Dana Farina WEIHER, Lüneburg

Measurement Estimation Accuracy: A Comparison of Different Approaches

To determine the accuracy of an estimate, it is common to calculate the percentage deviation ($D_{\text {perc }}$) from the real value (Joram et al., 2005). Using data from 615 students ($5^{\text {th }}$ and $6^{\text {th }}$ grade) from a written estimation test for length, area, capacity and volume, disadvantages of $D_{\text {perc }}$ were observed: The scale is closed to underestimations, which causes high skewness and high number of outliers (for overestimations). Internal consistency and discrimination power is rather low. Therefore, two alternatives were investigated: Dividing by the smaller value (estimated or real value, $D_{\text {min }}$) proposed by Lörcher (2000), and logarithmic error score ($D_{\text {log }}$), adapted from Clayton (1996).

Approach	Formula
$D_{\text {perc }}$	$\mathrm{D}_{\text {perc }}=\frac{e-r}{r}$
$D_{\log }$	$D_{\log }=\log _{10} \frac{e}{r}$
$D_{\min }$	$D_{\min }=\frac{e-r}{\min (e, r)}$

Interpretation

$$
\begin{gathered}
-1<D_{\text {perc }}<\infty \\
0=\text { exact estimation } \\
-\infty<D_{\log }<\infty
\end{gathered}
$$

-1 or 1: deviation of one order of magnitude (factor 10 of r)
$-\infty<D_{\min }<\infty$
equally good: e half of r, e twice of r
Tab. 1: Different Approaches for calculating the estimation accuracy ($e=$ estimated value, $r=$ real value).

Results from testbook A (310 students) shows highest internal consistency for $D_{\text {log }}(\mathrm{r}=.541)$, followed by $D_{\min }(\mathrm{r}=.611)$ and $D_{\text {perc }}(\mathrm{r}=.541)$. The same order was observed for discrimination power. The advantage of $D_{\log }$ is the open scale for over- and underestimation, which prevents incorrect accuracy when underestimating and reduce outliers without glossing over them. Test quality (internal consistency and discrimination power) seems to be higher.

Literatur

Clayton, J. (1996): A Criterion for Estimation Tasks. International Journal of Mathematical Educationin Science and Technology, 27(1), 87-102.
https://doi.org/10.1080/0020739960270111
Joram, E., Gabriele, A. J., Bertheau, M., Gelman, R. \& Subrahmanyam, K. (2005). Children's use of the reference point strategy for measurement estimation. Journal for Research in Mathematics Education, 36(1), 4-23.
https://doi.org/10.2307/30034918.
Lörcher, G. A. (2000). Zur Entwicklung der Zahlvorstellung. In M. Neubrand (Ed.), Beiträge zum Mathematikunterricht 2000 (pp. 402-404). Franzbecker (in German).

