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Abstract

Neural networks are at the forefront of machine learning being responsible for
achievements such as AlphaGo. As they are being deployed in more and more
environments - even in safety-critical ones such as health care - we are naturally
interested in assuring their reliability. However, the discovery of so-called adver-
sarial attacks for supervised neural networks demonstrated that tiny distortions
in the input space can lead to misclassifications and thus, to potentially catas-
trophic errors: Patients could be diagnosed wrongly, or a car might confuse stop
signs and traffic lights. Thus, ideally, we would like to guarantee that these types
of attacks cannot occur.
In this thesis we extend the research on reliable neural networks to the realm
of unsupervised learning. This includes defining proper notions of reliability,
as well as analyzing and adapting unsupervised neural networks with respect
to this notion. Our definitions of reliability depend on the underlying neural
networks and the problems they are meant to solve. However, in all our cases, we
aim for guarantees on a continuous input space containing infinitely many points.
Therefore we extend the traditional setting of testing against a finite dataset such
that we require specialized tools to actually check a given network for reliability.
We will demonstrate how we can leverage neural network verification for these
purposes. Using neural network verification, however, entails a major challenge:
It does not scale up to large networks. To overcome this limitation, we design a
novel training procedure yielding networks that are both more reliable according
to our definition as well as more amenable for neural network verification. By
exploiting the piecewise affine structure of our networks, we can locally simplify
them and thus decrease verification runtime significantly. We also take a per-
spective that complements a neural network’s training by exploring how we can
repair non-reliable neural network ensembles.
With this thesis, we paradigmatically show the necessity and the complications
of unsupervised neural network verification. It aims to pave the way for more
research to come and towards a safe usage of these simple-to-build yet difficult-
to-understand models given by unsupervised neural networks.
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Introduction 1
Machine learning has become one of the most promising and pervasive tech-
nologies of our time. As its applications range from medical diagnosis (KEE+15)
over image classification (LZX+18) to chatbots (SLW+20), it has the potential to
not only relieve us from repetitive and undesired tasks but also to fuel scientific
discovery and even create art. Unlike traditional software, it is not programmed
to follow a predefined command pattern but is instead created implicitly by train-
ing on a given training dataset. This different paradigm allows machine learning
to leverage on the ever-increasing amount of readily available data as well as on
better computer chips enabling the training of larger models. Sparked by these
developments, machine learning research has gained tremendous momentum
designing novel ways of extracting information and models from raw data.
The major powerhouse of machine learning are neural networks being respon-
sible for breakthroughs such as AlphaGo (SHM+16), AlphaFold (JEP+21) or
Dall-e (RPG+21). Though they first showed their exceptional performance on
high-dimensional data such as images (KSH12) or texts (VSP+17), they are now
widespread even in safety-critical domains such as healthcare (ERR+19) or in-
frastructure monitoring (YJY19). Their success can partly be attributed to their
enormous versatility. They typically consist of a large amount layers of neu-
rons through which the input is passed forward. These neurons allow them to
implicitly learn very sophisticated features on which the eventual prediction is
based. Thereby neurons enhance and sometimes even replace the manual task of
feature engineering. As a result, given enough training data and neurons, neural
networks can model any function, no matter how complicated (HSW89).
However, their predictive capability entails a price to pay: measured in the num-
ber of parameters, they are very complex models and the prediction of a given
neural network does not follow a simple formula. Therefore neural networks
are very often regarded as blackbox models (ZBW+18; LLY+21; OSF19) evading
every attempt to be analyzed, described or understood globally. Moreover, as all
its behavior is learned implicitly by means of training, we cannot directly encode
safety properties into them - a severe downside in safety-critical applications.
For example, we must handle constraints derived from the domain or infeasible
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1 Introduction

input-output pairs separately. Put simply: not only do we not know what the
network does, we can also not define what it must not do.
This can become dangerous as the seminal paper by Szegedy et al in 2014
(SZS+14) has shown. Their work revealed that neural networks usually exhibit
undesired behavior in the form of adversarial attacks. These attacks are carefully
crafted inputs to a given, already trained neural network which are classified
wrongly. Starting from a valid input, for example from the training dataset, a very
small amount of carefully designed noise is added such that it remains almost
the same. The output of the neural network on this new input, however, changes
drastically, resulting in a different prediction. For example, an image classifier
can be made to believe that the picture of a turtle shows a gun (AEIK18) or vice
versa yielding the network unsafe for gun detection at airport security. In other
words, adversarial attacks are designed to fool the neural network and thus, from
a more theoretical viewpoint, we know that neural networks fail to generalize
over their entire input domain.
There have been many responses to this threat addressing several dimensions of
the problem: on the one hand, there is a vast amount of research directed towards
training models to be resistant against this sort of attack (BLZ+21a). Methods
such as adversarial training (MMS+18) incorporate adversarial attacks into the
training procedure to thereby fortify the neural network against them. On the
other hand, we need proof that a neural network is safe once it has been trained.
To be precise, we want to certify that for a given neural network no adversarial
attack exists. We can achieve this using a process called neural network verifi-
cation (KBD+17; Ehl17; WOZ+20). While usually machine learning models are
tested against a finite amount of test data, this is not enough for neural network
verification. Indeed, as the potential input space of neural networks is not limited,
we must somehow cover infinitely many samples in the verification process.
Adversarial attacks have become a major research field for neural networks and
with every defense against a particular type of adversarial attack, a new way of
attacking is devised. This arms race between attackers and defenders leads to
a better understanding of neural networks and raises many questions on if and
how we can use neural networks in safety-critical environments. Its importance
can both be seen by the number of publications in the field, which has grown
exponentially in the recent years (HKR+20a). Moreover, the VNN competition
has been established (MBB+23) recognizing the importance of neural network
verification to overcome the threat posed by adversarial attacks.
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1.1 Challenges

1.1 Challenges
This thesis contributes to some of the challenges we identify in this field.
As of yet, almost all of the existing research in this area is conducted exclusively for
the case of supervised learning. However, of course there exist neural networks
for unsupervised learning such as anomaly detection or dimensionality reduc-
tion. Autoencoders (HHWB02) or the DeepSVDD model (RVG+18) for example
are commonly used neural networks to extract smaller representations of the
data (autoencoder) and to do anomaly detection (autoencoder and DeepSVDD).
Since adversarial attacks essentially exploit the unstable behavior inherent in
neural networks, there is no reason to believe that these models should not be
prone to them. However, it is as of yet not clear what exactly an adversarial attack
on an unsupervised neural network is supposed to be. Unlike in the supervised
approach, we have no labels at our disposal based on which we can define them.
Therefore, we will first need to define useful notions of adversarial attacks for
these types of networks.
The second challenge is given by scaling the verification process. The larger the
neural network’s complexity, the longer it takes to verify them. In fact, verification
time grows exponentially with the number of neurons in the neural network
(MMS+22). The scientific approaches to overcome this problem are twofold. One
direction tries to optimize the verification procedure by inventing new heuristics
that exploit the neural network’s structure and activation patterns. While some
notable successes could be achieved (KHI+19; WOZ+20; KBD+17; Ehl17), this
endeavor is most likely limited to smaller-sized models because neural network
verification is an NP-complete problem (KBD+17). Therefore another approach
relaxes the exact verification procedure sacrificing completeness for speed: they
overapproximate the possible outputs of the input domain under scrutiny. As a
result, these approaches may or may not certify a given neural network and in
case they do not, we simply do not know whether the network is safe.
Given that we can solve the first challenge, the third challenge follows very nat-
urally: we want to train neural networks in such a way that they become more
robust against adversarial attacks. The typical way inspired by supervised neural
networks would be given by adversarial training. Relying on an algorithm to
quickly generate adversarial attacks (GSS15; MMS+18), it simply adds them to
the training dataset or even replaces the original samples with them. However,
these methods usually yield models resistant to only that particular type of attack
(TB19). We on the other hand want to make models more resistant to all these
types of attacks by directly changing the neural network’s structure.
Finally, assume that we are given a non-robust neural network: a neural net-
work for which adversarial attacks exist. As neural network training can be very
expensive, we would like to post-robustify it without the need to fully retrain.
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1 Introduction

However, current methods to increase robustness after training address the in-
puts to the neural network by preprocessing (XEQ18) or introducing randomness
(XWZ+17) into the neural network. None of the existing approaches directly
adjusts the model’s weights, biases or structure. A possible answer could lie in
further adversarial training. However, this may be expensive depending on how
much training needs to be done and - more importantly - we cannot guarantee
robustness of the resulting model. Therefore we tackle the challenge of increasing
robustness by making well-informed changes to the model itself. Of course, these
changes must be small enough not to interfere with the model’s performance
and large enough to have a significant effect on the model’s robustness.

Beyond the challenges we address in this thesis, there are of course more open
challenges in neural network verification.
The first arises from an application point of view. Dependent on what the neural
network is eventually supposed to do, it is most likely not enough to test for
low-level functionality such as robustness to adversarial attacks. Instead, we
require a high-level language encoding the semantics of a given problem and
its safety specifications. For example in autonomous driving, we would like to
ensure that stop signs are correctly classified by an image classifier. However,
this entails somehow exhaustively defining all possible stop signs and their per-
turbations if we only have these low-level specifications at our disposal. If we
could have that, we would likely not need any neural network in the first place as
its strength lies exactly in implicitly, rather than explicitly, yielding an accurate
classification function. Therefore, one challenge is to give safe and yet not overly
explicit verification properties.
A second challenge which is largely unaddressed in the research community
is the sound and complete verification of neural networks utilizing general ac-
tivation functions. LSTM-based models (HS97) for example, used in natural
language processing, build mostly on sigmoidal rather than piecewise linear
activation functions. However, these types of models can so far only be verified
using an overapproximation of their outputs.
The last open challenge of interest concerns the closeness of adversarial attack.
Starting from an initial input usually from the training set, an adversarial at-
tack is supposed to be as close as possible to this input. Indeed, many papers
(MMS+18; PMJ+16; CW17a) phrase the problem of finding an adversarial at-
tack as an optimization problem minimizing the distance to the original input
constrained on being classified differently. Hence, methods to find adversarial
attacks can be evaluated based on how well this minimization problem is solved.
These methods give a scalable way to determine an upper bound on the distance
to the closest adversarial attack. If they had guarantees on their approximation
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1.2 Contributions

gap to an optimal solution, they could even be considered verification methods.
Thus one open challenge is to find the closest adversarial attack in a scalable
way. Note here that exact verification procedures can be used to approximate
the closest adversarial attack arbitrarily well. This shows how strongly neural
network verification and adversarial attacks are intertwined.

1.2 Contributions
In this thesis, we address the aforementioned challenges with several contribu-
tions.
First of all, we bridge the gap between supervised and unsupervised learning
with respect to adversarial attacks by introducing the notion of unsupervised
adversarial attacks for autoencoders. Autoencoders are simple, feed-forward
neural networks trained to reconstruct their input. Without labels, we will rely on
exactly this property of every autoencoder: the reconstruction loss. Irrespective
of what exactly a given autoencoder is used for - be it denoising, anomaly detec-
tion or dimensionality reduction - their loss function gives a difference between
the input and the output. Therefore, utilizing an adversarial attack on its loss
function, we can verify whether a given autoencoder deviates from its intended
behavior for training samples. On the other hand, if the loss function in a given
area is bounded, we may conclude that the model does not confound different
classes in its latent space or prove that it denoises. Indeed many applications of
autoencoders are based on its reconstruction error such that our novel type of
adversarial attack is quite versatile.
We will furthermore adapt the existing notion of supervised adversarial attacks
to the unsupervised use case of anomaly detection. Most anomaly detection
methods produce an anomaly score for each point which, in conjunction with a
fixed threshold, defines the binary label anomalous or non-anomalous for a given
input. Therefore, if we can prove that the anomaly score never exceeds the thresh-
old, we can prove that all points in a given area are non-anomalous. Thus, we
can use the technique of neural network verification to prove a desired property
of a given neural network.
In addition to the mere definition of new types of adversarial attacks, we also
contribute to the challenge of verification scalability by introducing a new per-
spective on the problem. Given that almost all research introduces new heuristics
to improve scalability of an NP-complete problem, we instead remark that very
often, we also have control over the creation of the verification instance. To be
precise, we often both train and verify the neural network. Hence we may in-
corporate our expertise on the verification process into the training procedure.
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1 Introduction

To allow for sound and complete verification, we consider only a subclass of
neural networks: piecewise affine ones. This is a standard restriction and - as
we will see in Chapter 2 - not a severe one. Based on this structure, we find the
number of affine subfunctions to be crucial for verification runtime. Therefore,
we reduce the number of subfunctions by adding a particular regularization term
called fctdist to neural network training. This term essentially aims at making
neighboring subfunctions similar to each other, effectively eliminating a large
amount of them. As we will see, this leads to neural networks that are much
faster to verify while at the same time retaining their predictive capabilities.
As a further effect, the fctdist term addresses the third challenge of training more
stable neural networks. For autoencoders, we define the notion of 𝜀-𝛿 robustness
indicating how strongly the inputmust be changed to result in a particular change
of the output. As wewill see, autoencoder trainedwith fctdist have amuch higher
𝜀-𝛿 robustness. This can be useful to prove denoising or measure the amount of
regularization.
A remarkable side result we obtained during our experiments is to never use
dropout for training neural networks which afterward shall be verified. We
show experimentally that dropout severely increases the runtime of verification
procedures.
In the last chapter, we extend our work on autoencoders to another type of unsu-
pervised neural network based model: the DEAN model (KM22). One way to
think of it is as a large ensemble of small DeepSVDD models (RVG+18). While
each of the subnetworks is relatively small, in union they form a competitive
anomaly detector. By employing feature bagging, the DEAN model ensures a
constant size for each subnetwork and allows it to be used on datasets of any
dimension. We explore how we can leverage this particular ensemble structure
for neural network verification. In particular, we want to verify that all points sur-
rounding a normal input will be classified as normal as well. Therefore we adapt
the usual robustness notion from supervised learning to the case of anomaly
detection by regarding a given anomaly detector as a binary classifier.
The first question is how to actually verify the ensemble. We solve this by a divide-
and-conquer approach splitting up the model into its subnetworks, verifying
each of them independently and merging the results. In fact, each subnetwork
yields two results: an upper bound on the anomaly score proving that all sur-
rounding points are normal as well and a lower bound via an input to the entire
model designed to produce a high anomaly score. These two results also allow
us to estimate the surprisingly small approximation gap, which stems from the
combination of feature bagging and the divide-and-conquer approach.
Using ensemble models entails two major advantages. First, we replace verifying
one large neural network by verifying many small neural networks. This turns
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1.3 Outline

out to be much faster because it scales linearly in the number of subnetworks
used and, thereby, also in the model’s complexity. Moreover, this can be easily
parallelized. Secondly, once we have verified each subnetwork, we can leave out
the ones that yield a too large anomaly score and thus post-robustify a given,
non-robust model. As we will see, this does not only ensure robustness for the
input set we verified but increases robustness overall.

1.3 Outline
The remainder of this thesis is organized as follows. We first introduce theoretical
foundations, including notation as well as properties of piecewise affine neural
networks in Chapter 2. This chapter details what complicates unsupervised
neural network verification and is thus necessary to understand the chapters
thereafter. Moreover, we give an idea of how exact solvers - the ones used in
this thesis - work as our solution frameworks are based on them. We cover
related work in Chapter 3 discussing all relevant alternatives to the approaches
we propose. Chapter 4 then serves as the starting point for our journey into
unsupervised neural network verification. With the worst-case-error, it gives the
first unsupervised problem specification and highlights its usefulness while at the
same time hinting at problems that derive from it. Chapter 5 then builds on top of
Chapter 4 introducing fctdist, which alleviates both the scalability issue as well as
the severity of the worst-case-error. We expand into other types of unsupervised
neural networks in Chapter 6 giving another solution to the scalability problem
of general unsupervised neural networks. However, it also relies on Chapter 4
because we use the worst-case-error as a subroutine in our solution. Finally
Chapter 7 concludes the thesis revisiting its contributions and pointing at future
work that arises from it.

Table 1.1 shows how the different chapters add contributions to the challenges
addressed in this thesis.

Chapter 4 Chapter 5 Chapter 6
Problem Specification 3 3 3

Scalability 7 3 (3)
Robustness Training (3) 3 7

Post-Robustification 7 7 3

Table 1.1: Overview of how the different chapters contribute to the different chal-
lenges.
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1.4 List of Publications
This thesis relies mostly on the following papers jointly written with Rajarshi Roy,
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Theoretical Foundations of Neural
Networks 2
This chapter introduces the core concepts of interest for the following chapters:
neural networks and SMT solvers. Neural networks serve as the objects we want
to ensure reliability for. Thus, we will describe them on a technical level and
discuss some of their properties relevant for their analysis. These properties will
also motivate the use of SMT solvers, which - in the context of this thesis - can be
seen as the analysis tool for neural networks.

2.1 Neural Networks
Neural networks are responsible for some of themost important breakthroughs in
machine learning of the last decades. They have shown exceptional performance
on tasks as diverse as playing Go (SHM+16), creating images from text (RPG+21)
and speech recognition (DXX18). These achievements stem from their enormous
flexibility as they are capable of modeling any (!) function. While their main
building blocks can be easily explained, the resulting models can become very
complicated and thus are beyond the reach of a simple analysis. Therefore, to
keep control of this rapidly expanding technology, we require more sophisticated
analysis tools for neural networks.

2.1.1 Definition, Structure and Notation
We start by technically defining neural networks. A neural network 𝑓 ∶ ℝ𝑁 → ℝ𝑀 is
a function consisting of layers of neurons. At each neuron, an affine function based
on the output of the previous layer is calculated followed by an activation function.
As neural networks are organized in layers, we can define their calculations as
𝑓 = 𝑓𝐿 ∘ … ∘ 𝑓1 where 𝐿 + 1 is the number of layers (including the input layer).
Each 𝑓𝑖 calculates its output 𝑥(𝑖) as

𝑥(𝑖) = 𝑓𝑖(𝑥(𝑖−1)) = act(𝑊 (𝑖)𝑥(𝑖−1) + 𝑏(𝑖))

where 𝑎𝑐𝑡 is an activation function applied neuron-wise, usually introducing
non-linearities into 𝑓. The first layer 𝑥(0) is called the input layer, the last layer 𝑥(𝐿)

9



2 Theoretical Foundations of Neural Networks

the output layer and all the layers in between are called hidden layers.
Sometimes we will need the preactivations of each layer as well corresponding to
𝑥(𝑖) before their activation function. Thus they are given by 𝑦(𝑖) = 𝑊 (𝑖)𝑥(𝑖−1) +𝑏(𝑖).
Let 𝑙𝑖 ∈ ℕ be the number of neurons in layer 𝑖. Then the weight matrix 𝑊 (𝑖) ∈
ℝ𝑙𝑖×𝑙𝑖−1 and the bias term 𝑏(𝑖) ∈ ℝ𝑙𝑖 determine the layer’s affine behavior and are
the key parameters learned during training.

x(0)

Input Layer

x(1) x(L−1)

Hidden Layers

x(L)

Output Layer

W (1)x(0) + b(1)

W (L)x(L−1) + b(L)

Neuron

· · ·

Layer

Input ReLU Linear

Figure 2.1: Depiction of a feed-forward neural network. The input is processed
through several layers, which consist of neurons. On each neuron,
an affine function followed by an activation function is calculated.
Different activation functions are shown by different neuron fillings.
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2.1 Neural Networks

In this thesis, we will be using two types of activation functions exclusively: the
Linear and the ReLU activation function. The Linear activation function is simply
the identity function such that act(𝑥) = 𝑥 while the ReLU activation function is
given by

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥)

mapping negative inputs to 0 and positive inputs to themselves. Thus, they
are piecewise linear functions with two regimes: for one particular input to the
neural network, a ReLU neuron is either activated (> 0) or deactivated (≤ 0).
This leads to an activation pattern over all ReLU neurons in the neural network.
For 𝑘 neurons, this is a function 𝑎𝑐𝑡𝑝𝑎𝑡 ∶ ℝ𝑁 → {0, 1}𝑘 indicating which ReLU
neuron is activated and which is not for a given input.
These ReLU neurons, although looking innocent, are what, on the one hand,
drastically increase a given neural network’s expressive power and what, on the
other hand, make them difficult to analyze.
There are other popular choices for activation functions, such as the 𝑡𝑎𝑛ℎ or
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function. However, they do not yield piecewise affine neural networks
and are therefore not included in this thesis. This is neither a severe restriction in
practice - those are the most commonly used activation functions (GBC16) - nor
in theory, as we will see in Theorem 2.1.1.
Neurons and layers are named by their respective activation functions resulting
in, for example, Linear neurons or ReLU layers. ReLU networks, on the other hand,
allow both ReLU and Linear neurons because Linear neurons are often required
in the last layer to be able to predict negative values. The overall structure of a
neural net, including the number of layers as well as the number and types of
their neurons, is called the neural network’s architecture. As can be seen, by this
construction, neural networks alternate between affine functions reshaping the
input and activation functions which introduce non-linearities. To ease under-
standing, Figure 2.1 shows an exemplary neural network.

2.1.2 Universal Approximation Theorem
One of the key properties shown by (HSW89) for neural networks is their ability
to approximate any given function. Loosely speaking, given a function 𝑔, we can
construct a neural network 𝑓 such that the distance between 𝑔 and 𝑓 is smaller than
a given threshold. Note though that the original theorem requires a particular
type of activation function - so-called squashing functions - and gives no bound
on the number of neurons required. Thus the resulting neural networks can
become arbitrarily complicated.
Their work has been extended to more types of activation functions and refined

11
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with respect to the number of neurons required. To give a precise statement, we
adapt a more recent theorem by (LPW+17). Note that there are more general
universal approximation theorems, as the following one holds only for ReLU
networks; since this is the only type of network we consider in this thesis, that is
no problem.

Theorem 2.1.1. For any Lebesgue-integrable function 𝑔 ∶ ℝ𝑛 → ℝ𝑚 and any 𝜀 > 0,
there exists a fully-connected ReLU network 𝑓 such that

∫
ℝ𝑛

|𝑓(𝑥) − 𝑔(𝑥)|𝑑𝑥 < 𝜀

In essence, this theorem states that we can use neural networks to model any
function, making them one of the most versatile models that exist. However,
their complexity comes with two caveats. On the one hand, it makes them very
difficult to analyze and we cannot easily formulate global and understandable
properties about a given model. In contrast to, example given, Decision Trees
(BFOS84) or a Gaussian Naive Bayes model (HY01), we do not have a more
concise representation of how a network processes its input than the network
itself.
Moreover, due to the infinitely many functions we can realize with a fixed archi-
tecture, it is very challenging to obtain one of the parameter configurations that
leads to a good performance on a given task. Thus the next section covers the
main training procedure used for neural networks.

2.1.3 Training via Backpropagation
So far, we have established the skeleton of our model, which is the basic structure
of the neural network as well as its universal approximation property. However,
machine learning models have a predefined purpose, such as classification or
regression. Thus, out of all the possible functions a given neural network archi-
tecture can convey, we want to find a particular function suitable for the task at
hand. Therefore we must somehow encode the properties we want the function
to have in the neural network.
This is typically done using a combination of a training set and a loss function.
The training set (𝒳, 𝒯) consists of pairs of input-output samples for the neural
network where 𝒳 = (𝑥1, … , 𝑥𝑛) are the input samples and 𝒯 = (𝑡1, … , 𝑡𝑛) are
their respective targets. It represents the informationwe have on the true function
we wish to approximate. Note that in case of supervised learning, the targets are
usually given in the form of labels or the true value of a regression task. However,
we are not limited to such types of targets. Instead, for the case of autoencoders -
an unsupervised model - each target 𝑡𝑖 is simply given by the input 𝑥𝑖.

12
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The loss function 𝐿, on the other hand, measures how strongly the neural net-
work’s output deviates from the target and incorporates the task the neural
network is supposed to do. By design, loss functions are monotone, differentiable
and penalize larger deviations more severely. Thus, by summing the loss over
the training set, we can measure how well the neural network performs on it.
We can adjust the neural network 𝑓 by changing its parameters 𝑝 = (𝑝𝑖)𝑖∈𝐼 con-
sisting of its weights and biases leading to the following minimization problem:

min
𝑝

𝑛
∑
𝑖=1

𝐿(𝑓𝑝(𝑥𝑖), 𝑡𝑖)

Examples of loss functions include cross-entropy for classification, mean-squared
error for regression and many other functions reflecting the versatility of neural
network use cases (GBC16).
Using these ingredients, we can follow the standard machine learning paradigm
of training our model: instead of defining every parameter of the neural network,
we sequentially show it training samples and update parameters according to
how well the neural network performs on them as measured by the loss function.
The exact update procedure is given by an algorithm called backpropagation
(RHW86). It simply calculates the derivatives of the loss function with respect
to the weights and biases and adjusts them such that the loss decreases.
To be precise let 𝑓, 𝐿, 𝑝, be as above, 𝛼 ∈ ℝ>0 be a step size and (𝑥, 𝑡) be an
input-output pair. Then backpropagation proceeds as follows:

1. Propagate 𝑥 through 𝑓 obtaining 𝑓(𝑥) and all intermediate results

2. Calculate 𝐿(𝑓𝑝(𝑥), 𝑡)

3. Calculate Δ𝑖 ∶= 𝜕𝐿
𝜕𝑝𝑖

(𝑓𝑝(𝑥), 𝑡) for all 𝑖 ∈ 𝐼.

4. Update 𝑝 according to 𝑝𝑛𝑒𝑤
𝑖 = 𝑝𝑜𝑙𝑑

𝑖 − 𝛼Δ𝑖 for all 𝑖 ∈ 𝐼

Even though there is a vast amount of literature (SCZZ20) on optimizing the
neural network’s training procedure, at their core, all methods rely on some
form of this algorithm. As can be seen, one very important ingredient is the loss
function’s differentiability. Without it, we cannot calculate its partial derivative.
This is to be kept in mind when designing new loss functions (see Chapter 5).

2.1.4 Piecewise Affine Neural Networks
As mentioned before, this thesis considers ReLU networks exclusively. On the
one hand, according to Theorem 2.1.1, they can approximate any given function
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f

Figure 2.2: Depiction of a two-dimensional input (left side) as well as a two-
dimensional output (right side) of a neural network 𝑓. The Figure is
obtained by sampling inputs in [−1, 1]2 and color-coding their linear
subfunctions.

just as well as networks employing different activation functions. On the other
hand, these networks exhibit a particular structure, making them easier to be
analyzed: they are piecewise affine1. As each ReLU neuron splits up into the
activated (> 0) and the non-activated (≤ 0) regime, these networks divide the
input space into segments on each of which an affine subfunction is calculated,
as can be seen in Figure 2.2.
Figure 2.3 shows that on different segments - even neighboring ones - very dif-
ferent subfunctions can be applied even though all of them are affine: they allow
for stretching, rotation and translation. In trying to verify a given neural network,
this structure has proven to be very beneficial because it allows to consider the
different subfunctions one by one: if we want to make a global statement about
the entire neural network - the core task of neural network verification - it suffices
to check that statement on each of the affine subfunctions. However, even if these
networks are much simpler to analyze due to their piecewise affine structure, it
still remains a challenging endeavor given that the number of subfunctions is
exponential in the number of ReLU neurons (MMS+22). Although we will even-
tually use off-the-shelf, state-of-the-art verification engines (WOZ+20), which

1Note that also other types of layers, including convolutional layers, and pooling layers lead
to piecewise affine neural networks. However, they are out of the scope of this thesis.
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f f f f

Figure 2.3: Exemplary mappings for different linear subfunctions from Figure 2.2.
Different linear subfunctions can exhibit very different behavior.

implicitly handle all the calculations for us, we will give some geometric intuition
of ReLU networks both for the sake of a better understanding as well as because
we will exploit it to design a training procedure in Chapter 5.
To sequentially check each subfunction for a verification property we - loosely
speaking - need to answer the following two questions: which affine subfunctions
does the neural network calculate and where are they applied? We can answer
both these questions using the following setup: Assume a given ReLU network
𝑓 ∶ ℝ𝑁 → ℝ𝑀 as well as an input point 𝑥∗ ∈ ℝ𝑁. We can easily calculate the affine
subfunction the network calculates on 𝑥∗ as well as in its 𝜀-environment given by

𝐵𝜀(𝑥∗) ∶= {𝑥 ∈ ℝ𝑁 ∶ 𝑑𝑖𝑠𝑡(𝑥, 𝑥∗) < 𝜀}

for some metric 𝑑𝑖𝑠𝑡 and some 𝜀 > 0. Here we assume that 𝑥∗ is not on the border
of two subfunctions (see Figure 2.4).
We will first consider the case of 𝑓 consisting of Linear layers only and then

reduce the more complicated case of ReLU layers to the case of Linear layers by
showing how we can locally replace ReLU neurons with Linear neurons.
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Figure 2.4: For every point 𝑥 not on the border of two subfunctions, we can calcu-
late the affine subfunction that is applied on 𝑥 and in its 𝜀-environment.
The ReLU neurons 𝑥(1)

1 , 𝑥(1)
2 , 𝑥(1)

3 being equal to zero define the borders
on which the affine subfunction changes.

Theorem 2.1.2. Let 𝑓 ∶ ℝ𝑁 → ℝ𝑀 be a neural network consisting of an input layer and
𝐿 Linear layers with weight matrices and biases given by𝑊 (1), … , 𝑊 (𝐿) and 𝑏(1), … , 𝑏(𝐿)

respectively.
Then 𝑓 is a linear function with

𝑓(𝑥) = (
1

∏
𝑙=𝐿

𝑊 (𝑙))
⏟⏟⏟⏟⏟

𝑉 (𝐿)∈ℝ𝑀𝑥𝑁

𝑥 +
1

∑
𝑙=𝐿−1

(
𝑙+1
∏
𝑗=𝐿

𝑊 (𝑗)) 𝑏(𝑙) + 𝑏(𝐿)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑎(𝐿)∈ℝ𝑀

for all 𝑥 ∈ ℝ𝑁.

Proof. We prove the theorem by induction over the number of Linear layers 𝐿.
First, consider the case where 𝐿 = 1. Then the function 𝑓 is given by

𝑓(𝑥) = 𝑊 (1)𝑥 + 𝑏(1)

which is in line with the formula.
For the induction step 𝐿 − 1 → 𝐿, we assume that we have shown the formula
for networks with 𝐿 − 1 Linear layers. Moreover, we make use of the layer-wise
definition of neural networks giving 𝑓 = 𝑓𝐿 ∘ 𝑓𝐿−1 ∘ … ∘ 𝑓1⏟⏟⏟⏟⏟

𝑓𝐿−1

where 𝑓𝐿−1 is a neural

network with 𝐿 − 1 Linear layers. Thus we can apply that 𝑓𝐿 is a Linear layer as
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well as the induction hypothesis and obtain

𝑓(𝑥) = 𝑓𝐿 ∘ 𝑓𝐿−1 ∘ … ∘ 𝑓1

= 𝑊 (𝐿)(𝑉 (𝐿−1)𝑥 + 𝑎(𝐿−1)) + 𝑏(𝐿)

= 𝑊 (𝐿) ((
1

∏
𝑙=𝐿−1

𝑊 (𝑙)) 𝑥 +
1

∑
𝑙=𝐿−2

(
𝑙+1
∏

𝑗=𝐿−1
𝑊 (𝑗)) 𝑏(𝑙)) + 𝑏(𝐿)

= (
1

∏
𝑙=𝐿

𝑊 (𝑙)) 𝑥 +
1

∑
𝐿−2

(
𝑙+1
∏
𝑗=𝐿

𝑊 (𝑗)) 𝑏(𝑙) + 𝑊 (𝐿)𝑏(𝐿−1) + 𝑏(𝐿)

= (
1

∏
𝑙=𝐿

𝑊 (𝑙)) 𝑥 +
1

∑
𝐿−1

(
𝑙+1
∏
𝑗=𝐿

𝑊 (𝑗)) 𝑏(𝑙) + 𝑏(𝐿)

finishing the proof.

Next, we will reduce the more challenging case of ReLU networks to Linear
networks by iteratively replacing all ReLU neurons with Linear neurons. This in
turn, allows us to apply the formula from Theorem 2.1.2 and to thereby calculate
the local affine subfunction.
Consider a single ReLU neuron 𝑟 and observe that for any particular input, the
neuron 𝑟 is either activated (𝑟 > 0) or not (𝑟 ≤ 0). In the activated case, it already
(locally) behaves as a Linear neuron such that we can safely replace the ReLU
activation function with a Linear activation function for 𝑟 and still obtain the
same function. For the deactivated case, the ReLU neuron has to return 0, which
we simulate by setting the respective weights and bias of the preceding layer to 0.
To be precise, let 𝑟 be the 𝑘-th ReLU neuron on layer 𝑗 and assume that for a given
𝑥 this ReLU neuron is deactivated. To obtain a locally functionally equivalent
network with a Linear neuron, we replace the weights 𝑊 (𝑗)

𝑘⋅ (the 𝑘-th row of the
respective weight matrix) as well as 𝑏(𝑗)

𝑘 (the corresponding bias term) by 0 (see
Figure 2.5 for an example). This way, we can ensure that if we replace the ReLU
neuron with a Linear neuron with the adjusted weights, the resulting neural
network will calculate the same function for 𝑥 and in its local environment. By
replacing all ReLU neurons with Linear neurons, we reduce this case to the purely
linear case and can calculate the local affine subfunction using Theorem 2.1.2.
As can be seen, by the previous description, different affine subfunctions loosely
correspond to different ReLU activation patterns. On the one hand, different
affine subfunctions certainly have different activation patterns. On the other
hand, different activation patterns do not necessarily result in different affine
subfunctions. If, for example, 𝑊 (𝐿) contains only zeros, the activation pattern
of the previous layers does not matter. Again, note that a fixed ReLU activation

17



2 Theoretical Foundations of Neural Networks

x
(0)
1

x
(0)
2

x
(0)
3

x
(0)
4

ReLU(p) > 0

ReLU(q)
≤ 0

bq = 0

p

q

0

0

0

0

Figure 2.5: Adjusting a ReLU neuron such that the resulting network locally
calculates the same function as the original network. For 𝑥 in the
original network, the preactivation of neuron 𝑞 was negative. Thus we
adjust the preceding weights and the bias to 0 and can replace both 𝑝
and 𝑞 by a linear neurons.

pattern does only yield the same affine subfunction in a local environment. How-
ever, we also need to know where exactly the neural network applies it.
We can give the subdomain on which the neural network 𝑓 applies a particular
subfunction as an intersection of half-spaces. To see this, we fix the ReLU acti-
vation pattern of an input 𝑥 in the domain and describe it as a Linear Program
(LP) (KVKV11). Note that we do not need an optimization objective but are just
interested in describing the feasible region as linear constraints.
Let 𝒩 = {𝑦𝑘,𝑗 ∣ 𝑘 ∈ {1, … , 𝐿}, 𝑗 ∈ {1, … , 𝑙𝑘}} be variables for the set of all non-
input neurons and 𝒟𝑥 ⊂ 𝒩 correspond to the deactivated ReLUs for a given
input 𝑥. Moreover, we introduce variables 𝑥𝑘,𝑗 for the 𝑗-th neuron in layer 𝑘. Then
the variables 𝑥0,𝑗 of the feasible region of the following LP describe the inputs on
which the neural network applies the same affine subfunction as on 𝑥.

𝑦𝑘,𝑗 =
𝑙𝑘−1

∑
𝑖=1

𝑊 (𝑘)
𝑖,𝑗 𝑥𝑘−1,𝑖 + 𝑏(𝑘)

𝑗 𝑦𝑘,𝑗 ∈ 𝒩

𝑥𝑘,𝑗 = 0 𝑦𝑘,𝑗 ∈ 𝒟𝑥 (2.1)
𝑥𝑘,𝑗 = 𝑦𝑘,𝑗 𝑦𝑘,𝑗 ∈ 𝒩 ⧵ 𝒟𝑥

The LP essentially describes all inputs whose forward passes through 𝑓 lead to
the same activation pattern as 𝑥. Therefore on all inputs for which the LP is
feasible, the same affine function is applied. Of course, we do not necessarily
need an input 𝑥 to create an activation pattern. Instead, for 𝑘 ReLU neurons, we
can also just choose one of the 2𝑘 many ReLU activation patterns. Note that in
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this case, the LP does not need to be feasible at all if there is no input for this
particular activation pattern.
The different constraints described by 2.1 define the borders to other affine sub-
functions. Whenever the right-hand side of these equations cross 0, the activation
pattern changes and thus, the resulting affine subfunction may change.
Let us consider the behavior of a single ReLU neuron in more detail. A ReLU neu-
ron 𝑟 without its activation function can be interpreted as a function 𝑟 ∶ ℝ𝑁 → ℝ
by defining it as the neural network’s output. Then this subnetwork 𝑓𝑟 given by
all layers preceding 𝑟 and 𝑟 as the output neuron is - again - a ReLU network
and thus it - again - defines an affine function 𝑓𝑟,𝑥∗ for any input 𝑥∗. To recap,
𝑓𝑟,𝑥∗ is the affine function that the neural network 𝑓𝑟 applies on 𝑥∗. Its kernel
𝑘𝑒𝑟(𝑓𝑟,𝑥∗) = {𝑥 ∈ ℝ𝑁 ∶ 𝑓𝑟,𝑥∗(𝑥) = 0} defines a hyperplane separating the input
space into two half-spaces: one where 𝑓𝑟,𝑥∗ > 0 and one where 𝑓𝑟,𝑥∗ < 0 corre-
sponding to 𝑟 > 0 or 𝑟 < 0 in the original network as seen from the local affine
subfunction on which 𝑥∗ lives. Since the original network 𝑓 does only change
its affine subfunction if at least one ReLU neuron flips from being activated to
deactivated or vice versa, these hyperplanes define the borders within which 𝑓
applies the same affine subfunction. Note, though, that the half-spaces obtained
as the kernel of 𝑓𝑟,𝑥∗ do indeed not only depend on the neuron 𝑟 but also on the
point 𝑥∗. This effect can be seen in Figure 2.6 demonstrating that the hyperplane
defined by a particular ReLU neuron may change along with the affine subfunc-
tion of 𝑓. This is also intuitively clear, as, for example, a ReLU neuron becoming
active in an early layer influences all subsequent ReLU neurons and their respec-
tive borders. As a result, the kernel 𝑘𝑒𝑟(𝑓𝑟,𝑥∗) = {𝑥 ∈ ℝ𝑁 ∶ 𝑓𝑟,𝑥∗(𝑥) = 0} and
𝑘𝑒𝑟(𝑓𝑟) = {𝑥 ∈ ℝ𝑁 ∶ 𝑓𝑟(𝑥) = 0} can differ significantly and the borders defined
by ReLU neurons can become very complicated (see Figure 2.7).

2.2 Exact Neural Network Verification

Irrespective of the exact verification problem we intend to solve, we may need to
consider all subfunctions a given neural network 𝑓 comprises. We have seen how
we can calculate a particular subfunction and where it is applied. However, we
still need to describe how to consider them sequentially. As supervised neural
networks are not in principle different to unsupervised neural networks with
respect to their architecture, we can benefit from the vast body of research on
optimizing this process for them (WOZ+20; KBD+17; Ehl17).
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Figure 2.6: Depiction of possible different borders for different inputs (𝑥1 and
𝑥2) for the same ReLU neuron 𝑟 (blue). The borders 𝑓𝑟,𝑥1

= 0 and
𝑓𝑠,𝑥2

= 0 differ as neuron 𝑠 influences neuron 𝑟.
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Figure 2.7: Implicit visualization of the border given by 𝑘𝑒𝑟(𝑓𝑟) for different neu-
rons 𝑟, 𝑠, 𝑡. Different colors on the inputs indicate whether the neuron
is activated (green) or not (red) for that particular input. Neurons in
the first non-input layer (neuron 𝑟) define a straight border, whereas
neurons in later layers (neurons 𝑠 and 𝑡) can define arbitrarily com-
plex borders.
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2.2.1 Satisfiability Modulo Theories (SMT)
At their core, all exact solvers formulate the problem as a logical conjunction of
linear constraints. We will present one framework here - SMT solvers - as we
believe it is easy to understand and as it allows us to highlight the difficulties
of neural network verification. It separates the process of neural network veri-
fication into analyzing a particular subfunction and iterating over the different
subfunctions. Therefore we can focus on the two steps independently. Put simply,
SMT solvers abstract away linear constraints into variables of an SAT instance,
repeatedly solve the SAT instance, which in turn implies the direction in which
the constraints are to be satisfied and then use an LP solver to determine if the
assignment is feasible. Next, we will give the details on these steps and introduce
the required definitions.
Most problems of neural network verification can be solved by reducing it to a
constraint satisfaction problem in first-order logic. A formula in first-order logic
is formed using constants, variables, function and predicate symbols, logical
connectives, and quantifiers. In this thesis, however, we require only a specific
first-order logic, namely the quantifier-free fragment of linear real arithmetic (LRA),
which we introduce next.
First, let 𝒳 = {𝑥0, 𝑥1, …} be a set of variables which range over values in ℝ. Then,
we define terms as follows: a term is either a constant 𝑐 ∈ ℝ, a variable 𝑥 ∈ 𝒳,
or a function application 𝑡1 ∘ 𝑡2, where ∘ ∈ {+, ⋅} and 𝑡1, 𝑡2 are two terms. For
instance, 5, 𝑥, and 3 ⋅ 𝑥 + 2 ⋅ 𝑦 are terms. To reflect the usual notation, we often
drop the multiplication sign.
An atomic formula is a predicate symbol applied to terms. In LRA, we allow the
usual binary predicates <, ≤, =, ≥, and >. For example, 3𝑥 + 2𝑦 > 5 is an atomic
formula. Moreover, a formula is inductively defined as follows: a formula is either
an atomic formula, the negation ¬𝜑 of a formula 𝜑, or the disjunction 𝜑1 ∨ 𝜑2 of
two formulas 𝜑1, 𝜑2. We also add syntactic sugar and allow the formulas 𝜑1 ∧ 𝜑2,
𝜑1 → 𝜑2, and 𝜑1 ↔ 𝜑2, which are defined as usual:

𝜑1 ∧ 𝜑2 ∶= ¬(¬𝜑1 ∨ ¬𝜑2) (2.2)
𝜑1 → 𝜑2 ∶= ¬𝜑2 ∨ 𝜑1 (2.3)
𝜑1 ↔ 𝜑2 ∶= (𝜑1 → 𝜑2) ∧ (𝜑2 → 𝜑1) (2.4)

To assign meaning to formulas, we introduce the concept of interpretations. An
interpretation is a mapping ℐ∶ 𝒳 → ℝ, which assigns a real value to each variable.
Interpretations can easily be lifted to terms by calculating their value, and we
write ℐ(𝑡) for the interpretation (the value) of the term 𝑡 under ℐ. Finally, we
can define when an interpretation ℐ satisfies a formula 𝜑 which we denote by
ℐ ⊧ 𝜑: we have ℐ ⊧ 𝑡1 ⋄ 𝑡2 for ⋄ ∈ {<, ≤, =, ≥, >} if and only if ℐ(𝑡1) ⋄ ℐ(𝑡2) is
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true, ℐ ⊧ ¬𝜑 if ℐ ̸⊧𝜑, and ℐ ⊧ 𝜑1 ∨ 𝜑2 if and only if ℐ ⊧ 𝜑1 or ℐ ⊧ 𝜑2. We say that
a formula 𝜑 is satisfiable if an interpretation ℐ with ℐ ⊧ 𝜑 exists. The framework
implementing highly-optimized procedures for deciding satisfiability of formulas
in LRA is called Satisfiability Modulo Theories (SMT) (BFT17). As this is a general
framework, it does not only allow checking satisfiability in LRA but also in many
other fragments of first-order logic. This entails, however, that these solvers are
not specifically designed for neural networks. Moreover, SMT solvers typically
return an interpretation if the given formula is satisfiable. These will later turn
out to be very useful as these will serve as counterexamples of a desired property.

2.2.2 Encoding the Neural Network
To encode the function computed by a neural network 𝑓 in LRA, we introduce
variables 𝑥𝑘,𝑗 for each layer 𝑘 ∈ {0, … , 𝐿} and each neuron 𝑗 ∈ {1, … , 𝑙𝑘} in
Layer 𝑘. Intuitively, each such variable captures the value of a neuron and is used
as the input for other neurons. Correspondingly, variables 𝑥0,1, … , 𝑥0,𝑙0

represent
the input to the neural network, while variables 𝑥𝐿,1, … , 𝑥𝐿,𝑙𝐿

represents the
output of the neural network. Note that we use 𝑥(𝑘)

𝑗 to denote neurons and their
associated values in the neural network and 𝑥𝑘,𝑗 to denote the corresponding
variable in the verification framework. To ensure that the variables 𝑥𝑘,𝑗 actually
have the desiredmeaning, we introduce constraints that describe the computation
of each neuron. For a linear neuron, we construct

𝜓𝑘,𝑗 ≔ [𝑥𝑘,𝑗 = [
𝑙𝑘−1

∑
𝑖=1

𝑊 (𝑘)
𝑖,𝑗 𝑥𝑘−1,𝑖] + 𝑏(𝑘)

𝑗 ]. (2.5)

On the other hand, for a ReLU neuron, we construct the constraint

𝜓𝑘,𝑗 ≔ [[𝑦𝑘,𝑗 =
𝑙𝑘−1

∑
𝑖=1

𝑊 (𝑘)
𝑖,𝑗 𝑥𝑘−1,𝑖 + 𝑏(𝑘)

𝑖 ] ∧ [𝑥𝑘,𝑗 = ite(𝑦𝑘,𝑗 < 0, 0, 𝑦𝑘,𝑗)]], (2.6)

where ite (short for “if-then-else”) is syntactic sugar for a conditional evaluation
of terms. It is given by

[(𝑦𝑘,𝑗 < 0) ∧ (𝑥𝑘,𝑗 = 0)]
∨[(𝑦𝑘,𝑗 ≥ 0) ∧ (𝑥𝑘,𝑗 = 𝑦𝑘,𝑗)].

Finally, we define
𝜑𝑓 ≔ ⋀

1≤𝑘≤𝐿
⋀

1≤𝑗≤𝑙𝑘

𝜓𝑘,𝑗,

which collects the constraints for all individual neurons. By construction 𝜑𝑓 com-
pletely encodes the neural network 𝑓 in the sense that 𝑓(ℐ(𝑥0,1), … , ℐ(𝑥0,𝑙0

)) =
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(ℐ(𝑥𝐿,1), … , ℐ(𝑥𝐿,𝑙𝐿
)) holds for all satisfying interpretations ℐ ⊧ 𝜑𝑓.

The encoding of 𝑓 in the SMT framework looks very similar to the LP formulation
for a particular subfunction given in Section 2.1.4. Basically, it extends it with
the ite operator representing the ReLU function and thus, implicitly, the SMT
formulation iterates over all subfunctions. While this may not look like a big
difference, it actually is the reason for the exponential runtime of neural network
verification. Indeed, neural network verification is an NP-complete problem. To
be precise, consider the following problem. For a given neural network 𝑁 and
linear constraints over its inputs and outputs, we want to decide whether there
exists an input in the restricted input domain that gets mapped to an output in
the restricted output domain by 𝑁. This problem is NP-complete as 3-SAT can
be reduced to it (KBD+17).
To solve the formula, SMT solvers first abstract the linear inequalities in each
subformula to variables. Thus, we obtain an SAT instance for whichwe can obtain
multiple solutions using, for example, DPLL (DP60; DLL62). Each solution fixes
the inequalities to be true or false, determining whether the inequality is to be
satisfied (true) or violated (false). Thus each solution results in an LP as the
conjunction over the (potentially adjusted) linear inequalities. If the LP is feasible,
the SMT solver returns sat together with a feasible assignment to all variables.
Else, the SMT solver iterates further through the solutions of the SAT instance.
These inner workings of a general-purpose solver reveal two difficulties. One
of them is inherent in the problem. Assume we want to check satisfiability of
the following formula: there exists a point in a given input domain such that a
particular output neuron is smaller than any other output neuron. This is the
typical query to an SMT solver to check for robustness of a classification neural
network (TXT19). If the formula is satisfied, you immediately obtain a coun-
terexample of the robustness property. Assume further that the formula is not
satisfiable and that the neural network consists of 2𝑘 many subfunctions in the
input domain as given by the number of ReLU neurons 𝑘. Then the SMT solver
will need to iterate over all of them to establish robustness. This is inefficient for
mid-sized neural networks and quickly becomes impossible to calculate due to
the problem’s NP-completeness.
The other problem arises from the generality of SMT solvers. They do not incor-
porate dependencies between different ReLU neurons and thus always need to
explore all possible ReLU activation patterns until they find a feasible solution
to the formula or can return unsat. However, some neurons may never actually
be activated and some pairs of ReLU neurons may only be activated together.
Therefore, when iterating over all potential activation patterns, the SMT solver
does a lot of unnecessary work because it does not exploit these neural network
specifics. As a result, other methods built upon general-purpose solvers decreas-
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ing the verification runtime substantially. A further discussion of these methods
can be found in Chapter 3.
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Related Work 3
This chapter embeds the novel methods developed in this thesis into its broader
scientific background. We will give a brief history of adversarial attacks as well
as of software verification as these are the subjects motivating our research.
Moreover, we will explore the realm of verification methods that can be used
for neural networks, as many of them tackle scalability. Note that this chapter is
meant to give a general perspective. Therefore in each of the chapters describing
a particular method, we add a further small chapter for its specifics.

3.1 Supervised Adversarial Attacks
The topic of adversarial attacks is not a new one. Though it has gained tremen-
dous momentum in the machine learning community, its roots date back to at
least as far as 2004 when Dalvi et al (DDM+04) introduced the term of Adver-
sarial Classification. While their work regards any classification algorithm, the
seminal paper ”Intriguing properties of neural networks” by Szegedy et al. in
2013 (SZS+14) shifted the focus towards neural networks. They demonstrated
that neural networks can exhibit incredibly unstable behavior with the following
experiment.
Assume a neural network classifier on ImageNet (DDS+09). We can add noise
to a correctly classified image of a panda to thereafter show a gibbon - at least
according to the neural network. We as humans though still see the same picture
of a panda because the noise is imperceptible to us. One important remark is to
be made: adversarial attacks are a subjective notion in the following sense. It
depends on humans not being able to tell the difference between the original
image and the adversarial attack based on it. Therefore adversarial attacks are
usually defined as differently classified objects which are close to the original one.
The closeness then implicitly captures a human’s incapability to spot a difference.
However, adversarial attacks depend on humans unanimously declaring the
adversarial attack as misclassified.
Of course, it is easy to find some other example that is classified differently. It is
much more difficult, though, to find an input close to a given, correctly classified
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one. Therefore several methods trying to find the closest adversarial attack have
been proposed. Most of them are based in one way or another on the loss func-
tion’s gradient with respect to the input variables determining the direction in
which to search for an adversarial attack. Szegedy et al. (SZS+14) based their
procedure on a constrained L-BFGS optimization incorporating not only the neu-
ral network’s gradient with respect to the input but also the second derivatives
via the Hessian matrix. Goodfellow et al. (GSS15), on the other hand, opted
for a faster method - the Fast Gradient Sign Method (FGSM) - projecting the
gradient into the corner of a hypercube with radius 𝜀. Other approaches focus on
manipulating the neural network’s logits (PMJ+16) instead of its loss function,
projecting onto the decision boundary (MFF16), keeping the number of input
dimensions changed small (SVS19) or rephrase finding adversarial attacks as a
new optimization problem (CW17b) solved with the Adam (KB15) optimizer.
None of the aforementioned methods yield guarantees on how close the adver-
sarial attacks are to the original input. These can only be obtained by finding
adversarial attacks utilizing a neural network verification method (KBD+17),
which exhaustively searches for them and can thus approximate them arbitrarily
well (see Chapter 4).

As can be seen by this brief overview, the topic of adversarial attacks for un-
supervised neural networks has been mostly neglected. While there are neural
networks for unsupervised tasks such as anomaly detection (SY14), cluster-
ing (SSL+18) or dimensionality reduction (HS06), almost all research effort is
directed towards supervised classification neural networks. In these cases, ad-
versarial attacks are based on labeled data defining classification borders which
can be overstepped. For unsupervised neural networks, though, it is not so
clear what an adversarial attack could be. What exactly does it mean to be an
adversarial attack for, example given, the task of dimensionality reduction? This
thesis suggests one possible answer for the paradigmatic case of autoencoders
(HHWB02). We effectively lift the notion of adversarial attacks from labels to a
more general concept of quality assessment. For the case of autoencoders, this
means that we base our definition of unsupervised adversarial attack on one of
their performance measure: the reconstruction error.

3.2 Defending Against Adversarial Attacks
Szegedy et al. (SZS+14) launched a large amount of research on adversarial
attacks into different directions. On the one hand, there are papers crafting more
andmore types of attacks against any given neural network (HKR+20b; BCM+13)
as shown above. But beyond those, the threat of adversarial attacks served as
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motivation to make neural networks resilient against them. Adversarial train-
ing (MMS+18) trains the neural network on adversarial attacks created for this
purpose. While this decreases the vulnerability against the type of adversarial
attack it was trained on, other adversarial attacks are still undefended against.
Masking (ACW18) intends to decrease the attacker’s capability by revealing less
information to the attacker. In essence, they step away from whitebox attacks and
allow the attacker to rely solely on input-output pairs obtained by, for example, a
web API. However, it turns out that a blackbox model suffices to create adver-
sarial attacks as they transfer between different models (DLP+18). Therefore we
can create a substitute model based on which we can craft the adversarial attack
(PMG+17).

Our thesis contributes to this area in multiple ways. First, we address adversar-
ial training in Chapter 4, reducing the worst-case-error. Secondly, our training
regularization in Chapter 5 increases the model’s provable robustness and de-
creases the amount of unsupervised adversarial attacks. This is in line with
other approaches to increasing resilience through the training process. Finally,
we address the question of how models can be made more resilient as a post-
processing step. By building on the particular structure of ensemble models we
can, similarly to (SK01), adjust the given model for our purposes. In our case,
we change it in such away that it becomesmore robust against adversarial attacks.

3.3 Neural Network Verification
As we have seen before, any attempt to defend against adversarial attacks may
not result in enduring security: for every new defense, a new attack is created
and most defenses work only for a subset of attacks (TB19). Therefore the only
way to ensure lasting reliability for a neural network is to prove that there can be
no adversarial attack on it. In this case, irrespective of the attacker’s method, he
can simply not craft an attack. To this end, we utilize neural network verification
analyzing a given neural network with respect to a given property.

3.3.1 Use Cases of Neural Network Verification
Neural network verification is inspired by formal methods developed for general
software verification (BM07) and essentially aims at proving that a given neural
network works as intended. This can mean much more than just defending
against adversarial attacks and includes properties such as denoising (Ben22a),
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or correct airplane steering (OPM+19).
Moreover, on the technical level more than just robustness against adversarial
attacks can be verified. We have noted that adversarial attacks arise from the
very unstable behavior of neural networks. Thus Lipschitz continuity (O’S06) is
explored and verified (WZC+18; ZZH19) as it limits the amount by which the
neural network’s output can change as its input changes. Furthermore, safety
properties can be encoded via so-called reachability analysis (XTJ18), asking
what are the potential outputs for a given set of inputs. Sometimes verification
procedures are even embedded in other verification procedures. For example, one
can use them to bound the values of particularly important ReLUneurons, thereby
refining the analysis of the actual neural network. Also, one may use smaller,
more specialized neural networks within a larger one and verify a controller,
assuming that the smaller one works correctly (XKN22).

3.3.2 A Different Evaluation Paradigm
The most important distinction between neural network verification and other
machine learning test schemes lies in the space considered. The usual way of
testing machine learning models works using a finite test dataset for which
some evaluation metric is calculated (GBC16; Bis07). However, from a finite test
dataset, we can obviously not conclude a guarantee over an infinite value domain
from which adversarial attacks can be crafted. Thus, the traditional test setting is
not suited for formal proofs about a given neural network’s behavior.
Instead, neural network verification requires a way to analyze the mathematical
function the neural network conveys. However, neural networks are extremely
complicated functions impeding a simple analysis of their behavior. Therefore
specialized tools such as for example constraint-based solvers are required to
model the network and allow for an automated verification.

3.4 Scaling Up the Verification Process
One severe caveat verification procedures have is their lack of scalability to
large-scale neural networks. As the problem of neural network verification is
NP-complete (WZC+18) it becomes computationally intractable. However, the
need to verify neural networks does, of course, not end with small-scale neural
networks. Therefore considerable effort has been made to speed up the verifica-
tion procedure resulting in different research branches1. This is further fueled by

1While we present these methods separately, current state-of-the-art methods such as
(FMJV22) combine multiple approaches
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the VNN competition (MBB+23) rewarding the number of verification instances
which can be solved correctly. This highlights again that scalability is regarded
as one of the main challenges in neural network verification. In the following, we
will briefly discuss the main approaches currently used and give examples for
each idea to speed up the verification process.

3.4.1 Exact Verification Methods
Exact verification methods are both sound and complete. This means that they
will either return a proof of the property under scrutiny or a counterexample vio-
lating that property. These two types of resultsmake thesemethods quite versatile
as both of them can be used. At their core, exact verification employs constraint-
based methods, most notably SMT solvers (KBD+17) and MILP (TXT19) solvers.
They encode the neural network as a logical conjunction of constraints and can
only be used for piecewise affine neural networks. On top of that, many heuris-
tics have been implemented, speeding up the verification process significantly.
Planet (Ehl17) transfers the ReLU function into constraints handled by the SAT
solver and incorporates a linear approximation of the overall neural network
behavior. ReluPlex (KBD+17) on the other hand integrates the ReLU function
into an LP formulation of the problem splitting on them only if the constraints
cannot be satisfied by pivot operations. Marabou (WOZ+20) builds on top of
ReluPlex and combines bound tightening for ReLU neurons, a sophisticated
branch-and-bound procedure as well as a heuristic on which ReLU neurons to
branch.
As these tools were developed and released during the research on the different
topics, our experiments are based on different solvers. The experiments done in
Chapter 4 are based on the Z3 SMT solver (dMB08), whereas all experiments
that followed are based on the Marabou framework due to its versatility and ease
of use.

3.4.2 Approximate Verification Methods
The exactness of the aforementioned methods comes at the price of high compu-
tational complexity, making them suitable only for small networks. Therefore
approximate methods have been developed, sacrificing completeness for speed.
Many verification problems essentially ask which outputs the neural network
can produce, given a set of inputs. If all these possible outputs share a partic-
ular property, such as being of the same class, the neural network is deemed
safe. Therefore these methods overapproximate the outputs the neural network
might produce. If, for a set of inputs, even the overapproximation of the outputs
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shares the property of interest, then - given those inputs - surely all possible
outputs of the neural network will. The CROWN algorithm (ZWC+18) extending
the FastLin algorithm proposed by (WZC+18), for example, yields an upper
and a lower bound function for each output neuron by recursively propagating
them through the network. The ERAN framework (SGPV19) on the other hand
implements so-called abstract interpretation which propagates sets given by in-
tervals, zonotopes or polytopes directly through the network. Finally, PRIMA
(MMS+22) calculates optimal bounds for a subset of highly interdependent ReLU
neurons, thereby leaning towards exact verification methods. The main challenge
in all these approximate verification methods is to cleverly capture dependencies
among different neurons. Lastly, note that one may also emply an anytime algo-
rithm: one that maintains and refines an approximate solution while converging
to an exact one (RWS+19).

3.4.3 Changing the Perspective
All of the aforementioned methods try to improve the verification process itself.
That is, they do not regard the verification instance as under their control. While
in many applications this may be a reasonable assumption, in this thesis, we
explore how we can adjust the neural network such that is becomes easier to be
verified.
By incorporating a regularization term into training, we effectively reduce the
number of affine subfunctions - the main driver for neural network complexity.
This results in a significant speedup to a non-regularized network using the same
verification engine as we will demonstrate in Chapter 5.
Our second approach to alleviating the scalability issue is based on exploiting an
ensemble structure. We propose to verify a large set of small neural networks
instead of one large neural network as, in that case, verification runtime grows
linearly with the number of networks and the verification process becomes more
parallelizable.
Thus, by giving these two new perspectives, we can add to the vast body of re-
search on scalability. As a further advantage, all the aforementioned approaches
for given neural networks can, of course, be combined with our proposed solu-
tions.

30



Adversarial Attacks on Autoencoders 4
Autoencoders are widely used for many unsupervised learning tasks such as
cluster analysis (CGG19), compression (MCSK17), anomaly detection (SY14),
as well as a variety of pre-processing steps (Gon16; MCSK17; PS14) in other ma-
chine learning pipelines. The general assumption is that data can be compressed
into a lower dimensional latent space by an encoder function extracting the most
relevant features of the data distribution. From this latent representation, the
decoder tries to reconstruct the original input. As the latent representation is an
information bottleneck, the autoencoder’s input deviates from its output. Typi-
cally the autoencoder reconstructs better in dense regions (regions with many
training examples) than in regions with few training examples (SY14), giving
rise to its application in anomaly detection. Moreover, even the small errors in
reconstruction that inevitably occur in dense regions are a desirable property
as they allow it to be used, example given, for denoising. At the same time, it
is necessary to control these errors for all points in dense regions because oth-
erwise, the result - whether it is the latent representation or the reconstruction
- is less useful. To this end, current approaches to assess autoencoders either
measure the mean square error (MSE) internally on the unsupervised training
data or external performance on some supervised downstream application, such
as classification performance.
However, a major shortcoming of these approaches is that they cannot provide a
formal guarantee in terms of the maximum deviation between input and output
of the autoencoder as it is evaluated on a finite number of inputs. We are not
aware of any existing scheme to calculate the largest error of an autoencoder in
an infinite input space. This lack of formal quality guarantees for autoencoders
leads to a very limited applicability of such unsupervised learning schemes for
safety-critical applications. For instance, it is particularly important to consider
the maximum deviation when working with data containing clusters. In such
situations, the autoencoder should not mix up the clusters because otherwise,
the autoencoder’s results are meaningless. If the maximum deviation for the
respective clusters is small enough, though, the autoencoder is guaranteed to
keep the clusters separated.
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To address this and other shortcomings of unsupervised learning with autoen-
coders, weprovide the firstmethodology to bound an autoencoder’sworst-case-error
(wce) in a safety-critical region. As a first step towards this goal, we define the
notion of unsupervised adversarial attacks, which are inputs (not necessarily con-
tained in the training or test data) on which the autoencoder’s error exceeds a
user-defined threshold. Then we define the worst-case-error of an autoencoder
as the largest error that can possibly manifest. Since we cannot expect to find
a global maximum of the error (as there is no reason for the error itself to be
bounded), we restrict our search to user-defined regions with an infinite value
domain of the input space. We leave this region as a parameter to be provided by
the user as it clearly depends on knowledge about the use case at hand, charac-
teristics of the training data, or other domain-specific information.
Based on the constraint-solving framework given in Chapter 2, we reduce the
problem of finding an unsupervised adversarial attack to a satisfiability check
of a formula in Real Arithmetic. Thus we apply highly-optimized, off-the-shelf
satisfiability modulo theory (SMT) solvers, which can effectively reason about
the infinite domains and, hence, can prove the existence or non-existence of unsu-
pervised adversarial attacks. Once we have found an unsupervised adversarial
attack, it serves as a lower bound for the worst-case-error. Moreover, a simple
binary search allows us to approximate the worst-case-error arbitrarily well. Note
that naive approaches, such as sampling, cannot provide an upper bound on the
worst-case-error of an autoencoder as an exhaustive search of the input space is
intractable. Moreover, our experimental evaluation shows that sampling often
underestimates that worst-case-error.
We demonstrate the effectiveness of our QUGA (QUality Guarantees for Autoen-
coders) approach and evaluate our quality guarantees for unsupervised learning
on a synthetically created dataset as well as on a real dataset. In both cases, we
can find unsupervised adversarial attacks as well as formal quality guarantees by
lower and upper error bounds in safety-critical regions. As the worst-case-error
is a very general concept, we also discuss follow-up works based on it. First, we
show how it can be leveraged to get so-called error landscapes describing how
the reconstruction error differs across different regions. Secondly, for the task of
anomaly detection, we extract a region in which all normal inputs are, thereby
using the worst-case-error in an interpretation context. Lastly, we demonstrate
how the worst-case-error can be reduced by means of adversarial training.

4.1 Related Work
Adversarial Attacks in Supervised vs. Unsupervised Learning:
In the area of supervised learning, adversarial attacks have been widely studied

32



4.1 Related Work

(GSS15; DDM+04; SZS+14). While common definitions of adversarial attacks
rely on the robust separation of class labels, we aim at unsupervised learning
without given labels. Therefore supervised definitions do not cover the unsuper-
vised learning case. Similarly existing approaches of adversarial attacks in unsu-
pervised learning focus on a particular task such as image retrieval (FCDX20)
assuming that there is a notion of a wrong output. In contrast to these approaches
we define adversarial attacks directly in terms of the intrinsic learning objective
of autoencoders which is - as reflected by its loss function - approximating the
identity function.
Empirical Quality Assessment vs. Formal Guarantees:
Common evaluation schemes for autoencoders do an empirical quality assess-
ment based on a given set of training data. The variety of quality measures
ranges from simple average MSE to stability and robustness measures (LRM+12;
VLL+10; MSY+09). All of these measures have in common that they rely on
the given training or test data. In contrast to such empirical evaluation, many
safety-critical applications require formal guarantees explicitly also on unseen
data. We propose such formal guarantees for trained autoencoders. Given a
safety-critical data region, our method is able to either find an adversarial attack
or prove that such an attack does not exist.
External vs. Internal Evaluation:
Common external evaluation uses, for example, the classification quality of a
downstream task following the autoencoder as an indirect measure of quality
for the autoencoder itself. However, by evaluating multiple tasks, one can never
assign the quality assessment solely to a single task. This process is prone to mix-
up and dependency effects between the different stages of the process. Therefore,
we belief that the modular evaluation of individual tasks is an additional require-
ment for safety-critical systems. Such a design-by-contract has been successfully
established in modular software verification (BM07). Similarly, we propose the
first formal guarantee of an autoencoder given by an upper bound on the largest
error in the entire input domain.
Verification of Neural Networks:
Our work is related to formal methods and verification of neural networks in
general (see for example (BIL+16; KBD+17)). However, most of the research in
this area focuses on the problem of finding adversarial attacks in supervised
learning tasks and lacks formal insights for unsupervised learning. In contrast,
our algorithm searches for unsupervised adversarial attacks. It does so by reduc-
ing the problem to a series of satisfiability checks in a Real Arithmetic and applies
a highly-optimized Satisfiability Module Theories (SMT) solver as computational
back-end to perform these checks. We have implemented a prototype of our
algorithm on top of the Z3 SMT solver (dMB08) which provides a convenient
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API and is one of the most popular tool in the domain of software verification.
For larger, real-world scenarios, however, one would clearly use a solver that
is optimized for constraints arising from feed-forward networks, such as Relu-
Plex (KBD+17), Marabou (WOZ+20) or Planet (Ehl17). Apart from constraint
solving, other techniques from the area of deductive software verification have
been used for finding adversarial attacks in supervised learning and proving
robustness properties of feed-forward neural nets. The perhaps most popular
approach is abstract interpretation (GMD+18; SGPV19). However, abstract in-
terpretation inherently overapproximates the behavior of the neural network
and, hence, can only be used to prove safety properties. However, neither our
unsupervised adversarial attacks nor our worst-case-error of an autoencoder can
be achieved by their safety properties.

4.2 QUGA: Problem Statement
In general, an autoencoder tries to reproduce its input while propagating it
through a latent space which typically has fewer dimensions than the input/
output space. This latent space serves as an information bottleneck and, hence,
introduces errors to the identity function the autoencoder is supposed to learn.
However, most applications of autoencoders rely on a good approximation of
the identity function, and we are naturally interested in quantifying its error.
More precisely, our goal is to give formal guarantees in terms of the maximum
deviation from the identity function.
As a first step towards this goal, we define the notion of adversarial attacks on
autoencoders. Intuitively, such adversarial attacks are inputs on which the “dis-
tance” between the input and the output of the autoencoder is larger than a
(user-defined) threshold 𝜀 > 0. Given the lack of definitions for adversarial
attacks in unsupervised learning (and in particular for autoencoders), we define
adversarial attacks based on an abstract metric dist, which maps two data points
to a non-negative real number. However, we stress that the exact metric is not
important for our definition (for example, any 𝐿𝑝-norm could be used) because
all autoencoders share the goal of reconstructing the input.

Definition 4.2.1 (𝜀-adversarial attack). Let 𝑓∶ ℝ𝑁 → ℝ𝑁 be an autoencoder, dist ∶ ℝ𝑁×
ℝ𝑁 → ℝ+ a metric, and 𝜀 > 0. An 𝜀-adversarial attack is a point 𝑥 ∈ ℝ𝑁 such that

dist(𝑥, 𝑓(𝑥)) > 𝜀

(a point on which the input and output of 𝑓 deviate more than 𝜀).
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Note that our definition of 𝜀-adversarial attacks is not restricted to inputs in the
training or test sets but allows any input 𝑥 ∈ ℝ𝑁. This property makes finding
𝜀-adversarial attacks a very challenging task and, in contrast to traditional inter-
nal evaluation (for example, the mean square error) on training data, to surely
find an adversarial attacks or to conclude that no 𝜀-adversarial attack exists is a
computationally hard problem.
In the context of safety-critical systems, however, it is not enough to identify
individual 𝜀-adversarial attacks, but it is necessary to know the worst-case-error
(the largest error) a given autoencoder produces. Of course, we cannot expect
to find a global maximum of the error as there is no reason for the error itself
to be bounded. Therefore, we restrict the region for which we want to find a
bound on the error. This region depends on knowledge about the use case at
hand, characteristics of the training data, or other domain-specific information.
Thus, we leave it as a parameter to be provided by the user.

Definition 4.2.2 (Worst-case-error (wce) of autoencoders). Let 𝑓∶ ℝ𝑁 → ℝ𝑁 be an
autoencoder, dist ∶ ℝ𝑁 × ℝ𝑁 → ℝ+ a metric, and 𝐴 ⊆ ℝ𝑁 an (infinite) safety-critical
region of inputs. Then, the worst-case-error of 𝑓 in 𝐴 is defined as

wce(𝑓, 𝐴) = sup {dist(𝑥, 𝑓(𝑥)) ∈ ℝ+ ∣ 𝑥 ∈ 𝐴}

(the largest deviation of an input in the region 𝐴 from the output).

Definition 4.2.2 serves as our novel quality criterion for autoencoders that reflects
how good the identity function is learned in the specific region of interest. Our
wce-definition is inspired by many areas of reliable system design, including soft-
and hardware verification, as wce(𝑓, 𝐴) guarantees that a system 𝑓 employed in
a safety-critical region 𝐴 stays within its design parameters. Furthermore, our
notion of wce overcomes limitations of classical quality metrics that are defined
on finite training data only. We actively design wce for typically infinite data
domains of safety-critical regions. In total, this leads us to the main problem
statement, which we call QUGA: QUality Guarantees for Autoencoders.

Problem 4.2.1 (QUGA: Quality Guarantees for Autoencoders). Given an autoen-
coder 𝑓∶ ℝ𝑁 → ℝ𝑁, a metric dist ∶ ℝ𝑁 × ℝ𝑁 → ℝ+, and a region 𝐴 ⊆ ℝ𝑁, compute
wce(𝑓, 𝐴).

In general, computing the worst-case-error is a very challenging problem as it
involves reasoning about an infinite number of inputs (not just training data) and
does not make any assumption about the autoencoder, the metric or the region.
In the following section, we consider a restricted version of Problem 4.2.1 and
show how a reduction to constraint solving can be leveraged for this restricted
version.
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4.3 Solution Framework
In this section, we provide a framework for computing 𝜀-adversarial attacks and
the worst-case-error of autoencoders. To make these problems computationally
tractable, we consider a restricted version of Problem 4.2.1. The following restric-
tions are designed in such a way that the solution framework remains applicable
to a wide range of autoencoders used in practice. Essentially, we restrict our-
selves to piecewise affine neural networks and ensure that Problem 4.2.1 can be
formulated using a logical conjunction of linear constraints:

1. We assume that the neurons of the autoencoder have Linear or ReLU (Rec-
tified Linear Units) activation functions1.

2. We assume the metric to be the 𝐿1 or 𝐿∞-norm.

3. We assume the safety-critical region 𝐴 to be a finite union of convex compact
polytopes (each polytope is bounded, closed and an intersection of half-
spaces in the input space ℝ𝑁).

4. We approximate the worst-case-error up to a user-defined accuracy 𝛿 > 0
because our framework can find 𝜀-adversarial attacks for fixed 𝜀 only.

As the next step, we formally introduce autoencoders (Section 4.3.1). In Sec-
tion 4.3.2, we then show how the existence of an 𝜀-adversarial attack can be
phrased as a satisfiability problem in Linear Real Arithmetic, one of the theories
supported by the SMT framework. This allows us to use highly-optimized SMT
solvers to do a symbolic search on the infinite input space. In Section 4.3.3, we
finally provide an effective method to approximate the worst-case-error of an au-
toencoder by repeatedly solving the easier problem of determining the existence
of 𝜀-adversarial attacks for different values of 𝜀.

4.3.1 Autoencoders
Intuitively, an autoencoder is a standard feed-forward neural network just as
described in Section 2.1. However, they are supposed to reconstruct their input
as reflected by the loss function on which they are trained2:

𝐿𝑟𝑒𝑐𝑜𝑛(𝑥) = ‖𝑓(𝑥) − 𝑥‖2
2.

1Note that other activation functions used for convolutional and pooling layers could be used
here too. We choose to use only Linear and ReLU activation functions for the sake of simplicity

2There are other loss functions as well, but we restrict ourselves to autoencoders trained with
this reconstruction loss.
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Therefore the dimensions of the input space and the output space are the same.
Furthermore, autoencoders can be divided into the encoder mapping inputs to
a so-called latent space and the decoder trying to inverse that map. However,
as the latent space typically has fewer dimensions, this inversion does not work
everywhere, introducing reconstruction errors. Note here, that for training we
use the 𝐿2 loss function which is common practice for autoencoders while for
their analysis and the worst-case error we rely on the 𝐿∞ loss function. Figure 4.1
on Page 39 shows a very small example of an autoencoder consisting of two-
dimensional input/output layers and a single-dimensional latent space with no
other hidden layers in between.
We briefly recall some notations from Section 2.1. For an autoencoder 𝑓, we use
𝐿 + 1 to denote the number of layers and 𝑙𝑘 ∈ ℕ ⧵ {0} with 𝑘 ∈ {0, … , 𝐿} to
represent the number of neurons in Layer 𝑘. Layer 0 is the input layer, layer 𝐿 the
output layer, and the remaining layers are the hidden layers. As stated above, we
have that 𝑙0 = 𝑙𝐿 = 𝑁.

4.3.2 Identifying Adversarial Attacks
Let us now describe how to translate the problem of finding an 𝜀-adversarial
attack of an autoencoder 𝑓 into LRA. At its core is a formula 𝜑𝑓 that encodes
the function computed by 𝑓 in LRA. This formula ranges over variables 𝑥𝑖,𝑗 for
neuron 𝑗 in layer 𝑖. Its precise description can be found in Section 2.2.2. Moreover,
we add further constraints in the form of formulas 𝜑𝐴 and 𝜑dist

𝜀 which encode the
input region 𝐴 and the metric (including the existence of an 𝜀-adversarial attack)
respectively. The resulting problem encoding is then given by the conjunction

𝜑𝑓
𝜀,𝐴 ≔ 𝜑𝑓 ∧ 𝜑𝐴 ∧ 𝜑dist

𝜀 (4.1)

which is satisfiable if and only if an 𝜀-adversarial attack exists. Moreover, recall
that - if satisfiable - SMT solvers return an interpretation that assigns a value to
each neuron in our case. This is very helpful because a satisfying interpretation
of 𝜑𝑓

𝜀,𝐴 carries sufficient information to extract an 𝜀-adversarial attack. Let us
now describe 𝜑dist

𝜀 and 𝜑𝐴 in detail.

Encoding the Region:

Recall that we assume that the safety-critical region 𝐴 in which to search for
𝜀-adversarial attacks is provided as a finite union of compact convex polytopes.
Formally, a convex polytope 𝒫 is the finite intersection of half-spaces ℋ𝑖 of the
form
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4 Adversarial Attacks on Autoencoders

ℋ𝑖 = {𝑥 ∈ ℝ𝑁 ∶
𝑁

∑
𝑗=1

𝑎𝑖,𝑗𝑥𝑗 ≤ 𝑐𝑖}

for 𝑎𝑖,𝑗, 𝑐𝑖 ∈ ℝ. Thus, restricting the search space for 𝜀-adversarial attacks to a
convex polytope 𝒫 consisting of 𝑚 half-spaces can simply be achieved by the
formula

𝜓𝒫 ≔ ⋀
1≤𝑖≤𝑚

[ ∑
1≤𝑗≤𝑙0

𝑎𝑖,𝑗𝑥0,𝑗 ≤ 𝑐𝑖].

Here, “∧” refers to the intersection of half-spaces given by the conjunction in the
language of SMT solvers. Moreover, the final formula is then the disjunction

𝜑𝐴 ≔ ⋁
𝒫∈𝐴

𝜓𝒫

for all polytopes 𝒫 constituting to the given region 𝐴. Here, “∨” gives the union
over the different polytopes - again translated for SMT solvers.

Encoding the Existence of an 𝜀-Adversarial Attack:

We will first describe 𝜑dist
𝜀 for dist being the 𝐿∞-distance derived from the 𝐿∞-

norm:
dist(𝑥, 𝑦) = ‖𝑥 − 𝑦‖∞ = max

𝑖∈{1,…,𝑁}
|𝑥𝑖 − 𝑦𝑖|

In the 𝐿∞-norm, an input is an 𝜀-adversarial attack if there exists a dimension
𝑖 ∈ {1, … , 𝑁} in which the absolute value of the difference of the input and the
output in this dimension is larger than 𝜀. This can be expressed in LRA by

𝜑dist
𝜀 ≔ ⋁

1≤𝑗≤𝑁
[[𝑥0,𝑗 − 𝑥𝐿,𝑗 > 𝜀] ∨ [𝑥𝐿,𝑗 − 𝑥0,𝑗 > 𝜀]].

Before we continue with the final formula 𝜑𝑓
𝜀,𝐴, let us briefly illustrate the

constraints generated so far using an example. Recall that the general encoding
of the neural network can be found in Section 2.2.2.

Example 4.3.1. Consider the simple autoencoder (with ReLU-activation) in Figure 4.1,
consisting of two neurons in the input layer, one neuron in the single hidden layer, and
two neurons in the output layer. Moreover, assume that we are given one polytope 𝒫
consisting of the intersection of four half-spaces −1 ≤ 𝑥, 𝑥 ≤ 1, −1 ≤ 𝑦, and 𝑦 ≤ 1 (a
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Figure 4.1: A small example of an autoencoder.

unit box around the origin). Then, the formulas 𝜑𝑓, 𝜑𝐴, and 𝜑dist
𝜀 are given by

𝜑𝑓 ≔ [𝑦1,1 = 𝑥0,1 + (−1)𝑥0,2]
∧[𝑥1,1 = ite(𝑦1,1 < 0, 0, 𝑦1,1)]
∧[𝑥2,1 = 2𝑥1,1]
∧[𝑥2,2 = (−2)𝑥2,2]

𝜑𝐴 ≔ [𝑥0,1 ≤ 1]
∧[𝑥0,1 ≥ −1]
∧[𝑥0,2 ≤ 1]
∧[𝑥0,2 ≥ −1]

𝜑dist
𝜀 ≔ [𝑥0,1 − 𝑥2,1 > 𝜀]

∨[𝑥2,1 − 𝑥0,1 > 𝜀]
∨[𝑥0,2 − 𝑥2,2 > 𝜀]
∨[𝑥2,2 − 𝑥0,2 > 𝜀]

Finally, we combine all constraints generated so far into a single formula 𝜑𝑓
𝜀,𝐴 ≔

𝜑𝑓∧𝜑𝐴∧𝜑dist
𝜀 . As Theorem4.3.1 states, this formula indeed expresses the existence

of an 𝜀-adversarial attack of the autoencoder 𝑓 in the region 𝐴.

Theorem 4.3.1. let 𝑓 be an autoencoder, 𝐴 a region, dist the 𝐿∞ metric, 𝜀 > 0, and
𝜑𝑓

𝜀,𝐴 as defined above. Then, the following two properties hold:

1. If an 𝜀-adversarial attack exists in the region defined by 𝐴, then 𝜑𝑓
𝜀,𝐴 is satisfiable.

2. If 𝜑𝑓
𝜀,𝐴 is satisfiable, say by the interpretation ℐ, then (ℐ(𝑥0,1), … , 𝑖(𝑥0,𝑙0

)) is an
𝜀-adversarial attack in the region defined by 𝐴.
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Proof. To prove the first statement, we formulate a satisfying interpretation ℐ for
𝜑𝑓

𝜀,𝐴, using an 𝜀-adversarial attack, say 𝑣𝜀 = (𝑣0,1, 𝑣0,2, ⋯ 𝑣0,𝑙0
), in the region 𝐴.

To do that, we assign values to each variable in 𝜑𝑓
𝜀,𝐴 in the following manner:

• We set ℐ(𝑥0,𝑖) = 𝑣0,𝑖 for each 𝑖 ∈ {1, ⋯ , 𝑙0}.

• For 𝑣𝜀 propagating through 𝑓, we set ℐ(𝑥𝑘,𝑗) = 𝑣𝑘,𝑗 for each 𝑖 ∈ {1, ⋯ , 𝑙𝑘}
and 𝑘 ∈ {1, ⋯ , 𝐿} where 𝑣𝑘,𝑗 is the output of Neuron 𝑗 in Layer 𝑘.

We prove that the above interpretation indeed satisfies 𝜑𝑓
𝜀,𝐴 as a conjunction

of three formulas 𝜑𝑓, 𝜑𝐴 and 𝜑𝑑𝑖𝑠𝑡
𝜀 . First, we observe that for a linear neuron 𝑣𝑘,𝑗

𝑣𝑘,𝑗 =
𝑙𝑘−1

∑
𝑖=1

𝑊 (𝑘)
𝑖,𝑗 𝑣𝑘−1,𝑖 + 𝑏(𝑘)

𝑗

for 𝑘 ∈ {1, ⋯ , 𝐿}, 𝑗 ∈ {1, ⋯ , 𝑙𝑘}. This indicates that the formulas 𝜓𝑘,𝑗 as defined
in Equation 2.5 are satisfied. Similarly, if 𝑣𝑘,𝑗 is a ReLU neuron the formula 𝜓𝑘,𝑗
as defined in Equation 2.6 is satisfied. Consequently, 𝜑𝑓, being a conjunction of
the former formulas, is satisfied.

Secondly, 𝑣𝜀 belongs to the region 𝐴 and hence, satisfies 𝜑𝐴. Lastly, following
the definition of 𝜀-adversarial attack, we have that at least in one dimension
𝑖 ∈ {1, … , 𝑙0} the absolute difference between 𝑣0,𝑖 and 𝑣𝐿,𝑖 is greater than 𝜀.
Therefore

𝜑𝑑𝑖𝑠𝑡
𝜀 = ⋁

1≤𝑖≤𝑙0

[𝑣0,𝑖 − 𝑣𝐿,𝑖 > 𝜀] ∨ [𝑣𝐿,𝑖 − 𝑣0,𝑖 > 𝜀],

is satisfied as well.
To prove the second statement, we derive a 𝜀-adversarial attack in the region
defined by 𝐴 from a satisfying interpretation ℐ of 𝜑𝑓

𝜀,𝐴. For the sake of brevity, let
ℐ(𝑥𝑘,𝑗) = 𝑣𝑘,𝑗 for 𝑘 ∈ {0, ⋯ , 𝐿} and 𝑗 ∈ {1, ⋯ , 𝑙𝑘} and 𝑣𝜀 = (𝑣0,1, 𝑣0,2, ⋯ , 𝑣0,𝑙0

).
Now, we prove that when 𝑣𝜀 is propagated through 𝑓, the output of Neuron 𝑗

in Layer 𝑘 is 𝑣𝑘,𝑗. We prove this fact by induction on the layers of 𝑓. For the base
case, observe that the output of Neuron 𝑗 in Layer 0 is 𝑣0,𝑗 since (𝑣0,1, ⋯ , 𝑣0,𝑙0

)
is an input to 𝑓. For the inductive step, observe that for a linear neuron 𝑣𝑘,𝑗, we
have

𝑣𝑘,𝑗 =
𝑙𝑘−1

∑
𝑖=1

𝑊 (𝑘)
𝑖,𝑗 𝑣𝑘−1,𝑖 + 𝑏(𝑘)

𝑗

because 𝜓𝑘,𝑗 is satisfiable under ℐ. Now, due to induction hypothesis, 𝑣𝑘−1,𝑖 is the
output of Neuron 𝑖 in Layer 𝑘 − 1 for 𝑖 ∈ {1, ⋯ , 𝑙𝑘−1}. The above relation exactly
combines the output from Layer 𝑘 − 1 as an autoencoder would do and ensures
that 𝑣𝑘,𝑗 is the output of Neuron 𝑗 in Layer 𝑘. Likewise, if 𝑣𝑘,𝑗 is a ReLU neuron,
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Algorithm 1: Computing wce up to accuracy 𝛿
Input: Autoencoder 𝑓, Region 𝐴, metric dist, start value 𝜀0 > 0, accuracy

𝛿 > 0
1 𝜀low = 𝜀up = 𝜀0

2 Construct 𝜑𝑓
𝜀0,𝐴 and check satisfiability using an SMT solver

3 if 𝜑𝑓
𝜀0,𝐴 is satisfiable then

4 Increase 𝜀up by 𝜀up ∗ 2 until 𝜑𝑓
𝜀up,𝐴 becomes unsatisfiable

5 else
6 Decrease 𝜀low by 𝜀low/2 until 𝜑𝑓

𝜀low,𝐴 becomes satisfiable or 𝜀low < 𝛿 (in
which case return 𝜀low)

7 𝜀⋆ ← Binary-search
𝑓,𝐴,dist

(𝜀low, 𝜀up, 𝛿)) // involves calls to SMT

solver
8 return 𝜀⋆

the corresponding formula 𝜓𝑘,𝑗 is satisfied, yielding the correct calculation for
the autoencoder.

Moreover, 𝜑𝐴 being satisfiable under interpretation ℐ implies that 𝑣𝜀 belongs
to the region defined by 𝐴. Finally, since 𝜑𝑑𝑖𝑠𝑡

𝜀 is satisfiable under ℐ, we have

⋁
1≤𝑖≤𝑙0

[[𝑣0,𝑗 − 𝑣𝐿,𝑗 > 𝜀] ∨ [𝑣𝐿,𝑗 − 𝑣0,𝑗 > 𝜀]]

indicating that 𝑣𝜀 is an 𝜀-adversarial attack.
Note that while we prove the theorem for the 𝐿∞ metric only the same statements
hold true for other metrics, which can be encoded for SMT solvers.

Theorem 4.3.1 now suggests a simple procedure to find 𝜀-adversarial attacks:
simply construct 𝜑𝑓

𝜀,𝐴, run an SMT solver, and return (ℐ(𝑥0,1), … , ℐ(𝑥0,𝑙0
)) if a

satisfying assignment ℐ ⊧ 𝜑𝑓
𝜀,𝐴 exists. However, the SMT solver might report that

𝜑𝑓
𝜀,𝐴 is unsatisfiable. In this case, Theorem 4.3.1 guarantees that no 𝜀-adversarial

attack exists. We exploit this property now to approximate the worst-case-error
of an autoencoder.

4.3.3 Approximating the Worst-Case-Error
We now provide an algorithm for approximating the worst-case-error of an
autoencoder. Our algorithm, which is sketched in pseudocode in Algorithm 1, is
based on the method for finding 𝜀-adversarial attacks from Section 4.3.2. Apart
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from the autoencoder itself, the safety-critical region, and a metric, it expects two
additional arguments: a start value 𝜀0 > 0 for the search and an accuracy value
𝛿 > 0. The start value 𝜀0 is used as an initial estimate for wce(𝑓, 𝐴) and can be
either initialized arbitrarily or based on domain knowledge. The accuracy, on
the other hand, is a measure of how close the output of Algorithm 1 is to the
actual value of wce(𝑓, 𝐴). A smaller 𝛿 results in a more precise approximation of
wce(𝑓, 𝐴), but it also increases the computation time.
Algorithm 1 uses a binary search to find a sufficiently close approximation of
wce(𝑓, 𝐴) (see line 7). To this end, it uses two values 𝜀low < 𝜀up for which
it maintains the invariant that (a) there exists an 𝜀low-adversarial attack and
(b) there does not exist an 𝜀up-adversarial attack in the given region. Hence,
wce(𝑓, 𝐴) is guaranteed to lie in the interval [𝜀low, 𝜀up] (unless there exists only
an 𝜀-adversarial attack for 𝜀 < 𝛿; we leave out this side case in our analysis). The
initial values for 𝜀low and 𝜀up are obtained by starting with 𝜀0 and increasing 𝜀up
or decreasing 𝜀low until the invariant is established (see lines 1 to 6). Subsequently,
the binary search then repeatedly runs the procedure for finding 𝜀-adversarial
attacks and updates the bounds 𝜀low and 𝜀up accordingly. If it finds an adversarial
attack, it increases 𝜀low to the respective value, else it decreases 𝜀up. Algorithm 1
stops once the interval [𝜀low, 𝜀up] is small enough (less than 2𝛿). In summary,
Algorithm 1 provides an effective procedure to compute the worst-case-error of
an autoencoder up to a user-defined accuracy 𝛿 > 0, as formalized in the theorem
below.

Theorem 4.3.2. Let 𝑓 be an autoencoder, 𝐴 a region, and 𝛿 > 0. Then, Algorithm 1
terminates eventually and outputs a value 𝜀⋆ ∈ [wce(𝑓, 𝐴) − 𝛿,wce(𝑓, 𝐴) + 𝛿].

Proof. In Lines 1 to 6 in Algorithm 1, we compute 𝜀𝑙𝑜𝑤 and 𝜀𝑢𝑝 (which are inputs
to the binary search in Line 7) in such a way that, 𝜑𝑓

𝜀𝑙𝑜𝑤 is satisfiable, while 𝜑𝑓
𝜀𝑢𝑝 is

not. Note that these initial searches terminate because the reconstruction error in
𝐴 is bounded as it is a continuous function on a compact set. We refer towce(𝑓, 𝐴)
as 𝜀wce for brevity.
Once we enter the binary search, we have the following loop invariants: 𝜑𝑓

𝜀𝑙𝑜𝑤,𝐴

is satisfiable; 𝜑𝑓
𝜀𝑢𝑝,𝐴 is not satisfiable; and 𝜀𝑙𝑜𝑤 ≤ 𝜀wce ≤ 𝜀𝑢𝑝. While the first two

invariants are a consequence of the updates made during the loop in binary
search, the third invariant can be proved using contradiction.

For the proof, we make use of the following property ofwce : 𝜑𝑓
𝜀′,𝐴 is satisfiable

for any 𝜀′ ≤ 𝜀wce and 𝜑𝑓
̃𝜀,𝐴 is not satisfiable for any ̃𝜀 > 𝜀wce. Now, towards

contradiction, assume that 𝜀wce < 𝜀𝑙𝑜𝑤 or 𝜀𝑢𝑝 < 𝜀wce. However, if 𝜀wce < 𝜀𝑙𝑜𝑤,
the above property of wce is violated because 𝜑𝑓

𝜀𝑙𝑜𝑤,𝐴 is satisfiable. Similarly, if
𝜀𝑢𝑝 < 𝜀wce, the property of wce is violated since 𝜑𝑓

𝜀𝑢𝑝,𝐴 is unsatisfiable. Thus,
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𝜀𝑙𝑜𝑤 ≤ 𝜀wce ≤ 𝜀𝑢𝑝.
The binary search terminates when |𝜀𝑢𝑝 − 𝜀𝑙𝑜𝑤| < 2𝛿 and 𝜀∗ = (𝜀𝑢𝑝 + 𝜀𝑙𝑜𝑤)/2 is

returned as an output. Now, in the final step, we have

𝜀∗ − 𝜀wce ≤ 𝜀∗ − 𝜀𝑙𝑜𝑤 ≤
𝜀𝑢𝑝 − 𝜀𝑙𝑜𝑤

2
≤ 𝛿, and

𝜀∗ − 𝜀wce ≥ 𝜀∗ − 𝜀𝑢𝑝 ≥
𝜀𝑙𝑜𝑤 − 𝜀𝑢𝑝

2
≥ −𝛿

Thus, 𝜀∗ ∈ (wce(𝑓, 𝐴) − 𝛿,wce(𝑓, 𝐴) + 𝛿).

As we can see Theorem 4.3.2 follows from Theorem 4.3.1 and the fact that
the binary search of Algorithm 1 narrows down the interval [𝜀low, 𝜀up] until it is
smaller than 2𝛿.
The complexity of Algorithm 1 consists mainly of two parts: the binary search and
the SMT solver. The number of steps in the binary search is in 𝒪 (𝑙𝑜𝑔 (𝑤𝑐𝑒(𝑓,𝐴)

𝛿
)).

In each step, the SMT solver is called once with a runtime that mainly depends on
the number of atomic formulas in (the respective) 𝜑𝑓

𝜀,𝐴. Under the restrictions in
Section 4.3, there are 𝒪(𝑛 + 𝑚) many atomic formulas where 𝑛 is the number of
neurons in the autoencoder and 𝑚 is the number of half-spaces used to construct
the safety-critical region. Note that the number of atomic formulas arising from
the 𝐿∞ distance depends linearly on the dimension of the input/output space
of the autoencoder and is hence in 𝒪(𝑛). Even though encoding the problem as
a formula is inexpensive, the SMT solver itself is an exponential algorithm, as
discussed in Section 2.2.2.

4.4 Empirical Evaluation

We evaluate both concepts presented within our QUGA solution: (1) extracting
an adversarial attack and (2) calculation of quality bounds. For our evalua-
tion, we use both synthetic and real-world datasets. For future comparison and
reproducibility of our experiments, we provide our implementation3 with the
off-the-shelf SMT solver Z3. As Z3 is not specialized for neural networks, our
approach is not scalable enough to deal with benchmark datasets such as MNIST
or CIFAR-10. Therefore later parts of this thesis are devoted to overcoming this
issue.

3https://github.com/KDD-OpenSource/QUGA
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4 Adversarial Attacks on Autoencoders
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Figure 4.2: Synthetic sine curve with two frequencies and added noise with its
reconstruction by the autoencoder.

4.4.1 Experiment Setup
We use synthetic time series data generated by sine curves with two different
frequencies (35 and 105 timesteps per cycle) and random Gaussian noise (𝜎 =
0.1) per time-point. Additionally, we use ECG5000 data from the UCR time
series repository (CKH+15). We train autoencoders with an architecture of
𝐿 = (35, 5, 35) with five hidden ReLU nodes and 35 linear output nodes using the
𝑀𝑆𝐸 loss function. Training data consists of time windows of length 35 without
overlap. For the sine curve, the time windows correspond to 4 clusters: The
full sine curve with 35 timesteps and the beginning, the middle and the end of
the large sine curve. We denote them by 𝐶𝑓𝑢𝑙𝑙, 𝐶𝑏𝑒𝑔, 𝐶𝑚𝑖𝑑 and 𝐶𝑒𝑛𝑑 respectively.
For the ECG5000 dataset, we obtain 8 clusters arising from 2 classes and 4 time
windows. We call them 𝐶𝑖_𝑥 where 𝑖 ∈ {1, 2, 3, 4} and 𝑥 ∈ {𝑢, 𝑏}, indicating
the upper or lower part of the respective time window. As critical region 𝐴, we
evaluate a hypercube around the two sine curves of width 0.2 in every dimension.
This region contains, by construction, the majority of training data. For the
ECG5000 dataset, we extract representative time series for the two main classes
via their mean and add a margin of 0.25. We visualize the regions along with the
training data in Figure 4.3.

4.4.2 Extracting an Adversarial Attack
The first observation is that our QUGA approach successfully extracts adversarial
attacks. We depict the adversarial attacks obtained in Figure 4.4 for the Sine
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Figure 4.3: ECG5000 dataset with two safety-critical regions (red and green)
obtained by extracting prototypes for two classes and adding amargin
of 0.25.

Curve dataset and in Figure 4.5 for the two safety-critical regions in the ECG5000
dataset. As can be seen, our choice of dist leads to an optimization procedure in
which the difference in one single dimension is maximized. The inputs for these
adversarial attacks are usually found at the corner of the region 𝐴 under scrutiny.
This is reasonable because the autoencoder has been trained on inputs within
the region 𝐴. Thus the error should increase with the distance from this region.
Ideally, an autoencoder should extract a denoised version of the input. With the
adversarial attacks, we have an indication of whether the autoencoder succeeds in
doing so. For the sine curve, the outputs of the autoencoder on adversarial attacks
in 𝐶𝑓𝑢𝑙𝑙, 𝐶𝑚𝑖𝑑 and 𝐶𝑒𝑛𝑑 are much smoother than for the adversarial attacks in
𝐶𝑏𝑒𝑔, suggesting that the autoencoder does not denoise as well in 𝐶𝑏𝑒𝑔. For the
ECG5000 dataset, the autoencoder seems to denoise for all clusters very well.

4.4.3 Comparing Quality Bounds with Sampling
We compare the quality bounds obtained by the QUGA approach with accuracy
0.025 to quality bounds obtained by a simple sampling approach. As a competitor
to the QUGA approach, we sample points in the region, calculate their 𝐿∞ errors
and take the maximum as an estimator for the 𝐿∞ − 𝑤𝑐𝑒. Tables 4.1 and 4.2
sum up the results. First of all note, that the QUGA 𝐿∞ − 𝑤𝑐𝑒 bounds are much
more precise. The 𝐿∞ − 𝑤𝑐𝑒 bound obtained by the sampling approach yields
no upper bound at all, and furthermore, the lower bound is much weaker than
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Figure 4.4: Adversarial attacks for different parts of the Sine Curve dataset ob-
tained by the QUGA approach maximizing the 𝐿∞-distance between
the input and the output of the autoencoder in the respective safety-
critical region. The adversarial attack on the second plot from the left
indicates that this part is denoised less.
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Figure 4.5: Adversarial attacks for two classes and different time windows of the
ECG5000 dataset obtained by the QUGA approach maximizing the
𝐿∞-distance between the input and the output of the autoencoder
in the respective safety-critical region. No difference in denoising
quality between the different plots can be seen.
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the lower bound obtained by QUGA via the adversarial attack in all cases. A
clear drawback of sampling is the large number of samples required to reach our
QUGA estimation. In Figure 4.6 we show the runtime of QUGA vs. sampling
with their respective error estimations. QUGA as a systematic search scheme is
more efficient, while sampling is shown to underestimate worst-case-errors.

Sine Curve
Cluster 𝐶𝑓𝑢𝑙𝑙 𝐶𝑏𝑒𝑔 𝐶𝑚𝑖𝑑 𝐶𝑒𝑛𝑑
QUGA 0.297 0.422 0.297 0.266

Sampling 0.211 0.255 0.214 0.189

Table 4.1: Worst-case-errors as estimated by sampling and QUGA approach for
the Sine Curve dataset. The accuracy for the QUGA approach is 0.025.

ECG
Cluster 𝐶1_𝑏 𝐶2_𝑏 𝐶3_𝑢 𝐶4_𝑢 𝐶1_𝑢 𝐶2_𝑢 𝐶3_𝑏 𝐶4_𝑏
QUGA 1.359 1.016 0.828 1.078 1.453 0.766 0.766 0.953

Sampling 1.189 0.829 0.651 0.908 1.255 0.563 0.546 0.774

Table 4.2: Worst-case-errors as estimated by sampling and QUGA approach for
the ECG dataset. The accuracy of the QUGA approach is 0.025.

4.4.4 Safety Critical Application
We demonstrate a use case of our QUGA framework on the ECG5000 dataset by
evaluating the unsupervised training based on two time series clusters. The goal
of a traditional evaluation would be to show that all training objects are clearly
separated in the latent space. In contrast, we care about all possible (infinitely
many) objects in two safety-critical areas that need to be distinguishable in the
latent space. In Figure 4.7, we see the resulting corridor into which points from
the critical regions can be mapped. For the first three time windows, we cannot
guarantee that the autoencoder keeps points from the two regions distinguishable
in the latent space. Both clusters mix up as the upper bound of the lower cluster
is higher than the lower bound of the upper cluster. For the last 35 time steps,
though, a guaranteed separation of all infinitelymany points in the critical regions
is possible by the autoencoder. With this result, we can give a formal quality
guarantee of the trained autoencoder. It securely extracts a latent representation
for each time series in the safety-critical area that guarantees the separation of
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Figure 4.6: Depiction of runtime against𝑤𝑐𝑒 estimation for the Sine Curve dataset.
The sampling approach always underestimates the 𝑤𝑐𝑒 and does not
increase over time.

both clusters. Please note that one could not have used the latent space to check
separability directly. We have no control over where the autoencoder maps
the safety-critical regions in the latent space. In contrast, our QUGA method
solves this by symbolic representation of the autoencoder and the systematic
search of possible unsupervised adversarial attacks that lead to a mix-up of two
clusters. With this, we can prove separability for all infinitely many points in the
safety-critical regions and not just on the finite training set.

4.4.5 Follow-Up Work
Based on the definitions and approach in this chapter, we conducted follow-up
work highlighting the versatility of the worst-case-error. First, we use it to derive
a so-called error landscape dissecting the input space into regions of different
reconstruction errors (Rie20). Secondly, we use the unsupervised adversarial
attacks found by our approach to describe the anomalous or the normal region
as defined by the autoencoder in the context of anomaly detection (Atr21; Ell22).
Lastly, we investigate whether adversarial training can help reduce the severity
of worst-case-errors (Vu23).
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Figure 4.7: Image spaces (red and green) into which points from the respective
safety-critical regions in Figure 4.3 can theoretically be mapped by
the autoencoder.

Error Landscapes:
As first follow-up work, we divided the input space into different subregions in
each of which the reconstruction loss is bounded from above and below. These
regions enable us to determine where a given autoencoder has learned to recon-
struct well with a level of certainty that cannot be attained by mere sampling. We
call this dissection the error landscape of the autoencoder, as it can be thought of
as a map of the reconstruction error.
First, we must be able to determine not only the worst-case-error but also the
minimum reconstruction error in a given region. To do that, we make the nec-
essary changes to the verification problem: we replace 𝜑dist

𝜀 from Equation 4.1
with

𝜑dist,𝑢𝑝
𝜀 ≔ ⋀

1≤𝑗≤𝑁
[[𝑥0,𝑗 − 𝑥𝐿,𝑗 < 𝜀] ∧ [𝑥𝐿,𝑗 − 𝑥0,𝑗 < 𝜀]].

essentially asking for an input with a reconstruction error of less than 𝜀. Based
on this new verification problem, we can adjust the binary search to approximate
the smallest reconstruction error in a region.
Having bound the error in a given region from both above and below, we can
split the region into two subregions such that in the resulting subregions, the
bounds are closer to each other. If this procedure is repeated often enough, we
end up with regions in which the difference between the upper and the lower
bound on the reconstruction error is smaller than a predefined threshold. Then
we end up with a region in which all points have approximately the same error.
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The described idea calls for a good splitting heuristic based on which a given
region is divided. We tried several ones based on different use cases: axis-parallel
cuts are used for an easy interpretation and description of the resulting subre-
gions. Splitting right between the largest and the smallest error, on the other
hand, tries to yield the best error-landscape with the fewest possible divisions.
The question of which region to split is answered easily: we always choose the
subregion to be divided based on the largest difference between the maximum
and minimum reconstruction loss.
Error landscapes can be used to get a general overview of the reconstruction
error. However, dependent on the autoencoder and the dimensionality, a large
amount of neural network verifications may be necessary to obtain an accurate
error landscape.

Description of Anomalous Region:
A more application-guided method based on the worst-case-error is the descrip-
tion of an anomalous or normal region. Autoencoders can serve as anomaly
detectors by assigning each input an anomaly score based on the reconstruction
error and comparing it to a threshold. Thus - similarly to our approach for error
landscapes - we bound the reconstruction error from below for a given input
region. If that bound is larger than the threshold, we can guarantee that the
autoencoder will always predict anomalous in that region.
Similarly, we may describe the region in which points can be classified as normal
(Ell22). To this end, we iteratively search for normal points and always extend
the region in which normal points may occur. This region is usually bounded
because autoencoders are trained on a bounded dataset.
Using these methods may help in providing a concise description of what exactly
a given autoencoder does. Note, though, that, similar to all verification problems,
we must not confuse this description of the autoencoder with a description of
where normal or anomalous points are to be found. The verification problem
can only yield a description of the autoencoder and never of the data on which it
was trained.

Adversarial Training:
A common strategy to mitigate the problem of adversarial attacks for supervised
neural networks is adversarial training (MMS+18). We adapt this strategy for
the case of autoencoders by training them with adversarial attacks created using
adapted versions of FGSM (GSS15) and PGD (MMS+18). To be precise, we used
the reconstruction loss ‖𝑥−𝑓(𝑥)‖2

2 to guide the construction of adversarial attacks.
Moreover, we investigated two different autoencoder loss functions: the usual
reconstruction loss ‖𝑥 − 𝑓(𝑥)‖2

2 and an adaptation of the denoising loss (VLL+10)

50



4.5 Summary

for adversarial attacks given by ‖𝑥 − 𝑓( ̃𝑥)‖2
2. In (VLL+10) ̃𝑥 is created by adding

Gaussian noise to 𝑥. In our case ̃𝑥 is simply given by an adversarial attack on 𝑥.
Our results are in line with adversarial training for supervised neural networks
(MMS+18). By employing adversarial training, the worst-case-errors reduce
substantially. This result was shown on all datasets and irrespective of the exact
adversarial attack method.
Furthermore, not only did the worst-case-error decrease, but the distribution of
the reconstruction error, in general, shifted towards smaller errors. We conclude
that training on inputs with higher reconstruction errors, as given by the adver-
sarial attacks, substantially improves reconstruction performance. It appears that
adversarial training eliminates the weak spots of autoencoders by guiding the
training towards more difficult regions.

4.5 Summary
QUGA overcomes major shortcomings of unsupervised learning with autoen-
coders. We provide the first methodology to bound the error of an autoencoder
in a safety-critical region. With our solution framework based on SMT solvers,
we propose to search for adversarial attacks in the infinite search space of a
safety-critical region. Therefore, we have defined unsupervised adversarial attacks
as inputs that show maximal error even if these objects are not contained in
the training or test data. Our QUGA approach formulates the autoencoder, the
safety-critical region, and the reconstruction error with a logical conjunction
of linear constraints. Once we have found an unsupervised adversarial attack,
it serves as a lower bound for the error, while binary search allows to derive
an upper bound. We demonstrate the effectiveness of our approach on both a
synthetically created and a real dataset. We show that QUGA finds unsupervised
adversarial attacks, provides quality guarantees with lower and upper bounds,
and outperforms sampling schemes that underestimate the worst-case-error.
As this is the first work for unsupervised adversarial attacks on autoencoders,
we conducted some follow-up research. We showed how the general procedure
presented can be extended to other bounds and other use cases. The major short-
coming of our approach is clearly given by scalability. Therefore the next chapters
are concerned with overcoming this issue.
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Training Autoencoders for
Robustness and Scalability 5
As we have already seen in the last chapter, autoencoders are widely employed
neural networks with a variety of use cases such as denoising (VLL+10), dimen-
sionality reduction (HS06) and anomaly detection (SY14). Due to their versatility
and unsupervised nature, they can be used on almost any dataset and can serve
either as a standalone solution or as a subroutine in a machine learning pipeline.
Yet, as with any neural network, they are prone to overfitting, and thus, a lot of
research effort has been directed towards making them robust (ZP17; QWZW14)
and work reliably.
Additionally, as we have shown in the previous chapter, they can show a clearly
undesired behavior: a significant change in the output given just a small pertur-
bation of the input. Inspired by this phenomenon, neural network verification,
which tries to prove or disprove properties of a given neural network, has emerged
as its own research field.
Current notions of robustness for autoencoders do not address the unpredictable
behavior neural networks can exhibit but merely evaluate a robustness measure
on a predefined test set. However, as can be seen in Figure 5.1, finite test sets do
not cover all possible inputs and thus may not find all flawed ones.
Therefore we introduce a new notion of robustness for autoencoders. At its
core, it closely resembles the Epsilon-Delta criterion for continuity of functions,
while it is also the natural extension of the supervised learning notion of robust-
ness. It is designed to be applicable for different use cases, evaluates the entire
(𝐿∞−)neighborhood of radius 𝜀 for a given sample and is verifiable using SMT
solvers (KBD+17; WOZ+20) or other constraint based verification methods. To
use SMT solvers efficiently, though, we have to restrict ourselves to autoencoders
using ReLU or Linear neurons1 such that the autoencoder is a piecewise affine
function.
Similar to the 𝑤𝑐𝑒 and in contrast to other notions of robustness for autoencoders,
our new problem specification is developed with verifiability using SMT solvers
in mind. Thus, in this chapter, we will recall how to solve the problem with SMT

1Note that our restrictions allow for convolutional and pooling layers as well because they
can be represented using matrix multiplication.
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solvers by translating it into an instance of the SMT problem. Thereafter, we can
make use of any state-of-the-art solver as a blackbox tool to prove or disprove
robustness of a given autoencoder.
However, recall that SMT solver-based verification has to iterate over all affine
subfunctions in the given neighborhood. This slows down the verification proce-
dure significantly and therefore inhibits scalability (c.f. Figure 5.2). Moreover,
the more subfunctions we have in a given subset, the more unstable the autoen-
coder becomes, reducing robustness as we defined it.
To counteract this deficiency, we introduce a new regularization term aimed at
reducing the number of affine subfunctions in a given neighborhood. The advan-
tages are twofold: first, we obtain autoencoders that are more robust according to
our definition. Secondly, we thereby train the autoencoder to be more amenable
for its subsequent verification.
We experimentally compare our approach with respect to both robustness and
verification runtime to other popular regularization schemes, including ridge
regression (KH91), dropout (SHK+14) and denoising (VLL+10). Our approach
yields themost robust autoencoders with the fastest verification while at the same
time keeping the same predictive capacity as shown in a downstream experiment.
Also, we do not only test verification runtime for the problem specification of
robustness. We furthermore demonstrate how different regularization strategies
affect the scalability issue of 𝑤𝑐𝑒 verification (compare further Chapter 4). We
can show that the faster verification runtime we obtain for our regularization
scheme is not due to the improved robustness but, indeed, tackles the verification
process itself.
Moreover, we can show that some popular regularization schemes actually harm
the process of verification. Dropout, for example, does not only not help in the
verification process but actually slows it down significantly because it increases
the number of affine subfunctions.
In summary, this chapter contains two major contributions. First, we give a defi-
nition of robustness for autoencoders that permits verification, show how to
verify it and demonstrate its use. Secondly, we design a training procedure such
that the resulting autoencoders are easier to verify.
Please note that these contributions correspond to a two-stage process: the reg-
ularization of autoencoders happens during the training phase, whereas the
verification takes place for a given, already-trained autoencoder. Thus verifica-
tion can be seen as a post-processing step.
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Figure 5.1: Inputs violating the desired behavior of an autoencoder. The autoen-
coder trained on the 30-dimensional samples should denoise and map
all points surrounding the original sine curve closer to it. However, we
found an input 𝑥 clearly violating this behavior as 𝑓(𝑥) differs strongly
from the denoised sine curve.

100 120 140 160 180 200
0

200

400

Number of ReLU Neurons

R
u
n
ti
m
e
in

S
ec
on

d
s

Figure 5.2: Runtime comparison of robustness verificationwith different numbers
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subfunctions that need to be checked during the verification process.
Hence the runtime increases with more ReLU neurons. Results are
averaged over 100 runs.
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5.1 Related Work
Neural Network Verification:
Since the seminal paper by (SZS+14) introducing the notion of adversarial at-
tacks, the research community is aware of the unstable behavior neural networks
can exhibit. Starting from a given input 𝑥 with label 𝑦, adversarial attacks are
inputs close to 𝑥 yet with a different label ̂𝑦 ≠ 𝑦.
To prove the (non-)existence of such adversarial attacks in a given neighborhood -
or another predefined property about a neural network - is called neural network
verification (XTSM19; Ehl17). Contrary to the classical way of evaluating neural
networks using a test set, it has to implicitly consider all infinitely many points in
the neighborhood by some form of symbolic reasoning.
However, verification of unsupervised neural networks has so far been mostly
neglected due to missing labels. Without labels, we require different problem
specifications that can be verified. In particular, if we want to prove robustness
for a given autoencoder in a given neighborhood, we need to define this in terms
of a verifiable property.
We presented the only other work on unsupervised neural network verification
(Ben20) in the previous chapter. It introduces the notion of the worst-case-error
of an autoencoder as the largest reconstruction error that can manifest in a given
region. In contrast, this chapter introduces the notion of robustness based on a
reference point asking how strongly we need to perturb it in order to significantly
change the outcome.
Verification Approaches and Scalability:
As discussed in Chapter 3, approaches for neural network verification fall into two
main categories: on the one hand, there are approximation methods (SGM+18;
ZWC+18; WZC+18) which base their verification on calculating limits on the
neural network’s output. While these approaches are both fast and sound, they
are not complete: if the network fulfills the given property, these methods may
prove it for you. However, if they fail to do so, the property might still be true
and the methods just could not prove it.
In our experiment, we will make use of the other branch of research consisting
of exact (meaning both sound and complete) verification methods (KBD+17;
Ehl17; TXT19). In particular, we will use SMT based approaches (Ehl17). They
translate the verification problem into an instance of the SMT problem encoding
the neural network and the property to be checked. These approaches are exact,
which means that they guarantee the given property if and only if it holds true.
However, this comes at the cost of two disadvantages. First, it allows only for
ReLU/Linear/Convolutional/Pooling layers to be used, ensuring that the neural
network consists of a collection of affine subfunctions. Secondly, the verification
does not scale up to large networks because it essentially has to iterate over all of
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these affine subfunctions in a given neighborhood.
To speed up the verification process by focusing on the improvement of the
SMT solver is an ongoing research effort (KBD+17; WOZ+20; MH21). However,
SMT-based verification of ReLU networks is slow as the underlying problem
is NP-complete (WZC+18). Its runtime grows exponentially in the number of
ReLU neurons. Thus, as observed by Xiao et al. (XTSM19), it is useful to design
a training procedure that makes the verification problem more amenable for the
SMT solver. By introducing a regularization term for training, we reduce the
number of affine subfunctions in a given neighborhood resulting in an instance
the SMT solver can solve more efficiently. Note that our method can thus be
combined with any improvement on the SMT solver itself.
Autoencoder Regularization:
Numerous different regularization schemes have been proposed both for neural
networks in general and for autoencoders in particular. For our comparison,
we consider general schemes such as ridge regression (KH91) and dropout
(SHK+14) as well as autoencoder-specific schemes such as denoising (VLL+10)
and robust autoencoders (ZP17). Moreover, we include the MMR regularization
(CAH19) as it is closest in nature to our scheme by exploiting the ReLU structure.
This form of regularization intends to push the boundaries between different
subfunctions such that the subfunctions around training samples occupy a larger
space. We, on the other hand, join different subfunctions with our regularization
term.
Beyond these general regularization strategies, some methods to increase verifi-
able robustness have been proposed (BLZ+21b). Most notably, (MMS+18) add
adversarial attacks to their training data, thereby increasing the robustness of
their models. However, these are no general regularization schemes and we
cannot expect that verification runtime will decrease using these methods. Our
method, though, has two goals: to increase the robustness of a given autoencoder
and to decrease the runtime of SMT solvers.

5.2 Robustness Verification for Autoencoders

This section builds upon the definition of an autoencoder given in Section 4.3.1;
we will briefly recall some of its properties relevant for this chapter.
As discussed in Chapter 4, an autoencoder 𝑓 ∶ ℝ𝑁 → ℝ𝑁 is a feed-forward neural
network consisting of an encoder and a decoder. The encoder maps the input
to the latent space while the decoder, in turn, maps the latent space back to the
input space. Autoencoders are trained using a reconstruction loss which, for a
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given input 𝑥 and autoencoder 𝑓, is defined as:

𝐿𝑟𝑒𝑐𝑜𝑛(𝑥) = ‖𝑓(𝑥) − 𝑥‖2
2

However, autoencoders cannot perfectly reconstruct the input because the latent
space usually has fewer dimensions than the input space and thus, it serves as an
information bottleneck. Therefore autoencoders can be used to extract denoised
versions of the data as they can only learn the important patterns present in it.
Note that while there are other types of autoencoderswith different loss functions,
we will use only those which are built upon this type of reconstruction loss and
architecture.

5.2.1 Verifiable Robustness for Autoencoders
Currently, almost all existing verification problems are designed for supervised
neural networks and are based on a change in labels. They usually verify whether
in a neighborhood around a given input 𝑥∗ with a presumably correct label 𝑦 there
exists another input ̂𝑥 with a different label. However, for autoencoders, we have
no such labels at our disposal. Therefore we need other problem specifications
capturing desirable properties of an autoencoder.
Our research aims at filling this gap and is inspired by the robustness property for
supervised neural networks (MMS+18). It refers to how strongly a given input
must be changed to cause a change of labels. Similarly, our notion of robustness
for autoencoders checks how strongly the input must be changed such that the
output differs by a predefined amount.
Another way to think about our new definition is by comparing it to the reachabil-
ity verification problem (XTJ18). In essence, it asks what the possible outcomes
a neural network exhibits for a predefined input set are.
Moreover, our notion of robustness resembles the definition of continuity for
functions making it a general-purpose problem specification. We give the unsu-
pervised problem specification in the following definition:

Definition 5.2.1 (𝜀-𝛿 robustness). Let 𝑓 ∶ ℝ𝑁 → ℝ𝑁 be an autoencoder,
𝑑𝑖𝑠𝑡 ∶ ℝ𝑁 × ℝ𝑁 → ℝ+ a metric and 𝑥∗ ∈ ℝ𝑁 an input sample. We say that 𝑥∗ is 𝜀-𝛿
robust if

𝑑𝑖𝑠𝑡(𝑥∗, 𝑥) < 𝜀 ⇒ 𝑑𝑖𝑠𝑡(𝑓(𝑥∗) − 𝑓(𝑥)) < 𝛿.

Essentially 𝑥∗ is 𝜀-𝛿 robust if all points close to 𝑥∗ map to points close to 𝑓(𝑥∗).
The metric will usually be given by an 𝐿𝑝-norm and for our solution framework,
we require it to be the 𝐿∞-norm.
From this definition, we can moreover derive a local stability measure for a fixed
𝛿 given by the largest 𝜀 such that 𝜀-𝛿 robustness holds true.
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Definition 5.2.2 (𝑟𝑜𝑏𝛿). In the above setting with 𝛿 fixed, we define the robustness
measure as

𝑟𝑜𝑏𝛿(𝑓, 𝑥∗) = sup{𝜀 ∈ ℝ+ ∣ 𝑥∗ is 𝜀-𝛿 robust under 𝑓}.

This definition extends Definition 5.2.1 by asking for the largest change in the
input space such that the change in the output space remains bounded by 𝛿.
Clearly, two problems follow from these definitions. First, for fixed 𝜀 and 𝛿, we
want to determine whether a given point 𝑥∗ is 𝜀-𝛿 robust and secondly, we want
to calculate the robustness measure for a fixed 𝛿. The 𝜀-𝛿 robustness check will
be solved repeatedly as a subroutine to determine 𝑟𝑜𝑏𝛿.
We highlight the use of these definitions in our experiment section, where we a)
prove that a given autoencoder denoises and b) use it as a robustness measure
for known regularization techniques. Yet the definition is not limited to these
use cases. In the case of anomaly detection, one could, for instance, prove that
all points around a given anomaly are predicted to be anomalous as well. This
shows that our definition is quite general and can be used in a versatile way.
However, high robustness is not always a desirable property. For example, an
autoencoder mapping all inputs to a single output is 𝜀-𝛿 robust for any choice of
𝜀, 𝛿 and 𝑑𝑖𝑠𝑡. Thus, as in the case of supervised robustness, it must be considered
jointly with other metrics.

5.2.2 Comparison to Worst-Case-Error
We compare our notion of robustness for autoencoders to the worst-case-error
wce introduced in Chapter 4. While the two problems are similar to each other,
they differ in the following sense: the robustness measure searches for a point ̂𝑥
in the input space such that 𝑓( ̂𝑥) differs from 𝑓(𝑥∗). Thus it searches for another
input-output pair ( ̂𝑥, 𝑓( ̂𝑥)) for an already given input-output pair (𝑥∗, 𝑓(𝑥∗)).
The worst-case-error, on the other hand, has no reference input-output pair
but instead searches for a point 𝑥 in a predefind region such that the distance
between 𝑥 and 𝑓(𝑥) is large. Thus both problem specifications measure a form of
behavioral stability. The 𝑤𝑐𝑒 is mostly inspired by the reconstruction loss as the
predominant quality criterion. The robustness measure, on the other hand, is
more inspired by the denoising property of autoencoders as well as the manifold
assumption (GBC16), which means that the autoencoder maps all points to a
small dimensional manifold.
Nevertheless, both notions yield valid verification problems and hence we will
check the speedup of our regularization approach (see Section 5.4) on both of
them in our experiments.

59



5 Training Autoencoders for Robustness and Scalability

5.3 SMT Problem Encoding

Similar to Section 4.3.2 (𝑤𝑐𝑒 problem encoding) we will now describe how to
solve the 𝜀-𝛿 robustness verification problem using SMT solvers. We will - again -
encode the entire formula for the SMT solver as a conjunction of three formulas:
𝜑𝑓 encoding the autoencoder, 𝜑𝜀 encoding the distance in the input space and 𝜑𝛿
encoding the distance in the output space.

𝜑𝑓
𝜀,𝛿 ≔ 𝜑𝑓 ∧ 𝜑𝜀 ∧ 𝜑𝛿

As a result of the verification process, we will obtain either 𝑢𝑛𝑠𝑎𝑡 corresponding
to a robust autoencoder, or 𝑠𝑎𝑡, together with a sample violating the robustness
property.
This approach entails similar restrictions as in Section 4.3.2; we can only make
use of certain types of both metrics and autoencoders. To be precise, we use 𝐿∞
as our metric and autoencoders consisting of Linear and ReLU nodes.
The precise description of 𝜑𝑓 can be found in Section 2.2.2. For the input space
and a particular point 𝑥∗ ∈ ℝ𝑁 we add

𝜑𝜀 = ⋀
1≤𝑖≤𝑁

[[𝑥0,𝑖 ≥ 𝑥∗
𝑖 − 𝜀] ∧ [𝑥0,𝑖 ≤ 𝑥∗

𝑖 + 𝜀]]

to the formula. Likewise for the output space and 𝑓(𝑥∗) ∈ ℝ𝑁 we add

𝜑𝛿 = ⋁
1≤𝑖≤𝑁

[[𝑥𝐿,𝑖 ≥ 𝑓(𝑥∗)𝑖 + 𝛿] ∨ [𝑥𝐿,𝑖 ≤ 𝑓(𝑥∗)𝑖 − 𝛿]]

to the formula. Basically the formula 𝜑𝜀 restricts the SMT solver to search for a
point 𝑥 in an 𝜀− environment of 𝑥∗ while 𝜑𝛿 is satisfied if and only if the error
between 𝑓(𝑥∗) and 𝑓(𝑥) is large enough. If the SMT solver returns 𝑢𝑛𝑠𝑎𝑡 for this
formula, we know that for all points in {𝑥 ∈ ℝ𝑁 ∶ ‖𝑥 − 𝑥∗‖∞ < 𝜀} the difference
of 𝑓(𝑥) to 𝑓(𝑥∗) is less than 𝛿 thereby proving robustness. If, instead, the solver
returns 𝑠𝑎𝑡 and a solution ̃𝑥 which satisfies ‖ ̃𝑥−𝑥∗‖∞ < 𝜀 and ‖𝑓( ̃𝑥)−𝑓(𝑥∗)‖∞ > 𝛿,
we directly obtain an example indicating where robustness failed.
To further ease understanding, we will present a small example: For the simple
autoencoder given in Figure 5.3, 𝑥∗ = (0.5, 0), 𝑓(𝑥∗) = (1, 0), 𝛿 = 0.2 and 𝜀 = 0.1
the SMT formula looks as follows:
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Figure 5.3: Exemplary autoencoder 𝑓 for explaining the construction of SMT
formulas.

Example 5.3.1.

𝜑𝑓 ≔ [𝑦1,1 = 2𝑥0,1 + (−0.5)𝑥0,2]
∧[𝑥1,1 = ite(𝑦1,1 < 0, 0, 𝑦1,1)]
∧[𝑥2,1 = 1𝑥1,1]
∧[𝑥2,2 = 0𝑥1,1]

𝜑𝜀=0.1 ≔ [𝑥0,1 ≥ 0.4]
∧[𝑥0,1 ≤ 0.6]
∧[𝑥0,2 ≥ −0.1]
∧[𝑥0,2 ≤ 0.1]

𝜑𝛿=0.2 ≔ [𝑥2,1 ≥ 1 + 0.2]
∨[𝑥2,1 ≤ 1 − 0.2]
∨[𝑥2,2 ≥ 0 + 0.2]
∨[𝑥2,2 ≤ 0 − 0.2]

The solution for this instance is 𝑠𝑎𝑡 with, e.g., the
following variable assignments:
{𝑥0,1 = 0.6, 𝑥0,2 = −0.1, 𝑥1,1 = 𝑦1,1 = 𝑥2,1 = 1.25, 𝑥2,2 = 0}

Finally, in order to calculate 𝑟𝑜𝑏𝛿 for a given 𝛿, we apply binary search over the
values of 𝜀 to obtain the maximum robustness up to a user-defined accuracy 𝑎𝑐𝑐.
This is similar to the binary search applied in Section 4.3.3 to calculate the 𝑤𝑐𝑒.
Starting from an upper bound on 𝜀 one repeatedly checks for 𝜀-𝛿 robustness and
increases/decreases 𝜀 accordingly. Thus, dependent on the accuracy, one needs
𝒪 (𝑙𝑜𝑔 (𝑟𝑜𝑏𝛿

𝑎𝑐𝑐
)) many checks to determine 𝑟𝑜𝑏𝛿.
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5.3.1 Understanding SMT solvers
As we have discussed in Chapter 2, exact verification methods such as SMT
solvers are inefficient. Recall that in order to incorporate ReLU neurons into
𝜑𝑓 we need to add ∨-conjunctions to it, slowing down the verification process.
SMT solvers then need to transform this formula into its boolean abstraction
replacing each inequality with a boolean variable and solving the resulting SAT
instance. The solution of this instance is, in turn, translated to a Linear Program
corresponding to one particular ReLU activation pattern. As we can see, the
SMT solver needs to repeatedly solve the SAT problem as well as the LP problem,
usually using DPLL (DP60; DLL62) and Simplex (DdM06). How often it needs
to solve these problems strongly depends on the number of ∨ clauses in the
formula 𝜑𝑓

𝜀,𝛿. Thus if we can find a way to reduce this number, we expect the
SMT solver to run more efficiently, speeding up the process of verification. This
is the goal of the next section.

5.4 Regularization Strategies for Autoencoders
This section introduces our new regularization term fctdist with which we train
autoencoders to be more amenable for verification and which simultaneously
increases their robustness. Moreover, we will recall the necessary theoretical
foundation and give an overview of other regularization strategies against which
we compare our new approach.

Preliminaries:
According to Section 2.1.4, autoencoders using only ReLU and Linear neurons can
be seen as piecewise affine functions. Our regularization term fctdistmakes use of
this particular structure because it is based on the difference between neighboring
affine subfunctions. Therefore we need to calculate the current affine subfunction
for a particular point 𝑥 as well as the borders to other, close affine subfunctions.
For the current affine subfunction, we employ Theorem 2.1.2 and for the dis-
tance 𝑑𝐵(𝑥) to the nearest different subfunction, we recall that each ReLU neuron
before its activation function can be seen as a function 𝑓𝑟,𝑥 on its own (see Sec-
tion 2.1.4). These functions define borders to other affine subfunctions via their
kernel 𝑘𝑒𝑟(𝑓𝑟,𝑥) = {𝑦 ∈ ℝ𝑁|𝑓𝑟,𝑥(𝑦) = 0}. After employing Theorem 2.1.2 again,
the function 𝑓𝑟,𝑥 is locally given by 𝑓𝑟,𝑥 = 𝑉𝑟,𝑥 + 𝑎𝑟,𝑥. We calculate the distances
𝑑𝑟(𝑥) to the border defined by its kernel by projecting onto it with the following
formula (see (CAH19)):

𝑑𝑟(𝑥) =
|⟨𝑉𝑟,𝑥, 𝑥⟩ + 𝑎𝑟,𝑥|

||𝑉𝑟,𝑥||2
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Of course, once we overstep one border, the other borders change (see Figure 2.6).
However, for the calculation of the closest border, this phenomenon does not
occur. Thus we can calculate 𝑑𝐵(𝑥) via

𝑑𝐵(𝑥) = min
𝑟

𝑟 is ReLU neuron

|⟨𝑉𝑟,𝑥, 𝑥⟩ + 𝑎𝑟,𝑥|
||𝑉𝑟,𝑥||2

.
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Figure 5.4: Estimating the resulting subfunction structure of an autoencoder with
a two-dimensional input for given training data (left) once with fctdist
regularization (middle) and once without regularization (right). Dif-
ferent subfunctions are shown by (20) different colors. The figure was
obtained by sampling 3000 inputs and calculating their respective sub-
function. The regularized version better resembles the training data
and the non-regularized version employs many more subfunctions.

5.4.1 Function Distance Regularization Term
Equipped with the theoretical foundation on the structure of autoencoders, we
can now define the regularization term we propose to increase their verifica-
tion scalability. Essentially for any given 𝑥, we train the network to make the
surrounding subfunctions similar to the one the autoencoder applies to 𝑥. This
effectively reduces the number of subfunctions that need to be checked during
verification (see Figure 5.4).
More precisely, let 𝑘 ∈ ℕ be the number of subfunctions we want to adjust and let
{(𝑈𝑖, 𝐵𝑖)}𝑖=1,…,𝑘 be the 𝑘 affine subfunctions closest to 𝑥 (see Figure 5.5). More-
over, let (𝑈, 𝐵) be the affine subfunction for 𝑥. Then we define the regularization
term fctdist(𝑥, 𝜆) to be:

fctdist(𝑥, 𝜆) = 𝜆
1
𝑘

𝑘
∑
𝑖=1

(‖𝑈𝑖 − 𝑈‖𝐹 + ‖𝐵𝑖 − 𝐵‖2)
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x∗

f(x) = Ux+B

f(x) = U1x+B1

Figure 5.5: For 𝑘 = 1 wehave have the loss function fctdist(𝑥∗) = 𝜆(‖𝑈 − 𝑈1‖𝐹+‖𝐵
− 𝐵1‖2) because (𝑈1, 𝐵1) is the closest different affine subfunction.

where ‖ ⋅ ‖𝐹 denotes the Frobenius norm for matrices and ‖ ⋅ ‖2 denotes the
Euclidean norm for vectors. The total loss function for training is then given by:

𝐿fctdist,𝜆(𝑥) = ‖𝑥 − 𝑓(𝑥)‖2
2 + fctdist(𝑥, 𝜆)

Note that, of course, these extra calculations add an overhead to the loss calcula-
tion and backpropagation. However, it adds roughly the same time as the 𝑚𝑚𝑟
regularization scheme by (CAH19) and - dependent on how often verification
is done - is outweighed by the reduction in verification time. Note also that the
resulting loss function is clearly differentiable.
Internally SMT solvers keep a boolean abstraction in which the inequalities of
the encoding become binary variables. On this abstraction, the SMT solver has to
repeatedly solve the SAT Problem whose runtime is governed by how often the
conjunction ∨ occurs. On the neural network side, each ReLU node contributes
one ∨ to the SMT solver’s SAT problem. However, if in the target region the ReLU
node is either always activated or always zero, the respective ∨ is essentially
irrelevant. This results in an easier problem instance for the SMT solver and
hence in faster runtime.

5.4.2 Existing Autoencoder Regularization Schemes
Beyond our newly defined loss function, we will use other loss functions and
regularization schemes to compare our method against and hence we briefly
recall them here. In most cases, they differ from the usual autoencoder model by
adjusting the loss function 𝐿.

64



5.4 Regularization Strategies for Autoencoders

• No regularization serving as the baseline model:

𝐿𝑛𝑜_𝑟𝑒𝑔(𝑥) = 𝐿𝑟𝑒𝑐𝑜𝑛(𝑥) = ‖𝑥 − 𝑓(𝑥)‖2
2

• 𝑚𝑚𝑟 regularization (CAH19) inwhich short distances to the 𝑘 closest affine
subfunctions are penalized:

𝐿𝑚𝑚𝑟 = ‖𝑥 − 𝑓(𝑥)‖2
2 +

1
𝑘

𝑘
∑
𝑖=1

max(0, 1 −
𝑑𝑖

𝐵(𝑥)
𝛾𝐵

)

where 𝑑𝑖
𝐵(𝑥) is the distance to the 𝑖-th closest affine subfunction from 𝑥 and

𝛾𝐵 is a regularization parameter describing the distance until which the
distance shall be penalized. Similarly to our approach, this method exploits
the piecewise affine structure of ReLU neural networks. It is supposed
to increase the area around 𝑥 in which a particular affine subfunction is
applied.

• Ridgeregression by (KH91) penalizing large network weights:

𝐿𝐿2(𝑥) = ‖𝑥 − 𝑓(𝑥)‖2
2 + 𝜆

𝐿
∑
𝑖=1

‖𝑊𝑖‖2
𝐹

where 𝜆 denotes the regularization parameter.

• Dropout by (SHK+14), which randomly chooses a subset of nodes that are
deactivated for each training sample. It uses 𝐿𝑛𝑜_𝑟𝑒𝑔 as metric.

• Denoising by (VLL+10) adding noise to each input yet keeping the original
sample as reconstruction target:

𝐿𝑑𝑒𝑛𝑜𝑖𝑠𝑖𝑛𝑔(𝑥) = ‖𝑥 − 𝑓( ̃𝑥)‖2
2

where ̃𝑥 = 𝑥 + 𝛾 and 𝛾 is given by gaussian noise.

• RobustAEs by (ZP17) working with the datamatrix 𝑋 whose rows are
the training samples. It is split into 𝑋 = 𝐿𝐷 + 𝑆 where 𝑆 is supposed to
represent the noisy/anomalous samples. Then, iteratively, the following
equation is minimized:

min
𝜃

‖𝐿𝐷 − 𝑓(𝐿𝐷)‖2 + 𝜆‖𝑆‖1

maintaining 𝐿𝐷 + 𝑆 = 𝑋 after every iteration.
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Both the 𝐿2 and the dropout regularization can be used on any neural network,
whereas denoising is a strategy designed specifically for autoencoders. The 𝑚𝑚𝑟
regularization was originally designed for supervised neural networks. Hence
we slightly adjust it to make it applicable for autoencoders. Moreover, our newly
proposed loss function 𝐿fctdist can also be used for supervised neural networks -
a direction we postpone for future research.
Lastly, note that all of these regularization schemes are used in the training phase
only. For measuring robustness/worst-case-error we will rely exclusively on the
𝐿∞ metric.

5.5 Experiments
This section is divided into three parts: first, we will demonstrate potential use
cases of the robustness property. Next, we will focus on scalability showing the
significant reduction of verification time achieved by the fctdist regularization
term. Lastly, we will compare different regularization schemes for autoencoders
with respect to their influence on robustness, downstream classification capability
and runtime2.
For each of the following experiments, we have trained 10 autoencoders with
their different regularization schemes to account for randomness in the training
procedure and evaluated each of them 10 times to account for randomness in the
SMT solver’s runtime.

5.5.1 Use Cases of Robustness
To start with, we will show how we can verify that a given autoencoder denoises
in a particular region. To this end, we consider a very simple dataset consisting
of a sine curve with noise on which a denoising autoencoder (VLL+10) has been
trained (see Figure 5.6). Since we know how the dataset has been (synthetically)
constructed, we know how to define denoising: reconstructions of the autoen-
coder are supposed to be closer to the original sine curve.
We could verify that the robustness (𝜀) around the actual sine curve is 0.288
with 𝛿 = 0.1. That means that the autoencoder maps all samples within the
denoising area (for 𝑥∗ being the sine curve this is given by 𝑥∗ ± 0.288 ∶= {𝑥 ∈
ℝ30 ∶ ‖𝑥 − 𝑥∗‖∞ ≤ 0.288}) to reconstructions within the target area (𝑥∗ ± 0.1),
proving that the autoencoder actually denoises.

2The code, as well as implementation details used to generate the results, can be found online
at www.github.com/KDD-OpenSource/robust_AE
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Figure 5.6: The autoencoder provably denoises because all points within the
denoising area (blue) are mapped to points within the target area
(green).

Note, though, that this does not directly verify that denoising happens within the
target area. For this, we would have to choose another target area by adjusting 𝛿.
Next, we want to validate that, using robustness, we can measure a form of regu-
larization. To this end, we check robustness for increased levels of the well-known
denoising regularization scheme by (VLL+10). As can be seen in Figure 5.7, we
obtain more robust autoencoders for higher levels of denoising. Even though the
general trend is clearly visible, we also observe that each denoising level exhibits
a large variance among its 10 runs.
As our problem specification is deterministic, this must be due to the training
procedure of the autoencoder. Therefore, if we want to ensure robustness, verifi-
cation ismandatory each time you train an autoencoder and you cannot rely solely
on a good training procedure. Thus we can show that training autoencoders with
the same level of denoising multiple times can still lead to substantially different
robustness results underlining the importance of verifying any given network.

5.5.2 Scalability of Autoencoder Verification
In this section, we will see how the fctdist regularization term decreases verifica-
tion runtime. Figure 5.8 compares both verification problems (robustness and
worst-case-error) for different autoencoder architectures with and without the
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Figure 5.7: Average robustness of different autoencodermodels given by different
levels of denoising on Sine Curve dataset. For larger levels of denois-
ing the robustness increases as well. For each level of denoising we
show the mean and the standard deviation over ten different models.

fctdist regularization on the Sine Curve dataset. Moreover, it shows an estimate of
the number of affine subfunctions surrounding the actual sine curve. As we can
see, the mean runtime, the runtime’s standard deviation and the number of sur-
rounding subfunctions increase significantly for larger architectures in the case of
non-regularized autoencoders. In contrast, both the runtime and the number of
surrounding subfunctions increase far less for the regularized autoencoder. The
largest average speedup is by a factor of 21 in case of the robustness verification
and 16 in case of the worst-case-error verification. This experiment confirms that
easier models - as measured in the number of affine subfunctions - are verified
faster as in the verification process any SMT solver needs to iterate over fewer
affine subfunctions in the given neighborhood. Thus with fewer subfunctions,
the verification problem is solved faster.
Lastly, we found that the high variance in verification time can be attributed solely
to the SMT solver and not to the randomness in autoencoder training. Fixing one
particular trained autoencoder and repeatedly running the SMT solver over it
yields the same variance in runtime as when aggregated over different models.

5.5.3 Empirical Results on Affine Subfunctions

We can use the analysis tools at our disposal to count the true number of subfunc-
tions a neural network actually consists of. Recall that in theory, a network with
𝑘 number of ReLU neurons may comprise 2𝑘 many subfunctions. Experimentally
we could show though (Ben22b) that most of these subfunctions are infeasible:
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Figure 5.8: Mean and standard deviation over 100 runs for different numbers of
ReLU neurons. For both verification problems both the mean runtime
as well as standard deviation increase significantly with the estimated
number of surrounding affine subfunctions.

there is no input for the respective activation pattern. In fact, our experiment on
two autoencoders resulted in just 1% of the possible subfunctions being feasible.
A lot of open research questions spawn from this observation. On what does
the number of feasible subfunctions depend? How may we manipulate it? How
many subfunctions are needed to retain a good performance? Please note that
while it sounds promising to be able to discard 99% of the affine subfunctions,
we are still left with a substantial number; a fact confirmed by the inability of
verification methods to analyze large neural networks.
However, we might leverage on the preceding observation. Constraint-based
verification methods (see Chapter 3) implicitly cover all possible ReLU activation
patterns resulting in a massive overhead as they consider the infeasible activation
patterns also. Thus, we may be able to filter out the infeasible ones as a prepro-
cessing step and thereafter let the verification method process only the remaining
subfunctions. This would be particularly beneficial if multiple verifications on
the same neural network are carried out as, for example, in the VNN-competition
(MBB+23) on the ACAS Xu system (OPM+19).
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5.5.4 Comparison of Different Regularization Schemes
Now we turn to the experimental comparison of the different loss functions both
with respect to the robustness measure as well as the worst-case-error measure
introduced in (Ben20).

Experimental Setup

We used five different real datasets, all taken from (CKH+15) as given in Table 5.1.
For each of them we have used an autoencoder with an architecture given by the
right hand side column. For example the architecture 65 − 25 − 5 − 25 − 65 refers
to an autoencoder with 65 inputs/outputs and three hidden ReLU layers with 25,
5, and 25 neurons respectively. As they contain labels, we use the class means
as reference points 𝑥∗ to calculate robustness. Note that we could have obtained
such points in a purely unsupervised manner by using a clustering algorithm
(for example K-Means (M+67)) as well. The results are shown in Figure 5.9. Let

Dataset Information
Dataset Autoencoder Architecture

sonyAIBORobotSurface2 (S2) 65 − 25 − 5 − 25 − 65
sonyAIBORobotSurface1 (S1) 70 − 25 − 5 − 25 − 70
PhalanxOutlinesCorrect (P) 80 − 25 − 5 − 25 − 80

TwoLeadECG (T) 82 − 25 − 5 − 25 − 82
MoteStrain (M) 84 − 25 − 5 − 25 − 84

Table 5.1: Information on different real datasets used. All datasets were taken
from (CKH+15) and have 2 classes.

us now discuss them in more detail.

Results on fctdist Regularization:

First, we see that fctdist consistently produces among the highest robustness
values as well as among the lowest worst-case-errors in most cases. In fact, the
robustness is about twice as large as the ones of the other regularization schemes.
Note, though, that even with fctdist we did not prove denoising for any dataset
because 𝜀 is always smaller than 𝛿 chosen to be 0.1. We would need to increase
the hyperparameter 𝜆 in order to obtain autoencoders which surely denoise.
However, this may impede downstream classification.
Interestingly, models regularized with fctdist also show the lowest worst-case-
errors. Thus fctdist seems to work as a general-purpose regularizer.
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Figure 5.9: Comparison of different regularization schemes with respect to mean
robustness, mean worst-case-error, total runtime, mean number of
surrounding subfunctions and total number of successful runs. Using
the fctdist regularization scheme leads to models with the highest
robustness as well as the lowest worst-case-error (top row). Moreover,
they have the smallest runtime in both the robustness and worst-case-
error verification (middle row) resulting from the lowest number of
surrounding subfunctions (bottom left). Note that dropout and 𝐿2
regularization often lead to unsuccessful runs (bottom right). This
may be due to an unsound floating point implementation as observed
by (DJST18).
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Beyond the qualitative improvements, models trained with fctdist also exhibit
the lowest runtimes for both verification problems as well as the lowest number
of surrounding subfunctions. This again confirms the theoretical foundation that
simpler models can be verified faster. Also, it is the only approach that could
successfully be verified in all cases.

Results on 𝐿2 and 𝑑𝑟𝑜𝑝𝑜𝑢𝑡:

Next, we observe that both 𝐿2 and 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 often fail to produce successful
runs (bottom right). We found that for 𝐿2 this can be caused by numerical
imprecisions of the SMT solver as the weights become too small and might be
due to our particular choice of solver. This phenomenon has also been observed
by (DJST18). We also note, though, that this issue may become obsolete with
improved verification engines.
For 𝑑𝑟𝑜𝑝𝑜𝑢𝑡, on the other hand, this is due to the timeout of 300 seconds. Again,
this result is in line with the estimated number of surrounding subfunctions
which is significantly larger than for any other regularization scheme and thus
impedes a fast verification. In both experiments, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 showed by far the
largest runtime of all regularization schemes.
These issues render both regularization schemes unattractive if verification of a
model is required.

Results on 𝑚𝑚𝑟 and 𝑟𝑜𝑏𝑢𝑠𝑡:

To our surprise, the 𝑚𝑚𝑟 regularization did not decrease the number of sur-
rounding subfunctions. Even though it is supposed to push the ReLU boundaries
away from the training data, this seems not to affect the simplicity of the resulting
model. Therefore we could neither find an increase in robustness nor a decrease
in verification runtime.
Also, the 𝑟𝑜𝑏𝑢𝑠𝑡𝐴𝐸 regularization scheme proposed in (ZP17) does not lead
to models that are verifiably more robust. It actually seems to destabilize the
resulting autoencoder as the worst-case-error becomes larger. However, this
method aims to make models robust against noise and anomalies, which we
do not evaluate, highlighting the importance of precisely defining what type of
robustness one refers to.

Downstream Classification Performance

Finally, we want to compare whether the different regularization schemes lead
to different downstream classification performances. We extracted latent space
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Figure 5.10: Downstream classification performance for three methods (KNN,
Gaussian Naive Bayes and Random Forest) of all regularization
schemes on all datasets.

representations for all datasets and predicted class labels (recall that the datasets
were originally supervised ones) with KNN (GWB+03), Gaussian Naive Bayes
(HY01) and Random Forest (Bre01). Figure 5.10 shows that there is no significant
difference in performance between the different regularization schemes. Thus
even though autoencoders endowed with the fctdist regularization scheme are
much simpler, there is no decline in performance.
Of course, all of our results depend on many hyperparameters for which we had
to make choices. Therefore the magnitude of these results changes according
to these hyperparameters. However, these experiments show the general trend
towards which each of the regularization schemes heads.

5.6 Summary
As autoencoders gain more and more relevance due to their widespread use, this
chapter again addresses the need to formally verify their behavior. In line with
similar developments for supervised neural networks, we give the first verifiable
robustness definition for autoencoders. We show its use cases ranging from
denoising to measuring generalization and build upon the previously introduced
SMT-based framework to check whether the robustness property is satisfied.
Moreover, we address the weak spot of verification frameworks: scalability. Yet,
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in contrast to improving the SMT solver directly, we instead focus on simplifying
the autoencoder. By adjusting its training procedure, we obtain autoencoders
with less affine subfunctions leading to a more efficient verification.
Our experiments clearly show the benefits of our approach. Using our approach,
we obtain more robust autoencoders and shorter verification runtimes without
sacrificing predictive capability. Moreover, we outperform other regularization
techniques with respect to these quality criteria. Interestingly, we even show
that dropout as a regularization technique is not only not beneficial but actually
harmful for the verification process.
Based on this chapter, there are several directions for future work. The pro-
posed regularization technique can be transferred to other architectures as well
as supervised learning. Also, it would be interesting to apply approximate veri-
fication techniques to autoencoders trained with fctdist. We conjecture that the
approximation gap to exact verification methods would not be as severe as in
non-regularized neural networks. Finally, one could also try to exploit the result-
ing simpler autoencoders for explanatory purposes extending into the realm of
interpretable machine learning.
This chapter tries to improve the scalability of verification methods by addressing
the training side of neural networks. In the next chapter, we will take another
viewpoint: we will see how we can leverage on a different neural network ar-
chitecture to speed up verification. Thus, we will also consider another type of
neural network.

74



Post-Robustifying Existing Models 6
Anomaly Detection has been an actively researchedmachine learning problem for
several decades. Its use cases range from fault detection in machines (BSBD21)
to credit card fraud detection (WW21) as well as to safety-critical areas such as
medical diagnosis (FGD+22) or infrastructure control(LBGM18). More recently,
outstanding performance was attained by anomaly detectors combining ensem-
ble methods and deep learning.
While researchers have made a lot of progress in designing algorithms for in-
creased detection performance, so far, formal verification of these deep anomaly
detectors has been neglected. Yet, especially in safety-critical areas, it is of utmost
importance to formally state and prove guarantees about a model’s behavior.
This need is exacerbated by the discovery of adversarial attacks: inputs designed
to fool the model into a wrong prediction (SZS+14). For the anomaly detection
task, this corresponds to false positive samples indistinguishable from normal
samples in the training dataset.
From these adversarial attacks, a research branch defending against such attacks
has emerged. Methods such as adversarial training (MMS+18; GSS15) make neu-
ral networks more robust against adversarial attacks by adjusting their training.
If, however, these methods yield a non-robust model, there is no method to repair
it by robustifying it as a post-processing step.
Moreover, tools to verify that a given model is not prone to adversarial attacks are
notoriously slow. Scalability is a major challenge for neural network verification.
We address the aforementioned challenges by using the inherent properties of
ensemble methods. Given an already trained ensemble model, we first assess
its robustness by a divide-and-conquer approach. By splitting it up into its
submodels, solving a verification problem for each submodel and merging the
intermediate results, we obtain both upper and lower bounds for the largest
anomaly score in a predefined region.
Moreover, the intermediate results allow us to distinguish between submodels
that either do or do not harm the ensemble’s robustness. Thereafter we can create
a new, robust ensemble model by using only the non-problematic submodels.
Thus we obtain a post-processing method that - within certain bounds - robusti-
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Original Sample Ensemble Pseudo-Adversarial

Figure 6.1: Original MNIST sample (left) and a pseudo-adversarial attack (right).
Differences between the original and the adversarial attack have been
enlarged to make them visible. The original sample is predicted as
normal. The pseudo-adversarial attack p-adv, on the other hand, is
predicted as anomalous even though it is nearly indistinguishable
from the original.

fies any such ensemble to the desired degree.
Beyondpost-robustification, ourmethod is thefirst to produce a so-calledpseudo-
adversarial attack for an ensemble method as shown in Figure 6.1. These are
inputs to the ensemble that are most likely being predicted as anomalous by the
ensemble model and narrow down the approximation gap between the upper
and lower bound of the anomaly score. They differ from non-pseudo adversarial
attacks in that they are combined from adversarial attacks on the submodels and
thus, there is no guarantee that the pseudo-adversarial attack is an adversarial
attack to the ensemble model.
Using ensemble methods alleviates another major issue of neural network’s
formal verification: scalability. As shown by (XTSM19), the runtime of a verifi-
cation method increases exponentially with the complexity of neural networks.
However, the use of ensemble methods allows us to elegantly circumvent this
problem as it is much faster to verify many small neural networks compared to
one large neural network.
We highlight the use of our robustificationmethod on theDEAN (Deep Ensemble
Anomaly Detection) ensemble method (KM22). This model combines several
advantageous properties: since it employs feature bagging with a large set of
simple submodels, we can scale up the verification to datasets of any dimension.
Moreover, due to its simple architecture, any particular submodel can be verified

76



6.1 Related Work

efficiently. Note that we introduce an approximation into the verification process
by our divide-and-conquer approach. However, we show that the approximation
gap between our estimation of the largest anomaly score and the actual largest
anomaly score is very small as our bounds on it are very tight.
With our experiments, we show that we can successfully post-robustify a given
DEAN ensemble without impairing its predictive performance. Moreover, we
compare the robustness of the DEAN model to other well-known deep anomaly
detectors. As it yields the best performance both in terms of scalability and
robustness, we deem it most suitable for verifiable anomaly detection.

6.1 Related Work
Deep Anomaly Detection Methods:
Neural networks have shown exceptional performance in the task of anomaly
detection. They assign an anomaly score to each input and compare it to a thresh-
old to determine anomalousness. Due to their implicit feature learning, they
are particularly well-suited for complicated distributions on high dimensional
datasets (GBC16). For the purpose of post-robustification, we must combine
this property with formal verification. However, formal verification proves to be
a notoriously difficult task for large-scale neural networks. Therefore we need
models that are complicated enough to model complex distributions and simple
enough to be verified.
In this work, we primarily employ the DEAN model (KM22) because it is an
ensemble of many simple submodels. Thereby each particular submodel can be
verified while the entire ensemble ensures a good predictive capability.
Moreover, we compareDEAN to two representative alternatives: an autoencoder-
based ensemble called RandNet (CSAT17) and DeepSVDD (RVG+18). Both mod-
els show state-of-the-art performance in anomaly detection, yet as we will see,
they are not competitive in terms of both robustness and scalability.
Neural Network Verification:
Formal verification of neural networks can be categorized into exact approaches
such as SMT solvers (Ehl17; KBD+17) and approximation approaches such as
abstract interpretation (SGM+18; ZWC+18; WZC+18). For our purposes, we will
make use of SMT solvers as this allows us to obtain two types of results for a
predefined region: an upper bound on the anomaly score as well as a lower
bound derived from a pseudo-adversarial attack. Thus we can estimate the
approximation gap to the true largest anomaly score in that region. Abstract
interpretation based approaches, on the other hand, could only provide us with
an upper bound and do not yield a pseudo-adversarial attack for ensembles.
However, exact solvers are notorious for being much slower than approximation
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approaches. We counteract this deficiency by feature bagging and limiting the
complexity of each submodel. Overall this leads to an acceptable runtime while
producing well-approximated robustness results.
Robustifying against Adversarial Attacks:
Most existing methods, including (MMS+18; ZCH19; CAH19; GSS15), try to in-
corporate robustness into their training methods. However, if this training does
not yield a robust model, one can only retrain it without the guarantee of ob-
taining a robust model thereafter. Instead, we aim to adjust an already trained
network to become provably robust.

6.2 Preliminaries: Anomaly Detection
This section gives the necessary background to understand adversarial attacks on
anomaly detection models. This includes general deep anomaly detectors as well
as the DEAN model (KM22) we use to highlight the use of post-robustification.
Beyond being on par with other state-of-the-art deep anomaly detectors, DEAN
has some very favorable properties for robustness verification.

6.2.1 Deep Anomaly Detectors
First, we need to define what we mean by a deep anomaly detector 𝐷. It consists
of a (set of) neural network(s) 𝐹 and an anomaly score 𝐴𝑛𝑜𝑚𝐹 ∶ ℝ𝑁 → ℝ
representing the degree of anomalousness for the input 𝑥: the larger 𝐴𝑛𝑜𝑚𝐹(𝑥)
is, the more likely it is to be an anomaly according to the model. We will usually
omit the subscript 𝐹 for the sake of simplicity.
Moreover, to eventually distinguish between normal and abnormal points, a
threshold 𝜏 needs to be set such that the anomaly detector becomes a binary
classifier: if 𝐴𝑛𝑜𝑚(𝑥) > 𝜏 we consider 𝑥 to be an anomaly, else we consider it to
be normal. This threshold does also allow us to consider anomaly detection as a
verification problem: we either want to verify that in a given set of input points,
everything is classified as normal or anomalous. For the models we train, we
choose 𝜏 such that 𝐴𝑛𝑜𝑚(𝑥) ≤ 𝜏 for 80% of training data points. Next, we will
go into detail on how 𝐹 and 𝐴𝑛𝑜𝑚𝐹 look like for the particular case of the DEAN
model.

6.2.2 DEAN Model
The DEAN model is a particular type of deep anomaly detector where 𝐹 is given
by an ensemble 𝐹 = (𝑓1, … , 𝑓𝑚) of relatively simple neural networks. Each
submodel 𝑓𝑖 consists of a fully-connected neural network with ReLU activations
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in each hidden layer and a single Linear output neuron. Moreover, there is no bias
in any neuron. The input dimension 𝑏 of 𝑓𝑖 is set as a hyperparameter because
DEAN employs feature bagging on the input: for an input 𝑥 ∈ ℝ𝑁 to 𝐷 and
submodel 𝑓𝑖, the input ̃𝑥𝑖 ∈ ℝ𝑏 denotes the projection of 𝑥 onto the features for 𝑓𝑖.
Moreover, these features are chosen randomly for each submodel. The networks
𝑓𝑖 are trained to map normal points close to a one-dimensional constant 𝑞𝑖 ∈ ℝ
using the following loss function:

𝐿𝑓𝑖
( ̃𝑥𝑖) = (𝑓𝑖( ̃𝑥𝑖) − 𝑞𝑖)2

As (KM22) suggest, we set this constant 𝑞𝑖 = 1 for training and use the mean on
the training set 𝒳 given by

𝑞𝑖 =
1

|𝒳|
∑

𝑥𝑖∈𝒳
𝑓𝑖( ̃𝑥𝑖)

for evaluation.
Since the submodels do not have constant bias terms, they cannot simply learn
the constant function 𝑓𝑖(⋅) = 𝑞𝑖. Instead, the network needs to learn parameters
in such a way that normal inputs result in a low deviation from 𝑞𝑖 while all
other inputs exhibit large deviations. Therefore this loss can be used to measure
anomalousness for a given input similar to (RVG+18).
Finally, we define the anomaly score obtained by DEAN given by

𝐴𝑛𝑜𝑚(𝑥) = √ 1
𝑚

𝑚
∑
𝑖=1

𝐿𝑓𝑖
( ̃𝑥𝑖)

combining all the outputs and thereby incorporating all input features of 𝑥.
Moreover, it will average out too large deviations occurring in, for example, just
one submodel, resulting in a statistically robust model.

6.3 Problem Setting
There are several notions of robustness both for deep anomaly detectors (NBL+21;
ZP17) and for neural networks, in general, (ZSLG16). While a lot of emphasis
has been put on training models to be robust, once a model exists, it can only be
shown or measured whether it is robust. However, given a non-robust model,
it would be useful to just slightly adapt it in order to make it robust instead of
retraining a new model from scratch.
Therefore this section poses the challenge to post-process a given model such that
it becomes robust. To this end, we will formally introduce the post-robustification
problem and provide the necessary definitions.
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6.3.1 Post-Robustification
Inspired by verifiable robustness against adversarial attacks in the realm of super-
vised learning, we want to locally post-robustify models for anomaly detection
around a given input 𝑥∗. However, the problem can be formulatedmore generally
as it could be transferred to supervised learning as well:

Problem 6.3.1 (Post-Robustification). Given an evaluation metric 𝑚 and a non-
robust model-input pair (𝐷, 𝑥∗), create a new model 𝐷∗ such that (𝐷∗, 𝑥∗) is robust and
𝑚(𝐷∗) − 𝑚(𝐷) is maximized.

To work with this general problem formulation, we need to make it more
concrete by giving the model, the evaluation metric and the notion of robustness:
in this thesis, we choose the previously defined DEAN model evaluated by the
standard AUC score (Faw06) reflecting the predictive capability in the task of
anomaly detection. The precise definition of robustness will be given in the next
section.
The given problem definition reflects that we do not only want to robustify our
model on 𝑥∗, but that we also do not want to trade off too severely with respect to
a given evaluation metric. Otherwise, depending on the definition of robustness,
post-robustification might result in a degenerate model that maps all inputs to
the same output: a model that is very robust but not at all useful.
Note that, assuming a monotone 𝑚, we do not want to minimize |𝑚(𝐷∗)−𝑚(𝐷)|:
if 𝐷∗ performs even better according to the evaluation metric, we do not consider
this a problem.

6.3.2 Adversarial Robustness
Our robustness definition is the direct adaptation of adversarial robustness from
supervised learning to anomaly detection. Essentially, we consider the anomaly
detector as a binary classifier and apply the definition of (MMS+18) to it.

Definition 6.3.1 (𝜀-adv-rob). Let 𝐷 be an anomaly detector, 𝑑𝑖𝑠𝑡 a metric and 𝑥∗ ∈ ℝ𝑁

such that 𝐴𝑛𝑜𝑚(𝑥∗) < 𝜏. We say that 𝐷 is 𝜀-adversarial-robust at 𝑥∗ if and only if for
all inputs in 𝐵𝜀(𝑥∗) ∶= {𝑥 ∈ ℝ𝑁 ∶ 𝑑𝑖𝑠𝑡(𝑥, 𝑥∗) ≤ 𝜀} the Largest Anomaly Score is less
than 𝜏:

𝐿𝐴𝑆(𝐷, 𝐵𝜀(𝑥∗)) ∶= max
𝑥∈𝐵𝜀(𝑥∗)

𝐴𝑛𝑜𝑚(𝑥) < 𝜏

According to this definition, a normal input 𝑥∗ is robust if and only if all
surrounding inputs are normal as well. Thus if we can prove 𝜀-adversarial-
robustness, we know that there cannot be an adversarial attack in 𝐵𝜀(𝑥∗). As in
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the previous chapters, 𝑑𝑖𝑠𝑡 will be given by the 𝐿∞ distance.
Please note that this is a much stronger notion of robustness than testing against a
finite set of test samples. In contrast, we aim to verify the model against infinitely
many points defined by the 𝜀 environment of 𝑥∗. It corresponds to the same notion
of robustness against adversarial attacks in supervised learning (MMS+18).
However, this stronger notion of robustness also entails a new problem, as coming
up with a new, robustified model 𝐷∗ is futile if we do not know that it is robust.
Thus we give a slightly adapted problem formulation.

Problem 6.3.2 (Post-Robustification (𝜀-adv-rob)). Given an evaluation metric 𝑚
and a non-robust model-input pair (𝐷, 𝑥∗) according to Definition 6.3.1, create a new
model 𝐷∗ such that 𝑚(𝐷∗) − 𝑚(𝐷) is maximized and prove that (𝐷∗, 𝑥∗) is robust.

We have now defined the problem we want to solve for the DEAN model.
However, we need a further subproblem which we will solve for each submodel
of DEAN to establish robustness on a given DEAN model.

6.3.3 Adapting the Worst-Case-Error Problem
Given that DEAN, among other deep anomaly detectors, bases its anomaly score
on the deviation to a desired output, we introduce a slightly adapted version
of the worst-case-error problem (Problem 4.2.1 given in Section 4.2). If we can
bound the worst-case-error of all submodels in the region of interest 𝐵𝜀(𝑥∗), we
can also bound the anomaly score of the DEAN model and thus know whether it
will ever predict anomalous for any input in that region.

Definition 6.3.2 (DEAN-submodel 𝑤𝑐𝑒). Let 𝑓 ∶ ℝ𝑏 → ℝ1 be a DEAN submodel,
𝐴 ⊂ ℝ𝑏 an input region and 𝑞 the target value of 𝑓. The worst-case-error is given by:

𝑤𝑐𝑒(𝑓, 𝐴) = sup
𝑥∈𝐴

‖𝑞 − 𝑓(𝑥)‖∞

Moreover, we want to calculate an input that realizes 𝑤𝑐𝑒 up to a predefined
accuracy. Sticking to the notation introduced in Section 4.2 we call these wce
adversarial attacks.

Definition 6.3.3 (𝑤𝑐𝑒 − 𝑎𝑑𝑣). In the context of definition 6.3.2 we define a wce adver-
sarial attack (denoted wce-adv) as an input 𝑥 such that

∣‖𝑞 − 𝑓(𝑥)‖∞ − 𝑤𝑐𝑒(𝑓, 𝐴)∣ < 𝑎𝑐𝑐

where 𝑎𝑐𝑐 is a predefined accuracy.

Now that we have all the required definitions, we can build our way backward
to solve each of these problems. This is the content of the next section.
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Figure 6.2: Exemplary DEAN submodel for explaining the construction of SMT
formulas.

6.4 Solution Framework
In this section, we provide a solution framework for post-robustifying a deep
anomaly detection ensemble. Reversing the structure of the previous section, we
start by calculating 𝑤𝑐𝑒 on a DEAN submodel followed by verifying the DEAN
ensemble and finally post-robustifying it.

6.4.1 Calculating 𝑤𝑐𝑒 for a DEAN submodel
To calculate 𝑤𝑐𝑒 for a givenDEAN submodel 𝑓 we will slightly adapt the solution
provided in Section 4.3 and make use of so-called SMT solvers. In essence
𝑤𝑐𝑒(𝑓, 𝐵𝜀(𝑥∗)) is obtained by repeatedly checking existence of an input 𝑥 in
𝐵𝜀(𝑥∗) such that ‖𝑓(𝑥) − 𝑞‖ > 𝛿. Using this 𝛿-check as a subroutine we can
approximate 𝑤𝑐𝑒(𝑓, 𝐵𝜀(𝑥∗)) with a predefined accuracy using binary search over
𝛿. Therefore in the following, we only need to describe how to use an SMT solver
for a particular value of 𝛿.
While an SMT solver can be used in a very versatile way, in this section we will
build upon previous chapters, explaining only what we need to provide and
what in return we obtain as a solution. For a more detailed description of SMT
solvers, please refer to Section 2.2.2 or (Ehl17).
For our specific use case, we will provide a boolean combination (∧, ∨, ¬) of
linear inequalities, the formula, as input to our SMT solver of choice (WOZ+20).
These linear inequalities will encode the DEAN submodel as well as the 𝛿-check,
similar to Section 4.3.
As a result of the verification process, we will obtain either 𝑢𝑛𝑠𝑎𝑡 proving that no
input resulting in a distance to 𝑞 exceeding 𝛿 exists, or 𝑠𝑎𝑡 together with a sample
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𝑥 ∈ 𝐵𝜀(𝑥∗) such that ‖𝑞 − 𝑓(𝑥)‖∞ > 𝛿. We will keep track of the last sample
obtained during the binary search as this will be the wce-adv.
As stated in the previous chapters, SMT solvers allow only for piecewise affine
activation functions. In this sense, DEAN is a favorable choice because it only
employs ReLU and Linear layers.
Similar to the problem formulation of 𝑤𝑐𝑒 for autoencoder we require three
formulas, 𝜑𝑓, 𝜑𝛿 and 𝜑𝜀, encoding the 𝛿-check. The neural network will again be
encoded in 𝜑𝑓 while 𝜑𝛿 and 𝜑𝜀 are given by

𝜑𝛿 = [𝑥𝐿,1 ≥ 𝑞 + 𝛿] ∨ [𝑥𝐿,1 ≤ 𝑞 − 𝛿]

and

𝜑𝜀 = ⋀
1≤𝑘≤𝑁

[𝑥0,𝑘 ≤ 𝑥∗
𝑘 + 𝜀] ∧ [𝑥0,𝑘 ≥ 𝑥∗

𝑘 − 𝜀]

respectively. Basically, the formula 𝜑𝛿 is satisfied if and only if the error between
𝑓(𝑥) = 𝑥(𝐿)

1 and 𝑞 is large enough, while 𝜑𝜀 restricts the SMT solver to search for
a point 𝑥 in an 𝜀−environment of 𝑥∗. Eventually, the formula presented to the
SMT solver is given by

𝜑𝑓
𝛿,𝐵𝜀(𝑥∗) ≔ 𝜑𝑓 ∧ 𝜑𝜀 ∧ 𝜑𝛿.

If the SMT solver returns 𝑢𝑛𝑠𝑎𝑡 for this formula, we know that for all points in
{𝑥 ∈ ℝ𝑛 ∶ ‖𝑥 − 𝑥∗‖∞ < 𝜀} the distance between 𝑓(𝑥) and 𝑞 is less than 𝛿. If on the
other hand the solver returns 𝑠𝑎𝑡 and a solution ̃𝑥 which satisfies ‖ ̃𝑥 − 𝑥∗‖∞ < 𝜀
and ‖𝑓( ̃𝑥)−𝑞‖∞ > 𝛿, we directly obtain an example resulting in a large deviation.
To further ease understanding, we will present a small example: for the simple
DEAN submodel given in Figure 6.2, 𝑥∗ = (1, 2, 1), 𝑓(𝑥∗) = 1, 𝜀 = 0.1 and 𝛿 = 0.1
the SMT formula looks as follows:
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Figure 6.3: Visualization of wce-adv. For each dimension (𝑥-axis) wce-adv is usu-
ally given by either ̃𝑥∗ − 𝜀 or ̃𝑥∗ + 𝜀. Thus wce-adv is a corner of 𝐵𝜀( ̃𝑥∗)

Example 6.4.1.

𝜑𝑓 ≔ (𝑦1,1 = 2𝑥0,1 − 0.5𝑥0,2 + 𝑥0,3)
∧(𝑦1,2 = 𝑥0,1 + 2𝑥0,2 − 3𝑥0,3)
∧(𝑥1,1 = ite(𝑦1,1 < 0, 0, 𝑦1,1))
∧(𝑥1,2 = ite(𝑦1,2 < 0, 0, 𝑦1,2))
∧(𝑥2,1 = 0.25𝑥1,1 + 0.25𝑥1,2)

𝜑𝜀=0.1 ≔(𝑥0,1 ≥ 0.9)
∧(𝑥0,1 ≤ 1.1)
∧(𝑥0,2 ≥ 1.9)
∧(𝑥0,2 ≤ 2.1)
∧(𝑥0,3 ≥ 0.9)
∧(𝑥0,3 ≤ 1.1)

𝜑𝛿=0.1 ≔(𝑥2,1 ≥ 1.1)
∨(𝑥2,1 ≤ 0.9)
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The solution for this instance is 𝑠𝑎𝑡 with, for example, the following variable assignments:

𝑥0,1 = 1.1
𝑥0,2 = 2.1
𝑥0,3 = 0.9
𝑥1,1 = 𝑦1,1 = 2.05
𝑥1,2 = 𝑦1,2 = 2.6
𝑥2,1 = 1.1625

Note however, that for 𝛿 = 0.2 no solution exists proving that 𝑤𝑐𝑒 must be between 0.1
and 0.2.

6.4.2 Robustness Verification
Having established a procedure to calculate both the 𝑤𝑐𝑒 value as well as wce-adv
on a DEAN submodel, we now show how to verify the entire DEAN model.
The general procedure of our verification framework is given by splitting up the
ensemble model, calculating 𝑤𝑐𝑒 and wce-adv on each submodel and merging
the results. In the following, we provide details on these steps.

Splitting:

We split the DEAN model into each of the submodels it consists of. Thus, if
𝐷 = (𝑓1, ..., 𝑓𝑚) is the DEAN model, we consider each 𝑓𝑖 separately in the next
step. Note also that for the next step, we need to respect the feature bagging. If
we want to check robustness for a given input 𝑥∗ each submodel 𝑓𝑖 is verified on
𝐵𝜀( ̃𝑥∗

𝑖).

Submodel Verification:

For each submodel 𝑓𝑖 we solve the adapted version of the worst-case-error prob-
lem as described in Section 6.4.1. Thereby we obtain two outputs. On the one
hand, we obtain a value 𝑤𝑐𝑒 of each submodel and, on the other hand, an input
wce-adv that realizes 𝑤𝑐𝑒 up to a predefined accuracy. Note, though, that the
input is not for the entire DEAN model but just for a single 𝑓𝑖 model.

Merging Outputs:

From the two outputs obtained for each submodel, we will extract an upper and
a lower bound for the largest anomaly score 𝐿𝐴𝑆(𝐷, 𝐵𝜀(𝑥∗)). Recall that if the
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Figure 6.4: Verification Process of the DEAN model. We first split DEAN and
the input (left) up into the submodels and their features. Thereafter
on each submodel, both 𝑤𝑐𝑒 and wce-adv are calculated (middle),
followed bymerging the results into the upper bound and the pseudo-
adversarial attack p-adv (right). Note that due to feature bagging,
each submodel’s wce-adv does not cover all input dimensions.

upper bound is lower than the anomaly threshold 𝜏 we prove local robustness.
The lower bound, on the other hand, is used to estimate the approximation gap
to 𝐿𝐴𝑆(𝐷, 𝐵𝜀(𝑥∗)).
We Upper bound the Largest Anomaly Score by:

𝑈𝐿𝐴𝑆(𝐷, 𝐵𝜀(𝑥∗)) = √ 1
𝑚

𝑚
∑
𝑖=1

𝑤𝑐𝑒(𝑓𝑖, 𝐵𝜀( ̃𝑥∗
𝑖))2

We replace the error of each model with the largest error that can possibly mani-
fest for each submodel. This is an overapproximation of 𝐿𝐴𝑆(𝐷, 𝐵𝜀(𝑥∗)) because
a single feature of 𝑥∗ might be shared by multiple submodels. These submodels,
however, might realize their wce-adv with different values for this particular fea-
ture. Yet inputs to the DEAN model can, of course, only have one value for every
dimension.
Therefore we construct the lower bound of the anomaly score by combining
the adversarial attacks wce-adv of each submodel 𝑓𝑖 into a pseudo-adversarial
attack for DEAN. To this end, we leverage a property of the adversarial attacks
wce-adv obtained by our subroutine: usually they are at a corner of the input

86



6.4 Solution Framework

space1 𝐵𝜀( ̃𝑥∗
𝑖). Thus for ( ̃𝑥∗

𝑖)𝑘 being the 𝑘’th dimension of ̃𝑥∗
𝑖 they are given by

𝑦(𝑖)
𝑘 ∈ {( ̃𝑥∗

𝑖)𝑘 + 𝜀, ( ̃𝑥∗
𝑖)𝑘 − 𝜀} (see Figure 6.3).

Taking the perspective of a particular dimension 𝑝, there are several submodels
that have this dimension as input due to feature bagging. To combine the ad-
versarial attacks, we simply employ a majority vote among these submodels to
determine which side of the corner we choose.
Thus let 𝐽 be the index set of submodels using feature 𝑝, 𝑙(𝑗) be the respective
index corresponding to feature 𝑝 in each of these submodels and {𝑦(𝑗)

𝑙(𝑗) ∶ 𝑗 ∈ 𝐽} be
the corner points obtained for dimension 𝑝 by their respective unsupervised ad-
versarial attacks. Then we construct a pseudo-adversarial attack for the ensemble
as

p-adv(𝐵𝜀(𝑥∗))𝑝 ∶= mode{𝑦(𝑗)
𝑙(𝑗) ∶ 𝑗 ∈ 𝐽}.

From this pseudo-adversarial attack, we extract a lower bound for𝐿𝐴𝑆(𝐷, 𝐵𝜀(𝑥∗))
by simply calculating 𝐴𝑛𝑜𝑚(p-adv(𝐵𝜀(𝑥∗))). Essentially, we try to combine the
adversarial attacks of each submodel in such a way that many of the submodel’s
errors become large, thereby tailoring a pseudo-adversarial attack for the ensem-
ble model. We call it a pseudo-adversarial attack because we cannot guarantee
that it is indeed an adversarial attack to the DEAN model. After all, it is just a
lower bound for the anomaly score. We will show experimentally, though, that it
is close to the upper bound resulting in a very small approximation gap.

Properties of Ensemble Verification:

Robustness verification of an ensemble comes with both advantages and caveats.
One major advantage is with respect to scalability. Using an ensemble of simpler
models allows us to break down the difficult problem of verifying a large neural
network into smaller subproblems, each of which can be solved in a much shorter
time. Since verification time increases exponentially in the number of ReLU nodes
(XTSM19), the size of networks that can be verified is limited. Thus ensemble
methods of simpler models are a natural aid for scalability.
Secondly, feature bagging - a method only applicable to ensemble methods -
allows us to scale up the verification procedure to datasets of any dimension.
Finally, as we will see in the experiments, the DEAN ensemble is more robust in
the previously defined sense than other deep anomaly methods making them
the go-to choice for robust anomaly detection.
Still, there is a trade-offwe take by verifying each of the submodels independently:

1Of course, this depends strongly on the value of 𝜀. The larger the space in which we search
for the 𝑤𝑐𝑒 − 𝑎𝑑𝑣, the larger the chance that it is not at a corner. We conducted follow-up
experiments of that for autoencoder in (Vu23).
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Algorithm 2: Post-Robustify
Input: 𝜏, 𝐿 = ((𝑓𝑖, 𝑤𝑐𝑒(𝑓𝑖, 𝐵𝜀( ̃𝑥∗

𝑖))))𝑖=1,…,𝑚

1 𝐿𝑠𝑜𝑟𝑡 = 𝑠𝑜𝑟𝑡(𝐿) by 𝑤𝑐𝑒
2 while 𝑈𝐿𝐴𝑆(𝐿𝑠𝑜𝑟𝑡, 𝐵𝜀(𝑥∗)) > 𝜏 do
3 𝐿𝑠𝑜𝑟𝑡 ← 𝐿𝑠𝑜𝑟𝑡 ⧵ 𝑚𝑎𝑥(𝐿𝑠𝑜𝑟𝑡)
4 return 𝑚𝑜𝑑𝑒𝑙𝑠(𝐿𝑠𝑜𝑟𝑡)

we only approximate the largest anomaly score on the entire net because we are
not able to consider inputs to different submodels jointly. We will see empirically,
though, that our approximation is very close.

6.4.3 Robustify
Endowed with the capability to determine robustness, we will now present a
simple procedure with which we can post-process a non-robust model-input pair
based on each submodel’s 𝑤𝑐𝑒 such that it becomes robust: we sort all submodels
by their 𝑤𝑐𝑒 and remove them one by one starting with the largest 𝑤𝑐𝑒 until the
upper bound on 𝐿𝐴𝑆(𝐹 , 𝐵𝜀(𝑥∗)) of the remaining models is below the anomaly
threshold 𝜏. This way, we can guarantee that in 𝐵𝜀(𝑥∗) the resulting ensemble
will never predict anomalous ensuring robustness.
The exact procedure is given in Algorithm 2 and is based on the assumption
that there are a few submodels whose worst-case-errors exceed 𝜏 by a substantial
margin (see Figure 6.5). In that case, we only need to remove a small portion of
the submodels, thus retaining a lot of the ensemble’s predictive capability.
This seemingly simple procedure has to be executed with care given the following
limitations: first, by reducing the number of models, we might impair the predic-
tive capability of the ensemble. We will show experimentally that this trade-off
is not severe, but of course, this depends on the level of robustness one wants to
achieve. Secondly, there is a limit of robustness that we cannot overcome simply
given by the smallest worst-case-error of any submodel. Thus, if 𝜀 is too large
(if we want too much robustness) post-robustification by removing submodels
becomes impossible and Algorithm 2 returns an empty list.

6.5 Experiments
This section highlights the use of post-robustification for a given DEAN model.
We will start by looking into a single ensemble model trained onMNIST (Den12),
showingwhat useful results can be obtainedwith ourmethod. Thereafter wewill
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compare DEAN with a) an autoencoder ensemble (RandNet) (CSAT17) and b)
the DeepSVDD model (RVG+18) on 8 other real-world datasets highlighting that
DEAN models are more robust from the beginning, allow for post-robustification
on each of these datasets, and - in contrast to RandNet and DeepSVDD - keep a
constant runtime across all datasets.
The code and more details on our experiments can be found at www.github.com/
KDD-OpenSource/Robustify.

6.5.1 Deep Dive MNIST
Our first experiments are conducted on the MNIST dataset. Here we train an
ensemble of 1000 DEAN submodels with feature bagging of size 32 to highlight
properties of the Post-Robustify method on a single ensemble model.

Remaining Predictive Capability:

Assuming that we started with a powerful predictor, our first experiment ad-
dresses whether, by post-robustifying, the model loses its predictive capability.
As shown in Figure 6.5, after post-robustification based on one point, we can
keep 856 of the original models and sacrifice almost no AUC. Indeed we could
have deleted more than 50% of the submodels before witnessing a severe drop
in AUC score.

Approximation of the Largest Anomaly Score:

As we cannot directly calculate 𝐿𝐴𝑆, we must approximate it. Recall that we
obtained an upper bound on the LAS by aggregating over each submodel’s
𝑤𝑐𝑒 and a lower bound by combining each submodel’s wce-adv into a pseudo-
adversarial attack for the DEAN model. We can use both bounds to test how
accurate the approximation of 𝐿𝐴𝑆 for the DEAN ensemble is. Since we have
no theoretical guarantee on the size of the approximation gap, we empirically
evaluate it for a given DEAN model on 20 samples in Figure 6.6. Surprisingly,
the relative error between the approximation gap and the actual 𝐿𝐴𝑆 is always
less than 2% showing that our approximation scheme is very precise.

Local vs. Global Robustness:

Finally, we investigate the global effects of local post-robustification. Figure 6.7
shows that we significantly decrease 𝑈𝐿𝐴𝑆 for other normal samples by local
post-robustification. It appears that the models we delete by post-robustifying
one sample also cause high worst-case-errors on other samples. Therefore our
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Figure 6.5: ROC-AUCScore and𝑈𝐿𝐴𝑆 of theDEAN Ensemble as a function of the
number ofmodels used to generate it. Herewe use only the submodels
with the lowest error and consider an ensemble with 𝑈𝐿𝐴𝑆 ≤ 0.15 to
be robust as defined by 𝜏. Calculating these individual errors does
not require labels, so our process is still unsupervised.

method increases robustness not only locally but also globally.
However, an important remark is that in order to be truly robust at multiple
points, one needs to successively apply the post-robustifying step in each of
which the trade-off with predictive capability is made. As seen in Figure 6.11
though, the trade-off becomes less severe with a growing number of local post-
robustifications.

6.5.2 Comparison to RandNet and DeepSVDD

This section compares DEAN to two representative, alternative models: RandNet
(CSAT17) and DeepSVDD (RVG+18). While RandNet consists of an ensemble of
autoencoders, thereby being directly comparable to DEAN, DeepSVDD consists
of a single, large neural network. Thus even though we cannot directly apply our
post-processing method to DeepSVDD, we highlight how DEAN outperforms it
with respect to runtime and robustness.
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Figure 6.6: LAS Approximations (upper bound through averaging submodel’s
𝑤𝑐𝑒 and lower bound through combining wce-adv) for 20 different
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Figure 6.7: Gaussian Kernel Density Estimation plot of 𝑈𝐿𝐴𝑆 of 20 samples
before (red) and after (green) application of Post-Robustify. After
post-robustifying on a particular sample, we calculated 𝑈𝐿𝐴𝑆 on
different samples to obtain the green density.
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Dataset Features RandNet DEAN DeepSVDD
𝑝𝑎𝑔𝑒𝑏𝑙𝑜𝑐𝑘𝑠 10 0.9231 0.9577 0.8748
𝑠𝑒𝑔𝑚𝑒𝑛𝑡 18 0.9982 0.9998 0.9981
𝑠𝑡𝑒𝑒𝑙𝑝𝑙𝑎𝑡𝑒𝑠 (oSoC10) 27 0.7521 0.7329 0.718
𝑤𝑏𝑐 30 0.941 0.9751 0.9336
𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 36 0.8321 0.8196 0.8233
𝑞𝑠𝑎𝑟𝑏𝑖𝑜𝑑𝑒𝑔 (MRB+13) 39 0.8734 0.7425 0.821
𝑔𝑎𝑠𝑑𝑟𝑖𝑓𝑡 (VVA+12) 128 0.9791 0.9319 0.9562
ℎ𝑎𝑟 (AGO+13) 561 0.9786 0.9529 0.9371

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 0.9097 0.8890 0.8828

Table 6.1: ROC-AUC Scores on the 8 datasets used in this thesis.

Datasets:

We choose eight different datasets with varying numbers of features. These are
chosen from (Ray16) and (VvRBT13) such that each algorithm achieves a similar
AUC score as shown in Table 6.1. For each dataset, we performed the following
experiments based on 20 samples for post-robustification. Moreover, we repeated
each experiment with 10 different models using 100 submodels each. Thus, for
example, we have a total of 20 ⋅ 10 = 200 post-robustifications for the DEAN
model on the 𝑝𝑎𝑔𝑒𝑏𝑙𝑜𝑐𝑘𝑠 dataset.

Verification of RandNet and DeepSVDD:

For both models, we need to define how to verify their robustness. To this end,
we need to upper bound their anomaly score (via 𝑈𝐿𝐴𝑆) to thereafter compare
this bound to 𝜏.
For the RandNet model 𝑅𝑁 = (𝑎𝑒1, … , 𝑎𝑒𝑚) the anomaly score is given by the
median of the reconstruction error ‖𝑥 − 𝑎𝑒𝑗(𝑥)‖2 they used for each model 𝑎𝑒𝑗.
However, as described before, SMT solvers cannot handle the 𝐿2 norm. Thus, we
proceed similar to the DEAN model: we calculate 𝑤𝑐𝑒 for each submodel by

𝑤𝑐𝑒(𝑎𝑒𝑗, 𝐵𝜀(𝑥∗)) = max
𝑥∈𝐵𝜀(𝑥∗)

‖𝑥 − 𝑎𝑒𝑗(𝑥)‖∞

and join the results. We can bound the 𝐿2 norm in 𝐵𝜀(𝑥∗) by the worst-case-error

max
𝑥∈𝐵𝜀(𝑥∗)

‖𝑥 − 𝑎𝑒𝑗(𝑥)‖2 = max
𝑥∈𝐵𝜀(𝑥∗)

√
𝑁

∑
𝑖=1

(𝑥𝑖 − (𝑎𝑒𝑗(𝑥))𝑖)2 ≤
√

𝑁 ⋅ 𝑤𝑐𝑒(𝑎𝑒𝑗, 𝐵𝜀(𝑥∗)).
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Eventually, using the median as their aggregation function, we get

𝑈𝐿𝐴𝑆(𝑅𝑁, 𝐵𝜀(𝑥∗)) = median
𝑖∈1,…,𝑚

(
√

𝑁 ⋅ 𝑤𝑐𝑒(𝑎𝑒𝑖, 𝐵𝜀(𝑥∗))).

Note that we probably strongly overestimate the largest anomaly score given that
we replace each dimension in the reconstruction error by the worst-case-error
yielding a factor of

√
𝑁 for the approximation. However, this is the best way in

which we can bound the anomaly score and highlights that the DEAN model is
much more suitable for post-robustifcation due to its architecture with just one
output neuron.
For a DeepSVDD model 𝐷𝑆, the anomaly score is given by the Euclidian distance
(𝐿2-norm) to a (given) parameter 𝑐. Similar to RandNet we instead need to
calculate the 𝐿∞-norm as 𝑤𝑐𝑒:

𝑤𝑐𝑒(𝐷𝑆, 𝐵𝜀(𝑥∗)) = max
𝑥∈𝐵𝜀(𝑥∗)

‖𝐷𝑆(𝑥) − 𝑐‖∞

We can ensure robustness only via the largest 𝐿∞-ball fully contained in the
𝐿2-ball of radius 𝑐. Therefore, if 𝑝 is the model’s output dimension, the upper
bound of the anomaly score is given by

𝑈𝐿𝐴𝑆(𝐷𝑆, 𝐵𝜀(𝑥∗)) = √𝑝 ⋅ 𝑤𝑐𝑒(𝐷𝑆, 𝐵𝜀(𝑥∗))2.

Ratio Comparison:

As the anomaly scores of different models can have different scales, equation 6.1
defines the so-called Change Ratio (𝐶𝑅) to make the results on different models
comparable. It indicates by what factor the model differs from a robust one: the
model is already robust for 𝐶𝑅 ≤ 1 while for 𝐶𝑅 > 1 we need to reduce 𝑈𝐿𝐴𝑆
by a factor 𝐶𝑅 to obtain a robust model.

𝐶𝑅(𝐷, 𝑥∗, 𝜀) ∶=
𝑈𝐿𝐴𝑆(𝐷, 𝐵𝜀(𝑥∗))

𝜏(𝐷)
(6.1)

Figure 6.8 shows that for every dataset, DEAN is already the most robust, often
having a 𝐶𝑅 ≤ 1. While DeepSVDD is already less robust, RandNet has change
ratios more than 100 times higher than those of DEAN. At least partly this is due
to a larger approximation error of 𝑈𝐿𝐴𝑆 as the different algorithms use different
norms (𝐿2 or 𝐿∞) for their anomaly scores. Therefore the simple architectures
of each of DEAN’s submodels favor a precise calculation of 𝑈𝐿𝐴𝑆. Moreover,
the given change ratios render the RandNet model unfit for post-robustification
as we cannot reduce 𝑈𝐿𝐴𝑆 enough to be below the anomaly threshold 𝜏. For the
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Figure 6.8: Change Ratio on eight datasets averaged over ten runs and twenty
samples for post-robustification each. DEAN has the lowest overall
change ratio. Thus we do not need to adjust it significantly to post-
robustify one sample.
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Figure 6.9: Runtime on eight datasets averaged over ten runs and twenty samples
each. The computational complexity for RandNet and DeepSVDD
increaseswith the number of features (note that the datasets are sorted
by their number of features). For the highest dimensional dataset
”har” with 561 features, it was impossible to verify the autoencoder
due to timeout.
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DeepSVDD model, on the other hand, post-robustification may be valid in some
cases. However, in this case, we have no methodology to actually reduce 𝑈𝐿𝐴𝑆.
Figure 6.9 shows the runtime of the verification algorithm. As the x-axis is sorted
by the number of features in each dataset, we show the drastic increase in required
verification time both for RandNet and, to a lesser extent, also for DeepSVDD. In
contrast, the required verification time for the DEAN model stays constant over
all datasets as feature bagging allows keeping the number of ReLU nodes in each
submodel the same.
Even thoughDEAN seems to have a larger runtime on lower-dimensional datasets,
note that - unlikeDeepSVDD - its verification process can be parallelized along the
submodels. Moreover, it depends linearly on the number of submodels verified.
Therefore the eventual runtime of DEAN verification can be controlled both
with the number of submodels to be verified and with the number of CPU cores
available.
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Figure 6.10: Number of models deleted by post-robustification. To reach robust-
ness around a single sample, wemust remove less than 10%ofmodels
on average. For 90% of verified samples, we need to remove at most
22% of submodels. Just a few samples are hard to post-robustify and
require removing more submodels.
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Towards Global Robustness:

Finally, we want to build on the results obtained in section 6.5.1. As we have
seen, local post-robustification impacts robustness globally. Therefore Figure 6.11
shows the number of remainingmodels after repeatedly applying post-robustification
on different samples. It appears that on all datasets, we can post-robustify up to
10 different samples without sacrificing too many models.
However, there are a few samples that would delete more than 50% of the models,
as can be seen on the left-hand side. For these cases, post-robustification would
have a severe impact on the remaining AUC score.
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Figure 6.11: Number of remaining models after repeated post-robustification. We
test if we can post-robustify a given ensemble for multiple samples.
We show the number of remainingmodels on the right side after post-
robustifying up to 10 samples averaged over ten different ensembles
and samples. A few hard-to-verify samples affect this curve strongly.
Hence we choose the ten samples that are easiest to post-robustify
for every model. However, we show the effect of also including the
final sample as point 11.

6.6 Summary
In this chapter, we study the formal verification of ensembles for anomaly detec-
tion. We first develop the necessary theoretical notions and thereafter show not
only how to assess a given anomaly detection ensemblewith respect to robustness
but also how to repair a non-robust model.
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In our extensive experiment section, we demonstrate our new method - Post-
Robustify - on different datasets highlighting that post-robustification is almost
always possible, even without a sacrifice in prediction performance. Moreover,
we compare different deep anomaly detectors. The DEAN model seems particu-
larly suitable for post-robustification, as it outperforms common alternatives in
terms of scalability and the degree of change required to obtain a robust model.
Also, using feature bagging, DEAN achieves a verification time independent of
the number of features of the dataset. Thereby, using the ensemble structure of
the DEAN model, we overcome the major challenge of the previous chapters -
albeit only for this type of model.
Although we also show that local post-robustification affects robustness globally,
there is a limit of points for which we can ensure it. Thus, to achieve global
robustness, more sophisticated algorithms and perhaps even another definition
of robustness is needed.
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Summary and Future Work 7
This thesis bridges the gap between supervised and unsupervised neural net-
works in neural network verification. We define new problem specifications to
be verified, show their usefulness, analyze and tackle challenges in scalability
and demonstrate how to increase a given model’s robustness. This section gives
both a summary of the research contributions as well as an outlook into future
work and remaining open challenges.

7.1 Contributions
As a first major challenge, we need to give ourselves precise problem definitions.
While for supervised neural networks - among other properties - robustness
against adversarial attacks is a well-established verification problem, unsuper-
vised neural networks lack such problem definitions. Thus, we paradigmatically
introduce such new verification problems for the case of autoencoders. First, we
introduce the worst-case-error, which at its core builds upon the innate training
property of every autoencoder: the reconstruction of the input. It determines
the largest reconstruction error in a given region of interest. Secondly, we define
𝜀-𝛿 robustness for the autoencoder. It asks the question of how much (𝜀) we
must change the input to achieve a particular change (𝛿) in the output. Since the
autoencoder is a very versatile model with many use cases and both verification
problems describe very general properties, we can apply them in different set-
tings. For example, we can use them to show that classes do not get mixed up
in the latent space when we use the autoencoder for dimensionality reduction.
Moreover, for the use case of anomaly detection, we can describe the region in
which, according to the autoencoder, the normal or anomalous points can be
found. Finally, we show how using the presented verification problems, we can
prove that a given autoencoder denoises. Note that these applications are in stark
contrast to supervised neural network verification, which in most cases, is based
on a change of classes. Similarly, our use cases are not based on changes of classes
but are inspired by what a particular unsupervised neural network is used for.
The second major challenge we tackle in the thesis is verification scalability.
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Similar to the supervised case, the runtime of unsupervised neural network
verification grows exponentially as the network’s size increases. Neural network
verification is NP-complete. Therefore we add to the current body of research on
verification scalability. However, we deviate from the most common approach
to tackle it. Instead of directly improving on the verification method itself, we
train neural networks to be amenable for verification with a regularizer called
fctdist. By exploiting the theoretical foundation of the piecewise affine structure
of our neural networks, we achieve a significant reduction in the number of
subfunctions. As constraint-based verification methods must, in one form or
another, iterate over these subfunctions, this drastically decreases verification
runtime. Another approach to decrease verification runtime is given by using en-
semble methods. This effectively circumvents the need to verify one large neural
network and instead relies on dividing the problem into many subproblems. In
this case, the verification runtime does not increase exponentially with the size
of the neural network but instead just linearly with the number of submodels
used in the ensemble.
The third challenge we address in the thesis is to train models for more robust-
ness. The regularizer fctdist does not only reduce verification runtime but instead
also increases robustness of the resulting model. The simplification reached by
reducing the number of affine subfunctions yields models which locally have a
more linear behavior and are thus more stable. Moreover, we demonstrate that
adversarial training - as inspired by the case of supervised learning - improves
resilience against the adversarial attacks we define in the thesis.
The fourth challenge we address in the thesis is post-robustification. Motivated
by the potentially high costs of training, it asks to repair a model that is broken.
More precisely, we want to make a non-robust model robust without retraining
from scratch. We show how to solve that problem for ensemble models. In par-
ticular, we consider the DEAN model, which is an anomaly detection ensemble
of many small DeepSVDD models employing feature bagging. We aim to bound
the model’s anomaly score in an area to prove that all points are predicted as
normal in it. By splitting the ensemble and verifying each subnetwork separately,
we can identify which subnetworks harm robustness. Merging the results gives
an approximate verification procedure for the entire model. It is only an approxi-
mate solution because we search for the largest anomaly score for each submodel
individually. However, the combined anomaly score overestimates the actual
largest anomaly score. Therefore we estimate the approximation gap by giving
a lower bound. Since the approximation gap is surprisingly small, we obtain a
reasonable alternative to large-scale non-ensemble models.
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7.2 Future Work
Based on the presented contributions, many open research questions both of
practical and theoretical interest arise. While we made significant progress on
the question of scalability, large scale neural networks still remain out of reach
for exact verification methods. This is due to their enormous size making an
exhaustive exploration virtually impossible. However, current methods only op-
timize the mathematical framework into which the problem has been translated.
We believe that this could be improved upon if a more geometrical rather than
optimization viewpoint was taken.
Any ReLU activation pattern corresponds to a particular subset of the input space.
While current methods base the order in which they consider the different activa-
tion patterns on, for example, lower or upper bounds on the ReLU neurons, they
do not consider how close other subspaces of other ReLU activation patterns are.
However, if one wants to check, example given, for robustness, not all activation
patterns need to be considered and only those in close vicinity to the input point
matter. Therefore we might achieve a verification speedup by exploring the
surrounding of 𝑥 in a more geometrical way. Chapter 5 paves the way for this
research direction. Indeed, starting from one activation pattern, it calculates the
distances to the borders of other activation patterns, which we hope to exploit in
future work.
The second way to speed up verification is by approximate methods. Whether
it is through an ensemble technique or through relaxation, as in abstract inter-
pretation, it is one way in which verification methods can be scaled up to more
complex models. However, there is still a lot of open research in bounding the
approximation gap between approximate and exact methods. While some efforts
have been made to estimate it (SYZ+19), there is more research to be done in
finding guarantees to achieve a certain fraction of the optimal solution with an
approximation algorithm. Moreover, similar to our approach in Chapter 5 of
training for easier verification, one might train for neural networks exhibiting a
small approximation gap.
Another natural extension of our thesis consists in applying approximation algo-
rithms to autoencoders. While we see some hurdles to applying, for example,
abstract interpretation directly to approximate the worst-case-error, it could po-
tentially help in approximating the output deviation for 𝜀-𝛿 robustness and, in
this way, determine the denoising capability of a given autoencoder. Moreover,
it could be used to check whether separate input sets remain separate in the
latent space, thus allowing for a lower dimensional representation on which a
downstream task can safely be executed.
Although we have started creating new verification problems for unsupervised
neural networks, there are likely many more to be discovered. In particular, we
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search for more low-level specifications aiming at a particular task of the neural
network, such as 𝜀-𝛿 robustness for denoising. But building on top of that, we
also need to reconcile these low-level specifications with high-level demands
of a particular user. He should be able to state his request in a non-technical
domain-specific language. For example, in autonomous driving, we have no way
of covering all possible perturbations of a stop sign in an image. Therefore, we
cannot verify the high-level demand of safely identifying a stop sign with just a
camera. This has severe implications not only for the safety of autonomous cars
but also for ethics and responsibility in case of a fault showing that safe machine
learning systems concern a wide range of research directions.
Just as supervised neural networks were a fruitful inspiration for our research,
we expect that our contributions to unsupervised neural networks will, in turn,
benefit neural network verification in general. In fact, both the fctdist regularizer
as well as the ensemble idea can likely be applied to supervised neural networks
as well. They are mainly based on the two changes of perspective, including
the training process as well as the neural network’s structure in the verification
process. Both these ideas are not exclusive to unsupervised neural networks.
Also, the challenge of post-robustification is still open for general neural networks
and may well be solved by cleverly adjusting some neural networks’ internals,
such as their weights or biases. Moreover, one might be able to incorporate
knowledge obtained from the verification process into the post-robustification
process in a counterexample-guided inductive synthesis manner (STB+06). Then,
by successively refining an existing model, we may eventually obtain safe and
reliable neural networks.
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