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Abstract
Microbeam radiation therapy (MRT) is a promising yet preclinical radiotherapy treatment for
several tumour diagnosis such as gliosarcoma and radioresistant melanoma for which even
modern clinical treatments such as intensity-modulated radiation therapy (IMRT) and volu-
metric modulated arc therapy (VMAT) yield poor outcome perspectives. The dose prediction
during MRT treatment planning, as for most other novel radiotherapies, is mostly performed
with very time-consuming Monte Carlo (MC) simulations. This slows down preclinical re-
search processes and renders treatment plan optimization infeasible.
In this thesis, several milestones for the introduction of a fast machine learning (ML) dose
calculation method for MRT are presented. First, a 3D U-Net-based ML dose engine is devel-
oped using MC training data obtained with Geant4 simulations of a synchrotron broadbeam
incident on different bone slab models and a simplified human head phantom as a proof of
concept. The developed model is shown to produce dose predictions within less than 100 ms
which is substantially faster than the used MC simulations with up to 20 hours and also
the currently fastest approximative MRT dose prediction approach, called HybridDC, with
approximately 30 minutes. The model is also shown to be superior to a dose prediction ap-
proach using generative adversarial networks (GANs) and also a novel transformer-based ML
model called Dose Transformer (DoTA), with which it is compared for application in proton
minibeam radiation therapy (pMBRT) in a subsequent study. Secondly, the developed ML
model and the MC simulations for data generation are extended to account for the spatially
fractionated nature of MRT. For this, a novel MC scoring method is developed which is able
produce separate dose estimations for the high-dose peak regions where the microbeams tra-
verse the phantoms and the low-dose valley regions in-between those beams. Finally, the
developed ML model and the MC scoring method are deployed in a first application of an
ML dose prediction method in a preclinical MRT study in collaboration with the University
of Wollongong, Australia, conducted at the Imaging and Medical Beamline (IMBL) at the
Australian Synchrotron which aimed at treating rats after implanting gliosarcoma cells. It
is shown that the ML model can be trained to provide unbiased dose estimations in complex
target phantoms even when trained on high-noise MC data, in important finding for the accel-
eration of future developments of ML models as such datasets can be produced significantly
faster. The ML predictions in the rat phantoms deviate at most 10% from the MC simulations,
rendering the proposed model a suitable candidate for fast dose predictions during treatment
plan optimization in the future.
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Kurzfassung
Microbeam radiation therapy (MRT) ist eine vielversprechende vorklinische Strahlentherapie
für einige Tumordiagnosen, wie beispielsweise Gliosarcome und radioresistente Melanome,
für die auch moderne Therapiemethoden wie intensity-modulated radiation therapy (IMRT)
und volumetric modulated arc therapy (VMAT) schlechte Therapieaussichten haben. Die Do-
sisvorhersage während der Behandlungsplanung für MRT, ebenso wie für viele andere neue
Strahlentherapien, wird meistens mit sehr zeitaufwändigen Monte Carlo (MC) Simulationen
durchgeführt. Dies zieht die Forschungsschritte in vorklinischen Studien in die Länge und ver-
hindert vor allem die Optimierung von Behandlungsplänen. In dieser Arbeit werden mehrere
Meilensteine für die Einführung einer schnellen MRT-Dosisberechnungsmethode auf der Basis
von ML präsentiert. Zuerst wird ein machine learning (ML)-Dosisberechnungsmodell auf der
Grundlage eines 3D U-Nets entwickelt. Dazu werden zunächst MC Trainingsdaten mithilfe
von Geant4 Simulationen erzeugt, die die Dosisverteilung in verschiedenen Knochenscheiben-
phantomen und einem vereinfachten Kopfphantom nach Bestrahlung mit einem sogenan-
nten Synchrotron broadbeam vorhersagen. Das entwickelte Modell erzeugt Dosisvorhersagen
innerhalb von weniger als 100 ms, was signifikant schneller als die Laufzeit der verwende-
ten MC Simulationen (bis zu 20 Stunden) und ebenfalls die zur Zeit schnellsten MRT Do-
sisberechnungsmethode mithilfe von Approximationen, der sogenannten HybridDC Meth-
ode (ca. 30 Minuten). Darüber hinaus wird gezeigt, dass das vorgestellte Modell sowohl
bessere Vorhersageergebnisse als ein alternativer ML-Ansatz auf Basis von generative adver-
sarial networks (GANs), als auch ein neues Transformer-basiertes ML-Modell namens Dose
Transformer (DoTA) erreicht. Der Vergleich mit dem DoTA-Modell erfolgt in einer Studie zur
Dosisvorhersage einer anderen neuen Strahlentherapiemethode, der proton minibeam radia-
tion therapy (pMBRT). Anschließend wird das entwickelte ML-Modell und die MC Simulatio-
nen weiterentwickelt, um der räumlich fraktionierten Natur von MRT gerechnet zu werden.
Dazu wird eine neue MC Scoringmethode entwickelt, welche separate Dosisverteilungen für
den Peakbereich, in dem die Microbeams die Phantome durchqueren und eine hohe Dosis
deponieren, und für den Valleybereich mit deutlich geringeren Dosisdepositionen dazwischen
erstellt. Abschließend werden das entwickelte ML-Modell und die neue MC Scoringmethode in
einer ersten Anwendung von ML-Dosisvorhersagemethoden in einer vorklinischen MRT-Studie
einer Forschungsgruppe der University of Wollongong angewendet, in der mit Gliosarcomen
implantierte Ratten an der Imaging and Medical Beamline (IMBL) am Australian Synchrotron
bestrahlt wurden. Es wird gezeigt, dass das ML-Modell nach dem Training Dosisvorhersagen
ohne Bias erzeugen kann, obwohl es mithilfe von MC Simulationen mit einer hohen statis-
tischen Unsicherheit trainiert wird. Dies ist eine wichtige Erkenntnis für die beschleunigte
Entwicklung zukünftiger ML-Modelle, da solche Daten deutlich schneller erzeugt werden kön-
nen. Die produzierten Dosisvorhersagen weichen zumeist höchstens 10% von den MC Simula-
tionen ab, daher wird das entwickelte Modell als geeigneter Kandidat für zukünftige schnelle
Dosisvorhersagen für die Planungsoptimierung von MRT-Bestrahlungen eingeordnet
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1 Introduction
Killing cancer cells is easy.
It can be difficult, however,
to keep the patient around them intact.

F. Mentzel, 2022

Since the first investigations of the potential of x-rays for tumour treatment [1] soon af-
ter their discovery, many innovations and developments in medical imaging and radiotherapy
treatment methods have improved the clinical outcome of a wide variety of cancer diag-
noses. Especially the introduction of highly conformal treatment techniques, which allow
precise dose application to tumour targets while sparing healthy tissue, such as intensity-
modulated radiation therapy (IMRT) [2], volumetric modulated arc therapy (VMAT) [3], and
more recently proton therapy [4], significantly improved the long-term survival rates for many
diagnoses [5, 6].
With increasing conformality and accuracy of available treatments, the fast and accurate
estimation of the radiation dose delivered to the tumour target and the surrounding healthy
tissue has equally gained in importance for a successful therapy. For this, dedicated fast
dose estimation methods, often based on approximative analytical computations (e.g. [7, 8]),
have been developed. Those methods, however, are highly specialized and often proprietary
software. Therefore, they are not suitable for research on novel and pre-clinical treatments
which try to tackle shortcomings of existent treatments. Instead, dose estimation for those
treatments is commonly performed using time-intensive Monte Carlo (MC) particle tracking
simulations (e.g. [9, 10]) with software tools such as Geant4 [11], a multi-purpose MC toolkit
developed at CERN. While MC simulations allow for excellent agreement with experimental
dosimetry even for complex irradiation scenarios [12], the required computation time delays
research and hinders potential optimizations of treatment plans. This holds true especially
for spatially fractionated therapies such as microbeam radiation therapy (MRT) [13], which
is a proposed treatment for e.g. gliosarcoma [10], for which the clinical outcome has barely
improved over the last decades [14].
MRT utilizes arrays of coplanar sub-mm synchrotron radiation beamlets depositing high peak
doses along the path of those narrow beams and relatively low valley doses in-between them.
For current pre-clinical MRT studies at the Imaging and Medical Beamline (IMBL) [15] at
the Australian Synchrotron, dose estimation are performed with MC simulations based on
Geant4 [10]. The high spatial resolution required close to the resulting steep dose gradients
lead to MC simulation times of up to several hours for accurate dose predictions [16]. While at
the European Synchrotron Radiation Facility (ESRF) [17], another facility researching MRT,
dose estimations are also performed with MC simulations [18] based on the PENELOPE [19]
computer code system and MC methods are still under development [20], a faster approximate
dose estimation method, the HybridDC model, has been developed [21, 22, 23]. It is currently
being extended to also be available at the IMBL [24].
While the HybridDC model is an important development for faster MRT planning, the execu-
tion time of approximately half an hour per irradiation field is too long to allow for sophisti-
cated plan optimization techniques [25] or the application of adaptive treatment techniques
[26]. This incentivises the development of even faster methods for MRT dose prediction. While
there are, in fact, already very fast MRT dose estimation methods available in the literature
[21, 27], those were found to not suffice in accuracy especially at tissue interfaces to be used
in plan optimization.
Throughout this thesis, an MRT dose estimation model is developed, which is both very
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fast and at the same time sufficiently accurate to accelerate treatment plan generation and
also potentially make optimizations of those viable. A class of algorithms capable of ap-
proximating a wide range of complex data [28] with very short execution times stem from
the field of machine learning (ML). While ML-based dose estimation methods are published
with increasing frequency for clinically available treatments such as IMRT and VMAT in recent
years [29, 30, 31], those studies are usually facilitated by large databases of past treatments or
the possibility to quickly generate new datasets using specialized fast algorithms. Moreover,
this is also not possible for other new and pre-clinical treatments other than MRT, resulting
in the requirement to create the datasets from scratch using the time-consuming MC simula-
tions. In the course of this thesis, existent approaches to mitigate this obstacle are discussed
and new ones are developed, which make the development of fast ML-based dose estimation
methods more accessible to research in new and pre-clinical radiotherapy treatments. Parts
of the presented work have already been published [16, 32, 33, 34].
The thesis is structured as follows: In a first step, the underlying concepts of radiotherapy,
MRT, dose calculation methods and ML, are presented in Chapter (2). Subsequently, the
development of the foundations of the proposed model in a proof-of-concept study predicting
a synchrotron broadbeam instead of microbeams is presented in Chapter (3). The transfer-
ability of the obtained ML model by retraining it on a dose deposition dataset for proton
minibeam radiation therapy (pMBRT) and comparing the results to other state-of-the-art ML
models in Chapter (4). In the subsequent Chapter (5), the spatial fractionation of MRT
doses into peak and valley doses is included into the ML model. To obtain the required peak
and valley dose data sets, a specialized MRT MC dose scoring method is introduced. The
applicability of the developed MRT-ML model in pre-clinical research is demonstrated in a
retrospective treatment planning for a rodent radiation study in Chapter (6). Finally, an
outlook on potential future paths of research is given in Chapter (7), before summarizing and
concluding the thesis in Chapter (8).
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2 Getting up to speed: microbeam radiation therapy, dose
prediction and machine learning

This chapter introduces some theoretical concepts which are required for the developments
in this thesis. First, the generation of microbeams and the physical background of their
interaction with tissue is discussed in Section (2.1). Afterwards, methods of Monte Carlo (MC)
particle tracking and machine learning are explained with focus on microbeam radiation
therapy (MRT) dose estimation in Section (2.2) and Section (2.3), respectively.

2.1 Microbeam radiation therapy (MRT)
Already at the beginning of the 20th century it was found that adverse effects of x-ray
therapies, especially skin lesions, can be reduced by treating a target with a grid of smaller
beams instead of a homogeneous field [35]. The enhanced survival of healthy tissue when being
exposed to narrow radiation beams in contrast to wider fields was later described as dose-
volume effect [36] and subsequently led to the development of x-ray microbeam therapy [37,
13]. While the observation of enhanced healthy cell survival following spatially fractionated
irradiation is well documented (e.g. [38, 39, 40]), the biological cause of the success of MRT
remains disputed; Common explanation approaches involve blood vessel disruption together
with associated repair processes [41, 42], the infiltration of tumour tissue by immune cells
[43], or effects of tumour reoxygenation [44], but also on the so-called FLASH effect [45],
which describes enhanced radioresistance of healthy tissue when being exposed to very high
dose rates (e.g. [46]).

2.1.1 Generation of synchrotron microbeams

To maintain the narrow microbeam blades while traversing a patient, it is important to
use an x-ray source with a very low divergence. At the same time, a high photon flux
helps minimizing the positioning uncertainty due to potential movements of a patient and
contributes to the possible contribution of the aforementioned FLASH effect. Resulting from
those requirements, synchrotron beam lines such as the Imaging and Medical Beamline (IMBL)
are suitable for MRT research, although compact microbeam sources are subject to ongoing
research [47].

Figure 2.1: Schematic of relevant parts involved in the generation of microbeams at the IMBL
(not to scale). The blue electron passing the wiggler emits synchrotron radiation
shown in bright blue, passing first the filter paddles, then the beam-defining
aperture (BDA) and subsequently the multi-slit collimator (MSC), before reaching
a patient. Inspired by [12].

Figure (2.1) schematically shows the generation of microbeams at the IMBL. The electrons
within the synchrotron ring have a kinetic energy of 3 GeV [15]. The alternating magnetic
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field causes the electrons to emit synchrotron x-ray radiation (shown in blue) in their direction
of flight [48]. The emitted radiation can be passed through up to five filter paddles which are
described in detail in [15], adjusting the photon flux and energy spectrum depending on the
materials placed in the beam.

Figure 2.2: Synchrotron beam energy spectrum after filtering with two copper blades (red)
and one copper blade together with an aluminium blade (black). Produced using
simulation data from [12].

The energy spectra used in the studies presented in this thesis - CuAl and CuCu, named
after the main constituents of the paddles being copper and aluminium - are obtained from
a previously published simulation [12] and are shown in Figure (2.2). It can be seen that
using the CuCu paddle set, the mean energy is higher (ECuCu = 91.9 keV) than with the
CuAl paddle set (ECuCu = 79.5 keV). In addition, the CuCu spectrum is slightly wider when
compared by full width at half maximum (FWHM): FWHMCuCu = 46.1 keV vs. FWHMCuAl =
41.8 keV.
The beam is subsequently shaped using a BDA made from tungsten. For this thesis, a BDA
with a nominal height of 1.053 mm and a nominal width of 30.0 mm is used. The resulting
beam is referred to as broadbeam in the further course of this thesis. From the broadbeam,
an array of microbeams is obtained using a MSC which is also made from tungsten. The
individual slits have a nominal width of 50 µm and are spaced 400 µm apart.

Figure 2.3: Schematic showing how the microbeam field height is adjusted using masks with
cutouts of different sizes.

The delivery of fields of different heights is schematically shown in Figure (2.3). The mi-
crobeam array is shaped using a mask which is placed in front of the treatment target. With
the beam from the synchrotron having a fixed position and direction, the treatment target
is moved together with the mask in front of the beamline. Thereby, the synchrotron beam
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is painted over a larger area than its initial size of approximately 1 mm beam height. This
method is exemplarily shown for three rectangular fields of different height (20 mm, 5 mm
and 1 mm), all being 20 mm wide.

2.1.2 Interaction of microbeams with tissue

The most important effects resulting in energy transfer from the microbeams to the target
material are the same effects [49] as for conventional x-ray therapy: the photoelectric effect,
the Compton effect and pair production. The importance of each effect is dependent both on
the material being traversed by the x-rays and the energy of the beam. A comparison of their
importance in water is shown in Figure (2.4). For better visibility of the energies important
for MRT, the range from 50 keV to 50 − 150 keV is highlighted.

(a) (b)

Figure 2.4: (a): Composition of the total attenuation of x-ray radiation in water in depen-
dence of the energy according to [49]. (b): Relative contributions of different
relevant effects. The most relevant energies for MRT are marked grey in both
plots.

For the relevant energies, the Compton effect is the most important interaction for the initial
photons entering a phantom, as shown in Figure (2.4b). For scattered photons, the elastic
scattering and the photoelectric become more dominant in the range of a few keV of remaining
x-ray energy. The energies in MRT are not high enough for pair production which requires
a photon energy of at least 1.024 MeV. All the aforementioned effects cause the generation
of secondary electrons which subsequently deposit energy in the surrounding tissue. The
primary dose deposition in the path of the microbeams is referred to as peak dose. As the
electrons do not only move in the direction of the photons, they are scattered into the areas
between the microbeams resulting in the deposition of a valley dose.
A visualization of the dose profile following the irradiation of a homogeneous water phantom
with microbeams is shown in Figure (2.5a). While the near-exponential decay of the peak
dose with the depth of the phantom is visible, the development of the valley doses occurs at
a significantly lower absolute value. A comparison of the development of the depth profiles
is possible in the one-dimensional plot showing depth-dose curves for the central microbeam
and one of its adjacent valley (towards positive lateral position) shown in Figure (2.5b).
While the peak dose decreases from the entrance of the phantom towards the distal end, the
valley dose peaks in approximately 20 mm depth before subsequently decreasing. The initial
increase in valley dose results from the build-up and scattering of secondary electrons. At the
end of the phantom, a steeper decrease of the valley dose compared to the development of the
slope before occurs, which is due to missing backscatter. The different axes for peak dose and
valley dose should be noted, as the peak dose as a maximum value of around 300 Gy while
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the valley dose only peaks at approximately 9 Gy. The peak-valley dose ratio (PVDR), shown
in the lower subplot, is a commonly used measure to describe the relation of the peak and
valley dose at a certain position within a target phantom (e.g. [50]). Because the valley dose
results from photon and electron scattering, the PVDR depends strongly on the microbeam
energy and the size and material of the target phantom.

(a) (b)

Figure 2.5: (a): 2D dose profile for a 20x20 mm2 MRT field in a water phantom with exemplary
peak (black) and valley dose profile (red). (b): Peak and valley depth dose curves
with the resulting PVDR for the central peak and one adjacent valley (towards
positive lat. position).

2.2 Current dose estimation methods for microbeam radiation therapy
As for all radiotherapies, the dose deposition following an irradiation has to be estimated
accurately to be able to deliver as much dose as prescribed to the target volume while not
overdosing the healthy tissue around it. In the following, central aspects of the MRT dose
estimations with MC simulations at the IMBL and the HybridDC model are presented.

2.2.1 Monte Carlo simulations with phase space files

The advantage of multi-purpose MC simulations with e.g. Geant4 is that all included physical
interaction processes are modelled explicitly using probability distributions for each interac-
tion of a particle traversing materials in the simulation world and their results [11]. Imple-
mented processes differ in computation speed and experimentally validated accuracy. They
are bundled in so-called physics lists allowing a user to trade-off between the computation
time and modelling accuracy as required by individual simulations. The implemented phys-
ical processes are continuously extended and validated by groups from a variety of research
fields (e.g. [51]). Resulting from this, MC codes are often referred to as the gold standard
in dosimetry simulations (e.g. [52, 53]), especially when utilizing the most accurate physics
lists.
An experimentally well-validated Geant4 simulation, closely described in [12], has been devel-
oped in the last years to facilitate accurate MRT dose predictions [12]. The electromagnetic
interactions of the microbeams with matter are modelled using a custom physics list com-
prising the most accurate set of electromagnetic interactions implemented (EM Option 4,
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details on involved processes: [54]). To account for the high degree of polarization of syn-
chrotron radiation [55], the Livermore Polarized Physics are included in the simulation [56].
The MRT simulation covers the generation of the synchrotron radiation from the accelerated
electrons over the different beam shape and energy spectrum adjustments described in sub-
section (2.1.1). After the MSC, the simulated particles can be stored instead of being tracked
further downstream towards a patient phantom. Each stored particle is characterized by its
type, their energy, position, momentum and polarization in a so-called phase space file (PSF).
Such PSFs have been created for all commonly used beamline setting with respect to the
wiggler magnet field strength, inserted filter paddles, etc., and are used in subsequent sim-
ulations of patient treatments. This approach allows a significant acceleration of the whole
simulation procedure as the microbeam generation process can be recycled and does not have
to be re-executed. Based on those PSFs, all simulations within this thesis are performed with
Geant4 version 10.6p01., using the aforementioned physics list. In addition to the used pro-
cesses, so-called production cuts and step limits are implemented in the physics list. Their
meaning and used settings are explained in the following:
(1) Production cuts: Geant4 tracks all particles, once created, until they absorbed or have
lost all kinetic energy. Not all particles are created, however, in the first place. Only particles
travelling a minimal distance within the material of their creation, or having a minimal
energy, are generated and subsequently tracked in the simulation. This is a design feature
to accelerate simulations by making it possible to neglect computationally very expensive
low-energy interactions which potentially do not contribute to the accuracy of the result,
depending on the required spatial resolution. Following the very high spatial resolution
required for MRT simulations, the production cuts are set to 1 µm or 250 eV, respectively.
(2) Step limits: By default, particles are stopped after travelling the distance which Geant4
has sampled for the next occurring physical interaction and additionally at material bound-
aries in the simulation geometry. While most interactions of tracked particles are modelled as
discrete processes in Geant4, a part of the energy loss and scattering is simulated as continu-
ous process along the simulated trajectory. This includes especially the energy of suppressed
secondary particles below the production cuts. The dose depositions in this thesis are usually
scored using a 3D voxel grid. Energy depositions within a voxel is counted towards its total
reported dose. To allow for an accurate dose deposition profile in phantom targets of interest,
the step limits within phantoms are set to be 1/5th of the spatial resolution of the respective
voxel grids, leading to Geant4 stopping the current simulation step after a maximum of the
given distance. The step limit is only enforced for charged particles.

2.2.2 HybridDC: photon Monte Carlo and kernel-based electrons

HybridDC [22] is the currently fastest MRT dose estimation method used in pre-clinical re-
search and takes approximately 30 min for one field according to the provided reference above,
which is a significant improvement compared to up to several hours using a accurately mod-
elled Geant4 simulation [16].
The HybridDC algorithm separates the dose simulation into a simplified MC simulation and
the subsequent application of a dose kernel [57] to achieve the resulting microbeam dose dis-
tribution. The approach is schematically shown in Figure (2.6) and explained below following
the descriptions in [22]: The simplified MC simulation only tracks photons and suppresses the
generation of any secondary particles such as electrons. The energy depositions are instantly
deposited locally in a 3D voxel grid at each computed interaction point of the photons. The
depositions are further separated into two contributions: the first interaction of a photon
within the phantom is scored as primary dose. All subsequent interactions of that photon
are scored as scatter dose. Using a map of the initial photon fluences of the microbeams, a
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Figure 2.6: Schematic of the HybridDC algorithm showing the simplified MC simulation left
and the required subsequent photon fluence and electron dose kernel to achieve
the final MRT dose on the right. Adapted from [22].

primary photon profile can be located within the voxels using the primary dose. The final
primary dose is then calculated by applying an electron dose kernel specifically developed
for MRT. The total dose is obtained by adding the scatter dose to the output of the dose
convolution algorithm.

2.3 Accelerating dose estimation with machine learning
Most machine learning (ML)-based dose estimation methods belong to the ML sub-field of
so-called supervised learning, which comprises scenarios in which a neural network or other
algorithms are trained with data samples that contain both an input to the algorithms and
the desired output. In the dose estimation case, the input usually is derived from a Computer
Tomography (CT) scan of the target phantom, describing the geometry and contained ma-
terials. Additionally, the input can be extended to also comprise more information required
for the prediction such as the beam shape or its energy spectrum. The output of such an ML
model is the dose distribution in the given input geometry. Those dose distributions need to
be simulated before the training of the ML model. For MRT, this can be done with either MC
simulations or the HybridDC algorithm. The HybridDC model comes with several approx-
imations such as the assumption of perfect coplanarity of the microbeams, i.e., no residual
divergence, and the neglection of the impact of the polarization of the synchrotron photons on
the resulting dose distributions (see [22]). An ML model trained on HybridDC data therefore
would reproduce those assumptions. For this reason, it was decided to train the proposed
MRT ML model directly on high-quality MC simulations. By doing so, all physical effects
modelled in the MC simulation can be embedded into the prediction of the ML model, while
at the same time potentially achieving very fast prediction times.

2.3.1 Blueprint of the proposed model: the U-Net structure

There are several ML algorithms potentially suitable for dose predictions in the literature. In
this thesis, the three-dimensional extension of the so-called U-Net [58, 59], a convolutional
neural network originally developed for 3D segmentation tasks, is chosen as the base for the
MRT ML model. Adaptions and variations of the 3D U-Net were shown to perform well in dose
estimation tasks in recent years [60, 61, 62]. They are especially suitable for new treatments
as they are known for achieving good results also in environments with small data sets (e.g.
[63]). Figure (2.7) shows a schematic overview of the 3D U-Net model as originally proposed
[59].
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Figure 2.7: Schematic of the 3D U-Net. Modelled after the description in [59].

The 3D U-Net is a type of convolutional network [64] which performs multi-scale feature
extraction utilizing a compression or analysis and a subsequent decompression or synthesis
path, connected by skip connections to allow information from each resolution level to bypass
the respective lower levels, facilitating convergence of the model [65]. The respective paths
contain blocks of layers, each comprising two convolutional layers with subsequent batch
normalization [66] and the use of the rectified linear unit (ReLU) [67] function for activation.
After each of those blocks, the data is compressed in the downwards path using a max
pooling operation [68] and decompressed in the upwards path using a transposed convolution
or deconvolution operation [69]. The final segmentation is produced by applying a 1x1x1
convolution matrix to the previous output containing multiple channels to project them onto
a single channel per segmentation target, i.e. one for tumour, multiple for organ segmentation.

2.3.2 Training methods for dose estimation neural networks

In this thesis, two different methods to train neural networks for dose predictions are used:
training as regression model and as generative adversarial networks. While the differences are
explained in the following sections, they also have very basic common feature with respect
to the handling of the data.
To train a neural network and subsequently estimate its performance on future, unseen data
(generalization), the available data set needs to be divided into three sub-sets: the training,
validation, and test data. The training data is used in the process of updating the weights of
the network as described in the next sections. The performance on the validation data is used
as comparative measure between different neural networks defined by external parameters,
the so-called hyperparameters. The resulting best network model is subsequently applied
to the test data, which is completely left out of the process until this step to allow for an
an unbiased performance estimation. To improve network convergence, all values in data
samples are normalized to the range between 0 and 1 using the respective maximum and
minimum value of the training data set. In the case that validation or test samples exhibit
larger or smaller values, this also results in values outside this range.

Training regression models

A neural network can be trained as a regression model by using a loss function to compare
the output of the network for a given input with the respective associated target. Commonly
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used loss functions include for example the mean-squared error (MSE) or mean-absolute error
(MAE). In the case of radiotherapy dose estimations, the given input can be a phantom CT
or a derived density matrix, the output is the dose distribution.
The loss is usually computed on a batch of training samples before being used to update the
trainable weights of the network using an optimization algorithm such as in this case Adam
[70]. One iteration through all training samples is referred to as epoch.

Training generative adversarial networks

When it comes to ML algorithms which are trained to mimic MC simulations, an alternative
training approach has gained high interest: generative adversarial networks (GANs) [71].
Instead of deterministically producing an output for a given input, GANs allow for statistical
variations in their predictions. An early notable application of GANs as a fast alternative to
MC simulations was the generation of detector simulations samples for the ATLAS detector at
CERN [72]. Since then, they have also been applied successfully in the field of radiotherapy
research [73, 29, 74].
GANs are built using two neural networks: a generator network and a discriminator or critic,
where the naming in the literature depends on the type of GAN. The generator network
is passed a vector of random numbers and produces a so-called fake data sample. The
critic network subsequently receives a set of fake samples produced by the generator and true
samples from a dataset which should be mimicked by the generator. In the case of Wasserstein
GANs (WGANs) [75], which are used in this work, the critic network is trained to tell apart
those two groups of samples using a so-called Wasserstein distance [76]. This measure is then
provided to the generator to adjust its weights resulting in the predictions being more similar
to the real data set as judged by the critic network. Upon successful training, this results
over time in the generator producing samples which are ideally indistinguishable from the
original dataset.
As for the regression training, the networks are updated batch-wise. It is common to train the
critic network on several batches before continuing to train the generator network, ensuring
a high quality of the critic feedback to the generator. By adding conditional information to
each data sample, it is possible to train the generator to create samples matching real samples
in dependence of this [77]. In the case of the dose estimation, the conditional information is
the phantom geometry and beam characteristics such as the energy spectrum, allowing the
generator to create a dose estimation for the presented scenario while allowing for statistical
variations by means of the random noise. Compared to the more conventional training
of neural networks as regression models, this method is more flexible which was found to
potentially help learning to predict doses in complex phantom geometries [29].
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3 A proof of concept: synchrotron broadbeam dose prediction

In this section, the development of a first machine learning (ML) model, for dose predictions
at the Imaging and Medical Beamline (IMBL) is presented. Due to the potential benefits of
better generalization in complex scenarios, the model is designed as generative adversarial
networks (GAN) as described in the previous section. High resolution microbeam simulations
result in very large files containing a very large number of voxels. This poses a problem for
the development of ML models because predicting larger volumes requires a model with more
parameters leading to an increase in both training time and required memory to contain
the model during the training. For example, in the case of this thesis the used graphics
processing units (GPUs) do not exceed 11 GB of memory. In early studies for this thesis,
the process of directly predicting high-resolution microbeam simulations was found to be
infeasible. Instead, this first proof-of-concept ML model is developed using simulations with a
synchrotron broadbeam instead of microbeams. The broadbeam dose distribution is relatively
similar to the sum of the primary and secondary dose used by the HybridDC algorithm. This
opens the perspective of potentially transferring a developed model to primary and secondary
dose prediction, accelerating the first slow Monte Carlo (MC) step involved in the HybridDC
algorithm.
Major parts of the results shown in this section have been already published prior to the
submission of this thesis [16].

3.1 Model development

In the following, the simulation setup being used during the development of the ML model
is presented before describing the adaption of the 3D U-Net for synchrotron broadbeam
prediction as part of a GAN.

3.1.1 Data from a digital phantom: a Geant4 bone slab model

A simple digital bone slab phantom is built to allow the generation of well-defined data
samples allowing for systematic investigation of strengths and weaknesses of the proposed ML
model. The basic simulation setup before the insertion of a bone slab is shown in Figure (3.1a).
The synchrotron broadbeam, based on the phase space file (PSF) for the AlAl-filtration ([12],
energy spectrum: Figure (2.2), enters the simulation world, shown in light grey, from the
left. The field is cropped to 8x8 mm2 using a tungsten mask (G4_W, [78]) before entering
a 14x14x14 cm3 water cube (G4_WATER, [78]), placed 4 cm behind the mask. The energy
depositions are scored using a grid of 1x1x1 mm3 over a volume of 18x18x140 mm3. This
size allows scoring the full depth of the phantom and also includes some of the out-of-field
region. A resulting visualisation of the resulting dose to water in the central plane is shown
in Figure (3.1b), also highlighting the in-field and out-of-field region. In the training of the
ML models, the energy deposition is used instead of the dose.
To produce training samples for the ML model, a bone slab (G4_BONE_COMPACT_ICRU,
[78]) of 2.5 mm thickness is placed into the centre of the water phantom.
The adapted simulation setup containing a bone slab at 45 ◦ rotation is shown in Figure (3.2a).
The energy deposition-depth curve resulting from a simulation with the bone slab inserted
is shown in Figure (3.2b). The energy deposition peak caused by the bone insert is clearly
visible in the depth profile.
For each sample, the bone slab is rotated with an angle between α ∈ [0, 87]◦ relative to the
plane perpendicular to the beam. The upper limit is defined by the angle at which the beam
would be incident on the top of the slab. As the traversed bone material increases with

12



(a) (b)

Figure 3.1: (a): Schematic of simulation setup with the water phantom (blue), scoring volume
within (white) and tungsten mask (grey) in the simulation world (light grey).
Reproduced from [16]. (b): Dose distribution at the central plane of the beam
showing the in-field region (black) and the out-of-field region (red).

the rotation angle and is expected to pose a more difficult energy deposition distribution,
the sampling of angles is not uniform but instead follows a 1/ cos(α) distribution, resulting
in an increasing number of samples for larger rotation angles. The distributions of simu-
lation samples split into training, validation and test samples are shown in Figure (3.2c).
In contrast to many ML studies which remove samples randomly from the training data for
validation and testing, it is performed in a systematic way in this case. Five sets of 2-degree
intervals for each validation (α ∈ {[5, 7) ∪ [25, 27) ∪ [45, 47) ∪ [65, 67) ∪ [80, 82)}◦) and testing
(α ∈ {[3, 5) ∪ [23, 25) ∪ [43, 45) ∪ [63, 65) ∪ [78, 80)}◦) are removed from the training dataset.
The systematic allocation of validation and test data allows for a dedicated investigation of
the interpolation capability of a developed model in those regions as they are clearly sep-
arated from the training data samples in the rotation angle parameter space. During ML
training, the density and energy deposition matrices are subject to random flipping around
the central plane, leading to a mirrored distribution towards negative bone slab rotations.

(a) (b) (c)

Figure 3.2: (a): Extended simulation setup with included bone slab (dark blue) at 45◦ (white)
rotation. (b): Energy deposition-depth curve at the centre of the beam, nor-
malised to its maximum. (c): Distribution of the simulated training (dark grey),
validation (medium grey) and test (light grey) dataset with respect to the bone
slab rotation angle. Reproduced from [16].
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3.1.2 Design of a 3D U-Net GAN for dose prediction

Due to extremely long training times on the order of days for each model, a manual search
for an optimal combination of parameters for the generator and critic network is conducted
which only includes a relatively small set of options.

Figure 3.3: Typical loss curves of a dose prediction GAN training showing both the generator
(black, grey) and critic loss (red, light red) for training and validation data,
respectively.

A common technique to monitor the progress of an ML model during training is the inspection
of loss curves which show the progression of the loss value over the epochs. In the case of
GANs, however, this method is not useful. Figure (3.3) shows an exemplary loss curve of a
generator and critic network during GAN training. After an initialisation phase, the losses
do not show definitive trends, rather moving around a relatively constant value for each of
the networks. This is an expected behaviour of the losses during GAN training: as both
networks learn in parallel, the losses are expected to stay relatively stable over the course of
the training. While the critic learns to tell apart generated and original samples increasingly
well, the generator simultaneously learns to make this task harder for the critic by generating
even more similar data samples. While the resulting quality of produced data samples cannot
be judged by the loss curves for this reason, they can be used to inspect the stability of the
ongoing training: an increase or the observation of oscillations in the loss curves hints at
instability of the training process.
In the search for an optimal set of generator and critic comprising the GAN being developed
in this section, a different measure is defined: the δ (delta) index, which is modelled after the
global gamma index [79]. To compute the delta index, first a quantity δ is calculated:

δ = Egen − Esim
Emax

sim
. (3.1)

In Eq. (3.1), Egen is the energy deposition predicted by the generator for a given voxel, while
Esim is the respective value from the corresponding Geant4 simulation. Emax

sim is the maximum
energy deposition amongst all voxels in the data sample. From this, a δ index passing rate can
be calculated subsequently. It is defined as the ratio of in-field voxels in a data sample that
exhibit a δ value of less than 1$ or 3% for the 1% δ index and the 3% δ index, respectively.
To search for an optimal ML model, 1% passing rate on the validation dataset is used as
criterion for model selection. The determined best architectures for the generator and critic
are described in the following. All ML models are implemented using the Keras[80] interface
to Tensorflow 2.2[81].
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The generator model

While the generator is modelled after the presented 3D U-Net, there are several changes to
the network which were found to achieve better dose predictions in the given scenario. The
best overall generator network is shown in Figure 3.4 and will be explained in the following.

Figure 3.4: Schematic of the best generator 3D U-Net structure with input and output data.
Reproduced from [16]

In addition to the density matrix also used in the Geant4 simulation, the generator is also
provided with the Geant4 energy deposition simulation in a water-only phantom. This was
found to improve the predictions at the edges of the field by simplifying learning the steep
gradients occurring there. A motivation and possible explanation for the success of the
inclusion of the water-only simulation is the simplification of the learning task for the network:
Instead of learning to predict the entire prediction of the energy deposition from scratch, the
network only needs to learn the impact that a bone slab insertion has on the provided water-
only distribution. This impact is schematically shown in Figure (3.5).
Moreover, the used additional input describes both the shape of the field and the charac-
teristics of the simulated beam, as both are embedded in the water-only Geant4 simulation
result. There, this method potentially allows for the inclusion of different beam shapes and
energies in later development stages.

Figure 3.5: Visualisation of the impact a bone insert at different depths has on the energy
deposition from a synchrotron broad beam.

On the compression path, the blocks of two convolutions with a subsequent pooling opera-
tion are replaced with a single strided convolution [82], which are often used in U-Net dose
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prediction models (e.g. [83]) and allow a more sophisticated data compression. To allow for
more interaction between the different regions in the prediction volume, additional U-Net
stages (six instead of originally four) are included in the model. A random number vector
(length: 100), which is required for the operation as a GAN, is inserted in the bottleneck layer
in the centre of the phantom. Different insertion methods such as the concatenation to the
input data led to less accurate predictions. Instead of using an increasing number of filters
for each stage of the U-Net, all convolutions in the generator network are performed using
64 filters. A smaller number of filters was found to result in less accurate predictions. The
originally proposed progression doubling the filters on every layer [59] was not feasible due
to the memory required for this. 128 filters were the maximum number fitting into memory
but did not notably increase the prediction performance while leading to very long training
durations, resulting in a decision against them. On the decompression path, the originally
proposed upconvolution operations are replaced with 3D upsampling operations, which in-
crease the size by a factor of two by duplicating each voxel in each spatial dimension. The
replacement of the upconvolutions was chosen after finding checkerboard patterns as a result
of the application of that operation. An example for their occurrence is shown in Figure (3.6).
Figure (3.6a) shows an image of constant pixel value. Figure (3.6b) shows the output follow-
ing the application of an upconvolution operation. The effect has also been reported by other
sources (e.g. [84]). It was found during the model optimisation that effect is reduced with
increasing training duration, but this mitigation technique led to extremely long training
times rendering the inclusion of upconvolutions infeasible.

(a) (b)

Figure 3.6: Schematic of the resulting checkerboard pattern (b) when applying an upsampling
operation to an image with constant pixel values (a).

The originally proposed ReLU activation function is replaced with the novel swish function
[85] due to faster model convergence. As optimizer, the Adam optimizer [70], using a learning
rate of α = 2 · 10−5 and a batch size of 32, which is limited due to the required memory, is
used. A dropout regularization [86] of 15% applied to each convolutional layer was found to
provide the best generalization results.

The critic model

The critic is built as 3D fully convolutional network [87] using strided convolutions with 128
filters each. It is is schematically shown in Figure (3.7). The input is a concatenation of the
input of the generator, the density matrix and the water-only energy deposition, together
with the respective simulation or generator prediction for the given density matrix. For all
layers except the last, the swish function is used as activation. The final layer comprises
a linear output function, producing a single number output for each sample representing a
rating of their belonging to either the fake or real data set.
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Figure 3.7: Schematic of the critic network with input and output data. Reproduced from
[16]

As described in [71], it is required to restrict the weight update process for the critic during
the training of a GAN. The best results were obtained using a gradient penalty term [88],
while weight clipping [71] and the use of spectral normalization [89] resulted in less accurate
predictions. It is found that training the critic five times for each weight update of the
generator yielded a good compromise of good results and acceptable training duration. With
regard to the optimizer and dropout, the same configurations as for the generator are used.

Prediction accuracy, speed and generalization of the best model

The development of the average passing rates over the training epochs up to the best model
are shown in Figure (3.8). The best 1% validation passing rate ((96.9 ± 0.4)%) is obtained
by training the described model for 1800 epochs. No further improvement was achieved with
longer training times. The passing rates of the training and validation data are very similar,
indicating good generalization and no overfitting.

Figure 3.8: Passing rates as a function of trained epochs. The best 1% validation passing
rate determining the chosen model is marked with a red circle. Reproduced from
[16].

To assess the generalization, the obtained model is applied to the test data. A comparison
of the average 1% and 3% passing rates on all three datasets are shown in Table (3.1). The
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nominal passing rates is slightly higher for the training data set but this is found not to be
statistically significant with respect to the uncertainties of the mean values.

Table 3.1: Average δ index passing rates for all three datasets as reported in [16].

Passing rate [%]
Training Validation Test

δ < 1% 97.2 ± 0.5 96.9 ± 0.4 96.9 ± 0.7
δ < 3% 99.8 ± 0.2 99.7 ± 0.2 99.6 ± 0.2

To allow for a more systematic inspection of the passing rates, they are shown as a function
of the bone slab rotation angle in Figure (3.9). The data samples within each validation and
test segment as shown in Figure (3.2c) are grouped. The training data samples are grouped
according to the angular separation shown there as well, although the central intervals are
separated into two values each, resulting in the mean angular values in Figure (3.9).

Figure 3.9: Grouped δ passing rates with respect to the bone slab rotation angle for the
different datasets. Reproduced from [16].

For all three data sets and both passing rates, the obtained results are found to be generally
in good agreement, confirming good generalization. With regard to the dependence on the
bone slab rotation, it can be seen that the training passing rates are slightly lower for low
rotation angles i.e. the bone being placed perpendicularly to the beam. This may result from
the especially large gradients in this case. Larger rotation angles from 10◦ on achieve higher
passing rates both for 1% and 3% deviation from the maximum energy deposition. Starting
from 40◦ on, a downwards trend in the 1% passing rate can be observed in the training data.
While the 3% passing rates of the validation and test data follow closely the results obtained
on the training dataset, the 1% passing rates exhibit more deviation. Nevertheless, observed
deviations are found to be small and mainly visible due to the chosen field of view in the
figure.
Figure 3.10 shows 2D visualisations of the density profiles at the centre of the beam of two
exemplary test data samples ((a): α = 4◦, (b): α = 80◦) together with the obtained passing
rates. Especially the material interface between water and bone results in higher rates of the
occurrence of larger deviations.
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(a) (b)

Figure 3.10: 2D slice of the density matrix of two exemplary test samples with a bone slab
rotation of α = 4◦ (a) and α = 80◦ (b). Voxels with a deviation of more than 1%
or 3% of the maximum of the energy deposition are marked with yellow and red,
respectively. Dashed lines show the extent of the in-field region. Reproduced
from [16].

Figure 3.11 shows the Geant4-simulated and ML-generated energy deposition depth profile
together with the statistical uncertainty of the MC simulation at the centre of the beam (lateral
pos. 0 mm, Fig. (3.10)) and the edge of the field of view (lateral pos. 17 mm, Fig. (3.10)).
Shown examples include the two examples from Figure (3.10) and additionally a test data
sample with a bone slab rotation angle of α = 64◦.

(a) (b) (c)

(d) (e) (f)

Figure 3.11: Comparison of Geant4-simulated (grey) and ML-generated (black) rnergy
deposition-depth curves of exemplary test data samples. (a-c): Centre of the
field. (d-f): Edge of the scoring volume. The bone slab rotation angles shown
are α = [4, 64, 80]◦ (a+d, b+e, c+f). Below the curves, the relative deviations
are shown, including outliers as red arrows. Adapted from [16].

Most individual relative deviations are below 5% in the field and below 25% percent in the
out-of-field region. The latter is driven by the statistical uncertainties of the MC simulation
which can be seen in the bottom row of Figure (3.11), showing that the deviations are often
less than one standard deviation. Around the bone slab inserts, larger deviations both in-
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field and out-of-field can be observed, whereas the energy deposition prediction within the
bone region is mostly accurate within a few percent. Towards the distal end of the phantom,
some ML predictions tend to systematically deviate from the MC simulations, as can be
seen e.g. in Figure (3.11b). Nevertheless, the deviations remain within 10% of the energy
deposition. From the entrance of the beam into the phantom up to the bone slab insert,
the more frequent occurrence of yellow entries in Figure (3.10a) and Figure (3.10b), showing
deviations larger than 1% of the maximum, results from the overall larger absolute value of
the energy depositions in that area. The same effect suppresses the occurrence of any of
those deviations in the out-of-field region by design, which led to their exclusion from the
performance measure determining the best model. As shown for example in Figure (3.11d),
the maximum energy deposition at the edge of the field of view does not exceed 5% of the
maximum energy deposition at the centre of the field at all.
From the described findings, the model is found to be suitable for preliminary predictions
of energy depositions. To be a candidate for the use as fast dose estimation engine in a
treatment plan optimization scenario, the execution times play a very important role. The
respective duration of a single energy deposition generation using either Geant4 on a central
processing unit (CPU) (Intel Xeon E5-2630 v4 @ 2.2 GHz), or the generator model from the
GAN using the same CPU or a GPU (Nvidia GeForce GTX 1080i) are shown in Table 3.2.
The presented times do not include the preprocessing of the data set, which is done prior to
the execution in all cases.

Table 3.2: Energy deposition prediction duration with the GAN generator compared to Geant4
MC simulations as reported in [16].

Model Time per prediction [s] Rel. speed

Geant4 (1 CPU) 9.5 · 105 1
GAN (1 CPU) 0.6 ∼ 1.6 · 106

GAN (1 GPU) 0.1 ∼ 9.5 · 106

The Geant4 MC simulations used to generate the datasets within this study requires approx-
imately 264 computing hours. In reality, this process is highly parallelized and therefore
significantly shortened. Nevertheless, even considering additional methods to reduce the MC
simulation time (e.g. by decreasing the very small step limit or increasing the production
cuts used), the GAN generator takes only a fraction of the required computing time even on
a CPU (0.6 s) and especially when using a GPU for prediction (0.1 s). Even compared to the
MC step of the HybridDC model (30 min), the proposed ML model still achieves a significant
speed-up. Batch processing additionally allows the prediction of up to several samples in
parallel without notable increase in computation time, resulting in an even shorter effective
prediction time.

3.2 Performance studies with more complex phantom models

The development of the model was done using an extremely simple target phantom model,
which is relatively far away from realistic treatment scenarios. In this section, the transfer-
ability of the model to more complex phantoms is investigated. First, the previous bone slab
model is extended. Afterwards, a simplified paediatric head phantom to test the model in a
more realistic scenario.
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3.2.1 Extended bone slab model

In the development of the microbeam radiation therapy (MRT) GAN model, the used bone
slab model was restricted to only one slab thickness. In this second performance assessment,
a new dataset is generated using a second bone slab model which also includes a variation in
bone slab thickness. The rotation angles remain the same from 0◦ to 87◦ including flipping
of the samples resulting in negative rotation angles. Considering the bone slab thicknesses,
discrete values d ∈ {1, 1.75, 2.5, 4, 5, 7, 10}mm are used.
Figure 3.12 shows the separation of simulated samples into training, validation, and test data
for this second study. Training and validation samples include only bone slab thicknesses
of d ∈ {1, 2.5, 5, 10}mm. The remaining slab thicknesses d ∈ {1.75, 4, 7}mm are reserved
for the test dataset. Considering the rotation angle, again several groups of rotation angles
are excluded from the training data to serve as validation data The angles excluded are:
α ∈ {[0, 4) ∪ [17, 23) ∪ [37, 43) ∪ [57, 63) ∪ [84, 86)}◦. The last validation interval is chosen
shorter due to the significant changes in the geometry occurring at those rotation angles.
The test samples are simulated with all bone slab rotation angles as they already differ in
bone slab thickness. This choice of test data allows for the investigation of a more complex
task for the network: as there are test data samples for which neither the rotation angle, nor
the slab thickness are included in the training, requiring an interpolation in two dimensions
of the parameter space.

(a) (b)

Figure 3.12: Stacked histograms of training (dark grey), validation (medium grey) and test
dataset (light grey) with regard to their bone slab rotation (a) and thickness
(b). Reproduced from [16]
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Prediction accuracy and generalization assessment

The training with this second dataset is a bit less stable which can be noticed in the less
monotonous development of the passing rates over the training epochs, shown in Figure (3.13).
The best 1% validation passing rate is after training for 3,300 epochs which is substantially
longer than for the simple bone slab model, translating to a wall time of several days of
training.

Figure 3.13: Passing rates against the training epochs using the dataset generated from the
extended bone slab model. Reproduced from [16].

The obtained average δ passing rates using the final model to predict all samples in the train-
ing, validation and test dataset, are shown in Table (3.3). Within their reported statistical
uncertainties, the passing rates are in agreement. This finding indicates successful generali-
sation of the model on the slab rotations and thicknesses not part of the training data set,
thereby confirming the potential usability of the model also in more complex scenarios.

Table 3.3: Averaged δ index passing rates for the training, validation and test data sets as
reported in [16].

Passing rate [%]
Training Validation Test

δ < 1% 88.1 ± 0.7 87.7 ± 0.2 87.2 ± 1.4
δ < 3% 98.9 ± 0.2 98.8 ± 0.2 98.5 ± 0.4

All reported passing rates are found to be on a very high level. However, the reported
uncertainties of the test dataset is higher than for the other datasets, especially for the 1%
passing rate. The reason for this can be inspected more closely in Figure (3.14) showing the
passing rates in dependence of the bone slab rotation angle and its thickness. The reported
passing rates are averaged over the quantity not shown, respectively, in both cases.
With respect to the bone slab rotations (Figure (3.14a)), the average passing rates are very
similar for the three datasets. A notable difference to the training with only a fixed bone
slab thickness is that with the more complex phantom the decrease in performance for low
slab rotations (bone slab perpendicular to beam) is not visible anymore.
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For higher rotation angles, the result on the test dataset shows a lower passing rate as
compared to the training and validation data. Especially the increase in passing rates for
the training dataset while the performance on the test dataset drops is a strong indicator for
overtraining in this part of the parameter space.
Moreover, Figure (3.14b) seems to indicate overfitting regarding the bone slab thicknesses
as well because of lower scores for all test bone slab thicknesses compared to the respective
training and validation datasets. This, however, needs to be analysed together with Fig-
ure (3.14a). Combining the two figures’ results in the observation, that the lower results
throughout all slab thicknesses stems from the high rotation angles. Following from this it
can be concluded that while the interpolation between bone slab thicknesses seems to be
successful for smaller slab rotation angles, clearly shown by the agreement of the datasets in
Figure (3.14a), the model struggles with to generalisation for large rotation angles.

(a) (b)

Figure 3.14: Passing rates in dependence of the bone slab rotation angle (a) and its thickness
(b). Reproduced from [16].

Exemplary energy deposition depth profiles, at the centre of the field and out of field, are
shown in Figure 3.15, similar to the first simple bone slab model investigation. The shown
data samples stem from the test dataset. More specifically, they all are samples with both
a bone slab rotation angle and thickness excluded from the ML training. The performance
of the model on those samples is of special interest to evaluate the potential of the proposed
model.
Generally, all shown energy depositions are predicted relatively accurately, rarely exceed-
ing 10% deviation in-field and 25% out-of-field. The previously observed weakness of the
model considering high rotation angles is confirmed in the depth curve for α = 80◦ in Fig-
ure (3.15c).Right before and behind the bone slab insert the model systematically first over-
and subsequently under-predicts the energy deposition. This is most likely to be associated
with the model not generalising on those rotation angles and rather producing an output
matching the learnt distribution for a different, in the shown case larger, rotation angle
which is part of the training dataset. One reason making the prediction for large rotation
angles especially difficult for the model is visible in Figure (3.15f): the bone slab does not
reach the edge of the prediction field anymore due to the combination of its high rotation
angle and the small thickness.
All in all, the model is found to perform well especially in the more realistic cases including
less steep bone slab angles. The time required per prediction is not changed compared to the
simple bone slab model as no hyperparameters of the model, including its structure, were
not changed.
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(a) (b) (c)

(d) (e) (f)

Figure 3.15: Comparison of Geant4-simulated (grey) and ML-generated (black) energy
deposition-depth curves of exemplary test data samples. (a-c): Centre of the
field. (d-f): Edge of the scoring volume. The bone slab rotation angles and
thicknesses are α = [0, 40, 85]◦ d = [7, 4, 1.75] mm, respectively. Below the curves
the relative deviations are shown, including outliers as red arrows. Adapted from
[16].

3.2.2 Simplified paediatric head

After two rather technical phantoms, the performance of the model for application on a more
realistic scenario is investigated, posed by a simplified paediatric head phantom, built from
nested spheroids. A schematic overview is shown in Figure (3.16).

Figure 3.16: Schematic overview (not to scale) of paediatric head phantom used for MC
dataset creation. The beam enters from the left, is shaped by the tungsten
mask (dark grey), before entering the head phantom consisting up of skin (red),
skull (black) and the brain (blue). The scoring volume is marked with a dotted
line. Reproduced from [33].
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The outer spheroid representing the skin as outer perimeter of the phantom has a length of
15 cm. The width and height are both 13 cm. Its assigned material in the simulation is water
(G4_WATER, [78]). Inside of this spheroid, a bone spheroid (G4_BONE_COMPACT_ICRU,
[78]) of 14.8 cm length and 12.8 cm width and height is placed. Because in the Geant4 frame-
work, nested geometries automatically result in the inner objects overwriting the materials
in place from outer objects. In this case, this results in the first, large water spheroid being
reduced to a 1 mm shell around the inner bone sphere. Subsequently, another spheroid is
inserted into the second one, resulting in total in a skin (water) layer on a skull shell around
the inner one, presenting the brain and being simulated using water (G4_WATER, [78]).
This inner sphere is 14.25 cm long and 12.6 cm both wide and high. Instead of being placed
centred in the bone spheroid, the inner one is shifted 1.25 cm to the front. This results in a
thinner bone shell at the forehead compared to the back of the head.
The phantom is placed perpendicular to the incident beam resulting in a radiation from the
side of the head. In contrast to the previous simulations in which the whole scoring volume was
covered in either water or bone material, in this scenario the air filling the simulation world
(G4_AIR, [78]) fills up different amounts of the scoring volume, depending on the position
of the phantom in front of the beam. An exemplary energy deposition-depth profile in the
case of the head being centred in front of the beam is shown in Figure (3.17a). The energy
deposition in air (G4_AIR, [78]) before entering the phantom is negligible. Subsequently, the
thin skin layer is visible before the energy deposition peaks in the first bone layer. Next, the
near-exponential decrease of the energy deposition inside the approximated brain volume can
be observed before a smaller peak appears where the beam hits the distal part of the skull,
followed again by the visible thin skin layer before energy deposition drops to approximately
zero in air after the phantom again.

(a) (b)

Figure 3.17: (b) Exemplary energy deposition for a phantom centred on the beam. (c) Dis-
tribution of data sets in dependence of the phantom translation in front of the
beam. Reproduced from [16].

To create a dataset for the training of the ML model, the phantom head is centred on the
beam first and then translated horizontally in front of the beam to create different sam-
ples. The translations are sampled from a flat distribution between -65 mm to 65 mm, so
that the in-field region is always aiming at brain volume and does not primarily aim on
the skull of the forehead or back of the head. Similar to the previous sections, the re-
sulting dataset is split systematically into training, validation and test data. The distribu-
tion into those three is shown in Figure (3.17b). For validation, the translations t in the
ranges t ∈ {[−54, −50) ∪ [−29, −25) ∪ [−4, 0) ∪ [25, 29) ∪ [50, 54)} mm are removed from the
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dataset, for testing t ∈ {[−50, −46) ∪ [−25, −21) ∪ [0, 4) ∪ [21, 25) ∪ [46, 50)} mm).

Prediction accuracy and generalization assessment

The best model training on data generated with the simplified paediatric head phantom is
achieved after training for 6,900 epochs. The development of the passing rates over the train-
ing epochs is shown in Figure (3.18). Compared to training with the data of the extended
bone slab model, the stability of the training further decreases, shown by larger jumps be-
tween subsequent passing rate values. Nevertheless, the model overall converges although the
required training time is relatively long with nearly one week of wall-time.

Figure 3.18: Passing rates against the training epochs using the dataset generated from the
simplified paediatric head phantom. Reproduced from [16]

The averaged passing rates when applying the final model on all datasets is shown in Table 3.4.
For calculation, voxels containing only air are not considered. In addition to the overall
passing rates, δbrain is also shown which is calculated only considering voxels inside the brain.
This results in a more realistic performance estimation because the normalization factor in
the δ index is the maximum energy deposition which occurs in the bone and is significantly
higher than the maximum energy deposition in the brain.

Table 3.4: Average δ and δbrain passing rates as reported in [16] of prediction using the ML
model being trained on data from the simplified head phantom.

Passing rate [%]
Training Validation Test

δ < 1% 93 ± 7 96.0 ± 1.7 96.3 ± 0.9
δ < 3% 99.3 ± 1.5 99.4 ± 0.5 99.6 ± 0.1
δbrain < 1% 87 ± 10 90 ± 6 90.4 ± 2.4
δbrain < 3% 98.9 ± 2.1 99.2 ± 0.4 99.5 ± 0.2

In the values summarized in the tables, the performances on the training samples appears
lower than on both the validation and test dataset. This is a counter-intuitive finding and
requires more investigation.
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A reason for this result can be found in Figure (3.19) showing all reported passing rates
for the three datasets as a function of the phantom translation. The performance of the
model degrades for larger phantom translations and samples with large deviations are over-
proportionally included in the training dataset over the validation and test dataset. For this
reason, the absolute numbers as reported in Table (3.4) cannot be used alone as measure of
model generalisation. Considering the more central part of the parameter space, from around
−40 mm to +40 mm, the predictions on training, validation and test dataset are very similar,
indicating a good generalisation for that region.

Figure 3.19: Passing rates in dependence of the phantom translation. The results are sepa-
rated by dataset (dark grey: training, grey: validation, light grey: test), by the
δ criterion (circle and square: 3%, triangle and diamond: 1%), and the volume
taken into account being the whole phantom or only the brain. Reproduced
from [16].

The decrease in performance stems from two main sources: (1) the further the phantom
is translated, the less voxels overall are considered due to more voxels being covered with
air only. At the same time a larger fraction of voxels contain bone, and a smaller fraction
contains water material, resulting in more energy depositions with large absolute values. This
difference between samples with the phantom centred on the beam and translated to the
maximum can be seen in Figure (3.20a) and Figure (3.20b), respectively, showing the density
matrix in the prediction volume at the vertical centre of the beam. Deviations considering
those larger values contributes more significantly to the chosen δ measure. In Figure (3.20b),
the occurrence of a relatively large number of voxels with δ > 3% can be seen in bone voxels.
(2) the prediction involving more bone material is generally more complex as more bone
being traversed results in a energy deposition landscape including many voxels with large
gradients.
Figure 3.21 shows the predictions of the ML model at the centre of the field and the edge of
the prediction volume in comparison to the respective Geant4-simulated energy depositions.
For the in-field region, all voxels inside of the brain are predicted accurately within 10% with
most voxels deviating less than 5%, even for the worst-case example of t = −65 mm, shown
in Figure (3.21c). Larger deviations occur around the proximal and distal skull passing of
the beam, leading to some values with larger deviations. Overall, the deviations increase
with depth in the phantom. This is partly attributed to the increasing statistical uncertainty
of the MC-simulated samples which can be seen by the enlarging of the shown error bands.
Some systematic deviations are visible, such as the over-estimation of the energy deposition
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(a) (b)

Figure 3.20: Comparison of Geant4-simulated (grey) and ML-generated (black) rnergy
deposition-depth curves of exemplary data samples. (a-c): Centre of the field.
(d-f): Edge of the scoring volume. The phantom translations are (a+d) t = 2 mm
(test data), (b+e) t = 48 mm (test data) and (c+f) t = −65 mm (training data,
worst overall example). Below the curves the relative deviations are shown, in-
cluding outliers as red arrows. Adapted from [16].

in Figure (3.21a).

(a) (b) (c)

(d) (e) (f)

Figure 3.21: Comparisons of normalized simulated and generated energy depositions inside
the phantom along the beam using the test data for the in-field (a-c) and out-of-
field (d-f) region of the beam with phantom translations of t = [2, 48, −65] mm
(a+d, b+e, c+f). The lower part of the plots shows the relative energy deviation
∆Erel in percent. Outliers are indicated with a red arrow. Adapted from [16].

3.2.3 Generalisation test with a CT-based skull model

In the following, a significantly more complex but interesting generalisation test is performed.
The ML model trained on the simple head phantom data set is used to predict the energy
deposition of a synchrotron broadbeam in a more realistic, Computer Tomography (CT)-
based phantom. The simulation geometry is based on the ICRP110 phantom [90] which is
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available as a Geant4 example [91].
The existent example reads a realistic CT-based head phantom and assigns materials to it.
The voxels are of size (dx, dy, dz) = (2.137, 2.137, 8.0) mm. dz = 8 mm is the slice distance
of the used CT scan in vertical direction. Figure (3.22) shows the phantom being integrated
into the previously used synchrotron broadbeam simulation. The energy depositions are still
scored using the 140x18x18 voxel grid with a resolution of 1 mm.

Figure 3.22: Screenshot from Geant4, showing the CT-based voxelized skull simulation. The
tungsten mask is shown with wireframes, the green lines are the broad beam
photons, and secondary electrons are shown in red. Yellow marks interaction
points of particles with the simulation world. The realistic skull is shown in
light grey, the brain inside of the skull is not visible.

To obtain a density from the Geant4 simulation as input for the ML model, both energy
deposition E and dose D are scored. Subsequently, the density per scored voxel can be
calculated as

ρ = m/V = m/E · E/V = 1/D · E/V = E/D/V (3.2)

where V is the voxel volume of 1 cm3. An example of a derived density matrix is shown in
Figure (3.23). While the overall features are similar to the simple paediatric head phantom
constructed for the training of the ML model, there are several differences. First, the skin
layer is significantly thicker. Also, the skull is constructed with a layer structure using a
denser inner and outer layer of compact bone together with a less dense material in between,
which represents the cranium. Where the double-layer structure cannot be seen, the cranium
layer is too thin for the voxel resolution.

Figure 3.23: Exemplary density matrix in the prediction volume slice obtained from the
ICRP110-based phantom. The red dashed lines indicate the in-field region.

The resulting ML prediction is compared to the Geant4-simulated energy deposition in Fig-
ure (3.24). The ML model predicts a peak of energy deposition right after the entrance into
the phantom. This is likely due to the simple paediatric phantom exhibiting only the thin
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layer of skin over the bone, which was not varied during the training, resulting in the model
having memorized the energy deposition peak there. At the depth of the actual skull, the
ML-model successfully predicts an increased energy deposition. However, the prediction is
too high and too narrow, resulting from the training data only containing one layer of skull
being made from compact bone instead of considering the less dense cranium in between
compact bone layers as done in this more realistic phantom. In the region of the brain, in
fact, the ML-model predicts nearly all voxels with an accuracy of 10%. Even in the out-of-field
prediction, shown in Figure (3.24b), it can be seen that the predictions in the brain region
rarely exceed 10%.

(a) (b)

Figure 3.24: Comparison of Geant4-simulated and ML-generated energy deposition-depth
curves at the centre of the beam (a) and the edge of the prediction volume
(b). Dotted lines connecting the predicted energy depositions are included as
visual aid. The lower plots show the relative deviations, red arrows indicate
deviations outside the shown range.

For different positions of the phantom in front of the beam, the deviations are comparable
to the shown example. While the generalisation of the model is unsuccessful in terms of
accurate energy predictions in all regions, the accuracy inside the brain is found to be a sign
for a successful generalisation. It can be seen as plausible that in future studies the energy
depositions in CT-based geometries might be predicted successfully without the acquisition of
those for training data generation, by instead using a more sophisticated phantom including
more physiological variations to train an ML model.

3.3 Is the GAN approach worth it? Comparison to regression models

Although the developed ML model has been found to be able of accurate predictions for a
variety of phantoms, a large drawback are the very long training times of the GAN-based
generator on the order of days to weeks on the used hardware in this thesis. In this section,
neural network models identically built to the generator used in the developed model are
trained as regression models instead. The target phantom used is the simplified paediatric
head phantom developed in Section (3.2.2). Leaving out the critic network from training
speeds up the model training process especially as it is trained five times for every weight
update of the generator network.
The network is trained using the Adam optimizer with a batch size of 32. As loss function, the
mean-squared error (MSE) and the mean-absolute error (MAE) are compared in their resulting
performance, using learning rates of 1 · 10−2, 1 · 10−3, 1 · 10−4, 1 · 10−5. The ratio of voxels
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Table 3.5: Mean absolute error and passing rates for in-field voxels based on different criteria
for the validation data set.

Model Dataset MAE [1 · 10−3] ∆Erel < 1% [%] ∆Erel < 3% [%]

GAN Training 2.4 ± 0.1 29.7 ± 0.3 64.3 ± 0.4

Validation 2.0 ± 0.1 30.9 ± 0.5 66.2 ± 0.8

Test 1.87 ± 0.02 30.0 ± 0.4 66.6 ± 0.5

Regression Training 1.43 ± 0.04 37.4 ± 0.2 77.5 ± 0.3

Validation 1.5 ± 0.1 38.2 ± 0.4 78.1 ± 0.7

Test 1.35 ± 0.03 39.0 ± 0.3 79.5 ± 0.4

exhibiting a relative deviation of less than 1% and 3%, respectively, is used instead of the δ
index for model comparison. Figure (3.25) shows the respective training and validation rates
of voxels for the GAN and regression trainings with different configurations. The training with
a learning rate of 1 · 10−2 did not converge successfully. The training using a learning rate of
1 · 10−5 the MSE loss was not finalized after it became obvious that it would result in worse
results than the higher learning rates.The overall best validation results are achieved by the
model which was trained as regression with an MAE loss and a learning rate of 1 · 10−5. In
fact, most regression configurations result in better validation results than the GAN training.
The final performance of the best regression model and the GAN model are evaluated on the

(a) (b)

Figure 3.25: Rates of voxels with a relative deviation of less than 1% (a) and 3% (b) respec-
tively for the GAN training and regression training using the MSE and MAE loss
function together with different learning rates.

test data set. The summary of the performance measures is shown in Table (3.5). For the
same reason as in the previous section, the reported results are better on the validation and
test data. As computed by all used performance measures, however, the regression-trained
3D U-Net proves to allow for more accurate predictions than the GAN-trained model.
Figure (3.26) allows for a closer inspection of the accuracy of the predictions in dependence
of the phantom translation. As seen in the previous section for the GAN model, also the
performance of the regression-trained model decreases towards larger absolute translations.
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The performance degradation is more significant for the GAN model.
The generalization of the model is evaluated to be satisfactory as no systematic difference
can be found between the performance of training, validation, or test data as they all fall on
a similar trend curve.

(a) (b)

Figure 3.26: Performance evaluation using the 1% (a) and 3% (b) passing rates in dependence
of the phantom translation on the training, validation, and test data sets.

When looking at the 2D or 1D depth energy deposition curves, the difference between the two
models is clearly visible as well. Figure (3.27) shows a 2D slice of the energy deposition pre-
dictions from the GAN-based and the regression-based model and compares it to the Geant4
simulation result. The energy predictions outside of the head phantom do not contribute to

(a) (b)

(c) (d)

Figure 3.27: 2D energy deposition slices from the GAN-trained (a, b) and the regression-
trained (c, d) networks at the vertical centre of the field of view for phantom
translations of 2 mm (a, c) and -65 mm (b, d), compared to the Geant4-based
simulation.

the performance measure as they can be assumed to be zero. Within the field, most devi-
ations are below 5%, which can be seen in more detail in the 1D depth energy deposition
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curves in Figure (3.28). Outside of the beam area, the deviations are larger and up to around
25%, although at a low absolute dose level. In the case of the predictions in the centre of
the phantom, the GAN-based model underestimates the out-of-field dose at the entrance of
the phantom while overestimating it from approximately the middle of the phantom. The
regression-based model exhibits less biased predictions in the first half of the phantom and
then tends to underestimate the dose in the distal parts of the phantom. In the case of the
prediction at the extremes of the phantom translation, the GAN-based model exhibits strong
underestimation in the area next to the beam, which is not visible for the regression-based
model. The overall less biased prediction can clearly be seen using the regression model.
This can be confirmed looking at depth energy deposition curves in Figure (3.28) and com-
paring them to the ones shown in Figure (3.21f) for the GAN model: both the spread of
the deviations are lower and the predictions show less of a trend throughout the phantom
(overestimating for the GAN, underestimating for the regression network).

(a) (b)

(c) (d)

Figure 3.28: Depth energy deposition curves from the regression-trained (c, d) networks at
the central line of voxels (a, b, e, f) and at the edge of the field of view (c, d, g, h)
for phantom translations of 2 mm (a, c, e, g) and -65 mm (b, d, f, h), compared
to the Geant4-based simulation.

3.4 Summary and conclusion of the proof-of-concept study
The presented 3D U-Net-based ML models are all capable of predicting energy deposition
following an irradiation with a synchrotron broadbeam at the IMBL with an accuracy of
about 10% within 100 ms when being executed on a GPU. Batch processing allows the parallel
prediction of up to 32 samples, reducing the effective time required per prediction.
The model was developed using a simple bone slab model and its ability to be applied also
to a more complex bone slab model and a simple paediatric head phantom was shown. In

33



an outlook application study, the fully trained model was found to even extrapolate to some
extent to a more complex CT-based phantom, predicting the energy depositions inside the
brain region within 10% although the phantom differs significantly from the training phantom.
The observed accuracy does not suffice for the use as sole treatment planning dose calculation
engine. Combined with its prediction speed, however, the models are found to be feasible
candidates for preliminary predictions during treatment planning, enabling for example plan
optimization or support online-adaptive treatment at some stage. Nevertheless, significant
differences were found between the presented GAN approach and the regression training. The
regression-trained energy prediction ML model is both significantly faster in training, allowing
for a more in-depth search for optimal parameter configurations, and achieved more accurate
predictions on the simple paediatric head model. One aspect of the GAN approach which
as originally thought to be an advantage is its ability to adapt to statistical variations in
the datasets and reproduce them. Instead, adapting to the noise in the training samples,
i.e. statistical uncertainty of the MC simulation, is not a desired behaviour of the ML model
in the case of energy deposition predictions based on an input geometry. In the presented
studies, the use of the GAN-trained generator results in more noisy predictions, especially
in the out-of-field regions, while no benefit for the quality of the predictions in-field can be
observed.
While this study did not reveal any benefits of the GAN model, future studies involving
training on significantly more complex phantom geometries might result in the flexibility of
the GAN allowing it to perform better than a regression-trained model. Nevertheless, at this
stage it seems improbable that a GAN approach is the best choice for an energy deposition
prediction task.
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4 Transfer & comparison study: predicting proton minibeams
microbeam radiation therapy (MRT) is not the only novel preclinical treatment method which
currently performs dose estimations using time-consuming Geant4 simulations. After the
regression model was found superior to the generative adversarial networks (GAN)-based
generator in the previous section, these approaches are compared again in this section, testing
their transferability to a different treatment: proton minibeam radiation therapy (pMBRT).
In addition to comparing the two methods, the proposed model is also compared to the Dose
Transformer (DoTA), a machine learning (ML) model based on the so-called self-attention
mechanism [92] which was recently developed for predicting doses following proton pencil
beam irradiations [93, 94]. It will be briefly introduced later in this section.
Most parts of the results shown in this section have been already published prior to the
submission of this thesis [33].

4.1 Proton minibeam radiation therapy (pMBRT)

Utilizing a grid of sub-millimetre proton beams, pMBRT is classified as spatially fractionated
therapy like MRT. since its proposal in 2013 [95], pMBRT has been reported in multiple studies
to increase healthy tissue sparing while at the same time not decreasing the tumour control
[96, 97, 98, 99].
Protons are charged particles and their energy deposition in tissue differs significantly from
the x-rays utilized in MRT. The energy loss of charged particles with matter is described
by the Bethe-Bloch equation [100, 101]. A central aspect described by the equation is that
a decrease of particle energy leads to an increase of energy loss per track length, in turn
further decreasing the particle energy. This process of accelerated stopping of protons in
matter leads to the formation of the so-called Bragg peak, a phenomenon which, in fact, was
discovered well before the formulation of the Bethe-Block equation [102]. The dose deposition
behaviour following proton beam irradiation of a water phantom is shown exemplarily for
a single proton minibeam with an energy of 100 MeV in Figure (4.1). The entry dose, as
summarized over the width and height of the first layer of voxels, is used as normalization
for the depth-dose curve and also the 2D visualisation. Doses depositions smaller than 1% of
the entry dose are not shown.

Figure 4.1: 2D dose deposition profile of a proton minibeam in water (upper plot) together
with a depth-dose curve summarized over the full width and height of the phantom
(lower plot).

The beam is simulated divergence-free with a diameter of 0.8 mm, similar to an early proof-
of-concept-study for pMBRT [95]. The interaction of the protons with matter is simulated
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using the Geant4 physics list QGSP_BIC_HP which is recommended for proton therapy
applications [103]. The dose depositions are scored using a voxel grid with a resolution of
1x1x1 mm3, which is adapted from the synchrotron broadbeam simulations in the previous
studies.
The upper plot in Figure (4.1) shows the resulting 2D dose deposition profile. The entrance
of the beam from the left can clearly be seen together with the abrupt stop with the Bragg
peak at around 75 mm depth. The scattering of the protons in the water leads to a visible
beam broadening. The lower part of Figure (4.1) shows the depth-dose profile summarized
over the full width and height of the phantom, clearly showing the increase in dose deposition
approaching the Bragg peak, which exhibits a dose of over five times the entry dose.
The voxel-wise depth-dose curve along the centre of the beam leading from the entry into the
phantom up to the Bragg peak depends strongly on the chosen voxel size. Figure (4.2) shows
the depth-dose curves in a single line of voxels at the centre of the beam for the used scoring
resolution of 1x1x1 mm3 and also for two more scoring resolutions of 0.5x0.5x0.5 mm3 (2x
resolution, grey) and 0.25x0.25x0.25 mm3 (4x resolution, red). All curves are normalized to
the maximum of the Bragg peak of the 1x1x1 mm3 scoring. Using a finer spatial resolution,
the Bragg peak is less pronounced because of the beam broadening due to scattering. While
this is important for the intuitive understanding of depth curves shown later in this section,
it has no further impacts on this study.

Figure 4.2: Dependence of the 1D voxel-wise depth curve on the voxel size.

4.2 Simulation dataset

The dataset being used for this study is produced using the simple paediatric head phantom
introduced in Section (3.2.2). The phantom is centred in front of a single incident proton
minibeam. The proton beam energy is varied between 20 MeV and 100 MeV in steps of 2 MeV.
The smaller beam in comparison to the synchrotron broadbeam allows for a larger translation
until reaching the edge of the brain model. Therefore, the phantom is translated continuously
between ∆ = −70 mm and ∆ = +70 mm. As for the previous studies, the energy deposition is
used for training the ML model instead of the dose. Exemplary energy deposition simulations
for different beam energies and phantom translations are shown in Figure (4.3). Energy
depositions are not shown if they are smaller than 1% of the voxel-wise maximum among all
shown simulations.
For high energies and large translation values such as 100 MeV at -70 mm, the beam com-
pletely penetrates the phantom. This poses an additional difficulty for the model as the lack
of the Bragg peak in this region of the parameter space differs significantly from other sam-
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Figure 4.3: 2D profile of simulated energy depositions in phantoms at different translations
using different beam energies. Adapted from [33].

ples. On the other side this scenario is seen as not very relevant clinically as the energy of
protons entering the phantom are usually chosen so that the Bragg peak is located in the tar-
get region. Nevertheless, those samples are included in the dataset. The created simulation
dataset comprises 2911 in total. From these, 720 samples are excluded for validation and 741
for subsequent testing, respectively. The split, like in the previous studies, is conducted in a
systematic way to allow for better inspection of dependencies of the observed performances
after training. The parameter space and its distribution into the different datasets is shown
in Figure (4.4). The separation is chosen in a way that there are samples for which both the
proton energy and also the phantom translation are excluded both from the training.

Figure 4.4: Separation of the simulated data samples into training (dark grey), validation
(medium grey) and test data (light grey). Reproduced from [33].

4.3 ML models for proton minibeam prediction

This subsection first discusses adaptions of the 3D U-Net based model for application to
proton minibeams before briefly introducing the DoTA model.
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4.3.1 Adaption of the 3D U-Net-based synchrotron broadbeam model

In the previous section, two inputs were introduced as input for the generator: the density
matrix of the predicted volume and the energy deposition in a water-only phantom. This was
found to enhance the prediction quality in the case of the synchrotron radiation. A direct
transfer of this model for proton minibeam prediction is shown in Figure (4.5).

Figure 4.5: Adaption of the 3D U-Net-based generator model for proton minibeam prediction.
Reproduced from [33].

In the case of proton therapy this method becomes more difficult to use. While the syn-
chrotron x-ray beam can have a constant energy distribution throughout the irradiation, this
is not the case for proton irradiations. Due to the Bragg peak leading to a confined beam
range, its energy is constantly varied to deliver doses to different depths of the target. A
continuous change in proton beam energy would result in infinite required water-only simu-
lations being pre-computed and stored. The only option is to simplify the approach to only
discrete energy steps. In that case, the inserted water-only simulation does not match the
required energy for the prediction exactly. In addition to this deviation potentially rather
degrading than improving the performance of the model, it is generally questionable whether
the energy deposition profile form a water-only simulation helps the model at all because the
model would have to shift the Bragg peak contained in the simulation result depending on
the traversed material. The position change of the Bragg peak following the passing through
two bone slabs of different depth is schematically shown in Figure (4.6).
Accurately learning how to modify the pre-computed energy deposition is suspected to be a
at least as difficult for the ML model as predicting the energy deposition profile in the first
place, therefore not being useful as additional input. To investigate those ideas, two different
additional inputs encoding the proton beam energy are compared: the water-only condition
and the scalar energy condition. For the water-only condition, all available proton energies
in the dataset are simulated in a water-only phantom and stored for usage in the prediction,
exactly as proposed for synchrotron beams in the previous section. For the scalar energy
condition, a matrix of the same size (140x18x18 voxels), filled with the scalar value of the
proton energy, normalized by the maximum energy of 100 MeV, is passed to the network
instead.

4.3.2 DoTA: a transformer-based model

Transformer models are based on the so-called attention mechanism which was introduced
as a technique for sequence translation [92]. A type of sequence translation that transformer
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Figure 4.6: Visualisation of the different ranges of proton beams in water only and when
traversing bone slabs with different thicknesses.

models have gained much public attention is the generation and translation of natural lan-
guage content [104, 105]. The great success of transformer models not only in that domain
but a whole range of applications (e.g. [106, 107, 108]) has also drawn the attention of re-
searchers from the field of medical physics to them. The DoTA model presents an attempt
to interpret dose prediction as translation task: Instead of translating e.g. a German text to
English, a sequence of Computer Tomography (CT) slices is translated to a dose distribution
[94]. The implementation of the DoTA model is derived from a publicly available Github
repository [109] which is linked to the original publication.

4.4 Hyperparameter optimization

In the search for the best ML model, several hyperparameter configurations are explored.
The models are trained until the ratio of voxels, which exhibit a deviation of the predicted
from the Monte Carlo (MC) simulated energy deposition of less than 1%, does not increase
anymore for 100 epochs. Voxels with less than 1% of the maximum energy deposition are not
used for performance evaluation. Figure (4.7) shows the aforementioned 1% ratio averaged
over the training and validation dataset, respectively. In addition, also the average ratio of
voxels with less than 3% deviation between ML prediction and MC simulation is shown. The
ML model configurations are described in the following, the x-axis shows model tags for better
identification. Both the 3D U-Net GAN and regression models are trained with a batch size
of 32, equal to the previous study.
The GAN model trained with the scalar condition (GAN-S) achieves a higher score than with
the water-only condition (GAN-W), confirming the initial assumption that the water-only
condition is not well-suited for proton beam predictions. The same is found for the regression
model. The models 3W and 3WD are both trained using the water-only condition. The 3W
model exhibits a significantly higher training than validation score, which indicates a lack
of generalisation. As a countermeasure, the dropout used for regularisation in the model is
increased in the model shown as 3WD. While the gap between training and validation scores
is successful reduced, a degradation of prediction accuracy is also observed. Comparing
the validation scores to the models being trained with the scalar condition (all regression
models without W in the model indication), the scalar conditioned models perform generally
better and more importantly show no or only small indications for overfitting as training and
validation scores are very similar.
Out of the different regression models with the scalar condition, the use of the mean-absolute
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error (MAE) loss together with a learning rate of 1 · 10−3 performs best. Training with an
even larger learning rate of 1 · 10−2 did not converge. An interesting difference between the
MAE and mean-squared error (MSE) regression is the observation that the models trained
with MAE loss increase in performance when using larger learning rates while this tendency
is reversed for the MSE loss.
Considering DoTA, an initial training using the original model, as found in the online reposi-
tory [109], (DoTA-O) is compared with an adapted version (DoTA-A). The adapted version,
using the MAE loss and the Adam optimizer instead of the MSE loss and the so-called LAMB
optimizer [110], performs better yet does not exceed the performance of the best 3D U-Net
regression model.

(a) (b)

Figure 4.7: Overview of relevant results from the hyperparameter optimization. Shown are
the ratio of voxels exhibiting a deviation of ML-predicted energy deposition of
less than 1% (a) and 3% (b) from the MC simulation both for the training and
validation dataset. The x-axis indicates the used model with tags which are
explained in the text. Reproduced from [33]

4.5 Performance assessment: prediction accuracy and generalization

After determining the respective best GAN, regression, and transformer model, each is applied
to the test dataset. The DoTA model’s execution speed is found to be significantly lower than
previously reported [94]. Using the given experimental setup and hardware available in
this study, the execution time is determined as (1.05 ± 0.04) s per prediction compared to
(0.13 ± 0.07) s taken by the 3D U-Net models.
An overview on the comparison between training and test performance with regard to the av-
erage MAE and the ratio of voxels exhibiting a maximum of 1% and 3% deviation between ML
prediction and MC simulation respectively, is shown in Table (4.1). It should be remembered
that voxels with less than 1% of the maximum energy deposition are not used for performance
evaluation. The shown metrics are not computed over the whole parameter space. In the
previous section it was shown that the performance of the models degrades increasingly for
larger phantom translations. The same is true for the proton beam prediction models. For
this reason, a direct comparison between the scores obtained from averaging over all samples
in the datasets is not representative for the generalisation, as samples with a large translation
are contained also in this study in the training dataset. Instead, Table (4.1) shows scores
averaged over all samples with a phantom translation of at most ±50 mm.
Comparing the scores obtained from averaging over the aforementioned parameter range,
the performance of each model is similar on the training and test datasets, indicating good
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generalisation. The models, however, show significantly different levels of accuracy: the
regression model is found to exhibit the best agreement between prediction and MC simulation
with (61.0 ± 0.5)% of the samples deviating less than 3% from MC.

Table 4.1: Performance comparison on the training and test datasets of the respective best
GAN, regression and transformer model as reported in [33].

Model Dataset MAE [1 · 10−4] ∆Erel < 1% [%] ∆Erel < 3% [%]

3D U-Net Training 11.64 ± 0.19 10.50 ± 0.19 30.6 ± 0.5
(GAN) Test 12.98 ± 0.23 11.00 ± 0.18 33.1 ± 0.4

3D U-Net Training 4.38 ± 0.01 25.87 ± 0.28 61.2 ± 0.5
(Regression) Test 4.74 ± 0.03 25.62 ± 0.29 61.0 ± 0.5

DoTA Training 5.27 ± 0.02 21.99 ± 0.28 48.6 ± 0.5
Test 6.25 ± 0.06 20.45 ± 0.34 46.1 ± 0.6

Figure (4.8) and Figure (4.11) show the test dataset performance of the three final models
in dependence of the phantom translation and the beam energy, respectively averaged over
the other parameter space variable. The regression model is found to perform best over
the whole parameter range, followed by the DoTA model which is only in a few regions
outperformed by the GAN model, ranking last in the comparison. Like in the previous section,
a decrease in performance of all three models towards larger phantom translations can be seen
in Figure (4.8), leading to the adjusted reporting for comparing training and test performance
in this section.

Figure 4.8: Ratio of voxels with less than 3% deviation between ML prediction and MC sim-
ulation of test data samples in dependence of the phantom translation, averaged
over the proton beam energy. Reproduced from [33].

The decrease is asymmetrical which can be attributed to the asymmetry of the simple head
model exhibiting a thicker skull layer at the back of the head, being targeted when using a
negative translation. The increased amount of bone material in the path of the beam results in
an increased prediction difficulty as the location of the Bragg peak changes quickly with more
bone being traversed. In addition, the beam is incident on the skull under a steeper angle for
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large translation values. This results in an asymmetric Bragg peak inside the brain, which
in turn makes an accurate prediction even more challenging for the ML models. Examples of
asymmetric Bragg peaks can be seen in an overview of 2D slices of ML predictions together
with the corresponding MC simulations in Figure (4.9).

Figure 4.9: Exemplary comparisons between the MC simulation (top row) and respective ML
predictions by the three models under investigation (indicated by the y-axis label),
shown as 2D slice at the centre of the field and the voxel-wise relative deviation
between ML and MC for test data samples with a phantom translations and proton
energies of 0 mm and 42 MeV, 60 mm and 42 MeV, 0 mm and 62 MeV, and -60 mm
and 82 MeV (from left to right). Voxels with less than 1% of the maximum energy
deposition are not shown. Reproduced from [33].

Generally, the scores seem to be low with only two out of three voxels match the set accuracy
level even for the best model. However, it has to be noted that the comparison is made in a
relatively strict way to get a good differentiation between the models. As it can be seen in
Figure (4.9), the majority of voxels with a large deviation do not occur in the centre of the
beam but either further away from the beam centre where very low doses occur or around
the Bragg peak. Two 1D energy deposition-depth curves of examples shown in Figure (4.9),
highlighting the steep gradients involved and the effect of minor range deviations on the
energy deposition, are shown in Figure (4.10): the combinations 0 mm and 62 MeV (1), and
-60 mm and 82 MeV (2). In Figure (4.9), the GAN model exhibits a significant number of
large-deviation voxels for combination (1) towards the end of the proton range, resulting
in a low ratio of voxels with high prediction accuracy. Figure (4.10a) shows that this, in
fact, is a result of a slight overestimation of the proton range for the given energy of about
1 mm. Similarly, combination (2), presenting actually one of the worst prediction cases of the
regression model, shows large areas of deviating voxels in Figure (4.9). In Figure (4.10a), it
can be clearly seen that this is a result from a range under-estimation.
While the accuracy around the Bragg peak is very important of course, already very small
range deviations result in very large deviations between MC simulation and ML prediction.
Many publications allow for a spatial deviation in the reported performance measure as well,
increasing the reported score (see the gamma coefficient being used e.g. in [94]). This was
found not to be instructive for the performance comparison of the models presented in this
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section. However, it should be kept in mind when comparing the reported results to the
literature.

(a) (b) (c)

(d) (e) (f)

Figure 4.10: Exemplary 1D depth-wise comparisons of ML-predicted and MC-simulated energy
depositions, shown for phantom translations and beam energies of 0 mm and
62 MeV (a-c), and -60 mm and 82 MeV (a-c), respectively. For easier visual
localisation of the head phantom, the voxel-wise density is shown in red.

In Figure (4.11), the computed scores are averaged over all phantom translations, including
the larger translations leading to lower scores, and instead being shown as a function of the
proton beam energy. All models show an initial increase in performance peaking around
approximately 50 − 60 MeV, followed by a decrease towards the high energy region. Low
energies are most difficult to accurately predict for all models. This is a result from the
very short range of low-energy protons in the phantom resulting in very high gradients. This
negatively impacts the performance two-fold: (1) fewer voxels exhibiting an energy deposition
of at least 1% of the maximum dose results in a larger impact of individual voxels in the
overall score. Inaccuracies with regard to e.g. the exact range cannot be compensated by
many accurately predicted voxels in the plateau region leading up to the Bragg peak, like it
would be possible for higher energies. (2) the involved gradients for low energies are steeper
because the beam does not scatter as much as in the case of high energies before reaching the
Bragg peak. The difference in the maximum energy deposition can be seen in exemplary 1D
depth-wise energy deposition comparisons between the ML models and the MC simulation in
Figure (4.10).
The regression model again achieves the best prediction results over the whole parameter
range. It does, however, exhibit dents in the performance around energies being exclusively
used for validation and testing, i.e. around 40 MeV, 60 MeV, and 80 MeV. This observation
hints towards a lower degree of generalisation achieved by the regression model in those
regions. This behaviour is not visible in the results obtained using the DoTA model. The
structured separation into the three datasets allows for a closer inspection of the local gen-
eralisation in certain regions of the parameter space. This is done by computing the mean
relative deviation between ML prediction and MC simulation as a function of the phantom
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Figure 4.11: Ratio of voxels with less than 3% deviation between ML prediction and MC sim-
ulation of test data samples in dependence of the proton beam energy, averaged
over the phantom translation. Reproduced from [33].

translation and the proton energy. The result for all three models is shown in Figure (4.12).
The shade of grey in the background of the samples is included to make the visual inspec-
tion of the performances among the datasets easier. Training samples are shown with white
background, validation samples in light grey and test samples in dark grey.

Figure 4.12: Mean relative absolute error (AE) obtained from predicting all datasets. The
shade of grey in the background of shown points indicate their respective dataset
as described in Figure (4.4), i.e. training (white background), validation (light
grey background) and test (dark grey background). Reproduced from [33].

The GAN model is once more found to generally perform significantly worse than the other two
models. The trends form the previous performance assessment plots can also be found here:
predicting lower proton energies and larger phantom translations is overall more difficult for
both the regression and DoTA model. Nevertheless, both models predict the energy deposition
distributions with an average deviation of less than 10% (green, blue or yellow) for most parts
of the parameter space.
The energy-wise dents in the performance of the regression model, visible in Figure (4.11),
can be found using the mean deviation measure in this plot as well. Although significantly
less prominent around 40 MeV, the regression model is found to systematically perform lower
in the regions of validation and test data around small phantom translations (yellow regions).
This indicates that the regression model in fact struggles more than the DoTA model with
generalising well with regard to the proton beam energy, directly translating to deviations
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in the predicted proton range. In contrast, the DoTA model is found to exhibit lower per-
formances for the left-out phantom translations along the whole proton energy range. The
DoTA model seems to be well-capable of interpolating between proton energies but struggles
more with the interpolation between different geometries. As a consequence, the parameter
space would have to be more densely populated with regard to the phantom geometries to
improve the DoTA performance whereas the 3D U-Net regression model would benefit most
from additional samples along the proton energy parameter space direction.
For the application in preclinical contexts this could be interpreted as an advantage of the 3D
U-Net regression model. Using MC simulations, it is easy to provide the model with wide range
of beam energies. The construction of different phantoms, however, is limited by a usually
rather small available number of e.g. CT samples from preclinical patients. This limitation
of the DoTA model coincides with the general observation that transformer-based models rely
on very large datasets to perform well [111]. Therefore, models like DoTA are expected to
provide more benefit for application cases where the creation of such large datasets is possible
or a dataset is even already available. In conclusion, the 3D U-Net regression model is found
to be the strongest candidate for developing ML models for new treatments thanks to its
transferability and high accuracy in scenarios of small training datasets. It is therefore used
in the further course of this thesis.
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5 The next step: development of a microbeam dose prediction
model

This section covers the development of the developed model from synchrotron broadbeam
prediction to the actual prediction of microbeam fields. A possible approach would be training
two machine learning (ML) models for predicting the primary and secondary dose following
the HybridDC Monte Carlo (MC) scoring method and subsequently applying the electron
dose kernel to obtain the final field. While this has the advantage of integrating well with
existing techniques, it comes at the disadvantage of relying strongly on the HybridDC model
and its approximations. Instead, a stand-alone method for microbeam dose prediction with
no further dependencies except the underlying MC simulation is developed in this section.
Parts of the results shown in this section have been already published prior to the submission
of this thesis [32].

5.1 Implications of MRT dose prediction by microbeam superposition
A naive and straightforward way to extend the developed model towards the prediction of
a full microbeam radiation therapy (MRT) field is by superposition of individual microbeam
predictions. A schematic of this approach is shown in Figure (5.1). First, the ML broadbeam
model (left) is retrained on a new dataset which exhibits a smaller voxel size and includes
only the dose deposition from a small part of a single microbeam (centre). Using this model,
the microbeam array can be constructed by superposition (right).

Figure 5.1: Schematic of the procedure of predicting microbeam arrays using a superposition
of individual microbeams.

While this method comes with the disadvantage of a substantial increase in computing time
because of the repetitive execution of the ML model, it easily allows producing dose distribu-
tions for variable field shapes resulting in high flexibility. A difficulty in implementing this
method is the required size of the prediction field. Figure (5.2a) shows the lateral dose pro-
file which results from the irradiation of a 14x14x14 cm3 cubic water phantom with a single
microbeam (red) and a 20 mm wide MRT field comprising an array of microbeams (black),
scored with a spatial resolution of 5 µm in 7 cm depth.
Moving away from the position of the single microbeam, the dose contribution decreases
steeply, already being reduced by a factor of nearly 1000 when in the region of the first
valley after 200 µm for a micrometre spacing of 400 µm. When comparing the valley dose of
the MRT field containing multiple microbeams, it is around one order of magnitude larger
than the dose that is contributed by the single microbeam. This means that not only the
next neighbouring microbeams contribute to their respectively adjacent valley, but many
neighbouring microbeams have to be considered. Figure (5.2b) shows the dose that the
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(a) (b)

Figure 5.2: (a): Comparison of a dose profile from a single microbeam (red) and a 20 mm wide
microbeam array field (black). Reproduced from [32]. (b): Dose contribution of
a single microbeam as a function of distance from the beam centre, normalised
by the dose it contributes to its adjacent valley. Indicators show the 10th, 20th
and 30th valley away from the microbeam. Adapted from [32].

shown single microbeam contributes in even larger distances to the beam centre. The doses
shown are normalised by the contribution of the beam in the adjacent valley right next to
it. Even in the 10th valley away from the single microbeam, it still deposits as much as 30%
of the dose it contributes to the valley right next to it, 30 valleys away the contribution still
comprises 10% of the next-neighbouring valley. The resulting effect on the valley doses in a
field being constructed from a different number of microbeams is shown in Figure (5.3) shows
the dose profiles following the irradiation of a with microbeam fields comprising a different
number of microbeams.

(a) (b) (c)

Figure 5.3: Dose profiles at the centre of a cubic water phantom following irradiation with an
MRT field of 1.2 mm (3 microbeams, a), 12.4 mm (31 microbeams, b) and 28.4 mm
(71 microbeams, c) width and 20 mm height.

Figure (5.3a) shows the dose profile from an MRT field comprising 3 microbeams, Figure (5.3b)
from 31 microbeams, and Figure (5.3c) from 71 microbeams. The peak doses stay nearly
identical between the three fields. However, the valley doses between the peaks can be seen
to increase. Especially the increase in valley dose between Figure (5.3b) and Figure (5.3c)
is notable. The distance of added microbeams from the shown part of the dose profile is
upwards from 6 mm to each side. Given a microbeam width of 50 µm, this means that even
at a distance of 1200 times its width, a microbeam interferes with the valley doses in other
parts of the field.
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While this effect was now discussed with respect to a fixed field height and a variable width
by including a varying number of microbeams in the field, different field heights also impact
the valley doses between the peaks. Those, in turn, still stay mostly constant independent
of the field size. Figure (5.4a) shows the valley dose in the first valley next to the central
microbeam for a fixed-width field of 20 mm, in this case in dependence of the field height
between 1 mm and 30 mm. The valley doses are normalized to the peak dose.

(a) (b)

Figure 5.4: Valley dose (a) and peak-valley dose ratio (PVDR) (b) in dependence of the field
height.

Up to the largest field size, the valley doses keep increasing. However, the increase is not
linear, which can be seen for example by comparing the 2 mm-field peaking at about 0.6%
peak dose (0.006 on the shown axis) with the 20 mm-field peaking at about 2.5% peak dose
(0.025 on the shown axis), which amounts to roughly four times the valley dose for a field
of ten times the size. In addition to the increase in peak valley dose, a larger field size also
results in the valley peak occurring slightly deeper in the phantom. For the smallest field with
1 mm height, the valley dose peaks approximately 7 mm from the surface, going up to a peak
at approximately 17 mm from the surface for a field of 30 mm height. The respective depth-
wise development of the PVDR for the central valley is shown in Figure (5.4b). Figure (5.5)
combines the results regarding the field width and height by showing the PVDRs of the central
valley at the centre of the phantom, allowing an easier comparison of the effects resulting
from different field sizes. It can be clearly seen that the PVDR decreases significantly for
increased field heights and widths. The change in overall PVDR, together with the shift of
the peak of the valley dose in the phantom, might be an important aspect to consider when
making treatment planning decisions in the future.
Returning to the implications for the mircobeam superposition approach for MRT dose pre-
diction, the long-ranging impact on valley doses poses a very difficult problem. It has been
shown that even as far as 15 mm away from a 50 µm wide beam (a 30 mm field size results
in 15 mm distance from the centre), its impact is significant and cannot be neglected in a
superposition approach. This would result, however, in the need for a similar-sized prediction
volume. The previously developed model was capable of predicting a volume of 140x18x18
voxels. Assuming this could be doubled towards the lateral and vertical field size, it would
result in 140x36x36 predictable voxels, allowing for a voxel size just below 1 mm. Figure (5.6)
shows the effect that too large voxel sizes have on the accurate determination of the peak
and valley doses.
Already a voxel size in the same order of magnitude as the nominal microbeam width (50 µm)
results to an significant averaging effect, reducing the average dose within the voxel to about
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Figure 5.5: PVDR at the centre of a 14x14x14 cm3 water phantom following the irradiation
with different sized MRT fields. The number of microbeams in the field array are
a measure of the field width (400 µm microbeam pitch).

Figure 5.6: Comparison of dose per voxel for different voxel sizes.

30% of its original value. It can be clearly seen that a superposition approach, as discussed
up until here, is not feasible.

5.2 Saving the day for superposition: macro voxels for microbeams
In fact, the micro-scale resolution of the individual microbeams is not always of interest
during MRT treatment planning. While the exact knowledge about the dose gradient between
peak and valley region may be of concern for certain applications, usually the treatment is
prescribed as valley dose or peak dose to the target volume and the distribution of valley
doses and peak doses, not those in the transition regions between them, is important for
planning decisions. If a microscopic description of the dose distribution is not required, a
more macroscopic approach is viable: the macro voxel method, which is presented in the
following before discussing how it can be utilized to achieve a viable method of MRT dose
estimation using the superposition of individual microbeams.

5.2.1 The macro voxel method

Using the macro voxel method, the average peak and valley doses in a certain region are saved
instead of scoring the dose depositions on a micrometre scale. Those macroscopic descriptions
of microscopic quantities can be used both for treatment planning and, in the scope of this
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thesis, dose prediction. Figure (5.7) shows the dose distribution in a water phantom resulting
from microbeams entering from the top, together with a white grid indicating exemplary
macro voxels with 0.5 mm edge length.

Figure 5.7: Visualization of microbeam energy deposition pattern together with macro voxel
edges. Reproduced from [34].

Figure (5.8) schematically describes how the macro voxel method differs from the microscopic
scoring approach. It shows energy deposition interactions as seen from the direction of the
incident beam. Instead of scoring all energy depositions using a high-resolution voxel grid,
only energy depositions in peak regions and valley regions are considered. For this, all energy
depositions which occur at most 5 µm away from a theoretical peak position are saved as peak
dose and all energy depositions which occur at most 50 µm away from a theoretical valley
position are saved as valley dose for each of the macro voxels. All energy depositions between
those regions are discarded. This method, in contrast to the microscopic scoring approach,
can be used with nearly arbitrary macro voxel sizes, simply resulting in averaging the peak
and valley doses over a larger region.

Figure 5.8: Macro voxel scoring schematic. Adapted from [34].

To illustrate in more detail how the method works, Figure (5.9) shows the application of the
macro voxel scoring method on an exemplary lateral microbeam dose profile.
Within the scoring regions, the dose depositions are recorded and then averaged per macro
voxel. Only energy depositions inside the macro voxels are counted. In the case of a macro
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Figure 5.9: High resolution dose profile resulting from microbeams in a water phantom with
respective peak and valley scoring regions marked in blue and green, respectively,
together with the macro-voxel peak doses and valley doses. Respective doses are
not to scale.

voxel boundary being positioned in a peak or valley scoring region, such as the central peak
dose or the two valley doses in the most distant voxels from the centre, the energy depositions
are split into the neighbouring voxels according to the respective volumetric fraction of the
scoring region being located inside them.
The peak and valley doses in Figure (5.9) are not to scale, especially the shown valley dose
is exaggerated. The curvature in the valley dose, however, generally is a usual feature in the
MRT dose profile. This is caused by the proximity of more beams at the centre of the field
resulting in more accumulated valley dose in the central region as compared to those at the
edges of the field which are more distant from most peaks.
Figure (5.10) shows the macro voxel method applied to a more realistic MRT field. It shows
the microscopic dose scoring on a 5 µm voxel grid in black together with the resulting peak and
valley doses for a 0.5 mm macro voxel grid. Figure (5.10b) allows for a better visual inspection
of the shape of the peak and valley doses by showing the two dose profiles on separate axes.
In both Figure (5.10) and Figure (5.10b), grey lines are included to help guiding the eye. As
indicated already in Figure (5.9)), the peak dose is limited to the extent of the microbeam
field itself while the valley dose contains relevant entries also in the out-of-field region.
The peak dose profile also shows a roll-off effect to the sides. The reason for this is not the
dose aggregation in peak areas in the centre of the field as it is for the valley doses. This can
be seen when comparing the simulation result using the original phase space file (PSF) with
a modified PSF in which all microbeams are replaced with the central one. In the case of the
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(a) (b)

Figure 5.10: (a): Exemplary lateral microbeam dose profile using a 5 µm voxel grid (black,
grey lines support visual identification of microbeams) and the respective peak
and valley macro voxel fields in blue and green. (b): Peak and valley dose profiles
on separate scales. Reproduced from [32].

aggregation of doses being the cause of the roll-off effect, it should still be visible. As can be
seen in Figure (5.11a), this is not the case. When replacing the individual beams all with the
central one, the peak dose roll-off disappears and the resulting dose profile instead exhibits
a flat peak dose.

(a) (b)

Figure 5.11: (a): Comparison of the dose profile at the centre of the phantom using multiple
versions of the central beam instead. (b): Peak dose comparison between the
original PSF (full simulation, histogram) and a modified PSF (black dots) in
which all microbeams are replaced with the central one. Adapted from [32].

Instead, the simulated microbeams further away from the centre in fact contain fewer pho-
tons and therefore lead to less dose deposition in the phantom. The decrease in photons is
attributed to the original synchrotron x-ray intensity profile and is further increased from
the small but existent divergence of the beam, being incident on a multi-slit collimator with
plan parallel slits, resulting in more photons being cut from beamlets further from the cen-
tre. Figure (5.11b) shows a comparison between the peak dose profiles from the original and
modified simulation method described before. The lower part of the plot shows the relative
deviation between them. In red, the expected effect resulting from the decrease in photons
further away from the centre of the field is highlighted. The agreement between the deviation
and the photon count effect is found to be good enough to determine this to be the main
cause of the roll-off effect.
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5.2.2 Inclusion of microbeam divergence

One aspect of microbeams which is already included in the previously shown plots but has
not been discussed is the inclusion of the small but existent remaining divergence of the
beamlets. This is exemplarily shown in Figure (5.12). In the centre of the MRT field, the
beamlets are close to perfectly orthogonal to the entrance surface into the phantom (top of
plot). A vertical white line is inserted for better visual inspection. Figure (5.12b), in contrast,
shows the microbeams at the edge of the MRT field. They are visibly not perpendicular to
the entrance surface of the phantom, a result of the beam divergence. The deviation from the
direction of the microbeams at the centre of the phantom can be clearly seen by comparing
the microbeams the the white vertical line.

(a) (b)

Figure 5.12: Visualisation of the energy deposition caused by the microbeams in a water
phantom in the central part of the field (a) and the edge of the field showing
some beam divergence (b). White vertical lines are inserted to facilitate visual
inspection.

The divergence is not large, and the aspect ratio of the shown plots should be noted, with
only 2 mm on the x-axis and 14 cm on the y-axis. Nevertheless, using the discussed scoring
method with pre-determined peak and valley locations, even a micrometer-scale deviation
from those positions would lead to a significant difference in scored energy. This is especially
true for the very thin peak energy regions. To counteract the effect of the divergence, the
scoring regions themselves must follow it. This is achieved by assigning the scoring regions
in dependence of the lateral position in the MRT field and the depth in a phantom.
To find the pre-computed peak and valley positions under consideration of the divergence,
in a first step the lateral dose profile is simulated in a simple water phantom with a 5 µm
resolution at several depths. A best estimate of the position of the maximum is computed by
fitting a Gaussian function to each peak. The result for three depths, one at the entry, one at
the centre and one at the exit of a simple water phantom can be seen in Figure (5.13a) (left
edge of MRT field), Figure (5.13b) (centre of MRT field), and Figure (5.13c) (right edge of
MRT field). Using the Gaussian functions to estimate the position of peak maxima, the peaks
are found to be on average 411 µm apart at the centre of the water phantom in contrast to
the nominal 400 µm spacing at the beam source. As all future phantoms will be centred at
the same location, this is the effective peak-to-peak pitch for all following studies.
The microbeams are assumed not to be deflected, therefore the scoring regions are still
assumed to be straight. For each lateral position, an inclination of the scoring volume against
the orthogonal direction with respect to the phantom surface is computed by fitting a straight
line to the peak locations previously found using the Gaussian fits. Figure (5.13d) shows the
found divergence dy/dx. This can act as calibration curve to pre-compute the expected
positions of peak and valley scoring regions throughout the phantom and for variable MRT
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field sizes. For the computation of the correct peak and valley locations it is important to
note that in this case, the centre of the used water phantom is used as reference origin, not
e.g. the centre of the beam source.

(a) (b) (c) (d)

Figure 5.13: Microbeam locations and Gaussian fits at different positions ((a): -9.453 mm,
(b): 0 mm, (c): 4.932 mm) and depths in the phantom.

Figure (5.14) exemplarily shows the divergent scoring regions at the centre (Figure (5.14a))
and the edge of the field (Figure (5.14b)) with energy depositions (black) counted towards
the peak dose shown in red and counted towards the valley dose as orange. It can be seen
that the divergent scoring regions follow the beam divergence. The plots also show the centre
of the used phantom as position 0 as it acts as the origin for the calculations.

(a) (b)

Figure 5.14: Hit locations in the centre (a) and further out (b) together with indications for
peak and valley areas.

While this method is used throughout this thesis, it also comes at the cost of having to
be repeated for all MRT fields which are used in the future due to different divergences of
different beam configurations.

5.2.3 Agreement between macro and micro voxel scoring

This subsection investigates the agreement of peak and valley doses obtained using the previ-
ously developed macro voxel method under influence of beam divergence with the respective
doses obtained using micrometre-scale scoring voxels. For this, MRT fields of different sizes in-
cident on the simple head phantom used in the previous sections, are simulated. Figure (5.15)
shows resulting peak and valley energy depositions using the macro voxel method and field
sizes of 1x1, 4x4, 8x8, and 20x20 mm2. As before, the sharp field edges of the peak doses
can be observed in contrast to the wider spread of the valley doses. Energy depositions lower
than 2% of the respective maximum are not shown.
In addition to the macro voxels, the energy depositions are also scored using 2D arrays of 5 µm
in different depths of the phantom. Using those, the peaks are located again using Gaussian
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(a) (b)

Figure 5.15: Exemplary peak (a) and valley (b) doses in a simple head phantom for different
MRT field sizes.

fits. Subsequently, the peak doses are determined by averaging over the two voxels next to the
found peak location (therefore also 10 µm) and over 20 voxels (therefore also 100 µm) around
the valley locations which are assumed to be right between two peaks. Figure (5.16) shows
exemplary lateral dose profiles scored near the entrance into the head phantom for the 4x4,
8x8, and 20x20 mm2 MRT fields. All valley doses (Figure (5.16c, Figure (5.16d, Figure (5.16e)
and also the peak dose profile of the largest field (Figure (5.16c) exhibit an increase in dose
where the profile reaches the skull.

(a) (b) (c)

(d) (e) (f)

Figure 5.16: Agreement of peak doses (a-c) and valley doses (d-f) scored using macro voxels
and micro voxels, respectively, for a 4x4 (a,d), 8x8 (b, e) and 20x20 mm2 (c,f)
MRT field.

Deviations are mostly within 1-3% with few larger deviations. Those are attributed to slight
misalignments between the Gaussian fit to detect the peak maximum and the pre-computation
method used before. Overall, the results are found to be in acceptable agreement to proceed
with this scoring method. Using this method, MRT fields of large sizes can be composed.
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5.2.4 Microbeam superposition using the macro voxel method

This subsection demonstrated how the previously developed macro voxel method can be used
to use a superposition of individual microbeam dose depositions to build the entire MRT field
dose profile. In a first step, it is required in a first step to acquire the macro voxel scoring
for a single microbeam. Figure (5.17) schematically shows how the macro voxel method is
applied to a single, centred microbeam.

Figure 5.17: Schematic of the macro voxel method applied to a single microbeam. Repro-
duced from [32].

To allow for the long-ranging effect especially of the valley doses, a scoring field of view of
30 mm is used for a single microbeam of 0.5 mm height. Depending on the exact location
of the microbeam with respect to the macro voxel edges, the peak dose maximum covers
either one or two macro voxels. Figure (5.18) shows exemplary 2D peak dose predictions for
a centred and a non-centred single microbeam. The dose is shown on a log scale due to the
rapid decrease of peak doses to the sides. Valley doses are not shown at this point but look
very similar to the shown profiles when being shown on a linear scale.

(a) (b)

Figure 5.18: Resulting 2D peak dose profile at the centre of a water phantom for a single,
centred microbeam (a) and a single, non-centred microbeam (b). Reproduced
from [32].

By predicting the peak and valley doses for single microbeams at their respective location, the
total peak and valley dose of an MRT field can be superimposed. The concept is schematically
shown in Figure (5.19).
Exemplary superimposed peak and valley dose predictions, 30 mm around the centre of the
field, together with the resulting superimposed PVDRs, are shown in Figure (5.20) for MRT
field sizes of 4x4, 12x4 and 20x20 mm2.
While the peak doses are observed to minimally increase with increasing field size, they do
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Figure 5.19: Schematic of the microbeam superposition method using the macro voxel
method.

(a) (b) (c)

Figure 5.20: Peak (a) and valley (b) doses with the respective PVDR (c) for a field height of
4x4 (black), 12x12 (red) and 20x20 mm2 (blue).

not exhibit the previously discussed roll-off effect. This is because for simplicity, only the
central microbeam is predicted and shifted to the locations of the other microbeams at this
stage. As a result, the decrease due to the photon count effect and also the beam divergence
are not used. The divergence is found not to significantly contribute to the dose distributions
so that not considering it makes a negligible impact. The different contributions of peaks
closer to the edge of the original PSF could be considered in a post-processing step in the
future.
The superposition with this technique only works when two requirements are met: (1) the
predicted microbeams have to be located in the respective peak positions of the MRT field
(e.g. 0, ±411 µm, ±822 µm, ...) and (2) the macro voxel edges of all microbeam predictions
need to coincide. Although this sounds trivial at first, it is not trivial to achieve. Figure (5.21)
shows the scenario of two individual microbeams close to each other incident on an exemplary
phantom (grey) being superimposed. Because the macro voxel edges have to coincide, the
second microbeam b) cannot be centred in the prediction volume. The microbeam would
have to be predicted at position 411 µm of the first macro voxel to the right from the centre
line to match both the macro voxel edges and the peak pitch.
Moving further to the side, the next peak would have to be predicted at position 822 µm as
shown in Figure (5.22).
This position already falls in the second macro voxel to the side. To account for long-ranging
dose effects especially in the valleys, however, it is desired to maintain the approximately
15 mm prediction field to each direction from the microbeam. To achieve this, given a fixed
prediction volume, it is more suitable to neglect the voxel furthest to the left and instead
shift the prediction volume one voxel to the right as shown in Figure (5.22) b). This results
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Figure 5.21: Schematic of the superposition of two microbeams a) and b).

Figure 5.22: Schematic of the superposition of two more distant microbeams a) and b) to-
gether with the required prediction c) to generate the distribution b).

in a prediction volume as shown in Figure (5.22) c): the microbeam would be predicted at
322 µm first with the target phantom (grey) being shifted 500 µm to the left. The resulting
dose deposition matrix is shifted by 500 µm to one side to achieve the total translation of
822 µm, before being superimposed with the result of prediction a). Following this example,
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larger MRT fields can be constructed using the dose fields from single microbeams at a location

k = (N · 411 µm) modulo 500 µm (5.1)

and applying the respective shift in steps of 500 µm to the target phantom.

5.3 Predicting individual microbeams with machine learning
This section investigates the suitability of the previously developed microbeam superposition
approach utilizing the macro voxel method for ML prediction.

5.3.1 Simulation setup and datasets

The target phantom in this study is a simple 3x3x3 cm3 water block. This size is used
because of the current focus of MRT research at the Imaging and Medical Beamline (IMBL)
on preclinical rodent studies. This study, therefore, presents a first investigation into the
suitability of the macro voxel method for dose predictions on the spatial scale of future rat
head phantoms which are of similar size. Figure (5.23) shows a schematic of the simulation
setup. A single microbeam enters the water phantom from the left. To account for the long-
ranging effect on the valley doses, the scoring volume is chosen to be 3x3x3 cm3 as well in
accordance with the finding of the previous section. To limit the complexity of this first study
on the direct prediction of microbeams, a macro voxel size of 1 mm3 is chosen, resulting in
30x30x30 (27,000 voxels compared to 216,000 with 60x60x60 voxels) simulated and predicted
voxels per data sample. To generate different data samples, both the microbeam and the
phantom are translated relative to each other, and the scoring volume as discussed in the
previous section. The microbeam position is set to discrete values in steps of 500 µm while the
phantom is translated continuously. In addition, several microbeam locations derived from
Equation (5.1) are simulated: 55 µm (N=5), 144 µm (N=4), 233 µm (N=3), 288 µm (N=8),
322 µm (N=2), 377 µm (N=7), 411 µm (N=1), 466 µm (N=6).

Figure 5.23: Simulation setup for creating a dataset of dose depositions from single mi-
crobeams using the macro voxel method showing the incident beam (green),
a 3x3x3 cm3 water phantom (blue) and the scoring volume (black). Reproduced
from [32].

Two exemplary data samples resulting from this are shown in Figure (5.24). Figure (5.24a)
shows the lateral peak and valley dose profile at the centre of the water cube, obtained using
the macro voxel method for a centred beam and a phantom translation of 7 mm to the side.
This is indicated by the grey box in the right side plot. On the linear scale, the peak dose
can be seen to be invisibly small already in the voxels next to the two central ones. The
valley dose profile decreases less quickly in comparison but steeply nevertheless. As soon as
the phantom ends, the dose drops to zero. Figure (5.24b) shows the resulting lateral dose
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profiles at the centre of the cube for a microbeam translation of 0.25 mm and a phantom
translation of -14 mm. As the peak is located in one macro voxel and not on the boundary
as in the previous example, the peak dose profile now only covers one voxel before dropping
to close to zero.

(a)

(b)

Figure 5.24: Lateral peak and valley dose profile for two exemplary data samples comprising
a microbeam and phantom translation of ( 0 mm | 7 mm ) (a) and (0.25 mm |
-14 mm ), respectively. Reproduced from [32].

The parameter space of the simulated data samples, split into training (grey), validation
(black) and test data (red), is shown in Figure (5.25). Samples which exhibit a phantom
translation of [−11, −9] mm, [−4.5, −2.5] mm, [2.5, 4.5] mm, and [9, 11] mm are excluded from
training and used as validation data set. All samples simulated using the microbeam trans-
lation of multiples of 411 µm are used as test data because those resemble most closely the
realistic case in application. Such samples, however, are not created for all phantom transla-
tions.

5.3.2 Adaption of the ML model

In Section (3), the water-only energy deposition was passed to the ML model to allow the
model to be conditioned on the beam position and facilitate learning by adding information
about the energy deposition in water. Similar to this method not being suitable for the
prediction of proton minibeams, which was found in Section (4), this is not a viable way in
this study. First, due to many different microbeam locations, there would be again a need
for many water-only simulations. Additionally, the whole simulation only contains a water
phantom. Therefore, this type of additional information would make the ML prediction
obsolete. Instead, the position of the simulated microbeam with respect to the centre of the
prediction volume is encoded using a 3D distance matrix of the same shape as the prediction
volume, 30x30x30. The layer shapes of the U-Net are modified accordingly to allow for this
input and output matrix shape instead of the previously used 140x16x16 voxels (35,840 in
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Figure 5.25: Distribution of data samples on the training (grey), validation (black) and test
(red) datasets in dependence of the beam and the phantom translation. Repro-
duced from [32].

total). Two 2D slices of an exemplary distance matrix are shown in Figure (5.26). Each voxel
contains the minimum distance of its centre to the projected area of the microbeam entering
the phantom.

(a) (b)

Figure 5.26: Slices of a distance matrix in the yz (a) and xy (b) plane.

Figure (5.27) shows a zoom-in on how the matrix changes when the microbeam is moved to
the side. The greyscale coding is not to scale and only serves as visualization of the shift
of the matrix values together with the microbeam location. In initial tests it was found
that the simultaneous prediction of peak and valley doses are not successful. Instead, two
ML models are trained, one for the prediction of the peak doses, one for the valley doses.
Figure (5.28) shows a schematic of the resulting ML model adapted from the previous one.
The two matrices being input into the model are concatenated to a single 30x30x30x2 input
matrix before being passed to the network. The output are a 30x30x30 dose matrix for either
the valley or the peak regions.

5.3.3 Search for optimal ML models

In a first step, both ML models (for the peak and the valley dose prediction) are trained using
the same configuration that was found to work best in Section (4): each convolutional layer
exhibits 64 convolutional filters, training is performed using the Adam optimizer with the
mean-absolute error (MAE) loss function, a batch size of 32, and a learning rate is 1 · 10−3.
For the valley dose prediction model, no significant improvement is found by varying the
batch size, learning rate or number of filters. The peak dose prediction model requires more
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Figure 5.27: Change in microbeam position (red) and resulting change in the distance matrix
(not to scale).

Figure 5.28: Schematic of the adapted ML model taking two input matrices (density and
distance) and creating one output matrix (in this case valley dose). All matrices
are shown for visualization only and are not to scale with respect to their colour
coding.

attention. Due to the large gradients, the ML model does not learn to predict the very low
doses left and right of the central voxel. This effect is schematically shown in Figure (5.29).
While this is not a large problem due to the doses being very small in comparison to the
central peak, it may add up to significant deviations especially for large MRT fields.
For this reason, an alternative loss function for the peak dose prediction model is proposed.
One function which transforms data from several orders of magnitude to a more similar scale
is the logarithm. A simple approach would be using the logarithm of dose values inside the
MAE loss function in the following form:

MAElog = 1
N

N∑
i

| log10(yi) − log10(ŷi)| (5.2)

N is the number of training samples, yi the peak dose prediction for training sample i
and ŷi the MC simulation result for sample i. Figure (5.30) shows an exemplary peak dose
prediction using a model trained using that loss function. While the lateral profile, shown
on a log-scale in Figure(5.30a) looks promising, the dose actually deviates significantly which
can be seen both in the lower part of Figure(5.30a) showing deviations of more than 10% in
the centre of the field and also in the depth dose curve in Figure(5.30b) showing very large
discrepancies between the ML prediction and the MC simulation. The log-loss function shown
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Figure 5.29: Comparison of the lateral valley dose profile (a) and depth valley dose curve
(b) in the centre of the phantom as predicted using the trained ML model with
the MC simulation for a data sample with a phantom translation 7 mm and a
microbeam translation 322 µm. Reproduced from [32].

in Equation (5.2) is found not to be suitable for training dose prediction ML models because
it does not capture the importance of accurate dose predictions on a linear scale.

(a) (b)

Figure 5.30: Peak dose prediction of an ML model trained with the MAElog loss function
showing the lateral dose profile (a) and the depth dose curve (b) in comparison
to the respective MC simulation.

Following this, a mixed loss is proposed: it used the log-loss in Equation (5.2) and adds a
linear loss to it. The weight between the two contributing terms can be adjusted using a
parameter α:

MAEmixed = 1
N

N∑
i

[ 1
α + 1 · | log10(yi) − log10(ŷi)| + α

α + 1 |yi − ŷi|
]

(5.3)

with N is the number of training samples, yi the peak dose prediction for training sample i,
ŷi the MC simulation result for sample i. The weighting parameter α is optimized during the
search for an optimal model. A value of α = 10 is found to be optimal. Other model settings
are not found to significantly impact the result. Therefore, they are kept at 64 convolutional
filters, using the Adam optimizer with a batch size of 32, and a learning rate is 1 · 10−3.
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5.3.4 Results

Figure (5.31) shows the lateral valley and peak dose profile together with the depth dose curve
at the centre of the phantom, predicted by the ML models for an exemplary test data sample
(phantom translation 7 mm and beam translation 322 µm). Other predictions perform very
similar to the shown ones.
While for the valley dose prediction, as shown in Figure (5.31), the agreement is found to
be within a few percent, a systematic underestimation by roughly 1.5% of the valley dose
prediction can be seen in the depth dose curve in Figure (5.31b). Such a behaviour is seen for
many beam configurations both over- and underestimating the depth dose by a few percent.
While a deviation of only 1.5% is generally a very good agreement of the ML prediction
with the MC simulation, it poses a big problem for the superposition use case. Because the
deviations do not cancel each other out upon superposition, they are potentially added up
resulting in significant deviations of the final superimposed dose prediction.

(a) (b)

Figure 5.31: Lateral valley dose profile (a) and depth valley dose curve (b) in the centre of the
phantom as predicted using the trained ML model for a test data sample with
a phantom translation 7 mm and a microbeam translation 322 µm. Reproduced
from [32].

An exemplary peak dose prediction is shown in Figure (5.32) for a test data sample with a
microbeam translation of 0.244 mm and no phantom translation (0 mm). As for the valley
doses, the agreements are generally found to be adequate with deviations of at most 2.5% in
the centre of the field as shown in the depth-dose curve in Figure (5.32b). Several predictions
however, show a small but systematic deviation in the peak dose prediction, similar to the
findings for the valley dose prediction model. As in the case of the valley dose prediction
model, the deviations in the relevant centre of the field are relatively small but potentially
add up when creating large, superimposed fields.
These findings severely limit the applicability of the ML approach for MRT dose prediction
by superposition of individual microbeams. In addition, the prediction speed is significantly
reduced by the need to predict many individual fields for the superposition. Assuming a
final field size of 20x20 mm2, the proposed model, using a single microbeam of 0.5 mm height,
requires 2000 individual predictions. With the observed prediction time of approximately
0.1 seconds, this accumulates to 3.3 minutes per MRT field. Using batch predictions, this could
further be reduced to a minimum of about 6.25 seconds (32 simultaneous predictions on one
graphics processing unit (GPU)). At that stage, the model would most likely be slowed down
by the capability to provide the phantom material matrices quickly enough as for future
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(a) (b)

Figure 5.32: Exemplary peek dose predictions using the mixed loss functions for a beam
translation of 0.244 mm and a phantom translation of 0 mm shown as lateral
profile at the centre of the phantom (a) and the depth-dose curve in the line of
the maximum dose deposition (b).

application scenarios, they would have to be produced from Computer Tomography (CT)
images which is more time consuming than using pre-processed matrices like in this study.
In addition, while prediction times on the order of 10 seconds are significantly faster than
existing methods, it is relatively slow for the initial purpose of the ML model to be used in
treatment optimization scenarios, potentially requiring many dose prediction evaluations.
The discussed findings are expected to get more severe when including more complex phan-
toms of actual patients in the future. For this reason and with regard to the previously
discussed aspects, a microbeam superposition approach is not further explored in the course
of this thesis. This does not mean, however, that the macro voxel approach is not found to
be a valuable tool for MRT dose prediction, as will be shown in the next section.

5.4 ML peak and valley dose prediction with macro voxels and rat phantoms

After finding that the superposition of microbeams is found not to be a feasible method
to predict the dose distribution following the irradiation with an MRT field, a more direct
approach is investigated in this section. In the previous section, separate peak and valley
dose distributions were scored in the MC simulation using the macro voxel method. During
its introduction, rather as a by-product, it was shown that the method can also be used to
score the entire MRT field by including the divergence of the microbeams into the method.
This section investigates the prediction of the entire peak and valley dose distributions for one
incident MRT field instead of pursuing a superposition approach. This concept is schematically
shown in Figure (5.33). By predicting the peak and valley distribution, this approach is very
similar to the originally investigated broad beam prediction model in Section (3).
To be able to predict the peak and valley doses for different MRT fields, an ML model then
needs to be trained on different field sizes or even shapes. This presents a significant extension
of the previously developed broad beam dose prediction model. This section investigates the
capability of the developed ML model to predict the peak and valley doses in a simplified
rodent skull phantom following the irradiation with a quadratic MRT field of variable size. A
rodent skull phantom is chosen as base for the creation of the simplified model because in the
current state of preclinical research at the IMBL, rodent brain tumours are the main target.
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Figure 5.33: Schematic of MRT dose prediction using the macro voxel method to separate the
dose into peak and valley dose distribution fields.

5.4.1 Development of a simplified rat head phantom

A rodent skull phantom, similar to the simple paediatric head phantom introduced in Sec-
tion (3), is developed to serve as simulation model in this study. To adapt the model a bit
more closely to a realistic treatment scenario, a CT image of a rat skull is used to derive some
measures. Three slice views of the used CT image together with taken measures and insertions
of ellipsoids being used for the simplified model construction are shown in Figure (5.34c).

(a) (b) (c)

Figure 5.34: CT scan from side (a) top (b) and back (c) with measures and inserted ellipsoidal
digital model (red).

Figure (5.35) shows the resulting simplified rodent skull phantom together with an exemplary
MRT field incident from the left on the top of the head of the phantom, in agreement with the
current treatment protocols at the IMBL. The dose in the phantom is scored in a 30x30x30
voxel grid, each 1 mm3 in size, resulting in a scoring volume of 30x30x30 mm3.

5.4.2 Dataset

In this study, different simulation samples are created by varying three different parameters:
the horizontal translation of the phantom ∆y, the vertical translation of the phantom ∆z
and the beam size Dbeam. The size of the simple rodent head phantom is not modified in
this study. To visualize the resulting variation in the data, Figure (5.36) shows schematics
of three exemplary data samples.
Data samples are generated by performing random sampling in the ranges ∆y ∈ [−9, 9]
(rounded to 3 digits), ∆z ∈ [−6, 6] (rounded to 3 digits) and Dbeam ∈ [3, 19] (rounded to
integers). Due to long simulations times, a rather small dataset comprising 344 samples is
creates spanning the following parameter space shown in Figure (5.37).
The data samples are split randomly into training (60%, 206 samples), validation (20%, 69
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Figure 5.35: Schematic of the rat head simulation together with an exemplary incident MRT
field and the scoring volume.

(a) (b) (c)

Figure 5.36: Three schematic visualizations of different data samples with varying lateral and
vertical phantom translation as well as different MRT field (green) sizes.

(a) (b) (c)

Figure 5.37: Horizontal (a) and vertical (b) phantom translation together with the quadratic
field sizes (c) comprising the datasets.

samples) and test dataset (20%, 69 samples). The resulting distribution of data samples in the
parameter space is shown in Figure (5.38). In addition to those data samples, an additional
test dataset is generated. This second test dataset comprises simulated samples with MRT
field sizes of 3.5 mm, 4.5 mm, 5.5 mm, ... 9.5 mm. Those beam sizes are not contained in
the whole training process and are designed to investigate more closely the generalization
capability of the network after being trained with only integer-sized MRT fields.
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Figure 5.38: 3D scatter plot showing the distribution of samples in the parameter space. The
colour shows the three datasets for training, validation, and test.

5.4.3 Grid search for optimal model hyperparameters

Like in the previous section, two separate models are trained for the peak and valley dose pre-
diction. The shape and size of the MRT field is passed to the model similar to the broadbeam
scenario using a water-only simulation using an MRT field of the respectively same size.
In a first, preliminary search for suitable hyperparameter settings, significant dependencies
of the models on the chosen set of hyperparameters, especially the learning rate, were found.
Therefore, a grid search is performed to find optimal model setting, individually for the
peak and valley dose prediction model. The explored grid and the results are shown in
Figure (5.39).

(a) (b)

Figure 5.39: Validation dataset performance of the peak (a) and valley (b) dose prediction
ML models, trained using different sets of hyperparameters. The respective best-
performing models are highlighted using a red circle.

For the search, convolutional filter sizes of [32, 64, 128] are tested with batch sizes of [8,
16, 32, 64, 128] and learning rates of [1 · 10−5, 5 · 10−5, 1 · 10−4, 5 · 10−4, 1 · 10−3]. For all
trainings, the Adam optimizer is used together with the MAE as loss function. Although the
differences in model performances look very large, it should be noted that the MAE is shown
on a logarithmic scale. Both the best peak (Figure (5.39a)) and valley (Figure (5.39b)) dose
prediction models are found to be the one using 128 convolutional filters per layer (right box),
being trained with a batch size of 8 (circle marker) and a learning rate of 5 · 10−5 (red colour
of the marker).
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5.4.4 Generalization assessment

After the model is fully trained, it is executed for all training, validation and test data samples.
To compare the performance on the different datasets and thereby assess the generalization,
the average MAE between ML-predicted and MC-simulated dose deposition is calculated for
each of the datasets. The results are shown in Table (5.1).
Overall, the MAE for the peak predictions is found to be lower than the ones for the valley
doses. This is due to the peak dose distributions containing many very small values outside
of the central beam area. The average MAE values for the different datasets are in agreement
with respect to their uncertainty. This indicates that the model generalizes well in the frame
of the split of the data into the three datasets.

Table 5.1: Average MAE for training, validation and test data predictions.

Valley Peak

Dataset MAE [1 · 10−4] MAE [1 · 10−5]

Training 2.2 ± 0.2 6.2 ± 0.1
Validation 2.1 ± 0.2 6.2 ± 0.3
Test 2.2 ± 0.3 6.4 ± 0.2

Next, the trained models are used to predict the additional test data with MRT field sizes
which were not part of the training. Figure (5.40) shows two exemplary depth-dose curves
at the respective centre of the scoring volume.

(a) (b)

Figure 5.40: Comparison of ML-predicted and MC-simulated depth-dose curves at the centre
of the field for a peak dose prediction of a 9.5 mm edge length MRT field (a) and
a valley dose prediction of a 3.5 mm edge length MRT field (b).

Figure (5.40a) shows the peak depth-dose curve at the centre of the scoring volume following
the irradiation with a square 9.5 mm wide MRT field. The agreement is very good with only
the first and last shown voxels which exhibit a very low absolute dose exceeds a deviation
of 2%. The voxels within the skull deviate by at most 1.3%. Figure (5.40b) shows the
valley depth-dose curve at the centre of the scoring volume following the irradiation with
a square 3.5 mm wide MRT field. The overall agreement is still within 5% but a systematic
underestimation of the dose by 3% on average can be seen. This trend of underestimating the
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dose in the centre of the field can be observed for all tested fields. The smaller the additional
test MRT field size is, the more significant the underestimation. The respective valley depth-
dose curve at the centre of the field for the square 9.5 mm wide MRT field, as shown for the
peak dose in Figure (5.40a), similarly does not show a notable systematic deviation.
The reason for the deviation in estimated dose at the centre of the phantom can be seen
when inspecting the lateral dose profile, e.g. at the centre of the phantom as well, shown in
Figure (5.41) for three different prediction scenarios: Figure (5.41a) shows the lateral valley
dose profile for a squared MRT field with 3.5 mm edge length, Figure (5.41b) shows the lateral
peak dose profile for a squared MRT field with 3.5 mm edge length, Figure (5.41c) shows the
lateral peak dose profile for a squared MRT field with 9.5 mm edge length.

(a) (b) (c)

Figure 5.41: Comparison of ML prediction and MC simulation of the lateral profile of the (a)
valley dose for a 3.5 mm MRT field, (b) peak dose for a 3.5 mm MRT field, and
(c) peak dose for a 9.5 mm MRT field.

The deviation is a consequence of a lack of generalization with respect to the MRT field size.
All three subfigures in Figure (5.41) exhibit significant deviations of the ML prediction from
the MC simulation of the respective dose deposition. The discrepancy is especially notable in
the case of the 3.5 mm MRT field peak dose prediction, shown in Figure (5.41b). Figure (5.41c)
also gives an indication to why the depth-dose curves show better agreement for larger fields:
the deviations occur at the edges of the predicted fields. For small field sizes, this also impacts
the dose prediction at the centre of the field whereas for large fields, the centre is unaffected
by the deviations at those field edges.
The lack of generalization can be seen to be a clear case of over-training on the available MRT
field sizes in the training data sets when comparing the predicted dose profiles for a new field
size with the respective MC simulation for a smaller field size which is part of the training
dataset. This comparison is shown in Figure (5.42) for the same scenarios which were shown
in Figure (5.41). The lower part of each plots shows the deviation of the ML prediction for
the given MRT field size from the respective smaller MC simulated dose profile. Although
the ML predictions for the 3.5 mm MRT fields (Figure (5.42a) and Figure (5.42b)) and the
9.5 mm MRT field (Figure (5.42c)) do not exactly coincide with the MC simulations for the
respective smaller fields which are part of the training data (3 mm and 9 mm) the agreement
is significantly better than with the MC simulations for the 3.5 mm and 9.5 mm MRT fields.
Three key learnings from this study should be noted. First, the developed model is concep-
tually capable of predicting peak or valley dose distributions in a simple rat head phantom
for different MRT field sizes. Secondly, the over-fitting on the training data MRT field sizes
was only found when using the additional test dataset comprising additional MRT field sizes.
This highlights the importance of a well-designed training, validation, and test dataset in the
first place to minimize the probability of not noticing a lack of generalization capability in a
certain part of the parameter space which is expected to fall under the application range of
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(a) (b) (c)

Figure 5.42: Comparison of ML prediction and MC simulation of the lateral profile of the
(a) valley dose for a 3.5 mm MRT field, (b) peak dose for a 3.5 mm MRT field,
and (c) peak dose for a 9.5 mm MRT field with the MC simulation of the closest
smaller MRT field size which is included in the training dataset, shown in red.
The deviation plot in the lower part shows the deviations with respect to the
smaller, training data dose profile, shown in red.

the trained ML Model. Third, connected to the second one, it is found that using only discrete
steps of parameters in the simulation dataset can lead to the model not generalizing well due
to learning the limited variation of such a parameter from the dataset. Using continuously
sampled values for the MRT field size, for example, would likely result in a better generaliza-
tion. It is therefore found to be important for the generation of future datasets to sample the
parameter space more evenly than it was done in this study. Due to long simulation times
this can be a sever limitation of the ML dose prediction approach. A mitigation strategy is
presented in the next section.
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6 Towards treatment planning: retrospective dose prediction for a
rat irradiation campaign

The previous section introduced the direct peak and valley dose distribution prediction using
the macro voxel method in a simplified rat head phantom. This section investigates the
application of the machine learning (ML) model in a preclinically more relevant scenario:
the retrospective dose prediction for a preclinical microbeam radiation therapy (MRT) study
with 16 rats with implanted glisarcoma, performed in April 2022 at the Imaging and Medical
Beamline (IMBL). All rats were irradiated with an 8x8 mm2 MRT field incident on the top of
the head as described in the previous section. The prescribed valley doses for one group of
rats were at least 8 Gy throughout the tumour, for the other one at least 16 Gy. The original
purpose and the details of the preclinical study are beyond the scope of this thesis. Hence,
only the dose prediction aspect will be discussed in the following. During the preclinical
study, only the in-field peak and valley doses were used for treatment planning decisions.
To allow for a first, simplified approach towards treatment planning using the developed ML
model, the study presented in the following also only targets the dose predictions within the
field.
Most parts of the results shown in this section have been already published prior to the
submission of this thesis [34].

6.1 Creation of a CT-based dataset
The previous section used a simple rat head phantom modelled after a Computer Tomography
(CT) rat scan. In this study, the Monte Carlo (MC) simulation and ML prediction is performed
using a more realistic digital phantom directly derived from CT scans as discussed in the
following.

6.1.1 Derivation of simulation phantoms from rat CT scans

The dataset comprises CT scans of 16 rats, which were taken two weeks after implanting
gliosarcoma cells in their brain. The used CT scanner has a pixel pitch of 0.4-0.6 mm and
a slice distance of 0.6 mm. In its original form, the scan file comprises a relatively large
field of view showing in addition to the rat also the holding apparatus. Therefore, the CTs
are cropped to the head of the rats and at least 5 mm padding to the bottom and top. In
addition, the pixel values are transformed into Hounsfield units (HU) using the calibration
function embedded into each of the CT files. An exemplary cropped and transformed CT is
shown in Figure (6.1).

Figure 6.1: Three slices of an exemplary CT scan of a rat used in this study after being
cropped and converted to HU.

As a next preprocessing step, the CT images are rotated so that the skull is centred and
facing the positive z direction. An exemplary result is shown in Figure (6.2). Subse-
quently, the HU values are transformed to three discrete materials which are used in the
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Figure 6.2: Three slices of an exemplary CT scan of a cropped and rotated rat used in this
study. Reproduced from [34].

Geant4 MC simulations of the dose distributions. Voxels with less than -450 HU are defined
to be air (G4_AIR [78]), voxels in the range [-450 HU, 350 HU) are defined to be water
(G4_WATER [78]).
Voxels with higher HU values are defined to be bone (G4_BONE_COMPACT_ICRU [78]).
During the irradiations, a nearly water-equivalent and 5 mm tick cushion (Bolus) was placed
on top of the rat heads. To account for this during the MC simulation and the subsequent ML
prediction, a 5 mm water layer is added to the rat head phantom. The result of the material
digitization and Bolus addition to the scan shown in Figure (6.2) is shown in Figure (6.3)

Figure 6.3: Exemplary CT scan of a cropped and rotated rat used in this study. The colour
encodes the material assigned to the voxels. The Bolus is shown in green although
it is also simulated as water. Reproduced from [34].

6.1.2 Using datasets with high statistical uncertainty

In Section (5.4) it was found that a large variety of irradiation scenarios is important for the
model to generalize well. Due to limited computation resources, however, it is not possible
to create both large and low-noise datasets. This study explores the use of high-noise MC
simulations for training the ML models.
Previously, only lateral and vertical translations of the phantoms in front of the beam were
performed to obtain different simulation samples. Those steps are performed to generate
more variable samples and thereby minimize the risk of the ML model over-fitting to the
training data. In this study, the same data augmentation of the CT images is performed
as long as the centre of the 8x8 mm2 MRT field still targets the brain of the rats. The
maximum lateral translation distances (y and z, as shown in e.g. Figure (6.3)), are determined
manually for each rat. In addition, the rat CT images are shifted by up to 5 mm up- or
downstream with respect to the particle source. In addition, the CT scans are rotated up to
10 degrees around each axis. Finally, the individual voxels are scaled by a factor between 0.8
and 1.2. All translation distances, rotation angles and scaling factors are chosen randomly
from a uniform distribution between the respective minimum and maximum. Six exemplary
simulation geometries using the same CT scan (rat 2) but different augmentation parameters
are shown in Figure (6.4).
The available total number of 16 rats is separated into the training, validation and test
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Figure 6.4: Examples of augmented data samples used for MC simulation. The colour encodes
the simulation materials air (white), water (grey) and bone (black).

dataset. Following the augmentation steps described above, 4569 training data samples
(rats 1-10), 1431 validation samples (rats 11-13) and 500 test data samples (rats 14-16) are
simulated. Instead of the dose, the energy deposition is scored and also used as target for the
ML prediction because it is found to be more suitable especially at the phantom-air-interface
as doses in air scored in high-noise MC simulations tend to exhibit large fluctuations due to
the deposited energy being divided by a very small mall. Using the densities of the voxels
the energy deposition can be easily transformed to a dose for later analysis steps. All energy
depositions are scored using the macro voxel method, resulting in a peak energy deposition
distribution and a valley energy deposition distribution for each phantom geometry. Because
all MRT fields in this study are 8x8 mm2 in size, only this field size is simulated for all
data samples. As the preclinical study was only concerned with the peak and valley energy
deposition within the irradiation field, only this volume is predicted in this study. For this,
the prediction voxel grid for the ML model is chosen to be 96x16x16 with a voxel edge length
of 0.5 mm with no additional out-of-field volume included in contrast to previous studies in
this thesis. To allow for a better visualization of the simulation results, the energy depositions
are scored in a 96x32x32 voxel grid in the MC simulation although only the central 96x16x16
voxel grid is used for the later ML model training. An exemplary MC simulation result is
shown in Figure (6.5a). It shows a 2D slice of both the peak and valley energy deposition
at the centre of the simulated volume. The 96x16x16 ML prediction volume is highlighted
using red dashed lines. The choice for shorter simulation times in favour of more simulation
samples results in relatively large statistical uncertainties. Especially in the valley energy
deposition distributions, the fluctuations are visible by eye. A more quantitative analysis
of the uncertainties present in the training dataset is shown in Figure (6.5b). It shows the
histograms of the voxel-wise statistical uncertainties obtained from the MC simulations. The
uncertainties of the peak energy depositions are on average 5%, spreading from approximately
1% to over 11%, and the valley energy deposition average approximately 15% with a spread
from less than 5% to more than 30%.

6.2 Machine learning model adaption and optimization

The ML model developed throughout this thesis is adapted for application in this study in
two ways. First, the convolutional layers are adjusted so that their expected input and
produced output matrices match the shape 96x16x16. In addition, the model is modified
to only use the density matrix as input. No additional information, such as a water-only
simulation or a distance matrix, is passed to the network because the prediction is only
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Figure 6.5: (a): Exemplary 2D slice of a high-noise MC simulation sample showing the simu-
lated peak (left) and valley (right) energy deposition, normalized to their respec-
tive maximum value. The ML prediction volume is shown with red dashed lines.
(b): Histograms of the voxel-wise uncertainties of the peak and valley energy de-
positions in the training data MC simulations. Reproduced from [34].

performed in the 8x8 mm2 area covered by the same MRT field. Like in the previous studies,
two independent networks are trained for the peak and the valley predictions. To find the
best hyperparameters for the two models, a grid search is conducted as described in the
previous section, using the Adam optimizer and the mean-absolute error (MAE) loss for all
configurations. The respective models are trained using the high-noise training dataset, the
performance is assessed by calculating the MAE on the high-noise validation dataset.

Figure 6.6: Schematic of the adapted ML model for this study. Reproduced from [34].

For the valley model, 32, 64, and 128 filters in the convolutional layers are combined with
batch sizes of 4, 8, 16, 32, and 64, and learning rates of 1 · 10−5, 5 · 10−5, 1 · 10−4, 5 · 10−4,
1 · 10−3, 5 · 10−3, 1 · 10−2, 5 · 10−2. Trainings with a batch size of 4 and with the largest two
learning rates did not converge. The best validation loss achieved by each model is shown in
Figure (6.7). The best valley model, as indicated with the red circle, comprises 64 convolution
filters, a batch size of 8 and a learning rate of 1 · 10−3.
Following the results for the valley model, the peak model is investigated on an adjusted grid
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Figure 6.7: Validation (black diamonds) and training loss (open circles) of the hyperparameter
search for the ML model predicting the valley energy depositions. The best model
is indicated with a red circle. Reproduced from [34].

of 32, 64, and 128 filters in the convolutional layers, batch sizes of 4, 8, and 16, and learning
rates of 1 · 10−3, 5 · 10−3, 1 · 10−2, 5 · 10−2. The best validation loss achieved by each model is
shown in Figure (6.8). The best peak model, as indicated with the red circle, comprises 128
convolution filters, a batch size of 8 and a learning rate of 5 · 10−3.

Figure 6.8: Validation (black diamonds) and training loss (open circles) of the hyperparameter
search for the ML model predicting the peak energy depositions. The best model
is indicated with a red circle. Reproduced from [34].

6.2.1 Performance and generalisation assessment for high-noise datasets

A notable observation in Figure (6.8) is that the training performance is lower (higher MAE)
than the validation performance (lower MAE). As shown in Figure (6.7), this is also the case
for several valley prediction models. Figure (6.9) allows for a closer investigation into this
finding. It shows boxplots of the MAE computed using the ML predictions of the respective
best peak and valley prediction model for all samples in the training (dark grey, rats 1-10),
validation (medium grey, rats 11-13) and test (light grey, rats 14-16) dataset, separated by
rat. For both the peak and the valley model, the performance varies between the rats.
Figure (6.9a) shows the MAE per rat for the peak ML model. Especially for the rats 1, 8 (both
training dataset) and to some extend rat 13 (validation dataset), the prediction performance
is lower (higher MAE) than for the other rats. This trend is also visible in Figure (6.9b),
showing the valley ML model performances, though less pronounced.
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Figure 6.9: Boxplots of the MAE between the ML prediction and high-noise MC simulation
of the peak (a) and valley (b) energy depositions, separated by rat. The colour
indicates the training (dark grey), validation (medium grey) and test (light grey)
dataset.

(a) (b)

Figure 6.10: Comparison between the MC-simulated and ML-predicted energy deposition for
a data sample derived from rat 1. (a): 2D slices at the centre of the prediction
volume together with a colour encoded comparison in units of standard devia-
tion. The black line indicates the location of the depth-wise comparison in (b).
Reproduced from [34].

Looking into those rats, it is found that especially the data samples obtained using the CT
scans of rats 1 and 8 exhibit a geometric feature which is not found in most other rats: the
spinal cord as part of the prediction volume. Although a first thought could be that the
network does not successfully predict the energy depositions in the spinal cord because it is
a geometrical feature which is not present in enough data samples, this seems not to be the
case: Figure (6.10) shows one exemplary peak energy deposition ML prediction compared to
the MC simulation. Although being trained on high-noise MC data, the ML predictions are
smooth and do not exhibit the noise found in the MC data samples.
In many cases, including the previous section of this thesis, comparisons between ML and
MC estimates are made using the relative deviation between the simulated and ML-predicted
values. In the case of high-noise simulations that is not useful because values are expected to
deviate significantly only because of the statistical uncertainty of the MC simulation. Instead,
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Figure (6.10a) shows the deviation between ML and MC in units of the MC standard deviation
to give a more reasonable impression of occurring deviations. In fact, the energy deposition
seems to be predicted without notable systematic deviations. The deviations are driven by
the statistical uncertainties of the MC simulations. The reason for the lower performance, i.e.
higher MAE values, follows from this as well: Because of the large energy deposition entries
in the spine, larger contributions are made towards the MAE, resulting in larger MAE values
for those rats comprising more samples with the spinal cord in the prediction volume.
Figure (6.11) shows two additional exemplary energy deposition ML predictions, one for the
peak (Figure (6.11a)) and one for the valley (Figure (6.11b)) region, respectively.

(a) (b)

Figure 6.11: Comparison between the ML prediction and MC simulation of the peak (a) and
valley (b) energy deposition for an exemplary test data sample. The grey band
indicates the statistical uncertainties of the MC simulation. Reproduced from
[34]

Apart from several voxels with larger relative deviations which are largest in the air cavity
at the distal end of the phantom, most deviations can be seen to be within one standard
deviation of the MC simulation which is shown as a grey band. In both cases, no systematic
deviation is observed in the ML predictions.
To allow for a more relevant comparison of the smooth ML predictions with the noisy MC
simulations, a different method is proposed. The central ±1σ interval around the mean
value of a normal distribution covers 68% of the area under the curve. This means that on
average, 68% of random numbers which are sampled from such a normal distribution are
expected to be within that ±1σ interval. Assuming Gaussian uncertainties for the noise in
the MC simulations, the simulated value in each voxel represents a sampled number with
a given standard deviation and expectation value. If the ML model is trained to produce
unbiased estimations of the expected values of the energy deposition for each voxel, 68% of
the voxels exhibit a deviation between ML prediction and MC simulation of less than one
standard deviation. If, on average, more than 68% of the voxels exhibit a smaller deviation,
this would hint at over-fitting to the noise present in the data. A lower value than 68%
indicates that the deviations can not be explained by the statistical uncertainties alone but
there are additional deviations, for example due to systematic over- or underestimation of
the energy deposition.
The presented expected value can be used to investigate the agreement between ML predic-
tion and MC simulation for the training, validation, and test datasets. Figure (6.12) shows
the histograms of the voxel-wise deviations in units of the respective statistical uncertain-
ties. Figure (6.12a) shows the histograms computed on the peak ML prediction and MC
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simulation, Figure ( 6.12b) for the valley. In both cases, all distributions of deviations are
below the expected 68%, indicating a bias in the ML prediction. However, the performance
on all three datasets is relatively close to the expected average of 68% agreement within
one standard deviation. The mean values for all three datasets are shown in Figure (6.1)
together with the standard error of the mean value and also the average mean absolute error
computed for each dataset. The ML prediction and MC simulation agree for the training
dataset in approximately 64% of the peak voxels and 65% of the valley voxels. The reported
results on the validation datasets are on average approximately 1% lower but agrees with the
training data performance within the uncertainties, despite the deviations seen earlier in the
hyperparameter optimization due to the higher MAE values in the training dataset.

(a) (b)

Figure 6.12: Histograms of the voxel-wise deviation between ML-predicted and MC-simulated
energy deposition for the peaks (a) and valleys (b), computed for each dataset
separately. Reproduced from [34].

Table 6.1: Average MAE and fraction of voxels in which the ML-predicted and MC-simulated
energy deposition agrees within one standard deviation of statistical uncertainty
for the three datasets and the peak and valley predictions.

Valley Peak

Dataset MAE [1 · 10−3] ∆E < Stat.
unc. [%]

MAE [1 · 10−3] ∆E < Stat.
unc. [%]

Training 8.2 ± 0.3 64.8 ± 0.9 4.0 ± 0.2 64.6 ± 0.7
Validation 8.2 ± 0.2 63.9 ± 1.2 3.9 ± 0.1 63.7 ± 0.9
Test 8.4 ± 0.1 61.0 ± 1.1 4.1 ± 0.1 60.7 ± 1.7

For the test data samples, on average 61% of both the peak voxels and valley voxels are in
agreement between ML prediction and MC simulation following this method. The average MAE
for the three datasets is in agreement with respect to its uncertainty, not indicating over-fitting
to the data. However, a significant difference of the mean values of the discussed histograms
can be found between the data set, which is an indicator for slight over-fitting. To investigate
more closely whether the trained models are still suitable to proceed with, the respective
worst examples from the test dataset are inspected. The respective lowest agreement within
MC statistical uncertainty is achieved on the data samples shown in Figure (6.13) for the
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peaks and in Figure (6.14) for the valleys.

(a) (b)

Figure 6.13: (a): 2D comparison of the peak energy deposition data sample with the lowest
agreements between ML prediction and MC simulation showing the respective
estimation and the deviation in units of statistical uncertainty. (b): Respective
depth-energy deposition curve obtained with ML and MC, located at the red
dashed lines indicated in (a). Reproduced from [34].

The peak energy deposition prediction in Figure (6.13a) can be seen to agree relatively well
with the MC simulation up to the air cavity located at approximately x = 30 mm which is
the ear tunnel of the rat. On the distal side of this ear tunnel, the ML model systematically
overestimates the peak energy deposition, leading to a low agreement with MC with respect to
its standard deviation. The found deviations, however, are mostly smaller than 10% except
in the air cavity where they are significantly larger due to the material being air only, leading
to very small absolute numbers being recorded there.
Other data samples with low ML-MC agreement exhibit similar geometric features and pre-
diction deviations. While this might require additional focus in future studies, a maximum
deviation of approximately 10% for the worst-case scenarios are found suitable in this work.
The valley data sample with the lowest agreement between ML and MC, shown in Fig-
ure (6.14), exhibits larger deviations in voxels which are simulated as bone material with
many voxels exhibiting deviations of more than 3σ statistical uncertainty.
Nevertheless, the trained ML models are found to produce suitable predictions both in the
peak and valley regions when being compared to the high-noise MC simulations. The con-
ducted analysis concludes that the ML predictions are close to unbiased estimations of the
expected energy deposition values of the noisy MC simulations. To investigate the accu-
racy more closely, it is required to compare them to MC simulations with lower statistical
uncertainty at this point.

6.3 Predictions for test rat patients in a preclinical treatment scenario

To allow for the closer inspection of the agreement of ML predictions with the MC simulations,
three additional MC simulations with very low statistical uncertainties are created. Those
three simulations, one each for the rats 14, 15, and 16, respectively, resemble the respective
treatment scenarios in the preclinical study this study focuses on. This part of this study
therefore also functions as a first practical test of the applicability of the model in an actual
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(a) (b)

Figure 6.14: (a): 2D comparison of the valley energy deposition data sample with the lowest
agreements between ML prediction and MC simulation showing the respective
estimation and the deviation in units of statistical uncertainty. (b): Respective
depth-energy deposition curve obtained with ML and MC, located at the red
dashed lines indicated in (a). Reproduced from [34].

preclinical scenario. The number of test patients is very low, however, and future studies will
have to be conducted such tests more thoroughly.

6.3.1 Test data samples with low statistical uncertainties

The rat heads are placed in front of the beam so that the gliosarcoma tumour is centred in the
MRT field. During the preclinical study, the locations of the tumours were manually segmented
on the CT scans, which were taken after injection of a contrast agent, facilitating the visual
tumour detection. This location information was made available for this thesis. The resulting
tumour locations (red) in the brains of the three test rats are shown in Figure (6.15) in which
they are positioned with their respective centre of mass in the centre of the ML prediction
volume (red lines). The tumours visibly vary in size and shape. The apparent satellite tumour
in rat 14 (lower left corner or the segmented tumour) is actually connected to the rest of the
tumour in a different slice of the CT. The resulting low-noise MC simulation for rat 15 is
shown in Figure (6.16a). It shows a 2D slice of both the peak and valley energy deposition
at the centre of the simulated volume. The 96x16x16 ML prediction volume is highlighted
using red dashed lines. The 2D slices do not exhibit visible fluctuations anymore in these
simulations. Figure (6.16b) shows the voxel-wise histograms of the uncertainties found in
these three test rat samples. The peak energy depositions exhibit a statical uncertainty of
0.36% on average and the valley energy depositions exhibit a statistical uncertainty of 1.28%
on average, both with a much narrower spread than in the high-noise simulations.

6.3.2 Performance and generalisation assessment for low-noise datasets

In this section, the ML predictions and MC simulations are reported in Gray by dividing the
respective energy depositions by the voxel-wise density, because in a preclinical setting the
dose is the main quantity of interest and the lower noise in the MC simulation allows a stable
computation of it. Table (6.2) shows the fraction of voxels, for which the ML predictions
agree within 3% with the MC simulation of the respective simulated peak and valley doses.
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Figure 6.15: Visualization of the tumours (red) located in the brains of the three test patients.
The colour encodes the simulation materials air (white), water (grey) and bone
(black). The ML prediction volume is indicated with red dotted lines.

(a) (b)

Figure 6.16: (a): Exemplary 2D slice of a low-noise MC simulation sample showing the simu-
lated peak (left) and valley (right) energy deposition, normalized to their respec-
tive maximum value. The ML prediction volume is shown with red dashed lines.
(b): Histograms of the voxel-wise uncertainties of the peak and valley energy
depositions in the low-noise test data MC simulations. Reproduced from [34].

As the numbers are obtained from counting the deviations of all voxels of the three test rats,
the numbers do not exhibit uncertainties.
The peak doses are predicted with an accuracy of at least 3% for at least 93.9% of all voxels
in the phantom for all three test rats. It is noteworthy that in the tumour volumes, the
ML prediction deviates by less then 3% from the MC simulation for all voxels. The valley
dose agreement is lower overall, with 77.6% (rat 14), 81.1% (rat 15) and 80.1% (rat 16) of
predicted voxels deviating by less than 3% from the MC simulations. Comparing this to the
ML model performance in the tumour volume, the agreement is a lot higher there with over
95.0% of voxels deviating less then 3% for all three rats with a maximum of 97.9% for rat 16.
The reason for the larger deviation with respect to the whole phantom geometry as compared
to the tumour region can be seen in Figure (6.17). While the agreement of the ML prediction
with the MC simulation is very good inside of the brain, larger deviations can be seen around
bone voxels and especially towards the distal ends of the phantoms: for the test rats 14 and
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Table 6.2: Ratio of voxels in which the ML-predicted and MC-simulated peak and valley doses
agree within 3%, shown for the full phantoms, only voxels comprising tissue and
the tumour volumes. Reproduced from [34]

Rat ID Peak/Valley Voxel ratio with ∆ D < 3% [%]

Full phantom Tissue only Tumour volume

14 Peak 93.9 95.0 100.0
Valley 77.6 81.0 95.9

15 Peak 93.9 95.7 100.0
Valley 81.1 85.0 97.7

16 Peak 94.6 96.1 100.0
Valley 80.1 83.8 97.9

15, the ML model underestimates the dose there while it overestimates the dose for rat 16.
The deviations, however, are mostly less than 5% (yellow and turquoise voxels).

(a) (b) (c)

Figure 6.17: Comparison of ML-predicted and MC-simulated peak and valley doses for the
three test rats, showing the relative difference ∆D = (DML − DMC)/DMC. The
tumour volume in the shown slice is indicated white. Reproduced from [34].

To allow for a better visual inspection of potential systematic deviations, Figure (6.18) shows
the respective depth-dose curves for rat 14, exemplarily, at the centre of the prediction volume.
Figure (6.18a) shows the depth-peak dose curve, exhibiting a larger deviation than 2.5% only
at the very first voxel at the entrance of the MRT field into the phantom with a deviation
of approximately 3%. All other voxels in this line agree with MC by less than 2.5%. The
depth-valley dose curve in Figure (6.18b) shows the previously found tendency of the model
to systematic underestimate the doses towards the distal end of the phantom. The deviations
at the centre of the field are, however, found to have maximum values of around 5%. This
is still found to be a very good agreement of the ML model with the MC simulation for the
valley doses.
The overall goal of fast dose predictions with ML is, at this stage, not the complete replacement
of highly accurate Geant4 dose simulations. Instead, the presented ML model is designed to
provide a method for fast dose predictions suitable for e.g. treatment plan optimization. The
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Figure 6.18: Depth-wise comparison of ML-predicted and MC-simulated peak and valley doses
for rat 14 at the centre of the prediction volume. Reproduced from [34].

previous section showed an agreement within 95% of the dose predictions within the tumour
volumes of three exemplary treatment cases from a preclinical study. Due to the slightly
reduced size of the ML model compared to earlier studies in this work, the prediction speed is
found to be faster with approximately 50 ms per dose prediction in contrast to a simulation
time of 20 hours for the low-noise MC data. The excellent agreement of the ML model with
the MC simulations indicates that the ML model in fact learns an unbiased estimation of the
expectation value for the voxels when being trained on high-noise data. These findings are
found to make a strong case for further investigations considering the use of ML methods as
part of the MRT workflow.
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7 One end, many beginnings: what are the next steps?
During the previously discussed preclinical study only the in-field peak and valley doses
using a fixed-size 8x8 mm2 microbeam radiation therapy (MRT) field were used for treatment
planning decisions and were thus the main goal of the machine learning (ML) model to predict.
Future applications of a fast ML-based dose estimation engine will require more versatile ML
models.
This section presents four research directions, which are currently explored to extend the
developed model towards its applicability in future preclinical or even clinical MRT studies: 1)
out-of-field predictions, 2) ML model robustness, 3) dose prediction for conformal MRT fields,
and 4) a new, more complex evaluation of the portability to other fractionated therapies
using the example of proton minibeam radiation therapy (pMBRT).

7.1 Expanding the prediction volume: out-of-field dose
Especially when considering the future application in treatment plan optimization, the accu-
rate prediction of out-of-field doses, especially to organs at risk around the MRT field, will be
increasingly important. This section presents a first extension study of the preclinical rat ML
dose model from the last section towards a larger prediction volume. Only the valley dose is
considered because it extends into the out-of-field region in contrast to the peak dose which
is mostly limited to the in-field region and therefore does not necessarily require an extension
of the prediction volume.
The Monte Carlo (MC) dataset and separation into training, validation and test data is
the same as in the previous section. However, the ML model is adapted to be trained on
and predict the whole MC scoring volume of 96x32x32 voxels. Figure (7.1) is the same as
Figure (6.5a) but instead of the ML prediction volume, the red lines indicate now the in-field
region of the MRT irradiation field, which was coincident with the ML prediction volume in
the previous study. During training, the energy deposition is used again instead of the dose.

Figure 7.1: Exemplary 2D slice of a high-noise MC simulation sample showing the simulated
peak (left) and valley (right) energy deposition, normalized to their respective
maximum value. The MRT field region is shown with red dashed lines, the ML
model predicts the entire shown volume.

After adapting the ML model to allow for the 96x32x32 voxel matrix input and output, a new
grid search is performed to find optimal hyperparameters. Due to this study being an outlook
towards future research directions however, the chosen grid is limited to 64 and 128 filters,
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batch sizes of 4, 8, and 16 and learning rates of 1 · 10−4, 1 · 10−3, and 5 · 10−3. As before,
the Adam optimizer and the mean-absolute error (MAE) loss are used for all trainings. The
results of the search are shown in Figure (7.2). The network with 64 convolutional filters,
a batch size of 4 and a learning rate of 5 · 10−3 is found to perform best on the validation
dataset. It should be noted, however, that many different configurations lead to very similar
network performances.

Figure 7.2: Results of the hyperparameter search for the ML model predicting the larger valley
energy depositions, as determined by the best validation loss. The training data
performance of the model performing best on the validation data is shown as a
black open circle.

As in the previous study, the training performance is seen to be lower (higher MAE) than
the validation performance. The trained model is subsequently used to predict all training,
validation, and test datasets. To assess the accuracy and generalization with regard to the
high-noise datasets, both the average MAE and the voxels in agreement between the ML
prediction and MC simulation with regard to their respective statistical uncertainty of the
MC simulation are reported in Table (7.1s).

Table 7.1: Average MAE and fraction of voxels in which the ML predicted, and MC simulated
energy deposition agrees within one standard deviation of statistical uncertainty
for the three datasets.

Dataset MAE [1 · 10−3] ∆E < Stat. unc. [%]

Training 5.3 ± 0.2 63.5 ± 0.8
Validation 5.0 ± 0.1 63.3 ± 0.8
Test 5.3 ± 0.1 60.9 ± 0.7

The MAE values compared between the training and test dataset are found to be in agreement
with each other. The rate of voxels with less deviation between ML and ML than one sigma
of statistical uncertainty is found to be very similar to the previous study, again revealing a
lower agreement for the test dataset. The respective histograms of the distributions are shown
in Figure (7.3). The test dataset performance is found to be acceptable upon investigating
the worst performing samples from the test dataset.
The sample with the overall lowest ratio of voxels in agreement between ML prediction and
MC simulation within one standard deviation (worst case) is shown in Figure (7.4).
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Figure 7.3: Histograms of the voxel-wise deviation between ML-predicted and MC-simulated
energy deposition, computed for each dataset separately.

(a) (b)

Figure 7.4: (a): Test data sample with the lowest ratio of voxels in agreement between ML
prediction and MC simulation. (b) Depth-wise comparison of ML prediction and
MC simulation at the centre of the field.

While the agreement seems to be very good overall, a visible systematic in the depth-wise
comparison shown in Figure (7.4b) is the more frequent occurrence of overestimations of
energy deposition by the ML model in contrast to underestimations. This is shown by the
majority of deviations larger than the shown area, indicated by red arrows in the lower part of
the plots, especially, occurring towards larger values. The shown deviations exceed 30% which
is the maximum on the y-axis of the lower plots. While this appears to be a large deviation,
it should be kept in mind that the standard deviation averages 15% in the high-noise dataset.
Therefore, it is useful to include again the additional three low-noise simulation samples. To
first investigate the observed bias in the predictions, Figure (7.5) shows histograms of the
relative deviations between ML prediction and MC simulation per voxel for all three test data
samples.
Voxels with less than 1% of the maximum energy deposition are not considered for this com-
parison. The outermost bins are used as under- and overflow bins, respectively, showing all
values which are lower or higher than the shown range from -10% to 10%. The mean values of
the distributions and the percentage of voxels with more than -10% deviation (underflow) and
more then +10% deviation (overflow) relative to the MC simulation are shown in Table (7.2)
for a better overview of the results.
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Figure 7.5: Histograms of the relative deviation between ML-predicted and MC-simulated en-
ergy deposition for the three low-noise test data samples. Only voxels with at
least 1% of the respective maximum of MC simulated energy deposition are con-
sidered. The lowest and highest bin function as under- and overflow bins.

Table 7.2: Mean relative deviation between ML-predicted and MC-simulated energy deposition
together with the percentage of voxels contained in the respective underflow and
overflow bins.

Rat Mean value [%] Underflow [%] Overflow [%]

14 1.08 ± 0.05 2.80 5.16
15 2.73 ± 0.06 2.36 6.87
16 1.78 ± 0.04 2.00 5.92

For all three predictions, more than 90% of the voxels (rat 14: 92.0%, rat 15: 90.7%, rat
16: 92.10%) exhibit less than 10% deviation between ML-predicted and MC-simulated energy
deposition. The mean values are found to be larger than zero between +1.08% (rat 14) and
+2.73% (rat 15), confirming the found systematic overestimation by the ML model. Similarly,
nearly twice as many voxels exceed +10% deviation from ML to MC as compared to -10%.
Figure (7.6) shows a 2D comparison of the ML-predicted and MC-simulated energy depositions
at the centre of the field for rat 15 which is found to exhibit the largest deviations. To allow
for an easier visual assessment of the different regions, a discrete colour map was chosen.
The main source of deviations is found to stem from the edge region outside of the field. In
the right-side plot this can be seen in form of yellow and orange voxels signalising ML model
overestimations between +2.5% and 7.5%. Deviations of more than 10% in any directions are
mostly seen around the edges of bone structures which is attributed to the steep gradients
there.
Figure (7.7) shows a depth-wise comparison of the ML prediction and the MC simulation
along the line of the largest deviations between those as seen in Figure (7.6). A trend to
overestimations by the ML model can be clearly seen but overall, the predictions are found
to be in good agreement as deviations of up to 10% were assumed to be acceptable at this
stage, especially taking into account that this study also considers out-of-field voxels.
The contribution of bone-tissue interfaces to the number of voxels with larger deviations can
also seen in Figure (7.8a), which shows additional 2D slice comparisons right outside the
field (Figure (7.8a)) and the last predicted slice, furthest from the centre (Figure (7.8b)).
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Figure 7.6: Comparison of ML-predicted and MC-simulated energy deposition for rat 15 at
the centre of the field.

Figure 7.7: Depth-wise comparison of ML-predicted and MC-simulated energy deposition for
rat 15 at the position of the largest deviations between them.

Overall, the deviations are significantly larger than in the centre, but this is partly due to
larger statistical uncertainties of the MC simulation in those areas as well. However, voxels
comprising bone-tissue interfaces nearly consistently exceed 10% deviation in the shown slices.

(a) (b)

Figure 7.8: Comparison of ML-predicted and MC-simulated energy deposition for rat 15 at
the edge of the MRT field (a) and at the outermost slice of the prediction volume
(b).

Overall, the simplicity in expanding the predicted volume of the developed model, is an
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encouraging finding of this outlook study. At this stage, the produced results are accepted
as valuable fast method to produce preliminary dose distributions. Future studies on the
applicability of the model for treatment planning will have to assess the capabilities of their
models especially in those regions outside the field if doses in those regions are considered
important for planning or optimization decisions. Investigations should include looking into
ML models with a larger computational capacity (more trainable parameters), a loss function
more adequately describing the learning goal than the currently used MAE, and also different,
potentially better suitable ML architectures which have not been explored in the scope of this
work yet.

7.2 Data samples outside the training scope: analysis of model robustness

ML models are generally not necessarily expected to perform well on data samples which are
too different from the training data, not presenting an interpolation of training data samples.
For this reason, it is important to cover as many irradiation scenarios as possible during the
creation of a training dataset to reduce the probability of future samples laying outside of the
capabilities of the trained model. Nevertheless, it can be insightful to observe the model’s
behaviour when applied to data which it might be purposely or accidentally be applied on in
the future but is expected to be substantially different from the training data.
Two example for such cases are shown in Figure (7.9) and Figure (7.10). They show the
predicted valley doses using the ML model trained for the preclinical study at the Imaging
and Medical Beamline (IMBL) discussed in Section (6), but applied to rat phantoms rotated
by 90◦ (irradiation from the side of the head) and 180◦ (irradiation from the bottom of the
head). Figure (7.9a) shows the density matrix of the first exemplary extraordinary prediction
case where a rat head is irradiated from the side instead of from the top like in the training
data samples. While the resulting deviations from the MC simulation are significantly larger
than in the previous study, they mostly do not exceed 25%. The deviations are most notable
in the entrance and exit region of the phantom. The ear of the rat seems to have an impact
on the prediction quality as well as the model tends to overestimate the dose downstream
from it until into the brain volume (group of yellow voxels extending into the brain region
shown within the skull (black voxels)). Figure (7.9b) shows a depth-wise comparison in the
centre of the field to give a better impression of the development of the ML prediction with
respect to the MC simulation.
Figure (7.10b) shows the results of the second scenario comprising a rat head being irradiated
from the bottom of the head. This case is especially noteworthy because for example the
position of the skull is significantly different compared to the irradiation cases from the top
of the head. The network nevertheless does not create unreasonably large predictions around
the region where the skull was located in the training data, a problem which was observed
similarly for an earlier version of the ML model in Section (3.2.3).
While the deviations in these examples are comparatively large it can be noted that the model
does not break down i.e. produce extremely wrong or unexpected output values. This can be
seen as a good sign of the stability of the model as the deviations especially within the brain
are mostly within the self-set limit of 10%, but also potentially makes an assessment of what
future input samples are valid and which ones are not more difficult as also unexpected input
samples result in outputs which are relatively similar to those of expected inputs.
In the case of an ML model being used for dose predictions in preclinial or even clinical studies,
this aspect requires a great deal of attention. Future studies on this field of application might
investigate methods to detect data samples laying outside of the capability of their ML models
and to potentially flag them e.g. as not predictable. Like this, it would be possible for a
researcher to quickly identify problematic scenarios and either enhance the model or use a
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(a) (b)

Figure 7.9: (a): 2D comparison of the ML-predicted and MC-simulated valley dose distribu-
tion following a rat head irradiation from the side, a scenario not covered by the
training dataset shown in the left subfigure (white: air, grey: water, black: bone),
together with the relative deviations on the right side. (b): Depth-wise compari-
son at the centre of the field.

(a) (b)

Figure 7.10: (a): 2D comparison of the ML-predicted and MC-simulated valley dose distribu-
tion following a rat head irradiation from the bottom, a scenario not covered by
the training dataset shown in the left subfigure (white: air, grey: water, black:
bone), together with the relative deviations on the right side. (b): Depth-wise
comparison at the centre of the field.

different method of dose calculation for those cases.

7.3 Dose predictions for conformal MRT irradiations

Conformal tumour irradiations with intensity-modulated radiation therapy (IMRT) and vol-
umetric modulated arc therapy (VMAT) have led to a significant enhancement in treatment
outcomes [14] by allowing for higher doses in the tumour volume while at the same time
reducing the exposure of the surrounding healthy tissue. MRT research studies also have fre-
quently included conformal masks or also leaf collimators to shape the MRT field (e.g. [17]).
In addition, developments towards volumetric modulated MRT methods like spiral MRT [112]
have gained attention in recent years.
All those methods usually require the prediction of doses following irradiations with different
intensities and potentially also from different directions. Within the scope of this thesis, the
microbeam superposition approach was presented in Section (5.3) which is highly capable
of creating dose predictions for MRT fields of varying intensity. This line of research was
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not continued in this thesis due to potentially accumulating systematic deviations in the
predictions and the relatively long prediction times for many evaluations to generate a full
field from individual microbeams. Instead, a study was conducted on directly predicting the
dose following irradiations with full field of different sizes, however, only rectangular fields of
different sizes Section (5.4). Resulting from this it was found to be important to include as
many field size variations as possible within the realistic range of future fields as part of the
training data due to over-fitting to the provided field sizes in the study.
The possibility of predicting more variable field shapes using binary masks describing their
shape as additional input to the proposed ML model is investigated within the scope of a
MSc project [113] supervised as part of the work on this thesis. An example of a binary
mask describing an MRT field shape as input for an ML model is shown in Figure (7.11a).
This approach could potentially be expanded towards also allowing for predicting intensity-
modulated MRT fields, as is indicated in Figure (7.11b) which shows the mask in different
shades of grey, representing different beam intensities.

(a) (b)

Figure 7.11: Binary (a) and intensity-modulated (b) mask as possible additional inputs for
an ML model predicting conformal MRT fields.

In case of predictions in large Computer Tomography (CT)-based volumes, rotating the target
phantoms as it has been done throughout this thesis might become infeasible due to a high
computational cost to perform the rotation transformation to the CT data. Instead, the ML
model might be adapted in the future to already incorporate direction-dependent predictions
in a static CT-based phantom. This could be realised with a cubic prediction volume fitting
the entire CT-based phantom, together with the projection of a mask on this volume as
indicated in Figure (7.12).
The use of such masks, especially in the direction-dependent case, may lead to the requirement
of very large datasets to mitigate over-fitting, which might render those solutions infeasible
after all.
Future studies focusing on fast dose predictions for conformal MRT field dose predict will have
to investigate more closely how to predict the dose distributions following conformal MRT
irradiations. A re-evaluation of the use of superposition approaches may also be required as
it allows for a more general approach of combining fields from individual beams, potentially
resulting in fewer data samples being required for successful training of ML models.

7.4 Re-evaluation of the model portability

All studies in the scope of this thesis are performed using the same phase space file resulting
from a simulation of the IMBL with two copper filter paddles in place. For future applications,
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Figure 7.12: Directional intensity-modulated mask as possible input for an ML model predict-
ing direction-dependent MRT fields.

different beam configurations, both with regard to the filtration but also e.g. the wiggler
strength of the synchrotron, are likely to be part of irradiation campaigns and (pre-) clinical
studies. Similarly, future studies on providing fast MRT dose prediction models will likely be
extended to new MRT experiments at additional synchrotron sites (DESY, [114]) and with
first non-synchrotron MRT sources (Line-focus x-ray tubes, e.g.[47]).
The naive method of providing an ML model for those scenarios would be to re-create datasets
previously used for training for the given beam configuration and re-train the model. This
approach was followed during a master’s project [115] supervised as part of the work on
this thesis, which investigated the transferability of the developed model to the prediction
of the dose following irradiations with small proton beams, similar to the proof-of-concept
study presented as part of this thesis in Section (4), in which the ML model was trained
using the density matrix of a target phantom and the proton energy as input to predict the
dose distribution. Figure (7.13), reproduced from [115], shows two exemplary comparisons
between the prediction of the ML model and an MC simulation of proton beams with 42 MeV
(Figure (7.13a)) and 50 MeV (Figure (7.13b)) incident on two of the rat head phantoms from
the dataset used also in the study presented in Section (6). While the study found the ML
predictions to follow most general features of the MC simulation, which can e.g. be seen in
the apparent agreement between the main characteristics in Figure (7.13b), the study also
found the model not to predict doses accurately within 10% for many scenarios. This would
lead to a requirement to further investigate potential improvements to the proposed model
for the use in proton therapy.
The full re-training method results in very large overhead for each additional ML model and
therefore severely limit the applicability of such an approach. Instead, future studies might
investigate the use of pre-trained models and transfer learning, allowing to potentially reduce
the amount of needed training data by re-using an already trained ML model as base for a
subsequent model for different beam configurations (e.g. [116, 117, 118]). This approach is
especially promising to transfer a trained model using one filter configuration to a different
filter configuration with potentially few data samples but might also reduce the number of
required data samples when transferring a trained model to predict the doses in new or
different target geometries. Both scenarios are expected to be frequent requirements for any
future ML MRT dose prediction model.
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(a) (b)

Figure 7.13: Comparison of ML-predicted and MC-simulated energy deposition following the
irradiation of a rat head phantom with a proton beam with 42 MeV (left) and
50 MeV (b). Reproduced from [115].
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8 Summary and Conclusion

This work presents the first machine learning-based dose prediction method for microbeam
radiation therapy, starting from the initial proof-of-concept studies in Section (3) and finally
showcasing the successful application in a retrospective preclinical study in Section (6).
Section (3) investigated the possibility of approaching the microbeam radiation therapy (MRT)
dose prediction problem with generative adversarial networks (GAN) in a proof-of-concept
study with synchrotron broadbeam data. The GAN-based approach produced relatively accu-
rate predictions with at most 1% deviation of the maximum energy deposition in a simplified
ellipsoid-based paediatric head phantom for over 96% of the voxels. With a computation time
of approximately 100 milliseconds, the used 3D U-Net used as generator was found to be by
far the fastest MRT-related dose prediction method reported at the time of writing this thesis.
Moreover, when applied to a more complex Computer Tomography (CT)-based skull phan-
tom, the dose within the brain was found to be accurate within 10%. However, the model was
only trained on the simpler ellipsoid-based phantom. A more traditional regression training
approach was compared to the GAN-based dose prediction model in an additional study us-
ing the simplified ellipsoid-based head model as target phantom. The regression model was
found to be more accurate than the GAN-based model both by comparing the average test
mean-absolute error (MAE) (GAN: 1.87±0.02 ·10−3, regression model: 1.35±0.03 ·10−3) and
the ratio of voxels deviating by at most 3% of the respective voxel-wise dose value (GAN:
66.6 ± 0.5%, regression model: 79.5 ± 0.4%). It should be noted that the latter criterion is
different from the previously used relative deviation concerning the overall maximum energy
deposition. Following these results, the development focus was put on the regression machine
learning (ML) 3D U-Net model for the subsequent studies.
Section (4) demonstrated that the proposed network is transferable to different beam modali-
ties by investigating the performance of the network trained on data obtained using a proton
minibeam simulation. A comparison to an adaption of the Dose Transformer (DoTA) [93]
transformer-based dose prediction model showed that the proposed 3D-UNet was both faster
and more accurate in the learning task posed in the study presented in Section (4). All
models accurately predicted the Bragg peak position within 1 mm for nearly all test sam-
ples. Due to the steep dose gradients, however, the observed relative deviations between
the ML predictions and Monte Carlo (MC) simulations were comparatively large. On the
test dataset, the regression 3D U-Net model exhibited at most 3% relative deviation for an
average of 61.0 ± 0.1% of the voxels with at least 1% of the maximum energy deposition. In
comparison, the previously developed GAN-based 3D U-Net was found to exhibit at most 3%
relative deviation for an average of 33.1 ± 0.4% of the qualifying voxels and the DoTA model
for an average of 46.1±0.6%. A deeper investigation of the local generalization capabilities of
the models showed slight overfitting of the regression model with respect to different proton
energies, indicating the likely need for a denser sampling of the proton energies in the training
data. Similarly, the DoTA model exhibited slight overfitting especially concerning the phan-
tom translations. This finding is in agreement with the expectation that the sequence-based
DoTA model exhibits strong results in the depth-wise interpolation between dose distributions
resulting from different proton energies but has a disadvantage in generalizing on different
geometries, indicating the need for more variable input geometries.
With the proposed 3D U-Net regression model being confirmed as the most promising can-
didate, Section (5) aimed at including the micrometre sub-structure of MRT into the ML
model. For this, a novel scoring method was proposed, named the macro voxel method. The
method allows scoring MRT fields over a large volume by selectively recording the energy
depositions close to precomputed peak and valley locations. This approach was found to be
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a requirement to generally enable microbeam superposition as each individual microbeam
significantly contributes to valley doses in over 15 mm distance which is very large compared
to the microbeam width of 50 µm. As a result, going forward, two different ML models were
trained: one for the peak dose distributions and one for the valley dose distributions.
Using this method, a superposition approach to predicting MRT fields was investigated. As-
suming a prediction time of 100 ms for a single microbeam over the height of 1 mm, this
accumulates to 8 seconds for an 8x8 mm2 MRT field. In addition, minor systematic deviations
of the predictions were found to potentially accumulate due to the superposition. There-
fore, the superposition of patches of individual microbeams was found not to be a favourable
method for the goal of fast yet reasonably accurate dose predictions. Instead, a direct method
for predicting doses for differently sized MRT fields was introduced by passing the shape of the
predicted field as additional information to the network. The network was found to predict
doses accurately within a few per cent, especially in the centre of the field. In addition the
network was observed to over-fit to the field sizes contained in the training data when only a
limited number of discrete MRT field sizes were used. This was shown most clearly by finding
that the dose distribution predictions of the trained ML model were very close to the dose
distributions resulting from MRT field sizes used for training the model, even when provid-
ing new field sizes to the model, which it was not trained on. This lack of generalization
confirmed the earlier findings that a dense and continuous sampling of the desired prediction
parameter space (different geometries, energies, ...) is important for training unbiased ML
models for MRT dose prediction.
Following this finding, data augmentation in the form of the rotation and translation of sim-
ulated phantoms was implemented when the model was for the first time trained on and
applied to preclinically relevant data simulated after a study conducted at the Imaging and
Medical Beamline (IMBL) in April 2022 in which 16 rats were treated with an 8x8 mm2 MRT
field after implantation of gliosarcoma cells. The simulation data was obtained using the
CT scans of the patient rats. To obtain a large and variable training dataset in accordance
with the previous findings without increasing the simulation times to unfeasible lengths, the
training data was obtained with high statistical noise of, on average, 15% for the valley doses
and 5% for the peak doses. The dose predictions of the trained ML models were smooth even
when being trained on noisy MC data. The smooth ML predictions were compared with the
noisy MC simulations, expecting an average agreement within one standard uncertainty of
68% under the assumption of Gaussian statistical uncertainty of the voxel-wise dose values.
For the training and validation data, an agreement within one standard deviation for, on
average, about 64% (training: 64.6 ± 0.7%, validation: 63.7 ± 0.9%) of the voxels was found,
indicating that the models were trained to provide nearly unbiased estimates of the voxel-wise
dose distributions. The close agreement between training and validation data was found not
to indicate overfitting. On the test data, however, the models were found to predict dose
values which are in agreement with MC simulation within one standard deviation for, on aver-
age, 60.7 ± 1.7%, which is slightly but significantly lower than for the training and validation
datasets. Although this indicates some overtraining, an inspection of the worst-case test data
predictions was ruled suitable for further development. After the statistical comparison of
ML prediction and MC simulation, the predictions of the models were compared with respect
to the voxel-wise prediction accuracy with three exemplary low-noise MC simulations of re-
alistic treatment scenarios from the preclinical study. It was found that the ML models were
able to predict the valley dose within the original tumour volumes of three test rats with an
accuracy of at least 3% for over 95% of the voxels and 100% for the peak dose, although being
trained on high-noise simulation data. This confirmed the drawn conclusion that the models
were trained to provide unbiased dose predictions even when being trained on high-noise
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simulation data. This finding is important because it allows significantly faster development
of future ML models following this method. Generally, dose deviations for the low-noise test
data were found to be at most 10%, which was ruled to be sufficient for potential future MRT
treatment plan optimization purposes.
Section (7) discusses current research directions extending the presented model for its appli-
cation in more preclinical and, at some point, potentially even clinical studies. An important
aspect, e.g., is extending the prediction volume to the out-of-field region, allowing for dose
predictions in organs at risk more distant from the MRT field.

This thesis comes to an end here. Within this thesis, multiple milestones towards treat-
ment plan optimization for MRT were reached. The developed ML training methods using
high-noise MC simulations pose a valuable finding to accelerate dose prediction models for
new irradiation scenarios. The proposed macro voxel MRT scoring is found to be suitable
to produce data which sufficiently describes the peak and valley dose distributions in target
phantoms without the need for a large number of scoring voxels leading to large files for po-
tential ML training datasets. The prediction speed on the order of 100 milliseconds, compared
to about 30 minutes used by the HybridDC model currently used in preclinical planning and
up to 20 hours for MC simulations, was found to be very promising for usage in fast dose
prediction tasks. The reported accuracy of at least 10% within the studies in this work is
ruled to be sufficient during treatment plan optimization. However, many following studies
will have to showcase further the reliability, accuracy and versatility of this and similar ML
models until they are expected to find their way into future treatment planning programs.
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