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Abstract. In this note, we are concerned with the solvability of multifield coupled problems
with different, often conflictual types of non-linearities. We bring into focus the challenges
of getting EFM numerical solutions. As for instance, we share our investigations of the solv-
ability of thixoviscoplastic flow problems in FEM settings. On one hand, nonlinear multifield
coupled problems are often lacking unified FEM analysis due to the presence of different non-
linearities. Thus, the importance of treating auxiliary subproblems with different analysis tools
to guarantee existence of solutions. Moreover, the nonlinear multifield problems are extremely
sensitive to the coupling. On other hand, monolithic Newton-multigrid FEM solver shows a
great success in getting numerical solutions for multifield coupled problems. Thixoviscoplastic
flow problem is a perfect example in this regard. It is a two field coupled problem, by means
of microstructure dependent plastic-viscosity as well as microstructure dependent yield stress,
and microstructure and shear rate dependent buildup and breakdown functions. We adapt
different numerical techniques to show the solvability of the problem, and expose the accuracy
of FEM numerical solutions via the simulations of thixoviscoplastic flow problems in channel
configuration.

1 Introduction

We shall consider the FEM solvability of multifield nonlinear coupled saddle-point problem
of the following system:

Find (u, p, λ) ∈ V×Q× T, such that
Au(u, λ)u+ BTp = lu in V′,
Bu = 0 in Q′,
Aλ(u, λ)λ = lλ in T′,

(1)

or more precisely of the following form:
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Find (u, p, λ) ∈ V×Q× T, such that
Lu(u, λ)u+Nu(u)u+ BTp = lu in V′,
Bu = 0 in Q′,
Mλ(u, λ)λ+Nλ(u)λ = lλ in T′,

(2)

where the operators Au,Lu : V×T×V −→ V′, Nu : V×V −→ V′, Aλ,Mλ : V×T×T −→ T′,
Nλ : V × T −→ T′, and the linear forms B : V −→ Q′, lu : V −→ R, and lλ : T −→ R are
bounded.

The problems (1, 2) are coupled via (u, p) and (u, λ), and present different types of nonlin-
earities. The operator Au includes two types of nonlinearities via the nonlinear operator Lu

and Nu, while the operator Aλ induces further nonlinearity via the operator Mλ. There is no
unified analysis for handling the solvability of the coupled problem A(u,λ).

We aim to adapt different analysis tools to show the solvability of nonlinear multifield coupled
problems, and present a FEM numerical solutions via the numerical simulations of thixovis-
coplastic flow problem.
The problem (1, 2) arise from the quasi-Newtonian modelling approach of Hous̆ka thixovis-
coplstic model [7, 9]:

(
∂

∂t
+ u · ∇

)
u−∇ ·

(
2µ(DII,r, λ)D(u)

)
+∇p = fu,

∇ · u = 0,(
∂

∂t
+ u · ∇

)
λ−F(DII,r, λ) + G(DII,r, λ) = fλ,

(3)

in Ω, with external forces fu, and fλ. The boundary ∂Ω might have an inflow Γ−, outflow
section Γ+ sections, and Γ = Γ− ∪ Γ+ . u, p, and λ denote velocity, pressure, and microstruc-
ture, respectively. The full set of thixoviscoplastic of equations (3) constitute of incompressible
viscoplastic equations supplemented with the evolution equation which induces the competi-
tion process of Aging and Rejuvenation. In quasi-Newtonian modelling approach, that we are
considering, the viscosity µ(·, ·), breakdown F(·, ·), buildup G(·, ·) functions are dependent on
shear rate approximation, DII,r, and microstructure λ [9]. We use Papanastasiuo approxima-
tion for Forbenius norm of symmetric part of velocity gradient [12]. In Table 1, we list a few
thixotropic models.

Table 1: Thixotropic models.

η τ F G
Worrall et al. [13] λ η0 τ0 Ma(1− λ) ||D|| Mbλ ||D||
Coussot et al.[5] λg η0 Ma Mbλ ||D||
Houška [7] (η0 + η∞λ) ||D||n−1 (τ0 + τ∞λ) Ma(1− λ) Mbλ

m ||D||

Here η0 and τ0 are initial plastic viscosity and yield stress, respectively. η∞ and τ∞ are
thixotropic plastic viscosity and yield stress. Ma andMb are buildup and breakage constants,
and g, p,m, n are rate indices.
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We set the spaces V := (H1
0 (Ω))2, Q := L2

0(Ω), and T := H1(Ω), associated with the
corresponding norms H1-norm ||·||1 and L2-norm ||·||0, respectively, V′, Q′, and T′ are their
corresponding dual spaces, respectively [2, 3, 6]. We introduce the strong operators Au,Lu :
V× T× V −→ V′, and Nu : V× V −→ V′ as follows:

〈Lu(u, λ)u,v〉 =

∫
Ω

2µ(DII,r, λ)D(u) : D(v) dx ∀u,v ∈ V, λ ∈ T, (4)

〈Nu(w)u,v〉 =

∫
Ω

w · ∇uv dx ∀u,v,w ∈ V, (5)

and set
Au(u, λ) := Nu(u) + Lu(u, λ). (6)

The operators Aλ,Mλ : V× T −→ T′, and Nλ : V× T −→ T′ are defined as follows:

〈Mλ(u, λ), ξ〉 =

∫
Ω

(
−F(DII,r, λ) + G(DII,r, λ)

)
ξ dΩ ∀λ, ξ ∈ T,u ∈ V, (7)

〈Nλ(u)λ, ξ〉 =

∫
Ω

u · ∇λ ξ dx ∀λ, ξ ∈ T,u ∈ V, (8)

and set

Aλ(u, λ) := Nλ(u) +Mλ(u, λ). (9)

The linear forms B : V −→ Q′, lu : V −→ R, and lλ : T −→ R are defined as follows:

〈Bu, q〉 = −
∫

Ω

∇ · u q dx ∀u ∈ V, q ∈ Q, (10)

lu(v) =

∫
Ω

fuv dx ∀v ∈ V, (11)

lλ(ξ) =

∫
Ω

fλ ξ dx ∀ξ ∈ T, (12)

The weak formulation for thixoviscoplastic flow problems (3) is described by the system:
Find (u, p, λ) ∈ V×Q× T, such that

au(u, λ)(u,v) + b(v, p) = lu(v) ∀v ∈ V,
b(u, q) = 0 ∀ q ∈ Q,
aλ(u, λ)(λ, ξ) = lλ(ξ) ∀ ξ ∈ T,

(13)

where, the operators au(u, λ)(·, ·), aλ(u, λ)(·, ·), and b(·, ·), given as follows:

au(u, λ)(u,v) =〈Au(u, λ)u,v〉 ∀u,v ∈ V, λ ∈ T, (14)

aλ(u, λ)(λ, ξ) =〈Aλ(u, λ)λ, ξ〉 ∀u ∈ V, λ, ξ ∈ T, (15)

b(v, q) =〈Bv, q〉 ∀u,v ∈ V, q ∈ Q. (16)

We proceed with the corresponding results for existence and uniqueness of the solutions for
coupled nonlinear multifield problems (1, 2).
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2 Theoretical results

Here we make use of each and every operator property to establish the wellposedness of
nonlinear multified coupled problems (1). As for instance, the operator Lu is monotone, Nu is
only coercive, Mλ is not coercive in the complete norm. With the definitions of the operators
Lu, Nu, Mλ, and Nλ, and the embedding property of H1 in L4, we show the boundedness of
all operators, that is there are positive constants ||Lu||, ||Nu||, ||Mλ||, and ||Nλ|| such that

|〈Lu(u, λ)w,v〉| ≤ ||Lu|| ||w||V ||v||V ∀u,v,w ∈ V, λ ∈ T, (17)

|〈Nu(u)w,v〉| ≤ ||Nu|| ||u||V ||w||V ||v||V ∀u,v,w ∈ V, (18)

|〈Mλ(u, λ), ξ〉| ≤ ||Mλ|| ||u||V ||λ||T ||ξ||T ∀u, λ, ξ ∈ T, (19)

|〈Nλ(u)λ, ξ〉| ≤ ||Nλ|| ||u||V ||λ||T ||ξ||T ∀u, λ, ξ ∈ T. (20)

Also, the boundedness of linear form B, and the linear functionals lu, and lλ

|〈Bv, q〉| ≤ ||B|| ||v||V ||q||Q ∀v ∈ V, q ∈ Q, (21)

|lu(v)| ≤ ||lu|| ||v||V ∀v ∈ V, (22)

|lλ(ξ)| ≤ ||lλ|| ||ξ||T ∀ξ ∈ T. (23)

We introduce the space V0 := kerB of strongly divergence-free velocity

V0 = {v ∈ V | Bv = 0} . (24)

Now, we proceed with the boundedness from below of the operators Lu, Mλ, and Nλ.

|〈Lu(v, λ)v,v〉| ≥ η0CK ||v||2V ∀v ∈ V0, λ ∈ T, (25)

|〈Mλ(v, ξ), ξ〉| ≥ Ma ||ξ||20 ∀v ∈ V0, ξ ∈ T, (26)

|〈Nλ(v), ξ〉| ≥ 1

2
〈|v · n| ξ〉2Γ ∀v ∈ V0, ξ ∈ T, (27)

where, CK denotes Korn’s inequality constant in (25), and the right hand side of (27) is the
boundary norm.
We start by defining the operator

Ãu := Lu(u, λ) +Nu(w), ∀(w, λ) ∈ V0 × T. (28)

and consider the problem:
Find u ∈ V0, such that

〈Ãuu,v〉 = 〈 lu,v〉, ∀v ∈ V0. (29)

Then, let u,v ∈ V0, and set η = u − v, we use the monotonicity of the plastic part of the
operator Lu ([3]), and first Korn’s inequality to get

〈Lu(u, λ)u,η〉 − 〈Lu(v, λ)v,η〉 ≥ η0CK ||η||2V ∀u,v,η ∈ V0, (30)

and the following property of the operator Nu

〈Nu(w)η,η〉 = 0 ∀w,η ∈ V0, (31)
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to deduce the monotonicity of the operator Ãu. With the boundedness the operators Lu from
(17), and the operator Nu from (18), we conclude the existence and uniqueness of solution of
u = u(w, λ) of the problem (29). Furthermore, the solutions are bounded

||u(w, λ)||V ≤
1

η0CK
||lu|| . (32)

Thus, the mapping w 7→ Ãu(w) is invertible, and locally Lipschitz continuous in V0, that is∣∣∣Ãu(u)− Ãu(v)
∣∣∣ ≤ ||Nu|| ||u− v||V ∀u,v ∈ V0. (33)

Furthermore, the invertible operator Ã−1
u (w) is bounded in L(V′0,V0)∣∣∣∣∣∣Ã−1

u (w)
∣∣∣∣∣∣ :=

∣∣∣∣∣∣Ã−1
u (w)

∣∣∣∣∣∣
L(V′

0,V0)
≤ 1

η0CK
. (34)

We introduce the space of bounded solution

BSAu =

{
u ∈ V0 | ||u||V ≤

1

η0CK
||lu||

}
. (35)

In order to utilize fixed point theorem for the mapping w 7→ Ã−1
u (w), we show the contraction

property of the operator Ã−1
u , that is∣∣∣Ã−1

u (u)lu − Ã−1
u (v)lu

∣∣∣ ≤ ||Nu||
1

(η0CK)2
||lu|| ||u− v||V ∀u,v ∈ BSAu , (36)

where, we used the locally Lipschitz continuous property (33), and assumed that

||Nu||
1

(η0CK)2
||lu|| < 1. (37)

We conclude the existence and uniqueness of solution u(λ) ∈ V0, ∀λ ∈ T of the u-field
subproblem:

Find u ∈ V0, such that

〈Auu,v〉 = 〈 lu,v〉, ∀v ∈ V0, λ ∈ T. (38)

In parallel we show the existence and uniqueness of the microstructure subproblem, before
establishing the solvability of the nonlinear multifield coupled problem. To do so, we just apply
Lax-Milgram Theorem. We show the coercivity of Aλ from (26) and (27), beside the continuity
of Aλ from (19), and (20) , and the boundedness of lλ from (23), and deduce the existence and
uniqueness of solution λ of the λ-field subproblem

Aλ(u, λ)λ = lλ ∀u ∈ V0. (39)

Moreover, the solution is bounded ([3])

Ma ||λ||20 +
1

2
〈|u · n|λ〉2Γ ≤

1

Ma

||lλ|| . (40)

5
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We denote by BSAλ the space of microstructure bounded solutions for a given u ∈ V0, that is

BSAλ =

{
λ ∈ T | Ma ||λ||20 +

1

2
〈|u · n|λ〉2Γ ≤

1

Ma

||lλ||
}
. (41)

We introduce the space of bounded coupled solutions

BSA(u,λ)
:= BSAu × BSAλ . (42)

Now, we proceed to show the existence and uniqueness of the solution for the coupled problem.
We check the continuity property, let (u, λ), (v, ξ), η̃ = (η, ζ) ∈ V0 × T, and assume the
necessary regularity requirement, we have

〈Au(u, λ)u,η〉 − 〈Au(v, ξ)v,η〉 ≤
(

(2η0 + 2η∞ ||ξ||0)

+ (2τ0 + τ∞(||λ||0+ ||ξ||0)k
)
||u− v||V ||η||V

+
(
||Nu|| ||u||V + ||Nu|| ||v||V

)
||u− v||V ||η||V

+
(

2η∞ ||v||V + τ∞k ||v||V
)
||λ− ξ||T ||η||V ,

〈Aλ(u, λ)λ, ζ〉 − 〈Aλ(v, ξ)ξ, ζ〉 ≤
(
Mb + 1

)
||u||V ||λ− ξ||T ||ζ||T

+ 〈|u · n|λ− ξ〉Γ+ ||ζ||T
+
(
Mb + 1

)
||ξ||0 ||u− v||V ||ζ||T

+ 〈|(u− v) · n| ξ〉Γ+ ||ζ||T .

(43)

We consider the mapping A(u,λ) : BSA(u,λ)
7→ BSA(u,λ)

, which we rewrite as follows:

A(u,λ) = ¯̄A(u,λ) +A(u,0), (44)

with A(u,0) is nonthixotropic viscoplastic operator which is completely continuous, and ¯̄A(u,λ)

is nonlinear contraction [4, 8], that is∣∣∣ ¯̄A(u,λ)(u, λ)− ¯̄A(u,λ)(v, ξ)
∣∣∣ ≤ φ

(
(||u− v||2V + ||λ− ξ||2T)

1
2

)
(45)

where φ is real valued continuous function such that

φ(0) = 0, and φ(r) < r for r > 0. (46)

The inequality (45) is due to the continuity property (43), its implicit expression is simply due
the boundedness of microstructure with the boundary norm. Thus, the nonlinear multified
coupled problem admits a solution. The existence of the pressure is due to the well known
Lagrange multiplier argument.
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3 Numerical Results

For the numerical results, we use a corresponding developed monolithic Newton-multigrid
FEM solver, we refer to [1, 11] for more details. The solver uses Local pressure Schur comple-
ment approach to solve the coupled problem locally and update the global solution via block
Gauss-Seidel iteration, this element-wise treatment is advantageously exploited, on one hand
by using linear discountinuous pressure P disc

1 , and on other hand by collocating the velocity and
microstructure in quadratic interpolation Q2 [10]. The nonlinear discrete system is solver using
adaptive discrete Newton’s method, and the linear systems are solved with multigrid method.
We use a unit channel configuration for thixoviscoplastic flow simulations. We use the fully de-
veloped flow assumption to develop a reduced one-dimensional Houška thixoviscoplastic model
to generate the flow profile for the boundary conditions of two-dimensional FEM simulations.
On one hand, we use the reduced one-dimensional flow profiles as Dirichlet boundary conditions
at inflow for both velocity and microstructure. On other hand, instead of using the well-known
’do-nothing’ boundary condition at outflow, we use the reduced one-dimensional flow profiles as
Dirichlet boundary conditions. Moreover, we use the one-dimensional flow profiles as validation
tools for the fully developed flow assumption, that is the accuracy of the two-dimensional FEM
solutions.

In Figure 1, we present the comparison of one-dimensional reduced Houška model solutions,
and the two-dimensional FEM Houška’s simulations.

Velocity Microstructure
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Figure 1: Fully developed channel flow: The one-dimensional reduced Houška model solutions versus the
two-dimensional FEM Houška’s solutions. The two-dimensional FEM solution’s profiles are taken at the vertical
centerline, x = 0.5, of the channel. The model’s parameters are set to η0 = 1.0, η∞ = 0.0, τ0 = 0.0, τ∞ = 0.25,
Ma =Mb = 0.1, and k = 104.

Velocity Pressure Microstructure

Figure 2: Fully developed channel flow: The FEM nonlinear multifield coupled Hous̆ka thixoviscoplastic
flow distribution. The model’s parameters are set to η0 = 1.0, η∞ = 0.0, τ0 = 0.0, τ∞ = 0.25,Ma =Mb = 0.1,
and k = 104.
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From Figure 1, the fully developed flow assumptions are verified at the vertical centerline,
x = 0.5, as a prototype for each vertical line. Indeed the flow distribution of the two-dimensional
FEM Houška’s simulations in Figure 2 indicates the accuracy of the solutions, as the flow
remains unchanged along the channel, independent of the channel length.

In next simulation, we investigate the microstructure-velocity coupling via the changes of
breakdown parameter. In Figure 3, we present the two-dimensional FEM Houška’s microstruc-
ture’s profiles at the channel center for different values of breakdown parameter Mb.

Figure 3: Fully developed channel flow: Impact of breakdown parameterMb on microstructure solutions.
The model’s parameters are set to η0 = 1.0, η∞ = 0.0, τ0 = 0.0, τ∞ = 0.25, Ma = 0.1, and k = 104.

The response of the flow simulations with respect to breakdown parameter is manifested
via the microstructure profiles in Figure 3. As, we decrease the breakdown parameter the
thixotropic plastic contribution is getting dominant. Moreover, the transitions form the flowing
zones and the non-flowing zone are sharper at higher breakdown parameter.

4 Summary

We investigated, for FEM settings, the nonlinear multifield coupled problems from theoret-
ical and numerical perspectives. We used the thixoviscoplastic flow as a motivation example
for such type of problems. From theoretical standpoint, we established the solvability of the
problem with respect to the properties of its operators constituent. In the start, we made
use of monotonicity property of diffusion operator, and fixed point theorem for the complete
momentum equation, which integrate the convection nonlinearity, to demonstrate the solvabil-
ity of the viscoplastic subproblem for any given microstructure. In parallel, the solvabilty of
the microstructure subproblem for a given divergence-fee velocity is shown using Lax-Milgram
theorem. Then, the coupled multifield operator is rewritten as a sum of completely continuous
non-thixotropic viscoplastic operator, and nonlinear contraction thixoviscoplastic operator to
make use of a variant of fixed point theorem to demonstrate the solvability of the coupled
problem. And from numerical simulations standpoint, we used monolithic Newton-multigrid
FEM solver developed for nonlinear multifield coupled problems to simulate thixoviscoplastic
flow in channel configuration [1]. In this regards, we made use of fully developed flow assump-
tion to develop a reduced one-dimensional model which we used to generate solutions profiles.
The reduced one-dimensional solutions profiles are used as Dirichlet boundary conditions at
inflow, alternative to “do-nothing” boundary conditions at outflow, and as validation for the
fully developed flow, for two-dimensional FEM flow simulations. The FEM numerical simu-
lations confirmed the accuracy of the solutions of nonlinear multifield coupled problems with
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respect to both the solver and the boundary conditions settings. Moreover, we analyzed the
microstructure-velocity coupling by varying the breakdown parameter, which confirmed the
accuracy of the solutions once again as the thixotropic plastic is getting dominant with an
increasing breakdown parameters, beside the transitions between the flowing zones and the
non-flowing zone are getting sharper at higher breakdown parameter.
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