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Abstract

The major part of the liability of an insurance company’s balance belongs to the reserves.
Reserves are built to pay for all future, known or unknown, claims that happened so far.
Also, they ensure the solvability of the insurance company. Hence an accurate prediction
of the outstanding claims to determine the reserve is important. For non-life insurance
companies, Mack (1993)) proposed a distribution-free approach to calculate the first two
moments of the reserve. This approach is still popular and a widely used technique in
practice. Using a normal approximation together with the derived first two moments, it
is widely used to conduct statistical inference including the estimation of large quantiles
of the reserve and the determination of the reserve risk. However, Mack’s model lacks a
rigorous justification in the literature for such a normal approximation for the reserve.
Alternatively, to derive the whole distribution of the reserve and the large quantiles of
the reserve to determine the reserve risk, Mack’s model was equipped with a tailor-made
bootstrap by England and Verrall (2006) which combines a residual based bootstrap non-
parametric step with a parametric bootstrap. So far surprisingly, there are no theoretical
bootstrap consistency results that justify this approach, although it is widely used in
practice.

In this cumulative dissertation, we derive first asymptotic theory for the unconditional and
conditional limit distribution of the reserve risk. Therefore, we enhance the assumptions
from Mack’s model and derive a fully stochastic framework.

The distribution of the reserve risk can be split up into two additive random parts cov-
ering the process and parameter uncertainty. The process uncertainty part dominates
asymptotically and is in general non-Gaussian distributed unconditional and conditional
on the whole observed loss triangle or the last observed diagonal of the loss triangle.

In contrast, the parameter uncertainty part is measurable with respect to the whole
observed upper loss triangle. Properly inflated, the parameter uncertainty part is Gaussian
distributed conditional on the last observed diagonal of the loss triangle, and uncondi-
tional, it leads to a non-Gaussian distribution. Hence, the parameter uncertainty part is
asymptotically negligible.

In total, the reserve risk has asymptotically the same distribution as the process uncer-
tainty part since this part dominates asymptotically leading to a non-Gaussian distribution
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conditional and unconditional.

These results question the common practice of using a normal approximation for the
reserve risk within Mack’s model. We illustrate our results through simulations and show
that our setup covers cases where the limiting distributions of the reserve risk can deviate
significantly from a Gaussian distribution.

Using the theoretical asymptotic distribution results regarding the distribution of the
reserve risk, we can now establish bootstrap consistency results, where the derived dis-
tribution of the reserve risk serves as a benchmark. Splitting the reserve risk into two
additive parts enables a rigorous investigation of the validity of the Mack bootstrap. If
the parametric family of distributions of the individual development factors is correctly
specified, we prove that the (conditional) distribution of the asymptotically dominating
process uncertainty part is correctly mimicked by the proposed Mack bootstrap approach.
If not, this is in general not the case. On the contrary, the corresponding (conditional)
distribution of the estimation uncertainty part is generally not correctly captured by the
Mack bootstrap.

To address this issue, we propose an alternative Mack bootstrap, which uses a different
centering and is designed to capture also the distribution of the estimation uncertainty
part correctly.

We illustrate our findings in simulations and show that our newly alternatively proposed
Mack bootstrap performs superior to the original Mack bootstrap in finite samples.
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Zusammenfassung

Der grofite Teil der Bilanz einer Versicherungsgesellschaft entféllt auf die Riickstellungen
(Reserven). Riickstellungen werden gebildet, um fiir alle zukiinftigen, bekannten oder
unbekannten, aber bisher eingetretenen Schiden aufzukommen. Zudem gewéhrleisten diese
die Solvabilitat des Versicherungsunternehmens. Daher ist eine prézise Vorhersage der
ausstehenden Schiaden zur Bestimmung der Riickstellungen wichtig. Fiir Nichtlebensver-
sicherer hat Mack (1993) einen verteilungsfreien Ansatz zur Berechnung der ersten beiden
Momente der Riickstellung vorgeschlagen. Dieser Ansatz ist nach wie vor sehr weit
verbreitet und wird in der Praxis sehr haufig verwendet. Unter Verwendung einer Nor-
malapproximation zusammen mit den ermittelten ersten beiden Momenten wird dieser
Ansatz haufig verwendet, um statistische Inferenz zu betreiben, einschliellich der Schéitzung
hoher Quantile der Reserve zur Bestimmung des Reserverisikos. Allerdings fehlt in der
Literatur eine stichhaltige Rechtfertigung fiir eine solche Normalapproximation der Reserve
fiir das Modell von Mack.

Als Alternative zur Herleitung der kompletten Verteilung der Reserve und hoher Quantile
der Reserve zur Bestimmung des Reserverisikos wurde das Modell von Mack von England
and Verrall (2006) mit einem auf das Modell von Mack zugeschnittenen Bootstrap versehen,
der einen nicht-parametrischen Bootstrap-Schritt auf der Basis von Residuen mit einem
parametrischen Bootstrap kombiniert. Bislang gibt es keine theoretischen Bootstrap-
Konsistenzergebnisse, die diesen Ansatz rechtfertigen, obwohl dieser in der Praxis vielfach

verwendet wird.

In dieser kumulativen Dissertation leiten wir zunichst asymptotische Theorie fiir die
unbedingte und bedingte Grenzverteilung des Reserverisikos her. Dazu erweitern wir die
Annahmen des Modells von Mack und leiten einen vollstdndigen stochastischen Modellrah-
men ab.

Die Verteilung des Reserverisikos kann in zwei additive Teile aufgeteilt werden, die die
Prozess- und die Parameterunsicherheit abdecken. Der Teil, der die Prozessunsicherheit
abbildet, dominiert asymptotisch und ist im Allgemeinen nicht-gauflférmig verteilt, und
zwar unbedingt und bedingt auf das beobachtete obere Schadendreieck oder die letzte
beobachtete Diagonale des Schadendreiecks.

Im Gegensatz dazu ist der Teil, der die Parameterunsicherheit abbildet, messbar in Bezug
auf das beobachtete obere Schadendreieck. Mit dem korrekte Faktor multipliziert ist der Pa-
rameterunsicherheitsteil bedingt auf die letzte beobachtete Diagonale des Schadendreiecks
gauflverteilt bzw. unbedingt nicht gaufiverteilt. Daher ist der Parameterunsicherheitsteil
asymptotisch vernachléassigbar.

Zusammengenommen hat das Reserverisiko asymptotisch dieselbe Verteilung wie der
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Prozessunsicherheitsteil, da dieser Teil asymptotisch dominiert und somit ist das Re-
serverisiko nicht-gaufl verteilt im Allgemeinen, bedingt und unbedingt.

Diese Ergebnisse stellen die gingige Praxis der Verwendung einer Normalapproximation
fiir das Reserverisiko fiir das Modell von Mack in Frage. Durch Simulationen werden die
Ergebnisse veranschaulicht und zeigen, dass das Simulationssetup auch Situationen abdeckt,
in denen die Grenzverteilungen des Reserverisikos erheblich von einer Gauf-Verteilung
abweicht.

Unter Verwendung der theoretischen, asymptotischen Ergebnisse beziiglich der Verteilung
des Reserverisikos werden Bootstrap-Konsistenzergebnisse ermittelt, wobei die abgeleitete
Verteilung des Reserverisikos als Vergleichsgrofle dient. Die Aufspaltung des Reserverisikos
in zwei additive Teile ermoglicht eine prazise Untersuchung der "Validity" des Bootstraps
von Macks. Unter der Annhame, dass die parametrische Familie der Verteilungen der
einzelnen Abwicklungsfaktoren korrekt bestimmt ist, kann man beweisen, dass die (be-
dingte) Verteilung des asymptotisch dominierenden Prozessunsicherheitsteils durch den
vorgeschlagenen Mack Bootstrap korrekt simuliert wird. Falls nicht, ist dies im Allge-
meinen nicht der Fall. Im Gegensatz dazu wird die entsprechende (bedingte) Verteilung
des Schéitzungsunsicherheitsteils im Allgemeinen nicht korrekt durch den Mack Bootstrap
wiedergegeben.

Um dieses Problem zu beheben, wird ein neuer Mack Bootstrap Ansatz vorgeschlagen, der
so konzipiert ist, dass die Verteilung des Schatzunsicherheitsteils zudem richtig beriick-
sichtigt wird.

Die Ergebnisse werden in Simulationen veranschaulicht und es wird gezeigt, dass der
neu vorgeschlagene Mack Bootstrap dem urspriinglichen Mack Bootstrap in endlichen
Stichproben vorzuziehen ist.
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cumulative claim for accident year ¢ and development year j
Mack bootstrap cumulative claim for accident year ¢ and devel-
opment year j

alternative Mack bootstrap cumulative claim for accident year ¢
and development year j

cumulative claim matrix at time [

cumulative claim matrix at time I (asymptotic view)

Mallows’ metric between two probability distributions and for
r=2

Kolmogorov distance between two probability distributions
upper loss triangle at time [

upper loss triangle at time I (asymptotic framework)

upper loss triangle at time I for n — oo

upper loss triangle generated by the backward bootstrap

lower loss triangle at time [

development factor for development year j

estimator of the development factor for development year j
estimator of the development factor for development year j
(asymptotic framework)

individual development factor for accident year ¢ and development
year j

forward Mack bootstrap individual development factor for acci-
dent year ¢ and development year j

forward alternative Mack bootstrap individual development factor
for accident year ¢ and development year j

Mack bootstrap estimator of the development factor for develop-
ment year j

Mack bootstrap estimator of the development factor for develop-
ment year j (asymptotic framework)

alternative Mack bootstrap estimator of the development factor

for development year j (asymptotic framework)
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Fin set of I/, for j=0,...,./+n—landi=-n,.... I —j—1

F;;|C;; F; ; conditional on C; ;

G;-fj backward alternative Mack bootstrap individual development
factor for accident year ¢ and development year j

Lo convergence in the 2nd mean

L(-) distribution

L*(+) Mack bootstrap distribution conditional on Dy,

L1(9) alternative Mack bootstrap distribution conditional on Dy,

1o expectation of C;

1 expectation of C; ;

Moo asymptotic expectation of C; ; for j — oo

Ny natural numbers including 0

op(1) convergence in probability to 0

Op(1) stochastic boundness by a constant

o(1) convergence to 0

O(1) boundness by a constant

o diagonal at time k, k. =0,....1

Qr last diagonal at time [

Qrn last diagonal at time I (asymptotic framework)

O last diagonal at time I for n — oo

T Mack bootstrap diagonal which is equal to Qy,,
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Tij estimated 'residual’ for accident year ¢ and development year j
Ti; centered and re-scaled residual for accident year i and develop-

ment year j
o bootstrap error’ for accident year ¢ and development year j
R; individual reserve for accident year i
R;, individual reserve for accident year i (asymptotic framework)
R, total reserve
R total reserve for accident year ¢ (asymptotic framework)
Rrn — fim predictive root of the reserve
(Rrn — Em)l first part of the predictive root of the reserve
(Rr, — }A%Ln)Q second part of the predictive root of the reserve
R;, — RLn Mack bootstrap predictive root of the reserve

(R7, — Rin) first part of the Mack bootstrap predictive root of the reserve
(R}, — ]3%”)2 second part of the Mack bootstrap predictive root of the reserve
Rf, - Rf, alternative Mack bootstrap predictive root of the reserve

(R}fn — ]%}rn)l first part of the alternative Mack bootstrap predictive root of the

reserve
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1 Introduction

Due to the law, insurance companies are committed to setting up capital to meet their
future liabilities to policyholders related to their earlier and current insurance contracts.
This capital is referred to as provisions for outstanding claims or reserves. For non-life
insurance companies, reserves are often the major part of the liability side of the balance
sheet. Non-life insurance contracts are usually one-year contracts and have to renew every
year. The fundamental issue is that the claims’ actual sizes are unknown when the reserves

have to be set. In general, we distinguish between two major claim types:
o Claims that are incurred but not reported yet. We call them IBNR-claims.

o Claims that are reported but not finally settled, i.e., the exact amount of the claims

are not ultimately determined yet. We call them RBNS-claims.

In this thesis, we do not separately model IBNR- and RBNS- claims. We use a model to
predict the outstanding claim amount in total for one business line at a certain point in

time.

The typical loss adjustment process for a non-life insurance company is described in Figure
[l The accident date, the reporting date, and the payout date of the amount of the claims
does not need to coincide (cf. Wiithrich and Merz (2008) for more details). The duration
of the process of a loss adjustment has several reasons.

o There is always a certain period between the occurrence of an insured event and the
reporting of this event. The time difference between the occurrence of a claim and
the notification of the claim can take several years.

o After an insured event has been reported to the relevant insurance company, it can
sometimes take several years before the full extent of the claim is known. Hence, it
can take several years until a claim is closed.

o After an insurance claim has been closed, the insurance claim may have to be reopened.
Further liabilities may be imposed on the insurance company, which may have to be
settled before the insurance case can be closed again.
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contract period

accident date claim payments reopening
\ claim closing
2020 2021 T 2022 | 2023 Year

claim closing
reporting date claim payments

Figure 1: Typical process of loss adjustment for a non-life insurance.

Further, we distinguish between two types of insurance lines, short and long term, depending
on how long it takes until a claim is finally closed. Claims that belong to short term
business lines are paid out around the first 5 years after the contract period. For example,
fire and water insurance contracts belong to this type. In contrast, for long term business
lines, it can take decades until a claim is finally closed, e.g., liability insurance contracts.
For modeling, we do not distinguish between the types of lines of business.

The process of prediction of outstanding claims is called reserving. Actuaries need to set
adequate reserves based on historical data to ensure the insurance company’s solvency.
The careful calculation of the reserves is important. If the reserves are underestimated,
the insurance company may not be solvent for its undertakings. In contrast, if the reserves
are overestimated, the insurance company unnecessarily holds additional capital instead
of using this capital for other purposes, e.g., investments with higher risks and, hence,
potentially higher returns.

In this regard, the reserving actuaries are more interested in a reasonable reserve range
than the best estimate of the reserve. The so-called reserve risk covers the uncertainty
of the prediction of the claims such that it covers the risk that the best estimate of the
reserve is not sufficient to pay for all outstanding claims.

Traditional deterministic algorithms are often sufficient for the best estimate of outstanding
claims and the overall variability around the best estimate of the reserve but not sufficient
in deriving the (conditional) limit distribution of the reserve and especially estimating
large quantiles of the reserve. Therefore, over the past three decades, stochastic claims
reserving methods have been developed extensively. Often traditional methods have been
equipped with a tailor-made bootstrap algorithm to simulate the distribution of the reserve
and to get an estimate for large quantiles.

Section discusses the concept and definition of the reserve risk. Section introduces
the notation and Mack’s model. This model determines the best estimate of the reserve
and its standard deviation. Mack’s model is used in Chapters 2 and 3 as a benchmark
model. Section [1.3| deals briefly with the thematic environments of the main contents
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of this dissertation. Section [L.4] contains the extended summaries of the two articles.
Afterward, in Chapters 2 and 3, the articles are attached. Chapter [4] concludes and gives
an outlook for further potential research.

For a more detailed introduction to claims reserving in non-life insurance companies, we
refer to the monographs Wiithrich and Merz (2008) and Hindley (2017)).

1.1 Reserve Risk

The reserve risk and the premium risk are the major risks of a non-life insurance company.
The premium risk is the risk that losses in an insurance period will exceed the premiums
collected for that period. The premium risk is not further considered in this dissertation.
In contrast, the reserve risk is defined as the risk that the best estimate of the reserve
for known and unknown claims, that happened in the past, is not sufficient to pay for all
outstanding claims. Here, the term best estimate represents the expected value of the
range of potential outcomes for future claims. Hence, the reserve risk covers the fluctuation
around the expected value. Therefore, we need first to set suitable assumptions, define
a model for the reserve, find a method to obtain the best estimate of the reserves, and
assess the uncertainty around the best estimate. The risk is often calculated by the Mean
Squared Error of Prediction (MSEP). For a single future claim payment S;; (random
variable) for the accident year i and development year j, the MSEP is the expected squared
difference between the future claim .S; ; and its point prediction 5” If we apply the two
assumptions that the S; ; and S; ; are unbiased, i.c. E(S;;) = E(S;;) and uncorrelated, i.c.
E(S;;8; ;) = E(S;;)E(S;;) then the prediction variance of the claim can be decomposed
into two additive parts, covering the process and estimating uncertainty.

~

E((Si; — Si3)%) = E((Sij — E(Si)*) + E((S;; — E(S:5))?)

= process variance + estimation variance.

Consequently, the prediction variance can be estimated separately determining the process
variance and the estimation variance. The process variance is the uncertainty that arises
from the actual claims development process which is described by the chosen stochastic
model. The estimation variance, on the other hand, describes the uncertainty in the

parameter estimation.

The goal of many reserving methods (e.g. Mack (1993), Buchwalder et al. (2006)), England
and Verrall (1999)) is to reasonably estimate the MSEP of the reserve. In order to draw con-
clusions about the whole distribution of the reserve risk and its large quantiles the derived
estimated MSEP and the best estimate are equipped with some distributional assumptions,
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Table 1: Upper (observed) loss triangle Dy and (unobserved) lower loss triangle D§ (in light
gray).

e.g. normal distribution. The literature lacks a justification for the applied distribution.
Also, a parametric assumption imposed on the distribution of the reserve might be too re-
strictive and can result in a misleading estimate of the tail of the distribution of the reserve.

1.2 Notation and Mack’s Model

To estimate the outstanding claims and their reserve, insurance companies summarize
all observed individual claims data of a business line in an upper loss triangle organized
as shown in Table [T} Its entries, the cumulative amount of claims C;;, are sorted by
their accident year i (vertical axis) and their development year j (horizontal axis) for
t=20,...,0and j =0,...,J with « + 5 < I. In the following, we have I = J. Hence,
the (observed) loss triangle contains the cumulative claims C; ; that have already been

observed up to year I. It constitutes the available data basis and is denoted by

D ={Ci;li,j=0,....1, 0< i+3j<I}. (1.1)

To predict the outstanding claims, we need to estimate claims which are unobserved at
time I. Therefore, we augment the (observed) upper loss triangle by an unobserved lower
triangle D¢ = {C; |i,j =0,...,I, i+ j > I} (cf. Table[l|light gray lower triangle) that
contains all future claims that have not been observed (yet) up to time I.

For each accident year ¢, the main interest lies in the reserves (loss liabilities) R;; at
terminal time I, which is the difference of the so-called ultimate claim C;; and the last
observed diagonal element C;;_; of the loss triangle, where we assume that after I + 1
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years the claims are finally settled. Precisely, we define

RiI:Ci,I_Ci,I—ia i:O,...,I, (12)

)

and denote the aggregated total amount of the reserve by

I
R =) Rij, (1.3)
i=0

noting that Ry = Cyr — Co,r = 0 by construction.

In practice, a widely used distribution-free model to determine the mean of the reserve
for each accident year i and in total is the so-called Chain Ladder Model (CLM). The
estimates of the reserve by the CLM are often referred to as the best estimates of the
reserve. Mack (1993)) enhanced the CLM by the assumption regarding the variance and
stated a formula for the MSEP of the reserve. This model is often denoted as Mack’s
model and relies on three fundamental model assumptions without any distributional

assumptions summarized as follows.
Assumption 1.1 (Mack’s Model)
(i) There exist so-called development factors fo, ..., fr—1 > 0 such that
E(C;j1|Cij, ..., Cio) = f;Cij (1.4)
foralli=0,...., 1 and j=0,...,1—1.
(ii) There exist variance parameters o2, ...,0%_; > 0 such that

Var(Ci7j+1|Ci7j, N OZ'70) = 0_2'01'7]' (15)

J
foralli=0,....,1 and j=0,...,1—1.
(iii) The cumulative payments are stochastically independent over the accident years

i=0,...,1, that is (Cip,...,Ci1) and (Ckp,...,Ck1) are independent for i # k.

Using Assumption (i) and (ii), we get recursively the mean and the variance of the

ultimate claim C;; for i =0, ..., conditional on the observed loss triangle:
-1
E(Ci1|D1) = E(Cit|Cip—iy. .. Cio) = Cinzi I 1y, (1.6)
j=I—i

I-1
Var(Ci,[\D[) = VCL?"(CZ'7[|OZ'7[_Z', ey CLQ) = CLI_i Z fI—i e fj_10]2~ j2+1 N fIQ—lv (17)

j=I—i
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where Hjl.;l fi = 1 and ZJI;} fri. ..fj_la?ffﬂ ...f2, = 0 by construction. As all

development factors f; and variance parameters UJ2- are generally unknown, they have to be

estimated from the available data at time I, i.e. the observed upper loss triangle D;. By
the CLM the development factors fo,..., fr_1 can be estimated by fo, ey f[_l, where

fi=—" (1.8)

forj =0,...,I—1. Asshown by Mack (1993), fj are unbiased estimators for f;, i.e. E(f]) =
fjforj=0,...,] —1, and fos -+, fi_1 are pairwise uncorrelated, i.e. Cov(fj, fr) = 0 for
all j # k.

By plugging-in the fj’s in ([1.6), conditional on C; ;_;, ..., C;, the best estimate CA’Z»J (point
predictor) of the ultimate claim C;; becomes

-1
Cir=Ciri I[ f5» i1=0,...,L (1.9)

j=I—i

Consequently, given C; ;_;, the best estimate ]3% 7 of the reserve R; of accident year i
defined in ([1.2)) is given by

-1
Rir=Ci1—Cir—i = Cir_y ( I 7 - 1) , 1=0,...,1, (1.10)
J=I—i

and the best estimate R; of the total reserve R; defined in (1.3) computes to
R I I -1
Ri=> Rii=> Ciri| I] fi—-1 (1.11)
; ; Pyl

noting that fio,l = 0 due to H]I;} f] =1.

Furthermore, Mack (1993) proposed to estimate the variance parameters o2, ..., 0% , by
03,...,07 4, where
1 rat Ci i -\’
~92 2,7+1 .
= E Ci; —fil . =0,...,1 -2, 1.12
O-j I — ] -1 P »J < Cz,_] f] J ( )

which are unbiased estimators for 03, 1.e. E(67) = o7. Note that (1.12)) does not cover the es-
timation of o%_,. If f;_; = 1 and if the development of the claim is believed to be finished af-
ter [—1 years, we can set 7_; = 0. Alternatively, Mack (1993)) proposed to extrapolate 7_,

by using a log-linear regression or by setting 67_, = min(7_,/0% 5, min(c3_5,07_,)).
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Of particular interest is the difference between the stochastic (unobserved) reserve R;
and its best estimate R; (based on the observed data Dy). We call the difference in the
following the predictive root of the reserve and it computes to

1

Ry — RI = Z (Oi,l —Cir—i — (@1 Ci - z)) Z ( i — ) (1.13)

=0 =0

The mean squared error of prediction of R; given Dy is defined by
MSEP (R/|Dy) = E (R — Rp)*|Dy), (1.14)

and Mack (1993) derived the following formula for the MSEP:
N 1 o -1 ’\JZ 1 ) -1 /\]2 1

o I-1 52 1
+2>° Ci,IClJ‘Z TJZW ) (1.16)
7-]

where CA’” = C’iJ_iﬁ_i ‘. fj_l for j > I — i are the estimated values of the future claims
C;,; and @ 1—i = Ci 1—;. In the above formula, the summands in consist of two terms
corresponding to the process variance and estimation variance (of parameter estimates)
of R; 1, respectively. The expression in ([1.16)) reflects the linear dependence between Ez I
and }TZL 1, © # 1. It contains their covariances and belongs also to the estimation variance.
The MSEP can be rewritten as

I-1 j—1 I-1 I-1 =2

I
5 ~2 n ) 2 9;
MSEP (R1|Dz) => | Cis j Ji F4Cha Y oA H It
i=0 j=I—i  k=I—i I=j+1 j=I—i k=0 Olwl I—i
1]
I -1 52 s SO o S
+23 | CiimiCriz Y e s 11 7 II 7
i,1=0 joiei k=0 Ckj =it  m=I-
i<l m#j

The term which belongs to the process variance follows straightforwardly by plugging f]’

and o 0' 's in - The calculation of the estimation uncertainty is not straightforward as
for the process uncertainty since R; is measurable with respect to D;. Therefore, Mack
approximated (fy — fx)? for k= 0,...1 — 1 by E((fx — fx)?|Bk), where By := {C;;|j =
0,...,k,i4 j < I}, which means the denominator of fj is kept fixed, to derive a formula
for the estimation variance. Buchwalder et al. (2006) proposed a slightly different formula

for the estimation variance.
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However, the knowledge of the first two moments of the reserve is not sufficient to determine
the whole distribution of the predictive root of the reserve, i.e. R; — R;. In practice, it is
important to estimate large quantiles of the (conditional) distribution of the predictive
root of the reserve to approximate the reserve risk. For this purpose, a common approach
is to assume a certain parametric family of distributions for either the reserve of a single
accident year or of the total reserve and to estimate their distributions by estimating their
parameters. In this regard, it is more common to model the distribution of the total reserve
to take diversification effects between the single accident years into account. However, a
parametric assumption imposed on the reserve might be too restrictive and result in a
misleading estimate of the tail of the distribution of the predictive root of the reserve.
Hence, a non-parametric analysis to derive the limiting distribution of the reserve without
restricting considerations to any parametric assumptions might be more beneficial in
practice. However, given Mack’s distribution-free reserving framework, this is not possible.
Therefore, England and Verrall (2002)) suggest a tailor-made bootstrap algorithm for
Mack’s Model to simulate the distribution of the reserve. Their approach combines a
residual based bootstrap non-parametric step with a parametric bootstrap. Although
it is widely used in applications to estimate the reserve risk, no theoretical bootstrap
consistency results exist that justify this approach.

So far, it was not possible to derive bootstrap consistency results for Mack’s Model since
the true asymptotic (conditional) distribution of the reserve was unknown.

In Chapter 2 (Paper 1) we define a general stochastic framework that allows deriving
asymptotic theory for Mack’s Model. We obtain separately the limit (conditional) dis-
tribution of the process and the estimation uncertainty and then jointly to get the limit
distribution of the predictive root of the reserve.

In Chapter 3 (Paper 2) we use the derived distribution as a benchmark to show bootstrap
consistency results.

1.3 Predictive Distribution and its Bootstrap Application

We want to predict the outstanding claims based on the observed claim data to be able to
get an estimate for the reserve.

Therefore, we introduce briefly in the following the main statistical ideas which are used
in Chapter 2 (Paper 1) to derive the limit (conditional) distribution of the predictive root
of the reserve and in Chapter 3 (Paper 2) to derive bootstrap consistency results.
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Predictive Distribution

We often think of a prediction as a single scalar (or vector) value that the model predicts
will be the output from a given input. The prediction from a model, e.g., regression or
time series, is a probability distribution of the values that could be the output. The single
prediction we are used to seeing is often the mean of that distribution.

In the following, we discuss a simple example of a predictive distribution.

We denote X as a random variable, that we want to predict based on the observed data.
We assume that the distribution of X is completely specified except for the unknown
parameters p and o2, where E(X) = p and Var(X) = ¢%. Since the parameters p and
o? of the distribution of X are unknown, they must be estimated from the observations.
We estimate p by the sample mean of the observations and denote it with fi and o* by
the sample variance and denote it with 52. We denote X as the point estimator for X
and we get here X = i. Of particular interest is the difference between the stochastic
(unobserved) X and its best estimate X (based on the observed data), which is denoted
as the predictive root. By adding and subtracting p we get

X-X=X—j=(X-p) —(@—n. (1.17)

We call in the following the (conditional) distribution of X — u process uncertainty, which
depends only on the distributional class of X, and the (conditional) distribution of i —
estimation uncertainty. Because the number of observations is finite, the estimate i is
also subject to random fluctuations. Often, although both distributions depend on the
observations, the (conditional) limit distributions can be derived separately for each part
and then jointly to derive the limit distribution of the predictive root.

In addition, if we get that /i has a rate of convergence a,, i.e., a,(fi — ) has a well-defined,
non-trivial asymptotic distribution where a,, — oo as n — oo and n denotes the number
of observations, the estimation uncertainty part becomes asymptotically negligible. The
process uncertainty part will asymptotically dominate since the estimation part has to be
properly inflated. In total, the limit distribution of the predictive root of the reserve will
depend asymptotically on the limit distribution of the process uncertainty part.

Prediction models should consider the process uncertainty and the uncertainty involved in
the parameter estimation, which is especially beneficial in the finite sample application,
although ladder one is asymptotically negligible.
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Mack’s formula for the MSEP reflects the process and estimation uncertainty, as seen
in (1.14). The prediction variance of the reserve is split into two separate additive parts
capturing the process and estimation uncertainty.

So far, the predictive distribution for the reserve based on Mack’s model is not known.
The assumptions in Mack’s model are not sufficient to derive the full distribution of the
individual reserve R, ; for each accident year ¢ and the total reserve R; given the observed
data. In Mack’s model, there are no assumptions made regarding the distribution of the
claims just about the first two conditional moments. The independence assumption allows
that the limit distribution of the reserve for each accident year can be derived separately
and the limit distributions can be just added up to get the limit distribution of the total
reserve.

In addition, the asymptotic distribution of the estimators of the parameters in Mack’s
model - development factors and variance parameters - are unknown. Pesta and Hudecova
(2012)) showed only that f] is a consistent estimator for f; for any fixed j, i.e. f] converges
in probability to f;, if S1_, Cio — 00 as I — co. For the variance parameters, no such

consistency results exist in the literature.
Additional assumptions are necessary to derive
« a fully stochastic model for the claims,
e the asymptotic limit distributions for the estimators of the parameters, and

o the (conditional) asymptotic limit distribution of the process and estimation uncer-
tainty, and then jointly for the predictive root of the reserve.

Also, suitable assumptions regarding the asymptotic behavior of the parameters in Mack’s
model are required since consistency results of the parameters can only be obtained for a

fixed number of development years 7 and an increasing number of accident years I.

In the last decades, so-called bootstrap approaches have become popular among actuaries
to approximate the MSEP and to approximate the distribution and high quantiles of the
predictive root of the reserve by simulations, since the limit distribution of the reserve is

unknown.
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Bootstrap Approach

The most popular one is the bootstrap scheme first introduced by Efron (1979)) for in-
dependent and identically distributed (i.i.d.) observations. For i.i.d. random variables
Xq,...,X,, the bootstrap idea is briefly described as follows. To approximate the distribu-
tion of some statistic T,, = T,,(X1, ..., X,,), we resample randomly with replacement from
the original observations X1, ..., X, n times to get a bootstrap data set X7,..., X . We
use the generated data set to compute the corresponding statistic 7" = T,,( X7, ..., X}).
We repeat this procedure B- times, where B is large, and the empirical distribution of
these B values of T is used to approximate the desired distribution. The proceeding

described above can only be applied with the i.i.d. assumption.

Since the claims C; ; for accident year ¢ and development year j for ¢ + 5 < I are usually
not independent and not identically distributed, Efron’s bootstrap can not be applied here.
Therefore, we need another bootstrap type.

The Mack bootstrap proposed by England and Verrall (2006) combines a residual-based
non-parametric resampling step together with a parametric bootstrap.

Parametric Bootstrap

A parametric assumption is used to generate the resampling sample X/ foralli =1,...,n
through

X/ ~F fori=1,...,n,

where F'is a suitable distribution that depends on the parameters of the observed data like
the sample mean fi = X = + 37 | X; and variance 2 = == 37 (X; — X)%. As above,
we use the generated data set to compute the corresponding bootstrap statistic T)F =
To(X7, ..., X). We repeat this procedure B- times, where B is large, and the empirical
distribution of these B values of T is used to approximate the desired distribution.

To apply a parametric bootstrap to Mack’s model, we have to enhance the assumptions
from Mack’s model by additional assumptions such that the claims C; ; for all 7, j can be
described by a fully stochastic model together with distributional assumptions.
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Residual Bootstrap

In general, residual bootstrap methods have in common that some parametric (e.g., linear
regression, generalized linear regression) model is fitted to the data at first, and the classical
i.i.d. bootstrap is applied to the estimated residuals afterward, which are assumed to be
i.i.d. random variables at least approximately. Also, this bootstrap type is referred to as a
non-parametric bootstrap approach.

England and Verrall (1999)) proposed a residual-based bootstrap algorithm for a generalized
linear model (GLM) framework for claims to estimate the MSEP. Later, they suggested
using their approach to estimate large quantiles of the reserve (cf. England (2002) and
England and Verrall (2006)). England and Verrall (2006) also proposed a tailor-made
bootstrap for Mack’s model, whereas a first step they propagate a residual bootstrap,
although Mack’s model is not defined by residuals. A residual bootstrap approach for loss
triangles allows resampling the residuals across the whole loss triangle, i.e. resampling
is done independent of the accident year ¢ and development year j. However, the same
estimators of the parameters in Mack’s model are obtained for a weighted regression model
with standard normal distributed errors. Nevertheless, the normal assumption may lead
to negative claims C; j, which violates the recursive model structure of Mack’s model.

Besides the bootstrap type, an appropriate bootstrap approach for a predictive model
should also mimic the process and the estimation uncertainty correctly.

Bootstrap Consistency

We use the asymptotic (conditional) limit distribution of the process and estimation
uncertainty as a benchmark distribution to derive bootstrap consistency results.

We call a bootstrap asymptotically valid if the asymptotic dominating limit distribution
of the process uncertainty part is mimicked correctly by the bootstrap approach. If in
addition, the bootstrap is also able to mimic the asymptotic limit distribution of the

parameter uncertainty part, we call it pertinent.

The requirement of a bootstrap procedure to not only mimic the asymptotically dominating
part of the (conditional) predictive distribution that captures the process uncertainty (i.e.
asymptotic validity) but also the asymptotically negligible part capturing the uncertainty
due to model parameter estimation is closely related to the concept coined asymptotic
pertinence in Pan and Politis (2016al/b) for prediction in a time series context. The concept
is also discussed in Beutner et al. (2021)) from a different perspective. They argue that
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asymptotic validity of prediction intervals is a fundamental property, but it does not tell
the whole story. Prediction intervals are particularly useful if they can also capture the
uncertainty involved in model estimation, since it is beneficial in finite samples, although
the estimation uncertainty is asymptotically negligible.

Since the asymptotic (conditional) limit distribution of the reserve is unknown so far,
Chapter 2 (Paper 1) defines a fully stochastic framework based on Mack’s model and
derives the asymptotic results, capturing the uncertainty of the process and the estimation
parts at first separately and then jointly.

Based on the results obtained in Chapter 2 (Paper 1), we show bootstrap consistency
results in Chapter 3 (Paper 2). We show the proposed tailor-made bootstrap by England
and Verrall (2002) based on Mack’s model is only valid, since it can only capture the
process uncertainty part under mild assumptions, but not the estimation uncertainty part.
Hence, we propose an alternative Mack bootstrap, which is designed to capture also the
estimation uncertainty part and is therefore called pertinent.
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1.4 Extended Summary of the Articles

Extended Summary of Paper 1

In the first paper, we focus on deriving the asymptotic, unconditional and conditional
distribution of the reserve risk based on Mack’s model. Mack (1993) proposed a model to
calculate the first two moments of the reserve. A normal approximation, together with the
calculated moments, is often applied to conduct statistical inference and to estimate large
quantiles. The literature lacks a rigorous justification for such a normal distribution. Paper

1 fills this gap and shows that, in general, the distribution of the reserve is non-Gaussian.

We enhance the assumptions from Mack’s model to derive a general stochastic framework
with rather mild assumptions.

We prove that the estimated parameters in Mack’s model are consistent for an increasing
number of accident years and a fixed number of development years. Since the claims
Cijfori =0,...,1 — 7, and fixed j are independent and identically distributed with
finite first and second moment, the requirements of a Central Limit Theorem (CLT)
are fulfilled. Using the delta method, we show properly inflated (smooth functions of)
estimators of the development factors follow a normal distribution for a fixed number
of development years and an increasing number of accident years. Imposing additional
assumptions regarding the claims’ higher (conditional) moments, we also prove a CLT for
the estimators of the variance parameters for a fixed number of development years and an
increasing number of accident years. We show that the asymptotic variance derived by the
CLT of the variance parameters depends on the (conditional) third and fourth moments of
the individual development factors. The CLT for the development factors does not depend
on the (conditional) distribution of the development factors since the first two moments of

the individual development factors are already determined by Mack’s model.

Afterward, we define an appropriate asymptotic view of a loss triangle for prediction, where
the observed loss triangle is growing by accident years (row-wise) instead of calendar years
(diagonal-wise). Both approaches lead to loss triangles that are equal in distributions.
Additionally, we set mild assumptions about the limit behavior of the development factors

and the variance parameters for an increasing number of development years.

Using the defined stochastic model and the asymptotic view of a loss triangle, we define
the so-called predictive root of the reserve. The predictive root of the reserve is defined as
the difference between the stochastic reserve and its best estimate. This definition follows
directly by the definition of the reserve risk that the best estimate of the reserve is not
sufficient to pay for all outstanding claims.

The predictive root of the reserve can be split up into two additive parts covering the
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process and parameter uncertainty. The process uncertainty covers the uncertainty involved
in the development of the claims, whereas the estimation uncertainty covers the uncertainty
involved in the estimation of the parameters for the development factors. We derive the
(un-)conditional limit distribution for each part at first separately and then jointly.

The process uncertainty part dominates asymptotically and is, in general, non-Gaussian
distributed unconditional and conditional on the whole observed loss triangle or the last
observed diagonal of the loss triangle.

In contrast, the parameter uncertainty part is measurable with respect to the whole observed
loss triangle. Properly inflated the estimation uncertainty part converges unconditionally
to a non-Gaussian distribution and conditional on the last observed diagonal of the loss
triangle to a Gaussian distribution using the derived asymptotic results for the estimators
of the development factors.

Together, the predictive root of the reserve converges to the limit distribution of the
process uncertainty conditional and unconditional, which is generally non-Gaussian. These
findings cast the common practice of using a normal approximation together with the
estimated moments by Mack’s model for the distribution of the reserve into doubt.

Also, the findings are illustrated by a simulation study and show that the setup covers
cases where the limiting distributions of the reserve risk might deviate substantially from
a Gaussian distribution.
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Extended Summary of Paper 2

The second paper focuses on the tailor-made Mack bootstrap algorithm proposed by
England and Verrall (2006) based on Mack’s model. The goal is to simulate the whole
distribution of the reserve and to get estimates for large quantiles of the predictive root of
the reserve to quantify the reserve risk. Although this bootstrap algorithm is widely used
in applications to estimate the reserve risk, so far no theoretical bootstrap consistency
results exist in the literature that justifies this approach. Paper 2 shows - for the first
time - that the proposed Mack bootstrap is only valid, and therefore we suggest a new
alternative Mack bootstrap algorithm.

In Paper 2, we use the stochastic and asymptotic framework from Paper 1.

The predictive root of the reserve is defined as the difference between the stochastic reserve
and its best estimate. The definition of the predictive root of the reserve is motivated
by the reserve risk such that the best estimate is not sufficient to cover all unknown and
known claims in the future. Motivated by the definition of the reserve risk, England and
Verrall (2006]) keep the best estimate of the reserve fixed for their bootstrap algorithm.
To mimic the stochastic reserve by the bootstrap, England and Verrall (2006) suggest a
non-parametric re-sampling of residuals to derive bootstrap estimators for the development
factors. Then a parametric bootstrap step is applied using the bootstrap estimators to
simulate the lower loss triangle, i.e. the future claims, and to derive the stochastic reserve.
Thus, the Mack bootstrap predictive root computes the difference between the stochastic
bootstrap reserve constructed by the double bootstrap (non-parametric step with an
additional parametric step) and the best estimate estimated on the observed data.

We discuss in detail the particularities and (asymptotic) properties of the Mack bootstrap
predictive root and compare them with the (asymptotic) properties of the predictive root of
the reserve derived in Paper 1. We split the predictive root of the reserve and its bootstrap
version into two additive parts corresponding to process and estimation uncertainty. The
conditional asymptotic distributions of the two parts of the predictive root of the reserve
are used as benchmark distributions. Comparing the derived conditional asymptotic limit
distributions from Paper 1 with the bootstrap distributions - separately for each part -
allows a rigorous investigation of the validity of the Mack bootstrap.

We prove that the distribution conditional on the observed claims data of the process
uncertainty part is correctly mimicked by the Mack bootstrap if the parametric family
of distributions of the individual development factors is correctly specified in Mack’s
bootstrap proposal. Otherwise, this is generally not the case.

In contrast, the corresponding (conditional) distribution of the estimation uncertainty part
is generally not correctly captured by the Mack bootstrap. Since the asymptotic variance
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of the (conditional) bootstrap distribution of the estimation uncertainty is bigger compared
to the asymptotic variance of the (conditional) distribution of the estimation uncertainty.
Hence, the limit distribution of the estimation uncertainty part is not correctly mimicked
by Mack’s bootstrap.

Together, the (conditional) bootstrap distribution of the predictive root of the reserve
will be correctly mimicked if the parametric family of distributions of the individual
development factors is correctly specified in Mack’s bootstrap since the process uncertainty
part is the asymptotically dominating process. We call the bootstrap predictive root only
valid and not pertinent since the parameter uncertainty will not be mimicked correctly.
Especially for finite samples it is beneficial to capture also the parameter uncertainty
correctly.

To tackle this, we propose a more naturally alternative Mack-type bootstrap that uses
a different centering and is designed to capture also the distribution of the estimation
uncertainty part correctly.

We propose to generate recursively backward starting at the diagonal Q}”n = O, new
upper loss triangles and to calculate the bootstrap estimators for the development factors
based on these newly generated triangles. We show that the variance of the backward
bootstrap estimation part is asymptotically the same as the variance of the estimation
part conditional on the last observed diagonal.

We discuss the properties of this alternative Mack bootstrap extensively and compare
them with the properties of the original Mack bootstrap. The alternative bootstrap is
called pertinent since it mimics the process and parameter uncertainty part correctly if
the parametric family of distributions of the individual development factors is correctly
specified. Otherwise, this will be, in general, not the case.

By simulations, we illustrate our findings and show that the newly proposed Mack-type
bootstrap performs superior to the original Mack bootstrap in a finite sample. Also, an
intermediate Mack bootstrap provides evidence that the backward resampling appears to

be critical and responsible for this improvement
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Asymptotic Theory for Mack’s Model

This chapter was published in Insurance: Mathematics and Economics, 107, Julia Stein-
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Abstract

The distribution-free chain ladder reserving model by Mack (1993) belongs to the most popular approaches
in non-life insurance mathematics. It was originally proposed to determine the first two moments of the
reserve distribution. Together with a normal approximation, it is commonly applied to conduct statistical
inference including the estimation of large quantiles of the reserve and determination of the reserve risk.
However, for Mack’s model, the literature lacks a rigorous justification of such a normal approximation
for the reserve.

In this paper, we propose a general stochastic framework which allows to derive asymptotic theory for
Mack’s model. For increasing number of accident years, we establish central limit theorems for the param-
eter estimators in Mack’s model. In particular, these results enable us to derive also unconditional and
conditional limiting distributions for the reserve. For this purpose, the reserve risk is split into two random
parts that carry the process uncertainty and the estimation uncertainty, respectively. Unconditionally,
but also when conditioning on either the whole observed loss triangle or on its diagonal, we show that
the limiting distribution of the first part that corresponds to the process uncertainty will be usually
non-Gaussian. When properly inflated, the second part corresponding to the estimation uncertainty
is measurable with respect to the loss triangle and, unconditionally, turns out to be asymptotically
non-Gaussian as well. By contrast, when conditioning only on the diagonal, this results in a Gaussian
limit. As the process uncertainty part dominates asymptotically, this leads overall to a non-Gaussian
limiting distribution for the reserve in both cases.

These findings cast the common practice to use a normal approximation for the reserve in Mack’s model
into doubt. We illustrate our findings by simulations and show that our setup covers cases, where the

limiting distributions of the reserve risk might deviate substantially from a Gaussian distribution.
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20 2 AsympTOTIC THEORY FOR MACK’S MODEL (PAPER 1)

2.1 Introduction

Insurance companies are committed to set capital reserves to be able to meet their future
liabilities related to their earlier and current insurance contracts. The claim settlement
of a non-life insurance contract can take several years until a claim is finally closed. The
typical process of loss adjustment for a non-life insurance company is described in Figure
The fundamental issue is that the actual sizes of the claims are unknown at the time the
reserves have to be set since these outstanding claims have either not been reported yet or
they have been reported, but not settled yet. This process of prediction of outstanding
claims is called reserving. For non-life insurance companies reserves are often the major
part of the liability side of the balance sheet. Hence, an accurate estimation is crucial for
pricing future policies and for the assessment of the solvency of the insurer.

A popular and widely used technique in practice to forecast future claims is the Chain
Ladder Model (CLM), which provides an algorithm to determine recursively the best
estimate of the future claims by using a set of development factors. First of all, the CLM
does not impose any distributional assumptions on the (future) claims. In this respect,
the most popular extension of the CLM is the recursive model proposed by Mack (1993)),
who equipped the CLM with formulas to calculate the standard deviation of the reserve.

There exist various other models to estimate future claims (see e.g. the monographs by
Wiithrich and Merz (2008)) and Hindley (2017)). For example, frameworks based on general
linear models (GLMs) by Renshaw and Verrall (1998) make use e.g. of over-dispersed
Poisson and log-normal distributions. These models often have age-cohort assumptions.
For incremental claims data, Harnau and Nielsen (2018]) and Kuang and Nielsen (2020)
developed an asymptotic theory for an over-dispersed Poisson and a log-normal framework,
respectively. They assume that the incremental claims have infinitely divisible distributions
and derive central limit theorems (CLTs) for the estimators and proposed a t—distribution
for the centered and standardized reserve.

However, Mack’s model is still one of the most popular and frequently used approaches in
practice. It is often favoured by actuaries due to its simple and straightforward application,
see e.g. Gisler (2019)). Mack’s distribution-free algorithm allows for best estimation of
outstanding liabilities, but the knowledge of solely the first two moments is usually not
sufficient to calculate the reserve risk and to make conclusions about the solvency of the
insurance company. The reserve risk is defined as the risk that the economic value of the
reserve (best estimate) does not suffice to pay for all outstanding claims. To get such
insights, the knowledge of high quantiles or the whole distribution of the reserve is usually
inevitable. Hence, actuaries are more interested in the construction of a well-founded range

of the reserve rather than the best estimate alone. Together with a normal approximation,
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Figure 2: Typical process of loss adjustment for a non-life insurance.

Mack’s model is commonly applied to conduct statistical inference, which includes the
estimation of high quantiles of the reserve and the determination of the reserve risk.

In view of its popularity, it is surprising that there is no rigorous justification in form
of meaningful asymptotic distribution theory for Mack’s model and the justification of a
normal approximation in this context. Nevertheless, a deeper understanding is required
to understand in which situations Mack’s model can be consistently applied in real data
applications.

In this paper, we establish a rigorous model framework that allows to derive asymptotic
theory for the parameter estimators in Mack’s model for increasing number of accident
years. The assumptions imposed in our model framework are mild such that real data
sets can easily meet these assumptions. In particular, we do not assume any parametric
distribution class that generates the claims. Our results provide further insights about the
unconditional and conditional limiting behaviour of the reserve risk and allow to better
assess the uncertainty of the best estimate of the reserve. The stochastic properties of
Mack’s model are usually not completely determined such that there exist various stochastic
models which agree with the imposed assumptions (see e.g. Mack (1994), Renshaw and
Verrall (1998)). For this purpose, we propose a fully-described stochastic framework that
agrees with Mack’s model setup and allows for the derivation of asymptotic normality of
parameter estimators. The established theory goes beyond estimation consistency results
that were achieved by Pesta and Hudecova (2012) for the development factors. More
precisely, we will have a closer look at the reserve centered around its best estimate.
Throughout the paper, borrowing the notation from time series analysis, we call this
difference the predictive root of the reserve. We split this predictive root into two (random)
parts which carry the process uncertainty and the estimation uncertainty, respectively.
This approach coincides with Mack (1993), who already distinguishes between process
variance and estimation variance. For these two parts, we aim to derive (conditional)
asymptotic distributions for increasing number of accident years. With this goal in mind,
we first derive CLTs for the parameter estimators in Mack’s model. In particular, the
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limiting distributions of the estimated development factors enable us to derive the limiting
distributions of the second part of the reserve risk, which corresponds to the estimation
uncertainty. Unconditionally, but also when conditioning on the whole observed loss
triangle or on its diagonal, we show that the limiting distribution of the first part that
corresponds to the process uncertainty will be usually non-Gaussian. When properly
inflated, the second part corresponding to the estimation uncertainty is measurable with
respect to the loss triangle and, unconditionally, turns out to asymptotically non-Gaussian
as well. By contrast, when conditioning only on the diagonal, this results in a Gaussian
limit. As the process uncertainty part dominates asymptotically, this leads overall to a
non-Gaussian limiting distribution for the reserve in both cases. These findings cast the

common practice to use a normal approximation for the reserve in Mack’s model into

doubt.

The paper is organized as follows. In Section [2.2] we consider the CLM setup and introduce
Mack’s model and the required notation in Section [2.2.1] The complementing stochastic
framework suitable to derive asymptotic theory in Mack’s model and some implications
are discussed in Section In Section [2.3] we establish several versions of CLTs for the
parameter estimators in Mack’s model. These results are employed in Section to derive
unconditional and conditional limiting distributions separately for both random parts of
the predictive root of the reserve, which correspond to process and estimation uncertainty,
respectively, as well as jointly. In particular, in contrast to common belief (and common
practice), the limiting distribution of the reserve is in general non-Gaussian such that
asymptotic standard inference based on a normal approximation is not justified. Section
[2.5] contains a simulation study to illustrate our findings. In particular, we demonstrate
that the distribution of the reserve risk might deviate substantially from a Gaussian
distribution. Instead, generally, it will depend on the specific distribution of the individual
development factors also in the limit. Section [2.6| concludes. All proofs and additional
simulation results are deferred to an appendix.
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Development Year j

Accident Year ¢

T
[

Table 2: Loss triangle D; with accident years (vertical axis), development years (horizontal axis)
and diagonal Qj (orange).

2.2 The Chain Ladder Model

Accurate prediction of outstanding claims is one of the most crucial tasks for insurance
companies. For this purpose, insurers summarize all observed claims of a business line
in a loss triangle organized as shown in Table [2| Its entries, the cumulative amount of
claims C; ;, are sorted by their accident year i (vertical axis) and their development year
j (horizontal axis) for ¢,j = 0,...,I with i+ j < I. Hence, the (observed) loss triangle
contains the cumulative claims C;; that have already been observed up to year /. It
constitutes the available data basis and is denoted by

D[:{017J|Z:0,,[, jZO,,[, 0< Z—i—jg[} (21)

The total aggregated amount of claims of the same calendar year k with £ =0,...,[ are
lying on the same diagonal (from lower-left to upper-right corner) of the loss triangle. We

denote these diagonals by

In this setup, I is the current calendar year corresponding to the most recent accident year
and development period such that the diagonal Q; (see Table [2)) summarizes the latest
cumulative claim amounts collected in year [I.

With the goal to theoretically analyze the prediction of outstanding claims in the chain
ladder model, it is useful to augment the (observed) upper loss triangle by an unobserved
lower triangle {C;;|i =0,...,1, 7 =0,...,1I, i+ j > I} that contains all future claims
that have not been observed (yet) up to time I. The resulting cumulative claim matriz
is denoted by C; = (C; ;)i j=o,..1- For each accident year ¢, the main interest lies in the
reserves (loss liabilities) R, ; at terminal time I, which is computed by taking the difference
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of the so-called ultimate claim C; ;, which is not observed (for ¢ > 0) at time /, minus the
last claim C; ;_; observed at time I. Precisely, we define

Rii=Cit—Cir—, 1=0,...,1, (2.3)

)

and denote the aggregated total amount of the reserve by

I
Ry =Y Riy, (2.4)
i=0

noting that Ro; = Co; — Co;r = 0 by construction. Hence, in calendar year I, to get
an estimate of the reserve R;;, we have to predict the unobserved ultimate claim C; ;
based on the observed upper loss triangle D;. Starting from the latest observed claim
C;.1—i for some accident year 4, this is done by predicting recursively all future, yet (at
time /) unobserved claims {C; ;|j =1 —i+1,...,I}. By doing this for all accident years
©=0,...,1, this allows us also to predict R; by aggregating all predictions for R; ;.

2.2.1 Distribution-free chain ladder reserving

A widely used model in practice to determine the mean and the variance of the reserve
for each accident year i is the distribution-free Chain Ladder Model (CLM) proposed by
Mack (1993). Often denoted as Mack’s model, it relies on three fundamental (stochastic)

model assumptions summarized as follows.

Assumption 2.1 (Mack’s model) Let C;;, i,j =0,...,I denote random variables on
some probability space (2, A, P) and suppose the following holds:

(i) There exist so-called development factors fo, ..., fi—1 such that
E(CijnlCij) = fiCij (2.5)
foralli=0,....,0 and j=0,...,1—1.
(ii) There exist variance parameters og,. .. 0%, such that
Var(C; j+1|Cij;) = O'?Ci’j (2.6)
foralli=0,....,1 and j=0,...,1—1.

(iii) The cumulative payments are stochastically independent over the accident years
i =0,...,1, that is, the cumulative claim matriz C; = (C;;)ij=o,..1 consists of
independent rows Cio = (Cio,...,Ciy), i=0,..., 1.
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Alternatively, as in the original paper by Mack (1993), the conditional mean and variance
in and are phrased to be conditional on all previously observed cumulative claim
amounts Cj o, ..., C; ;. Either way, the stochastic model assumptions given in Assumption
2.1)allow for simple and easy to interpret formulas for the conditional mean and conditional
variance of an ultimate claim C; ; given the last observed claim C; ;_;. Precisely, we get

-1
E(Cif|Qr) = E(CitlCir) = Cir 1] fis (2.7)
j=I—i
-1
VCLT’(C@AQ]) = VCLT(C@AC@]_J = Oi,[—i Z fI—i Ce fj_10']2»fj-2+1 ce f]2_1 (28)
j=I—i
for all e =0,..., I, respectively. As all development factors f; and variance parameters

0]2- in (2.7) and (2.8)) are generally unknown, they have to be estimated from the data
available in D;. By exploiting the CLM fulfilling Assumption [2.1] the development factors

fo, ..., fr—1 can be estimated by fo, e ,]?1,1, where
n i=0
fi=-1= (2.9)

for j = 0,...,1 — 1. As shown by Mack (1993), fj is an unbiased estimator for f;,
ie. E(fj) =f;,7=0,...,]—1,and fos -+, f1_1 are pairwise uncorrelated, i.e. Cov(fj, fi) =
0 for all j # k.

By plugging-in the fj’s in (2.7), conditional on C;;_;, the best estimate 6’“ (point

predictor) of the ultimate claim C;; becomes

-1
Cir=Ciri I f; (2.10)
j=I—i
for © = 0,...,1. Consequently, given C; ;_;, the best estimate }A%Z 1 of the reserve R; ; of

accident year ¢ defined in ([2.3)) is given by
ﬁ’z‘,l = éi,[ —Cirmi=Ciri ( 11 J?] — 1) , 1=0,...,1, (2.11)

and the best estimate R; of the total reserve R; defined in (2.4) computes to

I—

1 1 1
Ri=Y Rii=> Cii ( fi— 1) (2.12)
i=0 i=0 T—i
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noting that ]3%7 ;7 = 0 due to H;’;} A] = 1. Furthermore, Mack (1993) proposed to estimate

the variance parameters o7, ...,0% , by 53,...,0%_,, where
I—j—1 . 2
=2 _ 1,5+ n .
52 Ci. —F) . j=o0....1-2 2.13
e (O A .13

which is an unbiased estimator for o7, i.e. E(67) = o}. Note that (2.13)) does not cover
the estimation of o ;. However, if ﬁ is replaced by I%j, setting j = I — 1 in (2.13)
naturally leads to 8% 1 = 0, because ]?1,1 is estimated by only one observed pair of claims

(Cor-1,Cor1), e f; 1= Cf‘” . Hence, it is reasonable to set 57 _; = 0. Alternatively,

Mack (1993) proposed to extrapolate 57, by using a log-linear regression or by setting

6%—1 = min(&}l_2/5%_3, mm((’f?_g, 3?—2))-

Particular interest is in the difference of the stochastic (unobserved) reserve R; and its
best estimate R;. Therefore, we define the mean squared error of prediction (MSEP) of
Ry given D; by

MSEP (Ry|Dy) = E ((R; — Rp)*|Dy) . (2.14)

Mack (1993) derived a formula for the MSEP, that is

~

—

o I-1 =2 1
! j:zi fj2 Zl o Ck,j

I— k=0

Y~

MSEP (Ry|Dr) =3 (éﬁ, If:
. e

I
=0 I—i

“Kth'o)‘h [N

1’7j

I -1 =2
~ ; 1
J
+ QAZ (Oi,ICl,I Z ' EM) , (2.16)
7,1=0 j=I—-i Jj k=0 kg
i<l

where the summands of the first sum on the right-hand side above in (2.15]) consist of two
terms corresponding to the process variance and estimation variance (of parameter esti-
mates) of R; 1, respectively. The second expression in (2.16|) reflects the linear dependence
between fil 7 and ]3% 1, © # [ and contains their covariances. Alternatively, the MSEP of
RI can be rewritten as

N I I-1 =1 I-1 . I-1 52
MSEP (RI|DI) => | Cis AJQ- II 7 II £ +Oi2,l—i P e H It
i=0 j=I—i  k=I—i I=j+1 j=I—i Zk Clwl I—i
I#j
I -1 52 I—i-1 _ I-1 .
+23 1 CirmiCri Y I_ijl 11 7 1II 7
i,1=0 j=I—i 22k=0 Chjn=it  m=I-i

i<l m#£j
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As presented above, the model setup proposed by Mack (1993)) allows to estimate the mean
and the variance of the reserve R; conditional on D; as well as its MSEP. Buchwalder
et al. (2006) derive another formula for the MSEP of the reserve, where they model C; ;
using an AR(1) time series. There exists a broad discussion which formula for the MSEP
should be preferred (see e.g. Mack et al. (2006)) and Gisler (2021))). Recently, Siegenthaler
(2021)) points out that the MSEP formulas by Mack (1993) and by Buchwalder et al. (2006))
lead to very similar results whose differences are not material for applications in actuarial
practice. In a GLM framework, Lindholm et al. (2020) derive the MSEP of the reserve
and show that the MSEP coincides with Mack’s MSEP in a special case. However, the
knowledge of the first two moments of the reserve will be not sufficient to determine its
whole distribution. But in practice, it is important to be able to estimate also high quantiles
of the (conditional) distribution of R; to approximate the reserve risk as e.g. the value-
at-risk. For this purpose, a common approach is to assume a certain parametric family
of distributions for either the reserve of a single accident year R; or of the total reserve
Ry, and to estimate their distributions by estimating their parameters. In this regard,
it is more common to model the distribution of the total reserve to take diversification
effects between the single accidents years into account. However, a parametric assumption
imposed on the reserve might be too restrictive and may result in misleading conclusions
drawn from the prediction R; of R;. Hence, a non-parametric analysis to derive the
limiting distribution of the reserve without restricting considerations to any parametric
assumptions might be more beneficial in practice. However, in view of Mack’s distribution-
free reserving framework discussed in this section, this is not yet possible. In the following
section, to complement this framework, we will state additional conditions on the random
mechanism that generates the cumulative claim matrix C; = (C; ;)i j=o,..1 to be able to
derive asymptotic theory for parameter estimators in Mack’s model in Sections and for
the predictive root of the reserve in Section [2.4]

2.2.2 A fully-described stochastic framework of Mack’s model

As discussed in Section [2.2.1] the classical set of assumptions for Mack’s model summarized
in Assumption alone is not yet sufficient to estimate the whole distribution of the
reserve. In this section, we will complement Assumption with some mild conditions
on the stochastic properties of the cumulative claims. By doing this, we establish a
fully-described stochastic framework that allows for the derivation of a general asymptotic
theory for increasing number of accident years. In the subsequent Section [2.3] we will
establish CLTs for (smooth functions of) parameter estimators f] and 8?-. These results
will enable us also to investigate the unconditional limiting distributions of the reserve Ry,
which will be addressed in Section [2.4] Conditional versions of the CLTs for the parameter
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estimators, which allow for the derivation also of the conditional limiting distributions of

the reserve, are given in the appendix.

Precisely, to establish a framework sufficient to be able to derive asymptotic theory, we
introduce three additional assumptions on the stochastic mechanism that generates the
cumulative claim matrix C; = (C; ;)i j=o,..,1- The first one addresses the initial claims,
i.e. the first column C, o = (Coy,...,Crp) of C;.

Assumption 2.2 (Initial claims) Suppose that the initial claims Cep = (Cop, .., Cro)
are independent and identically distributed (i.i.d.) random variables with support [1,00),
i.e. Cig > 1 for all i. Further, let po := E(Cjp) € [1,00) and 73 := Var(Ciyp) € (0,00).

Note that the independence between the initial claims is a common assumption that is
in particular a direct consequence of Assumption (iii). In addition, Assumption
also imposes an identical distribution for the initial claims. The condition on the support
[1,00) of C; can be relaxed and a condition that C; is bounded away from zero will be
also sufficient as well to derive asymptotic theory. However, in practice, it will be not

restrictive to assume a support [1,00).

In view of the multiplicative structure of E(C; ;|C; ;—;) in (2.7)), let the (random) cumulative
claims C; ;41,9 =0,...,1 and j =0,...,I — 1, be recursively defined by

J
Ciji1 = CijFi; = Cio ] Fir, (2.17)
k=0

where the individual development factors F; ;, which satisfy F; ; = % by construction,
Q¥

are assumed to fulfill the following condition.

Assumption 2.3 (Conditional distribution of individual development factors)

Let the individual development factors Fy;, i = 0,...,1, j = 0,...,1 —1 be random
variables with support (e€,00) for some € > 0 such that F;; and Fy,; are independent given
(Cij, Cry) for all (i, 7) # (k,1) with conditional mean and conditional variance

o2

E(Fi’j\Cm) = fj and VCLT’(EJ’CLJ') = CJ " (218)
Z7j

It is important to note that both Assumptions and [2.3] together imply Mack’s original
setup of Assumption [2.1} In Sections 2.3 and [2.4] we will see that the stochastic framework
described by Assumptions and is appropriate to derive asymptotic theory in Mack’s
model framework. Also note that the stochastic mechanism described by and
Assumption is assumed for the whole cumulative claim matrix C;. However, recall
that only those C;; in C; are observed up to year I that are contained in the upper loss
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triangle D; defined in (2.1). Hence, by using the multiplicative relationship in the first
identity of (2.17)), knowledge of D; implies that we have also perfect knowledge of the
individual development factors F;;, ¢ =0,...,I —=1,j=0,...,1 —i—1.

In addition to the formulas for the conditional mean and variance of C; i given C;;
obtained from Assumption [2.1] (or, equivalently, from (2.17) and Assumption [2.3)), i.e.

E(C’i7j+1|Ci7j) = iji,j and V(M‘(CZ‘J.,_HCZ‘J) = O'ZCZ‘J‘ (219)

J

forallt=0,...,Tand j =0,...,I —1, the following lemma provides some useful formulas
also for the unconditional mean, variance and covariances of the cumulative claims C; ;,
which turn out to be useful in the sequel.

Lemma 2.4 (Mean, variance and covariances of C; ;) Suppose Assumption and

hold. Then, for each i,iy,i2,],j1,72 =0,...,1, we have

7j—1
E(Ci,j) = Mo H Tk =1y, (2.20)
k=0
j—1 j-1 /1-1 -1
Var(©) = T+ X (11 1) o ( I fz) —2 a1
k=0 1=0 \m=0 n=I+1
max(j1,j2)—1
Cov(Ciyjy, Cijy) = ( 11 fk) T in(in.a) (2.22)
k=min(j1,j2)

and Cov(Cy, 41, Ci, j,) = 0, whenever iy # is.

So far, based on the stochastic framework for Mack’s model established by Assumptions
and 2.3] we have summarized some results for fized number of development years.
In the next section, we make use of this stochastic framework and let the number of
accident years I go to infinity to establish asymptotic theory in form of CLTs for (smooth
functions of) finitely many parameter estimators fj and 8?- in Mack’s model. In Section
2.4 we make use of a slightly adjusted asymptotic notion suitable particularly for the
purpose of prediction, which is equivalent in distribution. Hence, these CLTs as well as
their conditional versions in the appendix, will be useful to derive closed-form expressions
to describe the limiting distributions for the best estimate of the reserve Rj.

2.3 Asymptotic Theory for Mack’s model: Parameter Estimation

In this section, for asymptotic considerations, we wish to increase the number of accident
years I and let [ — oo. Recall that for any fixed I, we are dealing with an (I +1) x (I +1)
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cumulative claim matrix Cy, where we observe the upper loss triangle D;. Hence, letting
I — oo means, that the cumulative claim matrix C; grows in both dimensions. However, in
this section, we are dealing only with the estimation of a fixed finite number of development
factors f; and variance parameters UJQ-. Hence, I — oo describes foremost an increasing

number of rows (accident years) in the loss triangle throughout this section.

2.3.1 Asymptotic normality for fj

To derive asymptotic theory for estimated development factors fj, recall that ]?] is defined
as the ratio of two sums over (neighbouring) columns C, ;41 and C,; of equal length
I — j as defined in . Further note that for each fixed j, based on Assumptions
and 2.3 the cumulative claims in one column C,j, i.e. Cjj, i = 0,..., 1, are i.i.d. with
mean p; and variance sz as defined in Lemma . Moreover, for any fixed K, the
vectors (Cio,...,Ciks1), @ = 0,...,1 are i.i.d. with mean vector (o, ..., ptx+1) and

variance-covariance matrix

(max(]ﬁjg)—l ; ) )
TS
Cov((Cios...,Ciks1)) = k=min(j1,j2) k) TminGg) | (2.23)

j17j2:oa"'>K+1
This i.i.d.-ness meets the typical requirements of a law of large numbers (LLN) and of a
CLT for averages of the form ﬁ Zil;g -1 C; ;. In particular, letting I — oo, Assumption
implies %Zi];ol Cio LN o and, consequently, as py € [1,00), also Z{:o Cio 5 0. As
shown by Pesta and Hudecova (2012), the latter condition is sufficient for estimation

consistency ﬁ N f; for any fixed j, where «_2,” denotes convergence in probability.

Altogether, the stochastic framework introduced above allows us to prove a CLT for the
estimators of the development factors ]?] for any fixed j or finitely many j € {0,1,..., K}
for all fixed K € Nj.

Theorem 2.5 (Asymptotic normality of fj) Suppose Assumptions and are
satisfied. Then, as I — oo, the following holds:

(i) For each fized j € Ny = {0,1,2,...}, we have

V=3 (5 5) S (0.2),

Hj

d T
where “— 7 denotes convergence in distribution.
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(ii) For each fired K € Ny, let fK = (fo, fi, ... ,]?K)/ be the (K +1)-dimensional estimator
of fro = (fo, fr,- -, fx)'". Then, we have

TV (Fre = Fo) “2 N (0, 3k ),

where JY? = diag (\/I—j,j = 0,...,K> is a diagonal (K + 1) x (K + 1) matriz

of inflation factors and Ty = Jo(p, ) Excly(p,) = diag (Zg ;'j ,ijj) is a

diagonal (K +1) x (K +1) covariance matriz. X c and Jy(p,.) are defined in (2.68)

and (Z72).

Recall that for each fixed K € Ny, the estimators fg, cee fK are known to be pairwise
uncorrelated already for finite I just based on Assumption [2.1] The asymptotic normality
achieved in Theorem@complements this result and due to the dlagonal limiting covariance
matrix X r, the estimators fo, . fK are asymptotically also independent. In particular,

the CLTs in Theorem [2.5[ imply \ﬁ -consistency of f] for f; for each fixed j.

Using the results in Theorem [2.5 by a direct application of the delta method, we can easily
derive CLTs also for (sufficiently smooth) functions of f o= fos 1o, fK)’ . Specifically,
as stated in the following corollary, joint asymptotic normality results hold for products
of fj’s. Picking-up the representation of CA‘l 7 in , these results will turn out to be
crucial to derive asymptotic theory also for the best estimate of the reserve El,n in Section

24

Corollary 2.6 (Asymptotic normality for products of fj’s) Suppose the assumptions
of Theorem [2.5 hold. Then, as I — oo, the following holds:

(i) For each fized K € Ny andi=0,..., K, we have

o2
“j
14

it fie) o (£7 1)

(ii) For each fized K € Ny, we have also joint convergence, that is,

IS f - TS 1
\/7( 0. K j) SN (0. 2k )
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where EK,Hfj = Jh(iK)EKiJh(iK)/ = (EK,Hfj (1,92))iy in=0.... i 15 @ (K+1)x (K+1)

covariance matrix with entries

max(z'l ,ig)— 1

K 2 K
EK,Hfj<i17i2> — Z 7 H f12 H fm7

j=max(i1,i2) 77 l=max(i1,i2),l#] m=min(i1,i2)

foriy i =0,..., K. X and Ju(f ) are defined in Theorem (zz) and ([2.74).

In the appendix, corresponding to the results in Theorem and Corollary 2.6 we also
provide asymptotic theory conditional on the diagonal Q;  to be defined in under
the asymptotic framework of Section [2.4] In this regard, Theorem [2.24 and Corollary
allow a conditional asymptotic treatment of the estimation uncertainty part of the
predictive root of the reserve.

2.3.2 Asymptotic normality for 57

Similar to the limiting results in Section we want to prove a CLT also for 8]2. For
this purpose, in addition to Assumptions and [2.3] we have to impose also assumptions
on higher-order (conditional) moments of the individual development factors to establish
asymptotic normality.

Assumption 2.7 (Higher-order conditional moments of individual development
factors) Suppose that, conditional on C;j, the third and fourth (central) moments of the
individual development factors F;;, that is, E((Fi; — f;)%|Ci;) and E((Fi; — f;)*Ci;),
exist for 3 =0,...,1 — 1 such that both

k) =B (CLE ((Fy— £,)Ciy))  and &= E(CLE ((F; - £,)'Ci;)) (2.24)
exist and are finite, respectively.

Note that the definitions of the quantities n(g) and Ii(4) above are in terms of the central third
and fourth conditional moments E((F;; — f;)?|C; ]) and E((F;; — f;)*Ci;), respectively,
which allows a more convenient representatlon of the hmltmg variance in Theorem [2.9]
below. However, using Assumptions and it is always possible to represent the
non-central third and fourth conditional moments in terms of the central conditional
moments. Precisely, we have

2

o4
E(F|Ciy) = [} +3f; C-]~ + B ((Fz‘,j - fj)3|0z‘,j) , (2.25)

B(FY|Ciy) = fi+ 602 20 +4f,E (Fuy — £)Cs) + E ((Fy — £)"1Ciy) . (2.26)

C”
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In the following example, we illustrate the general representation of the third and fourth
conditional moments in (2.25)) and (2.26]) for several important parametric families of
distributions and provide explicit formulas for the corresponding central conditional

moments for Gaussian, gamma and log-normal distributions.

Example 2.8 (Central third and fourth conditional moments for parametric

families)

a) If F;;|Ci; ~ N(f;, %), Equations (2.18)) as well as (2.25) and (2.26]) hold, where

4

E ((Fm - fj)3!Ci,j> =0 and E ((Fm - fj)4VCz‘,j) = 3%
1,]

b) If F;;|Ci; ~ Gamma(a, B) with o = ff C;éj and = f]%, Equations (2.18) as well
as (2.25) and (2.26]) hold, where

J

4 0.4 6

o ; o>
L ((Fzg - fj)3|0i,j) =2+ and E ((E] - fj)4|0i,j) = 3?; + 6037]]62
2y} %747

2

a? o2
¢) If Fij|Cij ~ logN (n,0%) with po = log(f7 /(54 + [7)'7?) and 0* = log(1 + 7).
Equations (2.18) as well as (2.25)) and (2.26)) hold, where

3 o4 o6
E((Fi; = f;)°|Cij) =3+ + =25
( S j) 1iC: O
4 6 8 10 12

ag; g
E((Fiyj— fi)'|Cis) = 325 + 1657
(7 = £)'Cis) =368 + 105 7

O'j o o

+15 + 66— I
Ciifi  CLfy O

Now, Assumption allows to derive the limiting variance of &]2- for each fixed j and to
state a CLT in the following theorem.

Theorem 2.9 (Asymptotic Normality of 6’?) Suppose Assumptions and
[2.7 hold. Then, as I — oo, for each fived j, j € Ny, we have
I-j(63—0?) 5 N(0,9)),

J J

where U; = l€§4) — 0;-‘.

In comparison to the CLTs for f; and (smooth functions of) f « in Theorem ﬁ and
Corollary respectively, conditions imposed for the first two (conditional) moments in
Assumption [2.1] and are not sufficient to prove asymptotic normality of 57 in Theorem
. Assumption requires £ and /<a§~4) to be finite, which is equivalent to have that

J
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C%»E((Fm — [;)?|Ci ;) and C’sz((FZ-J — f)*C; ;) are integrable. Let yj(k) = E(C’Z_Jk) < 00
denote the kth reciprocal moment of C; ;. Then, in view of Example Assumption
does always hold for case a), but additionally requires Vj(-l) to be finite for case b), and

even VJ(-4) to be finite for case c).

In the following example, we illustrate how the different parametric distributions affect
the limiting variance ¥, of 3]2- derived in Theorem .

Example 2.10 (On ¥; for parametric families) Let the assumptions of Theorem
hold.

o?
a) If F;|Cij ~ N(f;, #]), we have ¥; = 207.

b) If F;;|C;; ~ Gamma(a, 8) with a = f? Y and B = 1 Yii  we have

o o%
J J J

608
\Ilj = 20;L + 72]1/](-1).
1

2

0'2- o4
&) If F3ylCig ~ logN (11,0%) with jo = Tog(f2/( 5+ £2)112) and 0* = log(1+ 54), we

have
1609 1508 6010 ol2
T, = 2(7;-L + 2] 1/](»1) + f4j 1/](2) + fé l/](~3) + ﬁuj(fl).
J J j J

It is worth noting that we included a conditional normal distribution in Examples [2.§ and
although it is not covered by Assumption as it allows for negative support for F; ;
conditional on C; ;. Nevertheless, it is often used in practice together with a truncation

step to cope with issues caused by individual development factors estimated negative.

The reciprocal moments I/](-ﬁ_)l, k=1,2,3,4 do not have explicit expressions, but they can
always be represented as

v = B (Cifa) = B (CFE (F1C,)). (227)

o*

For the gamma distribution in Example [2.10, F (Ffjk |C’Z-,j) exists if a = f]? Y o>k
J

holds, and for the log-normal distribution, E(F; *|C; ;) does always exist. The reciprocal

moments can be approximated by a Taylor expansion (of order two) leading to Vj(i)l R
1 k(k‘+1)7‘]-2+1
W
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2.4 Asymptotic Theory for Mack’s model: Reserve Risk

For non-life insurance companies, an accurate estimation of the reserves is crucial for
pricing future policies and for the assessment of their solvency. For this purpose, the CLM
is widely used to forecast future claims (summarized in R;) for reserving based on the
point prediction R; (best estimate) defined in . In addition, by prudential regulation,
insurance companies need to measure their reserve risk, i.e. that their reserve will be not
sufficient to pay for all outstanding claims. Hence, insurers have strong interest in accurate
approximations of the distribution of the stochastic (unobserved) reserve R; defined in
centered around its best estimate R; defined in . In the following, we call this
difference R; — R; the predictive root of the reserve. In particular, high quantiles of the
distribution of R; — R; can serve to construct asymptotic theory-backed approximations
for the value-at-risk or other risk measures.

2.4.1 Sequences of development factors and variance parameters

In comparison to the asymptotic theory established in Section [2.3] where only an arbitrary
large, but still a fized number of estimators f] and 8? are considered, we have to impose
some regularity conditions on the whole sequences of development factors (f;, 7 € Ny) and

variance parameters (032-, J € Np).

Assumption 2.11 (Development factors and variance parameters) Letting [ — oo
in the setup of Assumptions and [2.3 leads to

(1) a sequence of development factors (f;,j € No) with f; > 1 for all j € Ny and f; — 1
as j — oo such that T] f; < oo, which is equivalent to Y (f; — 1) < oo.
7=0 7=0
(i) a sequence of variance parameters (o3, € No) with o5 > 0 and 03 >0 for all j € N

with 07 — 0 as j — 0o such that j%jo(j +1)%07 < oo.

The conditions imposed on the sequences of development factors (f;,j € Ny) and variance
parameters (sz, Jj € Np) in Assumption are rather mild and cover short-term and
long-term insurance lines. In practice, each claim has a finite, but possibly unknown
horizon until it is finally settled. The time horizons of claim developments vary by the
insurance lines, which are usually categorized in short-term and long-term. Whereas most
claims in short-tailed insurance businesses are usually notified and/or settled in a short
period after the date of exposure and/or occurrence, claims in long-tailed insurance lines

may be settled a long time after the insurance policy has already expired.
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Assumption allows to derive several useful properties for the cumulative claims C;

for fixed 7 and increasing j as summarized in the following lemma.

Lemma 2.12 (Properties of (u;,j € Ny) and (Tf,j € Np)) Suppose Assumptions

and hold and let p; = E(Cij;) and 177 = Var(Ci;) as defined in (2.20)
and (2.21). Then, both sequences (uj,j € No) and (T]-Z,j € Ny) are non-negative and

monotonically non-decreasing, that is, we have 141 > pj > 1 as well as 7'3'2+1 > sz >0 for

all 7 € Ng. Moreover, both sequences are converging and, for 7 — oo, we have

[ = fhoo i= fio || fx < o0, (2.28)
k=0
00 00 -1 0o
T;HT;::Tng,zwoz(H fm>a; M 7)< (2.29)
k=0 1=0 \m=0 n=I+1
and, for h € N fized,
j+h—1
CO’U(CL]', CZ'J‘Jrh) = ( H fk) T]-Z — Tgo. (230)
k=

2.4.2 Asymptotic framework for reserve prediction

First, let us recap the stochastic prediction model of R; and the point prediction R,
leading to the predictive root R; — R;. Having observed the upper loss triangle D; defined
in , the last cumulative claims C; ;_; observed in calendar year I are those on the
diagonal Q; defined in (2.2)). Hence, starting from the diagonal Q, the predictive root of
the reserve is defined as the difference of the stochastic (unobserved) reserve R; and its
best estimate ]3q, that is

J

R I -1 -1 i -1 -1
Ri— R =) Ciry ( II Fy— 11 fj) =Y Cri; (H Froi;—11 fj) . (2.31)
=0 Sy =0 j=i j=i

7 j=I—i
where we flipped the index ¢ to I — ¢ in the second step.

With the loss triangle D; at hand, a conditional asymptotic analysis of R; — RI is of
interest. For this purpose, as common for predictive inference (see e.g. Paparoditis and
Shang (2021) for a recent reference), we shall employ a different asymptotic framework
in this section. In comparison to the seemingly more "natural“ asymptotic framework
for I — oo employed in Section [2.3] where increasing I means adding new diagonals
Qrin={Cr_i;li=0,...,1+h}, h > 1 to the loss triangle D; (see the upper part of Table
, we shall keep the latest cumulative claims in Dy, that is, Q;, fixed and let D; grow
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Development Year j

Accident Year 7

Development Year j

Accident Year

Table 3: Two asymptotic frameworks of growing loss triangles based on adding diagonals (upper
panel) and by adding rows (lower panel). Both approaches lead to loss triangles that
are equal in distributions.

instead by adding new rows of cumulative claims {C_;;|i =0,...,I 4+ h}, h > 1 (see the
lower part of Table [3]). However, by extending Assumptions and also to negative
indices i, both versions of sequences of growing loss triangles indicated in Table [3|are equal
in distribution. Hence, as a main consequence, all asymptotic results derived in Section
[2.3] remain valid without any further restriction.

Hence, in what follows, all asymptotic results are derived under the assumption that we
have observed a loss triangle of the form

Drn:={Cijli=-n,....1, j=0,....0+n, —-n<i+j<I}. (2.32)
with diagonal

Q],n = {CI—i,i|7: = 0, Ce ,I + n} (233)
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in which we view I as fized and let n — oo leading to
DI,oo = {CZ7J|Z eZ,v <1, JE Ng, 145 < I} and Ql,oo = {C[_mli € No} . (234)

In accordance to ([2.31)), in this asymptotic setup of n — oo, the predictive root of the
reserve is denoted by Ry, — Rl,m which can be decomposed in two additive parts that
account for the prediction error and the estimation error, respectively. Precisely, by

subtracting and adding 727 Cr_i; TTIZM " f;, we get

N I+n I+n—1 I+n—1 N
Rin—Rin=> Crii| 1] Freiv— 1[I fin
i=0 e i
I+n I+n—1 I+n—1 I+n I+n—1 I+n—1 N
= Cri| II Freiy— 11 £ +D.Cria| II fi— II fin
i=0 =i =i i=0 e =i

= (R[’n — El’n>1 + (Rl,n - El,n)z )

where (R, — ﬁi;yn)l reflects the process uncertainty (carries the process variance) and
(Rrn — ]%Ln)g the estimation uncertainty (carries the estimation variance), and

I—j—1
R ,E Cijt1

fin = 54—, (2.35)

—j—1

> Cij

i=—n

according to (2.9).

In the following Sections [2.4.3] [2.4.4] and [2.4.5] we derive unconditional and conditional

asymptotic theory for (Ry, — }A‘E]’n)l and (Ry, — E[’n)g as well as joint results.

2.4.3 Asymptotics for reserve prediction: process uncertainty

In this section, we consider the first term (R, — f{m)l, which corresponds to the
process uncertainty inherent in the predictive root of the reserve Ry, — Rm. We derive
asymptotic theory for (R;, — f{],n)l conditional on Q; . as well as the unconditional
limiting distribution of (R, — Rl,n)l for n — oco. Note that (R, — ]%Ln)ﬂDLOO =
(Rrm — Rin)1]Qr .00 holds.

Theorem 2.13 (Unconditional and conditional asymptotics for (R, — Ry.,)1)

Suppose Assumptions and hold. Then, as n — oo, unconditionally as
well as conditionally on Qp~ (or on Dro), (Ripn — ]3%“)1 converges in Lo-sense to the
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non-degenerate random variable (Ry ~ — }A%Loo)l. That is, we have

E (((le — Rit = (Rpwo — 1%1,00)1)2> ) (2.36)

B (((Rrn = Bra)s = (Rie = Rico)t) ' 1Q1) 20, (2.37)

where

(Rroo — ﬁiz,oo)l = Z Cri (H Frj— H fj) ~ G. (2.38)
=i

i=0 j=i

Unconditionally and conditionally on Qj ~, the (limiting) distribution G, has mean zero,

i.e. E((Rroo — ELOO)l’QI,OO) =0 and E((R0 — ]%I,Oo)l) =0, and variances

Var (Rro — Rico)) = i i (ﬁ fk> 02 ( ﬁ fﬁ) < o0, (2.39)

i=0  j=i l=j+1

j—1 o0
Var ((Rroe = Broc)1|Qroc) = Zcz Dy (H fk) o} ( I1 ff) = 0p(1).  (240)
j=i \ k=i I=j+1

Remark 2.14 (On the limiting distributions G, and G1|Qj,.) The conditional
limiting distribution Gi|Qr.oo as well as the unconditional limiting distribution Gy will be
typically non-Gaussian. In particular, in the setup of Theorem [2.13, it is neither possible
to show asymptotic normality by employing a suitable CLT nor it is possible to prove
asymptotic normality wrong. This is because, unconditionally and conditionally, both
the Lindeberg Condition and the Feller Condition do not hold for (Ry, — }A%Ln)l in the
framework of Theorem
Nevertheless, both G and Ql|QIOO could be Gaussian, if all summands Cy_ “(H”” Lp ii—
Hf;" L 1) were, unconditionally or conditionally on Qr ., jointly Gaussian, respectively.
However, as these summands rely on products of (dependent) random wvariables, it is

unclear under which conditions imposed on the F; ;’s this would be the case.

The following example illustrates the previous remark.

Example 2.15 (Non-Gaussianity of G; and G1|Qr.) Suppose Assumptions
and- hold Let fo > 1, 05 € (0,00) as well as f; =1 anda =0 for’ all j € N. Further,
suppose that F; ;|C; ; ~ Gamma(a, f) with o = f2 37 and B = f; U” forallieZ,i<1I
and j = 0. Then, as we have F;; = f; = 1 a.s. foralleZ z<] and j € N, in this

setup, we get

(Rl,oo — fA‘zI,oo>1 =Y Cri; (H Frij— H fg) Cro(Fro— fo).
i=0 =i
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In general, neither unconditionally nor conditionally, Cro (Fro — fo) follows a Gaussian

distribution. Conditional on Q. (i.e. conditional on Cry), Cro(Fro— fo) follows a

centered gamma distribution with variance Croog, skewness % and excess of kurtosis
0 I,0

603
f3Cro-

In the example above, only one summand of (Rl,oo — fi;joo)l remains. Nevertheless, this
setup is covered by Assumptions [2.2] [2.3] and 2.11] The arguments for non-Gaussianity
maintain also for other sequences (f;,7 € Ng) and (0%, € Ny) that fulfill Assumption

J
21T

2.4.4 Asymptotics for reserve prediction: estimation uncertainty

In this section, we consider the second term (R;,, — é],n)g, which corresponds to the
estimation uncertainty inherent in the predictive root of the reserve R, — }Aﬁn. In
comparison to the conditional and unconditional Ly-limiting theory derived for the first part
(RLn—}Aﬁn)l in Theorem , the derivation of asymptotic results for (RLn—}A%Ln)Q is rather
different and also much more cumbersome. For instance, to obtain non-degenerate limiting
distributions, we have to inflate (R;,, — }A%Ln)g by VI +n + 1. Moreover, (Rrpn— }A%Ln)g is
measurable with respect to Dr ., but not with respect to Q; .. Hence, the derivation of
the unconditional and conditional asymptotic theory for (R;, — }A%Ln)Q requires additional

assumptions, but also different techniques of proof.

In the following Sections [2.4.4.1] and [2.4.4.2] unconditional and conditional asymptotic

theory for (R, — Em)z will be addressed separately.

2.4.4.1 Unconditional asymptotic theory for estimation uncertainty

For the derivation of the unconditional limiting distribution of /I +n + 1 (Rrpn — }A%Ln)g
for n — oo, we make use of the CLTs established in Section [2.3| in particular, from
Corollary [2.6] Recall that all asymptotic normality results from Section 2.3 remain valid
also under the different notion of the asymptotic framework in Section [2.4, For the
derivation of asymptotic theory, we have to impose some additional regularity conditions

on the stochastic properties of the individual development factors Fj;’s to strengthen

Assumptions and
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Assumption 2.16 (Support condition and variance parameters) The individual
development factors F; j, i € Z, i < I, j € Ny are random variables with support (e,00)

for some € > 0 and the sequence of variance parameters (o2

2,7 € Ng) converges to 0 as

oo o2
j — 00 such that 3 (j +1)* 2 < oo.
=0

Now, for n — oo, this allows to derive the limiting distribution of VI +n + 1(R;,, — }A%Ln)g
in the following theorem.

Theorem 2.17 (Unconditional asymptotic theory for (Ry, — -/R'\I,n)2) Suppose
Assumptions |2.]1| and |2161 hold. Then, as n — oo, VI+n+ (R, — é[’n)g

converges in distribution to a non-degenerate limiting distribution Go. That is, we have

M(R[,n - é[,n)Q L <QI,007Y00> ~ g27 (241>

where Y o = (Yi,1 € Ny) denotes a centered Gaussian process with covariances

max(%1,i2)—1

COU(YZ'UY;Q) = I}I—{noo EK,Hfj(ilaiZ) = 4 Z - H le H fm (242)

x(i1,i2) m=min(i1,i2)

for iy, ia € Ny, where EK,Hfj (11,19) is defined in Corollary . Here, the two random
sequences Qi and Y are stochastically independent, and the limiting distribution Gs
has mean zero and (finite) variance

Var ((Qr.cs Yoo)) (2.43)
o0 o [e’e] 2 max(il,ig)—l

S S(CENTAD DRt | (N DRI SIS N | (/A | (N
=0

j=t Hj =1 i1,i2=0 j=max(i1,i2) Hj l=max(i1,t2) m=min(i1,i2)

I#j 117102 I#j

The limiting distribution G, will be generally non-Gaussian as G, is the distribution of an
inner product of some independent, but not identically distributed sequence Q; - (with
unspecified distribution) and a (dependent) Gaussian sequence Y. In the Example [2.21
below, which picks up the setup of Example the unconditional limiting distribution
G, is illustrated together with its conditional version.

2.4.4.2 Conditional asymptotic theory for estimation uncertainty

Next, we derive the limiting distribution of VI +n + 1(R;, — ]3%”)2 conditional on Qj
for n — oo by making use of the conditional versions of the CLTs derived in Section
which can be found in the appendix. In particular, we employ Corollary which
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contains a conditional version of Corollary established under the asymptotic framework
of Section . For this purpose, we further decompose (R;,, — E],n)g to get

(Rl,n - él,n)2

I+n I4+n—1 I+n—1 I+n I4+n—1 I4+n—1 .
= Z Olfi,i ( H fj - H fj,n(QI,oo)) + Z le'i,i ( H fj,n(QI,oo) — H fj,n)
i=0 Jj=i j=i =0 Jj=i

j=i

:(Rl,n - éI,n)él) + (RI,n - -ﬁil,n)g);

where (Ry,, — }A%Ln)él) is measurable wrt Q; o, and f;,(Qr ) := Mg-QLn(QI,oo)/,U/g‘i)l(Ql,oo)
with

1 1 I—j-1 1 I—j—1
W (Qre) = E (Hn_j py) Oi,j+1|Qf,oo) =T X FCunlCu),
) ' 1 I—j-1 1 I—j—1
W(Qr0) = E (Hn_j i:z_n Oi,j|QI,oo) e :Z_n B(Ci4|Chs).

In addition to the assumptions imposed for the derivation of the unconditional asymptotics
in Theorem [2.17, we require also a regularity condition for the backward conditional
distribution of cumulative claim C; ; given C; ;1.

Assumption 2.18 (Backward conditional moments) Assumptions
cmd are fulfilled such that, for all K € No, k>0 and j, j1,j2 € {0,..., K}, j1 < jo,

we have

|E(C;;|Cijak) — E(Cij|Ci k)] < apXi, (2.44)
|Cov(Cijy, Ci gy |Cijorr) — Cov(Cijy, Ci ju|Ci gy i) < bRYi, (2.45)

where (X;,i € Z,i < I), (Y;,i € Z,i < I) are sequences of non-negative i.i.d. random
variables with E(X2T) < oo for some 6 > 0 and E(Y?) < oo, and (aj,j € Ny) and
(bj,j € No) are non-negative real-valued sequences with 332(j + 1)%a; < 0o and 3324(j +
1)%b; < o0.

Note that the above assumption is required, as Mack’s model is designed to generate loss
triangles in a rather simple forward way starting with development year 0 (first column in
Table [2) and then, independently for each row 4, the whole loss triangle is easily generated
column by column according to . That is, by recursively multiplying a cumulative
claim C; ; with individual development factors Fj ;, F; j+1, etc. , we get C; j11, C; j1o, etc.
By construction, the conditional distribution of an individual development factor F; ;
depends on the realization of C;; (see Assumptions and . Hence, it is easy to
calculate forward conditional means E(C; j11|C; ;) and variances Var(C; j4+1|C; ;), but it is
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not straightforward to calculate backward conditional means E(C; ;|C; j1+1) and variances
Var(Ci;]Cije1)-

The following example illustrates the backward conditional moments for a special case
based on the uniform distribution.

Example 2.19 (Forward and backward conditional moments) For j € N, let
C; denote a cumulative claim and Fj the corresponding individual development factor
leading to the next claim Cjy = C;F;. Suppose that C; is uniformly distributed with
Cj ~ Ulpy—\/377, pi+1/377) such that E(C;) = p; and Var(C;) = 77, and Fj, conditional
on Cj, is also uniformly distributed with F}|C; ~ U(f; — \/307/C}, f; +1/307/C;) such
that E(F;|C;) = f; and Var(F;|C;) = g—i Further, we assume that p; — /377 > 0 as well
as fj —/30%/C; >0 for all C; € p; — /377, pu; + \/377]. Note that this setup is covered
by Assumption|2.5. Then, for the backward conditional mean and variance, we get

E(Cj|Ci) = }H +Op(0;) and Var(C;|Cji1) = jf;H +0p (U?) - (246)
j J

Now, with Assumption [2.18| in place, this allows to derive asymptotic theory for both
parts of (Ry, — ]%Ln)g. Precisely, in the following theorem, we show that (R;,, — ]%Ln)gl),
which is measurable wrt Q; o, converges unconditionally to some limiting distribution

51) as well as asymptotic normality of (R;,, — ]%Ln)éz) conditionally on Q; .

Theorem 2.20 (Asymptotic theory for (R, — -/R\I,n)2 conditional on Q)
Suppose Assumptions [2.11],[2.160] and[2.18 hold. Then, as n — oo, the following
holds:

(1) Unconditionally, VI +n + 1(R[,n—§1,n)gl) converges in distribution to a non-degenerate

limiting distribution gé”. That is, we have

M(Rl,n - EI,n)gl) i> <QI,(X>7 Yg;)> ~ ggl)’ (247>

where Y() = (Y;(l),i € Ny) denotes a centered Gaussian process with covariances

Coo(Y,V, V) = lim EQH £ (in,i2) (2.48)

K—o0

for 11,15 € Ny, where Eg)nf_(il,ig) is defined in Corollary |2.25. Here, the two

random sequences Q o and YY) are stochastically independent.
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(it) Conditionally on Qi , VI +n+ 1(Rr, — }A%Ln)g) converges in distribution to a
centered normal distribution. That is, we have

I +n+ 1(Rl,n - ﬁf,n)é2)|QI,oo i> <QI,OO7Y((>Z)> ~ Q§Q)|Q17007 (249>

where g§2)|Q1700 ~ N(0,2(Q1)) is Gaussian with mean zero and variance

— . 2 . 1
:(Ql,oo) = I}I_I}loo QI,K—IE%?H fi /I,K_I = I}I_Igo QLK—I(EK,H i 2%7)1-[ fj) /I,K—Iy
(2.50)

where EK’H 5, 08 well as Eg)nf' and E?Hf, are defined in C’omllam’es and|2.25)

respectively.

The following example picks up the setup of Example [2.15|and illustrates the unconditional
limiting distributions G, and gé” from Theorem [2.17| and Theorem [2.20(i), respectively,
as well as the conditional limiting distribution Q§2)|Q I.0o from Theorem [2.20((ii).

Example 2.21 (On G, él) and 952)|Q1,oo)

(1) Suppose that Assumptions and [2.16 hold in the setup of Example [2.15

Then, we have

VI+n+1 (Rl,n — El,n)2 =Cryo (\/m (fo - fo)) ;

where VI +n+1 (fo — fo is asymptotically Gaussian with mean zero and variance
. In total, the limiting distribution of Cro(vVI +n+ 1(fo—

fo)) is non-Gaussian with mean zero and limiting variance (78 + ug)

Z—(z according to Theorem
0-70.
Ho
(i) If, additionally, Assumption holds, we have
V I +n+1 (Rl,n - RI,n)Q
=CTo (\/ I+n+1(fo— fo,n(QI,oo))) +Cro (\/ I'+n+1 (fo,n(QI,oo) - fo)) )

where VI +n+1(fo— fon(Qreo)) is asymptotically Gaussian with mean zero and
variance 0]2@071 according to Theorem M

In total, the limiting distribution of Ct g (\/ I+n+1(fy— fo,n(Ql,oo))) is non-Gaussian
with mean zero and limiting variance (75 + pg)os, . Moreover, conditional on Qr o,
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Cro (\/I +n+1 (fo,n(QI,oo) - ]%)) s asymptotically Gaussian with mean zero and
variance C7 (Z—(E — 030071).

2.4.5 Joint asymptotics for reserve prediction

After having established the limiting conditional and unconditional distributions for both
parts (R, — ﬁm)l and (Ry, — E[’n)g of the predictive root of the reserve R;, — ]3%”
separately in Theorems [2.13], [2.17 and 2.20, we are now concerned with their joint asymp-
totics. Note that Ls-convergence in Theorem implies convergence in distribution.

Theorem 2.22 (Joint asymptotics for (Ry, — EI,n)l and (Rr,, — Ej’n)2)

(i) Suppose the assumptions of Theorems and hold. Then, unconditionally,

(Rrn — }Aﬁ’n)l and (Ry ., — é],n)g are uncorrelated. Hence, we have

(1~ ﬁl’”)h g, (2.51)
vVIi+n+1 ((R[m — RI’”)2)

where G is a bivariate distribution with marginals G; and Gy as given in Theorems

and [2.17 and diagonal (2 x 2) covariance matriz with variances from ([2.39) and
(2.43) on the diagonal, respectively.

(ii) Suppose the assumptions of Theorems and hold. Then, conditionally on
Qloos (Rim — }A‘Z],n)l and (R, — }A‘ZLn)g are stochastically independent. Hence, we
have

(Rr Rl’")h 19700~ G|Q) oe (2.52)
\/I +n—+1 ((Rl,n — RI’")Q)

where G|Q; « s a bivariate conditional distribution with conditionally independent
marginals G| Qr 0o and Ga|Qj o, where G1|Q; « is given in Theorem|2.15 and Go|Qr o

is the conditional Gaussian distribution Q§2)]Q17oo from Theorem |2.20(ii) plus a

realization of gé” from Theorem (z)

Now, with Theorem[2.22]in place, we can also state the overall unconditional and conditional
limiting distributions of the predicitve root of the reserve Ry, — El,n. In this regard, note
that Theorems and require the inflation of (R, — fi],n)Q with VI +n+1 to
establish convergence towards non-degenerate limiting distributions. As this is not the
case for (Ry,, — fx’[,n)l in Theorem , the latter part (Ry, — }A%Ln)l corresponding to
the process uncertainty will asymptotically dominate, which gives the following result.
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Corollary 2.23 (Asymptotics for Ry, — /R\I,n)

(1) Suppose the assumptions of Theorems|2.15 and|2.17 hold. Then, unconditionally,

Rrn — El,n converges in distribution to Gy. That is, we have

RI,n - E[,n = (RI,TL - Z/%I,n)l + (Rl,n - RI,n)Z i> gl' (253)

(it) Suppose the assumptions of Theorems|2.15 and|2.20| hold. Then, conditionally on

Qroos Rin— RLn converges in distribution to G1|Qr . That is, we have

Rip—Ripn=(Rin—Rio)i+ (Rim — Bin)2| Qoo 5 G1]Q1 oo (2.54)

Based on the (unconditional) uncorrelatedness and (conditional) independence of (R, —
}A%Ln)l and (Ry, — ]—AELn)Q from Theorem 4.12, respectively, the corresponding variances of
the predictive root Ry, — ﬁbl,n decompose into two additive terms that capture the process
uncertainty and estimation uncertainty. That is, unconditionally, we have Var(R;,, —
}A%Ln) = Var(R;,)+ Var(ﬁm) and, conditional on Qy ., we get Var(Ry,, — El,n’Ql,oo) =
Var(Ryn|Qr.se) + Var(Rrn|Qroo)-

While the calculation and asymptotic theory of Var(R;,) and Var(R;,|Qr ) is straight-
forward (see the proof of Theorem , the calculation of Var(ﬁ’[,n) and VGT(R[le[,OO)
is more cumbersome and its asymptotic treatment relies on limiting results for the estima-

tion of the development factors.

By Corollary [2.23 we can conclude that asymptotic normality of the (predictive root of
the) reserve does not hold, which casts the common practice to use a normal approximation
for the reserve in Mack’s model into doubt.

In the following section, we illustrate the non-Gaussianity of the conditional distribution
of (Rr,, — f{m)l given Q; . In particular, we demonstrate how the scaling of the claim
sizes affects the deviation from Gaussianity. Moreover, we show that the shape of Gi|Qr o
does depend on the specific distribution of the F;;’s. In addition, we illustrate the
non-Gaussianity of the unconditional limiting distribution of /T +n + 1 (Rrpn — ]?2[,”)2.

2.5 Simulation Study

In this section, we illustrate our findings from Section [2.4] by simulating several parameter
scenarios to generate cumulative claims according to Mack’s model.
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2.5.1 Simulations for (R;,, — R;,)1|Q1.n

In the setup of Section , let I = 10 and choose n € {0, 10,20, 30,40} leading to effective
number of accident years I +n + 1 € {11,21,31,41,51}. For each case and for different
parameters scenarios to be specified below, we generate representative diagonals Qy, to
condition on first. This is done by simulating M = 500 loss triangles Dy;? = {Cf?”i =
—n,..., [, j=0,....04+n, —n<i+j<I}, m=1,...,500 by generating the entries
in the first columns C, (independently) from a uniform distribution and the individual
developments factors F; ; from a conditional gamma distribution. Eventually, this gives
diagonals Q%) ,m=1,...,500. Note that as illustrated in Table (lower panel) D%) is
always a subset of D%) for all 0 < k£ < n. Recall that we are interested in the distributions

of (R, — }?17,1)1 conditional on Qy,,.

Then, for each m, that is, given the diagonal Q%L), we simulate L = 5000 lower triangles
(Ci=—n,....1, j=0,....,0+n, i+j>1I},1=1,..., 5000 using

(i) a conditional gamma distribution
(ii) a conditional log-normal distribution
(iii) a conditional left-tail truncated normal distribution (truncated at 0.1)

In all three cases, we compute the first part of the predictive roots of the reserve corre-
sponding to the process uncertainty, i.e.

(Ri— Ri)V, 1=1,...5000. (2.55)

Hence, for all three distributions (i), (ii) and (iii) and for each m with m = 1,...,500,
respectively, this leads to simulated distributions of (R;, — }?I,n)ﬁm) given the diagonal
-
Now, we specify the parameters for the different scenarios to be simulated. In the first
scenario, we consider the setup in Example [2.15, where F7 follows either a gamma, a log-
normal or a truncated normal distribution given Cy . Here, we set fo = 1.39, o2 = 509, 518,
and Crp is uniformly distributed on [120 x 10%,350 x 10?] for I = 10 and n = 0 with
f; =1and 0]2 = 0 for all 7 > 0. Figure |3| summarizes the simulation results, where we
show boxplots of skewness and kurtosis based on the M = 500 simulated distributions,
where the red line indicates the benchmark skewness and kurtosis of a normal distribution,
as well as five (arbitrarily chosen) density plots. The first row of panels refers to the
gamma, the second one to the log-normal, and the third one to the truncated normal
distribution. Moreover, for each of the M = 500 simulated distributions, we applied

the Kolmogorov-Smirnov test for normality with mean zero and variance C’%) o2 of level



48 2 AsympTOTIC THEORY FOR MACK’S MODEL (PAPER 1)

Skewness Kurtosis
7
4x107 a
15
6
3x10
z
o 5 82x10
 — s
= — l )
05 T 4 1x10
 — —
[ —
| 0
0.0 -2.5x10'¢ o 25%10°  50x10" 7.0x10"
g Reserve

Skewness Kurtosis

15 ‘

z
10 ‘ 5 &2x107
1

Skewness Kurtosis

\
o
b . =
00 3 —2.5%10" o 25x10°  5.0x10"° 7.0x10"°
8 1 Reserve

Figure 3: Boxplots of skewness and kurtosis as well as five arbitrarily selected density plots
for the simulated conditional distribution of (Rj, — ]?1,“)1 given Qy, for I = 10
and n = 0 for the setup of Example where Fr g follows a (conditional) gamma
(top), log-normal (center) and truncated normal distribution (bottom). The red line
indicates the benchmark skewness and kurtosis of a normal distribution.

a = 5%. For the gamma and for the log-normal distribution, the null is rejected for all
M = 500 samples. By contrast, for the truncated normal distribution, the null is rejected
only in about 17% out of M = 500 samples.

In the second scenario, we consider a more general and practically more realistic setup,
where f; > 1 and 07 > 0 for all j =0,...,] +n —1 such that f; and o7 decrease to 1 and
0, respectively. Precisely, we use exponentially decreasing sequences (f;);=o,.r+n—1 and
(03)j=0,..14n—1 With f; =1+ e 1797 and 07 = 509,518 - 713727 for j =0,..., I +n—1
for I =10 and n € {0, 10,20, 30,40}. Further, we distinguish between two different setups
a) and b), where the parameter settings are exactly the same in both cases, but the first
column Coo = (C_,0,...,Crp)" of the (upper) loss triangle is uniformly distributed on
[120 x 10%,350 x 10%] in case a) and on [120 x 10% 350 x 10*] in case b). Otherwise, we
use the same approach as described above to simulate the distributions of (Ry,, — Rl,n)g’”)
given the diagonals Q%) for m =1,...,500. Similar to what is reported in Figure , we
show boxplots of skewness and kurtosis as well as density plots for both settings a) and
b) in Figures {4 and |5/ for I = 10 and n = 10 and for all three different distributions in
(i), (ii) and (iii). Plots for n € {0, 20, 30,40} can be found in the appendix (see Figures
. Moreover, in both setups a) and b), we applied the Kolmogorov-Smirnov test of
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Figure 4: Boxplots of skewness and kurtosis as well as five arbitrarily selected density plots for
the simulated conditional distribution of (R, — f{]’n)l given Qy , for n = 10 and
I =10 for the setup of a), where Fj ; follows a (conditional) gamma (top), log-normal
(center) and truncated normal distribution (bottom). The red line indicates the
benchmark skewness and kurtosis of a normal distribution.

level o = 5%. For setup a), it fails to reject the null hypothesis of a Gaussian distribution
for about 92% out of M = 500 samples, if the gamma distribution is used, for about 87%
in the case of a log-normal, and for about 94% for a truncated normal distribution. The
picture is essentially the same for all n € {0, 10,20, 30,40}. In comparison, for setup b),
the test does always reject the null for the gamma and for log-normal distribution, but
only in about 13% out of M = 500 samples for the truncated normal distribution. Again
the results are pretty similar for all n € {0, 10, 20, 30, 40}.

These findings from Figures [] and [5] can be explained by a property of the gamma and
the log-normal distribution. Both tend to 'lose’ their skewness and excess of kurtosis for

% growing large in this parameter setting. Hence, as the range for the entries of the first
J
column in setup a) is [120 x 105, 350 x 10°] with [120 x 10*, 350 x 10*] for setup b), we observe

more skewness and more excess kurtosis in b) in comparison to a). In particular, this
demonstrates that the distribution of the (asymptotically dominating) (R;, — RLn)l, given
Q7 n, generally does depend on the distribution (family) of the individual development
factors also for large (effective) number of accident years I +n + 1.
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Figure 5: Boxplots of skewness and kurtosis as well as five arbitrarily selected density plots for
the simulated conditional distribution of (R, — }A?Ln)l given Qy , for n = 10 and
I =10 for the setup of b), where F; ; follows a (conditional) gamma (top), log-normal
(center) and truncated normal distribution (bottom). The red line indicates the
benchmark skewness and kurtosis of a normal distribution.

2.5.2 Simulations for /T +n + 1(R;,, — Ry,)»

To simulate the (unconditional) distribution of Vitn+1 (Rrn — E[’n)g, we consider
again the two scenarios a) and b) as explained in Section and proceed as follows. For
I =10 and n € {0, 10, 20, 30,40}, we simulate M = 5000 upper loss triangles for the three
cases of a conditional gamma, log-normal and truncated normal distribution, respectively.
For each case, we calculate f] for j =0,...,1 —1+4n. Next, for all three distributions, we
approximate the (finite sample) distribution of VI +n + 1 (Rrn — Rrpn)2 by the empirical
distribution of /I +n+ 1(R;, — RLn)gm), m=1,...,5000. In Figure @ and [7, we show
the simulated distributions for I = 10 and n € {0, 10, 20, 30,40} and for scenario a) and b),
respectively. Again, for level o = 5%, we use the Kolmogorov-Smirnov test for normality
with mean zero and variance derived in (2.43). For both scenarios a) and b), for all n and
for all distributions, the test does always reject the null hypothesis.
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Figure 6: Density plots for simulated unconditional distributions of v/I +mn + 1(Ry, — E[’n)g
given the upper loss triangles in the setup of a) I = 10 and n € {0, 10, 20, 30,40} (from
left to right) for (conditional) gamma (yellow), log-normal (green) and truncated
normal (blue), normal approximation (red).
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Figure 7: Density plots for simulated (unconditional) distributions of /I +n + 1(Ry,, — }A%I,n)g
given the upper loss triangles in the setup of b) I = 10 and n € {0, 10, 20, 30,40}
(from left to right) for (conditional) gamma (yellow), log-normal (green) and truncated
normal (blue), normal approximation (red).
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2.6 Conclusion

We propose a general and fully described stochastic framework which allows to derive
conditional and unconditional asymptotic theory for Mack’s model. First, for increasing
number of accident years, we establish unconditional and conditional versions of central
limit theorems for (smooth functions of) the parameter estimators in Mack’s model, which
allows for asymptotic inference for the development factors and variance parameters.
Moreover, these results enable us to derive also unconditional and conditional limiting
distributions for the predictive root of the reserve. For this purpose, the reserve risk is split
into two random parts that carry the process uncertainty and the estimation uncertainty,
respectively.

It turns out that, unconditionally, but also when conditioning on either the whole observed
loss triangle or on its diagonal, the limiting distribution of the process uncertainty part
will be usually non-Gaussian. When properly inflated, the estimation uncertainty part is
measurable with respect to the loss triangle and, unconditionally, turns out to asymptot-
ically non-Gaussian as well. By contrast, when conditioning only on the diagonal, this
results in a Gaussian limit for the estimation uncertainty part. Altogether, as the process
uncertainty part dominates asymptotically, and in contrast to common practice, this leads
overall to a non-Gaussian limiting distribution for the reserve in both cases.

Our findings are illustrated by simulations, where we demonstrate, according to our
established theory, that the limiting distribution of the reserve might deviate substantially
from a Gaussian distribution. Also we show that the shape of the limiting distribution
does depend on the specific parameter setting in Mack’s model and on the conditional
distribution of the individual development factors.



Appendix

2.7 Proofs of Section 2.2]

2.7.1 Proof of Lemma [2.4]

From Assumption , we know E(Cio) = po and Var(Ciy) = 73 for all i = 0,...,1.
Hence, let i € {0,..., I} and j € {1,...,I}. By the law of iterated expectation and using

(2.17), (2.18)) and (2.19)), we get immediately
E(Ci;) = E(E(F;j1Cij1|Ci-1)) = E(Cij E(F; j1]Cij)) = fi-1E(Cij-1). (2.56)
Applying (2.56|) recursively and using Assumption and , we get
7j—1
E(Cij) = 1o H Tr = uy. (2.57)
k=0

Similarly, for the second moment of C; ;, we get

E(CY;) = E(BE(F};_,CF;4|Ciy1)) = E(CH L E(F_|Cij-1))
= E(C};_y (Var(FjlCij1) + (B(Fija|Ciy))?)) (2.58)

o’
(ij 1<C:j_11 +fj2—1>> j 1Hi— 1+fj 1E< ij— 1)

Recursively plugging-in (2.58) and using E(C7;) = 73 + 45, leads to

BC2) = (4 i) T2+ 105 (H fm) o} (ﬁ fﬁ) . (2.50)

k=0 =0 n=Il+1

Together with (2.57)), this leads to

k=0 =0 n=I[+1

Var(Ci;) = (7'0 +/~Lo H fr ‘f'ﬂojz: (H fm) o} ( ]1:[ fS) - (/‘0]1:[ fk) (2.60)
k=0
=1 H i +MOZ (H fm> i ( ﬁ fﬁ) =12, (2.61)

=0 n=l+1

93
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Now, to derive the formula for the covariance Cov(C;;,,C;j,), we consider the mixed
moment E(C;;,C;;,) and we can assume wlog that j; > jo holds. Then, we get

E(C;;,Cijy) = E(E(Fj,-1C55,-1Ci3|Ciji—1, - -
(Cii—1Ci g E(Fy 3y 1] Ciji1, -
(Ci’j1,10i7j2E<EJ1,1 ‘Cl',jjfl))
= [j1-1E(Ciji-1Ci )

- (H fk) B(c2,)

k=j2

_ (jﬁl fk) (73,22 I ui)-

k=j2

7CU'2))

;Cigo))

Together with ( {;:_Jl fx) i, = pj, by construction, we get

Jji—1
COU(CIL'J'I,CZ'JQ) = (H fk) 7']-22 (262)
k=j2
for j; > j» and, in general,
max(j1,j2)—1 ,
CO'U(CZ‘JI,OZ'J'Q) = H fk Tmin(j1,j2)' (263)
k=min(j1,j2)

As C;, ;, and Cj, ;, are stochastically independent whenever i, # i holds, we get immedi-
ately Cov(Cy, j,,Ciy.p) = 0, i1 # is. O

2.8 Proofs of Section 2.3

2.8.1 Proof of Theorem

As part (i) is contained as a special case, we have to prove part (ii). Let K € Ny be
fixed, that is, we consider fK = (fo, Fioee, fK)’ as an estimator for f = (fo, f1,..., fK)’

where

fi= g (2.64)
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Note that the sums in numerator and denominator of f] have different length depending
on j. Hence, it is convenient to approximate f] by f; K, Where

I— K 1 I- K 1
J’E Z Cz J+1 Z Cz ]+1
K = I K—1 - 1 I K—1
Yico  Ciyj ﬁzz:o Cij

(2.65)

Due to \/I —j/VI—K — 1 as I — oo, because j € {0,..., K} with K € Nj fixed, and
as

I— K 1 I—j—1

JT» f Z CZ J+1 21:[)7 Ci,j+1

K T Ji 1 K—1 o I—j—1
Yico Ciy Sy Cij

IKlOz Z:j—lci. I-j-1 IKIC _ I:j_IC’,-A
Z g1~ 22i=0 7]+1 Z Cz;+1 (Z ZZ*O. +J

I-K-1

=0

I-K—-1 —j— I-K-1
. ]_IK Zz—[—j Ci,j-‘rl 1 [ijlc " [_IK i=I—j CZJ
- 1 I-K—-1 2, _K_— -
I— ZzzO Ci,] I —J =0 (I—L ZZI:()K ! Cz ]) (ﬁ le(g ! Cz g)
1
== OP I> 5

we get

TP (fr= 1) =VI— K (Fc—f,]) +Op <1

wheref (fomfum-~ fKK)/
It remains to prove asymptotic normality of v I — K ( —f ) For this purpose, we apply
the delta method and define the function g : RX** — RK+1 where R, = {z € R|z > 0},

by g(,) - (gO(—)v s 7gK(—))7 L = (‘7:07 s 7xK+1) € Rf+2 nd

(2.66)

T ,
gi(2) ===, j=0,. K (2.67)
J

Then, we have fK = g(Ck) and f, = g(u, ), where

B I K—1 Cio Ho
Ck= T—_K and p =

- i=0
Ci,KJrl HK+1



56 2 AsympTOTIC THEORY FOR MACK’S MODEL (PAPER 1)

Recall that, by Assumptionsand , the vectors C; = (Cio, ..., Cigy1),i=0,...,1

are 1.i.d. with mean vector y,. and variance-covariance matrix

max(j1,j
Sk = Cov(C i) = (TR0 f) g . (2.68)
o 7 jl,jg—o,...,K+1

Hence, by a direct application of the Lindeberg-Lévy CLT, we get

VI=K (Cx — ) 5 N0, Exce)- (2.69)

Now, to prove asymptotic normality also of

VI=K (fie=fr) = VI =K (9(Cx) — glpny)) (2.70)

we apply the delta method. Using

L Q=
dg(z) L
=) _ )1 C_ 2.71
8:15,- xj’ ¢ J +1 ( )
0, otherwise

fori=0,...,K+1landj=0,..., K, the (K+1)x (K +2) Jacobian J,(z) of g becomes

—m L 0
xg o
—zz L
Jo(z) = non (2.72)
- 0
0 0 - L
T3, TK
Finally, using B = f;, we get
fi 1 5 TS R
Jo(p )X cdy (1 '.._(_7 ’ ! - ="+ ==
( 9(—K) = g(*K) >J,J [ ijjQ Tj<2+1 Hjo Mg M? M? Fj
for all j =0,..., K. Similarly, for all j;, 72 € {0,..., K} with j; > jo, we get
(Jols) B din))

1 1
— ( & 1) Hil J2 Jr 122 gcl Jot+1 Je) T 32+1 ( f]z 1>/ =0
H’ﬁ Hjl k1:j2 fk 7_322 Hk =j2+1 fk ]2+1 luJQ ILLJQ
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Altogether, this completes the proof of

TV (Fre = Fr) “2 N (0, 3k ).

2.8.2 Proof of Corollary [2.6]
As part (i) is contained as a special case, we have to prove part (ii). We define the function

h: RETH — RET with h(z) = (ho(z),. .., hg(z)) for z = (z0,...,2541) € RET? by

K h, 0, k<i
[n with @) ' (2.73)
1= axk Hliii,l;ﬁk xy, k 2 )

for k,i = 0,..., K. Hence, the (K 4+ 1) x (K + 1) Jacobian J,(z) of h becomes upper

triangular and we have

K K K
Ihzopco vt 2oz -0 Ilizoex 2

0 K . :
Jn(z) = , Hl‘?#l " _ . (2.74)

0 T 0 HlIiK,l;éK 1Y)

Finally, using the delta method, we get

(Jh(iK)EK,iJh(iK)/)

()2 (fa) -5

=il

for all i = 0,..., K. Similarly, for all i1,y € {0,..., K} with i1 > iy, we get

18

- j=i1 \U=i1,l#] m=ig,m#j

K 2 11—1 K
SEyEralen
j=i1 \l=iq,l#j Hj m=io m=i1,m#j
K 11—1
i)
j=i1 i \y i1,l#£] m=ig

Together, this completes the proof of

(WS shit)), i( I1 fl) % ( Il fm)

K 7 _ K f
(T 4,
1=0,.... K

since T — K/vVI —1as I — oo and K € Ny fixed. O
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2.8.3 Proof of Theorem

For any fixed j, the estimator 32- can be represented as follows. Precisely, by plugging-in

for f; and due to Fj; = Ciitl e get

Ci
1 I—j—1
§ = > Cij(Fij = 1)
J I — j— 1 P J J
i I 2
_ 1 Iilc 2 (1_}_1 s Ci,j+1)
T _ i1 ity T T—j—1 :
I—j-1i5 ! =1 2ico - Cig
Hence, by defining the function v : R — Ry by v(a,b,¢) = a — ?, we have
I—j-1 I—j—1 I—j—1
~2 2
;= CiiFij, Cij , Cijm]. (275
0, U(I—]_lzz: A ,]_1§ »J _j_lg ,j+1> ( )

As v is differentiable on Ri, we can calculate the first partial derivatives. Using

811((5,;), ) _ L 8U(cgbb, c) :zz and 81}(6;:, ) _ _2%, (2.76)
its Jacobian J,(a, b, ¢) becomes
A _c
Jy(a,b,c) = (1, 7 —2b> . (2.77)

Hence, making use of the delta method, it remains to prove a CLT for

B 1 I—j—1 Oi,jFiQ,j I-j-1

B=_ - .

= I—j—1§ Co | =12 3—120
T\ Cijn -

For this purpose, note that, for each fixed j, the random vectors B, ;,i=0,...,I —j5—1
are i.i.d. with mean vector p, := E((Ci;F7;, Cij, Cij)) = (i f7 + o ,,u],uﬁl) due to
Lemma 2.4l and

2

BICuF,) = BUB(CEIC) = BCuBRIC) = B (G (2 + 7)) 9
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Its variance-covariance matrix becomes

VCL’I“(CLJ'F;?J) C’OU(C’Z"]’FK2 Ci,j) COU(C@jFﬁP Ci,j—f—l)

7,7
EB = COU(BZ-J) = COU(C@j, Ci,ijj) T]‘Q ijjZ
Cov(Cijy1, Ci i FY) fit} i

(2.80)

To calculate Var(C; ;F7;), using (2.24) and (2.26), we get
E(Csz;,lj) = E(E(CEJE4J‘CZJ)) = E(C’LQJE(‘F;4]|01]))
2
J

= (€2, (514627 +ALE(R, - 1I6,) + B(F - 110

3 4
= (7'J2 + ,uf)f;l + 6,ujfj20-]2- + 4fj/£§- )4 Ii; ),

which, together with E(C;;F7;) = u; f7 + 07, leads to

3 4
VCLT(C@J'F?’]-) = (T]2 —+ M?)f;l + 6M] j20'J2- -+ 4fj/€§~ ) + /<L§- ) - (,Uzjff + 0'?)2
3 4
= 2y 02+ 4?4 Y o

Similarly, we have

o2
E(C},F};) = E(E(C}F|C ) = E (Cij (ij + ff)) (2.81)
= E(Ciy) o+ E(CL) 17 = pjo? + (7} +12) f7 (2.82)
leading to
Cov(Ci;F2, Cig) = s + (774 12) 17 = (if} + o)y = 71£7. (2.83)

Further, using C; ;41 = C;;F;;, (2.24) and (2.25]), we get

2,77 1,7 5,J7 1]
—F <C-2» (ff°’+3f~0ﬂ2+E((F~ = 1i)°1C )))
2y J ]Cij 2Y) J 2,J

— (TJQ + /ﬁ) f; 4 3u;fi05 + mg-g)

E(CijF}Ciyn) = E(CLFY) = E(E(CLFE|Cy)) = E (CLE(F|C )

leading to

3
CO’U(C@jF-Z Ci,j+1> = (7']-2 + ,LL?)fjg + 3,ujfj0']2- + :‘ig ) — (/vbjsz + 0'J2-)/Lj+1

l?j,
2 3 2 ®3)
=7, [7 + 25 505 + K57
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By an application of the Lindeberg-Lévy CLT, we get

I—j(B)—py) >N Zp) (2.84)

2
and by the delta method, using J, (¢ ;) = (1, “Z;_l : —Q’Z—“) = (1, f7,—2f;), this leads to

I—j (6] —07) = I1—j(v(B)) —v(u,) > NO L(p,)Zplu(py)).  (2:85)

Finally, for the limiting variance, by direct calculation, we get

Jo(pp)E T (1)
Var(Ci; FY)) Cov(Cy;F2;, Ciy) Cov(CiiFY, Cijia) 1
= (1, f],=2f;) | Cov(Ci;, CijFZ) 7 fi7 7
COU<Ci,j+17 Ci,jFiQ,j) ijj2 7']'2+1 —2f;
O

2.9 Conditional versions of the CLTs from Section 2.3

In the following, we establish conditional versions of the CLTs from Theorem under
the asymptotic framework of Section [2.4}

Theorem 2.24 (Asymptotic normality of fj conditionally on Q) Suppose
Assumptions [2.11],[2.16] and [2.1§ are satisfied. Then, as n — oo, the following
holds:

(i) For each fized j € Ng = {0,1,2,...}, unconditionally, we have

VI+n =i (fin(Qree) = £)) = N (0,07, 4),
where f;n(Qr00) is defined in Section and the variance is
> [FE(E(Ci]Ci00)?) = 2fE (E(Ci j|Ci00) E(Ci j11]Ci00)) + E (E(Ci j11]Ci00)?)

Of1 = 2
J ILL_]

(ii) For each fived K € Ny, let f,. = (fo, f1,..-, fx)'. Then, unconditionally, we have

J:L/Q (iK,n(QI,oo> - i}() SN (O’ E(I;’)f) ’
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where J}/? = diag (\/I+n—j,j = 0,...,K> is a diagonal (K +1) x (K 4+ 1) matriz

of inflation factors and the variance-covariance matrix
1 1 !
2&(& =Jg (HK) 2&(,)QJ9 (HK) ;
where E%?Q is defined in (2.94)), has entries

Eg?i(jla]é)
_ i B (E(Ciy |Cioo) E(E(Cijy|Ciso))) + E (E(Cijy 41| Cioe) E(E(Ci iy 41| Cios)))
Mgy gy
N — [ B (E(Cijy+1|Ci00) E(Ci 4y |Cia)) — [ B (E(Ci i | Cio0) E(Ci jy 41| Clioo) )
Mgy Hojy

fO’I"jl,jQZO,...,K.

(1ii) For each fized j € Ng ={0,1,2,...}, conditionally on Qy , we have

\/I‘I—T—j (]/C;m - fj,n(Ql,oo)) |QI,00 l> N (070]2”j,2) )

where the variance is 07 , = % — 0% 1
(iv) For each fired K € Ny, let fKn = (ﬁ),n;fl,n?-“af[{,n), and define iKn(Ql,oo) =
(fon(Qroo)s fin(Qroo)s s [Kkn(Qroo)) . Then, conditionally on Qr ., we have

T (Fren = £1n(Qro)) Qi = N (0,22))

where the variance-covariance matriz
2 2 /
Sy = Jo (1) SieTs (1)

o2
where Eg?g is defined in (2.89), has entries Eg?f(j,j) = U?j’Q = L - 0]23-,1 for

My

J=0,....,K and Eg,)i(jla]é) = _Eg?i(jlan) Jor gi,52 =0,..., K, j1 # Ja.

2.9.1 Proof of Theorem

As in the proof of Theorem (i) and (iii) are contained as special cases, and we have to
prove parts (i) and (iv). In contrast to Theorem [2.5] we have to prove unconditional and

conditional CLTs under the asymptotic framework of Section [2.4
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Similar to the proof of Theorem for fixed K € Ny, we consider f (fg ns ﬁ,n, e fAK,n)’

and f (fo K f1 Koy - - fKKn) where fJ Kn approximates fj » With
I—j—1 K- 1 ~I-K-1
‘]?. _ Zz—in CZ J+1 and fK _ Zzlzf(n ' Ci:j'i‘l _ I-K ZZ——TL CZJJFl (2 86)
[ —" - JEn = TRI-K-1 = T 1 I-K-1 : :
Zz_in C Zi:—n CZJ I-K Zi:—n CZJ

For their difference, we have

1 I-K—1 1 I4+n—j—1 1 I-K—1
]? _ I+n-K il -3 Cijti (I+nfj Li=n C”“) (anK 2=l O”)
Jjm =

I+73—K D, Cij ’ (I-I—nl—K )ity C’”) (I-le—j Z{—inl Ci )

fj,K,n -

Further, due to C;; > 0 for all 4, j, we have that b_i I >, Cij = Op(1) unconditionally
and also conditionally on Q;  for all @ < b and all j. Hence, as K and I are fixed, we get

Fikn — f]n =0Op (%) conditionally on Q; ., as n — oo.

We continue with showing with part (iv). Consequently, conditionally on Q; ., and due

0 \/HT—j/m — 1 as n — oo, it remains to show
Trn K (Fyy - F (@) 0 SN (032, (257
where me(Q[,oo) = (fo.kn(Qr00) frkm(Qroe)s -+ frckn(Qrse)) and
Fin(Qroc) 1= B1.0(Quoe) /N (Qu)

with

1) 1 I-K-1 1 I-K-1
Pitrn(Qro) =B | 7 — Z CijrQree | = 7 — ¢ > E(Cijn|Cir-),

@) 1 I-K-1 1 I-K-1
[ w) =E——— CiilQreo | = ——— E(C;;|Ci1-).
M],’VL(QI, ) [+n—K i;n 7]|QL [+n—K l;n ( 7]|C7I )

To prove (2.87)), we have to apply the same delta method argument as in Theorem
and it is sufficient to show

VI+n =K (Crp— fig,(Qroo)) > N(0. %), (2.88)
where
. 1 I-K—1 Cio [0, (Qr,00)
Can=7rm i 2 | 0 | ™ Q=]

Ci k1 Fir+1,0(9r,00)
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Recall that, by Assumptions and , the vectors C; x = (Cioy-- s Cigq), 1 =
—n, ..., I are still independent when conditioning on Q; -, with conditional mean vector
1 Kn(Q I.00), but not identically distributed anymore. Hence, we make use of the Lyapunov
CLT, to get asymptotic normality of VI +n — K(Ck,, — EK,n(QLOO))' Using Assumption
2.18, the Lyapunov condition follows from

1
(I+n— K)2)/2 Z E( E( ivj|Qfﬂoo)|2+5)

1
:(_] tn— K)2r)/?

o 2+4
I—i—j—1
X Z E\Ci; - (E(Cz',ﬂci,j) + Y (E(CilCijiri) —E(Ci,j\Ci,jJrk)))
i=—n k=0
1 I—i—j—1 245
(I +n—K)2)p Z E kz (E(Ci;1Cijr) = E(Cij|Cijanin))
i=—n =0
1 I—i—j—1 245
([ +n— K)o Z ‘ (E(CijlCijr) = E(Ci]Cijrrra))
i=—n k=0 946
1 K [T-i—j—1 2+6
Trn—rean 2 | L NECCwm) = BlCulC )l
- 246
1 = 1/(249)
= Z ar (E(X7)
(I+n—K)e92 &~ \ ~ ( )
1 T—i—j—1 246 ) ]
— 248\ _ _

i=—n k=0

for all j € {0,..., K +1}.

And for the variance, we get

Var (\/I +n—K (QKH — EKW(QI,OO)) |Ql,oo)
-K-1 -K-1

I+n— Z Va'r( i,K|QI,oo):I Z Var( z’,K|C¢,I4)-

Note that the conditional variances in the last right-hand side are independent, but not
identically distributed as the ’gaps’ between C; ;- and Cj;_; vary with index i. However,
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the last right-hand can be written as

I _f: 1 (Var (Qi,K‘Ci,I—i) + Var (Qi,K|Ci,I—i+1) + Var (Q@K‘CLI—HQ) +.. >

I+n—K =~
—-K—1
“T+n-K tn—K Zzn Var (Qi,Kloi,oo)
-K-1 oo
] +n— l;ﬂ k;ﬂ (Va'r’ (Qi,K|Ci,k) —Var (QLK|CZ-J€H) >7

where C; oo = Ci0[1ieo Fix with C; SN Clioo- NOW, using Assumption the second
term on the last right-hand side is of order Op ( i K) and hence asymptotically negligible,

because
I-K—1 oo
E( IT+n—K :z_:n k;@(\/ar< 1K|C“f> VO”"( zK|Ozk+1 l|)
I-K—1 oo
E(||[Var (C; k|Cix) = Var (C; x|C;,
I+n K :z_:n kgz (H ( K k) ( K k+1)H)
const. 17Kl X 1 I-K-1 1

I+n Z:Z_n k:ZIZbkE <COnStM<iZ_n lekzllk‘i‘ b)

Sconst.m_

Finally, note that the first term SRy ar ( i, K\Ci,oo) is a sample average over

Itn—K &i=-n
(absolutely integrable) i.i.d. random variables (Var (Q17K|Cijoo) i eZyi<I—K-—1),
which converges in probability to E(Var (Qi, K|CZ~7OO)) due to the weak law of large numbers
(WLLN). Hence, we get

Sho = BE(Var (C; x|Cix))- (2.89)

Now, let us take a closer look at fi,. (Q1). By definition, we have

i=—n

N 1 I-K-1 1 I-K-1
ol Q1) = B\ g B Cul Qe | = e 30 B (CardCur).

which can be written as
1 I—-K—-1

I+n—K Z

=N

(E (Q,-7K|Cz‘,l—i) == ) (Qi,K|Ci,I—i+1) tFE (Q@K|Ci,[—i+2) == )

i K (Qi,K’Ci,k) - L (Qi,K|Ci,k+1) );

I'+n— i—n im——n k=I—i
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where the second term on the last right-hand side is of order Op (ﬁ) and hence

asymptotically negligible (even when multiplied with /T +n — K) due to Assumption
2.18] The first term on the last right-hand is a sample average over (absolutely integrable)
i.i.d. random variables (F (QLK|C’Z-,OO) i € Z,i < I—K—1), which converges in probability
to £ (E (Q@K|Ci,oo)) =F (QLK) = i, due to a WLLN. Note that the latter argument is
not valid when multiplied with v I +n — K!

Now, applying the same delta method argument as in the proof of Theorem [2.5] we obtain
the (conditional on Qj ) limiting variance for VI +n — K (fKn — fKn(QLOO)) as

2 =, () S2ed, (1) -

where we used that i, (Qr ) RS Ky and Jy(+) is defined in (2.72)).

Now, let us consider part (ii). Using similar arguments, it remains to show that, uncondi-
tionally, it holds

VI+n =K (fi (Qreo) = 1) == N(0,5)0), (2.90)

where

ﬁo,n(Ql,m) Mo
Py (Qroe) = : and p, =
ﬁK+1,n(Q1,oo) HEK+1

Itn—K Z«i=-n

As already shown above, WehaveEKn(QI,oo): L_ s I-K- 1E< 1K]C'Zoo)—i—0p (Hn K)

leading to

VI+n =K (i, (Qro) = 1) (2.91)

I-K-1 1
ﬁ :Z (B (CixlCine) = ) +Op <m> (2.92)

As (E(C; k|Cio),i € Z,1 < I) is a sequence of (square integrable) i.i.d random variables,

an application of the Lindeberg-Lévy CLT results in

1 I-K-1

Ve dpS (B (CixlCin) = 11y) =5 N(0,Zc), (2.93)

where E%?Q =Var(E(C; k|Cix)). Applying again the same delta method argument as
in the proof of Theorem used already above, we obtain the (unconditional) limiting
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variance for I +n — K (iKn(QI,oo) - iK> as

1 1 !
Egﬂ)j =Jg (HK) ng,)QJg (HK) .
Note that, due to the law of total variance, we have

ke =S+ S0 and Tg;= 2(,& T zg}i,

wnere Kff ’Lag UO Nl “7/171( .

Furthermore, we can formulate a conditional version of Corollary [2.6]

(2.94)

(2.95)

Corollary 2.25 (Asymptotic normality for products of fj’s conditionally on
Qr.0) Suppose the assumptions of Theorem hold. Then, as n — oo, the following

holds:

(1) For each fired K € Ny and i = 0,..., K, unconditionally, we have

K K
VI+n+1 (H fin(Qroe) = 11 fm) LN (07 ‘TZHfj,l) )

j=i

where fj,(Qro0) as defined in Theorem and

!/

K K
o= [0, Hfj, H fioe TLE | Big | 0.0, Hf], H firo TS5

J?él J¢Z+1 J#K J;éz J¢Z+1

K

(7i) For each fized K € Ny, unconditionally, we have also joint convergence, that is,

Neres (HF@' Fiol @) = I, f) 4 (030,).

i=0,... K

where Eg?Hfj = Jh(iK)Zg?iJh(iK)’ with Ji(+) as defined in (2.74)).

(1ii) For each fized K € Ny and i =0, ..., K, conditionally on Qj , we have

K

K
m(n T fn(Qrm0) ) [Qroe == N (0,07 ,5)

j= j=i

2
9 _ K %K 2 _ g2
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(iv) For each fixzed K € Ny, conditionally on Q; ., we have also joint convergence, that

18,

HK:l fA',n - HK:Z f,n(Q ,oo)
o (W I 0, oy, )

where E([?H 5= Skl Eg?l—[ 5y where Xy 11y, s defined in Corollary (zz)

2.9.2 Proof of Corollary [2.25]

As (i) and (iii) are contained in (ii) and (iv), respectively, it remains to show (ii) and (iv).
As in the proof of Corollary the same delta method argument leads to the limiting

variances

=y = I (L) B (£0)  and =0y, = (£) =R (£0)

for (ii) and (iv), respectively, where Jy,(+) is defined in ({2.74). Here, we used that, by

continuous mapping theorem, fi,. (Qr o) RS W, implies also f,. (Qr o) RS [ O

2.10 Proofs of Section 2.4

2.10.1 Proof of Lemma 2.12

By Assumption 2.2 we know that po > 1 and, by Assumption 2.3 we have that f; > 1
such that p;11 > p; > 1. Similarly, as all summands of

Jj—1 j=1 /i-1 j—1
= [+ (H fm> o} ( I1 fﬁ) (2.96)
k=0 1=0 \m=0 n=ii1

are non-negative and 73 > 0 by Assumption , we have 7'j2Jrl > sz > 0. Furthermore,
by Assumption , we have convergence of u; = H{;g fr for j — oco. Similarly, as

(7']-2, J € Np) is monotonically non-decreasing, and we have

<15 (H fk> + 1o (H fm> > of < o0 (2.97)
k=0 m=0 =0
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again by Assumption , we have also convergence of sz — 72 for j — co. Finally, for
h € N and using (2.22)), we get

j+h—1

COU(Oi’j, Oi,j—f—h) = ( H fk) Tj2 — Tgo, (298)
k=j

because fr, — 1 as k — oo such that also H{;g_l fr > 1as j — oo as well as T]-Q — 72 as

j — oo from above. O

2.10.2 Proof of Theorem 2.13

First, as ((Rrn — f{],n)l — (R0 — ﬁlm)l)z > 0, unconditional Ly-convergence in ([2.36))
implies also conditional Ls-convergence in (2.37). Further, the Lo-space of all square-
integrable random variables is a Hilbert space and, hence, complete. Consequently, it is
sufficient to show that ((Ry, — RI,”)L n € Np) is a Cauchy sequence in (unconditional)
Lo-sense. By letting n — oo for (RLn—f{Ln)l naturally leads to the Lo-limit (R —}A%Loo)l
as defined in . Precisely, we have to show that for all € > 0, there exists an ng € Nj
such that for all m,n > ng, we have

. . 2
E(((Ren = Rra)i = (Rim = Rinh)’) < e (2.99)
Without loss of generality, let m < n in the following. Then, we have
(Rl,n - é[,n)l - (Rl,m - Rl,m)l
I+n I+n—1 I+n—1 I+m I+m—1 I+m—1
=> Croii | Il Frig— 11 fi) =2 Crmia | 11 Fr-is— 11 £
i=0 j=i j=i =0 j=i j=i
I+m I+m—1 I+n—1 I+m—1 I+n—1
=> Cri| Il Frmig| Il Freu—1|—= 11 £ II fi—-1
i=0 j=i j=i

i=I+m+1

I+n I+n—1 I+n—1
+ > Crai| Il Froy— 11 £
i j=i
:Al,l,m,n + A2,I,m,n~
Hence, using (a + b)? < 2(a® + b?) for a,b € R, it remains to show that

Jlim Tim. E(A} ;) =0 and Jlim  Tim. E(A3; n) =0. (2.100)
We begin with the first term A; 1,,,. For convenient notation, let Eg(-) = E(:|Qr,0)
and Varg(-) = Var(-|Qs ) denote expectation and variance, respectively, conditional on

Q.- First, we calculate the conditional second moment Eg(A? ), which easily allows

1,Immn
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to calculate also F(A? T

EQ(Allmn> = 0 it holds EQ(Allmn)

= E(Ego(A]

1,I,mmn

Varg(Airmn). Using stochastic independence

)) afterwards. Further, as we already have

over accident years 4, the summands of A; ;,,, are also independent, leading to

VCLTQ(A17]7m7n)

I+m

= Z Cifi,iEQ

1=0

I+m

= Z C?—i,i Eq
i=0

II Fr

I+m—1
j=i

I+m—1
j=i

I+n—1 I+m—1 I4+n—1 2
( 1T Fli,l_l)_ 1T fj( I1 fl_1>)
l=I+m Jj=i I=I4+m

I+n—1 2 I+m—1 I+n—1 2
() ) (1n (1)
l=I+m Jj=i I=I+m

For the term corresponding to the first term in brackets on the last right-hand side, we

get
I4+m

Z CIQ—i,iEQ

=0

I+m
= Z Olz—i,iEQ (

I+m—1
II Fra;
j=i

I4+n—1

[T Fri; -2
j=t

I4+n—1
( H Flfi,l -

I=I+m

))

H Fl2—i,j H Frip | + H F] il (2.101)
Jj=i I=I+m
For the first expectation on the last right-hand side of (| , due to F;; = éjjl’ we

get

I4+n—1
(H R,

I+n—2
) = Eg ( H F_”) (FIQ—i,I+n—1|CI—i7i7'"7CI—i7I+7L—1))
—E I+ﬁ_2 2 Olin1 e
= kg 11 Fr-ij Crstom T+n—1
j=i —1,]4+n—
I+n—2 1 I+n—2
2 2 2 2
= Eo H Fr_ ij CI Tent Or4n—1 T Eo H Fl—z‘,j f1+n—1
7 n— j=i
I+n—2 U% . I+n—2 ) )
= FEo H Friy Cjn_ + Lo H Fl—z‘,j Jivn—1
Jj=t -0 Jj=t
HJI+Zn 2

f]0[+ L I4+n—2 ) )

n—

C EQ H FI—i,j f]+n—1'
I—iyi

j=i

By recursively plugging-in, we get

I+n—1
(i

j=i

1 I+n—1 (k-1 I+n—1
:C' - Z (Hﬁ)ai( H fh)
I=ii =\ j=i h=k+1

I4+n—1

+Hf

(2.102)
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Similarly, for the second expectation in (2.101)), we get

I+m—1 I4+n—1
Lo (‘2( 11 FIQ—i,j) ( 11 FIM))
Jj=t l=I+m
1 I+m—1 — I+m—1 I+m—1 I4+n—1
(e % (1) () i) (1)
I—i4  p—y h=k+1 I=I4+m

and for the third one, we have

I
|
N\

I+m—1 1 I+m—-1 [k—1 I+m—1 I+m—1
EQ( 11 Ff_i,j) = e > (H fj> a,i( 11 fh) + H i (2.103)
j=i I=ii =i \j=i h=k+1
Altogether, for all m < n, this leads to
VCLTQ(AL[’m’n)
I+m I4+n—1 (k-1 I+n—1 I+m—1 [k—1 I+m—1 I+n—1
= ZCI—i,i Z (Hfj)ai( H fﬁ) _2( Z (Hfj)ai( H ff%)) ( H fl)
i=0 k=i \j=i h=k+1 k=i j=i h=k+1 I=I4+m
I+m—1 [k—1 I+m—1
SN M) (T )
J=

k=i h=k+1

Next, taking the (unconditional) expectation of Varg(Ay 1mn), gives

E<A%I,m,n)

I+m I4+n—-1 [k—1 I+n—1 I+m—1 — I+m—1 I+n—1
S (M) (I ) -2 (S (Moot (11 ) ) (T4
=0 k=i Jj=t h=k+1 k=i h=k+1 I=I+m

I+m—1 (k-1 I+m—1
+ > ( fj) o | II £ ]
k=i \j=i h=k+1
I+m 0o k—1 0o I+m—1 — I+m—1 00
n:gOZmZ( fj)di I 7] - (Z (Hfj)ak(n fi))(r[ ﬁ)
=0 k=i \j=t h=k+1 k=i h=k+1 I=I+m
I+m—1 (k-1 I+m—1
+ ( fj) ol II 7 ]
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The last right-hand side can be written as

S(1) (L) (- 1)

3 () (1) (0

(£ () () (1) (11
(& () (I A) (1))

which can be bounded by

gm [(Zok) i (1— 11 fz) n ( 3 a,z) B

I+m

Z Hi
=0

I=I+m k=I+m
I+m—1 00 I+m—1
+<ZU/%>N§O IT -1 +<Z"k> Hfl
k=i h=I+m k=i I=I+m
— 0,
m—0o0

because [172,,,, fi = 1 and T172,,, fZ = 1 as m — oo by Assumption [2.11] as well as

I+m o) 00 00 o) 1 k o)
> uz-Zcri < Zmzai => <MZM> (k+1)aj; < MY (k+ 1)oj < 00
i=0 k=i i=0 k=i k=0 i=0 k=0
and
Sy LY wremen) 3 o
b o= wi(l +m+1 o
= k=I+m I+ +1i3 k=I+m ‘
1 I+m o) )
: <1+m+1 Zm>k§m S

due 3272 (7 + 1)20]2 < 00 by Assumption . Here, we used that the sequence (115, j € Ny)
is converging by (2.28)), which implies that the sequence (]}rl > h—o Mk)jen, 1s also converging
and there exists a constant M < oo such that +1 S otk < M for all j € Ny. This
completes the first part of (2.100).

For the second part, we also have Eg(As rm») = 0 and, by using similar arguments, we
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have
I+n I+n—-1 [j—-1 I+n—1
Varg(Aormn) = Y., Croii Y. Hfh o | 11 /7
i=I+mi1 =i I=j+1

and taking the (unconditional) expectation of Varg(As m.) leads to

i=I+m+1 J=t l=7+1

i=I+m+1 j=t \h=i 1=j+1

oy uzz(nfh) (H fl).

The last right-hand side can be bounded by

o0 o0 [e.9] o0

Moo Y door=pi >, (GHI-—T4+m+1)o <pl > (j—i—l)a?n;zoo.
i=T+m+1 j=i j=I+m+1 j=I+m+1

Now, as Eq((Rrn, — Em)l) = 0 for all n, we also get Eg((Ry 0 — ]?31700)1) =0 as well as
E((Rr00 — EI’OO)l) = 0. And for the conditional variance of (Ry, — _ﬁ]’n)l given Qy ., we
have

I+n I4n—1 [j—1 I+n—1
VCLTQ ((Rln Rln ) ZC] X Z ka: H fl )
j=i \k=i I=j+1
which is indeed bounded in probability, due to

I+n  I+n-1 I4+n-1 J
)u2 = (Zm > 0]2-) (2, = ( > U?Zui) [15g
=0 7=0 1=0

j=i

(Iil(wr ( +1Zuz))uio<00-

I+n I4+n—1
E
=0

S0 o

j=i

Hence, for n — oo, we have

VCLT’Q ((R[}n — }A‘z],n)l) L) ioj_m‘ i (jli[ fk) 0']2. ( ﬁ f?) = Op(l)

i=0 j=i l=j+1
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Using E(Varg ((Rl,n — E’[n)1>) = Var ((Rl,n — I%th), for the unconditional variance
of (Rr,, — EL”)l’ we get

Var((Pqn—RIn) Ii?uzﬂfl (ﬁsz) (Iﬁlfz)

j=i I=j+1

50 (1) (1.7

I=j+1

Finally, the non-degeneracy of the limiting distributions is implied by the boundedness
away from zero of Varg ((RLN — ﬁim)l), which is obtained by taking the first summands
of both sums over 7 and j in the formula for the variance Varo((Ry, — R1,)1) as a lower

bound and by bounding all f;’s from below by 1. This leads to
VQTQ ((R[’n — ﬁ[,n)l) > 01700'3 >0

as Cyo > 1 for all ¢ by Assumption 2.2]and 63 > 0 by Assumption [2.11] O

2.10.3 Proof of Theorem 2.17

We decompose (R, — ]:?Ln)g to be able apply Proposition 6.3.9 in Brockwell and Davis
(1991). For this purpose, let K € Ny be fixed and suppose n € Ny is large enough with
K < I+n—1. Then, after inflating (R;,, — R]m)g with /I +n+ 1, we get

\/I—i—n—l—l(R]n—}?i]n)
I+n
vf+n—|— ZC[ “(

=

-1 I4+n—1 .
f' - H fj,n)

::M

=VI+n+1 ZCI“( fi— ﬁ )

I+n—1 K . I—i—n—lA
( 11 fl—l) _Hfj,n( 11 fl,n_1)>

I=K+1 I=K+1

] i

—i-\/[—i—n—i—lZCI“(
=0

||:jw

I+n I+n—1 I+n-1 _
+vVI+n+1 Z C]i,i( H fi— H fyn)
j=i =i

i=K+1

= Birkin+ Born+ B3k n

where J?]n is defined in (2.35)). Hence, to prove the theorem, it suffices to show that, a) for
all K € No, By k.1 A By i as n — 0o, where By i ~ Gy i for some distribution G f, b)
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By i L Gyas K — oo, and ¢) that, for all € > 0, we have

hm limsup P (|Ba,k,1n| >€) =0 and hm limsup P (|Bs k1n| >€) =0. (2.104)

K—o00 n—oo K—o0o n—oo

We begin with part a). That is, for each fixed K € Ny, we consider

K
Bikin=VvVI+n+1 ZCI i (H Ji— Hf]n) ; (2.105)

Jj=t Jj=t
where

I—j-1

Z Ck J+1

fim= (2.106)

—j—l

> Cryj
k=—n

A closer inspection of ([2.105) and ([2.106) shows that for each i = 1,..., K the diagonal
elements Cy_;;, i € {1,..., K} show twice: as weights in the sum in (2.105), but also as
the last summand in the numerator of ﬁ‘—1,n in . Hence, for each i = 1,... K,
Cr_i; and ﬁ-_l,n are not independent. To solve this dependence, we replace J?]n in
by

fingx = g (2.107)

defined similarly as fj,K in (2.65)) such that (Cr—;;,i=0,..., K) and (ﬂn,K,j =0,...,K)

are independent. More precisely, we write

Bik1n

K
:\/I+n+1ZCI_m(

=

j} ]nl() +’V.l‘%71‘% }Z:Ch'zz (II.[]nl( Ilﬁf%n)

J=1

=
= T::]w

:ZCI “\/1+n+1(

=0

j} Il,fynl() +'§Z:Ch'zz I'+71%_ (IILE7LK :[Ijan)

% Jj=t =0

J

=: Bi g 1n1+ Bik1n2

Although the results in Section are obtained in a different asymptotic framework,
all results still hold under the asymptotic framework of Section [2.4] Hence, for n — oo,
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Corollary [2.6] leads to
Bixii —5 (Qri—1, Yk),

where Q; k1 ={Cr_i;|i=0,....,] +n+ (K — I —n) = K}, (-,-) denotes the Euclidean
inner product in R¥ ™ and Yy = (V;,i =0, ..., K) is a (K + 1)-dimensional multivariate
normally distributed random variable with Y ~ A (0, YK f]). As (Cr_iili =0,...,K)
and (fjx,7 =0,..., K) are independent by construction, Q; x_; and Y g are also inde-
pendent. Now, let’s turn to

K K K
Bikinz=VI+n+1Y Cry; (H fimrx — 11 fj,n) .
i=0 =i

j=i

As K is finite, it remains to consider some arbitrary summand of By g 12, i.e.

K K
lei,i (H fj,n,K - H fj,n) .
j=i j=i

Further, as C;_;; = Op(1) by Lemma and because of f;nK - f]n =0Op ( 1 ) for

T+n+1
all j =0,..., K as shown in the proof of Theorem 2.5 and again as K is finite, we get

also H]K:i f]nK _ H]K:i fin=0Op (1—1—7117—1—1) Together, this proves B; i 1n2 = Op (\/ﬁ)
such that

By kin=Bikin1+Op ( ) - (Qrx-1,Yk) = Ga k,

1
VIi+n+1

which completes part a). Further, letting K — oo, we get (Qr k-1, Yi) N (Qr.00s Yoo,
where Qy o = {Cr_i;|li € No}, and Yo, = (Vi,7 € Np) denotes a centered Gaussian process

with covariance

max(i1,i2)—1

NSRRI I B AT

= ]}i
B .
o j=max(i1,iz) M I=max(iy,i2),l#j  m=min(i1,i)

Cou(Yi,, Y,)

for il,iQ S No.



76 2 AsympTOTIC THEORY FOR MACK’S MODEL (PAPER 1)

As Q; - and Y, are stochastically independent, the variance of (Qr ., Yoo) computes
to

Var((QI,ocn oo ZV(M’ CI 0,8 z + Z Cov CI 11,81 2170[ ZQ,T,Q}/:LQ)

1=0 41,i2=0
117102
=Y (Var(Crois) + E(Cr_i0)’) Var(Y) + > E(Cri,,)E(Criy 1,)Cov(Yy,, Vi)
i=0 i1,i2=0
117102

00 max(i1,i2)—1

Z T +/% Z Hfl + Z Hiq Mg Z 0-7] H fl2 H fm
i=0 J

] =1 -]l 1 11,12 =0 ] max(il,ig) l:max(il,ig) m:min(il,ig)

I#5 71 7512 I#j

-3 ujf? (i (42 +72) ka) +2Z (z s, Hzlu,fﬂlfl) I1 72

i1=1 i2=0 =15

[ee] 0'4
<YL+ 1) (o +72) + X il + D < oo
j=0 Hj j=1 Hj

We continue with showing part ¢) for B g 1. Using the unbaisedness and uncorrelatedness
of the fj,n’s and the stochastic independence of C7_;; and fjm, j > 1, we have E(By g 1) =
0 by construction. Note that, for the variance Var(Bs k. 1.,), in contrast to the calculations
for Ay .,.n in the proof of Theorem we cannot exploit the stochastic independence
over accident years here as numerator and denominator of f;, sum cumulative claims of
several rows of Cr o = {C;;li € Z,i < I,j € Ny}. However, for any fixed K € Ny and
n € Ny large enough such that K < I +n — 1, we get

VCLT(B27K7[’”> (2109)
=T +n+1)x
K I+n—1 N K N I+n—1 N K .
Z Cov (Cfil,il ( H fj1,n - H fj1,n) 7CI*i2,i2 ( H sz,n - H szm))
11,i2=0 Ji=i1 Ji=i1 Ja2=i2 Ja2=i2
(2.110)

<2(I+n+1)x

K iy I+n—1 K I+n—-1 K
Z Z Cov (CI—il,il ( H fgl, H fj1,n) >CI—i2,i2 ( H sz,n_ H fjg,n)) .

i2=0141=0 J1=11 J1=11 J2=12 J2=12
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To calculate the covariance on the last right-hand side, for i; < iy, first, we consider the

mixed moment

I+n-1 K I+n-1 K
E (Clil,’il ( H fjl,n_ H fj1,n) Cffiz,iz ( H fjg,n_ H sz,n))

J1=i1 J1=i1 Jo=t2 Ja=t2

i9—1 R I+n—1 =
=L leil,il H fjl,n OI*iz,iz H ij,n
J1=t1 J2=t2
is—1 K = I+n-1
—2F 0172'1,1'1 H fjl,n CI*iz,iQ H ij,n H fj37n
J1=t1 Ja=t2 Jja=K+1
=1 K .
+E | Croii H Jivn | Creigis H Jiam | | -
J1=i1 Ja=t2

Further, let By, (k) ={C;jli=—n,...,I, j=0,...,k, i+ j < I} denote all elements of
D;, up to its kth column. Let us consider the first term on the last right-hand side. By
recursively applying the law of iterated expectation, we get

i9—1 N I+n—1 -
E\Crii | II fim|Cronin | II fim
J1=i1 Ja=t2
ig—1 I4+n—2 . -
=B\ Criir | IT Fiom | Crovnio | TT 720 ) B (Frin1alBrn(I +n = 1))
Ji1=t1 Ja=t2
ig—1 I+n—2 = 0.2
o r I+n—1 2
=FE Cf—ilﬂd H fjhn C[—iQ,iz H fjg,n [_([+n_1)_10 + fH—n—l
J1=1%1 Jo=i2 Zk:_n k,J+n—1
I+n—K—2 ig—1 K . I4+n—1-(ja+1) .
= Z E Cf—ilﬂ'l H fjl,n Cl—iz,iz H sz,n H fjs,n
ja=0 j1=1%1 Jj2=12 Jj3=K+1
O'% . I+n—1
+n—1—74 2
YT - _, 1_[1 - Js
> Chrl4n—1—js Je=ltn—lgat

k=—n

i2—1 K - I+n—1

2

+F Cl—il,il H fjl,n Cf—izﬂé H fjg,n H fj3
J1=11 Jo=t2 ja=K+1

due to, for all c € {0,..., I +n — 1},

0,2

R T—— 2.112
Zi;c__nl Ck,c fc ( )

E (£2,1B1(c))

Altogether, using similar arguments to (partially) calculate also the other expectations
above and due to E(Cri, i, (TT;25 " fivm — I <iy fiun)) = (L2500 fi — Tz, f) as



78 2 AsympTOTIC THEORY FOR MACK’S MODEL (PAPER 1)

well as E(Of—i2,i2(H]I':_:ni;1 ij,n - Hg:m f]é,n)) = Hiy (Hfjjlgl sz - Hg:ig fj2)? we get for one
covariance summand on the right-hand side of (2.111)) (inflated with I +n + 1)

I+n—1 _ K I+n—1 _ K
(] +n 4+ 1) - Clov Cl—i1,i1 H fjl,n - H fjl,n aOI—iQ,iQ H sz,n - H fjg,n
J1=i1 J1=t1 Ja=i2 Jo=i2

=I+n+1)x

ig—1 K ~ I+n—1 I+n—1
E <C[_i17i1 ( H fjhn) Cl_i27i2 ( H f]27n)) { ( H fj23) - 2 ( H f]3) + 1}
Ji=t1 J2=12 J3=K+1 j3=K+1

= iy (—lﬁ fjl - H fjl) Mg (—lﬁ sz - H sz)] (2'113)

J1=1t1 J1=1t1 J2=t2 J2=12
I+n—K—2 is—1 K Y I+n—1—(ja+1) .
+ (I +n+ 1) Z E CI*il,il H fjl,n CI*izﬂé H fjg,n H fj3,’n
Ja=0 Ji=t1 Ja=i2 Jja=K+1
O'%+ L I+n—1
n—1-—74 2
X ST 11 i | - (2.114)
D k—n kI4+n—1—ja js=I+n—1—js+1

Next, we will consider the two terms above separately. Starting with (2.113)), which can
be expressed as

ia=1 K ia—1 K
E (Cl—ihh (H fjhn) Cf—i2,i2 (H f]i,n)) — My (H fj1) iy (H ffz)]
Ji=i1 J2=t2 J1=i1 Jo=t2

(2.115)
I+n—1 2
X ( H fjs - 1) )

j3=K+1

(I+n+1)

we use the same technique as above and make recursive use of (2.112)). Then, similar to
the calculations above, the first factor in (2.115) becomes

K—iy ig—1 K—(ja+1) . 0;{ ‘
([+n+ 1) Z FE CI*Z'1,Z'1 H fjhn Cffiz,ig H fjgm, [_(Kz_:j4)_1j4

=0 L o
J4 J1=11 J2=12 Ck,K—j4

K
2
X H Js | 2
Js=K—js+1

k=—n
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which can be bounded by

K—is in—1 —atl) (I+n+1)ok_;
Mio Z E (Cf—il,il (H f]l, ) Criin ( H sz, ) Z —(K—ja)—1 5

Jja=0 Ji=u1 J2=t2 =—n Ok,K—JA

K—io io—1
Zﬂio Z E (Cl—il,il (H f]la ) Crigis

Jja=0 J1=t1

K—(ja+1) ' 2
. (Ja 7 (I+n+1-— (I+n— (K = ja))ok_j,
I I,
Ja=ia Zk_*" K —da
) R —Jja
T Z E Ol—i1,i1 H fjlan Cl—i27i2 H fj%” 1 (K=ja)= 10
7a=0 J1=t1 Ja=t2 m Zki T
s . in—14j
_2 s ele T7 o [ 17 P (i2 + ja + 1)oi 4,
Moo Z I—i1,01 H fﬂlv” I=iayiz Iz, (82+52)= 10
ja=0 J1=t1 J2=12 Zk:—n ksiz+ia
K—is ir—1 o ltis Tiyt
9 ~ 12 Ja
+;uoo Z E OI—’L'1,Z'1 H fjl;n CI_i27i2 H ij’n 1 (i2+j)= 10 ’
Ja=0 J1=t1 Ja=t2 m Zk* kiiztia

where we reversed the summation order of j4 in the last step. The leading term of the last

right-hand side (with respect to n — 00) is the second one, Which we will consider next in

1 I—- (Z2+]4

more detail. Using Assumption e Jis+js can be bounded from

below by ezt

) K—io io—1 =N 1a—1+74 "
Hoo Z E Cl—i1,i1 H fj1,n CI—iz,iz H f]gn €Z22+J];1 (2116)

Jja=0 J1=t1 Ja=i2
K—io io—1 i2—1+74 0.2 0.2
2 n 2 J2 12474
<pse Y E\Crivi | II fiin| Croinis [T (f+-2)) 22 (2ur)
h Ry Ay el €l2T]
Jja=0 Ji=11 J2=12

Now, we compute the expectation on the last right-hand side above. We get

12—1 .
E (CI—i1,i1 (H fjl,n) CI—’£27’£2>
Ji1=t1
i9—1 .
=F (E (Cl—il,il ( H fjl,n> CI—ig,ig‘Bl,n<i2 - 1)))
Ji=u1

i9—2 . N
=E (Of_il,il ( 11 fjl,n) E (fio-1nCir.|Bralia — 1)))

Ji=t1
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and the last interior conditional expectation can be bounded as follows

1 I—i2 .
s oo ( > CrioCroinia|Braliz - 1))
r=—n —T2— r=—n
1 I*igfl
= WE Z CT,Z'QCI—iQ,iQ + C?*i2,i2|81,n(7;2 — 1)
r=—n 72— r=—n

1 I—izx—1 » '
=S oo ( Y. E(CriCrinin|Bralia—1)) + E (01242,1'2\51,&@2 - 1)))

r=—n r=-n

1 I—ig—1 ' )
= 21_120_1( ; E(Cry|Brn(iz = 1)) E(Cl—iy iy |Brn(iz — 1))

+LE (C?*iz,i2|811"(i2 o 1)) )

T—ig—1
1 2
2 2
—C’ Z fig—lc'r,ig—lfiQ—IOI—ig,ig—l + 0i2_101—i2,i2—1 + (fig—lOI—iz,ig—l)
rig—1

= ZI*'L’Q
r=—n r=——"
1 I—io
2 2
= STm oo Jo il D2 Crisea | Creigis—1 + 05 _1Cligig—1
Zr:—n T,iQ—l r=—n

0_2

2 i2—1
=\fia+t =" Croisis1
( el PO Cr,igl) e

2
<|fi,+ LA /A
= ( N A N A
2

< (fi—1 + 2 )CI—z‘z,iz—l

Eig—l

as I —iy+1>1duetoi € {1,...,K}. Continuing this way, we get rid of [[2Z}, fiim in
the expectation in (2.117]), which then can be bounded by

K—io i2—147j4 0.2 0.2
2 2 2 2 J2 i2+74

Jja=0 J2=1i1

K—iy [i2—1+ja o2 o2
2 (.2 2 2 4 Zg2 || Ziatia
S /’LOO(TOO + IuOO) Z H < J2 + €j2 > €i2+j4 ’

Jja=0 Ja=t1
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Together with (2.111]), the corresponding expression can be bounded by

12=0141=0 j4=0 J2=u1

9 K—io [ia—1+47ja 0_2 0_2
2 J2 i2+j4
242 Y (T s+ 22)) e
Jj2=0 12=011=0 j4=0

2 (.2 2 - 2, ol +3
2 4
S 2,&00(7—00"’#00) H < €]2> Z Z Z 67,22+]4
o o2 K K 52
<m e (11 (7 %)) Shen X 2
io=0

Jj2=0 Ja=ti2
K K 2
< const. o+ 1) 4
D (iat+1) > =
12=0 Ja=1i2

where we used that [[32,z; < oo if and only if 372 (7; — 1) < oo for x; > 1 for all j, and

we have
00 ) 0.2 00 0o 2
Z(fj3+£_1>zz +Z Zf]s_ )(f]3—|—1+Z—
Jj3=0 Jj3=0 J3= o€ Jj3=0 Ja= 0¢€
00 0.2
<sup(f; +1) Z(fjg —1)+ > <o
JeN Jja=0 73=0 €
Finally, we have
K K K o2
S (ia+1) Z Z Z i+ 1) < D0 (Ja+ 1), (2.118)
12=0 Ja=1t2 19=0 7a=0 €

which is bounded for K — oo by Assumption [2.16| Together with the second factor in
(2.115)), for which we have

Itn—1 2 2
H fis —1 n_m H fis — Kj 0, (2.119)
js=K+1 ja=K+1 >

the corresponding expression in (2.109)) vanishes. This completes the first part of c) for

Bs k.1,n- Now, using similar arguments to deal with the first term in (2.113)), we continue
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with the second term in (2.114]) leading to

(I+n+1)

I+n—K-2 io—1 I+n—1—(ja+1) . J% )
T +n—1—j4
X Z E Cf—iw'l H fj1 n CI—iQ,iQ H fjg,n I—(

: A4 A4 I+n—1-j4)—1
Ja=0 Ji1=t1 J3=t2

Ck,]+’n717j4
I+n—1
2
X 11 13
Js=I+n—1—7j4+1

I+n—K-2 ir—1 K+ja (K + jy +2)o?
2 n 72 J4 OK+ja+1
< foo Z L Cf—i1,i1 H fjlyn Crigi H fjg,n I—(K1jat1)—1
J4=0 J1=n J3=i2 o Kt
) 4

k=—n

k=—n

I+n—K—2 ig—1 K+ -
2
tre D E\Cria | II fiun | Croiaio | I fiom

J4=0 Jj1=t1 J3=ti2

2
OK+ja+1
L I—(K+j4+1)—1 ’
T+n—(K+j4+1) 2 Ck,K+j4+1

k=—n

where we reversed again the summation order of j; in the last step. The leading term of

the last right-hand side is the second one, which we will consider next in more detail. Using

Assumption [2.16|, similar to above, m Zi;(ﬁﬂﬁn ! Ch k+j,+1 can be bounded

from below by e *74+1 such that the leading term from above can be bounded by

I+n—K-2 io—1 K+j4 - O—%{ 1
2 7 +Jja+
oo > E\Cria | II fim | Croinin | 11 Fim e

Ja=0 Jj1=t1 Jj3=12
I+n—K—2 [K+j4 o2 g%( .
2 2 2 2 J3 +Ja+
<o (o0 + 150) Z H < [ 6]’3) cK+jatl”
74=0 J3=11

Together with (2.111]), the corresponding expression can be bounded by

K iy I+n—K-2 [K+ja o2 0%
pa () XSS (T (#+ 2)) Set

; : : - €J3 eK+ja+1
12=041=0  j4=0 J3=i1

2 (2 2 5 (2, & 205
SQ/’LOO(TOO + Moo) H ( 73 + EJjj> Z (.74 + 1) #

. , ja
§3=0 ja=K+1 €

[eS) 0.2 00 0.2
2 2 2 2 . 27 J4

. , Ja
§3=0 ja=K+1 €
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which is finite for each fixed K. Finally, letting K — oo, we get

73=0 ja=K+1

00 0.2 00 - 0.2
20 (T2 + 112c) (H ( ¥ Eif)) >, Gat1) =t —0.

Similarly, for showing part c) for Bs k1, we get E(Bs i 1,) = 0. Further, for any fixed
K € Ny and n € Ny large enough such that K < I +n — 1, we get

VGT(B;g,K,[,n) (2120)

I+n—1 I+n-1 I+n-1
=(I+n+1) > Cov (Cl—il,n ( II fjl,n) » Clig iy ( II fin )) (2.121)

i1,i0=K+1 Ji=t1 J2=12

I4+n—1 12 I4+n—1 N I+n—1
2T +n+1) Y > Co (CI 1( 11 fm) ,C[_Q@( 1T f]M)) (2.122)

ia=K+1i1=K+1 Ji=11 J2=12

To calculate the covariance on the last right-hand side, for 7; < 75, we consider the mixed

i2—1 N I4+n—1 .
E Offil,’il H fj1 ,n CI*iQ,iQ H fj27n )
J1=i Jo=ti2

which is just the first term of the mixed moment of the covariance of Bs ;.. By using

moment

similar calculations to get E/( Af?n|l3]7n(c)) (for By k1), we obtain

I4+n—1 N I+n—1
([+n+1)COU (Clil»il ( H fj1,n> 70172'2,1'2 ( H f]z, ))

J1=t1 J2=ti2

T+n—1 I+n—1
E (Clil,il ( H fjl, )Cfiz,i2 ( H f32, ))
J1=t1 J2=t2
I+n-1 I4+n-1
—F (Cl_il,il ( II fhm)) E (CI—Z'Q,Z'2 ( II fjg,n>)]
J1=i1 Jo=i2

I+n—K-2 ia—1 I+n—1—(ja+1) . a? )
N +n—1—j4
x> B\ Cri | I fir ] Croiae 11 fia I—(I+n—1—j5)—1
>

={U+n+1)

=U+n+1)

ja=0 J1=t1 J3=ti2

I+n—1
2
X H fjs :
js=I+n—1—js+1

Note that i1,i5 > K and K is fixed. This remaining covariance term has the same structure

Ok,[+n— 1—ja
k=—n

as the one in the covariance term for Bj g 1,,. Hence, this term is in the same way bounded.
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The corresponding expression can be bounded by

, Tk i1 Kigs N\ o2, 0
Hro Z E CI*il,il H fjl Cffimiz H fjg EK"'% (2123)

Ja=0 Ji=i1 Ja=i2
2 (2 P =l (- P Ok tintl
J3 J4
<oty X (I %) ) G (2.124)
Ja= J3=

where we reversed the summation over j;. Together with (2.122)), the corresponding
expression can be bounded by

I+n—1 i2 I+n—K—-2 -2

[e%e} 0_2 o '
2/ 2 2 2 it
25, (2 + 1) | 11 <fj3 + €j§> XX X S (2.125)
j3=0 io=K+1i1=K+1  j4=0
2 (2 2 Ol 2 0]23 et 2‘712'4
<2156 (Too + Hioo) H fis s Z (Jat+1) A (2.126)
J3=0 Jja=K+1
0o 2 oo 2
— 202 (72 4+ p2) | 11 f-2+% > ('+1)2@ (2.127)
n—00 Froo\Too T Hoo Pt J €J3 Py J4 eja’ .
3= 4=

which is finite for each fixed K. Finally, letting K — oo, we get

[e's) 0.2 [e's) ' 0.2
it et (I (54 %)) $ Gorf—o

; . J
73=0 ja=K+1 €
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2.10.4 Proof of Example [2.19]

By construction, the marginal pdf of Cj is

(1) = 1 (2)
gcj €r) = 2\/@ [.Uj_ 3T]~27Mj+ 37'j2] Z

and, given C; = x, F} has the conditional pdf

1
I pp—— -
910,01 = 5 T A7 )

Hence, (C}, Fj) has the joint pdf

gc;,F; (z,y) = 9Fj|c; (y|x)gcj (z)
1 1
= Y a2 /572) () =5 1 - J3om gy f307] )
2 37’]2 [;L] 3 j,MjJr 3 J] 2\/?‘_]2 [f] 3 j7f]+ 3 b
1
DR T e A A LR IR S T K
]

As interest is in the joint pdf of (C}, Cj41), we can use the density transformation theorem,

S T B H(Cj, Fy),
Cin Gk

where H(u,v) = (u,uwv)" and H (u,v) = (u,v/u)’ to obtain also the joint pdf of (C}, Cj41).

Precisely, we have
H—l
det <d<mn>>
A1) ) = ()
1

v 1
. S| 1 A
12y/720% [u [“f‘\/?”f’#ﬁ\/?”f](u) [fi=/307 /uti+/307 [ul <u> ‘u‘

and

94¢;,Cj11 (U, U) = gc;,F; (H_l(u’ U)) ’

due to H=Y(m,n) = (m,n/m)" and

dH Y (m,n) dm dm 1 0

dm dm
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As u > 0 by construction, we have |1/u| = 1/u. Further, due to

2
2
) ) 1/30']2- 30']2
fi—\3d3/u<—<sul|, |+ +
Vs n\en ) e
and
2
) ) 30'2 ? 30'2
Z < f. /3 2 PN > v J _ J
u_fj+ oj/u sz fj+( 2f; ) 2f; 7

we can re-write the second indicator in g¢, ¢;,, (u,v) as

1 5 2 5 2 (u)
» 1/3(7]2. 30']2. v 30‘? 30‘?
I\ ) T o\ AT ) T

Hence, by introducing the notation

a:=p; — /377, b=+ /377,
2 2 2 2
o 2 2 2 2
c(v) == 2y 57, - 5, d(v) == 2y 7, + i
fj 2f; 2f; |7 fi 2f; 2f; ]
we get
! | (2.128)

gc..c; (uav)zila,b(u)lcv,dv <u>
5:Ci41 12\/%[} [e(v),d(v)]

Now, as g¢;|c;.. (u|v) = gc;.c;00 (U, v) /90, (v), Wwe have to calculate go,,, (v) next. It is

obtained by solving the integral

00 1
—————110.) (4) Le() awy (w) du.
/_0012 TJ-QOJQ-u[ ] [c(v),d(v)]

Then, we have g¢,,,(v) = 0 if v is such that either b < ¢(v) or d(v) < a hold. Otherwise,

that is if b > ¢(v) and d(v) > a, we have

ng+1<v) = /min(b’d(v)) 71 du = 71 /min(bd(v)) u*1/2du
max(ac() 12\/20%u  12,/7702 Jmax(a.cw))
1 min(b,d(v)) 1 .
= P (Vmin(b.d(0)) — y/max(a, (0))).
12 7—]'20-]2' ( ’ ( )) 6 7_]'20_]2' \/ \/
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Together, for all v such that b > ¢(v) and d(v) > a, we get

ﬁ La) ()1 ie(w).a(wy ()
<\/m1n (b, d(v \/max (a,c(v )

Limax(a,c(v)), mln(b d(v)) (1)

2\/— (\/mm b, d(v \/max (a,c(v )

The latter formula allows to compute the conditional expectation E(C;|Cj41 = v) by
solving the integral

9C;1Cj4a (ulv) =

(@) 2+/0 U /min(b, d(v)) - \/max(rsz)z)

=3 ((/min(b, d(v))l—\/max(a, @) /m oy VA

T T ey (i A — e ) )
_ ; <mm(b d(v)) + /min(b, d(v)) max(a, c(v)) +max(a,c(v))) |

By going through all possible cases, it is easy to see that the last right-hand side can
always be bounded by d(v) from above and by ¢(v) from below, that is, we have

c(v) < E(C|Cj1 = v) < d(v).
This leads to

c(v)—v+(\/@) 2JU+(\/37]2) 30]2#( 30]2)

_?j 2f; i 2f; 2f; 2f;

:;jj +0(02) + 0 (\Jvo?) +0(0?)

v 30]2- ? v \@ ? 30? 30]2-
W=\ ) A5 2 ) e

and

2
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Altogether, this leads to

0 (fo7) < E(Gi[Csn =v) - 5 <O (/o)

J

and

Cj+1

J

<0 (\/ Cji0; ) Op(0;)-

Now, let us consider the conditional variance Var(C;|Cjy1 = v) = E(C7|Cj = v) —
(E(C)|Cj41 = v))*. For computing E(C7|Cj1 = v), we have to solve the integral

]E (C51Cpa) —

/mm(b ,d(v)) 1
max(a,c 2\/_ \/mln b,d(v \/max (a,c(v )

1 min(b,d(v))

- 2 <\/min(b d(v)) — \/max (a c(v))) /maX(a c(v))

(mm(b d(v))*/? — max(a,c(v))5/2>

3/2du

(\V]

\/mln b,d(v \/max a,c(v))
B mln(b d(v ))5/2 — max(a, c(v))*/?

\/mln b,d(v \/maX (a,c(v)))
— ; (min(b, d(v))* + min(b, d(v))** max(a, (v))'/* + min(b, d(v)) max(a, c(v))

+min(b, d(v))"/* max(a, c¢(v))*?* 4 max(a, c(v))Q) .
Then, altogether, the conditional variance computes to

VW(C‘lch =) = B(C}|Cj11 = v) — BE(Cj|Cj11 = v)?

= (\/max a,c(v)) — \/min(b, d(v)))2

X (7\/maq:(a, c(v))\/min(b, d(v)) + 4mazx(a, c(v)) + dmin(b, d(v)))) :

Using that the variance is bounded by 0 from below and, going through all possible cases,

from above by

0 < Var(Cy|Cpar = v) < 415 (‘/d@) - \/@f (7d(v) + 4d(v) + 4d(v)),
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where the upper bound is equal to

Altogether, this leads to

0'2»1)
Var(C;|Ciq = v) < ﬁ +0(0}) + O (y/vo2a?)
J

and

2v

o
VCLT(Cj|Cj+1) S # + Op (0'?) .
J

2.10.5 Proof of Theorem [2.20)

Following the technique of proof in Theorem [2.17] and using Theorem [2.24] and Corollary
[2.25] instead of Theorem and Corollary [2.6] respectively, leads to the claimed results.
Note that, making use of the law of total variance, asymptotic negligibility of the remainder
terms Bs k. 1,, and B3 1, also conditional on Q; « follows directly from the corresponding
unconditional result, which was already established in the proof of Theorem 2.17, O

2.10.6 Proof of Theorem [2.22

By adapting the technique of proof of Theorem [2.17] also for the proof of Theorem [2.13] it
is straightforward to treat the two terms (R, — }A%Ln)l and (Ry,, — }A%Ln)g also jointly.

Whereas the stochastic independence of (Ry,, — E]’n)l and (Ry,, — fim)g conditionally on
Q1.0 follows immediately from the recursive construction of the loss triangle in Mack’s
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model, for the unconditional case, the claimed uncorrelatedness follows from

Cov ((an — ﬁl,n)h vVI+n+ 1R, — Rf,n)2>

)

I+n I+n—1 I+n—1 I+n I4+n—1 I+n—1

=Cov ZC]—i,z’ I Fry— I £) VT+n+1XCra | II £i— I fim
=0 =i =i i=0 =i =i

I+n I+n—1 I+n—1 I+n—1 I+n—1
=VI+n+1 ) FE (Cf—z'l,z'l ( II Frosn— 11 fj1> Cl—i2,i2( I - II fin ))

11,i2=0 Ji=t1 J1=i1 J2=i2 J2=t2

=T+n+1
I+n I4+n—1 I4+n—1 I+n—1 I4+n—1
x Y E (Cl—z‘l,z‘lol—ia,m( I f— I Fin ) (( T Freog— 11 fh) ‘Df,oo))

11,42=0 Jo=1i2 Ja2=i2 Ji=u Ji=u
:07
because the conditional expectation on the last right-hand side is zero. O

2.11 Additional simulation results
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Figure 8: Boxplots of skewness and kurtosis as well as five arbitrarily selected density plots
for the simulated conditional distribution of (Ry, — }A%Ln)l given Qr ,, for n = 0 and
I =10 for the setup of a), where F; ; follows a (conditional) gamma (top), log-normal
(center) and truncated normal distribution (bottom). The red line indicates the
benchmark skewness and kurtosis of a normal distribution.
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Figure 9:
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Boxplots of skewness and kurtosis as well as five arbitrarily selected density plots for
the simulated conditional distribution of (R, — ﬁI,n)l given Qr , for n = 20 and
I =10 for the setup of a), where F; ; follows a (conditional) gamma (top), log-normal
(center) and truncated normal distribution (bottom). The red line indicates the
benchmark skewness and kurtosis of a normal distribution.
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Figure 10: Boxplots of skewness and kurtosis as well as five arbitrarily selected density plots for
the simulated conditional distribution of (Ry,, — ﬁ[,n)l given Qy,, for n = 30 and
I = 10 for the setup of a), where F; ; follows a (conditional) gamma (top), log-normal
(center) and truncated normal distribution (bottom). The red line indicates the
benchmark skewness and kurtosis of a normal distribution.
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Figure 11: Boxplots of skewness and kurtosis as well as five arbitrarily selected density plots for
the simulated conditional distribution of (Rr, — ]A%[,n)l given Qy,, for n = 40 and
I = 10 for the setup of a), where F; ; follows a (conditional) gamma (top), log-normal
(center) and truncated normal distribution (bottom). The red line indicates the
benchmark skewness and kurtosis of a normal distribution.
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Figure 12: Boxplots of skewness and kurtosis as well as five arbitrarily selected density plots
for the simulated conditional distribution of (Rr, — ﬁjm)l given Qr ,, for n = 0 and
I = 10 for the setup of b), where F; ; follows a (conditional) gamma (top), log-normal
(center) and truncated normal distribution (bottom). The red line indicates the
benchmark skewness and kurtosis of a normal distribution.
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Figure 13: Boxplots of skewness and kurtosis as well as five arbitrarily selected density plots for
the simulated conditional distribution of (Rr, — ]A%[,n)l given Qy,, for n = 20 and
I =10 for the setup of b), where F; ; follows a (conditional) gamma (top), log-normal
(center) and truncated normal distribution (bottom). The red line indicates the
benchmark skewness and kurtosis of a normal distribution.
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Figure 14: Boxplots of skewness and kurtosis as well as five arbitrarily selected density plots for
the simulated conditional distribution of (Ry,, — ﬁ[,n)l given Qy,, for n = 30 and
I = 10 for the setup of b), where F; ; follows a (conditional) gamma (top), log-normal
(center) and truncated normal distribution (bottom). The red line indicates the
benchmark skewness and kurtosis of a normal distribution.
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Figure 15: Boxplots of skewness and kurtosis as well as five arbitrarily selected density plots for
the simulated conditional distribution of (Rr, — ]A%[,n)l given Qy,, for n = 40 and
I =10 for the setup of b), where F; ; follows a (conditional) gamma (top), log-normal
(center) and truncated normal distribution (bottom). The red line indicates the
benchmark skewness and kurtosis of a normal distribution.






3 Chapter

Bootstrap consistency for the Mack bootstrap

This chapter will be submitted for publication in due course.

Abstract

Mack’s distribution-free chain ladder reserving model belongs to the most popular approaches in non-life
insurance mathematics. While proposed to determine the first two moments of the reserve, it does not
allow to identify the whole distribution of the reserve. For this purpose, Mack’s model is usually equipped
with a tailor-made bootstrap procedure, which combines a residual-based non-parametric resampling step
together with a parametric bootstrap. Although it is widely used in applications to estimate the reserve

risk, no theoretical bootstrap consistency results exist that justify this approach.

In this paper, to fill this gap in the literature, we adopt the theoretical framework proposed by Steinmetz
and Jentsch (2022)) to derive asymptotic theory in Mack’s model. By splitting the reserve risk into
two additive parts corresponding to process and estimation uncertainty, it enables - for the first time
- a rigorous investigation also of the validity of the Mack bootstrap. We prove that the (conditional)
distribution of the asymptotically dominating process uncertainty part is correctly mimicked by the Mack
bootstrap if the parametric family of distributions of the individual development factors is correctly
specified in Mack’s bootstrap proposal. Otherwise, this will be generally not the case. In contrast, the
corresponding (conditional) distribution of the estimation uncertainty part is generally not correctly
captured by the Mack bootstrap. To tackle this, we propose an alternative Mack-type bootstrap, which is

designed to capture also the distribution of the estimation uncertainty part.
We illustrate our findings by simulations and show that the newly proposed alternative Mack-type boot-

strap performs superior to the original Mack bootstrap in finite samples.

Keywords: Bootstrap consistency, loss reserving, Mack’s model, Mack bootstrap, predictive inference

MSC subject classification: Primary 62E20, 62F40; secondary 62F12, 62P05
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3.1 Introduction

In a non-life insurance business an insurer needs to build up a reserve to be able to meet
future obligations arising from incurred claims. The actual sizes of the claims are unknown
at the time the reserves have to be built, since the claims are incurred, but either not been
reported yet or they have been reported, but not settled yet. This process of forecasting of
outstanding claims is called reserving. An accurate estimation of the outstanding claims is

crucial for pricing future policies and for the assessment of the solvency of the insurer.

A popular and widely used technique in practice to forecast future claims is the Chain
Ladder Model (CLM), which provides an algorithm to predict future claims and to
construct the (best) estimate of the reserve using a set of development factors and variance
parameters. In this respect, the most popular model is the recursive model proposed by
Mack (1993)), which extends the CLM by allowing also the calculation of the standard
deviation of the reserve.

Also, frameworks based on general linear models (GLMs) considered in Renshaw and
Verrall (1998), which make e.g. use of over-dispersed Poisson and Log-normal distributions,
have been proposed for the calculation of the first two moments of the reserve. However,
such parametric assumptions are often restrictive and the knowledge of the first two
moments of the reserve is not satisfactory for actuaries, since it does not allow to draw
sufficient conclusions about the reserve risk and the solvency of the insurance company.
The reserve risk is defined as the risk that the best estimate of the reserve does not suffice
to pay for all outstanding claims. To get such insights, the knowledge about the whole
distribution or at least of high quantiles of the reserve is inevitable. For this purpose,
England and Verrall (2006]) proposed the Mack bootstrap which equips Mack’s model
with a tailor-made bootstrap procedure that makes use of the recursive structure of CLMs
and relies on additional parametric assumptions. Alternative bootstrap procedures for
GLM-based setups have been addressed also in England (2002) and England and Verrall
(1999, [2006) and Pinheiro et al. (2003)). Bjorkwall et al. (2009) review these bootstrap
techniques and suggest alternative non-parametric and parametric bootstrap procedures
without providing any consistency results. Similarly, Bjorkwall et al. (2010]) suggest also
a bootstrap technique for the separation method, which takes calendar year effects into
account. In recent years, bootstrap-based approaches have been favored by many actuaries,
because such methods usually produce distributions that appear to be plausible in practice.
However, as demonstrated by Gibson et al. (2007) and Bruce et al. (2008), Mack’s model
and GLM-type models in combination with the bootstrap do not produce satisfactory
results in certain situations. However, the existing literature lacks a theoretical framework
and rigorous asymptotic results that would allow to identify such scenarios a priori. In
this regard, more refined approaches have been proposed to improve the finite sample
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performance. For example, Verdonck and Debruyne (2011)) investigate the influence of
outliers for the parameter estimation in the GLM framework and calculate its leverage on
the CLM. Alternatively, Hartl (2010) propose to use deviance residuals instead of Pearson
residuals for the GLM framework. Tee et al. (2017) provide an extensive case study for
bootstrapping the GLM using a (over-dispersed) Poisson model, the Gamma model and
the Log-normal model in combination with different residual types. Peremans et al. (2017)
propose a more robust bootstrap procedure in a GLM setting based on M-estimators using
influence functions and suggest to use weighted bootstrap resampling. Peters et al. (2010)
compare the Mack bootstrap with a Bayesian bootstrap and show that their Bayesian
approach gives the same results.

Nevertheless, a deeper and mathematically rigorous understanding of the original Mack
bootstrap method and its underlying stochastic model is desirable to be able to justify the
application of the Mack bootstrap. Recently, to enable a rigorous asymptotic treatment of
Mack’s model, Steinmetz and Jentsch (2022) proposed a suitable theoretical (stochastic and
asymptotic) framework, which allows the derivation of conditional as well as unconditional
asymptotic distributions of the reserve in Mack’s model. Precisely, they split the reserve
(centered around its best estimate) into two random additive parts, that carry the process
uncertainty and the estimation uncertainty, respectively. This allows to derive limiting
distributions for both parts of the reserve, when conditioning on the latest observed
cumulative claims, but also unconditionally. In this regard, when addressing the question of
bootstrap consistency for risk reserving, which is generally a prediction task, the conditional
limiting distributions are crucial and serve as a benchmark for the corresponding Mack
bootstrap distributions. Whereas the conditional limiting distribution of the second part,
which corresponds to the estimation uncertainty, will be Gaussian under mild regularity
conditions and when properly inflated, the conditional limiting distribution of the first
part corresponding to the process uncertainty, will be generally non-Gaussian. Considering
both parts jointly, the process uncertainty part dominates asymptotically, which leads to

a non-Gaussian limiting distribution of the reserve in total.

In this paper, we adopt the stochastic and asymptotic framework introduced in Steinmetz
and Jentsch (2022)) to rigorously investigate the long-standing question of Mack bootstrap
consistency. Our contributions are twofold. First, to fill this gap in the literature, we derive
bootstrap asymptotic theory for both parts of the (centered) Mack bootstrap reserve, that
correspond to process uncertainty and estimation uncertainty, respectively. We prove that
the (conditional) distribution of the asymptotically dominating process uncertainty part
is correctly mimicked by the Mack bootstrap if the parametric family of distributions of
the individual development factors is correctly specified in Mack’s bootstrap proposal.
Otherwise, this will be generally not the case. In contrast, the corresponding (conditional)
distribution of the estimation uncertainty part is generally not correctly captured by
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the Mack bootstrap. Second, motivated from our asymptotic findings, we propose an
alternative Mack-type bootstrap, which is designed to capture also the distribution of the

estimation uncertainty part.

The paper is organized as follows. Section introduces the required notation and
assumptions for the CLM, discusses parameter estimation in Mack’s model, and provides
the asymptotic and stochastic framework as introduced in Steinmetz and Jentsch (2022]).
In Section we introduce the Mack bootstrap approach as originally proposed by
England and Verrall (2006) and discuss its construction. In Section [3.4] we summarize
the (conditional) asymptotic results from Steinmetz and Jentsch (2022) for the process
uncertainty and estimation uncertainty terms in Section which will serve as bench-
mark results for the Mack bootstrap results. Then, in Section we derive bootstrap
asymptotic theory for both parts of the (centered) Mack bootstrap reserve corresponding to
process uncertainty and estimation uncertainty, respectively. For this purpose, asymptotic
bootstrap theory for (smooth functions of) bootstrap development factor estimators has to
be established, which might be of independent interest and can be found in the appendix.
In Section based on the findings from the previous section, we propose an alternative
Mack-type bootstrap and derive its asymptotic properties in Section [3.6] We illustrate
our findings in simulations in Section and show that the newly proposed alternative
Mack-type bootstrap performs superior to the original Mack bootstrap in finite samples.
Section concludes. All proofs, auxiliary results and additional simulations are deferred
to the appendix.

3.2 The Chain Ladder Model

Reserves are the major part of the balance sheet for non-life insurance companies such
that their accurate prediction is crucial. For this purpose, insurers summarize all observed
claims of a business line in a loss triangle (upper-left triangle in Table . Its entries, the
cumulative amount of claims C; ;, are sorted by their years of accident i (vertical axis) and
their years of occurrence j (horizontal axis), where 7,7 = 0,...,I with ¢ 4+ j < I. Hence,
the (observed) loss triangle contains all cumulative claims C; ; that have already been

observed up to calendar year I. It constitutes the available data basis and is denoted by
D ={Ci;li,j=0,....1, 0<i+j<I}. (3.1)

The total aggregated amount of claims of the same calendar year k& with £k =0,...,[ are
lying on the same diagonal (from lower-left to upper-right corner) of the loss triangle. We
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Development Year j
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Table 4: Observed upper loss triangle Dy (upper-left triangle; white and orange) with accident
years (vertical axis), development years (horizontal axis), diagonal Q; (orange), and
unobserved lower loss triangle D¢ (lower-right triangle; green).

denote these diagonals by

In this setup, I is the current calendar year corresponding to the most recent accident
year and development period such that the diagonal Q; (orange diagonal in Table |4)

summarizes the latest cumulative claim amounts collected in year I.

For the theoretical analysis of the prediction of the outstanding (unobserved) claims, it is

useful to augment the (observed) upper loss triangle D; by an unobserved lower triangle
D;:{CZ7J|Z,j:O,,], Z—I—] >I}

that contains all future claims that have not been observed (yet) up to time I (green triangle
in Table . The resulting cumulative claim matrix is denoted by C; = (C; ;)i j=0..1 =
Dy U Dg. For each accident year ¢, the main interest lies in the reserves at terminal time
I, denoted by R, ;, which is computed by taking the difference of the ultimate claim C; ;
(last column), which is not observed (for ¢ > 0) at time I, minus the latest observed claim
C;.r—i (on the diagonal) at time /. Precisely, we define the reserve for accident year ¢ by
Rir=Cir—Ci—ifort=0,...,I and the aggregated total amount of the reserve R; by

I
R =) Rij, (3.3)
i=0

noting that Ry = Co 1 — Co; = 0 by construction. Hence, for each accident year 7 and
being in calendar year I, to get an estimate of R; ;, we have to predict the unobserved
ultimate claim C;; based on the observed upper triangle D;. Starting from the last
observed claim C;;_;, this is done by predicting sequentially all future, yet (at time 1)
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Table 5: Two asymptotic frameworks of growing loss triangles based on adding diagonals (upper
panel) and by adding rows (lower panel). Both approaches lead to loss triangles that
are equal in distributions (based on Steinmetz and Jentsch (2022])).

unobserved claims {C; j|j =1 —i+1,...,I}. That is, by doing this for all accident years
1 = 0,...,1, the whole unobserved lower loss triangle Dj has to be predicted, and by
summing-up all predictions for R;;, we get a prediction also for R;.

However, to make the CLM setup above accessible for the derivation of meaningful
limiting theory for predictive inference, Steinmetz and Jentsch (2022) introduced a suitable
stochastic and asymptotic framework for Mack’s model, which is adopted here as well and

is described in the following.

3.2.1 Asymptotic framework for reserve prediction

With the loss triangle D; at hand, a conditional asymptotic analysis given the diagonal
Qr, which contains the most up-to-date information in the loss triangle, is of much
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interest for insurers. However, for this purpose, we will not rely on a seemingly "natural®
asymptotic framework for I — oo, where increasing I means adding new diagonals
Qrin ={Cr_i;li=0,....,] +h}, h > 1 to the loss triangle D; (see Table , upper panel).
Instead, as common in predictive inference (see e.g. Paparoditis and Shang (2021))), we
employ a different asymptotic framework throughout this paper. That is, we keep the
latest cumulative claims in Dy, that is, Q, fixed and let D; grow by adding new rows of
cumulative claims {C_,;i = 0,...,I+h}, h > 1 (Table[5] lower panel). Nevertheless, both
versions of differently growing loss triangles indicated in Table [5| are equal in distribution.

Hence, in what follows, all asymptotic results are derived under the framework that we

observe a sequence of (upper) loss triangles
Drn={Cijli=-n,....,1, j=0,....0+n, —-n<i+j<I}, neN (3.4)
where Ny = {0,1,2,...}, with (main) diagonals
Qrn=A{Cr_i;li=0,....] +n}, neN,. (3.5)

Note that D;g = Dy, Q1o = Qr and Dy, (and Qy,,) is obtained by sequentially adding n
rows of lengths [ +2,1+3,..., I +n+ 1, respectively, on top to D; (see Table , lower
panel). As before, for all n € Ny, we augment the (observed) upper loss triangle Dy ,, by
an unobserved lower triangle Df, = {Cj;li = —n,.... I, j=0,...., 1 +n, i+j > I}
that contains all future claims that have not been observed (yet) up to time I. Further,
according to , the aggregated total amount of the reserve is denoted by

I
Rpn = Z Ri14n, n € Ny, (3.6)

i=—n
where R; r4p = Ciryn — Cir—i,n € Ngand R_,, 4, = C_ 14n — C_yp.14n = 0 by construc-

tion.

While we keep I and n fixed in the expositions of the remainder of this section and of
Section [3.3] we let n — oo to derive the limiting distribution of the reserve in Section
. According to (3.4) and , the limiting upper loss triangle D; . and the limiting
diagonal Q; ., are defined by

Dl,oo = {Cl,]‘l - Z,Z S I, ] € N[), Z+] S [} and Ql,oo - {lei,i‘i € No}, (37)

respectively.
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3.2.2 Mack’s distribution-free chain ladder reserving

The distribution-free chain ladder model proposed by Mack (1993)), often denoted simply
as Mack’s model, is widely used in practice to determine both the mean and the variance of
the reserve. By adopting the notion of the asymptotic framework described in Section [3.2.1],
the conditions of Mack’s model originally proposed in Mack (1993) can be summarized as

follows.

Assumption 3.1 (Mack’s Model) For anyn € Ny, letCy,, = (C;j,i=—n,..., I, j=
0,...,1 4+ n) denote random variables on some probability space (£2, A, P) and suppose the
following holds:

(i) There exist so-called development factors fo, ..., frin_1 Such that
E(CijnlCis) = fiCij (3.8)
fori=—n,....; T andj=0,...,] +n—1.
(ii) There exist variance parameters o3, ...,04,,_, such that
Var(C;j41|Ciy) = 05Ci; (3.9)
fori=—n,...;l and j=0,...,] +n—1.

(iii) The cumulative payments are stochastically independent over the accident years

t=—n,...,1I, that is, the cumulative claim matriz Cr,, consists of independent rows

Cir. = (Ci707"'7ci,l+n); Z - _n,...,[.

For any n € Ny, based on the available data Dy, all development factors f; and variance

parameters 0]2 for j =0,...,I +n — 1 are unknown and have to be estimated from Dy ,,.
As proposed by the CLM, the development factors fo, ..., frin—1 can be (consistently)
estimated by ﬁ)m, e ,ﬁ+n_17n, where
I—j—1
R _E Cijs
2 Gy

According to Mack (1993), these estimators are unbiased, i.e. E(f;,) = f;, and pairwise
uncorrelated, i.e. C’ov(ﬂn,ﬁ,n) = 0 for all j # k. By plugging-in the fjﬁn’s, the best
estimate of the ultimate claim 6, r+n (point predictor) of the ultimate claim C; i, is
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calculated by

R I+n—1 N
Ci,1+n = Oi,f—i H fjm, 1=-n,..., 1.
j=I—i

Consequently, given C; ;_;, the best estimate }A%Z 1+n Of the reserve R; 1., is given by
N N I+n—1 .
Ri71+n: i,1+n_Ci,Ifi: i, —i H fj,n_l 3 1= —n,...,[, (311)
j=I—i

and the best estimate EM of the total reserve Ry, defined in (3.6)) computes to

1
RI,n = Z Ri,]—l—n (312)

=N

noting that R_m 1+n = 0 due to H]Iiﬁé fj,n := 1. Furthermore, Mack (1993) proposed to

estimate the variance parameters og,...,07,, | by
1 I*]*l C . =R 2
~2 4,7+1 .
I — < e —F) L =0, T+n-2 3.13
J,n I +n— j— 1 Z:Z_n )] ( Cz,j va J ( )

. . . . /\2 _ 2 . /\2 _
which are unbiased estimators, i.e. £(G3,) = o7, and by setting 67,,, ;,, = 0.

Of particular interest is the difference of the stochastic (unobserved) reserve Ry, and its
best estimate RM (based on the observed data Dy, ), which is denoted as the predictive
root of the reserve in the following. That is, by combining and , it computes
to , ,

Rry — é[,n = > (Ri,l+n - éi,[-ﬁ-n) = > (Ci,1+n - éi,]-i-n) : (3.14)
By adopting the notion of the asymptotic framework from Section [3.2.1], we define the
mean-squared error of prediction (MSEP) of RLH given Dy, by MSEP(]%IMDL,L) =
E((R;, — R;n)?|Dr.n) going back to Mack (1993), who derived the formula

N I . I4+n—1 5.2 1 . I+n—1 6.2 1
J,n J,n
i=—n j=I—i fj,n Cz‘,j j=I—i Jjn Zk:—n Ck,j
I R N I+n—1 6.2 1
n
+2 Z Cit+nCl14n Z A]2 51 , (3.16)
il=—n j=I—i Jjn Dk="n Ck,j
i<l
where CA’” = i,f_i]?[_m e fj_l,n for j > I — i are the estimated values of the future
claims C;; and CA’Z-,I_i = Cjr—;. In the above, the summands of the first sum on the

right-hand side in (3.15)) consist of two terms corresponding to the process variance and
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estimation variance (of parameter estimates) of R; j1,, respectively. The second expression
in (3.16) reflects the linear dependence between Ei’[_;,_n and ﬁzl’[+n7 i # | and contains
their covariances. The term contributes also to the estimation variance. Alternatively, the
MSEP of ﬁm given Dy, can be rewritten as

MSEP (Ryu|Di)

I I4n—1 I4n—1 I4n—1 5.2 I4n—1
~ 2
=Y |Cimi Y, 75, H Frn I1 fln+Ci,I P e yEay 11 fln

i=—n j=I—i k=I—i I=j+1 j=I1—i Zk—fn Cle I—i
1]

I I4+n—1 6.2 I—i—1 I+4+n— 1

+2 Z CM*Z'CIJ l Z —I—j—1 ~ 1 H fmn H p,n
i,l=—n j=I1—1i Zk_—n k.j m=I—1 p=I—1
i<l p#j

While Mack’s formula reflects the negative correlation of ffn and ]?,?n for j # k, Buchwalder
et al. (2006]) derived another formula for the MSEP of the reserve, where they modeled
C;.; using an AR(1) time series, which leads to independence of f;, and fy, for j # k.
Hence, the formulas for the MSEP of Buchwalder et al. (2006)) differs from the formulas
above, but in application the differences are small.

Mack’s model setup as originally proposed in Mack (1993)) and presented above allows
to estimate the MSEP of Rl,n given Dy, but this will be generally not sufficient to
determine the whole distribution or high quantiles of the reserve, which are of particular
interest to approximate the reserve risk as e.g. the value-at-risk. While a common solution
to such problems is the derivation of asymptotic theory to approximate the unknown
(finite sample) distributions, Mack’s conditions summarized in Assumption are not
sufficient to establish limiting distributions. For this purpose, as summarized in the next
section, Steinmetz and Jentsch (2022) proposed a suitable stochastic model which slightly
strengthens Mack’s model assumptions and enables the derivation of (conditional and

unconditional) limiting distributions for the predictive root of the reserve R;, — ﬁl,n

defined in ([3.14).

3.2.3 A fully-described stochastic framework of Mack’s Model

Following Steinmetz and Jentsch (2022, Section 2.2), to establish a stochastic framework
sufficient to be able to derive asymptotic theory for parameter estimators fj » and o O'J s
which finally also enables the derivation of the limiting distributions of the predictive root
of the reserve Ry, — Pbl,m we introduce Assumptions , , and on the stochastic

mechanism that generates the cumulative claim matrix C;,, and Assumption on
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the sequences of development factors and of variance parameters. They resemble the
Assumptions 2.2, 2.3 and 3.3 in Steinmetz and Jentsch (2022), when adopted to the
asymptotic framework of Section [3.2.1] as well as Assumption 4.1 in Steinmetz and
Jentsch (2022), respectively. This framework also allows to rigorously investigate bootstrap
consistency properties of the Mack bootstrap in Section [3.4]

The first assumption addresses the initial claims, i.e. the first column Ce gy = (C_, 0, ..., Crp)’
of Cr,, (and of Dy ,,).

Assumption 3.2 (Initial claims) Let the initial claims (Cr_,0,n € Ny) be independent
and identically distributed (i.i.d.) random variables with support [1,00), i.e. C;o > 1 for
all i. Further, let po := E(Ciy) € [1,00) and 73 := Var(Ciy) € (0,00).

Note that the independence between the initial claims is a common assumption which
is also a direct consequence of Assumption (iii). In addition, Assumption also
imposes an identical distribution for the initial claims. In practice, the condition on the
support [1,00) of C;p is not restrictive and can be relaxed to the condition that C; is

bounded away from zero.

In view of the multiplicative structure of E(C; ;4+1|C; ;) in (3.8]), suppose that the (random)

cumulative claims C; 11,7 = —n,...,I, j =0,...,1 +n — 1, are recursively defined by
J
Cij1 = CijFij = Cio I] Fir, (3.17)
k=0
where the individual development factors F; j, which satisfy F; ; = Cl#jl by construction,

are assumed to fulfill the following condition.

Assumption 3.3 (Conditional distribution of the individual development factors)

Let the individual development factors (Fi_; j,i € Ny, j € Ny) be random variables with
support (e,00) for some € > 0 such that F;; and Fy,; are independent given (C;;,Cy,) for
all (i,7) # (k1) with conditional mean and conditional variance

E(FlCig) = f;  and  Var(FylCiy) = 7 (3.18)
,]

Note that Mack’s original model setup in Assumption [2.1]is implied by Assumptions [3.2
and together. Also note that the stochastic mechanism determined by and
Assumption are assumed for the whole cumulative claim matrix C;,. However, recall
that only those C;; in C;,, are observed up to year I that are contained in the upper loss
triangle Dy ,,. Hence, by using the multiplicative relationship in the first identity of ,
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we have also perfect knowledge of the individual development factors F; ;, ¢ = —n,..., I —1,
j=0,...,0—i—1.

According to Lemma 2.4 in Steinmetz and Jentsch (2022)), the stochastic framework
determined by Assumptions (3.2 and [3.3| allows to derive formulas for the (unconditional)
means and variances of C; ;, ¢ = —n,...,I, 7 =0,...,I +n leading to

j—1
Cu) = o I o= 1t (3.19)

Var(Cy;) =73 ka‘*‘#ozaz H fQHfm—~ Tis (3.20)

= n=I[+1 m=0
where po and 7¢ are defined in Assumption . Together with Assumption below,
according to Lemma 4.2 in Steinmetz and Jentsch (2022), both sequences (y;,j € Ny)
and (72 T, ) € Np) are non-negative, monotonically non-decreasing, and converging with
i — oo and 77 — 72 as j — oo, where o = po[I5% f; and 73 = 7512 fi +

o 520 (Mo i) o7 (T3 12)-

Assumption 3.4 (Development Factors and Variance Parameters) Lettingn — oo
in the setup of Assumptions and[3.9 leads to

(1) a sequence of development factors (f;,j € No) with f; > 1 for all j € Ny and f; — 1
as j — oo such that ]O_O[ [; < 0o, which is equivalent to § (fj—1) < 0.
=0 7=0
(1) a sequence of variance parameters ( 03,7 € No) with o5 >0 and 07 >0 for all j € N
with 07 — 0 as j — 0o such that Z(j—l—l) 07 < o0.
7=0

The conditions imposed on the sequences of development factors (f;,j € Ny) and variance
parameters (a?, j € Npy) in Assumption are rather mild. In practice, each claim has a
finite, but possibly unknown horizon until it is finally settled. The time horizons of claim
developments vary by the insurance lines, which are usually categorized in short-term and
long-term. Altogether, as done in Steinmetz and Jentsch (2022] Section 3.1), this setup
allows to derive central limit theorems (CLTs) for (smooth functions of) the parameter
estimators f]n for n — oo.

For the derivation of a similar CLT result for & 0 ,, for fixed j, according to Steinmetz and
Jentsch (2022, Section 3.2), the following addltlonal assumption is imposed. However,
although the distributional properties of 32 do not show asymptotically in the distribution
of the reserve, /I + n-consistency of & 67, as obtained in Steinmetz and Jentsch (2022,
Theorem 3.5) is required for establishing the bootstrap asymptotic theory in Section [3.4]
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Assumption 3.5 (Higher-order conditional moments of individual development
factors) Foralli € Z, 1 <1, j € Ny, suppose that, conditional on C;;, the third and
fourth (central) moments of the individual development factors F, ;, that is, E((F;; —
1:)3Ci) and E((Fij — f;)*|Ci; ) exist for j =0,...,1 +n—1 such that both

k) = E(CLE((Fy = £)*Ciy)) and " = E(CLE((Fiy = £)'1Cig))  (3:21)

J

exist and are finite, respectively.

Using the recursive stochastic model for the claims in (3.17), conditional on Q;,, the

reserve Iy, can be written as

i=—n j=I—i

I I+n—1
Rin= )Y C“_i( II F.; —1). (3.22)

Hence, by plugging-in (3.11) and (3.22)), the predictive root of the reserve from ((3.14))
becomes

N I I4+n—1 I4+n—1 N I+n I4+n—1 I4+n—1 N
Rl,n - RI,n = Z Ci,[—i ( H Fi,j - H fj,n) = Z Cl—i,i ( H FI—i,i - H fj,n) )
i=—n j=1—1 j=I—i =0 Jj=t Jj=i
(3.23)

J

where we flipped the index ¢ to I — ¢ in the last step.

3.3 Mack’s Bootstrap Scheme

The Mack bootstrap proposal, introduced by England and Verrall (2006), equips Mack’s
model with a resampling procedure to estimate the whole distribution of the (predicted)
reserve. The resulting Mack bootstrap is very popular and widely used in practice as it
describes a rather simple to implement algorithm to estimate the reserve risk such as

e.g. the value-at-risk, by estimating high quantiles of the distribution of the reserve.

As proposed by England and Verrall (2006)), to mimic the distribution of the predictive
root of the reserve Ry, — ]3%”, the Mack bootstrap constructs a certain bootstrap version
R, — Rl,n of it. On the one hand, this bootstrap predictive root relies on the best estimate
of the reserve and centers Rj, around Ri.,. This is motivated by the definition of the
reserve risk, which captures the risk that the best estimate of the reserve is not sufficient
to pay for all outstanding claims. On the other hand, it constructs a (double) bootstrap
version of the reserve Rj ,, that is R7 ,, by combining two complementing (non-parametric
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and parametric) bootstrap approaches for resampling the individual development factors

in the upper triangle and in the lower triangle:
(i) First, a non-parametric residual-based bootstrap (see Step 4 below) is applied
to construct bootstrap individual development factors F;, j = 0,...,1 +n — 1,

1= —n,...,I —j—1, that is, for the upper triangle, in order to get bootstrap
development factor estimators f]*n, 7J=0,..., 1 +n—1.

(ii) Second, the bootstrap development factor estimators f]*n from (i) together with
a parametric bootstrap (see Step 5 below) are used to construct also bootstrap
individual development factors F';, i = —n,..., I, j=0,...,/+n—1landi+j > I,

that is for the lower triangle. For this purpose, a parametric family of (conditional)

bootstrap distributions (such as e.g. a gamma or a log-normal distribution) has to be
chosen. In contrast to the non-parametric approach in (i), the parametric approach

is favored here to assure that F"; > 0 (a.s.).

Finally, as we are dealing with a prediction problem when estimating the reserve risk, the
limiting properties of the predictive root of the reserve conditional on the latest observed
cumulative claims are relevant and have to be mimicked by a suitable resampling procedure.
For this purpose, the Mack bootstrap is employed to estimate the conditional distribution
of Ry, — El,n given Q;, by the conditional bootstrap distribution of R, — EM given
Qrn = Qin and Dy .

3.3.1 Mack’s Bootstrap Algorithm

With the upper triangle D;,, at hand, Mack’s bootstrap algorithm is defined as follows:

Step 1. Estimate the development factors f; and the variance parameters 0j2- from Dy, by

computing fj,n and o7, for j = 0,...,1 +n — 1 as defined in (3.10) and (3.13),

respectively.

Step 2. For all j =0,...,I +n — 1 with 6]2-,,1 > (0, compute 'residuals’

VCii(Fij— fin) (3.24)

Tij = =
O-j7n
for i = —n,...,I —j — 1. Re-center and re-scale these 7; ;’s to get

_ . _
Fig = (Fag =),
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wherd]
2 I+n—21-k—1
T U tnt DI +n)-2 kz::O z:z_:n Ty (3.25)
9 2 Tn-21—k-1 iy
T (I+n+D)({I+n) -2 ,;0 l;ﬂ (P =7)" (3.26)

Step 3. Draw randomly with replacement from the re-centered and re-scaled residuals 7; ;,
J=0,....0+n—2andi= —n,...,I —j—1 to get 'bootstrap errors’ r};, j =
0,....7+n—1landi=—-n,..., [ —j—1.

Step 4. Define the bootstrap individual development factors

* n o B
F;,j = fj,n + d 7"1'7]' (327)
Ci

forj=0,....I14n—1landit=-n,..., I —j5j—1.
Let 77, ={F5li=0,....,1+n—1,i=-n,...,] —j—1}, and compute the Mack
bootstrap development factor estimators

I—j—1 11
~ 2 Ciglyy G 2 G
k =" =N
fj,n = T—j—1 = fj,n + T—j—1 (328)
> Ciy > Cij
=N =N

fory=0,....1+n—1.

Step 5. Choose a parametric family for the (conditional) bootstrap distributions of F}; given
C7;, Diyn and Fj,, such that F7; > 0 a.s. with

l?j’
_ o
,n
EYF51C;5, Fi ) = T Var (F5IC L) = 28
17.]

fori=-n,....I, j=1—14,....,] +n—1, where E*(:) := E*(:|Dr,), Var*(-) :=
Var*(-|Dr.n), etc. denote the Mack bootstrap mean, Mack bootstrap variance, etc.,
respectively, that is, conditional on the data Dy,,. Then, given Qin = Q;n, generate
the bootstrap ultimate claims C7;,, and the reserves R}, , = Cf;,, — Cf; , for

!Note that E?+n_17n = 0 by construction such that 7_, 14n—1 is excluded in such that (at most) (I +n +
DI +n)/2—1=(I+n+1){ +n)—2)/2 residuals can be computed. If o3, = 0 holds also for other j,
the corresponding residuals are excluded in as well and the formulas for 7 and s in and ,
respectively, have to be adjusted accordingly. In the following, for notational convenience, we assume that only
074n_1n=0and o5, >0holds for all j =0,...,] +n —2 and all n € Ny.
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1 = —n,..., I using the recursion
Z]+1 = C:]F;*j (329)
forj=1—id,....,1+n—1.
I+n

Step 6. Compute the bootstrap total reserve R, = > Rj_; ;. and the bootstrap predictive
) ’L:O ’

root of the reserve
N I+n I+n—1 I+n—1 R
;n - Rl,n = Z C}k—i,i H FI*—i,i - H fj,n . (3-30)
i=0 j=i j=i

Step 7. Repeat Steps 3 - 6 above B times, where B is large, to get bootstrap predictive roots
(R}, — ﬁ’l,n)(b), b=1,...,B, and denote by ¢*(«) the a-quantile of their empirical
distribution.

Step 8. Construct the (1 — «) equal-tailed prediction interval for Ry, as
[Rrn+q"(a/2), Rin+¢"(1 - /2)] .
Remark 3.6 (On Mack’s bootstrap proposal)

(i) While the Mack bootstrap predictive root of the reserve R;n—ﬁq,n uses the original best
estimate J;’I,n for centering (as in Ry, — El,n}: it relies on a type of double bootstrap
version of the total reserve R}, , which employs f]*n instead of just ‘}?j’n; but uses 6]2771
However, although E*(F} Fin) = fj, holds, we still have E*(F|C;) = fin-

| 1,59

’\2
In contrast, for the variances, we have Var*(F;|C};, Ff,) = c* , but
52 ~2
o; oF
—_ ]7”
Var*(F5|C; ) C’* " 1o
k=—n “kj

(ii) Due to the fized-design bootstrap in Step 4, which does not generate bootstrap cumu-
lative claims C; (and consequently no bootstrap upper loss triangle D7, ), but only
F;’s, the bootstmp development factor estimators f and f,’:n defined in (3.28) are
mdependent for 3 # k conditional on Dy,,. This is on contrast to the development
factor estimators fjn and ﬁc,n, which are asymptotically independent for j # k, but
only uncorrelated in finite samples such that E(f]znf,fn) < 0 for j # k. Whether the
development factors are independent is also reflected in the formula for the MSEP of
the reserve. Mack’s formula takes into account the uncorrelatedness of f;, and fyn,
whereas in the formula of the MSEP by Buchwalder et al. (2000) the estimates of the
development factors are independent.
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(7ii) The non-parametric bootstrap used to construct the ]?j*n ’s in Step 4 uses residuals, but
according to Assumption and[3.3, the claims C;; are defined recursively such that
there are no errors in the Mack model setup that are approximated by these residuals.
In fact, each (possibly parametric) bootstrap proposal that successfully mimics the
first and second conditional moments of C; ;11 given C;; will correctly mimic the

limiting distribution of the fjn ’s.

w) While fz > 0 is not quaranteed in finite samples by the non-parametric bootstrap
jmn 9 y

proposal in Step 4, the parametric bootstrap used to construct the F;;’s in Step 5

assures that all individual development factors F; are a.s. positive. However, the

generation of F;; requires ]?J*n > 0 to hold.

(v) In view of the discussion above, a fully parametric implementation that uses the same
parametric family from Step 5 also in Step 4 to get bootstrap development factors
F7;’s and, consequently, the f]*n 's can be used. A fully non-parametric approach that
uses the non-parametric bootstrap from Step 4 also in Step 5 is thinkable, but suffers
from issues arising from potentially negative F;';’s leading to a reduced finite sample

performance.

3.4 Asymptotic Theory for the Mack Bootstrap

Although the Mack bootstrap as proposed by England and Verrall (2006)) and described
in Section is widely used in practice for reserve risk estimation, limiting results that
confirm its consistency are still missing in the literature. In this section, based on the
asymptotic and stochastic framework described in Section [3.2] we derive asymptotic
theory for the Mack bootstrap, which enables a rigorous investigation of its consistency

properties.

The Mack bootstrap is designed to mimic the distribution of the predictive root of
the reserve Ry, — fi},n conditional on Q;, based on the bootstrap distribution of the
corresponding Mack bootstrap predictive root of the reserve Ry, — }TZLn conditional on

Q7. = 9rn and Dy ,. Hence, a closer inspection of both expressions is advisable.

Picking-up the representation of the predictive root of the reserve R;,, — ﬁl,n in (3.23), it

can be decomposed into two additive parts that account for the prediction error and the
I+n I4+n—1

estimation error, respectively. Precisely, by subtracting and adding >~ Cr—;; [ f;, we

Jj=t

=0
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get

N I+n I+n—1 I+n—1 I+n I4+n—1 I+n—1 N
Rin—Rin=>Y Cr; ( I Freiy— ]I fj) + Y Crii ( I 75— 11 fj,n>
=0 j=t j=t 1=0 Jj=t j=t
=. (RI,n - EI,TL)l -+ (Rl,n - RL”)Q > (331)

where (Ry,, — }Aﬁn)l represents the process uncertainty (that carries the process variance)

and (Ry, — E[’n)g the estimation uncertainty (that carries the estimation variance).

Similarly, for the Mack bootstrap predictive root of the reserve Rj, — fim from ([3.30)),
I+n ~

by subtracting and adding > Cj_,, [TX""! £ . we get
i=0 ’

J=i VALY

N I+n I4+n—1 I4+n—1 N I+n I4+n—1 N I+n—1
R, —Rin=> Ci,; ( IT Fra;— 11 f;ﬁn) +> Cris ( IT - 11 fj,n)
=0 j=i j=i i=0 i—i i
= (R?n o El,n)l + (R;,n - P\LLTL)Q ; (332)

where (R}, — }A%Ln)l and (R}, — Z%Ln)g are the Mack bootstrap versions of (R;,, — }A%Ln)l
and (Ry,, — Elm)g, respectively.

As main interest is in the distribution of the predictive root of the reserve R;, — ]3%”
conditional on Qj,, in view of the decompositions and (3.32), it is instructive
to consider separately the (limiting) distributions of (R;,, — }ABI,n)l and (Ry, — E]m)g
conditional on Qy,,, respectively, as well as jointly. They will serve as valuable benchmark
distributions to enable a meaningful investigation of the consistency properties of the Mack
bootstrap in Section [3.4.2] Such asymptotic results have been established in Steinmetz
and Jentsch (2022, Section 4). We will briefly summarize the relevant conditional limiting
distributions below in Section B.4.11

3.4.1 Conditional asymptotics for the predictive root of the reserve

Based on the same stochastic and asymptotic framework used throughout this paper,
Steinmetz and Jentsch (2022) established asymptotic theory for both parts of the predictive
root of the reserve Ry, — RM, that is, for (R;, — ELn)l and (Ry,, — RM)Q separately,
as well as jointly for Ry, — ]3%”. As risk reserving relies on the prediction of R;,, using
RM, which is computed from the observed upper loss triangle Dy, which consists of all
cumulative claims up to the diagonal Qj,, the main interest is in asymptotic theory for
(Rrn — ]?i[,n)l, (Rrn — éLn)Q, and Ry, — El,n conditional on Qy ,, respectively.
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In the following, we review the conditional asymptotic results established in Steinmetz
and Jentsch (2022, Theorems 4.3, 4.10, 4.12, and Corollary 4.13) separately for the process
uncertainty term (Ry, — é[,n)l in Section [3.4.1.1| for the estimation uncertainty term

(Rrpn— ]?217”)2 in Section |3.4.1.2} and jointly for Ry, — ]3%” in Section |3.4.1.3| respectively.

3.4.1.1 Conditional asymptotics for reserve prediction: process uncertainty

Based on Theorem 4.3 from Steinmetz and Jentsch (2022), the following theorem provides

the limiting distribution of the process uncertainty term (Ry, — ]%Ln)l conditional on

Ql,n-

Theorem 3.7 (Asymptotics for (Rr, — Rj’n)l conditional on Qy,) Suppose
Assumptions and hold. Then, as n — oo, conditionally on Qr ., (Rr, — }A%Ln)l
converges in Ly-sense to the non-degenerate random variable (Ry ~ — E’[,m)l. That is, we

have
—~ ,\ 2 »
B (((Rin = Bra)s = (Rie = Broc)i)’ Q1) 20, (3.33)

where

(Rl,oo Rloo 1 = ZCI 0,8 (H FI 1,J Hfj) ~ gl- (334>
Jj=t Jj=t

Conditional on Qj~, the (limiting) distribution G, has mean zero, i.e. E((Rro —

EI,OOMQI,OO) =0, and variance

j=i \k=i I=j+1

Var ((Rz,oo Rloo |Qfoo) ZCI ”Z (ﬁ fk;) (H fz) =0p(1). (3.35)

The (conditional) Le-convergence result in Theorem immediately implies also (condi-

tional) convergence in distribution. That is, for n — oo, we have

(Ris — Rra)1|Qra % (Rroe — Rroe)1|Qroc ~ G1] Q1. (3.36)

Moreover, according to Theorem (see also the discussion in Steinmetz and Jentsch (2022,
Remark 4.4)), the conditional limiting distribution G;|Qr ~ will be typically non-Gaussian
and depending on the (conditional) distribution of the individual development factors

Fij1Ci ;.
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3.4.1.2 Conditional asymptotics for reserve prediction: estimation uncertainty

In comparison to the conditional limiting result for (R;, — RLn)l displayed in Theorem
the derivation of asymptotic results for (R, — f?lm)g is rather different and also much
more cumbersome. In particular, to obtain non-degenerate limiting distributions, we have
to inflate (Ry,, — j“\i[’n)g by /I +n + 1 and the obtained (Gaussian) distribution relies on
CLTs for (smooth functions of) development factor estimators fjn established in Steinmetz
and Jentsch (2022, Section 3 and Appendix C). For the derivation of asymptotic theory,
conditional on Q[,, it is instructive to further decompose (Ry, — ﬁim)g to get

(Rl,n - é[,n)Q

I+n I+n—1 I+n—1 I+n I+n—1 I+n—1 N
= Z CI—i,i ( H fj - H fj,n(Ql,n)) + Z Cl—i,i ( H fj,n(QI,n) - H fj,n)
i=0 j=i i=0 Jj=i

j=i j=i

= (Rin — El,n)gl) + (Rrn — ﬁb[,n)g)a (3.37)

where (Rm—fif’n)gl) is measurable with respect to Q;,, and f;,(Qr.,) := /Lg'i_)l,n<Q],n)/M§',2%(QLn)
with

o 1 I—j—1 1 I—j—1
. n;:E _— Cz n| =5 ECz Cz'—ia
1 41,0(Qrn) j— i;n J+119r, [ l;n (Cij+1]Cir—i)

ILL],TZ(QL ) [+n_j izz_n 7J|Q]7 [+TL—] lzz_n ( 5J v )

The derivation of (conditional) asymptotic theory for (R, — R;,)s requires additional
assumptions on the stochastic properties of the individual development factors F; ; sum-
marized in Assumptions and below, which resemble Assumptions 4.6 and 4.8 in
Steinmetz and Jentsch (2022)).

Assumption 3.8 (Support condition and variance parameters) The individual
development factors F; j, i € Z, i < I, j € Ny are random variables with support (e,00)

for some € > 0 and the sequence of variance parameters (o2

2,7 € No) converges to 0 as

0 o2
j — 0o such that ) (j 4+ 1)* 2 < oo.
i=0

In addition to the condition on the support and the variance parameters in Assumption
a regularity condition for the backward conditional distribution of cumulative claim

Ci; given C; j4 is required.

2Note that conditioning on Qr , or Qr . is equivalent.
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Assumption 3.9 (Backward conditional moments) Assumptions|3.4, and
are fulfilled such that, for all K € No, k > 0 and j,j1,jo € {0,..., K}, j1 < jo, we
have

|E(Cij|Cijr) — E(Cij|Cijinrr)| < arXi, (3.38)
|Cov(Ci 4y, Ci 4y |Ci jyrr) — Cov(Cigy, Ci 4y |Cijpirrn)| < Y5, (3.39)

where (X;,1 € Z,i < I), (Yi,i € Z,i < I) are sequences of non-negative i.i.d. random
variables with E(X?™°) < oo for some § > 0 and E(Y?) < oo, and (aj,j € Ny) and
(b, € No) are non-negative real-valued sequences with 3°32,(j + 1)%a; < oo and 2520l +
1)%b; < oco.

While Mack’s model is designed to generate loss triangles in a rather simple forward way
according to the recursion , which allows to easily calculate forward conditional
means E(C; ;41|C; ;) and variances Var(C; j+1|C; ), it is not straightforward to calculate
backward conditional means E(C;;|C; j4+1) and variances Var(C; ;|C; j+1); see Example
4.9 in Steinmetz and Jentsch (2022)). Hence, Assumption is required to control the
backward conditional distributions of cumulative claims.

Based on Theorem 4.10 from Steinmetz and Jentsch (2022), which relies on conditional
CLTs for (smooth functions of) development factor estimators f]n given Qy, stated in
Steinmetz and Jentsch (2022, Appendix C), the following theorem provides the limiting
distribution of the estimation uncertainty term (R;, — _f{[’n)g conditional on Qy,. While
(Rr,— E,,n)gl) is measurable with respect to Qy ., Assumptions and m together allow
to establish asymptotic normality of /T +n + 1 (Rrn — }A%Ln)g) conditional on Q.

Theorem 3.10 (Asymptotics for (Ry,, — I/%\I,n)z conditional on Qy,) Suppose
Assumptions and[3.9 hold. Then, as n — oo, the following holds:

(1) Unconditionally, /I +n + 1(R[,n—l§1,n)gl) converges in distribution to a non-degenerate
limiting distribution gé”. That is, we have

V I +n+ 1(Rl,n - Ef,n)gl) i> <QI,007Y<(>?> ~ gél)v (34())
where Y() = (Y;(l),i € Ny) denotes a centered Gaussian process with covariances

COU(Y;SU,Y;S)) = lim ®

Jim Sy (i) (341

for 11,15 € Ny, where Eg)nf_(il,ig) is defined in Corollary |3.28 Here, the two

random sequences Q o and YY) are stochastically independent.
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(ii) Conditionally on Qr,, VI+n+ 1(R;, — }A%Ln)(f) converges in distribution to a
centered normal distribution. That is, we have

VI+n+ 1R — Rin)s?1Qrn =5 (Qroo, Y2) [Qroo ~ 057 Qrer (342)

where g§2)|Q17oo ~ N(0,2(9Q1.5))| Q100 is Gaussian with mean zero and variance

/

— . 2 . 1
:J(QLOO) = I}I_IPOO QI,K—]E%?H fi /[,K_[ = I}gﬂoo QLK—I(EK,H T E(K)H fj) ILK—1I»
(3.43)

where EKH f, as well as E?Hf and Eg)nf' are defined in Corollary|3.28.

According to Theorem [3.10{ii), in contrast to G1|Qy, in Theorem 3.7 the conditional limit-
ing distribution Q§2) |Qr « will be Gaussian. Together with Theorem [3.10((i), conditional on
Q7 o and inflated with /1 + n + 1, the estimation uncertain term /I 4+ n + 1(R17n—}§1,n)2

will be Gaussian with mean (Q; .., Y?)) and variance Z(Q; o).

3.4.1.3 Conditional asymptotics for the whole predictive root of the reserve

By combining the limiting conditional distributions derived separately for both parts
(Rrn — }A%Ln)l and (Ry,, — }A%Ln)Q, joint asymptotic results can also be established. Based
on Theorem 4.12 and Corollary 4.13 from Steinmetz and Jentsch (2022), the following
theorem provides the limiting distribution of the whole predictive root of the reserve
Ry — RLn conditional on Q.

Theorem 3.11 (Asymptotics for Ry, — ﬁI,n conditional on Qy,) Suppose the
assumptions of Theorems and hold. Then, conditional on Qj,, (Ry., — RLn)l and
(Rrn— }A%Ln)g are stochastically independent, and Ry, — ]:?Ln|QI?n converges in distribution
to G1|Q1 0. That is, we have

RI,n - RI,n‘Ql,n = (Rl,n - é[,n)l + (Rl,n - ELn)2|Ql,n i> gl|QI,oo' (344)

According to Theorem , (Rrpn — ]?{Ln)g requires an inflation factor I +n+1 to

establish convergence towards a non-degenerate limiting distribution. As this is not the
case for (R, — Rl,n)l in Theorem the latter term (Ry,, — Em)l corresponding to the

process uncertainty will asymptotically dominate the predictive root Ry, — }A?,Ln.

Hence, we can conclude that asymptotic normality of the (predictive root of the) reserve
does generally not hold, which casts the common practice to use a normal approximation
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for the reserve in Mack’s model into doubt. Moreover, the shape of G;|Q; o, does depend on
the true (conditional) distribution family of the individual development factors F; ;|C; ;.

3.4.2 Conditional bootstrap asymptotics for the Mack bootstrap predictive root of
the reserve

In view of the decomposition R;,, — le = (Rrn— }A%I,n)l +(Ripn— ﬁjm)g of the predictive
root of the reserve in and the conditional limiting distributions of (R, — El,n)l and
(Rrn— le)z gathered in Section m, it is instructive to consider the corresponding Mack
bootstrap expressions (R7,, — R;,)1 and (R7,— R;.,)2 from and check whether they
are correctly mimicking such limiting distributions. While (R, — }A%Ln)l and (Ry, — fZLn)Q
are asymptotically analyzed conditional on Q; ., the bootstrap quantities (R7,, — é[,n)l
and (R7,, — R;.,)2 have to be considered conditional on Q7. = Qr.n, but also (as common
in the bootstrap literature) conditional on Dy ,, that is, on the available cumulative claim
data.

3.4.2.1 Conditional bootstrap asymptotics for reserve prediction: process uncertainty

For the derivation of bootstrap asymptotics, we have to impose additional smoothness
properties of the parametric family of (conditional) distributions of the individual devel-
opment factors to assure that consistent estimation of development factors and variance

parameters implies also consistent estimation of the whole distribution.

Assumption 3.12 (Parametric family of (conditional) distributions of F; ;) The
(conditional) distribution of F; ;|C;;, i € Z, i < I, j € Ny, belongs to a parametric family
of distributions H, that fulfills the following properties:

(i) A distribution H € H is uniquely specified by its first two (conditional) moments.
That is, for alli € Z, i < I, j € Ny, the conditional distribution of F;;|C;; = c is
(almost surely) uniquely determined by its conditional mean E(F; ;|C;; = c¢) = f; and

o2
its conditional variance Var(F;;|C;; = ¢) = L according to (3.18).

(i1) The distributions H € H are continuous in the parameters f; and 0]2. That is, for
alli € Z, i < I, j € Ny and for all ¢ € (0,00), the conditional distribution of

F;;1C;j = c is continuous in a neighborhood of (f;,073).

As the limiting distribution derived in Theorem[3.7)is generally non-Gaussian and depending
on the (conditional) distribution (family) of the individual development factors, we require
also that the bootstrap individual development factors F; for i € Z, i < I, j € Ny and



122 3 BOOTSTRAP CONSISTENCY FOR THE MACK BOOTSTRAP (PAPER 2)

i+ 7 > I, that is, for the lower triangle, follow the true parametric family of (conditional)
distributions as the F; ;s according to Assumption [3.12

Assumption 3.13 ((Conditional) distributions of F;; in lower triangle) The
(conditional) distribution of F;|Cf;, Dy, Fi,, fori € Z, i < I, j€Ngandi+j>1

in Step 5 of the Mack Bootstrap Scheme in Section belongs to the true parametric
family of (conditional) distributions H used to generate F; ;|C; ; according to Assumption

~
ES

. * * ~ d
3.19. That is, we have Fi,j|(0i,j =z, [, =Y, Jin =2)=F|(Cij ==z fi =y, 32 = z) for

all (z,y,2)" € (0,00).

Together with the assumptions imposed in Theorem [3.7, the Assumptions and

allow to prove the following theorem.

Theorem 3.14 (Bootstrap asymptotics for (R;n — El,n)l conditional on Q7 =
Qr.» and Dy,) Suppose Assumptions and hold. Then, as
n — oo, conditionally on Qf, = Qr, and Dr,, (R?n — fELn)l converges in distribution
to G1|Qr.0o in probability, which is the (limiting) distribution of (Rjc — EI,OO)I‘QI,OO
according to described in Theorem . Moreover, for alln € Ny, it holds E*((R7,, —
Rin)|Q7, = Q1) = 0 and, for n — oo, we have

Var® (R;,, = Rin)i|Q5, = Qrn) — Var (Rrso — Rioo)1|Q0o) (3.45)

in probability, where Var((Rys — Ri00)1|Qr.00) = Op(1) as given in (3.35). Consequently,
as n — 0o, we have

dy (L ((Rrm = Bra)i|Qrn) . £ (Rf,, — Riah|Qf, = Q1)) — 0

in probability, where L*(-) denotes a bootstrap distribution conditional on Dy, and ds
is the Mallows metric, that is defined for two distributions G and H, as do(G,H) =
do(X,Y) = inf(E||X — Y|[]2)2, where the infimum is taken over all joint distributions
(X,Y) with marginals X ~ G and Y ~ H.

3.4.2.2 Conditional bootstrap asymptotics for reserve prediction: estimation uncertainty

In view of the decomposition (R;, —EI’H)Q = (RI,H—EI,H)S) +(Ryn —E’Ln)g) in , for
the derivation of corresponding bootstrap asymptotic theory, it is seemingly instructive to
further decompose also its bootstrap counterpart (R, — ]?217”)2 in the same way conditional
on Q7, = Qr, and Dy ,. That is, by taking into account the specific definition of f]*n in
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(13.28]), we get
(R}, — Rrn)e
I+n I+n—1 N I4+n—1 I+n I+n—1 I4+n—1 N
= Z C;j—i,i H f]*,n - H f;n(Q[,TZ) + Z C}k—i,i H f;n(QI,n) - H f]vn
i=0 j=i j=i i=0 j=i j=i
=(R;, — Ri.)8 + (Ri,, — Rp)s (3.46)

where f7,(Qrn) = s3] 1 (Qrn) /1655 (Qr ) with

1 I—j—1
:U’]—H n(QIn> = E" ( Z Ci i F, ’Q;n - Ql’”)

I'tn-j =,
1 I—j5—-1
Z E* C F* - OZ [_Z'),
T T4n—j =, 7
o 1 I—j-1 1 I—j-1
] Sy - - .
/‘L]n (Q[,TL) ([+n l;ﬂ 07J|an 7n> ["’n_j Z;ﬂ C'La]
Now, taking a closer look at ,ujill) 2(Qr.n), we get
) 1 I—j5—1 1 I—j5—1
: n Ci B (F5|Cr = Cir- Ci i B (F};)
J+1n(QI ) I+n—] z_z:n 2,] A ) I+n j Z_z:n 2¥)

- . . C ny

I+n—j Z_z}n o
where we used that C; ; is measurable with respect to Dy, and that F;‘j is stochastically
independent of the condition C7_; ; = Cj_;; given Dy ,,. This is because the Mack bootstrap
relies on a fixed-design approach based on the C; ;s instead of recursively generating C7;
to get a whole bootstrap loss triangle D7 ,,. Altogether, using E*(F};) = fj,m we get

I—j5-1
1
fi, <I+n—j Z_Z_n Ci,j> R
" =
fj,n(QI,n) = L I—j—-1 = fjvn
e 2 Cij

leading to (R} Rln)(2 = 0 such that (R7, — Rin)y = (R7, — RM)S). Hence, in
contrast to the limiting behavior of VIi+n+1 W(Rrn — }A%I,H)Q, which was derived after
further decomposing (RLn—}A%Ln)Q into two additive parts (RI,n—ﬁLn)g) and (Rl,n—ém)g)
as stated in Theorem such an analogous decomposition of (R}, — ]:?Ln)g does not
exist. However, letting n — oo, it remains to check the limiting properties of (R?n — ]%17”)2,
which are presented in the following theorem.
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For this purpose, it is important to note that, in contrast to the derivation of the conditional
limiting result obtained in Theorem [3.10|(ii), which relies on conditional CLTs for the
development factor estimators ﬁn as stated in Steinmetz and Jentsch (2022, Appendix
C), the derivation of the limiting properties of (R}, — Rin)s rely on unconditional
bootstrap CLTs for the Mack bootstrap development factor estimators ]?]*n, that is, without
conditioning on Qj , = Qy . Nevertheless, to prove asymptotic normality for the f7’s by
justifying a Lyapunov condition, we have to impose additional regularity conditions on the
estimators for the development factors and variance parameters. This is required to control
the behavior of the non-parametric bootstrap in Step 3 of the Mack bootstrap in Section
3.3.1, which leads to bootstrap errors r;; that are drawn randomly from all (re-centered
and re-scaled) residuals 7 ;, that is, forall j =0,...,/+n—2andi=—n,..., ] —j—1

Assumption 3.15 (Uniform boundedness condition) For n — oo, suppose that

the development factor estimators j}n, Jj=0,....0 +n—1 and the variance parameter
estimators 6]2-’71, 7=0,.... 1 +n—2 fulfill the uniform boundedness conditions

2

3 52
sup Jin _ Op(1) and sup  —- = Op(1).
j=0,..14+n—1 fj §=0,...,I4n—2 05

Moreover, for /@§-4) defined in (3.21)), suppose that ((/{5—4)/0;1),j € Np) is a bounded sequence.

The assumption above allows to state the following asymptotic result for the Mack

bootstrap estimation uncertainty part.

Theorem 3.16 (Bootstrap asymptotics for (Rj‘.,n — R\I,n)2 conditional on Q7 =
Q1. and Dy,,) Suppose Assumptions and hold. Then, as
n — oo, conditionally on Qj,, = Qr,n and Dy, VI +n+1(R;, — Rin)a converges in dis-
tribution to Q~2\QLOO in probability, where g~2|Q1,oo ~ N(0, E(QLOO))]QLOO is a conditional

Gaussian distribution with conditional mean zero and conditional variance

=(Qreo) = dim QX qyy, Qr Kk 1 (3.47)
where EKHfJ' = E?va + Eg)nf' is defined in Corollary|3.28 and
’ ) J ’ J
. o0 ) 0.2 ) ) max(il,ig)fl
E’(QI,OO) = Z Cl—il,ilcf—izﬂé Z i fl H fm = OP<1)
i1,i9=0 j=max(i1,i2) Hj l=max(i1,i2),l#] m=min(1,i2)

Consequently, as n — oo, we have

dg (,C (\/I +n+ 1(R[»n — é[,nblgjm) ,ﬁ* (\/ I+n+ 1(R?n — Rl,n)2|g;,n = Ql,n)) H 0
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in probability. This is because the limiting normal distribution of /I +n + 1(R},, — ﬁ’[,n)g
conditional on Qf , = Qrn and Dy, deviates in its (zero) mean and its variance E(QI,OO)
from the limiting distribution of /I +n+ 1(Ry, — ]3%”)2 conditional on Qy ,,, which has

a mean (Qr., YP) and variance Z(Qr ) according to Theorem |3.10).

o0

3.4.2.3 Conditional bootstrap asymptotics for the whole predictive root of the reserve

As in Section [3.4.1.3, we can combine the results on the limiting distributions for
(Ri, — Rin): and (R7,, — R;.)2 from Theorems and |3.16| respectively, to get the
limiting bootstrap distribution of the whole bootstrap predictive root of the reserve
R}, — }A%I,n conditional on Q?n = Qrn and Dy .

Theorem 3.17 (Bootstrap asymptotics for R;‘.’n — R\I,n conditional on Q;‘.’n =
Qr» and Dy,) Suppose the assumptions of Theorems |3.14 and |3.16| hold. Then,
conditional on Qj, = Qrn and Dy, (R}, — Rin)1 and (R7,, — Rin)2 are uncorrelated,
and R;n — fA{[,n

(Q;n = Q1 ., Dry) converges in distribution to Gi|Qro. That is, we have

R, = Rial (@i, = QinDrn) = (R, = Ria)i + (i, — Rin)al (Qf, = Qi D)

d
— g1|Ql,oo

in probability.

As already observed in Theorem for the estimation uncertainty term (R;,, — RM)Q, its
Mack bootstrap version requires also an inflation factor v/I + n + 1 to establish convergence
towards a non-degenerate limiting distribution. As this is not the case for the process
uncertainty term (Rj, — f{Ln)l in Theorem and its bootstrap version in Theorem
3.14] the process uncertainty terms will asymptotically dominate the predictive roots
Rrn — }A%Ln and R}, — }A%Ln. Hence, although the limiting bootstrap distribution of
m(lﬁn — ]?im)g conditional on Q;n = Q1 and Dy, in Theorem does not
correctly mimic the corresponding limiting behavior of Vi+tn+1 (Rrn -R 1.n)2 conditional
on Qr, in Theorem m the whole bootstrap predictive root R7, — ﬁim still mimics the
limiting distribution of the predictive root Ry, — ﬁvl,n correctly.

Hence, in view of the concepts of asymptotic validity and asymptotic pertinence of a
bootstrap prediction approach discussed in Pan and Politis (2016al), the Mack bootstrap
can be regarded as asymptotically valid, but not as asymptotically pertinent under the

stated conditions.

This motivates the construction of an alternative Mack-type bootstrap proposed in the
following section. We conclude this section with some remarks.
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Remark 3.18 (On the asymptotic results for the Mack bootstrap)

(1) A closer inspection of the decompositions in (3.31]) and (3.32) reveals some inconsis-

tencies:

— While a term based on products of development parameters f; is added to and
subtracted from Ry, — }A%Ln to get (Ryn— }A%Ln)l and (R, — }A%],n)g, a term using
products of bootstrap development factor estimators f]*n instead of the more

natural choice of development factor estimators fjn is added to and subtracted

from Ry, — Rl,n to get (R?n - ]?iLn)l and (R?n — E[’n)g.

— Consequently, while (R, — }A%Ln)l relies on products of individual development
factors F; j centered around products of development parameters f;, its Mack
bootstrap version (R}, — }A%I,n)l relies on bootstrap individual development factors
Eyy,

but around bootstrap quantities f]*n

which are not naturally centered around development factor estimators ijn,

— Moreover, while (Ry, — ]3%”)2 relies on differences between products of devel-
opment parameters f; and products of their estimators J?j,m its Mack bootstrap
version (R}, — R]m)g relies on differences between products of bootstrap devel-
opment factor estimators J?J*n and products of estimators f;n Hence, the sign
of (R}, — Rrn)2 is flipped in comparison to (Ry, — Ry ,)2. This may have a
negative effect in finite samples, but as the limiting conditional distribution is
Gaussian and hence symmetric, this will not be an issue asymptotically.

— According to the latter observation, also the terms (R}, — E,,n)g” and (R}, —
]—?Ln)g) in the seemingly natural decomposition of the bootstrap estimation un-
certainty term in are switched in comparison to (Rj, — 1%17”)51) and
(R — Rin)s.

(i) The bootstrap consistency result for the Mack bootstrap process uncertainty part
conditional on Q. in Theorem requires the correct choice of the true family of
(conditional) distributions of the F;;’s also for the F},;’s in Step 5 of Section .
Otherwise, only the first and second moments of the conditional distribution will
be correctly mimicked asymptotically, but in general not the whole distribution and,

consequently, also not the quantiles.

(7ii) The uniform boundedness conditions in Assumption are required to establish a
Lyapunov condition for bootstrap CLTs in Theorem [3.25, because the Mack bootstrap
draws bootstrap errors r}; from residuals computed from all columns in Dr,.
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(iv) In contrast to (R, — ]%Ln)l and (Ry,, — }:?17”)2, which are independent conditional
on Qrn, both parts (R, — ]?21,")1 and (R}, — R[m)g of the bootstrap predictive root

are in general only uncorrelated conditional on QF , = Qr, and Dy,,.

(v) The bootstrap inconsistency result for the Mack bootstrap estimation uncertainty part
conditional on Qf, = Qr, established in Theorem is due to the fact that the
bootstrap approach in Step 4 is not taking the condition Q7 , = Qr, into account.

Hence, the (always larger!) variance-covariance matriz KIS shows in the condi-

tional limiting distribution instead of Eg)nf‘ obtained in Theorem |3.1(). Moreover,
) J

a decomposition of (R, — RM)Q resembling the decomposition of (Rr, — é[m)g
in (3.37) does not exist. Consequently, the behavior of (Ry.,, — Rm)g” is also not
correctly mimicked.

(vi) The requirement of a bootstrap procedure to not only mimic the asymptotically domi-
nating part of the (conditional) predictive distribution that captures the prediction
(i.e. process) uncertainty (i.e. asymptotic validity), but also the asymptotically neg-
ligible part capturing the uncertainty due to model parameter estimation is closely
related top the concept coined asymptotic pertinence in Pan and Politis (2016a)
for time series prediction, which is also discussed by Beutner et al. (2021) from
a different perspective. Pan and Politis (2016a) argue that asymptotic validity of
predictive inference is a fundamental property, but capturing the uncertainty due to

model estimation is beneficial in finite samples.

(vii) The discussion above motivates an alternative notion of a Mack-type bootstrap to
be introduced in Section that will be designed to eliminate the raised issues. In
particular, it respects the conditioning on Qf, = Qi and generates a bootstrap loss
triangle D, in a backward manner starting from the diagonal Qf, = Qr,. See
e.g. Paparoditis and Shang (2021) for bootstrap predictive inference in a functional

time series setup.
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3.5 An alternative Mack-type Bootstrap Scheme

According to the findings and the discussion in Section [3.4] the original Mack bootstrap
proposal is not capable of mimicking the conditional distribution of the estimation uncer-
tainty part correctly. Although it is asymptotically dominated by the process uncertainty
part, it is generally desirable to construct a Mack-type bootstrap that addresses this issue

to enable a better finite sample performance.

For this purpose, we propose an alternative Mack-type bootstrap in this section to mimic
the distribution of the predictive root of the reserve Ry, — El,n using an alternative
bootstrap predictive root of the reserve R}in — }A%}“n to be defined below. To distinguish it
from the original Mack bootstrap proposal in Section [3.3] we denote all related bootstrap
quantities and operations with a “4” instead of a “x”. This novel approach deviates from

the original Mack bootstrap scheme in several ways:

(i) First, given the loss triangle Dy, and conditional on the bootstrap diagonal Q}fn =
Qr.n, Where Q}fn = {C’f_”|z =0,...,I+n}, arecursive backward bootstrap approach
is employed to generate a whole bootstrap upper triangle

Then, bootstrap estimators for the development factors A;rn, 7=0,....14+n—-1
are computed according to formula (3.10]), but based on the bootstrap upper loss
triangle Df .

(ii) Second, instead of the bootstrap development factor estimators Afn

computed from
D}fn, the development factor estimators J?j,n computed from Dy, are used for a
parametric bootstrap to construct bootstrap individual development factors Ff;,

t=-n,...,1,7=0,...,]+n—1and i+ 7 > I, that is for the lower triangle. This
allows to construct also Ry,

(iii) Third, for the construction of the bootstrap predictive root of the reserve R;”n — }A%}“n,
the bootstrap reserve R}fn is not centered around its best estimate E’I,n, but around

a suitable bootstrap version fi}“n

Finally, analogous to the original Mack bootstrap, the alternative Mack bootstrap is
employed to estimate the conditional distribution of Ry, — fim given 9Oy, is estimated
by the conditional bootstrap distribution of Ry, — ZA%}F,L given Dy, and Qf, = Qrn.
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3.5.1 An alternative Mack-type Bootstrap Algorithm

With the upper triangle Dy, at hand, the alternative Mack-type bootstrap algorithm is

defined as follows:

Step 1.

Step 2.

Step 3.

Step 4.

Estimate the development factors f; and the variance parameters 032 from the data
by computing f;,, and 65, for j=0,...,1+n—1 as defined in (3.10) and (3.13),
respectively.

Choose a parametric family for the (conditional) bootstrap distributions of the
backward individual development factors G- 5J=0,....,I+n—landi=—n,...,[—
j —1given C;;; and Dy, such that G;; > 0 a.s. holds with mean E*(G7; | z]—i-l)

f and variance Var® (G5|C. ) = ; fori=-n,...,I,7=0,...,]+n—1and
i+j <I,where ET(-) = E*(-|Dr,) and Var*( ) = Var*(:|Ds,). Then, conditional
on Q}fn = Qi .., generate backwards a bootstrap loss triangle D}fn using the recursion

CiH =,

2,7+1

+
G
fory=0,....+n—landi=-n,....I —j— 1.

Compute bootstrap estimators for the development factors f; by computing fJr for
j=0,...,1 +n—1, which are defined analogously to fj,n defined in -, but
is calculated from the bootstrap loss triangle D}fn. That is, we compute

I—j-1 -1
~ > Ciin _Z Cijn
fin = l;:;:l = (3.48)
Poles z ChaGH

for j=0,....,1+n—1.

Choose a parametric family for the (conditional) bootstrap distributions of F7; given
C’+ and Dy, such that F;; > 0 a.s. with

EX(FSICH) = Fin Vart (FjlC)) = 22

fori=-n,....1,7=0,....]+n—1landit+j5 > 1.
Then, given Q7, = Qy,, generate the bootstrap ultimate claims C;7,, and the
reserves R, = C ., — Cif_ for i = —n, ... I using the forward recursion

Z? /Z’7

Cifii = CLES, (3.49)

2y ZJ
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Step 5.

Step 6.

Step 7.

for j=I—4,....0+n—1

I
Compute the bootstrap total reserve Ry, = 3 R/, and the alternative Mack

bootstrap predictive root of the reserve
I+n I+n—1 I+n—1
+ D+ _ + + =+
R, —Rj, = Z Crii H i — H g |
i=0 j=i j=i

where the centering term fi}rn is a bootstrap version of the best estimate ]3%”, that
is defined by

N I I+n—1 N I+n I+n—1 N
Rin= 22 G 11 =20 11 fia (3.50)
i=—n j=I—1 =0 j=i

Repeat Steps 2 - 5 above B times, where B is large, to get (R;fn—fi}fn)(b), b=1,...,B
bootstrap predictive roots, and denote by ¢*(a) the a-quantile of their empirical
distribution.

Construct the (1 — «) equal-tailed prediction interval for Ry, as

[Ef,n + q+(a/2)7 }?I,n + q+(1 - &/2)} .

Remark 3.19 (On the alternative Mack-type bootstrap)

(1) In comparison to the Mack bootstrap from Section the bootstrap reserve is not

a double bootstrap quantity anymore, the centering is based on a bootstrap version of
the best estimate, and the bootstrap for the upper loss triangle is backward starting in
the diagonal.

ii) The conditional distribution for the G;;|C;":. | can be chosen in different ways. For
(VA Va

instance, this can be done in a non-parametric way similar to Step 2 - 4 in Section
3.3.1] or using the parametric family of distributions used in Step & in Section
[3.3.1. Howewver, it is crucial to mimic sufficiently well the first and second backward
conditional moments, that is, E(C;;|C; j41) and Var(C; ;|C; j11), respectively. This
will be reflected by Assumption[3.21] to be imposed in Section [3.6
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3.6 Asymptotic Theory for the alternative Mack Bootstrap

By adopting the general strategy of Section to investigate the consistency properties of
the original Mack bootstrap, the alternative Mack predictive root of the reserve R}fn — ]fZ}rn

can be decomposed into two additive parts that account for the prediction error and the

I+n ~
estimation error, respectively. By adding and subtracting > C} ;. ]_[]I-;L?_l fin, we get
i=0 ’

N I+n I4+n—1 I4+n—1 - I+n I4+n—1 - I+n—1 .
R;r,n - R;r,n = Z C;r—m' ( H FI+—7,] - H f]”) + Z C;r—z',i ( H fJ’:n - H ;rn)
=0 Jj=t Jj=t 1=0 Jj=t Jj=t
= (Ri,, — Ri,.), + (R, — Bi.),. (3.51)

where (R}, — Rf,)1 and (R}, — R}, ). are the alternative Mack bootstrap versions of
(Rrn — Rrp)1 and (Ry, — Ry,)2, respectively.

3.6.1 Conditional bootstrap asymptotics for the alternative Mack bootstrap
predictive root of the reserve

As in Section for the original Mack bootstrap, conditional on Q;fn = Qs and Dy,
we have to check whether the alternative Mack bootstrap expressions (R}, — R}rn)l and
(R} —E}i_’r)g from are correctly mimicking the limiting distributions of (R, — Rin)t
and (Ry, — RI,H)Q conditional on Qy ,, respectively, as summarized in Section m

3.6.1.1 Conditional bootstrap asymptotics for reserve prediction: process uncertainty

The process uncertainty part (Rj,, — ﬁu;rn)l of the alternative Mack bootstrap differs from
the (Rj, _Aél’”)l in two aspects. On the one hand, the F;}’s in (R}, — E}“ngl use fin
instead of f;,, and, on the other hand, [[/*7~! ;" ; is centered around [[/X7~" f;,, instead
of H]Iif’l fj*n accordingly. However, as the proof to establish the asymptotic distribution
in Theorem exclusively relies on f;,, — f; = Op((I +n — 1)71/?), J?J*n — fin =
Op-((I +n—1)7"?) and 6%, — 02 = Op((I +n — 1)7'/?) for all fixed j € Ny, by using
the same arguments, we get immediately the same result also for the process uncertainty

part (Rf, — R}“n)l of the alternative Mack bootstrap.

Theorem 3.20 (Bootstrap asymptotics for (R;fn — /Rﬁn)l conditional on Q;fn =

Qr.» and Dy,) Suppose Assumptions and (for F;; instead

of F};) hold. Then, as n — oo, conditionally on Q}tn = Qr, and Dy, (R}“n — R}“n)l
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converges in distribution to G1|Qs in probability, which is the (limiting) distribution
of (Rreo — fx’[’oo)ﬂQLoo according to (3.36]) described in Theorem . Moreover, for all
n € Ny, it holds E*((Rf,, — E}fn)ﬂQ}fn = Q1) =0 and, for n — oo, we have

Var® (R}, = Rf, )19, = Qra) — Var (Rrse — Rroo)1|Qre)  (352)

in probability, where Var((Ry  — E]’OO)1|QI’OO) = Op(1) as given in (3.35)). Consequently,
as n — 0o, we have

dy (E ((Rl,n - ﬁ],n)llQl,n) LT ((R}rn - f{}“n)ﬂQ}“n = Qf,n)> — 0

in probability.

3.6.1.2 Conditional bootstrap asymptotics for reserve prediction: estimation uncertainty

In view of the decomposition (R, — ]%Ln)Q = (Rin — é,,n)g” + (Rrpn — ]%Ln)g) in
(13.37]), conditional on Q}fn = Q1 and Dy, its alternative Mack bootstrap counterpart
(R, — é;rn)z can be also decomposed further. That is, we have

I+n I+n—1 N I+n—1 I+n I+n—1 I+n—1 N

- Z C;r—z 7 jn f]Tn(Q[,n) + Z C?_—i,i H ]+n QI n H ]Tn
i=0 j=i j=i i=0 j=i

—(RT — Rt W RT _ Rt @ 3.53
(Rin In)s + (R, Tn)s s (3.53)

where (R}, — E’}“’n)g) is measurable wrt Q7 ,, = Q;, and D;,, and
[ Qrn) = 15400 (Qrn) 307 (Qr) (3.54)
with

1 I—j-1
1
#j—igl),n(gl,n) = E* (H—n—j Z CiialQf, = Qz,n)

I—j5—1
1 Jj—

Z E+ Tj+1‘CiJ,rIfi = C’“,i),

I+n—j =
/jJ]n (an) =BT I+n ] Z = Ql,n
I—j—1

Z E+ = Ci,[—i)-

i=—n

I+n—]
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Besides a correctly chosen and sufficiently smooth parametric family of (conditional)
bootstrap distributions of the individual development factors for the lower triangle, the
derivation of (conditional) bootstrap asymptotic theory and consistency results for (R}rn —

E?n>2 requires additional assumptions for the backward individual development factors
+ . .
G} ; from Step 3 in Section m

Precisely, it has to be guaranteed that the backward conditional mean E(C; ;|C; j4+1) and
the backward conditional variance Var(C; ;|C; j+1) are consistently mimicked by their al-
ternative Mack bootstrap counterparts E*(C;5|Ci. ) and Var™(C|CfF ), respectively,
such that the corresponding limiting distributions obtained in Steinmetz and Jentsch

(2022, Theorem C.1) (see also Theorem in the appendix) are correctly mimicked.

Assumption 3.21 (Consistent estimation of backward moments) Forn — oo,
suppose that the (conditional) bootstrap distributions of the backward individual development
factors G;“j, 7=0,....]4n—1andi = —n,...,I —j—1 given C’;&H and Dy, are

chosen in Step 2 in Section such that the following holds:

(i) For each fired K € Ny, let fKn = (ﬁ}n,ﬁ,n,...,f;{,n)’ and define i}n(an) =
(f(irn(Ql,n)yffn(QI,n), . ,f;m(QLn))'. Then, conditional on Q}“’n = Qr., we have

T2 (fh Q) = P ) 1(QF = Qi) ~5 N (0,3%)),

where J}/? = diag <\/1+n —-7,7=0,... ,K) is a diagonal (K +1) x (K +1) matriz

of inflation factors and the variance-covariance matriz E%?f is defined in Theorem

(527,

(ZZ) For each ﬁ[l?ed K € NO’ let E(n = (J/[\.()J',_nv f‘l—tna LRI f;,n)/- Then, conditional on
Q?,n = Q1 and Dy, we have

T (B = Len( @) 1 (@10 = Qun D1) =5 N (0,52))

in probability, where the variance-covariance matrix Eg?f is defined in Theorem |3.27.

In concordance to the derivation of the conditional limiting result obtained in Theorem
3.10(ii), which relies on conditional CLTs for the development factor estimators f]n given in
Steinmetz and Jentsch (2022, Appendix C), the conditional bootstrap CLTs in Assumption
3.21] allow to state the following theorem, which provides the limiting distribution of the
alternative Mack bootstrap estimation uncertainty term (Rf, — Rf, ). conditional on
Q}fn = Qs and Dy ,. Precisely, while (R}L,n — é}tn)él) is measurable with respect to Dy,
Assumption [3.21| allows to establish asymptotic normality of v'I +n + 1(Rf,, — ﬁz}n)f)
conditional on Qf, = Q;, and Dy,
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Theorem 3.22 (Bootstrap asymptotics for (R?:n — R\}’:nh conditional on Q-’i_,n =

Q1. and Dy,,) Suppose Assumptions and hold. Then, as

n — 0o, the following holds:
(i) Conditional on Qf, = Qrn, VI+n+1(R], — R;rn);l) converges in distribution to
a non-degenerate limiting distribution gél’. That is, we have

VI+n+1(RE, = BLS N (QF, = Qua) =5 (Qree YY) ~ G2, (3.59)

where Y{) = (Yi(l),i € Ny) denotes a centered Gaussian process with covariances

COU(YiEI), Yigl)> — I}me E;)H , (11,12) (3.56)

for iy,iy € Ny, where EQ)Hf,(il,ig) is defined in Corollary [3.28. Here, the two

random sequences Q « and Y'Y are stochastically independent.

(it) Conditionally on Qf, = Qrn and Dr,, VI+n+1(R7, — R,*n)?) converges in
distribution to Go| Qo in probability, where Ga| Qs o ~ N(0,2(Qr.00))| Q100 1S the
(conditional) limiting distribution obtained in Theorem |3.10/(ii).

Consequently, as n — oo, we have
dic (L ((Rim = Bin)2|Qin), £F ((Rf, = B} 219, = Q1)) — 0

in probability.

3.6.1.3 Conditional bootstrap asymptotics for the whole predictive root of the reserve

As in Section [3.4.1.3] we can combine the results on the limiting distributions for

(Rf, — Rf,): and (R}, — Rf,)> from Theorems and [3.22] respectively, to get the
limiting bootstrap distribution for the whole bootstrap predictive root of the reserve

R}fn — E}“n conditional on Q}fn = Qs and Dy .

Theorem 3.23 (Bootstrap asymptotics for R}L,n—ﬁ;fn conditional on Q;{n =OQiIn

and Dy,) Suppose the assumptions of Theorems and hold. Then, conditional

on Qf,, = Qi and Dy, (Rf,, — Rf,)1 and (R}, — Rf,,)s are stochastically independent,

and R}tn — }Aﬁrn converges in distribution to G1|Qr o in probability. That is, we have
Rf, = RE|(Qf, = Qra Dra) = (Rf, — RE )1+ (R, — B2l (QF, = Q1 D)

i> gl‘Ql,oo

in probability.
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According to the discussion below Theorem [3.17] and in view of the concepts of asymptotic
validity and asymptotic pertinence of a bootstrap prediction approach as discussed in Pan
and Politis (2016al), the alternative Mack bootstrap can be regarded as asymptotically
valid and asymptotically pertinent under the stated conditions.

Remark 3.24 (Backward vs. forward bootstrapping) While a backward bootstrap
approach appears to be natural in time series setups addressed in Pan and Politis (2016a),
they also propagate a somewhat simpler forward bootstrap approach to capture the estimation
uncertainty in bootstrap prediction. Asymptotically, in their setup, both approaches are

indeed equivalent due to the intrinsic stationarity assumption.

However, in Mack’s CLM setup considered here, this is not the case and a (fixed-design)
forward bootstrap as proposed by England and Verrall (2006) does not correctly capture
the conditional limiting distribution of the estimation uncertainty part, while a backward
bootstrap is capable of doing this.

3.7 Simulation Study

In this section, we compare the original Mack bootstrap from Section[3.3]and the alternative
Mack bootstrap from Section [3.9] to illustrate our theoretical findings from Sections
and by means of simulations of several parameter scenarios. Additionally, we simulate
a Mack-type bootstrap, which uses a forward bootstrap approach in Step 2 of Section
3.5.1] but coincides otherwise with the alternative Mack bootstrap. The inclusion of this
intermediate Mack-type bootstrap allows to disentangle the effects caused by the backward
resampling proposed in Step 2 and by the different centering used in Step 5 of Section [3.5.]]
on the finite sample performance. Both aspects constitute the deviance of the alternative
Mack bootstrap from the original Mack bootstrap.

3.7.1 Simulation setup

To assure comparability, we pick up the simulation setup employed in Steinmetz and

Jentsch (2022 Section 5). That is, in the notion of the asymptotic framework introduced
in Section [3.2.1] let I = 10 and choose n € {0,10,20, 30,40} leading to the effective
number of accident years I +n + 1 € {11,21,31,41,51}. For each n and for different
parameter scenarios to be specified below, we generate M = 500 loss triangles D%) =
{Cl(;n)\z =-n,....0, 7=0,....,04+n, —n<i+j<I} m=1,...,500, having diagonals
Q%) by generating the entries in their first columns C’,(fg) (independently) from a uniform
distribution and the individual developments factors F; ; from a
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(DGP1) a conditional gamma distribution,
(DGP2) a conditional log-normal distribution,
(DGP3) a conditional left-tail truncated normal distribution (truncated at 0.1).

In all scenarios, the development factors and the variance parameters are specified to fulfill
f; > 1and 0]2- >0forall j =0,...,] +n — 1 such that f; and 0]2- decrease to 1 and 0,
respectively. Precisely, we use exponentially decreasing sequences (f;)jen, and (07);en,
with f; =14 e 17%% and 0]2 = 509,518 - e~ 1707 Further, we distinguish between two
different Setups a) and b), where the parameter settings are exactly the same in both
cases, but the first column Co g = (C_,.0, ..., Crp)" of the (upper) loss triangle is uniformly
distributed on [120 x 10%,350 x 10%] in case a) and on [120 x 104,350 x 10%] in case b).

In the following, to evaluate the performance of all bootstrap procedures under study,
for each diagonal Q%), m = 1,...,500, we would like to know the exact distribution
Rm) — }?{5”,? conditional on Q?Z) . However, although knowing exactly the stochastic
mechanism to generate a loss triangle Dy, it is not straightforward at all to simulate
Rm) — fzﬁ,”;ﬂgﬁ”j} This is because }A‘Z%L) requires a backward generation of a loss triangle
Dy, starting with Qﬁ). Hence, as a workaround, we simulate instead the distribution of
the "true' predictive root (R%) —}A%g?) conditional on Q%L) using a Monte Carlo simulation
with B = 10, 000, since we know the true underlying parametric family of distributions of
the individual development factors for each observed triangle Dg? and the true parameters

for the simulation of Rf,f';? for each setup (DGP1)-(DGP3) such that

o2
Fij|0i,jN<fj,d> foryj=1—4,....,+n—1landi=—-n,...I. (3.57)
l?]

Next, for each setup (DGP1)-(DGP3) above and for each loss triangle Dﬂ), m=1,...,500,
we perform three different Mack-type bootstraps based on 10,000 bootstrap replications
each to estimate the conditional distributions of the predictive roots of the reserve. That
is, we apply the following three bootstrap approaches:

(oMB) original Mack bootstrap (from Section [3.3)),
(aMB) alternative Mack-type bootstrap (from Section [3.5)),

(iMB) intermediate Mack-type bootstrap (using a forward bootstrap in Step 2 of

Section [3.5)).

The third intermediate Mack-type bootstrap is included to be able to distinguish between
the effects caused by the backward resampling proposed in Step 2 and by the different
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centering used in Step 5 of Section on the finite sample performance. For this purpose,
we introduce a novel centering term ﬁ’ﬁ defined by

I+n I4+n—1

RiF=X"cf I Fin (3.58)
i=0 j=i

which deviates from R}“n in (3.50) as it relies on f]*n defined in (3.28), but based on
(parametrically generated)

an

~2
Z?]

instead of Afn defined in (3.48). This choice of the centering term still resembles the
decomposition in , that shares the (sign) properties of , which is not the case
for . For all bootstraps, whenever a parametric distribution is used to generate
the upper bootstrap loss triangle, we choose the same parametric distribution family
used already for the lower triangle (to generate R, and R}n) However, as we do not
know the correct parametric family of distributions of the F; ;’s, we make use of all three
distribution families in (DGP1)-(DGP3) for all three bootstrap approaches, respectively.
Finally, knowing the true parametric family of distributions of the F; ;’s, which allows to
simulate the "true" predictive root of the reserve, we compare the simulation results to

investigate the effect of a misspecified parametric family of distributions to generate R,

and R} .

In Appendix [.13] we also provide corresponding simulation results that compare just the
distribution of the first (i.e. the process uncertainty) parts of the bootstrap predictive
roots (Rj, — }ABLn)l and (R}in — }A%jfn)l conditional on Qj , = Qr, or Q}“’n = Q;, and
D ., respectively, with the distribution of (Ry, — ]Sbl,n)l conditional on Qy,. Note that
this distribution is straightforward to simulate. As expected, in view of Theorems
and [3.20, we find essentially no differences between the two construction principles.

3.7.2 Simulation results

First, we consider the bootstrap variances of the bootstrap predictive roots of the reserves
obtained for the three Mack-type bootstraps under study. For both Setups a) and b), we
find that the alternative Mack-type bootstrap variance is always 1-5 percentage points
smaller than the bootstrap variances obtained for the other two approaches, which do not
differ much (less than 1 percentage point). This result perfectly agrees to the findings
of Theorem , where the (conditional) variance Z(Q; o), which is mimicked by the
original Mack bootstrap and by the intermediate Mack-type bootstrap, is generally larger
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than the variance Z(Qy ) found in Theorem [3.10, which is mimicked by the alternative
Mack bootstrap correctly according to Theorem [3.22]

Next, we consider the whole distributions of the bootstrap predictive roots Rﬁ(;n ) f{%),
R;fzm) — ﬁi;rslm) and R;fslm) — Eﬁf(m) conditional on Qj, = Qy, or Q7,, = Q, and Dy,
respectively, for m = 1,...,500. Using the Kolmogorov-Smirnov test of level a = 5% to
test the null hypotheses

Hy o (R - R = o4 D) = £ (R - RiIQ)

i+ £ (R — REPNQI = 04, D) = £ (R - REIQ)

In>

i £ (R — B NQA - D) — £ () — Bl

for m = 1,...,500. The resulting percentages of failed rejections of the null hypotheses for
all three bootstrap approaches, for different n and different families of distributions are
summarized in Tables @ and [7| for Setups a) and b), respectively. While the percentages
increase for growing n for all bootstraps and in both Setups a) and b), the alternative
Mack-type bootstrap consistently achieves percentages that are always higher by 1-3
percentage points in comparison to the percentages of the two other bootstraps, which
turn out to be quite similar throughout. Moreover, the percentages obtained for Setup a)
are higher than for Setup b), and choosing the true distributional family for F; appears to
be less important than for Setup b). In particular, when choosing a log-normal distribution
instead of a truncated normal distribution or vice versa leads to the lowest percentages of

failed rejections for Setup b).

Instead of considering the supremum of the difference between the empirical bootstrap cdf
and the true cdf of the predictive root of the reserve, we also consider the average over the
M = 500 simulations of the squared mean of the deviation of the bootstrap distribution
given Q;n = Qy, or Q}“’n = Qp.n, respectively, and Dy ,, and its true distribution given Q.
Therefore, we calculate the mean squared error of each simulation for b=1,...,10,000
and then consider the root of the overall mean of the mean squared error (RMMSE) over
all simulations M = 500, that is,

1 590 1 10,000 B ) 2
RMMSEovp = \| =5 RO — BRIy — (RO — RI™Y)™, (360
ME T 500 mZ::l 10,000 2= ((Ri% 1) = (B )" (3.60)

,n
b=1

where (R} _ }?3%)) represents the bth ordered Mack-type bootstrap predictive root and

)

(Ryj)(m) — Eﬂ)) the bth ordered true simulated predictive root for the mth simulation for

,n

m = 1,...,500. Similarly, we calculate RM M SFE, g and RM M S FE;);p for the alternative
Mack bootstrap and for the intermediate Mack bootstrap, respectively.
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The results obtained for all RM M S E's are summarized for all three bootstrap approaches
in Tables [§ and [9] respectively, for Setups a) and b). For increasing n, the RMMSEs
are decreasing for all bootstrap approaches in both setups, while the alternative Mack

bootstrap has, in most cases, the smallest RMMSFE in comparison to the intermediate

and the original Mack bootstraps.

chosen dist. gamma log-normal trunc. normal
true dist. | n | oMB aM iM | oMB aM iM | oMB aM iM
0021 022 021 {030 033 029 |0.29 028 0.21

10038 049 038 | 047 048 043 | 037 041 0.38

gamma | 20 | 0.47 0.56 047 | 051 056 051 | 054 053 049
30 | 0.58 0.64 0.58 | 0.56 0.61 0.55 |0.60 0.65 0.59

40 | 0.66 0.70 0.66 | 0.61 0.66 0.60 | 0.72 0.76 0.70

0 020 022 020 |027 025 025 |024 024 022

log- 10| 037 038 037 | 038 040 037 | 037 041 0.36
normal |20 | 045 049 045 |0.48 0.55 052 | 045 0.51 0.49
30 | 0.51 0.55 0.51 | 0.57 0.60 055 |051 056 0.54

40 | 0.57 0.62 0.57 | 0.60 0.63 0.60 | 0.63 0.66 0.64

0013 016 0.13 |[030 033 0.29 |0.24 0.27 0.20

trunc. 10| 042 045 042 | 044 045 043 | 038 047 0.42
normal | 20| 0.54 058 0.54 |0.53 0.55 052 | 058 0.62 0.59
30 | 0.57 0.63 0.57 | 0.57 0.60 0.57 | 0.67 0.70 0.68

40 | 0.60 0.66 0.60 | 0.57 0.62 0.59 |0.75 0.78 0.76

Table 6: Percentages of failed rejections for Kolmogorov-Smirnov tests of level a = 5% for
the null hypotheses H(j, HJ and HSF T, respectively, for the original Mack bootstrap
(oMB), the alternative Mack bootstrap (aMB) and the intermediate Mack bootstrap
(iMB) for different parametric families of distributions of F*; for i +j > I, for I =10
and different n in Setup a).
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chosen dist. gamma log-normal trunc. normal
true dist. | n | oMB aM iM | oMB aM iM | oMB aM iM
0 |010 011 0.09 |011 0.14 0.12 |0.09 0.10 0.10
10019 021 0.18 | 023 0.25 0.23 |0.16 0.17 0.17
gamma |20 | 0.28 035 0.32 |0.36 040 0.37 |0.21 0.22 0.22
30 | 0.38 042 0.40 |0.40 0.44 0.39 |0.28 0.28 0.28
40 | 0.52 0.56 0.51 | 0.51 0.53 0.50 | 0.41 0.41 041
0 | 0.0r 0.10 0.08 |0.09 0.10 0.08 |0.07 0.08 0.08

log- 10016 019 0.17 | 0.20 0.22 0.20 | 0.16 0.15 0.15
normal | 20| 031 033 030 |0.22 026 0.23 |0.22 0.22 0.22
301034 038 033 [030 0.33 030 |027 027 0.27
40 1 0.39 042 0.39 | 045 047 044 |0.29 0.28 0.28
0009 011 0.08 |0.15 0.17 0.16 |0.24 0.23 0.23
trunc. 10| 0.16 0.18 0.15 | 0.21 024 0.20 |0.34 034 0.34
normal | 20| 0.28 030 0.27 | 0.26 0.30 0.27 | 0.41 0.42 0.42
301036 039 035|031 035 032 |056 055 0.55
40 1 043 045 042 036 039 036 |0.61 0.62 0.60

Table 7: Percentages of failed rejections for Kolmogorov-Smirnov tests of level o = 5% for
the null hypotheses H(j, Har and H(T T, respectively, for the original Mack bootstrap
(oMB), the alternative Mack bootstrap (aMB) and the intermediate Mack bootstrap
(iMB) for different parametric families of distributions of F; for i +j > I, for I =10
and different n in Setup b).

chosen
distribution gamma log-normal trunc. normal

true
distribution | n oMB aM iM oMB aM iM oMB aM iM
0 [99.720 99.706 99.600| 99.244 99.202 99.967| 98.210 98.156 98.822
10 | 94.120 93.786 94.320| 94.659 94.376 94.885| 97.713 97.239 97.854
gamma 20 | 92.800 92.438 92.760| 93.024 92.738 93.048| 95.153 94.935 95.296
30 | 86.660 85.957 86.120| 86.483 85.935 86.143| 88.281 87.613 87.790
40 | 81.910 81.667 81.510| 84.329 81.215 83.828| 84.832 83.421 84.990
0 [99.070 99.080 99.873| 99.787 97.971 98.538| 98.197 98.112 98.623
log- 10 | 93.790 93.587 94.040| 94.558 94.389 94.720| 97.669 97.389 97.867
normal 20 | 92.150 91.996 92.314| 90.629 89.843 90.179| 95.680 95.365 95.657
30 | 86.390 85.607 85.805| 87.071 84.159 85.457| 88.669 87.945 88.147
40 | 81.510 81.226 81.420| 82.191 81.522 82.955| 83.895 83.665 84.530
0 [96.770 93.993 94.836| 97.694 97.519 98.403| 93.974 93.450 94.670
trunc. 10 | 94.970 91.815 95.185| 93.988 93.774 94.298| 92.498 92.216 92.630
normal 20 | 90.740 89.767 90.745| 91.329 90.016 90.045| 89.120 88.406 89.117
30 | 86.540 85.786 86.033| 86.193 85.567 85.784| 87.758 86.896 87.120
40 | 82.650 82.277 83.865| 81.090 81.374 82.839| 83.343 82.455 82.840

Table 8: Root of the overall mean of the mean squared error (RMMSE) (x1073) for different
Mack-type bootstraps, different distributional assumptions and different n and I = 10
for Setup a)
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chosen
distribution gamma log-normal trunc. normal

true
distribution | n oMB aM iM oMB aM iM oMB aM iM
0 | 9.881 9.874 9.961 | 9.925 9.850 9.919 | 9.841 9.822 9.849
10 | 9.644 9.582 9.680 | 9.722 9.650 9.742 | 9.414 9.328 9.442
gamma 20 | 9479 9.317 9.476 | 9.459 9.362 9.477 | 9.254 9.118 9.265
30 | 8.799 8.623 8.754 | 8.757 8.598 8.692 | 9.194 8.871 8.648
40 | 8.452 8.449 8.544 | 8.513 8.431 8.534 | 8.706 8.556 8.589
0 19990 9.914 9.982 | 9.983 9.893 9.961 | 9.868 9.857 9.827
log- 10 | 9.831 9.752 9.803 | 9.652 9.635 9.682 | 9.626 9.537 9.636
normal 20 | 9.457 9.399 9.468 | 9.342 9.243 9.354 | 9.339 9.292 9.355
30 | 8.959 8.933 8.998 | 8.771 8.764 8.775 | 8.712 8.654 8.658
40 | 8.656 8.584 8.643 | 8.348 8.325 8.346 | 8.249 8.184 8.199
0 | 9.830 9.789 9.843 | 9.894 9.876 9.997 | 9.881 9.874 9.910
trunc. 10 | 9.520 9.513 9.524 | 9.676 9.583 9.517 | 9.543 9.474 9.575
normal 20 | 9.167 9.156 9.234 | 9.234 9.227 9.234 | 9.344 9.323 9.345
30 | 8.745 8.692 8.698 | 8.672 8.660 8.687 | 8.683 8.630 9.143
40 | 8.388 8.356 8.498 | 8.414 8.376 8.497 | 8.388 8.321 8.367

Table 9: Root of the overall mean of the mean squared error (RMMSE) (x1073) for different
Mack-type bootstraps, different distributional assumptions and different n and I = 10
for Setup b)

3.8 Conclusion

In this paper, we adopt the stochastic and asymptotic framework that was proposed
by Steinmetz and Jentsch (2022) to derive asymptotic theory in Mack’s model, also to
investigate the consistency properties of the Mack bootstrap proposal. For this purpose,
the (conditional) asymptotic theory derived in Steinmetz and Jentsch (2022) serves well as
benchmark results for the Mack bootstrap approximations. By splitting the predictive root
of the reserve into two additive parts corresponding to process and estimation uncertainty,
our approach enables - for the first time - a rigorous investigation of the validity of the Mack
bootstrap. We prove that the (conditional) distribution of the asymptotically dominating
process uncertainty part is correctly mimicked by the bootstrap if the parametric family of
distributions of the individual development factors is correctly specified in Mack’s bootstrap.
Otherwise, this will generally not be the case. In contrast, the corresponding (conditional)
distribution of the estimation uncertainty part is generally not correctly captured by the
Mack bootstrap. Altogether, as the process uncertainty part dominates asymptotically,
this proves asymptotic validity of the Mack bootstrap for the whole predictive root of
the reserve. However, it also proves that asymptotic pertinence in the sense of Pan and
Politis (2016a) does not hold. To remedy this, we propose a more natural alternative
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Mack-type bootstrap that uses a different centering, and that is designed to capture
correctly also the (conditional) distribution of the estimation uncertainty part by using
a backward resampling approach. Under suitable assumptions, we demonstrate that the
newly proposed alternative Mack-type bootstrap can indeed be asymptotically valid and
pertinent. Our findings are illustrated by simulations, which show that the alternative
Mack-type bootstrap performs superior to the original Mack bootstrap in finite samples.
An intermediate Mack-type bootstrap provides evidence that the backward resampling is

mainly responsible for this improvement.



Appendix

3.9 Auxiliary results for Section 3.4

3.9.1 Mack bootstrap asymptotics for parameter estimators

The following theorem is the Mack bootstrap version of the (unconditional!) Theorem 3.1
in Steinmetz and Jentsch (2022)) adapted to the asymptotic framework of Section [3.2.1]

Theorem 3.25 (Asymptotic normality of f* conditional on Dj,) Suppose

Assumptzonsm . . and 1 ) are satisfied and let fJ ny J=0,...,14+n—1 be defined
as in (3.28) according to the Mack bootstrap scheme of Section|3.5 m Then, as n — 0o, the

following holds:

(i) For each fized j € Ny = {0,1,2,...}, we have

VI +n— (f f] n) —>./\f< i) in probability,
j

d e
where “— 7 denotes convergence in distribution.

(it) For each fized K € Ny, let ﬁ (f0n7 fln, ce f}n)’ be the (K + 1)-dimensional
Mack bootstrap version of zK (fom f1 S ,me)’. Then, we have

J/? (f Kn —i ) i>./\/'<0, EK’D in probability,

where J1/2:dz'ag(1/[+n+1—j,j20 ...,K) is a diagonal (K +1) x (K +1)

matriz of inflation factors and Xy = J,(p )Xk cJy (uK) = diag (Zg Zi 72%)

is a diagonal (K + 1) x (K + 1) covariance matriz, where

maX(h J2)—
jl?]2_07"'7K+1

143
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is a (K+1)x (K + 1) matriz,

—z—% = 0 0
o -y L - :
Jy(z) = o (3.62)
: . .. . 0
0 N i
K

is a (K +1) X (K +2) matriz, and pi,. = (fo, - - -, ix+1) as derived in the proof of
Theorem 3.1 in Steinmetz and Jentsch (2022).

As the unconditional limiting distributions obtained in Theorem above and in Theorem
3.1 in Steinmetz and Jentsch (2022)) coincide, the Mack bootstrap is unconditionally, that
is without conditioning on Q7 ,, = Q,, consistent for an arbitrary, but fixed number of
estimators of development factors. That is, for each fixed K € Ny, we have

dic (L (S (£ = Fren)) L (T2 (P = £))) = 0p(1),

where f, . = (fo, f1,---, [x) and di denotes the Kolmogorov distance between two
probability distributions.

The following direct corollary is the Mack bootstrap version of Corollary 3.2 in Steinmetz
and Jentsch (2022) adapted to the asymptotic framework of Section m

Corollary 3.26 (Asymptotic normality for products of f;"n’s conditional on Dy ,,)
Suppose the assumptions of Theorem[3.25 hold. Then, as n — oo, the following holds:

(i) For each fixed K € Ny and i =0,..., K, we have

t‘hw

T’,:M

VItn+1 ( Fr ﬁf)—w\/(f:

K
H in probability.

(ii) For each fized K € Ny, we have also joint convergence, that is,

K Fx K
VI (Hj:? fﬂ(L) ijéf] n) LIV (O ks, ) in probability,
1=0,...,

max(i1,i2)—1

K K
EK,Hfj(ilai2) = Z o H f12 H fm7

j=max(i1,i2) 7 l=max(i1,i2),l#] m=min(i1,i2)
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foriyia=0,..., K. Here, Xk ; is defined in Theorem (u) and

Hzliml;éo L H{io,z;ﬂ Ly v H{io,z#{ L
0 il :
Jn(z) = , Hl‘Wl " (3.63)
0 T 0 HlIiK,lyéK Ly
as derived in the proof of Corollary 3.2 in Steinmetz and Jentsch (2022).
3.9.2 Proof of Theorem [3.25]
By construction of the Mack bootstrap estimators f;n, 7 =20,...,1 +n —1 according

to (3.28), for each fixed K € Ny, the K + 1 estimators fg,,, fi ., .., [k, are independent
conditional on Dy,,. Hence, it is actually sufficient to prove part (). For any fixed j and

from (1.8) and (3.28), using C; j+1 = C; ; F; j, we get immediately

(B T (S Gy S Gy s
VI+n—) (fjn — f]n) =\/I+n—y ( Zi_j_l G 43 — Zi‘j_l Ch fjn
=—n sJ =—n 5]
T Coy (B = fin)
T—j—1
i=—n \/[_:T_jzk:]—n de
I

—j—1
. Z Zim'

=—n

Noting that, for all j, (Z;,,i = —n,...,I —j — 1, n € Ny) forms a triangular array
of random variables that are independent conditional on Dy,, we can make use of a
(conditional) Lyapunov CLT to prove asymptotic normality. First, for the bootstrap mean,
using measurability of all C; ;’s and of f]n in Z,,, with respect to Dy,,, we get

* « \ _ s Civj (FZ*J - f/;n) - C@'J . 7
b (%) =& (ﬂj—j Sy ck,j> e (2" (F55) = i)

Further, by the construction of Mack’s bootstrap, for any fixed j and i = —n, ..., I —j—1,
we have E*(r};) = 0 such that

* * | 7 5"771 * a-',n * * n
EY(F7;) = E (fj,nWL é Ti,j) = fin+—==E (Ti,j> = fin

i7j
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leading to E*(Z],) = 0. Second, for the bootstrap variance, we get

(o Ci
Var (Zi,n) = ( o Zéiﬂ v ) sVar® (F”>

and, from the particular construction of Mack’s bootstrap leading to E*(r;“j) = 0 and
E*(r;?) = 1, we obtain

R 2
O-jan 7”* o ,f2
C i,J Jm
1,7

2
= [Fu+2fin % EX(r ,J)+( - )E*( ) = Fi
Cij Cij

-
3

9

7j
such that

~2
CijOin

Var* (Z:‘n> = = 5
(v Sl Cy)

and, altogether,

I—j-1 I—j—1 2 ( 1 I—j—1 )
ar* | > Z5 = > CijO5n _ g Xt Ci
on | £ Lyl 2 L sl
=—n VItn—j k=—n k,j I+n—j k=—n k,j
~2

Tjn

1 I—j—1 B
I+n—] Zk:—n Ok:.]

i=—n

Letting n — oo, making use of Assumption we get 832-’,1 — 0]2 by Theorem 3.5 in
Steinmetz and Jentsch (2022)), as well as

I—j5—1
1 Jj—

— Crj 2
]—i—n—jkz kg Hi

by a WLLN using that, for all j, (Cyj,k € Z, k < I —j—1) are iid by Assumption (iii)
with (finite) mean yi; and variance 77 according to (3.19) and (B3.20), respectively.
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Finally, it remains to prove a Lyapunov condition to complete the proof. Choosing 6 = 2
for the Lyapunov condition, for any 7, it is sufficient to show that

4

[—K-1 Cii (Fri = fim
> B ( (Z Kfjlg ) 5 0.
i=—n m k.j

Due to measurability of all C; ;’s with respect to Dy ,,, we get

I-K-1 C-J( iy f]n> :
S e | (it

= m Yt
g I (G
) (I+n K Dy ij> (I+n-— = jn .

Further, as S1E 1 Cr; = Op(1), it is sufficient to show that

I+n K

1 I-K—-1 . N 4
Tin_K Z Ci, E ((F” - f]n) ) = Op(1).
For this purpose, we have to compute E*((F}; — J?j,n)4) next. By plugging-in for F;, w
get
R 4
* * n 4 ok Ojn & . U n % *4
(i) (3 ) - S
1,] (Y]
leading to
R I-K-1 . 34 I-K-1
4 * * 2 * *4

Further, as Ifn’_K SIZELC2 = Op(1), it remains to show that E* ( *4) Op(1) holds

as well. By construction, we haveE|

2 I4+n—2T—s—1

E*<T;<’§>_(I+n+1)(l+n) 2 2 T

t=—n

In the following, suppose for convenience that 7; ; = 7 ;. However, the arguments for 7
including re-centering (and re-scaling) are essentially the same, but tedious and lengthy.

*Note that we implicitly assume that only 7., _; , is estimated as zero; see Section
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In this case, by plugging-in for 7, we get

0,

~ 4
2 Iin-2I-s-1 Ot,s<Ft,s - fs,n)
_ SbS (F )

E* (r})

(I +n+ 1)(‘[ + n) -2 s=0 t=—n a-s,n

9 I+4+n—21-s—1 02

t,s 4 3 7 2 72 3 74
_ E: E = FF, —4F° f., + 6F; —4F
T DTrm =2 % 2, o, (e il 4t OFLTE — Aot £on)

By Assumption [3.15] for n — oo, we have

7 2
- o

sup Jin _ Op(1) and sup  —— = Op(1).
j=0,..14n—1 fj §=0,.J4n—2 O

Hence, we can bound E*(r}}) above by

2 I4+n—2T—s—1 t2
2 (Fl, —AF) fo+6F7 f2 —AF 2+ f)
]+n+1)<1+n>_2 ;) t:Z_n O';L ( t,s t,sf + t,sfs t, fs +fs)
2 I4+n—2T—s—1 C2 )

—9 Z Z %(Fts_fs)zl

(I +n+ 1)<] + n) s=0 t=—n Os

o)

~on(n)

Finally, the term in brackets on the last right-hand side is a sum consisting of non-negative
summands, which is also Op(1) as its expectation is bounded because the m§4)’s defined
in (3.21)) are assumed to form a bounded sequence ((H§4) /07),7 € No) again according to

Assumption [3.15] O

3.9.3 Proof of Corollary [3.26|

The proof follows from an application of the delta method and Theorem and is
completely analogous to the proof of Corollary 3.2 in Steinmetz and Jentsch (2022). O
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3.10 Proofs of Section 3.4

3.10.1 Proof of Theorem [3.14

As the (conditional) Ls-convergence result in Theorem implies the (conditional)
convergence in distribution in (3.36|), for n — oo, it remains to show

(R;n - RI,H)1| (Q?n = Ql,napl,n> i> gl’Ql,oo (364)
with B*((R},, — R1)1|Qf, = Qrn) — 0 and
VCLT* ((Rj—’n — }A%I,n)1|Q?n = Q[’n) — Var ((Rl,oo — ﬁg[’m)1|Q[,m) (365)

in probability, respectively.

Nevertheless, the asymptotic theory for (R, — }A%I,n)l conditional on Q7 ,, = Qr, and Dy,
is not straightforward as it is composed of sums and products consisting asymptotically of
infinitely many summands and factors. Hence, we decompose (R}, — fi;jn)l by truncating
these sums and products to be able to apply Proposition 6.3.9 in Brockwell and Davis
(1991)). For this purpose, let K € Ny be fixed and suppose I,n € Ny are large enough such
that K < I+ n — 1. Then, we have

. I+n I+n—1 I4+n—-1
(R?,n - Rl,n)l = Z C}kfi,i ( H Fl*fi,j - H f;n)

j=i

K I+n—1 K I+n-1 _
+ZCI zz(H I— l,j( H Fl*—z,l_]-)_Hf;:n( H flfn_l))
= =i I=K+1

K K
_ZCI 7,0 (HF;—Z,]_Hf;,TL)

I=K+1

i=K+1

I+n I4+n—1 I4+n—1 N
+ Z O}k—i,i H FI*—Z',j_ H f]*,n
_ATKIn_‘_AQKIn_{_ASKIn

Hence, to derive the claimed conditional limiting distribution, it suffices to show that,
a) for all K € No, A3 x;.1(Q5,, = Qs Drs) % Gix| Q1 o0 in probability as n — oo for
some (conditional) distribution G; x|Qr s, b) G1.k| Q1,00 N G1|Qr.00 as K — 00, and c)
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that, for all € > 0, we have

hm lim sup P* (|A2K[n| >€|Qp, = le) =0 and (3.66)

K—o00 n—oo

hm lim sup P~ (|A§7K7Ln| > €| Qr, = Q17n> = 0. (3.67)

K—0co n—oo

We begin with showing part a). The parametric family of (conditional) distributions used

to generate the Fj;|C;; and F;|CY; is continuous with respect to Cj 5, fj, ajz and C7,
j,n’ 8]71’ respectively, by Assumptlon m Hence, as fj,, — fj = Op((I +n —1)7Y2),
Jin— fin=O0p((I +n—1)""?) and 5 62, — 02 =0p((I +n—1)""2) holds for all fixed

j € Ny, we can conclude that, for all fixed K € Ny and as n — oo, that

K K K N d K K K
> Cr (H Fri—11 f}fn) (Q7,, = Q1 Din) — Y Crig (H Fra;—11 fj) 1Qr00
=0 Jj=t Jj=t

=0 Jj=t Jj=t

(3.68)

in probability, which proves Aj r; .[(Q7,, = @i, Din) 4 G1.x|Q1 . For part b), by
letting also K — oo, we get immediately

Jj=t Jj=t

K K 00
chfi,i (HFIi,] Hf]) |Qloo—>ZCI 1,0 (HFI 1,7 Hf]) ‘Ql,oowgllgl,oov
i=0 =i

(3.69)

which proves G; |97~ N G1|Qr.00. Before we prove part c), let us also consider mean
and variance of Aj j ;, (conditional on Q7 = Q;, and Dj,). For the mean, using
measurability of C7_;; with respect to Dy, and the law of iterated expectations, we have

E*<AT,K,I,n|Q?,n = QIJL)
= E*(E*(AT,K,I,nlgin = QI,TL?}.I*,H)‘Q?n = QI,TL)

K K K
=Y CriE (E (H Fiy =T il Q10 = Qi f;ﬂn) 1Q;, = Qm)
Jj=t

i=0 j=i

=0

due to

K K
(i i
j=t j=t

K K
Q?n = Ql,nvfl*,n) - (H I—- z,]’QIn QI,TL?‘F;JI) B H ;n
K N K N
L7115 -0 370

j=i j=i
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using similar arguments as used to show E (HJKZZ Fi_ij) = H]K:i f;- Similarly, using the law
of total variance and (3.70]), we get for the variance

Va’r*(AT,K,I,n‘Q;n = Ql»") :E* (Var*<AT,K,I,n|Q7,n = Ql,na ;n)|Q?,n = QI,TL)
+ Var* (E*(AT’K’L,JQ?”L = Q1 Fin)|Q5, = Qz,n)

K K [i-1 _ K
=E (Z Crii) (H f;?,n> 7 ( I1 f[fi) Q7. = Qf,n)
i=0 Jj=i \k=i I=j+1

K K j=1 K
=2 Crid 5.E ( (H fk) ( 1 f;fi) ) (8.71)
i=0 Jj=i k=i I=j+1

due to the fact that f,’;n’s are independent of the condition Qj, = Qr, and because of

K o~
Var*(AT,K,I,n’Q?n = Ql,n?‘FIn ZCI “Z (H fk n) ( H fz*i)

I=j+1

obtained by similar arguments as used in the proof of Steinmetz and Jentsch (2022,
Theorem 4.3) and using the measurability of C7_;; and 6]2-,71 with respect to D;,,. Now,
using similar arguments as in Steinmetz and Jentsch (2022, Theorem 4.7) and exploiting the
fact that the f,:,:n’s are stochastically independent conditional on Dy ,,, for the expectation
in (3.71)), we get

=1 Jj—1 R
E’ ((H f;I,n) ( IT 7/ )) =1 & (f;i‘,n)) ( IT £ ( *2))
k=i I=j+1 k=i I=j+1
= 1 k,n i Zéfl ICkzl l,n
K
=j+1

() (11 7) +or (1)

due to, for all ¢ € {0,..., K}, we have

5.2

* [ Fx2 _ cn 72
E (fc,n|BI,n(C>) = m + fins (3.72)
where B, (k) = {Cijli=—n,....I, j=0,...,k, i+ j <I+n} denotes all elements of
Dy up to its kth column, and because of 57, — o} in probability for all I € {0,..., K}
and

1 - 1 _ 1 —o< 1 )
e, — (I+n—=0Déd — ([+n—K)eK " \I+n
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as K is fixed. This leads to

K K [i-1 , Ko .
Var* (Al 14 Q10 = Qin) :g Z (H fr n) in (l H fl,n) + Op (M)

o R (3.73)
— ZCH»JE (H fk) ( I1 fﬁ) (3.74)

as n — oo for all K fixed, because f;,, — f; = Op((I +n — 1)7¥?) and 62, — 03 =
Op((I +n —1)"Y2) for all j € Ny. Finally, letting K — oo, we get

K 0 0o [i-1 00
ZCI HZ (H fk) ( H fz2> — ZCI—i,iZ (H fk) 0]2- ( H ff) . (3.75)
I=j+1 i=0 j=i \k=i I=j+1

which equals Var((Rr . — ]321,00)1 |Q1.0). Hence, it remains to show part ¢) to complete the
proof. We begin with showing part c) for A j ;. By similar arguments used above, for
the mean, we have E*(A3 ;- ; .|Q7,, = Qrn) = 0 due to E*(A5 k1,197, = Qin, Fin) =0
and, for the variance, we have Var*(A5 x ;197 ,, = Qin) = E* (A5 x1,)*1Q7, = Qi) =
E(E* (A5 k 10)219Q7 0 = Qim, Fin)lQin = Q). For the inner expectation, using
stochastic independence over accident years leading to stochastic independent summands
of A3 ;. (conditional on Q7 = Qr ., D1, and Fj,,), we get

E*(

—~

A;,K,I,n>2’Q;n = QI,”?‘/—-?,TL)

K I+n—1 R I+n—-1 2
OIQ—i,iE* H F;—i,j H F]*—i,l -1 fg*n H flﬂ:n -1 Q},n = Ql,nv‘/—_'l*,n
j=t

I=K+1

8!

j=t

o

I
o

I=K+1

Ci

v

@
Il
=)

—i

K I+n—1 2 K I4n-1 2
E” HFI*—i,j H Fvl*—i,l_1 Q?n: QI,”’F;,n - Hf;n H flfn_l
j=i I=K+1 J=1 I=K+1

For the term corresponding to the first term in brackets on the last right-hand side, we

X

get

K K I4+n—1 2
Z CIQ—i,iE* (H F}k—i,j ( H F;—i,l - ]‘)) Q;n = Qf,na ‘F;(,TL
Jj=t

=0 I=K+1
K I4+n—1 I+n—1

:ZC?fz,zE* H FI*21]_2 HF[*2’LJ H FI*zl +HFI*21j an_QIn7 .
=0 j=i j=i I=K+1 Jj=t

(3.76)
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Using linearity of expectations for the first expectation on the last right-hand side of
(3.76), due to F}; = ”“ and C7_;; = C1_i;, we get

I+n—1
E” II P?Qz] Qz[n QQLH’;F?n
j=t

I+n-2
=i

* *2 * * sk * *
xE (Ff—i,1+n—1|QI,n Qrn, Cr TIRERE I—i,1+n—1a~7:1,n> ‘Ql,n = Ql,na}—l,n)

I+n—2
o *2 I+n 1,n P *
=F ( ” FI—z‘,j( P +f[+n 1n>‘Ql,n—Ql,m}—I,n)
j=i

I—i,I4+n—1

I+n—2 1
=LK H FI*EZ 7’@;771 lefln UI—i—n 1,n

) *
j=i CI—i,I+n—1

j=i

I+n—2
+E*< 1 F%,90, = Qf,n,f}in> 2. 1m

7 on

* * * . * n—1i,n
=F H Fl—i,j’QI,n - QI,TH‘FI,n Crii
—1,7

j=i

I+n—2
* *2
H FI*Z’J

j=i

Q?n = QI,”?‘F;,n) f[+n 1In

I+n—2 7% 6% I+n—2
J=1 J,n +n )1 + E* I | F*2

I—ij
j=i

gzjn 221n7]?[n) I+n 1n-

By recursively plugging-in, we get
I+n—1
H Zid

1 I4n—1 fk—1 I+n—1 I+n—1 )
> (Hf;in) (1) T
—1, ]:'L

Q[n Q],nw’r[*,n)

k=i h=k+1

Similarly, for the second expectation in (3.76]), we get

K I+n—1
7 <_2 (H p;2”) ( [ F ”> ’Q;n _ Ql,n,f;jn)

j=i I=K+1
K N K N I+n—1 N
ft ) f) (1 7
—k+
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and for the third one, we have

— K K
(H —ij Q[n_QIn;]rIn> C ( f )Ukn< H f;lk?n)—i_H ;721
I—iji p—; =3 h=k+1 j=t

Altogether, for all K < I +n — 1, this leads to

Mx

E*((AZKIn>2|Q’IFn = anﬂfl*,n)

(£ (i) i
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Plugging-in and making use of the fact that the f;n’s are stochastically independent
conditional on Dy ,, and Q;n = Qy,, this leads to

Var*(‘A;,K,I n| Q? n = QI n)

K I4+n—1 N I4+n—1 N
=3 Cr; [ s (H E* (f,197, = Qf,n)) ( I B (f2Q, = Qm))
i=0 k=i h=k+1
K N K .
2y 52 (H B (F1,1Q5, = Ql,n)) ( [T 2 (/]9 = Qm))
k=i h=k+1

x (1; B (F1Q5, = Qm))
+§:6i,n (kﬁlE (5 )) ( IT £ ( *2))

k=1 j=t h=k+1
K I+n—1 I4+n—1 . AIQL
= ZC}_M Z Ukn H f]n H (fh,n Mlc«)
=0 k=i h=k+1 pr—n

K k=1 K . Ale I+n—1 _
=23 Gin | II fim I1 (fh,n I’“C) II fin
k=1 j=t h=k+1 Zp——n I=K+1

K k=1 K . A}2L
+> Oin (H fj,n) ( II (fh,n + ””C))
k=1 j=t h=k+1 Zp*—n
K (k=1 _ K . A}2L
> (H fj,n) Gin ( II (fh,n + “‘10>>
k=i \ j=1 h=k+1 Zp——n
I+n—1 ~ A}QL I+n-1 _
H ( n+ - ) - H fl,n
( h=K+1 & Zg_}inl C I=K+1
I+n—-1 (k-1 R I+n—1 -~ 8f2z
+ Z Hfj,n 8,3’71 H (fh,n+ I—-h 10 )
; h=k+1 Zp——n

K (k=1 _ K 52 Ifn—1 _
+ (H fj,n) Cr ( 11 (ﬁ?ﬂr m)) (1 - 1I fln)]
k=i \j=t h=k+1 Zp—fn C I=K+1

obtained by re-arranging terms and due to E*( f]*n|Q}n = Q1) = EX( f]*n) = f;n and

=2

B (f12Q1n = Qua) = *(m):ﬁH%
p=—n “'D,j

for all j. Next, to argue that Var*(45 x; ,1Qf, = Qr,n) > 0 vanishes in probability for
K — oo and n — oo afterwards, it suffices to show that its unconditional expectation is
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bounded for K — oo and that its bound converges to zero as n — oco. We get
E (VC”‘*(AS,K,IHQ?@ = Qf,n))
K K (k=1 _ K . 52
~92 n
=> E|(Ci_ii> | II fin Okn 1T (fh,n Ih10>
=0 k=i \j=t h=k+1 Zp*—n
I+n-1 - A2 I+n-1 _
(T (Rt st ) = 1 i
h=K+1 Zp{—}inl C I=K+1
K | I+n—1 (k=1 _ Iincl Af%
38 |G 3 (T ) ot | 1 (fut st
=0 L k=K+1 \ j=t h=k+1 Zp——n
[ K (k=1 _ K - G2 I+n-1 _
+ Z Ol—i,i Z H fj,n al%,n H (fh,n + Ih%«) 1- H fl,n
i k=i \ j=i h=k+1 2 p=n I=K+1
K K . 52
E|Criiy H f]n Ukn 11 (fh,n + I"10>
k=1 =1 h=k+1 Z:p——n

X fin+ =1 — Jin
h=K+1 " Zé—}inl Cpoh I=K+1

K i I+n—1 [k— I+n—1 . A}Zl
+ZE Croii Z Hf]n Ukn H (fh,nJFM)

i=0 L k=K+1 \j=t h=k+1 p=—n

K K K . 2 I+n—1 _
+ZE CI—i,iZ Hf] Ukn H (fhn+m> L- H fin

=0 | k=i \j=i h=k+1 p=—n I=K+1

Now, let us consider the three terms on the last right-hand side separately. Using
IO > (I +n — h)el > ¢t the first one can be bounded by

p=—n

i K (k=1 _ K 52 I+n—1 52 I+n-1 _
E CI—’i7i Z (H fj,n) 62771 ( H <J/E}37n + h};”)) ( H <]?}%,n —+ h};”) _ H fl,n)]
i k=i \ j=i h=k+1 € h=K+1 € I=K+1
i K (k=1 _ I+n—1 52
o) (1 0.+ )

h=k+1 €

K ’\2 I4+n—1 N
CI 1,0 (H f], )@Zm ( H </Z,n Eh >) ( H fl,n)] .
h=k+1 I=K+1

Next, using the law of iterated expectations and

R

~
Il
o

.P“%

I
o

()

K
_ZE
i=0

[X0)

ElA? 2 (C)] 02 +f2+f<f2 262
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o 1,j=0,.. ki+j<I}

20'2
FQ l
: " l>>

for all c € {0,..., I +n — 1}, where By, (k) = {C; |i = —n,
the first term on the right-hand side above becomes

K (k=1 _ K 52 I4n-1
Crisy. (H fj,n) 8i,n< I (ﬁiﬁ 6",;”))] ( 11 (
I=K+1

k=i \j=t h=k+1

K
> E
i=0

and, similarly, for the second term, we obtain

i) (1 )] ()

k=i 1 h=k+1

K
_ZE
i=0

Together, this term becomes

K (k=1 _ K 5.2 I4n—1 2 I4n—1
o (1) (1, (%)) (1 () L)

k=i \ j=ti h=k+1

K
> E
i=0

which, using similar arguments as above, can be bounded by
I4+n—1

bt i) 29 i 20) 1)

h=k+1

Now, letting n — oo, we get the following upper bound
20 K > 207
(I )it (31 () - I o) <
h=0 € i=0 k=i I=K+1 € I=K+1

which is finite using []52, 7; < oo if and only if 372 (x; — 1) < oo for z; > 1 for all j, and

as we have
0 o] 2
Z(fh 26% ) i;)fh_l_"z hzofh_l (fn+1)+ ;7};
o2

<sup(fn+1) th—l —|—22—<oo
heNy h=0 hO

h=0

by Assumptions and [3.8] Now, letting also K — oo, the term Y5 SK . o7 also

remains bounded due to

f:f:a f:%zzj:Ziﬁrl Si a.<oo.

=0 k=1 7=0 7
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Finally, as f; — 1 and o7/et — 0 for | — oo, we get [[7°, 1 (f7 + 2%/2) — 1 and

[k fi = 1 for K — oo leading to

i <12+2€0?> I /i—o.

I=K+1 I=K+1

Similarly, using the same arguments, the second term in the representation of
E(Var (A3 i 1,197, = Q1)) above can be bounded by

K I+n—1 — I+n—1 20h
Z Z (H f]) O_k( H <fh Eh )) 5
1=0 k=K+1 \ j=¢ h=k+1

which, for n — oo, can be bounded by

(f,f ¥ 2j>> S (ki 1)0? < oo,

k=K+1

([ )8 5 o 0

h=0 1=0 k=K+1 h=0

which vanishes for K — oo.

Finally, for the third term in the representation of E(Var*(A5 x ;|97 = Q1)) we get

K K A2 I+n—1 N
CI_HZ(H f]n) 3§,n( 11 <ffn+m1>) (1_ II fln)]

k=i = h=k+1 Z:p—fn C I=K+1

K K I+n—1
Cl_iviZ(HfJ”) Uk:n( H (flf,n+21hh?0>)]) (1_ H fl)

k=1 7 h=k+1 p=—n I=K+1

While, for n — oo, the second factor 1 — [[[775] fi can be bounded by 1 — [1° ., fi,
which converges to 0 due to [[2x,, fi — 1 for K — oo, the first factor above can be

bounded by
K K [k-1 K o2
ZNz’Z(Hfj) 013( II (fiJrJLL)),

K
> FE
i=0

i=0 k=i \j=i h=k+1
which, for n — oo, can be bounded further by
[e'¢) A2 K
(H (fh >>Z(j+1>032
h=0 e 5=0

which is bounded as >/ (j + 1)o? = 3224(j + 1)o7 < oo for K — co. This completes
the first part of c) for term A3 ; ;. Continuing with A3 ; ;, to prove also the second
part of c), we have E*(43 x; |97, = Qin) = 0 using the law of iterated expectations.
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By using similar calculations as for A3 ;. ;,, we get
I+n I+n-1 fj-1 I+n-1
2 ~2 2
E*(( ;,K,I,n) |Q?n - Q17H7F;,n> - Z CI—M Z H f;,n Ojn H flTn
i=K+1 j=i \h=i I=j+1

and

VCLT* (A;;,K,I,le?n = QI,n)
= B (E"(A3 k1)1 Q0 = Qrns i) Q1 = Qi)

I+n I4+n—1 [j—1 I+n—1 ’\12
=Y S () 22 [ I (7 o))
Zk_ Ckl

i=K+1 j=i \h=i l=j+1

Hence, to show that Var*(Aj g ;,,) > 0 vanishes in probability, we prove that
E(Var (A3 k.97, = Qi) is bounded for n — oo and that its bound converges to
zero as K — co. By plugging-in and using similar arguments as above for Aj j; ,, we

get

I+n I4n—1 [j—1 I+4+n—1 202
E(Var*(A3 k1,91, = Qin)) < Z Hi Z (H'fh) ‘712‘( H <fl2+€ll>)

i=K+1  j=i I=j+1
) 00 20_[ I+n I+4n—1
< (M7 2)) ¥ X e
=0 i=K+4+1 j=i
which is bounded for n — oo due to

I+n I+4+n—1 I+n—1 00

Yo Y o< G+1Lor—= > (j+1)o <o
i=K+1 j=t j=K+1 j=K+1

and this bound vanishes for X — oo. O
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3.10.2 Proof of Theorem [3.16

Similar to the proof of Theorem for the conditional limiting behavior of (R}, — }A%Ln)l
and to the proof of Theorem 4.7 in Steinmetz and Jentsch (2022) for the (unconditional!)
limiting behavior of (R;, — Ry.,)2, we decompose (R}, — Rin)2 by truncating the sums
and products to be able to apply Proposition 6.3.9 in Brockwell and Davis (1991)). For
this purpose, let K € Ny be fixed and suppose I,n € Ny are large enough such that
K < I+n—1. Then, after inflating (R}, — Rin)e with T+ n+ 1, we get

VI+n+1 (R;n — Rl,n)2
I+n I+n—-1 _ I+n-1
:\/I—‘—?’L—{—lZC}k_%Z( H f;n_ H f],n)
i=0 j=i Jj=t
K K K
=vI+n+1 Z C;—i,i (H ;n - H fﬂn)
i=0 j j
K
+VI+n+1) Ci; (
i=0

I+n I4n—1 I+n—-1
+VI+n+1 ) C}k_m( H fo— 11 fj,n)

i=K+1

D% * *
=Bl kint Bokint Bsxin

Hence, to derive the claimed conditional limiting distribution, it suffices to show that,
a) for all K € No, B} ;¢ ;1,/(Q7., = Qr.n» Drn) KN Ga.k| Q1.0 in probability as n — oo for
some (conditional) distribution 527K|Q1,oo, b) g~2,K|Q1,oo N G2|Qr.00 as K — 00, and c¢)
that, for all € > 0, we have

lim limsup P~ (|B K1n|>€|Q1n_an>—0 and

K—o0o nooo

hm lim sup P* (|A3K1n| > €|Q1n = an) =

K—oco nooo

We begin with part a). That is, for each fixed K € Ny, we consider

K K
Bigrn=VI+n+1 > Clii (H Jin
i=0 =

jf

T::M

f ) (3.77)
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where
I—j—1 I—j—1
*
IS Chj+1 S Ch iy
o =—n * o =—n
fin = I—j—1 and  fj, = T—j—1
> Cry > Oy
k=—n k=—n

In contrast to the situation in the proof of Theorem 4.7 in Steinmetz and Jentsch (2022)),
where all fj,n’s are indeed affected by conditioning on Qy ,, here, conditional on Dy, all

fin's are independent of the condition Q7 ,, = Q. Hence, for n — oo, the (unconditional!)
asymptotic bootstrap theory derived in Theorem and Corollary leads to

BY k.1.0(Q7 0 = Q1 Drn) SN (Qrx—1,YK) |90

in probability, where Qr k1 = {Cr_i;li = 0,...,1 + (K —I) = K}, (-,-) denotes the
Euclidean inner product in RE™ and Yg = (Y;,i =0,..., K) is a (K + 1)-dimensional
multivariate normally distributed random variable with Y5 ~ N (O, by K]]I f]_) with 3 K14
defined in Corollary [3.26]

Further, letting K — o0, wWe get <QI,K—I;YK> |Q[’Oo i> <Q]7OO,YOO> |Q],OO, where Ql,oo =
{Cr_iili € No}, and Yoo = (Y, € Np) denotes a centered Gaussian process with

covariance
[ee] 0.2 [ele] ) max(il,ig)—l
COU(Yi17Y;2> = I%l—{noo EK,Hfj (i17i2) = Z 73 H fl H fm (378>
j=max(i1,i2) F l=max(i1,12),l#] m=min(i1,i2)

for 41,79 € Ny. Moreover, as Qj ~ and Y, are stochastically independent, conditional on

Q/ o, the variance of (Q; ., Yo) computes to
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VCL’/’ (<QI,007Y00> |Ql,oo) - Zvar(cl—i,iy”QI,OO) + Z OOU(CI—il 11411 CI 19,12 12|QI oo)

i=0 i1,i2=0
117142
=> Ci Var(Y)+ Y. Cryi,CriyinCov(Yy,Yy,)
i=0 i1,i2=0
;1;1'2
00 00 00 00 00 0_2 00 max(%1,i2)—1
=> Ci Z Hfl > CraiCrii >, = I 7 I fm
1=0 Jj=t Hj = 11‘71'2‘:0 j=max(i1,i2) "7 l=max(i1,42) ~m=min(i,iz)
I#] 11719 1#§
o] 0.2 7 i1—1 i1—1
:Z ‘]2 ZCI mek +22 ZCI 11,@1201 zwszl ka:
s \is i1=1 i2=0 I=is
00 0.2 +1 J 00 i i1—1 i1—1
:Z ]2 : 12 z,szl? +2Z ZCI 11,81 IZCI 12712Hfl ka
j=0 nifi \i+1i5 —; Hi \Ji=1 1 jy=0 =iy
i

2
< oo

o

. 1 7 00 0.2 i1—1
,u,-fQ(j—i_l) <]+1ZCI m) +2MooZ ( ZCI 11711 ZCI 12,12)

oMty jl] i1=1 1 45=0

1)

due to Y324(j + 1)%07 < 0o by Assumption [3.4]

J

e ~ <

:OP

We continue with showing part c) for Bj ;... Using similar arguments as above, we have
to consider

BS,K,I,nKQ?n = Ql,mDI,n)
=VI+n+1

K K - I4+n—1 - K . I+n—1 .
X ZC;—i,i (Hf]*,n ( H flfn_l) _Hfj,n ( H fl,n_l)) |(Q?,n: QI,TL?DI,”)'
i=0 =i

Using the unbiasedness of f]*n conditional on Q7 , = Qr,, Dy, for fj,n, that is,
E*(fg*,n|Q?n - QIJI) = E*(fg*,n) = ij”

for all 7, and the independence of the f;n’s conditional on Q;n = O, and Dy, we
have E*(Bj r 1,197, = Qrn) = 0 by construction. Hence, it remains to show that
Var*(Bs i 1.,1Q7 ., = Qr,) is bounded in probability for n — oo and its bound vanishes for
K — oo afterwards. Now, to compute the bootstrap variance Var*(B; g ; ,|Q7,, = Qin),
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for any fixed K € Ny and n € Ny large enough such that K < I +n — 1, we get

Var*(B;,K,I7n| Q;n = Q[,n)

=U+n+1)
K I4n—-1 I+n—1 K
X Z Cl—il,hol—ig,izcov* H f;‘kl, H f]l n’ H fjg n H f;;,n|Q}i,n = Q],n
11,i2=0 J1=t1 Ji1=t1 Ja=t2 Ja=t2

K
=T +n+1) > Cr_iiCrip;,Cov*

i1,42=0

K i2 I+n—1 N I+n—1 K N
S 2(I+n+ ]—) Z Z C[—il,ilof—i27izcov* < H f;,n H f]l no H f]gn H f;;,n) )

12=0141=0 J1=11 J1=11 J2=12 J2=12

(I+n1 K I+n—1

R K
H f]’fl,n_ H 1n’ H fj2n_ H f]z,)

J1=1t1 J1=i1 J2=i2 J2=t2

using that, conditional on Dy, the J?inn’s are independent of the condition Q}m = Q.

To calculate the covariance on the last right-hand side, for i; < iy, first, we consider the

mixed moment

I+n-1 K I+n—-1 _ K
L (( H fjl,n_ H f;,n) ( H f;;,n_ H f]i,ﬂ))

J1=t1 J1=t1 Ja=t2 Ja=t2

i9—1 I+n—1 i9—1 I+n—1 N
= E° H f]h H Jzn —2E" H fﬁ, H ]2, H fjs,n
J1=1t1 Ja=i2 J1=1t1 J2=12 J3=K+1
i2—1 N K
+ E* H f;lan H ]2:
Ji=i1 Ja=t2
(ii_f R I+ﬁ1 . 32
Jj1=t1 1 Ja=t2 7 Zi—in 1 Ckvh
i2—1 K - 5.2 I+n-1
—2( I[ fiin 11 (fjw‘f‘ IJflC) IT fiom
J1=11 Jo=i2 Zk——n k.j2 ja=K+1
(121_[1 R 1}_{{ . 52
fivn (f m T 232n> )
J1=t1 ]1 Ja=t2 72 Zi:{n ! Ck,j2

since ff, and f,m are independent for j # k and j,k € {0,...,] +n — 1} conditional on
Dl,n-

Similarly, we have

I+n—1 _ K I+n-1 _ K
E*( H f;l,n_ H f;l,n> = H fjl_ H fjl

Ji=t1 Ji=u1 J1=t1 Jj1=u1
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leading to
I+n—-1 _ I4n—1 K
* *
Cov H H f]l:n’ H f]z, H fj27n
J1=t1 J1=t1 J2=ti2 J2=ti2
i9—1 I+n—1 = 5.2 I+n—1 ~
J— J2,n
= H f]h H (sz,n+ I—j2—10 ) - H sz,n
J1=t1 J2=ti2 k=-n k,j2 Ja=t2
ig—1 K = 6.2 K = I+n-1
Jj2,n
-2 H fj1, H <fj2,n+ [_j2_10 >_ H sz,n H fj3,n
J1=t1 Ja=t2 Zszn k,j2 Ja=i2 j3=K+1
io—1 . K .
j2’
+ H fjl:n H (f]% + —I—jo—1 ~ Jjo—1 C ) .727
J1=t1 Jo=i2 k=—n k,j2 Ja=ti2
19— I4+n—1 ~2 ]3 1 I+n 1 ~2
= 21—[ f Z _ Tjn J?Z Tja,n
Jim EI j3— 10 34, Jmn I*jzflc i
J1=t1 Jaz=i2 k=-n k,j3 J4 12 Jo ]3+1 k=—n k,j2
52 Js3—1 ~ - 52 Itn-1
Tjs,n Jj2,n
23 e (M) (1 (Rt ozt )) (I f
Jja=ip Lik=—n k,js  \ja=i2 Je=j3+1 k=—n k,j2 ja=K+1

o3 B A2 7;
.]37 J2,n
+ Z j3—1 ] H fj4,n H (fjmn I—jo— )

I 1
Ja=i2 Zk—fn C’ws Ja=i2 J2=73+1 k=—n Ck,jz

By rearranging the terms in brackets on the last right-hand side above, it becomes

I4+n—1 6.2 73—1 N I4+n—1 . 5.2
J3,n J2,m
> i | I s II <fj2,n + 1—g2—10>
k,j2

js=K 41 2ok—en Chyjs \ji=iz Jo=ja+1 2 h="n
2 7j3—1 = I4+n—1 = 6.2 I4+n—1 N
]37 J2,n _ )
o5 i (T ) (T (B o)) (- T o
Ja=iz k——n k,js \Jja=i2 Jj2=j3+1 k=—n k,j2 Jja=K+1
2 7j3—1 .
]3:
ey e (7
jz=ia Lik=—n k,js \Jja=i2
I+n—1 - 5,2 K = 5.2 I+n—1 N
X _ Thm ,
x| 11 (sz,n"‘ =1 > I1 (sz,n+ =1 o ) II fin
jo=j3+1 k=—-n k,j2 jo=j3+1 k=—n k,jo ja=K+1

52 sl K . 52 I4n-1 _
J: J2,n
03 e (M) (I (R i) ) (1= 11 Ju

1
j3=tio k_fn Ok’Js Jja=i2 Jo=j3+1 k=—n Csz ja=K+1

Now, following the same steps as in the proof of Theorem 4.7 in Steinmetz and Jentsch
(2022), we can compute the unconditional expectation of the above. Using C;; > €,

E(fen|Bin(c) = f, E(G?,|Brn(c)) = o? as well as

0'2 0'2
+ 2 <

2
- ‘c _7c 2 < %c 2 3.79
Zif Ckc (I"‘ ) +f c +fc ( )

B (f2,|Bra(c)) =
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forallc € {0,...,I+n—1}, where B, (k) = {Cijli=—n,....I, j=0,...,k, i+j <I+n},
we can argue that Var*(B; ;|97 = Qi) > 0 vanishes in probability for n — oo and
K — oo afterwards, by showing that its unconditional expectation is bounded for n — oo

and that its bound converges to zero as K — oo.

Using that E(Cov*( ﬁrnn ! fﬁ,
by

ig—1 I+n—1 o2 ja—1 o2 I+n—1 952
Tn)ls —2 (M@) I (+)
<j1=i1 1 j3=K+1 <I +n— j3)€J3 Ja=12 7 e J2=j3+1 2 €’

7 I+n 1 f]% _ Hh i fj2 ,,)) can be bounded

]1 11 J J1,m? J2 12

4=1
K 2 j3— I+n 1 2 I4+n—1
o 0 20
Ja=t2 (I+n Js )6j3 j4= . Jo= J3+1 Ja=K+1
K 2 Ja—1 o;
+
J?Z;z j )6]3 (]4 =ig J4 634))

K ) 20]2 I-l—n 1 I+n-1
x| 11 <j2+ 6]27) (f )—1 I 7
Jjo=j3+1 Jo=K+1 Ja=K+1
K 0_2 jz3—1 20 2 I4+n—1
& (i ) (i (20 (i)
j3=ti2 ([+n_j3)€‘73 (]4 =iy jo=j3+1 ! Jja=K+1 g

we can bound also E(Var*(B; g ; ,|Q7 ,, = Q1)) from above. Precisely, putting everything

together, we get
E(Var*<B;,K,I,n|Q},n =0Q1,))

K 19 ig—1
<2 Z Z Hiy iy ( H fj1)

12=0141=0 Ji=t1
. 1%1 ([—i—n—i-l)di ]i_[1< ) I+n 1 ( 2 +2q322>
il (LA —jgs)eis \ o T €1 Pt 20 e
K (I+7’L—|— 1)0-2 Ja—1 I+n 1 202 I+n—1
+Z(I—|—n—j)ejj33 H J4 + 32,> H fin—1
J3=1i2 3 j4:12 J2 J3+1 Jja=K+1
K (I+n+1)02 (JB ! )
+ > ] )
i ([+n ]3)6J3 Pt 634

&h

20. 205, I+n 1 I+n—1
Jj2= J3+1 jo= K+1 ja=K+1
K (I+n+1)0? ]3 ! 7 2073, In-1
F 2 T | L ( ) <”+ ) Ll
J3=t2 3 Ja=t2 Je=j3+1 ja=K+1
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and the leading term of the last right-hand side becomes

i2=0171=0 J1=11

I4+n—1 2 jz—1 2 I4+n—1 2
o o 207
J3 2 J4 2 J2
X — . — . —
] Z €73 H ( Ja + 6]4> ] H < J2 + P )
Jja=K+1 Ja= Je=js+1

K i ia—1
2 Z Z Fiy Hiy ( H fj1)

i2
2 Jz3—1 o2 I4n—1 202 I+n-1
+ H(J%L_{—ﬁ) H (j22+ J27> H fj4_
Jj3=t2 Ja=i2 € J2=y3+1 Jja=K+1
K 0.2 j3—1 0.2 K 20.2 I+n—1 20.2
J 2 7 2 J2,m 2 J
e 2T (e 2] | I (22 ) (T0 (2 222)
Jj3=t2 Ja=io Jjo=ja+1 Jje=K+1

I+n—1
X H fj4
ja=K+1
2 ja—1 , o2 K
o> 2 (%)) (11 (
Jz=t2 Ja=iz Je=Jj3+1

20.2 I+n—1
fj22+ ))( H fJ4_ )}’
Ja=K+1
which can be bounded further by

(Bl )5 2210

ja=0 i0=011=0 j3=K+1 J3=t2 Ja=K+1

+zj;;[(n (220) o) (0L )+ £ (T 0]}
Ja=iz Ja=K+1 Jja=K+1 j3=t2 ja=K+1

Now, considering the four terms in brackets separately, for the first one, we can argue that

it vanishes asymptotically due to

K &2 > (7]2'3 - . 20323
DD Haki; Y, S K+1Z“ Zuu > (st 1) =0

i2=011=0 Jj3=K+1 12=0 11 =0 Jj3=K+1

for K — oo, because the sequence (j =1 ZLO i, j € Np) is converging and, consequently,

also bounded, and due to 3272, (j —i— 1)2—4 < o0 by Assumption 3.8 Similarly, using that
Xrnfi = land TS, (fF + ) — 1 for K — oo, we can also show that the other
three terms vanish asymptotically. ThlS completes the first part of ¢) for B3 ;..

Similarly, for showing part c) for B3 j ;,, we have to consider

;,K,I,n| (Q}k',n = Qf,ny Dl,n)
I+n (I +n—1 I+n—1

~

=VIi+n+1 Y Cr. | 11 f}jn— 11 fj,n> (QF.n = Pin,Din).
j=i j=i

i=K+1
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By the same arguments as used above for B} ;. we get E*(B3 1,197, = Q1) =0
and for any fixed K € Ny and n € Ny large enough such that K < I +n — 1, we have

VCLT’*( ;,K,I,nlg?,n = Ql,n)

I+n—1 I+n—1 . I4+n—1 .
:([ +n 4+ 1) Z C’I,,-l,l-lCI,iwzCov* H f;hn, H f;‘;’n’Q?n = Ql,n

i1,52=K+1 Jji=t1 Jo=t2

I+n—1 12 I4+n—1 I+n—1
§2(1+n+1> Z Z leil,ilcffig,izcov* H f]1,n’ H f]27 :

to=K+111=K+1 J1=11 J2=t2

To calculate the covariance on the last right-hand side, for i; < iy, we consider the mixed

i2—1 I+n—1
E* ((H fj*l’n) ( H j2’ )) ’
Ji= J2=1%2

which is just the first term of the mixed moment of the covariance calculated for Bj x ;..

moment

By using similar calculations to get E*( fc*fl) (for B3k ;.,,), we obtain

I+n71’\ I+n71/\
ov”* H f;hn’ H f;';,n

J1=u1 J2=t2

[ ia— 1 T4n— 1 I+n-1 _ I+n—1 _
L Ji=i1 J2=1%2 J1=1 J2=12

_ (H (7. n)) (H 1E*< )) - (Hf) (Hf)]

| \J1=t1 J2=i2 Ji=i1 J2=i2

I io—1 I4+n—1 = 5.2 I4+n—1 N I+n—1
_ J2,n
— H f]h H (fjg,n + Z[_j2_10 ‘ ) - H fjhn H sz,
J1=11 J2=12 k=—n k,j2 Ji=u1 J2=12

12—1 N I+n—1 . 6'2 I+n—1
(T Fun) | T (fﬁ,w]_j;fi ) 0 7

J1=i1 Ja=i2 Zk:—n Ck,]é Ja=t2
I+n—1 52 i2—1 Jja—1 = I+n—1 . 52
_ Ja,n J3,n
- Z ]—j4—1C H fjlvn H sz,n H (fj3,n+ I—j3—lcv )
Ja=i2 k=-n k,ja \Jj1=i1 Ja=i2 Jjz=ja+1 Zk:—n k,j3
I+n—1 (I+7L+1 i2—1 ja—1 I4+n—1 62
J4n 72 2 Ja,n
< 5 U (] ) (T ) (T (7 2]

ja=io J1=t1 Jo2=ti2 Jj3=Jja+1

Noting that all involved summands and factors are non-negative, taking expectations
of the last right-hand side and using the law of iterative expectations and C;; > €,
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E(ﬁ,n]BLn(c)) = fe, E(G7,|Brn(c)) = 02 as well as (3.79), we get

I+n—1 0.2 i9—1 Ja—1 ) 0.]22 I+n—1 ) 20.?3
S (T (I (%)) (T (0 27)
= J1=t1 J2=12 Jz=ja+1

Ja=12

such that the leading term of E(Var*(B; x ;,197.,, = @in)) becomes

I+n—1 12 I+n—1 2 i2—1 Ja—1 ) 0,2 I4+n—1 ) 20.2
2 S S e 2 (T ) (T (14 2)) (11 (2+22)

io=K+1i1=K+1 Ja=12 J1=11 J2=t2 J3=jat+1
00 20.2 I+n—1 12 I+n—1 0.2
2 J3 J4
<ope [ TT(+Z2) ] X 2 mam >
j3=0 io=K+1i1=K+1 Ja=t2

00 ) 20.2 I+n—1 12 I+n—1 0.2
<o (TL(2+22)) 3 % e 3 28

J3=0 o=K+1i1=K+1 Ja=t2

For the triple sum on the last right-hand side, we get

I+n—1 12 I+n—1 2 I+n—K-1 i2+K I+n—1 0.2
Ja __ J4
SN DTN SRS TS S STNURID S
io=K+1i1=K+1 Ja=t2 io=1 ih1=K+1 Ja=i2+K
I+n—K— 1 12+ K I+n—1 0_2
_ Ja
S S E S PP S
io=1 2 i1=K+1 Ja=is+K
I4+n—K-1 I+n—1 2
<const. 1
= Z 2Mig+K Z 634
io=1 j4 o+ K

I+n—1 2]K

=const. Z Z L ke

j= 1+K

Further, the sequence (1;,7 € Ny) shares the properties of (Cj_;;, 7 € Np) in a deterministic

sense such that Z{;K L < const.j2. Consequently, we have
I4+n—1 2 —K

Z Z Ly < const. Z j

j= 1+K j=14+K

as K — oo by Assumption O

3.10.3 Proof of Theorem 3.17

The proof is analogous to the proof of Theorem 4.12 and Corollary 4.13 in Steinmetz
and Jentsch (2022). The claimed uncorrelatedness of (R, — Ri,n): and (Ri, — Rin)

conditional on Q7 , = Qr, and Dr,, follows from
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Cov* (R}, = Ry, )1, VT +n+ (R, — R;,)21Q7, = Qra)
=vI+n+1

I+n I+n—1 I+n—1 N I+n I4+n—1 N I+n—1 N
X COU* Z Of—i,i H F;—i,j - H f;n y Z Ol—i,i H f;:n - H f],’n ‘ Q;TL - QI,TL
J=i Jj=i i=0 j=i j=i

=0

=VI+n+1
I+n I+n—1 I+n—1 R I+n—1 N I+n—1 N
X Z E*(Cr-i i H Fi i — H Jiin | Creii H Ih = H Jinn |11 =Crn

11,82=0 Ji=t1 J1=t1 J2=t2 J2=i2
=0
since for all i1,i5 = 0,...,I + n, we have
Cr—iy,iyCr—ig,iz
I+n—1 N I+n—1 N I+n—1 I+n—1 R
* * * * *
xXE H fj2,n_ H fj2a” E H Ff—il,jl_ H fjhn
Ja=i2 Ja=i2 J1=i1 Jj1=t1

=0,

Flns Q},anf,n) |Qj"n:QI,n)

because the inner conditional expectation on the last right-hand side is zero. O

3.11 Proofs of Section

3.11.1 Proof of Theorem [3.20

Following the technique of proof in Theorem and using ijn—fj:OP(<[+n—1)_1/2),
;ﬁn_‘]@’n:OP*((I“l‘n_l)il/Q) and 8]2»’n—aj2:0p((]:|—n—1)*1/2) leads to the same limiting
result also for the process uncertainty part (R}fn—R}fn)l of the alternative Mack bootstrap.
O

3.11.2 Proof of Theorem [3.22

Following the technique of proof in Theorem [3.16] and exploiting the limiting properties
from Assumption [3.21], we get the claimed asymptotic results. O
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3.11.3 Proof of Theorem [3.23

Based on the results established in Theorems and [3.22] the arguments are completely
analogous to those used in the proof of Theorem [3.17] O

3.12 Conditional versions of the CLTs from Steinmetz and Jentsch
(2022)

For the sake of completeness, in Theorem and Corollary below, we summarize
the results from Theorem C.1(ii,iv) and Corollary C.2(ii,iv) in Steinmetz and Jentsch
(2022).

Theorem 3.27 (Asymptotic normality of fJ conditionally on Q;,; Theorem

C.1(ii,iv) in Steinmetz and Jentsch (2022)) Suppose Assumptions
and[3.9 are satisfied. Then, as n—o0, the following holds:

1) For each fired K€Ny, let f _=(fo, f1,..., fx) and define
(i) Ik

iKm(QI,n):(fO,n(QI,n)a fl,n(QI,n)> ceey fK,n(QI,n))/-

Then, unconditionally, we have
d
T2 (f e (Qra)—F 1) ~5N (0,3,

where J?=diag <\/I—I—n—|—1—j,j:0, - K) is a diagonal (K+1)x (K+1) matriz of

inflation factors and the variance-covariance matriz
1 1 !
Sr=7o (1) B (1)
where Eg?g is defined in (3.80)), has entries

2%&(]17 j2)
_ S fin B (E(Ci)|Cio) E(E(Ciy | Cioo) )+ E (E(Cijy41|Cioo) E(E(Cl jp 11| Cliioo)))
Mgy gy
N —fin B (E(Ci i 11]Cio0) E(Ci 3y | Cioo)) = [, B (E(Ci 4y | Cioo) E(Cli jy41|Ci )
gy Mgy

fOT’jl,jQZO,...,K.
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(ii) For each fired K€Ny, let fKn:(fO,mfl,n, o ]?Kn)’ Then, conditionally on Qp p,
we have

JrlL/Q (f]{m_i[(,n(gl,n)) |Q1,HL>N (07 2&?&) )

where the variance-covariance matriz

22 =7, (1) 22y ()

o? .
where zﬁ?g is defined in (3.81)), has entries Eg?f(j,j)zafcjgzﬁ—afcﬁl for j=0,..., K
2) . . 1) . . . N . .
and E%?i(]l)]?):_zg(?i(jlva) fO’l" ]1792:07 ) K; Jl?é]2-

We obtain
SWr=Jy (1) Sedy (1) (3.80)
and
2@ =E(Var(C,x|Cix)), (3.81)

where C; =C} 15— Fir- Note that, due to the law of total variance, we have

Sro=SwetSe and Ty =S +22 (3.82)
where Yk j=diag (ag a. UK).

Corollary 3.28 (Asymptotic normality for products of fj,n’s conditionally on
Qr.n; Corollary C.2(ii,iv) in Steinmetz and Jentsch (2022)) Suppose the assump-
tions of Theorem[3.27 hold. Then, as n—o0, the following holds:

(i) For each fired K€Ny, unconditionally, we have also joint convergence, that is,

Hﬁ(:l fj,n(QI,n)_H]K:i fj,n d (1)
VI+tn+l ( o N (0, EKyan)

where Eg?nszjh(iK)Z%)f‘]h(fK)/ with Jy(-) as defined in (3.63]).

(i1) For each fivzed K€Ny, conditionally on Qg ., we have also joint convergence, that is,

]._[I(:’L ]?,n_HK:Z f,n(Q ,n)
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where Eg?l—[ fj:EK7Hfj_227)Hfj} where 3y 11y, is defined in Corollary 3.2(ii) in
Steinmetz and Jentsch (2022).

3.13 Additional simulation results

Note that the first parts of the alternative Mack bootstrap predictive root of the reserve
and the intermediate Mack bootstrap predictive root of the reserve are equal. Hence, the
following findings hold for both approaches.

Moreover, in both Setups a) and b) for the different distributional assumptions, we applied
the Kolmogorov—Smlrnov test of level a=5% to test (R*(m Rﬁ?)l given Qﬂ)*zgﬂ) and
D ) for m= 1,...,500 is normally distributed with zero mean and variance as in (|3.39|).

For Setup a), it fails to reject the null hypothesis of a Gaussian distribution for about
92% out of M=>500 samples, if the gamma distribution is used, for about 87% in the case
of a log-normal, and for about 95% for a truncated normal distribution to generate the
lower bootstrap triangle. The picture is essentially the same for all n€{0, 10, 20, 30, 40}.
In comparison, for Setup b), the test does always reject the null for the gamma and for
log-normal distribution, but only in about 28% out of M =500 for the truncated normal
distribution. The results are pretty similar for all n€{0, 10, 20, 30, 40}.

These findings can be explained by a property of the gamma and the log-normal distribution.
Both tend to ’lose’ their skewness and excess of kurtosis for % growing large in this
parameter setting. Hence, as the range for the entries of the ﬁrst column in Setup a)
is [120x10%, 350 10°] with [120x10*, 350x 10%] for Setup b), we observe more skewness
and more excess kurtosis in b) in comparison to a). In particular, this demonstrates that
the distribution of the (asymptotically dominating) process uncertainty terms (Rj,—
R1,)11(Q5.,,=Q1n, Dr,n) and (R}, —R},)11(Qf,=Q1.n. Di,n), respectively, generally does
depend on the distribution (family) of the individual development factors also for large
(effective) number of accident years I+n+1.

As a summary, we show boxplots of skewness and kurtosis as well as arbitrarily chosen
density plots for both settings a) and b) in Figures |16/ and [17| for /=10 and n=10 and for
all three different distribution assumptions in (DGP1), (DGP2), (DGP3) generated by the
original Mack bootstrap. The results do not change for the alternative Mack bootstrap.
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Figure 16: Boxplots of skewness and kurtosis as well as five arbitrarily selected density plots for
the simulated Mack type bootstrap conditional distribution of (Rin—ELn)l given
Q7 ,=CQrn and Dy, for n=10 and I=10 for the Setup of a), where F}'; follows a
(conditional) gamma (top), log-normal (center) and truncated normal distribution
(bottom).
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Figure 17:
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Boxplots of skewness and kurtosis as well as five arbitrarily selected density plots for
the simulated Mack type bootstrap conditional distribution of (Rf,n—}?[,n)l given
Q?,n:QL" and Dy, for n=10 and I=10 for the Setup of b), where FZ*J follows a
(conditional) gamma (top), log-normal (center) and truncated normal distribution
(bottom).
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Next we compare the bootstrap dlstrlbutlon of (R*(m) R(m)) |(Q) m)* an, n) and
(RLn —Rl,n )y (m) ](QMJr QM, ™) respectively, to the dlstrlbu’mon (R% 0y, Q5 )
obtained by Monte Carlo Slmulatlon for m=1,...,500. We apply the Kolmogorov—Smlrnov
test of level a=5%.

Tables [10[ and [11] summarize the results for Setup a) and b), respectively, for the original
Mack and alternative Mack bootstrap. The results of the original Mack and the alternative
Mack bootstrap do not differ.

In general, for increasing n the percentages of fail to reject the null hypothesis increase.
If we choose the true underlying distribution, we fail to reject the null hypothesis more
frequently than if we choose the wrong distribution. For Setup b) it is more important
to choose the true underlying distribution compared to Setup b). If the underlying
distribution of the individual development factors is skewed, the chosen distribution for F7';
and F}',
a gamma distribution for Fy; instead of a log-normal distribution as true distributional

respectively, for the lower triangle should be skewed. For example, if we choose

family of F;, the percentage to fail to reject the null hypothesis is higher compared to if
we choose a truncated normal distribution, e.g., for n=40, we get that 69% out of M =500
fail to reject the null hypothesis assuming a gamma distribution compared to 31% using a
truncated normal distribution (cf. Table . Also, if the true underlying distribution is
a truncated normal distribution and we choose a gamma, then 50% out of M =500 fail
to reject the null hypothesis or to assume a log-normal distribution, then 39% and if we

choose the true underlying distribution, then 84% for n=40 (cf. Table .

For Setup a) the effect of choosing the wrong distribution is not as high as for b). We
can explain this with the property of the gamma and the log-normal distribution. Both

cr
tend to "lose’ their skewness and excess of kurtosis for =% growing large in this parameter
] n

setting.
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chosen distribution gamma log-normal trunc. normal
true distribution | n | oMB aMB | oMB aMB | oMB aMB
0 | 0.57 0.55 0.45 0.50 0.49 0.51
10 | 0.66 0.69 0.65 0.70 0.58 0.71
gamma 20 | 0.73 0.72 0.72 0.79 0.68 0.80
30 | 0.75 0.73 0.75 0.83 0.72 0.81
40 | 0.80 0.76 0.79 0.87 0.79 0.83
0 | 044 0.47 0.57 0.56 0.45 0.47
10 | 0.60 0.61 0.69 0.68 0.60 0.62
log-normal 20 | 0.69 0.73 0.78 0.77 0.70 0.64
30 | 0.70 0.77 0.83 0.80 0.78 0.70
40 | 0.81 0.80 0.89 0.85 0.80 0.73
0 | 0.46 0.49 0.45 0.52 0.50 0.48
10 | 0.62 0.63 0.71 0.67 0.59 0.57
trunc. normal 20 | 0.67 0.68 0.78 0.75 0.71 0.71
30 | 0.72 0.71 0.80 0.80 0.75 0.73
40 | 0.76 0.73 0.82 0.82 0.84 0.85

Table 10: Process Uncertainty: Percentages of failed rejections for Kolmogorov-Smirnov
tests of level a=5% for the null hypotheses E*((an—ﬁj,n)ﬂQ?RZQ[,TL):E((RML—
El,n)l’Ql,n) and ﬁ*((R;n—é}tn)l]Q;ﬁn:QLn):E((RLn—f{Ln)l|Q1,n), respectively,
for the original Mack bootstrap (oMB) and the alternative Mack bootstrap (aMB) for
different parametric families of distributions of F'; for i4j>1I, for =10 and different
n in Setup a).

chosen distribution gamma log-normal trunc. normal
true distribution | n | oMB aMB | oMB aMB | oMB aMB
0 | 0.52 0.48 0.40 0.35 0.34 0.34
10 | 0.66 0.63 0.44 0.53 0.49 0.47
gamma 20 | 0.77 0.72 0.66 0.66 0.58 0.51
30 | 0.80 0.76 0.70 0.68 0.60 0.53
40 | 0.83 0.80 0.71 0.75 0.61 0.57
0 | 0.32 0.33 0.44 0.41 0.18 0.18
10 | 0.50 0.54 0.55 0.50 0.21 0.22
log-normal 20 | 0.60 0.55 0.65 0.63 0.23 0.25
30 | 0.61 0.60 0.68 0.72 0.29 0.28
40 | 0.69 0.67 0.78 0.75 0.31 0.30
0 | 0.30 0.33 0.21 0.26 0.49 0.51
10 | 0.40 0.45 0.29 0.33 0.64 0.60
trunc. normal 20 | 0.43 0.49 0.39 0.35 0.78 0.78
30 | 0.45 0.54 0.40 0.38 0.80 0.85
40 | 0.50 0.59 0.42 0.45 0.84 0.87

Table 11: Process Uncertainty: Percentages of failed rejections for Kolmogorov-Smirnov
tests of level a=5% for the null hypotheses E*((R;n—ﬁf,n)l\Q},n:QI,n)zﬁ((R[’n—
EI,n)l’QI,n) and ﬁ*((R}in—ff}fn)l!QINZQI,n)ZE((RLn—RI,n)l|Q1,n), respectively,
for the original Mack bootstrap (oMB) and the alternative Mack bootstrap (aMB) for
different parametric families of distributions of Fl*j for ¢+j>1, for I=10 and different
n in Setup b).



4 Conclusion and Qutlook

In this dissertation, we derived the limit unconditional and conditional distribution of the
predictive root of the reserve based on Mack’s model and showed bootstrap consistency

results.

We proposed a general and fully described stochastic framework based on Mack’s model
and a suitable asymptotic framework for a loss triangle. We derived for an increasing
number of accident years CLTs for (smooth functions of) the parameter estimators in
Mack’s model, which allows for asymptotic inference for the development factors and
variance parameters.

We obtained the limit unconditional and conditional distribution of the predictive root of
the reserve. Therefore, we split the predictive root of the reserve into two additive random
parts covering the process and estimation uncertainty, whereas the estimation uncertainty
is asymptotically negligible.

Unconditionally, but also conditional on either the whole observed upper loss triangle or
the last observed diagonal we showed that the process uncertainty part is non-Gaussian
distributed and the limiting distribution depends on the parametric family of individual
development factors. By contrast, the parameter uncertainty part is measurable with
respect to the observed loss triangle. We derived that the estimation uncertainty part
has to be inflated properly and follows only conditional on the last diagonal of the loss
triangle a normal distribution. We proved that the unconditional limit distribution of the
estimation uncertainty is non-Gaussian.

Altogether we got that the predictive root of the reserve has unconditional and conditional
the same limit distribution as the process uncertainty part which is in general a non-
Gaussian distribution. This cast the common practice to use a normal approximation
together with the estimators of the moments of the reserve by Mack’s model into doubt.

We used the derived conditional limit distributions of the process uncertainty and the
estimation uncertainty, as a benchmark and compared them with their bootstrap versions.
For the Mack bootstrap proposed by England and Verrall (2006) we showed that the
bootstrap approach is only valid. We showed that the Mack bootstrap mimics correctly the
(condional) distribution process uncertainty part if the parametric family of distributions
of the individual development factors is correctly specified in the bootstrap proposal. In
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contrast, we showed that the parameter uncertainty part is not captured correctly by the
Mack bootstrap. The limit conditional variance of the Mack bootstrap parameter uncer-
tainty part is bigger compared to the conditional variance of the parameter uncertainty
part. Hence, the Mack bootstrap does not correctly mimic the (conditional) distribution
of the parameter uncertainty part. Using these results together with the fact that the
estimation uncertainty part is asymptotically negligible, we derived that the (conditional)
bootstrap distribution of the predictive root of the reserve is correctly mimicked and called
valid if the parametric family of distributions of the individual development factors is
correctly specified in Mack’s bootstrap. Asymptotic validity of a bootstrap approach is a
fundamental property, but especially for finite samples it is beneficial to capture also the
uncertainty due to model estimation correctly.

Therefore, we proposed a new more natural alternative Mack bootstrap, that is centered
differently. The new bootstrap proposal generates recursively backward based on the
diagonal Q}fn:Ql,n new upper loss triangles. Bootstrap estimators for the development
factors are derived based on the bootstrap-generated loss triangles. The conditional
variance of the backward bootstrap estimation uncertainty part is asymptotically the
same as the variance of the estimation part conditional on the last observed diagonal. In
addition, the conditional estimation uncertainty distribution is correctly mimicked by the
new bootstrap.

We showed that the new alternative Mack bootstrap is able to mimic the limit (condi-
tional) distribution of the process uncertainty and the predictive root of the reserve, if
the parametric family of distributions of the individual development factors is correctly
specified, and in addition, it is able to mimic the (conditional) limit distribution of the
estimation uncertainty correctly. Therefore, the new alternative Mack bootstrap is valid
and especially pertinent, since it captures in addition correctly the (asymptotic negligible)

estimation uncertainty part.

In the future, we want to apply the alternative Mack bootstrap not only to simulated data
but also to real-world loss data and analyze its performance in comparison to the original
Mack bootstrap.

Also, the assumptions and the proposed framework can be used to define a model for
quarterly data, since the claims data are collected quarterly. A quarterly model will lead
to a bigger set of residuals that can be used for a non-parametric bootstrap step. Also, pat-
terns of the development of claims can be easier identified in quarterly data. Additionally,
it would be interesting to analyze the performance of the bootstrap based on quarterly data.
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In addition, we are interested in the results for the limit distribution of the predictive root
if we assume that claims C; are not identical, but still independently distributed. In
practice the C; ¢ may not the identically distributed since the underwriting of the line of
business may have changed over the years or the business line is growing over the years.

Mack’s model takes a so called ultimate view of the reserve risk. The ultimate view
considers the uncertainty of future claims between the latest observed cumulative claim for
an accident year ¢ and its ultimate, i.e., estimating the uncertainty of the claims until they
finally settled. For the one-year view perspective, we look at the uncertainty of the best
estimate reserve made at time I and after one year, i.e., I+1. Therefore, we look at the
difference between the best estimate of the reserve made at time [ and the best estimate
made at [+1 considering the claim payments made during this year. The difference is
called claims development result (CDR).

For future work we want to apply the general and fully stochastic model to the one year
view for the reserve risk to derive the (conditional) limit distribution of the CDR and to
derive bootstrap consistency results by the tailor-made one-year bootstrap.

Also, we want to adjust the new alternative Mack bootstrap algorithm for the one-year
view, and derive bootstrap consistency results.

The concept of the predictive root of the reserve could be applied together with the
asymptotic framework of the loss triangles to other prediction models for reserving, e.g.,
reserving models based on general linear models. Their asymptotic limit distributions
could be derived and used as a benchmark to derive bootstrap consistency results since also
for the GLM type models England (2002)) and England and Verrall (1999} 2006) proposed
a tailor-made bootstrap approach. It would be interesting to check the proposed bootstrap
type for validity and pertinence. If required, a new bootstrap type can be proposed again

that would be pertinent, not only valid.

Taken together, we showed that the limit distribution of the reserve is in general non-
Gaussian and casts the common practice to use a normal approximation for the reserve in
Mack’s model into doubt. In addition, we showed that the Mack bootstrap only mimics
under mild assumptions the process uncertainty part correctly but not the estimation
uncertainty. Therefore, we suggest an alternative Mack bootstrap.
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