technische universität dortmund

Total Syntheses of Keramaphidin B and Nominal Njaoamine I

\&

Studies towards the Total Synthesis of Providencin

Dissertation

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)
der Fakultät für Chemie und Chemische Biologie
der Technischen Universität Dortmund
vorgelegt von
Simon Marcel Spohr
geboren am 22.01.1995 in Neustadt am Rübenberge

Eidesstattliche Versicherung (Affidavit)

Name, Vorname
(Surname, first name)

Matrikel-Nr.
(Enrolment number)

Belehrung:

Wer vorsätzlich gegen eine die Täuschung über Prüfungsleistungen betreffende Regelung einer Hochschulprüfungsordnung verstößt, handelt ordnungswidrig. Die Ordnungswidrigkeit kann mit einer Geldbuße von bis zu 50.000,00 € geahndet werden. Zuständige Verwaltungsbehörde für die Verfolgung und Ahndung von Ordnungswidrigkeiten ist der Kanzler/die Kanzlerin der Technischen Universität Dortmund. Im Falle eines mehrfachen oder sonstigen schwerwiegenden Täuschungsversuches kann der Prüfling zudem exmatrikuliert werden, § 63 Abs. 5 Hochschulgesetz NRW.

Die Abgabe einer falschen Versicherung an Eides statt ist strafbar.

Wer vorsätzlich eine falsche Versicherung an Eides statt abgibt, kann mit einer Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft werden, § 156 StGB. Die fahrlässige Abgabe einer falschen Versicherung an Eides statt kann mit einer Freiheitsstrafe bis zu einem Jahr oder Geldstrafe bestraft werden, § 161 StGB.

Die oben stehende Belehrung habe ich zur Kenntnis genommen:

Official notification:

Any person who intentionally breaches any regulation of university examination regulations relating to deception in examination performance is acting improperly. This offence can be punished with a fine of up to EUR $50,000.00$. The competent administrative authority for the pursuit and prosecution of offences of this type is the chancellor of the TU Dortmund University. In the case of multiple or other serious attempts at deception, the candidate can also be unenrolled, Section 63, paragraph 5 of the Universities Act of North Rhine-Westphalia.

The submission of a false affidavit is punishable.

Any person who intentionally submits a false affidavit can be punished with a prison sentence of up to three years or a fine, Section 156 of the Criminal Code. The negligent submission of a false affidavit can be punished with a prison sentence of up to one year or a fine, Section 161 of the Criminal Code.

I have taken note of the above official notification.

Unterschrift
 (Signature)

Ort, Datum
(Place, date)

Titel der Dissertation
(Title of the thesis):

Ich versichere hiermit an Eides statt, dass ich die vorliegende Dissertation mit dem Titel selbstständig und ohne unzulässige fremde Hilfe angefertigt habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate kenntlich gemacht.
Die Arbeit hat in gegenwärtiger oder in einer anderen Fassung weder der TU Dortmund noch einer anderen Hochschule im Zusammenhang mit einer staatlichen oder akademischen Prüfung vorgelegen.

I hereby swear that I have completed the present dissertation independently and without inadmissible external support. I have not used any sources or tools other than those indicated and have identified literal and analogous quotations.

The thesis in its current version or another version has not been presented to the TU Dortmund University or another university in connection with a state or academic examination.*
*Please be aware that solely the German version of the affidavit ("Eidesstattliche Versicherung") for the PhD thesis is the official and legally binding version.

Unterschrift
 (Signature)

1. Berichterstatter: Prof. Dr. Alois Fürstner
2. Berichterstatter: Prof. Dr. Norbert Krause

Die vorliegende Arbeit entstand unter der Anleitung von Prof. Dr. Alois Fürstner in der Zeit von Oktober 2019 bis Mai 2023 am Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr. Teile dieser Arbeit wurden bereits veröffentlicht:
 14414. (${ }^{\ddagger}$ contributed equally)
S.M. Spohr, A. Fürstner, Org. Lett. 2023, 25, 1536-1540.

Die praktischen Arbeiten erfolgten zum Teil in Zusammenarbeit mit Dr. Zhanchao Meng. Die beschriebenen Ergebnisse bilden eine vollständige Darstellung dieser gemeinsamen Arbeiten. Die von diesem Mitarbeiter alleinverantwortlich erzielten Ergebnisse wurden als solche an entsprechender Stelle gekennzeichnet.

Danksagung

Mein besonderer Dank gilt zunächst meinem Doktorvater, Prof. Dr. Alois Fürstner, für die Aufnahme in seinen Arbeitskreis, die herausfordernde Themenstellung, das mir entgegengebrachte Vertrauen und die gewährte Freiheit bei der Bearbeitung der Forschungsprojekte. Zusammen mit der Vielzahl an konstruktiven fachlichen Diskursen trugen all diese Faktoren zum Erfolg dieser Arbeit bei.

Prof. Dr. Norbert Krause danke ich herzlich für die Übernahme des Koreferats.
Für die exzellente Zusammenarbeit bin ich Prof. Dr. Zhanchao Meng zu tiefstem Dank verpflichtet. Für die Einführung in das Gebiet der Totalsynthese hätte ich mir keinen besseren Mentor vorstellen können. Seine Arbeitseinstellung und Fähigkeit komplexe chemische Probleme in kürzester Zeit zu lösen haben mich nachhaltig geprägt.

Für die exzellenten Arbeitsbedingungen sei den festangestellten Mitarbeitern der Abteilung gedankt. Saskia Schulthoff, Christian Wille, Karin Radkowski, Christopher Rustemeier, Roswitha Leichtweiß und nicht zuletzt Andrea Hennig-Bosserhoff stellen das Herz der Gruppe dar. Ohne ihr unermüdliches Engagement wäre diese Arbeit nicht möglich gewesen. Auch den Mitarbeitern der analytischen Abteilungen und allen weiteren Bereichen bin ich zu Dank verpflichtet. Besonders Conny Wirtz, Sandra Klimmek, Sandra Tobegen und Dr. Christophe Farès haben meine Arbeiten tatkräftig unterstützt.

Für die aufwendige und zügige Korrektur dieser Arbeit möchte ich Dr. Jack Sutro und Raphael Zachmann danken.

Zudem danke ich allen ehemaligen und aktuellen Gruppenmitgliedern für die gute Atmosphäre im Labor und die stets hochwertigen Diskussionen und Beiträge zu meiner Chemie. Insbesondere möchte ich Dr. Lorenz Löffler, Dr. Andrew Dalling, Saskia Schulthoff, Dr. Hectoras Yiannackas, Dr. Paola Caramenti, Dr. Stephan Hess, Dr. Tobias Biberger, Dr. Michael Buchsteiner, Dr. Julius Hillenbrand, Dr. Tomas Saiegh, Dr. Sorin-Claudiu Rosca, Dr. Jack Sutro, Dr. Thomas Varlet, Nepomuk Korber, Ana Mateos Calbet, Daniel Rütter, Dr. Peter Chapple und Dr. Leyah Schwartz für die gemeinsame Zeit in der Gruppe danken. Sie wird unvergessen bleiben.

Ein ganz besonderer Dank gilt Raphael Zachmann. Es ist ein Privileg die Doktorarbeit vom ersten Tag an mit dir bestritten zu haben und nicht nur die tiefsten Ecken der organischen Chemie erforscht, sondern auch die höchsten Berge mit dir erklommen zu haben.

Karen Hindricks und Simon Brennecke möchte ich für die anhaltende Freundschaft seit dem Studium danken. Chris Kalnmals und Jake Tracy bin ich für die besondere Zeit in Stanford zu Beginn meiner akademischen Laufbahn zu tiefstem Dank verpflichtet.

Abschließend möchte ich meinen Eltern und Geschwistern für die bedingungslose Unterstützung danken.

Abstract

: After the discovery of manzamine A, a macrocyclic marine alkaloid, Baldwin and Whitehead proposed the biogenesis of a whole class of natural products arising from partly reduced alkylpyridine derivatives. Although manzamine A was quickly conquered by total synthesis around the turn of the millennium, a family of alkaloids emerging early in the biogenesis of these natural products remained elusive. In a total synthesis campaign, alkaloids of the ingenamine estate were targeted, pursuing an approach purely based on chemical logic. Therein, a Michael/Michael cascade was developed forging the common tricyclic core in diastereoselective fashion. Furthermore, the transformation proved highly flexible concerning the introduction of requisite handles for macrocyclization.

Michael donor (alkyne-bearing)

Michael acceptor (alkene-bearing)

Keramaphidin B

Nominal njaoamine I

Michael acceptor (alkyne-bearing)

Quinoline fragment

For the total synthesis of keramaphidin B the macrocyclization strategy relied on the use of ring-closing alkyne metathesis (RCAM) for the 13-membered macrocycle and ring-closing olefin metathesis (RCM) for the 11-membered macrocycle. While the RCAM proved highly reliable, the RCM reaction had to be optimized carefully. Eventually, however, the inaugural total synthesis of keramaphidin B was accomplished in 19 steps along the longest linear sequence (LLS) and 0.93% overall yield.

As the more recently discovered njaoamines carry an additional Lewis basic amine functionality in the quinoline annulated to one of the macrocycles, the use of RCM became less inviting. After the identification of vic-dibromoalkenes as sufficient alkyne surrogates, nominal njaoamine I was synthesized employing two subsequent RCAMs in 21 steps LLS and 1.14% overall yield. The total synthesis revealed a positional misassignment of the triple bond in the 17-membered macrocycle, which was revised by an in-depth NMR study.

Furanocembranoids are a diverse family of diterpenes. Their macrocyclic framework features, in most cases, a furan and butenolide moiety of some sort. One of the most intriguing molecules found within this class is providencin. Apart from its highly oxygenated nature it is recognized easily by the trans-fused cyclobutane bearing an allylic alcohol and an exocyclic methylene unit. Despite numerous efforts to bring this target down by total synthesis, providencin remains elusive. In particular the exceptionally high ring-strain of the macrocycle and the highly functionalized cyclobutane represent major challenges in an attempted synthesis.

Herein, a new route towards the cyclobutane sector of providencin was established, which was used to evaluate the application of RCAM in the context of macrocyclization. At the centerpiece, an Ir-catalyzed photosensitized [2+2] cycloaddition was harnessed to build the furanyl-cyclobutanol fragment. Stereochemical relay of a neighboring stereocenter onto the cyclobutane rendered this approach asymmetric. Furthermore, this handle served as the linchpin to open the thus constructed bicycle via oxidative cleavage. Subsequent functionalization of the furan with a highly electrophilic hypoiodite reagent opened entry into a 2-iodofuran paramount for coupling requisite handles for macrocyclization.

Mulzer's work:

At this stage, Suzuki coupling was found to be optimal and an alkyne-bearing E-olefinic fragment could be introduced into the molecule. After accessing a viable diyne it became clear that the macrocycle was too strained to be forged by RCAM, because this reaction is largely entropically driven.

These setbacks notwithstanding, a Suzuki coupling could be carried out with potassium vinyltrifluoroborate giving rise to an intermediate, which is expected to be elaborated into providencin via a literature known route previously established in the group of Mulzer.

Inhalt:

Nach der Entdeckung von Manzamine A, einem macrocyclischen, marinen Alkaloid, schlugen Baldwin und Whitehead die Biosynthese einer gesamten Klasse an Naturstoffen vor, welche sich von teilweise reduzierten Alkylpyridin Derivaten ableiten. Obwohl Manzamine A um die Jahrtausendwende durch Totalsynthesen zugänglich gemacht wurde, blieben andere Alkaloide, welche im Biosyntheseweg deutlich früher angesiedelt sind, unerreicht. Diese Alkaloide der Ingenamine Familie wurden in dieser Arbeit durch eine Strategie basierend auf chemischer Logik anvisiert. Dazu wurde eine Michael/Michael-Kaskadenreaktion entwickelt, welche das tricyclische Zentralfragment diastereoselektiv aufbaut. Des Weiteren zeigte sich eine hohe Toleranz dieser Transformation gegenüber der Mitführung von unterschiedlichen Verknüpfungselementen zur Makrocyclisierung.

In der Totalsynthese von Keramaphidin B wurden zwei verschiedene Strategien zur Makrocyclisierung der beiden Ringe verfolgt. So wurden der 13-gliedrige Ring mittels ringschließender Alkinmetathese (RCAM) und der 11-gliedrige Makrocyclus mithilfe von ringschließender Olefinmetathese (RCM) cyclisiert. Während sich die RCAM als höchst zuverlässig herausstellte, musste die RCM sorgfältig optimiert werden. Letztlich konnte Keramaphidin B jedoch in 19 Schritten und 0.93% Gesamtausbeute synthetisiert werden.

Da das im 13-gliedrigen Makrocyclus von Njaoamine eingegliederte Quinolin ein weiteres Lewis-basisches Stickstoffatom aufweist, sahen wir von der Verwendung einer RCM zum Aufbau dieses Ringsystems ab. Nachdem vic-Dibromoalkene als hinreichende Alkinschutzgruppe befunden wurden, konnte nominales Njaoamine I durch den Einsatz zweier aufeinanderfolgender ringschließender Alkinmetathesen in 21 Schritten und 1.14\% Gesamtausbeute synthestisiert werden. Die fehlzugeordnete Position des Alkins im 17gliedrigen Makrocyclus konnte durch detaillierte NMR-Studien neu zugewiesen werden.

Die Furanocembranoide sind eine diverse Familie an Diterpenen. Eines der wohl interessantesten Moleküle dieser Klasse ist vermutich Providencin. Neben der hoch oxidierten Natur des Grundgerüsts sticht es durch ein trans-anneliertes Cyclobutan mit einem allylischen Alkohol und einer exocyclischen Methyleneinheit ins Auge. Trotz zahlreicher Versuche Providencin zu synthetisieren, wurde bisher keiner dieser Versuche erfolgreich abgeschlossen.

In dieser Arbeit wurde eine neue Route zum Cyclobutanfragment Providencins etabliert, welche genutzt werden konnte, um die Applikation von Alkinmetathese zum Ringschluss zu testen. Als Schlüsselschritt zur Herstellung des Furanyl-Cyclobutanolfragments fungierte eine Ir-katalysierte photosensibilisierte [2+2] Cycloaddition. Darin wurde ein benachbartes, enantioselektiv eingeführtes Stereozentrum genutzt, um die Stereoinformation auf das Cyclobutan zu übertragen und die Synthese somit asymmetrisch durchführen zu können. Des Weiteren konnte die so eingeführte funktionelle Gruppe als Knotenpunkt dienen, um den vorher aufgebauten Bicyclus oxidativ zu öffnen. Funktionalisierung des Furans mittels eines hoch elektrophilen Hypoiodit-Reagenzes eröffnete den Weg zu einem 2-Iodfuran, welches zentrale Bedeutung für die Kupplung anderer Fragmente trägt.

So konnte ein E-konfiguriertes Olefin mittels Suzuki Kupplung eingeführt werden, welches ein Alkin für eine mögliche RCAM mitträgt. Jedoch konnten die synthetisierten Diine nicht mittels der weitgehend entropie-getriebenen RCAM cyclisiert werden, was auf die große Ringspannung des Makrocyclus zurückgeführt wurde.

Trotz dieser Rückschläge konnte mithilfe einer Suzuki Kupplung mit Kaliumvinyltrifluoroborate ein Intermediat erschlossen werden, welches durch die Verfolgung einer literaturbekannten Syntheseroute der Mulzer Gruppe Providencin ergeben sollte.

Table of Contents

1. Introduction 1
2. A Unified Approach to Polycyclic Alkaloids of the Ingenamine Estate 4
2.1 Introduction 4
2.1.1 Isolation and Structure 5
2.1.2 Literature Review 8
2.2 Second Generation Approach towards Ingenamine and Total Synthesis of Keramaphidin B 16
2.2.1 Retrosynthetic Analysis 16
2.2.2 Synthesis of the Michael Donor 17
2.2.3 Synthesis of the Michael Acceptor 18
2.2.4 Michael/Michael Cascade and RCAM 19
2.2.5 Endgame and Completion of the Total Synthesis 22
2.3 Total Synthesis of Nominal Njaoamine I 27
2.3.1 Retrosynthetic Analysis 27
2.3.2 Synthesis of the Building Blocks 28
2.3.3 Completion of the Total Synthesis 30
2.3.4 Structural Revision of Njaoamine I 33
2.3.5 Concerted Macrocyclization Event 35
2.4 Summary and Outlook 37
3. Studies towards the Total Synthesis of Providencin 40
3.1 Introduction 40
3.1.1 Isolation and Structure 40
3.1.2 Literature Review 41
3.2 Towards the Total Synthesis of Providencin via a Ring Closing Alkyne Metathesis Approach 50
3.2.1 Retrosynthetic Analysis 50
3.2.2 Synthesis of the Furanyl-Cyclobutanol Fragment 53
3.2.3 Synthesis of the Western Fragment 63
3.2.4 Fragment Coupling and Attempted Ring Closing Alkyne Metathesis 64
3.2.5 Synthesis of a Model System and Application in Ring Closing Alkyne Metathesis 67
3.3 Summary and Outlook 73
4. Experimental Section 77
4.1 A Unified Approach to Polycyclic Alkaloids of the Ingenamine Estate 77
4.1.1 Supporting Crystallographic Information 78
4.1.2 Second Generation Approach towards Ingenamine and Total Synthesis of Keramaphidin B 80
4.1.3 Total Synthesis of Nominal Njaoamine I 98
4.1.4 Structural Revision of Njaoamine I 118
4.1.5 Concerted Macrocyclization Event 122
4.2 Studies towards the Total Synthesis of Providencin 124
4.2.1 Towards the Total Synthesis of Providencin via Ring Closing Alkyne Metathesis 125
4.2.2 Synthesis of a Model System and Application in Ring Closing Alkyne Metathesis 155
5. Bibliography 162
6. Appendix 172

I. Introduction

The field of total synthesis emerged in 1828 by the serendipitous discovery of Wöhler, who was surprised to find that isocyanic acid and ammonia, under certain conditions, converted into urea. ${ }^{[1]}$ Later in 1845 Kolbe disclosed the formation of acetic acid from its elements. In this publication he coined the term synthesis (dt . "Synthese") to describe the assembly of a chemical compound from other substances. ${ }^{[2]}$ Numerous heroic efforts followed, ${ }^{[3,4]}$ but it was not until the $20^{\text {th }}$ century, that Robert B. Woodward elevated the field to new heights.

Woodward became assistant professor at Harvard University in 1937 at the age of 20. During a period when total synthesis primarily served for the structural elucidation of natural products, Woodward conquered the most complex molecular architectures of the time. His artistic syntheses featured the novel use of ring systems to control stereochemical elements, or unveil functional groups by ring-cleavage. His implementation of mechanistic rationale to predict reaction outcomes was unprecedented and in the case of pericyclic reactions led to the development of the Woodward-Hoffman rules, together with Roald Hoffmann (Chemistry Nobel Prize 1981). In 1965, R.B. Woodward received the chemistry Nobel Prize for the art of organic synthesis. Some of his group's most notable achievements are shown in Figure 1.1., with quinine as their first synthetic target in 1944, ${ }^{[5,6]}$ strychnine (1954), ${ }^{[7]}$ reserpine (1958), ${ }^{[8]}$ cephalosporin C (1966), ${ }^{[9]}$ marasmic acid (1976) ${ }^{[10]}$ and erythromycin $\mathrm{A}^{[11-13]}$ as their last in 1981. ${ }^{[14]}$

Figure 1.1. Selected syntheses by the Woodward group (1944-1981).

Quinine (1944)

Strychnine (1954)

Cephalosporin C (1966)

Erythromycin A (1981)

The advent of new analytical techniques throughout the $20^{\text {th }}$ century (FT-NMR ${ }^{[15-17]}$, X-Ray diffraction, etc.) was followed by an avalanche of new natural products and hence new synthetic targets. Simultaneously, however, a new player arrived on scene, who would change the field of total synthesis drastically.

In 1959, Elias J. Corey moved to Harvard University as a full professor at the age of 31. As such, he would build his research program on a logical approach towards total synthesis, paired with the development of methodologies that would fill voids in chemical space needed to engage new classes of molecules. The total synthesis of longifolene in 1961 was the first to be devised by using the principles of retrosynthetic analysis: ${ }^{[18]}$ a concept which simplifies a target molecule in iterative fashion, until a commercially available starting material is identified. ${ }^{[19]}$ In the following years, the concept enabled students to be taught the "logic of synthesis", changing the perception of the field from that of an art form into that of a precise science. Notably, the offspring from his synthetic ventures might even be more impressive. The development of various protecting groups (for example: silyl ethers, ${ }^{[20-22]}$ allyl ether ${ }^{[23]}$ or the MEM group ${ }^{[24]}$, new reagents such as pyridinium chlorochromate, ${ }^{[25]}$ named reactions for novel functional group transformations as the Corey-Seebach, ${ }^{[26]}$ Corey-Chaykovsky, ${ }^{[27]}$ CoreyFuchs, ${ }^{[28]}$ or enantioselective methodologies as the Corey-Bakshi-Shibata-reduction ${ }^{[29,30]}$ certainly changed the art of synthesis we practice today. Corey was awarded the 1990 Nobel Prize in chemistry for his development of the theory and methodology of organic synthesis. ${ }^{[14]}$

Selected total syntheses by the Corey group in the time from 1961 to 1993 are shown in Figure 1.2., starting with the racemic synthesis of longifolene (1961), ${ }^{[18]}$ prostaglandin $\mathrm{F}_{2 \alpha}$ (1969), ${ }^{[31]}$ porantherine (1974), ${ }^{[23]}$ picrotoxinin (1979), ${ }^{[33]}$ ginkgolide B (1988), ${ }^{[34]}$ the enantioselective total synthesis of (+)-biotin (1988), ${ }^{[35]}(+)$-miroestrol (1993) ${ }^{[36]}$ and $(+)-\beta$-elemene (1995) ${ }^{[37]}$.

Figure 1.2. Selected syntheses by the Corey group (1961-1993).

Porantherine (1974)

Picrotoxinin (1979)

Ginkgolide B (1988)
 (+)-Biotin (1988)

(+)- β-Elemene (1995) (+)-Miroestrol (1993)

Especially, the fall of ginkgolide B bears witness of the notion that a new era was entered, in which any given target molecule, regardless of its complexity, might be conquered by total synthesis.

Entering the 1990s, however, new molecular architectures were discovered that would, yet again, challenge chemists to achieve their synthesis. New concepts, as atom economy ${ }^{[38,39]}$ arose, driving the development of new methodologies to reduce chemical waste, which would accumulate in a poorly planned syntheses. Additionally, organic chemists started to use their
expertise to probe daunting biological hypotheses interweaving the field with biology and medicine. ${ }^{[40,41]}$

In the $21^{\text {st }}$ century, the field of total synthesis has reached an awe-inspiring level. More complex targets are being synthesized, with the aim to become more efficient in regards of step and redox economy. ${ }^{[42-46]}$ Total synthesis has matured from an art form that targeted molecular architectures to show they could be synthesized, to an exact, practical science that strives for an ideal synthesis of any given compound, regardless of its complexity.[47-49]

Incidentally, it provides students with the most rigorous training. Individuals that pursue a natural product will eventually be presented with challenges that demand ingenuity, perseverance and the highest experimental skill. Furthermore, an organic chemist sees a certain beauty in complex molecules. Thus, a well-executed total synthesis may be compared with a painting in arts. The composition of different brushstrokes defines a painting, just like an original sequence of synthetic transformations defines a total synthesis.

2. A Unified Approach to Polycyclic Alkaloids of the Ingenamine Estate

2.I Introduction

In 1986 manzamine A (7) a novel antitumor alkaloid was isolated from an Okinawan sponge (Haliclona sp.) in Japan. ${ }^{[50]}$ The alkaloid's structure was unprecedented in nature and its biogenesis remained a mystery for half a decade. Eventually Baldwin and Whitehead proposed a biogenetic pathway that would not only rationalize the origin of manzamine $\mathrm{A}(7)$, but also predict a class of alkaloids belonging to its biosynthesis which would be isolated after this postulate was made. ${ }^{[51-54]}$

In their theorem (Figure 2.1), they propose a bis-dihydropyridine intermediate (1), which undergoes a transannular [4+2] cycloaddition forging a pentacyclic iminium ion (3). If this iminium species (3) is reduced, keramaphidin B (2) can be isolated. In case of a redox exchange within the molecule another iminium intermediate (5) is formed, which upon hydrolysis reveals the core structure of the ircinals, ircinols and manzamines among other natural products.

Interestingly, in this class of natural products, enantiomeric species have been isolated, depending on the synthesizing organism. This rare phenomenon was first observed, when ircinol A and B (6) were allegedly found to exhibit an antipodal configuration of the corresponding core structure, if compared to the ircinals and manzamines. Since then more alkaloids of this genus were found as enantiomeric congeners like keramaphidin B (2) or manzamine F. ${ }^{[55-57]}$ While it is rare that both enantiomeric forms of a natural product can be isolated from the same organism, it is widely accepted that the synthesis of manzamine alkaloids is a result of a symbiotic relationship of these sponges with certain microorganisms. However, efforts to elucidate the biosynthesis of these alkaloids remains challenging, since identification and culturing of bacterial isolates from manzamine-producing sponges are challenging. ${ }^{[55]}$

Due to their intriguing chemical structure and biological activity, the family of manzamine natural products has received widespread attention in the chemical community over the years. This attention resulted in hallmark syntheses by Winkler et al. in 1998 and Martin et al. in 2002, each targeting manzamine $\mathrm{A}(7)$, ircinal A and ircinol $\mathrm{A} .{ }^{[58,59]}$ Furthermore these authors were able to provide evidence that ircinal A and ircinol A are in fact of the same enantiomeric series, contrary to what was originally proposed by Kobayashi et al. ${ }^{[53]}$ While natural products that originate in the Baldwin-Whitehead pathway (e.g. keramaphidin B (2)) had been targets of biomimetic studies by Baldwin et al. ${ }^{[60,61]}$ early on, all purely synthetic approaches failed to provide any of these compounds, until a foray by Fürstner et al. ultimately provided (nominal)
xestocyclamine A (11). ${ }^{[6]]}$ The isolation and structure of some of these alkaloids is discussed in the following chapter.

Figure 2.1. Illustration of the Baldwin-Whitehead postulate in the context of the biosynthesis of keramaphidin B (2), ircinal B (4), ircinol B (6), manzamine A (7) and (-)-8-hydroxymanzamine A (8).

2.I.I Isolation and Structure

With the aim of investigating biogenetic siblings of ircinals A and B (4), Kobayashi et al. successfully isolated keramaphidin B (2) (Scheme 2.2). ${ }^{[11,54]}$ Methanol extracts of Amphimedon sp., collected in the waters of Kerama Island in Okinawa (Japan), were partitioned between ethyl acetate and water. The ethyl acetate soluble material was subjected to chromatography furnishing keramaphidin B (2) in 0.003% yield (referring to wet weight of the sponge). Besides 2, the literature known alkaloids ircinal A and B (6), as well as manzamines

A (7), B, G and H were isolated as minor components. Structural elucidation was initiated via extensive 2D-NMR studies, unveiling a 1,4-etheno-bridged 2,7-diazadecalin core and one unsaturation within the 11- and 13-membered macrocycles each. The two disubstituted $\Delta^{15(16)}$ and $\Delta^{23(24)}$ double bonds were assigned as Z-configured. These features were confirmed by single crystal X-Ray analysis of a suitable sample grown in acetonitrile, leading to the structure of $\mathbf{2}$ shown in Figure 2.2. Keramaphidin B showed cytotoxic activity against P388 murine leukemia and KB human epidermoid carcinoma cells with IC50-values in the low $\mu \mathrm{g} / \mathrm{mL}$ regime.

While isolated in the presence of the ircinals and manzamines A (7), B, G and H, Kobayashi et al. reported keramaphidin B(2) as a racemate. Later, however, they discovered that despite the crystals grown for X-ray studies being racemic, the mother liquor itself seemed to contain one of the enantiomers in excess.

Figure 2.2. Selected pentacyclic alkaloids isolated from Amphimedon sp. (keramaphidin B), Xestospongia ingens (keramaphidin B and ingenamine) and Xestospongia sp. (xestocyclamine A) thought to derive from similar pathways.

(+)-Keramaphidin B(2)

(+)-Ingenamine (9)

Xestocyclamine A (10)

nominal
Xestocyclamine A (11)

This supposition was then further investigated and chiral phase HPLC analysis revealed that the mother liquor was indeed a 20:1 mixture of (+)-keramaphidin B (major enantiomer, 2) and $(-)$-keramaphidin B (minor enantiomer, ent-2) ${ }^{[63]}$ Interestingly, once the absolute configuration of (+)-keramaphidin B (2) was determined via derivatization to the corresponding Mosher esters, it became clear that (+)-2 had the opposite absolute configuration to manzamine A (7). This conclusion was supported by the isolation of enantiopure (+)-keramaphidin B (2) from Xestospongia ingens collected by Andersen et al. in Papua New Guinea. ${ }^{[56]}$

Besides (+)-2, a closely related family of natural products was described, namely the ingenamine alkaloids. Ingenamine (9) itself only differs from 2 by the presence of an alcohol in the non-bridged section of the tetracyclic core and represents the first example of the second class of marine alkaloids foreseen by the Baldwin-Whitehead proposal, when it was first isolated in a bioassay guided fractionation approach by Andersen et al. in 1994. ${ }^{[64]}$ As with keramaphidin B(2), it is in the enantiomeric series to manzamine A (7), as are all other members of the ingenamine family. 2 showed cytotoxic activity in vitro against murine leukemia P388 (ED ${ }_{50}=1 \mu \mathrm{~g} / \mathrm{mL}$).

Nominal xestocyclamine A (11), isolated from Xestospongia sp. in Papua New Guinea, was reported by Crews et al. in $1993 .{ }^{[65]}$ A year after disclosing the first structural proposition, the team revised the initial structure upon extensive 1D- and 2D-NMR analysis to 11, bearing a $\Delta^{14(15)}$ unsaturation in the 11-membered macrocycle and therefore making it a positional isomer of ingenamine (9). ${ }^{[66]}$ Moreover, 11 is levorotatory, suggesting it might be antipodal to the ingenamines and (+)-keramaphidin B (2). In a total synthesis effort targeting (nominal) xestocyclamine A (11), Fürstner et al. shed light on these assumptions and provided evidence that $\mathbf{1 1}$ is not a positional isomer of ingenamine (9), but the true enantiomer $10 .{ }^{[62]}$ While it is moderately potent against protein kinase C ($\mathrm{IC}_{50}=4 \mu \mathrm{~g} / \mathrm{mL}$), it also showed activity in a whole cell IL-1 release assay with an IC F_{50} of $1 \mu \mathrm{M}$. As it appears to be inactive against other cancerrelevant targets, as Protein Tyrosine Kinase (PTK) and Inosine Monophosphate Dehydrogenase (IMPDH), it might be selective. ${ }^{[65]}$

Since these breakthrough discoveries in the 1990s, a plethora of related natural products have been added to the family of these alkaloids. ${ }^{[67,68]}$ Isolated from the extracts of Reniera $s p$. and Neopetrosia $s p$. collected off the Tanzania coast line, the njaoamines display a close structural relationship to ingenamine (9) and keramaphidin B (2). Sharing the same tricyclic core, they mainly differ in size and degree of unsaturation of the macrocycles as well as the tryptaminederived quinoline moiety attached to the 13 -membered ring. Furthermore, a variable oxidation pattern can be observed on the quinoline nucleus. Their absolute configuration was assumed to be analogous to ingenamine (9) and (+)-keramaphidin B (2), due to their close biosynthetic relationship. In the light of previous work, ${ }^{[6]]}$ a total synthesis of these natural products would provide compelling evidence for their absolute configuration [69-71]

Figure 2.3. Selected members of the njaoamine family isolated from Reniera $s p$. in Tanzania.

Njaoamine A (12)

Njaoamine E (13)

Njaoamine G (14), X = H Njaoamine H (15), $\mathrm{X}=\mathrm{OH}$

(nominal) Njaoamine I
(16)

This family of natural products shows interesting anticancer activity; for example njaoamine I (16) was tested against MDA-MB-231 breast-, HT-29 colon- and NSLC A-549 lung-cancer cell lines showing GI50-values in the micromolar range. Additionally, 16 was tested in an enzymatic topoisomerase 1 (Top1) assay with human recombinant enzyme, where even at the
highest concentration tested $(100 \mu \mathrm{M})$ no inhibition was induced. Neither inhibition of PD-1 (Programmed Cell Death Protein 1) nor the interaction with its natural ligand PD-L1 could be observed even at the highest concentration tested ($100 \mu \mathrm{M}$). These results notwithstanding, the njaoamines are an important sub-class within the family of ingenamine alkaloids, diversifying both the chemical space and biological activity profile of these alkaloids.

2.I. 2 Literature Review

In the following chapter synthetic approaches towards alkaloids of the ingenamine estate are reviewed and the current state-of-the-art in the total synthesis of these intriguing targets is discussed.

As the first total syntheses of manzamine A (7), ircinal A and (ent-)ircinol A were published around the turn of the millennium by Winkler and Martin et al. respectively, ${ }^{[58,59]}$ the Danishefsky group reported on their quest targeting nominal xestocyclamine A (11). ${ }^{[72]}$ In a forward sense, Danishefsky's approach commences from literature known oxopiperidine 17, which was prepared in 5 steps from (R)-glutamic acid (Scheme 2.1). ${ }^{[73]}$ Protection of the stereodefined alcohol as a TBDPS-ether and N-tosylation of the lactam gave 18 in good yield. Conversion to the α, β-unsaturated analogue 19 was achieved by elimination of the preformed selenoxide upon treatment with m-CPBA in 55% yield over two steps.

Scheme 2.1. Bicycle formation in Danishefsky's approach towards xestocylamine A (11), starting from (R)-glutamic acid. ${ }^{[72]}$

Next the α-position of lactam 19 was functionalized with iodine and pyridine in carbon tetrachloride, giving rise to the α-iodo lactam, which could be coupled with 3-iodo-prop-1-ene providing 20. To access the 1,4-etheno-bridged 2,7-diazadecalin, their strategy relied on a Diels-Alder reaction of dienophile 20 with Rawal-Kozmin diene ${ }^{[74-76]}$ 21, forging bicycle 22 and setting three important stereocentres, as the reaction proceeded with endo-selectivity. Notably other dienes were not reactive enough to engage 20 in a [4+2]-cycloaddition. ${ }^{[72]}$ After a series
of functional group manipulations on the Diels-Alder adduct 22, dienone 23 was susceptible to a double 1,4-addition with primary amine 25, releasing tricycle 26, albeit with poor facial selectivity. For ring-closure of the 11-membered macrocycle they harnessed boron-alkyl Suzuki methodology. ${ }^{[72]}$

When substitution was installed to give Michael acceptor 24, the Michael/Michael cascade did not proceed, probably due to an unfavorable 1,3-allylic interaction in the primary addition product. Additional destabilizing interactions between the propyl- and either the iodoalkenylor allyl-group cannot be ruled out. ${ }^{[77]}$ To date, no additional reports by the Danishefsky group on progress towards (nominal) xestocyclamine A (11) have been published.

for $\mathrm{R}=\boldsymbol{n}-\mathrm{Pr}$
no reaction

Scheme 2.2. Michael/Michael cascade and alkyl-Suzuki coupling forging the 11-membered macrocycle. ${ }^{[22,77]}$

Later, both Fukuyama et al. ${ }^{[78]}$ and Dixon et al. ${ }^{[79]}$ published their approaches towards manzamine natural products, with the Dixon group also showing interest in biogenetically related compounds. ${ }^{[80]}$ In 2016, Dixon et al. disclosed their approach towards keramaphidin B (2) (Scheme 2.3). ${ }^{[8]}$

29

32 | 33, aq. HCHO | |
| ---: | ---: |
| $\mathrm{MeOH}, 70^{\circ} \mathrm{C}$ | $\begin{array}{r}56 \% \text { yield } \\ >95: 5 \text { d.r. } \\ 91: 9 \text { e.r. }\end{array}$ |

34

Scheme 2.3. Summary of Dixon's approach towards keramaphidin B (2). ${ }^{[81]}$
δ-Valerolactone 29 and furanyl nitroolefin $\mathbf{3 0}$, both readily synthesized on gram-scale, reacted in an organocatalyzed Michael addition with cinchonine-derived bifunctional thiourea 31. This transformation sets two important stereocentres, necessary to selectively build the 2,7diazadecalin core later. Treating lactone 32 with hept-5-yn-1-amine 33 and formaldehyde in boiling methanol furnished lactam 34 in moderate yield as a single diastereomer. Albeit essential for previous steps, the nitro-group in lactam 34 had to be cleaved off in order to generate the δ-unsubstituted oxopiperidine. This manipulation was achieved in good yield by usage of AIBN and tributyltin hydride in refluxing toluene. In order to install handles for an olefin metathesis, lactonization with titanium tetraisopropoxide, lactone opening with hex-5-en-1-amine 35, Swern oxidation of the resulting primary alcohol and olefination employing Petasis reagent were carried out to produce the bis-alkene 36 in 15% yield over 5 steps. Despite having all the necessary handles for an olefin and alkyne metathesis installed, no additional results were disclosed from this approach. ${ }^{[81]}$

A key challenge in synthesizing alkaloids of the ingenamine estate, appears to be generating the tricyclic core in a way that tolerates the requisite synthetic handles for macrocyclisation. In summary, Danishefsky's approach provides a powerful macrocyclization strategy for the 11membered ring; yet shortcomings in permitting necessary substitution in their DielsAlder/double Michael strategy prevented them from installing the appropriate handles for further elaboration. The same applies to Dixon's approach: although their synthesis installs the corresponding alkyne and olefin linchpins for upcoming macrocyclization events, the approach falls short at generating the tricyclic core motif of keramaphidin B (2). ${ }^{[8]}$

Considering our group's background in both olefin and alkyne metathesis, the ingenamine alkaloids present a prime target to highlight our macrocyclization methodology. This fact
notwithstanding, a new strategy towards the synthesis of the 1,4-etheno-bridged 2,7diazadecalin core had to be developed, which would allow for necessary functionalities to be installed. A first generation total synthesis of xestocyclamine A by our group is discussed in the following section. ${ }^{[62]}$

Scheme 2.4. Retrosynthetic analysis of a first-generation approach towards nominal Xestocyclamine A
(11) by Fürstner et al. ${ }^{[62]}$

The synthetic blueprint relies partially on literature precedent by Danishefsky et al. ${ }^{[72]}$, where the B-alkyl Suzuki methodology was used to forge the 11 -membered macrocycle. Since RCAM is orthogonal to all kinds of double bonds, these strategies would perfectly complement each other. The handles for these transformations would ideally be preinstalled before the tricyclic core is assembled. This boundary condition cannot be met via [4+2] cycloaddition as outlined above. Ultimately, the chosen methodology needed to set four consecutive stereocentres, ideally in an enantioselective fashion.

Regarding the construction of the tricyclic core, a Michael/Michael cascade was determined feasible, as a close literature precedent by Passarella et al. ${ }^{[82]}$ existed. In general, sequential 1,4additions represent a powerful tool for generating complex structures with high efficiency regarding stereoselectivity. ${ }^{[83-85]}$ The stereocenter included in Michael acceptor 42 was anticipated to steer the stereochemical course of the cascade reaction, because the tricycle 40 is found in its thermodynamically most favorable conformation, when the silyl ether is oriented in the equatorial position. Pd-catalyzed decarboxylative allylation ${ }^{[86,87]}$ on intermediate 40 was expected to deliver the allyl-substituent to the core scaffold with stereoretention. Reduction of the ketone 39 and dehydration of the resulting alcohol was thought to deliver the unsaturation within the bridged bicycle. Next RCAM on diyne 38 would close the 13 -membered ring, and the iodo-alkene of 37 would be installed via reductive amination after carbamate cleavage.

Finally B-alkyl Suzuki-cross coupling, would forge the Z-olefin within the 11-membered macrocycle and reduction of the resulting lactam would give rise to nominal xestocyclamine A (11). ${ }^{[22,66]}$

Scheme 2.5. Syntheses of Michael acceptor 42 and Michael donor 43.[62]
As the literature-known route towards Michael acceptor 42 would require nine steps from (R) glutamic acid, a new route was envisaged. ${ }^{[73,88]}$ This route commences with O-silylation of commercially available enantioenriched alcohol 44 and subsequent regioselective $\mathrm{C}-\mathrm{H}$ oxidation with catalytic RuO_{2} using stoichiometric amounts of NaIO_{4} as the terminal oxidant, furnishing piperidinone 45 in 55% yield over two steps with essentially perfect preservation of stereochemistry (>99\% ee). Subsequent addition of allyl chloroformate and phenylselenyl chloride to the lithium enolate of $\mathbf{4 5}$, generated with excess LiHMDS, gave rise to a selenide intermediate. Treatment with $\mathrm{H}_{2} \mathrm{O}_{2}$ triggered elimination of the in situ generated selenoxide, producing the Michael acceptor 42.

For the preparation of the prime Michael donor 43, 4-piperidone 46 was N-protected as the methyl carbamate and acylated via a lithium enolate with allyl chloroformate. Next the β ketoester 47 was alkylated with 1-iodo-3-pentyne, employing potassium carbonate in acetone at reflux. The relatively low yield of the alkylation, was attributed to decomposition upon ringopening of the enolate with expulsion of the carbamate unit. Finally, $\mathbf{4 3}$ was obtained via a Pdcatalyzed decarboxylative dehydrogenation, which proceeded in excellent yield and regioselectivity. Notably, this methodology, first pioneered by Tsuji et al., ${ }^{[89,90]}$ provided the best results, when no additional ligand was present.

With both Michael acceptor 42 and donor $\mathbf{4 3}$ available at gram scale, the cascade reaction itself was examined. In presence of LiHMDS, the lithium-derived enolate of the 1,3-dicarbonyl unit turned out as a formidable leaving group, causing the second step of the cascade to be reversible. While the stereocenter generated at C-1 of the Michael adduct 48 was set with excellent stereocontrol, the C-2 stereochemistry on 48 could not be influenced. Once potassium carbonate was identified as an appropriate base for mediating the intramolecular Michael
addition in a second pot and the C-2 isomeric product could be separated at this point, this two-step approach was deemed as an efficient entry into the tricyclic core of 40.

48
40

38 $\left.\begin{aligned} & 25 \mathrm{~mol} \% \mathbf{5 1}, \\ & 25 \mathrm{~mol} \% \mathbf{5 2}, \\ & \mathrm{PhMe}, 110^{\circ} \mathrm{C}\end{aligned} \right\rvert\, 85 \%$ yield

53

49

39

Scheme 2.6. Michael/Michael cascade, elimination and RCAM sequence. ${ }^{[62]}$
With all critical stereocentres on the core of xestocyclamine A (11) established, the stage was set for the installation of the allyl-substituent on C-6 of 40. This transformation was accomplished under Pd catalysis in toluene at slightly elevated temperature. The observation of the formation of a single diastereomer in perfect yield underlines the rigidity of the builtup core structure. Ketone 39 was then reduced stereoselectively with sodium borohydride and the resulting alcohol was converted to mesylate 49. After extensive experimentation it was found that reaction of mesylate 49 at $170^{\circ} \mathrm{C}$ in neat 2,6 -lutidine, furnished the desired olefin with concomitant N-Boc and partial TBS cleavage. In any way, TBS-reprotection of the secondary alcohol after the elimination proceeded smoothly using TBSOTf at $0^{\circ} \mathrm{C}$. The lactam was alkylated with 7-iodo-2-heptyne 50 affording diyne 38 . Next, ring closing alkyne metathesis was performed utilizing the two-component catalyst system of Mo complex 51 and trisilanol ligand 52. ${ }^{[91,29]}$ The 13-membered macrocyclic product 53 could be isolated in good yield after ten minutes reaction time. With the structure of cycloalkyne 53 confirmed by single crystal X-ray diffraction, substrate 37 had to be prepared for the following alkyl Suzuki macrocyclization (Scheme 2.7). Therefore the methyl carbamate was cleaved by means of LSelectride and the free amine subjected to reductive amination conditions with aldehyde 54.

37

55

56

57

11

Scheme 2.7. Total synthesis endgame for nominal xestocyclamine A (11) by Fürstner et al. ${ }^{[62]}$
Differing to the model study by Danishefsky et al. ${ }^{[72]}$ compound 37 bears an additional triplebond and an internal trisubstituted olefin. With an excess of 9-H-9-BBN, hydroboration of the terminal olefin as well as of the cycloalkyne was observed, while the trisubstituted alkene remained intact. Treatment of this intermediate 55 with dilute acetic acid resulted in protonation of the alkenylborane furnishing the $\Delta^{23(24)}$ Z-olefin 56. ${ }^{[93]}$ Since the alkyl borane and the Z-iodoalkene moieties were unaffected, subsequent quench of residual acid with sodium bicarbonate and slow addition of the resulting mixture into a solution of catalytic $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}, \mathrm{AsPh}_{3}$ and $\mathrm{Tl}_{2} \mathrm{CO}_{3}$ in $\mathrm{THF} / \mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ initiated the ring-closing alkyl Suzuki reaction. This semireduction/alkyl Suzuki sequence furnished diene 57 as the bis-Z-isomer in a reproducible manner. Finally lactam reduction and silyl cleavage were effected by DIBALH in THF, revealing nominal xestocyclamine A (11). ${ }^{[62]}$

With an indisputable proof of the constitution and stereochemistry of the synthetic material, a structural misassignment was recognized, since the NMR data of neither the free base nor the 11 dihydrochloride salt aligned with that reported in the isolation paper. ${ }^{[66]}$ Revisiting the biosynthesis of xestocyclamine A in the light of ingenamine (9) and keramaphidin B (2), an error in the assignment of the position of $\Delta^{14(15)}$-olefin seemed most likely. However, to ultimately proof this theory, a synthetic sample of the isomeric $\Delta^{15(16)}$-olefinic material was required.

Scheme 2.8. Total synthesis endgame for revised xestocyclamine A (10).[6]
In pursuance of actual xestocyclamine A (10), diyne 38 was chosen as an appropriate entry point to divert the synthesis (Scheme 2.8). Initially, chemoselective hydroboration of the terminal alkene was achieved with 9-H-9-BBN in THF followed by oxidative work-up and oxidation of the resulting alcohol provided aldehyde 58 in good yield. ${ }^{[94]}$ Wittig olefination, employing the commercially available phosphonium salt 59, revealed the $\Delta^{15(16)}-Z$-olefin and cleavage of the N -carbamate furnished cyclization precursor $\mathbf{6 0}$. Mukaiyama's reagent 61 then mediated the macrolactamization event to give diyne 62 in 39% yield over three steps. ${ }^{[95,96]}$ The subsequent RCAM readily provided pentacycle 63. Finally nickel boride effected the semireduction of the alkyne and in situ generated AlH_{3} reduced both amides, while cleaving the silyl ether. ${ }^{[97]}$ With an X-ray structure of synthetic (ent)-ingenamine 10 leaving no doubt about its structural integrity, the NMR spectra in [D4]-MeOH were found to match the freebase isolated ingenamine. ${ }^{[62,98]}$ With the structure of xestocyclamine A (11) resolved, the levorotatory rotation of synthetic and natural xestocyclamine A (10) led to the conclusion that xestocyclamine $A(10)$ is the enantiomer of ingenamine (9). ${ }^{[62]}$

Consequently a second-generation synthesis of ingenamine (9) and its sibling keramaphidin B (2) as early intermediates in the Baldwin-Whitehead pathway would shed more light on the natural products Baldwin and Whitehead proposed almost 30 years ago. ${ }^{[51]}$ If successful, the underlying strategy might also give access to the njaoamines as new biologically active members of this family. With these goals in mind, ingenamine (9), keramaphidin B (2) and (nominal) njaoamine I (16) were chosen as targets for an adapted approach.

2.2 Second Generation Approach towards Ingenamine and Total Synthesis of Keramaphidin B

The retrosynthetic analysis was devised in collaboration with Dr. Zhanchao Meng.
At the outset of the second-generation approach towards (+)-ingenamine (9) and (+)keramaphidin B (2), a few chemical, tactical and strategic issues from the first-generation synthesis had to be addressed. First, both Michael donor 43 and Michael acceptor 42 were prepared on multigram scale, however, their syntheses proceeded only in moderate yields. Secondly, a redesign of the Michael acceptor 42 was deemed necessary, since the resulting enolate formed after the first Michael addition step 41 was too stable, rendering the second Michael addition step reversible. Thirdly, in the light of biological testing, an entry into the correct enantiomeric series would be desirable. Penultimately, flexible introduction of substituents, other than allyl, at the C6-bridgehead would drastically improve the scope of the synthesis. Finally, a larger set of chemically orthogonal macrocyclization strategies would render the synthetic blueprint more comprehensive.

2.2.I Retrosynthetic Analysis

With these caveats in mind, we set out to tackle as many of these problems as possible, while preserving the reliability of the successful strategic transformations in the first-generation synthesis. ${ }^{[6]]}$ As the B-alkyl Suzuki reaction would require a vinyl handle at the C6-bridgehead, in order to install the $\Delta^{15(16)}$-olefin, a different cyclization strategy was preferable. Albeit not strictly orthogonal to alkynes, olefin metathesis has been successfully applied in macrocyclizations to form 11-membered rings. ${ }^{[99-101]}$ Additionally, the requisite alkene moiety could be easily installed on the Michael acceptor 67 via alkylation. The absence of a 1,3dicarbonyl unit in $\mathbf{6 7}$ would in turn decrease the stabilization of the enolate after the first 1,4addition step. This small detail, in combination with a well matched base, was envisioned to render the Michael/Michael sequence into a true cascade reaction (Scheme 2.9). The deoxygenated core of keramaphidin B (2) was anticipated to arise from a dehydration of the masked alcohol in 65 and subsequent reduction of the thus formed enamide, diverting the synthesis between keramaphidin B (2) and ingenamine (9) at this stage. In general, keramaphidin B (2) would be accessed via reduction of a bis-amide in combination with RCM on the deoxygenated core 64 . Silyl cleavage and dehydration followed by reduction of the resulting enamide, traces back to the ingenamine core of $\mathbf{6 5}$. En route to ingenamine (9) this intermediate would be subjected to RCM intercepting the pentacycle accessed in our firstgeneration approach, therefore completing a formal synthesis of the target. The central intermediate 65 would be formed via N -acylation after carbamate cleavage, following the RCAM of the diyne substrate arising from N-alkylation of the amide, which in turn stems from the previously applied elimination sequence exercised on ketone 68 . This compound leads back to the requisite Michael acceptor 67 and donor 43, which can be merged in a 1,4-addition cascade.

(+)-Keramaphidin B (2)

||Ketone reduction \& dehydration

Scheme 2.9. Retrosynthetic analysis of keramaphidin B (2) and ingenamine (9).

2.2.2 Synthesis of the Michael Donor

In the first-generation approach towards Michael donor 43, the N-methylcarbamate group was preinstalled on piperidone 46. Although this route ultimately provided building block 43 on scale, this approach was found to be suboptimal, since the alkylation of β-ketoester 47 proceeded in rather low yield (Scheme 2.10).

It was envisaged that A could expel the N-residue adjacent to the enolate, for the leaving group properties of this terminus. If this were true, a more electron rich N -protecting group (e.g. benzyl) might alleviate this problem. The assumption was tested, when commercially available N-benzyl protected piperidone $\mathbf{7 0}$ was transformed into β-ketoester $\mathbf{7 1}$ via a literature known procedure. ${ }^{[102]}$ Gratifyingly, the alkylation with 1 -iodo-3-pentyne and caesium carbonate as base now proceeded in high yields on scale. The N-benzyl group was swiftly exchanged for the previously used methyl carbamate by treatment with methyl chloroformate in refluxing toluene, taking advantage of the electron-rich nature of the benzyl substituted nitrogen atom. The final palladium-catalyzed decarboxylative dehydrogenation furnished the
target molecule 43 with excellent regioselectivity for the internal double bond and very good yield.

Scheme 2.10. Revised synthesis of Michael donor 43. ${ }^{[62]}$
With this revised sequence, building blocks (and potential analogues) of 43 can be accessed in an efficient manner with great flexibility regarding the side chain. The route has proven to be reliable and scalable on different systems (vide infra).

2.2.3 Synthesis of the Michael Acceptor

As in the previous approach, the synthesis of Michael acceptor 67 starts with commercially available enantiopure N -Boc hydroxypiperidine ent-44, which after O -silylation and regioselective $\mathrm{C}-\mathrm{H}$ oxidation with catalytic RuO_{2} and NaIO_{4} gave siloxypiperidone 45 on decagram scale. ${ }^{[103]}$ As this approach targets alkaloids of the dextrorotatory ingenamine estate, the enantiomeric entry to our previous approach was chosen. ${ }^{[6]}$ Siloxypiperidone ent- 45 was acylated with allyl chloroformate and the resulting 1,3-dicarbonyl compound alkylated with 4-bromo-1-butene, in order to install the requisite handle for the planned RCM.

Scheme 2.11. Revised synthesis of Michael acceptor 67.
In the first foray a stoichiometric selenation/selenoxide elimination had been employed to install the α, β-unsaturated lactam, since the preceding Michael acceptor was more
electrophilic and therefore more sensitive to forcing reaction conditions (Scheme 2.5). Since the second foray targets a much less electrophilic intermediate, Michael acceptor $\mathbf{6 7}$ could be formed via Tsuji's Pd-catalyzed decarboxylative dehydrogenation in good yield. ${ }^{[89,90]}$

With both building blocks for the Michael/Michael sequence available on gram scale, it was time to test whether the redesign of the Michael acceptor in the form of compound 67 would destabilize the enolate arising in the cascade to a sufficient degree to render that step irreversible.

2.2.4 Michael/Michael Cascade and RCAM

The starting point of the initial screening for the Michael/Michael cascade was adopted from a literature report. ${ }^{[8]}$ Therein, LiHMDS gave good results, while a slightly stronger base such as LDA showed no product formation at all. Gratifyingly, the system described herein produced the cascade product with LiHMDS as base, after which subsequent reduction of the ketone gave tricycle 75 as a single diastereomer, albeit in modest yield (Entry 1). This result indicated that the redesign of the Michael acceptor (67) to generate a less stabilized enolate upon 1,4-addition indeed rendered the intramolecular addition step irreversible and turned the sequence into a true reaction cascade. Although DMPU seemed to accelerate the reaction initially, no improvement in yields was observed (Entry 2).

Table 2.1. Screening conditions for the Michael/Michael cascade.

		 67			
Entry ${ }^{\text {a }}$	Base	$\mathrm{T}^{\mathrm{b}} /{ }^{\circ} \mathrm{C}$	Additive	Time / d	Yield (o2s)
1	LiHMDS	$-50 \rightarrow \mathrm{rt}$	-	2	26\%
2	LiHMDS	$-50 \rightarrow \mathrm{rt}$	DMPU	2	27\%
3	LiHMDS	$-50 \rightarrow-10$	-	2	30\%
4	NaOtBu	$-50 \rightarrow \mathrm{rt}$	-	1	40\%
5	$\mathrm{LiO} t \mathrm{Bu}$	$-50 \rightarrow \mathrm{rt}$	-	1	50\%
6	LiOtBu	$-50 \rightarrow \mathrm{rt}$	DMPU	1	41\%
7 c	LiOtBu	$-50 \rightarrow \mathrm{rt}$	-	2	50\%
$8^{\text {c,de }}$ e	$\mathrm{LiO} t \mathrm{Bu}$	-50 \rightarrow rt	-	1	53\%

${ }^{\text {a }}$ All reactions were performed in THF (0.1 M), ratio of $43: 67=1: 1$; before workup $\mathrm{Boc}_{2} \mathrm{O}$ (2 eq .) and DMAP (2 eq .) were added. ${ }^{\text {b }}$ Temperature gradient was run over $3 \mathrm{~h} .{ }^{\mathrm{c}}$ Ratio of $43: 67=1.2: 1$. ${ }^{\text {d }}$ Scale-up to 740 mg of 43 . e Temperature gradient was run over 5 h .

Quenching the reaction at a lower temperature $\left(-10^{\circ} \mathrm{C}\right)$, which had beneficial effects in the report by Passarella and co-workers, ${ }^{[82]}$ did not have great influence in our case (Entry 3). However, changing to sodium tert-butoxide as base caused a slight but noteworthy increase in yield (Entry 4). Another constructive adjustment was changing the cation of the tertbutoxide base from sodium to lithium, which now furnished tricycle 75 in 50% yield over two steps. Interestingly, with $\mathrm{LiO}^{\dagger} \mathrm{Bu}$ as base, complete N-Boc cleavage was observed after one day, necessitating reprotection before workup. With LiHMDS this cleavage was only found to proceed partially and it might be argued that N-Boc cleavage on the cascade product might render a potential retro-Michael unlikely, since the thus formed enolate is further destabilized. Besides, added DMPU now reduced the yield (Entry 6) and a longer reaction time paired with a slight excess of donor 43 (Entry 7) did not improve the outcome of the cascade reaction either. Finally the optimized conditions (Entry 8) furnished cascade product 75, with LiOtBu as base, a slight excess of Michael donor and a one day reaction time, in a reproducible 53% yield over two steps (740 mg scale, single largest batch).

Scheme 2.11. Base induced elimination of mesylate and elaboration towards RCAM precursor 77.
After the access to tricycle 75 was established, the substrate could be elaborated towards the RCAM step. Along these lines, the mesylate derived from 75 was eliminated under harsh conditions at $170^{\circ} \mathrm{C}$ in 2,6-lutidine. Thorough drying of the intermediate mesylate in high vacuum was required prior to the next step to obtain reproducible yields. Concomitant N-Boc cleavage provided lactam 76, which could readily be converted into diyne 77 by alkylation with 1-iodo-5-heptyne (50) (Scheme 2.11).
When diyne 77 was treated with the premixed two-component system of Mo complex 51 and trisilanol ligand 52 at elevated temperature in toluene, ring closure occurred to give 78 in 79% yield (Table 2.2, Entry 1). ${ }^{[9]}$ With a new molybdenum alkylidyne complex 79 available in our laboratory, this structurally well-defined complex was tested for RCAM on diyne 77. [104, 105] While a low catalyst loading of $10 \mathrm{~mol} \%$ only provided the cycloalkyne 78 in moderate yield (Entry 2), an increase to $20 \mathrm{~mol} \%$ of 79 could alleviate this inconvenience and provide 78 in good yields on scale (Entry 3). Interestingly, the analogous ethyl-derivative $\mathbf{8 0}$ resulted in a significant drop in yield while operating at higher catalyst loading. This result illustrates the dramatic effect of different substituents at silicon on the tripodal catalysts of type $\mathbf{7 9}$.

Table 2.2. Catalyst screening for RCAM.

${ }^{\text {a }}$ All reactions were performed in $\mathrm{PhMe}(2 \mathrm{mM})$, in presence of $5 \AA \mathrm{MS} .{ }^{b} 1.3 \mathrm{~g}$ scale.
The constitution and stereochemical integrity of 78 was unambiguously established by X-ray diffraction of a sample grown in acetone.

Figure 2.3. Structure of cycloalkyne 78 in the solid state.

2.2.5 Endgame and Completion of the Total Synthesis

With a concise, efficient and scalable access to cycloalkyne 78 established, it was time for further elaboration towards the second macrocyclization event. To this end, compound 78 was treated with L-Selectride in THF at elevated temperature $\left(40^{\circ} \mathrm{C}\right)$ to afford reductive cleavage of the N-methylcarbamate. Thus formed, the secondary amine 81 was engaged in the installation of two different olefinic handles (Scheme 2.12). Reductive amination with hex-5enal and sodium triacetoxyborohydride gave tertiary amine 82 in nearly perfect yield, while treatment of 81 with pregenerated hex-5-enoyl chloride formed amide 65 in good yields.

65

Scheme 2.12. Syntheses of amine 82 and amide 65 , via secondary amine $\mathbf{8 1}$.
With dienes 82 and 65 in hand, we turned our attention towards the upcoming RCM. Albeit its widespread application in natural product synthesis in general, ${ }^{[106,107]}$ accessing 11membered rings via RCM is rather rare and the yields are in many cases moderate. ${ }^{[99-101,108-121]}$ The main driving force of RCM is the reaction entropy $\left(\Delta S_{r}\right)$, since a diene substrate is converted into a cyclic olefin and ethylene, which evaporates under the reaction conditions. It is for this reason, that large enthalpic barriers cannot be overcome ($\Delta G_{r}>0$). Additionally, the chemical and physical attributes of 11-membered rings largely originate from transannular and angle strain, imposing another hurdle for ring closure in the transition state. ${ }^{[122]}$

On top of these intrinsic aspects, the potential cross-reactivity of standard olefin metathesis catalysts with our preinstalled cycloalkyne in $82 / 65$ needed to be considered. Since metal carbenes can react with both olefinic- and acetylenic- π-systems, a potential crossover would also be possible here. Although this would be detrimental to our strategy, it was hypothesized that the rigid tricyclic core separates the olefins and the cycloalkyne enough in space, which alleviates the risk of such an event. Furthermore the total synthesis of manzamine A (7) by Fukuyama et al. ${ }^{[123]}$ provides precedent, affording ring closure of an 8 -membered cycloalkene in the presence of a 13-membered cycloalkyne using the Ru-carbene complex 85 (Scheme 2.13).

Scheme 2.13. RCM in the total synthesis of manzamine A (7) by Fukuyama et al. ${ }^{[123]}$
Notably, Fukuyama et al. ${ }^{[123]}$ encountered both participation of the tertiary amine and the alkyne in their RCM reactions. After optimization they found that stoichiometric amounts of nitro-substituted derivative of the Hoveyda-Grubbs II class of catalysts 85 developed by Grela et al. ${ }^{[124]}$ in the presence of p-methoxyphenol ${ }^{[125]}$ generates product 84 in moderate yield at room temperature. The phenol additive has been shown to increase TON especially in the case of Grubbs I catalyst 87. ${ }^{[124,125]}$

The screening was initiated with tertiary amine 82 and Grubbs I catalyst 87 in dichloromethane (Entry 1). Surprisingly, there was no reaction with neither the free base nor the protonated amine of 82 . Switching to the second-generation catalyst 88 generated small quantities of dimeric products (Entry 2), however more forcing conditions in boiling toluene led to decomposition of the starting material (Entry 3). These results suggest that the conformational preorganization enforced by the tricyclic core is negated by the high degree of flexibility from the tertiary amine. Additionally, free amines remain challenging functional groups in the context of RCM in natural product syntheses, since they are often observed to shut down catalytic activity in the case of Ru-carbene catalysts. ${ }^{[106]}$

Gratifyingly, when amide 65 was reacted with Grubbs I catalyst 87 ($30 \mathrm{~mol} \%$) in dichloromethane at $40^{\circ} \mathrm{C}$, the cyclic product 66 was obtained in low yields, although as a 1:1 mixture of E / Z isomers (Entry 4). Stoichiometric quantities of 87 , now furnished cycloalkene 66 in moderate yield, slightly favoring the formation of the E-isomer of 66 (Entry 5). The initiation of Ru-carbene 87 highly varies with the chosen solvent. ${ }^{[126]}$ Therefore, chlorinated solvents can give drastically different reaction profiles, compared with non-chlorinated solvents and vice-versa. Grubbs I catalyst 87 in toluene at elevated temperature provided 66 in very good yield, although the high temperatures now favored the E - over the Z-Isomer (Entry 6).

The catalyst loading could be decreased to sub-stoichiometric amounts by slow addition of the catalyst in toluene (Entry 7). The best result was obtained, when the concentration was increased $(1 \mathrm{mM})$ and the catalyst was slowly added over a period of three hours as a solution in toluene (Entry 8).

Table 2.3. Condition screening for second macrocyclization via RCM.

					$\begin{aligned} & \text { 86: } \mathrm{x}= \\ & 66: \mathrm{x}= \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Mon } \\ & T_{N-x}^{2} \\ & H_{2} \\ & 0 \end{aligned}$	
	 ubbs I yst (87)				 Grubbs II (89)	C-	
Entry ${ }^{\text {a }}$	X	Catalyst	Solvent	T/ ${ }^{\circ} \mathrm{C}$	Yield	$E: Z$ ratio	Comment
$1{ }^{\text {b }}$	CH_{2}	87 (50 mol\%)	DCM	40	-	-	no reaction
2	CH_{2}	88 (30 mol\%)	DCM	40	-	-	low conversion to dimer
3	CH_{2}	89 (30 mol\%)	PhMe	110	-	-	decomposition
4	$\mathrm{C}=\mathrm{O}$	87 (30 mol\%)	DCM	40	22\%	50:50	-
5	$\mathrm{C}=\mathrm{O}$	87 (100 mol\%)	DCM	40	55\%	55:45	-
6	$\mathrm{C}=\mathrm{O}$	87 (100 mol\%)	PhMe	100	94\%	64:36	-
$7{ }^{\text {c }}$	$\mathrm{C}=\mathrm{O}$	87 (50 mol\%)	PhMe	100	73\%	60:40	-
$8{ }^{c, d}$	$\mathrm{C}=\mathrm{O}$	87 (50 mol\%)	PhMe	100	97\%	60:40	-
9	$\mathrm{C}=\mathrm{O}$	89 (100 mol\%)	PhMe	100	-	-	decomposition
10	$\mathrm{C}=\mathrm{O}$	90 (100 mol\%)	1,2-DCE	83	-	-	no reaction
$11^{c, d, e}$	$\mathrm{C}=\mathrm{O}$	87 (50 mol\%)	PhMe	100	33\%	66:34	-

a All reactions were performed at a concentration of 0.5 mM and 10 mg scale, unless noted otherwise. E:Z-ratios were determined by crude ${ }^{1} \mathrm{H}$-NMR. ${ }^{b} \mathrm{CSA}$ as additive. ${ }^{c}$ Slow addition of catalyst in PhMe over $3 \mathrm{~h} .{ }^{d}$ The reaction was run at 1 mM concentration. ${ }^{e} 270 \mathrm{mg}$ scale.

Due to competitive decomposition of the first-generation Grubbs catalyst 87 and the necessity for elevated temperatures, the second-generation Hoveyda-Grubbs catalyst 89 was tested (Entry 9). Bearing a chelating isopropoxy-group covalently bound to the benzylidene moiety instead of a labile phosphine ligand, this catalyst possesses remarkable stability towards water and air. Similar to our previous results with tertiary amine 82 and catalyst 89 (Entry 3) however, treatment of amide 65 with the latter only resulted in decomposition of the diene substrate (Entry 9). Furthermore, the Z-selective Grubbs catalyst $\mathbf{9 0}$ was employed in order to correct the lack of stereoselectivity, observed in all previous iterations. ${ }^{[127]}$ Unfortunately,
complex 90 proved unreactive towards amide 65 (Entry 10). Attempted scale-up using the refined conditions (Entry 8), showed problems in reproducibility, when pentacycle 66 was isolated in poor yields and in favor of the undesired E-Isomer (Entry 11). Nevertheless, compound 66 could be accessed in sufficient quantities to perform HPLC separation of the stereoisomers arising from RCM, providing (Z)-66 and hence intercepting our previous route towards (+)-ingenamine (9). ${ }^{[62]}$

Scheme 2.14. Interception of our previous route towards (+)-ingenamine (9).
Therein, pentacycle $(Z)-66$ is treated with nickel boride ${ }^{[97]}$ to afford semihydrogenation of the alkyne, followed by reduction of the remaining amide groups with excess AlH_{3}, generated in situ from LiAlH_{4} and AlCl_{3} (Scheme 2.14). Concomitant cleavage of the silyl ether furnishes ingenamine (9). ${ }^{[6]}$

While the TBS ether plays a quintessential role in inducing chirality in the Michael/Michael cascade and therefore relays its stereochemical information onto four stereocenters of the tricyclic core, an approach towards keramaphidin B (2) would now ask for a removal of this critical substituent. The efforts towards keramaphidin B(2) were diverted at the stage of diene 65, when it was found that alcohol 91, which was afforded after silyl cleavage, swiftly succumbs to dehydration with Martin's sulfurane at elevated temperature in toluene (Scheme 2.15). ${ }^{[128]}$ The resulting enamide was subsequently reduced with sodium cyanoborohydride and trifluoroacetic acid, giving rise to compound 64 , bearing the desired oxidation state at C-9 of keramaphidin B (2). ${ }^{[129,130]}$ At this time, the stage was set for yet another RCM attempt. In line with our previous results, Grubbs I catalyst 87 was envisaged to mediate this transformation. With the crystal structure of diene 64 at our disposal, the structural preorganization was illustrated by the pendant 5-hexenamide and the butenyl group coming off the rigid tricyclic core both pointing upwards, away from the cycloalkyne. Although the conformation in solution might differ from the structure in the solid state, no competing ene/yne crossover was observed.

In practical terms, treatment of diene 64 with Grubbs I catalyst ($50 \mathrm{~mol} \%$) in boiling 1,2-DCE was necessary to afford ring closure (Scheme 2.16). The product was obtained in 83% yield as a 1:1 mixture of double bond isomers. The reaction in toluene favored the undesired E-isomer ($66: 34$ E:Z-isomeric ratio), and is also being inferior in terms of yield (55% yield). Additionally, the RCM in 1,2-DCE was scalable and showed a high degree of reproducibility. After
semihydrogenation of the alkyne with nickel-boride ${ }^{[97]}$ the E-isomer was separated via flash chromatography and the resulting (Z)-bislactam 93 was reduced with DIBAL-H in a mixture of diethylether and hexanes yielding keramaphidin B (2).

Scheme 2.15. Dehydration/reduction sequence and X-ray structure of compound 64 in the solid state.
Although discrepancies between the NMR data acquired in methanol- d_{4} and the previously reported data by Anderson et al. ${ }^{[56,98]}$ suggested a different protonation state, our synthetic sample of (+)-2 measured in CDCl_{3} showed an almost perfect agreement of the spectral properties reported by Kobayashi et al. ${ }^{[54]}$

Scheme 2.16. Endgame in the total synthesis of keramaphidin B (2).

2.3 Total Synthesis of Nominal Njaoamine I

The total synthesis of nominal njaoamine I (16) was carried out in cooperation with Dr. Zhanchao Meng. The NMR studies supporting the structural revision of njaoamine I were carried out by Sandra Tobegen and Dr. Christophe Farès.

By virtue of the advancements made through the second-generation approach of ingenamine (9), as well as the inaugural total synthesis of keramaphidin B (2), an extension of our synthetic program towards more complex targets was tempting. The njaoamine family of natural products (see chapter 2.1.1) provides a stringent testing ground, as one of the macrocycles is annulated to a functionalized quinoline bearing two additional basic nitrogen atoms. (Nominal) njaoamine I (16) was chosen as the target compound, since the intact triple bond in the peripheral ring seemed tempting for a late-stage RCAM. A failed first foray ${ }^{[131]}$ will not be covered in the following section, however the considerations following from this approach will be discussed in the retrosynthetic analysis.

2.3.I Retrosynthetic Analysis

The macrocyclization strategy in an approach towards (nominal) njaoamine I (16) had to be selected carefully. Since RCM had been troublesome in the presence of basic amine functionalities en route to keramaphidin B (2) (see chapter 2.2.5) and the respective natural product additionally bears a quinoline and a primary amine, this transformation was excluded from the analysis at the start. With the alkyne in the periphery of the 17 -membered ring inviting the use of RCAM, this strategy would require either a methodology completely orthogonal to alkynes, or the masking of the respective alkynes in order to carry out two subsequent RCAMs. Although a cross-coupling strategy, as used in the synthesis of xestocyclamine A (11), ${ }^{[62]}$ was also a viable option, the choice fell on the use of two consecutive RCAMs (Scheme 2.17). Most common protecting groups for alkynes did not meet the boundary criteria, as they would have to withstand basic, acidic, oxidative, different reductive conditions, and fluoride. Eventually, vic-dibromoalkenes were selected, ${ }^{[132,133]}$ knowing that the halide atoms could be inimical for the Pd-catalyzed Tsuji dehydrogenation and the required semireduction of the alkyne over a (noble) metal catalyst. Therefore, a late-stage RCAM would forge the 17 -membered ring, revealing (nominal) njaoamine I (16) after N-Boc cleavage. The diyne 99 results from reductive cleavage of the corresponding vic-dibromides, semihydrogenation of the cycloalkyne 97 to the corresponding cis-olefin and amide reduction. As discussed, cycloalkyne 97 arises from cleavage of the methyl-carbamate, followed by reductive amination with the requisite quinoline fragment $\mathbf{9 8}$ and RCAM. The previously employed dehydration/reduction- and reduction/elimination-sequence would install the core, which shows similarities to keramaphidin B (2). Retrosynthetically this would trace back to the Michael cascade product 96 . The required building blocks 94 and 95 would be synthesized as previously described (see chapter 2.2.2 and 2.2.3).

Scheme 2.17. Retrosynthetic analysis of nominal njaoamine I (16).

2.3.2 Synthesis of the Building Blocks

The synthesis of the quinoline fragment 98 commences with oxidative cleavage of the C2-C3 bond of N-trifluoroacetylated tryptamine 100 and subsequent hydrolysis of the resulting formamide (Scheme 2.18). Aniline 101 undergoes a Dieckmann-type condensation with $\mathbf{1 0 2}$ to give hydroxyquinoline $\mathbf{1 0 3}$ on scale. ${ }^{[134]}$ Treatment of $\mathbf{1 0 3}$ with triflic anhydride in pyridine furnishes the corresponding triflate, which was employed in a Suzuki cross coupling with borate 104. The latter was generated via hydroboration of TBS-protected 3-butene-1-ol with 9-H-9-BBN and formation of the ate-complex after addition of stoichiometric amounts of sodium methanolate. ${ }^{[135-137]}$ The enolate derived from ketone 105 can be trapped with phenyl triflimide and succumbed to spontaneous elimination with excess KHMDS. ${ }^{[138]}$ Quenching with $\mathrm{Boc}_{2} \mathrm{O}$ and subsequent addition of $\mathrm{NH}_{4} \mathrm{Cl}$ interchanged the protecting groups at the primary amine. Cleavage of the silyl ether using TBAF and oxidation of the primary alcohol under ParikhDoering conditions furnished aldehyde 98 in good yield. ${ }^{[139]}$

Scheme 2.18. Synthesis of the quinoline fragment 98.
The Michael acceptor 94, required for the Michael/Michael cascade was synthesized in analogy to the route shown in chapter 2.2.3. Instead of 4 -bromo-1-butene, 1-iodo-3-pentyne was employed in the alkylation of the β-ketoester derived from 45.

Scheme 2.19. Synthesis of the Michael donor 95.
In terms of the Michael donor 95, the adaptation was slightly more elaborate (Scheme 2.19). The vic-dibromide alkyne surrogate $\mathbf{1 0 6}$ was united with β-ketoester $\mathbf{7 2}$ via alkylation and the resulting N-benzyl protected piperidone 107 reacted with methylchloroformate in boiling toluene to give the desired N -methyl carbamate protected piperidone 108.

In this case, the Pd-catalyzed Tsuji dehydrogenation proceeded smoothly, as no competing reactivity of the vic-dibromides was observed. Since this process is catalyzed by $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ in the absence of any external ligand, the Pd species in solution seems to lack the required electron density to engage the alkenyl halides.

2.3.3 Completion of the Total Synthesis

With all building blocks in hand, the goal was set to reach the first RCAM event. In practical terms, the previously optimized route towards the core structure of keramaphidin B (2) proved highly reliable.

95

109

Scheme 2.20. Elaboration of the njaoamine I core.
The base mediated Michael/Michael cascade, followed by reduction of the ketone with NaBH_{4}, furnished alcohol $\mathbf{1 0 9}$, as a single diastereomer in good yield. The harsh conditions $\left(170{ }^{\circ} \mathrm{C}\right.$, 5 d) used for unveiling the etheno-bridge on the core did not harm the vic-dibromides and provided lactam 110 in reproducible fashion, when the starting material was vigorously dried. N -Alkylation of the free amide, fluoride mediated cleavage of the silyl ether and dehydration of the resulting alcohol 111 with Martin's sulfurane proceeded without problems. Only the
reduction of the enamide with excess $\mathrm{NaBH}_{3} \mathrm{CN} /$ TFA had to be quenched as soon as full conversion of the starting material was observed, as otherwise decomposition occured.

Although the N-methyl carbamate had been a reliable protecting group previously, problems with the reductive cleavage were encountered in the presence of the vic-dibromides. When LSelectride was used, extensive reduction of the vic-dibromo olefins was observed, leaving no choice but to search for another reagent capable of carbamate cleavage. After some experimentation it was found, that TMS[${ }^{[140]}$ served this purpose and revealed the N-terminus for the following reductive amination. HBr in acetic acid did also mediate this transformation, however the yields were low and hydrobromination of the free alkyne was detectable. Trace amounts of HI, from hydrolysis of TMSI, were deemed equally problematic. Consequently, fresh TMSI was used directly upon receipt from the vendor.

Merger of the free amine and aldehyde 98 in a reductive amination reaction furnished diyne 114 ready for the first macrocyclization event (Scheme 2.21). As expected the RCAM worked well, regardless whether the two-component system $(51 / 52)^{[9]}$ or the structurally well-defined Mo-complex 79 ${ }^{[104,105]}$ was employed. The vic-dibromoalkenes did not interfere with the Mocatalyzed RCAM, nor did they get damaged. Since this functional group had not been tested previously in context of alkyne metathesis, it can now be added to the list of functional groups compatible with the Mo-alkylidynes.

Scheme 2.21. Synthesis of diyne 114 and first macrocyclization event.
With cycloalkyne 97 in hand, investigations for the semi-hydrogenation of the newly formed triple bond were initiated. This represented another crucial step in the strategy, as it would show, whether the vic-dibromoalkenes can withstand the noble metal catalyzed reaction. The $\mathrm{Cu}-\mathrm{NHC}$ catalyzed process developed by Lalic et al. ${ }^{[141]}$ only provided olefin 115 in minute amounts (Table 2.4, entry 1). When a hydroboration/protodeborylation strategy, similar to the first generation synthesis of nominal xestocyclamine A (11), ${ }^{[62]}$ was employed with dicyclohexylborane, as the reagent, only decomposition was observed. It may be noted, that
substrate 97 bears a quinoline moiety, which is known to be a potential poison for heterogeneous catalyst systems. ${ }^{[142]}$ Gratifyingly, heterogeneous hydrogenation over unpoisoned $\mathrm{Pd} / \mathrm{CaCO}_{3}$ in THF served its purpose and provided the Z -olefin 115 in moderate yields. Although superstoichiometric quantities of the Pd species had to be used, these conditions turned out as an almost singular hit in the reaction screening. With other solvents as EtOAc (Entry 4) or toluene (Entry 5) the CaCO_{3} supported Pd species was rendered unreactive towards alkyne 97. Finally, we intended to poison Pd / C by using pyridine as the reaction solvent (Entry 6), however this hydrogenation attempt resulted in extensive overreduction of the vic-dibromoalkenes.

Table 2.4. Condition screening for the semi-hydrogenation of alkyne 97.

		 115	
Entry	Catalyst/Reagent	Solvent	Result
1	$\mathrm{IPrCuCl}, \mathrm{NaOtBu}, \mathrm{PMHS}, \mathrm{tBuOH}$	PhMe	<10\% yield
2	$\mathrm{Cy}_{2} \mathrm{BH}$	THF	decomposition
3	$\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{CaCO}_{3}$ (2.0 eq.)	THF	52\% yield
4	$\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{CaCO}_{3}$ (1.5 eq.)	EtOAc	no reaction
5	$\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{CaCO}_{3}$ (1.5 eq.)	PhMe	no reaction
6	$\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$	Pyridine	overreduction

Next, studies towards the selective reduction of the amide embedded in the core of the molecule were initiated. Only after considerable experimentation it was found, that DIBAL-H in $\mathrm{Et}_{2} \mathrm{O}$ was selective in reducing solely the amide (Scheme 2.22). The choice of the solvent was critical and the reaction time had to be monitored carefully, in order to avoid reduction of the $\mathrm{C}-\mathrm{Br}$ bonds. The endgame of the total synthesis turned out to be a little more straightforward. Unmasking of the alkynes with Zn -dust in a protic medium proceeded smoothly. ${ }^{[132,133]}$ In line with previous results, the following RCAM on 99 furnished the 17-membered macrocycle 116 with both the two-component system comprised of $51(30 \mathrm{~mol} \%)$ and $52(30 \mathrm{~mol} \%)$, as well as
with the well defined "canopy" catalyst 79 ($30 \mathrm{~mol} \%$). Notably, the latter provided cycloalkyne 116 in essentially quantitative yield, which marks the success of alkyne metathesis employing silanolate ligated high-valent molybdenum alkylidynes of type 79. Neither the presence of two tertiary amines and a quinoline, nor a Lewis-basic carbamate group masking a primary amine terminus compromises the reactivity. When put in perspective with the RCM of $\mathbf{8 2}$ bearing a single tertiary amine, which shut down any reactivity of the Grubbs-type ruthenium carbenes, regardless of the protonation state, this result is remarkable.

Scheme 2.22. Synthesis of diyne 99 and final macrocyclization event.
Ultimately, cleavage of the N-tert-butyloxycarbonate group with HCl in 1,4 -dioxane/EtOAc ${ }^{[143]}$ furnished the structure, which had been proposed as njaoamine I (16) by the isolation team. ${ }^{[71]}$ Surprisingly, however, the analytical and spectral data gathered from our synthetic sample (16) showed small but significant deviations from the tabulated NMR data from the isolated natural product. ${ }^{[7]]} \mathrm{A}$ comparison with an authentic sample, generously made available by the isolation team, confirmed the suspicion that, although the differences are extremely subtle and the compounds were indistinguishable by HPLC analysis, the discrepancy was indeed nonneglible. The differences were surmised to most likely originate from the positioning of the triple bond in the 17-membered macrocycle. To test this hypothesis, an in-depth study into the origin of the mismatch was initiated.

2.3.4 Structural Revision of Njaoamine I

In order to investigate the positional misassignment of the alkyne in the macrocycle, the 12carbon chain in the northern part of the molecule had to be reassigned unambiguously. A challenging task, considering the high dilution of 117 in pyridine-d5, which rendered heteronuclear long-range coupling experiments, primarily HMBC, impractical. Furthermore, the assignment was obstructed by limited resolution, especially crucial in the region between 1.1 and 1.7 ppm where 20 methylene protons (14 of the 12 -carbon fragment under investigation) and one methine proton resonate. Additionally, the assignment of two ${ }^{13} \mathrm{C}-\mathrm{NMR}$
signals at 27.7 and 27.8 ppm proved challenging and could only be distinguished by very highresolution multidimensional experiments.

Figure 2.4. Comparison of nominal njaoamine I (16) and the revised structure of njaoamine I (117).

At first, all ${ }^{1} \mathrm{H}$-signals of the 10 methylene groups belonging to the 12 -carbon chain in question, were identified in a high resolution HSQC experiment. Secondly, the methylene chain was surveyed through ${ }^{3} \mathrm{~J} \mathrm{HH}$ in a CLIP-COSY experiment ${ }^{[144]}$ linking the chain-terminating methylenes H 44 and H 33 to their respective propargylic CH_{2}-groups flanking the alkyne.

Figure 2.5. HSQC-TOCSY experiment of actual njaoamine I (117) shown as ordered strips correlating each ${ }^{13} \mathrm{C}$-atom to the respective ${ }^{1} \mathrm{H}$-signals within their associated spin-system.

Especially in the center of the aliphatic chains, ambiguity persisted. Finally, a long, highresolution HSQC-TOCSY experiment correlated all ${ }^{13} \mathrm{C}$ signals with the proton signals within their associated spin system. This supported the supposition, that the alkyne was indeed positioned at the C37-C38 position (Figure 2.5). As the same pattern of correlations was observable in a $1 \mathrm{D}{ }^{1} \mathrm{H}-\mathrm{TOCSY}$, selectively irradiating the terminal methylene protons at H 44 and H33, along with the methylene protons H39 and H36, the revised structure of njaoamine I (117) (Figure 2.4) could be confidently proposed.

Additionally, the observed specific optical rotation of our synthetic njaoamine $I(16)$ is worth a comment. Although actual njaoamine I (117) and our synthetic nominal njaoamine I (16) are isomeric to each other, their observed dextrorotatory nature suggests them being compounds of the same enantiomeric series as xestocyclamine A (10). This stands in contrast to the depiction in the isolation paper ${ }^{[71]}$, which insinuates (+)-117 to have the same absolute configuration as ingenamine (9).

2.3.5 Concerted Macrocyclization Event

In attempts to elucidate the biosynthetic pathway of keramaphidin B (2), Baldwin et al.[60,61] carried out synthetic studies trying to emulate the formation of the tricyclic core by Diels-Alder reaction (Chapter 2.1). Moreover, they generated a tetra-ene substrate, which allowed them to attempt the concurrent formation of the two macrocycles. These efforts met with minimal success, when keramaphidin B (rac-(2)) was only observed in minute amounts ($1-2 \%$ yield). It was for this exact reason, that we pursued a stepwise approach in all our macrocyclization strategies.

Scheme 2.23. Baldwin and Whitehead's attempt of concurrent RCM reaction on the keramaphidin B (2) scaffold. ${ }^{[61]}$

The fact, however, that a RCAM/RCM sequence could be executed en route to 2 and no competing ene/yne-crossover was observed, insinuated that there was a favorable bias towards the formed macrocycles. If there was indeed a structural preorganization of the pendant side-chains, a concerted macrocyclization event might be feasible with our system.

Scheme 2.24. Double RCAM of tetrayne 120.
Since clean reduction of the vic-dibromoalkenes was found when L-selectride was employed for reductive cleavage of the methyl carbamate 114, advantage was taken of this transformation for the synthesis of the projected tetra-yne $\mathbf{1 2 0}$ (Scheme 2.24). The latter was afforded after reductive amination of the secondary amine with quinoline aldehyde 98. The concerted RCAM worked equally well with both the two component system $51(60 \mathrm{~mol} \%), 52$ ($60 \mathrm{~mol} \%$) and the well defined canopy catalyst 79 ($30 \mathrm{~mol} \%$). Unfortunately, purification issues were encountered, since the silanolate ligand co-eluted with the desired biscycloalkyne 121, resulting in impeded material recovery of 35%. This technical issue notwithstanding, the herein (yet unoptimized) result opens up new avenues for the target-oriented synthesis with RCAM. Since the chemoselective functionalization of the C31 $=$ C32 alkyne without touching the more accessible C36=C37 triple bond in 121 was practically impossible, the synthetic use of the concurrent RCAM was limited in our context.

2.4 Summary and Outlook

In a second-generation approach towards ingenamine (9) several improvements were implemented into the synthetic blueprint. First, the synthesis of the required building blocks for the Michael/Michael cascade was optimized concerning versatility, scalability and productivity. Conditions were found to successfully construct the tricyclic core of alkaloids of the ingenamine estate from these two building blocks in a single step with full diastereoselectivity. Access was thus extended to the non-hydroxylated core of keramaphidin B(2) and the njaoamines 12-16. Two macrocyclization strategies were applied constructing the 11 - and 13-membered rings of ingenamine (9) and keramaphidin $B(2)$, as well as the 13- and 17-membered macrocycles of nominal njaoamine I (16). In particular, the RCAM/RCM strategy applied in the total synthesis of keramaphidin B (2) showcased the necessity of orthogonal metathesis based methodologies, when the most pressing drawbacks of Ru-catalyzed olefin metathesis became apparent (functional group tolerance towards basic amines and stereoselectivity). In the light of these challenges, the performance of RCAM in all of these settings becomes more impressive. Particularly the well-defined metathesis active Moalkylidyne complex 79 was put through a number of challenging transformations, attesting to a remarkable and enabling functional group tolerance. These examples challenge the orthodoxy that highly functionalized compounds impede high-valent early transition metal catalysts.

The inaugural total synthesis of keramaphidin B (2), a molecule central in the biosynthetic pathway first proposed by Baldwin and Whitehead et al. ${ }^{[51]}$ thirty years ago, and especially the conquest of (nominal) njaoamine I (16) leading to a structural reassignment, advocates for the integral role of total synthesis in the realm of natural products.

The concerted use of RCAM might inspire future synthetic strategies, if the target provides sufficient conformational preorganization and the thus formed triple bonds can be functionalized in parallel. An intriguing target is present in njaoamine $C,{ }^{[69]}$ since this natural product bears two Z-olefins within its macrocycles and a double semi-hydrogenation is feasible.

Interestingly, a literature survey reveals another synthetic gap in the manzamine estate. Whereas manzamine $A(7)$ and its biogenetic precursors ircinal A and ircinol A were the first members of this class to be targeted by several groups over the years, ${ }^{[58,59,79,123]}$ manzamine B (7), ircinol B (6) and ircinal B (4) have been completely left out of the picture. Although seemingly less complex, due to the absence of a C-N bond, almost all total syntheses rely on this stereodefining element early in their synthesis (see scheme 2.22.). Winkler and Axten, harness the 8 -membered ring, as their stereodefining element, ${ }^{[58]}$ while Martin et al. ${ }^{[59]}$ rely on the 5-membered ring in their Diels-Alder disconnection building up the central 6,6,5-tricycle. In Fukuyama's approach the respective C-N bond is introduced rather late, possibly
amendable to target the aforementioned natural products 126, 4 and 6. ${ }^{[123]}$ However, Dixon's strategy completely relied on the formation of the 5,8 -bicycle at the start of the synthesis.[79]

Scheme 2.25. Summary of synthetic efforts towards manzamine A (7).
Albeit fit to purpose in targeting manzamine $A(7)$, these strategies do not allow an easy strategic switch towards the natural products in the realm of manzamine $B(126),{ }^{[22,53,14]}$ due to the inert nature of the indicated C-N bond.

Ircinol B (6)

Ircinal B (4)

Manzamine B (126)

Scheme 2.26. Unconquered natural products of the manzamine estate and a possible biomimetic entry along intermediate 127.

Since our strategy builds on the synthesis of the etheno-bridged diazadecalin core, a ringopening might be a feasible entry to the core scaffold of the manzamine B (126) family. If tetracycle $\mathbf{1 2 7}$, closely related to previously prepared substrates 64 and 82 , is activated at the tertiary amine, nucleophilic attack by an acetate at the adjacent α-carbon atom might be regioselective, when the reaction is releasing strain of the tricyclic core. A viable synthetic equivalent of this disconnection is precedented in the work from Han et al. (Scheme 2.27). [146]

Scheme 2.27. Biopatterned reorganization of a catharantine scaffold (A) towards the chippiine/dippinine-type frameworks, adopted from Han et al.[146]

This approach takes advantage of the instability of certain difluoromethylated ammonium salts (\mathbf{B} or \mathbf{C}), which were accessed through in-situ generated difluorocarbene in presence of a tertiary amine (A). These semistable adducts can undergo C-N bond cleavage, when the associated anion attacks the α-position of the cyclic ammonium cation (C). In order to implement different nucleophiles, the authors utilized an anion exchange strategy, which takes advantage of the high affinity of silver(I) species towards halide anions ($\mathbf{B} \rightarrow \mathbf{C}$). After aqueous workup, the reorganized N-formamide protected product (D) was obtained in good yield. ${ }^{[146]}$

3. Studies towards the Total Synthesis of Providencin

3.I Introduction

The biomass in coral reef environments is largely dominated by gorgonian and soft corals. While reefs in the Indo-Pacific region are populated by soft corals (especially Sinularia sp.), the predominant species in the northwestern Atlantic ocean and the Caribbean Sea are gorgonian corals. These "sea plumes", named after the feather-like appearance of their branches, seem to have very few predators, such as fish or other competing reef organisms. This observation can be explained by certain metabolites, which act as chemical defense compounds and are known as the cembranoids. The most well-studied class of cembranoids from corals might be represented in the so-called furanocembranoids (Figure 3.1). ${ }^{[14]}$

Figure 3.1. General furanocembranoid skeleton and representative examples.

Pukalide (130)

Bielschowskysin (131)

This class of natural products presents itself with a 14 -membered ring, embedding a furan from C 3 to C 6 and a butenolide unit from C10 to C12. Generally, the metabolites can be highly oxidized bearing almost all possible oxidations states at C 18 (except for $\mathrm{CH}_{2} \mathrm{OH}$), epoxidations in the C7-C8 and the C11-C12 positions, acetoxylation at C13 and oxidation at C2 and/or C16. Notably, in natural products with the trans-configuration between C7 and C8, an epoxide at this position is observed in most cases. ${ }^{[188]}$

The first member of this family to be characterized in 1975 by Scheuer et al. ${ }^{[149]}$ was pukalide (130) from Sinularia abrupta. The diverse and rich chemistry of furans is reflected in several rearranged natural products, ${ }^{[147,150]}$ culminating in arguably one of the most complex molecular architectures in bielschowskysin (131), isolated from Pseudopterogorgia kallos in 2004. ${ }^{[151]}$ Although most metabolites of this gorgonian octocoral are not oxidized at C18, ${ }^{[152]}$ an exception was found in providencin (132) a natural product isolated in 2003. ${ }^{[153]}$ The isolation and structure of the aforementioned furanocembranoid is described in the following section.

3.1.I Isolation and Structure

Specimen of Pseudopterogorgia kallos were collected near Providencia Island in the southwestern Caribbean sea. The dried material was homogenized in a mixture of dichloromethane and methanol, before it was concentrated in vacuo. Partitioning between
hexane, chloroform and ethyl acetate, with subsequent purification of the chloroform-soluble material via size-exclusion chromatography, yielded providencin (132, $20 \mathrm{mg}, 0.012 \%$ dry weight). The chemical structure was elucidated with the help of different 1D- and 2D-NMR experiments, while X-Ray diffraction of a suitable single crystal grown in methanol/chloroform (9:1 v / v) provided proof. It is dextrorotatory ($\alpha_{\mathrm{D}}^{20}=+7.9^{\circ}, c=1.2$ in $\left.\mathrm{CHCl}_{3}\right)$, however, the absolute configuration of the natural product remains unknown. ${ }^{[153]}$

Figure 3.2. Structure of providencin (132) and its proposed biogenetic precursor bipinnatin E (133).

The diterpene features a bicyclo[12.2.0] hexadecane ring system with a trans-fused cyclobutane at C1-C2. An exo-methylene moiety ($\mathrm{C} 15-\mathrm{C} 16$) and an allylic alcohol at C 17 decorate the cyclobutane unit, while the C7-C8 E-alkene and the C11-C12 position of the butenolide are epoxidized. Another attribute of highly oxidized furanocembranoid members is the acetoxylation at C13. Interestingly, the C18 terminus of the furan unit (C3-C6) is oxidized and subsides as the methyl ester, which is unusual for a metabolite extracted from Pseudopterogorgia kallos. ${ }^{[153]}$

Biosynthetically, providencin (132) was proposed to arise through a Norrish-Yang cyclization from bipinnatin E (133). ${ }^{[154,155]}$ This hypothesis is supported by model studies carried out by Pattenden et al., ${ }^{[156]}$ who could show that irradiation of a structurally simplified substrate indeed furnished the cyclobutanol, albeit in low yields.

Beyond the intriguing chemical architecture, providencin was tested for biological activities in various cell assays. Therein, it showed modest cytotoxicity in vitro against MCF7 breast cancer, NCI-H460 non-small cell lung cancer and SF-268 CNS cancer cells. ${ }^{[153]}$

Overall, providencin (132) has been at the top of the list for synthetic chemists, ever since its discovery in 2003. In particular, the tetrasubstituted cyclobutane sub-unit attracted a lot of attention, since it appears as a unique feature of this particular natural product. A short overview of the literature tackling this highly oxidized marine diterpene is provided in the following section.

3.1.2 Literature Review

In 2007, Mulzer et al. reported their initial work targeting providencin (132). ${ }^{[157]}$ Regarding the cyclobutane section of the natural product, they identified racemic bicycloheptenone (134) as their starting point (Scheme 3.1). Diastereoselective reduction of 134 furnishes alcohol rac-135,
which can be diverted into acetate rac-136 (pathway a), or chloroacetate rac-137 (pathway b). The enzymatic resolutions are both satisfactory in terms of yield and enantioselectivity, however, acetate rac- $\mathbf{1 3 6}$ only converts slowly over two weeks, while chloroacetate shows favorable kinetics reaching its endpoint in 24 hours. ${ }^{[158]}$

Scheme 3.1. Synthesis of enantioenriched bicycloheptenol 135 via enzymatic resolution. ${ }^{[158]}$
With the enantioenriched cyclobutanol in hand, they set out to install the furan moiety (Scheme 3.2). In practical terms, O-silylation of (+)- $\mathbf{1 3 5}$ followed by ozonolysis and in situ reduction of the bis-aldehyde gave diol 138 in good yields. ${ }^{[158]}$ Selective tritylation using monomethoxytrityl chloride (MMTrCl) gave a separable mixture of mono-protected alcohols 139 and 140. The desired alcohol 139 was oxidized to the aldehyde by means of IBX, which, upon treatment with catalytic potassium carbonate in methanol, results in epimerization, yielding the now trans-configured cyclobutyl-aldehyde 141. ${ }^{[158]}$ Reformatsky reaction with bromoacetate 142 and subsequent oxidation reveals the β-ketoester 143 in very good yield.

Scheme 3.2. Synthesis of the enantioenriched β-ketoester 143. ${ }^{[158]}$
Next, deprotonation followed by alkylation with propargyl iodide 144 furnished alkyne 145 as a mixture of diastereomers (Scheme 3.3). Pd-mediated Wipf cyclization ${ }^{[159]}$ afforded furan 146 as a $1: 1$ mixture of E-/Z-isomers, which were equilibrated to the desired E-isomer through a radical addition/elimination pathway with diphenyl diselenide. ${ }^{[158]}$ Subsequent MMTr
cleavage in HFIP and introduction of the phosphonate moiety for an intramolecular HWE reaction was achieved over four steps. Deprotection of the primary TBS ether with ammonium fluoride in methanol and oxidation to the aldehyde gave macrocyclization precursor 148 in moderate yields. The olefination proceeded well, with n-butyllithium in HFIP at high dilution, considering the extraordinarily high ring strain presumably exhibited by the trans-fused cyclobutane and the E-configured C7-C8 olefin.

Scheme 3.3. Furan formation and macrocyclization via HWE olefination.[158]
Despite disclosing this late-stage intermediate in combination with the proposal of an endgame-strategy, no further work was published by Mulzer et al. pursuing this approach.

Instead, a different strategy was engaged in which the macrocyclization event was changed from the intramolecular HWE olefination to an olefin metathesis. Furthermore, the site at which the ring closure was going to be carried out was revised to the C7-C8 alkene. In practical terms, this approach was deemed to be more convergent and allowed for the preparation of more simplified fragments. Although already mentioned in their 2009 publication on synthetic efforts towards providencin (132), it took another five years until the total synthesis of 17deoxyprovidencin (160) was disclosed. ${ }^{[160]}$

In similar fashion to the first-generation approach, the synthesis of the furan fragment commenced with enantioenriched β-ketoester 143, generated via enzymatic resolution (Scheme 3.1). At this point, alkylation of $\mathbf{1 4 3}$ with simple propargyl iodide $\mathbf{1 5 0}$ furnished alkyne 151, which was cyclized under base catalysis to give furan 152 (Scheme 3.4).

Detritylation under acidic conditions and oxidation of the resulting primary alcohol by IBX in boiling EtOAc, gave rise to the vinyl furan fragment 153. ${ }^{[160]}$

Scheme 3.4. Synthesis of the vinyl furan fragment 153. ${ }^{[160]}$
Selenolactone 154, synthesized from (R)-glycidyl tosylate in four steps, was deprotonated with LDA at cryogenic temperatures and treated with aldehyde 153, generating the aldol product (Scheme 3.4). The latter was oxidized with aqueous hydrogen peroxide, to mediate selenoxide elimination, thereby forging the butenolide 155 as a mixture of diastereomers (dr 1.5:1). ${ }^{[160]}$ This mixture was treated with catalytic amounts ($20 \mathrm{~mol} \%$) of Grubbs II catalyst (88) in refluxing benzene, affording the unsaturated macrocycle exclusively, as the undesired Zisomer. Separation of the C13-diastereomers and subsequent acetylation of the secondary alcohol produced bis-olefin 156.

Scheme 3.4. Fragment coupling and subsequent RCM. ${ }^{[160]}$
Epoxidation at the butenolide subunit proceeded smoothly when (R)-156 was treated with sodium hypochlorite in pyridine (Scheme 3.5). At this stage, the Z-olefin 157 was isomerized under irradiation with UV-B light resulting in a separable mixture of E-/Z-isomers in low yield. ${ }^{[160]}$ The E-isomer 158 was desilylated with TBAF, revealing the secondary alcohol, which was oxidized to the corresponding ketone 159 . Only this intermediate succumbed to epoxidation with DMDO in diastereoselective fashion, while a final Wittig olefination furnished 17-deoxyprovidencin (160). ${ }^{[160]}$

Scheme 3.5. Photoinduced E-/Z-isomerization and endgame towards 17-deoxyprovidencin (160). ${ }^{[160]}$
This heroic effort by Mulzer and coworkers represents the most advanced foray towards providencin (132). To this date, however, no further attempts were disclosed moving from 17deoxyprovidencin (160) to actual providencin (132).

Scheme 3.6. Cyclobutane formation via oxygen atom excision from furanoside 164. ${ }^{[161]}$
In 2009, White et al. disclosed their take on providencin (132). Starting from the chiral pool, specifically D-glucose, bis-acetonide 161 was synthesized in four steps. ${ }^{[162,163]}$ Standard protecting group manipulations gave rise to diol 162, which under treatment with triphenylphosphine, iodine and base transforms to olefin 163 (Scheme 3.6). Acetonide cleavage in acidic methanol, followed by TBS protection furnished methyl-furanoside 164. In situ generated dicyclopentadienyl zirconium(II) mediates a stereoretentive oxygen atom abstraction, producing cyclobutanol 165 in good yield. ${ }^{[164]}$

After protection of the secondary alcohol as the TIPS ether, Wacker-Tsuji oxidation ${ }^{[165]}$ revealed the methyl ketone 166, from the vinyl handle formed in the cyclobutane formation (Scheme 3.7). Ketone 166 was reacted with LDA and the resulting enolate trapped with methylcyanoformate. The resulting β-ketoester was treated with D-glyceraldehyde acetonide 167 under acidic conditions, converting slowly into a mixture of silylated (168) and desilylated products (169) after the initial Knoevenagel condensation. Ley-Griffith oxidation ${ }^{[166]}$ of benzylic alcohol 168 furnished aldehyde 170 in good yield. ${ }^{[164]}$

Scheme 3.7. Further elaboration of the cyclobutane fragment 165 in White's approach. ${ }^{[164]}$
To this end, HWE olefination with phosphonate $\mathbf{1 7 1}$ produced ester 172 in high E-selectivity (Scheme 3.8). This route, however, was abandoned after it was found that TBS cleavage with PPTS at elevated temperatures in ethanol and final oxidation of the secondary alcohol to the ketone resulted in a substrate which could not be moved forward. Problems of distinguishing the different ester moieties and exo-methylene installation forced the authors to pursue a different approach. ${ }^{[161]}$

Scheme 3.8. Synthesis of the final intermediate 173 in White's first-generation approach. ${ }^{[164]}$

In practical terms, intermediate $\mathbf{1 6 5}$ was selected as the starting point for the second-generation approach. A laborious sequence of protecting group manipulations led to acetate $\mathbf{1 7 4}$, which undergoes oxidative cleavage of the alkene in presence of sodium periodate and catalytic amounts of osmium tetroxide (Scheme 3.9). ${ }^{[167]}$

Scheme 3.9. Synthesis of a modified cyclobutane fragment 180 in a second-generation approach. ${ }^{[167]}$
Reaction of this aldehyde with propargyl bromide 175 in presence of stannous chloride gave the allenic alcohol 176 as a single diastereomer. Following oxidation to the corresponding ketone, silver nitrate on silica mediated the cyclization to the furan, a procedure by Marshall and coworkers. ${ }^{[168,169]}$ Furan 178 undergoes acetate cleavage and subsequent oxidation with Ley's reagent to furnish ketone 179. This building block, as similar as it seemed to the firstgeneration intermediate $\mathbf{1 7 3}$, succumbed to methylenation with the corresponding Wittig salt and n-butyl lithium as base. The authors eventually concluded that the failed methylenation at the stage of the former ketone intermediate $\mathbf{1 7 3}$ must not be attributed to the substituents on the cyclobutane, but rather to the furan moiety. ${ }^{[167]}$

At this stage, two distinct pathways were investigated (Scheme 3.10). Reductive cleavage of the pivalate and subsequent oxidation furnished aldehyde 184. Next, treatment of fragment 182 with LiHMDS and oxidative selenide elimination gave the aldol product 185. Unfortunately, all attempts to cyclize $\mathbf{1 8 5}$ via C-H activation on the furan led to decomposition of the substrate. Therefore, a second pathway was tested, in which pivalate cleavage was followed by functionalizing the furan through deprotonation in the 2-position and quenching of the corresponding anion with trimethyltin chloride. Stille cross-coupling with alkenyl iodide $\mathbf{1 8 2}$ afforded the selenide product, but, all attempts to oxidize the primary alcohol in presence of the phenylselenide substituent led to oxidative elimination. This unexpected
pitfall forced the authors to abandon the attempted total synthesis of providencin (132) along the lines investigated. ${ }^{[167]}$

Scheme 3.10. Attempted endgame of White's second-generation approach towards providencin (132). ${ }^{[167]}$

Apart from these in-depth studies by the groups of Mulzer ${ }^{[157,158,160]}$ and White ${ }^{[164,167]}$, another effort was undertaken by Wood et al. ${ }^{[170]}$, who disclosed a short, but racemic, route towards a viable cyclobutane fragment in 2011. Therein, diethyl ketene acetal 186 was reacted with diethyl fumarate 187 in presence of diisobutyl aluminium chloride in toluene at cryogenic temperatures, affording the [2+2]-cycloaddition product 188 (Scheme 3.11).

Scheme 3.11. Wood's synthesis of the furanyl-cyclobutanone fragment 193 . ${ }^{[170]}$
Exhaustive reduction employing lithium aluminium hydride, followed by double benzyl protection and acetal hydrolysis gave rise to cyclobutanone 189. Formation of the silyl enol ether 190 and subsequent trapping with NBS produced bromo ketone 191 as a mixture of
diastereomers (dr 6:1). The installation of the furan was anticipated to proceed via the 1,2addition product of ketone 191. In practical terms, 3 -furoic acid (192) is deprotonated and attacks the ketone forming a tertiary alcohol as evidenced in NMR studies. This intermediate can be reacted with diazomethane to form the methyl ester, which after treatment with base undergoes a 1,2-shift with displacement of bromine, to furnish furanyl-cyclobutanone fragment 193. Despite this concise entry into a possible synthesis of providencin (132), no further developments along these lines have been disclosed since.

3.2 Towards the Total Synthesis of Providencin via a Ring Closing Alkyne Metathesis Approach

To this day, the furanocembranoid providencin (132) remains an elusive target in natural product synthesis. Intrigued by previous heroic efforts from Mulzer ${ }^{[157,158,160]}$ and White ${ }^{[161,167]}$, a retrosynthetic analysis of $\mathbf{1 3 2}$ was devised, which tries to address the shortcomings of earlier approaches, to eventually conquer this puzzling diterpene. It was conjectured that the use of RCAM at the centerpiece of the retrosynthesis might resolve the major challenge of macrocyclization in this highly strained system. Previous studies on the total synthesis of lactimidomycin revealed the advantages of RCAM over RCM, when the ring strain can be attributed to transannular interactions rather than angle strain. ${ }^{[171-174]}$ With this caveat in mind, a synthetic program towards providencin (132) was initiated, ideally going through a versatile intermediate.

3.2.I Retrosynthetic Analysis

Since the installation of the exo-methylene group in 132, was shown to be highly sensitive to substituents on the furan, when installed from the corresponding ketone, ${ }^{[161,167]}$ we anticipated to reveal this functionality by means of a formal late-stage dehydration (Scheme 3.12). Final deprotection on the C17 alcohol would then afford providencin (132). Intermediate A was envisaged to arise from stepwise epoxidation, as previously described in Mulzer's effort. ${ }^{[160]}$ In an ideal setting the $\mathrm{C} 16-\mathrm{OH}$, serving as the handle for exo-methylene installation, should be orthogonally protected to the $\mathrm{C} 17-\mathrm{OH}$.

Scheme 3.12. Retrosynthetic analysis of providencin (132).

Although these hydroxy groups should be distinguishable due to their primary- and secondary substitution, an orthogonal protection strategy seemed to be the more sensible option. Butenolide B was planned to be assembled through carbonylation of the corresponding alkenyl stannane, ${ }^{[92,175]}$ which after desilylation should readily cyclize to produce the butenolide unit. Alkenyl stannane \mathbf{C} could arise from trans-hydrostannation of the corresponding mono-protected butyne-1,4-diol subunit. ${ }^{[176,177]}$ Macrocylization via RCAM of the corresponding bis-propargylic compound \mathbf{D} would forge the precursor of \mathbf{C}. Crosscoupling of furan building block \mathbf{F} and properly functionalized enyne fragment \mathbf{E} were anticipated to allow access to \mathbf{D}.

The fragment coupling was especially well precedented in the literature, since both Negishi and Stille cross couplings were extensively used to assemble the carbon skeletons of various furanocembranoids. ${ }^{[178-181]}$

In terms of fragment \mathbf{E}, our own group had established a racemic route to similar building block in the total synthesis of manshurolide. ${ }^{[9]]}$ Along these lines, the route was expected to allow certain modifications that would render the synthesis asymmetric. Particularly the asymmetric propargylation by Carreira et al. was deemed promising in this setting. ${ }^{[182]}$

199

Scheme 3.13. Retrosynthetic analysis of the furanyl-cyclobutanol fragment.
The cyclobutane containing fragment \mathbf{F}, however, turned out more involved (Scheme 3.13). Since the direct enantioselective access to cyclobutanes is extremely challenging, only a few appropriate methodologies could be found in the literature. At the start of the synthetic campaign, two routes were considered, employing either an enantioselective allenoate-alkene [2+2] cycloaddition developed by Brown et al. ${ }^{[183-187]}$ or a photosensitzed [2+2] cycloaddition developed by Yoon et al. ${ }^{[188,189]}$. Although, the first approach could generate the cyclobutane in
enantioselective fashion, the introduction of the desired oxidation state at C17 was not well precedented by using that strategy. Additionally, the intrinsic instability and sensitivity of the prerequisite alkynoates were expected to be potential troublemakers.

On the other hand, Yoon et al. could introduce the hydroxyl function into their cyclobutane scaffolds via oxidation of the secondary pinacol boronic esters, however, no enantioselective access to the cyclobutanes was developed. ${ }^{[189]}$ This fact notwithstanding, the substrate scope contained heterocycles, including furans, making it the prime candidate in the setting of providencin. Furthermore, a relay of stereoinformation from a distant chiral center, onto the cyclobutane upon diastereoselective ring formation was envisaged to circumvent the lack of options for introducing chirality directly. Thus, it was conjectured that fragment \mathbf{F} could arise from oxidative cleavage of cyclopentene 195, followed by differentiation of the resulting primary alcohols (Scheme 3.13). The alkene moiety would be introduced through the dehydration of an enantioenriched secondary alcohol in 196, serving the purpose of rendering this route enantioselective.

Scheme 3.14. Possible conformers of 197 in the [2+2] cycloaddition step.
It was presumed, that the photosensitized [2+2] cycloaddition could proceed with facial selectivity, because the two possible pseudochairlike transition states resulting from folding of linear alkenyl boronate 197 exhibit either an axial- or equatorial-oriented TBS-ether, producing two distinct diastereomers. However, this stereochemical model is significantly simplified and excludes the possibility of other half-chair conformers of the open-chain cyclopentane section in the transition state. ${ }^{[190]}$

Cyclobutanes 200/201 can be traced back to alkenylboronate 197, which in turn was envisaged to be produced via hydroboration of a terminal alkyne. The critical stereocenter was projected to be introduced via Noyori transfer hydrogenation of the corresponding TMS-capped
ynone. ${ }^{[191,192]}$ A Suzuki coupling merges bromofuran 198 and alkenyl boronic ester 199, before the TBS ether is deprotected, oxidized and treated with deprotonated trimethylsilylacetylene.

3.2.2 Synthesis of the Furanyl-Cyclobutanol Fragment

Reduced to practice, commercially available 3 -furoic acid (192) was transformed into 2-bromofuran-3-carboxylic acid via a literature procedure. ${ }^{[193]}$ The crude material was subjected to methyl iodide and potassium carbonate in DMF at elevated temperature, affording the crude methyl 2-bromofuran-3-carboxylate (198), which was purified by flash chromatography yielding the desired furan building block in 60% yield over two steps and a single chromatographic purification step on decagram scale (Scheme 3.15). The coupling partner was prepared via O-silylation of $\mathbf{2 0 2}$, followed by hydroboration in neat catecholborane and subsequent pinacol-for-catechol exchange. The alkenyl boronate 199 was isolated in 61% yield over 2 steps. ${ }^{[194]}$

Scheme 3.15. Syntheses of the Suzuki coupling precursors 198 and 199.
The Suzuki coupling proceeded smoothly under standard conditions, giving access to the alkenylfuran 203 in good yield on gram scale (Table 3.1). To prove the feasibility of this approach, we initiated our first foray towards the [2+2] cycloaddition in a racemic manner. Thus, desilylation of the TBS-ether, Parikh-Doering oxidation ${ }^{[139]}$ of the primary alcohol and lithium acetylide addition into the aldehyde furnished propargyl alcohol 204 in reproducible fashion. Next, TMS-cleavage and O-silylation with TBSCl gave the terminal alkyne, ready for hydroboration. Although the hydroboration proceeded in low yields when Wang's conditions ${ }^{[195]}$ were employed using catalytic Schwartz reagent, recourse to the 9-H-9-BBN catalyzed hydroboration of the terminal alkyne, known as the Arase-Hoshi conditions, ${ }^{[196-198]}$ furnished the desired alkenyl boronate rac-197 in good yield.

Table 3.1. Racemic synthesis of the [2+2] cycloaddition precursor rac-197.

At this stage alkenyl boronate 197 was ready to be cyclized in presence of photocatalyst 205 (Scheme 3.16) under conditions previously described by Yoon et al. ${ }^{[188,189]}$. Treatment with the Ir-catalyst 205 in carefully degassed acetonitrile accomplished the [2+2] cycloaddition in impressive fashion, yielding a diastereomeric mixture (1.6:1 dr) of cyclobutanes rac-201 and rac-200 in a combined yield of 92%.

Scheme 3.16. Photosensitized intramolecular [2+2] cycloaddition of furan rac-197.
NOE-studies of the separated diastereomers showed that the isomers are enantiomeric regarding all the substituents on the cyclobutane. Although we had hoped, that the TBS-ether might induce higher levels of diastereoinduction (Scheme 3.14), the fact that the absolute configuration of providencin (132) remains elusive, necessitated access to both enantiomers of the furanyl-cyclobutanol fragment. To test whether higher levels of stereoinduction could be achieved when bulkier silyl ethers are installed at the stage of the propargyl alcohol 206, TIPS-
and TBDPS-protected 209 and 210 were targeted (Scheme 3.17). Silyl protection under standard conditions furnished terminal alkynes 207 and 208, which readily succumbed to hydroboration using Arase and Hoshi's procedure. ${ }^{[196]}$ The photocycloaddition proceeded smoothly, although no superior diastereoselectivity was observed for adducts 211 and 212. Interestingly, the stereoselectivity compared to the TBS-ether 197 is actually slightly worse (1:1 dr). With these results in hand, the synthesis was intended to be pushed forward with TBSether 197, since it is the most simple of the three protecting groups and worked equally well, if not somewhat better than the others.

$$
\begin{aligned}
& \text { rac-211: } \mathrm{R}=\text { TBDPS, } 1: 1 \mathrm{dr}, 87 \% \text { yield* } \\
& \text { rac-212: } \mathrm{R}=\text { TIPS, } \quad 1: 1 \mathrm{dr}, 94 \% \text { yield }
\end{aligned}
$$

rac-209: $\mathrm{R}=$ TBDPS, 65% yield
rac-210: $R=$ TIPS, $\quad 78 \%$ yield

Scheme 3.17. Synthesis of different silyl-protected alcohols for [2+2] cycloaddition.
With a route towards the cyclobutane core established, the efforts turned to rendering the synthesis asymmetric. As indicated in the retrosynthetic analysis (see scheme 3.13) it was envisaged to introduce the critical stereocenter via Noyori's transfer hydrogenation of a silylcapped ynone. ${ }^{[191,192]}$ In order to test the influence of the silyl-cap on the enantioselectivity of the Noyori reduction, three easily accessible ynones were prepared (Scheme 3.18). Starting from aldehyde 213, addition of the corresponding lithium acetylides afforded the TES- and TIPS-capped propargylic alcohols 214 and 215 respectively in quantitative yields. Due to partial TMS cleavage, the TMS-capped propargylic alcohol 204 was isolated in only 85% yield. Oxidation of the propargylic alcohols with $\mathrm{PCC}^{[25]}$ furnished the corresponding ynones 216218 in moderate yields. With access to the ynones secured, the transfer hydrogenation, using Noyori's Ru-cymene complex (R, R)-219, resulted in excellent enantioinduction for all silylcapped derivatives, while delivering the enantioenriched alcohols (R)-204, (R)-214 and (R)-215 in near quantitative yields.

Scheme 3.18. Examination of the influence of different silyl-capped ynones on Noyori's transfer hydrogenation.

As the current route from alkene 203 to enantioenriched alkenyl boronic ester 197 comprised of three silyl group manipulations and two oxidation steps, a change in the starting material was envisaged in order to improve the atom and redox economy in our first scale-up. The synthesis of the corresponding alkenyl boronate 216 proceeded similarly to our previous fragment 199 (Table 3.2). The yield was slightly diminished, due to increased instability of the pinacol boronic ester 216 towards silica. For further improvements to this short sequence, recourse to the Epin-boronic ester ${ }^{[199]}$ for increased stability towards silica gel should be considered.

The Suzuki coupling of bromofuran 198 and thus formed boronic ester 216 produced ester 218 in good yield on decagram scale. The Weinreb amide was selectively formed from the alkyl ester, ready for addition of the carbon nucleophile. While the addition of the organolithium arising from trimethylsilyl acetylene was accompanied by serious amounts of the desilylated alkynoate (Table, 3.2, Entry 1), the TMS-cleavage could be reduced by using EtMgCl as a base (Entry 2).

Table 3.2. Alkynoate synthesis via the Weinreb amide 218.

This inconvenience could be completely circumvented when triisopropyl acetylene was deprotonated with n-butyllithium and the corresponding nucleophile added into the Weinreb amide derived from ester 218 (Entry 3). In this case no cleavage of the bulkier silyl cap was observed.

Surprisingly, TBAF mediated cleavage of the TIPS-group was quite low yielding (Table 3.3, Entry 1). When conditions using silver fluoride, originally reported by Kim et al. ${ }^{[200]}$ were employed, copious amounts of the aldehyde were detected (Table 3.3, Entry 2). The formation of aldehyde 213 from propargyl alcohol 215 might be explained via a fragmentation first observed in steroid systems by Gardi et al. ${ }^{[201]}$ Therein, silver acetylide produced after silylcleavage abstracts a proton of the propargylic alcohol (A) and thereupon aldehyde (B) and silver acetylide (C) are generated (Table 3.3). The formation of the latter presumably represents the driving force of this reaction. ${ }^{[202]}$ Although the scope in Kim's study contains a propargylic alcohol, this fragmentation does not appear to be operative in their case. ${ }^{[200]}$

Table 3.3. Attempted silyl cleavage on TIPS-capped alkyne 215 (a) and proposed mechanism for AgFmediated aldehyde fragmentation.
a) SilyI-Cleavage of TIPS-capped alkyne

b) Proposed Mechanism for Aldehyde Formation in AgF mediated Silyl-Cleavage

Entry	Reagent	$\mathrm{T} /{ }^{\circ} \mathrm{C}$	Solvent	Comment
1	TBAF	$0{ }^{\circ} \mathrm{C}$	THF	48% yield
2	AgF	rt	MeCN	$3.8: 1$ 219:213 ${ }^{\mathrm{a}}$

${ }^{a}$ Ratio determined by ${ }^{1} \mathrm{H}$ NMR.
With these results in hand, the trimethylsilyl-capped alkynoate 216 was pushed forward. As expected, Noyori transfer hydrogenation was perfectly transferable to multigram scale and provided alcohol (S)-204 in practically perfect optical purity and quantitative yield (Scheme 3.19). ${ }^{[191,192]}$ Cleavage of the silyl cap under basic conditions followed by standard TBSprotection furnished terminal alkyne 220 in very good yields over two steps. Arase and Hoshi's conditions for hydroboration produced alkenyl boronic ester (S)-197 on decagram scale in a highly reproducible fashion. ${ }^{[196,198]}$

Scheme 3.19. Scale-up of the enantioselective route towards alkenyl boronic ester (S)-197.
Next, the scale-up of the photosensitized [2+2] cycloaddition was investigated. Since blue light is absorbed by neither glass nor water, the reaction was run in a water cooled, jacketed vessel to ensure sufficient heat transfer. Assuring efficient convection should mitigate long reaction
times, arising from inefficient light penetration in the larger reaction container. Reduced to practice, a solution of (S)-197 accompanied by Ir-catalyst 205 in carefully degassed MeCN was irradiated with a blue LED (Scheme 3.20), thus resulting in the formation of cycloadducts 200 and 201, which were easily separated by flash chromatography at decagram scale.

The modest diastereoselectivity ($\mathrm{dr} 1.5: 1$) of the transformation notwithstanding, it is worth mentioning, that the resulting products 200 and 201 are "quasi-enantiomers" regarding the cyclobutane subunit. As they are separable by flash chromatography, they should allow access to both enantiomers of fragment 195 (Scheme 3.13), which is desirable since the absolute configuration of providencin (132) remains unknown.

Scheme 3.20. Scale-up of the photosensitized [2+2] cycloaddition with enantioenriched alkenyl boronic ester (S)-197.

Reaction of 200/201 with sodium perborate resulted in slow decomposition of the substrates. Conditions using aqueous hydrogen peroxide in a biphasic mixture of THF and aqueous NaOH , however, delivered the desired secondary alcohol 196 in good yield (Scheme 3.21). ${ }^{[189]}$ Acetylation of the secondary alcohol 196 preceded desilylation with TBAF revealing the hydroxy group attached to the five-membered ring in 221.

Scheme 3.21. Elaboration of the minor diastereomer 200 arising from the [2+2] cycloaddition.

The acetate was identified as a viable protecting group, as it is easily cleaved under basic and reductive conditions, while displaying full compatibility with Pd-mediated transformations; moreover it is orthogonal to silyl protecting groups. Alternatively, a MOM-ether might be introduced, having the advantage of tolerating strongly basic conditions and strong nucleophiles.

With the stage set for the dehydration event, it was found that Martin's sulfurane, without external base, was optimal to afford olefin 195 in excellent yield. Although ozonolysis led to full decomposition of the substrate, OsO_{4}-catalyzed dihydroxylation, followed by periodate cleavage and in situ reduction of the bis-aldehyde worked exceptionally well and provided diol 222 on gram scale.

Parallel to the minor diastereomer 200, the major diastereomer 201, arising in the [2+2] cycloaddition, was converted to cycloolefin ent-195 (Scheme 3.22). Noticeable are the diminished yields at the stage of TBS-cleavage and dehydration of the respective alcohol. These observations might be explained by the orientation of the $\mathrm{C} 16-\mathrm{OH}$ group, as it points into the concave face of the cis-fused bicycle, shielding it from the attack of fluoride in the desilylation as well as the attack onto Martin's sulfurane in the dehydration. As these reactions are accompanied by decomposition at longer reaction times, the yields are lower, when compared to the diastereomeric series.

Scheme 3.22. Elaboration of the major diastereomer 201 arising in the [2+2] cycloaddition.
The deprotection of acetate 222 could be afforded by means of in situ generated HCl , from AcCl in MeOH (Scheme 3.23). As triol 225 now consisted of a 1,3-diol moiety, it was conjectured that the latter might be selectively masked by a thermodynamically formed acetonide. Unfortunately, the trans-configured acetonide 226 turned out as highly sensitive, which led us to abandon this approach.

Scheme 3.23. Acetate cleavage and projected acetonide protection of the 1,3-diol in 225.

Due to the high polarity of triol 225, resulting in complicated compound handling and low yields when the triol had to be recovered, diol 222 was moved forward. To this end, selective tritylation of the less sterically demanding primary alcohol gave the desired monomethoxytrityl-protected cyclobutane 227 (Scheme 3.24), along with the undesired monoand bis-protected cyclobutanes 227 a and $227 b$ respectively. The latter two were recycled to diol 222 after separation through flash chromatography. Protection of the remaining primary alcohol of 227 with TBDPSCl gave fully protected building block 228, which upon treatment with catalytic amounts of PPTS in a mixture of DCM and MeOH delivered the orthogonally protected cyclobutane 194.

Scheme 3.24. Selective tritylation of 222 and following protecting group manipulations.
Oxidation with Dess-Martin periodinane furnished the aldehyde 229 in satisfying yield and purity (Table 3.4). The alkynylation was tested with both lithium- and magnesium-derived species (Entry 1 and 2 respectively), where the latter proved to be superior. Further functionalization of furan 230 via electrophilic bromination with NBS in various solvents or with the aid of sulfonyl hypoiodite generated from AgOMs and I_{2} in MeCN failed, ${ }^{[203]}$ as decomposition of the substrate was observed.

Table 3.4. Towards the coupling precursor (Scheme 3.12).

${ }^{\text {a }}$ Ratio determined by ${ }^{1} \mathrm{H}$ NMR.
Deprotonation at the 2-position of the furan and subsequent trapping of the carbanion was not attempted, because the acetate in 230 was known to be sensitive to strong bases necessary to abstract the most acidic proton of the furan moiety.

The crude NMR spectra indicated involvement of the triple bond, which led us to investigate the functionalization of the furan, before the alkyne was installed. After a considerable amount of experimentation it was found, that Ritter's method ${ }^{[203]}$ in combination with a modified workup procedure provided iodofuran 231 (Scheme 3.25). The modified procedure, consisted of an aqueous work up with sodium thiosulfate prior to concentration of the substrate, in order to render the unreacted hypoiodite reagent harmless, as significant decomposition was observed otherwise.

Scheme 3.25. Successful iodination of furan 194 using Ritter's conditions.[203]
Subsequently, coupling of vinyltrifluoroborate salt 232 to this fragment was attempted (Scheme 3.26). This would not only give the proof-of-concept that a viable building block for cross-coupling was prepared, but also strategically intercept Mulzer's route to providencin (132). Adopting the literature route, which allowed intermediate 234 to be converted into 17deoxyprovidencin (160), should allow entry for our vinyl furan 233 to be elaborated into actual providencin (132).

Scheme 3.26. Suzuki coupling of vinyltrifluoroborate salt 232 with iodofuran 231 and the corresponding intermediate in Mulzer's synthesis of 17-deoxyprovidencin (160). ${ }^{[160]}$

Finally, with an enantioselective access to iodofuran 231 established and the first coupling reaction performed, our attention turned towards a properly functionalized alkenyl building block, to pursue the RCAM strategy towards providencin (132).

3.2.3 Synthesis of the Western Fragment

For the synthesis of the western fragment, an approach was selected, which was very well precedented by work from our own group. Specifically, in the synthesis of manshurolide, a MAP-kinase inhibitor, 3-butyn-1-ol (236) was converted into alkenyl iodide 238 in three steps. ${ }^{[9]]}$ Although this sequence was carried out in racemic fashion, employing an asymmetric propynylation step developed by Carreira et al. ${ }^{[182]}$ might allow access to the enantioenriched material.

Scheme 3.27. Synthesis of enantioenriched alcohol 238 via Carreira's alkynylation.
In practice, Zr -mediated carbometalation of 3-butyn-1-ol (236) provided (E)-alkenyl iodide 237 in good yield and excellent regioselectivity (Scheme 3.27). Gratifyingly, Carreira's alkynylation using propyne delivered propargyl alcohol 238 in good enantioselectivity, though in poor yield.

With the literature known compound 238 in hand, TBS-protection preceded the attempt to synthesize the corresponding alkenyl stannane $\mathbf{2 4 0}$ (Table 3.5). Although crude NMR showed signals arising from the desired stannane, every purification of the highly acid sensitive molecule resulted in quantitative protodestannylation. Therefore, the focus was put towards alkenyl boronic ester 241.

Table 3.5. Derivatization of alkenyl iodide 239 into viable coupling partners.

First, classic Miyaura borylation conditions were employed, resulting in irreproducible yields ranging from 10 to 40% (Table 3.5, Entry 1). ${ }^{[204,205]}$ Another palladium-catalyzed protocol was attempted, however, at this time full decomposition of the substrate was observed (Entry 2).[206] Only recourse to lithium-halogen exchange followed by trapping with triisopropylborate and addition of pinacol delivered the boronic ester 241 in reproducible fashion (Entry 3). ${ }^{[207]}$

The 1,4 -butyne-diol moiety is arguably one of the hardest motifs to build through alkyne metathesis. Additionally, the mono-TBS-protected subunit was unprecedented, so we also planned to target a MOM-protected building block 243, which in turn would give us a wellprecedented scaffold previously built by RCAM. ${ }^{[9]]}$ In practical terms, fragment 242 bearing a MOM- instead of a TBS-ether was synthesized from enantioenriched alcohol 238 via the previously established route (Scheme 3.28).

Scheme 3.28. Synthesis of MOM-protected western fragment 243.

3.2.4 Fragment Coupling and Attempted Ring Closing Alkyne Metathesis

Finally, the Suzuki coupling with the originally targeted fragments $\mathbf{2 4 1} / \mathbf{2 4 3}$ and 231 could be tested. Using Buchwald's $2^{\text {nd }}$ generation XPhos-Pd-precatalyst 235, ${ }^{[208]}$ the fragment merger provided the desired products 244 and $\mathbf{2 4 5}$, from both the TBS- and MOM-protected western fragments (Scheme 3.29). A high catalyst loading was necessary to ensure full conversion, which might be explained through impurities resulting from the crude iodofuran 231 or decomposition products formed at higher temperatures during the course of the reaction.

246: $R=T B S, \quad 40 \%$ yield, two steps
247: $R=$ MOM, 39% yield, two steps

Scheme 3.29. Fragment coupling and further elaboration into diyne 246/247.
In any case, unreacted alkenyl boronic ester 241/243 could always be reisolated after the reaction, indicating degradation of the iodofuran fragment 231. Based on these observations the mediocre yields can probably be attributed to the high instability of iodofuran 231, notwithstanding that a thorough optimization of reaction conditions might increase the yield. Notably, the Suzuki coupling as carried out herein is unprecedented for furanocembranoids, where a large portion of synthetic literature has used Stille couplings from the corresponding stannylfurans or Negishi coupling via the appropriate organozinc compounds. ${ }^{[178,180,181,209]}$

At the stage of alcohol $\mathbf{2 4 4} / \mathbf{2 4 5}$, DMP mediated oxidation of the primary alcohol, followed by addition of 1-propynylmagnesium bromide, furnished diynes 246/247 over two steps. Slight degradation was observed during the Grignard reaction, probably arising from the base-labile acetate present in the molecule.

At last, it was time to test the ring-closing alkyne metathesis on the respective diynes 246 and 247. First we probed whether TBS-ether $\mathbf{2 4 6}$ would succumb to macrocyclization via RCAM in presence of Mo-alkylidyne 79 (Table 3.6, Entry 1). ${ }^{[104,105]}$ The starting material was quickly consumed in refluxing toluene; however, the crude reaction mixture was mainly composed of ill-defined oligomers giving broad signals in ${ }^{1} \mathrm{H}-\mathrm{NMR}$. After checking if the starting material was stable at the high temperature needed to achieve RCAM in strained systems, it was speculated, that the TBS-ether was too sterically demanding and therefore might hinder ring closure. Anyhow, MOM-ether 247 was also uncompliant in forming the 14-membered macrocycle with complex 79 and only returned an intractable mixture (Entry 2). As a last resort, we turned our hopes to the two component catalyst system consisting of complex 51 and silanolate ligand 52. ${ }^{[9]]}$ Disconcertingly, this last line in RCAM catalytic systems also failed to afford any cyclized product (Entry 3).

Ultimately, no further experiments were performed, as it was concluded, that a RCAM macrocylization strategy with the pre-installed furan was not a viable approach towards the synthesis of providencin (132). Since strategies that pursued macrocyclization in advance of furan formation had been investigated previously, ${ }^{[210]}$ we were aware of the difficulties arising from selective formation of the E-alkene between $C 7$ and $C 8$ within the macrocycle. The putative advantage of our strategy lay in forming the E-olefin prior to macrocyclization. Attempts to epoxidize the $\mathrm{C} 7=\mathrm{C} 8$ olefin, releasing some of the strain embedded in the sp^{2} hybridized bond in conjugation with the aromatic furan were met with failure. In order to investigate whether the strain of the trans-fused cyclobutane unit was the problematic structural element for the RCAM step, a synthesis of a model substrate was planned, which excluded this strain-increasing-element and substituted it with an alkyl chain for simplicity. The synthesis and behavior of these model compounds in RCAM is discussed in the following section.

Table 3.6. Attempted macrocyclization of $\mathbf{2 4 6} / \mathbf{2 4 7}$ by RCAM.

Entry a	Substrate	Catalyst	T $/{ }^{\circ} \mathrm{C}$	Comment
1	246	$40 \mathrm{~mol} \% \mathbf{7 9}$	110	Complex mixture of oligomers at full conversion of starting material
2	247	$30 \mathrm{~mol} \% \mathbf{7 9}$	110	$"$
3	247	$25 \mathrm{~mol} \% \mathbf{5 1}$ $30 \mathrm{~mol} \% \mathbf{5 2}$	110	$"$

${ }^{\text {a }}$ All reactions were performed in $\mathrm{PhMe}(2 \mathrm{mM})$, in presence of $5 \AA \mathrm{MS}$.

3.2.5 Synthesis of a Model System and Application in Ring Closing Alkyne Metathesis

With the primary focus set on the synthesis of simplified diynes 252 and 253 (Scheme 3.30), we focused on the strategic introduction of the alkyl substituent via a sp²-sp3-coupling, replacing the fused cyclobutane unit. In the case of a productive RCAM event on these substrates, this strategy would directly allow entry into syntheses of acerosolide (250) or (E)-deoxypukalide (251). ${ }^{[211,212]}$

To this end, a classic Negishi coupling ${ }^{[213,214]}$ of an alkyl iodide precursor might be envisioned, however, modern methods arising from the field of photoredox catalysis ${ }^{[215,216]}$ might also open entry into 2-alkyl furans. Intrigued by the direct deoxygenative sp²-sp3-coupling of alcohols with halo arenes developed by Macmillan et al. ${ }^{[216]}$, investigations were started to evaluate the feasibility of this methodology in our setting.

c) Model Substrate for RCAM

Scheme 3.30. (a) Selected furanocembranoids, (b) major strategic retrosynthetic disconnections for $\mathbf{2 5 1}$ and (c) targeted model substrates 252/253 for RCAM.

Mechanistically the coupling reaction mentioned above initiates by addition of the alcohol \mathbf{A} to the benzoxazolium salt B, accompanied by the loss of a pyridinium salt (Scheme 3.31) to give adduct \mathbf{C}. A long-lived excited triplet state $\operatorname{Ir}(\mathrm{III})$-complex \mathbf{E} is known to be generated from the parent photocatalyst \mathbf{D} under irradiation with blue light. Adduct \mathbf{C} is oxidized by \mathbf{E} in a single electron transfer, generating a radical cation intermediate of type G. Deprotonation of the now weakened C-H bond adjacent to the N-centered radical gives rise to the α-amino radical \mathbf{H}. This radical, adjacent to three heteroatoms, readily undergoes β-scission to leave behind the aromatized carbamate byproduct \mathbf{I} as well as the deoxygenated carbon centered radical \mathbf{J}. The gain in aromaticity of the former was anticipated to provide the necessary thermodynamic driving force for the alcohol C-O bond homolysis.

Scheme 3.31. Proposed mechanism for the deoxygenative arylation by MacMillan et al.[216]
In the nickel-catalytic cycle, the $\mathrm{Ni}(0)$-species \mathbf{L} arises from two consecutive SET events with reduced photocatalyst \mathbf{F} and subsequently reacts with aryl bromide \mathbf{M} to give the oxidative addition $\mathrm{Ni}(\mathrm{II})$-complex \mathbf{N}. Entering the nickel catalytic cycle, the alkyl radical \mathbf{J} traps the $\mathrm{Ni}(\mathrm{II})$-species \mathbf{N} to yield the $\mathrm{Ni}(\mathrm{III})$-intermediate \mathbf{O}, which after reductive elimination with formation of the C-C coupled product \mathbf{P} releases the final $\mathrm{Ni}(\mathrm{I})$-complex \mathbf{K}. A final SET-event oxidizing the $\operatorname{Ir}(\mathrm{II})$-species \mathbf{F} and reducing the $\mathrm{Ni}(0)$-complex \mathbf{L} closes both catalytic cycles. ${ }^{[216]}$

In practical terms, synthesis of the required NHC precursor was carried out in two steps following the literature procedure (Scheme 3.32). ${ }^{[216]}$ The synthesis of a potential coupling partner commenced with 1,4-butanediol (256), which was protected as the mono PMB-ether under acidic conditions (Scheme 3.33). Oxidation of the remaining primary alcohol under Parikh-Doering conditions preceded addition of 1-propinylmagnesium bromide giving rise to propargyl alcohol 258. Standard functional group manipulations eventually led to primary alcohol 259, which can either be used in the MacMillan-type coupling, or alternatively in an Appel reaction to produce primary iodide 260.

Scheme 3.32. Synthesis of the benzoxazolium salt 255.
With an efficient access to the primary alkyl iodide in hand, a Negishi-coupling was investigated. ${ }^{[213,214]}$ Alkyl iodide $\mathbf{2 6 0}$ was transformed into the corresponding alkyl zinc species according to Knochel's procedure, ${ }^{[217]}$ and subsequently cross-coupled with the bromofuran 261 under palladium catalysis.

Scheme 3.33. Synthesis of alkyliodide 260 and Negishi coupling with bromofuran 198.
Since the zinc insertion required elevated temperatures, the low yield was assigned to a probable 5-exo- or 6-endo-dig cyclization onto the alkyne. The radical generated from the NHCadduct in MacMillan's coupling reaction ${ }^{[216]}$ would most likely also favor this detrimental cyclization pathway. Therefore the unsaturated alcohol 259 was ruled out as a potential substrate. Halogenation of furan 261 using Ritter's hypoiodite reagent ${ }^{[203]}$ or NBS in various solvents failed and this route was abandoned.

With these limitations in mind, primary alcohol 262 was subjected to coupling conditions with NHC-precursor 255 and bromofuran 198 (Scheme 3.34). Furthermore phthalimide was employed, since an additive mapping study had found beneficial effects in $\mathrm{Ni}(\mathrm{dtbbpy}) \mathrm{Br}_{2}$ (265) -catalyzed couplings, especially those involving electron-rich aryl halides. ${ }^{[218]}$ To our delight, the coupling reaction proceeded exceedingly well, providing the acetate-protected product 263 in quantitative yield. These results suggest that this specific coupling methodology might be used, if a synthetic program is set up for the synthesis of furanocembranoids as 250 and 251.

Scheme 3.34. Deoxygenative arylation of primary alcohol 262 with bromofuran 198.[216]
At the stage of compound 263, iodination using Ritter's conditions ${ }^{[203]}$ did not give a clean reaction profile; however, NBS in MeCN cleanly delivered the corresponding bromofuran (Scheme 3.35). The Suzuki coupling of the latter with rac-243 provided access to acetate 266. Methanolysis of the protecting group revealed the primary alcohol, which after oxidation and addition of 1-propynyl magnesium bromide furnished diyne 252. Interestingly, when the deacetylation was carried out first on 263 , subsequent bromination of the furan led to complete decomposition within minutes. It is likely, that the free alcohol may cyclize onto the oxocarbenium ion (also known as a Wheland intermediate), ${ }^{[219]}$ which is transiently formed in the electrophilic aromatic bromination and opens up deleterious reaction pathways. Thus far, it has been found that either alkynes or free alcohols, which are capable of cyclizing onto the furan, are problematic in electrophilic halogenation reactions in our furan systems.

Scheme 3.35. Suzuki coupling and final steps towards model substrate 252.

To make the deoxygenated model substrate 253 , the acetate-protected coupling product 263 was deprotected with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol (Scheme 3.36). Next, an Appel reaction furnished the primary alkyl iodide $\mathbf{2 6 7}$, which serves as a linchpin to install the alkyne in the alkyl chain. A methodology using Nickel-complex 268 and 1-propynylmagnesium bromide in presence of bis[2-(N,N-dimethylaminoethyl)]ether (O-TMEDA) worked well. ${ }^{[220]}$ Gratifyingly, electrophilic bromination of the furan with NBS was successful despite the presence of the alkyne. Ultimately, the Suzuki coupling furnished propargyl ether 253, in 17\% yield over three steps.

1) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$
2) $\mathrm{PPh}_{3}, \mathrm{I}_{2}$, imidazole DCM

88\% yield
over 2 steps

Scheme 3.36. Synthesis of the mono propargylic diyne 253.
With diynes 252 and 253 in hand, their behavior in RCAM was tested (Table 3.7). First, diyne 252 was subjected to Mo-alkylidyne 79 in boiling toluene (Entry 1), at which point surprisingly, the exact same outcome as with cyclobutane containing diyne $246 / 247$ was observed. Apparently, the E-configured olefin conjugated to the furan moiety presents an insurmountable strain-energy barrier for a RCAM-based macrocyclization strategy.

It must be reiterated that the 1,4-butyne dioxy unit comprises one of the most challenging substrates in RCAM. The reasons for this are unclear. One possibility is that, in some systems, the RCAM reaction initially forms oligomeric species, which then de-polymerize to yield monomeric macrocycles in an entropically-driven process; this would be analogous to some olefin metathesis mechanisms. If so, 1,4-dioxybut-2-yne subunits formed by an initial oligomerisation may be to sterically and/or electronically deactivated to engage in depolymerization. However, in the C-X deoxy system 253, the reaction yielded dimeric macrocyclic products (Entry 2); this implies that the enthalpic gain entailed in forming the strained monomeric macrocycle is not sufficiently offset by the entropic gain of monomer formation.

With these results in hand any further attempts to target (E)-configured furanocembranoids via RCAM were abandoned.

Table 3.7. Attempted RCAM on the model compounds 252 and 253.

[^0]
3.3 Summary and Outlook

A new approach was taken in order to conquer providencin (132), an intriguing marine diterpene. ${ }^{[153]}$ Basing on the heroic efforts by Mulzer and White, a new strategy was envisaged, in which the macrocylization would have been effected by RCAM (Scheme 3.37), thereby allowing full control over the geometry of the C7-C8 olefin. For fragment 231, the enantioinduction harnessed Noyori's powerful transfer hydrogenation, ${ }^{[191]}$ while Yoon's energy-transfer catalysis served as the key strategic disconnection. ${ }^{[189]}$ The robustness of this approach is demonstrated by the fact that most steps could be carried out on gram-scale. In the late stages, towards the cyclobutane building block 231, an electrophilic functionalization of the furan set the stage for a Suzuki coupling with a properly functionalized alkene.

Scheme 3.37. Summary of the RCAM approach towards providencin (132).
For the alkene coupling partner, Carreira's alkynylation ${ }^{[182]}$ set the stereocenter with good enantioselectivity and a simple lithium-halogen exchange followed by trapping with the respective borate furnished alkenyl boronic esters 241/243.

Scheme 3.38. Summary of the RCAM approach towards simplified model substrates.

Arriving at the climax of the synthetic proposal, it was surprising to find, that none of the most active alkyne metathesis catalysts was able to close the macrocycle. Neither the TBS-protected nor the MOM-protected diyne succumbed to the Mo-alkylidyne catalysts, but rather returned intractable mixtures of oligomers.

Startled by these results, our attention was turned towards a model substrate to investigate the likely cause of this failure. As the trans-fused cyclobutane in 132, might be viewed as one of the strain-inducing elements in the macrocycle of 132, removal of this moiety altogether was envisaged. In the synthesis of the model substrates (Scheme 3.38), MacMillan's deoxygenative cross-coupling worked exceedingly well and opened entry towards the diyne substrates 252 and 253, after Suzuki-coupling of the bromofuran 271 and alkenyl boronic ester 243. Yet these diynes also did not yield to RCAM and rather returned mixtures of oligomers or dimers. The E-configured olefin in conjugation with the furan is hence sufficient to render macrocylizations by RCAM unfeasible.

Notwithstanding this setback, the cyclobutane fragment 231 served as a versatile linchpin in accessing vinylfuran 233. This intermediate might allow entry to providencin (132), when subjected to the strategy exercised by Mulzer et al. ${ }^{[160]}$ Advantageously, this building block bears all functionalities found in Mulzer's intermediate 234, but in addition already carries the desired oxidation state at C17, thus addressing the Achilles' heel of Mulzer's campaign (Scheme 3.39).

Mulzer's intermediate

- prepared in 14 steps
- via chiral resolution
- C-17 in undesired oxidation state
- C-18 in desired oxidation state

White's intermediate

- prepared in 22 steps
- from D-Glucose
- C-17 in desired oxidation state
- C-18 in undesired oxidation state

Scheme 3.39. Comparison of different synthetic intermediates in approaches towards providencin (132). ${ }^{[160,167]}$

In retrospect, the HWE macrocyclization in Mulzer's first-generation approach (Scheme 3.40) becomes more impressive. Therein, ring closure was afforded in acceptable yields, with both the trans-fused cyclobutane unit and the E-configured C7=C8 alkene preinstalled. ${ }^{[158]}$ Since the HWE olefination forges a highly thermodynamically favorable $\mathrm{P}=\mathrm{O}$ double bond, it may be possible to achieve macrocyclization, if a reaction is chosen, which intrinsically possesses a large enthalpic gain.

Scheme 3.40. Successful HWE ring-closing olefination in Mulzer's abandoned first-generation approach towards providencin (132). ${ }^{[158]}$

Another extremely versatile reaction, which engenders a large enthalpic gain, is the NHKreaction. Interestingly, literature precedent could be found from Malacria et al. ${ }^{[221]}$ (Scheme 3.41). The intramolecular NHK reaction of alkynyl iodide 273 and an aldehyde forges the 11-membered ring system of 274. Intriguingly, this macrocycle bears the exact same monoprotected butyne-1,4-dioxo subunit, which was targeted in our approach via RCAM. In this system, slow addition of the substrate into a suspension of chromium dichloride was necessary to favor the intramolecular pathway and the reaction gave only mediocre diastereoselectivity.

Scheme 3.41. Literature precedent of a NHK-macrocyclization by Malacria et al. ${ }^{[221]}$
Despite the higher probability of actual ring closure employing the NHK reaction, achieving the desired diastereoselectivity might be challenging; a downside, which would have been circumvented in the RCAM approach. Another convenient feature of this conceivable strategic change, is the compatibility with the previously used methods. Strategically, the methyl cap of alkyne $\mathbf{2 4 1}$ can be substituted for a TMS-group as in $\mathbf{2 7 5}$, which should largely be compatible with all subsequent transformations (Scheme 3.42). After fragment coupling, silver-mediated TMS cleavage ${ }^{[222]}$ followed by alkyne iodination ${ }^{[223]}$ and oxidation of the primary alcohol should give rise to compound 277, which has a compelling similarity with literature known substrate 273 in proximity of the alkyne.

Scheme 3.42. Possible NHK macrocyclization en route to providencin (132).
Gratifyingly, the NHK route intercepts our previous effort at an intermediate, which was anticipated via the RCAM route. The major strategic deviation of this route from our previous one is to use a more strongly enthalpically driven process to close the presumably strained macrocycle. However, as an investigation therein would be a departure from our goal of developing an RCAM-based approach towards providencin (132), it constitutes a future frontier of synthetic chemistry with respect to this thesis.

4. Experimental Section

4.I A Unified Approach to Polycyclic Alkaloids of the Ingenamine Estate

Unless stated otherwise, all reactions were carried out in flame-dried glassware using anhydrous solvents under argon atmosphere. The solvents were purified by distillation over the following drying agents and were transferred under argon: $\mathrm{THF}, \mathrm{Et}_{2} \mathrm{O}$ ($\mathrm{Mg} /$ anthracene); $\mathrm{MeCN}, 2,6-\mathrm{lutidine}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, DCE (CaH_{2}); toluene (Na / K alloy); MeOH (Mg , stored over MS $3 \AA$). DMSO, DMF, NEt 3 , pentane and pyridine were dried by an adsorption solvent purification system based on molecular sieves. Thin layer chromatography (TLC): MachereyNagel precoated plates (POLYGRAM®SIL/UV254). Detection was achieved under UV-Light (254 nm) and by staining with either acidic p-anisaldehyde, cerium ammonium molybdenate or basic KMnO_{4} solution. Flash chromatography: Merck silica gel $60(40-63 \mu \mathrm{~m})$ with predistilled or HPLC grade solvents. NMR: Spectra were recorded on Bruker AV 400, AV 500, AVIII 600 or AVneo 600 spectrometers in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}\right.$: $\delta \mathrm{c}=77.00 \mathrm{ppm}$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta \mathrm{f}=7.26 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}: \delta \mathrm{c}=49.00 \mathrm{ppm}$, residual $\mathrm{CD}_{2} \mathrm{HOD}$ in $\mathrm{CD}_{3} \mathrm{OD}: \delta_{\mathrm{H}}=$ $3.31 \mathrm{ppm} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}: \delta \mathrm{c}=39.52 \mathrm{ppm}$, residual $\mathrm{CD}_{2} \mathrm{HSOCD}_{3}$ in $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}: \delta \mathrm{f}=2.50 \mathrm{ppm}\right)$; all spectra were recorded at $25^{\circ} \mathrm{C}$. Multiplicities are indicated by the following abbreviations: s: singlet, d: doublet, t: triplet, q: quartet, p: pentet, h: hextet, hept: heptet, m: multiplet, br: broad signal. ${ }^{13} \mathrm{C}$ NMR spectra were recorded in ${ }^{1} \mathrm{H}$-decoupled manner and the values of the chemical shifts are rounded to one decimal point. Signal assignments were established using HSQC, HMBC, COSY, NOESY and other 2D experiments. IR: Spectra were recorded on an Alpha Platinum ATR instrument (Bruker), wavenumbers (v) in cm-1. MS (ESI-MS): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ3000 (Bruker), accurate mass determinations: Bruker APEX III FTMS (7 T magnet) or Mat 95 (Finnigan). Optical rotations ($[\alpha]_{\mathrm{D}}$) were measured with an A-Krüss Otronic Model P8000-t polarimeter at a wavelength of 589 nm . Preparative LC was performed with an Agilent 1260 infinity prep system (fraction collector G7159 B + G7166A, diode array detector G 7115 A); stationary phase and conditions for each compound are specified below.

Molecular sieves ($5 \AA$) were activated at $150^{\circ} \mathrm{C}$ for 24 h in high vacuum ($1 \times 10^{-3} \mathrm{mbar}$) and stored under argon.

Unless stated otherwise, commercially available compounds (Alfa Aesar, Aldrich, TCI, Strem Chemicals, ChemPUR) were used as received. The following compounds were prepared according to the cited literature: 5-iodopent-2-yne, ${ }^{[224]}$ 7-iodohept-2-yne (50) ${ }^{[62]}$ and molybdenum alkylidyne complex 79/80. ${ }^{[105]}$

4.I.I Supporting Crystallographic Information

Figure 4.1. Molecular structure of the two independent molecules of cycloalkyne 78 in the solid state; atomic displacement ellipsoids are shown at the 50% probability level, H -atoms omitted for clarity

X-ray Crystal Structure Analysis of Compound 78: $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}, \mathrm{M}_{r}=526.78 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, colorless needle, crystal size $0.140 \times 0.034 \times 0.025 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1}$ [4], $a=$ $15.6435(7) \AA, b=8.6081(4) \AA, c=23.3896(10) \AA, \beta=109.531(2)^{\circ}, V=2968.4(2) \AA^{3}, T=100(2) \mathrm{K}, Z$ $=4, D_{\text {calc }}=1.179 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=0.71073 \AA, \mu\left(M o-K_{\alpha}\right)=0.115 \mathrm{~mm}^{-1}$, analytical absorption correction ($T_{\min }=0.99, T_{\max }=1.00$), Bruker-AXS Kappa Mach3 APEX-II diffractometer with a I $\mu \mathrm{s}$ microsource, $1.381<\theta<32.467^{\circ}$, 106114 measured reflections, 20839 independent reflections, 16939 reflections with $I>2 \sigma(I), R_{\text {int }}=0.0706, S=1.031,680$ parameters, absolute structure parameter $=0.02(3)$, residual electron density $+0.4(1.12 \AA$ from H3AA) $/-0.4(0.13 \AA$ from Si1A) e $\cdot \AA^{-3}$.

The structure was solved by SHELXT and refined by full-matrix least-squares (SHELXL) against F^{2} to $R_{1}=0.049[I>2 \sigma(I)], w R_{2}=0.107$. CCDC-2081190.

Figure 4.2. Molecular structure of the four independent molecules of compound 64 in the solid state; atomic displacement ellipsoids are shown at the 50% probability level, H -atoms omitted for clarity

X-ray Crystal Structure Analysis of Compound 64: $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{M}_{r}=434.60 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$, colorless plate, crystal size $0.180 \times 0.155 \times 0.111 \mathrm{~mm}^{3}$, triclinic, space group $P 1$ [2], $a=11.7256(5) \AA, b=$ $13.3258(6) \AA, c=15.6551(7) \AA, \alpha=89.927(2)^{\circ}, \beta=89.955(2)^{\circ}, \gamma=83.357(2)^{\circ}, V=2429.73(19) \AA^{3}, T$ $=100(2) \mathrm{K}, \mathrm{Z}=4, D_{\text {calc }}=1.188 \mathrm{~g} \cdot \mathrm{~cm}^{3}, \lambda=1.54178 \AA, \mu\left(C u-K_{\alpha}\right)=0.576 \mathrm{~mm}^{-1}$, analytical absorption correction ($T_{\min }=0.92, T_{\max }=1.00$), Bruker AXS Enraf-Nonius KappaCCD diffractometer with a FR591 rotating Cu -anode X-ray source, $2.823<\theta<72.989^{\circ}, 105618$ measured reflections, 18363 independent reflections, 17486 reflections with $I>2 \sigma(I)$, $R_{\text {int }}=0.0426, S=1.145,1190$ parameters, absolute structure parameter $=-0.09(6)$, residual electron density +0.2 ($0.71 \AA$ from H33B) / - 0.2 ($0.86 \AA$ from C108) e $\cdot \AA^{-3}$.

The structure was solved by SHELXT and refined by full-matrix least-squares (SHELXL) against F^{2} to $R_{1}=0.040[I>2 \sigma(I)], w R_{2}=0.093$. CCDC-2081189.

4.I. 2 Second Generation Approach towards Ingenamine and Total Synthesis of Keramaphidin B

tert-Butyl
(S)-3-((tert-butyldimethylsilyl)oxy)piperidine-1-carboxylate (ent-44). 4-

Dimethylamino-pyridine ($8.3 \mathrm{~g}, 68.3 \mathrm{mmol}$) and triethylamine ($17.3 \mathrm{~mL}, 124.22$ mmol) were added to a stirred solution of (S)-1-Boc-3-hydroxypiperidine (25.00 $\mathrm{g}, 124.22 \mathrm{mmol})$ in dichloromethane $(250 \mathrm{~mL})$ at room temperature. After 5 min , tert-butyldimethylsilylchloride ($20.03 \mathrm{~g}, 132.91 \mathrm{mmol}$) was added and the resulting mixture stirred for 4 h at room temperature. Next, the mixture was poured into icecooled water $(100 \mathrm{~mL})$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 250 \mathrm{~mL})$. The combined organic phases were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes/EtOAc, 10:1), providing the title compound as a colorless oil (39.09 g, quant.). $[\alpha]_{\mathrm{D}}^{25}=+14.7^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right){ }^{[103]} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.91-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{dt}, J=13.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dp}, J=8.3,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.89(\mathrm{tt}, \mathrm{J}=10.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{t}, \mathrm{J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 1 \mathrm{H})$, $1.63-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 10 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=154.8,79.3,67.1,51.1,43.6,33.9,28.4,25.8,23.1,18.1,-4.8$; IR (film): $\tilde{v}=2930,2886$, 2857, 1697, 1465, 1421, 1391, 1365, 1278, 1254, 1239, 1176, 1154, 1099, 1041, 981, 904, 873, 858, $837,775 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 338.21219$, found: 338.21235.
tert-Butyl (S)-5-((tert-butyldimethylsilyl)oxy)-2-oxopiperidine-1-carboxylate (ent-45).
 Ruthenium(IV) oxide hydrate ($974 \mathrm{mg}, 7.31 \mathrm{mmol}$) was added to a solution of piperidine ent-44 (38.50 g, 122.02 mmol$)$ and $\mathrm{NaIO}_{4}(121.88 \mathrm{~g}, 569.83 \mathrm{mmol})$ in $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}(1.62 \mathrm{~L}, 1: 3)$. The resulting mixture was vigorously stirred in a flask open to air at room temperature for 1.5 h . The organic phase was separated and the aqueous layer extracted with EtOAc ($3 \times 300 \mathrm{~mL}$). The combined organic extracts were stirred with isopropanol $(20 \mathrm{~mL})$ for 3 h to decompose any remaining catalyst before they were filtered. The filtrate was washed with brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes/EtOAc, 20:1 to 10:1), furnishing the title compound as a white solid ($22.10 \mathrm{~g}, 55 \%$ yield). M.p. $=36.3-37.2^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+8.2^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)^{[103] ;}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.19$ - $4.10(\mathrm{~m}, 1 \mathrm{H}), 3.69-3.58(\mathrm{~m}, 2 \mathrm{H}), 2.71$ (ddd, $J=17.2,9.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dt}, J=17.2,6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.95$ (dddd, $J=13.2,9.0,6.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{ddtd}, J=13.6,6.8,5.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.51$ (s, 9H), 0.87 (s, 9H), 0.07 (s, 6H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=170.9,152.5,82.9,64.4,52.4,31.1$, 29.0, 28.0, 25.7, 18.0, -4.9; IR (film): $\tilde{v}=2954,2931,2895,2857,1773,1716,1472,1391,1368,1346$, 1296, 1251, 1151, 1114, 1087, 1061, 1020, 984, 938, 881, 836, 777, $702 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 352.19146, found: 352.19136.

dicarboxylate (S1). LiHMDS (1 M in THF, $19.21 \mathrm{~g}, 114.82 \mathrm{mmol}$) was added dropwise to a solution of oxopiperidine ent-45 (16.45 g, $49.92 \mathrm{mmol})$ in anhydrous THF $(250 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , before allyl chloroformate $(5.6 \mathrm{~mL}$, 52.42 mmol) was added. The resulting yellow solution was stirred for 25 min at $-78{ }^{\circ} \mathrm{C}$ before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) and the mixture warmed to ambient temperature. The aqueous phase was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 300 \mathrm{~mL}$). The combined extracts were washed with brine (100 mL), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes/EtOAc, 5:1), furnishing the title compound as a white solid (19.45 g, 94\% yield). M.p. $=49.4-50.3^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{25}=+15.0^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}, mixture of diastereomers) $\delta=5.93$ (ddtd, $\left.J=17.2,10.5,5.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.35(\mathrm{dp}, J=17.2$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{ddt}, J=10.5,2.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.21$ (m, 0.7H, major), 4.13 (tdd, $J=6.4,5.6,3.7 \mathrm{~Hz}, 0.3 \mathrm{H}$, minor), $3.84-3.78$ ($\mathrm{m}, 0.7 \mathrm{H}$, major), $3.77-3.63(\mathrm{~m}, 1.7 \mathrm{H}$, major), 3.60 (ddd, $J=13.2,3.9,0.9 \mathrm{~Hz}, 0.3 \mathrm{H}$, minor), 3.46 (dd, $J=10.0,7.3 \mathrm{~Hz}, 0.3 \mathrm{H}$, minor), 2.37 $-2.19(\mathrm{~m}, 1.3 \mathrm{H}), 2.09$ (dddd, $J=13.6,6.4,4.6,1.6 \mathrm{~Hz}, 0.7 \mathrm{H}$, major), $1.51(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 9 \mathrm{H}), 0.87$ $(\mathrm{d}, J=1.6 \mathrm{~Hz}, 9 \mathrm{H}), 0.12-0.04(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers): $\delta=169.6,168.8,166.9,166.9,152.5,152.2,131.6,131.6,118.7,118.6,83.5,83.4,66.1,64.3,63.2$, $52.2,51.3,49.5,48.0,33.4,32.8,27.9,25.6,17.9,-4.8,-4.9,-5.0,-5.1$; IR (film): $\tilde{v}=2955,2932$, 2896, 2857, 1776, 1746, 1722, 1472, 1391, 1369, 1296, 1255, 1147, 1103, 1030, 1005, 970, 927, 838, 810, $778 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{NO}_{6} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 436.21259$, found: 436.21242 .

3-Allyl 1-(tert-butyl) (5S)-3-(but-3-en-1-yl)-5-((tert-butyldimethylsilyl)oxy)-2-

oxopiperidine-1,3-dicarboxylate (74). 4-Bromobut-1-ene (7.2 mL , 70.62 mmol) and caesium carbonate ($24.54 \mathrm{~g}, 75.32 \mathrm{mmol}$) were added to a solution of compound S1 (19.47 g, 47.08 mmol) in anhydrous DMF (47 mL) at room temperature. The mixture was vigorously stirred for 16 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and the mixture was extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined organic extracts were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography (hexanes/tert-butyl methyl ether, 5:1), furnishing the title compound as a colorless oil ($20.60 \mathrm{~g}, 94 \%$ yield). $[\alpha]_{\mathrm{D}}^{25}=+3.8^{\circ}$ (c $=1.0$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers): $\delta=5.95-5.72(\mathrm{~m}, 2 \mathrm{H}), 5.34$ $(\mathrm{ddq}, J=17.2,4.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{ddq}, J=11.0,8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dp}, J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.96(\mathrm{dt}, J=10.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{dtd}, J=7.0,5.9,3.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.14-4.05$ $(\mathrm{m}, 0.5 \mathrm{H}), 3.83(\mathrm{ddd}, J=13.1,4.4,1.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.72(\mathrm{dd}, J=13.3,5.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.54-3.39(\mathrm{~m}$, $1 \mathrm{H}), 2.63$ (ddd, $J=13.9,5.8,1.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.48(\mathrm{ddd}, J=13.9,6.5,0.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.23-1.90(\mathrm{~m}$, $4 \mathrm{H}), 1.70(\mathrm{dd}, J=13.9,7.1 \mathrm{~Hz}, 0.6 \mathrm{H}), 1.52(\mathrm{~s}, 9.4 \mathrm{H}), 0.87(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 9 \mathrm{H}), 0.13-0.03(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, mixture of diastereomers): $\delta=171.3,171.3,169.8,169.2,152.7,152.6$,
137.6, 137.5, 131.4, 131.2, 119.0, 118.4, 115.1, 83.1, 83.1, 66.2, 66.0, 64.0, 63.9, 55.5, 54.7, 51.2, 51.0, $38.8,35.8,35.4,29.0,28.6,27.9,25.7,25.6,18.1,17.9,-4.8,-4.8,-5.0$; IR (film): $\tilde{v}=2955,2931$, 2897, 2858, 1777, 1723, 1642, 1472, 1462, 1392, 1368, 1302, 1256, 1151, 1126, 985, 914, 870, 838, $810,778 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{NO}_{6} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 490.25954, found: 490.25960.
tert-Butyl (S)-5-(but-3-en-1-yl)-3-((tert-butyldimethylsilyl)oxy)-6-oxo-3,6-dihydropyridine-
 $1(2 H)$-carboxylate (67). $\mathrm{Pd}_{2}\left(\mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(1.11 \mathrm{~g}, 1.07 \mathrm{mmol})\right.$ was added to a solution of compound $74(10.00 \mathrm{~g}, 21.38 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(86 \mathrm{~mL})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 30 min . The crude mixture was filtered through a plug of Celite, which was carefully washed with tert-butyl methyl ether. The combined filtrates were concentrated in vacuo and the resulting crude material was purified by flash chromatography on silica (toluene, then hexane/tert-butyl methyl ether, 10:1) to furnish the title compound as a colorless oil ($6.77 \mathrm{~g}, 83 \%$ yield). $[\alpha]_{\mathrm{D}}^{25}=+62.6^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $6.38(\mathrm{dq}, J=3.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.79$ (ddt, $J=16.9,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.43$ (dddt, $J=8.0,4.7,3.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ (ddd, $J=12.8,4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=12.8,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.38 (ddt, $J=8.5,5.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.8,152.8,141.0,137.7,135.3,115.2,83.1,63.8,50.7,32.3,29.6$, 28.1, 25.7, 18.1, $-4.7,-4.7$; IR (film): $\tilde{v}=2955,2930,2889,2858,1768,1716,1651,1472,1389$, $1368,1337,1303,1256,1194,1149,1091,1034,1005,980,954,913,876,837,810,778 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 404.22276$, found: 404.22262 .

Allyl 1-benzyl-4-hydroxy-1,2,5,6-tetrahydropyridine-3-carboxylate (71). NaH (3.07 g,
 127.81 mmol) was transferred into a Schlenk flask before anhydrous THF (54 mL) was added. The mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of 1-benzyl-4-piperidone $\mathbf{7 0}(9.5 \mathrm{~mL}, 51.12 \mathrm{mmol})$ in THF $(16.6 \mathrm{~mL})$ was added dropwise. Once the addition was complete, the mixture was warmed to room temperature before diallyl carbonate ($11.0 \mathrm{~mL}, 76.68 \mathrm{mmol}$) was added. The resulting mixture was stirred at room temperature for 18 h before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(30 \mathrm{~mL})$ was carefully added to quench the reaction. The aqueous phase was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(5 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 150 \mathrm{~mL}$). The combined extracts were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes/EtOAc, 5:1), furnishing the title compound as a colorless oil ($6.35 \mathrm{~g}, 45 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=11.93(\mathrm{~s}, 0.7 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.91$ (dddt, $J=17.2,10.4,9.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.19(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.56(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, 2 H), 3.50 (ddd, $J=7.9,5.0,1.3 \mathrm{~Hz}, 0.25 \mathrm{H}$), $3.24(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1.5 \mathrm{H}), 3.08$ (ddd, $J=11.6,7.8,1.2$ $\mathrm{Hz}, 0.25 \mathrm{H}), 2.96$ (ddd, $J=11.7,5.0,1.7 \mathrm{~Hz}, 0.25 \mathrm{H}), 2.84$ (dddd, $J=11.7,6.3,5.6,1.7 \mathrm{~Hz}, 0.25 \mathrm{H}$), 2.75 (dddd, $J=11.3,8.1,4.8,1.2 \mathrm{~Hz}, 0.25 \mathrm{H}), 2.64-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{td}, J=5.9,3.1 \mathrm{~Hz}, 1.5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=203.9,170.7,170.6,168.5,137.8,132.0,131.6,129.0,128.8,128.4$, 128.4, 127.4, 127.3, 118.7, 118.1, 96.7, 65.8, 64.8, 62.0, 61.6, 56.6, 55.1, 53.1, 50.0, 48.5, 40.8, 29.4;

IR (film): $\tilde{v}=3063,3028,2935,2808,2764,1743,1720,1664,1622,1495,1453,1418,1403,1367$, $1350,1302,1285,1233,1212,1193,1168,1126,1078,1052,1028,994,972,934,815,742,699 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 274.14377$, found: 274.14376 .

Allyl 1-benzyl-4-oxo-3-(pent-3-yn-1-yl)piperidine-3-carboxylate (72). 5-Iodopent-2-yne
 $(14.72 \mathrm{~g}, 58.06 \mathrm{mmol})^{[224]}$ and caesium carbonate $(19.67 \mathrm{~g}, 60.38 \mathrm{mmol})$ were added in three portions (1:1:0.5) to a solution of compound 71 ($6.35 \mathrm{~g}, 23.22 \mathrm{mmol}$) in anhydrous DMF $(24 \mathrm{~mL})$ at room temperature (the second and third portion were added after 30 min and 1 h , respectively). The mixture was stirred for 3 h , before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc (3 x 250 mL), the combined organic extracts were washed with brine (30 mL), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes/EtOAc, 5:1) to give the title compound as a colorless oil ($7.15 \mathrm{~g}, 91 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.29-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.82(\mathrm{ddt}, J=17.2,10.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.14(\mathrm{~m}$, $2 \mathrm{H}), 4.58(\mathrm{qdt}, J=13.1,5.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{dd}, J=11.6,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.92(\mathrm{dtd}, J=12.8,5.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{ddd}, J=16.0,12.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.28$ - $2.12(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=205.8,170.9,137.7,131.5,128.8,128.3,127.4,118.9,78.3,75.9,65.9,61.8,61.1$, 60.7, 53.4, 40.5, 31.7, 14.5, 3.5; IR (film): $\tilde{v}=3028,2957,2919,2807,1717,1649,1495,1453,1423$, 1348, 1316, 1227, 1186, 1121, 1076, 1059, 1029, 1000, 971, 936, 742, $699 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 340.19072, found: 340.19053.

3-Allyl 1-methyl

4-oxo-3-(pent-3-yn-1-yl)piperidine-1,3-dicarboxylate (73). Methyl chloroformate ($5.7 \mathrm{~mL}, 73.65 \mathrm{mmol}$) was added to a solution of compound $72(5.00 \mathrm{~g}, 14.73 \mathrm{mmol})$ in toluene $(21 \mathrm{~mL})$. The reaction was stirred at $100^{\circ} \mathrm{C}$ for 14 h . The mixture was cooled to room temperature and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes/EtOAc, $3: 1$ to $2: 1$), furnishing the title compound as a yellow oil (4.52 g , quant.). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.86$ (ddt, $J=$ $16.5,9.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.65-4.50(\mathrm{~m}, 3 \mathrm{H}), 4.27-3.93(\mathrm{br}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, 3.39 (br, 1H), $3.22(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ (ddd, $J=14.1,9.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dt}, J=14.7,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.28-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.86(\mathrm{br}, 1 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 203.9, 169.4, 155.6, 131.1, 119.3, 77.8, 76.5, 66.3, 60.6, 53.1, 50.1, 43.6, 39.6, 31.1, 14.3, 3.4; IR (film): $\tilde{v}=2956,2920,2860,1699,1650,1447,1474,1413,1375,1264,1238,1220,1189,1130,1067,1028$, 995, 935, 876, 767, $528 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 330.13119$, found: 330.13101 .
 (43).

$\mathrm{Pd}_{2}(\mathrm{dba}) \cdot \mathrm{CHCl}_{3}(668 \mathrm{mg}, 0.73 \mathrm{mmol})$ was added to a solution of compound $73(4.49 \mathrm{~g}, 14.60 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(59 \mathrm{~mL})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 30 min before it was cooled to ambient temperature and filtered through a plug of Celite, which was carefully washed with tert-butyl methyl ether. The combined filtrates were concentrated in vacuo and the resulting crude material was purified by flash chromatography on silica (hexane/EtOAc, 3:1 to 1:1) to give the title compound as a white solid ($3.10 \mathrm{~g}, 96 \%$ yield). M.p. $=69.8-70.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.77(\mathrm{br}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 3.85 ($\mathrm{s}, 3 \mathrm{H}$), $2.57-2.51$ (m, 2H), $2.35-2.28$ (m, 2H), 2.24 (dddd, $J=7.7,6.1,2.9,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 1.74 ($\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=192.8,153.4,140.9,117.3,78.4,76.6,53.9,42.6$, 35.8, 26.9, 18.7, 3.4; IR (film): $\tilde{v}=2956,2919,2857,1722,1662,1615,1440,1399,1369,1322,1300$, 1245, 1204, 1174, 1122, 1077, 1049, 1017, 969, 927, 909, 868, 767, 666, 512, 484, $438 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 244.09441, found: 244.09442 .

Compound 75. A solution of $\mathrm{LiOtBu}(223 \mathrm{mg}, 2.89 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$ was added dropwise
 to a solution of compound $43(617 \mathrm{mg}, 2.79 \mathrm{mmol})$ in anhydrous THF (11 mL) at $-50{ }^{\circ} \mathrm{C}$. The resulting red solution was stirred for 10 min before a solution of compound $67(887 \mathrm{mg}, 2.33 \mathrm{mmol})$ in THF (5 mL) was added. The mixture was warmed to room temperature over the course of 5 h and stirring was continued for another 16 h . Next, 4-dimethyl-aminopyridine ($568 \mathrm{mg}, 4.65 \mathrm{mmol}$) and di-tert-butyl dicarbonate ($1.1 \mathrm{~mL}, 4.65 \mathrm{mmol}$) were added and the resulting mixture was stirred for 1 h . sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was carefully introduced to quench the reaction. The aqueous phase was extracted with EtOAc $(3 \times 150 \mathrm{~mL})$ and the combined extracts were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo. The crude residue was purified by flash chromatography on silica (hexane/tert-butyl methyl ether, 10:1; then hexane/EtOAc, 10:1), furnishing compound 68 as a white foam which was used in the next step without further purification.
$\mathrm{NaBH}_{4}(356 \mathrm{mg}, 9.42 \mathrm{mmol})$ was added in portions to a solution of 68 in methanol $(15.9 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 20 min , before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(5 \mathrm{~mL})$ at this temperature. The aqueous phase was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$ and the combined extracts were washed with brine (10 mL), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica (pentane/tert-butyl methyl ether, $3: 1$) to furnish the title compound as a white foam ($742 \mathrm{mg}, 53 \%$ yield over 2 steps). $[\alpha]_{D}^{25}=-66.9^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers): $\delta=5.76-5.60$ $(\mathrm{m}, 1 \mathrm{H}), 5.00-4.83(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{tdd}, \mathrm{J}=10.6,4.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 0.3 \mathrm{H}$, minor), $4.20(\mathrm{~s}$, 0.7 H, major), 4.10 (ddd, $J=12.4,4.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.31$ (ddd, $J=$ $20.7,11.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.01(\mathrm{~m}, 5 \mathrm{H}), 2.00-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.56$
$(\mathrm{m}, 8 \mathrm{H}), 1.52(\mathrm{~s}, 10 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, mixture of rotamers): $\delta=172.2,172.1,156.7,156.6,151.8,151.7,137.9,137.4,115.0,114.7,83.3,83.2,79.1$, $78.9,76.5,76.4,75.5,75.3,67.7,67.7,52.7,52.6,52.6,52.5,52.4,52.1,52.1,51.6,50.0,49.9,48.1$, $46.2,46.0,40.2,39.8,34.3,34.2,32.3,32.3,28.3,28.1,28.0,25.8,17.9,16.4,16.4,3.4,-4.5,-4.5$, -4.6 ; IR (film): $\tilde{v}=3493,2952,2930,2885,2857,1766,1707,1681,1641,1453,1394,1369,1338$, 1298, 1256, 1190, 1156, 1125, 1074, 1005, 914, 865, 839, $779 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 627.34360, found: 627.34354 .

Compound S2. Triethylamine ($9.7 \mathrm{~mL}, 69.64 \mathrm{mmol}$), 4-dimethylaminopyridine (1.36 g ,
 11.16 mmol) and methanesulfonyl chloride ($2.14 \mathrm{~mL}, 27.68 \mathrm{mmol}$) were successively added to a solution of compound $75(2.70 \mathrm{~g}$, $4.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature after 5 min and stirred for 1 h . The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and the aqueous phase extracted with tert-butyl methyl ether ($3 \times 250 \mathrm{~mL}$). The combined organic extracts were washed with brine (50 mL), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography on silica (hexane/EtOAc, 5:1 to $4: 1$), furnishing the title compound as a white foam $(2.79 \mathrm{~g}, 91 \%$ yield $) .[\alpha]_{\mathrm{D}}^{25}=-30.7^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers): $\delta=5.68(\mathrm{dtt}, J=17.0,10.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.86(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.27(\mathrm{~m}$, $2 \mathrm{H}), 4.26-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.38(\mathrm{ddd}, J=10.9,8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.12$ $(\mathrm{m}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.59(\mathrm{dp}, J=17.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.03(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.83$ $(\mathrm{m}, 1 \mathrm{H}), 1.83-1.59(\mathrm{~m}, 7 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.14(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, mixture of rotamers) $\delta=171.2,171.1,156.5,156.4,151.4,151.3,137.5$, $137.0,115.3,115.0,84.6,84.3,83.6,83.5,78.5,78.1,76.3,76.2,67.8,67.7,52.9,52.2,51.8,51.6,50.3$, 49.8, 49.3, 49.2, 48.0, 42.8, 42.8, 40.0, 39.5, 38.8, 38.7, 34.0, 33.8, 31.8, 31.7, 28.3, 28.1, 28.0, 25.8, $17.9,16.1,16.0,3.5,3.5,-4.3,-4.3,-4.5,-4.6$ IR (film): $\tilde{v}=2953,2931,2857,1770,1704,1641$, 1450, 1389, 1366, 1338, 1297, 1256, 1176, 1155, 1125, 1096, 1051, 994, 964, 941, 897, 838, 779, 754, 686, 666, $527 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{SSiNa}^{[M+N a+}$: 705.32115, found: 705.32108 .

Compound 76. A solution of mesylate $\mathbf{S 2}(2.616 \mathrm{~g}, 3.83 \mathrm{mmol})$ in 2,6-lutidine (21 mL) was
 stirred at $170{ }^{\circ} \mathrm{C}$ for 5 d . The mixture was cooled to $0^{\circ} \mathrm{C}$ before $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(22 \mathrm{~mL})$ and tert-butyldimethylsilyl trifluoromethanesulfonate ($3.52 \mathrm{~mL}, 15.32 \mathrm{mmol}$) were added. Stirring was continued at room temperature for 45 min before sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$. Next, the mixture was poured into a solution of $\mathrm{HCl}(2 \mathrm{M}, 45 \mathrm{~mL})$, which was vigorously stirred for 15 min . The aqueous phase was extracted with EtOAc ($3 \times 200 \mathrm{~mL}$), the combined organic extracts were washed with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine $(25 \mathrm{~mL})$, before they
were dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ tert-butyl methyl ether, 6:1), furnishing the title compound as a white foam ($1.357 \mathrm{~g}, 73 \%$ yield). $[\alpha]_{\mathrm{D}}^{25}=-69.4^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers): $\delta=6.43$ (d, $J=6.2 \mathrm{~Hz}, 0.3 \mathrm{H}$, minor), 6.37 ($\mathrm{d}, 0.7 \mathrm{H}$, major), 5.94 (dd, $J=$ $10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (dddd, $J=16.7,13.0,10.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.86(\mathrm{~m}, 2.3 \mathrm{H}$, minor), 4.80 (d, $J=1.6 \mathrm{~Hz}, 0.7 \mathrm{H}$, major), $3.69(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{tdd}, J=9.4,5.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-$ $2.92(\mathrm{~m}, 4 \mathrm{H}), 2.84-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.14(\mathrm{~m}, 5 \mathrm{H}), 2.14-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.55(\mathrm{~m}, 6 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=$ $173.5,173.5,156.1,156.1,146.6,145.9,138.3,137.8,125.6,125.1,114.8,114.5,78.5,78.1,75.9,75.5$, $70.9,70.8,54.3,54.2,52.8,52.5,52.4,52.3,51.5,51.5,47.2,47.0,45.6,39.8,39.5,33.7,33.4,33.2$, 33.1, 28.6, 28.3, 25.6, 17.8, 16.9, 16.8, 3.4, 3.4, -4.3, -4.4, -4.8, -4.8; IR (film): $\tilde{v}=3209,3075,2953$, 2929, 2896, 2857, 1702, 1667, 1448, 1389, 1345, 1329, 1300, 1273, 1257, 1220, 1191, 1120, 1091, 1006, $956,913,873,838,776,685 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{2} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 509.28061, found: 509.28065.

Compound 77. A solution of amide $76(1.357 \mathrm{~g}, 2.79 \mathrm{mmol})$ in DMF $(2 \mathrm{~mL})$ and 7-iodohept-2-
 yne $50(2.166 \mathrm{~g}, 9.76 \mathrm{mmol})^{[62]}$ were successively added to a mixture of $\mathrm{NaH}(1.003 \mathrm{~g}, 41.81 \mathrm{mmol})$ in DMF $(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was carefully added. The aqueous phase was diluted with $\mathrm{H}_{2} \mathrm{O}$ $(5 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic extracts were washed with brine (20 mL), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica (pentane/tert-butyl methyl ether, 4:1), furnishing the title compound as a colorless oil ($1.545 \mathrm{~g}, 95 \%$ yield). $[\alpha]_{D}^{25}=-54.7^{\circ}$ ($\mathrm{c}=1.0$, CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers): $\delta=5.92(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (dddt, $J=16.8,13.2,10.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.85(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}$, major), $3.66(\mathrm{~s}, 1 \mathrm{H}$, minor), 3.38 $(\mathrm{dt}, J=13.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.21(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{dd}, J=10.5,2.8 \mathrm{~Hz}, 0.7 \mathrm{H}$, major), $2.99-2.92(\mathrm{~m}, 1.3 \mathrm{H}$, minor), $2.81-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.08(\mathrm{~m}, 7 \mathrm{H}), 2.08-1.95(\mathrm{~m}, 1 \mathrm{H})$, $1.75(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.69-1.47(\mathrm{~m}, 5 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}$, $9 \mathrm{H}), 0.10(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=170.4,156.2$, 156.1, 147.0, 146.3, 138.5, 138.1, 125.2, 124.6, 114.6, 114.3, 78.6, 78.6, 78.5, 78.3, 75.9, 75.8, 75.4, $70.7,70.6,54.8,54.7,53.1,52.9,52.4,52.3,52.1,52.0,51.0,47.1,46.9,46.9,40.0,39.7,33.7,33.4$, 33.1, 33.0, 28.7, 28.4, 26.6, 26.6, 25.9, 25.7, 18.4, 18.3, 17.8, 16.8, 16.8, 3.4, 3.4,-4.3, -4.4, -4.8, -4.8 ; IR (film): $\tilde{v}=2951,2928,2857,1701,1645,1446,1389,1347,1328,1299,1259,1190,1161,1104$, 1088, 1049, 1005, 956, 908, 871, 837, 811, $776 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SiNa}$ [$\left.\mathrm{M}+\mathrm{Na}^{+}\right]$: 603.35886, found: 603.35906.

Compound 78. A solution of the molybdenum complex 79 ($351 \mathrm{mg}, 0.45 \mathrm{mmol})^{[105]}$ in toluene
 $(10 \mathrm{~mL})$ was added dropwise to a suspension comprising diyne 77 $(1.310 \mathrm{~g}, 2.26 \mathrm{mmol})$ and powdered $\mathrm{MS}(5 \AA, 30 \mathrm{~g})$ in toluene $(1.17 \mathrm{~L})$ at reflux temperature. After stirring for $10 \mathrm{~min}, \mathrm{EtOH}(10 \mathrm{~mL})$ was added, the mixture was cooled to room temperature and filtered through a short pad of Celite, which was carefully rinsed with EtOAc. The combined filtrates were concentrated in vacuo and the residue was purified by flash chromatography on silica (toluene/EtOAc, 8:1), furnishing the title compound as a white solid ($983 \mathrm{mg}, 83 \%$ yield). M.p. $=163.9-165.1^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=-102.4^{\circ}\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers): $\delta=6.00-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{dddt}, J=16.8,13.1,10.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.80(\mathrm{~m}, 3 \mathrm{H})$, $4.04-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.59(\mathrm{~m}, 4 \mathrm{H}), 3.39(\mathrm{dd}, J=12.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=10.5,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.06-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.03(\mathrm{~m}, 8 \mathrm{H}), 1.92(\mathrm{ddt}, \mathrm{J}$ $=16.3,13.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.08(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, 0.09 (d, $J=25.2 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=170.0,170.0$, 156.3, 146.0, 145.2, 138.6, 138.2, 123.4, 122.9, 114.6, 114.3, 81.0, 80.9, 79.3, 79.2, 70.4, 70.3, 55.2, $54.7,54.7,54.5,54.2,52.4,52.4,52.1,52.0,50.6,47.2,47.0,39.8,39.5,33.9,33.6,32.2,32.1,28.7$, $28.5,26.2,26.1,25.7,18.7,17.8,14.1,-4.2,-4.2,-4.6,-4.7$ IR (film): $\tilde{v}=2953,2928,2857,1699$, $1640,1449,1423,1390,1350,1319,1262,1218,1190,1170,1157,1140,1103,1085,1051,1006,955$, 909, 870, 836, 809, 775, 754, 723, 712, 683, 665, $442 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{3} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 549.31191, found: 549.31220.

Compound 81. L-Selectride (1 M in THF, $8.28 \mathrm{~mL}, 8.28 \mathrm{mmol}$) was added to a solution of
 carbamate $78(1.090 \mathrm{~g}, 2.07 \mathrm{mmol})$ in THF $(19 \mathrm{~mL})$. The mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . Next, the mixture was cooled to $0^{\circ} \mathrm{C}$ before $\mathrm{MeOH}(5 \mathrm{~mL})$ was carefully added. The solution was concentrated in vacuo and the residue was purified by flash chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, 95:5 to 90:10), furnishing the title compound as a yellow oil ($878 \mathrm{mg}, 91 \%$ yield). $[\alpha]_{\mathrm{D}}^{25}=-45.5^{\circ}\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta=5.97$ (dd, $J=6.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{ddt}, J=16.8,10.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dq}, J=17.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (dq, $J=10.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{ddd}, J=10.6,8.8,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.38 (dd, $J=12.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{dd}, J=7.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.07(\mathrm{~m}$, $10 \mathrm{H}), 1.95$ (dddd, $J=22.0,19.4,12.6,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.72$ (ddd, $J=13.7,11.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-$ $1.52(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{tq}, ~ J=12.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-1.11(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~d}, J=25.8 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=170.6,146.2,138.5,122.6,114.5,81.2,79.2,70.4,55.6,55.2$, $54.3,50.7,50.6,45.1,39.7,33.4,31.9,28.8,26.3,26.2,25.7,18.8,17.9,14.2,-4.2,-4.6$; IR (film): $\tilde{v}=2952,2927,2856,1638,1484,1452,1422,1388,1357,1327,1258,1171,1141,1092,1006,924$, $910,868,836,804,775,750,678,664,439 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O} 2 \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$ 469.32448, found: 469.32463.

Compound 82. $\mathrm{NaBH}(\mathrm{OAc})_{3}(39.0 \mathrm{mg}, 0.18 \mathrm{mmol})$ was added to a solution of secondary amine
 $81(43.2 \mathrm{mg}, 0.09 \mathrm{mmol})$ and 5-hexenal ($40.7 \mathrm{mg}, 0.42 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.9 \mathrm{~mL})$ and the resulting mixture was stirred at ambient temperature for 3 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the reaction quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), the combined organic fractions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexane/EtOAc, 8:1), furnishing the title compound as a colorless oil ($48.5 \mathrm{mg}, 96 \%$ yield). $[\alpha]_{\mathrm{D}}^{25}=-24.4^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=5.94(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.71(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{ddq}, J=17.2,10.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.94-4.87$ (m, 2H), 4.04-3.91 (m, 1H), 3.65-3.53 (m, 2H), 3.35 (dd, $J=12.1,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ (dd, $J=9.6$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=12.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{ttd}, J=8.8,6.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{dt}, J=11.5,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.33(\mathrm{ddt}, J=12.3,7.9,4.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.26-2.00(\mathrm{~m}, 8 \mathrm{H}), 1.90(\mathrm{ddq}, J=15.9,12.8,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.77$ (dd, $J=9.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.18$ (qd, $J=12.2,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~d}, \mathrm{~J}=24.2 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.36,143.24$, 139.22, 139.05, 121.67, 114.19, 113.91, 81.22, 79.09, 70.75, 61.86, 57.68, 54.48, 54.37, 54.05, 52.04, $50.55,39.35,34.31,33.65,28.92,27.96,26.47,26.20,26.13,25.73,18.82,17.86,14.28,-4.25,-4.61$; IR (film): $\tilde{v}=2929,2881,2857,1642,1482,1451,1419,1357,1328,1287,1257,1171,1157,1123$, 1086, 1042, 1065, 1006, 997, 925, 908, 870, 836, 775, $804 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{34} \mathrm{H}_{55} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 551.40273$, found: 551.40310.

Compound 65. DMF (2 drops) and oxalyl chloride ($0.18 \mathrm{~mL}, 2.06 \mathrm{mmol}$) were added to a
 solution of 5-hexenoic acid $(0.20 \mathrm{~mL}, 1.72 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 2 h . The resulting solution was added to a solution of amine 81 (878 $\mathrm{mg}, 1.87 \mathrm{mmol}$) and triethylamine ($1.3 \mathrm{~mL}, 9.37 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 5 min , the mixture was warmed to room temperature and stirred for 1 h . sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added and the aqueous phase extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic extracts were washed with brine (10 mL), dried over MgSO_{4} and concentrated in vacuo. The crude product was purified by flash chromatography on silica (hexane/EtOAc, $4: 1$ to $3: 1$) to give the title compound as a white foam ($756 \mathrm{mg}, 71 \%$ yield). $[\alpha]_{\mathrm{D}}^{25}=-103.0^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=6.03-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.63(\mathrm{~m}, 2 \mathrm{H}), 5.50(\mathrm{~d}, \mathrm{~J}=$ $1.5 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), $5.07-4.85(\mathrm{~m}, 4 \mathrm{H}), 4.61(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 0.6 \mathrm{H}$, major), $4.01(\mathrm{dt}, J=9.6,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68(\mathrm{dtd}, J=10.6,8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{ddd}, J=12.3,10.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=$ $9.5,2.0 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), $3.22-3.12(\mathrm{~m}, 1.2 \mathrm{H}$, major/major), 3.06 (dd, $J=9.5,2.8 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), $3.00-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.46-1.87(\mathrm{~m}, 13 \mathrm{H}), 1.83-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.44-$ $1.11(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.11(\mathrm{~d}, J=27.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=172.2,171.9,170.2,169.9,146.4,144.4,138.6,138.2,138.0,137.4,124.2$, $122.8,115.2,115.1,114.3,81.0,80.8,79.5,79.3,70.4,69.9,58.2,55.0,54.3,54.2,53.4,52.5,52.1$,
$51.8,50.7,50.5,48.1,46.5,40.0,39.6,34.2,33.6,33.3,33.3,33.0,33.0,32.9,32.3,32.3,32.2,29.0$, $28.5,26.3,26.2,26.1,25.7,24.3,23.9,18.8,18.7,17.9,14.2,14.1,-4.2,-4.2,-4.6,-4.6$; IR (film): $\tilde{v}=2952,2928,2857,1645,1472,1484,1452,1415,1358,1326,1299,1260,1170,1141,1120,1086$, 1005, 910, 871, 837, 809, $776 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 587.36394, found: 587.36424.

Compound 66. A solution of benzylidene-bis(tricyclohexylphosphino)-dichlororuthenium 87
 ("first generation" Grubbs catalyst, $7.3 \mathrm{mg}, 0.009 \mathrm{mmol}$) in toluene $(2 \mathrm{~mL})$ was slowly added to a solution of compound $65(10 \mathrm{mg}$, $0.018 \mathrm{mmol})$ in toluene $(16 \mathrm{~mL})$ at $100^{\circ} \mathrm{C}$ over the course of 2.5 h . After the addition was complete, stirring was continued at $100{ }^{\circ} \mathrm{C}$ for another 2 h before a solution of potassium 2-isocyanoacetate (19 mg , $0.154 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added at $100^{\circ} \mathrm{C}$. The mixture was cooled to room temperature and stirred for an additional 30 min , before it was concentrated in vacuo. The residue was purified by flash chromatography on silica (hexane/EtOAc, 2:1 to 1:1), furnishing the title compound as a mixture of olefin isomers ($9.2 \mathrm{mg}, 97 \%$ yield, E-/Z-ratio $60: 40$) as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of E -/Z-Isomers ca. 60:40): $\delta 5.98$ (dd, $J=15.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}$, major/minor), $5.91-5.84(\mathrm{~m}, 0.6 \mathrm{H}$, major), $5.59(\mathrm{~s}, 0.4 \mathrm{H}$, minor), $5.51-5.40(\mathrm{~m}, 0.6 \mathrm{H}$, major), 5.32 (td, $J=10.3,5.2 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), 5.08 (d, $J=1.6 \mathrm{~Hz}, 0.6 \mathrm{H}$, major), 4.99 (d, $J=1.5 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), 4.01 (dt, $J=9.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}$, major/minor), $3.74-3.62(\mathrm{~m}, 1 \mathrm{H}$, major/minor), 3.39 (ddd, $J=12.3,10.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}$, major/minor), $3.27-3.08$ (m, 2H, major/minor), 2.98 (ddd, $J=12.4,4.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$, major/minor), 2.84 (dq, $J=5.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, major/minor), $2.77-2.55(\mathrm{~m}, 1 \mathrm{H}$, major/major/minor), 2.46-2.23(m, 7H, major/minor), 2.22-2.04 (m, 4H, major/minor), 2.011.96 (m, 1H, major/minor), 1.90 (td, $J=15.3,14.9,3.8 \mathrm{~Hz}, 3 \mathrm{H}$, major/minor), $1.83-1.75$ (m, 1H, major/minor), $1.66-1.51(\mathrm{~m}, 3 \mathrm{H}$, major/minor), 1.38 (dddd, $J=15.5,11.2,7.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, major/minor), $1.22-1.12$ ($\mathrm{m}, 1 \mathrm{H}$, major/minor), 0.91 ($\mathrm{d}, \mathrm{J}=0.9 \mathrm{~Hz}, 9 \mathrm{H}$, major/minor), 0.14 (s , 3 H , major/minor), 0.08 ($\mathrm{s}, 3 \mathrm{H}$, major/minor); HRMS (ESI): m/z calcd. for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SiNa}$ [$\left.\mathrm{M}+\mathrm{Na}^{+}\right]$: 559.33209, found: 559.33264.

The isomer mixture was separated by preparative HPLC (two consecutive Multochrom 100-3 Si columns, $250 \mathrm{~mm} \times 20 \mathrm{~mm}$, iso-hexane/isopropanol 95:5, $20 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}(\mathrm{Z}-$ Isomer) $=31.0 \mathrm{~min}$). The pure Z-isomer analyzed as follows: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $5.95(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{td}, J=10.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.04-3.98(\mathrm{~m}$, $1 \mathrm{H}), 3.66(\mathrm{ddd}, J=10.1,8.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=12.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=11.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=12.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=12.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=6.7,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.71$ (ddd, $J=14.3,12.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{ddt}, J=15.4,13.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.32(\mathrm{~m}$, $4 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.98-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 1 \mathrm{H})$, $1.70-1.56(\mathrm{~m}, 3 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.3,170.3,145.1,130.0,129.6,123.6,80.7,79.4,70.4,58.2,55.6$, -4.6.

Compound 91. Tetrabutylammonium fluoride (1 M in THF, $1.78 \mathrm{~mL}, 1.78 \mathrm{mmol}$) was added
 to a solution of TBS-ether $65(502 \mathrm{mg}, 0.89 \mathrm{mmol})$ in THF (50 mL) at $0^{\circ} \mathrm{C}$. The solution was stirred for 20 min before sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ was added. The aqueous phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$) and the combined organic extracts were washed with brine (10 mL), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexane/EtOAc, 1:2 to pure EtOAc), furnishing the title compound as a white foam (400 mg , quant.). $[\alpha]_{\mathrm{D}}^{25}=-134.2^{\circ}\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=6.10-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.84-5.63(\mathrm{~m}, 2 \mathrm{H})$, 5.47 (d, $J=1.6 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), $5.06-4.86(\mathrm{~m}, 4 \mathrm{H}), 4.60(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 0.6 \mathrm{H}$, major), 3.99 (ddt, $J=12.3,5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{ddd}, J=12.2,10.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=$ $9.3,1.7 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), $3.22-3.02(\mathrm{~m}, 4.6 \mathrm{H}$, major), $2.69-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.33(\mathrm{~m}, 4 \mathrm{H})$, $2.33-1.99(\mathrm{~m}, 8 \mathrm{H}), 1.90(\mathrm{ddd}, J=16.7,13.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.52(\mathrm{~m}, 3 \mathrm{H})$, 1.36 (tdd, $J=14.9,11.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.23-1.06(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=172.3,172.1,170.3,170.0,145.9,144.2,138.4,138.1,137.9,137.3,124.5,123.2,115.3$, $115.3,115.1,114.6,81.0,80.8,79.7,79.5,69.3,68.9,58.4,54.4,54.2,52.8,52.6,52.1,51.9,50.7,50.5$, 48.1, 46.7, 40.0, 39.7, 34.2, 33.7, 33.3, 33.2, 33.0, 32.3, 29.1, 28.6, 26.3, 26.2, 26.1, 24.3, 23.9, 18.9, 18.8, 14.1, 14.1; IR (film): $\tilde{v}=3364,2924,2863,1635,1612,1487,1418,1356,1326,1264,1236$, 1167, 1137, 1116, 1063, 1034, 996, 911, 831, 812, 751, 685, 665, 646, 579, $443 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 473.27746$, found: 473.27731.

Compound 92. Martin's sulfurane ($1.41 \mathrm{~g}, 2.10 \mathrm{mmol}$) was added to a mixture of alcohol 91
 $(378 \mathrm{mg}, 0.84 \mathrm{mmol})$ in toluene (38 mL) at room temperature. The mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 1 h before it was cooled to room temperature and sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added. The aqueous phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$) and the combined organic extracts were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (toluene/EtOAc, $8: 1$ to $4: 1$) to furnish the title compound as a colorless oil ($351 \mathrm{mg}, 97 \%$ yield). $[\alpha]_{\mathrm{D}}^{25}=-121.3^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers): $\delta=6.25-6.11(\mathrm{~m}, 1 \mathrm{H}), 5.87-5.64(\mathrm{~m}, 3 \mathrm{H}), 5.41(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.3 \mathrm{H}$, minor), $5.06-4.85(\mathrm{~m}, 4 \mathrm{H}), 4.79(\mathrm{ddd}, J=19.5,8.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 0.7 \mathrm{H}$, major), 4.16 (dt, $J=14.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{tt}, J=6.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-$ $2.31(\mathrm{~m}, 5 \mathrm{H}), 2.31-1.95(\mathrm{~m}, 10 \mathrm{H}), 1.92-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.33(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}, mixture of rotamers): $\delta=172.4,169.1,169.1,145.9,144.1,138.3,138.2,138.0,137.7,130.8$, $130.5,125.0,123.5,115.2,115.0,114.9,114.5,105.2,104.4,81.4,81.2,80.9,80.7,59.4,54.5,53.5$, $53.3,50.4,49.2,48.7,48.7,44.6,43.9,41.0,40.8,37.9,37.2,33.4,33.3,33.2,33.0,32.5,29.2,29.1$,
27.0, 26.7, 24.2, 23.8, 18.6, 18.6, 14.3; IR (film): $\tilde{v}=3072,2920,2862,1639,1450,1408,1398,1355$, 1330, 1308, 1263, 1230, 1197, 1167, 1150, 1132, 1068, 1044, 1026, 995, 910, 852, 825, 750, 724, 695, $646,608,591,434 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 455.26690$, found: 455.26713.

Compound 64. $\mathrm{NaBH}_{3} \mathrm{CN}(56 \mathrm{mg}, 0.89 \mathrm{mmol})$ and trifluoroacetic acid $(0.14 \mathrm{~mL}, 1.78 \mathrm{mmol})$
 were successively added to a solution of compound 92 (77 mg , $0.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was then stirred at room temperature for 1 h . Next, sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added and the resulting mixture was vigorously stirred for 45 min . The aqueous phase was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$, the combined organic extracts were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was purified by flash chromatography (hexane/EtOAc, $2: 1$ to $1: 1$) to give the title compound as a white solid ($57 \mathrm{mg}, 73 \%$ yield). M.p. $=86.2-86.9^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=-153.0^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers $)$: $\delta=6.04-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.61(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 0.34 \mathrm{H}$, minor), $5.07-4.83(\mathrm{~m}, 4 \mathrm{H})$, $4.61(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 0.66 \mathrm{H}$, major), $4.03(\mathrm{dt}, J=12.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{tdd}, J=12.7,5.4,2.1 \mathrm{~Hz}$, 1 H), 3.29 (dd, $J=9.3,2.1 \mathrm{~Hz}, 0.34 \mathrm{H}$, minor), 3.21 (dd, $J=11.8,2.0 \mathrm{~Hz}, 0.66 \mathrm{H}$, major), $3.11-2.95$ $(\mathrm{m}, 2 \mathrm{H}), 2.72-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.15(\mathrm{~m}, 8 \mathrm{H}), 2.15-1.80(\mathrm{~m}, 7 \mathrm{H}), 1.80-1.10(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}, mixture of rotamers) $\delta=172.1,171.8,170.7,170.4,145.7,143.7,138.7$, $138.3,138.0,137.6,124.0,122.6,115.2,115.0,115.0,114.2,81.0,80.8,79.8,79.6,58.3,52.6,51.6$, $51.5,50.7,50.5,48.5,48.2,48.1,47.1,46.0,44.3,39.9,39.7,37.2,36.7,33.3,33.2,32.9,32.4,32.4$, 30.0, 29.6, 29.2, 28.7, 26.4, 26.3, 26.3, 26.2, 24.3, 23.9, 18.9, 18.8, 14.1, 14.1; IR (film): $\tilde{v}=3073$, $2924,2859,1632,1489,1451,1415,1355,1342,1310,1279,1229,1164,1145,1109,1021,997,910$, 809, 753, 661, $432 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 435.30060$, found: 435.30068 .

Compound 93. A solution of benzylidene-bis(tricyclohexylphosphino)-dichlororuthenium 87
 (Grubbs first generation catalyst, $14.2 \mathrm{mg}, 0.018 \mathrm{mmol}$) in 1,2dichloroethane (2 mL) was slowly added to a refluxing solution of diene $64(30 \mathrm{mg}, 0.069 \mathrm{mmol})$ in 1,2-dichloroethane (140 mL) over 10 min . Stirring was continued at reflux temperature for 2 h before a second batch of benzylidene-bis(tricyclohexylphosphino)-dichlororuthenium ($14.2 \mathrm{mg}, 0.018 \mathrm{mmol}$) was slowly added as a solution in 1,2dichloroethane (2 mL) over 10 min . After stirring for another 2 h , a solution of potassium 2-isocyanoacetate ($19 \mathrm{mg}, 0.154 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added at reflux temperature. The mixture was cooled to room temperature and stirred for an additional 30 min . All volatile materials were evaporated in vacuo and the residue was purified by flash chromatography on silica (hexane/EtOAc, 1:1 to pure EtOAc) to furnish the cycloolefin as a mixture of olefin isomers.
$\mathrm{NaBH}_{4}(10 \mathrm{mg}, 0.267 \mathrm{mmol})$ was added to a vigorously stirred solution of $\mathrm{Ni}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ $(60 \mathrm{mg}, 0.241 \mathrm{mmol})$ in $\mathrm{EtOH}(3 \mathrm{~mL})$ at room temperature. The resulting black suspension was vigorously stirred for 1 h before ethylenediamine ($65 \mu \mathrm{~L}, 0.968 \mathrm{mmol}$) was introduced. After stirring for another 30 min , the mixture was added to a flask purged with hydrogen containing the cycloalkyne. Stirring was continued for 4 h under a hydrogen atmosphere, before the suspension was filtered through a plug of silica, which was carefully rinsed with EtOAc. The combined filtrates were evaporated and the crude product was purified by flash chromatography on silica (hexane/EtOAc, 1:1 to pure EtOAc) to provide the title compound in isomerically pure form as a white amorphous solid ($10.4 \mathrm{mg}, 37 \%$ yield over 2 steps). $[\alpha]_{D}^{25}=$ $-56.5^{\circ}\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.87(\mathrm{dd}, J=6.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-5.40$ $(\mathrm{m}, 2 \mathrm{H}), 5.40-5.29(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{dt}, J=13.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=11.8,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.14-3.08(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{dd}, J=11.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{ddd}, J=14.4,11.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60$ $-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{dtd}, J=14.9,9.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 5 \mathrm{H}), 2.06$ $-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{ddd}, J=9.1,6.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.57-$ $1.50(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{ddq}, ~ J=13.9,11.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{dddd}, J=21.5,11.8$, $8.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=173.1,171.2,145.3,130.7,130.4,130.1,128.4$, 126.3, 58.5, 51.2, 47.9, 45.6, 44.2, 42.7, 39.7, 36.6, 33.8, 31.0, 28.9, 27.2, 26.7, 25.8, 25.6, 24.8, 24.2, 21.8; IR (film): $\tilde{v}=3003,2927,2859,1625,1488,1443,1416,1342,1327,1276,1230,1203,1162$, 923, 728, 665, $644 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 409.28495$, found: 409.28469 .
(+)-Keramaphidin B ((+)-2). DIBAL-H (1 M in hexane, $0.15 \mathrm{~mL}, 0.15 \mathrm{mmol}$) was added to a
 solution of bislactam $93(6.0 \mathrm{mg}, 0.015 \mathrm{mmol})$ in diethyl ether $(0.15 \mathrm{~mL})$. The mixture was stirred at rt for 3.5 h , before it was cooled to $0^{\circ} \mathrm{C}$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Next, sat. aq. Rochelle's salt solution (0.5 mL) was carefully added and the mixture was vigorously stirred for 1 h . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, the combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. The residue was purified by preparative HPLC (YMC Triart C18, $5 \mu \mathrm{~m}$, $150 \mathrm{~mm} \times 10 \mathrm{~mm}$, methanol: $20 \mathrm{mM} \mathrm{NH} 4 \mathrm{HCO}_{3} \mathrm{pH} 9.0=85: 15,4.7 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=4.0$ min) to afford the title compound as a white amorphous solid ($2.1 \mathrm{mg}, 38 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=$ $+27.0^{\circ}(\mathrm{c}=0.20, \mathrm{MeOH})$; For ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Data see Tables S3-S7. IR (film): $\tilde{v}=3005,2920$, 2851, 1486, 1460, 1340, 1317, 1299, 1275, 1220, 1207, 1174, 1130, 1103, 1048, 989, 933, 908, 819, $764,721,685,666,461 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{~N}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 381.32642$, found: 381.32671.

Figure 4.3. Numbering scheme for Keramaphidin B (2) adopted from Kobayashi et al. ${ }^{[54]}$

Table 4.1. Comparison of ${ }^{1} \mathrm{H}$ NMR $\left(\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}\right)$ data of synthetic Keramaphidin B with isolated Keramaphidin $\mathrm{B}^{[56]}$ (numbering scheme as shown in figure 4.3).

Position	Original Assignment ${ }^{[56]}$	${ }^{1} \mathrm{H}$ NMR Synthetic $\delta(\mathrm{ppm}), J(\mathrm{~Hz})$	${ }^{1} \mathrm{H}$ NMR Isolated ${ }^{[56]}$ $\delta(\mathrm{ppm}), J(\mathrm{~Hz})$
1	1	3.12, d	3.18 , br s
3a	3	2.87 (dd, $J=9.1,2.0)$	2.89 (dd, $J=9.2,1.9)$
3b	3	1.67, (dd, $J=9.1,2.8)$	1.68 (dd, $J=9.2,2.6)$
4	4	2.25, m	2.30, m
4a	4 a	0.90, (ddd, $J=12.4,5.8,2.4)$	0.98 (ddd, $J=12.5,5.5,2.1$)
5 a	5	1.20 (tdd, $J=13.7,12.4,4.1$)	1.23 (qd, J=14.0, 4.1)
5 b	5	1.36, (pd, $J=13.5,3.2,2.8,2.0)$	1.50, m
6a	6	2.68 (dt, $J=12.9,4.1,2.8)$	2.88, m
6b	6	2.76 (td, $J=13.8,13.0,2.7)$	2.97 (td, $J=13.5,2.6)$
8 a	8	2.09, m	2.16 ($\mathrm{d}, \mathrm{J}=11.6$)
8 b	8	2.34, m	2.70 (d, J=11.6)
10	10	5.85 (d, J=6.4)	5.91 (d, $J=6.4)$
11	11	2.21, m	2.21, (ddd, $J=12.5,5.2,1.2)$
		2.98 (td, $J=12.6,5.0)$	2.99 (td, J = 12.5, 5.2)
12	12	1.27, m	1.27, m
		1.48, m	1.53, m
13	13	1.52, m	1.50, m
		1.58, m	1.61, m
14	14	1.55, m	1.56, m
		2.42, m	2.41, m
15	15	5.65, m	5.65, m
16	16	5.64, m	5.65, m
17	17	1.75, m	1.76, m
		2.35, m	2.38, m

18	18	$1.67, \mathrm{~m}$	$1.75, \mathrm{~m}$
		$1.77, \mathrm{~m}$	$1.75, \mathrm{~m}$
$\mathbf{1 9}$	19	$2.24, \mathrm{~m}$	$2.52,(\mathrm{ddd}, \mathrm{J}=13.5,7.5,2.5)$
		20	$3.06,(\mathrm{ddd}, \mathrm{J}=13.8,8.2,6.8)$

Table 4.2. Comparison of ${ }^{13} \mathrm{C}$ NMR data $\left(\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}\right)$ of synthetic Keramaphidin B with those of isolated Keramaphidin $B^{[56]}$ (numbering scheme as shown in figure 4.3).

Position	Original Assignment ${ }^{[56]}$	${ }^{13} \mathrm{C}$ NMR Synthetic δ (ppm)	${ }^{13}$ C NMR Isolated ${ }^{[56]}$ δ (ppm)	$\Delta \delta$ (ppm)
20	20	21.5	20.9	+0.6
17	17	21.8	21.6	+0.2
14	14	23.8	23.8	0
22	22	26.1	26.1	0
25	25	26.6	26.5	+0.1
12	5	27.2	26.8	+0.4
13	12	27.5	27.1	+0.4
21	21	27.7	27.1	+0.6
5	13	28.0	27.5	+0.5
26	26	37.9	37.6	+0.3
4	4	39.1	38.8	+0.3
18	18	42.3	41.8	+0.5
4a	4 a	44.9	44.1	+0.8
8 a	8 a	45.9	45.0	+0.9
6	6	48.5	48.8	-0.3
8	8	51.0	50.8	+0.2
3	3	54.6	54.3	+0.3
11	11	55.2	55.1	+0.1
19	19	57.1	56.9	+0.2

$\mathbf{1}$	1	65.3	64.6	+0.7
$\mathbf{1 0}$	10	124.3	125.0	-0.7
$\mathbf{1 5}$	16	131.5	131.0	+0.5
$\mathbf{1 6}$	23	132.4	-0.2	
$\mathbf{2 3}$	15	132.6	132.6	-0.2
$\mathbf{2 4}$	24	133.3	-0.1	
$\mathbf{9}$	9	143.0	142.8	+0.2

Table 4.3. Comparison of the ${ }^{13} \mathrm{C}$ NMR ([$\left.\left.\mathrm{D}_{4}\right]-\mathrm{MeOH}\right)$ data of synthetic Keramaphidin B with those of a sample of Keramaphidin B prepared by Baldwin et al., ${ }^{[225]}$ which had been doped with authentic material provided by Kobayashi et al. ${ }^{[54]}$ (numbering scheme as shown in figure 4.3).

Position	${ }^{13} \mathrm{C}$ NMR Synthetic δ (ppm)	${ }^{13} \mathrm{C}$ NMR (literature) δ (ppm)	$\Delta \delta$ (ppm)
20	21.5	21.3	+0.2
17	21.8	21.7	+0.1
14	23.8	23.8	0
22	26.1	26.1	0
25	26.6	26.5	+0.1
12	27.2	27.1	+0.1
13	27.5	27.5	0
21	27.7	-	-
5	28.0	-	-
26	37.9	37.8	+0.1
4	39.1	39.0	+0.1
18	42.3	42.1	+0.2
4 a	44.9	44.7	+0.2
8 a	45.9	-	-
6	48.5	48.8	-0.3
8	51.0	50.9	+0.1
3	54.6	54.5	+0.1
11	55.2	55.2	0
19	57.1	57.0	+0.1
1	65.3	65.0	+0.3
10	124.3	124.5	-0.2
15	131.5	131.3	+0.2
16	132.4	132.6	-0.2
23	132.6	132.6	0
24	133.3	133.3	0
9	143.0	142.9	+0.1

Table 4.4. Comparison of ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ data of synthetic Keramaphidin B with those of the isolated sample fo Keramaphidin $B^{[54]}$ (numbering scheme as shown in figure 4.3).

Position	Original Assignment ${ }^{[54]}$	${ }^{1} H$ NMR Synthetic $\delta(\mathrm{ppm}), J(\mathrm{~Hz})$	${ }^{1} \mathrm{H}$ NMR Isolated ${ }^{[54]}$ $\delta(\mathrm{ppm}), J(\mathrm{~Hz})$
1	1	3.01, s	3.01, s
3a	3	2.85 (dd, $J=9.1,2.1)$	2.86 (dd, $J=8.5,1.5)$
3b	3	1.64 (dd, $J=9.1,2.7)$	1.64 (dd, $J=9.0,2.3)$
4	4	2.20, m	2.22, m
4a	4 a	0.91, m	0.93 (ddd, $J=11.6,5.6,1.9)$
5a	5	1.16 (qd, $J=13.0,4.6)$	1.17 (ddd, $J=13.0,8.7,4.4$)
5b	5	1.30, m	1.36, m
6a	6	2.62 ($\mathrm{d}, \mathrm{J}=12.2$)	2.63 (dt, $J=12.3,3.6)$
6b	6	2.67 (t, $J=12.4)$	2.75, m
8 a	8	2.07, m	2.08 ($\mathrm{d}, \mathrm{J}=10.7$)
8 b	8	2.12, m	2.23 ($\mathrm{d}, \mathrm{J}=12.3)$
10	10	$5.79(\mathrm{~d}, \mathrm{~J}=6.5)$	5.81
11	11	2.22, m	2.23, m
	3	2.88 (dd, $J=12.6,5.2)$	2.91 (dd, $J=20.7,9.7$)
12	12	1.25, m	1.24, m
		1.45, m	1.45, m
13	13	1.49, m	1.46, m
		1.58, m	1.58, m
14	14	1.58, m	1.57, m
		2.34, m	2.35, m
15	16	5.70 (td, $J=10.4,9.7,6.3)$	5.69 (ddd, $J=13.6,10.1,6.3)$
16	15	5.64 (td, $J=10.4,5.1$)	5.64 (ddd, $J=13.6,10.1,5.2)$
17	17	1.73 , br s	1.78, m
		2.28, m	2.27, m
18	18	1.62, m	1.61, m
		1.86 (td, $J=12.1,7.6)$	1.88 (dt, $J=12.3,7.6)$
19	19	2.16, m	2.24, m
		3.05 , br s	3.07, m
20	20	1.30, m	1.34, m
		1.54, m	1.55, m
21	21	1.29, m	1.32, m
		1.46, m	1.48, m
22	22	1.95 ($\mathrm{d}, \mathrm{J}=15.1$)	1.96 (br d, $\mathrm{J}=15.2$)
		2.16, m	2.14, m
23	23	5.23 (tt, $J=10.8,3.1)$	5.24 (br d, $J=10.8)$
24	24	5.35, m	5.36 (br d, $J=10.8)$

Table 4.5. Comparison of ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ data of synthetic Keramaphidin B with those of isolated Keramaphidin $\mathrm{B}^{[54]}$ (numbering scheme as shown in figure 4.3).

Position	Original Assignment ${ }^{[54]}$	${ }^{13} \mathrm{C}$ NMR Synthetic δ (ppm)	$\begin{gathered} { }^{13} \mathrm{C} \text { NMR } \\ \text { Isolated }{ }^{[54]} \\ \delta(\mathrm{ppm}) \end{gathered}$	$\Delta \delta$ (ppm)
17	17	21.0	21.0	0
20	20	21.2	21.1	+0.1
14	14	22.9	22.9	0
22	22	24.9	25.0	-0.1
25	25	25.5	25.6	-0.1
12	12	26.1	26.1	0
13	13	26.4	25.6	+0.8
21	21	27.3	27.2	+0.1
5	5	27.8	27.6	+0.2
26	26	37.0	37.0	0
4	4	37.9	38.0	-0.1
18	18	41.6	41.6	0
4a	4 a	43.4	43.3	+0.1
8 a	8 a	45.2	45.1	+0.1
6	6	47.4	47.4	0
8	8	50.7	50.8	-0.1
3	3	53.6	53.6	0
11	11	54.0	54.1	-0.1
19	19	56.2	56.2	0
1	1	64.3	64.3	0
10	10	122.5	122.6	-0.1
15	16	130.9	130.9	0
16	15	131.2	131.2	0
23	23	131.5	131.5	0
24	24	132.0	132.0	0
9	9	141.7	141.8	-0.1

4.I. 3 Total Synthesis of Nominal Njaoamine I

N-(3-(2-Aminophenyl)-3-oxopropyl)-2,2,2-trifluoroacetamide (101). Trifluoroacetic acid
 anhydride $(9.5 \mathrm{~mL}, 68.3 \mathrm{mmol})$ was slowly added to a solution of tryptamine ($8.0 \mathrm{~g}, 50.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 2 h at this temperature, $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added to terminate the reaction. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 500 mL), the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under vacuum, and the crude product was used in the next step without further purification.

The crude product was dissolved in $\mathrm{MeOH}(800 \mathrm{~mL})$ and the solution was added dropwise to a solution of $\mathrm{NaIO}_{4}(54.8 \mathrm{~g}, 256 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(800 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The ice bath was removed and stirring continued at ambient temperature for 24 h . The mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ (500 mL), the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 800 \mathrm{~mL})$, and the combined organic phases were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was evaporated to provide the crude product, which was directly used in the next step.
conc. $\mathrm{HCl}(6.4 \mathrm{~mL}, 80.0 \mathrm{mmol})$ was added dropwise to a solution of this crude material in $\mathrm{MeOH}(640 \mathrm{~mL})$. The mixture was stirred at reflux temperature for 1 h before it was cooled to room temperature and aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~m}, 76 \mathrm{mmol})$ was added until a $\mathrm{pH} \approx 6$ was reached. The yellow residue was poured into $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 500 \mathrm{~mL})$, the combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After removing the solvent, the residue was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ tert-butyl methyl ether, 20:1) to afford the title compound as a yellow solid (13.1 g , 81% over 3 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{ddd}, J=8.6,7.1,1.5$ Hz, 1H), 7.20 (s, 1H), 6.66 (td, $J=8.2,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.29$ (s, 2H), 3.80-3.73 (m, 2H), 3.25 (dd, J = $6.0,5.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=200.5,150.5,135.1,130.9,117.5,117.3$, 117.1, 116.1, 114.4, 37.6, 34.9 ppm ; ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-76.1 \mathrm{ppm}$; IR (film) $\tilde{v}=3468$, 3348, 1708, 1616, 1550, 1452, 1204, 1159, 971, $750 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 120 (100), 260 (32.9); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}$ [$\left.M^{+}\right]$: 260.07671 , found: 260.07733 .

2,2,2-Trifluoro-N-(2-(2-hydroxy-3-propionylquinolin-4-yl)ethyl)acetamide

Compound $102(5.50 \mathrm{~g}, 27.5 \mathrm{mmol})^{[226]}$ was added to a solution of compound $101(4.78 \mathrm{~g}, 18.4 \mathrm{mmol})$ in toluene $(60 \mathrm{~mL})$ at ambient temperature. The resulting mixture was stirred at reflux temperature for 2 h before it was cooled to ambient temperature and directly loaded on silica filled into a flash column. After a contact time of 24 h , the product was eluted (hexanes/acetone, $3: 1$ to $0: 1$) to provide the tilte compound as a yellow solid ($5.89 \mathrm{~g}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}$): $\delta=8.07$ (dd, $J=8.2,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61$ (ddd, $J=8.4,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.31(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=8.5,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.07-$ $3.02(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz},\left[\mathrm{D}_{4}\right]-$ $\mathrm{MeOH}): \delta=208.1,162.1,146.9,139.8,134.8,132.7$ 126.6, 124.4, 120.3, 119.0, 117.4, 116.1, 40.9,
37.9, 29.8, $7.9 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{MeOD}$): $\delta=-77.4 \mathrm{ppm} ;$ IR (film) $\tilde{v}=3307,2942,2883$, 1701, 1652, 1563, 1187, 1152, $757 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 212 (100), 340 (12); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}\left[M^{+}\right]$: 340.10293, found: 340.10283.

2,2,2-Trifluoro-N-(2-(2-hydroxy-3-propionylquinolin-4-yl)ethyl)acetamide (S3). Tf2O

$(2.3 \mathrm{~mL}, 13.7 \mathrm{mmol})$ was added to a solution of compound 103 $(3.18 \mathrm{~g}, 9.30 \mathrm{mmol})$ in pyridine $(50.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 10 min , the cooling bath was removed and the mixture stirred at ambient temperature for 12 h . The mixture was poured into $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{M}$, 400 mL) at $0^{\circ} \mathrm{C}$, the aqueous phase was extracted with EtOAc $(3 \times 500 \mathrm{~mL})$, and the combined organic layers were washed with brine and dried over MgSO_{4}. After filtration and evaporation of the solvent, the crude product was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ tert-butyl methyl ether, $\left.40: 1\right)$ to provide the title compound as a yellow solid material ($3.88 \mathrm{~g}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.21(\mathrm{dd}, J=8.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{ddd}, J=8.4,1.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{ddd}, J=8.4$, $7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.66(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{td}, J=6.9,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=204.7,158.5,158.1$, 157.7, 157.4, 149.3, 147.6, 145.5, 132.3, 129.8, 128.9, 126.1, 125.8, 124.3, 120.1, 117.0, 116.9, 114.2, $40.2,38.3,28.5,7.9 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-72.4,-76.0 \mathrm{ppm}$; IR (film) $\tilde{v}=3342$, 2955, 1703, 1563, 1420, 1178, 1121, $997,760 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $473\left[\mathrm{M}^{+} \mathrm{H}^{+}\right], 495\left[\mathrm{M}+\mathrm{Na}^{+}\right] ;$HRMS (ESI): m / z : calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}^{\left[M+\mathrm{Na}^{+}\right]}$: 495.04199, found: 495.04193.

N-(2-(2-(4-((tert-butyldimethylsilyl)oxy)butyl)-3-propionylquinolin-4-yl)ethyl)-2,2,2-

 trifluoroacetamide (105). Neat (but-3-en-1-yloxy)(tert- butyl)dimethylsilane ($8.0 \mathrm{~mL}, 29.1 \mathrm{mmol})^{[227]}$ was added to a solution of $9-H-9-B B N(0.5 \mathrm{M}$ in THF, 31.6 mL , 15.8 mmol) at ambient temperature. After stirring at this temperature for 12 h , the solution was warmed to $40^{\circ} \mathrm{C}$ and stirring was continued for another 6 h before the mixture was cooled to ambient temperature. MeONa ($821 \mathrm{mg}, 15.2 \mathrm{mmol}$) was added and the resulting mixture was stirred for 1 h at ambient temperature. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(475 \mathrm{mg}, 0.411 \mathrm{mmol})$ and triflate $\mathrm{S} 3(3.88 \mathrm{~g}$, 8.21 mmol) were successively added to this solution. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 15 h before it was cooled to ambient temperature. The mixture was diluted with tert-butyl methyl ether $(3 \times 100 \mathrm{~mL})$ and washed with brine, the organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was evaporated under vacuum, and the crude product was purified by flash chromatography on silica gel (hexanes/EtOAc, 10:1 to $4: 1$) to afford the title compound as a yellow oil ($3.08 \mathrm{~g}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.08$ (ddd, $\left.J=8.5,1.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.04$ (ddd, $J=8.5,1.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ (ddd, $J=8.4,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.69 (s, 1H), 7.60 (ddd, $J=8.3$, $6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{td}, \mathrm{J}=6.6,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H}), 2.86-2.79(\mathrm{~m}$, $4 \mathrm{H}), 1.94-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;$
${ }^{13}{ }^{13}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=211.4,157.9,157.5,156.5,147.9,138.9,135.5,130.2,130.0,127.2$, $124.4,123.3,114.2,62.7,40.1,39.2,37.0,32.6,27.8,26.0,25.9,18.3,8.0,-5.4 \mathrm{ppm} ;{ }^{19} \mathrm{~F}$ NMR (282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-75.9 \mathrm{ppm}$; IR (film) $\tilde{v}=3309,2931,2858,1703,1208,1160,835,762 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ESI): $m / z: 511\left[M+\mathrm{H}^{+}\right], 533\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{26} \mathrm{H}_{3} 7 \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}_{3} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]$: 533.24178, found: 533.24155.
tert-Butyl (2-(2-(4-hydroxybutyl)-3-(prop-1-yn-1-yl)quinolin-4-yl)ethyl)carbamate (S4).
 KHMDS (1.0 M in THF, $31.7 \mathrm{~mL}, 31.7 \mathrm{mmol}$) was added to a solution of compound $105(3.08 \mathrm{~g}, 6.03 \mathrm{mmol})$ and PhNTf_{2} ($3.39 \mathrm{~g}, 9.49 \mathrm{mmol}$) in THF $(40 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After stirring at this temperature for 1 h , the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), and the combined extracts were washed with brine and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation of the solvent, the crude material was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{~mL})$. DMAP $(3.10 \mathrm{~g}, 25.4 \mathrm{mmol})$ and $\mathrm{Boc}_{2} \mathrm{O}(5.34 \mathrm{~g}, 24.5 \mathrm{mmol})$ were successively added at $0^{\circ} \mathrm{C}$, the cooling bath was removed after 5 min , and the mixture stirred at ambient temperature for 2 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The resulting mixture was stirred for 5 h before it was extracted with tert-butyl methyl ether ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with anhydrous MgSO_{4}, filtered and the solvent was evaporated. The residue was purified by flash chromatography on silica gel (hexanes/tertbutyl methyl ether, 8:1 to 2:1).

TBAF (1.0 m in THF, $24.0 \mathrm{~mL}, 24.0 \mathrm{mmol}$) was added to a solution of the product thus obtained in THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was then stirred at ambient temperature for 1 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($4 \times 100 \mathrm{~mL}$), the combined organic phases were washed with brine, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After evaporation of the solvent, the residue was purified by flash chromatography on silica (hexanes/acetone, $8: 1$ to 1:1) to afford the title compound as a yellow oil ($1.66 \mathrm{~g}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=$ $8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{ddd}, J=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{ddd}, J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}$, $1 \mathrm{H}), 3.69(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 5 \mathrm{H}), 3.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 1 \mathrm{H}), 2.21(\mathrm{~s}$, $3 \mathrm{H}), 2.08-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 162.6, 155.9, 147.4, 145.7, 129.4, 129.1, 126.4, 125.7, 123.8, 117.7, 95.9, 79.3, 75.8, 62.3, 40.4, 36.8, $32.3,30.9,28.4,24.1,4.8 \mathrm{ppm} ; \operatorname{IR}(f i l m) \tilde{v}=3322,2933,1691,1498,1365,1252,1170,1072,761 \mathrm{~cm}^{-}$ ${ }^{1}$; MS (ESI): $m / z: 383\left[M+\mathrm{H}^{+}\right], 405\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{\left.+\mathrm{H}^{+}\right] \text {: }}\right.$ 383.23292, found: 383.23288 .
tert-Butyl (2-(2-(4-oxobutyl)-3-(prop-1-yn-1-yl)quinolin-4-yl)ethyl)carbamate (98). Sulfur
 trioxide pyridine complex ($750 \mathrm{mg}, 4.71 \mathrm{mmol}$) was added to a solution of anhydrous $\mathrm{Et}_{3} \mathrm{~N}(1.3 \mathrm{~mL}, 9.32 \mathrm{mmol})$, alcohol S4 $(604 \mathrm{mg}, 40.8 \mathrm{mg})$ and DMSO ($0.56 \mathrm{~mL}, 7.88 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(6.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 10 min , the cooling bath was removed and stirring was continued at ambient temperature for 3 h before sat. aq. $\mathrm{NaHCO}_{3}(2.0 \mathrm{~mL})$ was added. The aqueous layer was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash chromatography on silica gel (hexanes/acetone, $6: 1$ to $3: 1$) to afford the title compound as a yellow oil ($461 \mathrm{mg}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.79(\mathrm{t}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98$ (dd, $J=8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ (ddd, $J=8.3,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (ddd, $J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.25-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{td}, J$ $=7.2,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.15(\mathrm{~m}, 5 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.5$, 161.7, 155.9, 147.3, 146.0, 129.4, 129.3, 126.4, 125.7, 123.8, 117.7, 96.0, 75.7, 43.4, 40.3, 36.7, 30.8, 28.4, 21.1, 4.7 ppm ; IR (film) $\tilde{v}=3368,2977,2936,1713,1498,1367,1250,872,764 \mathrm{~cm}^{-1} ;$ MS (ESI): $m / z: 381\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$: 381.21727, found: 381.21717.

3-Allyl 1-(tert-butyl) (5R)-5-((tert-butyldimethylsilyl)oxy)-2-oxo-3-(pent-3-yn-1-yl)piperidine-1,3-dicarboxylate (S5). LiHMDS (1 M in THF, $26.7 \mathrm{ml}, 26.7 \mathrm{mmol}$) was slowly added to a solution of ent-45 ($3.83 \mathrm{~g}, 11.6 \mathrm{mmol}$) in anhydrous THF (58 ml) at $-78{ }^{\circ} \mathrm{C}$. The
 mixture was stirred for 1 h before allyl chloroformate (1.3 ml , 12.2 mmol) was added. After 30 min , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($3 \times 200 \mathrm{~mL}$) and the combined organic phases were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. After evaporation of the solvent, the residue was purified by flash chromatography on silica (hexanes/EtOAc, $5: 1$ to 3:1) to provide a yellow oil.
$\mathrm{Cs}_{2} \mathrm{CO}_{3}(7.66 \mathrm{~g}, 23.5 \mathrm{mmol})$ was added to a solution of this compound and 5-iodopent-2-yne $(4.5 \mathrm{~g}, 23.2 \mathrm{mmol})^{[224]}$ in DMF $(20.0 \mathrm{~mL})$ at ambient temperature. The mixture was stirred for 12 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The resulting solution was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica (hexane/EtOAc, 1:10) to afford the title product as a white solid material ($5.17 \mathrm{~g}, 93 \%$). $[\alpha] \mathrm{D}^{20}=-10.2^{\circ}\left(\mathrm{c}=1.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.99-5.73$ $(\mathrm{m}, 1 \mathrm{H}), 5.42-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.16(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.52(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.69$ $(\mathrm{m}, 1 \mathrm{H}), 3.51-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.31-1.96(\mathrm{~m}, 5 \mathrm{H}), 1.80-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$, $0.89-0.79(\mathrm{~m}, 9 \mathrm{H}), 0.09--0.03(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.0,170.9,169.4$, 168.9, 152.7, 152.5, 131.3, 131.1, 119.0, 118.4, 83.1, 83.1, 78.2, 78.1, 76.2, 76.2, 66.2, 66.0, 63.9, 63.8, $55.2,54.4,51.1,50.9,38.7,38.6,35.8,35.4,27.9,25.6,25.6,18.0,17.9,14.7,14.4,3.4,3.4,-4.8,-4.9$,
$-5.04,-5.00 \mathrm{ppm}$; IR (film) $\tilde{v}=2926,2856,1717,1376,1300,1254,1147,1092,836,777 \mathrm{~cm}^{-1}$; MS (ESI): $m / z: 502\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{NO}_{6} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]$: 502.2595 , found: 502.2597.
tert-Butyl (R)-3-((tert-butyldimethylsilyl)oxy)-6-oxo-5-(pent-3-yn-1-yl)-3,6-dihydro-pyridine- $\mathbf{1 (2 H}$)-carboxylate (94). $\mathrm{Pd}_{2}\left(\mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(974 \mathrm{mg}, 0.941 \mathrm{mmol})\right.$ was added to a
 solution of compound $\mathbf{S 5}(9.03 \mathrm{~g}, 18.8 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(76 \mathrm{~mL})$ at ambient temperature. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 30 min before it was cooled to ambient temperature and filtered through a pad of Celite. The filtrate was evaporated and the residue was purified by chromatography on silica (hexanes/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1$ to $1: 4$ to remove the dba, then the elutant was changed to hexanes/tert-butyl methyl ether, $4: 1$) to afford the title compound as a colorless oil ($5.84 \mathrm{~g}, 79 \%$). $[\alpha] \mathrm{D}^{20}=+56.3^{\circ}\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.51-6.48(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{ddd}, J=12.8,4.9,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.64 (dd, $J=12.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.32$ (ddddd, $J=6.3,5.3,3.8,2.6,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), $1.75(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=163.6,152.7,142.1,134.0,83.1,78.3,63.9,50.7,29.9,28.1,25.7,18.1,17.9,3.4,-4.7,-4.7 \mathrm{ppm}$; IR (film) $\tilde{v}=2930,2857,1715,1368,1301,1255,1093,837,778 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $416\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]: 416.22276$, found: 416.22272 .
(E)-2,3-Dibromo-8-iodooct-2-ene (106). Bromine ($5.2 \mathrm{~mL}, 101.5 \mathrm{mmol}$) was added to a solution

of oct-6-yn-1-ol ($10.6 \mathrm{~g}, 84.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(420 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring for 20 min at this temperature, the reaction mixture was poured into a solution of sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(500 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 500 \mathrm{~mL})$, the combined organic layers were washed with brine, dried with anhydrous MgSO_{4} and filtered, and the solvent was evaporated. The crude dibromide $\mathbf{6 0}$ thus obtained was used in the next step without further purification.

Iodine ($25.6 \mathrm{~g}, 100.9 \mathrm{mmol}$) was added to a vigorously stirred solution of $\mathrm{PPh}_{3}(26.5 \mathrm{~g}$, $101.0 \mathrm{mmol})$ and imidazole $(6.88 \mathrm{~g}, 101.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(280 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at this temperature for 30 min , a solution of the crude dibromide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added and the resulting mixture was stirred for 2 h before the reaction was quenched with aq. sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(200 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 300 \mathrm{~mL})$, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by chromatography on silica (pentane) to afford the title compound as a colorless oil ($33.0 \mathrm{~g}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~d}, \mathrm{~J}=1.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.86$ (ddd, $J=13.0,7.9,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=121.6,115.6,40.3,33.2,29.3,28.8,26.3,6.7 \mathrm{ppm}$; IR (film) $\tilde{v}=2929,2857,1453$, 1428, 1375, 1349, 1298, 1267, 1204, 1165, 1104, 1069, 1030, 957, 723, 615, $505 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%):107 (100), 213 (43), 396 (4); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{IBr}_{2}$ [M^{+}]: 393.84235, found: 393.84232.

Allyl (E)-1-benzyl-3-(6,7-dibromooct-6-en-1-yl)-4-oxopiperidine-3-carboxylate (107). $\mathrm{Cs}_{2} \mathrm{CO}_{3}$
 $(27.2 \mathrm{~g}, 83.5 \mathrm{mmol})$ was added to a solution of compound $71(14.5 \mathrm{~g}$, $53.0 \mathrm{mmol})$ and iodide $106(33.0 \mathrm{~g}, 83.4 \mathrm{mmol})$ in DMF $(128 \mathrm{~mL})$ at ambient temperature. The mixture was stirred for 12 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc ($3 \times 300 \mathrm{~mL}$), and the combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica (EtOAc/hexanes, 1:8) to afford the title compound as a colorless oil ($19.1 \mathrm{~g}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-$ $7.14(\mathrm{~m}, 5 \mathrm{H}), 5.89(\mathrm{ddt}, J=17.3,10.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.76-4.51(\mathrm{~m}, 2 \mathrm{H}), 3.64-$ $3.51(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{dd}, J=11.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dtd}, J=12.6,5.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.76(\mathrm{~m}$, $1 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.32(\mathrm{~m}, 5 \mathrm{H}), 2.25(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.46$ $(\mathrm{m}, 3 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.05(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=205.9,171.2,137.7,131.6,128.7,128.1,127.2,121.8,118.6,115.1,65.5,61.7,61.1,61.0$, $53.4,40.4,40.3,31.9,28.7,28.6,26.9,24.1 \mathrm{ppm} ; \operatorname{IR}$ (film) $\tilde{v}=3027,2927,2859,2805,1716,1649$, 1494, 1454, 1348, 1318, 1221, 1195, 1160, 1122, 1073, 1027, 972, 997, 931, 820, 734, 698, 616, 554, $501,462 \mathrm{~cm}^{-1}$; MS (ESI): $m / z: 540\left[M+\mathrm{H}^{+}\right] ; 562\left[M+\mathrm{Na}^{+}\right]$;HRMS (ESI): m/z: calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{Br}_{2}$ $\left[M+\mathrm{H}^{+}\right]: 540.07369$, found: 540.07475.

3-Allyl 1-methyl (E)-3-(6,7-dibromooct-6-en-1-yl)-4-oxopiperidine-1,3-dicarboxylate (108).
 Methyl chloroformate ($13.6 \mathrm{~mL}, 176 \mathrm{mmol}$) was added to a solution of $\mathbf{1 0 7}(19.1 \mathrm{~g}, 35.3 \mathrm{mmol})$ in toluene $(35 \mathrm{~mL})$ at ambient temperature. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 6 h before it was directly loaded on a column of silica. The product was eluted with hexanes/EtOAc (5:1 to 1:1) to provide the desired product as a colorless oil (17.4 g , 97%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.87$ (ddt, $J=16.5,10.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $5.37-5.18(\mathrm{~m}, 2 \mathrm{H})$, $4.62(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.58-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 1 \mathrm{H}), 3.22-3.08(\mathrm{~m}$, $1 \mathrm{H}), 2.72-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{dt}, J=14.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{td}, J$ $=19.4,14.8,8.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{dt}, J=13.3,6.9 \mathrm{~Hz}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 204.3, 169.8, 155.7, 131.3, 121.8, 119.2, 115.4, 66.1, 61.2, 53.1, 50.2, 43.7, 40.3, 39.7, 31.5, 28.7, 28.6, $27.0,24.0 \mathrm{ppm} ;$ IR (film) $\tilde{v}=2930,2860,1703,1650,1448,1412,1376,1308,1272,1236,1192,1132$, 1073, 994, 933, 767, $616 \mathrm{~cm}^{-1}$; MS (ESI): $m / z: 508\left[M+\mathrm{H}^{+}\right] ; 530\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{Br}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 508.03290$, found: 508.03322 .

Methyl (E)-5-(6,7-dibromooct-6-en-1-yl)-4-oxo-3,4-dihydropyridine-1(2H)-carboxylate (95).

$\mathrm{Pd}_{2}(\mathrm{dba})_{3}(859 \mathrm{mg}, 0.938 \mathrm{mmol})$ was added to a solution of compound 108 ($9.54 \mathrm{~g}, 18.7 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(94 \mathrm{~mL})$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 30 min before it was cooled to ambient temperature and filtered through a pad of Celite, rinsing with tert-butyl methyl ether (100 mL). The combined filtrates
were evaporated and the residue was purified by flash chromatography on silica (hexanes/EtOAc, 4:1 to 1:1) to afford the title compound as a colorless oil ($7.22 \mathrm{~g}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.66(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.72-2.62(\mathrm{~m}$, $2 \mathrm{H}), 2.59-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.50-$ $1.40(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{tt}, \mathrm{J}=10.2,4.3 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=193.2,122.0$, 115.2, 53.9, 42.6, 40.5, 36.0, 29.0, 28.8, 28.2, 27.2, 27.2 ppm ; IR (film) $\tilde{v}=2926,2857,1723,1665$, 1617, 1439, 1398, 1370, 1322, 1301, 1243, 1204, 1153, 1122, 1061, 1048, 1006, 974, 917, 766, 668, $615,511 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $422\left[M+\mathrm{H}^{+}\right], 444\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{Br}_{2}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]: 421.99612$, found: 421.99593.

Compound 109. The Michael donor 95 ($4.50 \mathrm{~g}, 10.6 \mathrm{mmol}$) was dissolved in THF (35 mL) and

the solution cooled to $-50^{\circ} \mathrm{C}$ before a solution of $\mathrm{LiOtBu}(854 \mathrm{mg}$, $10.7 \mathrm{mmol})$ in THF (18 mL) was added dropwise. After the addition was complete, stirring was continued for 10 min at $-50^{\circ} \mathrm{C}$. Then, a solution of the Michael acceptor $94(3.27 \mathrm{~g}, 8.89 \mathrm{mmol})$ in THF $(17 \mathrm{~mL})$ was added dropwise at $-50^{\circ} \mathrm{C}$. The reaction was warmed to $25^{\circ} \mathrm{C}$ over the course of 5 h and then stirred at that temperature for another 16 h . DMAP ($1.63 \mathrm{~g}, 13.3 \mathrm{mmol}$) and $\mathrm{Boc}_{2} \mathrm{O}(1.63 \mathrm{~g}$, 13.3 mmol) were added and stirring continued for 1 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL). The aqueous phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), the combined extracts were washed with brine, dried over magnesium sulfate and filtered. After removal of the organic solvents in vacuum, the crude material was purified by flash chromatography on silica (hexanes/EtOAc, 10:1 to 6:1) to afford the desired product.
$\mathrm{NaBH}_{4}(1.0 \mathrm{~g}, 26.4 \mathrm{mmol})$ was added in portions to a solution of this product in MeOH $(35.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 30 min before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$, the combined organic phases were washed with brine (10 mL), dried over MgSO_{4} and filtered. After evaporation of the solvent, the crude product was purified by flash chromatography on silica gel (hexanes/EtOAc, $8: 1$ to $4: 1$) to afford the title product as a white solid ($3.98 \mathrm{~g}, 55 \%$). $[\alpha]_{\mathrm{D}}^{20}=+48.0^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers, 2.3:1) : $\delta=4.46$ (tdd, $J=10.6,4.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (s, 0.3 H, minor), 4.18 (s, 0.7 H , major), 4.09 (dd, $J=12.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=2.5,1.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.57-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.30$ (ddd, $J=22.5,11.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{dd}, J=2.6,1.1 \mathrm{~Hz}$, $3 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{dtt}, J=16.5,8.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.58(\mathrm{~m}$, $8 \mathrm{H}), 1.58-1.23(\mathrm{~m}, 17 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.6,156.8$, 156.5, 151.5, 151.4, 122.2, 122.0, 115.2, 115.1, 83.4, 83.3, 78.5, 77.9, 76.2, 76.0, 75.8, 75.5, 67.8, 67.7, $52.7,52.5,52.2,52.1,51.8,51.3,50.8,49.7,48.0,46.2,46.0,40.4,40.1,39.8,34.6,34.5,33.2,32.9$, 28.7, 28.7, 28.6, 28.0, 27.2, 27.2, 26.5, 26.4, 25.7, 17.9, 13.8, 13.8, 3.5, 3.4, -4.4, -4.5; IR (film) $\tilde{v}=$

3502, 2951, 2929, 2884, 2857, 1766, 1703, 1680, 1454, 1393, 1369, 1339, 1296, 1255, 1191, 1156, 1122, 1067, 991, 939, 865, 838, 808, 779, 756, 685, 671, $666 \mathrm{~cm}^{-1}$; MS (ESI): m/z: 839 [M+Na+]; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{36} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SiBr}_{2} \mathrm{Na}\left[\mathrm{M}^{2}+\mathrm{Na}^{+}\right]: 839.22725$, found: 839.22744.

Compound S6. Et 3 N ($1.6 \mathrm{~mL}, 11.5 \mathrm{mmol}$), DMAP ($474 \mathrm{mg}, 3.88 \mathrm{mmol}$) and $\mathrm{MsCl}(0.75 \mathrm{~mL}$,
 9.69 mmol) were successively added to a solution of alcohol 109 $(3.18 \mathrm{~g}, 3.88 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 5 min , the cooling bath was removed and the mixture stirred at ambient temperature for 2 h before sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added. The aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), the combined extracts were washed with brine (5 mL), dried over MgSO_{4} and filtered, and the solvent was evaporated in vacuum. The residue was purified by flash chromatography on silica gel (hexanes/EtOAc, $4: 1$ to 2:1) to afford the title compound as a white solid ($3.28 \mathrm{~g}, 94 \%$). $[\alpha]_{\mathrm{D}}^{20}=+29.4^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers, 2:1): $\delta=4.42-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, 2H, major), 3.73 (s, 1H, minor), 3.40 (td, $J=11.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.16$ (m, 2H), 3.02-2.99 (m, $3 \mathrm{H}), 2.67-2.56(\mathrm{~m}, 3 \mathrm{H}), 2.40(\mathrm{dt}, J=3.2,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.22$ (dddd, $J=16.3,9.6,6.2,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.08-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~h}, \mathrm{~J}=2.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.60-1.56(\mathrm{~m}$, $3 \mathrm{H}), 1.53(\mathrm{~s}, 10 \mathrm{H}), 1.43-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=170.9,156.6,156.5,151.1,151.0,122.1,121.9,115.3,85.1,84.8,83.8,83.7,78.2$, $77.6,76.1,75.8,67.8,67.7,52.9,51.8,51.7,51.6,51.5,50.3,49.8,49.2,48.1,43.5,43.4,40.5,40.4$, $40.0,39.6,38.7,38.6,34.0,33.8,32.2,31.9,28.8,28.5,28.4,28.0,27.2,27.1,26.1,26.1,25.8,17.9$, $13.9,3.5,3.4,-4.2,-4.5 \mathrm{ppm}$; IR (film) $\tilde{v}=2931,2858,1770,1704,1449,1389,1367,1340,1298$, 1256, 1177, 1155, 1125, 1065, 991, 962, 941, 899, 838, 779, 754, 666, 617, 526, $490 \mathrm{~cm}^{-1}$; MS (ESI): $m / z: 917\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{SiBr}_{2} \mathrm{Na}\left[M+\mathrm{Na}^{+}\right]$: 917.20480, found: 917.20512.

Compound 110. Note: To assure reproducibility, the starting material should be stirred and dried
 under high vacuum for $2 d$ until it has turned into a fine power.

Mesylate S6 ($2.28 \mathrm{~g}, 2.54 \mathrm{mmol}$) was dissolved in 2,6-lutidine $(12.7 \mathrm{~mL})$ and the resulting solution was stirred at $170^{\circ} \mathrm{C}$ (bath temperature) for 5 d . The mixture was then cooled to ambient temperature and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$.

TBSOTf ($2.9 \mathrm{~mL}, 12.6 \mathrm{mmol}$) was added to this solution at $0^{\circ} \mathrm{C}$. After 5 min , the cooling bath was removed and the mixture stirred at ambient temperature for 3 h . sat. aq. NaHCO_{3} $(10 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$, followed, after 5 min , by careful addition of $\mathrm{HCl}(2 \mathrm{M}, 40 \mathrm{~mL})$. After stirring for 10 min , the mixture was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$, the combined organic phases were washed with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and
dried with MgSO_{4}. After filtration and evaporation of the solvent in vacuum, the residue was purified by flash chromatography on silica gel (hexanes/EtOAc, 8:1 to $4: 1$) to afford the title product as a yellow solid ($1.40 \mathrm{~g}, 78 \%$). $[\alpha]_{\mathrm{D}}^{20}=+30.0^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, mixture of rotamers, ca. 2:1): $\delta=5.93-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.65(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, 0.34 H, minor), 4.75 (d, $J=1.5 \mathrm{~Hz}, 0.66 \mathrm{H}$, major), $3.73(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{td}, \mathrm{J}=9.4,4.7$ Hz, 1H), 3.20-3.09 (m, 2H), 3.08-2.91 (m, 2H), 2.79-2.70 (m, 1H), 2.66-2.58 (m, 2H), 2.42-2.37 (m, 3H), 2.33-2.08 (m, 4H), 1.86 (dq, J = 10.7, 5.3 Hz, 2H), 1.74 (t, J = $2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.69-1.60$ (m, $2 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.6,156.0,156.0,148.4,147.6,124.3,123.7,122.1$, $122.0,115.2,115.1,79.0,78.5,75.7,75.4,70.8,70.7,54.3,54.2,52.9,52.6,52.5,51.4,51.3,47.3,47.1$, $45.6,40.6,40.6,39.9,39.7,33.6,33.6,33.3,28.7,28.0,27.9,27.2,27.1,27.0,26.6,26.4,25.7,17.8$, 14.1, 3.5, 3.4, -4.3, -4.3, -4.8 ppm; IR (film) $\tilde{v}=2950,2928,2857,1699,1664,1446,1386,1339$, $1299,1273,1254,1216,1190,1120,1107,1064,1006,981,955,927,876,836,814,774,708,685$, 660, $616 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $699\left[M+\mathrm{H}^{+}\right], 721\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{Ns}_{5} \mathrm{O}_{3} \mathrm{SiBr}_{2} \mathrm{Na}\left[\mathrm{M}^{2}+\mathrm{Na}^{+}\right]$: 721.16291, found: 721.16321.

Compound 111. $\mathrm{NaH}(254 \mathrm{mg}, 10.6 \mathrm{mmol})$ was added to a solution of compound $110(1.40 \mathrm{~g}$,
 $1.99 \mathrm{mmol})$ and iodide $106(0.75 \mathrm{~mL}, 2.38 \mathrm{mmol})$ in DMF/THF ($10 \mathrm{~mL}, 1: 1$) at $0^{\circ} \mathrm{C}$. After stirring at this temperature for 1 h , the mixture was poured into a solution of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc (3 x 50 mL), the combined organic phases were washed with brine, dried over MgSO_{4} and filtered. After evaporation of the solvent in vacuum, the residue was purified by flash chromatography on silica gel (hexanes/tert-butyl methyl ether, $8: 1$ to $4: 1$) to afford product 111 as a colorless oil.

This compound was dissolved in THF (4.2 mL) and TBAF (1 m in THF, $4.0 \mathrm{~mL}, 4.0 \mathrm{mmol}$) was added. The resulting mixture was stirred at ambient temperature for 1 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5.0 \mathrm{~mL})$. The resulting mixture was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$, the combined organic phases were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation of the solvent in vacuum, the crude material was purified by flash chromatography on silica gel (hexanes/acetone, $15: 1$ to $4: 1$) to afford the title compound as a yellow oil $(1.56 \mathrm{~g}, 92 \%) .[\alpha]_{\mathrm{D}}^{20}=+36.7^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers, ca. 2:1): $\delta=5.92-5.77(\mathrm{~m}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 0.4 \mathrm{H}$, minor), $4.78(\mathrm{~s}, 0.6 \mathrm{H}$, major), $3.72(\mathrm{~s}$, 2H, major), 3.66 (s, 1H, minor), 3.44-3.23 (m, 3H), 3.21-3.09 (m, 3H), 3.03-2.82 (m, 2H), 2.70$2.56(\mathrm{~m}, 5 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 6 \mathrm{H}), 2.31-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{q}, \mathrm{J}=2.8 \mathrm{~Hz}, 4 \mathrm{H})$, $1.62-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.16(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$
169.9, 169.9, 156.1, 156.1, 148.2, 147.4, 124.3, 123.7, 122.1, 121.9, 121.7, 121.7, 115.5, 115.4, 115.2, $115.1,79.1,78.6,75.7,75.5,69.6,69.5,53.8,53.8,53.4,53.1,52.6,52.5,51.9,51.8,51.1,47.6,47.5$, $47.3,47.0,40.6,40.5,40.3,40.3,39.8,39.5,33.7,33.5,33.4,28.7,28.0,27.9,27.2,27.2,27.1,27.1$, $27.0,26.6,26.4,25.5,25.4,14.2,3.6,3.5 \mathrm{ppm}$; IR (film) $\tilde{v}=3400,2926,2858,1700,1678,1645,1617$, 1487, 1448, 1391, 1340, 1261, 1192, 1159, 1113, 1066, 971, 955, 816, 766, 714, 616, $582 \mathrm{~cm}^{-1}$; MS (ESI): $m / z: 851\left[M+\mathrm{H}^{+}\right], 873\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Br}_{4}\left[M^{+}\right]: 849.01188$, found: 849.01244 .

Compound S7. Martin's sulfurane ($1.48 \mathrm{~g}, 2.20 \mathrm{mmol}$) was added to a solution of compound
 $111(1.18 \mathrm{~g}, 1.38 \mathrm{mmol})$ in toluene $(7.0 \mathrm{~mL})$ at $100^{\circ} \mathrm{C}$. After stirring at this temperature for 20 min , the mixture was cooled to ambient temperature and directly loaded on silica. The product was eluted with hexanes/EtOAc (8:1 to 4:1) to afford the title compound as a colorless oil (1.16 g, quant.). $[\alpha]_{D}^{20}=+15.9^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers, ca. 2:1): $\delta=5.97$ (td, $J=6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J=$ 8.1, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-4.76(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}$,
major), 3.69 (s, 1H, minor), 3.50 (dddd, $J=13.8,7.9,6.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.09$ (dddd, $J=13.3,8.2,6.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.84 (ddd, $J=25.0,10.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.53(\mathrm{~m}, 5 \mathrm{H})$, $2.43-2.38(\mathrm{~m}, 6 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.22-1.97(\mathrm{~m}, 5 \mathrm{H}), 1.74(\mathrm{q}, ~ J=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.65-1.42(\mathrm{~m}$, $8 \mathrm{H}), 1.39-1.19(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=168.5,156.3,156.2,147.5,146.7$, 127.9, 127.7, 125.7, 125.1, 122.1, 122.0, 121.7,121.7, 115.6, 115.5, 115.3, 106.9, 106.6, 78.6,78.5,75.7, $75.6,56.2,55.9,53.2,52.6,52.5,48.2,47.1,44.0,44.0,41.0,40.6,40.5,40.4,40.4,37.6,37.3,34.0$, $28.8,28.8,28.1,28.1,27.9,27.9,27.2,27.1,27.1,27.0,26.6,25.5,25.4,15.0,3.5 \mathrm{ppm}$; IR (film) $\tilde{v}=$ 2927, 2858, 1700, 1648, 1447, 1390, 1414, 1338, 1274, 1257, 1232, 1191, 1152, 1107, 1067, 973, 951, 847, 766, 730, 702, 617, $590 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $833\left[\mathrm{M}+\mathrm{H}^{+}\right], 855[\mathrm{M}+\mathrm{Na}+]$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}_{4} \mathrm{Na}\left[\mathrm{M}^{2} \mathrm{Na}^{+}\right]$: 854.99781, found: 854.99776.

Compound 112. $\mathrm{NaBH}_{3} \mathrm{CN}(368 \mathrm{mg}, 5.86 \mathrm{mmol})$ was added to a solution of compound S 7
 $(1.0 \mathrm{~g}, 1.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~m})$ at $0{ }^{\circ} \mathrm{C}$. TFA $(0.91 \mathrm{~mL}, ~ 11.9 \mathrm{mmol})$ was slowly added at $0^{\circ} \mathrm{C}$. After stirring for 10 min , the cooling bath was removed and the mixture stirred at ambient temperature for 50 min before the reaction was quenched with sat. $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL})$. [Note: the reaction is seriously time-dependent: any longer reaction time will cause a sharp decrease in yield]

The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 300 \mathrm{~mL})$, the combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. After evaporation of the solvent in vacuum, the residue was purified by flash chromatography on silica (hexanes/EtOAc, 8:1 to 4:1) to afford the title product as a colorless oil ($664 \mathrm{mg}, 66 \%$). $[\alpha]_{\mathrm{D}}^{20}=+30.8^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers, ca. 2:1): $\delta=5.85(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 0.35 \mathrm{H}$, minor), 4.75 ($\mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, 0.65 \mathrm{H}$, major), $3.73(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 3.41-3.30(\mathrm{~m}$, $1 \mathrm{H}), 3.28-3.14(\mathrm{~m}, 3 \mathrm{H}), 3.13-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{ddd}, J=29.8,10.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.58(\mathrm{~m}$, $4 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{dq}, ~ J=2.8,1.8,1.4 \mathrm{~Hz}, 6 \mathrm{H}), 2.31-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 2 \mathrm{H})$, $2.00-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{dd}, J=9.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{t}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.56-$ $1.32(\mathrm{~m}, 8 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.4,170.3,156.2,156.2$, $147.3,146.6,124.1,123.5,122.2,122.0,121.8,121.8,115.4,115.4,115.2,79.3,78.9,75.4,75.3,54.3$, $54.2,52.6,52.4,52.0,51.9,48.2,48.0,47.8,47.7,45.2,45.1,44.9,44.9,40.6,40.6,40.4,40.4,39.5$, $39.4,37.2,36.8,33.7,33.6,29.8,28.8,28.0,27.9,27.3,27.2,27.2,27.1,27.1,27.0,26.6,26.4,25.6$, $25.6,14.5,14.4,3.6,3.5 \mathrm{ppm}$; IR (film) $\tilde{v}=2928,2858,1699,1634,1487,1447,1389,1338,1275$, 1231, 1210, 1190, 1159, 1110, 1068, 970, 767, $616 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $835\left[\mathrm{M}+\mathrm{H}^{+}\right], 857\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}_{4} \mathrm{Na}\left[M+\mathrm{Na}^{+}\right]$: 857.01346, found: 857.01264.

Compound 114. A solution of TMSI ($0.13 \mathrm{~mL}, 0.914 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added to a

solution of compound 112 (700 mg , 0.835 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$. The resulting mixture was stirred for 1 d at ambient temperature before the reaction was quenched with $\mathrm{MeOH}(2.0 \mathrm{~mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After removal of the solvents, the crude mixture was loaded on an amino cartridge (Agilent, Bond Elut$\mathrm{NH}_{2}, 500 \mathrm{mg}, 3 \mathrm{~mL}, 40 \mu \mathrm{~m}$, pre-equilibrated with $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ (volume of ca. one column length each)) and the amine product was eluted with MeOH to provide a white solid [purification on silica gel with basic eluent gave much lower yields].

A solution of aldehyde $98(476 \mathrm{mg}, 1.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added to a solution of the amine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. After stirring for 10 min at ambient temperature, $\mathrm{NaBH}(\mathrm{OAc})_{3}$ $(230 \mathrm{mg}, 1.09 \mathrm{mmol})$ was added and stirring was continued for 1 h . The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$. After removing the solvent in high vacuum, the crude material was subjected to preparative HPLC (Kromasil-5-C18, $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH}$, $35 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}=9.2 \mathrm{~min}$) to afford the title compound as a brownish solid (642 mg , $67 \%) .[\alpha]_{\mathrm{D}}^{20}=-15.0^{\circ}\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.91(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{ddd}, J=8.4,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, J=8.3,6.8,1.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.74(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.30(\mathrm{~s}, 1 \mathrm{H}), 3.23(\mathrm{dt}, J=13.2$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dt}, J=16.1,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.00-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.48(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.34(\mathrm{~m}$, $1 \mathrm{H}), 2.31(\mathrm{dd}, \mathrm{J}=9.2,1.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.15(\mathrm{~s}, 5 \mathrm{H}), 2.08-1.86(\mathrm{~m}, 5 \mathrm{H}), 1.85-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~h}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 12 \mathrm{H}), 1.29-1.14(\mathrm{~m}$, $6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.8,163.2,155.9,147.0,146.1,144.6,129.4,129.2$, 126.2, 125.7, 123.8, 122.4, 122.1, 121.9, 117.7, 115.4, 115.1, 95.6, 79.8, 79.2, 76.1, 74.9, 62.5, 58.0, $55.6,52.2,47.7,45.3,44.1,40.6,40.4,39.1,37.9,35.0,30.8,29.7,28.8,28.8,28.4,28.4,27.4,27.2$, $27.2,26.8,26.4,25.7,14.7,4.9,3.5 \mathrm{ppm}$; IR (film) $\tilde{v}=3328,2928,2857,1708,1628,1453,1251$, 1171, $759 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $1141\left[M+\mathrm{H}^{+}\right], 1163\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{54} \mathrm{H}_{73} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 1141.24112$, found: 1141.24199 .

Compound 97. A flame-dried two-necked flask connected to a reflux condenser was charged
 with activated molecular sieve powder ($5 \AA$, 1.5 g) and toluene (20 mL). The suspension was purged with argon at room temperature for 30 min . The mixture was then heated to $110^{\circ} \mathrm{C}$ for 30 min and a solution of diyne 114 ($50.6 \mathrm{mg}, 0.044 \mathrm{mmol}$) in toluene (2 mL) was added. Next, a solution of the Mo-catalyst 79 $(9.8 \mathrm{mg}, 0.013 \mathrm{mmol})^{[105]}$ in toluene $(0.5 \mathrm{~mL})$ was added dropwise and stirring was continued at $110{ }^{\circ} \mathrm{C}$ for 15 min . Ethanol $(5 \mathrm{~mL})$ was added to quench the reaction. The mixture was cooled to room temperature and filtered through a plug of Celite, which was carefully rinsed with EtOAc. The combined filtrates were evaporated in vacuo and the residue was purified by preparative HPLC (Kromasil-5-C18, $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH}, 35 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}=11.5 \mathrm{~min}$) to afford the title compound a white solid ($37.1 \mathrm{mg}, 77 \%$) as. $[\alpha]_{\mathrm{D}}^{20}=-30.9^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{ddd}, J=$ $8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=6.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H})$, $3.72(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.41(\mathrm{~m}, 7 \mathrm{H}), 3.29(\mathrm{td}, J=12.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-2.97(\mathrm{~m}, 3 \mathrm{H}), 2.93$ (dd, $J=9.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{td}, J=11.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.56(\mathrm{~m}, 6 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.43$ (d, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.41(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.33-2.19(\mathrm{~m}, 4 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{ddd}, J=$ $13.7,10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{ddd}, J=13.4,5.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{dtd}, J=16.2$, $9.1,8.2,3.2 \mathrm{~Hz}, 7 \mathrm{H}), 1.48(\mathrm{dd}, J=7.9,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{qt}, J=7.2,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.32-$ $1.21(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.9,164.3,156.0,146.3,146.1,145.5,129.2$, $129.1,126.2,125.8,123.9,122.2,121.9,117.8,115.5,115.1,102.2,79.1,76.3,60.8,55.3,54.3,52.5$, $47.6,46.9,45.3,40.7,40.5,40.4,38.6,37.5,37.0,35.0,30.8,30.4,28.8,28.8,28.4,28.4,27.8,27.4$, $27.4,27.2,26.7,25.5,25.1,13.5 \mathrm{ppm} ; \operatorname{IR}$ (film) $\tilde{v}=3339,2928,2855,1705,1630,1450,1169,1070$, $756,617 \mathrm{~cm}^{-1}$; MS (ESI): $m / z: 1086$ [M+H+]; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{50} \mathrm{H}_{6} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{O}_{3}\left[M+\mathrm{H}^{+}\right]$: 1087.19417, found: 1087.19495.

Compound 115. $\mathrm{Pd} / \mathrm{CaCO}_{3}(5 \mathrm{~mol} \% \mathrm{w} / \mathrm{w}$, unpoisoned, $704 \mathrm{mg}, 0.331 \mathrm{mmol}$) was added to
 solution of compound 97 ($180 \mathrm{mg}, 0.165 \mathrm{mmol}$) in THF $(18 \mathrm{~mL})$ at ambient temperature. After stirring for 2 h , the suspension was filtered through a pad of Celite ${ }^{\circledR}$ and the filtrate was concentrated. The crude product was subjected to purification by preparative HPLC (Kromasil-5-C18, $5 \mu \mathrm{~m}$, $150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH}, 35 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}=8.6 \mathrm{~min})$ to afford the title compound as a white solid ($94.0 \mathrm{mg}, 52 \%$). $[\alpha]_{\mathrm{D}}^{20}=+4.8^{\circ}\left(\mathrm{c}=0.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=8.08-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 6.41$ ($\mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.88-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.79-5.74(\mathrm{~m}, 1 \mathrm{H}), 4.56$ (s, 1H), 3.41 (d, J = 9.2 Hz, 1H), 3.33-3.10 (m, 9H), 3.02-2.87 $(\mathrm{m}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.26$ (m, 2H), $2.21(\mathrm{t}, \mathrm{J}=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.71-$ $1.64(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.37(\mathrm{~m}, 13 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 4 \mathrm{H})$, $1.20-1.11(\mathrm{~m}, 4 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.7,159.9$, 155.8, 146.7, 145.2, 135.7, 130.3, 129.3, 128.6, 126.2, 125.9, 124.5, 124.2, 123.1, 122.2, 121.9, 115.4, 115.0, 79.1, 56.9, 55.5, 54.8, 52.5, 47.4, 46.6, 45.2, 41.6, 40.5, 40.4, 38.5, 37.3, 37.0, 35.1, 30.7, 28.8, 28.7, 28.4, 28.1, 27.3, 27.3, 27.1, 26.5, 26.3, 25.6, 25.2, 24.4 ppm ; IR (film) $\tilde{v}=2959,2852,1253$, 1116, 1082, 869, $612 \mathrm{~cm}^{-1}$; MS (ESI): m/z: 1089 [M+H+];HRMS (ESI): m/z: calcd. for $\mathrm{C}_{50} \mathrm{H}_{69} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{O}_{3}$ $\left[M+\mathrm{H}^{+}\right]: 1089.21116$, found: 1089.21061 .

Compound 99. DIBAL-H (1.0 M in hexane, $0.4 \mathrm{~mL}, 0.40 \mathrm{mmol}$) was added to a solution of 115
 $(64.0 \mathrm{mg}, 0.0586 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 5 min , the cooling bath was remved and the mixture stirred at $20^{\circ} \mathrm{C}$ for 80 min [Note: The reaction time should be strictly followed; longer reaction times will result in serious overreduction of the vicinal dibromide].

The mixture was diluted with tert-butyl methyl ether $(2.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the reaction quenched with sat. Rochelle's salt solution (0.4 mL). The resulting mixture was vigorously stirred for 5 h . DDQ ($13.3 \mathrm{mg} / \mathrm{mL}$) was added to the mixture until the color became brown. The mixture was then filtered through a cartridge (Agilent, Bond Elut-NH2, $500 \mathrm{mg}, 3 \mathrm{~mL}, 40 \mu \mathrm{~m}$, pre-equilibrated with of $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ (volume of ca. one column length each)), eluting with MeOH . Evaporation of the solvent provided a white solid which was subjected to preparative HPLC (Kromasil-5-C18, $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH} / 20 \mathrm{mmol}$ $\mathrm{NH}_{4} \mathrm{HCO}_{3} \mathrm{PH} 9=98: 2,35 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}=29 \mathrm{~min}$) to provide the corresponding amine product as a yellow solid material.

Zn powder ($44.0 \mathrm{mg}, 0.673 \mathrm{mmol}$) was added to a solution of this compound in THF/HOAc ($1.05 \mathrm{~mL}, 20: 1$) at ambient temperature. The mixture was stirred for 1 h before the reaction was carefully quenched with sat. aq. $\mathrm{NaHCO}_{3}(0.2 \mathrm{~mL})$. The resulting mixture was passed through a cartridge (Agilent, Bond Elut- $\mathrm{NH}_{2}, 500 \mathrm{mg}, 3 \mathrm{~mL}, 40 \mu \mathrm{~m}$ (pre-equilibrated with $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$, MeOH (volume of one column length each); the product was eluted with MeOH to provide a white solid after evaporation of the solvent. The crude material was subjected to preparative HPLC (Kromasil-5-C18, $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}$, $\mathrm{MeOH} / 20 \mathrm{mmol}_{\mathrm{NH}}^{4} \mathrm{HCO}_{3} \mathrm{pH} 9=98: 2,35$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}=7.8 \mathrm{~min}$) to afford the title compound as a white solid ($19.7 \mathrm{mg}, 44 \%$). $[\alpha]_{\mathrm{D}}^{20}=+210^{\circ}\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.21-8.13(\mathrm{~m}, 1 \mathrm{H}), 8.06(\mathrm{dd}, \mathrm{J}=$ $8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67$ (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.94(\mathrm{t}, \mathrm{J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-5.69(\mathrm{~m}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 3.44-3.16(\mathrm{~m}, 5 \mathrm{H}), 2.99(\mathrm{~d}, \mathrm{~J}=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.88(\mathrm{td}, \mathrm{J}=12.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.22(\mathrm{~m}, 6 \mathrm{H}), 2.12(\mathrm{tt}, J=7.1,2.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 2 \mathrm{H}), 1.78(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.74(\mathrm{t}, \mathrm{J}=2.5$ $\mathrm{Hz}, 4 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 9 \mathrm{H}), 1.30-1.18(\mathrm{~m}, 6 \mathrm{H}), 1.00(\mathrm{dd}, \mathrm{J}=12.0$, $5.9 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.5,155.8,146.8,142.9,136.4,130.6,129.7$, 128.4, 126.2, 125.8, 124.1, 123.5, 121.6, 79.3, 79.3, 75.5, 75.3, 59.3, 57.1, 56.2, 55.8, 50.2, 49.8, 45.8, 42.9, 40.4, 38.7, 37.7, 36.5, 36.3, 29.0, 28.9, 28.5, 28.4, 27.3, 27.0, 26.8, 26.3, 26.0, 25.4, 23.7, 18.8, 18.6, 3.5, 3.4 ppm ; IR (film) $\tilde{v}=3315,2930,1562,1406,1023,762,649 \mathrm{~cm}^{-1}$; MS (ESI): m/z: 759 $\left[M+\mathrm{H}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{50} \mathrm{H}_{71} \mathrm{~N}_{2} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 759.55715, found: 759.55745.

Compound 116. A flame-dried two-necked flask connected to a reflux condenser was charged
 with activated powdered molecular sieves ($5 \AA, 200 \mathrm{mg}$) and toluene $(4 \mathrm{~mL})$. The suspension was purged with argon at room temperature for 15 min . After the purging had been stopped, the mixture was heated to $110{ }^{\circ} \mathrm{C}$ for 30 min before a solution of diyne $99(7 \mathrm{mg}, 0.009 \mathrm{mmol})$ in toluene $(0.5 \mathrm{~mL})$ was added, followed by dropwise addition of a solution of the Mo-complex $79(2.0 \mathrm{mg}, 0.003 \mathrm{mmol})^{[105]}$ in toluene $(0.4 \mathrm{~mL})$. The resulting suspension was stirred at $110^{\circ} \mathrm{C}$ for 20 min . Ethanol (1 mL) was added to quench the reaction and the crude mixture was cooled to room temperature and filtered through a plug of Celite, which was carefully rinsed with EtOAc. The solvent was evaporated in vacuo and the crude product was purified by preparative HPLC (Kromasil-5-C18, $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH} / 20 \mathrm{mmol}$ $\mathrm{NH}_{4} \mathrm{HCO}_{3} \mathrm{pH} 9=98: 2,35 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}, \mathrm{t}=7.6 \mathrm{~min}$) to afford the title compound as a white solid ($6.4 \mathrm{mg}, 98 \%$). $[\alpha]_{\mathrm{D}}^{20}=+23.0^{\circ}\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.17$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ (dd, J= 10.9, 2.2 Hz, 1H), $5.95(\mathrm{t}, \mathrm{J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 3.36$ (d, J $=17.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{pd}, J=9.2,4.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.00(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{ddd}, J=24.4$, $12.3,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.17-2.05$ (m, 5H), 2.03-1.97 (m, 3H), 1.96-1.85 (m, 3H), 1.82-1.62 (m, 5H), 1.52-1.39 (m, 15H), 1.38-1.26
$(\mathrm{m}, 8 \mathrm{H}), 1.26-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.07-0.93(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.5,155.8$, $146.8,142.9,136.3,130.6,129.7,128.4,126.3,125.8,124.2,123.6,120.5,80.6,80.2,79.2,59.4,57.3$, $56.8,55.8,49.6,49.3,45.6,42.9,40.4,38.7,37.5,36.8,36.4,29.0,28.4,27.9,27.7,27.5,27.4,27.1$, $26.4,25.4,24.6,23.7,18.2,17.8 \mathrm{ppm} ;$ IR (film) $\tilde{v}=2926,2857,1703,1455,1365,1171,758,678 \mathrm{~cm}^{-}$ ${ }^{1}$; MS (ESI): $m / z: 705\left[M+\mathrm{H}^{+}\right]$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{46} \mathrm{H}_{65} \mathrm{~N}_{4} \mathrm{O}_{2}\left[M+\mathrm{H}^{+}\right]$: 705.51020, found: 705.51087.

Nominal Njaoamine I ((+)-16). $\mathrm{HCl}(0.48 \mathrm{mmol}, 120 \mu \mathrm{~L}, 4 \mathrm{M}$ in 1,4-dioxane) was added
 dropwise to a solution of compound $71(9.0 \mathrm{mg}, 12.8 \mu \mathrm{~mol})$ in EtOAc $(0.42 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(80 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. The resulting solution was stirred for 2 h at this temperature. The solvent was evaporated in high vacuum to provide the HCl salt of njaoamine I. The HCl salt was passed through an amino cartridge (pre-equilibrated with $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ (three volumes of three column length each)), eluting the product with MeOH . After evaporation of the solvent, the free amine was subjected to preparative HPLC (150 mm YMC Triart C185 $\mu \mathrm{m}, 10.0 \mathrm{~mm}$ i.D., Methanol/0.1\% TFA in $\mathrm{H}_{2} \mathrm{O}=55: 45$, $4.7 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}=1.6 \mathrm{~min}$) to afford the title compound as a white solid (8.6 mg , quant.). $[\alpha]_{\mathrm{D}}^{20}=+69.3^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)$; for the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Table 4.6; IR (film) $v=2936,1677,1202,1182,1133,938$, 761, $708 \mathrm{~cm}^{-1}$; MS (ESI): m/z: $605\left[M+\mathrm{H}^{+}\right]$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{~N}_{4}\left[M+\mathrm{H}^{+}\right]$: 605.45777, found: 605.45765.

Table 4.6. Summary of all chemical shifts and correlations for the synthetic nominal njaoamine I ((+)-16)

nominal Njaoamine I (16)

Atom	$\begin{aligned} & \hline \delta \\ & (\mathrm{ppm}) \end{aligned}$	J	COSY	HSQC	HMBC	NOESY
1 N						
2 C	160.59				13a, 13b	
3 C	131.26				11a, 11b, 13b, 31	
4 C	141.84				6,11a, 11b	
5 C	126.69				6, 7, 9, 11a, 11b	
6 C	124.96			6	8	
H	8.25	8.3(7)	7	6	4, 5, 8, 10	7,11a, 11b, 12b
7 C	126.88			7	9	
H	7.44	6.8(8), 8.3(6)	6,8	7	5,9	6
8 C	129.34			8	6	
H	7.63	8.3(9), 6.8(7)	7,9	8	6,10	9
9 C	130.35			9	7	
H	8.31	8.3(8)	8	9	5,7	8
10 C	147.78				6,8	
11 C	28.44			11a, 11b	12a, 12b	
На	3.85	$\begin{array}{ll} \hline 12.3(12 a), & 5.6(12 b), \\ 12.3(11 b) & \end{array}$	11b, 12a, 12b	11	3, 4, 5, 12	6,11b
Hb	3.68	$\begin{aligned} & 12.3(11 a), 4.8(12 a), \\ & 12.2(12 b) \end{aligned}$	11a, 12a, 12b	11	3, 4, 5	6, 11a, 32
12 C	39.72			12a, 12b	11a	
На	3.59	$\begin{aligned} & 12.2(12 b), 12.3(11 a), \\ & 4.8(11 b) \end{aligned}$	11a, 11b	12	11	
Hb	3.53	$\begin{aligned} & 12.2(12 a), \quad 5.6(11 a), \\ & 12.2(11 b) \end{aligned}$	11a, 11b	12	11	6
13 C	39.14			13a, 13b		
На	3.26	$\begin{aligned} & \text { 12.9(13b), 12.8(14?), } \\ & 4.8(14 ?) \end{aligned}$	13b, 14a	13	2, 15	32

Hb	3.14	12.9(13a)	13a, 14a, 14b	13	2, 3, 14	
14 C	26.29			14a, 14b	13b, 16a	
На	2.42		$\begin{aligned} & \text { 13a, 13b, 14b, 15a, } \\ & 15 b \end{aligned}$	14		14b
Hb	1.60		13b, 14a	14		14a, 16a
15 C	27.32			15a, 15b	13a	
На	1.52		14a, 16a	15		
Hb	1.43		14a, 16a, 16b	15		18
16 C	56.51			16a, 16b	18, 26b	
На	2.42	12.7(16b)	15a, 15b, 16b	16	14	14b, 16b, 18
Hb	2.02	$\begin{aligned} & \text { 12.7(16a), 12.7(15?), } \\ & 3.1(15 ?) \end{aligned}$	15b, 16a	16		16a
17 N						
18 C	57.09			18	26a, 28, 29b	
H	2.72			18	$\begin{aligned} & 16,19,20,24,25,26, \\ & 27,28,29,33 \end{aligned}$	$\begin{aligned} & 15 b, 16 a, 20 a, 29 b, \\ & 33 b \end{aligned}$
19 C	44.12				18, 20a, 23a, 25, 29a	
20 C	49.84			20a, 20b	18, 29a, 44a	
На	3.47	12.4(20b)	20b	20	19, 22, 24	18, 20b
Hb	2.19	12.4(20a)	20a	20	29, 44	20a, 23b
21 N	-353.20		22b			
22 C	49.25			22a, 22b	20a, 44a	
На	3.59		22b, 23b	22		22b, 24
Hb	3.07		22a, 21	22		22a, 23b
23 C	24.46			23a, 23b	24	
На	1.60		23b, 24	23	19	23b, 24
Hb	1.17		22a, 23a	23	25	20b, 22b, 23a, 28
24 C	41.79			24	18, 20a, 26a, 26b	
H	1.17		23a	24	23, 25, 28, 29	22a, 23a, 25, 26a, 29a
25 C	37.20			25	$\begin{aligned} & 18,23 b, 24,26 a, 26 b, \\ & 28 \end{aligned}$	
H	2.12	6.5(28), 2.3(26b)	26a, 26b, 28	25	19, 27, 28	24, 26a, 26b, 28
26 C	57.37			26a, 26b	18	
На	3.07	9.0(26b)	25, 26b	26	18, 24, 25, 28	24, 25, 26b
Hb	1.75	9.0(26a), 2.3(25)	25, 26a	26	16, 24, 25, 28	25, 26a
27 C	143.16				18, 25	
28 C	122.12			28	18, 24, 25, 26a, 26b	
H	5.84	6.5(25)	25	28	18, 25, 33	23b, 25, 34a, 34b
29 C	36.64			29a, 29b	18, 20b, 24, 31	
На	2.33	12.4(29b), 12.4(15?)	29b, 30a, 30b	29	19, 20, 30, 31	24, 29b, 30b
Hb	1.96	12.4(29a)	29a, 30a	29	18, 30, 31	18, 29a
30 C	24.04			30a, 30b	29a, 29b, 31, 32	
На	2.83		29a, 29b, 30b	30		31

Hb	1.96		29a, 30a, 31	30	31,32	29a, 31
31 C	136.89			31	29a, 29b, 30b	
H	6.07	11.1(32)	30b, 32	31	3,29, 30	30a, 30b
32 C	124.94			32	30b	
H	6.46	11.1(31)	31	32	30	11b, 13a
33 C	36.74			33a, 33b	18, 28	
На	1.83		33b	33		
Hb	1.40		33a	33	34, 35	18
34 C	24.98			34a, 34b	33b, 36	
На	1.40			34		28
Hb	1.21			34		28
35 C	28.01			35a, 35b	33b, 36	
На	1.33			35		
Hb	1.21			35	36	
36 C	28.15			36	35b, 37	
H2	1.27			36	34, 35, 37, 38	
37 C	18.33			37	36	
H2	2.10			37	36, 38	
38 C	81.38				36,37	
39 C	80.52				40, 41a, 41b	
40 C	17.80			40	41a, 41b	
H2	2.10			40	39	
41 C	27.09			41b	42a, 42b, 43a, 43b	
Ha	1.41				39, 40, 42, 43	
Hb	1.31			41	39, 40, 42, 43	
42 C	25.64			42a, 42b	41a, 41b, 43a, 43b	
Ha	1.39			42	41	
Hb	1.38			42	41	
43 C	22.59			43a	41a, 41b, 44a, 44b	
На	1.81	11.8(44b)	44a, 44b	43	41, 42, 44	
Hb	1.77	5.0(44b)	44a, 44b	44	41, 42	
44 C	59.31			43b, 44a, 44b	20b, 43a	
На	3.23	11.9(44b)	43a, 43b, 44b	44	20, 22, 43	44b
Hb	2.98	$\begin{aligned} & 11.9(44 a), 11.8(43 a), \\ & 5.0(43 b) \end{aligned}$	43a, 43b, 44a	44	43	44a

Table 4.7. Comparison of the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ chemical shifts of the isolated natural product njaoamine I and synthetic compound (+)-16; significant shift differences are highlighted.

	Fragment A					
	Njaomine I (117)		Synthetic (+)-16			
	бC	$\delta \mathrm{H}$	סC	ठН	@edCl	๑๑రH।
2 C	160.50		160.59		0.04	
3 C	131.20		131.26		0.07	
4 C	142.40		141.84		0.69	
5 C	126.60		126.69		0.04	
6 C	124.90		124.96		0.07	
H		8.25		8.25		0.02
7 C	127.00		126.88		0.25	
H		7.42		7.44		0.00
8 C	129.50		129.34		0.29	
H		7.59		7.63		0.02
9 C	129.90		130.35		0.32	
H		8.28		8.31		0.01
10 C	147.20		147.78		0.45	
11 C	28.40		28.44		0.09	
На		3.83		3.85		0.00
Hb		3.68		3.68		0.02
12 C	39.70		39.72		0.11	
На		3.55		3.59		0.02
Hb		3.55		3.53		0.04
13 C	38.70		39.14		0.31	
На		3.22		3.26		0.02
Hb		3.15		3.14		0.03
14 C	26.10		26.29		0.06	
На		2.40		2.42		0.00
Hb		1.57		1.60		0.01
15 C	27.50		27.32		0.31	
На		1.39		1.52		0.11
Hb		1.39		1.43		0.02
16 C	56.30		56.51		0.08	
На		2.39		2.42		0.01
Hb		1.99		2.02		0.01
29 C	36.30		36.64		0.21	
На		2.28		2.33		0.03
Hb		1.92		1.96		0.02
30 C	24.10		24.04		0.19	
На		2.78		2.83		0.03
Hb		1.93		1.96		
31 C	136.90		136.89		0.14	
H		6.07		6.07		0.02
32 C	124.70		124.94		0.11	
H		6.45		6.46		0.01
	Fragment B					
	Njaom ठC	$\begin{aligned} & \text { (117) } \\ & \delta \mathrm{H} \end{aligned}$	synth (+)-16 ठC	$\delta \mathrm{H}$	๑உరCl	๑లరH।
18 C	57.10		57.09		0.14	

$\mathbf{H b}$		1.69	1.77	0.00	0.06
44 C	57.50		59.31		1.68
$\mathbf{H a}$	3.16		3.23		
$\mathbf{H b}$	3.16	2.98	0.05		

4.I. 4 Structural Revision of Njaoamine I

Table 4.8. Revised set of chemical shifts and correlations for the natural product njaoamine I (117).

njaoamine I (16) (nominal)

revised assignment)

Atom	$\begin{aligned} & \hline \delta \\ & (\mathrm{ppm}) \end{aligned}$	J	COSY	TOCSY	HSQC	HMBC	ROESY
1 N							
2 C	160.84					13a, 13b	
3 C	131.40					11a, 11b, 13b, 31	
4 C	141.95					11a, 11b	
5 C	126.83					7,9,11a, 11b	
6 C	125.05				6	8	
H	8.26	8.4(7)	7		6	8,10	$\begin{array}{ll} \hline 11 a, & 11 b, \\ 12 b & \end{array}$
7 C	127.05				7	9	
H	7.42	8.4(6), 6.9(8)	6, 8		7	5,9	
8 C	129.50				8	6	
H	7.60	6.9(7)	7		8	6,10	
9 C	130.60				9	7	
H	8.29				9	5, 7	
10 C	147.95					6,8	
11 C	28.60				$\begin{aligned} & 11 \mathrm{a}, \\ & 11 \mathrm{~b} \end{aligned}$		
На	3.85	$\begin{aligned} & 5.4(12 a), \\ & 12.2(12 b), \\ & 12.5(11 b) \end{aligned}$	11b, 12a, 12b	11b, 12a	11	3, 4, 5, 12	6,11b
Hb	3.71	$\begin{aligned} & \hline 12.5(11 a), \\ & 12.0(12 a), 4.5(12 b) \end{aligned}$	11a, 12a	11a, 12a	11	3, 4, 5, 12	6, 11a, 32
12 C	39.94				12a	11a, 11b	

На	3.59	$\begin{aligned} & 12.5(12 b), \\ & 5.4(11 a), 12.0(11 b) \end{aligned}$	11a, 11b, 12b	11a, 11b	12		
Hb	3.53	$\begin{aligned} & \text { 12.5(12a), } \\ & 12.2(11 a), 4.5(11 b) \end{aligned}$	11a, 12a				6
13 C	39.29				$\begin{aligned} & 13 \mathrm{a}, \\ & 13 \mathrm{~b} \end{aligned}$		
На	3.23	$\begin{aligned} & \hline 12.9(13 b), \\ & 3.7(14 ?), 3.7(14 ?) \end{aligned}$	13b, 14a, 14b	$\begin{aligned} & 13 b, 14 a, 14 b, 15 a, \\ & 15 b, 16 a, 16 b \end{aligned}$	13	2	14a, 14b
Hb	3.12	12.9(13a)	13a, 14a, 14b	13a, 14a, 14b, 15a, 15b, 16a, 16b	13	2, 3, 14	14b, 32
14 C	26.39				$\begin{aligned} & 14 a, \\ & 14 b \end{aligned}$	13b, 16a	
На	2.40		$\begin{aligned} & 13 \mathrm{a}, 13 \mathrm{~b}, 14 \mathrm{~b}, 15 \mathrm{a}, \\ & 15 \mathrm{~b} \end{aligned}$	13a, 13b, 16a, 16b	14		$\begin{aligned} & 13 a, \quad 14 b, \\ & 15 a, 29 a \end{aligned}$
Hb	1.57		$\begin{aligned} & 13 a, 13 b, 14 a, 15 a, \\ & 15 b \end{aligned}$	$\begin{aligned} & 13 a, 13 b, 15 b, 16 a, \\ & 16 b \end{aligned}$	14		$\begin{aligned} & 13 a, \quad 13 b, \\ & 14 a, 16 b \end{aligned}$
15 C	27.45				$\begin{aligned} & 15 \mathrm{a}, \\ & 15 \mathrm{~b} \end{aligned}$		
На	1.48		$\begin{aligned} & 14 a, 14 b, 15 b, 16 a, \\ & 16 b \end{aligned}$	13a, 13b, 16a, 16b	15		14a, 16b, 18
Hb	1.40		$\begin{aligned} & 14 a, 14 b, 15 a, 16 a, \\ & 16 b \end{aligned}$	$\begin{aligned} & 13 a, 13 b, 14 b, 16 a, \\ & 16 b \end{aligned}$	15		16a, 18
16 C	56.59				$\begin{aligned} & 16 a, \\ & 16 b \end{aligned}$	18, 26b	
На	2.37		15a, 15b, 16b	$\begin{aligned} & 13 a, 13 b, 14 a, 14 b, \\ & 15 a, 15 b, 16 b \end{aligned}$	16	14	$\begin{aligned} & 15 b, \quad 16 b, \\ & 18,26 b \end{aligned}$
Hb	1.98		15a, 15b, 16a	$\begin{aligned} & 13 a, 13 b, 14 a, 14 b, \\ & 15 a, 15 b, 16 a \end{aligned}$	16		$\begin{aligned} & 14 b, \quad 15 a, \\ & 16 a, 26 b \end{aligned}$
17 N							
18 C	57.38				18	26a, 29b	
H	2.67			25, 26a, 26b, 28	18	$\begin{aligned} & 16,19,24,26,27, \\ & 28,29,33 \end{aligned}$	$15 a$, $15 b$, $16 a$, $20 a$, $20 b$, $29 b$, $33 a$, $33 b$, $34 a$
19 C	44.07					$\begin{aligned} & 18,20 a, 20 b, 23 a, \\ & 25 \end{aligned}$	
20 C	49.32				$\begin{aligned} & 20 \mathrm{a}, \\ & 20 \mathrm{~b} \end{aligned}$	29a	
На	3.32	12.5(20b)	20b	20b	20	19, 22, 24, 29	$\begin{aligned} & 18, \quad 20 b, \\ & 29 b, 30 a \end{aligned}$
Hb	2.23	12.5(20a)	20a	20a	20	19, 29, 44	$\begin{aligned} & \hline 18,20 a, 24, \\ & 28,43 b, 44 \end{aligned}$
21 N							
22 C	48.30				$\begin{aligned} & 22 \mathrm{a}, \\ & 22 \mathrm{~b} \end{aligned}$	20a, 44	
На	3.51		22b, 23a, 23b	22b, 23a, 23b, 24, 25	22		$\begin{aligned} & 22 b, \quad 23 a, \\ & 23 b, 29 b \end{aligned}$
Hb	3.08		22a, 23a, 23b	22a, 23a, 23b, 24	22		22a, 23b
23 C	25.32				$\begin{aligned} & 23 a, \\ & 23 b \end{aligned}$	24	

На	1.59		22a, 22b, 24	22a, 22b, 23b	23	19	$\begin{aligned} & 22 \mathrm{a}, \quad 23 \mathrm{~b}, \\ & 24,25 \end{aligned}$
Hb	1.12		22a, 22b, 24	22a, 22b, 23a	23		$\begin{aligned} & 22 \mathrm{a}, \quad 22 \mathrm{~b}, \\ & 23 \mathrm{a}, 25,28 \end{aligned}$
24 C	41.46				24	18, 20a, 26a, 26b	
H	1.11		23a, 23b, 25	22a, 22b, 25, 28	24	23, 28, 29	$\begin{array}{lr} \hline 20 b, \quad 23 a, \\ 25, \quad 26 a, \\ 29 a, 29 b \end{array}$
25 C	37.45				25	26a, 26b, 28	
H	2.06	7.0(28)	24, 26a, 26b, 28	18, 22a, 24, 26a, 28	25	19, 27	$\begin{array}{lr} \hline 23 a, & 23 b, \\ 24, & 26 a, \\ 26 b, & 28 \end{array}$
26 C	57.38				$\begin{aligned} & 26 a, \\ & 26 b \end{aligned}$	18, 28	
На	3.03	9.0(26b)	25,26b	18, 25, 28	26	18, 24, 25, 28	$\begin{aligned} & 24,25,26 b, \\ & 29 a, 30 a \end{aligned}$
Hb	1.71	9.0(26a)	25,26a	18, 28	26	16, 24, 25	$\begin{aligned} & 16 a, \quad 16 b, \\ & 25,26 a, 28 \end{aligned}$
27 C	143.28					18, 25, 33b	
28 C	122.77				28	18, 24, 26a, 33b	
H	5.78	7.0(25)	25	18, 24, 25, 26a, 26b	28	25,26	$\begin{array}{ll} \hline 20 b, & 23 b, \\ 25, & 26 b, \\ 34 a, & 34 b, \\ 35 a & \end{array}$
29 C	36.57				$\begin{aligned} & 29 a, \\ & 29 b \end{aligned}$	$\begin{aligned} & 18,20 a, 20 b, 24, \\ & 31 \end{aligned}$	
На	2.28		29b, 30a, 30b	30a, 31, 32	29	20, 30, 31	$\begin{array}{lr} \hline 14 a, & 24 \\ 26 a, & 29 b, 31 \end{array}$
Hb	1.93		29a, 30a, 30b	30b, 31, 32	29	18, 30, 31	$\begin{array}{lr} \hline 18, & 20 \mathrm{a}, \\ 22 \mathrm{a}, & 24, \\ 29 \mathrm{a}, & 30 \mathrm{a}, \\ 31 \end{array}$
30 C	24.29				$\begin{aligned} & 30 \mathrm{a}, \\ & 30 \mathrm{~b} \end{aligned}$	29a, 29b, 31, 32	
На	2.79		29a, 29b, 31	29a, 30b, 32	30		$\begin{array}{ll} \hline 20 a, & 26 a, \\ 29 b, & 30 b, \\ 31 & \end{array}$
Hb	1.93	8.7(31)	29a, 29b, 31	29b, 30a, 31, 32	30		30a, 31
31 C	137.03				31	29a, 29b	
H	6.06	8.7(30b), 11.0(32)	30a, 30b, 32	29a, 29b, 30b, 32	31	3,29, 30	$\begin{aligned} & 29 a, \quad 29 b, \\ & 30 a, 30 b \end{aligned}$
32 C	125.11				32		
H	6.45	11.0(31), 2.5(?)	31	$\begin{aligned} & 29 a, 29 b, 30 a, 30 b, \\ & 31 \end{aligned}$	32	30	11b, 13b
33 C	36.63				$\begin{aligned} & 33 \mathrm{a}, \\ & 33 \mathrm{~b} \end{aligned}$	18	
На	1.66		33b, 34a, 34b	$\begin{aligned} & 33 b, 34 a, 34 b, 35 a, \\ & 35 b, 36 \end{aligned}$	33		$\begin{aligned} & 18, \quad 33 b, \\ & 34 a, 34 b \end{aligned}$
Hb	1.37		33a, 34a, 34b	$\begin{aligned} & 33 a, 34 a, 34 b, 35 a, \\ & 35 b, 36 \end{aligned}$	33	27, 28	18, 33a, 36
34 C	25.84				$\begin{aligned} & 34 \mathrm{a}, \\ & 34 \mathrm{~b} \end{aligned}$		

На	1.45		$\begin{aligned} & 33 a, 33 b, 34 b, 35 a, \\ & 35 b \end{aligned}$	$\begin{aligned} & 33 a, 33 b, 34 b, 35 a, \\ & 35 b, 36 \end{aligned}$	34		$\begin{aligned} & 18,28,33 a, \\ & 35 a, 35 b \end{aligned}$
Hb	1.27		33a, 33b, 34a	$\begin{aligned} & 33 a, 33 b, 34 a, 35 b, \\ & 36 \end{aligned}$	34		28, 33a
35 C	29.86				$\begin{aligned} & 35 \mathrm{a}, \\ & 35 \mathrm{~b} \end{aligned}$		
На	1.27		34a, 35b, 36	$\begin{aligned} & 33 a, 33 b, 34 a, 35 b, \\ & 36 \end{aligned}$	35		$\begin{aligned} & 28,34 a, 36, \\ & 39 a \end{aligned}$
Hb	1.16		34a, 35a, 36	$\begin{aligned} & 33 \mathrm{a}, 33 \mathrm{~b}, 34 \mathrm{a}, 34 \mathrm{~b}, \\ & 35 \mathrm{a}, 36 \end{aligned}$	35		34a, 36
36 C	19.17				36		
H2	2.00		35a, 35b	$\begin{aligned} & 33 \mathrm{a}, 33 \mathrm{~b}, 34 \mathrm{a}, 34 \mathrm{~b}, \\ & 35 \mathrm{a}, 35 \mathrm{~b} \end{aligned}$	36		$\begin{aligned} & 33 b, \quad 35 a, \\ & 35 b \end{aligned}$
37 C	81.73						
38 C	80.84					39b	
39 C	18.65				$\begin{aligned} & 39 a, \\ & 39 b \end{aligned}$		
На	2.14		39b, 40	$\begin{aligned} & 39 b, 40,41,42 a, \\ & 42 b, 43 a, 43 b, 44 \end{aligned}$	39		35a, 40
Hb	2.06		39a, 40	$\begin{aligned} & 39 a, 40,41,43 a, \\ & 43 b, 44 \end{aligned}$	39	38	40
40 C	27.81				40		
H2	1.29		39a, 39b, 41	$\begin{aligned} & 39 a, 39 b, 41,42 a, \\ & 42 b, 43 a, 43 b, 44 \end{aligned}$	40		$\begin{array}{ll} 39 a, & 39 b, \\ 43 a \end{array}$
41 C	27.73				41	42a, 42b, 43a, 43b	
H2	1.37		40, 42a, 42b	$\begin{aligned} & 39 a, 39 b, 40,42 a, \\ & 42 b, 43 a, 43 b, 44 \end{aligned}$	41		42b, 43b
42 C	24.88				$\begin{aligned} & 42 a, \\ & 42 b \end{aligned}$	43a, 43b	
На	1.21		41, 43a, 43b	39a, 40, 41, 42b, 44	42	41, 43, 44	
Hb	1.16		41, 43a, 43b	39a, 40, 41, 42a, 44	42	41, 43, 44	41, 43a, 43b
43 C	22.79				$\begin{aligned} & 43 \mathrm{a}, \\ & 43 \mathrm{~b} \end{aligned}$	42a, 42b, 44	
На	1.69		42a, 42b, 43b, 44	$\begin{aligned} & 39 a, 39 b, 40,41, \\ & 43 b, 44 \end{aligned}$	43	41,42	40, 42b
Hb	1.64		42a, 42b, 43a, 44	$\begin{aligned} & \hline 39 a, 39 b, 40,41, \\ & 43 a, 44 \end{aligned}$	43	41, 42	$\begin{array}{ll} \hline 20 \mathrm{~b}, & 41, \\ 42 \mathrm{~b} & \end{array}$
44 C	57.71				44	20b, 42a, 42b	
H2	3.14		43a, 43b	$\begin{aligned} & 39 a, 39 b, 40,41, \\ & 42 a, 42 b, 43 a, 43 b \end{aligned}$	44	22, 43	20b

If compared to the original publication, ${ }^{[7]]}$ seven ${ }^{13} \mathrm{C}$ NMR signals were reassigned in the following way:

- peak at 29.86 ppm was originally assigned to C41 (29.7 ppm), is now assigned to C35
- peak at 19.17 ppm was originally assigned to $\mathbf{C 4 0}(18.9 \mathrm{ppm})$, is now assigned to C36
- peak at 81.73 ppm was originally assigned to C39 (81.5 ppm), is now assigned to C37
- peak at 18.65 ppm was originally assigned to C37 (18.4 ppm), is now assigned to C39
- peak at 27.81 ppm was originally assigned to C36 (27.6 ppm), is now assigned to C40
- peak at 24.88 ppm was originally assigned to C35 (24.6 ppm), is now assigned to C42

4.I.5 Concerted Macrocyclization Event

Compound 120. L-Selectride (1 M in THF, $1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added to a solution of compound 114 ($250 \mathrm{mg}, 0.114 \mathrm{mmol}$) in THF
 $(0.2 \mathrm{~mL})$. The reaction was stirred at $40^{\circ} \mathrm{C}$ for 12 h before it was quenched by cautious addition of $\mathrm{MeOH}(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was loaded onto an amino cartridge (pre-equilibrated with $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ (volume of three column length each)) and then eluted with $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(90: 10)$ to provide a white solid.

HOAc ($0.02 \mathrm{~mL}, 0.349 \mathrm{mmol}$) was added to a solution of this secondary amine and aldehyde 98
($320 \mathrm{mg}, 0.841 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$ at ambient temperature. After stirring for 30 min at this temperature, $\mathrm{NaBH}(\mathrm{OAc})_{3}(84 \mathrm{mg}, 0.396 \mathrm{mmol})$ was added and stirring was continued for 3 h . The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL})$. After removing the solvent under argon, the crude product was then subjected to preparative HPLC (Kromasil-5-C18, $\left.5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}=95: 5,35 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}=4.2 \mathrm{~min}\right)$ to afford the title compound as a white solid ($165 \mathrm{mg}, 67 \%$). $[\alpha]_{\mathrm{D}}^{20}=-23.4^{\circ}\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{ddd}, J=8.3,6.9,1.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.49 (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.82 (dd, $J=6.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72$ (s, 1H), 3.49 (d, J $=2.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.37(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dt}, J=13.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.10(\mathrm{~m}, 4 \mathrm{H}), 3.03(\mathrm{ddd}$, $J=20.0,7.8,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{ddd}, J=11.5,8.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.21(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.02(\mathrm{~m}$, 10H), 2.02-1.97 (m, 1H), 1.95-1.88 (m, 1H), 1.88-1.78 (m, 3H), 1.78-1.74 (m, 6H), 1.72-1.67 (m, $2 \mathrm{H}), 1.64(\mathrm{dd}, \mathrm{J}=5.8,3.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 14 \mathrm{H}), 1.39-1.28(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.8,163.3,156.0,147.1,146.1,144.7,129.5,129.2,126.2,125.9,123.8,122.3$, $117.7,95.6,79.8,79.4,79.2,79.1,76.1,75.5,75.3,74.9,62.5,58.0,55.6,52.2,47.7,45.3,44.2,40.4$, 39.1, 37.9, 35.0, 30.8, 29.7, 29.1, 28.8, 28.8, 28.7, 28.4, 27.0, 26.8, 26.2, 26.1, 18.7, 18.6, 14.7, 4.9, 3.5, $3.5 \mathrm{ppm} ; \operatorname{IR}$ (film) $\tilde{v}=3319,2929,2857,1708,1627,1568,1496,1436,1404,1390,1365,1272,1251$, 1170, 1074, 1027, 957, 871, 759, 666, 593 cm^{-1}; MS (ESI): m/z: $825\left[M+\mathrm{H}^{+}\right], 847\left[M+\mathrm{Na}^{+}\right]$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{54} \mathrm{H}_{73} \mathrm{~N}_{4} \mathrm{O}_{3}\left[M+\mathrm{H}^{+}\right]$: 825.56772, found: 825.56785.

Compound 121. A flame-dried two-necked flask connected to a reflux condenser was charged
 with activated $5 \AA$ molecular sieves (powder, 400 mg) and toluene (11 mL). The suspension was purged with argon at room temperature for 30 min . Next, the mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 30 min before a solution of tetrayne 120 ($20.0 \mathrm{mg}, 0.024$ $\mathrm{mmol})$ in toluene $(0.9 \mathrm{~mL})$ was added. In a separate flame-dried Schlenk tube under argon, Mo-complex $51(9.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ was dissolved in toluene $(0.5 \mathrm{~mL})$ and transferred via syringe into another Schlenk tube containing the trisilanol $52(12.4 \mathrm{mg}, 0.016 \mathrm{mmol})$. The resulting mixture was stirred for 30 s , before it was added dropwise to the suspension of the substrate and the molecular sieves in toluene at $110^{\circ} \mathrm{C}$. The mixture was stirred at $110^{\circ} \mathrm{C}$ for 30 min , before the reaction was quenched by the addition of ethanol $(1 \mathrm{~mL})$. The mixture was cooled to room temperature and filtered through a plug of Celite, which was carefully rinsed with EtOAc. The combined filtrates were evaporated in vacuo and the residue purified by preparative HPLC (Kromasil-5-C18, $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 30 \mathrm{~mm}, \mathrm{MeOH}, 35 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$, major product, $\mathrm{t}=$ 4.8 min ; minor product, $\mathrm{t}=4.0 \mathrm{~min}$) to afford the title compound $121(6.1 \mathrm{mg}, 35 \%$ yield) and an isomer ($3.0 \mathrm{mg}, 17 \%$ yield) as a white solid each. Analytical and spectral data of compound 121: $[\alpha]_{D}^{20}=-7.3^{\circ}\left(\mathrm{c}=0.31, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz},\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}\right): \delta=8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{ddd}, J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-5.85(\mathrm{~m}$, $1 \mathrm{H}), 3.95$ (ddd, $J=13.1,8.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.40(\mathrm{~m}$, $3 \mathrm{H}), 3.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=18.4,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.93$ (dd, $J=9.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.48(\mathrm{~m}, 3 \mathrm{H})$, $2.40-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.11(\mathrm{~m}, 6 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{ddd}, J=9.8,6.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.79$ (dd, $J=9.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.41(\mathrm{~m}$, $5 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 9 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.16(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz , [D4]$\mathrm{MeOH}): \delta=174.3,165.6,158.4,149.1,146.7,146.0,130.7,129.0,127.7,127.2,125.4,122.4,119.3$, $103.8,81.9,80.4,80.0,76.6,62.9,56.3,54.9,53.5,45.0,41.2,38.9,38.6,38.3,36.7,32.1,31.4,30.2$, 28.9, 28.8, 28.8, 28.7, 28.4, 28.4, 26.3, 25.4, 19.6, 18.7, 14.0 ppm ; IR (film) $\tilde{v}=2930,2850,1705$, 1634, 1423, 1159, $759 \mathrm{~cm}^{-1}$; MS (ESI): m/z: 717 [$\left.\mathrm{M}^{+} \mathrm{H}^{+}\right]$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{46} \mathrm{H}_{61} \mathrm{~N}_{4} \mathrm{O}_{3}$ [$\mathrm{M}+\mathrm{H}^{+}$]: 717.47382, found: 717.47373.

4.2 Studies towards the Total Synthesis of Providencin

Unless stated otherwise, all reactions were carried out in flame-dried glassware using anhydrous solvents under an argon atmosphere. The following solvents were purified by distillation over the indicated drying agents and were transferred under an argon atmosphere: THF, $\mathrm{Et}_{2} \mathrm{O}$ (Mg/anthracene); MeCN, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{DCE}\left(\mathrm{CaH}_{2}\right)$; toluene (Na / K alloy); $\mathrm{MeOH}\left(\mathrm{Mg}\right.$; stored over MS $3 \AA$). DMSO, DMF, NEt ${ }_{3}$, pentane and pyridine were dried by an adsorption solvent purification system based on molecular sieves. Molecular sieves ($5 \AA$) were activated at $150^{\circ} \mathrm{C}$ for 24 h in high vacuum ($1 \times 10^{-3} \mathrm{mbar}$) and stored under argon.

Thin layer chromatography (TLC): Macherey-Nagel precoated plates (POLYGRAM®SIL/UV254); detection was achieved under UV-Light (254 nm) and by staining with either acidic p-anisaldehyde, cerium ammonium molybdenate or basic KMnO_{4} solution. Flash chromatography: Merck silica gel $60(40-63 \mu \mathrm{~m})$ with predistilled or HPLC grade solvents. Preparative LC was performed with an Agilent 1260 infinity prep system (fraction collector G7159 B + G7166A, diode array detector G7115A); stationary phase and conditions for each compound are specified below.

NMR: Spectra were recorded on Bruker AV 400, AV 500, AVIII 600 or AVneo 600 spectrometers in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta \mathrm{c}=77.00 \mathrm{ppm}\right.$; residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta \mathrm{f}=$ $7.26 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta \mathrm{c}=53.84 \mathrm{ppm}$; residual CDHCl_{2} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}: \delta \mathrm{f}=5.32 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}: \delta \mathrm{c}=$ 49.00 ppm , residual $\mathrm{CD}_{2} \mathrm{HOD}$ in $\mathrm{CD}_{3} \mathrm{OD}: \delta \mathrm{H}=3.31 \mathrm{ppm} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}: \delta \mathrm{C}=39.52 \mathrm{ppm}$, residual $\mathrm{CD}_{2} \mathrm{HSOCD}_{3}$ in $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}: \delta \mathrm{H}=2.50 \mathrm{ppm}\right)$; all spectra were recorded at $25^{\circ} \mathrm{C}$. Multiplicities are indicated by the following abbreviations: s: singlet, d: doublet, t: triplet, q: quartet, p: pentet, h: hextet, hept: heptet, m: multiplet, br: broad signal. ${ }^{13} \mathrm{C}$ NMR spectra were recorded in ${ }^{1} \mathrm{H}$ decoupled manner and the values of the chemical shifts are rounded to one decimal point. Signal assignments were established using HSQC, HMBC, COSY, NOESY and other 2D experiments.

IR: Spectra were recorded on an Alpha Platinum ATR instrument (Bruker); wavenumbers (\tilde{v}) in cm^{-1}.

MS (ESI-MS): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ3000 (Bruker), accurate mass determinations: Bruker APEX III FTMS (7 T magnet) or Mat 95 (Finnigan).

Optical rotations $\left([\alpha]_{\mathrm{D}}\right)$ were measured with an A-Krüss Otronic Model P8000-t polarimeter at a wavelength of 589 nm .

Unless stated otherwise, all compounds were commercially available (Alfa Aesar, Aldrich, TCI, Strem Chemicals, ChemPUR) and used as received.

4.2.I Towards the Total Synthesis of Providencin via Ring Closing Alkyne Metathesis

Methyl 2-bromofuran-3-carboxylate (198). An oven-dried 2 L jacketed vessel equipped with a dropping funnel was charged with 3 -furoic acid (192) ($19.73 \mathrm{~g}, 176 \mathrm{mmol}$)
 and THF (800 mL). The resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ before n-BuLi (1.6 M in hexanes, $231 \mathrm{~mL}, 370 \mathrm{mmol}$) was added dropwise over 2 h . Once the addition was complete, stirring was continued for another 2 h at $-78^{\circ} \mathrm{C}$. Next, bromine ($9.9 \mathrm{~mL}, 194 \mathrm{mmol}$) was added dropwise at this temperature and the resulting mixture was stirred for another $2 \mathrm{~h} . \mathrm{HCl}(1 \mathrm{~m}, 100 \mathrm{~mL})$ was added and the mixture warmed to rt. The resulting mixture was concentrated in vacuo until approximately 100 mL were left before it was diluted with additional $\mathrm{HCl}(1 \mathrm{M}, 200 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 350 \mathrm{~mL}$) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The resulting crude 2-bromo-3-carboxylic acid was used in the next step without further purification.

A 1 L round bottom flask equipped with a reflux condenser was charged with this crude material ($27.5 \mathrm{~g}, 144 \mathrm{mmol}$) and DMF (440 mL). Potassium carbonate ($60 \mathrm{~g}, 432 \mathrm{mmol}$) was added and the resulting mixture heated to $90^{\circ} \mathrm{C}$ for 1.5 h . Next, iodomethane (17.9 mL , 288 mmol) was added and stirring continued for another 12 h at $90^{\circ} \mathrm{C}$. After reaching ambient temperature, water (200 mL) was added. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ $400 \mathrm{~mL})$ and the combined organic extracts were washed with water $(200 \mathrm{~mL})$, brine (100 mL) and dried over sodium sulfate. Concentration in vacuo furnished a residue, which was purified by flash chromatography on silica (pentane/tert-butyl methyl ether, 9:1) to give the title compound as a white solid ($21.4 \mathrm{~g}, 59 \%$ yield over 2 steps). The spectral data are in accordance with the literature. ${ }^{[193]}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.43(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=2.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.86 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.3,144.3,129.0,117.3,112.7,51.8$. HRMS (EI): m/z calcd. for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{Br}$ [M^{+}]: 203.9416, found: 203.9416.

Compound 199. Catecholborane ($1.9 \mathrm{~mL}, 18 \mathrm{mmol}$) was added over 1 h to a stirred solution of OTв tert-butyl(dimethyl)(pent-4-ynyloxy)silane ${ }^{[194]}(3.0 \mathrm{~g}, 15 \mathrm{mmol})$ at room temperature. The resulting mixture was then stirred at $70^{\circ} \mathrm{C}$ for 12 h before it was cooled to room temperature. Pinacol ($2.5 \mathrm{~g}, 21 \mathrm{mmol}$) was added as a solid and the resulting mixture was vigorously stirred for 3 h at room temperature. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{~mL})$ and the organic phase washed with $\mathrm{NaOH}(1 \mathrm{M}, 2 \mathrm{x}$ 100 mL) and brine (100 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (pentane:Et2 $\mathrm{O}, 40: 1$), furnishing the title compound as a colorless oil ($3.0 \mathrm{~g}, 61 \%$ yield). The spectral data are in accordance with the literature. ${ }^{[194]}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.64(\mathrm{dt}, J=17.9,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.44(\mathrm{dt}, J=18.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{dtd}, J=9.4,6.5,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{ddt}$, $J=8.6,7.5,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$
154.2, 83.0, 62.6, 32.1, 31.3, 25.9, 24.8, 18.3, -5.3 . HRMS (ESI): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{BSi}\left[\mathrm{M}^{\left.+\mathrm{H}^{+}\right] \text {: }}\right.$ 327.2521, found: 327.2517.

Compound 203. 1,4-Dioxane (11 mL) and degassed water (1 mL) were added to a flask charged
 with methyl 2-bromofuran-3-carboxylate 198 ($1.6 \mathrm{~g}, 7.8 \mathrm{mmol}$), boronate 199 ($2.8 \mathrm{~g}, 8.6 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(285 \mathrm{mg}, 0.39 \mathrm{mmol}$, 0.05 eq.) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($5.6 \mathrm{~g}, 17.2 \mathrm{mmol}$). The resulting mixture was stirred at $85^{\circ} \mathrm{C}$ for 2 h before it was cooled to room temperature. The mixture was diluted with water $(30 \mathrm{~mL})$ and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexane:MTBE, 20:1) to give the title compound as a colorless oil ($2.3 \mathrm{~g}, 91 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dt}, J=16.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dt}, J=16.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta=164.1,157.0,140.7,135.9,117.9,112.2,111.4,62.4,51.4,32.1,29.5,25.9,18.3,-5.3$. IR (film): $\tilde{v}=2952,2930,2857,2887,1719,1653,1569,1509,1471,1463,1439,1409,1388,1361,1301$, $1257,1197,1164,1139,1098,1054,1034,1006,971,940,893,836,812,776,740,662 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{NaSi}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 347.1649 , found: 347.1649.
Compound S8. Tetrabutylammonium fluoride (1 M in THF, $14.0 \mathrm{~mL}, 14.0 \mathrm{mmol}$) was added
 to a stirred solution of silyl ether $203(2.28 \mathrm{~g}, 7.03 \mathrm{mmol})$ in THF $(17 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (hexanes:EtOAc, 1:1) to give the title compound as a yellow oil ($1.28 \mathrm{~g}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52$ (dt, $J=16.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{qd}, J=7.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-$ $1.72(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.1,156.8,140.8,135.3,118.2,112.4,111.4,62.3$, 51.5, 31.9, 29.4. IR (film): $\tilde{v}=2952,2931,2889,2857,1823,1779,1718,1654,1603,1569,1509$, 1462, 1440, 1409, 1379, 1361, 1304, 1257, 1199, 1164, 1138, 1098, 1054, 1034, 972, 940, 893, 837, $813,777,753 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O} 4 \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 233.0784, found: 233.0786.

Compound 213. Sulfur trioxide pyridine complex ($2.9 \mathrm{~g}, 18.1 \mathrm{mmol}$) was added to a solution
 of anhydrous $\operatorname{Et}_{3} \mathrm{~N} \quad(4.2 \mathrm{~mL}, \quad 30.2 \mathrm{mmol})$, alcohol $\mathbf{S 8}$ $(1.27 \mathrm{~g}, 6.0 \mathrm{mg})$ and DMSO $(3.0 \mathrm{~mL}, 42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min , before sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80 \mathrm{~mL})$, and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash chromatography on silica gel (pentane:MTBE, 3:1) to afford the title compound as a colorless oil ($1.18 \mathrm{~g}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.83(\mathrm{t}, \mathrm{J}=1.3$
$\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dt}, J=16.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dt}$, $J=16.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=201.2,164.0,156.3,141.1,133.1,118.8,112.9,111.5,51.5,42.9,25.4$. HRMS (ESI): $\mathrm{m} / \mathrm{z}:$ calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}^{2} \mathrm{Na}^{+}\right]$: 231.0628, found: 231.0629.

Compound rac-214. Aldehyde $213(156 \mathrm{mg}, 0.75 \mathrm{mmol})$ was slowly added to a solution of
 triethylsilylacetylene ($0.12 \mathrm{~mL}, 0.68 \mathrm{mmol}$) and $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, 0.45 mL$)$ in THF $(3.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature, quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and diluted with water $(3 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes:MTBE, 5:1), furnishing the title compound as a colorless oil (243 mg , quant.). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.24(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dt}, J=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.52(\mathrm{dt}, J=16.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{qd}, J=7.4,1.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.98-1.83(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.60(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=164.0,156.7,140.8,134.8,118.4,112.5,111.4,107.5,87.3,62.3,51.4,36.9,28.7,7.4,4.2$. IR (film): $\tilde{v}=3427,2954,2912,2875,1718,1652,1568,1509,1441,1412,1380,1303,1263,1236$, 1198, 1161, 1139, 1105, 1053, 1034, 1017,972, 892, 736, $599 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 371.1649$, found: 371.1654.

Compound rac-215. Aldehyde $213(156 \mathrm{mg}, 0.75 \mathrm{mmol})$ was slowly added to a solution of
 triisopropylsilylacetylene ($0.15 \mathrm{~mL}, 0.68 \mathrm{mmol}$) and $n-\mathrm{BuLi}$ $(1.6 \mathrm{M}$ in hexanes, 0.45 mL$)$ in THF $(3.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature, quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and diluted with water $(3 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes:MTBE, 5:1), furnishing the title compound as a colorless oil (282 mg , quant.). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dt}, J=16.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.52(\mathrm{dt}, J=16.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{qd}, J=7.6,1.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.99-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 21 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.0,156.6$, 140.9, 134.8, 118.4, 112.5, 111.5, 108.3, 86.1, 62.3, 51.4, 37.08, 28.8, 18.6, 11.1. IR (film): $\tilde{v}=3428$, 2943, 2891, 2864, 1718, 1653, 1568, 1509, 1462, 1441, 1410, 1384, 1366, 1303, 1263, 1198, 1159, $1139,1105,1053,1034,1016,998,971,942,919,883,782,739,677,576,599 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 413.2118$, found: 413.2118.

Compound 216 (via rac-204). PCC ($186 \mathrm{mg}, 0.86 \mathrm{mmol}$) was added to a mixture of alcohol rac-
 $204(132 \mathrm{mg}, 0.43 \mathrm{mmol})$ and silica $(200 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at room temperature. The mixture was stirred for 4 h , before it was filtered through a pad of Celite and subsequently concentrated in vacuo. The residue was purified by flash chromatography on silica (pentane:Et2O, 9:1), furnishing the title compound as a colorless oil ($77 \mathrm{mg}, 59 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dt}, J=16.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dt}, J=16.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.73(\mathrm{~m}, 2 \mathrm{H})$, $2.65-2.57(\mathrm{~m}, 2 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=186.3,164.0,156.4,141.0,133.0$, 118.8, 112.8, 111.4, 101.7, 98.5, 51.5, 44.2, 27.1, -0.8. IR (film): $\tilde{v}=2956,1715,1675,1569,1508$, $1439,1409,1303,1252,1197,1163,1137,1113,1081,1047,1033,972,940,844,760,705,599 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 327.1023, found: 327.1024.

Compound 217. PCC ($280 \mathrm{mg}, 1.30 \mathrm{mmol}$) was added to a mixture of alcohol rac-214 (227 mg ,
 0.65 mmol) and silica (300 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature. The mixture was stirred for 4 h , before it was filtered through a pad of Celite and subsequently concentrated in vacuo. The residue was purified by flash chromatography on silica (pentane: $\mathrm{Et}_{2} \mathrm{O}, 9: 1$), furnishing the title compound as a colorless oil ($170 \mathrm{mg}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dt}, J=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J$ $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dt}, J=16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 2 \mathrm{H})$, $1.01(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.67(\mathrm{q}, J=7.9,6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=186.3,164.0,156.4$, 141.0, 133.1, 118.8, 112.8, 111.4, 103.0, 96.8, 51.4, 44.5, 27.2, 7.3, 3.8. IR (film): $\tilde{v}=2956,2912$, 2876, 1716, 1675, 1569, 1508, 1439, 1410, 1302, 1263, 1196, 1162, 1137, 1110, 1081, 1047, 1032, 1018, 971, 941, 893, 868, 814, 798, 779, 727, 677, 599, $566 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 347.1673$, found: 347.1675.

Compound 218. PCC ($289 \mathrm{mg}, 1.34 \mathrm{mmol}$) was added to a mixture of alcohol rac-215 (262 mg ,
 0.67 mmol) and silica (300 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at room temperature. The mixture was stirred for 4 h , before it was filtered through a pad of Celite and subsequently concentrated in vacuo. The residue was purified by flash chromatography on silica (pentane: $\mathrm{Et}_{2} \mathrm{O}, 9: 1$), furnishing the title compound as a colorless oil ($187 \mathrm{mg}, 72 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dt}, J=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dt}, J=16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.59(\mathrm{~m}, 2 \mathrm{H})$, $1.10(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=186.2,163.9,156.3,141.0,133.1,118.9$, 112.8, 111.5, 103.9, 96.3, 51.4, 44.7, 27.3, 18.4, 10.9. IR (film): $\tilde{v}=2945,2893,2866,1718,1677$, $1569,1508,1462,1439,1409,1385,1366,1303,1263,1197,1164,1137,1111,1072,1047,1033,997$, 972, 941, 921, 882, 814, 797, 780, 745, 679, 599, $583 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}$ [$\left.\mathrm{M}+\mathrm{H}^{+}\right]: 389.2143$, found: 389.2142 .

Methyl (R, E)-2-(5-hydroxy-7-(triethylsilyl)hept-1-en-6-yn-1-yl)furan-3-carboxylate (214).

$\mathrm{Ru}(p$-cymene) $[(R, R)$-Ts-DPEN] ($R, R-219)(0.7 \mathrm{mg}, 0.001 \mathrm{mmol}$, 0.01 eq.) was added to $i-\mathrm{PrOH}(0.7 \mathrm{~mL})$ and the mixture vigorously stirred until a faint orange solution had formed. A solution of ynone 217 ($40 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $i-\operatorname{PrOH}(0.1 \mathrm{~mL})$ was added dropwise, causing a color change to bright pink. The mixture was stirred for 1 h at room temperature before it was concentrated in vacuo. The residue was purified by flash chromatography on silica (pentane:tert-butyl methyl ether, 4:1) to afford the title compound as a colorless oil (40 mg , quant., 97% ee). Spectral data matched the racemic sample rac-214.

Figure 4.4. HPLC-traces of rac-214 (left) and enantioenriched 214 (right): $t_{R}=16.99 \mathrm{~min}$ (minor enantiomer) and 18.99 min (major enantiomer) (Chiralcel OJ-3R column, $\lambda=220 \mathrm{~nm}$, isocratic elution 50:50 acetonitrile/water, flow-rate $=1.0 \mathrm{~mL} / \mathrm{min}$).

Methyl (R, E)-2-(5-hydroxy-7-(triisopropylsilyl)hept-1-en-6-yn-1-yl)furan-3-carboxylate

(215). $\operatorname{Ru}(p$-cymene $)[(R, R)$-Ts-DPEN] ($R, R-219$) $(0.7 \mathrm{mg}$, $0.001 \mathrm{mmol}, 0.01 \mathrm{eq}$.$) was added to i-\mathrm{PrOH}(0.7 \mathrm{~mL})$ and the mixture vigorously stirred until a faint orange solution had formed. A solution of ynone 218 ($45 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $i-\mathrm{PrOH}$ $(0.1 \mathrm{~mL})$ was added dropwise, causing a color change to bright pink. The mixture was stirred for 1 h at room temperature before it was concentrated in vacuo. The residue was purified by flash chromatography on silica (pentane:tert-butyl methyl ether, 4:1) to afford the title compound as a colorless oil ($43 \mathrm{mg}, 97 \%$ yield, 98% ee). Spectral data matched the racemic sample rac-215.

Figure 4.5. HPLC-traces of rac-215 (left) and enantioenriched 215 (right): $t_{R}=24.08 \mathrm{~min}$ (minor enantiomer) and 25.54 min (major enantiomer) (Chiralcel IB-N3 column, $\lambda=220 \mathrm{~nm}$, isocratic elution 55:45 acetonitrile/water, flow-rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

Methyl pent-4-ynoate (S9). Thionyl chloride ($21.3 \mathrm{~mL}, 293 \mathrm{mmol}$) was added over 30 min to a O stirred solution of pent-4-ynoic acid (217) (25 g, 255 mmol$)$ in methanol (200 mL) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 2 h at room temperature before it was concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ and the solution was successively washed with water (50 mL), sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and water (50 mL). The organic phase was dried over MgSO_{4} and concentrated in vacuo (heating: $40^{\circ} \mathrm{C}$, pressure: >250 mbar) to provide the title compound as a brown oil ($22.7 \mathrm{~g}, 79 \%$ yield). The spectral data are in accordance with the literature. ${ }^{[228]}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=3.70$ $(\mathrm{s}, 3 \mathrm{H}), 2.61-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.47(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=172.2,82.4,69.0,51.8,33.1,14.3$.

Methyl (E)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-enoate (216).

Catecholborane ($17.8 \mathrm{~mL}, 167 \mathrm{mmol}$) was added over 1 h to a stirred solution of methyl pent-4-ynoate S9 (15.6 g, 139 mmol) at room temperature. The resulting mixture was then stirred at $70^{\circ} \mathrm{C}$ for 12 h before it was cooled to room temperature. Pinacol ($23.0 \mathrm{~g}, 195 \mathrm{mmol}$) was added as a solid and the resulting mixture was vigorously stirred for 3 h at room temperature. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{~mL})$ and the organic phase washed with $\mathrm{NaOH}(1 \mathrm{M}, 2 \times 100 \mathrm{~mL})$ and brine (100 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (pentane: $\mathrm{Et}_{2} \mathrm{O}, 40: 1$), furnishing the title compound as a colorless oil (11.4 g, 34% yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.61(\mathrm{dt}, \mathrm{J}$
$=18.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dt}, J=18.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.41(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.3,151.6,83.1,51.6,32.5,30.5,24.8 ; \operatorname{IR}(f i l m): \tilde{v}=2979,1740$, 1640, 1438, 1398, 1362, 1322, 1268, 1212, 1165, 1144, 1112, 1004, $971,896,850 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~B}\left[\mathrm{M}^{+}\right]: 240.1527$, found: 240.1529.

Methyl (E)-2-(5-methoxy-5-oxopent-1-en-1-yl)furan-3-carboxylate (218). 1,4-Dioxane (85 mL)
 and degassed water $(8.5 \mathrm{~mL})$ were added to a flask charged with methyl 2-bromofuran-3-carboxylate 198 ($12.15 \mathrm{~g}, 59.25 \mathrm{mmol}$), boronate 216 ($15.65 \mathrm{~g}, 65.18 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(2.17 \mathrm{~g}, 2.96 \mathrm{mmol}$, 0.05 eq .) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(42.47 \mathrm{~g}, 130.36 \mathrm{mmol})$. The resulting mixture was stirred at $85^{\circ} \mathrm{C}$ for 4 h before it was cooled to room temperature. The mixture was diluted with water $(100 \mathrm{~mL})$ and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 250 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (pentane: $\mathrm{Et}_{2} \mathrm{O}, 4.5: 1$) to give the title compound as a colorless oil $\left(12.70 \mathrm{~g}, 90 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dt}, J=16.1$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dt}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.63$ $-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.51$ (ddd, $J=8.6,6.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1,164.0$, 156.4, 141.0, 133.4, 118.7, 112.8, 111.5,51.7, 51.5, 33.3, 28.2; IR (film): $\tilde{v}=2953,1735,1713,1655$, $1569,1508,1437,1410,1364,1303,1260,1195,1156,1093,1050,1032,971,941,893,846,808,780$, $746,600,564 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right]: 238.0835$, found: 238.0836.
Methyl (E)-2-(5-(methoxy(methyl)amino)-5-oxopent-1-en-1-yl)furan-3-carboxylate (S10).

N, O-Dimethylhydroxylamine hydrochloride ($6.24 \mathrm{~g}, 63.97 \mathrm{mmol}$) was added to stirred solution of ester $218(12.70 \mathrm{~g}, 53.31 \mathrm{mmol})$ in THF (450 mL). The resulting mixture was cooled to $-78^{\circ} \mathrm{C}$ before i $\mathrm{PrMgCl}(2 \mathrm{M}$ in THF, $64 \mathrm{~mL}, 127.94 \mathrm{mmol}$) was added dropwise over the course of 1 h . The mixture was warmed to $-50^{\circ} \mathrm{C}$ and stirred at this temperature for 30 min before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$. After reaching room temperature, the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 250 \mathrm{~mL})$ and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (pentane:Et2O, 1:2) to give the title compound as a pale yellow oil ($11.09 \mathrm{~g}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dt}, J=16.0$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.50(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H})$, $2.66-2.56(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.0,156.7,140.9,134.5,118.4,112.6,111.4$, $61.3,51.4,32.2,31.2,30.3,27.9$; IR (film): $\tilde{v}=2952,1715,1660,1569,1509,1440,1413,1386,1305$, 1264, 1198, 1162, 1138, 1049, 1033, 994, 973, $747 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~N}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]:$268.1179, found: 268.1181.

Methyl (E)-2-(5-oxo-7-(trimethylsilyl)hept-1-en-6-yn-1-yl)furan-3-carboxylate (216). EtMgCl

(2 M in THF, $22.4 \mathrm{~mL}, 44.8 \mathrm{mmol}$) was added dropwise to a stirred solution of trimethylsilylacetylene ($6.3 \mathrm{~mL}, 44.8 \mathrm{mmol}$) in THF (200 mL) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at room temperature for 30 min . The mixture was then cooled to $0^{\circ} \mathrm{C}$ and added to a solution of Weinreb amide $\mathbf{S 1 0}$ ($10.89 \mathrm{~g}, 40.74 \mathrm{mmol}$) in THF (50 mL) at $0^{\circ} \mathrm{C}$ via cannula. After stirring at $0^{\circ} \mathrm{C}$ for 5 min and at room temperature for 1 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 250 \mathrm{~mL})$, the combined extracts were washed with brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (pentane: $\mathrm{Et}_{2} \mathrm{O}, 9: 1$), furnishing the title compound as a colorless oil ($9.48 \mathrm{~g}, 76 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dt}, J=16.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dt}, J=16.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{td}, J=7.2,0.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.65-2.57$ (m, 2H), $0.24(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=186.3,164.0,156.4$, 141.0, 133.1, 118.8, 112.8, 111.4, 101.8, 98.5, 51.5, 44.2, 27.1, -0.8 ; IR (film): $\tilde{v}=2956,1715,1675$, 1569, 1508, 1439, 1409, 1303, 1252, 1197, 1163, 1137, 1113, 1081, 1047, 1033, 972, 940, 844, 760, $705,599 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 327.1023, found: 327.1024.
Methyl (S,E)-2-(5-hydroxy-7-(trimethylsilyl)hept-1-en-6-yn-1-yl)furan-3-carboxylate (S-

204). $\mathrm{Ru}(p$-cymene $)[(S, S)$-Ts-DPEN] (S,S-219) (187 mg, $0.31 \mathrm{mmol}, 0.01 \mathrm{eq}$.) was added to $i-\mathrm{PrOH}(200 \mathrm{~mL})$ and the mixture vigorously stirred until a faint orange solution had formed. A solution of ynone $216(9.48 \mathrm{~g}, 31.14 \mathrm{mmol})$ in i-PrOH $(20 \mathrm{~mL})$ was added dropwise, causing a color change to bright pink. The mixture was stirred for 1 h at room temperature before it was concentrated in vacuo. The residue was purified by flash chromatography on silica (pentane:tert-butyl methyl ether, $4: 1$) to afford the title compound as a colorless oil ($9.39 \mathrm{~g}, 99 \%$ yield, 99% ee). $[\alpha]_{\mathrm{D}}^{20}=+34.8^{\circ}$ ($\mathrm{c}=1.0, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):=7.28-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.45(\mathrm{~m}$, 1H), $4.46-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.71$ (m, 1H), $0.20-0.15(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.1,156.7,140.9,134.7,118.4$, 112.5, 111.4, 106.2, 90.0, 62.2, 51.5, 36.7, 28.7, -0.2; IR (film): $\tilde{v}=3427,2954,1717,1653,1568$, 1509, 1441, 1410, 1304, 1250, 1198, 1161, 1139, 1105, 1053, 1035, 971, 942, 892, 843, $760 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 329.1179, found: 329.1183.

The racemic sample rac-204 was prepared by the following procedure: Aldehyde 213 (1.18 g , $5.7 \mathrm{mmol})$ was slowly added to a solution of trimethylsilylacetylene ($0.73 \mathrm{~mL}, 5.16 \mathrm{mmol}$) and $n-\operatorname{BuLi}(1.6 \mathrm{M}$ in hexanes, 3.3 mL$)$ in THF $(26 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature and subsequently quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80 \mathrm{~mL})$, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica
(hexanes:MTBE, 3:1), furnishing the title compound as a colorless oil ($1.4 \mathrm{~g}, 89 \%$ yield). Spectral data matched with the enantioenriched sample (S)-204 above.

Figure 4.6. HPLC-traces of rac-204 (left) and enantioenriched (S)-204 (right): $t_{R}=14.90 \mathrm{~min}$ (minor enantiomer) and 16.14 min (major enantiomer) (Chiralcel OJ-3R column, $\lambda=220 \mathrm{~nm}$, isocratic elution 45:55 acetonitrile/water, flow-rate $=1.0 \mathrm{~mL} / \mathrm{min}$)

Methyl (S,E)-2-(5-hydroxyhept-1-en-6-yn-1-yl)furan-3-carboxylate (219). Potassium
 carbonate ($12.7 \mathrm{~g}, 91.88 \mathrm{mmol}$) was added to a stirred solution of alcohol (S)-204 ($9.39 \mathrm{~g}, 30.66 \mathrm{mmol})$ in methanol $(136 \mathrm{~mL})$ and the resulting yellow mixture was stirred for 30 min at room temperature. The reaction was quenched upon addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and water $(80 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$ and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography on silica (hexanes:tert-butyl methyl ether, 2:1), providing the title compound as a colorless oil ($7.01 \mathrm{~g}, 98 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=+21.9^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dt}, J$ $=16.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{td}, J=6.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{qd}, J$ $=7.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.1$, 156.7, 140.9, 134.5, 118.6, 112.5, 111.4, 84.4, 73.4, 61.6, 51.5, 36.6, 28.5; IR (film): $\tilde{v}=3436,3292$, 2952, 1710, 1652, 1568, 1509, 1440, 1409, 1304, 1263, 1199, 1160, 1137, 1103, 1051, 1033, 971, 939, 892, 747, 661, 600, $569 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 257.0784, found: 257.0786.

Methyl (S,E)-2-(5-((tert-butyldimethylsilyl)oxy)hept-1-en-6-yn-1-yl)furan-3-carboxylate

(220). Imidazole ($2.24 \mathrm{~g}, 32.87 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride ($4.95 \mathrm{~g}, 32.87 \mathrm{mmol}$) were added to a stirred solution of alcohol $219(7.00 \mathrm{~g}, 29.88 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$, and the resulting mixture was stirred for 16 h at room temperature. The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 150 mL). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (pentane:tert-butyl methyl ether, 9:1) to afford the title compound as a colorless oil ($10.13 \mathrm{~g}, 97 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=-13.1^{\circ}\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dt}, J=16.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dt}, J=16.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{td}, J=6.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.38$ $(\mathrm{m}, 3 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.1,156.8,140.8,135.1,118.2,112.4,111.4,85.2,72.5,62.1,51.4,37.7,28.6,25.8,18.2,-4.6$, -5.1; IR (film): $\tilde{v}=2952,2930,2886,2857,1717,1654,1569,1509,1471,1462,1439,1410,1361$, 1302, 1259, 1197, 1161, 1139, 1088, 1054, 1035, 1005, 970, 941, 893, 837, 811, 778, 740, 661, 631, $599 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{Si}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 349.1829$, found: 349.1830.

Methyl 2-((S,1E,6E)-5-((tert-butyldimethylsilyl)oxy)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hepta-1,6-dien-1-yl)furan-3-carboxylate (197). A solution of pinacol
 borane ($6.3 \mathrm{~mL}, 43.47 \mathrm{mmol}$) and 9-borabicyclo[3.3.1]nonane (9-H-9-BBN, $353 \mathrm{mg}, 0.1 \mathrm{eq}$.) in THF (3 mL) was added to a stirred solution of alkyne $220(10.10 \mathrm{~g}, 28.98 \mathrm{mmol})$ in THF (60 mL). The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 16 h before the reaction was cautiously quenched at room temperature upon dropwise addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The aqueous phase was diluted with water $(100 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 200 \mathrm{~mL})$. The combined extracts were washed with brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (hexanes:tertbutyl methyl ether, 15:1) to provide the title compound as a colorless oil ($11.40 \mathrm{~g}, 83 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=+18.3^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.22(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dt}$, $J=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60-6.45(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{dd}, J=18.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.24(\mathrm{qd}, \mathrm{J}=5.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.30$ (dddd, $J=8.7,7.4,6.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.68$ (ddd, $J=$ 9.7, 7.9, $5.9 \mathrm{~Hz}, 2 \mathrm{H}$), 1.27 (s, 12H), 0.90 ($\mathrm{s}, 9 \mathrm{H}$), 0.03 (d, $J=9.3 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta=164.1,157.0,155.5,140.7,136.1,117.8,112.2,111.4,83.1,73.4,51.4,36.5,28.4,25.9$, 24.8, 24.7, 18.2, -4.4, -4.9; IR (film): $\tilde{v}=2977,2952,2930,2857,1718,1642,1569,1508,1471$, $1463,1439,1390,1364,1339,1320,1259,1196,1145,1086,1053,1035,999,971,941,918,895,836$, 810, 776, 739, 671, $666 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{BSiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 499.2657, found: 499.2661.

Compound 209. Imidazole ($32 \mathrm{mg}, 0.47 \mathrm{mmol}$) and tert-butyldiphenylsilyl chloride (129 mg ,

$0.47 \mathrm{mmol})$ were added to a stirred solution of rac-206 (100 mg , $0.43 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$, and the resulting mixture was stirred for 16 h at room temperature. The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (hexane:tertbutyl methyl ether, 20:1) to afford the silyl ether as a colorless oil ($199 \mathrm{mg}, 99 \%$ yield).

A solution of pinacol borane ($0.09 \mathrm{~mL}, 0.60 \mathrm{mmol}$) and 9-borabicyclo[3.3.1]nonane (9-H-9-BBN, $4.9 \mathrm{mg}, 0.1 \mathrm{eq}$.$) in THF (0.4 \mathrm{~mL}$) was added to a stirred solution of alkyne 207 (190 mg , $0.40 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 16 h before the reaction was diluted with MTBE (4 mL) and cautiously quenched at room temperature upon dropwise addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$. The aqueous phase was diluted with water $(20 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined extracts were washed with brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (hexanes:tert-butyl methyl ether, 15:1) to provide the title compound as a colorless oil ($155 \mathrm{mg}, 64 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.42$ $-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dt}, J=16.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ (dd, $J=18.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dt}, J=16.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dd}, J=18.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.25$ $(\mathrm{m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.1,156.9,154.5,140.6,136.0,135.95,135.86,129.6,129.5,127.5,127.4$, 117.7, 112.1, 111.4, 83.1, 74.3, 51.4, 36.0, 27.7, 27.1, 24.8, 24.7, 19.4. IR (film): $\tilde{v}=2975,2932,2892$, 2857, 2174, 1718, 1643, 1568, 1509, 1472, 1463, 1440, 1428, 1391, 1368, 1339, 1322, 1265, 1239, $1196,1146,1111,1056,1082,1037,971,998,939,895,850,823,772,741,703,652,630,613,622$, 531, 507, 486, 460, $430 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{O}_{6} \mathrm{BSiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 623.2971$, found: 623.2974.

Compound 210. Imidazole ($32 \mathrm{mg}, 0.47 \mathrm{mmol}$) and triisopropylsilyl chloride (0.1 mL ,
 $0.47 \mathrm{mmol})$ were added to a stirred solution of rac-206 $(100 \mathrm{mg}$, $0.43 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$, and the resulting mixture was stirred for 16 h at room temperature. The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (hexane:tertbutyl methyl ether, 20:1) to afford the silyl ether as a colorless oil ($143 \mathrm{mg}, 86 \%$ yield).

A solution of pinacol borane ($0.075 \mathrm{~mL}, 0.52 \mathrm{mmol}$) and 9-borabicyclo[3.3.1]nonane (9-H-9BBN, $4.2 \mathrm{mg}, 0.1$ eq.) in THF (0.4 mL) was added to a stirred solution of alkyne 208 (135 mg , $0.35 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 16 h before the reaction was diluted with MTBE (4 mL) and cautiously quenched at room temperature upon
dropwise addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$. The aqueous phase was diluted with water $(20 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined extracts were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (hexanes:tert-butyl methyl ether, 9:1) to provide the title compound as a colorless oil ($140 \mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.22(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92(\mathrm{dt}, J=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.43(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{dd}, J=18.0,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.39(\mathrm{qd}, \mathrm{J}=5.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.27$ (d, $J=2.7 \mathrm{~Hz}, 12 \mathrm{H}), 1.05(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.1,157.0,155.5$, 140.7, 136.2, 117.7, 112.1, 111.4, 83.2, 73.9, 51.4, 36.6, 27.8, 24.8, 24.6, 18.1, 12.4. HRMS (ESI): m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{BSiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 541.3127, found: 541.3135.

Cyclobutanes 201 and 200. The iridium complex 205 ($252 \mathrm{mg}, 0.22 \mathrm{mmol}, 0.01 \mathrm{eq}$.) was added

201

200 to a stirred solution of alkenyl boronic ester (S)-197 $(10.70 \mathrm{~g}, 22.46 \mathrm{mmol})$ in dry and degassed (three freeze-pump-thaw cycles) $\mathrm{MeCN}(500 \mathrm{~mL}$) in a 1L-jacketed vessel, which was connected to a stream of cooling water ($\mathrm{T} \approx 14^{\circ} \mathrm{C}$). The mixture was irradiated with a blue LED bulb (Hepatochem, 475 nm) for 4 h (see
Figure 4.7 for the reaction setup). The mixture was then concentrated in vacuo and the resulting residue purified by flash chromatography on fine silica (hexanes:EtOAc, 17:1) to furnish the
 each.

Figure 4.7. Reaction setup for the photosensitized [2+2] cycloaddition.

Analytical and spectroscopic data of 201: $[\alpha]_{\mathrm{D}}^{20}=-69.1^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.26(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{ddd}, J=10.0,7.3,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.93 (ddd, $J=11.7,4.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{tdd}, J=6.6,3.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.46 (ddd, $J=11.6,6.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03$ (tdd, $J=12.3,10.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.85$ (m, $1 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 6 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.0,164.4,139.8,112.3,111.0,82.8,75.4,51.2,40.7,39.2,36.7,32.2,28.9$, 25.9, 25.0, 24.6, 18.2, -4.85, -4.89; IR (film): $\tilde{v}=2951,2930,2885,2856,1719,1595,1519,1462$, $1441,1410,1379,1323,1305,1283,1250,1194,1164,1142,1106,1051,1032,1007,987,959,940$, 907, 875, 853, 836, 804, 775, 734, 669, $602 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{O}_{6} \mathrm{BSiNa}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 499.2657, found: 499.2659 .

Analytical and spectroscopic data of 200: $[\alpha]_{\mathrm{D}}^{20}=+60.3^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.28(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{ddd}, J$ $=11.4,4.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{tdd}, J=$ $13.1,7.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{tt}, J=12.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{ddd}, J=11.4,6.7$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=12.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H}), 1.05(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.9,164.3,139.9,112.2,111.0,82.9,79.2,51.2,45.1$, 41.3, 35.4, 33.7, 30.4, 25.9, 25.0, 24.4, 18.2, -4.8, -4.8; IR (film): $\tilde{v}=2953,2929,2886,2856,1720$, $1595,1519,1462,1440,1410,1377,1319,1252,1195,1165,1143,1109,1057,1020,973,940,891$, 880, 854, 835, 808, 776, 734, $666 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O} 6 \mathrm{BSi}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 477.2838$, found: 477.2839.

Cyclobutanes 211-a and 211-b. The iridium complex 205 ($2.4 \mathrm{mg}, 0.002 \mathrm{mmol}, 0.01 \mathrm{eq}$.) was
 added to a stirred solution of alkenyl boronic ester rac-209 ($130 \mathrm{mg}, 0.22 \mathrm{mmol}$) in dry and degassed (three freeze-pump-thaw cycles) $\mathrm{MeCN}(5 \mathrm{~mL})$ in a 25 mL -jacketed vessel, which was connected to a stream of cooling water ($\mathrm{T} \approx 14^{\circ} \mathrm{C}$). The mixture was irradiated with a blue LED bulb (Hepatochem, 475 nm) for 4 h . The mixture was then concentrated in vacuo and the resulting residue purified by flash chromatography on fine silica (hexanes:EtOAc, 15:1) to furnish the diastereomeric products 211-a ($59 \mathrm{mg}, 45 \%$ yield) and 211-b ($55 \mathrm{mg}, 42 \%$ yield) as a colorless oil each.

Analytical and spectroscopic data of 211-a:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.78-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dt}, J=10.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{ddd}, J=11.6,4.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 2.95(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{td}, J=7.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{ddd}, J=11.7,6.3,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.15(\mathrm{tdd}, J=12.8,10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{dt}, J=12.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{dd}, J=13.3,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.44(\mathrm{tt}, J=13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H}), 1.06(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 165.0, 164.3, 139.8, 135.8, 135.8, 134.6, 134.2, 129.4, 129.4, 127.4, 127.4, 112.3, 110.9, 82.8, 76.2,
$51.2,40.5,39.1,36.5,31.7,28.9,26.9,25.0,24.6,19.2$. IR (film): $\tilde{v}=2953,2857,1717,1594,1471$, $1462,1441,1427,1411,1378,1323,1305,1284,1251,1194,1164,1142,1105,1051,1031,1007,907$, 871, 854, 840, 821, 786, 731, 701, 610, 503, $488 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{O}_{6} \mathrm{BSiNa}$ [M+Na+]: 623.2971, found: 623.2971.
Analytical and spectroscopic data of 211-b:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.69-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.28(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{ddd}, J=11.5,4.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.25(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.70-$ $1.56(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 6 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.7,164.3$, 139.9, 135.7, 134.8, 134.7, 129.4, 129.3, 127.5, 127.4, 112.3, 111.0, 82.8, 79.9, 51.2, 45.0, 41.3, 35.3, $33.4,30.5,27.0,25.0,24.5,19.2$. IR (film): $\tilde{v}=2959,2930,2857,1718,1593,1471,1440,1428,1410$, $1377,1318,1246,1194,1165,1142,1107,1056,1020,972,940,910,880,854,822,786,734,702$, 687, 611, 506, $488 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{O}_{6} \mathrm{BSiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 623.2971$, found: 623.2969 .

Cyclobutanes 212-a and 212-b. The iridium complex 205 ($2.8 \mathrm{mg}, 0.003 \mathrm{mmol}, 0.01 \mathrm{eq}$.) was

212-a

212-b added to a stirred solution of alkenyl boronic ester rac$210(130 \mathrm{mg}, 0.25 \mathrm{mmol})$ in dry and degassed (three freeze-pump-thaw cycles) $\mathrm{MeCN}(6 \mathrm{~mL})$ in a 25 mL jacketed vessel, which was connected to a stream of cooling water ($\mathrm{T} \approx 14^{\circ} \mathrm{C}$). The mixture was irradiated with a blue LED bulb (Hepatochem, 475 nm) for 4 h . The mixture was then concentrated in vacuo and the resulting residue purified by flash chromatography on silica (hexanes:EtOAc, 15:1) to furnish an inseparable mixture of diasteomers 212-a/212-b ($122 \mathrm{mg}, 94 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers): $\delta=7.28(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 6.63(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.33(\mathrm{dt}, J=9.9,6.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.09(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 0.5 \mathrm{H}), 3.83(\mathrm{ddd}, J=11.5$, $4.9,1.1 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.79(\mathrm{~s}, 1.5 \mathrm{H}), 3.78(\mathrm{~s}, 1.5 \mathrm{H}), 3.20(\mathrm{td}, \mathrm{J}=7.1,4.7 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.01-2.87(\mathrm{~m}, 1 \mathrm{H})$, $2.83(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 0.5 \mathrm{H}), 2.18(\mathrm{tdd}, \mathrm{J}=13.0,6.9,3.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.11-2.06$ (m, 0.5H), 2.03-1.92 (m, 1H), 1.87 (dd, $J=12.9,6.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.72$ (ddd, $J=11.4,6.7,1.2 \mathrm{~Hz}$, $0.5 \mathrm{H}), 1.66-1.53(\mathrm{~m}, 1.5 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.07-1.01(\mathrm{~m}, 27 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}, mixture of diastereomers): $\delta=165.0,164.9,164.3,139.9,139.8,112.3,112.2,111.04$, $110.96,82.9,82.7,79.3,75.4,51.3,51.2,45.3,41.3,40.5,39.2,36.6,35.2,33.9,32.4,30.5,28.9,25.00$, 24.96, 24.7, 24.4, 18.1, 18.1, 18.0, 12.1. HRMS (ESI): m / z calcd. for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{O}_{6} \mathrm{BSiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 541.3127, found: 541.3132.

Methyl 2-((1R,2S,5S,6R,7S)-2-((tert-butyldimethylsilyl)oxy)-7-hydroxybicyclo[3.2.0]heptan-6-yl)-furan-3-carboxylate (196). A mixture ($40 \mathrm{~mL}, 2: 1 \mathrm{v} / \mathrm{v}$) of aq. $\mathrm{NaOH}(2 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%$
 $w / w)$ was added to a stirred solution of boronic ester $200(4.01 \mathrm{~g}, 8.42$ $\mathrm{mmol})$ in THF (40 mL) at $0^{\circ} \mathrm{C}$ and the resulting mixture was vigorously stirred at this temperature for 30 min . The reaction was carefully quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and the mixture diluted with EtOAc $(100 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc (3×150 mL), the combined extracts were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo, and the residue was purified by flash chromatography on silica (hexanes:tert-butyl methyl ether, 3:1) to give the title compound as an amorphous white solid $\left(2.58 \mathrm{~g}, 81 \%\right.$ yield). $[\alpha]_{\mathrm{D}}^{20}=+85.7^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37(\mathrm{~d}, \mathrm{~J}=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{ddd}, J=7.9,4.1,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84-3.77(\mathrm{~m}, 4 \mathrm{H}), 3.24(\mathrm{td}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{ddt}, J=8.0,4.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.94$ $(\mathrm{m}, 1 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.0,160.8,141.2,114.2,111.0,76.6,69.8,56.7,51.5,43.2,36.2,34.8,29.1$, 25.8, 18.1, -4.67, -4.72; IR (film): $\tilde{v}=2953,2929,2887,2856,1716,1593,1518,1471,1462,1441$, $1407,1360,1340,1312,1253,1199,1144,1082,1059,1032,1006,940,887,835,812,772,736 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 389.1754, found: 389.1759.

Methyl 2-((1R,2S,5S,6R,7S)-7-acetoxy-2-((tert-butyldimethylsilyl)oxy)bicyclo[3.2.0]heptan-6-yl)-furan-3-carboxylate (S11). 4-Dimethylaminopyridine ($72 \mathrm{mg}, 0.59 \mathrm{mmol}$), triethylamine
 $(2.89 \mathrm{~mL}, 20.74 \mathrm{mmol})$ and acetic anhydride ($1.96 \mathrm{~mL}, 20.74 \mathrm{mmol}$) were added to a stirred solution of alcohol $196(2.53 \mathrm{~g}, 6.92 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(63 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 h before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (hexanes:tert-butyl methyl ether, $9: 1$) to provide the title compound as a colorless oil ($2.74 \mathrm{~g}, 97 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=+59.8^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.37(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{ddd}, J=8.2,4.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.26$ $(\mathrm{m}, 1 \mathrm{H}), 4.10(\mathrm{ddd}, J=8.1,4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{td}, J=7.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.73$ $(\mathrm{m}, 1 \mathrm{H}), 2.05-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{dd}, \mathrm{J}=12.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.7,164.1,159.2,141.1,114.5,110.8,76.3,70.4,53.4,51.4,40.5$, 37.0, 34.7, 29.1, 25.8, 20.5, 18.0, -4.77, -4.79; IR (film): $\tilde{v}=2954,2931,2893,2857,1742,1722$, 1598, 1518, 1472, 1462, 1440, 1407, 1363, 1340, 1313, 1291, 1233, 1196, 1158, 1143, 1073, 1056, 1026, 940, 886, 837, 809, 776, $738 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 431.1860, found: 431.1865 .

2-((1S,2S,5S,6R,7S)-7-acetoxy-2-hydroxybicyclo[3.2.0]heptan-6-yl)furan-3carboxylate (221). Tetrabutylammonium fluoride (1 M in THF, 8.05 mL , $8.05 \mathrm{mmol})$ was added to a stirred solution of silyl ether $\mathbf{S 1 1}(2.74 \mathrm{~g}, 6.71$ $\mathrm{mmol})$ in THF $(70 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 5 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (hexanes:EtOAc, 1:1) to give the title compound as a yellow oil $\left(1.85 \mathrm{~g}, 94 \%\right.$ yield). $[\alpha]_{\mathrm{D}}^{20}=+58.5^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38(\mathrm{~d}, \mathrm{~J}=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{ddd}, J=8.1,4.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.14 (ddd, $J=8.1,4.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, 3H), 3.37 (ddd, $J=8.1,6.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.83$ (m, $1 \mathrm{H}), 2.09-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.7$, 164.0, 158.8, 141.2, 114.6, 110.8, 76.1, 70.3, 53.1, 51.4, 40.5, 37.0, 34.3, 28.9, 20.5; IR (film): $\tilde{v}=$ 3449, 2952, 1739, 1720, 1596, 1518, 1441, 1407, 1375, 1339, 1310, 1292, 1234, 1198, 1158, 1063, $1035,984,935,862,805,744,605 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 317.0995$, found: 317.0997.

Methyl 2-((1R,5S,6R,7S)-7-acetoxybicyclo[3.2.0]hept-2-en-6-yl)furan-3-carboxylate (195). A
 solution of Martin's sulfurane ($6.26 \mathrm{~g}, 9.31 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to a stirred solution of alcohol $221(1.83 \mathrm{~g}, 6.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(80 \mathrm{~mL})$ and the resulting mixture was stirred for 5 h at ambient temperature before the reaction was quenched upon addition of sat. aq. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (hexanes:tert-butyl methyl ether, $8: 1$) to furnish the title compound as a yellow oil ($1.66 \mathrm{~g}, 97 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=+46.7^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ $=7.36(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{dd}, J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ (td, $J=7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.58(\mathrm{~m}, 1 \mathrm{H})$, 2.36 (ddd, $J=17.2,3.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.0,164.0$, 158.7, 141.1, 133.0, 129.7, 114.1, 111.0, 76.6, 51.5, 51.4, 42.5, 39.4, 36.9, 20.7; IR (film): $\tilde{v}=2952$, $2845,1738,1717,1596,1516,1440,1409,1372,1353,1330,1293,1233,1197,1165,1141,1106$, 1067, 1033, 950, 915, 876, 799, 753, 723, $603 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$299.0889, found: 299.0891.

Methyl 2-((1S,2S,5R,6S,7R)-2-((tert-butyldimethylsilyl)oxy)-7-hydroxybicyclo[3.2.0]heptan-6-yl)furan-3-carboxylate (223). A mixture ($2: 1 \mathrm{v} / \mathrm{v}, 4 \mathrm{~mL}$) of aq. $\mathrm{NaOH}(2 \mathrm{M})$ and aq. $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%$
 $w / w)$ was added to a stirred solution of boronic ester $201(400 \mathrm{mg}$, $0.84 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was vigorously stirred at this temperature for 30 min before the reaction was carefully quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The mixture was diluted with

EtOAc (20 mL), the aqueous phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), and the combined extracts were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes:tert-butyl methyl ether, 7:1) to give the title compound as an amorphous white solid ($264 \mathrm{mg}, 86 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=-104.4^{\circ}$ (c $\left.=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.66 (dd, $J=7.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.87$ (ddd, $J=7.9,5.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $3.15-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{tdd}, J=7.9,3.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{tdd}, J=12.3,9.7$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.53(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.0,160.9,141.0,114.0,111.0,74.1,66.6,51.5,50.7,44.4,35.9,33.4,28.0,25.9,18.2,-4.77$, -4.84; IR (film): $\tilde{v}=3488,2953,2930,2884,2857,1718,1593,1518,1462,1441,1407,1361,1341$, $1305,1252,1198,1163,1113,1064,1050,1034,1007,939,907,872,837,802,777,736,671,667 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 389.1754$, found: 389.1758.

Methyl 2-((1S,2S,5R,6S,7R)-7-acetoxy-2-((tert-butyldimethylsilyl)oxy)bicyclo[3.2.0]heptan-6-yl)furan-3-carboxylate (S12). 4-Dimethylaminopyridine ($7 \mathrm{mg}, 0.058 \mathrm{mmol}$), triethylamine
 $(0.28 \mathrm{~mL}, 2.04 \mathrm{mmol})$ and acetic anhydride $(0.19 \mathrm{~mL}, 2.04 \mathrm{mmol})$ were added to a stirred solution of alcohol $223(249 \mathrm{mg}, 0.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 h before the reaction was quenched upon addition of sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (hexanes:tert-butyl methyl ether, $9: 1$) to provide the title compound as a colorless oil ($262 \mathrm{mg}, 94 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=-67.0^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.35(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=7.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.20(\mathrm{~m}$, 2H), 3.81 (s, 3H), $3.16-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{tdd}, \mathrm{J}=8.0,3.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.73$ ($\mathrm{s}, 3 \mathrm{H}$), $1.66(\mathrm{td}, J=6.1,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=169.4,163.9,159.1,141.0,114.6,111.0,73.8,68.0,51.4,47.1,42.3,36.8,33.3,27.9,25.7$, 20.3, 18.1, -4.9, -5.0; IR (film): $\tilde{v}=2954,2931,2857,1746,1722,1598,1518,1463,1443,1407$, $1362,1340,1304,1284,1232,1197,1160,1133,1115,1054,1033,938,892,872,837,805,777,739$, $669,603 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O} 6 \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 431.1860, found: 431.1861.

Methyl 2-((1R,2S,5R,6S,7R)-7-acetoxy-2-hydroxybicyclo[3.2.0]heptan-6-yl)furan-3-
 carboxylate (224). Tetrabutylammonium fluoride (1 M in THF, 0.72 mL , $0.72 \mathrm{mmol})$ was added to a stirred solution of silyl ether $\mathbf{S 1 2}(246 \mathrm{mg}$, $0.60 \mathrm{mmol})$ in THF $(6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature for 5 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (hexanes:EtOAc, 1:1) to afford the title compound as a yellow oil ($142 \mathrm{mg}, 80 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=-134.1^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta=7.37(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=8.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.19(\mathrm{~m}$, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 4 \mathrm{H})$, $1.83-1.64(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.5,164.2,158.7,141.2,114.7,110.8,73.6$, 68.0, 51.4, 49.1, 40.9, 36.6, 33.1, 28.1, 20.9; IR (film): $\tilde{v}=3467,2954,2869,1819,1717,1596,1518$, $1442,1405,1376,1338,1304,1235,1197,1160,1133,1085,1053,1034,942,886,805,752,604 \mathrm{~cm}$ ${ }^{1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right]$: 317.0995, found: 317.0993.

Methyl 2-((1S,5R,6S,7R)-7-acetoxybicyclo[3.2.0]hept-2-en-6-yl)furan-3-carboxylate (ent-195).
 A solution of Martin's sulfurane ($428 \mathrm{mg}, 0.64 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added to a stirred solution of alcohol $224(125 \mathrm{~g}, 0.42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The resulting mixture was stirred for 5 h before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 50 \mathrm{~mL})$, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (hexanes:tert-butyl methyl ether, $8: 1$) to provide the title compound as a yellow oil ($94 \mathrm{mg}, 80 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=-47.7^{\circ}$ ($\mathrm{c}=$ $\left.1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ (s, 2H), $5.11(\mathrm{dd}, J=6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{td}, J=7.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.56(\mathrm{~m}$, $1 \mathrm{H}), 3.34-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.36$ (ddd, $J=17.3,3.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.0,164.0,158.7,141.1,133.0,129.7,114.1,111.0,76.6,51.5,51.4$, 42.5, 39.4, 36.9, 20.7; IR (film): $\tilde{v}=2952,2845,1737,1715,1595,1516,1440,1409,1372,1353$, $1330,1292,1230,1195,1164,1140,1106,1066,1032,950,915,876,831,860,799,751,721,603 \mathrm{~cm}$ ${ }^{1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]$: 294.1336, found: 294.1337.

Methyl 2-((1R,2S,3S,4S)-2-acetoxy-4-(2-hydroxyethyl)-3-(hydroxymethyl)cyclobutyl)furan-
 3-carboxylate (222). N-Methylmorpholine N-oxide ($2.09 \mathrm{~g}, 17.92 \mathrm{mmol}$) and $\mathrm{OsO}_{4}(4 \mathrm{wt} \%$ in water, $0.76 \mathrm{~mL}, 0.12 \mathrm{mmol}, 0.01$ eq.) were added to a stirred solution of olefin $195(1.65 \mathrm{~g}, 5.97 \mathrm{mmol})$ in a mixture ($10: 1 \mathrm{v} / \mathrm{v}, 30 \mathrm{~mL}$) of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ at room temperature. The mixture was stirred for 3 d before sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}(10 \mathrm{~mL})$ and tert-butyl methyl ether $(50 \mathrm{~mL})$ were added. The aqueous phase was extracted with tert-butyl methyl ether ($3 \times 150 \mathrm{~mL}$), the combined extracts were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the resulting crude diol was used in the next step without further purification.

Sodium periodate ($1.53 \mathrm{~g}, 7.17 \mathrm{mmol}$) was added to a stirred solution of this diol $(1.85 \mathrm{~g}$, $5.97 \mathrm{mmol})$ in THF (38 mL) and water $(8 \mathrm{~mL})$. The resulting mixture was vigorously stirred at room temperature for 30 min before it was cooled to $0^{\circ} \mathrm{C}$. Methanol (115 mL) was added and stirring continued for 15 min at 0°. Sodium borohydride ($904 \mathrm{mg}, 23.89 \mathrm{mmol}$) was introduced and the mixture stirred for 30 min at $0^{\circ} \mathrm{C}$. The mixture was poured into a mixture of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and EtOAc $(100 \mathrm{~mL})$. After vigorous stirring for 30 min , the aqueous phase was extracted with EtOAc ($3 \times 250 \mathrm{~mL}$). The combined extracts were washed with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ before they were concentrated in vacuo. The residue was purified
by flash chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl} 2: \mathrm{MeOH}, 95: 5\right)$ to give the title compound as a colorless oil ($1.44 \mathrm{~g}, 77 \%$ yield over 2 steps). $[\alpha]_{\mathrm{D}}^{20}=+55.2^{\circ}\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.34(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{ddd}, J=8.0,5.4,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.30 (ddd, $J=8.0,6.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.70$ (ddd, $J=10.9,6.0$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{ddd}, J=10.6,8.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{dtdd}, J=10.1,7.0,5.4$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 2 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{ddt}, J=13.7,8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.0,164.1,158.6,141.3,114.6,110.9,71.9,61.6,60.6,51.5,45.3$, 40.8, 33.9, 32.4, 20.7; IR (film): $\tilde{v}=3403,2952,2875,1717,1596,1518,1442,1408,1372,1309$, 1286, 1236, 1199, 1161, 1134, 1108, 1046, 751, $604 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{7} \mathrm{Na}$ $\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 335.1101, found: 335.1101.

Methyl 2-((1R,2S,3S,4S)-2-hydroxy-4-(2-hydroxyethyl)-3-(hydroxymethyl)cyclobutyl)furan-

3-carboxylate (225). Acetyl chloride ($0.27 \mathrm{~mL}, 3.84 \mathrm{mmol}$) was added to a stirred solution of diol $222(400 \mathrm{mg}, 1.28 \mathrm{mmol})$ in methanol $(13 \mathrm{~mL})$. The resulting mixture was stirred for 4 h at room temperature before it was concentrated in vacuo. The residue was purified by flash chromatography on silica $\left(\mathrm{CH}_{2} \mathrm{Cl} 2: \mathrm{MeOH}, 90: 10\right)$ to afford the title compound as a colorless oil ($234 \mathrm{mg}, 67 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=+45.9^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.35(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=7.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.77(\mathrm{~m}, 5 \mathrm{H}), 3.72(\mathrm{dt}, J=10.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{ddd}, J=10.5,8.6,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.07-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{tt}, J=9.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{ddt}, J=14.0,8.2,4.0 \mathrm{~Hz}$, 1 H), 1.69 (ddt, $J=13.9,7.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.8,160.2,141.4$, 114.4, 110.9, 70.3, 61.9, 60.8, 51.6, 47.5, 43.5, 33.2, 32.5; IR (film): $\tilde{v}=3366,2949,2878,1712,1592$, 1519, 1442, 1409, 1310, 1257, 1200, 1162, 1132, 1088, 1033, 740, $603 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$: 293.0995 , found: 293.0995 .

Methyl 2-((1R,2S,3S,4S)-2-acetoxy-3-(hydroxymethyl)-4-(2-((4-methoxyphenyl)diphenyl-

methoxy)-ethyl)cyclobutyl)furan-3-carboxylate (227). 4-
Dimethylaminopyridine ($22 \mathrm{mg}, 0.18 \mathrm{mmol}, 0.05 \mathrm{eq}$.) and pyridine (0.23 $\mathrm{mL}, 2.83 \mathrm{mmol}, 0.8$ eq.) were added to a stirred solution of diol 222 ($1.10 \mathrm{~g}, 3.54 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(31 \mathrm{~mL})$. The mixture was cooled to $-42^{\circ} \mathrm{C}$ using an acetonitrile/dry-ice cooling bath before a solution of 4monomethoxytrityl chloride ($765 \mathrm{mg}, 2.48 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added dropwise. Stirring was continued for 2 h at $-42^{\circ} \mathrm{C}$ before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. After reaching room temperature, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, the combined extracts were dried over MgSO_{4} and concentrated, and the residue was purified by flash chromatography on silica (hexanes:EtOAc, 2:1 to pure EtOAc) to furnish the title compound 227 as a white foam ($950 \mathrm{mg}, 46 \%$ yield), undesired mono-protected product S13 as a white foam ($144 \mathrm{mg}, 7 \%$ yield), bis-protected
product as a yellow oil S14 ($165 \mathrm{mg}, 5 \%$ yield), and recovered starting material 222 as a colorless oil ($355 \mathrm{mg}, 32 \%$ yield).

Analytical and spectroscopic data of 227: $[\alpha]_{\mathrm{D}}^{20}=-23.2^{\circ}(\mathrm{c}=1.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.33(\mathrm{dtd}, J=5.9,3.2,1.5 \mathrm{~Hz}, 5 \mathrm{H}), 7.27-7.15(\mathrm{~m}, 8 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{ddd}, J=8.3,5.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{ddd}, J=8.0,6.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.73$ $(\mathrm{m}, 5 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{dd}, \mathrm{J}=$ $6.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{ddt}, \mathrm{J}=13.8,10.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=171.5,164.1,159.0,158.9,145.2,145.1,141.6,136.1,130.6,128.7,128.6$, 128.1, 127.09, 127.07, 115.0, 113.3, 111.2, 86.5, 72.6, 61.9, 61.3, 55.5, 51.5, 45.8, 41.0, 33.5, 30.6, 21.0; IR (film): $\tilde{v}=3502,2950,2872,2838,1717,1604,1510,1490,1445,1412,1371,1301,1248,1197$, $1179,1158,1133,1113,1061,1033,954,902,831,796,766,749,728,708,633,603,586,545 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]:$607.2302, found: 607.2307.

Analytical and spectroscopic data of 227a: $[\alpha]_{\mathrm{D}}^{20}=-14.3^{\circ}(\mathrm{c}=1.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.47(\mathrm{dt}, J=8.2,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.39(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-$ $7.29(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.27(\mathrm{dd}, J=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=7.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.08-3.00(\mathrm{~m}$, $2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=170.1,164.3,159.4,159.1,145.1,145.0,141.7,135.9$, $130.8,128.8,128.24,128.22,127.3,114.9,113.5,111.2,86.9,71.8,61.7,61.3,55.6,51.7,43.0,41.9$, $33.8,33.4,20.8$; IR (film): $\tilde{v}=3420,2949,2909,2868,2837,1737,1717,1598,1509,1490,1444$, 1411, 1371, 1300, 1233, 1197, 1179, 1155, 1133, 1114, 1071, 1032, 901, 832, 795, 748, 728, 708, 669, $632,592,546 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 607.2302, found: 607.2305.

Analytical and spectroscopic data of 227b: $[\alpha]_{D}^{20}=-16.2^{\circ}(\mathrm{c}=1.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,
 $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=7.46(\mathrm{dq}, J=6.7,1.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-$ $7.27(\mathrm{~m}, 10 \mathrm{H}), 7.26-7.12(\mathrm{~m}, 10 \mathrm{H}), 6.86-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.70(\mathrm{~m}$, $2 \mathrm{H}), 6.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (ddd, $J=7.9,5.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (ddd, $J=8.0,6.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.25$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{dq}, J=10.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.96(\mathrm{~m}, 1 \mathrm{H})$, 2.95 - 2.82 (m, 2H), $1.82(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=170.0,164.1,159.3,159.1,158.9,145.3,145.2,145.13,145.07,141.5,136.2,136.0,130.8$, $130.5,128.8,128.7,128.6,128.2,128.0,127.2,127.04,127.01,115.0,113.4,113.2,111.3,86.8,86.4$, $78.0,71.7,61.9,61.8,55.6,55.5,51.5,42.9,42.0,33.6,30.7,20.8$; IR (film): $\tilde{v}=2972,2908,2870$, $1741,1720,1606,1510,1491,1463,1446,1412,1364,1300,1250,1232,1200,1180,1155,1134,1115$, $1080,1034,989,936,901,850,831,796,766,748,727,707,672,665,633,614,586,545,464 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{55} \mathrm{H}_{52} \mathrm{O} 9 \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 879.3503$, found: 879.3500.

Recycling of 227a+227b to 222. Pyridinium p-toluenesulfonate ($10 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.1 \mathrm{eq}$.) was added to a stirred solution of 227a ($119 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathbf{2 2 7 b}(165 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(4: 1 \mathrm{v} / v, 4 \mathrm{~mL})$ at room temperature. The resulting mixture was stirred for 4 h , before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and water $(2 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and concentrated, and the residue was purified by flash chromatography on silica (EtOAc) to give product 222 as a colorless oil ($99 \mathrm{mg}, 80 \%$ yield).

Methyl 2-((1R,2S,3S,4S)-2-acetoxy-3-(((tert-butyldiphenylsilyl)oxy)methyl)-4-(2-((4-

methoxy-phenyl)diphenylmethoxy)ethyl)cyclobutyl)furan-3carboxylate (228). 4-Dimethylaminopyridine ($9 \mathrm{mg}, 0.07 \mathrm{mmol}$, 0.05 eq.$)$, triethylamine $(1.4 \mathrm{~mL}, \quad 10.06 \mathrm{mmol})$ and tertbutyldiphenylsilyl chloride ($0.56 \mathrm{~mL}, 2.16 \mathrm{mmol}$) were added to a stirred solution of alcohol $227(840 \mathrm{mg}, 1.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17$ $\mathrm{mL})$. The resulting mixture was stirred for 2 d at room temperature before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$, the combined organic layers were dried over MgSO_{4} and concentrated, and the residue was purified by flash chromatography on silica (hexanes:EtOAc, 4:1) to provide the title compound as a colorless oil ($1.10 \mathrm{~g}, 93 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=-8.1^{\circ}(\mathrm{c}=1.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.69(\mathrm{dt}, \mathrm{J}=$ $8.1,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.32(\mathrm{ddt}, J=4.6,3.2,1.6 \mathrm{~Hz}, 5 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 8 \mathrm{H}), 6.77$ $-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.27(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{ddd}, J=7.9,6.5,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.87 (qd, $J=10.7,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.29-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.85(\mathrm{~m}, 3 \mathrm{H})$, $2.10-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~h}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=170.0,164.1,159.2,158.9,145.4,145.2,141.5,136.3,136.1,136.0,134.0,133.9,130.6,130.1$, 128.7, 128.6, 128.1, 128.0, 127.1, 127.0, 115.0, 113.3, 111.3, 86.4, 71.4, 62.4, 61.9, 55.5, 51.5, 44.5, $41.8,33.9,30.9,27.1,20.7,19.5 ;$ IR (film): $\tilde{v}=3069,2952,2931,2858,1740,1719,1603,1510,1489$, $1463,1445,1428,1412,1390,1372,1302,1233,1195,1180,1156,1112,1089,1066,1034,954,901$, $826,796,766,743,704,632,613,586,505 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{51} \mathrm{H}_{54} \mathrm{O}_{8} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 845.3480, found: 845.3474.

Methyl 2-((1R,2S,3S,4S)-2-acetoxy-3-(((tert-butyldiphenylsilyl)oxy)methyl)-4-(2-hydroxy-
 ethyl)cyclo-butyl)furan-3-carboxylate (194). Pyridinium ptoluenesulfonate ($33 \mathrm{mg}, 0.13 \mathrm{mmol}, 0.1 \mathrm{eq}$.) was added to a stirred solution of furan $228(1.09 \mathrm{~g}, 1.32 \mathrm{mmol})$ in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ ($4: 1 \mathrm{v} / \mathrm{v}, 27 \mathrm{~mL}$). The solution was stirred for 5 h at room temperature before the reaction was quenched upon addition of sat. aq. NaHCO_{3} $(10 \mathrm{~mL})$. The mixture was diluted with water $(10 \mathrm{~mL})$, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, the combined extracts were dried over MgSO_{4} and concentrated, and the residue was purified by flash chromatography on silica
(hexanes:EtOAc, 3:1) to give the title compound as a colorless oil ($683 \mathrm{mg}, 94 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=$ $-3.6^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 6 \mathrm{H})$, $7.34(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=7.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.29(\mathrm{~m}, 1 \mathrm{H})$, $3.94-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{tt}, J=10.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.85(\mathrm{~m}$, $1 \mathrm{H}), 1.97$ (ddt, $J=13.8,7.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.8,164.0,158.8,141.1,135.7,133.3,133.2,129.8,127.7,114.6,111.0$, $71.2,61.9,61.3,51.5,44.1,41.4,33.7,33.0,26.9,20.5,19.2$ IR (film): $\tilde{v}=3466,2953,2932,2859$, 1740, 1720, 1597, 1518, 1472, 1443, 1428, 1391, 1372, 1307, 1284, 1235, 1197, 1160, 1133, 1111, 1087, 1048, $939,823,799,742,704,612,505,491 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{O}-\mathrm{SiNa}$ [$\left.\mathrm{M}+\mathrm{Na}^{+}\right]$: 573.2279, found: 573.2277.

Compound 230. Sodium bicarbonate ($8 \mathrm{mg}, 0.09 \mathrm{mmol}$) and Dess-Martin-periodinane (12 mg ,
 $0.03 \mathrm{mmol})$ were added to a solution of alcohol $194(10 \mathrm{mg}, 0.02$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at this temperature for 1.5 h before it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The reaction was quenched with a mixture of sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{NaHCO}_{3}(1: 1 \mathrm{v} / \mathrm{v}, 3 \mathrm{~mL})$ and the resulting mixture was vigorously stirred for 30 min . The aqueous phase was diluted with water $(2 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(3 \times 20 \mathrm{~mL})$, dried over MgSO_{4} and concentrated to give the desired aldehyde 229 as a colorless oil ($9 \mathrm{mg}, 93 \%$ yield). The crude aldehyde thus formed was used in the next step without further purification.

1-Propinylmagnesium bromide (0.5 M in THF, $0.07 \mathrm{~mL}, 0.03 \mathrm{mmol}$) was added dropwise to a stirred solution of this crude aldehyde $229(19 \mathrm{mg}, 0.03 \mathrm{mmol})$ in THF $(0.4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$ before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$. After reaching room temperature, the mixture was diluted with tert-butyl methyl ether $(10 \mathrm{~mL})$ and water $(3 \mathrm{~mL})$. The aqueous phase was extracted with tert-butyl methyl ether ($3 \times 20 \mathrm{~mL}$), the combined organic layers were washed with brine $(4 \mathrm{~mL})$, dried over MgSO_{4} and concentrated. The residue was purified by flash chromatography on silica (hexanes:MTBE, 2:1) to provide the title compound as a colorless oil ($12 \mathrm{mg}, 59 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers): $\delta=7.72-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 6 \mathrm{H})$, $7.34(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.34-5.24(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.94-$ $3.81(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.35-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{ttd}, J=6.9,5.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (ddd, $J=13.9,7.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95$ (ddd, $J=13.7,9.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.76$ (d, $J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}$, minor diastereomer), $1.73(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}$, major diastereomer), $1.09(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, 9 H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers): $\delta=169.8,164.0,158.6,141.14$, $141.08,135.69,135.66,133.25,133.18,133.16,133.13,129.8,129.7,127.7,114.5,111.05,111.02$, 81.3, 81.1, 80.2, 79.8, 71.35, 71.32, 61.88, 61.86, 61.4, 61.3, 51.4, 51.4, 44.2, 41.7, 41.4, 38.5, 38.4, $33.2,33.0,26.9,20.5,19.2,3.4$. IR (film): $\tilde{v}=3467,3071,3049,2953,2931,2857,1739,1719,1596$,
$1518,1472,1443,1428,1390,1373,1305,1233,1196,1158,1135,1046,1109,1008,937,912,889$, 823, 803, 739, 703, 610, 505, $491 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{O}-\mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 611.2435, found: 611.2435.

Methyl 2-((1R,2S,3S,4S)-2-acetoxy-3-(((tert-butyldiphenylsilyl)oxy)methyl)-4-(2-hydroxy-
 ethyl)cyclo-butyl)-5-vinylfuran-3-carboxylate (233). Lithium carbonate ($2 \mathrm{mg}, 0.03 \mathrm{mmol}$), AgOMs ($12 \mathrm{mg}, 0.06 \mathrm{mmol}$) and iodine ($15 \mathrm{mg}, 0.06 \mathrm{mmol}$) were successively added to a stirred solution of furan $194(15 \mathrm{mg}, 0.03 \mathrm{mmol})$ in acetonitrile $(0.4 \mathrm{~mL})$ at room temperature. The resulting mixture was stirred for 10 min before it was diluted with EtOAc (10 mL) and sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{NaHCO}_{3}(1: 1 \mathrm{v} / v, 10 \mathrm{~mL})$. The biphasic mixture was vigorously stirred for 10 min until full decolorization and a homogenous solution was observed. The aqueous phase was diluted with water (5 mL) and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine (30 mL), dried over MgSO_{4} and concentrated. The crude iodofuran 231 thus formed was used in the next step without further purification.

The commercial palladium complex XPhos-Pd-G2 (235) ($3 \mathrm{mg}, 0.004 \mathrm{mmol}$) was added to a stirred solution of iodofuran $231(18 \mathrm{mg}, 0.027 \mathrm{mmol})$ and potassium (ethenyl)trifluoroborate (232) ($7 \mathrm{mg}, 0.05 \mathrm{mmol}$) in a mixture of THF (1 mL) and aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}, 0.1 \mathrm{~mL})$. The resulting mixture was stirred for 6 h at $55^{\circ} \mathrm{C}$ before $\mathrm{Et} 2 \mathrm{O}(20 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$ were added. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 70 \mathrm{~mL})$, the combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over MgSO_{4} and concentrated. The residue was purified by flash chromatography on silica (hexanes:EtOAc, 3:1) to afford the title compound as a brown oil ($6.8 \mathrm{mg}, 44 \%$ yield over 2 steps). $[\alpha]_{\mathrm{D}}^{20}=-84.6^{\circ}\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=7.72-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 6 \mathrm{H}), 6.54-6.44(\mathrm{~m}, 2 \mathrm{H}), 5.76-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.21$ (m, 2H), 4.32 (ddd, J = 7.8, 6.7, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.49(\mathrm{~m}, 2 \mathrm{H})$, 3.11 (tddd, $J=9.9,6.6,5.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.73(\mathrm{~m}$, $4 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=170.2,164.2,158.8,152.0,136.1,136.0,133.9$, 133.8, 130.1, 128.1, 124.8, 116.3, 113.4, 108.9, 71.5, 62.4, 61.5, 51.7, 44.6, 41.9, 34.5, 33.6, 27.0, 20.8, 19.5; IR (film): $\tilde{v}=3463,3071,2952,2932,2858,1740,1719,1643,1591,1538,1472,1442,1428$, 1411, 1373, 1298, 1229, 1111, 1068, 980, 939, 906, 823, 781, 741, 703, 611, 505, $491 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}-\mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 599.2435, found: 599.2435.
(E)-4-Iodo-3-methylbut-3-en-1-ol (237). This compound was prepared according to the literature procedure. ${ }^{[229]}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.02(\mathrm{q}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{td}, J=6.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.6,76.9,60.1,42.4,23.8$; HRMS (ESI): m / z calcd. for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OI}\left[\mathrm{M}^{+}\right]: 211.9692$, found: 211.9694.
(S,E)-1-Iodo-2-methylhept-1-en-5-yn-4-ol (238). Sodium bicarbonate ($5.35 \mathrm{~g}, 63.67 \mathrm{mmol}$) and
 Dess-Martin periodinane ($6.75 \mathrm{~g}, 15.92 \mathrm{mmol}$) were added to a solution of alcohol $237(1.35 \mathrm{~g}, 6.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature for 1 h before it was cooled to $0{ }^{\circ} \mathrm{C}$ and a mixture of sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{NaHCO}_{3}(1: 1 \mathrm{v} / \mathrm{v}, 50 \mathrm{~mL})$ was added. The resulting mixture was vigorously stirred for 30 min before it was diluted with water (100 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$. The combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(3 \times 150 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo (Caution: the aldehyde is volatile! The temperature must be kept at $20^{\circ} \mathrm{C}$ and the pressure $>250 \mathrm{mbar}$). The crude aldehyde was used in the next step without further purification.

Triethylamine ($1.85 \mathrm{~mL}, 13.29 \mathrm{mmol}$) was added to a rigorously stirred suspension of $\mathrm{Zn}(\mathrm{OTf})_{2}$ $(4.60 \mathrm{~g}, 12.65 \mathrm{mmol})$ and $(1 R, 2 S)-(-)-\mathrm{N}$-methylephedrine $(2.38 \mathrm{~g}, 13.29 \mathrm{mmol})$ in toluene $(43 \mathrm{~mL})$. The resulting mixture was stirred for 2 h at room temperature before it was cooled to $0{ }^{\circ} \mathrm{C}$ and liquid propyne ($4 \mathrm{~mL}, 98.7 \mathrm{mmol}$) was added via cannula. After stirring for another 45 min at room temperature, a solution of the crude aldehyde ($1.33 \mathrm{~g}, 6.33 \mathrm{mmol}$) in toluene $(6 \mathrm{~mL})$ was slowly added over the course of 4 h . Once the addition was complete, stirring was continued for 16 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$. The mixture was diluted with water (30 mL), the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$, the combined extracts were washed with brine (50 mL), dried over MgSO_{4} and concentrated ($\mathrm{T} \geq$ $20^{\circ} \mathrm{C}$; the compound is heat sensitive!), and the residue was purified by flash chromatography on silica (pentane:Et2O, 4:1) to provide the title compound as a yellow oil ($512 \mathrm{mg}, 32 \%$ yield, 88% ee $)$. The characterization data are in accordance with the literature. ${ }^{[9]}[\alpha]_{\mathrm{D}}^{20}=-12.9^{\circ}(\mathrm{c}=$ $\left.1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.08(\mathrm{q}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.43(\mathrm{~m}, 1 \mathrm{H}), 2.64-$ $2.51(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.84(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 143.5, 81.9, 79.4, 78.4, 60.6, 47.6, 24.3, 3.5. HRMS (ESI): m / z calcd. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OI}\left[\mathrm{M}+\mathrm{H}^{+}\right]: ~ 250.9927$, found: 250.9927.

Figure 4.8. HPLC-traces of rac-238 ${ }^{[91]}$ (left) and enantioenriched 238 (right): $t_{R}=20.46 \mathrm{~min}$ (minor enantiomer) and 21.75 min (major enantiomer) (Chiralcel OZ-3R column, $\lambda=220 \mathrm{~nm}$, isocratic elution 25:75 acetonitrile/water, flow-rate $=1.0 \mathrm{~mL} / \mathrm{min})$.
(S,E)-tert-butyl((1-iodo-2-methylhept-1-en-5-yn-4-yl)oxy)dimethylsilane (239). Imidazole
 $(30 \mathrm{mg}, 0.44 \mathrm{mmol})$ and tert-butyldimethylsilyl chloride (66 mg , $0.44 \mathrm{mmol})$ were added to a stirred solution of alcohol $238(100 \mathrm{mg}$, $0.40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL})$, and the resulting mixture was stirred for 16 h at room temperature. The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (pentane:tert-butyl methyl ether, 60:1) to afford the title compound as a colorless oil (96 mg , 66% yield). The spectral data are in accordance with the literature. ${ }^{[91]}[\alpha]_{\mathrm{D}}^{20}=-35.4^{\circ}$ ($\mathrm{c}=1.0$, $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.99(\mathrm{~h}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{ddq}, J=7.4,5.3,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.61-2.44(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.81(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~d}, \mathrm{~J}=$ $11.5 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=143.8,80.8,80.1,78.2,61.5,48.4,25.7,24.4,18.2$, 3.5, $-4.6,-5.1$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{1} \mathrm{ISiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 387.0612, found: 387.0613.

Compound 241. $n-\operatorname{BuLi}(1.6 \mathrm{M}$ in hexanes, $0.11 \mathrm{~mL}, 0.18 \mathrm{mmol})$ was added dropwise to a stirred
 solution of alkenyl iodide 239 ($50 \mathrm{mg}, 0.14 \mathrm{mmol}$) and triisopropyl borate ($0.04 \mathrm{~mL}, 0.18 \mathrm{mmol}$) in a mixture of THF $(0.2 \mathrm{~mL})$ and toluene $(0.9 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The resulting mixture was rigorously stirred for 40 min at $-78^{\circ} \mathrm{C}$ before pinacol ($24 \mathrm{mg}, 0.21 \mathrm{mmol}$) was added as a solid. The mixture was warmed to room temperature and stirring was continued for an additional 16 h . $\mathrm{Et} 2 \mathrm{O}(50 \mathrm{~mL})$
was added and the organic phase was washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, water (10 mL), brine (10 mL), dried over MgSO_{4} and concentrated. The residue was purified by flash chromatography on silica (pentane: $\mathrm{Et}_{2} \mathrm{O}, 20: 1$) to give the title compound as a colorless oil (47 $\mathrm{mg}, 95 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.18(\mathrm{q}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{ddq}, J=7.5,6.2$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.4,82.6,80.8,80.3,62.4$, $51.3,25.8,24.8,21.8,18.3,3.5,-4.6,-5.1$. IR (film): $\tilde{v}=2978,2957,2929,2857,1641,1472,1441$, $1402,1386,1369,1349,1319,1283,1257,1215,1143,1084,1050,1031,1005,971,941,900,869$, 852, 836, 811, 777, $663 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{O}_{3} B S i N a\left[M+\mathrm{Na}^{+}\right]: 387.2508$, found: 387.2500 .
(S,E)-1-Iodo-4-(methoxymethoxy)-2-methylhept-1-en-5-yne (242). N,N-Diisopropylethyl-
 amine ($0.94 \mathrm{~mL}, 5.39 \mathrm{mmol}$) and chloromethyl methyl ether (0.21 mL , $2.70 \mathrm{mmol})$ were added to a stirred solution of alcohol $238(168 \mathrm{mg}$, $0.67 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.9 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature for 16 h before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, the combined extracts were dried over MgSO_{4} and concentrated, and the residue was purified by flash chromatography on silica (pentane: $\mathrm{Et}_{2} \mathrm{O}, 60: 1$) to afford the title compound as a colorless oil ($133 \mathrm{mg}, 67 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=$ $-57.8^{\circ}\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=6.06(\mathrm{q}, ~ J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, \mathrm{J}=6.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.36(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.66-2.50(\mathrm{~m}, 2 \mathrm{H}), 1.89$ ($\mathrm{d}, \mathrm{J}=1.1 \mathrm{~Hz}, 3 \mathrm{H}$), $1.83(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=144.3,94.2,82.7$, 78.1, 77.4, 64.3, 55.9, 45.8, 24.5, 3.6; IR (film): $\tilde{v}=2949,2918,2888,2849,2822,1439,1377,1346$, 1277, 1226, 1148, 1096, 1060, 1027, 969, 947, 919, 761, $671 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{INa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 317.0009$, found: 317.0011.

(S,E)-2-(4-(Methoxymethoxy)-2-methylhept-1-en-5-yn-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxa-

borolane (243). n-BuLi (1.6 M in hexanes, $0.35 \mathrm{~mL}, 0.56 \mathrm{mmol}$) was added dropwise to a stirred solution of alkenyl iodide 242 (127 mg , $0.43 \mathrm{mmol})$ and triisopropyl borate ($0.13 \mathrm{~mL}, 0.56 \mathrm{mmol}$) in a mixture of THF (0.7 mL) and toluene (2.7 mL) at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 40 min at $-78^{\circ} \mathrm{C}$ before pinacol ($77 \mathrm{mg}, 0.65 \mathrm{mmol}$) was added as a solid. The mixture was warmed to room temperature and stirring was continued for an additional 16 h . $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added and the organic phase was washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, water (10 mL), brine (10 mL), dried over MgSO_{4} and concentrated. The residue was purified by flash chromatography on silica (pentane: $\mathrm{Et}_{2} \mathrm{O}, 20: 1$ to $10: 1$) to give the title compound as a colorless oil $(107 \mathrm{mg}, 84 \%$ yield). $[\alpha]_{\mathrm{D}}^{20}=-97.4^{\circ}\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=5.16(\mathrm{q}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=6.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{ddt}, J=9.4,6.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}$, 3H), $2.54-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=158.0,94.2,83.0,82.1,78.0,64.9,55.8,48.8,25.0,21.5,3.6$; IR (film): $\tilde{v}=$

2978, 2923, 1640, 1441, 1401, 1370, 1350, 1319, 1283, 1262, 1214, 1144, 1098, 1064, 1030, 970, 919, $853 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{2} \mathrm{OO}_{4} \mathrm{BNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 317.1894$, found: 317.1896.

Compound 244. Lithium carbonate ($9 \mathrm{mg}, 0.13 \mathrm{mmol}$), $\mathrm{AgOMs}(48 \mathrm{mg}, 0.24 \mathrm{mmol}$) and iodine
 ($60 \mathrm{mg}, 0.24 \mathrm{mmol}$) were successively added to a stirred solution of furan 194 ($65 \mathrm{mg}, 0.12 \mathrm{mmol}$) in acetonitrile (1.6 mL) at room temperature. The resulting mixture was stirred for 10 min before EtOAc (10 mL) and a mixture of sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}: \mathrm{NaHCO}_{3}(1: 1 \mathrm{v} / \mathrm{v}, 10 \mathrm{~mL})$ were added. The biphasic mixture was vigorously stirred for 10 min until full decolorization and a homogenous solution was observed. The aqueous phase was diluted with water $(5 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 70 \mathrm{~mL}$). The combined extracts were washed with brine (30 mL), dried over MgSO_{4} and concentrated in vacuo. The crude iodofuran 231 was used in the next step without further purification.

The commercial palladium complex XPhos-Pd-G2 (235) ($12.5 \mathrm{mg}, 0.016 \mathrm{mmol}, 0.15 \mathrm{eq}$.$) was$ added to a stirred solution of $231(72 \mathrm{mg}, 0.11 \mathrm{mmol})$ and boronic ester $241(42 \mathrm{mg}, 0.12 \mathrm{mmol})$ in a mixture of THF (0.8 mL) and aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}, 0.1 \mathrm{~mL})$ at room temperature. The resulting mixture was stirred for 1.5 h at $50^{\circ} \mathrm{C}$ before it was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 70 \mathrm{~mL})$, the combined organic layers were washed with brine (10 mL), dried over MgSO_{4} and concentrated, and the residue was purified by flash chromatography on silica (hexanes:EtOAc, 3:1) to afford the title compound as a brown oil ($37 \mathrm{mg}, 42 \%$ yield over 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.70$ $-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 6 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.27$ (ddd, $J=7.8,5.5,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.48(\mathrm{tt}, J=5.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{ddd}, J=7.6,6.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.69-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{tt}, J=9.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.07$ ($\mathrm{s}, 9 \mathrm{H}$), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.9,164.2,156.9$, $152.0,135.6,135.6,135.5,133.3,133.2,129.8,127.7,116.4,115.7,108.4,80.7,80.6,71.2,62.1,61.9$, 61.4, 51.4, 50.1, 44.2, 41.4, 33.9, 33.0, 26.8, 25.8, 20.6, 19.4, 19.2, 18.2, 3.5, -4.6, -5.1. IR (film): $\tilde{v}=$ 3523, 3071, 3048, 2953, 2931, 2894, 2857, 1742, 1719, 1597, 1549, 1472, 1462, 1442, 1429, 1389, $1362,1234,1111,1077,1007,938,837,778,741,704,612,505,490 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{45} \mathrm{H}_{62} \mathrm{O}_{8} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 809.3875$, found: 809.3874.

Methyl 2-((1R,2S,3S,4S)-2-acetoxy-3-(((tert-butyldiphenylsilyl)oxy)methyl)-4-(2-hydroxy-
 ethyl)cyclo-butyl)-5-((S,E)-4-(methoxymethoxy)-2-methylhept-1-en-5-yn-1-yl)furan-3-carboxylate (245). Lithium carbonate ($29 \mathrm{mg}, 0.40 \mathrm{mmol}$), AgOMs $(162 \mathrm{mg}, 0.80 \mathrm{mmol})$ and iodine $(203 \mathrm{mg}, 0.80 \mathrm{mmol})$ were successively added to a stirred solution of furan $194(200 \mathrm{mg}, 0.36 \mathrm{mmol})$ in acetonitrile (4.8 mL) at room temperature. The resulting mixture was stirred for 10 min before EtOAc $(10 \mathrm{~mL})$ and a mixture of sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}: \mathrm{NaHCO}_{3}(1: 1 \mathrm{v} / v, 10 \mathrm{~mL})$ were added. The biphasic mixture was vigorously stirred for 10 min until full decolorization and a homogenous solution was observed. The aqueous phase was diluted with water (5 mL) and extracted with EtOAc (3×70 $\mathrm{mL})$. The combined extracts were washed with brine (30 mL), dried over MgSO_{4} and concentrated in vacuo. The crude iodofuran 231 was used in the next step without further purification.

The commercial palladium complex XPhos-Pd-G2 (235) ($47 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.25 \mathrm{eq}$.$) was$ added to a stirred solution of $\mathbf{2 3 1}(200 \mathrm{mg}, 0.24 \mathrm{mmol})$ and boronic ester $\mathbf{2 4 3}(76 \mathrm{mg}, 0.26 \mathrm{mmol})$ in a mixture of THF (1.8 mL) and aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}, 0.2 \mathrm{~mL})$ at room temperature. The resulting mixture was stirred for 4 h at $50^{\circ} \mathrm{C}$ before it was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 70 \mathrm{~mL})$, the combined organic layers were washed with brine (10 mL), dried over MgSO_{4} and concentrated, and the residue was purified by flash chromatography on silica (hexanes:EtOAc, 3:1 to $2: 1$) to afford the title compound as a brown oil ($97 \mathrm{mg}, 39 \%$ yield over 2 steps). $[\alpha]_{\mathrm{D}}^{20}=-48.7^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.71-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.36(\mathrm{~m}, 6 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.27$ (ddd, $J=7.8,5.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ (ddq, $J=8.1,6.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (ddd, $J=7.5,6.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.59-3.46(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{tt}, J=9.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dtd}, J=10.5,6.3,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.62-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.82$ $1.71(\mathrm{~m}, 4 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=170.1,164.4,157.6,152.3,135.99$, 135.97, 135.7, 133.80, 133.75, 130.1, 128.1, 116.4, 116.1, 108.9, 94.1, 82.4, 77.7, 71.5, 64.8, 62.3, 61.5, 55.7, 51.7, 47.5, 44.6, 41.7, 34.2, 33.5, 27.0, 20.7, 19.4, 19.2, 3.6; IR (film): $\tilde{v}=3503,3071,3047$, 2930, 2858, 1741, 1718, 1597, 1549, 1442, 1428, 1377, 1233, 1149, 1110, 1058, 1031, 975, 939, 919, 823, 778, 742, 704, 611, 505, $491 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{41} \mathrm{H}_{52} \mathrm{O}_{9} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 739.3272, found: 739.3275.

Compound 246. Sodium bicarbonate ($40 \mathrm{mg}, 0.48 \mathrm{mmol}$) and Dess-Martin-periodinane (40 mg ,
 $0.09 \mathrm{mmol})$ were added to a solution of alcohol 244 ($25 \mathrm{mg}, 0.03 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.9 \mathrm{~mL}\right.$) at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at this temperature for 3.5 h before it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The reaction was quenched with a mixture of sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{NaHCO}_{3}(1: 1 \mathrm{v} / \mathrm{v}, 3 \mathrm{~mL})$ and the resulting mixture was vigorously stirred for 30 min . The aqueous phase was diluted with water (2 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(3 \times 20 \mathrm{~mL})$, dried over MgSO_{4} and concentrated. The crude aldehyde thus formed was used in the next step without further purification.

1-Propinylmagnesium bromide (0.5 M in THF, $0.12 \mathrm{~mL}, 0.06 \mathrm{mmol}$) was added dropwise to a stirred solution of this crude aldehyde ($24 \mathrm{mg}, 0.03 \mathrm{mmol}$) in THF (1.5 mL) at $-78{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$ before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$. After reaching room temperature, the mixture was diluted with tert-butyl methyl ether $(10 \mathrm{~mL})$ and water $(3 \mathrm{~mL})$. The aqueous phase was extracted with tert-butyl methyl ether ($3 \times 20 \mathrm{~mL}$), the combined organic layers were washed with brine $(4 \mathrm{~mL})$, dried over MgSO_{4} and concentrated. The residue was purified by flash chromatography on silica (hexanes:MTBE, 2:1) to provide the title compound as a faint yellow oil ($12 \mathrm{mg}, 40 \%$ yield over 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, mixture of diastereomers): $\delta=7.74-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.50-$ $7.35(\mathrm{~m}, 6 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.15-6.10(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.24(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{dtd}, J=7.2$, $4.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{ddd}, J=7.8,6.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{qdd}, J=10.9,6.2,2.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.93$ (dddd, $J=10.9,8.0,5.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.43(\mathrm{~m}$, $2 \mathrm{H}), 2.08(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.06-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{ddt}, J=13.9,11.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 0.7 \mathrm{H}$, minor diastereomer), $1.72(\mathrm{~d}, \mathrm{~J}=$ $2.1 \mathrm{~Hz}, 2.3 \mathrm{H}$, major diastereomer), $1.08(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, mixture of diastereomers): $\delta=170.1,164.43,164.40,157.41,157.37,152.5$, 152.4, 136.07, 136.05, 136.01, 135.96, 133.83, 133.78, 133.75, 130.1, 128.1, 116.73, 116.70, 116.09, $116.06,108.8,108.7,81.4,81.2,81.0,80.6,80.3,71.7,71.6,62.54,62.50,62.4,61.8,61.6,51.6,50.5$, $44.7,42.1,38.9,33.8,30.1,28.7,27.0,25.9,20.8,19.6,19.5,18.5,3.6,3.5,-4.4,-5.0$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{48} \mathrm{H}_{64} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 847.4032$, found: 847.4029.

Methyl 2-((1R,2S,3S,4S)-2-acetoxy-3-(((tert-butyldiphenylsilyl)oxy)methyl)-4-(2-hydroxy-
 pent-3-yn-1-yl)cyclobutyl)-5-((S,E)-4-(methoxy-methoxy)-2-methyl-hept-1-en-5-yn-1-yl)furan-3carboxylate (247). Sodium bicarbonate (35 mg , 0.42 mmol) and Dess-Martin-periodinane (36 mg , 0.08 mmol) were added to a solution of alcohol 245 ($20 \mathrm{mg}, 0.03 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at this temperature for 3.5 h before it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The reaction was quenched with a mixture of sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{NaHCO}_{3}(1: 1 \mathrm{v} / \mathrm{v}, 3 \mathrm{~mL})$ and the resulting mixture was vigorously stirred for 30 min . The aqueous phase was diluted with water $(2 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 30 mL). The combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}(3 \times 20 \mathrm{~mL})$, dried over MgSO_{4} and concentrated. The crude aldehyde thus formed was used in the next step without further purification.

1-Propinylmagnesium bromide (0.5 M in $\mathrm{THF}, 0.13 \mathrm{~mL}, 0.07 \mathrm{mmol}$) was added dropwise to a stirred solution of this crude aldehyde ($19 \mathrm{mg}, 0.03 \mathrm{mmol}$) in THF $(1.3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$ before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$. After reaching room temperature, the mixture was diluted with tert-butyl methyl ether $(10 \mathrm{~mL})$ and water $(3 \mathrm{~mL})$. The aqueous phase was extracted with tert-butyl methyl ether ($3 \times 20 \mathrm{~mL}$), the combined organic layers were washed with brine $(4 \mathrm{~mL})$, dried over MgSO_{4} and concentrated. The residue was purified by flash chromatography on silica (hexanes:EtOAc, 3:1) to provide the title compound as a faint yellow oil $(7.8 \mathrm{mg}, 39 \%$ yield over 2 steps $) .[\alpha]_{D}^{20}=-68.0^{\circ}\left(c=0.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, mixture of diastereomers): $\delta=7.69(\mathrm{dt}, J=7.9,1.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 6 \mathrm{H}), 6.46(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.16$ $(\mathrm{dt}, J=1.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.23(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ $(\mathrm{tt}, J=6.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 3.95-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~d}$, $J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.28-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $3 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.74$ ($\mathrm{d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$, minor isomer), $1.72(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}$, major isomer), $1.08(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, mixture of diastereomers): $\delta=170.1,164.3,157.44,157.39,152.29$, $152.25,136.03,136.01,135.7,135.6,133.73,133.68,133.64,130.1,128.1,116.44,116.39,116.0$, $108.93,108.90,94.1,82.4,81.4,81.2,80.6,80.3,77.7,71.8,71.7,64.78,64.76,62.3,61.7,61.5,55.8$, $51.6,47.5,44.6,41.9,41.7,38.8,33.8,27.0,20.7,19.4,19.2,3.6,3.5$; IR (film): $\tilde{v}=3466,3071,2952$, 2930, 2857, 1740, 1717, 1597, 1548, 1471, 1441, 1428, 1376, 1232, 1148, 1106, 1058, 1029, 938, 919, 823, 779, 742, 704, 612, 505, $490 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{44} \mathrm{H}_{54} \mathrm{O} 9 \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 777.3429, found: 777.3420.

4.2.2 Synthesis of a Model System and Application in Ring Closing Alkyne Metathesis

Compound 255. This compound was prepared according to the literature procedure. ${ }^{[216]}$ The
 product was isolated as a white solid ($6.1 \mathrm{~g}, 15.5 \mathrm{mmol}, 69 \%$ yield over 2 steps). The spectral data are in accordance with the literature. ${ }^{[216]}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.20(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.76-$ 7.72 (m, 3H), 7.71 (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.58$ (s, $9 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=155.3,153.8,146.1$, 138.2, 132.3, 131.0, 129.9, 129.1, 125.1, 125.1, 107.8, 35.9, 35.0, 31.4, 29.8.

4-((4-Methoxybenzyl)oxy)butan-1-ol (S13). Amberlyst-15 resin ($10 \% \mathrm{w} / \mathrm{w}, 500 \mathrm{mg}$) was added ane to a mixture of 1,4 -butandiol $(4.9 \mathrm{~mL}, 55.5 \mathrm{mmol})$ and p components were filtered off and the filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic filtrate was concentrated in vacuo and the residue was purified by flash chromatography on silica (hexane:EtOAc, 1:1), to provide the title compound as a colorless oil. The spectral data are in accordance with the literature. ${ }^{[230]}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.91-$ $6.85(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~d}, \mathrm{~J}=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.61(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.2,130.1,129.3,113.8,72.7$, 70.0, 62.7, 55.2, 30.2, 26.8. HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]: 210.1250$, found: 210.1251.

4-((4-Methoxybenzyl)oxy)butanal (257). Sulfur trioxide pyridine complex (11.4 g, 71.4 mmol)
 was added to a solution of anhydrous $\mathrm{Et}_{3} \mathrm{~N}(16.6 \mathrm{~mL}$, $119 \mathrm{mmol}), 4-((4-m e t h o x y b e n z y l) \mathrm{oxy})$ butan-1-ol (S15) (5.0 g , $23.8 \mathrm{mmol})$ and DMSO ($11.8 \mathrm{~mL}, 166 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h before sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ was added. The aqueous layer was extracted with EtOAc ($3 \times 200 \mathrm{~mL}$), and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. The residue was purified by flash chromatography on silica gel (pentane:Et $2 \mathrm{O}, 2: 1$) to afford the title compound as a colorless oil ($4.26 \mathrm{~g}, 86 \%$ yield). The spectral data are in accordance with the literature. ${ }^{[231]}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.77(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.41$ $(\mathrm{s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{t}, ~ J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{td}, J=7.1,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{tt}, J=7.1,6.1 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.3,159.2,130.3,129.2,113.8,72.6,68.8,55.2,41.0,22.5$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ [M ${ }^{+}$: 208.1094, found: 208.1094.

7-((4-Methoxybenzyl)oxy)hept-2-yn-4-ol (S14). 1-Propinylmagnesium bromide (0.5 M in
 THF, $81 \mathrm{~mL}, 40.5 \mathrm{mmol}$) was added dropwise to a stirred solution of 4-((4-methoxybenzyl)oxy)butanal (257) (4.2 g, $20 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 20 min at $-78^{\circ} \mathrm{C}$ before the reaction was
quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$. After reaching room temperature, the mixture was diluted with EtOAc $(50 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc $(3 \times 200 \mathrm{~mL})$, the combined organic layers were washed with brine $(100 \mathrm{~mL})$, dried over MgSO_{4} and concentrated. The residue was purified by flash chromatography on silica (hexanes:EtOAc, 2:1) to provide the title compound as a colorless oil ($2.9 \mathrm{~g}, 57 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.37(\mathrm{tt}, J=6.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.45(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.88-1.70$ $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.2,130.2,129.3,113.8,80.8,80.3,72.6,69.8,62.4$, $55.2,35.5,25.6,3.5$. IR (film): $\tilde{v}=3399,2919,2858,1612,1586,1513,1457,1362,1302,1247,1175$, 1147, 1095, 1033, 953, 820, 590, $518 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 271.1305, found: 271.1302.
tert-Butyl((7-((4-methoxybenzyl)oxy)hept-2-yn-4-yl)oxy)dimethylsilane (238). Imidazole
 ($657 \mathrm{mg}, 9.67 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride ($1.45 \mathrm{~g}, 9.67 \mathrm{mmol}$) were added to a stirred solution of alcohol S16 ($2.0 \mathrm{~g}, 8.05 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, and the resulting mixture was stirred for 16 h at room temperature. The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (hexanes:tertbutyl methyl ether, 8:1) to afford the title compound as a colorless oil ($2.77 \mathrm{~g}, 95 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{ddt}, \mathrm{J}=$ $6.1,4.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.43(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 4 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.1,130.7,129.2,113.7$, 80.9, 80.0, 72.4, 69.9, 63.0, 55.3, 35.6, 25.8, 25.6, 18.2, 3.5, -4.5, -5.0. IR (film): $\tilde{v}=2953,2929$, $2855,1613,1586,1512,1463,1443,1407,1389,1360,1301,1247,1207,1172,1149,1095,1071$, 1037, 1006, 979, 939, 890, 834, 776, 714, 668, 574, $517 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 385.2169, found: 385.2166.

4-((tert-Butyldimethylsilyl)oxy)hept-5-yn-1-ol (259). 2,3-Dichloro-5,6-dicyano-1,4-benzo(20inone $(4.26 \mathrm{~g}, 18.8 \mathrm{mmol})$ was added to a solution of tert-butyl((7$0^{\circ} \mathrm{C}$. The mixture was vigorously stirred at room temperature for 30 min . The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, diluted with water $(300 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, and the residue was purified by flash chromatography on silica (hexanes:tertbutyl methyl ether, 2:1) to afford the title compound as a colorless oil ($1.33 \mathrm{~g}, 88 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.41(\mathrm{qt}, J=3.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.59(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$
80.6, 80.4, 63.0, 62.7, 35.4, 28.4, 25.8, 18.2, 3.5, $-4.5,-5.1$. IR (film): $\tilde{v}=3350,2953,2929,2885$, 2857, 1472, 1463, 1445, 1389, 1361, 1341, 1252, 1144, 1098, 1056, 1006, 975, 939, 918, 884, 835, 815, $776,716,666 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 265.1594$, found: 265.1591.
tert-Butyl((7-iodohept-2-yn-4-yl)oxy)dimethylsilane (260). Iodine ($344 \mathrm{mg}, 1.36 \mathrm{mmol}$) was
 added to a vigorously stirred solution of $\mathrm{PPh}_{3}(356 \mathrm{mg}, 1.36 \mathrm{mmol})$ and imidazole ($168 \mathrm{mg}, 2.47 \mathrm{mmol}$) in a mixture of $\mathrm{Et}_{2} \mathrm{O}(1.7 \mathrm{~mL})$ and MeCN $(0.7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at this temperature for $10 \mathrm{~min}, 4$-($($ tert-butyldimethylsilyl)oxy)hept-5-yn-1-ol (259) ($299 \mathrm{mg}, 1.23 \mathrm{mmol}$) was added and the resulting mixture was stirred for 30 min before the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by chromatography on silica (pentane: $\mathrm{Et}_{2} \mathrm{O}, 10: 1$) to afford the title compound as a colorless oil ($385 \mathrm{mg}, 88 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=4.36(\mathrm{tq}, J=6.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 2 \mathrm{H})$, $1.82(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=80.5,80.4,62.1,39.5,29.4,25.8,18.2,6.8,3.5,-4.5,-5.0$. IR (film): $\tilde{v}=2954$, 2928, 2885, 2856, 1471, 1462, 1442, 1389, 1360, 1342, 1253, 1225, 1172, 1087, 1006, 970, 941, 837, $777,667 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{OISi}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 353.0792$, found: 353.0789.

Methyl 2-(4-((tert-butyldimethylsilyl)oxy)hept-5-yn-1-yl)furan-3-carboxylate (261).

Anhydrous $\mathrm{LiCl}(46 \mathrm{mg}, 1.08 \mathrm{mmol})$ and zinc powder (106 mg , 1.62 mmol) were suspended in THF (7 mL), before 1,2dibromoethane (3 drops) and TMSCl (3 drops) were added. Next, tert-butyl((7-iodohept-2-yn-4-yl)oxy)dimethyl-silane (260) (380 mg, 1.08 mmol) was added and the resulting mixture heated to $50^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature this mixture was filter-cannulated into a flask containing $\operatorname{Pd}(\mathrm{OAc})_{2}(10 \mathrm{mg}$, $0.04 \mathrm{mmol})$, SPhos ($35 \mathrm{mg}, 0.08 \mathrm{mmol}$) and methyl 2-bromofuran-3-carboxylate (198) (196 mg, $0.86 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 16 h , before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by chromatography on silica (hexanes: tert-butyl methyl ether, $3: 1$) to afford the title compound as a colorless oil ($86 \mathrm{mg}, 28 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.24(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{tq}, J=6.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.01(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.74(\mathrm{~m}, 5 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=164.4,162.8,140.5,113.0,110.6,80.7,80.1,62.8,51.3$, $38.2,27.1,25.8,23.6,18.2,3.5,-4.5,-5.0$. IR (film): $\tilde{v}=2952,2929,2857,1721,1602,1520,1472$, $1462,1440,1405,1390,1361,1339,1305,1251,1198,1156,1134,1096,1034,1006,940,894,837$, 804, 777, 739, $666 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SiNa}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 373.1806$, found: 373.1803.

Methyl 2-(4-acetoxybutyl)furan-3-carboxylate (263). 4-Acetoxy-1-butanol ${ }^{[233]}$ (115 mg,
 0.87 mmol) was added to a suspension of NHC-255 (316 mg, 0.80 mmol) in MTBE (4 mL). The mixture was stirred for 5 min , before pyridine $(65 \mu \mathrm{~L}, 0.80 \mathrm{mmol})$ was added dropwise. After another 10 min of stirring at room temperature, this solution was added through a filter-cannula to a flask containing ArBr 198 ($114 \mathrm{mg}, 0.5 \mathrm{mmol}$), Ir complex 264 ($6.8 \mathrm{mg}, 0.007 \mathrm{mmol}$), Ni complex 265 ($18 \mathrm{mg}, 0.037 \mathrm{mmol}$), quinuclidine ($97 \mathrm{mg}, 0.87 \mathrm{mmol}$) and phthalimide ($16 \mathrm{mg}, 0.11 \mathrm{mmol}$) in N, N-dimethylacetamide $(5 \mathrm{~mL})$. The resulting mixture was purged with argon for 15 min , before the flask was sealed and irradiated with a blue LED bulb (Hepatochem, 475 nm) for 2 h . Next, the mixture was diluted with an aq. $\mathrm{KH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}$ solution ($0.05 \mathrm{~m}, 20 \mathrm{~mL}$), water $(50 \mathrm{~mL})$ and EtOAc (40 mL). The aqueous phase was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), the combined organic fractions were dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica (hexanes: tert-butyl methyl ether, $4: 1$) to afford the title compound as a colorless oil ($119 \mathrm{mg}, 99 \%$ yield $) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.25$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.04(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.1,164.3,162.5,140.6,113.2,110.6,64.1,51.3,28.0,27.0,24.3,21.0$. IR (film): $\tilde{v}=2953$, $1737,1720,1600,1520,1440,1403,1390,1366,1305,1242,1199,1159,1133,1111,1034,943,894$, 802, $745,606 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}\left[\mathrm{M}^{+}\right]: 240.0992$, found: 240.0990.

Compound 268. NBS ($42 \mathrm{mg}, 0.23 \mathrm{mmol}$) was added to a stirred solution of furan $263(63 \mathrm{mg}$,
 $0.21 \mathrm{mmol})$ in acetonitrile $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at room temperature, before tert-butyl methyl ether $(10 \mathrm{~mL})$ and a mixture of sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}: \mathrm{NaHCO}_{3}$ $(1: 1 \mathrm{v} / v, 10 \mathrm{~mL})$ were added. The biphasic mixture was vigorously stirred for 10 min . The aqueous phase was extracted with tert-butyl methyl ether ($3 \times 50 \mathrm{~mL}$). The combined extracts were washed with brine (30 mL), dried over MgSO_{4} and concentrated in vacuo. The crude bromofuran 271 was used in the next step without further purification.

The commercial palladium complex XPhos-Pd-G2 (235) (17 mg, $0.021 \mathrm{mmol}, 0.10 \mathrm{eq}$.$) was$ added to a stirred solution of the bromofuran $271(68 \mathrm{mg}, 0.21 \mathrm{mmol})$ and rac-243 ($69 \mathrm{mg}, 0.23$ $\mathrm{mmol})$ in a mixture of THF $(1.6 \mathrm{~mL})$ and aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}, 0.1 \mathrm{~mL})$ at room temperature. The resulting mixture was stirred for 2.5 h at $50^{\circ} \mathrm{C}$ before it was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 70 \mathrm{~mL})$, the combined organic layers were washed with brine $(10 \mathrm{~mL})$, dried over MgSO_{4} and concentrated. The residue was purified by flash chromatography on silica (hexanes:EtOAc, 4:1) to afford the title compound as a brown oil ($42 \mathrm{mg}, 49 \%$ yield over 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.43(\mathrm{~s}, 1 \mathrm{H}), 6.14$ $-6.10(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{ddq}, J=8.0,6.1,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.08(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.63-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.04$
$(\mathrm{s}, 3 \mathrm{H}), 2.02(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.84(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.81-1.63(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=171.1,164.4,160.6,151.3,134.9,116.3,114.4,108.2,93.9,82.2,64.6,64.1,55.6,51.3$, 47.1, 28.1, 27.1, 24.3, 21.0, 19.0, 3.6. IR (film): $\tilde{v}=2951,1738,1718,1601,1553,1440,1385,1366$, 1236, 1149, 1097, 1060, 1030, 972, 919, $778 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{7} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 429.1884, found: 429.1879 .

Compound S15. Potassium carbonate ($4 \mathrm{mg}, 0.026 \mathrm{mmol}$) was added to a solution of acetate
 $268(9 \mathrm{mg}, 0.02 \mathrm{mmol})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 h at room temperature before it was diluted with EtOAc (5 mL) and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), the combined organic layers were washed with brine (10 mL), dried over MgSO_{4} and concentrated furnishing the product as a colorless oil (8 mg , quant.). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.43(\mathrm{~s}, 1 \mathrm{H}), 6.14-6.08(\mathrm{~m}, 1 \mathrm{H})$, $4.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{ddq}, J=8.0,6.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.67(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{qdd}, J=13.8,6.8,1.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.01(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.84(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta=164.5,161.1,151.2,134.8,116.3,114.2,108.2,93.9,82.2,77.4,64.6,62.4$, $55.6,51.3,47.1,31.9,27.1,24.1,19.0,3.6$. IR (film): $\tilde{v}=3476,2947,1716,1600,1553,1440,1383$, 1281, 1227, 1149, 1094, 1057, 1028, 973, 919, 813, $778 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O} 6 \mathrm{Na}$ [$\left.\mathrm{M}+\mathrm{Na}^{+}\right]$: 387.1778, found: 387.1775.

Compound 252. Sodium bicarbonate ($92 \mathrm{mg}, 1.1 \mathrm{mmol}$) and Dess-Martin-periodinane (139 mg ,
 $0.33 \mathrm{mmol})$ were added to a solution of alcohol S15 (40 mg, $0.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was warmed to room temperature and stirred for 30 min before it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The reaction was quenched with a mixture of sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{NaHCO}_{3}(1: 1 \mathrm{v} / \mathrm{v}, 5 \mathrm{~mL})$ and the resulting mixture was vigorously stirred for 30 min . The aqueous phase was diluted with water $(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with sat. aq. $\mathrm{NaHCO}_{3}\left(3 \times 20 \mathrm{~mL}\right.$), dried over MgSO_{4} and concentrated. The crude aldehyde thus formed was used in the next step without further purification.

1-Propinylmagnesium bromide (0.5 M in THF, $0.41 \mathrm{~mL}, 0.20 \mathrm{mmol}$) was added dropwise to a stirred solution of this crude aldehyde ($37 \mathrm{mg}, 0.10 \mathrm{mmol}$) in THF (1.3 mL) at $-78{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 10 min at $-78^{\circ} \mathrm{C}$ before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$. After reaching room temperature, the mixture was diluted with tert-butyl methyl ether $(10 \mathrm{~mL})$ and water $(3 \mathrm{~mL})$. The aqueous phase was extracted with tert-butyl methyl ether ($3 \times 20 \mathrm{~mL}$), the combined organic layers were washed with brine $(4 \mathrm{~mL})$, dried over MgSO_{4} and concentrated. The residue was purified by flash chromatography on silica
(hexanes:EtOAc, 3:1) to provide the title compound as a faint yellow oil ($22.7 \mathrm{mg}, 55 \%$ yield over 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers): $\delta=6.43$ (s, 1H), 6.12 (dd, $J=1.3,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{ddq}, J=8.0,6.1,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37(\mathrm{tq}, J=6.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{td}, J=7.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-$ $2.47(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 8 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of diastereomers): $\delta=164.5,160.8,151.3,134.8,116.3,114.3,108.2,93.9$, 82.2, 81.2, 80.1, 77.4, 64.6, 62.4, 55.6, 51.3, 47.1, 37.3, 27.1, 23.6, 19.0, 3.6. IR (film): $\tilde{v}=3474,2950$, 2921, 2854, 1717, 1600, 1553, 1440, 1384, 1340, 1228, 1149, 1088, 1058, 1028, 964, 919, $778 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$: 425.1934, found: 425.1936.

Methyl 2-(4-iodobutyl)furan-3-carboxylate (269). Potassium carbonate ($50 \mathrm{mg}, 0.36 \mathrm{mmol}$)
 was added to a solution of acetate $\mathbf{2 6 3}(72 \mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{MeOH}(7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1 h at room temperature before it was diluted with $\mathrm{EtOAc}(5 \mathrm{~mL})$ and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), the combined organic layers were washed with brine (10 mL), dried over MgSO_{4} and concentrated furnishing the product as a colorless oil ($60 \mathrm{mg}, 0.30 \mathrm{mmol}$). The crude product was used in the next step without further purification.

Iodine ($115 \mathrm{mg}, 0.45 \mathrm{mmol}$) was added to a vigorously stirred solution of $\mathrm{PPh}_{3}(119 \mathrm{mg}$, 0.45 mmol) and imidazole ($51 \mathrm{mg}, 0.76 \mathrm{mmol}$) in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirring at this temperature for 10 min , the above prepared alcohol $(60 \mathrm{mg}, 0.30 \mathrm{mmol})$ was added and the resulting mixture was stirred for 30 min before the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ $(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was purified by chromatography on silica (pentane: $\mathrm{Et}_{2} \mathrm{O}, 8: 1$) to afford the title compound as a colorless oil $(82 \mathrm{mg}, 88 \%$ yield over 2 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=7.28(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ ($\mathrm{s}, 3 \mathrm{H}$), $3.22(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.72(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=164.5,162.6,141.1,113.7,110.9,51.6,33.2,29.1,26.6,6.8$. IR (film): $\tilde{v}=2948,1717$, $1601,1519,1438,1404,1302,1199,1160,1132,1079,1055,1033,994,941,894,803,782,740,604$ cm^{-1}. HRMS (ESI): m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{I}\left[\mathrm{M}^{+}\right]$: 307.9904, found: 307.9907.

Compound 253. 1-Propinylmagnesium bromide (0.5 M in THF, $1.0 \mathrm{~mL}, 0.49 \mathrm{mmol}$) was added

to a mixture of methyl 2-(4-iodobutyl)furan-3-carboxylate 267 ($75 \mathrm{mg}, 0.24 \mathrm{mmol}$) and the Ni complex 268 ($4.2 \mathrm{mg}, 0.01 \mathrm{mmol}$) in 2-(dimethylamino)-ethylether $(0.14 \mathrm{~mL})$ and THF (0.75 mL). The resulting mixture was stirred for 4 h at room temperature. The reaction was quenched upon addition of water $(10 \mathrm{~mL})$ and aq. $\mathrm{HCl}(1 \mathrm{~m}, 1 \mathrm{~mL})$. The aqueous phase was extracted with tertbutyl methyl ether ($3 \times 50 \mathrm{~mL}$) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and
concentrated in vacuo. The residue was purified by chromatography on silica (pentane: $\mathrm{Et}_{2} \mathrm{O}$, 20:1) to afford the title compound as a colorless oil.

NBS ($35 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added to a stirred solution of the above prepared furan (29 mg , $0.13 \mathrm{mmol})$ in acetonitrile $(1.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at room temperature, before tert-butyl methyl ether (10 mL) and a mixture of sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}: \mathrm{NaHCO}_{3}$ ($1: 1 \mathrm{v} / \mathrm{v}, 10 \mathrm{~mL}$) were added. The biphasic mixture was vigorously stirred for 10 min . The aqueous phase was extracted with tert-butyl methyl ether ($3 \times 50 \mathrm{~mL}$). The combined extracts were washed with brine (30 mL), dried over MgSO_{4} and concentrated in vacuo. The crude bromofuran was used in the next step without further purification.

The commercial palladium complex XPhos-Pd-G2 (235) ($11 \mathrm{mg}, 0.015 \mathrm{mmol}$) was added to a stirred solution of the bromofuran ($30 \mathrm{mg}, 0.1 \mathrm{mmol}$) and rac- $243(44 \mathrm{mg}, 0.15 \mathrm{mmol})$ in a mixture of THF (1.0 mL) and aqueous $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}, 0.2 \mathrm{~mL})$ at room temperature. The resulting mixture was stirred for 2.5 h at $50^{\circ} \mathrm{C}$ before it was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and water (5 mL). The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 70 \mathrm{~mL})$, the combined organic layers were washed with brine (10 mL), dried over MgSO_{4} and concentrated. The residue was purified by flash chromatography on silica (pentane: $\mathrm{Et}_{2} \mathrm{O}, 9: 1$) to afford the title compound as a yellow oil ($16 \mathrm{mg}, 17 \%$ yield over 3 steps). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=6.43(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=1.3$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=6.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.41(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{tq}, J=7.3,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=164.6,161.4,151.6,135.4,116.5,114.7,108.6,94.2,82.4,79.0,77.8,75.8,64.9$, 55.8, 51.5, 47.5, 28.9, 27.5, 27.4, 19.2, 18.7, 3.6, 3.5. IR (film): $\tilde{v}=2947,2921,2859,1717,1600$, 1553, 1439, 1383, 1333, 1225, 1149, 1086, 1058, 1029, 971, 919, 853, 814, $777 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 409.1985$, found: 409.1987.

5. Bibliography

[1] F. Wöhler, Ann. der Phys. und Chemie 1828, 88, 253-256.
[2] H. Kolbe, Ann. der Chemie und Pharm. 1845, 54, 145-188.
[3] R. Robinson, J. Chem. Soc., Trans. 1917, 111, 762-768.
[4] H. Fischer, K. Zeile, Justus Liebig's Ann. der Chemie 1929, 468, 98-116.
[5] R. B. Woodward, W. E. Doering, J. Am. Chem. Soc. 1944, 66, 849-849.
[6] R. B. Woodward, W. E. Doering, J. Am. Chem. Soc. 1945, 67, 860-874.
[7] R. B. Woodward, M. P. Cava, W. D. Ollis, A. Hunger, H. U. Daeniker, K. Schenker, J. Am. Chem. Soc. 1954, 76, 4749-4751.
[8] R. B. Woodward, F. E. Bader, H. Bickel, A. J. Frey, R. W. Kierstead, J. Am. Chem. Soc. 1956, 78, 2023-2025.
[9] R. B. Woodward, K. Heusler, J. Gosteli, P. Naegeli, W. Oppolzer, R. Ramage, S. Ranganathan, H. Vorbrüggen, J. Am. Chem. Soc. 1966, 88, 852-853.
[10] W. J. Greenlee, R. B. Woodward, J. Am. Chem. Soc. 1976, 98, 6075-6076.
[11] R. B. Woodward, E. Logusch, K. P. Nambiar, K. Sakan, D. E. Ward, B. W. Au-Yeung, P. Balaram, L. J. Browne, P. J. Card, C. H. Chen, J. Am. Chem. Soc. 1981, 103, 3210-3213.
[12] R. B. Woodward, B. W. Au-Yeung, P. Balaram, L. J. Browne, D. E. Ward, B. W. AuYeung, P. Balaram, L. J. Browne, P. J. Card, C. H. Chen, J. Am. Chem. Soc. 1981, 103, 32133215.
[13] R. B. Woodward, E. Logusch, K. P. Nambiar, J. Am. Chem. Soc. 1981, 103, 3215-3217.
[14] B. P. Nicolaou K., Vourloumis D., Winssinger N., Angew. Chem. Int. Ed. 2000, 39, 44-122.
[15] F. Bloch, Phys. Rev. 1946, 70, 460-474.
[16] R. R. Ernst, W. A. Anderson, Rev. Sci. Instrum. 1966, 37, 93-102.
[17] R. R. Ernst, in Nobel Lect., 1992.
[18] E. J. Corey, M. Ohno, P. A. Vatakencherry, R. B. Mitra, J. Am. Chem. Soc. 1961, 83, 12511253.
[19] E. J. Corey, X.-M. Cheng, The Logic of Chemical Synthesis, 1989.
[20] E. J. Corey, R. K. Varma, J. Am. Chem. Soc. 1971, 93, 7319-7320.
[21] E. J. Corey, B. B. Snider, J. Am. Chem. Soc. 1972, 94, 2549-2550.
[22] E. J. Corey, A. Venkateswarlu, J. Am. Chem. Soc. 1972, 94, 6190-6191.
[23] E. J. Corey, J. W. Suggs, J. Org. Chem. 1973, 38, 3223-3224.
[24] E. J. Corey, J. L. Gras, P. Ulrich, Tetrahedron Lett. 1976, 17, 809-812.
[25] E. J. Corey, J. W. Suggs, Tetrahedron Lett. 1975, 16, 2647-2650.
[26] E. J. Corey, D. Seebach, Angew. Chemie Int. Ed. English 1965, 4, 1077-1078.
[27] E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353-1364.
[28] E. J. Corey, P. L. Fuchs, Tetrahedron Lett. 1972, 13, 3769-3772.
[29] A. Hirao, S. Itsuno, S. Nakahama, N. Yamazaki, J. Chem. Soc. Chem. Commun. 1981, 315317.
[30] E. J. Corey, R. K. Bakshi, S. Shibata, J. Am. Chem. Soc. 1987, 109, 5551-5553.
[31] E. J. Corey, N. M. Weinshenker, T. K. Schaaf, W. Huber, J. Am. Chem. Soc. 1969, 91, 56755677.
[32] E. J. Corey, R. D. Balanson, J. Am. Chem. Soc. 1974, 96, 6516-6517.
[33] E. J. Corey, H. L. Pearce, J. Am. Chem. Soc. 1979, 101, 5841-5843.
[34] E. J. Corey, M. C. Kang, M. C. Desai, A. K. Ghosh, I. N. Houpis, J. Am. Chem. Soc. 1988, 110, 649-651.
[35] E. J. Corey, M. M. Mehrotra, Tetrahedron Lett. 1988, 29, 57-60.
[36] E. J. Corey, L. I. Wu, J. Am. Chem. Soc. 1993, 115, 9327-9328.
[37] E. J. Corey, B. E. Roberts, B. R. Dixon, J. Am. Chem. Soc. 1995, 117, 193-196.
[38] B. M. Trost, Science 1991, 254, 1471-1477.
[39] B. M. Trost, Angew. Chem. Int. Ed. 1995, 34, 259-281.
[40] T. D. Aicher, K. R. Buszek, F. G. Fang, C. J. Forsyth, S. H. Jung, Y. Kishi, M. C. Matelich, P. M. Scola, D. M. Spero, S. K. Yoon, J. Am. Chem. Soc. 1992, 114, 3162-3164.
[41] K. C. Nicolaou, C. R. H. Hale, Natl. Sci. Rev. 2014, 1, 233-252.
[42] P. A. Wender, M. P. Croatt, B. Witulski, Tetrahedron 2006, 62, 7505-7511.
[43] P. A. Wender, V. A. Verma, T. J. Paxton, T. H. Pillow, Acc. Chem. Res. 2008, 41, 40-49.
[44] P. A. Wender, B. L. Miller, Nature 2009, 460, 197-201.
[45] J. M. Richter, Y. Ishihara, T. Masuda, B. W. Whitefield, T. Llamas, A. Pohjakallio, P. S. Baran, J. Am. Chem. Soc. 2008, 130, 17938-17954.
[46] N. Z. Burns, P. S. Baran, R. W. Hoffmann, Angew. Chem. Int. Ed. 2009, 48, 2854-2867.
[47] J. B. Hendrickson, J. Am. Chem. Soc. 1975, 97, 5784-5800.
[48] T. Gaich, P. S. Baran, J. Org. Chem. 2010, 75, 4657-4673.
[49] D. S. Peters, C. R. Pitts, K. S. McClymont, T. P. Stratton, C. Bi, P. S. Baran, Acc. Chem. Res. 2021, 54, 605-617.
[50] R. Sakai, T. Higa, C. W. Jefford, G. Bernardinelli, J. Am. Chem. Soc. 1986, 108, 6404-6405.
[51] J. E. Baldwin, R. C. Whitehead, Tetrahedron Lett. 1992, 33, 2059-2062.
[52] K. Kondo, H. Shigemori, Y. Kikuchi, M. Ishibashi, T. Sasaki, J. Kobayashi, J. Org. Chem. 1992, 2480-2483.
[53] M. Tsuda, N. Kawasaki, J. Kobayashi, Tetrahedron 1994, 50, 7957-7960.
[54] J. Kobayashi, M. Tsuda, N. Kawasaki, K. Matsumoto, T. Adachi, Tetrahedron Lett. 1994, 35, 4383-4386.
[55] J. M. Finefield, D. H. Sherman, M. Kreitman, R. M. Williams, Angew. Chem. Int. Ed. 2012, 51, 4802-4836.
[56] F. Kong, R. J. Andersen, Tetrahedron 1995, 51, 2895-2906.
[57] K. A. El Sayed, M. Kelly, U. A. K. Kara, K. K. H. Ang, I. Katsuyama, D. C. Dunbar, A. A. Khan, M. T. Hamann, J. Am. Chem. Soc. 2001, 123, 1804-1808.
[58] J. D. Winkler, J. M. Axten, J. Am. Chem. Soc. 1998, 120, 6425-6426.
[59] J. M. Humphrey, Y. Liao, A. Ali, T. Rein, Y. L. Wong, H. J. Chen, A. K. Courtney, S. F. Martin, J. Am. Chem. Soc. 2002, 124, 8584-8592.
[60] J. E. Baldwin, T. D. W. Claridge, A. J. Culshaw, F. A. Heupel, V. Lee, D. R. Spring, R. C. Whitehead, R. J. Boughtflower, I. M. Mutton, R. J. Upton, Angew. Chem. Int. Ed. 1998, 37, 2661-2663.
[61] J. E. Baldwin, T. D. W. Claridge, A. J. Culshaw, F. A. Heupel, V. Lee, D. R. Spring, R. C. Whitehead, Chem. - A Eur. J. 1999, 5, 3154-3161.
[62] Z. Meng, A. Fürstner, J. Am. Chem. Soc. 2020, 142, 11703-11708.
[63] M. Tsuda, K. Inaba, N. Kawasaki, K. Honma, J. Kobayashi, Tetrahedron 1996, 52, 23192324.
[64] F. Kong, R. J. Andersen, T. M. Allen, Tetrahedron Lett. 1994, 35, 1643-1646.
[65] J. Rodríguez, B. M. Peters, P. Crews, L. Kurz, R. C. Schatzman, D. McCarley, L. Lou, J. Am. Chem. Soc. 1993, 115, 10436-10437.
[66] J. Rodríguez, P. Crews, Tetrahedron Lett. 1994, 35, 4719-4722.
[67] T. Kubota, Y. Kamijyo, A. Takahashi-Nakaguchi, J. Fromont, T. Gonoi, J. Kobayashi, Org. Lett. 2013, 15, 610-612.
[68] S. Kurimoto, S. Suzuki, M. Ueno, J. Fromont, J. Kobayashi, T. Kubota, J. Nat. Prod. 2022, 85, 2226-2231.
[69] F. Reyes, R. Fernández, C. Urda, A. Francesch, S. Bueno, C. de Eguilior, C. Cuevas, Tetrahedron 2007, 63, 2432-2438.
[70] H. Sorek, A. Rudi, Y. Benayahu, Y. Kashman, Tetrahedron Lett. 2007, 48, 7691-7694.
[71] C. Urda, M. Pérez, J. Rodríguez, R. Fernández, C. Jiménez, C. Cuevas, Tetrahedron Lett. 2018, 59, 2577-2580.
[72] A. Gagnon, S. J. Danishefsky, Angew. Chemie Int. Ed. 2002, 41, 1581-1584.
[73] C. Herdeis, Synthesis (Stuttg). 1986, 1986, 232-233.
[74] S. A. Kozmin, V. H. Rawal, J. Org. Chem. 1997, 62, 5252-5253.
[75] S. A. Kozmin, J. M. Janey, V. H. Rawal, J. Org. Chem. 1999, 64, 3039-3052.
[76] S. A. Kozmin, M. T. Green, V. H. Rawal, J. Org. Chem. 1999, 64, 8045-8047.
[77] H. Yun, A. Gagnon, S. J. Danishefsky, Tetrahedron Lett. 2006, 47, 5311-5315.
[78] T. Toma, Y. Kita, T. Fukuyama, J. Am. Chem. Soc. 2010, 132, 10233-10235.
[79] P. Jakubec, A. Hawkins, W. Felzmann, D. J. Dixon, J. Am. Chem. Soc. 2012, 134, 1748217485.
[80] P. Jakubec, D. M. Cockfield, D. J. Dixon, J. Am. Chem. Soc. 2009, 131, 16632-16633.
[81] P. Jakubec, A. J. M. Farley, D. J. Dixon, Beilstein J. Org. Chem. 2016, 12, 1096-1100.
[82] A. Giardini, G. Lesma, D. Passarella, M. Perez, A. Silvani, Synlett 2001, 2001, 0132-0134.
[83] E. G. Gibbons, J. Am. Chem. Soc. 1982, 104, 1767-1769.
[84] M. Ihara, K. Fukumoto, Angew. Chem. Int. Ed. 1993, 32, 1010-1022.
[85] J. Huang, Y. Gu, K. Guo, L. Zhu, Y. Lan, J. Gong, Z. Yang, Angew. Chemie - Int. Ed. 2017, 56, 7890-7894.
[86] D. C. Behenna, Y. Liu, T. Yurino, J. Kim, D. E. White, S. C. Virgil, B. M. Stoltz, Nat. Chem. 2012, 4, 130-133.
[87] J. D. Weaver, A. Recio, A. J. Grenning, J. A. Tunge, Chem. Rev. 2011, 111, 1846-1913.
[88] N. Huh, C. M. Thompson, Tetrahedron 1995, 51, 5935-5950.
[89] I. Shimizu, J. Tsuji, J. Am. Chem. Soc. 1982, 104, 5844-5846.
[90] J. Tsuji, I. Minami, I. Shimizu, H. Kataoka, Chem. Lett. 1984, 13, 1133-1136.
[91] S. Schaubach, K. Gebauer, F. Ungeheuer, L. Hoffmeister, M. K. Ilg, C. Wirtz, A. Fürstner, Chem. - A Eur. J. 2016, 22, 8494-8507.
[92] Z. Meng, A. Fürstner, J. Am. Chem. Soc. 2019, 141, 805-809.
[93] A. Fürstner, G. Seidel, J. Org. Chem. 1997, 62, 2332-2336.
[94] C. A. Brown, R. A. Coleman, J. Org. Chem. 1979, 44, 2328-2329.
[95] T. Mukaiyama, M. Usui, E. Shimada, K. Saigo, Chem. Lett. 1975, 4, 1045-1048.
[96] T. Suto, Y. Yanagita, Y. Nagashima, S. Takikawa, Y. Kurosu, N. Matsuo, T. Sato, N.

Chida, J. Am. Chem. Soc. 2017, 139, 2952-2955.
[97] C. A. Brown, V. K. Ahuja, J. Org. Chem. 1973, 38, 2226-2230.
[98] F. Kong, Novel Nitrogenous Metabolites From Marine Sponges, University of British Columbia, Vancouver, BC, 1995.
[99] Z. Cai, N. Yongpruksa, M. Harmata, Org. Lett. 2012, 14, 1661-1663.
[100] M. K. Brown, A. H. Hoveyda, J. Am. Chem. Soc. 2008, 130, 12904-12906.
[101] J. D. Winkler, J. M. Holland, J. Kasparec, P. H. Axelsen, Tetrahedron 1999, 55, 8199-8214.
[102] J. T. Mohr, D. C. Behenna, A. M. Harned, B. M. Stoltz, Angew. Chem. Int. Ed. 2005, 44, 6924-6927.
[103] M. Kaname, S. Yoshifuji, H. Sashida, Chem. Pharm. Bull. 2008, 56, 1310-1313.
[104] J. Hillenbrand, M. Leutzsch, A. Fürstner, Angew. Chem. Int. Ed. 2019, 58, 15690-15696.
[105] J. Hillenbrand, M. Leutzsch, E. Yiannakas, C. P. Gordon, C. Wille, N. Nöthling, C. Copéret, A. Fürstner, J. Am. Chem. Soc. 2020, 142, 11279-11294.
[106] K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4490-4527.
[107] A. Fürstner, Angew. Chem. Int. Ed. 2000, 39, 3012-3043.
[108] T. Matsumura, M. Akiba, S. Arai, M. Nakagawa, A. Nishida, Tetrahedron Lett. 2007, 48, 1265-1268.
[109] J. Cluzeau, S. Oishi, H. Ohno, Z. Wang, B. Evans, S. C. Peiper, N. Fujii, Org. Biomol. Chem. 2007, 5, 1915.
[110] M. Kaewpet, B. Odell, M. A. King, B. Banerji, C. J. Schofield, T. D. W. Claridge, Org. Biomol. Chem. 2008, 6, 3476.
[111] D. C. Braddock, D. S. Millan, Y. Pérez-Fuertes, R. H. Pouwer, R. N. Sheppard, S. Solanki, A. J. P. White, J. Org. Chem. 2009, 74, 1835-1841.
[112] J. Pospíšil, C. Müller, A. Fürstner, Chem. - A Eur. J. 2009, 15, 5956-5968.
[113] S. Mao, Y. Jia, Tetrahedron Lett. 2013, 54, 4343-4345.
[114] R. A. Fernandes, V. P. Chavan, Chem. Commun. 2013, 49, 3354.
[115] M. Arisawa, C. Kato, H. Kaneko, A. Nishida, M. Nakagawa, J. Chem. Soc. Perkin Trans. 1 2000, 1873-1876.
[116] K. C. Nicolaou, G. Vassilikogiannakis, T. Montagnon, Angew. Chem. Int. Ed. 2002, 41, 3276-3281.
[117] S. E. Denmark, S.-M. Yang, J. Am. Chem. Soc. 2002, 124, 2102-2103.
[118] Y. J. Kim, D. Lee, Org. Lett. 2004, 6, 4351-4353.
[119] A. Fürstner, C. Müller, Chem. Commun. 2005, 5583-5585.
[120] J. M. Dougherty, M. Jiménez, P. R. Hanson, Tetrahedron 2005, 61, 6218-6230.
[121] M. Lejkowski, H.-J. Gais, P. Banerjee, C. Vermeeren, J. Am. Chem. Soc. 2006, 128, 1537815379.
[122] V. Prelog, Pure Appl. Chem. 1963, 6, 545-560.
[123] T. Toma, Y. Kita, T. Fukuyama, J. Am. Chem. Soc. 2010, 132, 10233-10235.
[124] K. Grela, S. Harutyunyan, A. Michrowska, Angew. Chem. Int. Ed. 2002, 41, 4038-4040.
[125] G. S. Forman, A. E. McConnell, R. P. Tooze, W. Janse van Rensburg, W. H. Meyer, M. M. Kirk, C. L. Dwyer, D. W. Serfontein, Organometallics 2005, 24, 4528-4542.
[126] S. K. Collins, Handbook of Metathesis, Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim, Germany, 2015, pp. 343-377.
[127] B. K. Keitz, K. Endo, P. R. Patel, M. B. Herbert, R. H. Grubbs, J. Am. Chem. Soc. 2012, 134, 693-699.
[128] R. J. Arhart, J. C. Martin, J. Am. Chem. Soc. 1972, 94, 5003-5010.
[129] T. K. Beng, S. M. Wilkerson-Hill, R. Sarpong, Org. Lett. 2014, 16, 916-919.
[130] A. Yazici, S. G. Pyne, Org. Lett. 2013, 15, 5878-5881.
[131] Z. Meng, S. M. Spohr, S. Tobegen, C. Farès, A. Fürstner, J. Am. Chem. Soc. 2021, 143, 14402-14414.
[132] S. Karabiyikoglu, R. G. Iafe, C. A. Merlic, Org. Lett. 2015, 17, 5248-5251.
[133] J. L. Charlton, G. Chee, Tetrahedron Lett. 1994, 35, 6243-6246.
[134] K. Sasakura, T. Sugasawa, Synth. Commun. 1987, 17, 741-753.
[135] N. Miyaura, T. Ishiyama, M. Ishikawa, A. Suzuki, Tetrahedron Lett. 1986, 27, 6369-6372.
[136] A. Fürstner, G. Seidel, Tetrahedron 1995, 51, 11165-11176.
[137] G. Seidel, A. Fürstner, Chem. Commun. 2012, 48, 2055-2070.
[138] K. M. Brummond, K. D. Gesenberg, J. L. Kent, A. D. Kerekes, Tetrahedron Lett. 1998, 39, 8613-8616.
[139] J. R. Parikh, W. v. E. Doering, J. Am. Chem. Soc. 1967, 89, 5505-5507.
[140] Y. Arakawa, M. Tajima, Y. Arakawa, S. Yoshifuji, Chem. Pharm. Bull. 2005, 53, 81-85.
[141] A. M. Whittaker, G. Lalic, Org. Lett. 2013, 15, 1112-1115.
[142] H. Lindlar, Helv. Chim. Acta 1952, 35, 446-450.
[143] C.-X. Zhuo, A. Fürstner, J. Am. Chem. Soc. 2018, 140, 10514-10523.
[144] M. R. M. Koos, G. Kummerlöwe, L. Kaltschnee, C. M. Thiele, B. Luy, Angew. Chem. Int. Ed. 2016, 55, 7655-7659.
[145] R. Sakai, S. Kohmoto, T. Higa, C. W. Jefford, G. Bernardinelli, Tetrahedron Lett. 1987, 28, 5493-5496.
[146] H. Lim, S. Seong, Y. Kim, S. Seo, S. Han, J. Am. Chem. Soc. 2021, 143, 19966-19974.
[147] Y. Li, G. Pattenden, Nat. Prod. Rep. 2011, 28, 1269.
[148] P. A. Roethle, D. Trauner, Nat. Prod. Rep. 2008, 25, 298-317.
[149] M. G. Missakian, B. J. Burreson, P. J. Scheuer, Tetrahedron 1975, 31, 2513-2515.
[150] J. Marrero, A. D. Rodríguez, C. L. Barnes, Org. Lett. 2005, 7, 1877-1880.
[151] J. Marrero, A. D. Rodríguez, P. Baran, R. G. Raptis, J. A. Sánchez, E. Ortega-Barria, T. L. Capson, Org. Lett. 2004, 6, 1661-1664.
[152] S. A. Look, M. T. Burch, W. Fenical, Z. Qi-tai, J. Clardy, J. Org. Chem. 1985, 50, 57415746.
[153] J. Marrero, A. D. Rodríguez, P. Baran, R. G. Raptis, Org. Lett. 2003, 5, 2551-2554.
[154] R. G. W. Norrish, C. H. Bamford, Nature 1937, 140, 195-196.
[155] N. C. Yang, D.-D. H. Yang, J. Am. Chem. Soc. 1958, 80, 2913-2914.
[156] C. D. Bray, G. Pattenden, Tetrahedron Lett. 2006, 47, 3937-3939.
[157] E. Schweizer, T. Gaich, L. Brecker, J. Mulzer, Synthesis (Stuttg). 2007, 4, 3807-3814.
[158] T. Gaich, H. Weinstabl, J. Mulzer, Synlett 2009, 2009, 1357-1366.
[159] P. Wipf, L. T. Rahman, S. R. Rector, J. Org. Chem. 1998, 63, 7132-7133.
[160] N. Toelle, H. Weinstabl, T. Gaich, J. Mulzer, Angew. Chem. Int. Ed. 2014, 53, 3859-3862.
[161] J. D. White, S. Jana, Org. Lett. 2009, 11, 1433-1436.
[162] D. C. Baker, D. Horton, C. G. Tindall, Carbohydr. Res. 1972, 24, 192-197.
[163] A. Rosenthal, L. B. Nguyen, J. Org. Chem. 1969, 34, 1029-1034.
[164] J. D. White, S. Jana, Org. Lett. 2009, 11, 1433-1436.
[165] J. Tsuji, Synthesis (Stuttg). 1984, 1984, 369-384.
[166] S. V. Ley, J. Norman, W. P. Griffith, S. P. Marsden, Synthesis (Stuttg). 1994, 1994, 639666.
[167] J. D. White, S. Jana, J. Org. Chem. 2014, 79, 700-710.
[168] J. A. Marshall, G. S. Bartley, J. Org. Chem. 1994, 59, 7169-7171.
[169] J. A. Marshall, C. A. Sehon, J. Org. Chem. 1995, 60, 5966-5968.
[170] S. J. Stevens, A. Bérubé, J. L. Wood, Tetrahedron 2011, 67, 6479-6481.
[171] K. Micoine, A. Fürstner, J. Am. Chem. Soc. 2010, 132, 14064-14066.
[172] K. Micoine, P. Persich, J. Llaveria, M.-H. Lam, A. Maderna, F. Loganzo, A. Fürstner, Chem. - A Eur. J. 2013, 19, 7370-7383.
[173] D. Gallenkamp, A. Fürstner, J. Am. Chem. Soc. 2011, 133, 9232-9235.
[174] C. Gaul, J. T. Njardarson, D. Shan, D. C. Dorn, K.-D. Wu, W. P. Tong, X.-Y. Huang, M. A. S. Moore, S. J. Danishefsky, J. Am. Chem. Soc. 2004, 126, 11326-11337.
[175] H. Sommer, A. Fürstner, Org. Lett. 2016, 18, 3210-3213.
[176] S. M. Rummelt, A. Fürstner, Angew. Chem. Int. Ed. 2014, 53, 3626-3630.
[177] D. A. Roşca, K. Radkowski, L. M. Wolf, M. Wagh, R. Goddard, W. Thiel, A. Fürstner, J. Am. Chem. Soc. 2017, 139, 2443-2455.
[178] P. A. Roethle, D. Trauner, Org. Lett. 2006, 8, 345-347.
[179] P. A. Roethle, P. T. Hernandez, D. Trauner, Org. Lett. 2006, 8, 5901-5904.
[180] Q. Huang, V. H. Rawal, Org. Lett. 2006, 8, 543-545.
[181] T. J. Donohoe, A. Ironmonger, N. M. Kershaw, Angew. Chem. Int. Ed. 2008, 47, 73147316.
[182] D. E. Frantz, R. Fässler, E. M. Carreira, J. Am. Chem. Soc. 2000, 122, 1806-1807.
[183] M. L. Conner, Y. Xu, M. K. Brown, J. Am. Chem. Soc. 2015, 137, 3482-3485.
[184] Y. Xu, M. L. Conner, M. K. Brown, Angew. Chem. Int. Ed. 2015, 54, 11918-11928.
[185] Y. Xu, Y. J. Hong, D. J. Tantillo, M. K. Brown, Org. Lett. 2017, 19, 3703-3706.
[186] J. M. Wiest, M. L. Conner, M. K. Brown, Angew. Chem. Int. Ed. 2018, 57, 4647-4651.
[187] R. Guo, B. P. Witherspoon, M. K. Brown, J. Am. Chem. Soc. 2020, 5002-5006.
[188] Z. Lu, T. P. Yoon, Angew. Chem. Int. Ed. 2012, 51, 10329-10332.
[189] S. O. Scholz, J. B. Kidd, L. Capaldo, N. E. Flikweert, R. M. Littlefield, T. P. Yoon, Org. Lett. 2021, 23, 3496-3501.
[190] J. B. Lambert, J. J. Papay, S. A. Khan, K. A. Kappauf, E. S. Magyar, J. Am. Chem. Soc. 1974, 96, 6112-6118.
[191] K. Matsumura, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1997, 8738-8739.
[192] K. J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya, R. Noyori, Angew. Chem. Int. Ed. 1997, 36, 285-288.
[193] A. J. Varni, A. Fortney, M. A. Baker, J. C. Worch, Y. Qiu, D. Yaron, S. Bernhard, K. J. T. Noonan, T. Kowalewski, J. Am. Chem. Soc. 2019, 141, 8858-8867.
[194] G. N. Varseev, M. E. Maier, Angew. Chem. Int. Ed. 2006, 4767-4771.
[195] Y. D. Wang, G. Kimball, A. S. Prashad, Y. Wang, Tetrahedron Lett. 2005, 46, 8777-8780.
[196] A. Arase, M. Hoshi, A. Mijin, K. Nishi, Synth. Commun. 1995, 25, 1957-1962.
[197] E. Nieto-Sepulveda, A. D. Bage, L. A. Evans, T. A. Hunt, A. G. Leach, S. P. Thomas, G. C. Lloyd-Jones, J. Am. Chem. Soc. 2019, 141, 18600-18611.
[198] A. Fürstner, C. Nevado, M. Tremblay, C. Chevrier, F. Teplý, C. Aïssa, M. Waser, Angew. Chem. Int. Ed. 2006, 45, 5837-5842.
[199] N. Oka, T. Yamada, H. Sajiki, S. Akai, T. Ikawa, Org. Lett. 2022, 24, 3510-3514.
[200] S. Kim, B. Kim, J. In, Synthesis (Stuttg). 2009, 3, 1963-1968.
[201] R. Vitali, S. Gladiali, R. Gardi, Gazz. Chim. Ital. 1972, 673-678.
[202] U. Halbes-Letinois, J. M. Weibel, P. Palea, Chem. Soc. Rev. 2007, 36, 759-769.
[203] L. Tanwar, J. Börgel, J. Lehmann, T. Ritter, Org. Lett. 2021, 23, 5024-5027.
[204] T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508-7510.
[205] J. Takagi, K. Takahashi, T. Ishiyama, N. Miyaura, J. Am. Chem. Soc. 2002, 124, 8001-8006.
[206] A. Français, A. Leyva-Pérez, G. Etxebarria-Jardi, J. Peña, S. V. Ley, Chem. - A Eur. J. 2011, 17, 329-343.
[207] N.-W. Tseng, M. Lautens, J. Org. Chem. 2009, 74, 2521-2526.
[208] T. Kinzel, Y. Zhang, S. L. Buchwald, J. Am. Chem. Soc. 2010, 132, 14073-14075.
[209] Z. Yang, Y. Li, G. Pattenden, Tetrahedron 2010, 66, 6546-6549.
[210] J. A. Marshall, E. A. Van Devender, J. Org. Chem. 2001, 66, 8037-8041.
[211] W. R. Chan, W. F. Tinto, R. S. Laydoo, P. S. Manchand, W. F. Reynolds, S. McLean, J. Org. Chem. 1991, 56, 1773-1776.
[212] E. Dorta, A. R. Díaz-Marrero, I. Brito, M. Cueto, L. D’Croz, J. Darias, Tetrahedron 2007, 63, 9057-9062.
[213] E. Negishi, A. O. King, N. Okukado, J. Org. Chem. 1977, 42, 1821-1823.
[214] A. O. King, N. Okukado, E. I. Negishi, J. Chem. Soc. Chem. Commun. 1977, 683-684.
[215] P. Zhang, C. C. Le, D. W. C. MacMillan, J. Am. Chem. Soc. 2016, 138, 8084-8087.
[216] Z. Dong, D. W. C. MacMillan, Nature 2021, 598, 451-456.
[217] A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 6040-6044.
[218] C. N. Prieto Kullmer, J. A. Kautzky, S. W. Krska, T. Nowak, S. D. Dreher, D. W. C. MacMillan, Science 2022, 376, 532-539.
[219] G. W. Wheland, J. Am. Chem. Soc. 1942, 64, 900-908.
[220] O. Vechorkin, A. Godinat, R. Scopelliti, X. Hu, Angew. Chem. Int. Ed. 2011, 50, 1177711781.
[221] A.-L. Dhimane, C. Aissa, M. Malacria, Angew. Chem. Int. Ed. 2002, 41, 3284-3287.
[222] A. Orsini, A. Vitérisi, A. Bodlenner, J. M. Weibel, P. Pale, Tetrahedron Lett. 2005, 46, 22592262.
[223] H. Hofmeister, K. Annen, H. Laurent, R. Wiechert, Angew. Chem. 1984, 96, 720-722.
[224] V. Hickmann, M. Alcarazo, A. Fürstner, J. Am. Chem. Soc. 2010, 132, 11042-11044.
[225] J. E. Baldwin, T. D. W. Claridge, A. J. Culshaw, F. A. Heupel, V. Lee, D. R. Spring, R. C. Whitehead, Chem. - A Eur. J. 1999, 5, 3154-3161.
[226] U. S. Sørensen, E. Falch, P. Krogsgaard-Larsen, J. Org. Chem. 2000, 65, 1003-1007.
[227] A. K. Ghosh, J. Li, Org. Lett. 2009, 11, 4164-4167.
[228] W. J. Ramsay, N. A. W. Bell, Y. Qing, H. Bayley, J. Am. Chem. Soc. 2018, 140, 17538-17546.
[229] M. Penner, V. Rauniyar, L. T. Kaspar, D. G. Hall, J. Am. Chem. Soc. 2009, 131, 1421614217.
[230] S. P. Chavan, K. R. Harale, Tetrahedron Lett. 2012, 53, 4683-4686.
[231] S. Kirsch, P. Klahn, H. Menz, Synthesis (Stuttg). 2011, 2011, 3592-3603.
[232] L. Rusha, S. C. Miller, Chem. Commun. 2011, 47, 2038.

6. Appendix

In the two initial reports describing the isolation of (+)-keramaphidin B (2), the Kobayashi group obtained NMR data in $\mathrm{CDCl}_{3},{ }^{[54]}$ while the Andersen group reported their data in [D4]MeOH. ${ }^{[56,98]}$ Although our synthetic sample of (+)-2 was in very good agreement with the publication from Kobayashi et al., ${ }^{[54]}$ the spectra of the same sample recorded in $\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}$ were showing small, but noticeable, deviations from the spectra generated by Andersen et al. ${ }^{[56]}$ Therefore, our coherent dataset of ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-spectra of synthetic (+)-2 measured in both [D_{4}]MeOH and CDCl 3 is shown below (Figure 6.1-6.4).

Figure 6.1: ${ }^{1} \mathrm{H}$ NMR Spectrum of Keramaphidin B (+)-2 ([D4]-MeOH).

Figure 6.2: ${ }^{13} \mathrm{C}$ NMR Spectrum of Keramaphidin B (+)-2 ([D4]-MeOH).

Figure 6.3: ${ }^{1} \mathrm{H}$ NMR of Keramaphidin $\mathrm{B}(+)-2\left(\mathrm{CDCl}_{3}\right)$.

Figure 6.4: ${ }^{13} \mathrm{C}$ NMR of Keramaphidin $\mathrm{B}(+)-2\left(\mathrm{CDCl}_{3}\right)$.

[^0]: ${ }^{\text {a }}$ All reactions were performed in $\mathrm{PhMe}(2 \mathrm{mM})$, in presence of $5 \AA \mathrm{MS}$.

