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Abstract
One typical challenge in algebra education is that many students justify the equivalence of 
expressions only by referring to transformation rules that they perceive as arbitrary without 
being able to justify these rules. A good algebraic understanding involves connecting the 
transformation rules to other characterizations of equivalence of expressions (e.g., descrip-
tion equivalence that both expressions describe the same situation or figure). In order to 
overcome this disconnection even before variables are introduced, a design research study 
was conducted in Grade 5 to design and investigate an early algebra learning environment 
to establish stronger connections between different mental models and representations of 
equivalence of expressions. The qualitative analysis of design experiments with 14 fifth 
graders revealed deep insights into complexities of connecting representations. It con-
firmed that many students first relate the representations in ways that are too superficial 
without establishing deep connections. Analyzing successful students’ processes helped to 
identify an additional characterization that can support students in bridging the connec-
tion between other characterizations, which we call restructuring equivalence. By includ-
ing learning opportunities for restructuring equivalence, students can be supported to com-
pare expressions in graphical and symbolic representation simultaneously and dynamically. 
The design research study disentangles the complex requirements for realizing the design 
principle of connecting multiple representations, which should be of relevance beyond the 
specific concept of equivalence and applicable to other mathematical topics.
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Empirical studies have identified multiple challenges in understanding algebraic concepts 
and procedures for both beginning learners (Warren, 2006; Papadopoulos & Gunnarsson, 
2020; Herscovics & Linchevski, 1994; Linchevski & Livneh, 1999, overview in Kieran, 
2007) and advanced learners (Sfard & Linchevski, 1994; Stylianides et al., 2004). One typ-
ical difficulty was exemplified in a compelling vignette:

Interviewer:     [After Gil states that the expressions 3(x + 2) and 3x + 6 are equivalent]:
         Why? What makes these two things equivalent?
 …
Gil:  Yeah ... because they’re just rules ... they are there so that you can follow them, so that 

everybody’ll do the same thing.
 …
Interviewer:  I prefer to do it this [3(x + 2)] this way [writes “= 3x + 2”]. Why this [3x + 6] and not this 

one [3x + 2]?
…
Gil:  Because of the rules. But I don’t know how we got the rules.

                (Kieran & Sfard, 1999, p. 1)

Like Gil, many students know that they can write 3(x + 2) = 3x + 6 due to transforma-
tion rules, but she cannot justify these rules as she does not understand what equiva-
lence of expressions means, in other words, that both expressions describe the same 
situation (ibid.). Algebraic understanding, though, includes this ability to connect alge-
braic procedures in symbolic representations to the meanings of algebraic concepts in 
graphical, verbal, or contextual representations (Kieran, 2007; Kilpatrick et al., 2001), 
because otherwise the rules cannot be explained and hence they stay arbitrary.

For developing students’ algebraic understanding, learning environments have been 
designed based on the design principle of connecting mental models and representa-
tions (e.g., Friedlander & Tabach, 2011; Kaput, 2008; Mason et al., 1985), in particular 
for two algebraic concepts and variables and equations, but less so far for a third con-
cept, equivalence of expressions (exceptions are, e.g., Kieran & Sfard, 1999; McNeil 
et  al., 2019). However, Gil’s challenge is not only the variable: She would have simi-
lar difficulties justifying the transformation of arithmetic expressions, for instance, 
from 3 × (10 + 2) to 3 × 10 + 3 × 2, with reference to structures beyond the fact that both 
expressions yield the same value, that is, the same result, so these expressions without 
variables are the focus of this paper.

Early algebra settings were developed to provide learning opportunities for meanings 
of algebraic concepts and their underlying algebraic structures even before variables are 
introduced (Kieran, 2022). These early algebra settings provide effective approaches for 
preparing variables through rich generalization activities (Cai & Knuth, 2011; Lins & 
Kaput, 2004) and a relational use of the equal sign for preparing equations (Kieran, 
1981; Rittle-Johnson & Alibali, 1999). However, they rarely focus on equivalence of 
expressions by studying the relations between arithmetic expressions and their underly-
ing deeper structures. Kieran characterizes the state of research as follows:

The dominant focus on generalizing in the development of algebraic thinking has 
to a large extent obscured the process of seeing structure. While generalization-
oriented activity remains highly important in algebra and early algebra, and in fact 
includes a structural component, equal attention needs to be paid to the comple-
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mentary process of looking through mathematical objects and to decomposing and 
recomposing them in various structural ways. (Kieran, 2018, p. 79)

In this paper, we follow Kieran’s call for developing and investigating opportunities in 
students’ seeing and using of structures with respect to the equivalence of expressions. In 
Sect. 1, we will present a framework by which this gap within early algebra approaches 
on equivalence of expressions can be articulated and located more concisely. The design 
research study presented in this paper contributes to reducing this gap by pursuing the fol-
lowing design research question:

How can the design of an early algebra learning environment enhance students’ con-
nections of mental models and representations for equivalence of expressions?

The methodological framework of the design research study is outlined in Sect.  2, and 
empirical insights into the design experiments are provided in Sect. 3 and discussed in Sect. 4.

1  Theoretical background

In this section, we will define more concisely what we mean by a focus on equivalence of 
expressions by studying the relations between arithmetic expressions and their underlying 
deeper structures. We start by introducing the terms and three characterizations for equiva-
lence (Sect. 1.1), summarizing the existing approaches to enhancing students’ understand-
ing of equivalence (Sect. 1.2), and articulating the gap that needs to be bridged and the 
refined design research question (Sect. 1.3).

1.1  Three characterizations for equivalence of expressions

In her discussion of multiple meanings of structure, Kieran (2018) emphasizes that struc-
ture does not necessarily require pattern generalization, but is also useful for capturing 
students’ ways of connecting representations, among other things. The articulation of our 
epistemological background builds upon Kieran’s (1989) conceptualizations of structure. 
Starting from a collegiate definition of structure as aggregate of elements of an entity in the 
relationships to each other, Kieran (1989) defines the surface structure of an expression as 
referring “to the arrangement of the terms and operations,” determining the order of opera-
tions and the systemic structure as “relating to the mathematical system from which the 
expression inherits its properties” of and between operations, such as commutativity or dis-
tributivity (p. 34). Third, Kieran also refers to structures in word problems for emphasizing 
the sub-entities and relationships in the situation to which expressions and equations can 
be related. Analogically, we will refer to structured figures as figures in which sub-entities 
and their relationships are considered. We denote systemic structures as deeper (systemic) 
structures when their involved properties are (explicitly or implicitly) also connected to 
structures in other representations, for instance, in these structured figures. Thus, our third 
conceptualization of structure reflects the need to also connect the systemic properties to 
other representations (Cooper & Warren, 2011; Mason et al., 1985) and Kieran’s (2018) 
call to focus on seeking, using, and expressing (deeper) structures.
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From the rich state of algebra education research (as summarized in several surveys, 
e.g., Stacey et al., 2004; Kieran, 2007), we extract three typical perspectives that students 
adopt on expressions. In order to harmonize the multiple terms used, we introduce the fol-
lowing terms:

• In a relational perspective, students see rich relations between the different objects 
involved. For expressions, that means particularly what expressions can describe 
(Mason et al., 1985; Kieran & Sfard, 1999; Kaput, 2008; Radford, 2011; Blanton et al., 
2019). The focus is on systemic structures within the symbolic representations (relying 
on properties) and on specific deeper systemic structures between several representa-
tions (so that the symbolic surface structures are connected, e.g., to structured figures, 
see Mason et al., 1985).

• In an operational perspective, students view expressions mainly as requests to evalu-
ate the result, meaning as uncompleted tasks rather than as reified object descriptions 
(Malle, 1993). We borrow the term “operational” from the research on the equal sign 
(Knuth et al., 2006; Sfard & Linchevski, 1994) and extend it to expressions. The focus 
is solely on surface structures to determine which operation to complete first, yet not on 
systemic structures.

• In a transformational perspective, students view expressions mainly as sets of symbols that 
are to be manipulated according to transformation rules, which can be arbitrary or well-
justified by drawing upon robust understandings of structure (Kieran, 2004; Linchevski 
& Livneh, 1999; Papadopoulos & Gunnarsson, 2020). For correctly enacting transforma-
tions, students need to recognize the surface structures of the expression. The justification 
of the transformation rules requires references to systemic or deeper structures.

     In each of these perspectives on expressions, we can characterize differently what the equiv-
alence of expression entails (following Malle, 1993; Zwetzschler & Prediger, 2013). The three 
characterizations of equivalence are exemplified for 3 × (10 + 5) = 3 × 10 + 3 × 5 in Fig. 1.
• In a transformational perspective, two symbolically represented expressions are char-

acterized as transformation equivalent if one can be transformed into the other by a 
rule-based, innersymbolic treatment (Duval, 2006). The transformation equivalence is 
a dynamic characterization (Cooper & Warren, 2011). It is characterized by the active 
modification process, transforming the expression  EA into  EB (later abbreviated  EA   EB, 
in Fig. 1 marked by the double arrow). To justify the transformations within the sym-
bolic representation, students can refer to systemic structures relating to the properties 
of operations. The justification of these properties themselves requires the connection 
to other representations, therefore to deeper structures (Kieran & Sfard, 1999).

• In an operational perspective, two expressions are characterized as result equivalent 
by evaluating their results and comparing both expressions by their results. The result 
equivalence can be characterized as static as it remains indirect and refers to a third 
object (the result) as  a static object of comparison (Cooper & Warren, 2011). (For 
expressions with variables, the result equivalence involves evaluating the expression for 
all numbers substituting the variables. In our research, we concentrate on expressions 
without variables.) In the scheme in Fig. 1, we depict the three links involved: From the 
expressions to the result,  EA–R and  EB–R, and from there derive the equivalence  EA–
EB (marked by the grey double line).

• In a relational perspective relating the symbolic representation to a context situation or 
a graphical representation, two expressions are characterized as description equivalent 
when both describe the same situation or figure (Kieran & Sfard, 1999; Malle, 1993; 
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Wilkie & Clarke, 2016; Zwetzschler & Prediger, 2013). The description equivalence is 
also a static characterization since it is based on a third object comparison. To check if 
the expressions  EA and  EB describe the same Figure F, the deeper structures of  EA and 
 EB need to be recognized in the geometric structuring of Figure F (for the example in 
Fig. 1), which means that relevant subexpressions (surface structures) need to be iden-
tified and connected to related parts of the structured figures  SA and  SB (e.g., a sum 
involves the composition of two areas in the figure, a multiplication involves count-
ing in groups in the figure). Thereby, understanding this characterization requires con-
structing five links: The link from F to  EA is constructed by the intermediate links of 
F–SA (the figure is structured in parts in a particular way) and SA–EA (identifying parts 
on the structured figure that are described by subexpressions of  EA) and respectively 
from F to  EB via F–SB and  SB–EB. From these two double links (F–SA–EA and F–SB–
EB, marked by the four edges in the scheme), the static comparative link  EA–EB can be 
derived (marked by the double line in the scheme in Fig. 1).

1.2  Existing research on and approaches for enhancing students’ understanding 
of equivalence of expressions

Following Hiebert and Carpenter’s (1992) definition of understanding as a network of 
connections (transferred to algebra by Cooper & Warren, 2011), students’ understand-
ing can be enhanced by developing mental models for all three characterizations and 
connecting them across graphical and symbolic representations.

Whereas the epistemological background can be clearly distinguished into three sep-
arate schemes, the mental models that students develop are not necessarily separable, 

Fig. 1  Epistemological background: Three characterizations for equivalence of expressions in three per-
spectives
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Fig. 2  Analytic framework of this paper: network of possible connections for understanding equivalence of 
expressions

and not all links are always established. By combining the three schemes from Fig. 1 
into one scheme in Fig. 2, we provide the analytic framework by which we can concisely 
describe students’ ideas and instructional approaches as documented in the research lit-
erature (in this subsection) and capture their learning pathways throughout the connec-
tions in our empirical data (in the next two sections).

Existing research on students’ challenges Prior research has identified different typical chal-
lenges in students’ mental models of equivalence of expressions:
      The most often documented challenge in dealing with equalities and equations refers to 
students’ challenges with the equal sign itself, which is often misinterpreted operationally 
(as calling for determining the result:  EA = R) rather than a more relational understanding 
of that symbol  (EA =  EB). This leads to an exclusive focus on the first number on the right 
side of the equal sign as the result (Herscovics & Linchevski, 1994) rather than completely 
capturing the surface structure of  EB. The students whose processes were investigated in 
this study had not internalized result equivalence but persisted in interpreting the equal 
sign only as a request to evaluate the result without relating the expressions to each other 
 (EA–R and  EB–R without  EA–EB; Warren, 2006).

Even if students can overcome this challenge, many students do not develop relational per-
spectives on equivalence but remain focused on the same result as the only interpretation for 
equivalence of expressions, in other words, focusing on result equivalence (overview in Kieran, 
2007, 2011). Within the analytic scheme from Fig. 2, these findings can be characterized as 
deriving  EA–EB from the links  EA–R and  EB–R in the characterization of result equivalence.

Students’ tendency to adopt operational rather than relational perspectives is also 
expressed in their focus on procedures and surface structures rather than systemic structures 
while transforming expressions (overview in Kieran, 2007). Their ability to correctly iden-
tify symbolic surface structures within the expressions depends on form and order of the 
elements of the represented expression (Papadopoulos & Gunnarsson, 2020), which applies 
for expressions with and without variables (Linchevski & Livneh, 1999). The former dif-
ficulty can partially be traced back to students’ difficulties in connecting symbolic substruc-
tures with parts of structured figures  (EA–SA and  EA–SB; Malle, 1993; Wilkie & Clarke, 
2016). Consequently, students’ difficulties with seeing systemic structure seem to be also 
connected to the missing adoption of relational perspectives (Sfard & Linchevski, 1994) and 
the underlying deeper structures in other representations (Kieran & Sfard, 1999). This ten-
dency also hinders them in connecting the transformations to description equivalence.
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Existing instructional approaches for overcoming the challenges The analytic framework 
in Fig. 2 also allows description of some of the existing instructional approaches designed 
to overcome these challenges for which we identified roughly three groups and depicted the 
focused connections for equivalence in Fig. 3 (without claiming completeness):

Fig. 3  Three groups of instructional approaches and their focuses in establishing connections for equiva-
lence

    The first group of instructional approaches mainly focuses on fostering result equiva-
lence of two expressions by foregrounding the meaning of the equal sign. Some approaches 
use a change of representations (e.g., McNeil et  al., 2019) by utilizing figures (without 
using structure), while others remain in the symbolic representation (Fyfe et  al., 2015; 
Jones et al., 2013; Rittle-Johnson & Alibali, 1999). However, they all have in common that 
the systemic structures of the expressions are not being focused on to identify their equiva-
lence, neither on the structured figures nor the symbolic substructure of the expressions 
(this is indicated in Fig. 3a on the left by grey colors for  SA and  SB as well as  EA and  EB). 
Although a relational perspective on the equal sign is fostered in this group of approaches, 
an operational perspective on equivalence is foregrounded.

The second group of instructional approaches can be exemplified by two approaches: 
promoting the characterization of description equivalence in a learning environment in 
which expressions describe either functional relationships (Kieran & Sfard, 1999) or geo-
metric figures (Mason et al., 1985; Wilkie & Clarke, 2016; Zwetzschler & Prediger, 2013). 
In the latter, students learn to identify different ways of structuring the figure and to rec-
ognize that the structure may be described by different expressions. Thus, this perspective 
promotes connections between representations and pays attention to the deeper structures. 
The result equivalence or alternative structurings of figures can be starting points that stu-
dents mobilize when developing the new characterization of description equivalence and 
are best with an extended focus on deeper structures. In this approach, the transformational 
perspective is not included; thus the characterizations of description equivalence and trans-
formation equivalence are not connected (Fig. 3b in the middle).

The third group of instructional approaches aims at establishing transformation equiva-
lence starting from students’ mental models of result equivalence. Therefore, they focus in 
different intensities on connecting innersymbolic structures to the manipulation of expres-
sions in the transformational perspective. Banerjee and Subramaniam (2012) aimed at fos-
tering students’ understanding of transformations by supporting surface structures and con-
necting the manipulation of systematic structures in properties of operations with the idea 
of an unchanged result of equivalent expressions, that is to say, with the characterization of 
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result equivalence. Also Schwarzkopf, Nührenbörger, and Mayer (2018) started from the 
characterization of result equivalence to develop a first idea of transformation equivalence 
for Grade 4 students by inviting students to modify the expressions systematically consid-
ering their systemic structures (e.g., 6 × 30 – 30 = 4 × 30 + 30 = 150). Blanton et al. (2019) 
fostered students from Grade 3 to 6 to develop their algebraic knowledge, inter alia, a rela-
tional understanding of the equal sign. The tasks combined operational aspects focusing 
on the same value with the idea of using systemic structure to substantiate transformation 
equivalence. Thus, all three perspectives aim to link operational and transformational per-
spectives on equivalence, yet because they remain in the symbolic representation, they do 
not involve deeper structures that the expressions describe (Fig. 3c on the right).

1.3  Need for bridging from description equivalence to transformation equivalence

From all three groups of instructional approaches in Sect. 1.2, we can draw important ideas 
for our own instructional approach:

• Developing new mental models must start from existing knowledge, such as the trans-
formation equivalence starting from result equivalence (as in the third group).

• Dealing explicitly with systemic and surface structure seems to be promising to foster 
transformation of expressions (as in the third group).

• New perspectives should be explicitly introduced so that students can extend their rep-
ertoire (as in the first group of approaches for the equal sign).

• Connecting representations can be productive for developing relational understanding 
of equivalence by focusing deeper structures (as in the second group).

Whereas the cited existing approaches tend to prioritize the result equivalence as the 
natural starting point to be connected to transformation equivalence, the analysis of typical 
challenges suggests that the operational perspective alone is not a sufficient starting point, 
as it is tied to concrete numbers (in expressions without variables) and lacks the potential 
to generalize found relationships into properties and justify them by deeper structures. Even 
before introducing variables, the relational perspective bears a greater potential to generalize 
patterns so that the transformation rules can be justified (Kaput, 2008; Mason et al., 1985).

Both the second and third groups of instructional approaches focus on relational per-
spectives, but they differ in relation to the representation and the nature of the transforma-
tions undertaken. The second group of approaches focuses on the relational perspectives of 
expressions and supports the consideration of deeper structures across representations but 
within mostly static comparisons. The third group, however, focuses on dynamic transfor-
mations while relying on students having already internalized an adequate understanding of 
meanings about how to operate with systemic structure without a graphical representation.

1.4  Summary and research question

Figure  4 summarizes both the characterizations introduced in Sect.  1.1 and deepened 
by the report on existing research and the existing instructional approaches in Sects. 1.2 
and 1.3. Given that some of the existing approaches work across the columns in different 
ways, their comparison enables us to identify that not only the representation but also the 
dynamics are crucial for developing students’ understanding. It also locates the main gap 
that this paper intends to work on. Based on the theoretical background and the analytic 
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framework developed throughout this section, we can now refine our research question to 
exactly this gap:

How can the design of an early algebra learning environment enhance or limit 
students in mentally connecting description equivalence in the graphical representation 
to transformation equivalence in the symbolic representation?

As usual in semiotic processes (Duval, 2006), the students’ mental processes of con-
necting representations in treatments and conversions involve complex mental construc-
tions of what they focus on in each representation. In order to grasp these semiotic com-
plexities, we will use the analytic framework in Fig. 2 and in particular the algebra-specific 
distinction of surface, systemic, and deeper structures.

2  Methodological framework of the design research study

2.1  Topic‑specific didactical design research as the methodological framework

The research aim of developing productive learning environments is twofold, as it 
requests (a) designing of learning environments and (b) investigation of the learn-
ing processes initiated by these learning environments. This twofold aim can best 
be pursued within a design research methodology (Cobb et  al., 2003). Like many 
approaches within the methodology of design research with a focus on learning 
processes (Gravemeijer & Cobb, 2006), our framework of topic-specific didacti-
cal design research (Prediger & Zwetzschler, 2013) relies on the iterative inter-
play between four working areas: (1) specifying and structuring learning goals and 
contents (here, characterizations of equivalence and their connection), (2) develop-
ing the design (here, a learning environment for fifth graders on equivalence of 
expressions), (3) conducting and analyzing design experiments (here, in pair set-
tings), and (4) developing local theories on the topic-specific teaching and learning 
processes.

Fig. 4  Characterizing commonalities and distinctions between the three characterizations
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2.2  Method for data collection and sampling

Conducting design experiments is the central method for data gathering in design 
research methodologies (Cobb et. al., 2003), and laboratory pair settings are chosen 
when complex cognitive processes are in view that are hard to capture in whole-class 
settings.

So far, two design experiment cycles have been conducted by the first author 
with seven pairs of fifth graders (10–11 years old). In Cycle 1, four pairs of students 
were selected from a small-town comprehensive school. In Cycle 2, three more pairs 
of students from the same class were sampled. The design experiment series lasted 
two sessions of 90–105 min each. In total, 27.5 h of video were recorded and partly 
transcribed.

2.3  Methods of data analysis

The transcripts were analyzed qualitatively in three steps:

• In Step 1, the students’ utterances and drawings were coded according to the 
addressed external representations and the connections made explicit between 
selected elements of them.

• In Step 2, the underlying mental models were inferred by disentangling students’ 
utterances in the analytic framework of Fig. 2 with respect to the addressed elements 
and links in each utterance (addressed by gestures, colorings, or explicit verbal artic-
ulation). The properties that students refer to can only be inferred if explicitly articu-
lated, but the structures they see in the expressions and figures can be inferred also 
from gestures and colorings of elements.

• In Step 3, graphical summaries in the analytic framework marked addressed ele-
ments and links in black and not addressed elements and links in grey. The fine-
grained coding of links allowed for capturing students’ learning pathways chrono-
logically.

All codings and graphical summaries were conducted by the first author and checked in 
detail by a research assistant and the second author. Cases of missing intercoder agreement 
were solved by consensual discussion.

3  Insights into the design experiments and their analysis

This section documents our design research journey with the empirical insights gained for 
the focus tasks: We start by presenting the task designed to overcome the gap between 
description equivalence and transformation equivalence in Cycle 1 (Sect.  3.1) and pro-
vide empirical insights into two focus students’ learning pathways with this task, which 
caused us to discover an additional characterization and its potential for bridging the gap 
(Sect. 3.2). This bridging characterization was included in the refined task design in Cycle 
2 (Sect. 3.3) so that all students could engage with it. Section 3.4 then provides empirical 
insights into affordances and constraints for students’ pathways from description equiva-
lence towards transformation equivalence.
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3.1  Task design in Cycle 1: overcoming the gap between description 
and transformation equivalence by several steps

The designed learning environment in Cycle 1 used the context of planning children’s 
rooms (with desks, beds, and cupboards) to connect expressions to geometric figures (see 
focus task in Fig. 5). Understanding of the deeper structure of the expressions is supported 
by marking the respective structure within the geometric figures. Discussing different ways 
of determining the area in the room plan revealed the opportunity to compare different 
expressions with respect to their description equivalence. Prior to the focus task, students 
had already

• described and structured figures (areas of the room plans) with their own expressions.
• interpreted given expressions  EA/EB with respect to the way the figures  SA/SB were 

structured.
• justified why an expression matches the structured figure  (EA/B—SA/B).

Fig. 5  Focus tasks in Cycle 1 designed to fill the gap between description and transformation equivalence 
(Abbreviations  EA/EB and  SA/SB added for the clarity of this paper)
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The focus tasks (in Fig. 5) build upon these prior experiences for an already familiar 
room plan with two beds. Task 1 demands a comparison of structured figures with the 
subexpressions of the given expressions with respect to commonalities and differences 
in relational activities. Whereas Task 1a focuses on a comparison between  EA,  EB,  SA, 
and  SB, Task 1b also aims to infer the description equivalence  EA =  EB by asking for a 
justification. The characterizations of description equivalence are deepened here by ask-
ing students to connect subexpressions of  EA/EB to substructures in the structured figures 
 SA/SB.

Task 1 prepares students for Task 2 by this focus on substructures and subexpressions in 
which the transformation steps from  EA to  EB are to be listed in a flow chart and to be justi-
fied, each by the description equivalence of the intermediate expressions and the under-
lying systemic structures (additional brackets were introduced to support the recognition 
of surface structures; see Banerjee & Subramaniam, 2012). Using this flow chart and the 
stepwise justification of intermediate expressions in description equivalence, the task aims 
at connecting symbolic transformations and graphical considerations as well as closing the 
gap between the static comparison in description equivalence and the dynamic transforma-
tion in the transformational equivalence.

3.2  Empirical insights into students’ learning pathways in Cycle 1: discovering 
restructuring equivalence as a new bridging characterization

The following transcripts document excerpts from the learning process of Victoria and 
Mira, two 10-year-old girls selected by their comprehensive school teachers as belong-
ing to the 30% of higher-achieving children in the class. Victoria and Mira focus on the 
structured figures and express them with different utterances. Each turn in the transcript in 
Table 1 is analyzed with respect to the substructures and subexpressions they refer to and 
the links drawn by the students.

Deviating from the initial analytic scheme in Fig.  2, Victoria and Mira draw a direct 
link between the two structured figures  SA and  SB. They compare substructures of the fig-
ures and explain how they emerge in  SB from  SA, either with clearly material articulations 
of the graphical representation such as “broken through” (Turn 15), “cut it here” (Turn 
17), or “split by three” (in Turn 16). In this way, both girls succeed in explaining how the 
structured figure  SA is connected to  SB, not by indirect static comparisons, but by a direct 
dynamic approach of restructuring the figure.

Although Victoria and Mira stay consequently in relational activities (considering the 
expressions as describing the figure), they do more than comparing the commonalities and 
differences requested in Task 1a. Rather than drawing an indirect link via Figure F, they 
directly connect the structured figures by a process of restructuring  SB into  SA. This led 
us to introduce the double arrow between  SA and  SB in the analytic scheme, which had not 
been anticipated before.

This dynamic way in which Victoria and Mira make individual sense of the task was 
also identified in other cases in Cycle 1. Rather than comparing the figures with references 
to structural similarities and differences, several students use a dynamic language of “bro-
ken through” and “cut it here” to articulate how to restructure the one figure into the other. 
From these children, we learned that dynamic transformation cannot only be conducted in 
the symbolic representation by manipulating symbols but also as dynamic restructuring 
processes in the figures.
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During Task 1, Victoria’s and Mira’s restructuring strategy is not yet connected 
to the symbolic expressions. When they turn to Task 2 in the transcript in Table  2, 
they continue pursuing their dynamic strategy and use it also to justify the symbolic 
manipulations.

Although Task 2 originally promoted static comparisons for description equiva-
lence between the intermediate transformation steps, Victoria and Mira con-
tinue their dynamic approach of restructuring. They justify the transformation step 
8 × 12 = 8 × 3 × 4 (in Turn 32) by explaining how  SA was restructured to reach  SB 
(Victoria in Turn 34) and how this is related to what happened in the expressions 
(Victoria in Turn 34 and Mira in Turn 35).

First, Victoria justifies the transformation in the expression of result equivalence 
(in Turn 32), but when asked to explain in more detail (in Turn 33), she connects the 
transformation of expressions to the restructuring of structured figures. For this she 
draws upon the ways of articulating the restructuring (“broken through” from Turn 
15 in Table  1 and in Turn 34) to give meaning to the symbolic transformation. In 
Turn 35, Mira summarizes the result of the restructuring processes by explaining how 
each part of the expressions are found in the substructures of the figures. By deriving 
 EA →  EB from  EA–SA and  EB–SB and  SA →  SB, the girls co-construct the justification 
of equivalence by an additional characterization that we later termed restructuring 
equivalence.

Results from analyzing learning pathways in Cycle 1 The analysis of students’ learning 
pathways document the strong difference between static strategies to check equivalence 
(by indirectly comparing two given expressions via the result in result equivalence or by 
indirectly comparing them with a figure in description equivalence; see Fig.  1) and the 
dynamic strategy of transforming one expression into another one. However, the children 

Table 1  Transcript of Victoria’s and Mira’s process in Task 1

Turn Speaker Utterance Analysis of links Addressed substructures

15 Victoria He has broken this [points at the top line of 
12 in the Structured Figure SB] through 
[points to 4 squares in the top line of 12 in 
SA and then gestures through all lines from 
top to bottom]

SA →  SB
lines of 12 into
3 groups of 4

16 Mira Always split by three SA →  SB
all lines of 12
into lines of
3 groups of 4

17 Victoria Yes, well, these are three lines, then [points 
at the 3 columns, each with 8 partial 
lines of 4 in SB,  then 7 s break] Though, 
for example, he has cut it here.

And this is together [points at the left 
subfigure of SB with eight lines of 4] and 
here, he has also cut it [points at the 
middle and right subfigure with 8 lines of 
4]. Otherwise, I do not know it.

SA →  SB
3 columns, each with 

lines of 4
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demonstrated a non-anticipated dynamic strategy within the graphical representation that 
can serve as a fourth characterization for equivalence, we termed it restructuring equiva-
lence (Fig. 6).

Table 2  Transcript of Victoria’s and Mira’s process in Task 2

Turn Speaker Utterance Analysis of links Addressed substructures/subexpres-
sions

32 Victoria Ok, um, Zeynep hasn’t written a 12 here, only 
8 × 3 × 4 [points at 8 × 3 × 4 in expression EB], 
because 3 × 4 is 12, then he has expressed it 
slightly differently

EB–EA
3 × 4 instead of 12

33 Teacher Mm-hmm. Explain in more detail. Try to 
think about it together and when you know 
how to say it well, then tell me [9 s break]. 
It’s hard, isn’t it?

34 Victoria Well, Zeynep has divided the 12 [points at 
3 × 4 in EB] into a multiplication, then she 
has, um, the 8 [points at 8 in EB] – the 8 she 
has – um, she has left

Then, she has broken through the 12 [points at 
SB while talking about 12 in SA], well, into 
a multiplication and she has simply 3 × 4 
because 3 × 4 is 12

Then she has written it down

EA →  EB
12 divided into 3 × 4
EA →  EB –  SA →  SB:
12 divided into 3 × 4
means breaking
12 into 3 groups of 4

35 Mira This is Matt, what Matt has done [points at 
8 × 3 × 4 in EB]. That is to say, he has these 
packages of 12 [points at a line of 3 bundles 
of 4 in SB] here, and he turned it into a mul-
tiplication [points at EB]. 8, because here are 
8, so [points at the 8 lines in SB]

And then, times 3, namely these are here, 
these 3 packages in each line of 12 [points 
successively at the 3 bundles of 4 in the 
line of 12 in SB] and in these 12 – in these 
3 packages, there are 4 inside [points at the 
first bundle of 4 in the top line of 12 in SB]

SA →  EB: turned the packages of 12 
into a multiplication

EB–SB: 8 × 3 × 4
fit to 8 lines of 3
with groups of 4
EA–SA: 8 × 12
fit to 8 lines of 12
SA –  SB: 12 fit to 3 groups of 4

    We, as design researchers, learned from the children that working in the graphical rep-
resentation does not necessarily require static comparison when the structured figures are 
directly compared and restructured into each other, as Mira shows when she justifies that 
both expressions are equivalent by drawing upon restructuring equivalence.

Victoria (in Turn 34) goes even a step further and explains how the transforma-
tion  EA →  EB is connected to the transformation  SA →  SB, which leads to adding another 
vertical line between the horizontal links  EA →  EB and  SA →  SB, symbolizing  EA →  EB 
–  SA →  SB. This link is the remarkable connection between the transformation  EA →  EB and 
the restructuring  SA →  SB, which not only assures the equivalence but justifies the adequacy 
of the transformation rules by also linking the step to restructuring equivalence in general-
izable terms.
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From these rich learning pathways of the analyzed children, we drew the hypothesis 
that introducing restructuring equivalence might also be promising for other students as 
the characterization that can potentially bridge the gap as indicated graphically in Fig. 6. 
Restructuring equivalence might be a characterization with the potential to enhance 
the transition from static to dynamic comparisons while persisting in the graphical 
representation.

3.3  Refined task design in Cycle 2: including restructuring equivalence for all 
students

Figure 7 documents the redesign of Tasks 1 and 2 in Cycle 2 in which we intended 
to explore the hypothesis by engaging all students in working with restructuring 
equivalence in a dynamic strategy. Whereas Task 1 was only slightly adjusted to 
invite activities of description equivalence (with names exchanged for technical rea-
sons), Task 2 was redesigned so that the restructuring has to be conducted stepwise 
from expression  EA to  EB. This was scaffolded by offering dynamic phrases in the 
flow chart.

At the same time, we reduced the number of prescribed transformation steps by elimi-
nating the intermediate (8 × 3 × 4) + (2 × 4). By this, we intended to create productive chal-
lenges and to encourage students’ active reasoning but would go back to a more refined 
version next time.

The intention of Task 2 is that students

• recognize how the expression was transformed symbolically in each step.
• draw the structured figures for each intermediate expression.
• draw and explain how the restructuring of the figure was conducted in each step.
• by this, prepare the later connection and justification of the symbolic transformation by 

means of restructuring equivalence in the graphical representation.

Fig. 6  Restructuring equivalence as characterization for bridging the gap between description equivalence 
and transformation equivalence
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3.4  Empirical insights into students’ learning pathways in Cycle 2: affordances 
and constraints for connecting description and transformation equivalence

For Cycle 2, we selected medium achievers (according to their teacher’s comprehen-
sive assessment) so that we could investigate whether the redesigned tasks can provide 
access to restructuring equivalence for more students. The need for Task 2 is illustrated 
by the transcript of Jannika’s and Dilay’s learning pathway in Table 3, which shows that 
in Task 1, not all students start restructuring the figures without being prompted to.

Dilay and Jannika compare the structured figures  SA and  SB (“actually, this is the same”; 
Turn 32) and conceive them as equivalent within the characterization of description equiva-
lence. They also identify identical substructures (in Turn 38) but without connecting them to 
the subexpression 2 × 4. They adopt a static comparison in relational activities but without 
connecting the symbolic and graphical representation explicitly and without their own ini-
tiatives for dynamic restructurings.

Like Dilay and Jannika, the two other pairs in Cycle 2 also do not immediately start 
restructuring the 8 lines of 12 into 8 lines of 3 groups of 4 by themselves. Instead, they 

Fig. 7  Redesign of focus tasks in Cycle 2 to fill the gap between description and transformation equivalence 
with restructuring equivalence (Abbreviations  EA/EB and  SA/SB added here)
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mainly identify the identical substructure: 2 groups of 4. For the lower part of Figure F, 
they compare  SA and  SB by the graphical realization of grouping (lines versus circles) but 
without considering the numerical relationships.

Only when explicitly prompted to think about restructuring in Task 2, they start to relate 
the two structured figures more intensively, in a dynamic way, as the transcript in Table 4 
shows. The transcript also indicates how the students pick up the offered dynamic phrases.

Prompted by the flowchart and the offered phrases in Task 2, Dilay can explain how 
the figure was restructured (Turns 91 and 93), expressing the processes of restructuring by 
splitting into three groups. In this way, the girls can enrich their static (and rather vague) 
comparisons of Task 1 by a dynamic strategy for a more detailed explanation. Whereas 
Dilay can pick up the given phrases and appropriate them to her own words, other students 
stay closely with the given phrases.

Similar to Dilay and Jannika, all three pairs in Cycle 2 can overcome an initially purely 
static perspective and adopt (at least partially) the dynamic strategy of restructuring. This 
is also exemplified by the Transcript in Table 5.

Annika and Jessica also succeed in overcoming the initially static comparisons and 
compare the structured figures dynamically. When Jessica articulates the restructuring in 
Turn 82, she draws upon the verbatim articulation of the structuring from the task (“make 
3 groups of 4 out of each group of 12”) but changes “I can make” into “split” and includes 
the 8, turning into a 24. Interestingly, the 24 do not stem from a structural idea of 8 times 
3, but she takes the number 24 from the next expression in the flowchart. Annica first also 
refers to the expression 24 × 4 + 2 × 4 for justifying the 24 (in Turn 80) but then tries to 
validate it by counting the groups in  SB: As her empirical approach of validating by count-
ing gets always confused, she concludes that it “does not fit” (in Turn 82). In spite of this 

Table 3  Transcript of Jannika’s and Dilay’s process in Task 1

Turn Speaker Utterance Analysis of 
links

Addressed substruc-
tures

30 Jannika You can see, thus, that, um, this [points at Sarah’s 
structured figure SA] is actually as this one 
[points at Tim’s structured figure SB]. Only that 
she – wait – Sarah has only, um, has not circled 
it, but

SA – F
SB – F
(refer to drawing of  

groups in Fig. 7:
circles vs. lines for  

grouping)31 Dilay Lined
32 Jannika Yes, so, lined – so and, um, Tim has circled them, 

but actually, this is the same
33 Teacher Mm-hmm
34 Dilay So, as for Zeynep
…

38 Dilay And it is also a bit the same, that they have 
highlighted exactly where, example here, he has 
highlighted this, also [points at 2 groups of 4 in 
SA and SB in the upper lines

SA –  SB
2 groups of 4
in top of each  

structured figure
39 Teacher Mm-hmm

40 Dilay And there [points at 8 lines of 12 in SA] 
Sarah has also highlighted it and he also,
just he [points at 24 groups of 4 in S
B] has circled it
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discovery, the two girls are not able to articulate that 24 emerges from splitting the entire 
rows into 8 rows of 3 groups. Even though they find an 8 × 3 structure in the given pic-
ture in a later scene, they are not able to self-explain where this structure is coming from, 
which also occurs in succeeding transcript turns that have not been included. Summing 
up, the two girls can verbalize the stepwise restructuring, but they cannot connect this 

Table 4  Transcript of Jannika’s and Dilay’s process in Task 2

Turn Speaker Utterance Analysis of 
links

Addressed substructures

88 Jannika [reads aloud from Task 2] I do this in every 
line

Taken from task:
SA →  SB
Make each group of 12 

to 3 groups of 489 Dilay [reads aloud from Task 2] 
I can make 3 groups of 4 out of each group 

of 12
90 Teacher Mm-hmm.
91 Dilay I believe, that is a 12, these are 12 

[points at the line of 12 next to the arrow in 
the flowchart] and

Explained alone:
SA →  SB
group of 12
is split into
3 groups of 492 Jannika That is [points at 3 groups of 4 next to the 

arrow in the flowchart]
93 Dilay Yes, I have, in each, there he splits that 

through [gestures a split with her fingers 
into groups of 4 each] and these are 1, 2, 3 
[points successively at the 2 groups]

94 Jannika because there are the … lines

Table 5  Transcript of Annika’s and Jessica’s process in Task 2

Turn Speaker Utterance Analysis of 
links

Addressed substructures

75 Teacher Yes, exactly. But can you […] explain 
to me, what has, what has […] 
changed from here to here [the first 
and second drawing in the flow 
chart]

SA →  SB: 8 groups
of 12 split into
24 groups of 4

78 Jessica She has split the 8 groups of 12 into 24 
groups of 4

79 Teacher Mm-hmm. Err, why, why are these 24 
groups of 4?

80 Annika Because she has written it there [points 
at the expression 24 × 4 + 2 × 4 in the 
flow chart]

EB –  SB
Amount 24 of groups taken from 

the expression without counting 
in the figure81 Jessica Because this

82 Annika [starts counting in SB but gets confused 
while counting several times] That 
does not fit!

EB –  SB: 
Tries to count the groups of 4 

in  SB,
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restructuring to the transformation of the expression. This is a typical state in the content 
trajectory for the observed students.

In contrast to Annika and Jessica, Dilay and Jannika, the girls from the transcript in 
Tables 3 and 4, can go beyond identifying the restructuring equivalence and use it for con-
necting it to the symbolic transformation (Table 6).

Dilay connects the restructuring that was already described in Turn 93 to the charac-
terization of dividing (Turn 96) to make sense of the symbolic equality 12 = 3 × 4. She 
articulates her idea by explaining in the graphical representation with a language of sym-
bols. She does not explicitly refer to the symbolic transformation of  EA →  EB as she talks 
about dividing 12 rather than 12 = 3 × 4. However, she succeeds in connecting the graphi-
cal with the symbolic representation by gesturing to one representation and talking about 
the other one.

Table 6  Transcript of Jannika’s and Dilay’s process in Task 2 (continuation)

Turn Speaker Utterance Analysis of links Addressed substructures

95 Teacher Mm-hmm.

96 Dilay I, this, as divided.
97 Teacher Mm-hmm, yes, okay. Please, 

explain again more exactly. What, 
what does she do, there now?

98 Dilay This green thing here [points at the 
line of 12 in the flow chart], these 
are 12, in total. Then, she splits 
it into 4 [gestures a movement of 
cutting] and this makes 3, then.

EA →  EB –  SA →  SB:
12: 4 fits to
12 is split into 4 groups of 3

Similar to Dilay, only two other students in Cycle 2 draw these kinds of connections 
between symbolic transformation and graphical restructuring by means of gesturing, 
while the other student stays in the stage exemplified before.

Results from analyzing learning pathways in Cycle 2 These brief insights into the 
learning pathways from Cycle 2 show that, indeed, medium-achieving students can also 
productively reason about restructuring structured figures and connect these graphical 
transformations to the symbolic transformations. Whereas some high-achieving students 
in Cycle 1 developed dynamic strategies on their own (and others did not), the medium-
achieving students in Cycle 2 needed to be prompted to these possibilities before adopting 
a restructuring of the (formerly unconnected) figures. Before being prompted to restructur-
ing, the students discovered common and different substructures in an indirect static com-
parison, but yet without directly connecting the structured figures. When asked to interpret 
the restructuring step given in the flowchart of Task 2, the students built a more direct con-
nection of  SA and  SB, which strengthened their idea of description equivalence by backing 
it up by restructuring equivalence.
     The transcripts in Tables 4, 5, and 6 provide first indications that students can start fill-
ing gaps with the restructuring equivalence. Moreover, Dilay’s multimodal explanations 
in Table 6 indicate how graphical representation can invite the use of gestures for articu-
lating emerging characterizations. Even if most learning pathways in Cycle 2 were still 
constrained in their explicitness of connecting restructuring the figures to transforming the 
expressions, Dilay shows that the pathway can lead to justifying the transformation rules 
using the restructuring processes.
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4  Discussion

4.1  Empirical results and theoretical contribution to algebra education research: 
bridging relational and transformational characterizations of restructuring 
equivalence

Whereas the connection of symbolic and graphical representations has often been 
discussed for equations (Blanton et  al., 2019; Kieran, 1989, 2007), equivalence of 
expressions has received much less attention in the research on students’ early alge-
braic thinking. Some instructional approaches have proven effective for connecting 
result equivalence and transformational equivalence (Banerjee & Subramaniam, 2012; 
Schwarzkopf et  al., 2018), as have some approaches for developing mental models of 
description equivalence (Kieran & Sfard, 1999; Wilkie & Clarke, 2016; Zwetzschler 
& Prediger, 2013). So far, however, instructional approaches have provided only lim-
ited opportunities for students to mentally connect description equivalence to transfor-
mation equivalence (Kieran & Sfard, 1999). Since a flexible connection of procedures 
and understanding is crucial (Kieran, 2007; Kilpatrick et al., 2001), this gap should be 
filled, even in early algebra settings before variables are introduced. The contribution of 
this approach to early algebra is not on generalizing, but on seeking, using, and express-
ing structures, as Kieran (2018) called for.

In the presented design research project, we tried to bridge this gap in an early 
algebra learning environment in which description equivalence is first explored 
with respect to geometric figures as graphical representations in order to over-
come purely operational perspectives on expressions and develop an understand-
ing of deeper structures (Malle, 1993; Kieran, 2018), and then the shift from 
static comparisons in the graphical representation to dynamic transformations in 
the symbolic representation is encouraged (Cooper & Warren, 2011). From high-
achieving students in Cycle 1, we learned that the shift from static comparison to 
dynamic modification can already be done within the graphical representation, 
as these children invented what we later called restructuring equivalence. Rather 
than comparing two expressions  EA and  EB by finding structurings  SA and  SB for 
a Figure F so that we can assure that both expressions describe the same figure 
(Step II in the content trajectory sketched in Fig. 8), the high-achieving students 
in Cycle 1 directly modified the structured figure  SA into a restructured  SB (Step 
III in Fig.  8). When students’ mental model of description equivalence builds 
upon relationally recognizing deeper structure by connecting representations, this 
seems to be highly useful in fostering students’ understanding of transformation 
equivalence.

Our main discovery is the additional characterization of restructuring equiva-
lence, which is grounded in this relational recognition. The additional characteri-
zation helps to transfer this relational understanding to transformations. Cycle 2 
was used to explore whether medium achievers can also go to this Step III and 
even be introduced to justifying the symbolic transformations by restructuring fig-
ures (Step IV) before extending the repertoire also to Step V, the purely symbol, 
rule-guided transformation equivalence. The qualitative analysis of three pairs of 
students revealed that students can easily reach Step III (like Dilay in Table  4 or 
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Jessica in Table  5), but Step IV was only accessible to some students (such as 
Dilay in Table 6), so it seems to require further support to be reached by all.

Although the empirical scope was still limited by a small sample size, we believe that 
the identified content trajectory (in Fig. 8) of successively extending and connecting the 
characterizations is of major relevance for algebra education research as the discovered 
bridging characterization seems to have a high epistemic potential to support students’ 
development of conceptual understanding of transformation of expressions by perceiving 
deeper structures in a highly problematic field (Linchevski & Livneh, 1999; Papadopoulos 
& Gunnarsson, 2020).

These results were achieved based on a conceptual framework of understanding as con-
necting characterizations and representations (Cooper & Warren, 2011; Hiebert & Carpen-
ter, 1992) and based on an analytic framework (see Fig. 2) that allowed the researchers to 
refine the general design principle for the topic in view, equivalence of expressions. We are 
optimistic that the analytic framework can be transferred and adapted to other parts of alge-
bra education, so it is an important theoretical contribution in itself that helps to articulate 
epistemological analysis, the specification of learning goals, and content trajectories, as well 
as empirical analysis.

Besides the small sample size, an important limitation of the current design 
research project is that it has not yet included generational activities. They will 
be crucial in the next step of the content trajectory from arithmetic expressions to 
later algebraic expressions with variables (Kaput, 2008; Kieran & Sfard, 1999). As 
Kieran (2018) emphasized that seeing deeper structures is also a precondition for 
pattern generalization activities, we are optimistic that both areas of early algebra 
can be combined with benefit.

I. Result equiva-
lence
Indirect, sta�c 
comparison via 
numerical result

II. + Descrip�on 
equivalence
Indirect, sta�c com-
parison 
via figure

III. + Restructuring 
equivalence
Direct graphical 
transforma�on
of structured figures

IV. Jus�fica�on of 
symbolic transfor-
ma�on 
by restructuring
figures

V. + Transforma�on 
equivalence
Symbolic transfor-
ma�on (with poten�al 
deeper structures)

Fig. 8  Steps in a content trajectory: Successively extending the repertoire of characterizations and connect-
ing them to each other
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4.2  Zooming out: what do we learn for connecting representations for other 
topics?

The challenges of connecting different representations not only occur in algebra but 
also in many other topics wherever conceptual understanding of abstract concepts 
has to be developed (Kilpatrick et al., 2001; Lesh, 1979). Also in many other topics, 
multiple representations must not only be juxtaposed, but systematically connected in 
explicit construction processes (Duval, 2006). The need for active connections instead 
of juxtapositions has been explicitly emphasized for the transition from graphical, 
informal solutions to the procedural, symbolic transformations in which justifying 
symbolic transformation rules for multiplying fractions by connecting to part-of-part-
meanings turned out to be crucial (Glade & Prediger, 2017). The current study can be 
used to replicate this result and extend the academic discourse on connecting repre-
sentations by one more aspect: the necessary transition from static to dynamic strate-
gies that has often been identified as difficult (Cooper & Warren, 2011), which can 
now be conducted in the graphical representation so that the gap between graphical 
and symbolic representation can be bridged. Future studies will have to explore how 
far this is also relevant beyond expressions and fractions. In particular, they should 
explore how the graphical restructurings can be expressed and explicitly related to the 
symbolic manipulations in order to increase students’ deep understanding.
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