
theMz3 model creates a 8∗4 bytes = 32 bytes array allocated while exploring the concrete
path. Using the Mcvc4 model costs 1 073 741 824∗4 bytes = 4 294 967 296 bytes =̂ 4GiB.
While the 32 bytes required for the small concrete array are negligible compared to the
general memory requirements of a JVM and a modern SMT solver, the fourGiB array
consumes significant resources.5 If the array allocates data structures more expensive
per entry than an int in Java, the problem worsens until the array no longer fits into
the concrete memory. As a side effect, the concrete run fails with an out-of-memory
error making it impossible to analyze the given piece of software. The smaller model
allows the concrete run to complete quickly and efficiently, collecting the new symbolic
constraints that allow further symbolic exploration.

The Model Selection Problem. As shown in the previous example, models get a
quality constraint that allows one to judge the suitability of a model for driving the
concrete component of the analysis in comparison with another model. It depends
on the concrete program under analysis whether it is more desirable to optimize the
model for a smaller memory allocation or fewer loop unrolling steps during a potential
concrete execution. Therefore, having a universally optimal model selection algorithm is
impossible, and it is not easily possible to encode a constraint that optimizes the model.
Nevertheless, from our overall experience, we have observed that choosing smaller values
over larger ones tends to impact the analysis performance positively. Therefore, we
use this as a selection heuristic and have introduced the bounded solving heuristic for
generating models that use small values in the model of a satisfiable problem compared
with all possible values in the domain.

1(declare−const X (_ BitVec 32))
2(as se r t (bvsge X #x00000008))
3(as se r t (bvsle X #x0000000a))
4(as se r t (bvsge X #x f f f f f f f f))

Listing 2.2: Example from Listing 2.1 with
bound 10.

Bounded Solving as Heuristic.
Bounded solving is a heuristic that re-
stricts the domain by limiting all vari-
ables to an interval range. We do
this by expanding the problem with a
statement, ensuring that each variable
is less or equal to the positive value of
the bound and greater or equal to the negative value of the bound. Only the vari-
ables from a numeric domain are bounded. Strings are not bounded regarding possible
character values but might be bounded in length wherever suitable.

Definition 2.4 (Bounded SMT Problem). Given a SMT Problem P = (C,D, T) and a
bound b with b > 0, the bounded SMT Problem Pboundedb = (Cb, D, T) extends the
constraints set C by bounding all x ∈ V (P) : x is in a numeric domain. The con-
straints set C is extended as follows: Cb = C ∪ {(X ≥ −b) ∧ (X ≤ b) | ∀X ∈ V (P) :

5Side Note: SV-COMP provides 14.6 GiB RAM to analyze a given task. So this single model has a
tremendous impact on the analysis’s overall performance as it already blocks 27 % of the available
memory. Therefore, the model selection also influences the performance of our analyses in the SV-
COMP challenge.

32

2 SMT Solving

Algorithm 2.1 The Bounded Solving Heuristic
Input: SMT Problem P , List of Bounds B, SMT solver S
Output: SAT and model M , UNSAT and null, or UNKNOWN and null

1: procedure boundedSolving(P , B, S)
2: for b in B do
3: Pb = bound(P, b) ▷ Bound P with b as described in Definition 2.4
4: res,m = S.solve(Pb)
5: if res = ‘SAT’ then
6: return res, m
7: end if
8: end for
9: return S.solve(P)

10: end procedure

X is in a numeric domain}. ≥ and ≤ are placeholders and have to be replaced to the
equivalent in the theory associated with the domain of X (e.g., bvsge, bvsle, etc.).

Bounding the SMT Problem P alters the semantics of the original problem, and the
results are only partially transferable. As we only add constraints in the bounding
process limiting the solution space, any satisfiable solution for the bounded Problem Pb

also satisfies P . Hence satisfiable decisions are transferable and the following holds for
a model M that satisfies Pb = (Cb, D, T): M |=(D,T)Cb =⇒ M |=(D,T) C. The proof
is trivial as C ⊂ Cb. Therefore, if using the assignments for variables in M evaluates
all functions in Cb to true, it also evaluates all functions in C to true. Unsatisfiable
decisions are, in general, not transferable. If the Pb problem is unsatisfiable, this does
not imply that P is unsatisfiable.

Wherever we use bounded solving during dynamic symbolic execution, we use a repet-
itive widening approach to solve the problem multiple times with increasing bounds, as
shown in Algorithm 2.1. It takes a list of bounds B, an SMT problem P , and an SMT
solver S and returns an answer to the problem P . The bounded problem is solved for
each of the bounds in B. If it is satisfiable, the answer is returned. Otherwise, the
next bound is tested. If the problem is not satisfiable for any of the bounds in B, the
original unbounded problem P is solved. For unsatisfiable cases, the problem has to be
solved N +1 times in this approach ensuring the unsatisfiable result is valid. Satisfiable
instances are solved 1 to N + 1 times. The heuristic favors satisfiable instances.
Related Work and Further Ideas. As I will demonstrate using the SV-COMP
examples in Section 6.1.1, choosing the right bounds has a significant impact on the per-
formance of the dynamic symbolic execution engine. For SV-COMP, we used empirical
experiments to develop the bounds used in our tools today. Two theoretical ideas exist
in related work that can improve bounded solving in future: UNSAT cores and opti-
mization modulo theory (OMT) solvers. I will briefly present them below to complete
the picture. However, as the solver component is not the bottleneck in the applicability
of the proposed analysis after using the previously described bounding heuristic, I have

33

2 SMT Solving

problem

A B · · · N

vote

verdict

wait for all

problem

A B · · · N

verdict

earliest w/
condition

problem

A

B C

verdict

one

verdict-based
decision

problem

A B

verdict

one

input-based
decision

Figure 2.1: Four basic patterns for building SMT portfolio solvers as introduced in Figure
1 of Paper IV [100]. They are from left to right: majority vote, earliest verdict, verdict-
based second attempt or validation, feature-based / capability-based solver selection.

not investigated their effects on solving times in any detail.
An UNSAT core UC is a subset of the constraints in an unsatisfiable problem P =

(C,D, T). The core contains contradictory constraints and is potentially smaller than
the original problem (c.f. Chapter 2 by Kroening and Strichman[84] for a detailed
explanation of UNSAT cores). If the UNSAT core UCb of a bounded problem is a subset
or equal to the constraints of the original problem, the unsatisfiable result of Pb implies
that P is unsatisfiable as well: Pb is unsatisfiable ∧ UCb ⊆ C =⇒ P is unsatisfiable.
This theoretical result can be combined with an SMT solver supporting UNSAT cores to
reduce the number of solving attempts for unsatisfiable problems in the solving process,
eliminating the discrimination of unsatisfiable instances in Algorithm 2.1. If the UNSAT
core UCb of the bounded Problem Pb is independent of the bounding constraints, solving
the original problem without bounds is not required, as the original problem P is already
unsatisfiable using the same core.
Optimization modulo theory (OMT) solvers (e.g., OptiMathSat [129] and νZ [25])

allow solution of an SMT problem optimizing the model for a specific target function.
An OMT problem obligates the solver to find, for example, the smallest possible model
for an SMT problem. As SMT decision procedures are not the main focus of this work, I
have not investigated this direction any further nor run experiments with OptiMathSat
or νZ.

2.4 Portfolio Solving
SMT solving is an area of constant development. Building a software verifier backed
by SMT solvers requires dealing with this constant progress and uncertainty (c.f. our
contribution to IEEE Software describing this challenge in more detail [78]). In Paper
VII [77] and Paper VIII [98], we briefly discuss the means of decoupling the program from
a single solver and how a solving service architecture fits into the general architecture
instead of a single SMT solver. In this case, the SMT service layer idea is not coupled
with the idea of a web service. It is just a meta-solving layer abstracting all the details
of the individual SMT solvers and optimizing the selection process and problem-solving.

34

2 SMT Solving

Paper IV [100] describes how to build such a meta-solver. Figure 2.1 shows the pattern
proposed in this paper for combining SMT solvers in a meta-solving strategy.
The software verification community distinguishes tools supporting algorithm selec-

tion from those supporting portfolio techniques in the SV-COMP reports (e.g., The
SV-COMP 2021 report [20]). The algorithm selection is attributed to Rice [122], where
a procedure selects a single algorithm to solve the problem at the end. The portfolio
technique runs a set of algorithms supposed to do the same thing and runs them to
solve the problem. This is especially suitable if the verifier is not interested as to which
concrete SMT solver answers the problem. We find these two approaches in two of the
four patterns. The solver selection pattern on the right of Figure 2.1 represents the idea
of algorithm selection, while the earliest verdict pattern, second from left, represents
the idea of portfolio solving. In my opinion, the verdict-based second attempt pattern
combines these two theoretical approaches. It is a mixture of algorithm selection and
sequential portfolio solving, as the different solvers run in sequential order and the de-
cision on how to proceed depends on intermediate results. Majority voting, the pattern
on the left of Figure 2.1, is inspired by the N-Version programming approach introduced
by Avizienis and Chen [8]. This pattern focuses mainly on increasing the accuracy of
the meta-strategy, and it can detect errors in automated decisions early in the process
and in a fully automated way.
Portfolio solving is especially important for analyzing programs with string operations

as the support for the string theory is under intense development at the moment in
different SMT solvers. Paper IV [100] shows the performance of different string theory
solvers on a cleaned benchmark set in this area. The data shows that the proposed
verdict-based second attempt strategy using CVC4 and Z3 outperforms each of the
solvers involved on the benchmark set in terms of total solved problems, and is only
slightly more expensive than CVC4 on its own. Since 2021 we have, therefore, used this
meta-solving strategy in SV-COMP as the backend of our dynamic symbolic execution
tools. The implementation of the strategy is publicly available as part of JConstraints6.
It is an efficient use of the available compute time in SV-COMP. Otherwise—from the
insight gained in the experiments, and given the performance data—I highly recommend,
for analyzing unknown SMT workloads, use of one of the other strategies involving more
solvers that are also more expensive in terms of computing time.
For the operational usage of software verifiers, Paper IV [100] demonstrates that it is

crucial to benchmark the involved SMT solvers in a repetitive interval estimating the
potential error margins of the verifier verdicts. Depending on the result of the analysis
and the use case, it is worth investing more time in solving and validating the solution of
constraints problems, or sacrificing the increased guarantees created by cross-validation
in favor of performance.

6https://github.com/tudo-aqua/jconstraints {last accessed: February 2022}

35

https://github.com/tudo-aqua/jconstraints

3 Dynamic Symbolic Execution
Symbolic execution is a well-known software analysis technique for software testing pro-
posed by King [82] for the first time more than four decades ago. The central point is
expressing the program execution symbolically, getting a precise symbolic description
of all possible execution paths. Combining this symbolic description of the program
with a property encoded in the same symbolic logic allows checking of the property by
solving the resulting decision problem. Today, these decision procedures are often SMT
solvers, and the problem is encoded using SMT-Lib language. The analyses presented
in this thesis use SMT-Lib language, but other state-of-the-art tools, e.g., CBMC [43],
use a symbolic representation that is expressed in a bit precise SAT problem solved by
a SAT solver at the end. Here CBMC follows the 1990s trend of using bit precise repre-
sentations that can be solved either by binary decision diagrams (BDDs) (e.g., Burch et
al. [36]) or an SAT solver (e.g., Biere et al. [24]).

I will not present all the details of symbolic execution in this thesis, as it is a well-
established technique today, and surveys such as Baldoni et al. [10], or Cadar et al. [38]
explains it very well. Instead, I will briefly compare dynamic symbolic execution with
full symbolic encoding and symbolic execution, as (depending on context) all of them are
sometimes called symbolic execution in the literature. Next, I will describe the general
layout of the dynamic symbolic execution engine as we use it for GDart and JDart.
This section focuses especially on required functions in the JVM for implementing a
dynamic symbolic execution engine. The final section in this chapter, describing the
tradeoff involved by using a concrete driver for dynamic symbolic execution analysis,
demonstrates why this is a powerful tool for reducing search space during symbolic
exploration but has, at the same time, the potential to weaken the analysis result.

3.1 Full Symbolic Encoding vs. Symbolic Execution vs.
Dynamic Symbolic Execution

The popularity of symbolic execution is rooted in the symbolic encoding of the complete
program in a single problem. After encoding the problem, it is possible to combine the
symbolic description of the program with different properties allowing multiple analysis
targets to be checked without reencoding the problem. This leads to a strong reasoning
power if the symbolic decision engine is powerful enough to solve the resulting logical
problem. A further strength of symbolic representation is the description of many states
by symbolic constraints (c.f. [36]). The weakness is that not every problem can be
described in a finite symbolic representation for all possible inputs, e.g., looping over
a symbolic data structure cannot be described in a finite set of symbolic constraints.

36

3 Dynamic Symbolic Execution

This is called the path explosion problem (cf. [38]) and is often voiced as the main
drawback of this technique. Bounding the state space to reason on a limited finite
state space is one common way of dealing with this problem in industrial (e.g., [47])
and academically settings [43]. As long as a concrete program stays within the bounds,
the verification result holds during operations. This converts a part of the verification
effort into a bounds-checking problem as the bounded subset of the state space is usually
smaller than the unbounded counterpart. The bounds-checking problem proves that the
assumed bounds are not violated during execution of the program. This check could be
run by analysis upfront or as a monitor during runtime.
The main difference between the symbolic encoding of a bounded model checker as

CMBC, ideal symbolic execution as presented by King [82], and dynamic symbolic ex-
ecution is the proportion of the program that is encoded symbolically when property
checks are performed. The literature sometimes uses the term symbolic execution in-
discriminately for symbolic encoding generated either by the bounded model checker
CMBC or by King’s symbolic execution. But, as I will show next, these are significantly
different processes. In this thesis I will, therefore, use the term full symbolic encoding
to describe the encoding technique used by CMBC and the term symbolic execution for
the encoding generated by the techniques described by King. This section will explain
the differences in more detail.
Bounded model checkers like CMBC [43] often generate a full symbolic encoding as

a large disjunction of all program paths before checking whether properties hold on a
specific path. Impossible path constraints do not influence the logical verdict of the
overall disjunction between all paths, and the reasoning ignores them. One invocation
of the decision procedure filters executable branches and checks properties in one large
logical problem. In contrast, the ideal symbolic execution described by King [82] encodes
only feasible paths in a program and checks whether both branches are possible at any
branching statement. If this is the case, the branch statement creates a disjunction
between the two paths in the encoding. Otherwise, the symbolic executor follows only
the feasible path. Creating the encoding of the program does not require executing it.
King has not specified when properties are checked and how the symbolic tree should
be used.
In contrast to Figure 3.1, describing the constraint tree resulting from symbolic exe-

cution, dynamic symbolic execution does not require the full symbolic description of the
program to be generated in order to check the property. Instead, it only generates the
symbolic description for a single path that is concretely executed and checks properties
along this path before executing the next path. Reasoning happens after executing each
path to determine the input values for driving the next path using the collected path
constraint. For dynamic symbolic execution, the logical checks are only applied for en-
coding effects along a single path. I will demonstrate this difference by example, first for
a full symbolic encoding, followed by King’s symbolic execution, and by dynamic sym-
bolic execution. The demonstration focuses on describing the main differences between
these three encodings, as all of them are referred to as symbolic encoding in their spe-
cific domain but have small differences. As all have in common that they need symbolic
encoding for expressing the program symbolically, I will briefly explain the symbolic

37

3 Dynamic Symbolic Execution

1public boolean foo (int a){
2a = a + 6;
3i f (a > 100){
4i f (a < 50){
5asse r t false ;
6}
7return true ;
8} else i f (a == 100){
9asse r t false ;
10} else{
11return false ;
12}
13return false ;
14}

Listing 3.1: Running example method foo to
demonstrate symbolic execution.

X

X + 6 > 100

X +6 < 50

UNSAT
true; no error

X +6 == 100

-; assertion error false; no error

Figure 3.1: The symbolic execution tree of method
foo. The symbolic variable X represents parameter
a.

1public boolean foo (int) ;
2descr iptor : (I)Z
3f l a g s : (0x0001) ACC_PUBLIC
4Code :
5stack=2, l o c a l s =2, args_size=2
60 : iload_1
71 : bipush 6
83 : iadd
94 : istore_1
105 : iload_1
116 : bipush 100
128 : if_icmple 33
1311: iload_1
1412: bipush 50
1514: if_icmpge 31
1617: g e t s t a t i c #8
1720: i f n e 31
1823: new #9
1926: dup
2027: invokespec ia l #10
2130: athrow
2231: iconst_1
2332: i re turn
2433: iload_1
2534: bipush 100
2636: if_icmpne 53
2739: g e t s t a t i c #8
2842: i f n e 55
2945: new #9
3048: dup
3149: invokespec ia l #10
3252: athrow
3353: iconst_0
3454: i re turn
3555: iconst_0
3656: i re turn

Listing 3.2: Running example
method foo to demonstrate
symbolic execution.

encoding of Java programs upfront.

Symbolic Encoding of JVM bytecodes. Let me demonstrate the symbolic encoding
of JVM bytecode by example for the simplified method foo in Listing 3.1. The method
takes a parameter a, adds 6, and compares it in various nested if statements. Some of
the branches contain an assert false statement that terminates the program’s execution.
The other branches return either true or false, and the program continues with the return
value without other side effects.

Listing 3.2 shows a human-readable representation of the JVM bytecode representing
method foo after compilation. Line 1 shows the method name, Line 2 to Line 5 represent
metadata required for method look-up and memory reservation on the stack during the
execution of method foo. Line 6 to Line 9 are the bytecodes representing the addition

38

3 Dynamic Symbolic Execution

of a with six and the reassignment to a in the first line of foo. We see that iload_1 loads
the parameter a on the method stack, bipush 6 pushes the constant 6 on the method
stack, and iadd computes the actual addition on the stack. The sequences of iload_1,
bipush N, and if_icmpM L are the condition checks. N depends on the value pushed on
the stack. The constant is taken directly from the condition checks in Listing 3.1. M is
either le for less or equal, ge for greater or equal, or ne for not equal. L describes the
jump target in terms of bytes, if the check is successful, e.g., the if_icmple 33 bytecode
in Line 12 continues with the iload_1 bytecode in Line 24 if a is less than or equal to 100.
Otherwise the next bytecode in line is executed. The sequences iconst_0 or iconst_1
followed by ireturn are the bytecode counterparts for the Boolean return statements.
The two remaining sequences in Line 16 to Line 21 and Line 27 to Line 32 are the
bytecode expansions of the assertions in Line 5 and Line 9 of Listing 3.1.
Let us assume that it is possible to annotate any value within the JVM with addi-

tional symbolic annotations ignoring the concrete realization. For encoding the bytecode
sequence symbolically, we need to define the symbolic representation for three kinds of
bytecodes: those that introduce atomic symbolic values (new variables and constants),
those that create a functional relation between existing functions, or atomic values, and
those that branch the control flow. In the context of this thesis, all of these are mapped
on different types of functions that are used for defining the constraints of an SMT
problem as described in Section 2.1.
The first category, bytecodes that introduce atomic symbolic values, is represented

either as variables (aka functions without parameters) in the constraint of the corre-
sponding SMT problem, or as constant values. For the example, we will symbolically
represent the parameter a by the value X. The function type or constant type is chosen
depending on the type of the corresponding constant or variable in the Java program:
e.g., primitive int variables are represented as 32 bit bitvectors; therefore, X is a 32 bit
bitvector. The JVM variables are annotated with the symbolic counterpart in SMT-Lib
language.
The second category, bytecodes that establish a functional relation between other

elements, is mapped on named functions from the corresponding theory. In the given
example, the iadd bytecode in Line 8 of Listing 3.2 creates such a relation and is mapped
on the semantically corresponding named function bvadd in FixedSizeBitvectors theory.
As a is annotated with the SMT-Lib variable X and 6 is a constant, the annotation
added to the result value of the addition is (bvaddX 6)1. Directly after the execution of
the iadd bytecode in Line 8, the annotated sum is only placed on the stack, but the next
bytecode in Line 9, istore_1, ensures that the reassignment to parameter a happens.
The third category, bytecodes that branch the control flow, is also mapped to named

functions for the branching condition itself: e.g., the if_icmple bytecode in Line 12 of
Listing 3.2 is mapped on the named function bvsle. The bitvector theory interpretation
compares the two parameters against each other, interpreting the parameter values as
signed bitvector numbers returning a Boolean value. This part of the semantic precisely

1Of course, 6 has to be encoded as 32 bit bitvector as well, but for readability, I use the decimal value
here.

39

3 Dynamic Symbolic Execution

maps the JVM semantic of if_icmple. The condition might either hold or not during
the execution of the path. The concrete semantic of the JVM never allows both events
to be dealt with simultaneously in a single concrete run. How this split in execution is
encoded is the main difference between the three symbolic execution techniques, and I
will now discuss this in further detail.
Full Symbolic Encoding. The full symbolic encoding, e.g., the one computed by the
symbolic executor inside the bounded model checker CMBC [43], unrolls and encodes
all paths in the program until either all paths have been explored or an unwinding bound
is hit. Whenever the encoder encounters a branching statement, the current symbolic
encoding is forked and both branches are symbolically encoded. Encoding the effect of
method foo in Listing 3.1 as res and the information whether an error is raised as error,
the full symbolic encoding for the problem appears as follows:

((X + 6) > 100) ∧ ((X + 6) < 50) ∧ error

∨((X + 6) > 100) ∧ ¬((X + 6) < 50) ∧ res ∧ ¬error
∨¬(X > 100) ∧ (X == 100) ∧ error

∨¬(X > 100) ∧ ¬(X == 100) ∧ ¬res ∧ ¬error

(3.1)

The first path in Equation 3.1 with the path constraint part ((X+6) > 100)∧((X+6) <
50) is not satisfiable, but as the different paths in the full symbolic encoding are all
disjoint, this has no effect on the overall verdict in a property check. Maintaining the
unsatisfiable paths also allows the entire symbolic encoding to be computed by following
the bytecode without needing to involve an SMT solver. Loops are unwound until bounds
are hit, eventually adding a large volume of unsatisfiable subconstraints to the overall
disjunction that symbolically describes the program’s effects.
Symbolic Execution. In contrast to full symbolic encoding, symbolic execution checks
on every branching statement which of the branching conditions is satisfiable with re-
spect to the current collected symbolic manipulations on the variables that are involved.
‘Symbolic manipulations’ refers to calculations that change the original symbolic vari-
able before reaching the condition check. In the example in Listing 3.1, this refers to
adding 6 to the original parameter a and eventually applying restrictions in previous
path constraints. For example, the if condition check in Line 3 of the listing has only
the symbolic manipulation on a that the value has been incremented by 6. Therefore,
the current execution context is forked and one branch with ((X + 6 > 100)) and one
branch with ¬((X+6 > 100)). Inside the body of the if statement, the symbolic restric-
tion ((X+6 > 100)) applies for the parameter a. In consequence, a < 50 is unreachable,
and the symbolic executor executes only the else branch of this condition check. The
symbolic execution engine uses an SMT solver while exploring the program to make
these decisions.
For symbolic execution, it is common to describe the encoding as a constraint tree.

Figure 3.1 describes the constraint tree for method foo in Listing 3.1. We clearly see
the unsatisfiable path and all forking points during symbolic execution. King states that

40

3 Dynamic Symbolic Execution

the symbolic encoding for the overall program is the disjunction of all reachable paths.
The symbolic execution encoding of the same method therefore looks as follows:

((X + 6) > 100) ∧ res ∧ ¬error
∨¬((X + 6) > 100) ∧ ((X + 6) == 100) ∧ error

∨¬((X + 6) > 100) ∧ ¬((X + 6) == 100) ∧ ¬res ∧ ¬error
(3.2)

In a direct comparison between Equation 3.1 and Equation 3.2, we see that the encoding
is reduced by the unreachable path as the symbolic execution is a filtered view of the
full symbolic encoding. Nevertheless, the full execution is symbolically encoded, and all
intermediate calculations are visible in the encoding. The result is also symbolically en-
coded, allowing one to check properties for the whole program on the symbolic encoding
in Equation 3.2. SPF implements this kind of symbolic execution for Java [118].

Dynamic Symbolic Execution. Dynamic symbolic execution also cleans up the un-
reachable branches in the symbolic encoding. While most dynamic symbolic execution
engines allow collection of a symbolic constraint tree of the overall program and have
some recording capabilities for computing a symbolic description of the complete pro-
gram from the constraint tree, the analysis itself does not require the maintenance of the
complete tree. Moreover, in contrast with symbolic execution, it uses the concrete run
to decide at every branching statement the direction of the current execution branch.
It obtains the symbolic program description from running the program concretely while
recording all operations symbolically on the variable of interest occurring in the byte
code. Decisions on further required concrete runs are computed by a symbolic decision-
making component that works on the symbolic constraint obtained. Before I explain
how this decision-making component works, we have to look at the symbolic constraint
obtained from the first run, demonstrating the data underlying the decision-making.
Concretely running the method under analysis requires a driver that allows control of

the input for symbolic variables. In the case of the foo method in Listing 3.1, a main
method invoking foo might serve as a simple example of a driver omitting the details of
boilerplate code for the value injection here. A first run is typically executed with some
predefined default value for integers. The dynamic symbolic execution engines used for
the thesis start to run the program with every numeric value set to zero and strings set
to the empty string in the first run. For the foo method, we would observe successful
execution of the concrete path and obtain a symbolic trace similar to the following:

¬((X + 6) > 100) ∧ ¬((X + 6) == 100) (3.3)

The main difference between Equation 3.3 and the previously presented encodings
is the encoding of the single path. All other symbolic encodings of internal states are
dropped after executing the path. The outcome is not symbolically encoded as only a
successful execution or observed errors are recorded in the summary.
Next, the path constraint in Equation 3.3 is a conjunction of conditions along a single

path. Each subpart of the conjunction describes one condition along the path that

41

3 Dynamic Symbolic Execution

X

(X + 6) > 100

?
(X + 6) == 100

? Ok

(a) The first run.

X

(X + 6) > 100

(X + 6) < 50

?

Ok

(X + 6) == 100

? Ok

(b) The second run.

X

(X + 6) > 100

…

(X + 6) == 100

Error Ok

(c) The third run.

Figure 3.2: The symbolic execution tree as unrolled during dynamic symbolic execution
in the symbolic decision maker running breadth-first search. Each sub-figure shows the
information added by a run.

potentially guards the execution of a second branch after the branching instruction.
The symbolic decision component splits these individual conditions but maintains the
order from left to right. By negating the individual conditions and solving the resulting
path constraint using an SMT solver, the symbolic decision-maker computes concrete
values for driving down the execution along the other paths in the program.

Figure 3.2a shows the internal representation of the trace from Equation 3.3 and the
two branching points. The representation contains only the conditions and the informa-
tion that the path executed successfully without errors. We see two not yet explored
branches marked by a question mark in the representation. These are potentially ex-
ecutable branches representing new paths through the program. They are sometimes
also called open branches in the temporary decision tree of the dynamic symbolic exe-
cution. The symbolic decision-maker picks one of these open branches according to its
exploration strategy and tries to satisfy the condition. I will explain the different explo-
ration strategies in the next section but assume for now that it takes the top branch for
further exploration. After solving the SMT problem consisting of the single constraint
(X + 6) > 100, the model returned by the SMT solver is transformed into a concrete
value for reexecuting the program and driving the execution down this path. A concrete
value for the parameter a satisfying this constraint is 100. Equation 3.4 summarizes the
information obtained symbolically during the second run with a = 100:

((X + 6) > 100) ∧ ¬((X + 6) < 50) (3.4)

The first condition in the trace maps to an existing decision node, this time taking
the previously open branch as expected after solving the SMT problem. The path
evaluates successfully without any observed errors or property violations and adds a
new decision node to the tree. Figure 3.2b represents the updated constraint tree. The

42

3 Dynamic Symbolic Execution

newly added node has a newly open branch. Assuming the symbolic-decision maker
targets this branch next, it will create the SMT problem with the constraint ((X +6) >
100) ∧ ((X + 6) < 50), but the SMT solver determines this problem as unsatisfiable.
This implies that this branch is unreachable in the program. As this concludes all
possible branches on the left of the root decision, this part of the tree is completely
explored without any property violation or reachable error. In theory, this part of the
tree can be replaced with a short remark that the state space behind this branch has
been explored successfully. Figure 3.2c therefore only show three dots as replacement.
In practice, the dynamic symbolic execution tools for Java used in this thesis maintain
the complete constraint tree representing all explored branches. However, by the design
of the analysis, they are not required to do so. The trees are maintained solely for
documentation purposes.
Dynamic symbolic execution has to rerun the program a third time with 94 as concrete

value for a to explore the last missing branch. This time, the symbolic trace will record
the two already known decision nodes followed by an assertion error during execution.
The path is marked accordingly, and the exploration stops, as the constraint tree is
completely explored (cf. Figure 3.2c).
Comparison of Figure 3.2 and Figure 3.1 shows that dynamic symbolic execution

represents potentially less information in the tree compared to a complete symbolic
execution tree of a single method, as this technique does not require maintaining the
complete tree in memory. Therefore, it is valid to materialize only a partial constraint
tree over time2. While this looks at first glance like a weakness of the method, it is in fact
the strength of dynamic symbolic execution over symbolic execution. Thus for analyzing
the question whether foo can trigger an assertion violation, tracking the result of foo in
the symbolic encoding is irrelevant. Of course, if contained in the symbolic execution
tree, it does not prevent analysis of this problem. However, the additional symbolic
encoding might add complexity to the decision problem, thus hindering the analysis.
This is especially the case if full symbolic encoding is used for property verification, as
larger aspects of the encoding are passed to the SMT solver. Moreover, as dynamic
symbolic execution checks this property on each path, it uses symbolic reasoning power
to compute the driving inputs but evaluates the property check dynamically in the JVM.
If symbolically encoded properties are checked on the state space, they are checked after
every path, as this is the only point during dynamic symbolic execution when the full
symbolic encoding of the current path is available in the JVM. Symbolic execution and
techniques working with full symbolic encoding must use symbolic reasoning power for
larger encoded chunks of the program.
As I see it, dynamic symbolic execution is a divide-and-conquer approach for symbolic

analysis. It not only slices the problem into smaller symbolic subtasks but can offload
parts of the analysis into the runtime, e.g., the decision about which branch to follow first

2Remark: GDart and JDart maintain the whole explored part of the constraint tree because we
have not yet encountered a situation where reducing tree size is required. Moreover, JDart encodes
sufficient information in the constraint tree for computing symbolic method summaries from the
constraint tree for historical reasons [59]. These features are extensions to a pure dynamic symbolic
execution engine.

43

3 Dynamic Symbolic Execution

at a branching statement. Symbolic execution invokes the SMT solver at any branching
statement to solve this question. This also introduces drawbacks, as analysis parts are
pushed into the JVM and do not persist as an intermediate format by design. Collecting
intermediate results for proof validation might require explicit infrastructure, whereas
other techniques reuse intermediate results. By design, and in consequence of the divide-
and-conquer strategy, dynamic symbolic execution has a chance to detect errors in the
analysis of a single subtask along a single path. Therefore, it can already provide benefits
in situations that do not terminate during the conversion to full symbolic encoding.
Morover, the analysis can be used as a verification result if the search is exhaustive and
all generated subtasks are solved. Without any changes in approach, it might be used
in other cases as a white-box fuzzer for finding errors, with the proviso that guarantees
of the absence of error are weaker if the technique is used for fuzzing (one example
of successful application in fuzzing is the tool SAGE [70]). JDart and GDart are
dynamic symbolic execution engines for the JVM, and I will go on now to describe
common aspects of their architecture.

3.2 A Reference Design for Dynamic Symbolic Execution
As part of the present thesis, I participated both in the enhancement of JDart (cf. Pa-
per III [102] and Paper II [103] in comparison to the original JDart paper by Luckow
et al. [89]), and in the introduction of GDart (cf. Paper V [101]). Both are dynamic
symbolic execution engines built on top of two different JVMs. They follow similar
design principles in their architecture, but these are only partially discussed in the exist-
ing literature and are not presented in any of the papers mentioned above. JDart was
mentioned for the first time in 2015 [59]], but the first detailed tool paper was released at
TACAS 2016 [89]. Working on JDart led to participation at SV-COMP 2020 and the
Jaint framework. In parallel, while working on JDart, an understanding of reference
architecture for a dynamic symbolic execution engine arose between the participating
developers. In this section, I will sketch that architecture and the mechanisms accu-
mulating ideas behind both dynamic symbolic execution engines. Some details are still
implemented differently, but the overall design is similar. I will explain this in more
detail in the tool architecture section below. This will be followed by an explanation of
some details of the symbolic explorer and the concolic executor. The remaining para-
graphs in this section will describe specific technical details in the design of GDart and
JDart that work similarly between the two JVMs and ease symbolic annotation during
concrete execution. In addition, I will highlight design decisions in the Java standard
library that are beneficial for the symbolic instrumentation. These can be safely ignored
by readers not interested in implementing a dynamic symbolic execution engine for the
JVM themselves.

Tool Architecture. Figure 3.3 describes the architecture of JDart. The main compo-
nents are the Explorer and the Executor. We also find both components in the form of
the DSE component (Explorer) and SPouT (Executor) in Figure 3.4, which describes
the GDart architecture. In both tools, the explorer controls the execution of a certain

44

3 Dynamic Symbolic Execution

Figure 3.3: The architecture of JDart as described by Luckow et al. [89]

Constraint-
Solving

(CVC4, Z3, …)

Symbolic
Exploration

(DSE/ JConstraints)
Concolic
Execution
(SPouT)

Concrete ValuesSMT Problem

Symbolic TraceModel

Figure 3.4: The architecture of GDart as described in Paper V [101]
.

branch by passing concrete values for concolic variables to the executor. The concolic ex-
ecutor reports back the symbolic constraints describing the execution path. Both tools
use the JConstraints [77] library to represent the symbolic constraints in the con-
straint tree maintained by the explorer. Backend solving is done by a constraint solver,
e.g., a state-of-the-art SMT solver like Z3, or a portfolio solver using the design pat-
terns presented in Paper IV [100]. Both architecture sketches describe how the different
components interact and which data is interchanged. The only difference between the
two tools in this view is that JDart communicates by method calls as both components
run within the same virtual machine, while GDart communicates between the compo-
nents using inter-process communication and a string-based representation format for
exchanging the gathered symbolic constraints3. A side effect is that JDart expands the
constraint tree step-wise whenever a branching condition is encountered, while GDart

3Remark: For conciseness, I have not presented the string-based format in this thesis as it is a minor
technical detail for the problem described. Nevertheless, the string-based representation documents
the intermediate results produced by the executor and enables persiting them. Paper VI [105] de-
scribes the BNF grammar for the string based representation generated by SPouT.

45

3 Dynamic Symbolic Execution

updates the tree after every path. But this is a minor detail not influencing the fact
that both tools start processing on the tree after finishing a path run. JDart does
not exploit the earlier notifications on changes in the constraint tree compared with
GDart’s updates at the end of the path. Thus—if you ignore the names of concrete
tools in the brackets—Figure 3.4 describes the reference design for a dynamic symbolic
executor. The core components of JDart responsible for dynamic symbolic execution
can be projected from 3.3 onto Figure 3.4.

Program

Guest VM charAt()

Host VM

uses

(a) Normal proccessing of programs running
on the guest VM.

Program

Guest VM Substitute
charAt()Concolic

Host VM

charAt()

uses

concrete
delegate

symbolic
delegate

(b) Using the implementation in the host VM
for computing concrete effects.

Figure 3.5: Methods are replaced in the guest VM for symbolic instrumentation, but the
concrete implementation in the host VM is reused.

Symbolic Explorer. TThe symbolic explorer maintains the intermediate constraint
tree described for dynamic symbolic execution in the previous section. The main point
to explain here is the different tree exploration strategies. The main algorithms used in
this thesis for deciding the next branch are either backtracking or breadth-first search.
Backtracking starts at the end of the last explored path and crawls upwards on the tree
until a decision node with an open end is found, and the condition leading to this open
end is satisfiable. Breadth-first search explores the tree from the root node, searching for
the closest reachable open end in relation to the root. It is possible for both strategies to
close multiple unreachable open ends before finding the next reachable path in the con-
straint tree. JDart originally supported only the backtracking implementation. Paper
II [103] adds the breadth-first search as a configuration option for SV-COMP 2021. In
addition, we added an option for bounding the maximum depth of symbolic exploration
along a single path. This is called the search bound.

Concolic Executor. JDart and GDart share the same model and strategy for im-
plementing the concolic executor. Both tools instrument a guest JVM written in Java
that is executed on top of a normal JVM. Figure 3.5 shows this on the left. Without
further modification, the program under analysis runs on top of the guest VM. the guest

46

3 Dynamic Symbolic Execution

VM, which interprets all bytecodes of the program under analysis. The host VM’s only
job is executing the guest VM. This separation is absolute. The program running on the
guest VM cannot access any information in the heap space or on the stack of the host
VM directly unless the guest VM transfers information from the program under analysis
into the host VM and vice versa.
Consequently, it is possible to manipulate the heap space layout arbitrarily in the

guest VM, e.g., for extending objects with additional fields carrying the symbolic in-
formation. Further, the stack in the guest VM can be patched for processing concrete
values together with symbolic annotations. All bytecodes can be instrumented to gen-
erate symbolic information apart from the concrete execution. Furthermore, the class
loader is controlled, allowing the implementations of classes or single methods to be
replaced. Paper I [107] on Jaint explains in detail how JDart uses heap space manip-
ulation, stack manipulation, and bytecode instrumentation. The same techniques are
used in SPouT, the concolic executor of GDart, for generating concolic traces. Paper
VI [105] describes SPouT’s internals.

Intercepting Method Invocations for API Level Symbolic Encodings. In the
version of JDart described in the tool paper at TACAS 2016 [89], symbolic encoding
works for primitive types in the JVM. The bytecodes are instrumented for all primitive
types to take care of the symbolic annotations. Objects are explored by tracking the
effects on the primitive type components and ignoring the overall object structure. In
order to lift the symbolic encoding for string operations to the Java standard library
level—a process that I will discuss in more detail in the next chapter—this is insufficient.
Instead, we need to intercept the invocation of the method on the string object, compute
the concrete effects in the JVM, and track the symbolic encodings separately on the
string operation level.
To better understand the problem, look at the code example in Listing 3.3 and the

compiled bytecode for the same example in Listing 3.5. The bytecodes in Line 6 to Line
10 of Listing 3.5 are connected to the creation of the StringBuilder object buffer. As
the string passed to the constructor of the buffer object is generated using the non-
detString method on the Verifier class, it is considered a nondeterministic string. The
dynamic symbolic execution creates a symbolic variable, e.g., B for this string and tracks
it as an addition to the object. Next, during the evaluation of the assertion condition,
the charAt method is invoked on the buffer object that contains the symbolic string
B. This is done using the bytecode invokevirtual in Line 15 after pushing the object
reference on the stack in Line 13 and the constant zero in Line 14. And this bytecode
is where things get complicated. As I will explain in Chapter 4, we will encode this
method on the string library level. This means the symbolic execution trace contains a
named function that is interpreted for encoding the charAt method. At the same time,
the concrete operation has to compute the concrete results. The computation of the
concrete results invokes different methods on the StringBuffer and String classes.
In the concrete example, the index value is at some point compared with the length

of the string in the checkIndex method shown in Listing 3.4. The problem is that
the length in the buffer object is a primitive field in the symbolic object that gets a

47

3 Dynamic Symbolic Execution

1public static void main(String [] args) {
2StringBuilder buf fer =
3new StringBuilder (
4V e r i f i e r . nondetString ()) ;
5asse r t buf fer . charAt (0)
6== buf fer . charAt (4) ;
7}

Listing 3.3: The main method of the String-
BuilderChars03 task in the SV-COMP 2022
Java track.

1static void checkIndex (int index ,
2int length) {
3i f (index < 0 index >= length) {
4throw new
5StringIndexOutOfBoundsException (
6” index ” + index
7+ ” , length ” + length) ;
8}
9}

Listing 3.4: The checkIndex method part
of the String class in the standard Java
library.

1public static void main(String []) ;
2descr iptor : ([Ljava/ lang/ String ;)V
3f l a g s : (0x0009) ACC_PUBLIC, ACC_STATIC
4Code :
5stack=3, l o c a l s =2, args_size=1
60 : new #2
73 : dup
84 : invokestat ic #3 // nondetString
97 : invokespec ia l #4 // <ini t >
1010: astore_1
1111: g e t s t a t i c #5
1214: i f n e 38
1317: aload_1
1418: iconst_0
1519: invokevirtual #6 // charAt
1622: aload_1
1723: iconst_4
1824: invokevirtual #6 // charAt
1927: if_icmpeq 38
2030: new #7

//AssertionError
2133: dup
2234: invokespec ia l #8 // <ini t >
2337: athrow
2438: return

Listing 3.5: The bytecode for the method
on the left.

symbolic description. This symbolic description is required for various cases to correctly
encode the effects of operations on the buffer object. Therefore, the branching condition
of the checkIndex method becomes visible in the dynamic symbolic execution result.
The primitive comparison bytecodes are instrumented to reflect this branching guard
for the symbolically annotated length. But this time, this is not what we want. We
are inside the concrete execution of the charAt method and the symbolic effects are
encoded before or after the invokevirtual bytecode that actually triggers the execution
of the charAt method. But none of the bytecodes executed to compute the concrete
counterpart should alter the symbolic encoding before bytecode aload_1 in Line 16 of
Listing 3.5 is executed.
One way to work around this problem is to intercept all method invocations and guard

those that are part of the symbolic instrumentation with special semantics. This can
be done by altering how the JVM looks up invocation targets but slows down overall
execution. Another possibility would be patching the code required for the symbolic
annotations into the standard library, as in the SymbolicString approach by Shannon et
al. [132]. But this either requires recompiling the standard Java library or patching the
system under analysis to use the symbolic annotated classes. As the dynamic symbolic
execution already instruments the JVM, changing any of the classes of the system under
analysis or the runtime is the wrong solution in our case. JPF-VM andGraalVM both
support another mechanism that replaces an arbitrary method in any class by replacing
it. The JPF-VM calls these (Native-)Peers and the GraalVM calls them substitutions.

48

3 Dynamic Symbolic Execution

In this thesis, I will call these method substitution methods as common terminology. In
both virtual machines, the consequence is that the original method body contained in
the class file is not loaded, and instead, the substitution method is executed. This allows
interception of the method invocation and patching it with symbolic annotations. The
only problem is that the original method body is no longer executed, but the effects of the
concrete execution have to be established in the heap of the JVM, allowing the concrete
execution to continue without altering the semantics. Otherwise, it is no longer a concolic
executor. In the following paragraphs, I present how delegation to the Host VM pattern
and calling parent methods pattern helps to execute the concrete method semantically.
Both patterns enable symbolic encoding of API level in the concolic executor and are
important technical implementation details for supporting symbolic encodings on the
Java library level.

Delegation to the host VM. Figure 3.5 describes on the right how delegation to
the host VM for concrete execution works. In the example, the substitute method that
replaces the charAt method converts the strings from the guest VM to the host VM.
On the host VM, it calls the concrete implementation of charAt with the converted
value and converts the result back to the guest VM. In the guest VM the substitution
uses it as a return value of the substitute method. As the guest VM maintains the
symbolic encoding, the computation inside the host VM does not influence the symbolic
representations. This is possible for all cases where the host VM and the guest VM have
semantically equivalent implementations. If the guest VM and the host VM differ in
their semantics, e.g., because they operate on different language levels, this is impos-
sible. Moreover, this delegation only works for pure functional methods without side
effects leading to internal state changes of the object within the heap storage area of the
guest VM. Otherwise, applying the delegation pattern to mask concrete execution in the
symbolic encoding is impossible. Symbolic tracking is performed within the substitution
method that operates in the context of the guest VM, ensuring that the symbolic anno-
tations are attached to the final result when it reenters the guest VM and is available
in future method calls. JDart and GDart use this strategy extensively to implement
concrete behavior for stateless string functions. But the concepts work the same way in
both VMs and conceal the VMs’ switch from the program under analysis. This strategy
is only possible so long as the tools use two layered VMs.

Invocation of Outsourced Implementations. For methods that change the state
space in the heap of the guest VM, it is impossible to delegate concrete execution to the
host VM. Replicating the changes in the heap space requires the implementation of a
semantically equivalent concrete semantic in the guest VM. For many methods affected
by this problem, the design of the concolic executor exploits the fact that the Java
standard library bundles a common implementation in a transparent super class. Often,
these super classes are package- or module-private and are not documented in the Java
documentation as they are not intended to be used directly. But as the functionality is
implemented in the super class and the externally exposed child class works as a facade
to the super class, the concrete semantic on the heap is also established by the super
class. The substitution method only has to replace calls to the other internal classes in

49

3 Dynamic Symbolic Execution

Program
StringBuilder

append(...)

AbstractStringBuilder

append(...)

invokes

delegate

(a) The call chain in the Java standard
library.

Program

StringBuilder

append(...)

SPouT’s
Substitute
append()

AbstractStringBuilder

append(...)
Concolic

invokes
concrete
delegate

substituting

symbolic
delegate

(b) The effects of substituting the append() method
on the call chain.

Figure 3.6: Methods of replacing the concrete method in the guest VM, but allow to call
other methods for reimplementing the original behavior.

order to establish the expected effects on the heap of the guest VM.
The left side of Figure 3.6 shows one such example, where StringBuilder and String-

Buffer share the same parent class AbstractStringBuilder that does the actual implemen-
tation and heap space manipulation involved in invoking methods on objects of these
types. As the substitute method is a replacement of the original method body, it inherits
the call context of the original method, allowing the same package-private methods to
be called. Therefore, the substitute method can replicate the call to the parent class to
execute the concrete manipulation in the heap space. In addition, it adds the code for
symbolic encoding. This way, it is often possible to replicate the concrete behavior of
the substituted method body and the side effects on the heap state without rewriting all
the changes to the heap in the substitute method. The implementation maintains the
original semantics faithfully in the concrete execution. Using the facade pattern in stan-
dard libraries or frameworks, therefore, eases symbolic instrumentation for components
that are encoded on a higher level than primitive types.

3.3 The Concrete vs. Symbolic Tradeoff
The purely symbolic execution of Java has to model every effect of the execution sym-
bolically. If the target is an SMT-Lib encoding, the effects must be described in the
SMT-Lib language. While this is easily possible with primitive type operations as they
map directly into the bit vector or floating-point theory of SMT-Lib, the symbolic repre-

50

3 Dynamic Symbolic Execution

sentation of reference type data structures (aka all objects in the JVM) is more challeng-
ing. Combining concrete and symbolic execution in dynamic symbolic execution allows
balancing of the volumes of concrete vs. symbolic encoding. I will first explain how the
concrete encoding restricts search space and allows horizontal scale-out of the analysis.
Secondly, I will show how symbolic encoding allows environment modeling to overcome
situations that normally require external input during concrete execution.

Concrete Drivers for Slicing the Search Space. A method under verification
typically has some parameters or other source of external user input that allows a certain
level of randomness during program execution. In verification slang, this is often called
the nondeterministic part of the program compared to the deterministic part that is
fully predictable. In the example of Listing 3.1, the X parameter to method foo is
nondeterministic. Symbolic execution starts executing the method foo and treats X
symbolically.
Running a program concretely in JVM requires starting the execution with the main

method. It is impossible to start execution of foo without embedding it in the main
method. JDart used some configuration mechanism to pick up the method under
analysis and locate the symbolic parameters. This decouples the driver completely from
the analysis configuration. For SV-COMP 2020 [102], we integrated the Verifier class
of SV-COMP into the JDart tool so that values could be marked as nondeterministic
if they were created by the Verifier class. It is always assumed that the value is at least
initialized so that it is possible to create a variable of the corresponding data type in the
SMT-Lib language. We used this Verifier class in the driver of the OWASP benchmark
for the experiments with the Jaint framework in Paper I [107], as well for marking
nondeterministic Strings in the analysis.
Modeling nondeterminism using the Verifier class is convenient, as the driver becomes

the configuration for the analysis and combines both in a single file. But while the
assumption that primitive data types are always initialized holds in Java, it is a different
story for reference data types, e.g., strings. In Java, a string value might be a null pointer
if it is not already initialized. Given the SMT-Lib language’s semantics, it is impossible
to encode in the SMT problem that a variable might be a null pointer. Together with the
assumption that a value has to be initialized to be controlled symbolically, this means
that the analysis will never execute paths that require the string variable to be a null
pointer. Limiting the symbolic search space in the concrete driver makes the symbolic
encoding of the remaining problem easier.

1public static void main(String [] args){
2int i = V e r i f i e r . nondetInt () ;
3foo (i) ;
4}

Listing 3.6: An unrestricted driver for
method foo from Listing 3.1.

Next, I will demonstrate the limitation
of the search space by example for the
method foo in Listing 3.1. As a short re-
minder, all execution paths terminate suc-
cessfully, except the one where foo is in-
voked with 94. A possible driver is the
main method in Listing 3.6. If this driver
is used, the problem will be explored as described in Section 3.1. However, there is
no hard rule in the machinery—like invoking the method with a not null value—that

51

3 Dynamic Symbolic Execution

restricts the driver from applying restrictions on the search space.
For the foo example, the driver can also restrict the input to any value other than

94 as shown in Listing 3.7. In this case, dynamic symbolic execution will not find

1public static void main(String [] args){
2int i = V e r i f i e r . nondetInt () ;
3i f (i != 94){
4foo (i) ;
5}
6}

Listing 3.7: A driver for method foo from
Listing 3.1 restricting the nondeterministic
value.

the assertion violation. On the other hand,
a second driver might analyze only the
path, where the nondeterministic value is
94. This way, the driver scopes the search
space. i refer to this effect whenever I
say the result of the analysis is correct
within the search space limited by the
driver method.
For a full analysis of all possible paths

in a program, some analyses will require
more than one driver method. If objects are involved, splitting the search space in the
set of paths where the object is null and a set with those paths where the object is
not null is one possible split. The advantage is that it is possible to run the dynamic
symbolic execution of the subspace reachable by a driver class independent from the
other classes. Hence, this allows a full horizontal scale-out. By limiting the search
spaces systematically in the concrete driver, the slicing produced might be finer than
only null pointers vs. initialized values, as shown for the foo method in the paragraph
above. The interplay between the concrete driver and the state space requiring symbolic
exploration provides strength in scaling dynamic symbolic execution.
For the Jaint framework, we also limit in the concrete driver how many cookies the

request passed to an invocation of an HttpServlet has. This cuts down the required
symbolic expression power to model an arbitrary cookie array, but it also requires some
reasoning about the implication of the limitations in the concrete driver on the verifi-
cation verdict. This reasoning needs to explain why the scope defined by the symbolic
driver is useful to answer the relevant security properties. Otherwise, there is the risk
that the restrictions implied by the driver will mask a security weakness.

In the long run, combining the analysis from different dynamic symbolic execution
runs into a final verdict, and cross-checking it by applying some branch coverage metric,
would be desirable. However, this thesis leaves that cross-checking as an open question
in favor of focusing initially on the Jaint framework first.

Environment Modelling Using the Substitution Pattern. Substitution methods
and symbolic encodings allow not only symbolic modeling of library calls. Dynamic
symbolic execution also uses these techniques to mock potentially asynchronous envi-
ronments symbolically, cutting dependencies on other libraries. The concrete executor
step in dynamic symbolic execution generally has the same challenge as any dynamic
testing method, as all of them need to run the system. If the code under test waits
asynchronously on an external event, it might block for a long time in the test until
the external event is somehow triggered. I will not discuss general strategies for mod-
eling the test environment in more detail here but I will demonstrate by example how
substitution methods allow creation of what Feathers, in his book “Working Effectively

52

3 Dynamic Symbolic Execution

with Legacy Code” [63], calls fake-objects for decoupling the execution of systems from
the externally controlled state. In this case, symbolizing concrete parts allows analysis
of the system behind the blocking concrete call. Moreover, as asynchronous calls in
Java typically take input from somewhere, the symbolic modeling aligns well with the
semantics of these methods that introduce new nondeterministic data to the program.

1. . .

2socket = new Socket (”host . example . org” , 1234);
3readerInputStream = new InputStreamReader (
4socket . getInputStream () , ”UTF−8”) ;
5readerBuffered = new BufferedReader (
6readerInputStream) ;
7String stringNumber = readerBuffered . readLine () ;
8. . .

Listing 3.8: An example of socket use in Java.

Consider the example of us-
ing a socket in Listing 3.8. A
socket is first bound to a spe-
cific port in Line 2, and Line 7
later reads the incoming data
from the socket using a Buffere-
dReader. In between, the code
creates a couple of different
stream readers on the socket’s
input stream. The read opera-
tion is supposed to block in Java until the socket binds against the specified port and
receives data over the network. For analyzing such programs, it is sometimes desirable
to specify a substitute method that does not block and, e.g., returns a nondetermin-
istic (or concolic) string value, or raises one of the potentially occurring errors. This
technique allows the definition of arbitrary models and replacements for original Java
code and makes it possible to inject symbolic models, skipping parts of the concrete
implementation. It is used wherever analysis of a target program is impossible because
of a blocking implementation.

53

4 String Operation Encoding for DSE
A central contribution of this thesis is adding symbolic reasoning for Java programs with
strings to the dynamic symbolic execution engines presented here. We briefly mentioned
the string handling as contributions to JDart for SV-COMP shortly in Paper II [102]
and Paper III [103] but never explained how the string encoding works. Paper II [102]
only states that we use a bitvector-based string encoding, and Paper III [103] states
that we switch from a bitvector-based encoding to a SMT-Lib string-based encoding.
For GDart, Paper VI [105] explains briefly the specific details for the handling of
strings in SPouT. As none of these papers discusses the required scope for a symbolic
encoding of the Java string library or explains the limitations carefully, I will complement
those previous papers with a discussion of implementation scope, explain the difference
between the two encoding strategies, and highlight the open challenges for dynamic
symbolic execution of programs with strings that are pointed out in this thesis. But
first, I will start with an example that will clarify the challenges of integrating symbolic
strings into dynamic symbolic execution.

Motivating Example. In the way we program, strings are often used as the smallest
unit of a complex data structure for storing textual information, similar to the usage of
primitive data types. Consequently, a string library with operations on strings is a core
component of most modern programming languages, and programmers are usually not
interested in the details abstracted away by the string library. For example, in the case
of Java, Eler et al. [62] have shown in a study across 147 programs that strings are the
most often used data type after primitive integers and complex objects in Java programs.
But strings are not a primitive data type for most hardware architectures. Hence a string
value will be internally represented using numeric primitive types. This is also the case
for the JVM. The concrete implementations change over time, but in Java 17, a string
consists internally of a byte array, a string length, and some encoding information all
represented as numeric data types. To analyze string operations, the analysis must decide
between either encoding the primitive numeric representation, often called a bitvector
encoding (cf., e.g., Redelinghuys et al. [120]), or intercepting the string operations and
encoding them on the string data type level. Shannon et al. [132] and Bjørner et al. [26]
have shown that encoding the analysis problem on the string theory level is beneficial
for decision procedures and eases faithful error modeling in the analysis. This thesis
will call this encoding strategy string theory encoding. For building a dynamic symbolic
execution engine, it is therefore important, when deciding on the symbolic encoder,
to encode string operations symbolically in either bitvector or string theory encoding.
Figure 4.2 visualizes this design question. The concrete executors must establish the
concrete execution result in the heap and on the stack in every execution. Depending

54

4 String Operation Encoding for DSE

1public void site_exec (String cmd) {
2String r ; // r e s u l t
3String p = ”/home/ ftp /bin” ;
4int j , sp = cmd. indexOf (’ ’) ;
5i f (sp==−1){
6j = cmd. lastIndexOf (’ / ’) ;
7r = cmd. substr ing (j) ; }else{
8j = cmd. lastIndexOf (’ / ’ , sp) ;
9r = cmd. substr ing (j) ;
10}
11i f (r . length () + p . length () > 32) {
12return ; // bu f f er overf low
13}
14Stringbuf=p+r ;
15i f (buf . contains (”%n”)) {
16throw new Exception (”THREAT”) ;
17}
18execute (buf) ;
19}

Listing 4.1: Example of a program with
strings containing a code injection vul-
nerability taken from Redelinghuys et
al. [120].

............

(= indexOf(CMD,′ ′) − 1) (not (= indexOf(CMD,′ ′) − 1))

Figure 4.1: The string constraints get directly
integrated into the constraint tree.

Java Program

cmd.indexOf(’ ’)

Dynamic Symbolic
Executor

Concrete
Executor

Symbolic
Encoder

Bitvectors

String
Theory

Figure 4.2: During the execution of the Java
program, the dynamic symbolic executor splits
execution into the concrete and the symbolic
part. The question to solve is, what the sym-
bolic encoding should look like: bitvectors or
string theory.

on the configuration, the symbolic encoder maps the string operation to one of the two
possible encodings. Separating concrete execution from the symbolic encoding allows
this flexibility.
Next, I will give an example to demonstrate what string theory encoding looks like

during dynamic symbolic execution and how string operations are encoded on the string
theory level in the constraint tree. Listing 4.1 presents the site_exec method that takes
a single string parameter cmd as input. For the purposes of analyzing this method,
consider this parameter as a nondeterministic value; every string operation involving this
parameter must then be traced in the symbolic execution tree. The constraint recorded in
the symbolic execution tree is fine-grained enough to generate models using the constraint
solver that drives the execution down the different paths. For example, the variable sp
gets as symbolic value the indexOf(cmd, ’ ’) operation assigned in Line 4 and the result
is compared against −1 in Line 5. Figure 4.1 shows how the indexOf(cmd, ’ ’) and the
comparison of the result against the numeric value is expressed in the symbolic constraint
tree on the string theory level. It does not decompose into bitvector constraints about
the value array representing the string in the JVM as is the case for bitvector encoding.

Historically, JDart used to encode only primitive types in its original design, which
does not allow constraints to be kept on the string theory level in the constraint tree.
Redelinghuys et al. [120] claimed that a bitvector or a string theory encoding is less
relevant for analyzing programs with strings, and the integration of string and numeric
constraints is more important for the performance of the overall approach. Therefore,
we started with a bitvector encoding in JDart. Later, we discovered the advantages of
the string theory encoding and extended JDart with that encoding.

55

4 String Operation Encoding for DSE

For the implementation of JDart and GDart, this raises three central questions
regarding the general design of the component that deals with string operations in a
dynamic symbolic execution engine:

SRQ1: Which functions are part of the string library that must be intercepted?

SRQ2: How are these functions encoded?

SRQ3: What are the limitations of the encoding?

In the following sections, I will define the scope of the Java string library as a set
of Java data types and operations that require support in encoding for the analysis of
Java programs. I will call this scope definition the language SLJ . SLJ is my answer
to SRQ1. I will then describe and summarize our experiences with encoding SLJ using
bitvectors. I call this the SLBV encoding strategy. The following subsection describes the
SLSMT encoding strategy translating SLJ into string theory constraints. The section
concludes with a comparison of SLBV and SLSMT , followed by a discussion of open
challenges not answered in this thesis. All these sections together answer the string
research questions SRQ2 and SRQ3. But before I continue with this, I want to highlight
two specific solutions presented for SRQ1 and (partially) SRQ2 in the literature.

Symbolic Representations of Strings in the Literature. Two papers significantly
influenced the design of the solution as presented in this thesis significantly: Bjørner et
al. [26] and Redlinghuys et al. [120].
Bjørner et al. [26] described first how lifting the symbolic representation of string

operations from a bitvector encoding to a higher abstraction language benefits dynamic
symbolic execution engines. They introduced the string library language LL to model
string operations in Pex [138] and mapped these to an SMT-Lib encoding before invoking
Z3. By modeling string constraints separately from integer constraints, they could in-
terweave the symbolic representation and concrete execution and raise exceptions. This
allowed faithful analysis of all program paths, including exception handling.
Redelinghuys et al. [120] compared bitvector encoding with automata-based decision

procedures for symbolic analysis of Java programs. Bitvector encoding uses the Z3
solver, while automata-based representations use the automaton solver part of the Java
String Analyzer (JSA) project by Christensen et al. [41]. They introduced the language
SLR as a minimum subset of operations required to analyze programs involving strings.
The result of the comparison was that there are no clear benefits in using a bitvector
vs. automata-based solver. Instead, the main challenge they pointed out was achieving
integration between the constraints defining the string content part and those defining
numeric operations on the string, e.g., limiting the string length.
In comparison with the string library LL presented by Bjørner et al. [26], the Java

string language is more expressive, as I will show in detail in section 4.1. Hence it is
undecidable in the general case as the LL subset of SLJ is already undecidable in the
general case. While this is generally an unwanted theoretical result for building tools
using decision procedures for string theory, there are still decidable subparts and decision

56

4 String Operation Encoding for DSE

The Java String Library

toString(c), toUpper(s), compare(s1, s2), replace(s1,s2,s3),
chars(s, i), concat(s1, s2), contains(s1,s2), equals(s1, s2),

indexOf(s1, s2, i), lastIndexOf(s, c), length(s),
startsWith(s1, s2), substring1(s, i), substring2(s, i1, i2)

LL [26]

trim(s1), endsWith(s1, s2)
SLR [120]

String Datatype and Concatenation Helper

*IgnoreCase(s1, s2), contentEquals(s1, seq2),
strip*(s1), matches(s1, s2), split(s1, s2),
join(s1, s2[]), repeat(s1, i1), reverse(s1)

codePointAt(s1, i1), format(s1, o[]...), indent(i1), ...,

The SLJ Library

Serialization and Deserialization of Primitive Types
parseFP(s1, fpSize), toString(fp1),

toString(i, encoding), parseInt(s1), ...

Characters
isDigit(c), isUpperCase(c), isLetter(c),...

Regular Expression with Capture Groups
Operations and States on the Pattern and Matcher objects.

Figure 4.3: The required symbolic operations in SLJ for encoding the Java 17 string
library.

heuristics that in practice solve many problems involving string constraints. From the
tool building and engineering perspective, it is, therefore, crucial to understand the limits
of string theory solving in available SMT solvers (cf. Paper IV [100], which contributes
to answering the performance question on existing benchmarks) as well as the limits in
the expressiveness of the SMT-Lib language.

4.1 SLJ a Tailored Subset of the Java String Library for DSE
The Java string library is split across multiple classes in the Java standard library. It
consists of five main parts: the string data type itself (java.lang.String), classes for string
concatenation (e.g., java.lang.StringBuilder), the boxing objects for other primitive types
containing the code for type conversion and value parsing from a string representation

57

4 String Operation Encoding for DSE
M
ethod

SF110

SV-COMP

Jenkins

SLJ

LL

SLR

SLBV

SLSMT

M
ethod

SF110

SV-COMP

Jenkins

SLJ

LL

SLR

SLBV

SLSMT

M
ethod

SF110

SV-COMP

Jenkins

SLJ

LL

SLR

SLBV

SLSMT

java.lang.String
java.lang.C

haracter
java.lang.StringB

uilder
equals

7
8
1
9

1
0
3

33
3

3
3

3
3

3
isW

hitespace
59

1
0

3
append

4
6
47

43
322

3
3

3
3

3

length
4
3
2
9

4
7

23
2

3
3

3
3

3
toString

56
0

0
toString

689
17

78
3

3
3

3
3

substring
2
1
0
8

2
1

18
9

3
3

3
3

3
charValue

51
0

0
delete

8
2

0
3

trim
1
2
8
1

2
3

9
4

3
3

isD
igit

46
4

2
3

3
replace

7
0

0
3

3
3

indexO
f

1
2
6
5

1
5

7
2

3
3

3
3

toU
pperC

ase
()

38
2

1
3

3
(3

)
indexO

f
6

0
0

3
3

3
3

form
at

1
1
1
4

0
15
6

valueO
f

38
0

0
3

insert
4

3
5

3
3

startsW
ith

1
0
0
1

8
14
7

3
3

3
3

3
toLowerC

ase
()

25
2

0
3

(3
)

lastIndexO
f

3
0

0
3

3
3

charAt
9
93

7
1

5
4

3
3

3
3

3
isLetter

17
5

2
3

deleteC
harAt

2
2

0
3

equalsIgnoreC
ase

()
7
52

4
2
4

3
(3

)
isU

pperC
ase

12
1

0
3

reverse
0

2
0

endsW
ith

6
29

3
7
0

3
3

3
isSpaceC

har
8

0
0

3
java.util.regex.M

atcher
com

pareTo
6
18

6
1
9

3
3

(3
)

digit
5

1
0

group
370

6
38

getBytes
5
11

5
7
6

isLetterO
rD

igit
5

1
0

3
find

201
3

16

replaceAll
5
07

9
2
3

3
3

3
equals

4
1

0
3

3
m
atches

191
0

43

valueO
f

4
97

3
0

2
0

3
isJavaIdetifierStart

4
1

0
3

start
21

0
6

split
4
61

5
5
6

3
(3

)
isJavaIdentifierPart

4
1

0
3

end
19

0
7

replace
4
27

5
9
5

3
3

3
toC

hars
3

0
0

appendReplacem
ent

13
0

1

lastIndexO
f

4
25

8
2
6

3
3

3
getN

um
ericValue

2
0

0
3

replaceAll
12

0
2

toU
pperC

ase
()

3
43

3
2
4

3
3

(3
)

getType
2

0
0

groupC
ount

10
0

4

contains
2
83

7
10
4

3
3

3
3

3
isLowerC

ase
2

1
0

3
appendTail

8
0

1

toC
harArray

1
76

1
5

forD
igit

1
2

0
quoteReplacem

ent
5

0
0

com
pareToIgnoreC

ase
()

1
70

0
1
0

3
(3

)
isISO

C
ontrol

1
0

2
3

replaceFirst
1

0
3

concat
7
6

7
0

3
3

3
3

3
isU

nicodeIdentifierPart
1

0
0

3
java.lang.StringB

uffer
m
atches

5
1

1
4

2
8

3
3

isU
nicodeIdentifierStart

1
0

0
3

append
0

82
1

3
3

3
3

3

replaceFirst
3
9

3
8

3
3

isD
efined

0
2

0
3

charAt
0

0
1

3
3

3
3

3

toLowerC
ase

()
2
5

1
8

3
9

3
(3

)
java.lang.Integer

codePointAt
0

0
0

regionM
atches

1
2

4
0

3
3

3
3

3
parseInt

1
398

4
73

3
(3

)
(3

)
com

pareTo
0

0
0

3
(3

)
getC

hars
1
0

1
0

valueO
f

608
2

2
3

delete
0

0
0

3

subSequence
4

0
0

toString
444

1
17

3
deleteC

harAt
0

0
0

3

contentEquals
2

0
0

3
3

3
3

3
toH

exString
54

0
3

indexO
f

0
0

0
3

3
3

3

join
0

0
2
1

3
decode

9
1

1
3

insert
0

1
0

3
3

java.lang.F
loat

toBinaryString
4

0
0

lastIndexO
f

0
0

0
3

3
3

parseFloat
9
8

1
9

2
3

(3
)

(3
)

toO
ctaleString

1
0

0
length

0
4

2
3

3
3

3
3

valueO
f

5
0

0
0

3
java.util.regex.P

attern
replace

0
0

0
3

3
3

toString
3
7

0
0

3
m
atcher

390
2

64
reverse

0
0

0

java.lang.D
ouble

com
pile

383
2

64
setC

harAt
0

0
0

parseD
ouble

2
47

1
2

3
(3

)
(3

)
pattern

20
0

0
substring

0
0

0
3

3
3

3

valueO
f

7
5

2
0

3
split

13
0

1
toString

0
24

3
3

3
3

3
3

toString
4
0

2
0

3
quote

6
0

0
setLength

0
1

1

m
atches

2
0

1

Table
4.1:A

com
parison

ofusagesofdifferentoperationsfrom
the

Java
17

string
library

in
three

differentsetsofJava
classes.

SF110
represents

105
of

the
java

program
s
included

in
the

EvoSuite
[66]used

for
unit

test
case

generation
benchm

arking.
T
he

analysis
failed

to
analyze

alldependencies
for

five
ofthe

110
projects.

SV
-C

O
M
P

is
the

collection
ofallJava

classes
used

in
the

SV
-C

O
M
P

2022
task

set.
Jenkins

describes
allclasses

and
dependencies

used
in

the
core

Jenkins
package.

R
ed

are
these

operations
that

are
used

in
the

program
s
but

are
not

part
ofthe

SV
-C

O
M
P

challenge.
T
he

crossed
out

functions
in

the
StringBuffer

are
defined

in
the

library
but

never
used

by
a
program

.
T
he

ticks
in

the
SL

J ,
L
L,

SL
R ,

SL
B
V ,and

SL
S
M

T
colum

ns
show

w
hether

this
operation

is
included

in
the

language
or

encoding.
Braces

around
the

tick
im

ply
only

partialsupport
in

the
encoding

for
this

operation
or

that
it

is
only

contained
in

JD
art.

58

4 String Operation Encoding for DSE

(e.g., java.lang.Float), the character boxing object for dealing with the conversion be-
tween the numeric and string semantic of a single character (java.lang.Character), and
pattern matching related operations (java.util.regex.Matcher and java.util.regex.Pattern).
To answer SRQ1, I analyzed the usage of the Java string library in three different

projects: The EvoSuite, SV-COMP 2022, and Jenkins. The EvoSuite [66] consists of
110 Java programs collected from SourceForge and has been published to demonstrate
the efficiency of automated tools for unit test case generation. The table includes 105
of these programs, as the analysis failed for 5 of them while resolving the dependencies.
The SV-COMP 2022 task set is the Java track of SV-COMP 2022 [18]. Jenkins is a
single larger Java application. As Jenkins is a modern CI/CD Server, the codebase
represents a full-grown Java application.

Next, I will briefly discuss why I collected these three sets of Java class files for
analysis. For SF110, there is, from time to time, a discussion about whether the selection
is representative for Java programs and of high quality or not (cf. Dimjašević et al. [58]
complaining about empty benchmarks in the task set and Eler et al [62] comparing it
with the R47 Java program set estimating that within both program sets 75% of all
methods have only one execution path without branching, making large parts of the
programs less attractive for symbolic analysis). But, to the best of my knowledge, it
has not been shown that the SF110 is unrepresentative compared with other mixes of
Java programs or real-world software in general. On the other hand, Eler et al. [62]
show that it is comparable with the R47 benchmark set. However, it is a defined set
of Java programs used in different papers to compare tool performance, so it is the
first step toward a standardized benchmark. SV-COMP aims to establish a set of tasks
that allows a representative comparison of different software verification tools. For this
reason I have included it in the comparison. I included Jenkins, as it is a mature real-
world application allowing comparison of the benchmark sets established by researchers
with a larger production-grade code base. Apart from that, the SF110 benchmark was
released in 2014, and SV-COMP has many participants with Java 8 tools, so most of the
newer changes introduced after the introduction of compact strings in JEP 2541 are not
contained in this benchmark, given that JEP 254 is a part of Java 9. As Jenkins had
adapted some of these already (e.g., the join operation), I added it to the comparison.
At the same time, as Jenkins is a well-maintained web server, it also shows that not all
features of the Java library are used in full-sized Java programs.

Table 4.1 presents the analysis results. Methods of Java 17 not presented in the table
are not used in these three projects. Based on the methods used and existing work in
the literature, I define the scope of SLJ here to include a desirable subset of Java string
library operations for running the dynamic symbolic execution of programs with strings.
The resulting scope of SLJ is presented in Figure 4.3 and represents my answer to SRQ1.
We see in the top functions defined in the Java string library part of the String data
type and the concatenation helper classes StringBuffer and StringBuilder. Below, we
see the functions involved in the serialization and deserialization of primitive types and
characters. The part of these four groups that is included in SLJ is within the dashed

1https://openjdk.java.net/jeps/254 {last accessed: February 2022}

59

https://openjdk.java.net/jeps/254

4 String Operation Encoding for DSE

rectangle that shows the border of SLJ . The bottom shows regular expressions with
capture groups, an important part of the Java string library that this thesis excludes
from SLJ . These different parts are discussed in further detail below.

The String Datatypes and Concatenation Helpers. The string data type String
and the concatenation helper classes StringBuffer and StringBuilder represent the first
two of the five main parts identified previously. As shown in Table 4.1, the previously
mentioned string languages, LL and SLR, represent for the most part symbolic opera-
tions that are attributed to this part of the JAVA string library. Moreover, they partially
overlap, as shown in Figure 4.3.
I define both string languages as a subpart of SLJ as they represent often used meth-

ods. This includes equals, length, substring, indexOf, startsWith, charAt,
lastIndexOf, contains, concat, and regionMatches. contentEquals is not
discussed as part of LL or SLR, but the symbolic encoding works the same as for
equals, if the other object is encoded as a symbolic string value which is semantically
required by the Java semantic. Therefore, mark it as part of the other two languages
as well, and map it to the equals encoding internally.
The concatenation Helpers in Table 4.1 are the StringBuffer and StringBuilder class.

Both share the same semantic for the API. Further, many aspects of their APIs match
the String data type. With the symbolic expression of concat for two string variables,
it is possible to model the append method of the buffer and builder API. The same
applies for charAt, indexOf, lastIndexOf, and length methods. As each symbolic
StringBuffer or StringBuilder is modeled using symbolic expressions, toString on these
objects is implemented by returning the concrete string annotated with the current
symbolic description of the builder or buffer. This does not require any special support
in the symbolic encoding and is therefore always supported.
There are some additional methods supported exclusively in LL or SLR. LL sup-

ports toUpper, compare, and replace which I define to be part of SLJ as well. In
consequence, SLJ and LL overlap in encoding compareTo, replaceAll, replace,
and toUpperCase on the String data type and toUpperCase on the Character data
type. SLR supports endsWith and trim overlapping with SLJ on these methods.
Next, I added a set of methods to SLJ that is used in Java programs and might have

influence on the control flow path, but is not expressible using the currently existing
symbolic method encodings in LL or SLR. For the String data type, these are equal-
sIgnoreCase, compareToIgnoreCase, matches, replaceFirst, toLowerCase,
split, and join methods. Especially equalsIgnoreCase and compareToIgnore-
Case are still often used, given the analysis of Table 4.1, and have the potential to
influence branching conditions. So they are an important part of SLJ for the analysis
of the target domain. delete and deleteCharAt are the reverse method of insert
on a StringBuilder or a StringBuffer. They are included in SLJ , as they are sometimes
required; but they are also not the most important methods for the dynamic symbolic
execution of programs with strings, as they are still rarely used.
At the same time, I excluded certain standard operations like format, getBytes,

toCharArray, subSequence and codePointAt that (for different reasons) are chal-

60

4 String Operation Encoding for DSE

lenging in their symbolic encoding. format is very handy for printing strings, but the
encoding is not straightforward and describing symbolically the serialization and deserial-
ization of objects to strings is currently difficult. A scaling solution requires the encoding
of serialization and deserialization for all primitive datatypes and potentially unbounded
collections. Table 4.1 shows that format is one of the most often used methods in the
String data type. In the long term, expanding SLJ in this direction is desirable, but
as this requires major work on a theory solver that deals with unbounded collections,
which is beyond the scope of this thesis, I have excluded it from SLJ for the time being.
codePointAt is introduced as a long-term replacement of charAt, but I have not found
a single occurrence of this method in the programs analyzed and have therefore excluded
it. Therefore, I exclude it. getBytes, toCharArray, and subSequence require en-
coding of arrays of characters or bytes symbolically and link the bytes with the string
values. SMT-Lib does not support the encoding of these operations while maintaining
the link between the chars of the string and the string value. As this requires additional
support in the symbolic theory and is not on my main path of research for combining
dynamic symbolic execution with taint analysis, I have defined these methods as out of
scope for SLJ . I have excluded reverse on a StringBuilder or StringBuffer from SLJ ,
as it is only ever used in the SV-COMP competition and never in any program.

Primitive Type to String Serialization and Deserialization. Functions are also
required for parsing floating-point values from strings, converting floating-point values
to strings, representing different integers in different binary notations (most common
are hexadecimal, octal, and binary encodings), and converting back from such a string
encoding to an integer. . I consider these functions part of the string library, but it is
generally debatable whether they belong to the library or to number representation. To
the best of my knowledge, this has not yet been discussed in the literature. Nonetheless,
full dynamic symbolic execution requires support for these conversions in the symbolic
encoding and I, therefore, define parseFP(s1, fpSize), toString(fp1), toString(i,
encoding), parseInt(s1), and valueOf(...) as part of SLJ . As valueOf is defined
for number serialization in the String class and for deserialization in different number
classes, e.g., the Double class. I only use three dots here for the parameter. In total, the
parseFP, parseInt and valueOf methods are invoked in 2973 places in the SF110
class set of Table 4.2, making type conversion more important than the substring
method and the fourth most often used feature of SLJ in this group of analyzed classes.
For Jenkins, this subclass counts 99 invocations, making type conversion the fifth most
often used feature of SLJ .

Characters. The part of the string library dealing with characters needs methods for
checking and applying domain restrictions for individual characters. There are many
Boolean condition checks like isDigit(c), isUpperCase(c), isWhitespace(c), etc.
that I have included in SLJ , as they have the potential to influence branching conditions.
As these methods check for different source domain ranges for the parameter character
passed in their semantic, they all have a similar structure as regards the nature of the
required check. The semantics of the checks align with some of the different character
classes supported in the pattern language in Java like: \p{Lower}, \p{Upper}, and

61

4 String Operation Encoding for DSE

\p{Space}. These classes are only lower, upper, or white space letters. Support for
encoding these character classes in the reasoning backend eases the modeling of Java
string constraints.
At the same time, Table 4.1 shows that the methods defined for the Character class are

seldom used (e.g. by Jenkins) in comparison with other parts of the Java string library.
Depending on the analysis target, some dynamic symbolic execution applications will
not need them for successful analysis. Nevertheless, they are part of SLJ .
Regular Expressions. Java’s pattern language leads us to the fifth major part of
the Java string library: regular expressions and pattern matching. The simplest way
of matching a string s1 against a pattern s2 is to check the Boolean value of the match
in the matches(s1, s2) operation2 already offered by the standard string data type.
However, Patterns are so important for the Java string library that they have their own
class to represent them: Pattern. A Pattern object is built around a regular expression
represented in the pattern object and compiled into an optimized form on creation. A
pattern object allows strings to be split on every match of the pattern, as with the
previously mentioned split(s1, s2) function on String. Moreover, it can check whether
a string value matches the pattern.
A specific feature of the Java regular expression language is capture groups that allow

back references. For Example, the following Java pattern “[s|S]ecurity (.*)$” matches
everything in a line after the word “security” and a whitespace until the end of the
line. Given the string “security for the win”, the pattern matches. In contrast to pure
regular expressions that either match or do not match, regular expressions with back
references allow one to access the matched content after the match. The Java regular
expression language uses parentheses for defining a capture group that allows access to
all characters within this part of the pattern after a match. For the example string used,
the content of the capture group is “for the win”. Matching regular expressions with
back references is an NP-hard problem [3]. As it is more common in the Java context to
call these capture groups rather than back references, I will use the term capture groups
in the remainder of this document.
The Java standard library uses theMatcher data type for working with capture groups

in regular expressions. It allows a pattern to be checked for potential matches on a string
and makes the capture groups accessible if a pattern is successfully matched. This class
can replace or extract capture groups depending on the use case. Table 4.1 shows 370
calls to the group method on the Matcher class in the SF110 benchmark suite and 38
calls in the Jenkins application. They are accompanied by 191 invocations of matches
in the SF110 benchmark suite and 43 invocations ofmatches in Jenkins on the Matcher
class. In contrast, SF110 calls in 51 cases matches on the String class and Jenkins in
28 cases. Given these numbers, regular expressions with capture groups are more often
used than regular expressions alone in the Java programs analyzed.

2Remark: While having a similar name, the regionMatches(s1, s2) operation has a totally different
behavior, as it extracts two subparts from s1 and s2, checking them for equality. It could be modeled
by compiling regionMatches into a sequence of substring and equals operations on the strings
instead. This does not involve regular expressions. Therefore, I do not discuss this operation in more
detail here, but we support it with the symbolic operations contained in SLJ

62

4 String Operation Encoding for DSE

1public static void main(String [] args) {
2args = new String [2] ;
3args [0] = V e r i f i e r . nondetString () ;
4args [1] = V e r i f i e r . nondetString () ;
5String s1 = args [0] ;
6String s2 = args [1] ;
7asse r t s1 . equals (args [0] + ” ”) ;
8asse r t s2 . equals (args [1]) ;
9}

Listing 4.2: The StringConcatenation02 ex-
ample from the SV-COMP Java track
demonstrating concatenation and equality
comparison of partially symbolic strings.

S1

S2

(= (str.len s1)
(+ (str.len s2) 1))

UNSAT AssertionError

Figure 4.4: The symbolic constraint tree
resulting from the analysis of Listing 4.2

Symbolic modeling of capture groups is currently not possible given the current ca-
pabilities of the string theory in SMT-Lib 2.6. Especially, modeling the extraction of a
group from a string that follows a regular expression with capture groups is not express-
ible in SMT-Lib at the moment. Describing capture groups using bitvectors is also not
possible. As there is no established way for encoding these operations and all their im-
plications, I exclude these from SLJ for now. Instead, I will discuss the open challenges
in Section 4.4, as this is a limitation of SLJ for the analysis of arbitrary Java programs.
To make this visible, I have represented them at the bottom of Figure 4.3 outside of the
dashed area representing SLJ .

4.2 JDart’s Bitvector Encoding SLBV

In this subsection, I present the scope and sketch the technical realization of the bitvector
encoding SLBV developed as first string operation support in JDart (cf. Paper III [102]
and Paper I [107]). The bitvector encoding aims to model the operations on strings as
closely as possible to the representation of strings in the Java standard library.

In the concrete implementation, a string is a tuple of a length and an array of values
representing characters. Similarly, a symbolic string sbv in the bitvector encoding as pre-
sented here is a tuple Sbv = (sl, sc[]) where sl is a symbolic 32-bit bitvector representing
the length of the string and sc[] is an array of expressions representing the content of
every single character in the string. To represent the char type of the JVM with some
accuracy, this encoding uses an unsigned 16-bit bitvector to encode a single character.
In this encoding, every character has its symbolic variable in the resulting SMT problem.

Example. Consider the example for an analysis task in Listing 4.2. Assume we execute
it for the first time using dynamic symbolic execution. Line 3 and Line 4 create two
fresh symbolic variables with a string length of zero as they are empty strings in our
analysis by default in the first run: Sbv1 = (int0, []) and Sbv2 = (int1, []). Next, Line 7
executes a concatenation of Sbv1 and whitespace. The symbolic expression that traverses

63

4 String Operation Encoding for DSE

through the JVM annotated to the result is Sconcat = ((+ int0 1), [′ ′])3. This encodes
the statement that the string has a symbolic prefix of length zero influenced by int0
extended by the length of the concrete string concatenated with the symbolic string.
The resulting concrete string is a single whitespace “ ”. A string of length zero does not
have any chars. Therefore, the resulting string has a symbolic length, but no symbolic
chars in this run. Next, the assertion in Line 7 is evaluated implying the symbolic
check (= Sbv1 Sconcat). A two-step approach is used to encode this symbolic check into
SMT-Lib using the bitvector encoding. First, the encoding generates constraints in the
bitvector theory for checking the string length constraints as the numeric component of
the check. Second, the actual string content is checked as to whether the numeric part is
satisfiable. In this specific case, the numeric aspects of equals require that both strings
are of equal size. The first step generates the constraint (not (= int0 (+ int0 1))) and
adds it to the symbolic decision tree as shown in Figure 4.4. As the concrete execution
raises an assertion error, no further constraints are added and the branch terminates.
As the negated constraint (= int0 (+ int0 1)) is unsatisfiable, this is the only path that
ever gets executed in this example. There is never a semantic equivalent check on the
symbolic characters is never required.

charAt(s1, i1)

IndexOutOfBoundException the char value

i1 < 0 ∨ i1 ≤ (str.len s1) 0 ≤ 1 ∧ i1 < (str.len s1)

Figure 4.5: The thrown exceptions for the
charAt method depending on the numeric con-
straints involved.

Faithful Error Handling. The
above-described two-step strategy fol-
lows the proposal by Bjørner et al. [26]
for encoding string constraints during
the analysis in PEX [138]. All encod-
ings proposed for JDart use this two-
step strategy for encoding string con-
straints. The advantage is that it is
possible to model thrown errors faith-
fully, allowing the exploration of exception handling code during dynamic symbolic
execution. For example, whenever the index of the charAt(s1, i1) method is out of
bound, the SLJ requires an IndexOutOfBoundException. Otherwise, it returns
the character at position i1 in string s1 (cf.Figure 4.5). Separating the string length
part of the problem from the string content representations allows the encoding of an in-
dex violation symbolically before throwing an exception during execution of the concrete
method. Irrespective of the concrete theory used for encoding, we too—like Bjørner et
al. [26]—require this separated modeling of the error condition for generating concrete
inputs from the SMT model that drives execution down the error paths.
We require this separated modeling of the error condition for generating concrete

inputs from the SMT model that drives the execution down the error paths as well,
similar to Bjørner et al. [26] independent of the concrete theory used for the encoding.

SLBV covers the following operations symbolically: charAt(s1, i1), concat(s1, s2),
contains(s1, s2), equals(s1, s2), length(s1), regionMatches(s1, s2), starts-

3Remark: As these values are represented as bitvectors in SMT-Lib, the real constraint annotated to
the symbolic value is (bvadd int0 #x0000001). For readability, I keep the integer notation even for
bitvectors in the main text as it is easier to convey the relevant ideas.

64

4 String Operation Encoding for DSE

With(s1, s2), substring(s1, n1), and substring(s1, n1, k1).

Completely Encoded Methods. All in all, SLBV encodes only eight methods fully
symbolically using the bitvector theory of SMT-Lib: startsWith, charAt, equals,
concat, lastIndexOf, regionMatches, contains, and substring. In direct com-
parison with Table 4.1, , the number of ticks is higher than just these eight methods. The
reason is that some methods map on the same symbolic encoding from different methods
in the Java string library: e.g., append of the StringBuilder or StringBuffer class maps
on the same symbolic concatenation operation in SMT-Lib as the String concatenation
method. equals and contentEquals are mapped to the same symbolic equality be-
tween two string theory variables. length on String, StringBuffer, and StringBuilder
all map on the same logical encoding for the length of a symbolic string variable. But we
only implement it for Strings. Other methods, e.g., toString on the StringBuilder or
StringBuffer do not require symbolic modeling, as the content of the builder or buffer is
already encoded in the symbolic variable associated with the concrete object. However,
as StringBuilder was the only concatenation helper class used in SV-COMP 2020 and
we have used the SLBV encoding for this year, operations on StringBuffer are not im-
plemented as part of JDart’s SLBV implementation. In theory, they are encoded the
same way as the methods invoked on StringBuilder and I have therefore ticked them in
Table 4.1, but the interceptions are not in place in the code base.

Partial Encodings. There are four ticks in brackets in Table 4.1. One is related to
splitting a string, and the other three are related to number de- and serialization. As
described in the caption of Table 4.1, the brackets imply a partial or JDart-specific
encoding. As these methods are only partially encoded, due to the challenges involved,
I will discuss them in greater detail inwwww Section 4.4.

Brief Discussion. All in all, of the 72 methods ticked in SLJ in Table 4.1, SLBV en-
codes 15 methods completely, using the previously described 8 symbolic methods, and
4 partially, using prototypes. As it requires significant effort to rebuild semantics for
matching regular expressions in this encoding, SLBV has never supported operations like
matches(s1, s2). Moreover, our implementation does not support direct comparison
of a character against a certain class of characters, e.g., as required to encode the isUp-
perCase method. . This limitation alone is responsible for 18 (i.e. roughly a third) of
the unsupported 53 methods. Finally, SLBV does not encode regular expressions in any
form at the moment, limiting its applicability for methods requiring regular expressions
as matches.

4.3 The String Theory Encoding SLSMT

The string theory encoding used in JDart works similarly to bitvector encoding with
the main exception that the string part of an operation is expressed in the string the-
ory of SMT-Lib rather than encoding a string character-wise in the form of bitvectors.
Paper II [103] calls this encoding strategy SMT-Lib encoding; but as bitvectors are also
expressed using SMT-Lib, the name is misleading. String theory encoding is a better

65

4 String Operation Encoding for DSE

SLJ Operation SLSMT Operation SLJ Operation SLSMT Operation
concat(s1, s2) (str.++ s1 s2) isDigit(c1) (str.is_digit c1)

contains(s1, s2) (str.contains s1 s2) length(s1) (str.len s1)

contentEquals(s1, seq2) (= s1 seq2) replace(s1, s2, s3) (str.replace_all s1 s2 s3)

endsWith(s1, s2) (str.suffixof s1 s2) startsWith(s1, s2) (str.prefixof s2 s1)

equals(s1, s2) (= s1 s2) substring(s1, i1) (str.substr s1 i1 (str.lens1))

indexOf(s1, s2) (str.indexof s1 s2 0) substring(s1, i1, i2) (str.substr s1 i1 (− i2 i1))

indexOf(s1, s2, i1). (str.indexof s1 s2 i1)

Table 4.2: Mapping from the SLJ language into the SMT-Lib language (adapted from
Table 1 in Paper VI [105]).

name, as the strategy uses the string theory in SMT-Lib. I will explain this encoding
and discuss the advantages and disadvantages of the approach below. Paper VI [105]
already described parts of this encoding in the context of SPouT.
String theory encoding extends on the idea of intercepting the Java string library and

encoding the problem on the library level. This allows string operations to be mapped
on the string data type in SMT-Lib and string operations to be used to express SLJ in
SMT-Lib. The encoding is unaware of the internal representation of a string. A symbolic
string Ssmt is converted to an SMT-Lib variable of type string representing the string
object. The length is accessed using the SMT-Lib operation (str.len Ssmt). This is
similar to the usage of a string variable in a Java program. As described in Section 2.2,
the numeric operations part of SMT-Lib returns integer values in SMT-Lib theory. The
primitive integer Java data type int is a 32-bit bitvector datatype in the semantic, and
we encode it in JDart and GDart in the bitvector theory. Hence, the integer values
must be cast into bitvectors with the (nat2bv) operation.
Reconsider, then, the example in Listing 4.2. In the SMT-Lib encoding, the newly in-

troduced symbolic strings in Line 3 and Line 4 are represented by the two variables Ssmt1

and Ssmt2. The concatenation operation in Line 7 results in the SMT-Lib constraint
(str.++ Ssmt1 ” ”). For the following equality comparison, the SMT-Lib constraint is
(not (= Ssmt1 (str.++ Ssmt1 ” ”)), which is satisfiable and is the currently executed
branch in the first run, as the concrete value is assumed to be the empty string in the
first execution satisfying this constraint. The example demonstrates how encoding into
SMT-Lib using string theory allows a higher abstraction level in the symbolic encoding.
In what follows, I will elaborate in further detail on the relation between the SMT-Lib
language and SLJ in more detail, starting with those operations mapping directly from
SLJ to SMT-Lib and continuing with those that do not map directly.

Table 4.2 presents the part of SLJ that maps directly to SMT-Lib without further
modification. The model computed by the constraint solver fits the Java semantics, and
no additional error handling is required. The results of these functions overlap in seman-
tic meanings between both languages without any additional result interpretation. Thus
e.g., concat(s1, s2) always returns the concatenation of s1 and s2. Other functions, as
IndexOf(s1, s2) do not raise an error if s2 is not found in the string but rather return
-1 in Java and SMT-Lib semantics. Hence these two semantics fit well.

There are also a lot of operations in SLJ that do not match the semantic of their

66

4 String Operation Encoding for DSE

SLJ Operation SLSMT Operation Comment
charAt(s1, i1) (str.at s1 i1) The charAt function requires some error han-

dling in Java not represented in the SMT-Lib
function str.at.

compareTo(s1, s2) (str. < s1 s2)
(str. <= s1 s2)

SMT-Lib has lexicographic ordering operations
but they need to be embedded in the evaluation
of compareTo splitting the three value result
logic to binary decisions.

compareTo-
IngoreCase(s1, s2) – There is no mapping in SMT-Lib allowing the

encoding of the ignore case semantic. Using
solver specific operations as toUpper allow to
work around this limitation.

equals-
IgnoreCase(s1, s2) – The same problem as for compareToIgnore-

Case applies.
isLetter(c1)

isUpperCase(c1) – It is possible to use str.to_code to convert c1
into a code point. But afterwards the unicode
table defining which code points are within the
target domain have to be encoded as well. In
practice, we have only achived to encode this
for limited ranges on the code point.

join(s1, s2[]) – There is no way for expressing a join on a sym-
bolic string array yet as we have not really a way
to express the capacity of an array symbolically.

lastIndexOf(s1, s2)
(declare-const x Int)

(and (= (str.at s1 x) s2)
(not (exists ((y Int))

(and (< x y) (< y (str.len s1))
(not (= (str.at s1 y) s2))))))

We can encode this using helper variables, but it
is leaving theQF_SLIA theory as quantifiers are
required. Therefore, the encoding is not within
the official theory definition of the SMT-Lib any-
more as SLIA is not defined as official theory.

matches(s1, s2) (str.in_re s1 ...) Depending on the complexity of the pattern in-
volved in s2, this is possible. But the pattern
contained in s2 needs to be transformed to SMT-
Lib first.

parseFP(s1, fpSize)
parseInt(s1) – It is not possible to model this in SMT-Lib at

the moment (cf. Section 4.4, Linking Numbers
and Strings).

split(s1, s2) – It is not possible to model a full symbolic split
case in SMT-Lib at the moment. Enforcing the
equality of the concatenation of the new sub-
parts with the separator s2 and s1 during the ex-
ecution of one path is possible. (cf. Section 4.4,
Encoding Requiring Knowledge About Future
Usage.)

reverse(s1) – Reversing a string is not supported in todays
SMT solvers.

strip(s1)
(and (not (= (str.at s1 0) “ ′′))

(not (= (str.at s1 (−
(str.len s1) 1)) “ ′′)))

While this encoding implies that the first and
last character are no whitespaces, it is no pos-
sible to express that a string might be shorter
after strip in this encoding.

stripIndent(s1)
stripLeading(s1)
stripTrailing(s1)

trim(s1)

– See the problem with strip. The same applies
for these methods.

toString(fp1)
toString(i1)
toString(c1)

– There is no symbolic encoding in SMT-Lib that
allows to convert a numeric value in its string
representation.

toUpper(s1)
toLower(s1)

(str.upper s1)
(str.lower s1)

These functions are not supported in the official
SMT-Lib standard. CVC4 supports it as a cus-
tom interface.

insert(s1, s2, i1)
delectCharAt(s1, i1)

delete(s1, i1, i2)
- These function do not have a counter part in

SMT-Lib but can be encoded using substring to
split the existing string and gluing the remaining
parts together using concat.

Table 4.3: Functions that cannot be mapped from the SLJ language directly and pre-
cisely to SLSMT or do not maintain their semantic (adapted from Table 2 in Paper
VI [105]).

67

4 String Operation Encoding for DSE

IndexOutOf-
BoundsException

(str.at s1 0)

IndexOutOf-
BoundsException

(str.at s1 4)

Ok AssertionError

(not (> (str.len s1) 0)) (> (str.len s1) 0)

(not (> (str.len s1) 0))
(> (str.len s1) 4)

(= (str.at s1 0)
(str.at s1 4)) (not (= (str.at s1 0)

(str.at s1 4)))

Figure 4.6: The dynamic symbolic execution tree resulting from full exploration of the
example in Listing 4.3 assuming that the symbolic string variable is called s1. The
constraints next to the arrows are the symbolic encodings required to describe the Java
semantics for this path. For simplicity, the required bitvector to integer conversion code
in SMT-Lib is not shown.

counterpart in SMT-Lib, or have no direct counterparts in SMT-Lib requiring a more
elaborate encoding for the Java method using multiple SMT-Lib operations. These
functions are listed together with a short explanation in Table 4.3. Following this, I will
discuss the encoding challenges that result from integrating error handling, resolving
semantic mismatches between Java and SMT-Lib, and encoding regular expressions in
more detail. In addition, I will explain how these three problems impactv dynamic
symbolic execution on programs with strings.

Faithful Error Handling. Like SLBV encoding, SLSMT provides a precise model for
exceptions and errors in the Java language. As SMT-Lib and Java string semantics
vary in error case semantics, a more precise encoding requires a two-step approach like
the SLBV error modeling presented in Section 4.2. Here, I will describe the approach in
more detail for charAt(s1, i1) as an example using the string theory encoding.

1public static void main(String [] args) {
2StringBuilder buf fer =
3new StringBuilder (V e r i f i e r . nondetString ()) ;
4asse r t buf fer . charAt (0) == buf fer . charAt (4) ;
5}

Listing 4.3: The StringBuilderChars03 example from
SV-COMP 2022 using charAt on a symbolic string.

Consider the example in List-
ing 4.3. It creates a String-
Builder object from a nonde-
terministic string value and as-
signs it to the variable buffer
in Line 3. Line 4 compares the
character at position zero and
position four. Further, it asserts
that these two characters in the
nondeterministic string are always equal, which is not the case. As the presented dy-
namic symbolic execution engines run with the empty string “” value for a new symbolic
variable as default in the first execution, the first charAt operation at Line 4 throws

68

4 String Operation Encoding for DSE

an IndexOutOfBoundsException. Encoding this path using the str.at method in the
SMT-Lib is insufficient, as (str.at ”” 0) is satisfiable in SMT-Lib theory semantics for
the empty string. Instead, SLSMT uses a two-layer encoding in such situations allowing
for faithful error and exception handling of the Java semantics.
First, it encodes the string length requirements so that the concrete execution does

not throw an IndexOutOfBoundsException for this specific charAt(...) invocation, as
shown at the top of Figure 4.6. Reexecuting the program with some input values that
validate the negation of the resulting guard expression enforces the exploration of the
other branch in the tree at the root node. On the other hand, if a concrete execution
involves a concolic value that runs down the right branch in the decision at this point,
the length constraint will check later, during symbolic exploration, whether an exception
is possible. Symbolic encoding of the length constraint ensures the creation of a model
that triggers this exception if it is used for driving the concrete execution.
Secondly, the operations on the string part are mapped to the str.at function in SMT-

Lib after the correct string length for the requested indices is ensured. Consequently,
four concrete runs are required to explore this small example completely.
Two-step encoding is required because a high-level language such as Java allows two

return values in the form of an error or a result value. Thus the SMT-Lib allows the
outcome of the operation to be compared against the empty string as a satisfiable model
in cases that raise an exception in Java.

1public static void main(String [] args) {
2String s1 = V e r i f i e r . nondetString () ;
3String s2 = ”comparisonTest” ;
4int res = s1 . compareTo(s2) ;
5i f (res > 0){ … }
6else i f (res == 0){ as se r t false ; }
7else{ … }
8}

Listing 4.4: An example demonstrating the
usage of compareTo on a symbolic string.

Non-binary intermediate decision
results. Occasionally, decisions are
made in SLJ that might result in an an-
swer that is not a binary decision. Con-
sider, e.g., thecompareTo(s1, s2) op-
eration in Line 4 of Listing 4.4. It re-
sults in an integer value that is either
zero, greater than zero, or less than zero.
This integer value is interpreted using ad-
ditional context information to make a
binary decision in the if conditions (cf.
Line 5 and Line 6). For dynamic symbolic execution, the binary decision is the interest-
ing part, as this is the point in time during the execution that adds additional branches
to the constraint tree. But it is impossible to capture them while executing compareTo.
SMT-Lib supports lexicographic ordering relations semantically, which is equivalent

to checking the integer result of compareTo in relation to zero, e.g., the semantic of
compareTo(s1, s2) < 0 in the Java language is equivalent to (< s1 s2) in the SMT-Lib.
At the time of encoding, during the invocation of compareTo, it is not known what
the future comparison will be. To ensure that all potential effects are triggered, SLSMT
always encodes all three possible cases as results (greater than zero, equal to zero, and
less than zero). Consequently, the symbolic execution engine tries to generate matching
inputs, so the compareTo method will be reexecuted up to three times for a complete
exploration of the program under analysis. This is a required overapproximation as the

69

4 String Operation Encoding for DSE

analysis might otherwise be incomplete. As the binary decision might split execution into
only two paths and merge the other two cases in one execution path (or never perform a
decision on the compareTo result), SLSMT will potentially add more branches to the
symbolic decision tree than are present in the real program. The additional branches
are a side effect of describing the potential three-way split in the SMT-Lib semantic.
Precise tracking requires knowledge of the future usage of the result, as in the challenge
described in Subsection 4.4.

Astart

Berror

[A-Z]

[A-Z]

[a-z]
[^a-zA-Z]

[^A-Z]

Figure 4.7: Automaton for the Java
regular expression “[A-Z][a-zA-Z]*”.

Encoding Regular Expressions. As the Java
string library offers multiple ways to work with
regular expressions, it is not straightforward to
encode them. The matches(s1, s2) operation in
SLJ that checks whether a string s1 matches the
regular expression expressed by s2 is the only oper-
ation for interacting with a regular expression that
can be encoded in SLSMT , so long as the regular
expression does not contain capture groups.

SMT-Lib supports the operation str.in_re that
is semantically mostly identical to the matches
operation in SLJ ; the only major difference is
how regular expressions are represented. Java ex-
presses them as string, e.g., s1.matches(``[A-Z][a-zA-Z]*''). Figure 4.7 shows an
accepting automaton that is equivalent to this regular expression. SMT-Lib encodes the
same problem to the following assertion:

(declare-const s1 String)

(assert (str.in_re s1 (re.++ (re.range ”A” ”Z”)

(re. ∗ (re.++ (re.range ”a” ”z”) (re.range ”A” ”Z”))))))

(4.1)

The assertion in Equation 4.1 shows that SMT-Lib encodes the paths leading to accept-
ing in the automaton of Figure 4.7 resulting from parsing the Java regular expression
into its tokens. Hence SLSMT requires a parsing frontend that maps the Java regular
expression string onto the regular expression automaton and encodes the automaton
in SMT-Lib. Further, the frontend has to replace Java specific character classes, e.g.,
\p{Upper}, with more general representations of the same semantic in SMT-Lib: e.g.,
[A − Z]. SLSMT replaces the character classes and uses in continuation the brics au-
tomaton library4, part of the JSA project [41], to lift the string representation to an
automaton. It encodes the automaton representation in SMT-Lib afterward. This way,
the matches operation from SLJ is often encodable in SLSMT , so long as it does not
use capture groups, as they cannot be represented in SMT-Lib.

Brief Discussion. All in all, of the 72 methods ticked in SLJ in Table 4.1, SLSMT
encodes 30 methods completely using the 13 symbolic string theory operations shown in

4https://www.brics.dk/automaton/ {last accessed: February 2022}

70

https://www.brics.dk/automaton/

4 String Operation Encoding for DSE

Table 4.2, and 11 partially using either prototypes or requiring solver-specific features,
e.g., toLower in CVC4. Table 4.3 discusses the limitations of the only partially encoded
operations. Operations with regular expressions without capture groups such as the
matches method on String are supported in SLSMT . However, the support of methods
defined on the Character class is limited in SLSMT , leading to 14 unsupported methods
in SLSMT . The remaining 16 methods in SLJ that are not supported in SLSMT are
mostly related to the number and string conversion, trimming of strings, and splitting
or joining strings.

4.4 Comparison and Open Challenges
SLJ defines a subset of the Java standard library that allows dynamic symbolic exe-
cution of Java programs. With SLBV and SLSMT I have presented two strategies for
encoding parts of SLJ , answering SRQ2. The SLSMT is more promising in comparison
with SLBV and supports a larger part of SLJ than SLBV . Especially the encoding of
more complex string operations such as matches(s1, s2) is easier in today’s string the-
ory integrated into SMT-Lib. To conclude the chapter, I will discuss three limitations
to the presented approaches answering SRQ3. The limitations are related to splitting or
joining strings, regular expressions with capture groups, and the de- and serialization of
values between strings and numbers.

Encodings Requiring Knowledge About Future Usage. A few methods in the
Java string library are hard to encode during dynamic symbolic execution, as they break
pure string theory and turn a string value into an array or vice versa. One of these
methods is split(s1,s2), which splits string s1 on every match of s2. The problem is
that the result is an array of strings that are subparts of the original symbolic string.
Depending on later usage of the array, the original string will require a certain shape.
The constraints need to reflect this shape so that the resulting model can be used for
driving dynamic execution along the desired paths. I will explain this in more detail
with an example.

1public static void main(String [] args) {
2String sentence = V e r i f i e r . nondetString () ;
3String [] tokens = sentence . s p l i t (” ”) ;
4int i = 0;
5for (String token : tokens) {
6i f (i == 3) as se r t token . equals (” genneration ”) ;
7++i ;
8}
9}

Listing 4.5: The TokenTest02 example from the SV-
COMP Java track demonstrating a split on a symbolic
string.

Consider the example in List-
ing 4.5. Line 2 generates a sym-
bolic string without any further
constraints. This string is split
in Line 3 into a tokens array
on any occurrence of whitespace.
In Line 5, the resulting string ar-
ray is iterated. If the array has
that many entries, Line 6 com-
pares the fourth element of the
array in an assertion condition
with the word “genneration” for
equality. These are the relevant
parts of the example to demonstrate the problem in symbolically encoding the effect of

71

4 String Operation Encoding for DSE

the split operation.
As the for-loop in Line 5 iterates the array resulting from the split method, the

number of whitespaces enforced in the symbolic string influences how often the loop is
unrolled. The information about the loop unrolling and the number of desired iterations
is only available after execution of the split method. In the example, it is impossible
to encode the constraints on the string value that forces the split operation of the
concrete string to produce an array with at least four elements during execution. This is
because, at least in standard symbolic forward execution, information on a desired array
size of greater or equal to four is unavailable during the execution of split. Instead,
the result value needs an additional annotation that allows encoding of the string after
executing the branch. In the concrete example, the analysis needs a way to transfer the
knowledge that the layout influences string array size to the symbolic string. I call this
the “encoding knowledge about future usage” problem; but encoding these constraints
at the end of the path is only a partial solution of the problem. The real problem is
that no interpretation of a function that links the array of a split result with the original
string in SMT-Lib is yet available. Therefore, the effects of the split method are not
expressible in SMT-Lib.
The JDart prototype encodes the string after the path, making the array one element

bigger with each iteration. This happens as a side effect of the for-loop that tries to
increment the array size by one after each iteration. Therefore, this procedure is not
unsound; but the prototype raises another problem: the split of the symbolic string is
unbounded. The resulting token array can be arbitrarily large in theory and will never
terminate, following the Java language definition requiring many (potentially arbitrary)
concolic executions of the program. However, considering the bound on string lengths
used in the JVM standard implementation, it will still span an impressive domain space
for the array values, hindering the termination of the symbolic search. The symbolic
reasoning component requires knowledge of the source code structure in order to evaluate
whether all reachable branches worth exploring have been analyzed. Unfortunately, in
its current form, this information is not available for the forward symbolic execution
presented here.
Similar considerations as for the split(s1, s2) method apply for encoding join(s1,

s2[]) and repeat(s1, i1). The join method is the semantic reverse operation of the
split method. All challenges for encoding split apply equally for join. Repeat(s1,i1)
can be expressed as a join operation with an array of size i1 that always has the same
content. The glue string is the empty string. Therefore, repeat inherits the same
problems as encoding join.

Regular Expressions with Capture Groups. As described above, it is possible
to encode simple checks against regular expressions without capture groups using the
str.in_re operation of SMT-Lib. Using capture groups makes it impossible as it is hard
to model the general behavior of capture groups in SMT-Lib at the moment. I will
explain the problem using the example in Listing 4.6.
The example demonstrates the creation of a pattern in the Java regex language in

Line 2. The pattern requires a string to have a ‘W’ followed by a sequence of any

72

4 String Operation Encoding for DSE

1public static void main(String [] args) {
2Pattern express ion = Pattern . compile (”W.∗\\d[0−35−9]−\\d\\d−\\d\\d”) ;
3
4String str ing1 = V e r i f i e r . nondetString () ;
5
6Matcher matcher = express ion . matcher (st r ing1) ;
7
8while (matcher . f ind ()) {
9System . out . pr int ln (matcher . group ()) ;
10String tmp = matcher . group () ;
11asse r t tmp. equals (”WWWWW’ s Birthday i s 12−17−77”) ;
12}
13}

Listing 4.6: The RegexMatches02 example from the SV-COMP Java track demonstrat-
ing the usage of a Matcher and a Pattern object on a symbolic string.

characters. A series of three pairs of digits separated by a dash ends the pattern. The
first pair requires a digit other than four as the second member in the pair.
The pattern is matched against a symbolic string resulting in a Matcher object in

Line 6. A Matcher object is bound against a specific pattern instance and allows occur-
rences of this pattern to be found in a string. Each occurrence can be extracted as a
group and eventually subgroups if the pattern contains them. The example searches for
the pattern using the find() method on the Matcher object in Line 8 and extracts each
occurrence of a match using the group method in Line 10.
Encoding the effects of the Matcher object symbolically is challenging, as the effects

depend on the internal state, which is influenced by previous operations executed on the
object. The encoding, therefore, has to track the internal state of the Matcher instance,
resulting in different return values of the method invocations on the instance. If a call
to the find() operation was successful, a group() must return a string that is the
content of the last find result. Otherwise, the string should be empty. If a non-empty
string is returned, it inherits restrictions on the content applied by the pattern. Other
operations, like calling replace(...) after find(), alter the state of the string analyzed
by the Matcher.
The while-loop in Line 8 depends on the find() outcome. As a symbolic string is not

further bounded, a find() will in theory always find the next match. Therefore, in theory,
the while-loop is unbound and iterates forever. In practice, there is an upper bound in
most concrete implementations of string in the Java standard library. Nevertheless, the
resulting search space is enormous. Considering the internal state of the Matcher object
during the execution of a path, it is possible to drive down the execution along different
paths in a constraint tree using already existing operations. But as the search space is
not bounded, dynamic symbolic execution is a pure search method at this point that
will in theory never terminate its search without further bounding.

In addition, the Java pattern language allows definition of capture groups within a
pattern, e.g., “A.*(Cat)C”. Hence, there are different capturing groups (e.g., the string
“Cat”) that might be extracted as a subgroup from the main match group (e.g., A.*CatC).

73

4 String Operation Encoding for DSE

However, as SMT-Lib does not support any of these operations, it is only possible to
symbolically encode the structure of a string that drives down the concrete execution
on a certain path if the structure of that path is known. This is similar to encoding the
split operation.
The problem of combining the regular expression language with dynamic symbolic

execution has been discussed by Loring et al. [88] in the context of analyzing JavaScript.
They propose a CEGAR-based approach to create models suitable for driving the con-
crete execution during dynamic symbolic execution of JavaScript programs. To the best
of my knowledge, their approach has not yet been adapted to the JVM.

Linking Numbers and Strings. Especially in Web Applications, numbers are some-
times serialized into a string-based format like JSON and are later deserialized back to
numbers from the string. While the value exists for parts of its life span as a string
and other parts as a number, it is still the same value in the semantics of the pro-
gram. Analyzing these values requires linking the string representation with the number
representation in the symbolic encoding. This is not supported in SMT-Lib yet. We
have experimented with a preliminary approach in JDart for establishing this link in
the analysis engine. Given the lessons learned, this approach is not ported to GDart
as it is not precise. I will explain the problem in more detail below and describe our
preliminary solution proposal.

1String stringNumber = readerBuffered . readLine () ;
2i f (stringNumber != null) {
3try {
4data = Float . parseFloat (stringNumber . trim ()) ;
5} catch (NumberFormatException exceptNumberFormat) {
6IO . writeLine (”Number format exception ”) ;
7}}

Listing 4.7: Example of deserialization from String to Float.

JDart uses a pre-
liminary approach for
connecting the string
and a numeric theory
for floats, doubles, and
integers on the Java
data type level. List-
ing 4.7 shows a snippet
taken from the Juliet
benchmark [29] suite for comparing the performance of static analyzers for Java. As-
sume that the readerBuffered object has been set up to read from a nondeterministic
stream not shown in the preceding code. Therefore, all lines read by the readLine()
method invoked on the readerBuffered object will be nondeterministic string values with
symbolic variables for the string. Consequently, stringNumber in Line 1 is a symbolic
String. Next, this string is trimmed so that all whitespaces are removed and the value
is parsed into a float value in Line 4. There are two possible outcomes for the parsing
method: the string is parsed successfully into a float value, or a number format excep-
tion is raised. This decision has been modeled using a Boolean value in the preliminary
prototype. If the Boolean value indicates an error has been raised, we raise an error
in the concrete behavior. Otherwise, a symbolic float value is created that represents
the number originating from parsing this string (without actually parsing it). We add a
symbolic annotation to the newly created float to indicate that it is parsed from a string.
The preliminary prototype allows this float value to be used in branch conditions and
other value checks. Further, the symbolic encoding allows generation of the matching

74

4 String Operation Encoding for DSE

floats to trigger different branches if the parsed float value is part of the branching con-
dition. However, the float is treated like a normal float variable and not parsed from
the string. The concrete values for the float are handed over to JDart as for any other
float value.
The downside of this approach is that the symbolic string value and the symbolic float

value from this string are not linked. The string value cannot be parsed into the float
value outside of JDart during concrete execution and therefore undermines the goal of
JDart. The prototype shows the potential inherent in this line of work for linking the
different theories in the context of dynamic symbolic execution. Nevertheless, some post-
processing is required to turn it into a fully sound approach that works independently
of JDart and generates string inputs that are parsed into the right float values on any
JVM. In its current state, this is possible as a post-processing step of the model before
executing a single concrete path, allowing the generation of a concrete string from the
computed concrete float value.

A rock-solid solution must first check the string’s integrity before parsing and take into
account string operations that might restrict the domain range of the parsed number.
For example, assume a program asserts on a string sn that it does not contain the digit ‘4’.
Assume further that sn encodes a number in decimal encoding. Calling parseInt(Sn)
after the assert, it is impossible for the parsed integer to compare equally to an integer
number containing the digit ‘4’. Unfortunately, JDart’s preliminary prototype does not
incorporate these checks and, therefore, we have not ported it to GDart. At the same
time, the example described here is the reason why linking the value of two variables in
these two domains is in the long term desirable for the analysis of Java.

75

5 Jaint
The Jaint framework combines dynamic symbolic execution and dynamic multi-color
taint analysis for Java web applications in a single tool. It is the core contribution of this
thesis, and its main ideas are published in Paper I [107]. This chapter first describes in
Section 5.1 the idea of multi-color taint analysis. Then it explains why taint analysis is
suitable for detecting security weaknesses. Section 5.2 describes how dynamic symbolic
execution is used as a path enumerator ensuring multi-color taint analysis executes all
reachable branches within the search space of the symbolic search. This loose coupling
forms the core combination of the two techniques. Following the principle of separation
of concerns, the two techniques are implemented separately into the same JVM. The
accuracy and completeness of the analysis result from the implicit interaction of the two
techniques, but they are coupled loosely, exchanging only a few pieces of information.
Jaint is configurable for different security weaknesses as described in Section 5.3. The
chapter concludes with a technical discussion of the steps involved in implementing multi-
color taint analysis in JPF-VM as part of Jaint and how the architecture supports the
configurability of Jaint.

5.1 Dynamic Multi-Color Taint Analysis
As observed in the Introduction, many different applications of taint analysis are de-
scribed in the literature, from stack protection in assembly based languages (e.g. [45, 67,
135]), through preventing injection attack in web applications (e.g [72, 86, 109, 111]), to
tracking information flow(e.g. [5, 48, 64, 74, 124]). The target of the Jaint framework
is security analysis for typical injection attacks on Java web applications. Dynamic and
explicit taint tracking is a good fit for injection attacks. Implicit information flow across
control-flow instructions is less relevant for injection weaknesses, because injection re-
quires manipulation of a string that transforms into a command-line or SQL statement.
For it to be possible to negatively attack such a statement using implicit flow, the pro-
gram must already encode the malicious parts. In the context of analyzing Java web
applications, it is less likely that these security weaknesses be introduced into the code
base without malicious intent. For example, source code that constructs different SQL
statements based on parameter values in the condition without any explicit flow and
still allows information leakages must have a very strange design. I expect such code to
be detected during conventional software review, as this not only requires judgment on
security impact but also on the general design of a component under review.
From a theoretical viewpoint, the explicit spreading of taint in a program is a flow

problem. Running a security analysis is semantically the same as ensuring that the

76

5 Jaint

resulting taint flow across all data assignments in a program from an untrusted source
to a protected sink is zero. As this data flow is sometimes desired in the design of an
application, there are guard functions that check the data from the untrusted source and
turn it into trusted data after inspection. Taint analysis calls this process of inspecting
‘data sanitization’.

The CWE database defines multiple security weaknesses. Each of these security weak-
nesses defines different protected sinks and eventually different untrusted sources. In
the case of SQL injection, CWE 89, and Cross-site Scripting (XSS), CWE 79, both
weaknesses share input from an HTTP request in a Java servlet as source, but the SQL
injection pattern protects database statements as sink, and the XSS pattern protects
the HTTP response object as a sink. Therefore, we have one flow problem per security
weakness in the analysis. Some taint based security analyses analyze source code for
the presence of multiple security weaknesses simultaneously. Technically, they run mul-
tiple taint analyses in parallel. To distinguish them, each analysis tracks a flow with
a different name. In the taint analysis slang, these names are called taint color. . In
what follows, I will demonstrate the meaning of multi-color taint analysis by example,
discuss different sanitization approaches, position Jaint against them, and summarize
the characteristics of multi-color analysis.

Multi-Color Taint Analysis by Example. Consider the example of an SQL injection
in Listing 5.1. The concrete SQL injection weakness in the example occurs if some
data read from the request object passed to the doPost-method in Line 1 reaches the
arguments of the prepareCall in Line 15 without prior sanitization. If such data flow
exists, it allows a potential attacker to influence operations executed on the database.
SQL injection is a common security weakness often occurring in software that writes
SQL queries to interact with databases on their own or by misusing an SQL abstraction
layer, e.g., an object relation manager such as Hibernate1. The Common Weakness
Enumeration (CWE) lists this security weakness as CEW-892.
Oversimplifying the internals of the getHeader function, which is called twice and

requires string comparison, the method has two possible execution paths before reaching
the prepareCall that is part of the statement beginning in Line 15 as shown in Figure 5.1.
The right hand side of the figure shows the execution path for the case where the request
object contains a header with the key “BenchmarkTest00008”. The code adds some data
from the header value to the param variable, and this data is passed to the arguments
of prepareCall. As this forms a data flow from an untrusted source to a trusted sink
vulnerable to the SQL injection weakness, it violates the taint policy and detects the
weakness in the source code. The left side of the figures shows the execution path in the
example where no data from the request object reaches the arguments of prepareCall.

To make the flow of data visible, explicit dynamic taint analysis marks all data origi-
nating from a taint source with a taint mark. For the analysis presented in this paper,
the taint marks have a color. These colors are added to values on the heap and primitive
values on the stack as additional annotations similar to the symbolic annotations used

1https://hibernate.org{last accessed: February 2022}
2https://cwe.mitre.org/data/definitions/89.html{last accessed: February 2022}

77

https://hibernate.org
https://cwe.mitre.org/data/definitions/89.html

5 Jaint

1public void doPost (HttpServletRequest request ,
2HttpServletResponse response)
3throws ServletException , IOException {
4// some code
5String param = ”” ;
6i f (request . getHeader (”BenchmarkTest00008”) != null) {
7param = request . getHeader (”BenchmarkTest00008”) ;
8}
9param = java . net . URLDecoder . decode (param , ”UTF−8”) ;
10String sq l = ”{ c a l l ” + param + ”}” ;
11try {
12java . sq l . Connection connection =
13DatabaseHelper . getSqlConnection () ;
14java . sq l . CallableStatement statement =
15connection . prepareCall (sq l) ;
16java . sq l . ResultSet rs = statement . executeQuery () ;
17DatabaseHelper . pr intResults (rs , sql , response) ;
18} catch (java . sq l . SQLException e) {
19i f (DatabaseHelper . hideSQLErrors) {
20response . getWriter ()
21. pr int ln (”Error process ing request . ”) ;
22return ;
23}
24else throw new ServletException (e) ;
25}
26}

Listing 5.1: The testcase 8 demonstrating an SQL injection
vulnerability taken from the OWASP Benchmark.

invocation

Line 5

Line 7

Line 9

Line 10

Line 12

Line 14

33

Line 9

Line 10

Line 12

Line 14

37

Figure 5.1: The graph
shows a simplification
of different paths ac-
cross the example in List-
ing 5.1. The continous
red arrows show how the
sqli taint information
travels across the execu-
tion from the request ob-
ject to the prepareCall
invocation. The dashed
blue arrows are the cmdi
taint information.

in dynamic symbolic execution. The taint colors associated with a value are always
connected with the value inside the JVM running the analysis. The taint mark in this
example is colored red representing the sqli tag, as it tracks information specifically for
SQL injection. The taint makrs are assigned to all data originating from the request ob-
ject before calling the doPost method. Taint analysis requires a similar method driver
for the concrete execution as dynamic symbolic execution. For Jaint, the driver injects
the taint marks before invoking doPost.
After the taint marks are attached to the values, they travel across the system with

the value and are propagated during primitive or sometimes more complex operations.
Figure 5.1 shows how the taint marks are tracked across the lines for the two main
branches in Listing 5.1 resulting from the branching statement in Line 6 of the example.
In Line 7 of the example, a value read from the request is assigned to the variable
param. If this line is in the path, the sqli taint mark associated with the request object
transfers by the propagation rule to the method result and with the return value to the
param variable. In the execution that propagates the sqli taint mark in Line 7, the taint
mark is later propagated through the method call in Line 9 and the string concatenation

78

5 Jaint

in Line 10. The taint analysis instruments and intercepts the API level methods for
string operations so that the propagation semantic can be injected into the execution
in the same way as described for symbolic encodings in Section 3.2. For propagation in
the string concatenation in Line 10, the append method of the StringBuilder class is
replaced with a substitution method that propagates the taint from the parameter to the
method result. As a result, the sql variable receives the taint mark. The statement that
begins in Line 12 does not influence the taint propagation. The statement starting in
Line 15 prepares a new callable statement using the sql parameter. SQL injection policy
describes this as a security weakness if the sql parameter contains untrusted data. As
this variable carries the taint, this violates SQL injection policy and detects a weakness
in implementation. The red 7 in Figure 5.1 shows that on this path, the SQL injection
policy is violated, and the red arrows show the described taint propagation flow between
the statements. The other branch in Line 6 of the example does not execute the call
that propagates the taint mark from the request object to the param variable. Hence
this path does not violate the policy. The 3 signifies that the policy holds on this path.
There are also, however, other types of injection attacks, e.g., cross-site scripting

attacks (XSS) described in CWE-793. The sources for XSS attacks are the same as for
SQL injection, but the vulnerable sinks are different. In the example, the blue taint
color marks the traveling of the xssi taint mark. The taint engine propagates it in the
same way as the red sqli mark, but there is no sink corresponding to the blue analysis.
We can see how XSS taint policy holds on both paths, and no XSS weakness is reported.
The simultaneous check for both taint policies makes it a multi-color taint analysis. It
only propagates the flow along with a data value, so it is an explicit flow analysis.

Sanitization. So far, the example only shows taint propagation. Some functions inspect
data or compute constants, which therefore stop propagation and cut taint flow. Func-
tions that cut taint flow after inspection are called explicit sanitization functions. The
other effect—operations that compute constant values and implicitly cut taint flow—are
called implicit sanitization functions.

Explicit sanitization functions are defined per analysis. A method that ensures es-
caping for an SQL statement does not necessarily do so in a string that allows, e.g.,
XSS attacks. Hence explicit sanitization functions are part of the taint definition for a
specific taint color. The Jaint framework explicitly supports definition of sanitization
methods as part of the specification language. Taint marks are cleared on return from
sanitization: Jaint intercepts the return statement and cleans the specific color from
the result.
Implicit sanitization is often less dependent on the specific taint color and property

associated with certain operations. A standard example, also raised as a question in
reviews of Paper I [107], is multiplication with zero: B = A ∗ 0. Multiplying a value
with zero always returns zero as a product irrespective of the other factors involved in
the multiplication. As a side effect, this multiplication destroys all taint information.
Implicit sanitization might be implemented in the runtime as well. But it is not always
trivial to name cases leading to a constant result that cancels the taint flow for a specific

3https://cwe.mitre.org/data/definitions/79.html {last accessed: February 2022}

79

https://cwe.mitre.org/data/definitions/79.html

5 Jaint

function. As implicit sanitization adds complexity to the execution of a byte code, it
impairs execution time by slowing down the JVM. Moreover, a calculation always leading
to a constant value can also be replaced using a constant assignment.
From my point of view, constant operations are a code smell that should be removed

from the code base, and it is not worth complicating dynamic taint instrumentation to
avoid them. Rather, it is worth investing in a bytecode analyzer that detects constant
operations and allows optimization of programs by removing these bytecodes. For this
reason, Jaint does not support implicit sanitization in its current implementation. This
negatively influences Jaint’s pprecision, as it in theory allows false positives. The deci-
sion not to implement implicit sanitization is the only thing limiting Jaint’s precision
in answering question DQ3 compared with the ideal theoretical result. The architecture
of the taint tracker as presented for Jaint allows checks to be implemented if they are
legitimately part of the code. All it tracks is extending the bytecodes with these checks.
To assess the impact of not implementing implicit sanitization in Jaint by default,

I implemented a small bytecode analyzer on top of the ASM library [34] checking for
multiplications with zero and xor operations that lead to a constant result. To my
surprise, I found a single line in Jenkins core that led to multiplication with zero: return
31 * (channel != null ? channel.hashCode() : 0) + remote.hashCode();. I think it is
worth discussing whether the line should be rewritten for this case. The multiplication
can be moved inside the ternary operator, making constant multiplication with zero
unnecessary. All in all, implicit sanitization is not a roadblock to analyzing Jenkins
core given the assessment result. Splitting implicit sanitization analysis from dynamic
taint analysis promises better performance in general, as the bytecodes do not have to
execute additional checks on every execution. I agree that constant operations involving
implicit sanitization are more important in code bases that need to defend against timing-
based side-channel attacks. However, implicit sanitization can become a roadblock for
analyzing such systems if constant operations are intensively used to mask different path
timing.

Characteristics of the Analysis. The proposed taint analysis is dynamic, implying
that it checks only the currently executed path. Further, it only tracks explicit taint
flow, limiting applicability to analyses that reach a verdict by explicit flow alone. For
injection attacks, this limitation is reasonable, as explained above. As presented in
Paper I [107], the proposed analysis instruments runtime and therefore does not require
alteration of the source code under analysis: sanitization is fully supported for explicit
sanitization functions specified in the taint policy. Detected policy violations are precise
except in those cases where implicit sanitization secures the system. As the analysis
applies only to the currently executed path, it cannot on its own judge the presence of
security weaknesses in a complete program.

5.2 DSE as Path Enumerator: From Fuzzing to Verification
The previous section has explained how the basic concept of multi-color taint analysis
works. The presentation of its characteristics closed with the observation that taint only

80

5 Jaint

checks the branch concretely being executed. However, precisely along this branch it will
find security weaknesses with the explained limitation on implicit sanitization. What
is missing from here to scaling multi-color taint analysis into an automated security
analysis for a complete program is an automated generator of all reachable execution
paths that require checking. The analysis must run all of these concretely at least once.

Combining DSE with Multi-Color Taint Analysis. Enumerating all reachable
paths is precisely the strength of the dynamic symbolic execution component. Dynamic
symbolic execution enumerates paths and runs them with the multi-color taint analysis
enabled in the concolic executor. This describes the core of the combination between
dynamic symbolic execution and multi-color taint analysis. If the taint analysis detects
a property violation, it informs the dynamic symbolic execution engine and, in the case
of Jaint, this stops the analysis with a property violation. Nevertheless, apart from this
slim communication interface, both are implemented as independent modules run within
the same JVM. This is the fundamental architecture for combining dynamic symbolic
execution with multi-color taint analysis. Accordingly, it answers DQ2.

Recall now the example of the doPost method in Listing 5.1 and the analysis graph
in Figure 5.1. With the default values used for symbolic strings, the symbolic value
representing the header object is an empty string in the first execution of the program.
The left hand branch in Figure 5.1 is executed first. After this concolic run, there is a
constraint in the tree that checks whether the symbolic header value equals “Benchmark-
Test00008”. The branch satisfying this constraint generates input driving the analysis
down the right hand path of Figure 5.1 in the concrete run. This time, the taint analysis
finds a property violation.
We decided in the context of Jaint to implement both taint analysis and dynamic sym-

bolic execution within the same JVM. The theoretical coupling also works if dynamic
symbolic execution generates the inputs driving the concrete run down the different
paths and generates them in an intermediate exchange format. Then, in a second step,
a driver for the taint analysis might use these input values for analyzing the program.
Suppose dynamic taint analysis and dynamic symbolic execution are run in two separate
steps. In that case, there is no benefit in using dynamic symbolic execution rather than
symbolic execution as a path generator for the taint analysis. Symbolic execution has
the same required information for computing inputs for running every path in the con-
straint tree it produces. Synergy effects emerge from running both of them in parallel
within the same JVM. Found security weaknesses can be used to limit the search space,
speeding up the analysis. If the analysis is only interested in finding one or no security
weakness, terminating the analysis on the first found weakness will save resources com-
pared to running the full dynamic symbolic execution upfront. The two analyses share
the complete infrastructure for executing their concrete runs.

Random Drivers. In theory, any random input generation is suitable to trigger reruns
of the different execution paths. Over time, the branch coverage of the program under
analysis should increase with random inputs. This is the general idea, e.g., implemented
inRandoop [116]. However, random path enumeration does not guarantee completeness
of the covered state space. So combining Randoop with multi-color taint analysis is a

81

5 Jaint

pure testing approach that works as a security fuzzer for Java programs. Dimjašević et
al. [58] presented JDoop, a tool combining JDart and Randoop. They have shown
that JDoop covers more branches within the same period than Randoop alone on
the SF110 benchmark. I have not run controlled experiments to compare the achieved
coverage of JDoop with today’s version of JDart. However, this experiment does show
that investing in a more structured approach than random enumeration for enumerating
the search space can save resources. So JDoop (instead of Randoop) is potentially
a better security fuzzer. As structured enumeration prevents repeated reexecution of
the same branch, it manages the available resources better than random execution. In
addition, structured enumeration gives stronger guarantees.

Guarantees Resulting from Applying DSE as Driver. These stronger guarantees
affect the soundness and recall of the analysis. Dynamic symbolic execution systemati-
cally enumerates the reachable search paths and ensures the soundness of the combined
analysis for the test space covered by the dynamic driver so long as the enumeration
ends. How the driver used for dynamic symbolic execution slices the program, therefore,
significantly influences the recall performance of Jaint. If the driver defines a sym-
bolic search space that covers the interesting properties, and the SMT backend solves
all resulting SMT constraints, Jaint will find the security weakness with perfect recall
results. But if the security weakness is outside the enumerated state space, Jaint will
not find the weakness, as the concrete driver makes the required path unreachable within
the nondeterministic part of the analysis. If the nondeterministic state space is infinite
or the SMT solver is unable to solve the constraints involved, so that symbolic execu-
tion does not terminate, Jaint cannot guarantee to find a weakness in the program.
Whenever the search does not terminate, it harms the recall potential of Jaint. These
considerations together answer DQ3.

From Testing to Verification. The structured enumeration performed by dynamic
symbolic execution ensures soundness—if the enumeration ends—making Jaint a ver-
ification framework. A random driver in Jaint is a fuzzer only allowing searches for
weaknesses. Using structured enumeration instead of random enumeration, searching
for security weaknesses along these paths becomes a verification approach with the pos-
sibility of proving the absence of weaknesses. While Jaint carries out the analysis, the
intermediate results can be documented and used as an intelligent white-box fuzzer. .
If Jaint analyzes the program but the search is not terminated, it will give the same
guarantees as a fuzzer. If the analysis terminates, it will give the same guarantees as a
software verifier. This way, the Jaint framework provides value as a software verifier in
many cases and can still be used for intelligent security testing in the remaining cases.
Regarding the time of detection vs. time of attack discussion mentioned in the In-

troduction, it is true that, in order to observe them, Jaint requires an execution en-
vironment that executes attacks dynamically. Given the framework’s capabilities, it is
possible to run them within a sandbox during a security test phase. Consequently, pro-
duction data is not compromised, as the security test is carried out in an automated
fashion upfront. Given that any weaknesses found will be removed from the program,
this efficiently prevents attacks during production. The stronger guarantees of Jaint

82

5 Jaint

in comparison with fuzzing allow the security test to be run in the CI pipeline before
deployment, reaching a final verdict within a predefined time frame and thus making
the discussion regarding time of detection and time of attack dispensable. In theory, the
proposed framework detects a security weakness in implementation before it becomes
exploitable in a deployed production setting. Ideally, it will prove the absence of security
weaknesses before deploying the program.

5.3 Jaint’s Configuration Language
A core problem for defining taint analysis is specifying where taint is injected, removed,
and checked in the program’s execution. A single analysis consists of a definition for
taint injection places (the taint sources), a definition of the vulnerable targets (the
taint sinks), and eventually the set of sanitization methods. As Jaint supports multi-
color taint analysis, the taint color definition completes the quadruple. The language,
examples, and how it is used to analyze the OWASP benchmark are explained in the
second half of Paper I [107]. I will not, then, show the details of the language itself
here but give an example of the SQL injection taint specification used in Paper I and
compare it with the configuration approach of FireSecBug.

Src ::= sqli ← (_ : ∗HttpServletRequest).get∗()

Sink ::= sqli → (_ : java.sql.Statement).∗(sql),

(_ : java.sql.Connection).∗(sql),

(_ : org.springframework.jdbc.core.JdbcTemplate).∗(sql)

(5.1)

Equation 5.1 defines the taint analysis required for analyzing the SQL injection in
the OWASP Benchmark. We see the name of the taint color sqli, the HttpServle-
tRequest object as the source of the taint flow, and a collection of methods used for
database access in Java as protected sources. The configuration language determines
that the parameter with the name “sql” must not be tainted with the sqli taint color
invoking any method on these classes.
Most tainting frameworks require defining the taint analysis one way or the other.

Sometimes the definition is textual, sometimes hard coded in the source code. For Jaint,
we decided to use a textual format and tried to make it easily understandable. We hope
that Jaint’s configuration language makes it easier to express analysis even for chief
security officers who are not always Java cracks. We have not evaluated this empirically
as part of Paper I [107], and I have not done it for this thesis either. Nevertheless, let
me give an example for the configuration of the taint sinks in FindSecBug first, before
explaining why I think Jaint’s configuration language is easier.
An existing example for configurable static analysis is the FindSecBug4 tool with its

configuration language. Specifying the data types requires a lot of internal knowledge
about encoding data types in JVM and explicitly listing every variant of a method call.

4https://find-sec-bugs.github.io {last accessed: February 2022}

83

https://find-sec-bugs.github.io

5 Jaint

The vulnerable sink prepareCall for SQL injection used in Listing 5.1 looks as follows
for FindSecBug:

java/sql/Connection.prepareCall(Ljava/lang/String;)Ljava/sql/CallableStatement; : 0

java/sql/Connection.prepareCall(Ljava/lang/String; II)Ljava/sql/CallableStatement; : 2

java/sql/Connection.prepareCall(Ljava/lang/String; III)Ljava/sql/CallableStatement; : 3

In comparison, Jaint’s configuration language expresses that no argument called sql

defined in a method declaration part of the Connection class must be tainted. Only the
following part of the overall sink definition covers the same ground as the FindSecBug
definition:
sqli → (_ : java.sql.Connection).∗(sql).
Comparing FindSecBug’s language with Jaint’s language, Jaint’s language is eas-

ier, as it does not even require the method to be explicitly named. The configuration
language allows taint to be forbidden on the basis of API’s parameter name, which is
consistent sql for the query string in the java.sql.Connection class. All information re-
quired to define this sink is available in the Java API specification (sometimes called
Java Docs). FindSecBug requires the user to list explicitly each method that is a sink,
using the JVM specific type definition. This requires deeper knowledge of the internals
of type name representation inside JVM. Further, all overloaded sub-methods have to be
specified. Whenever the signature of a method is changed, the FindSecBug configuration
needs to be adapted. Jaint’s configuration language allows more flexibility and defines
the taint analysis in a policy style, abstracting more from the concrete implementation
than does FindSecBug.
Program Query Language (PQL) [92] is the only other configuration language I am

aware of for taint analysis in Java that is directly used to configure the analysis. PQL
is used in the tool SecuriFly, which is part of the same paper for taint-based security
analysis. But the main focus there is on combining static and dynamic analyses. The
language is more advanced and complex than in Jaint’s configuration language, as it
targets more complex use cases such as injecting errors during testing. Comparing the
two languages: just from reading the paper I have not been able to give an example in
PQL that reassembles the sink protection rule for the same SQL sink described above
for Jaint and FindSecBug.

5.4 Taint Propagation in Jaint: Taint and Value Monitors

Making the analysis flexible and completely configurable is the main goal of the design
of Jaint and, therefore, part of DQ1. For the final design of Jaint, the goal is a
complete configuration of the analysis using the configuration language without manually

84

5 Jaint

1public class TaintContainer {
2public Boolean isCrossSiteScr ipt ingTainted = false ;
3public Boolean isSQLInjectionTainted = false ;
4. . .
5public TaintContainer combine (TaintContainer taintContainer) {
6i f (taintContainer == null) {
7return this ;
8}
9TaintContainer container = new TaintContainer () ;
10container . i sCrossSiteScr ipt ingTainted =
11this . i sCrossSiteScr ipt ingTainted taintContainer . i sCrossSiteScr ipt ingTainted ;
12container . isSQLInjectionTainted =
13this . isSQLInjectionTainted taintContainer . isSQLInjectionTainted ;
14return container ;
15}
16}

Listing 5.2: Examples taken from the TaintContainer used for analyzing the OWASP
Benchmark in the reproduction package [106] of Paper I [107].

implementing any parts of the taint propagation. This section will explain how the
design uses so-called taint containers that serve as a wrapper class for the concrete taint
analysis, so that the design supports the required flexibility for reaching the design goal.
The taint containers serve as a wrapper class for the concrete taint analysis. This section
focuses on the technical details of implementing the multi-color taint analysis in Jaint.

It is possible to compile the dynamic taint engine into the JPF-VM without any
dynamic symbolic execution capabilities. Moreover, propagation of the taint container
is only implemented once for all taint colors. Splitting the taint colors from the symbolic
annotations is a clear benefit in direct comparison to the ConsiDroid [61] approach. This
is the only other approach I am aware of for combining symbolic execution and dynamic
tainting for JVM. As ConsiDroid represents the taint mark and the symbolic annotation
with one mark, sanitization is impossible.

Taint Containers. Jaint tracks taint inside so-called taint containers. Listing 5.2
shows the example TaintContainer used in the evaluation of Jaint on the OWASP
Benchmark in Paper I [107]. The different taint colors are added to the taint container
as Boolean fields. Jaint generates these fields from the taint configurations. During the
injection phase, if no taint container is yet attached, an instance of this taint container
class is attached to a concolic value as an annotation. Then the corresponding flag is set
to true, adding the taint mark on the value.

Taint Injection. Jaint injects taint in the execution on return of a source method.
Thus in Listing 5.1 the getHeadermethod is invoked on an instance of type HttpServle-
tRequest. In JPF-VM, this creates an interceptable message exit event. Jaint uses a
listener for this event to access the taint container and set the isSQLInjectionTainted

85

5 Jaint

flag to true. For the presented example, the isCrossSiteScriptingTainted flag is set to
true on the same event.

Explicit Taint Sanitization. Like taint injection, explicit taint sanitization uses the
method return events. The only technical step for reflecting the sanitization effect on
current execution is removing the taint mark for the color sanitized in the taint container.
Technically, explicit sanitization is the inverse of taint injection, so they are quite similar
in technical implementation.

Propagating Taint Containers. The taint container is associated with the values on
the stack or the heap in the same way as symbolic annotations. Therefore, they travel
across the JVM in the same way as symbolic annotations. Only those bytecodes that
transform two values into a single new one need propagation implementation, e.g., iadd.
For tainting in the OWASP benchmark, propagating taint along the string operations
is more important. Thus Line 10 in Listing 5.1 concatenates different string parts. The
Java runtime maps the concatenation to the append method defined in the String-
Builder class in JVM5. If only the string builder or the parameter has a single taint
container, the result of the append method gets the taint container assigned. If both val-
ues have a taint container, the combine method on the TaintContainer class shown
in Listing 5.2 merges the two containers in the resulting container; as propagation is
implemented on the taint container level, they are independent of the concretely used
taint colors.

Taint Checking. Jaint checks the taint marks on the parameters of a method call
before invoking the method. JPF-VM creates an event for every method call. Jaint
intercepts these events and checks the method name for any matching protected sink
rule. If this is the case, the parameters passed to the method call are checked for
set taint colors. This is done by first checking the parameter for the presence of a
TaintContainer instance. The value representing the taint color of interest is checked
to determine whether the container is present. If a violation is detected, the analysis
records a property violation. Jaint currently stops the analysis execution if a property
violation is detected. In Listing 5.1, the method call event for the prepareCall method
matches the sink list for the SQL injection specification, and the parameter check is
performed.

Concrete Configuration Checks. Other kinds of analysis aiming at checking concrete
configuration values are typically implemented as static analyses. Adding these concrete

5Remark: At least in our implementation it does, and if the JVM is configured this way. For simplicity,
I will not discuss this in detail here. The modern JVM has alternatives to interpret the string
concatenation in other ways, but until recently it has always been possible to configure the JVM to
map it to the append method of a StringBuilder.

86

5 Jaint

configuration checks as an additional monitor to the dynamic taint implementation is
possible using the taint check architecture. At the same places where the taint analysis
checks the taint state, it is also possible to check the concrete value of an argument. For
example, some security weaknesses like the use of a weak hashing function (cf. CWE-
3286), are prevented by checking whether the constants used for configuring the function
are chosen within certain allowed limits. This fundamental feature allows Jaint to solve
the OWASP-Benchmark even though not all CWEs used in the OWASP-Benchmark are
within the specific target domain of explicit dynamic taint analysis; hence it answers
DQ1.

Discussion. Standardizing the interface for taint injection, taint removing, taint prop-
agation, and taint checking allows the effects of a taint analysis to be generated into the
concolic executor. This technical architecture enables Jaint’s configuration language
and answers DQ2, as it explains how Jaint allows flexible taint tracking.
We built Jaint earlier thanGDart during my thesis work: it is built on top of JDart

and the JPF-VM. But as demonstrated in section 3.2, most of the concepts originally
designed for the concolic execution of JDart work identically in the SPouT executor
tool, the concolic executor of GDart. Hence, I am confident that multi-color taint anal-
ysis as described for Jaint can be integrated into SPouT. But the proof of the concept
is left open as future work on the road to scaling Jaint on top of GraalVM. The
concrete explanations made in this chapter are therefore only valid for implementation
on top of JPF-VM.

6https://cwe.mitre.org/data/definitions/328.html {last accessed: February 2022}

87

https://cwe.mitre.org/data/definitions/328.html

6 Evaluation and Discussion

n the previous four chapters, I have presented the key ideas that contributed to the
design of Jaint and its components. This chapter describes the experiments run for
empirical evaluation of the tool, and—whenever data is available—compares the results
achieved with the state of the art. I will discuss the results in the second half of the
chapter; this includes asking how the proposed solutions contribute to answering the
initial three research questions. Seven evaluation questions structure discussion of the
results. I will explain their motivation before going on to discuss the experiments and
their data.
In Section 2.3 and Section 2.4, I described different strategies for improving interac-

tion between the SMT solver and dynamic symbolic execution. Especially the recall
performance of Jaint (part of DQ3) is closely coupled with the performance of the
SMT solving layer, as an incomplete search is more likely to miss a weakness. In order
to discuss the impact of the tool in detail and how the proposed solution contributes to
recall performance, the thesis will address the following two evaluation questions:

EQ1: What are good strategies for reducing the impact of the SMT solver on the
performance of a dynamic symbolic execution engine?

EQ2: Do we need SMT meta-solving strategies for SMT-based tools?

EQ1 evaluates the impact of the model generated by the SMT solver for the overall
performance of dynamic symbolic execution. A smaller model makes concrete execution
easier. Implicitly, this also reduces the number of propagation steps in the dynamic taint
analysis if the execution path gets shorter due to the smaller model. The evaluation will
show that the bounding strategy allows JDart to explore more examples successfully in
the SV-COMP 2022 Java track; and more explored paths implies more chances for dis-
covering a security weakness. The improved chances of discovering weaknesses increases
the recall of Jaint. The answer to EQ2 discusses the dependency between a single SMT
solver and the performance of the dynamic symbolic execution engine. It shows that
SMT meta-solving strategies allow better tool performance compared with running a
single solver. These empirical evaluations complement the discussion on the precision
of Jaint in Section 5.1, with empirical measurements for improvements in the dynamic
symbolic execution component that enhance Jaint’s recall values.

88

6 Evaluation and Discussion

For analyzing Java web applications with the combination of dynamic symbolic execu-
tion and multi-color taint analysis, the support of Java string operations in the dynamic
symbolic execution component is essential. Moreover, there is the question whether the
combination of dynamic symbolic execution and multi-color taint analysis has benefits
over combining random testing with multi-color taint analysis. The following two eval-
uation questions address these two aspects:

EQ3: What is a promising strategy for encoding string operations in SMT-Lib
during dynamic symbolic execution?

EQ4: Is it worth using dynamic symbolic execution as a path enumerator in the
analysis rather than random fuzzing?

EQ3 and EQ4 evaluate the requirements for the dynamic symbolic execution engine
discussed as part of DQ2. The prototype of Jaint itself already demonstrated that it
is possible to combine both analyses in the same runtime, the other aspect contained
in DQ2. The following two research questions evaluate the configurability of Jaint in
answer to DQ1, and the overall impact of Jaint:

EQ5: How good is Jaint in comparison with the current state of the art?

EQ6: Is Jaint sufficiently configurable for the OWASP Benchmark?

The answer to the previous six evaluation question allows one to answer DQ1, DQ2,
and DQ3 with empirical data extending the related theoretical considerations made in
Chapter 5 regarding these questions. The data presented justifies the claim that the
proposed solution answers the main research question of this thesis. For completion of
the discussion as to how this thesis and the design of JAINT contribute to the overall
research vision, one final evaluation question has to be discussed here:

EQ7: Does Jaint scale on real world applications?

6.1 Empirical Experiments

Four new experiments provide data for discussing the evaluation questions. These exper-
iments are not reported in any previous paper for this thesis. In addition, the evaluation
cites the results for the Jaint framework on the OWASP Benchmark from Paper I [107]
as a demonstration example of Jaint’s performance.

The new experiments run the GDart and JDart versions included in the SV-COMP
2022 reproduction package [21] as described in the data availability statement of this

89

6 Evaluation and Discussion

thesis. Other tools are also taken from this reproduction package. All the experiments
have been run in our group’s verifier cloud at TU Dortmund. This has different machines:
10x AMD Ryzen 5 PRO 4650G with 16 GB RAM, 2x Intel Core i9-10850K with 128
GB RAM, and 1x Intel Core i9-7920X with 128 GB RAM. The experiments use all
the machines that fit the job, resulting in a heterogeneous machine park. If not stated
otherwise, the experiments apply the same resource limits as for SV-COMP: 15 Minutes
CPU time, 8 cores, and 15 GiB RAM.
Subsection 6.1.1 presents two experiments related to SMT solving. The first of these

measures the impact of the bounding heuristic presented in Section 2.3; the second
measures the effect of portfolio solving as presented in Section 2.4. Subsection 6.1.2
presents an experiment designed for evaluating the encoding capabilities of GDart and
JDart regarding symbolic string operations as discussed in Chapter 4. Subsection 6.1.3
evaluates Jaint’s performance and presents an experiment for evaluating the efficiency
of random testing versus dynamic symbolic execution on the SV-COMP 2022 Java track.

6.1.1 The SMT Solving Layer Performance

Chapter 2 describes two theoretical ideas for improving the collaboration between dy-
namic symbolic execution and SMT solvers: bounding heuristics and meta-solving strate-
gies. This subsection evaluates both ideas empirically. In addition, it evaluates the
influence of the search bound presented in Section 3.2 as a configuration parameter in
the symbolic explorer.

Bounding Heuristics. Bounding heuristics have a positive influence on the model
selection problem. Figure 6.1 describes the effect of using the custom bound—as used in
SV-COMP 2022 in combination with CVC4 in version 1.8, and Z3 in version 4.8.12 —as
the solver backend in JDart on the SV-COMP 2022 task set consisting of 586 different
verification tasks. It is clear that the bounding heuristic has a positive influence on the
performance of JDart on the task set.
In the case of CVC4, the bounding heuristic masks a problem in implementation,

leading to false positive results. Thus the benefit seems significantly better in this figure.
However, even ignoring the effect of the incorrect verdict by excluding these two tasks,
CVC4 reaches 682 points on the task set, and CVC4 with bound reaches 710 points on
the task set; an improvement of 4 percent.
For Z3, performance increased from 701 points to 729 points, close to the 4 percent

improvement of CVC4. Another effect visible for Z3 iis that the CPU time per problem
is lower on the right hand side of the figure compared to unbounded execution. This
represents the desired effects of the solver selection heuristic in practice, and confirms the
expected results. Using the bounding heuristic to influence the model selection problem

90

6 Evaluation and Discussion

−100 0 100 200 300 400 500 600 700
1

10

100

1000

Accumulated score

C
PU

tim
e
(s
)

CVC4 with bound
CVC4 no bound
Z3 with bound
Z3 no bound

Figure 6.1: Demonstration of the impact of bounded solving heuristics on JDart’s per-
formance on the SV-COMP 2022 benchmark set.

has a positive effect on tool runtime. In the case of Z3, it not only allowed more problems
to be solved. The longest-running problem reduced runtime from 788 s CPU time to 391
s CPU time.
Table 6.1 further shows the impact of different strategies for sequences of different

bounds used to limit the problem. In Paper II [103], we proposed either the Fibonacci
sequence or a linear bounding process. This experiment uses six values for bounding
the SMT problem. The Fibonacci strategy sets out to bound the problem with the
first six distinct numbers of the sequence greater than zero. The linear bound uses the
values: 200, 400, 800, 1000, 1200, and 1400 as bounds. The custom bound is a sequence
combining the two other strategies: 2, 8, 13, 21, 200, 600. JDart uses it for SV-COMP
in 2021 and 2022. All bounds have in common that they positively impact the tool’s
overall performance and are recommendable in comparison with the baseline.
For CVC4, the linear and custom bound solve 520 out of 586 tasks with one incorrect

answer. The linear task bound solves two more correct true cases, while the custom
bound solves two more correct false cases. The Fibonacci bound solves 513 tasks with
one incorrect answer. Without the bounding heuristic, CVC4 solves 498 out of 586
tasks correctly and three incorrectly. In relative terms, the linear and custom bounding
heuristics together with CVC4 solve 22 tasks more than CVC4 alone, but the Fibonacci
bounding heuristic solves only 15 tasks more than CVC4 alone. The margin between
the different bounding heuristics is 7 tasks.
For Z3, the result is similar. The custom bounding heuristic solves the most correct

false tasks with 325 to 324 found by the two other strategies. Z3 alone solves 321 correct
false tasks. In total, the number of correct tasks increases from 511 for Z3 alone to 523
correct tasks for Z3 combined with Fibonacci bounding, 526 tasks for Z3 combined with

91

6 Evaluation and Discussion

Solver CVC4 Z3 Multi
Bound no no fib. linear custom no no fib. linear custom no no fib. linear custom
Search bounds no yes yes yes yes no yes yes yes yes no yes yes yes yes
correct true 187 190 185 194 192 190 190 199 202 202 189 194 189 195 191
correct false 308 308 328 326 328 321 321 324 324 325 326 326 329 330 330
incorrect true 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0
incorrect false 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
unknown 88 85 72 65 65 75 75 63 60 59 71 66 68 61 65
score 586 592 666 682 680 701 701 722 728 729 704 714 707 720 712

Table 6.1: The impact of different bounding strategies on different solving backends
used in JDart. JDart’s implementation is the same as the SV-COMP 2022 binary [21]
using the same binary versions for the solver as contained in the official SV-COMP
2022 archive. The JConstraints layer is changed to allow additional configurations
required for running the experiments. The search bounds row demonstrates the impact
of bounding the symbolic search space used by JDart for SV-COMP as explained in
Paper II [103]. The experiments are run with a resource budget of 15GB RAM, 8 cores,
and 15 min CPU time.

linear bounding, and 527 tasks for Z3 combined with custom bounding. The margin
between the best bounded solving heuristic and plain Z3 is 16 tasks, six tasks smaller
than the margin between the best bounded solving heuristic and plain CVC4.

Meta-Solving Strategies. We implemented the verdict-based second attempt strategy
running CVC4 first and Z3 as the second solver as an SMT backend for JDart. The
resulting strategy solver is called Multi in the JConstraints project. Ever since SV-
COMP 2021, this has been the standard solver used for our dynamic symbolic execution
engines. As part of the thesis, I have run the same experiments for the Multi strategy
on its own and in combination with the bounding heuristic as the backend of JDart on
the SV-COMP 2022 Java task set. The results are shown on the right of Table 6.1.

The plain Multi strategy solves 520 tasks correctly and therefore outperforms CVC4
(498 correct tasks) and Z3 (511 correct tasks) for correctly solved tasks. Like Z3, the
Multi strategy solves none of the tasks with an incorrect verdict. The price is an increase
in CPU time not reported here in total numbers. The Multi strategy works best with
the linear bounded solving heuristic. It solves 195 correct true tasks and 330 correct
false tasks. These make 525 tasks in total. Overall, the Multi strategy outperforms the
bounded versions of CVC4 and Z3 in the number of correct false solved tasks, but Z3
solves seven more correct true tasks than the Multi strategy.

Bounded Search Space. As explained in Section 3.2, we introduced a search bound
for maximum depth of the symbolic search tree. Table 6.1 shows the search bound’s
impact compared with plain performance. The bound influences only the correct true
cases but has a negligible impact on the overall result. The difference is 3 tasks for plain
CVC4 and 5 tasks for the Multi strategy. For Z3, we cannot observe any impact at

92

6 Evaluation and Discussion

−100−80 −60 −40 −20 0 20 40 60 80 100 120 140 160 180 200

1

10

100

1000

Accumulated score

C
PU

tim
e
(s
)

GDart
Java Ranger
JayHorn
JBMC
JDart
SPF

Figure 6.2: The performance of the different Java tools participating at SV-COMP 2022
on the task set containing nondeterministic string values. We used the competition
configurations for the tools.

all. The depth bounds are the same as in SV-COMP 2022.

6.1.2 Empirical Evaluation of String Encodings

As adding support for string operations to JDart and GDart is one of the main
contributions of this thesis, I will describe next how the new string theory implementation
in JDart and GDart performs against other verifiers participating in SV-COMP 2022.

Figure 6.2 shows the result of running different Java verifiers with the artifacts that
participated in SV-COMP 2022 on the subset of tasks that involved a nondeterministic
string. Tasks that only involve deterministic strings or no strings are not interesting
for analyzing the performance of symbolic encoding of string operations. Applying this
filter, the 586 tasks in the SV-COMP 2022 Java track reduce to a subset of 184 tasks
used in the presented experiment. COASTAL has been excluded from the Figure as
it reported 92 incorrect true answers, leading to a score of less than -2000. Moreover,
the tool runs as part of the hors concours without active maintenance (cf. the official
SV-COMP 2022 report [18]). Hence I exclude it from further comparison among tools,
although it is part of SV-COMP 2022.
Of the remaining tools, it is evident that JDart is the leading tool on this subset,

and GDart is the third-best tool. JBMC lies somewhere in-between. Java Ranger is
the fourth-best tool. SPF is the only tool that reported false positives on this subset of
tasks. An outlier in the data set is the performance of JayHorn. While Shamakhi et
al. [131], in their competition contribution on JayHorn for SV-COMP 2021, explicitly
described the support for encoding string constraints in horn clauses, the tool solves

93

6 Evaluation and Discussion

only one instance of the task set that contains random (or nondeterministic) string
values as input. As JayHorn encodes every Java program to a horn clause encoding,
the tool may also be able to solve some of the Java programs without random inputs
using strings. However, reasoning on programs of this kind has questionable value,
as a program without random inputs has only a single execution path. For evaluating
whether all assertions in the program hold on this single path, running the program with
the JVM assertion check is sufficient. The check executes error reachability analysis for
deterministic programs with the same explanatory power as any ideal verifier.

GDart JDart JayHorn SPF Java Ranger JBMC
SV-COMP Java Test Plain

correct true 22 31 1 20 21 25 0 25
correct false 113 136 0 101 89 127 45 115
incorrect true 0 0 0 2 0 0 0 2
incorrect false 0 0 0 2 0 0 0 0
unknown 49 17 183 59 74 32 139 42
score 157 198 2 45 131 177 45 101

Table 6.2: These are the detailed results of the experiments shown in Figure 6.2 regarding
the support of symbolic string operations. The tools are run on 184 / 586 tasks of the
SV-COMP 2022 Java track that involve nondeterministic strings.

Table 6.2 presents additional details on how the different tools perform on the task
subset. Java Ranger is built on top of the SPF infrastructure but modifies string
support in the tool. To the best of my knowledge, these modifications have not yet been
described in any publication. We see that, in direct comparison, this tool solves fewer
tasks than SPF but does not reach any incorrect verdict. SPF solves 121 tasks correctly
but gives four incorrect answers, whereas Java Ranger solves 110 tasks correctly and
gives zero incorrect answers. Given the SV-COMP points scheme, this leads to a higher
score. In direct comparison with the implementation of the string theory encoding
powering GDart and JDart in this thesis, Java Ranger (21) solves as many correct
true cases as GDart (22), but only two-thirds as many as JDart (31). In contrast,
compared with Java Ranger (89), GDart (113) solves roughly 25% more correct false
tasks, and JDart (136) solves more than 50% more correct false tasks. In the category
of tasks with symbolic strings, GDart and JDart outperform Java Ranger in the
overall result with 135 correct tasks for GDart, 167 correct tasks for JDart, and 110
correct tasks for Java Ranger.
Comparing the string theory encoding presented in this thesis with JBMC is more

complicated, as the JBMC SV-COMP competition artifact wraps the actual tool in a
wrapper script executing a deterministic Java test first, with the result that the JBMC
result reported by the SV-COMP artifact is a mixture between simple Java assertion
tests and the verification results of JBMC itself. If the Java assertion test fails already

94

6 Evaluation and Discussion

using a deterministic test string, JBMC is not invoked at all. While this is within the
rules of SV-COMP, it does not allow a fair comparison of the various encodings’ capa-
bility. To clarify the influence of these different parts, Table 6.2 shows three columns
for JBMC: the result of the SV-COMP artifact (also shown in Figure 6.2), the Java
test used as the first step, and the pure JBMC tool. Compared to the implementation
used in GDart, the SV-COMP artifact is better, but the pure JBMC tool performs
comparably. GDart solves five tasks less than pure JBMC, but JBMC gives two
incorrect true answers. In the SV-COMP artifact, the Java test step masks these incor-
rect answers. The incorrect answers require support for symbolic deletion operation on
the StringBuilder class in one case and pattern matching with groups in the other (see
Listing 4.6 for the concrete example). JBMC does not support these operations symbol-
ically. The StringBuilder operations are covered in the string theory encoding presented
in this thesis, and GDart and JDart solve this example flawlessly. As described above
in Section 4.4, pattern matching with groups is more complex, and is listed as an open
challenge for string theory encoding; GDart does not support it. For JDart, we have
started to work on a search method following the considerations presented in Section 4.4,
which allow exploration of such examples. But this is not suitable for the general case yet,
as it does not terminate in itself and will enumerate a potentially infinite search space.
However, for this concrete example, the heuristic finds the error despite the unbounded
search space.

In total, GDart solves 135 correct tasks, pure JBMC solves 140 correct tasks, JBMC
in the SV-COMP version solves 152 correct tasks, and JDart solves 167 correct tasks.
JDart’s lead over JBMC in the SV-COMP version is strongly influenced by the pre-
liminary approach for linking numbers and strings explained at the end of Section 4.4.
The detailed experiment data shows that at least in 9 of the 15 cases this preliminary
approach for linking numbers and strings is responsible for the difference.

6.1.3 Evaluation of Jaint’s Performance

To evaluate the performance of Jaint, we ran it on the OWASP benchmark as part
of Paper I [107]. The thesis will represent this experiment. The thesis presents this
experiment. In addition, I ran a second experiment that measures the performance of a
pure dynamic symbolic executor vs. a random tester, in order to find assertion violations
in the SV-COMP 2022 Java task set. Both experiments are described in this subsection.

Jaint’s performance on the OWASP Benchmark. The OWASP Benchmark1 is
a collection of 2740 Java servlets modeling the backend of a Java web application.
It is a project of the OWASP Foundation led by David Wichers, who created it as a

1https://owasp.org/www-project-benchmark/ {last accessed: March 2022}

95

https://owasp.org/www-project-benchmark/

6 Evaluation and Discussion

Figure 6.3: Performance of different open source SAST (A, B, C, H, I, J, G) and DAST
(E, F) tools on the OWASP Benchmark. Jaint (D) is newly proposed as part of this
thesis.

comparison benchmark for different security analysis tools used in the industry. Each of
these servlets is classified as a representative example of one of eleven CWE classes2. It
either contains the weakness associated with the CWE class or is secure.
Figure 6.3 shows the performance of different open source tools on the OWASP Bench-

mark. The y-axis lists the true positive rate. This measures how many of the contained
security weaknesses a tool found. The x-axis track the false positive rate. These are
tasks that the test has incorrectly qualified as a security weakness. A perfect result is
the top left corner, where Jaint found all results without raising a single false positive
alarm. In contrast, the bottom right corner is the worst tool, raising only false positive
alarms.
Static analysis tools (SAST) are fast, as they only analyze source code without exe-

2Remark: CWE classes describe and index different security weaknesses and seek to classify them in a
uniform database: https://cwe.mitre.org. Mitre runs this, and it contains 922 different weakness
descriptions. SQL injection, e.g., is the entry CWE-89, a specialization of data query logic injection
CWE-943.

96

https://cwe.mitre.org

6 Evaluation and Discussion

cuting the servlets, but they report false positives. The examples included in Figure 6.3
for static analysis tools specialized in security testing are different FindSecBugs versions
(A, B, H) and the SonarQube Java plugin (I). In general, we can observe a better true
positive rate than for static analysis tools without security checks (e.g., SpotBugs (J)
and FindBugs (C)), but they also have significant false positive rates. For the commer-
cial static analyzer Julia [136], the authors report reaching a 90% score, including 116
false positives on this benchmark set. As it is a commercial tool, it cannot be included
in the scorecard, but it would move close to the ideal top left spot. To the best of my
knowledge, no static analyzer is available that solves this benchmark set without false
positives.
Dynamic analysis tools (DAST), on the other hand, are slower, as they have to execute

the tool under analysis. Without any knowledge of the source code internals, they will
not find all security weaknesses. Nevertheless, every found weakness is a true positive
case, and the design of these tools precludes false positive reports. We see this in the
data reported on the OWASP benchmark for two versions of the OWASP ZAP tool (E,
F).
The interactive analysis tools (IAST) by Hdiv and Contrast security bridge this gap

reporting all security weaknesses in the code and no false positives leading to a perfect
score of 100%. As these are commercial tools, the performance data for the scorecard is
not available for inclusion in Figure 6.3. It would be the same as tool D. Both IAST tools
work as monitors reporting observed security weaknesses detected during the execution
of the program. As a second component they require a crawler that invokes all test cases
and executes the vulnerable paths. The OWASP Benchmark provides such a crawler
for analysis, but this is a downside in real-world applicability. Moreover, these monitors
work by instrumenting the application and hook into the runtime. The vendors do not
disclose any information regarding performance requirements or CPU time.

Dynamic Symbolic Execution vs. Random Driver. The best experiment for
evaluating the design choice discussed in Section 5.2—i.e. using either dynamic symbolic
execution as a path enumerator or a random path enumerator—is comparing the random
path enumeration in combination with dynamic multi-color taint analysis on the OWASP
Benchmark with Jaint. However, given the current implementation design of Jaint,
it is impossible to run the same multi-color taint monitors with a random path driver.
Instead, a proxy experiment evaluated the capabilities for finding assertion violation of
JDart and GDart against random testing on the SV-COMP 2022 Java task set.

Figure 6.4 presents the results of the comparison between random execution of the
tasks and running dynamic symbolic execution. We made three random runs with ten
different random inputs (blue runs) and three different runs with 100 different random
inputs (red runs). The performance reported for GDart and JDart includes reachable

97

6 Evaluation and Discussion

0 100 200 300 400 500 600 700
0.1

1

10

100

1000

Accumulated score

C
PU

tim
e
(s
)

random-10-1
random-10-2
random-10-3
random-100-1
random-100-2
random-100-3

jdart
gdart

Figure 6.4: Errors found by random execution of the tool vs. guarantees given by dynamic
symbolic execution.

assertions and verified absence of assertion error; thus these tools can reach more points
than random testing does. I will explain these visible differences and extend them with
details from the experiment: In general, executing the program with random values and
checking for assertion violations in this way is significantly faster for easy cases than
spinning up a new JVM for every run. Random testing spins up a single JVM and
runs the test in a loop. Next, running the binary 100 times (finding 193, 193, and
194 assertion violations) evidently does not increase the number of findings significantly
compared to running it ten times (finding 178, 180, and 183 assertion violations). The
increase is roughly 193 to 180 tasks leading to a seven percent increase while decoupling
the chance of finding an error. On the other hand, JDart found 330 (roughly + 70%
compared with best random run) and GDart found 300 (roughly + 55% compared
with best random run) assertion violations. Dynamic symbolic execution outperforms
random testing on this task set in the number of solved tasks. In contrast, the random
test found a reachable assertion violation in the MergeSortIterative-MemSat01 example
not found by any verifier in SV-COMP 2022. Java Ranger is the only verifier solving
this task, claiming it to be true, which is not the case in the counterexample found by
random testing.

6.2 Discussion

The previous section presented the experiments and their empirical evaluation. I will
now go on to discuss the evaluation results, answer EQ7, and connect the contributions
made in the thesis toward attainment of the overall research vision. Following the order
in which the experiments were presented, I will first discuss the increase in SMT solving

98

6 Evaluation and Discussion

performance, before turning to the symbolic encoding of string operations, and finally
the performance of Jaint. A fourth subsection will relate the discussion to the research
vision of this thesis.

6.2.1 The SMT Solving Layer Performance

The implementation strategies proposed in this thesis show that SMT based analysis
tools are closely linked with the performance of the SMT solver. Table 6.1 shows that
exchanging the solver is sufficient to alter the performance of JDart by up to 4%.
Transforming a verification problem into an SMT problem is not enough to evaluate
the performance of the verification approach; investing in the interaction with the SMT
solver is also required. Showing the performance of such tools on top of different SMT
solvers and meta-solving strategies demonstrates the influence of the specific SMT solver.

The selection and interaction of SMT solvers in the tool’s backend has a profound
impact on its performance. In answer to EQ1, the implementation strategy should not
simply abstract concrete implementation from a single solver. Rather the implementa-
tion strategy must optimize the resulting model for the use case, especially for tools
using the resulting SMT models in concretes runs, as in dynamic symbolic execution.
Using a bounded heuristic instead of a single solver for optimizing the interaction with
the constraint solver can also achieve a 4% better performance. Bounding the search
space has a negligible effect in the experiments compared with the heuristics and the
Multi strategy. So let’s discuss the lessons learned from using heuristics and the Multi
strategy in more detail next.

Meta-Solving Strategies. Given that finding violations is a strength of dynamic
symbolic execution, the experiments recommend using the Multi strategy. JDart
backed by the Multi strategy solves more correct false tasks than any other plain solver.
Exploring the complete search space is the weakness of dynamic symbolic execution,
and the Multi strategy does not significantly explore fewer problems on the SV-COMP
examples than CVC4 alone. I expect that with more CPU time, the gap to Z3 will
get smaller, but I have no data to prove this. By design, the Multi strategy is more
expensive than running Z3 alone. Therefore, the Multi strategy is expected to explore
less of the state space than an optimal Z3 run. The Multi strategy only delivers value
over a single solver if the solver at some point reports unknown for an SMT problem
and another solver performs the reasoning on the problem. Otherwise, it is hard for the
Multi strategy to become better than a single involved solver. Overall, the evaluation
shows the strengths of the meta-solving strategy, as performance increases and decreases
happens at the expected interaction points. This demonstrates that the design works.
Together with the data presented in Paper IV [100], these experiments show that meta-

99

6 Evaluation and Discussion

solving strategies lead to more reliable backends and are, in the worst case, on par with
any single involved solver in the strategy. Nevertheless, the answer to EQ2 should be
further differentiated: With SMT-based tools that challenge SMT solvers up to the point
where they report unknown results, or timeouts occur, SMT meta-solving strategies have
a positive impact. On the other hand, SMT-based tools that only make decisions for
SMT problems easily solved by all available SMT solvers for building a meta-solving
strategy will not benefit from the meta-solving strategy.
Using meta-solving strategies is not a new idea, e.g., Klee supports them [117]. How-

ever, to the best of my knowledge, we presented a design pattern for meta-solving strate-
gies for the first time and have shown that using the earliest verdict pattern is not always
the best strategy, depending on the context (cf. Paper IV [100]). The considerations for
optimizing the resulting model for satisfiable instances are quite specific for tools mix-
ing the dynamic and symbolic domains. This thesis has discussed the issue in greater
detail for the first time in the context of dynamic symbolic execution, after introducing
it briefly in Paper III [102].

Bounded Heuristics. The experiments applying the bounding heuristic presented
in Table 6.1 show that bounding positively affects the performance of JDart. The
bounding has more impact if CVC4 rather than Z3 is used as a solver in the backend.
Bjørner et al. [26] maintain that models with small values are desirable for the application
in programs like PEX. Thus Z3 seems partially optimized for generating small values in
the model, but I have not found a detailed explanation of this property for other theories
than the string solver of Z3. However, given occasional references in papers indicating
that the design of Z3 already optimizes in the same direction as the bounded heuristic,
it is not surprising that the bounded heuristic has more impact on the models generated
by CVC4.
The experiments and work in this thesis show that additional constraints for shaping

the model produced by an SMT solver positively influence the overall tool performance
of JDart, although they extend the decision problem. To the best of my knowledge,
this aspect is not widely discussed in the literature in relation to combining dynamic
executions with SMT solving. The bounding heuristic is one strategy proposed in this
thesis for decoupling the impact of a single solver on overall performance in answer to
EQ1. As shown in Table 6.1, CVC4 with the custom bound solves 520 tasks correctly and
one incorrectly, Z3 with the custom bound solves 527, and the Multi strategy solves 521
tasks correctly. These results are more homogeneous than those using the plain solvers:
CVC4 solves 498, Z3 511, and the Multi strategy 520. Hence the bounding heuristic
has not only improves the overall performance but also reduces the impact of the specific
SMT backend on the performance of the dynamic symbolic execution engine.

100

6 Evaluation and Discussion

6.2.2 DSE as Path Enumerator for Jaint

As described in Section 5.2, Jaint uses dynamic symbolic execution as path enumerator.
The integration of encoding for string operations is crucial for the analysis of web appli-
cations. Moreover, this thesis raises the question whether dynamic symbolic execution is
worth the resource investment or whether random path enumeration is better in practice.
This subsection will discuss these two aspects.

String encoding. As described in the thesis, analyzing string operations in path con-
straints is especially important for analyzing Java Web applications. In Chapter 4the
thesis has presented two different encoding strategies:: SLBV and SLSMT . During the
design phase and in the context of SV-COMP, the string theory encoding SLSMT has
already proven to be more expressive and powerful than the bitvector encoding SLBV .
Purely from the design perspective, then, the answer to EQ3 is clearly the string theory
encoding.
The experiment in Subsection 6.1.2 shows that the string theory encoding implemented

in JDart is currently the most advanced existing implementation in a Java verifier
that has participated in the SV-COMP java track. The implementation in GDart is
performance-wise comparable with the implemented encoding in JBMC. The evaluation
shows that the symbolic encoding of operations in the bounded model checking compo-
nent of JBMC does not solve significantly more tasks correctly than GDart. However,
in SV-COMP, JBMC is paired with a testing component for overall verification. The
combined approach of bounded model checking and testing ranks performance-wise be-
tween GDart and JDart. This empirical result confirms the potential of string theory
encoding as a promising strategy.

Random Driver vs. Dynamic Symbolic Execution. The experiments presented on
the OWASP benchmark in Subsection 6.1.3 demonstrate that the taint monitors work,
and multi-color taint analysis contributes to the proposed analysis by detecting security
weaknesses. The dynamic symbolic execution engine also enumerates the paths in the
benchmark. Nevertheless, it does not answer whether using dynamic symbolic execution
as path enumeration is worth the cost of running the analysis. If the given use case does
not require guarantees on the absence of security weaknesses, pairing the taint analysis
with a random path driver will in theory also finds security weaknesses. The question is
whether this is cheaper than running dynamic symbolic execution.

The experiment comparing random testing for assertion violation detection with dy-
namic symbolic execution has shown that dynamic symbolic execution is more expensive
but delivers better results than random testing. Summing this up as an answer to EQ4:
Given the experiments, dynamic symbolic execution is more powerful than random test-
ing for driving the analysis. Sometimes, when dynamic symbolic execution exhausts its

101

6 Evaluation and Discussion

resource limit without finding a vulnerability, giving a random driver a second chance
will allow some otherwise unnoticed errors to be caught. Nevertheless, the long-term goal
for Jaint is a powerful dynamic symbolic execution engine that drives path exploration,
and the experiments confirm this design decision.
As JBMC has shown, combining testing with verification is sometimes more power-

ful than applying a single technique alone. If sufficient CPU and RAM resources are
available, combining random testing and dynamic symbolic execution as a driver for the
multi-color taint analysis is also promising. The modular design supports this with a
few changes to the driver that replace the Verifer class with a random input generator.
The taint analysis and configuration stay untouched.

6.2.3 Jaint’s Performance and Scalability

To the best of my knowledge and as shown in the scorecard in Figure 6.3, Jaint is the first
research tool that reports a perfect result on the OWASP Benchmark, demonstrating the
potential of the approach. The fact that Jaint has analyzed the complete benchmark
successfully demonstrates that it has been possible to encode all eleven CWEs included
in the OWASP Benchmark with Jaint’s configuration language. The proposed taint
tracking architecture worked for these CWEs. As described in Section 5.4, some of the
involved CWEs in the OWASP Benchmark work in the form of static value checks rather
than taint flow properties. The Jaint taint tracking architecture is also flexible enough
to describe these CWEs. This answers EQ6 affirmatively.
I will now briefly discuss Jaint’s performance and design, compared with other indus-

trial tools reporting results on the OWASP Benchmark, and address the scalability of
Jaint.

Performance. The Jaint framework presented here also falls into the category of an
IAST tool. Compared with the solutions by Hdiv and Contrast security, integrated
dynamic symbolic execution allows all paths to be explored without requiring the exter-
nal crawler component. Hence the reported total score for all three tools is the same,
but Jaint is the first tool that includes path enumeration as well as monitoring in the
analysis. All IAST tools outperform DAST and SAST open source solutions as well as
the state-of-the-art commercial analyzer Julia for this benchmark. In sum, Jaint not
only demonstrates a promising taint engine that allows state-of-the-art security moni-
toring but allows completely automated analysis not supported by the current state of
the art. This automated analysis is an explicit improvement compared to existing tools,
and represents my answer to EQ5.

Scalability. The previous experiments have shown that Jaint and its subcomponents
work well on the existing benchmarks, but what are the expectations for using Jaint on

102

6 Evaluation and Discussion

real-world software? As Jaint in its current implementation uses JDart and the JPF-
VM, it is impossible to run it on arbitrary software as the JPF-VM does not support
the complete Java standard library: for example, the JPF-VM does not support central
parts of the Java io and nio library, making it impossible to analyze problems involving
file operations. With GDart, we started to replace JPF-VM with GraalVM in the
Jaint framework. In this thesis, the step of migrating the multi-color taint monitors
is left for future work. With the experiences gathered during the implementation of
GDart, I expect the whole design of the Jaint framework to transfer to GraalVM.
So far, all concepts relevant for implementing dynamic symbolic execution in JPF-VM
have direct conceptual counterparts in the GraalVM. As the multi-color taint analysis
uses the same implementation strategies, there is no reason why the implementation
of multi-color taint analyses should not transfer in the same way. By encoding string
operations symbolically, improving the solving layer, and discussing the capabilities of
mocking and modeling the execution environment for the analysis, this thesis has ad-
dressed the conceptual challenges identified for scaling Jaint and demonstrated them
in a prototype. Migrating the prototype implementation to GraalVM is currently a
work in progress. Answering EQ7 in the long-term requires more real-world experience
with the tool, resulting in completing migration from the JPF-VM to the GraalVM.

6.2.4 Contribution to the Research Vision

Especially the answer to EQ5 has shown that combining dynamic multi-color taint anal-
ysis with dynamic symbolic execution allows analysis of Java web applications security.
The promised goal for this thesis has been reached by the different contributions men-
tioned in the thesis. The remaining section will discuss how this contributes to the
research vision.

The answers given to DQ1 have demonstrated that the general taint tracking frame-
work is tailorable for different analyses that run in parallel but always analyze exactly
one execution path. The limitation to a single path contributes significantly to the pre-
cision of the analysis, as a violation of a taint property is always detected on precisely
one path. The concrete driver generates the concrete values that allow reproduction of
the path that has violated the property. Concrete values are a good starting point for
working in future toward explanations for security weaknesses and tool integrations that
guide human attention to eliminating these from the source code. The approach in itself
already delivers information in this direction.

The existence of the Jaint prototype itself has shown that the proposed answer to
DQ2 is feasible. Implementing dynamic symbolic execution and multi-color taint analysis
within the same runtime is possible. The empirical data presented in answer to EQ4

103

6 Evaluation and Discussion

shows the value of using dynamic symbolic execution instead of random testing as a
driver for taint analysis. Dynamic symbolic execution is often seen as inefficient, as
it suffers from the state space explosion problem. Section 3.3 discusses how different
strategies for choosing the driver method for the system under analysis help diminish
the influence of the state space explosion problem allowing partial analysis of a program.
Of course, this does not solve the state space explosion problem but does allow practical
applications of the Jaint framework.
For the precision and the recall of Jaint, the main objective of DQ3—discussion of

the right concrete driver—impacts recall, as the symbolic scope is defined here. Jaint’s
recall values are closely coupled with the dynamic symbolic execution performance and,
consequently, with the performance of the SMT solving layer used. The thesis has pro-
posed solutions for improving the performance of dynamic symbolic execution, especially
while analyzing programs with string operations (see the experiments run in answer to
EQ3). Moreover, the proposed SMT meta-solving strategies and bounding heuristic
reduce the dependency between dynamic symbolic execution and a single SMT solver.
JDart’s gold medal in the Java track of SV-COMP 2022 demonstrates the recall poten-
tial of dynamic symbolic execution tools on Java programs. Furthermore, JDart found
the most assertion violations (cf. the discussion on GDart’s performance compared
with other tools in Paper V [101]).
Jaint is very precise. However, as discussed in Section 5.1, in its current implemen-

tation, Jaint might give imprecise answers because of implicit sanitization introduced
for constant functions. This type of sanitization is currently not implemented. But as
argued before, implicit sanitization of constant functions is not expected to be a common
case for designed sanitization in Java web applications. Nevertheless, it is possible to
improve implementation in this area at the cost of slower concrete execution.
Summing up the evaluation, Jaint has not proved itself yet on real-world software, for

the reasons discussed at the end of Section 6.1.3. Nevertheless, the existing prototype
of Jaint demonstrates its general feasibility and delivers some promising preliminary
results for its potential as a candidate tool fitting the research vision. Furthermore, it
provides precise counter-examples if a security weakness is found and certifies the absence
of security weaknesses if the search terminates. Given the data and considerations
presented, I am confident that Jaint will develop further toward fullfillment of the main
research vision. In its current state it in any case already answers the main research
question.

104

6 Evaluation and Discussion

6.2.5 Threats to Validity

As in any research project, there are many threats to the validity of the results obtained
in this thesis. I will explicitly discuss two threats to the internal validity of the thesis
and two to its external validity resulting from the benchmark sets used there.

Internal Validity. There are two main threats to internal validity: heterogeneous
machines and seedable heuristics.
The experiments use a heterogeneous park of different machines. The measurements

are therefore affected by different CPU speeds in the consumed CPU time. As the
argumentation mainly uses the total number of solved tasks, and most tasks contributing
to the overall score are not close to the time limit as shown in Figure 6.2, the variance
of CPU speed in the specific experiments presented in this thesis is negligible.
SMT solvers use internal heuristics with random choices that might influence the

experiments. These random choices are especially a threat to the validity of the exper-
iments presented in Figure 6.1. Therefore, in order to diminish the effects of different
start seeds for the heuristics in multiple runs, the SMT solvers are always seeded with
the same seeds.

External Validity. The experiments use two benchmark sets established in the litera-
ture. There is no literature available that shows that these benchmark sets are represen-
tative for real-world software or how the results are transferable. I will discuss the two
benchmarks in more detail in the following two paragraphs.
The experiments presented in Subsection 6.1.1 and Subsection 6.1.2 use the SV-COMP

benchmark for the Java track. While it is a best-effort community benchmark set, it
has not been demonstrated that the performance a tool achieves on this benchmark
transfers to real-world software. However, the SV-COMP benchmark is currently used
for comparing Java tools, e.g., in evaluating the SymJex tool [83], and it is the agreed
standard within the community. A performance increase demonstrated on this bench-
mark is expected to be also observable on real-world software with the same tendency.
The same tendency means that if a solution saves time on the benchmark, the solution
will also save time on real-world software.

The OWASP Benchmark used for the experiments in Subsection 6.1.3 is artificially
generated and only inspired by real-world software. As the industry established this
benchmark as an indicator of tool quality, solving this benchmark shows that the concept
works. Transferring the results from the benchmark onto real-world software requires
further proof of the concept for generalizing the results. As other tools show short-
comings and Jaint does solve this benchmark without them, it is a valid first step for
demonstrating the framework’s potential. But this thesis does not investigate whether
these results are transferable to other Java programs.

105

7 Conclusion and Future Work

This thesis demonstrates how multi-color taint analysis interacts with dynamic sym-
bolic execution, allowing IT security analysis of Java web applications. It presents the
research challenge and the need to prove the absence of security weaknesses in programs
and otherwise detect security weaknesses precisely. The proposed solution for Java web
applications demonstrates an advance in this direction. In the following two sections, I
will conclude the thesis with a summary of the key results and discuss open questions
and ideas for future work.

7.1 Conclusion

In this thesis I have presented the Jaint framework allowing the automated analysis of
Java web applications for security weaknesses. The Jaint framework combines dynamic
symbolic execution as a path enumerator with a dynamic multi-color taint analysis for
monitoring security weaknesses during execution. If a security weakness is detected, the
taint analysis monitors will generate precise counter-examples that drive the execution
along the path with the observed weakness. While this architecture borrows aspects of
security fuzzer design, dynamic symbolic execution will guarantee that the taint analysis
checks all reachable paths in the program. This guarantee is limited to cases where
the dynamic symbolic exploration terminates. Therefore, if the analysis terminates,
the resulting framework will verify the absence of security weaknesses in Java web
applications. Security fuzzers do not usually give these guarantees, as they use random
or semi-random driver methods. In direct comparison with DAST tools, the Jaint
framework achieves better recall values, and in contrast with SAST tools, its precision
is better.
Apart from the framework, the thesis has presented how to build efficient meta-solving

strategies, integrate string operations in the dynamic symbolic execution of Java pro-
grams, and configure taint analysis using the Jaint configuration language.
In the area of SMT solving, the thesis has presented different strategies for influencing

the model generated for satisfiable SMT problems, and has proposed patterns for con-
structing SMT meta-solvers. Dynamic symbolic execution turns the model into concrete
values that impact the program’s runtime during path recording. Hence the thesis has

106

7 Conclusion and Future Work

presented the model selection problem and the bounding heuristic for getting smaller
models. The experiments show that this has a beneficial impact on tool performance.
Further, the thesis describes a design paradigm for simulating meta-solving strategies
before implementing them. The evaluation shows that the meta-solving strategy detects
roughly 1.5% more correct false results than a single solver on its own in the context
of dynamic symbolic execution on the SV-COMP 2022 Java task set. Furthermore,
the described design patterns for combining decision engines are general enough to be
transferred to other domains requiring a decision outside of SMT solving.
For dynamic symbolic execution of Java programs, the thesis contributes the capabil-

ity to encode string constraints on the Java string library level. This encoding allows
the symbolic exploration of string operations often used in web applications. These
changes are a core requirement for using dynamic symbolic execution in the analysis of
web applications. The experiments have shown that the resulting implementation for
dynamic symbolic execution of Java programs leads its field.

As the third significant contribution, the thesis has implemented a multi-color taint
analysis, and in the resulting paper, we have described how this analysis is configured.
These contributions together allowed implementation of the Jaint framework as a

proof of concept. The resulting implementation outperforms any other research tool in
precision and recall on the OWASP-Benchmark, a suite of Java servlets for comparing
security analyses for Java. Jaint provides a precise witness that violates the taint
policy, leading to an alarm. The high precision makes manual post-processing of the
analysis result unnecessary, a step commonly required for static analyses.
Last but not least, the thesis has taken the first step toward scaling the Jaint frame-

work from research examples to real-world applications by lifting dynamic symbolic exe-
cution implementation from JPF-VM to the industry-grade GraalVM. These efforts
resulted in the introduction of GDart and SPouT. Lifting the implementation from
JPF-VM to GraalVM demonstrates that the concept fits well in the JVM architec-
ture independently of the concrete JVM implementation. Furthermore, it strengthens
the argument that the problems occurring with the integration of string operations into
dynamic symbolic execution are conceptual and not implementation-dependent.
The previously described contributions are the design draft for a tool that proves the

absence of IT security weaknesses in Java programs. The prototype implementation
provided here demonstrates the practical feasibility of the designed approach. Moreover,
it represents an advance toward a development process that promises to prevent future
IT security breaches.

107

7 Conclusion and Future Work

7.2 Future Work

However, the development of the design draft and its prototype implementation have
raised additional questions and the prospect of future work. Completing these additional
tasks will advance further toward the research vision of a secure development process.

Scaling Jaint on Real-World Software. The evaluation in Chapter 6 shows that
Jaint and its subcomponents work well on the benchmarks presented. To stimulate
further research in this area and identify open challenges for scaling Jaint, analysis of
real-world applications is the next step. Running these will mean lifting the complete
Jaint framework from JPF-VM to GraalVM. So far, introducing GDart completes
half of this task. Implementing dynamic multi-color taint analysis in SPouT is still an
open task. However, completing it will allow execution of Jaint on top of GraalVM,
paving the way for an extensive case study on real-world software. The case study is
expected to generate additional insights into the remaining challenges for scaling Jaint.

Automated Generation of Analysis Drivers. The thesis has described the impact
of symbolic and concrete instantiation of certain data types in the driver for dynamic
analysis. This driver is often designed as a wrapper around the method under analysis.
In future, a method for automated generation of driver methods that might also work
in continuous integration setups offers a worthy area of research.

Using Static Analysis as Path Generator. The current design uses dynamic sym-
bolic execution as the path generator in Jaint. In future, researching the interplay of
dynamic symbolic execution and other static analysis techniques is a promising area. I
expect a robust static analysis to limit the state space that dynamic symbolic execution
must explore for a verification verdict. The goal is to reduce the false verdicts common
in static analysis by applying dynamic analysis. At the same time, static analysis might
be faster in ruling out uninteresting program areas and, therefore, may save significant
resources.

Parallel Exploration. The loosely coupled architecture of GDart allows multiple
SPouT instances to be starte, each exploring a different path. These parallel runs
allow the execution tree to be examined using either multiple machines or serverless
architectures in the cloud. Typically a single executor run requires only a few resources
and finishes within minutes, while the symbolic exploration component requires more
resources and has a longer overall runtime. Exploiting this potential for parallelism and
adjusting it to the usecase is an open question.

108

Bibliography

[1] P. A. Abdulla et al. “Trau: SMT solver for string constraints.” In: 2018 Formal
Methods in Computer Aided Design (FMCAD). Oct. 2018, pp. 1–5. doi: 10.239
19/FMCAD.2018.8602997.

[2] Parosh Aziz Abdulla et al. “Norn: An SMT solver for string constraints.” In: In-
ternational Conference on Computer Aided Verification. Springer. 2015, pp. 462–
469.

[3] Alfred V. Aho. “Algorithms for Finding Patterns in Strings.” In: Handbook of
Theoretical Computer Science (Vol. A): Algorithms and Complexity. Cambridge,
MA, USA: MIT Press, 1991, pp. 255–300. isbn: 0444880712.

[4] Jon Allen. Perl Version 5.8.8 Documentation - Perlsec. http://perldoc.perl
.org/5.8.8/perlsec.pdf. May 2016.

[5] Steven Arzt et al. “Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps.” In: Acm Sigplan Notices 49.6
(2014), pp. 259–269. doi: 10.1145/2594291.2594299.

[6] Thanassis Avgerinos et al. “Enhancing symbolic execution with veritesting.” In:
Proceedings of the 36th International Conference on Software Engineering. 2014,
pp. 1083–1094. doi: 10.1145/2568225.2568293.

[7] A. Avizienis et al. “Basic concepts and taxonomy of dependable and secure com-
puting.” In: IEEE Transactions on Dependable and Secure Computing 1.1 (2004),
pp. 11–33. doi: 10.1109/TDSC.2004.2.

[8] Algirdas Avizienis and Liming Chen. “On the Implementation of N-version Pro-
gramming for Software Fault-Tolerance During Execution.” In: Proceedings of
COMPSAC 77. IEEE, 1977, pp. 149–155.

[9] Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. “Automata-based model count-
ing for string constraints.” In: International Conference on Computer Aided Ver-
ification. Springer. 2015, pp. 255–272. doi: 10.1007/978-3-319-21690-4_15.

[10] Roberto Baldoni et al. “A survey of symbolic execution techniques.” In: ACM
Computing Surveys (CSUR) 51.3 (2018), p. 50. doi: 10.1145/3182657.

109

https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.23919/FMCAD.2018.8602997
http://perldoc.perl.org/5.8.8/perlsec.pdf
http://perldoc.perl.org/5.8.8/perlsec.pdf
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.1145/3182657

Bibliography

[11] Davide Balzarotti et al. “Saner: Composing static and dynamic analysis to vali-
date sanitization in web applications.” In: Security and Privacy, 2008. SP 2008.
IEEE Symposium on. IEEE. 2008, pp. 387–401. doi: 10.1109/SP.2008.22.

[12] Tao Bao et al. “Strict control dependence and its effect on dynamic information
flow analyses.” In: Proceedings of the 19th international symposium on Software
testing and analysis. 2010, pp. 13–24. doi: 10.1145/1831708.1831711.

[13] Haniel Barbosa et al. “cvc5: A Versatile and Industrial-Strength SMT Solver.” In:
Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems.
Springer. 2022, pp. 415–442. doi: 10.1007/978-3-030-99524-9_24.

[14] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Ver-
sion 2.6. Tech. rep. Available at www.SMT-LIB.org. Department of Computer
Science, The University of Iowa, 2017.

[15] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. “The SMT-Lib standard: Ver-
sion 2.0.” In: Proc. of the 8th International Workshop on Satisfiability Modulo
Theories. Vol. 13. 2010, p. 14.

[16] Clark Barrett et al. “CVC4.” In: Computer Aided Verification. Ed. by Ganesh
Gopalakrishnan and Shaz Qadeer. Springer, 2011, pp. 171–177. isbn: 978-3-642-
22110-1. doi: 10.1007/978-3-642-22110-1_14.

[17] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. “Z3str3: A String Solver with
Theory-aware Heuristics.” In: 2017 Formal Methods in Computer Aided Design
(FMCAD). 2017, pp. 55–59. doi: 10.23919/FMCAD.2017.8102241.

[18] Dirk Beyer. “Progress on Software Verification: SV-COMP 2022.” In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by Dana Fisman
and Grigore Rosu. Cham: Springer International Publishing, 2022, pp. 375–402.
doi: 10.1007/978-3-030-99527-0_20.

[19] Dirk Beyer. “Software Verification with Validation of Results.” In: Tools and Al-
gorithms for the Construction and Analysis of Systems. Ed. by Axel Legay and
Tiziana Margaria. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 331–
349. doi: 10.1007/978-3-662-54580-5_20.

[20] Dirk Beyer. “Software Verification: 10th Comparative Evaluation (SV-COMP
2021).” In: Tools and Algorithms for the Construction and Analysis of Systems.
Ed. by Jan Friso Groote and Kim Guldstrand Larsen. Cham: Springer Interna-
tional Publishing, 2021, pp. 401–422. doi: 10.1007/978-3-030-72013-1_24.

[21] Dirk Beyer. Verifiers and Validators of the 11th Intl. Competition on Software
Verification (SV-COMP 2022). Version svcomp22. Feb. 2022. doi: 10.5281/zen
odo.5959149.

110

https://doi.org/10.1109/SP.2008.22
https://doi.org/10.1145/1831708.1831711
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.5281/zenodo.5959149
https://doi.org/10.5281/zenodo.5959149

Bibliography

[22] Dirk Beyer, Stefan Löwe, and Philipp Wendler. “Reliable benchmarking: require-
ments and solutions.” In: International Journal on Software Tools for Technology
Transfer 21.1 (2019), pp. 1–29. doi: 10.1007/s10009-017-0469-y.

[23] A. Biere et al. Handbook of satisfiability. Vol. 185. IOS press, 2009.

[24] Armin Biere et al. “Symbolic model checking without BDDs.” In: Tools and Algo-
rithms for the Construction and Analysis of Systems. Springer. 1999, pp. 193–207.
doi: 10.1007/3-540-49059-0_14.

[25] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. “νZ - An Optimizing
SMT Solver.” In: Tools and Algorithms for the Construction and Analysis of
Systems. Ed. by Christel Baier and Cesare Tinelli. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 194–199. isbn: 978-3-662-46681-0. doi: 10.1007/97
8-3-662-46681-0_14.

[26] Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. “Path feasibility analy-
sis for string-manipulating programs.” In: Tools and Algorithms for the Construc-
tion and Analysis of Systems. Springer. 2009, pp. 307–321. doi: 10.1007/978-3-
642-00768-2_27.

[27] Nikolaj Bjørner et al. “An SMT-Lib format for sequences and regular expressions.”
In: SMT 12 (2012), pp. 76–86. doi: 10.29007/w5m5.

[28] Dmitry Blotsky et al. “StringFuzz: A fuzzer for string solvers.” In: International
Conference on Computer Aided Verification. Springer. 2018, pp. 45–51. doi: 10
.1007/978-3-319-96142-2_6.

[29] Tim Boland and Paul E Black. “Juliet 1. 1 C/C++ and java test suite.” In:
Computer 45.10 (2012), pp. 88–90. doi: 10.1109/MC.2012.345.

[30] Pierre Bourque et al. “The guide to the software engineering body of knowledge.”
In: IEEE software 16.6 (1999), pp. 35–44. doi: 10.1109/52.805471.

[31] Martin Brain, Florian Schanda, and Youcheng Sun. “Building better bit-blasting
for floating-point problems.” In: Tools and Algorithms for the Construction and
Analysis of Systems. Springer. 2019, pp. 79–98. doi: 10.1007/978-3-030-17462
-0_5.

[32] L. Braz et al. “Why Don’t Developers Detect Improper Input Validation? ’; DROP
TABLE Papers; –.” In: 2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering (ICSE). Los Alamitos, CA, USA: IEEE Computer Society, May
2021, pp. 499–511. doi: 10.1109/ICSE43902.2021.00054. url: https://doi.i
eeecomputersociety.org/10.1109/ICSE43902.2021.00054.

111

https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.29007/w5m5
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1109/MC.2012.345
https://doi.org/10.1109/52.805471
https://doi.org/10.1007/978-3-030-17462-0_5
https://doi.org/10.1007/978-3-030-17462-0_5
https://doi.org/10.1109/ICSE43902.2021.00054
https://doi.ieeecomputersociety.org/10.1109/ICSE43902.2021.00054
https://doi.ieeecomputersociety.org/10.1109/ICSE43902.2021.00054

Bibliography

[33] Tegan Brennan et al. “Constraint normalization and parameterized caching for
quantitative program analysis.” In: Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. 2017, pp. 535–546. doi: 10.1145/3106
237.3106303.

[34] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. “ASM: a code manipula-
tion tool to implement adaptable systems.” In: Adaptable and extensible compo-
nent systems 30.19 (2002).

[35] Tevfik Bultan et al. String Analysis for Software Verification and Security. Springer,
2017. doi: 10.1007/978-3-319-68670-7.

[36] Jerry R Burch et al. “Symbolic model checking: 1020 states and beyond.” In:
Information and computation 98.2 (1992), pp. 142–170. doi: 10.1016/0890-540
1(92)90017-A.

[37] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.”
In: OSDI. Vol. 8. 2008, pp. 209–224.

[38] Cristian Cadar and Koushik Sen. “Symbolic Execution for Software Testing:
Three Decades Later.” In: Commun. ACM 56.2 (Feb. 2013), pp. 82–90. issn:
0001-0782. doi: 10.1145/2408776.2408795. url: http://doi.acm.org/10.11
45/2408776.2408795.

[39] Lorenzo Cavallaro, Prateek Saxena, and R. Sekar. “On the Limits of Information
Flow Techniques for Malware Analysis and Containment.” In: Detection of Intru-
sions and Malware, and Vulnerability Assessment. Ed. by Diego Zamboni. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 143–163. doi: 10.1007/978-3
-540-70542-0_8.

[40] Taolue Chen et al. “Decision procedures for path feasibility of string-manipulating
programs with complex operations.” In: Proceedings of the ACM on Programming
Languages 3.POPL (2019), pp. 1–30. doi: 10.1145/3290362.

[41] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. “Pre-
cise Analysis of String Expressions.” In: Proc. 10th International Static Analysis
Symposium (SAS). Vol. 2694. LNCS. Available from http://www.brics.dk/JSA/.
Springer-Verlag, June 2003, pp. 1–18. doi: 10.1007/3-540-44898-5_1.

[42] V. Chvátal. Linear Programming. Series of books in the mathematical sciences.
W.H. Freeman and company, 1983. isbn: 9780716711957.

[43] Edmund Clarke, Daniel Kroening, and Flavio Lerda. “A tool for checking ANSI-C
programs.” In: Tools and Algorithms for the Construction and Analysis of Systems.
Springer. 2004, pp. 168–176. doi: 10.1007/978-3-540-24730-2_15.

112

https://doi.org/10.1145/3106237.3106303
https://doi.org/10.1145/3106237.3106303
https://doi.org/10.1007/978-3-319-68670-7
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1145/2408776.2408795
http://doi.acm.org/10.1145/2408776.2408795
http://doi.acm.org/10.1145/2408776.2408795
https://doi.org/10.1007/978-3-540-70542-0_8
https://doi.org/10.1007/978-3-540-70542-0_8
https://doi.org/10.1145/3290362
https://doi.org/10.1007/3-540-44898-5_1
https://doi.org/10.1007/978-3-540-24730-2_15

Bibliography

[44] Edmund M Clarke et al. Handbook of model checking. Vol. 10. Springer, 2018.
doi: 10.1007/978-3-319-10575-8.

[45] James Clause, Wanchun Li, and Alessandro Orso. “Dytan: a generic dynamic
taint analysis framework.” In: Proceedings of the 2007 international symposium
on Software testing and analysis. ACM. 2007, pp. 196–206. doi: 10.1145/12734
63.1273490.

[46] Juan José Conti and Alejandro Russo. “A taint mode for python via a library.”
In: Nordic Conference on Secure IT Systems. Springer. 2010, pp. 210–222. doi:
10.1007/978-3-642-27937-9_15.

[47] Byron Cook et al. “Model checking boot code from AWS data centers.” In: Formal
Methods in System Design (2020), pp. 1–19. doi: 10.1007/978-3-319-96142-2
_28.

[48] Ricardo Corin and Felipe Andrés Manzano. “Taint Analysis of Security Code in
the KLEE Symbolic Execution Engine.” In: Information and Communications
Security. Ed. by Tat Wing Chim and Tsz Hon Yuen. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 264–275. isbn: 978-3-642-34129-8. doi: 10.1007/97
8-3-642-34129-8_23.

[49] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: Past, Present and
Future.” In: Proceedings of the Joint Meeting of the Twenty-Third EACSL An-
nual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). CSL-LICS ’14. Vi-
enna, Austria: Association for Computing Machinery, 2014. isbn: 9781450328869.
doi: 10.1145/2603088.2603165.

[50] Michael Dalton, Hari Kannan, and Christos Kozyrakis. “Raksha: a flexible infor-
mation flow architecture for software security.” In: ACM SIGARCH Computer
Architecture News 35.2 (2007), pp. 482–493. doi: 10.1145/1250662.1250722.

[51] Michael Dalton, Hari Kannan, and Christos Kozyrakis. “Real-World Buffer Over-
flow Protection for Userspace and Kernelspace.” In: USENIX Security Symposium.
2008, pp. 395–410.

[52] Michael Dalton, Hari Kannan, and Christos Kozyrakis. “Tainting is not pointless.”
In: ACM SIGOPS Operating Systems Review 44.2 (2010), pp. 88–92. doi: 10.11
45/1773912.1773933.

[53] Ali Davanian et al. “DECAF++: Elastic Whole-System Dynamic Taint Analy-
sis.” In: 22nd International Symposium on Research in Attacks, Intrusions and
Defenses. Chaoyang District, Beijing: USENIX Association, Sept. 2019, pp. 31–45.

113

https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1007/978-3-642-27937-9_15
https://doi.org/10.1007/978-3-319-96142-2_28
https://doi.org/10.1007/978-3-319-96142-2_28
https://doi.org/10.1007/978-3-642-34129-8_23
https://doi.org/10.1007/978-3-642-34129-8_23
https://doi.org/10.1145/2603088.2603165
https://doi.org/10.1145/1250662.1250722
https://doi.org/10.1145/1773912.1773933
https://doi.org/10.1145/1773912.1773933

Bibliography

isbn: 978-1-939133-07-6. url: https://www.usenix.org/conference/raid201
9/presentation/davanian.

[54] Martin Davis, George Logemann, and Donald Loveland. “A Machine Program
for Theorem-Proving.” In: Commun. ACM 5.7 (July 1962), pp. 394–397. issn:
0001-0782. doi: 10.1145/368273.368557.

[55] Martin Davis and Hilary Putnam. “A Computing Procedure for Quantification
Theory.” In: J. ACM 7.3 (July 1960), pp. 201–215. issn: 0004-5411. doi: 10.114
5/321033.321034.

[56] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver.” In: Tools
and Algorithms for the Construction and Analysis of Systems. Springer. 2008,
pp. 337–340. doi: 10.1007/978-3-540-78800-3_24.

[57] Dorothy E. Denning and Peter J. Denning. “Certification of Programs for Secure
Information Flow.” In: Commun. ACM 20.7 (July 1977), pp. 504–513. issn: 0001-
0782. doi: 10.1145/359636.359712.

[58] Marko Dimjašević et al. “Study of integrating random and symbolic testing
for object-oriented software.” In: International Conference on Integrated Formal
Methods. Springer. 2018, pp. 89–109. doi: 10.1007/978-3-319-98938-9_6.

[59] Marko Dimjašević et al. “The Dart, the Psyco, and the Doop: Concolic Execution
in Java PathFinder and Its Applications.” In: SIGSOFT Softw. Eng. Notes 40.1
(Feb. 2015), pp. 1–5. doi: 10.1145/2693208.2693248.

[60] Claudia Eckert. IT-Sicherheit: Konzepte-Verfahren-Protokolle. 10. De Gruyter,
2018. doi: 10.1515/9783110563900.

[61] Ehsan Edalat, Babak Sadeghiyan, and Fatemeh Ghassemi. “ConsiDroid: A Concolic-
based Tool for Detecting SQL Injection Vulnerability in Android Apps.” In: CoRR
abs/1811.10448 (2018). arXiv: 1811.10448.

[62] Marcelo M. Eler, Andre T. Endo, and Vinicius H.S. Durelli. “An empirical study
to quantify the characteristics of Java programs that may influence symbolic
execution from a unit testing perspective.” In: Journal of Systems and Software
121 (2016), pp. 281–297. issn: 0164-1212. doi: https://doi.org/10.1016/j.js
s.2016.03.020.

[63] Michael Feathers.Working Effectively with Legacy Code. USA: Prentice Hall PTR,
2004. isbn: 0131177052.

[64] Pietro Ferrara, Luca Olivieri, and Fausto Spoto. “Tailoring taint analysis to
GDPR.” In: Annual Privacy Forum. Springer. 2018, pp. 63–76. doi: 10.1007
/978-3-030-02547-2_4.

114

https://www.usenix.org/conference/raid2019/presentation/davanian
https://www.usenix.org/conference/raid2019/presentation/davanian
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/359636.359712
https://doi.org/10.1007/978-3-319-98938-9_6
https://doi.org/10.1145/2693208.2693248
https://doi.org/10.1515/9783110563900
https://arxiv.org/abs/1811.10448
https://doi.org/https://doi.org/10.1016/j.jss.2016.03.020
https://doi.org/https://doi.org/10.1016/j.jss.2016.03.020
https://doi.org/10.1007/978-3-030-02547-2_4
https://doi.org/10.1007/978-3-030-02547-2_4

Bibliography

[65] Paul Fiterău-Broştean and Falk Howar. “Learning-Based Testing the Sliding Win-
dow Behavior of TCP Implementations.” In: Critical Systems: Formal Methods
and Automated Verification. Ed. by Laure Petrucci, Cristina Seceleanu, and Ana
Cavalcanti. Cham: Springer International Publishing, 2017, pp. 185–200. doi:
10.1007/978-3-319-67113-0_12.

[66] Gordon Fraser and Andrea Arcuri. “A Large Scale Evaluation of Automated Unit
Test Generation Using EvoSuite.” In: ACM Transactions on Software Engineering
and Methodology (TOSEM) 24.2 (2014), p. 8. doi: 10.1145/2685612.

[67] John Galea and Daniel Kroening. “The taint rabbit: Optimizing generic taint
analysis with dynamic fast path generation.” In: Proceedings of the 15th ACM
Asia Conference on Computer and Communications Security. 2020, pp. 622–636.
doi: 10.1145/3320269.3384764.

[68] Ashish Garg, Jeffrey Curtis, and Hilary Halper. “Quantifying the financial im-
pact of IT security breaches.” In: Information Management & Computer Security
(2003). doi: 10.1109/PST.2014.6890934.

[69] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed Automated
Random Testing.” In: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’05. ACM, 2005, pp. 213–
223. isbn: 1-59593-056-6. doi: 10.1007/978-3-642-19237-1_4.

[70] Patrice Godefroid, Michael Y Levin, and David Molnar. “SAGE: whitebox fuzzing
for security testing.” In: Communications of the ACM 55.3 (2012), pp. 40–44. doi:
10.1145/2090147.2094081.

[71] George Hagen and Cesare Tinelli. “Scaling up the formal verification of Lustre
programs with SMT-based techniques.” In: 2008 Formal Methods in Computer-
Aided Design. IEEE. 2008, pp. 1–9. doi: 10.1109/FMCAD.2008.ECP.19.

[72] Vivek Haldar, Deepak Chandra, and Michael Franz. “Dynamic taint propaga-
tion for Java.” In: 21st Annual Computer Security Applications Conference (AC-
SAC’05). IEEE. 2005, 9–pp. doi: 10.1109/CSAC.2005.21.

[73] William Halfond, Alex Orso, and Pete Manolios. “WASP: Protecting web applica-
tions using positive tainting and syntax-aware evaluation.” In: IEEE transactions
on Software Engineering 34.1 (2008), pp. 65–81. doi: 10.1109/TSE.2007.70748.

[74] Ari B Hayes et al. “GPU Taint Tracking.” In: 2017 USENIX Annual Technical
Conference (USENIX ATC 17). 2017, pp. 209–220.

115

https://doi.org/10.1007/978-3-319-67113-0_12
https://doi.org/10.1145/2685612
https://doi.org/10.1145/3320269.3384764
https://doi.org/10.1109/PST.2014.6890934
https://doi.org/10.1007/978-3-642-19237-1_4
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1109/FMCAD.2008.ECP.19
https://doi.org/10.1109/CSAC.2005.21
https://doi.org/10.1109/TSE.2007.70748

Bibliography

[75] Andrew Henderson et al. “Make it work, make it right, make it fast: building a
platform-neutral whole-system dynamic binary analysis platform.” In: Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 2014,
pp. 248–258. doi: 10.1145/2610384.2610407.

[76] Pieter Hooimeijer et al. “Fast and Precise Sanitizer Analysis with BEK.” In:
USENIX Security Symposium. Vol. 58. 2011.

[77] Falk Howar, Fadi Jabbour, and Malte Mues. “JConstraints: a library for working
with logic expressions in Java.” In: Models, Mindsets, Meta: The What, the How,
and the Why Not? 2019. doi: 10.1007/978-3-030-22348-9_19.

[78] Falk Howar and Malte Mues. “Can We Trust Theorem Provers for Industrial AI?”
In: IEEE Software 38.6 (2021), pp. 104–108. doi: 10.1109/MS.2021.3103448.

[79] Andrew Hunt and Hunt Thomas. The Pragmatic Programmer. Addison-Wesley
Professional, 1999. isbn: 9780201616224.

[80] Joxan Jaffar et al. “TracerX: Dynamic symbolic execution with interpolation
(competition contribution).” In: Fundamental Approaches to Software Engineering
12076 (2020), p. 530. doi: 10.1007/978-3-030-45234-6_28.

[81] Dejan Jovanović and Clark Barrett. “Polite theories revisited.” In: Logic for Pro-
gramming, Artificial Intelligence, and Reasoning: 17th International Conference,
LPAR-17, Yogyakarta, Indonesia, October 10-15, 2010. Proceedings 17. Springer.
2010, pp. 402–416. doi: 10.1007/978-3-642-16242-8_29.

[82] James C. King. “Symbolic execution and program testing.” In: Commun. ACM
19.7 (1976), pp. 385–394. issn: 0001-0782. doi: 10.1145/360248.360252.

[83] Sebastian Kloibhofer et al. “SymJEx: Symbolic Execution on the GraalVM.” In:
Proceedings of the 17th International Conference on Managed Programming Lan-
guages and Runtimes. MPLR 2020. Virtual, UK: Association for Computing Ma-
chinery, 2020, pp. 63–72. isbn: 9781450388535. doi: 10.1145/3426182.3426187.

[84] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic Point
of View. 2nd ed. Springer Publishing Company, Incorporated, 2016. doi: 10.100
7/978-3-662-50497-0.

[85] Tammo Krueger et al. “TokDoc: A Self-Healing Web Application Firewall.” In:
Proceedings of the 2010 ACM Symposium on Applied Computing. SAC ’10. Sierre,
Switzerland: Association for Computing Machinery, 2010, pp. 1846–1853. doi:
10.1145/1774088.1774480.

116

https://doi.org/10.1145/2610384.2610407
https://doi.org/10.1007/978-3-030-22348-9_19
https://doi.org/10.1109/MS.2021.3103448
https://doi.org/10.1007/978-3-030-45234-6_28
https://doi.org/10.1007/978-3-642-16242-8_29
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/3426182.3426187
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1145/1774088.1774480

Bibliography

[86] Ben Livshits. “Dynamic Taint Tracking in Managed Runtimes.” In: MSR-TR-
2012-114 (Nov. 2012). url: https://www.microsoft.com/en-us/research/pu
blication/dynamic-taint-tracking-in-managed-runtimes/.

[87] V Benjamin Livshits and Monica S Lam. “Finding Security Vulnerabilities in Java
Applications with Static Analysis.” In: USENIX Security Symposium. Vol. 14.
2005, pp. 18–18.

[88] Blake Loring, Duncan Mitchell, and Johannes Kinder. “Sound regular expression
semantics for dynamic symbolic execution of JavaScript.” In: Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. 2019, pp. 425–438. doi: 10.1145/3314221.3314645.

[89] Kasper Luckow et al. “JDart: A Dynamic Symbolic Analysis Framework.” In:
TACAS. 2016. doi: 10.1007/978-3-662-49674-9_26.

[90] Linghui Luo. “Improving Real-World Applicability of Static Taint Analysis.” PhD
thesis. Universität Paderborn, Oct. 2021. url: https://www.bodden.de/pubs/p
hdLuo.pdf.

[91] Muhammad Numair Mansur et al. “Detecting Critical Bugs in SMT Solvers Using
Blackbox Mutational Fuzzing.” In: Proc. of the 28th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering. New York, NY, USA: Association for Computing Machin-
ery, 2020, pp. 701–712. isbn: 9781450370431. doi: 10.1145/3368089.3409763.

[92] Michael Martin, Benjamin Livshits, and Monica S Lam. “Finding application
errors and security flaws using PQL: a program query language.” In: Acm Sigplan
Notices 40.10 (2005), pp. 365–383. doi: 10.1145/1103845.1094840.

[93] Kenneth L McMillan. “Interpolation and SAT-based model checking.” In: Inter-
national Conference on Computer Aided Verification. Springer. 2003, pp. 1–13.
doi: 10.1007/978-3-540-45069-6_1.

[94] Jiang Ming et al. “StraightTaint: Decoupled Offline Symbolic Taint Analysis.” In:
Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering. ASE 2016. Singapore, Singapore: Association for Computing
Machinery, 2016, pp. 308–319. isbn: 9781450338455. doi: 10.1145/2970276.29
70299.

[95] Jiang Ming et al. “TaintPipe: Pipelined Symbolic Taint Analysis.” In: 24th USENIX
Security Symposium (USENIX Security 15). Washington, D.C.: USENIX Associ-
ation, Aug. 2015, pp. 65–80. isbn: 978-1-931971-232.

117

https://www.microsoft.com/en-us/research/publication/dynamic-taint-tracking-in-managed-runtimes/
https://www.microsoft.com/en-us/research/publication/dynamic-taint-tracking-in-managed-runtimes/
https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1007/978-3-662-49674-9_26
https://www.bodden.de/pubs/phdLuo.pdf
https://www.bodden.de/pubs/phdLuo.pdf
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.1145/1103845.1094840
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1145/2970276.2970299
https://doi.org/10.1145/2970276.2970299

Bibliography

[96] Federico Mora et al. “Z3str4: A Multi-armed String Solver.” In: Formal Methods.
Ed. by Marieke Huisman, Corina Păsăreanu, and Naijun Zhan. Cham: Springer
International Publishing, 2021, pp. 389–406. doi: 10.1007/978-3-030-90870-6
_21.

[97] Malte Mues. Addition Reproduction Package Thesis Mues. May 2023. doi: 10.5
281/zenodo.7944937. url: https://doi.org/10.5281/zenodo.7944937.

[98] Malte Mues, Martin Fitzke, and Falk Howar. “Thoughts about using Constraint
Solvers in Action.” In: Electronic Communications of the EASST 78 (2020). doi:
10.14279/tuj.eceasst.78.1100.

[99] Malte Mues, Sebastian Gerard, and Falk Howar. “Identification of Spurious Labels
in Machine Learning Data Sets using N-Version Validation.” In: 2020 IEEE 23rd
International Conference on Intelligent Transportation Systems (ITSC). 2020,
pp. 1–7. doi: 10.1109/ITSC45102.2020.9294223.

[100] Malte Mues and Falk Howar. “Data-Driven Design and Evaluation of SMT Meta-
Solving Strategies: Balancing Performance, Accuracy, and Cost.” In: 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
2021, pp. 179–190. doi: 10.1109/ASE51524.2021.9678881.

[101] Malte Mues and Falk Howar. “GDart: An Ensemble of Tools for Dynamic Sym-
bolic Execution on the Java Virtual Machine (Competition Contribution).” In:
Tools and Algorithms for the Construction and Analysis of Systems. Springer,
2022. doi: 10.1007/978-3-030-99527-0_27.

[102] Malte Mues and Falk Howar. “JDart: Dynamic Symbolic Execution for Java Byte-
code (Competition Contribution).” In: Tools and Algorithms for the Construction
and Analysis of Systems. Springer. 2020, pp. 398–402. doi: 10.1007/978-3-030
-45237-7_28.

[103] Malte Mues and Falk Howar. “JDart: Portfolio Solving, Breadth-First Search and
SMT-Lib Strings.” In: Tools and Algorithms for the Construction and Analysis of
Systems. 2021. doi: 10.1007/978-3-030-72013-1_30.

[104] Malte Mues and Falk Howar. tudo-aqua/paper-reproduction-package-ase2021: Re-
production Package for the ASE 2021 AEC Committee. July 2021. doi: 10.5281
/zenodo.5226127.

[105] Malte Mues, Falk Howar, and Simon Dierl. “SPouT: Symbolic Path Recording
during Testing - a Concolic Executor for the JVM.” In: 20th International Con-
ference on Software Engineering and Formal Methods. Springer, 2022, pp. 91–107.
doi: 10.1007/978-3-031-17108-6_6.

118

https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.1007/978-3-030-90870-6_21
https://doi.org/10.5281/zenodo.7944937
https://doi.org/10.5281/zenodo.7944937
https://doi.org/10.5281/zenodo.7944937
https://doi.org/10.14279/tuj.eceasst.78.1100
https://doi.org/10.1109/ITSC45102.2020.9294223
https://doi.org/10.1109/ASE51524.2021.9678881
https://doi.org/10.1007/978-3-030-99527-0_27
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-45237-7_28
https://doi.org/10.1007/978-3-030-72013-1_30
https://doi.org/10.5281/zenodo.5226127
https://doi.org/10.5281/zenodo.5226127
https://doi.org/10.1007/978-3-031-17108-6_6

Bibliography

[106] Malte Mues, Till Schallau, and Falk Howar. Artifact for ‘Jaint: A Framework for
User-Defined Dynamic Taint-Analyses based on Dynamic Symbolic Execution of
Java Programs’. Version v1. Sept. 2020. doi: 10.5281/zenodo.4060244. url:
https://doi.org/10.5281/zenodo.4060244.

[107] Malte Mues, Till Schallau, and Falk Howar. “Jaint: A Framework for User-Defined
Dynamic Taint-Analyses Based on Dynamic Symbolic Execution of Java Pro-
grams.” In: Integrated Formal Methods. Ed. by Brijesh Dongol and Elena Troubit-
syna. Cham: Springer International Publishing, 2020, pp. 123–140. doi: 10.100
7/978-3-030-63461-2_7.

[108] Håvard Myrbakken and Ricardo Colomo-Palacios. “DevSecOps: A Multivocal Lit-
erature Review.” In: Software Process Improvement and Capability Determination.
Ed. by Antonia Mas et al. Cham: Springer International Publishing, 2017, pp. 17–
29. doi: 10.1007/978-3-319-67383-7_2.

[109] Abbas Naderi-Afooshteh et al. “Joza: Hybrid Taint Inference for Defeating Web
Application SQL Injection Attacks.” In: 2015 45th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks. IEEE. 2015, pp. 172–183.
doi: 10.1109/DSN.2015.13.

[110] Greg Nelson and Derek C Oppen. “Simplification by cooperating decision proce-
dures.” In: ACM Transactions on Programming Languages and Systems (TOPLAS)
1.2 (1979), pp. 245–257. doi: 10.1145/357073.357079.

[111] Anh Nguyen-Tuong et al. “Automatically Hardening Web Applications Using
Precise Tainting.” In: Security and Privacy in the Age of Ubiquitous Computing.
Ed. by Ryoichi Sasaki et al. Boston, MA: Springer, 2005, pp. 295–307. doi: 10.1
007/0-387-25660-1_20.

[112] Aina Niemetz and Mathias Preiner. “Bitwuzla at the SMT-COMP 2020.” In:
CoRR abs/2006.01621 (2020). arXiv: 2006.01621. url: https://arxiv.org/ab
s/2006.01621.

[113] Aina Niemetz and Mathias Preiner. “Ternary Propagation-Based Local Search for
more Bit-Precise Reasoning.” In: 2020 Formal Methods in Computer Aided Design,
FMCAD 2020, Haifa, Israel, September 21-24, 2020. IEEE, 2020, pp. 214–224.
doi: 10.34727/2020/isbn.978-3-85448-042-6_29.

[114] Aina Niemetz, Mathias Preiner, and Armin Biere. “Boolector 2.0.” In: J. Satisf.
Boolean Model. Comput. 9.1 (2014), pp. 53–58. doi: 10.3233/sat190101.

[115] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. “Solving SAT and SAT
modulo theories: From an abstract Davis–Putnam–Logemann–Loveland proce-
dure to DPLL (T).” In: Journal of the ACM (JACM) 53.6 (2006), pp. 937–977.

119

https://doi.org/10.5281/zenodo.4060244
https://doi.org/10.5281/zenodo.4060244
https://doi.org/10.1007/978-3-030-63461-2_7
https://doi.org/10.1007/978-3-030-63461-2_7
https://doi.org/10.1007/978-3-319-67383-7_2
https://doi.org/10.1109/DSN.2015.13
https://doi.org/10.1145/357073.357079
https://doi.org/10.1007/0-387-25660-1_20
https://doi.org/10.1007/0-387-25660-1_20
https://arxiv.org/abs/2006.01621
https://arxiv.org/abs/2006.01621
https://arxiv.org/abs/2006.01621
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_29
https://doi.org/10.3233/sat190101

Bibliography

[116] Carlos Pacheco et al. “Feedback-directed random test generation.” In: 29th Inter-
national Conference on Software Engineering (ICSE’07). IEEE. 2007, pp. 75–84.
doi: 10.1109/ICSE.2007.37.

[117] Hristina Palikareva and Cristian Cadar. “Multi-solver Support in Symbolic Exe-
cution.” In: Computer Aided Verification. Ed. by Natasha Sharygina and Helmut
Veith. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 53–68. doi: 10.1
007/978-3-642-39799-8_3.

[118] Corina S Păsăreanu and Neha Rungta. “Symbolic PathFinder: Symbolic Execu-
tion of Java Bytecode.” In: Proceedings of the IEEE/ACM international confer-
ence on Automated software engineering. 2010, pp. 179–180. doi: 10.1145/1858
996.1859035.

[119] Corina S Păsăreanu et al. “Symbolic Execution and Recent Applications to Worst-
Case Execution, Load Testing, and Security Analysis.” In: Advances in Computers.
Vol. 113. Elsevier, 2019, pp. 289–314. doi: 10.1016/bs.adcom.2018.10.004.

[120] Gideon Redelinghuys, Willem Visser, and Jaco Geldenhuys. “Symbolic execution
of programs with strings.” In: Proceedings of the South African Institute for Com-
puter Scientists and Information Technologists Conference. 2012, pp. 139–148.
doi: 10.1145/2389836.2389853.

[121] Andrew Reynolds et al. “Scaling up DPLL(T) String Solvers Using Context-
Dependent Simplification.” In: International Conference on Computer Aided Ver-
ification. Springer. 2017, pp. 453–474. doi: 10.1007/978-3-319-63390-9_24.

[122] John R Rice. “The Algorithm Selection Problem.” In: Advances in computers.
Vol. 15. Elsevier, 1976, pp. 65–118. doi: 10.1016/S0065-2458(08)60520-3.

[123] Heinz Riener et al. “metaSMT: focus on your application and not on solver in-
tegration.” In: International Journal on Software Tools for Technology Transfer
19.5 (2017), pp. 605–621. doi: 10.1007/s10009-016-0426-1.

[124] Andrei Sabelfeld and Andrew C Myers. “Language-based information-flow secu-
rity.” In: IEEE Journal on selected areas in communications 21.1 (2003), pp. 5–19.
doi: 10.1109/JSAC.2002.806121.

[125] P. Saxena et al. “A Symbolic Execution Framework for JavaScript.” In: 2010 IEEE
Symposium on Security and Privacy. 2010, pp. 513–528. doi: 10.1109/SP.2010
.38.

[126] Daniel Schoepe et al. “Explicit Secrecy: A Policy for Taint Tracking.” In: 2016
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE. 2016,
pp. 15–30. doi: 10.1109/EuroSP.2016.14.

120

https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1007/978-3-642-39799-8_3
https://doi.org/10.1007/978-3-642-39799-8_3
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1016/bs.adcom.2018.10.004
https://doi.org/10.1145/2389836.2389853
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1007/s10009-016-0426-1
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/SP.2010.38
https://doi.org/10.1109/SP.2010.38
https://doi.org/10.1109/EuroSP.2016.14

Bibliography

[127] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. “All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask).” In: 2010 IEEE symposium on Security and
privacy. IEEE. 2010, pp. 317–331. doi: 10.1109/SP.2010.26.

[128] Joseph Scott, Federico Mora, and Vijay Ganesh. “BanditFuzz: A Reinforcement-
Learning Based Performance Fuzzer for SMT Solvers.” In: Software Verification.
Ed. by Maria Christakis et al. Cham: Springer International Publishing, 2020,
pp. 68–86. doi: 10.1007/978-3-030-63618-0_5.

[129] Roberto Sebastiani and Patrick Trentin. “OptiMathSAT: A Tool for Optimiza-
tion Modulo Theories.” In: Proc. International Conference on Computer-Aided
Verification, CAV 2015. Vol. 9206. LNCS. Springer, 2015. doi: 978-3-319-2169
0-4_27.

[130] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit Testing
Engine for C.” In: SIGSOFT Softw. Eng. Notes 30.5 (Sept. 2005), pp. 263–272.
issn: 0163-5948. doi: 10.1145/1095430.1081750.

[131] Ali Shamakhi, Hossein Hojjat, and Philipp Rümmer. “Towards String Support
in JayHorn (Competition Contribution).” In: Tools and Algorithms for the Con-
struction and Analysis of Systems. Ed. by Jan Friso Groote and Kim Guldstrand
Larsen. Cham: Springer International Publishing, 2021, pp. 443–447. doi: 10.10
07/978-3-030-72013-1_29.

[132] Daryl Shannon et al. “Abstracting Symbolic Execution with String Analysis.” In:
Testing: Academic and Industrial Conference Practice and Research Techniques-
MUTATION (TAICPART-MUTATION 2007). IEEE. 2007, pp. 13–22. doi: 10.1
109/TAIC.PART.2007.34.

[133] Vaibhav Sharma et al. “Java Ranger at SV-COMP 2020 (competition contribu-
tion).” In: Tools and Algorithms for the Construction and Analysis of Systems.
Springer. 2020, pp. 393–397. doi: 10.1007/978-3-030-45237-7_27.

[134] Asia Slowinska and Herbert Bos. “Pointless tainting?: evaluating the practicality
of pointer tainting.” In: Proceedings of the 4th ACM European conference on
Computer systems. ACM. 2009, pp. 61–74. doi: 10.1145/1519065.1519073.

[135] Dawn Song et al. “BitBlaze: A New Approach to Computer Security via Binary
Analysis.” In: Information Systems Security. Ed. by R. Sekar and Arun K. Pujari.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1–25. doi: 10.1007/97
8-3-540-89862-7_1.

121

https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1007/978-3-030-63618-0_5
https://doi.org/978-3-319-21690-4_27
https://doi.org/978-3-319-21690-4_27
https://doi.org/10.1145/1095430.1081750
https://doi.org/10.1007/978-3-030-72013-1_29
https://doi.org/10.1007/978-3-030-72013-1_29
https://doi.org/10.1109/TAIC.PART.2007.34
https://doi.org/10.1109/TAIC.PART.2007.34
https://doi.org/10.1007/978-3-030-45237-7_27
https://doi.org/10.1145/1519065.1519073
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1007/978-3-540-89862-7_1

Bibliography

[136] Fausto Spoto. “The Julia Static Analyzer for Java.” In: Static Analysis. Ed. by
Xavier Rival. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 39–57. doi:
10.1007/978-3-662-53413-7_3.

[137] Sanu Subramanian et al. “A Solver for a Theory of Strings and Bit-Vectors.” In:
2017 IEEE/ACM 39th International Conference on Software Engineering Com-
panion (ICSE-C). 2017, pp. 124–126. doi: 10.1109/ICSE-C.2017.73.

[138] Nikolai Tillmann and Jonathan De Halleux. “Pex–White Box Test Generation for
.NET.” In: International conference on tests and proofs. Springer. 2008, pp. 134–
153. doi: 10.1007/978-3-540-79124-9_10.

[139] Omer Tripp et al. “TAJ: effective taint analysis of web applications.” In: ACM
Sigplan Notices 44.6 (2009), pp. 87–97. doi: 10.1145/1543135.1542486.

[140] G. S. Tseitin. “On the Complexity of Derivation in Propositional Calculus.” In:
Automation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970.
Ed. by Jörg H. Siekmann and Graham Wrightson. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1983, pp. 466–483. isbn: 978-3-642-81955-1. doi: 10.1007/97
8-3-642-81955-1_28.

[141] Willem Visser, Jaco Geldenhuys, and Matthew B Dwyer. “Green: reducing, reusing
and recycling constraints in program analysis.” In: Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software Engineering.
2012, pp. 1–11. doi: 10.1145/2393596.2393665.

[142] Willem Visser et al. “Model checking programs.” In: Automated software engi-
neering 10.2 (2003), pp. 203–232. doi: 10.1023/A:1022920129859.

[143] Dave Wichers and Jeff Williams. “Owasp top-10 2017.” In: OWASP Foundation
(2017).

[144] Dominik Winterer, Chengyu Zhang, and Zhendong Su. “Validating SMT solvers
via semantic fusion.” In: Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation. 2020, pp. 718–730. doi:
10.1145/3385412.3385985.

[145] Christoph MWintersteiger, Youssef Hamadi, and Leonardo De Moura. “A concur-
rent portfolio approach to SMT solving.” In: International Conference on Com-
puter Aided Verification. Springer. 2009, pp. 715–720. doi: 10.1007/978-3-642
-02658-4_60.

[146] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Mendonça de Moura.
“Efficiently solving quantified bit-vector formulas.” In: Formal Methods Syst. Des.
42.1 (2013), pp. 3–23. doi: 10.1007/s10703-012-0156-2.

122

https://doi.org/10.1007/978-3-662-53413-7_3
https://doi.org/10.1109/ICSE-C.2017.73
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1145/1543135.1542486
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1145/2393596.2393665
https://doi.org/10.1023/A:1022920129859
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1007/978-3-642-02658-4_60
https://doi.org/10.1007/978-3-642-02658-4_60
https://doi.org/10.1007/s10703-012-0156-2

Bibliography

[147] Wei Xu, Sandeep Bhatkar, and Ramachandran Sekar. “Taint-Enhanced Policy
Enforcement: A Practical Approach to Defeat a Wide Range of Attacks.” In:
USENIX Security Symposium. 2006, pp. 121–136.

123

Eidesstattliche Versicherung

Hiermit versichere ich, Malte Paul Mues, dass die Dissertation von mir selbstständig
angefertigt wurde und alle von mir genutzten Hilfsmittel angegeben wurden. Ich ver-
sichere, dass alle in Anspruch genommenen Quellen und Hilfen in der Dissertation ver-
merkt wurden.

Ort, Datum Unterschrift

124

	Introduction
	Research problem addressed in this thesis
	Dynamic Taint Analysis
	Dynamic Symbolic Execution
	SMT Constraint Solving

	Organization

	SMT Solving
	Preliminary: SMT Problems
	SMT-Lib Theories relevant for DSE
	Bounded Solving
	Portfolio Solving

	Dynamic Symbolic Execution
	Full Symbolic Encoding vs. Symbolic Execution vs. Dynamic Symbolic Execution
	A Reference Design for Dynamic Symbolic Execution
	The Concrete vs. Symbolic Tradeoff

	String Operation Encoding for DSE
	SLJ a Tailored Subset of the Java String Library for DSE
	JDart's Bitvector Encoding SLBV
	The String Theory Encoding SLSMT
	Comparison and Open Challenges

	Jaint
	Dynamic Multi-Color Taint Analysis
	DSE as Path Enumerator: From Fuzzing to Verification
	Jaint's Configuration Language
	Taint Propagation in Jaint: Taint and Value Monitors

	Evaluation and Discussion
	Empirical Experiments
	The SMT Solving Layer Performance
	Empirical Evaluation of String Encodings
	Evaluation of Jaint's Performance

	Discussion
	The SMT Solving Layer Performance
	DSE as Path Enumerator for Jaint
	Jaint's Performance and Scalability
	Contribution to the Research Vision
	Threats to Validity

	Conclusion and Future Work
	Conclusion
	Future Work

