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Abstract

Phase retrieval is the process of reconstructing images from only mag-
nitude measurements. The problem is particularly challenging as most
of the information about the image is contained in the missing phase.
An important phase retrieval problem is Fourier phase retrieval, where
the magnitudes of the Fourier transform are given. This problem is rel-
evant in many areas of science, e.g., in X-ray crystallography, astron-
omy, microscopy, array imaging, and optics. In addition to Fourier
phase retrieval, we also take a closer look at two additional phase re-
trieval problems: Fourier phase retrieval with a reference image and
compressive Gaussian phase retrieval.

Most methods for phase retrieval, e.g., the error-reduction algo-
rithm or Fienup’s hybrid-input output algorithms are optimization-
based algorithms which solely minimize an error-function to recon-
struct the image. These methods usually make strong assumptions
about the measured magnitudes which do not always hold in practice.
Thus, they only work reliably for easy instances of the phase retrieval
problems but fail drastically for difficult instances.

With the recent advances in the development of graphics processing
units (GPUs), deep neural networks (DNNs) have become fashionable
again and have led to breakthroughs in many research areas. In this
thesis, we show how DNNs can be applied to solve the more difficult
instances of phase retrieval problems when training data is available.
On the one hand, we show how supervised learning can be used to
greatly improve the reconstruction quality when training images and
their corresponding measurements are available. We analyze the abil-
ity of these methods to generalize to out-of-distribution data. On the
other hand, we take a closer look at an existing unsupervised method
that relies on generative models. Unsupervised methods are agnostic
toward the measurement process which is particularly useful for Gaus-
sian phase retrieval. We apply this method to the Fourier phase re-
trieval problem and demonstrate how the reconstruction performance
can be further improved with different initialization schemes. Further-
more, we demonstrate how optimizing intermediate representations
of the underlying generative model can help overcoming the limited
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range of the model and, thus, can help to reach better solutions. Fi-
nally, we show how backpropagation can be used to learn reference
images using a modification of the well-established error-reduction
algorithm and discuss whether learning a reference image is always
efficient. As it is common in machine learning research, we evaluate
all methods on benchmark image datasets as it allows for easy repro-
ducibility of the experiments and comparability to related methods.
To better understand how the methods work, we perform extensive
ablation experiments, and also analyze the influence of measurement
noise and missing measurements.
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1
Introduction

In many physical measurement processes it is only possible to cap-
ture the Fourier magnitude of an image. This is particularly difficult
as the most information about the image is contained in the (miss-
ing) Fourier phase. Phase retrieval is the process of reconstructing the
phase (and by doing so, the image) while solely given the magnitude
measurements. This is a relevant problem that shows up in different Applications

forms in many different research areas, e.g., in X-ray crystallography
[64], astronomical imaging [21], optics [96], array imaging [7], or mi-
croscopy [108]. Although the first mention dates back almost 60 years
already, the problem is still not fully solved and there are interesting
instances of this problem.

Phase retrieval problems are often approached with optimization-
based methods that usually rely on alternating projections onto convex
and non-convex sets. These methods work reasonable well for well-
posed instances of the phase retrieval problem, but fail for difficult
ones, which are also relevant in practice.

In this thesis we focus on three instances of phase retrieval: (i) Three instances

the general non-oversampled Fourier phase retrieval problem, (ii) the
Fourier phase retrieval problem with reference image and (iii) the com-
pressive Gaussian phase retrieval problem. While instances (i) and (ii)
are relevant in practical applications, instance (iii) is more of theoreti-
cal nature and mainly included for comparison.

In the following chapters we describe how deep learning techniques
can be employed to solve the phase retrieval problem when a training
dataset of images is available that are similar to the image of interest.

1.1 Research Questions

There are several open research questions, which we aim to discuss in
this thesis:
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How can supervised and unsupervised learning be applied to solve phase re-
trieval problems? We formulate the problem of phase retrieval as a
learning task and show how modern deep neural network architec-
tures can be used to solve phase retrieval problems in a specific do-
main, i.e., we restrict the solution space to images that are similar to a
given dataset and demonstrate excellent performance in this domain.

How do these learning-based methods generalize to unseen data or data that
follows a different distribution? By training the neural network on a
given dataset it specializes on that domain. We try to understand
how well the network generalizes to images coming from a different
distribution. How well does the trained neural network perform on
out-of-distribution samples?

How do unsupervised methods compare to supervised methods? We de-
velop and analyze the performance of methods that rely on supervised
and unsupervised learning, where in the context of phase retrieval su-
pervised means that we have a dataset consisting of images and their
corresponding magnitude measurements. In contrast to that, unsuper-
vised means that we have only access to images without using their
magnitude measurements during training.

How is the performance of learning-based methods influenced by measure-
ment noise? Practical measurement setups are only able to capture
noisy magnitudes. We simulate such a setup by adding Poisson and
Gaussian noise onto the measurements and show that the discussed
learning-based models are robust up to some degree.

Is learning a reference image for reference-based phase retrieval necessary?
While in existing works the reference is usually hand-crafted, Hyder
et al. [36] have shown that gradient descent can be used to learn a ref-
erence image from a dataset. We discuss whether learning a reference
image always makes sense and propose a simpler approach that gives
similar results.

1.2 Contributions

The contributions of this thesis can be summarized as follows:

1. We show how conditional generative adversarial networks can be
used to solve phase retrieval problems using supervised learning.

2. We demonstrate how the performance of end-to-end learned net-
works can be improved by stacking multiple networks to a cascade.
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3. By applying the concept of intermediate layer optimization in com-
bination with additional modifications and initialization schemes
we show how the performance of generative modelling-based meth-
ods for phase retrieval can be drastically improved.

4. For the problem of Fourier phase retrieval with a learned reference,
we discuss how the error reduction (ER) algorithm can be unrolled
in order to learn such a reference image. Furthermore, we provide
further insights about the benefit of a learned reference.

1.3 Corresponding Publications

Parts of this thesis have been published as:

1. Tobias Uelwer, Alexander Oberstraß, and Stefan Harmeling. Phase
retrieval using conditional generative adversarial networks. In 2020
25th International Conference on Pattern Recognition (ICPR), pages 731–
738. IEEE, 2021. doi: 10.1109/ICPR48806.2021.9412523.

2. Tobias Uelwer, Tobias Hoffmann, and Stefan Harmeling. Non-
iterative phase retrieval with cascaded neural networks. In Arti-
ficial Neural Networks and Machine Learning–ICANN 2021: 30th In-
ternational Conference on Artificial Neural Networks, Bratislava, Slo-
vakia, September 14–17, 2021, Proceedings, Part II 30, pages 295–306.
Springer, 2021. doi: 10.1007/978-3-030-86340-1_24.

3. Tobias Uelwer, Sebastian Konietzny, and Stefan Harmeling. Opti-
mizing intermediate representations of generative models for phase
retrieval. Transactions on Machine Learning Research, 2022. ISSN 2835-
8856. The first two authors contributed equally.

4. Tobias Uelwer, Nick Rucks, and Stefan Harmeling. A closer look
at reference learning for fourier phase retrieval. In NeurIPS 2021
Workshop on Deep Learning and Inverse Problems, 2021.

1.4 Outline

This thesis is structured as follows: Chapter 2 gives a brief introduc-
tion into the field of deep learning. Chapter 3 reviews mathematical
fundamentals, the Fourier transform, different instances of the phase
retrieval problem, and existing projection-based phase retrieval algo-
rithms. Chapter 4 presents our work on conditional generative adver-
sarial networks for Fourier phase retrieval and (compressive) Gaussian
phase retrieval. Chapter 5 discusses a cascaded neural network archi-
tecture for Fourier phase retrieval that is purely based on learning and
does not involve optimization. Chapter 6 shows how phase retrieval
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based on generative models can be improved by also optimizing the in-
termediate representations learned by the generator. We evaluate this
method on Fourier phase retrieval and compressive Gaussian phase
retrieval. In Chapter 7 we discuss the need for reference images and
modify the error-reduction algorithm [22] to also leverage a reference
image. Furthermore, we show how algorithm unrolling and backprop-
agation can be used to learn a reference image from data. In Chapter 8

we summarize our findings and draw a conclusion.

1.5 Notation

In the following we use squared brackets to index into a vector, matrix,
or tensor, e.g., we use x[k, l] to refer to the entry with index (k, l) in
matrix x ∈ Cm×n. We make the convention that the index of the first
entry is 0 if not mentioned otherwise. We use

∥x∥1 =
n−1

∑
k=0
|x[k]| (1.1)

to denote the ℓ1-norm of a vector x ∈ Cn and

∥x∥2 =

√√√√n−1

∑
k=0

x[k]2 (1.2)

denote the ℓ2-norm/Euclidean norm of a vector x ∈ Cn. Note that we
also use this notation for matrices and tensors, e.g.,

∥x∥1 =
m−1

∑
k=0

n−1

∑
l=0

p−1

∑
j=0
|x[k, l, j]| (1.3)

and

∥x∥2 =

√√√√m−1

∑
k=0

n−1

∑
l=0

p−1

∑
j=0

x[k, l, j]2 (1.4)

for tensor x ∈ Cm×n×p. For a matrix x ∈ Rm×n the norm ∥x∥2 is
also known as Frobenius norm. Throughout this thesis, we will never
use the column-sum or spectral matrix norm which are usually also
denoted by ∥x∥1 and ∥x∥2 for x ∈ Cm×n, respectively. We write D =

[x1, . . . , xn] to refer to a dataset of n vectors, matrices or tensors. For
matrix or tensor x we write vec(x) to refer to a vector that consists of
the entries of x.
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Deep Learning

With the recent advances in hardware development, Deep neural net-
works (DNNs) have come back into fashion. To give a short overview:
A neural network Hθ = Hk ◦ · · · ◦ H1 is a concatenation of k layers Neural networks

H1, . . . , Hk, where some of the layers have learnable parameters. We
denote the set of all learnable parameters of Hθ as θ. The learnable
parameters θ are optimized, usually, using a stochastic gradient de-
scent (SGD) algorithm, such that a loss function L is minimized for a
given training dataset. One distinguishes two classes of deep learning:
In supervised learning the datasets D = [(x1, y1), . . . , (xn, yn)] consist Supervised learning

of paired inputs and outputs (for example, input images and class la-
bels in the classification setting), whereas in the unsupervised setting Unsupervised learning

the training datasets only consist of inputs D = [x1, . . . , xn]. In the
latter case, the task is usually to learn the distribution of the dataset
(generative modelling), e.g., by learning a sampler that can generate
data similar to the training dataset. This chapter introduces concepts
of deep learning that are used in this thesis and loosely follows the
textbook written by Goodfellow et al. [26].

2.1 Neural Network Layers

In the following, we discuss the most important layers that are the
building blocks of modern DNNs.

2.1.1 Fully-Connected Layers

Fully-connected layers are at the heart of multilayer perceptrons
(MLPs) which are also sometimes called fully-connected networks.
For vector-valued inputs x ∈ Rn a fully-connected layer with m out-
puts can be written as

Hi(x) = Wix + bi, (2.1)

where Wi ∈ Rm×n is the learnable weight matrix and bi ∈ Rm is the
learnable bias vector. Note that a fully-connected layer can also be
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applied to matrix or tensor inputs. In that case, the entries have to be
flattened into a vector first. The layer is fully-connected in the sense
that every element in the output depends on every element of the
input. This can be a favorable property as this layer is very expressive.
However, a drawback of this layer is that it requires a large amount of
parameters. This is particularly problematic when the inputs are high-
dimensional, e.g., high-resolution images. A different type of layer
that is particularly suitable for images and addresses the issue of the
large number of parameters is the convolutional layer.

2.1.2 Convolutional Layers

Instead of treating the inputs as a vector, convolutional layers maintain
the spatial arrangement of the entries. For inputs x ∈ Rc×p×q are
defined as

Hi(x) = wi ∗ x + bi, (2.2)

where wi ∈ Rc×m×m is the learnable kernel (also sometimes called
filter), bi ∈ R is the learnable bias term and ∗ denotes the convolu-
tion operation. There are different ways to implement the convolutionConvolution

operation. In the following we consider the same mode convolution
which is defined as

(w ∗ x)[k, l] =
c−1

∑
j=0

m−1

∑
s=0

m−1

∑
t=0

w[j, s, t] x[j, k− s + ∆, l − t + ∆], (2.3)

where we assume that m is odd, ∆ = (m − 1)/2 and the input is
padded with zeros by ∆ pixels in the second and third dimension.
The output w ∗ x has the same shape as the input, hence the name
same. Note, that the inputs have to be padded with zeros appropri-
ately. Intuitively speaking, the kernel wi is flipped horizontally and
vertically and moved step-wise over the image, while at each step the
inner product with the current image patch is calculated. Each inner
product gives a single entry in the next feature map, i.e., the output
layer.

Note, that the convolution is still a linear operation and thus theLinearity of the convolution

convolutional layer is an instance of the fully-connected layer, where
weights are reused. However, through their inductive bias1 convolu-1 The inductive bias is the bias intro-

duced by restricting of the space of func-
tions from which the learned function is
taken [14].

tions are especially suitable for processing of images. They have fewer
parameters than fully-connected layers and require less training data.

The convolution operation is closely related to the cross-correlation
and, in fact, for neural network layers, where the kernel is learned,
both operations are equivalent (up to vertical and horizontal flips of
the kernel). Usually, a convolutional layer uses multiple kernels and
stacks the resulting feature maps to form the input for the next layer.
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2.1.3 Activation Functions

Fully-connected and convolutional layers are usually followed by an
activation function h : R→ R that is applied component-wise to each
output. The activation function allows the neural network to learn
non-linear mappings and also improves expressivity of the network
by preventing consecutive layers from collapsing into a single layer. In
the following, we give a short overview over the three most common
activation functions. All three activation functions are visualized in
Figures 2.1, 2.2, and 2.3.

Sigmoid Function. The Sigmoid function is defined as

σ : R→ R, σ(x) =
1

1 + e−x . (2.4)

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0 Sigmoid

Figure 2.1: The Sigmoid func-
tion.

It is a monotonic, continuous and differentiable function. It has al-
ready been used for a long time in classical statistics, e.g., in the context
of logistic regression. However, its computation is expensive as it re-
quires a division and the evaluation of the exponential function. Also,
its derivative approaches zero for very high and very low inputs that
can cause problems during training which relies on derivative-based
optimization. The ReLU activation function addresses these problems.

Rectified Linear Unit (ReLU). The ReLU activation function is defined
as

ReLU : R→ R, ReLU(x) =

x, x ≥ 0

0, x < 0.
(2.5)

4 2 0 2 4
0

1

2

3

4 ReLU

Figure 2.2: The ReLU function.

Its computation is easy and only for negative inputs its derivative
vanishes. Once the input to the ReLU is negative the ReLU outputs
zero and there is no possibility to recover this ReLU by gradient-based
optimization (as the derivative is zero). This phenomenon is termed
the dying ReLU problem.

Leaky ReLU. The leaky ReLU activation function addresses the prob-
lem of dying ReLUs by replacing the constant part of the function with
a linear part with low slope. It is defined as

4 2 0 2 4

0

1

2

3

4 Leaky ReLU

Figure 2.3: The leaky ReLU
function (α = 0.1).

LeakyReLUα : R→ R, LeakyReLUα(x) =

x, x ≥ 0

αx, x < 0,
(2.6)

where α > 0 is a small positive number determining the slope for
negative inputs. In practice, α ∈ (0, 0.2] often gives favorable results.
Note that α is constant and not a learnable parameter.
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2.1.4 Pooling Layers

Similar to convolutional layers, pooling layers process the previous
feature map patch-wise. The pooling operation aggregates the infor-
mation of a patch into a single number. There are two commonly used
pooling layers: max-pooling and average-pooling. As the name sug-
gests, max-pooling aggregates the entries of the input patch by takingMax-pooling

the maximum entry of the patch, while average-pooling calculates theAverage-pooling

average of all entries of the patch. Pooling layers are usually used in
combination with convolutional layers to reduce the spatial size of the
feature map and to compress the information extracted by the previ-
ous layers.

2.1.5 Batch-Normalization Layer

As we have seen before, the behavior of the activation function is
highly dependent on the inputs. Therefore, a common strategy is to
normalize the activations before they are passed to the activation func-
tion. Ioffe and Szegedy [37] introduced batch-normalization which
had a great impact on the neural network community as it accelerated
training and reduced the need for additional regularization strategies.
In detail, their batch-normalization layer normalizes the activations by
subtracting the empirical mean of the batch and dividing by the em-
pirical standard deviation of the batch, i.e.,

BN(x) = γ⊙ x− µB√
σ2

B + ϵ
+ β, (2.7)

where the division is elementwise, µB and σ2
B are the mean and vari-

ance of the activation calculated on the small batch of the data B, γ

and β are learnable parameters that have the same shape as the input,Learnable parameters

⊙ denotes elementwise multiplication, and ϵ > 0 is a small positive
number that prevents numerical issues. The learnable parameters γ

and β are necessary to preserve the expressivity of the neural network.

2.2 Loss Functions

For comparing the reconstruction quality of different algorithms we
have to define metrics for measuring the reconstruction error or sim-
ilarity of different images. For simplicity, we define the loss func-
tions for grayscale images. The extension to multiple color channels is
straightforward.
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2.2.1 Mean Squared Error (MSE)

The most commonly used error metric for two images is the pixelwise
mean squared error (MSE). For two vectors x ∈ Rn and x̃ ∈ Rn the
MSE is defined as

LMSE(x, x̃) =
1
n

n−1

∑
k=0

(x[k]− x̃[k])2 . (2.8)

For two gray-scale images x ∈ Rn×n and x̃ ∈ Rn×n the MSE is defined
as

LMSE(x, x̃) =
1
n2

n−1

∑
k=0

n−1

∑
l=0

(x[k, l]− x̃[k, l])2 . (2.9)

and is proportional to the squared Euclidean norm of the pixelwise
difference between the two images ∥x− x̃∥2

2. The MSE has several ben-
efits: it is convex and differentiable which makes it especially suitable
as a loss function for optimization algorithms. Also, it is usually easy
to implement. However, there are also several downsides of using this
metric: the MSE punishes errors quadratically which means a strong Problems of MSE

difference between two pixels of the image results in a very large con-
tribution to the overall error. This is usually not desired. One also has
to keep in mind that the MSE is a pixelwise error metric which means
that applying some transformation to one of the images (e.g., trans-
lating it by just a few pixels) also results in a very large error. In the
context of Fourier phase retrieval we will later see that this requires
registration of the images, i.e., the images need to be aligned using an
appropriate algorithm, before the error is calculated. Also, one needs
to compare the original image with the reconstruction that has been
rotated by 180◦ as it also is a valid reconstruction in the context of
Fourier phase retrieval. We will further discuss this in Chapter 3.

2.2.2 Mean Absolute Error (MAE)

Another error metric for images is the mean absolute error (MAE). For
two vectors x ∈ Rn and x̃ ∈ Rn the MAE is defined as

LMAE(x, x̃) =
1
n

n−1

∑
k=0
|x[k]− x̃[k]|. (2.10)

For two grayscale images x ∈ Rn×n and x̃ ∈ Rn×n the MAE is defined
as

LMAE(x, x̃) =
1
n2

n−1

∑
k=0

n−1

∑
l=0
|x[k, l]− x̃[k, l]| (2.11)

and is proportional to the ℓ1-norm of the pixelwise difference between
the two images ∥x − x̃∥1. The MAE is still convex but no longer dif-
ferentiable because the absolute value is not differentiable at zero. As
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the MAE punishes deviations using the absolute value it is not as sen-
sitive regarding strong deviations for single pixels as the MSE, which
makes it preferable over the MSE. However, the MAE is a pixelwise
error measure which means that it suffers from some of the same dis-
advantages as the MSE.

2.2.3 Structural Similarity Index Measure (SSIM)

Different from the previously defined pixelwise metrics the structural
similarity index measure (SSIM) [99] calculates the similarity of two
input images x ∈ Rm×n and x̃ ∈ Rm×n by comparing the intensity
distributions of the images. The SSIM is defined as

SSIM(x, x̃) =
(2µxµx̃ + C1)(2σxx̃ + C2)

(µ2
x + µ2

x̃ + C1)(σ2
x + σ2

x̃ + C2)
, (2.12)

where µx, µx̃ and σ2
x , σ2

x̃ are the means and the variances of the inten-
sities of x and x̃, respectively, σxx̃ is the covariance of the intensities
of x and x̃, and C1 and C2 are given constants that prevent numerical
instabilities.

Rather than calculating the SSIM globally for the whole image, it
is usually applied to various sub-images (windows) of the original
images. These windows usually have size 8× 8 and are moved pixel
by pixel over the images. The SSIM values for all windows of the
images are then averaged to obtain a single number representing the
global similarity of the two input images.

The SSIM is a similarity function with values restricted to [0, 1],
where larger values indicate higher similarity, e.g., a value of 1 cor-
responds to identical inputs, whereas a value of 0 corresponds to
completely different input images. Therefore, we have to multiply
the SSIM with −1 if we want to use it as loss function (that is mini-
mized), i.e., the corresponding loss function is given as LSSIM(x, x̃) =SSIM as loss function

−SSIM(x, x̃). Note, that LSSIM does not fulfill the triangle inequality
which means that it is mathematically speaking not a distance metric
(in contrast to the MAE and the MSE).

2.2.4 Learned Perceptual Image Patch Similarity (LPIPS)

Loss functions that directly operate on the pixels of an image are not
always aligned with human perception. For example, shifting an im-
age for a few pixels results in a high MSE while the human eye might
not be able to detect the change at all. Perceptual loss functions tryPerceptual loss functions

to address this issue. Instead of defining a distance in the pixelspace
of the image they measure the distance in the feature space of a given
neural network. One of the most common perceptual losses is the
learned perceptual image patch similarity (LPIPS) [107] based on a
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VGG-16 network [81]. The VGG-16 net is augmented with additional
linear layers such that it outputs a single value (the LPIPS score) for a
pair of input images. The neural network is trained on a dataset that
was obtained using a two-alternative forced choice (2AFC) method.
For each image of the dataset there are also two transformed variants.
For each of these triplets (original image and two variants) a human
made a decision about which of the two variants is perceived to be
more similar to the original image. The network is then trained to
mimic this decision.

2.3 Gradient-based Optimization

In the previous sections we discussed the building blocks of DNN, but
did not explain how the trainable parameters, e.g., the weights, ker-
nels, and biases, are chosen. In this section we want to shed some light
onto this matter. Given a dataset D, a loss function L, and a neural net-
work Hθ with trainable parameters θ (e.g., the weight matrices of the
fully-connected layers or the filter kernels of convolutional layers) we
can now use gradient-based optimization to train the network. There
are two notions of gradient-based optimization: (i) gradient ascent that
maximizes a function and (ii) gradient descent that can be used to min-
imize a function. In the context of deep learning, the latter algorithm,
i.e., gradient descent, is more relevant as we usually want to minimize
the loss function. The insight used by gradient-based optimization is
that the gradient of a multivariate function always points toward the
direction of steepest ascent. Therefore, gradient ascent takes a small
step in the direction of the gradient of a function. In contrast to that,
gradient descent takes a small step in the direction of the negative gra-
dient. To train a DNN, one applies gradient descent to the parameters Gradient descent

of the neural network to minimize the loss function, i.e.,

gk+1 =
1
|D| ∑

(x,y)∈D
∇θL(Hθ(x), y)

∣∣
θ=θk

(2.13)

θk+1 = θk − λk+1gk+1, (2.14)

where λk+1 > 0 is the learning rate that determines the size of the
step and is usually decayed during optimization. Note, that gradient
descent is a greedy algorithm and when applied to non-convex func-
tions (which is usually the case when training neural networks) it is
not guaranteed that it always finds a global minimum. Most of the
time one has to be satisfied with a local minimum. However, it is be-
lieved that because of the many weight space symmetries there exist a
large number of local minima that are equally good. Training neural
networks usually requires large amounts of data, that is why the sum Batch gradient descent
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calculated in Equation 2.13 is usually only calculated for a small subset
of the dataset, i.e.,

gk+1 =
1
|Bk| ∑

(x,y)∈Bk

∇θL(Hθ(x), y)
∣∣
θ=θk

(2.15)

θk+1 = θk − λk+1gk+1, (2.16)

where λk+1 > 0 is the learning rate and Bk ⊂ D is a subset of the
dataset. This subset is often referred to as a batch. Since the gradient
in Equation 2.15 is no longer the exact gradient, this variant is called
stochastic gradient descent (SGD). The size of the batch is usually lim-
ited by the memory of the GPU. Although the gradient is no longerConvergence

exact, it is possible to prove convergence to a local minimum of the
loss function under certain conditions, most notably

∞

∑
k=1

λk = ∞ and
∞

∑
k=1

λ2
k < ∞. (2.17)

The SGD method was first discussed by Robbins and Monro [74]. The
noise introduced by the inexact gradient calculation is also a useful
feature as it is believed that SGD favors flat minima that lead to better
generalization on unseen data [44, 33].

There are many modifications that can be applied to Equation 2.15.
In the following we give a brief overview over the most relevant ones.

2.3.1 Momentum

The speed at which SGD converges is mostly influenced by the curva-
ture of the loss landscape. High curvature leads to a decrease of the
speed at which SGD traverses the function. This can be explained by
the phenomenon of zig-zagging where iterates cancel out. It is shown
in Figure 2.4.

The momentum update tries to counteract this phenomenon by
tracking the moving average of previous gradients. The momentum
update was introduced by Polyak [72] and reads asMomentum update

µk+1 = βµk +
1
|Bk| ∑

(x,y)∈Bk

∇θL(Hθ(x), y)
∣∣
θ=θk

(2.18)

θk+1 = θk − λk+1µk+1, (2.19)

where 1 > β ≥ 0 is a hyperparameter and µ0 = 0 is initialized as
all-zero. Note, for β = 0 the momentum is disabled and the update
rule corresponds to the vanila SGD update rule. The larger the value
of β is the more influence have past updates onto the current update.
From a physical viewpoint the variable µ acts as the velocity.
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Figure 2.4: The zig-zagging phe-
nomenon of gradient-descent al-
gorithms. The momentum up-
date helps to counteract this by
averaging iterates.

2.3.2 RMSProp

Instead of tracking the moving average of previous gradients, the
RMSProp (Root Mean Square Propagation) update rule calculates the
moving average of the squared gradients of previous iterations. These
averaged squared gradients are then used to rescale the step in each
direction, i.e.,

gk+1 =
1
|Bk| ∑

(x,y)∈Bk

∇θL(Hθ(x), y)
∣∣
θ=θk

(2.20)

νk+1 = βνk + (1− β)g2
k+1 (2.21)

θk+1 = θk − λk+1
gk+1√

νk+1 + ϵ
, (2.22)

where the division and the square roots are meant elementwise and
ϵ > 0 is a small constant number preventing numerical issues. The
momentum term for the squared gradients is initialized as ν0 = 0.
The effect of gradient rescaling is that the weights that already have
received a lot of large updates in the previous iterations, receive a
smaller update at the current iteration. Again, this can counteract the
zig-zagging phenomenon. The RMSProp update rule was proposed
by Geoffrey Hinton in one of his lectures, but was never formally pub-
lished. However, it is one of the main ideas of the widely used Adam
update rule, which we will discuss next.

2.3.3 Adam

Having discussed the momentum update rule and the RMSProp up-
date rule, explaining the famous Adam (Adaptive Moment Estimation)
update rule is now straightforward. Adam simply combines the pre-
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vious ideas by iterating

gk+1 =
1
|Bk| ∑

(x,y)∈Bk

∇θL(Hθ(x), y)
∣∣
θ=θk

(2.23)

µk+1 = β1µk + (1− β1)gk+1 (2.24)

νk+1 = β2νk + (1− β2)g2
k+1 (2.25)

µ̃k+1 = µk+1/(1− βk+1
1 ) (2.26)

ν̃k+1 = νk+1/(1− βk+1
2 ) (2.27)

θk+1 = θk − λk+1
µ̃k+1√

ν̃k+1 + ϵ
, (2.28)

where λk+1 again denotes the learning rate, 0 < β1 < 1 and 0 < β2 < 1
determine the influence of previous gradients and squared gradients,
respectively. Default choices, that work well in practice, are β1 = 0.9
and β2 = 0.999. In addition, Equations 2.26 and 2.27 perform a bias
correction for the moving averages. Again, the momentum terms are
initialized as µ0 = 0 and ν0 = 0. The Adam update rule was intro-
duced by Kingma and Ba [50] and is one of the most cited works in
the field of deep learning research.

This is only a small selection of update rules used for deep learning.
Up until today not a single best update rule has emerged and which
update rule performs best is still highly task-dependent. For a large
scale comparison of deep learning update rules in combination with
different learning rate decay schedules we refer to the work of Schmidt
et al. [79].

2.4 Autoencoders

Having introduced neural network layers, loss functions and optimiz-
ers, we can now take a look at a complete DNN architecture. One
of the simplest architectures is the autoencoder. It solves the task of
finding a low-dimensional representation R = [z1, . . . , zn] of the data
D = [x1, . . . , xn] and can therefore be seen as a non-linear dimension-
ality reduction technique. It consists of two networks: an encoder
network Eϕ having trainable parameters ϕ and a decoder network Dθ

having trainable parameters θ. This is done by feeding the input data
to the encoder that outputs a low-dimensional representation. This
representation is then fed into the decoder that tries to reconstruct
the original images from this representation. The output of the en-
coder (and therefore also the input to the decoder network) usually
has less entries than the original inputs. This bottleneck encourages
the encoder to include as much information as possible into the latent
representation, such that the decoder has an easier task to reconstruct
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the images. Figure 2.5 gives an overview of an autoencoder architec-
ture and shows input images from the MNIST dataset [55], their latent
representations, and their reconstructions.

DθEϕ

x ∈ R28×28 z ∈ R10×10 x̃ ∈ R28×28

Figure 2.5: An overview of the
autoencoder architecture that
consists of an encoder network
Eϕ and a decoder network Dθ .
The low-dimensional represen-
tations z contain enough infor-
mation such that Dθ can pro-
duce reconstructions x̃ that are
similar to the original images x.

In order to train the autoencoder, the parameters θ and ϕ are jointly
optimized to solve the problem

argmin
ϕ,θ

∑
x∈D
L(x, Dθ(Eϕ(x))), (2.29)

where L is one of the loss functions presented in Section 2.2. If L
is chosen as the MSE and Eϕ and Dθ only consist of a single fully-
connected layer without an activation function, the optimization prob-
lem 2.29 is equivalent to principal component analysis (PCA). Thus,
the autoencoder can be seen as a non-linear generalization of PCA.

Note, that we know nothing about the distribution of the latent
variable z. Therefore, we cannot generate new samples by plugging
random values for z into the decoder network. This issue is addressed
in the following section which introduces the VAE – a so called gener-
ative model.

2.5 Generative Models

Generative models are usually unsupervised learning models, i.e., they
only consider a dataset D = [x1, . . . , xn] consisting of input data points
without corresponding labels. The goal of training a generative model
is to learn the distribution pdata from which the dataset was sampled
from. This can either be done explicitly or implicitly: In the first case,
the density function is estimated, which allows to evaluate the likeli-
hood of the data. In the second case, one considers oneself satisfied
with learning a sampler of the dataset, which can be used to generate
new data from the data distribution.
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In the following, we give a short overview over the most relevant
generative models:

• Explicit models (model the density pdata explicitly):

1. Normalizing flows: RealNVP [18], NADE [92], MADE [70],
NICE [17], PixelRNN [94], PixelCNN [93], GLOW [52]

2. Variational autoencoder (VAEs) [51]

3. Score-based models: Denoising diffusion probabilistic model-
ing (DDPM) [83, 32], Score matching with Langevin dynamics
(SMLD) [84], Score-based generative modeling through stochas-
tic differential equations [85]

• Implicit models (do not model the density pdata explicitly):

1. Generative adversarial networks (GANs) [25]

2. Wasserstein GANs [1]

3. Least-Squares GANs [62]

Since their introduction, GANs and VAEs were the most prominent
generative models for a many years. Recently, research in score-based
models gained a lot of attention and yields impressive results. Note,
that VAEs only learn an approximate likelihood, which is why they
should be strictly speaking not be classified as explicit model as it is
the case in literature [24].

In the remaining chapters, we will most often employ GANs and
VAEs, but will also borrow ideas from the training of Wasserstein
GANs.

2.5.1 Variational Autoencoders (VAEs)

Autoencoders are a simple neural network architecture consisting of
an encoder network Eϕ with learnable parameters ϕ and a decoder
network Dθ with learnable parameters θ. The encoder Eϕ maps the
input images x to a latent representation z, which is then used by the
decoder network Dθ to reconstruct the image. To further structure the
space of the latent representation z, variational autoencoders (VAE)
were introduced by [51].

VAEs are Bayesian models that assume a Gaussian prior for the la-
tent variable p(z) = N (0, I), where I denotes the identity matrix. The
key idea is that the encoder is used to approximate the true poste-
rior density of the latent variable p(z|x). In detail, the encoder Eϕ

no longer predicts a single point in the latent space, but instead pre-
dicts means µz and variances σz of a multivariate Normal distribution.
This means, that Eϕ can now be viewed as a conditional distribution
qϕ(z|x) = N (µz, Diag(σz)) describing the latent variable z given an
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image x. After training, this conditional distribution qϕ(z|x) is the ap-
proximation for the posterior distribution of z. The decoder Dθ takes
the role of modeling the conditional distribution pθ(x|z), i.e., the dis-
tribution of the reconstructed images given their latent representation.

Training the model requires access to the marginal likelihood (also Marginal likelihood

known as evidence)

pθ(x) =
∫

p(z)pθ(x|z)dz, (2.30)

where p(z) is a normal prior for z. Unfortunately, evaluating this in-
tegral is intractable, as it requires evaluating the integrand for every
value of z. This is why the principle of variational inference, hence the
name variational autoencoder, is used to lower-bound the marginal
likelihood. This evidence lower bound (ELBO) is then maximized dur-
ing training.

Evidence lower bound (ELBO). Before we start deriving the ELBO, we
have to define the Kullback-Leibler divergence (KL divergence), which
can be used to compare two probability distributions. The KL diver-
gence is defined as

DKL(p(x)||q(x)) =
∫

p(x) log
(

p(x)
q(x)

)
dx, (2.31)

where p and q are two continuous probability distributions. The KL
divergence is always greater or equal to zero and zero if and only
if p = q (almost everywhere). In general, the KL-divergence is not
symmetric, i.e., DKL(p(x)||q(x)) ̸= DKL(q(x)||p(x)).

Following Li et al. [56], the lower bound for the evidence can be
derived as:

log pθ(x) =
∫

log (pθ(x)) qϕ(z|x)dz pθ(x) does not depend on z

=
∫

log
(

pθ(x|z)p(z)
pθ(z|x)

)
qϕ(z|x)dz Bayes’ rule and rearranging

=
∫

log
(

pθ(x|z)p(z)
pθ(z|x)

qϕ(z|x)
qϕ(z|x)

)
qϕ(z|x)dz multiply by one

=
∫

log pθ(x|z)qϕ(z|x)dz−
∫

log
(

qϕ(z|x)
p(z)

)
qϕ(z|x)dz︸ ︷︷ ︸

=DKL(qϕ(z|x)||p(z))

+
∫

log
(

qϕ(z|x)
pθ(z|x)

)
qϕ(z|x)dz︸ ︷︷ ︸

=DKL(qϕ(z|x)||pθ(z|x))≥0

(2.32)

≥
∫

log pθ(x|z)qϕ(z|x)dz︸ ︷︷ ︸
=Ez∼qϕ(z|x) [log pθ(x|z)]

−
∫

log
(

qϕ(z|x)
p(z)

)
qϕ(z|x)dz︸ ︷︷ ︸

=DKL(qϕ(z|x)||p(z))

.
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When implementing the ELBO one usually uses Monte-Carlo sam-
pling to estimate the expected value and the KL divergence. The first
term

Ez∼qϕ(z|x) [log pθ(x|z)] (2.33)

is a Gaussian likelihood and maximizing it corresponds to minimiz-
ing a MSE reconstruction loss. The second term −DKL(qϕ(z|x)||p(z))
penalizes deviating from the standard normal prior. For Gaussian dis-
tributions, this quantity can be calculated in closed-form. Higgins et al.
[31] introduce a hyperparameter β > 1 to balance the two terms ofβ-VAE

the ELBO

Ez∼qϕ(z|x) [log pθ(x|z)]− βDKL(qϕ(z|x)||p(z)). (2.34)

This promotes disentangling the latent variables and can be used for
discovering latent factors in the data. Training a VAE using Equa-
tion 2.34 yields the β-VAE.

Figure 2.6 shows the structured latent space of a VAE that was
trained on the MNIST dataset [55]. Similar digits are also close in
the latent space.

Figure 2.6: Exploring the two-
dimensional latent space of a
VAE trained on the MNIST
dataset: Samples from the de-
coder that was evaluated on
a regular grid over [0, 1.5] ×
[0, 1.5].

Reparameterization trick. Training the VAE requires back-propagating
through the sampling process of a Gaussian distribution to calculate
the gradients with respect to the parameters of the encoder network ϕ.
To do so, one uses the so-called reparameterization trick which simply
uses a linear transformation of a standard Gaussian random variable,
i.e., to sample from qθ(z|x) one calculates

z = σz ⊙ sg(zstandard) + µz, (2.35)
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where the mean µz and the standard deviation σz are predicted by the
encoder network, zstandard ∼ N (0, I) is a Gaussian random variable
and sg is the stop gradient operation that stops the gradient calculation
during backpropation.

2.5.2 Generative Adversarial Networks (GANs)

A different class of generative models are the so-called Generative Ad-
versarial Networks (GANs) that were first introduced by Goodfellow
et al. [25]. Similar to the VAE, a GAN also consists of two networks:
one is the generator Gθ with learnable parameters θ and the other is
the discriminator Dϕ with parameters ϕ. The key idea is that Gθ is
trained to transform random samples from a latent distribution pz to
samples similar to those coming from the data set. Figure 2.7 compares
samples produced by a GAN that was trained on the MNIST dataset
with original samples coming from that dataset. The discriminator
Dϕ takes the role of a critic that is trained to tell real samples from
samples that where generated by Gθ apart. This is done by solving a
min-max-optimization problem

min
θ

max
ϕ

Ex∼pdata

[
log(Dϕ(x))

]
+ Ez∼pz

[
log(1− Dϕ(Gθ(z)))

]︸ ︷︷ ︸
=V(θ,ϕ)

. (2.36)

This problem is solved by alternating gradient ascent steps applied to
ϕ and gradient descent steps applied to θ. The problem can be viewed
as a saddle-point finding problem of the function V(θ, ϕ).

Goodfellow et al. [25] show that if the inner maximization problem
is solved exactly then the training algorithm minimizes the Jensen-
Shannon-divergence (JS-divergence) between the data distribution and
the distribution of the generator

DJS(pdata||pG) =
1
2

DKL(pdata||pM) +
1
2

DKL(pM||pG), (2.37)

where pM = (pdata + pG)/2. Furthermore, it is shown that the global
minimum of the function C(θ) = V(θ, ϕ∗) is achieved if and only if
pG = pdata, where ϕ∗ are the optimal discriminator parameters and pG

denotes the distribution described by Gθ . At that point, the function
takes the value C(θ) = − log (4).

Due to numerical instabilities, in practice the slightly modified op- Numerical stability

timization problem

min
θ

max
ϕ

Ex∼pdata

[
log(Dϕ(x))

]
−Ez∼pz

[
log(Dϕ(Gθ(z)))

]
(2.38)

is solved. Training a GAN can be challenging and is in general consid-
ered instable.
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MNIST

GAN samples

Figure 2.7: Samples from a fully-
connected GAN trained on the
MNIST dataset.

2.5.3 Conditional Generative Adversarial Networks (CGANs)

Conditional GANs are an extension of GANs that allow sampling from
a conditional distribution pdata(x|y), where y can, for example, be a
class label or an image.

The idea is straightforward: both Gθ and Dϕ get the variable y,
which we want to condition on, as an additional input. The min-max
objective for the training of a conditional GAN reads as

min
θ

max
ϕ

E(x,y)∼pdata

[
log(Dϕ(x, y))

]
+ Ez∼pz ,y∼py

[
log(1− Dϕ(Gθ(z, y), y))

]
,

(2.39)

where py =
∫

pdata(x, y)dx denotes the distribution of y.
Depending on the first layer of Gθ and Dϕ and whether y is a vec-

tor or an image, there are different ways to realize this: For a fully-
connected layer, y is flattened and stacked onto the input. For a con-
volutional layer the vector y usually turned into a tensor by replicating
the values appropriately, e.g., when y is a one-hot-encoded vector, each
entry of y forms a new channel of the input. If y is an image, then it is
just stacked onto the input. Figure 2.8 shows samples generated by a
conditional GAN trained on the MNIST dataset that was conditioned
on the class labels of the digits. Thus, Gθ can be used to generate
samples of a particular class, e.g., only ones or eights.

y = 1

y = 8

Figure 2.8: Samples from a
fully-connected conditional
GAN trained on the MNIST
dataset. The GAN was condi-
tioned on the class label. During
sampling from the conditional
GAN the class labels y = 1
and y = 8 were fed into the
generator network.

Conditional GANs were already proposed in the original GAN pa-
per [25] and further analyzed by Mirza and Osindero [65]. A notable
application of conditional GANs is the pix2pix model [39] that solves
a large number of image-to-image translation problems. These image-
to-image translation problems are problems where one image needs to
be turned into another image. For example, turning satellite images
into maps is an image-to-image translation problem. As shown by
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Isola et al. [39], it is advisable to augment the training objective with
an additional reconstruction loss when solving these kinds of prob-
lems. We will further discuss this in Chapter 4.





3
Phase Retrieval

In this chapter, we are going to review some of the mathematical con-
cepts that we need in the later chapters. We also introduce different
phase retrieval problems and discuss existing methods to solve them.

3.1 Complex Numbers

We start by repeating some facts about complex numbers. The set of
complex numbers C is an extension of the set of real numbers R. A
complex number is defined as a number z = a + bi, where a, b ∈ R

and i is a solution of the equation i2 = −1. The number a is usually
referred to as the real part Re(z) of z, whereas b is the imaginary part
Im(z) of z. For a complex number z, we define its magnitude as

|z| =
√

a2 + b2 (3.1)

and the phase angle as

arg(a + bi) =



arctan (b/a) , if a > 0

arctan (b/a) + π, if a < 0 and b ≥ 0

arctan (b/a)− π, if a < 0 and b < 0

π/2, if a = 0 and b > 0

−π/2, if a = 0 and b < 0

undefined, if a = 0 and b = 0.

(3.2)
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Im

Figure 3.1: The complex number
1 + 2i.

The phase angle describes the angle of the complex number in ra-
dians, i.e., it takes values in [−π, π). The complex conjugate z∗ of z
is defined as z∗ = a − bi. Figure 3.1 visualizes the complex number
z = 1 + 2i.

3.2 Discrete Fourier Transform

The Fourier transform was introduced by Joseph Fourier to study con-
tinuous functions in terms of their frequencies. However, in this thesis
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we take a look at the discrete variant of the Fourier transform that is
applied to a finite sequence of values, e.g., a discrete signal or a digi-
tal image. This variant is called the discrete Fourier transform (DFT)
and is fundamentally important for modern signal and image process-
ing. In the following, we want to define the Fourier transform and its
inverse transform, and give a brief overview of its properties.

3.2.1 One-dimensional Discrete Fourier Transform

The DFT decomposes a vector into a sum of complex sinusoids, where
each sinusoid corresponds to a different fixed frequency. This makes
it an essential tool for analyzing frequencies that are present in the
vector. The one-dimensional DFT maps a real vector x ∈ Rn to a
complex vector x̂ ∈ Cn of Fourier coefficients and is defined as

x̂[u] = F (x)[u] =
n−1

∑
k=0

x[k]e−2πi( ku
n ). (3.3)

This definition can be rewritten asLinearity of the Fourier transform

x̂ = F (x) = Fnx, (3.4)

where

Fn =


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

 (3.5)

is the DFT matrix and ω = e−2πi/n is an n-th primitive root of unity.
By writing the DFT in matrix vector notation as we did in Equation 3.4,
it is easy to see that the Fourier transform is a linear mapping.

For a vector of Fourier coefficients x̂ ∈ Cn the one-dimensional in-Inverse Fourier transform

verse discrete Fourier transformation (iDFT) is defined as

x[k] = F−1(x̂)[k] =
1
n

n−1

∑
u=0

x̂[u]e2πi( ku
n ). (3.6)

This definition can, again, be rewritten as

x = F−1(x̂) =
1
n

F∗n x̂, (3.7)

where F∗n is the DFT matrix defined in Equation 3.5 with complex
conjugated entries.

There exist different variants to normalize the Fourier coefficients.Normalization

In Equation 3.3 no normalization is performed. As a consequence we
need to multiply by 1

n in Equation 3.6. An alternative way to normal-
izing the Fourier coefficients is to multiply each of the coefficients by
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1√
n . By using this normalization, the Fourier transform would be an

orthonormal linear transformation. In that case, the factor 1
n in Equa-

tion 3.6 has to be replaced with 1√
n .

In practice, the fast Fourier transform (FFT) algorithm [15] is used to
calculate the DFT of a vector. Applying the FFT reduces the runtime
of calculating the Fourier transform of a vector with n entries from
O(n2), which corresponds to the naïve implementation suggested by
Equation 3.3, to O(n log n). This is also the reason why the FFT algo-
rithm is among the "top 10 algorithms with the greatest influence on
the development and practice of science and engineering in the 20th
century" [19].

3.2.2 Two-dimensional Discrete Fourier Transform

For a two-dimensional DFT maps a real image x ∈ Rn×n to its complex
Fourier coefficients x̂ ∈ Cn×n and is defined as

x̂[u, v] = F (x)[u, v] =
n−1

∑
k=0

n−1

∑
l=0

x[k, l]e−2πi( ku+lv
n ). (3.8)

Again, this definition can be rewritten in matrix-vector notation as

x̂ = FnxFT
n = (Fn ⊗ FT

n ) vec(x) (3.9)

where Fn is the symmetric discrete Fourier transformation matrix, ⊗
is the Kronecker product and vec(x) denotes the vector obtained by
stacking the columns of x. For better readability, we restrict ourselves
to square images, however the definitions can be easily adapted to
non-squared images. Using the formula in Equation 3.9, it is easy
to see that the two-dimensional discrete Fourier transform is also a
linear mapping. Figure 3.2 visualizes the basis-functions of the Fourier
transform in the image space.

Figure 3.2: Example 2D basis
functions of the Fourier trans-
form.

Once more, the FFT algorithm can be used to calculate the Fourier
transform of an image in an efficient way. The Fourier transform of an
n× n image can be calculated in O(n2 log n) using the FFT algorithm.
This is drastically faster than the runtime of the naïve implementation,
which is O(n3).

Later we will also apply the Fourier transform to color images. In
this case the two-dimensional Fourier transform is applied channel-
wise.
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3.2.3 Phase and Magnitude

Figure 3.3: Phase swapping ex-
periment: swapping the phase
of two images results in an im-
age that is more similar to the
image whose phase is used. This
demonstrates that the phase
contains most of the information
about an image.

Image x1 Image x2

Phase arg(x̂1)Magnitude |x̂1| Phase arg(x̂2) Magnitude |x̂2|

Image x1 with phase arg(x̂2) Image x2 with phase arg(x̂1)

After having defined the two-dimensional Fourier transform in
Equation 3.8, we will now define its phase and magnitude. The mag-
nitude of each Fourier coefficient corresponds to the magnitude of the
corresponding sinusoid and the phase of each coefficient describes the
phase shift of that sinusoid. The magnitude is obtained by element-
wise applying Equation 3.1 to the vector of Fourier coefficients

y = |x̂|, (3.10)

and the phase of an image is given by element-wise calculating the
argument of the Fourier coefficients, i.e.,

φ = arg(x̂). (3.11)

The phase and the magnitude can be used to obtain the Fourier coeffi-
cients

x̂ = y⊙ eiφ, (3.12)

where the exponentiation is meant elementwise and ⊙ denotes the
Hadamard product.
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In general, the phase of an image contains more information about
the image than the magnitude. This can be observed by a simple exper-
iment: for two given images x1 and x2, one combines the magnitude
y1 = |x̂1| of image x1 with the phase φ2 = arg(x̂2) to obtain a new
image F−1(y1 ⊙ exp(iφ2)) and vice versa.

In Figure 3.3, the results are shown. One can observe that the new
images exhibit more characteristics of that image whose phase has
been used. Using the wrong magnitude apparently only introduces
cloud-like artifacts.

3.2.4 Invariances of the Magnitude

Figure 3.4: Image x1 rotated.

Figure 3.5: Image x1 shifted.

The Fourier transform has many interesting properties. In particular,
for our setting, two invariances of the magnitudes are of interest: (i)
invariance under rotations of 180° (see Figure 3.4), (ii) invariance un-
der circular shifts (see Figure 3.5). Both properties need to be taken
into account during the experimental evaluation, as they imply that
reconstructions that are shifted or rotated by 180° are equally correct.
Thus, the reconstructions need to be registered, i.e., aligned, before
any pixel-wise metric like the MSE or the SSIM is calculated.

Invariance Under Rotations of 180°. One can show that the Fourier coef-
ficients x̂[u, v] = x̂∗[−u,−v] holds. Combining this conjugate symme-
try with the fact that conjugating a complex number does not change
its magnitude and the fact that rotating an image by 180° is equiva-
lent to flipping the image up to down and left to right, this property
follows immediately.

Invariance Under Circular Shifts. Let shifta,b be the operation that circu-
larly shifts an image by a pixels to the right and b pixels to the bottom.
The magnitudes of a circularly shifted image xshifted = shifta,b(x) are
then given as

|x̂shifted[k, l]| =
∣∣∣∣∣n−1

∑
u=0

n−1

∑
v=0

x[u− a, v− b]e−i2π ku+lv
n

∣∣∣∣∣ substitute s = u− a and t = v− b

=

∣∣∣∣∣n−1−a

∑
s=−a

n−1−b

∑
t=−b

x[s, t]e−2πi k(s+a)+l(t+b)
n

∣∣∣∣∣ (3.13)

=
∣∣∣e−i2π ak+bl

n

∣∣∣︸ ︷︷ ︸
=1

∣∣∣∣∣n−1

∑
s=0

n−1

∑
t=0

x[s, t]e−2πi ks+lt
n

∣∣∣∣∣
= |x̂[k, l]| .
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3.3 Phase Retrieval Problems

Phase retrieval is the process of reconstructing images from magni-
tude measurements, which is a relevant problem in different research
areas, e.g., in X-ray crystallography [64], astronomical imaging [21],Applications

optics [96], array imaging [7], or microscopy [108].
In its most general form, the phase retrieval problem is to recon-General Problem

struct images x ∈ Rn×n from measurements of the form

y = |A(x)|, (3.14)

where A is a known linear operator which depends on the specific
application. Note, that the phase retrieval problem is more difficult
than linear inverse problems due to the non-linearity (the absolute
value) in the forward model.

3.3.1 Fourier Phase Retrieval

A relevant instance of this problem is the Fourier phase retrieval
problem, where the operator A = F is the two-dimensional discrete
Fourier transform. In that case, the measurements are given as

y = |F (x)|. (3.15)

Non-oversampled case. In this work, we assume that the Fourier mea-
surements are not oversampled, i.e., we consider the case, where the
image x has not been zero-padded. Due to the symmetry of the Fourier
transform, this means that the number of measurements is only half
the number of pixels. Together with the non-linearity of the measure-
ment process and the fact that most information is contained in the
missing phase, this renders the problem particularly hard to solve.
This setup corresponds to typical real-world settings, such as X-ray
crystallography. We will consider this case in Chapters 4, 5, and 6.

Oversampled case. In contrast, a common assumption in Fourier phase
retrieval is that x is zero padded and thus the problem is no longer
underdetermined. The zero padding of x leads to an oversampling ofZero padding

the relevant signal and makes the problem much easier to solve, as a
large amount of pixels in the image is known to be black. This problem
is for example considered in Metzler et al. [63] and Wang et al. [98] and
can also be solved using the hybrid input-output (HIO) algorithm [22].

3.3.2 Compressive Gaussian Phase Retrieval

A related phase retrieval problem is the compressive Gaussian phase
retrieval problem which is for example discussed in the work of Can-
des et al. [8] and Shechtman et al. [80]. The compressive Gaussian
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phase retrieval problem asks to reconstruct images from measure-
ments that are obtained by multiplying the flattened image with a
matrix with random Gaussian entries

y = |M vec(x)|, (3.16)

where the measurement matrix is either a real matrix M ∈ Rm×n2
or

a complex matrix M ∈ Cm×n2
and has entries sampled from a (real

or complex) Gaussian distribution. While some practitioners consider
this problem a toy problem, we include it to compare with existing
works that evaluate their method on this problem. Compressive Gaus-
sian phase retrieval is discussed in Chapters 4 and 6.

3.3.3 Fourier Phase Retrieval With a Reference Image

Another interesting problem is the Fourier phase retrieval problem
with a reference image. Instead of reconstructing the image from plain
magnitude measurements, a reference image is added to the original
image before the Fourier magnitudes are measured, i.e., we reconstruct
the image x ∈ Rn×n from the modified measurements

y = |F (x + r)|, (3.17)

where F denotes the discrete two-dimensional Fourier transform and
r ∈ Rn×n is a known reference that has the same shape as the image.
Furthermore, we assume that both the image and the reference have
non-negative entries. Figure 3.6 gives an overview of the measure-
ment process. The problem was first mentioned by Kim and Hayes

x r x + r y

|F (·)|
+ =

Figure 3.6: An overview of
the measurement process with a
known reference.

[49, 48] in 1990. Their work considered references consisting of only
four adjacent white pixels on a black background. Such a reference
could be implemented in a real world measurement setup. Hyder
et al. [36] showed that such a reference can also be learned. Whether
these learned references are usable in the real world is unclear. We
will revisit the problem in Chapter 7.

3.4 Existing Methods for Fourier Phase Retrieval

In this section, we want to give an overview of existing methods for
Fourier phase retrieval. We focus on the optimization-based algo-
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rithms that are used as baselines in this thesis, but also briefly dis-
cuss existing learning-based methods. Python 3 implementations ofImplementations

the optimization-based algorithms can be found in Appendix A.1.

3.4.1 Error-Reduction (ER) Algorithm

One of the first and most widely used algorithms for phase retrieval
from Fourier magnitude measurements is the error reduction (ER) al-
gorithm [22]. Assuming non-negative signals with a limited support
described by a set of indices D, the algorithm iteratively enforces con-
straints in the Fourier domain and the image domain. Enforcing these
constraints can be seen as projections onto the sets

SF =
{

x ∈ Rn×n ∣∣ |F (x)| = y
}

(3.18)

and
SO =

{
x ∈ Rn×n

≥0

∣∣ x[k, l] > 0⇒ (k, l) ∈ D
}

. (3.19)

Note, that SO is a convex set, while SF is non-convex. The correspond-
ing projections onto the sets SD and SO are given byProjections

PF(x) = F−1
(

y⊙ F (x)
|F (x)|

)
, (3.20)

where the division is componentwise and

PO(x) =

x[k, l], x[k, l] ≥ 0 and (k, l) ∈ D

0, otherwise.
(3.21)

The ER algorithm can thus be seen as a fixed-point iteration

x(t+1) = PO(PF(x(t))). (3.22)

The ER algorithm is a modification of the Gerchberg-Saxton (GS) al-
gorithm [23] which solves a slightly different phase retrieval problem
that recovers the phase from two different magnitude-only measure-
ments. Gerchberg [23] has proven that the image error per iteration
of the ER algorithm does not increase. Fienup [22] later proved that
this also holds for the single measurement problem which is discussed
in this work. One should note, that in the literature the ER algorithm
is sometimes loosely referred to as GS algorithm, however these are,
strictly-speaking, two different algorithms.

3.4.2 Fienup’s Variants

Building on the ER algorithm Fienup [22] proposed three algorithms
which are also based on alternating projections: the input-output (IO)
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algorithm, the output-output (OO) algorithm and the hybrid input-
output (HIO) algorithm. Similar to the ER algorithm, all three algo-
rithms enforce the Fourier domain constraints in each iteration

x̄(t+1) = PF(x(t)). (3.23)

However, they differ in the second step where the corrected iterate
x̄(t+1) (the output) is combined with the previous iterate x(t) (the in-
put). In the following, we show how each of the algorithms defines
this second step of the iteration.

The Input-Output (IO) Algorithm. All of the three update rules dis-
tinguish between pixels in the output that violate the object domain
constraints, i.e, x̄(t)[k, l] < 0, and pixels that fulfill the object domain
constraints, i.e., x̄(t)[k, l] ≥ 0. For pixels where the object domain con-
straint is fulfilled, the (basic) input output (IO) algorithm carries for-
ward the value of the previous iterate x(t)[k, l] (the input), whereas for Input

pixels where the image domain constraint is not fulfilled the new value
is obtained by subtracting some amount of the output x̄(t+1)[k, l] from Output

the input. The complete update can be summarized as:

x(t+1)[k, l] =

x(t)[k, l], if x̄(t)[k, l] ≥ 0 and (k, l) ∈ D

x(t)[k, l]− βx̄(t+1)[k, l], otherwise,
(3.24)

where β > 0 is a step-size parameter.

The Output-Output (OO) Algorithm. Different from the IO algorithm
the output-output (OO) algorithm defines the next iterate x(t+1)[k, l]
as the output x̄(t+1)[k, l] for pixels not violating the object domain con-
straint. For pixels violating this constraint the output-output algorithm
takes a step with size β > 0 in the direction of −x̄(t+1)[k, l] starting
from x̄(t+1)[k, l]. The update step can be written as:

x(t+1)[k, l] =

x̄(t+1)[k, l], if x̄(t)[k, l] ≥ 0 and (k, l) ∈ D

x̄(t+1)[k, l]− βx̄(t+1)[k, l], otherwise.
(3.25)

The output-output algorithm can be seen as a generalization of the
ER algorithm: for β = 1 the output-output algorithm produces the
same iterates as the ER algorithm. Using a different value for β often
improves the performance [22].

Figure 3.7: HIO reconstruction
from oversampled Fourier mag-
nitudes.

The Hybrid Input-Output (HIO) Algorithm. In the following we con-
sider the hybrid input-output (HIO) algorithm. This is the last of
Fienup’s algorithms, which is the most widely used algorithm and
usually produces the best results among these three algorithms. It



42 approaching phase retrieval with deep learning

combines the update rules of the input-output and the output-output
algorithm in the following way: for pixels violating the object domain
constraints the update rule is the same as for the input-output algo-
rithm. For pixels fulfilling the object domain constraints the hybrid
input-output algorithm uses the update rule from the output-output
algorithm. Summarized, the update reads as follows:

Figure 3.8: HIO reconstruction
from non-oversampled Fourier
magnitudes. x(t+1)[k, l] =

x̄(t+1)[k, l], if x̄(t)[k, l] ≥ 0 and (k, l) ∈ D

x(t)[k, l]− βx̄(t+1)[k, l], otherwise,
(3.26)

where β > 0 again can be seen as a step-size. Although, this algorithm
seems to work quite well in practice, its convergence has not been
proven up to today.

For reconstructing images from oversampled Fourier magnitudes,Shortcomings of HIO

the HIO algorithm often converges to a suitable solution (see Fig-
ure 3.7). However, this is not the case when the magnitude measure-
ments are not oversampled (see Figure 3.8).

3.4.3 The Relaxed Averaged Alternating Reflections (RAAR) Algo-
rithm

The relaxed average alternating reflections (RAAR) algorithm is a more
recent projection-based algorithm that was introduced by Luke [59]. It
is a relaxation of the averaged alternating reflections (AAR) algorithm
that was originally intended for finding the intersection of convex sets.
The AAR algorithm was proposed by Bauschke et al. [3]. In our nota-
tion, the updates of the RAAR method are

x(t+1)[k, l] =

x̄(t+1)[k, l], if x̄(t+1)[k, l] ≥ 0 and (k, l) ∈ D

βx(t)[k, l]− (1− 2β)x̄(t+1)[k, l], otherwise,
(3.27)

where β > 0 is the relaxation parameter.

3.4.4 End-to-End Learning (E2E)

The most naïve way to apply deep learning to phase retrieval is end-Supervised approach

to-end learning (E2E) which trains a deep neural network Hθ with
learnable parameters θ that gets the magnitude measurements as in-
put and directly outputs the reconstructions. This is achieved by min-
imizing the distance between the reconstruction from the network and
the ground truth image from the dataset. For example, one could min-
imize the MSE

Lrec(θ) =
1
n

n

∑
i=1
∥xi − Hθ(|A(xi)|)∥2

2 , (3.28)



phase retrieval 43

for a given dataset of images D = [x1, . . . , xn]. Nishizaki et al. [69]
were the first that published an E2E learning approach that uses a
convolutional ResNet architecture. Alternatively, one could also use
the MAE or the SSIM. We call this approach supervised as it uses im-
ages and their corresponding measurements during training. The E2E
approach is evaluated in Chapters 4 and 5. During test time an image
is reconstructed using a single forward pass through the network Hϕ.
This is computationally very efficient since no further optimization is
performed as it is the case in the next approach.

3.4.5 Deep Generative Priors (DPR)

A different approach to learning-based phase retrieval are deep gen-
erative priors (DPR) which were first used by Hand et al. [30]. They
use a generative model G to restrict the search space to reconstructions
that come from the distribution that G was trained on. As a generative
model one could for example use a GAN or a VAE. Images are recon-
structed by minimizing the error between the given magnitudes and
the magnitudes of the current output of the generator

z∗ = argmin
z
∥|A(G(z))| − y∥2

2 . (3.29)

Hand et al. [30] use gradient descent to solve the optimization problem
stated in Equation (3.29). After that, the reconstruction is given by
x̂ = G(z∗). Drawbacks of this approach is the non-convex optimization
at test time which requires usually restarts and many iterations until a
suitable solution is reached.

3.4.6 Unrolling a Gradient Descent Algorithm for Reference Learn-
ing

To learn suitable reference images for the Fourier phase retrieval prob-
lem with a reference image, Hyder et al. [36] propose to unroll the
following reconstruction algorithm: to reconstruct an image x for a Reconstruction with reference image

fixed reference r from measurements y that are obtained according to
Equation 3.17, the authors minimize

argmin
x
∥y−F (x + r)∥2

2, (3.30)

using gradient descent for T steps, where we denote the last iterate of
that optimization as x(T). One can now use stochastic gradient descent Reference learning

through the reconstruction algorithm stated above to learn a reference
image u from a set of training images. In detail, Hyder et al. [36]
calculate the gradient with respect to r of the error

L(x, x(T)) = ∥x− x(T)∥2
2 (3.31)
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that compares the final reconstruction x(T) (that depends on r) against
the ground truth image x coming from a training dataset. In their
work, Hyder et al. [36] show that references learned in that way pro-
vide high quality reconstructions on similar data and also generalize
to different datasets.

We reproduced the results of their work and summarized our find-
ings in a report [76]. Furthermore, in Chapter 7 we show that there is
an easier way to obtain references that perform similar.



4
Learning Conditional Generative Mod-
els for Phase Retrieval

Corresponding publication. A previous version of this work was pub-
lished as

Tobias Uelwer, Alexander Oberstraß, and Stefan Harmeling. Phase
retrieval using conditional generative adversarial networks. In 2020
25th International Conference on Pattern Recognition (ICPR), pages 731–
738. IEEE, 2021. doi: 10.1109/ICPR48806.2021.9412523.

The work presented in this chapter is an extended version of the
conference paper and is the result of a collaboration with Sebastian
Konietzny. It is currently under review at a journal.

Personal contributions. Tobias Uelwer did the literature review, pro-
posed the model architecture and implemented the initial model to-
gether with Alexander Oberstraß. Moreover, Tobias Uelwer designed
the experimental evaluation, implemented the HIO, DPR and E2E
baseline, designed the ablation experiments and performed parts of
the experiments. Alexander Oberstraß and Sebastian Konietzny con-
ducted the hyperparameter tuning and also parts of experiments. Fur-
thermore, Tobias Uelwer created multiple plots and figures and wrote
the initial draft of the manuscript which he edited together with Se-
bastian Konietzny, Alexander Oberstraß and Stefan Harmeling. Stefan
Harmeling supervised the project.

Remark. Due to copyright issues the reconstructions of images from
the CelebA dataset are not shown in this thesis.

Abstract. Reconstructing images from magnitude measurements is
an important and difficult problem arising in many research areas,
such as X-ray crystallography, astronomical imaging and more. While
optimization-based approaches often struggle with the non-convexity
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and non-linearity of the problem, learning-based approaches are able
to produce reconstructions of high quality for data similar to a given
training dataset. In this work, we analyze a class of methods based
on conditional generative adversarial networks (CGAN). We show
how the benefits of optimization-based and learning-based methods
can be combined to improve reconstruction quality. Furthermore, we
show that these combined methods are able to generalize to out-of-
distribution data and analyze their robustness to measurement noise.
In addition to that, we compare how the methods are impacted by
missing measurements. Extensive ablation studies demonstrate that
all components of our approach are essential and justify the choice of
network architecture.

4.1 Introduction

In this chapter we explore how conditional GANs can be applied to
the phase retrieval problem. We treat the phase retrieval problem as
an image-to-image translation problem and use different optimization
procedures at test time to achieve state-of-the-art results drastically im-
proving upon existing results. However, one drawback of this method
is that it is supervised and must be retrained when the measurement
process changes. In Chapter 6 we show how an unsupervised method
can be used to achieve similar results. Also, the optimization proce-
dure of the PRCGAN at test time is costly. This problem is going to be
addressed in Chapter 5.

4.2 Related work

Existing methods to solve the phase retrieval problem can be classi-
fied into two categories: optimization-based and learning-based ap-
proaches. While optimization-based approaches are especially appeal-
ing when the number of measurements is larger than the number of
pixels (i.e., the measurements are oversampled), these methods usually
fail in the non-oversampled regimes. Learning-based methods use ad-
ditional information about the distribution of the target images to solve
the phase retrieval problem (sometimes also in the non-oversampled
case).

There are several other setups that are related to phase retrieval,
e.g., ptychography, where we reconstruct an image given a sequence of
magnitude measurements of many partially overlapping frames [103].
Another related problem is compressed sensing which asks to recon-
struct images from linear measurements. Kim et al. [47] recently also
proposed approaching the compressed sensing problem with condi-
tional GANs. Generative priors with sparsity constraints for com-
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pressed sensing have been discussed by Killedar et al. [46]. Solving
ptychography with conditional generative adversarial networks has
been done by Boominathan et al. [4] and Gupta et al. [29].

However, these are different from the problems considered in this
work. To best of our knowledge we are the first to apply the condi-
tional GAN framework to solve the Fourier and Gaussian phase re-
trieval problem.

4.2.1 Optimization-based Approaches

One of the first phase retrieval algorithms is the Gerchberg-Saxton (GS)
algorithm [23], which starts with a random image and iteratively en-
forces a magnitude constraint in the Fourier domain and a positivity
constraint of pixel intensities in the object domain. Based on the GS al-
gorithm Fienup [22] proposed three extensions: the input-output, the
output-output and the hybrid input-output (HIO) algorithm, where
the last one is the most popular since it usually produces the best re-
sults among the three. Recently, Luke [59] proposed another iterative
phase retrieval algorithm which is based on relaxed averaged alternat-
ing reflections (RAAR).

4.2.2 Learning-based Approaches

Learning-based methods are used for the oversampled Fourier phase
retrieval problem and for the non-oversampled Fourier phase retrieval
problem.

Oversampled Problem. Deep neural network approaches for the sim-
pler oversampled Fourier phase retrieval problem have, e.g., been dis-
cussed by Manekar et al. [61], who propose as passive loss for end-
to-end learning which is invariant to symmetries, and by Cha et al.
[9], who formulate a novel loss function based on the PhaseCut algo-
rithm [95]. The regularization-by-denoising framework for oversam-
pled Fourier phase retrieval is discussed by Metzler et al. [63], Wang
et al. [98] and Wu et al. [101].

Non-oversampled Problem. Deep neural networks for the non-over-
sampled Fourier phases retrieval problem have first been studied by
Nishizaki et al. [69]. Their end-to-end learning approach has later
been extended to a deep neural network cascade by Uelwer et al. [87].

Learning-based methods for the Gaussian phase retrieval problem
include deep generative priors [30], deep generative priors with spar-
sity constraints [45] and untrained neural network priors [40].
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4.3 Contributions

The contributions of this chapter can be summarized as follows:

1. We describe the PRCGAN, which combines a conditional genera-
tive adversarial network (CGAN) and a latent optimization proce-
dure to solve different phase retrieval problems.

2. We study three variants of the PRCGAN: (i) in an end-to-end
mode (PRCGAN-D), (ii) in combination with latent optimization
(PRCGAN-L), and (iii) in combination with weight optimization of
the network (PRCGAN-W).

3. We extensively evaluate all variants of the PRCGAN on the Fourier
phase retrieval problem using openly available benchmark datasets
such as MNIST, EMNIST, FMNIST, KMNIST, CelebA, and CIFAR-
10.

4. We perform thorough ablation studies to examine the impact of
each of the components of our method. We also experiment with
different loss functions and model architectures.

5. We analyze how our trained models can generalize to out-of-
distribution data. To do so we evaluate the performance of the
models on datasets that differ from the training set. Furthermore,
we create a novel dataset that contains MNIST-like symbols. We
also use this dataset to evaluate our models.

6. We investigate the robustness of the different models: we study the
impact of Poisson noise and additive Gaussian noise on the mea-
surements and analyze the impact of randomly dropping magni-
tudes on the reconstruction process.

7. While this work focuses on Fourier phase retrieval, we show in ad-
ditional experiments that the proposed methods are also applicable
to the Gaussian phase retrieval problem.

4.4 End-to-End Learning and DPR

So far, we have discussed two ideas on how deep neural networks
can be leveraged to solve phase retrieval problems: in Section 3.4.4 we
have seen how end-to-end learning can be used to approach phase re-
trieval problems. The idea of end-to-end learning is to directly learn
a mapping Hϕ from magnitude measurements to the images. A dif-
ferent idea for a learning-based method is the DPR approach, which
we presented in Section 3.4.5. DPR was introduced by Hand et al. [30]
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and uses a generative model which can be used to reconstruct images
by searching in the latent space of that model.

For our method PRCGAN we combine both ideas and learn a con-
ditional generative model which has access to the magnitude infor-
mation during training and is subsequently used in an optimization
procedure to recover the unknown image.

4.5 PRCGAN: Combining End-to-End Learning and DPR

To increase the quality of the reconstructions we replace the generative
model G of DPR with a conditional GAN (CGAN) that is conditioned
on the magnitude measurements. In that way, our approach, called
PRCGAN (Phase Retrieval based on CGAN) is a hybrid between the
E2E and the DPR approach. By doing so, we learn a CGAN that is
tailored to phase retrieval reconstruction process. The PRCGAN con- Generator and discriminator

sists of a discriminator network Dθ with parameters θ and a generator
network Gϕ with parameters ϕ. Both networks are conditioned on the
given magnitude measurement. For the latent variable z we choose
a multivariate Gaussian with zero mean and unit covariance matrix
and denote the latent distribution by q. After training, the generator
network Gϕ takes the role of the reconstruction network.

4.5.1 PRCGAN: Training

The PRCGAN is trained by optimizing a combination of two loss func-
tions: an adversarial component

Ladv(θ, ϕ) =
1
n

n

∑
i=1

log Dθ(xi, yi) +
1
n

n

∑
i=1

log
(
1− Dθ(Gϕ(zi, yi), yi)

)
,

(4.1)

where yi = |A(xi)| and zi ∼ q for i = 1, . . . , n and a reconstruction Reconstruction loss

component

Lrec(ϕ) =
1
n

n

∑
i=1

∥∥xi − Gϕ(zi, yi)
∥∥p

p , (4.2)

where p is either 1 or 2. During training the parameters θ and ϕ of D
and G are optimized to solve the min-max-problem:

min
ϕ

max
θ
Ladv(θ, ϕ) + λLrec(ϕ), (4.3)

where λ > 0 is a hyperparameter that balances the two loss compo-
nents.

4.5.2 PRCGAN: Reconstructions

A trained PRCGAN gives us several options for the reconstruc-
tion which span the spectrum between end-to-end learning and
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optimization-based image reconstruction. Besides directly using the
output of the PRCGAN, we can further enhance the results by opti-
mizing the latent variable or even the weights of the generator itself.

PRCGAN-D: Direct Reconstruction. The PRCGAN can be directly usedEnd-to-end approach

to reconstruct images with a single forward pass. To do so, the given
magnitude measurement y and a randomly sampled value z from the
latent distribution are fed into the generator Gϕ. This gives us the
reconstruction

x̂ = Gϕ(z, y). (4.4)

While x̂ is often a reasonable solution, we can greatly improve the
reconstruction quality by employing additional optimization proce-
dures, as we will describe next.

PRCGAN-L: Latent Optimization. Additional to feeding the magnitude
y into the generator network, we can tune the latent variable z to
ensure that the generated image has the correct magnitude y, or ex-
pressed as an optimization problem, we solve

z∗ = argmin
z

∥∥y− |A(Gϕ(z, y))|
∥∥2

2 . (4.5)

Given an optimal z∗, the reconstruction is the output of the generator
network x̂ = Gϕ(z∗, y). Note that since the parameters of Gϕ are fixed,
we can solve this optimization in parallel for several magnitudes by
passing batches through the generator. We denote this approach as
PRCGAN-L.

PRCGAN-W: Weight Optimization. Instead of optimizing the latent
variable z, we can also search optimal the weights ϕ∗ for the generator
network Gϕ to match the given magnitude y for a randomly sampled
(and fixed) z, i.e.,

ϕ∗ = argmin
ϕ

∥∥y− |A(Gϕ(z, y)|)
∥∥2

2 . (4.6)

A similar idea was used by Hussein et al. [34] and Ulyanov et al. [91]Weight optimization in related works

for linear inverse problems, like compressed sensing and denoising.
Plugging the fine-tuned weights ϕ∗, the fixed latent variable z and
the given magnitudes y into the generator Gϕ yields the reconstructed
image x̂ = Gϕ∗(z, y). Different to the latent optimization the weight
optimization can only be performed for a single magnitude at a time
which makes this approach computationally more expensive. How-
ever, we hypothesize that the space of the network weights offers more
flexibility to find a good reconstruction. We denote this approach as
PRCGAN-W.

Figure 4.1 gives an overview of the different learning based methods
considered in this work.
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(d) PRCGAN-L and PRCGAN-W

Figure 4.1: Phase retrieval: Af-
ter training the learned-models
are used in different ways to re-
construct the image. We pro-
pose four variants of the PRC-
GAN which differ in the recon-
struction process: PRCGAN-D,
PRCGAN-L, and PRCGAN-W.

4.5.3 Taxonomy of Learning-based Approaches for Phase Retrieval

The learning-based methods discussed in the previous sections can be
divided into two categories:

Unsupervised Learning: methods like the DPR approach are only trained
on images [x1, . . . , xn]. Thus we call the DPR approach unsuper-
vised.

Supervised Learning: in contrast to that, other methods are not only
trained on the images [x1, . . . , xn] but also have access to the cor-
responding magnitude measurements [y1, . . . , yn] during training.
This allows the model to specialize on that measurement process
and usually results in better image reconstruction quality. We call
these methods supervised. In this work, E2E and all variants of the
PRCGAN are examples thereof.

Note that the term end-to-end learning is in this work exclusively
used for methods that reconstruct images in a single forward-pass
through the network, having no additional optimization step during
reconstruction. Therefore, E2E and PRCGAN-D are considered as end-
to-end learning approaches.
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4.6 Experimental Setup

4.6.1 Datasets

For our experiments we consider six different datasets. Four of these
datasets consist of 28 × 28 grayscale images, namely, MNIST [55],
FMNIST [102], EMNIST [13] and KMNIST [12]. Although, these
datasets are considered toy-datasets for classification tasks, solving
phase retrieval on these datasets is a non-trivial problem. The other
two datasets consists of color-images: the CelebA dataset [58] and the
well-known CIFAR-10 dataset [53]. We rescaled both images to 64× 64
resolution.

Fourier magnitudes were calculated without oversampling, i.e.,No oversampling

the magnitudes had the same dimensionality as the images from the
dataset.

4.6.2 Architecture
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Figure 4.2: Architecture of the
generator used to reconstruct
the CelebA images from their
magnitude.

For the grayscale image datasets (MNIST, FMNIST, KMNIST and
EMNIST) we use a multilayer perceptron (MLP) consisting of five lay-
ers having each 2048 hidden units. Empirically, we found out that
the fully-connected layers are better suited for the global structure of
the Fourier phase retrieval problem than convolutional layers. We use
batch-normalization [37] and ReLU nonlinearities for the intermediate
layers and a sigmoid function for the final layer as the pixel intensities
of the images are assumed to be normalized between 0 and 1.

Since the MLP architecture is no longer feasible for the increased
pixel count of the color-image datasets CIFAR-10 and CelebA, we use
a convolutional neural network (CNN) with two fully-connected inter-
mediate layers for the generator network. Figure 4.2 gives an overview
of the used architecture.

For the DPR implementation we follow Hand et al. [30]. That
means, a variational autoencoder (VAE) [51] is used for the MNIST-
like datasets, where the dimension of the latent variable z is chosen to
be 128 and two ReLU activated fully-connected layers with 500 hidden
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units each are used. For the CelebA and CIFAR-10 datasets a DCGAN
architecture [73] is used with batch-normalization [37] and ReLU acti-
vation functions.

4.6.3 Baselines

We also compare our PRCGAN approach with classical methods that
do not have a learning component. The most commonly used phase
retrieval algorithm is Fienup’s HIO algorithm [22]. The optimal hy- HIO and RAAR

perparameters of HIO (1000 iterations and step-size β = 0.8) were de-
termined using a validation dataset, and two random restarts (out of
three reconstruction we used the one with the lowest magnitude error).
Another optimization-based method that we evaluate is the relaxed-
averaged-alternating-reflections algorithm (RAAR) proposed by Luke
[59]. Here, we also ran 1000 iterations with two random restarts. We
set the step-size to β = 0.87 which was reported to perform best in the
original work.

For the learning-based E2E approach, we considered different ar- E2E

chitectures for the generator and different loss functions. The best
performance was obtained with the MSE for the MNIST-like datasets,
and with the MAE for the color-image datasets.

For the DPR approach we tried an non-conditional GAN and a VAE Deep generative priors

for the generator. For the MNIST-like datasets the VAE performed
better, so we only report results for the VAE-based DPR method. For
the other datasets, we use a DCGAN [73] as the underlying genera-
tive model which produced better results. After training each model,
we initialized the latent variable with samples from a standard Gaus-
sian distribution and performed 10,000 iterations of Adam with a step
size of 0.1, which we found to perform best. In order to get useful
results, we allowed multiple restarts and used the reconstruction with
the lowers magnitude error.

4.6.4 Training and Optimization

We selected all hyperparameters to be optimal on a separate validation
dataset. We trained all previously mentioned learning-based models
with a batch size of 32 for the MNIST-like datasets and 64 for the color- Hyperparameters

images, using the Adam optimizer [50]. We trained the PRCGAN for
100 epochs for all datasets except for CIFAR-10, where we increased
the number of epochs to 250. We set λ = 100 for MNIST, EMNIST, and
KMNIST and used λ = 1000 for FMNIST, CelebA, and CIFAR-10.

Analogous to the DPR approach, we optimized the latent variable z
using 10,000 steps with a learning rate of 0.1. We observed that even
without restarting, our approach outperformed DPR, so we decided to
eliminate the random restarts to keep the computational effort limited.
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In the weight optimization PRCGAN-W, we also used 10,000 steps but
with a decreased learning rate of 0.01 for the latent optimizer and 10−6

for the weight optimizer.

4.6.5 Evaluation

For grayscale datasets MNIST, FMNIST, EMNIST and KMNIST we
compare the mean squared error (MSE), the mean absolute error
(MAE) and the structural similarity index measure (SSIM) [99]. For
datasets consisting of color-images (CelebA and CIFAR-10) we report
the MSE, the LPIPS [107] and the SSIM. For the grayscale images with
black background we observe that the reconstructions are sometimes
flipped and translated after performing the latent optimization. This
is to be expected as flipping and translating the image does not change
the magnitudes in the case of Fourier phase retrieval. Therefore, weFlipping and shifting

consider these reconstructions to be equally correct and perform im-
age registration with the target image before calculating the errors. We
use cross-correlation [27] to align the reconstruction and the flipped
reconstruction with the target image and report the better metric. For
the color images from CelebA and CIFAR-10 datasets we did not ob-
serve any flips or shifts and therefore omitted the registration step.
We use 1024 images in each test set to limit the computational time.

4.7 Experiments

4.7.1 Results for Fourier Phase Retrieval

In the following we discuss the results of the optimization- and
learning-based methods for Fourier phase retrieval.

HIO. On the MNIST-like datasets the HIO algorithm reconstructs im-
ages with many artifacts. In the other cases HIO is not successful at
all, resulting in fragmented, blurry reconstructions. Furthermore, for
the color-images of the CIFAR-10 and the CelebA dataset HIO does
not produce any useful results.

RAAR. Overall, we observe slightly worse performance when com-
paring with the results of HIO. For the color-image datasets RAAR
also does not succeed at reconstructing the images.

End-to-End. In comparison to the optimization-based methods the
E2E approach does not produce fragmented parts. Although some
reconstructions are still blurry, E2E performs better in all six datasets
than HIO and RAAR.
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DPR. On MNIST, the latent optimization approach produces better
visual appearance of the digits. To avoid local optima, we did mul-
tiple random restarts. However, sometimes DPR still does not work
as well as E2E, as can be seen in the first and second image shown in
Figure 4.4. While DPR got slightly better MNIST reconstructions than
the E2E approach, it is having difficulties on the other datasets.

PRCGAN. The PRCGAN combines end-to-end learning with a sub-
sequent optimization, so we are expecting better results than the E2E
and the DPR approach. The most basic PRCGAN-D achieves sim-
ilar performance than the E2E method, as one can see in Table 4.1
and 4.2. However, due to the adversarial loss component, the PRC-
GAN alleviates the problem of blurriness and gets much more real-
istic reconstructions. As one can see in the second and eighth image
in Figure 4.4 (columns 2 and 8) the reconstructions show finer texture
components like the text and the checkered pattern on the shirts, re-
spectively. Quantitatively, the blurry E2E reconstructions are more fa-
vorable than the reconstructions of PRCGAN-D, since the MSE, MAE,
and SSIM punish misplaced sharp edges more than blurriness.

The variations PRCGAN-L and PRCGAN-W, that optimize latent
variables or weights with respect to the magnitude, produce the best
reconstructions regarding both qualitative and quantitative perfor-
mance on all datasets except for CIFAR-10. It is remarkable that on
FMNIST, we were even able to reconstruct the text shown on the
second image in Figure 4.4, where all other baseline methods failed.
While our presented optimization approaches do not significantly
differ in quality, we observe that PRCGAN-L with a few minor ex-
ceptions achieves the best reconstructions. One exception are the
results of PRCGAN-W, which achieves a lower MAE for MNIST and
EMNIST. CIFAR-10 shows the limits of learning-based methods for
phase-retrieval: due to the high variation of the dataset, none of the
methods recovers good images. Quantitatively, E2E is slightly better
than the other approaches. E2E produced blurry images, while our
PRCGAN-D is trying to create images with edges.
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Figure 4.3: Registered recon-
structions from the Fourier mag-
nitudes of samples from the
MNIST test dataset for each
model.

Target

HIO [22]

RAAR [59]

E2E (ours)

DPR [30]

PRCGAN-D (ours)

PRCGAN-L (ours)

PRCGAN-W (ours)

Figure 4.4: Registered recon-
structions from the Fourier mag-
nitudes of samples from the
FMNIST test dataset for each
model.

Target

HIO [22]

RAAR [59]

E2E (ours)

DPR [30]

PRCGAN-D (ours)

PRCGAN-L (ours)

PRCGAN-W (ours)
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Target
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RAAR [59]

E2E (ours)

DPR [30]

PRCGAN-D (ours)

PRCGAN-L (ours)

PRCGAN-W (ours)

Figure 4.5: Registered recon-
structions from the Fourier mag-
nitudes of samples from the
EMNIST test dataset for each
model.
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HIO [22]

RAAR [59]

E2E (ours)

DPR [30]

PRCGAN-D (ours)

PRCGAN-L (ours)

PRCGAN-W (ours)

Figure 4.6: Registered recon-
structions from the Fourier mag-
nitudes of samples from the
KMNIST test dataset for each
model.
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Figure 4.7: Registered recon-
structions from the Fourier mag-
nitudes of samples from the
CIFAR-10 test dataset for each
model.

Target

HIO [22]

RAAR [59]

E2E (ours)
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PRCGAN-L (ours)

PRCGAN-W (ours)



learning conditional generative models for phase retrieval 59

MNIST FMNIST

Method MSE (↓) MAE (↓) SSIM (↑) MSE (↓) MAE (↓) SSIM (↑)

HIO [22] 0.0440 0.1016 0.5274 0.0649 0.1608 0.4019

RAAR [59] 0.0489 0.1150 0.4879 0.0668 0.1673 0.3491

E2E (ours) 0.0164 0.0429 0.8191 0.0129 0.0564 0.7400

DPR [30] 0.0139 0.0302 0.8685 0.0288 0.0855 0.6093

PRCGAN-D (ours) 0.0185 0.0415 0.8196 0.0149 0.0569 0.7414

PRCGAN-L (ours) 0.0009 0.0045 0.9890 0.0084 0.0403 0.8376
PRCGAN-W (ours) 0.0010 0.0034 0.9867 0.0090 0.0429 0.8266

EMNIST KMNIST

Method MSE (↓) MAE (↓) SSIM (↑) MSE (↓) MAE (↓) SSIM (↑)

HIO [22] 0.0645 0.1364 0.4942 0.0920 0.1721 0.3592

RAAR [59] 0.0668 0.1425 0.4767 0.0931 0.1774 0.3773

E2E (ours) 0.0223 0.0656 0.7598 0.0538 0.1193 0.5510

DPR [30] 0.0326 0.0685 0.7480 0.0884 0.1446 0.4504

PRCGAN-D (ours) 0.0318 0.0692 0.7546 0.0694 0.1192 0.5535

PRCGAN-L (ours) 0.0066 0.0255 0.9416 0.0393 0.0775 0.7384
PRCGAN-W (ours) 0.0063 0.0218 0.9436 0.0402 0.0787 0.7259

Table 4.1: Quantitative evalua-
tion for MNIST, FMNIST, EM-
NIST and KMNIST for the
registered reconstructions from
the Fourier magnitudes. MSE,
MAE: lower is better. SSIM:
higher is better. Best values
are printed bold and second-
best are underlined.
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CelebA CIFAR-10

Method MSE (↓) SSIM (↑) LPIPS (↓) MSE (↓) SSIM (↑) LPIPS (↓)

HIO [22] 0.1005 0.0510 0.8228 0.0814 0.0881 0.7827

RAAR [59] 0.1011 0.0537 0.8183 0.0808 0.0927 0.7779

E2E (ours) 0.0123 0.6367 0.2683 0.0390 0.2735 0.5852

DPR [30] 0.0388 0.4185 0.3529 0.0707 0.1713 0.5819

PRCGAN-D (ours) 0.0155 0.5653 0.2655 0.0402 0.2297 0.5403

PRCGAN-L (ours) 0.0093 0.6846 0.2182 0.0489 0.2219 0.5401
PRCGAN-W (ours) 0.0115 0.6405 0.2835 0.0492 0.2173 0.5487

Table 4.2: Quantitative evalu-
ation for CelebA and CIFAR-
10 for the reconstructions from
the Fourier magnitudes. Note
that we do not register the re-
constructions for these datasets.
Best values are printed bold.

4.7.2 Computational Runtime

Reconstructing a single image of shape 3×64×64 using RAAR or HIO
takes approximately 3.70 seconds on an AMD EPYC 7742 CPU (in-
cluding two restarts). The end-to-end approaches E2E and PRCGAN-
D, which reconstruct the images in a single forward pass, are the
fastest methods considered in this work. They take 0.16 and 0.02 sec-
onds, respectively. The latent optimization of the DPR approach takes
137.24 seconds, as it used two random restarts. In contrast to that
PRCGAN-L takes 85.76 seconds but does not use any restarts. The
weight optimization approach (PRCGAN-W) runs for 138.89 seconds
to reconstruct a single image. In contrast to DPR and PRCGAN-L,
which can process a dataset of images batchwise, PRCGAN-W needs
to process each image separately. Thus it scales linearly with the num-
ber of images and not with the number of batches as it is the case for
DPR and PRCGAN-L. The runtimes of the learning-based methods are
measured on an NVIDIA A100 GPU. In conclusion PRCGAN-L gives
excellent reconstructions in most cases and has reasonable runtime.

4.7.3 Dissecting the PRCGAN: Ablation Experiments

In this section, we explain what the PRCGAN has learned by present-
ing the results of the following ablation experiments:

Which impact does the choice of the reconstruction loss have? We are inter-
ested which impact the choice of the reconstruction loss function Lrec

has on the performance of the PRCGAN-D and PRCGAN-L model. In
addition to the MAE and the MSE we also consider LPIPS, which is
a perceptual loss function. Results are shown in Table 4.3. Overall,
the performance of the PRCGAN-D is improved by using LPIPS as
reconstruction loss, however when considering PRCGAN-L the effect
decreases. This justifies our initial choice of the reconstruction loss.
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CelebA CIFAR-10

Method Lrec MSE (↓) SSIM (↑) LPIPS (↓) MSE(↓) SSIM (↑) LPIPS(↓)

PRCGAN-D MAE 0.0155 0.5653 0.2655 0.0402 0.2297 0.5403
PRCGAN-D MSE 0.0149 0.5535 0.3028 0.0422 0.2432 0.5878

PRCGAN-D LPIPS 0.0143 0.5856 0.2418 0.0385 0.2390 0.5409

PRCGAN-L MAE 0.0093 0.6846 0.2182 0.0489 0.2219 0.5401

PRCGAN-L MSE 0.0125 0.6110 0.2811 0.0534 0.2133 0.5692

PRCGAN-L LPIPS 0.0096 0.6804 0.2126 0.0479 0.2279 0.5359

Table 4.3: Comparison of recon-
struction performance for dif-
ferent choices of reconstruction
loss functions Lrec. Best values
are printed bold.

Is the magnitude passed to the CGAN being used for the reconstruction? In
the basic PRCGAN-D approach, the magnitudes are processed by the
CGAN to recover the image. However, for the other PRCGAN variants
we are also employing the magnitudes in the subsequent optimization.
To evaluate the influence of these two roles of the magnitude, we run
experiments where we used wrong magnitudes as inputs to the model
on purpose while afterwards solving the optimization problem stated
in Equation 4.5 with the correct magnitudes. Table 4.4 shows that the
performance completely drops, which shows that for PRCGAN-L, the
magnitude input to the generator is essential.

MNIST

Method MSE (↓) MAE (↓) SSIM (↑)

PRCGAN-L 0.0009 0.0045 0.9890
PRCGAN-L (conditioned on labels) 0.0160 0.0361 0.8442

PRCGAN-L (wrong magnitudes) 0.0244 0.0455 0.7801

PRCGAN-L (without adversarial loss) 0.0289 0.0523 0.7363

Table 4.4: Quantitative evalu-
ation of the different ablation
experiments. Best values are
printed bold.

Is it sufficient to condition on the label? Instead of feeding magnitudes to
the CGAN, one could argue that just the labels should be sufficient for
successful reconstruction. To answer this question we train a CGAN
conditioned on the labels and attempt to reconstruct the image given
the correct label information. While the label might not be available
in practice, this experiment helps us to understand what information
is relevant. As in the previous study, the results of only using label
information are inferior to using the magnitude (see Table 4.4).

Can we drop the adversarial component in the loss? Next, we train a PRC-
GAN by only minimizing the reconstruction loss Lrec. Note that this
approach is not identical to E2E since have a latent noise variable and
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CelebA

with fully-connected layer without fully-connected layer

MSE (↓) SSIM (↑) LPIPS (↓) MSE (↓) SSIM (↑) LPIPS (↓)

PRCGAN-D 0.0155 0.2655 0.5653 0.0260 0.4902 0.2903

PRCGAN-L 0.0093 0.2182 0.6846 0.0153 0.5899 0.2697

PRCGAN-W 0.0115 0.2835 0.6405 0.0156 0.5834 0.3021

Table 4.5: Ablation study for
the intermediate fully-connected
layer used in the neural network
architecture for the CelebA and
CIFAR-10 dataset. Best values
are printed bold.

a subsequent optimization of it. Again, the performance worsens (see
Table 4.4).

Can we drop the fully-connected intermediate layer? For the color images,
the PRCGAN consists of several convolutional layers, two intermedi-
ate fully-connected layers and several transposed convolutional layers
(see Figure 4.2). The motivation for the fully connected layers is that
it helps to model the global structure of the phase retrieval problem.
To measure the influence of it, we train the same model without the
intermediate fully-connected layers. The results are shown in Table 4.5
and confirm our design choice to include a fully connected intermedi-
ate layer. Also, the model without it was more difficult to train due to
numerical instabilities.

4.7.4 Robustness Against Distributional Shifts

In real-world applications we often do not have examples from the
true image distribution. Instead we might be able to train a model on
a dataset that is only similar to some degree. To simulate this situation,
we consider models trained on the MNIST digits and compare to what
extend we can reconstruct letters from the EMNIST dataset. Since the
MNIST dataset is a subset of the EMNIST dataset, we ensure that only
images showing letters are used for evaluation. Table 4.6 shows that all
three variants of the PRCGAN are the best approaches for this setup.
For several exemplary reconstructions refer to Figure 4.9. To further
confirm these generalization abilities, we expanded our experiments
on the four grayscale datasets. We evaluate E2E, DPR, PRCGAN-D,
PRCGAN-L, and PRCGAN-W trained on MNIST, FMNIST, EMNIST
and KMNIST images, respectively, with each of the other datasets.
Figure 4.8 summarizes the reconstruction performance of the learned
methods on out-of-distribution data. PRCGAN-L and PRCGAN-W
perform best in eight out of twelve cases (only considering those where
training and testing datasets differ).

Carrying on the idea of reconstructing arbitrary shapes we have cre-
ated a small dataset consisting of 32 MNIST-like symbols and bench-
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EMNIST (only letters)

Method (trained on MNIST) MSE (↓) MAE (↓) SSIM (↑)

E2E (ours) 0.0535 0.1026 0.5486

DPR [30] 0.0427 0.0814 0.6670

PRCGAN-D (ours) 0.0567 0.1025 0.5710

PRCGAN-L (ours) 0.0269 0.0604 0.7751
PRCGAN-W (ours) 0.0269 0.0636 0.7492

Table 4.6: Training on MNIST
digits leads to reasonable results
on letters of EMNIST. Quantita-
tive evaluation for the registered
reconstructions from the Fourier
magnitudes. MSE, MAE: lower
is better. SSIM: higher is better.
Best values are printed bold and
second-best are underlined.

mark the different methods on this dataset. Here, we consider models
trained on MNIST and EMNIST, and evaluate both using Fourier mea-
surements. Refer to as Table 4.7 and Figure 4.10. Note that although
the results are generally better for the models trained on EMNIST, the
PRCGAN variants always perform better than E2E and DPR.

trained on MNIST

Method MSE (↓) MAE (↓) SSIM (↑)

E2E (ours) 0.0916 0.1583 0.3974

DPR [30] 0.0712 0.1192 0.6221

PRCGAN-D (ours) 0.1095 0.1610 0.3770

PRCGAN-L (ours) 0.0498 0.0942 0.7337

PRCGAN-W (ours) 0.0484 0.0930 0.7356

Table 4.7: Evaluation of 32
MNIST-like symbols for the reg-
istered reconstructions from the
Fourier magnitudes, with the
specified methods trained on
MNIST. MSE, MAE: lower is
better. SSIM: higher is better.
Best values are printed bold and
second-best are underlined.

trained on EMNIST

Method MSE(↓) MAE (↓) SSIM (↑)

E2E (ours) 0.0653 0.1413 0.4812

DPR [30] 0.0499 0.0940 0.7280

PRCGAN-D (ours) 0.0967 0.1522 0.4422

PRCGAN-L (ours) 0.0452 0.0902 0.7282

PRCGAN-W (ours) 0.0347 0.0751 0.7910

Table 4.8: Evaluation of 32
MNIST-like symbols for the reg-
istered reconstructions from the
Fourier magnitudes, with the
specified methods trained on
EMNIST. MSE, MAE: lower is
better. SSIM: higher is better.
Best values are printed bold and
second-best are underlined.

4.7.5 Robustness Against Noise

All learning-based phase retrieval approaches discussed in this work
were trained on synthetic noiseless measurements. However, in prac-
tice Fourier magnitudes measurements often exhibit different kinds of
noise which may influence the reconstruction process. In this section,
we train the different models on noise-free images and then study the
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Figure 4.8: Generalization to
out-of-distribution data: MSE of
registered reconstructions from
noisy Fourier magnitudes from
the grayscale datasets.

their robustness to noise during the reconstruction process. More pre-
cisely, we consider magnitude measurements corrupted by two types
of noise. First, we take a look at Poisson noise, which is the type of
noise usually present in many phase retrieval applications [105]. The
noisy magnitude measurements are then given as

ỹ = α
√

s, with s ∼ Poisson
(

y2

α2

)
, (4.7)

where the parameter α controls the amount of noise (larger values for
α correspond to stronger noise). A similar measurement process has
been considered by Metzler et al. [63]. Second, we consider additive
white Gaussian noise, i.e., the measurements are given as

ỹ = y + αs, with s ∼ N (0, 1) , (4.8)

where, again, α controls the amount of noise.
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Figure 4.9: Generalization to
out-of-distribution data: regis-
tered reconstructions of the let-
ters from EMINST. All models
were trained on MNIST.
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Figure 4.10: Generalization to
out-of-distribution data: regis-
tered reconstructions of images
from our MNIST-like symbols
dataset. All models were trained
on EMNIST.
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Figure 4.11: Noise robustness:
MSE of registered reconstruc-
tions from Fourier magnitudes
perturbated with Poisson shot
noise. Larger α implies stronger
noise.
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Figure 4.12: Noise robustness:
MSE of registered reconstruc-
tions from Fourier magnitudes
perturbed with additive white
Gaussian noise. Larger α implies
stronger noise.
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Figure 4.11 compares the performance of all methods regarding the
robustness against noise in the measurements used for the reconstruc-
tion. More precisely, we plot the MSE of 1024 reconstructions against
different noise levels, i.e., values of α, on the MNIST (top-left panel),
FMNIST dataset (top-right panel), EMNIST (bottom-left panel) and
KMNIST (bottom-right panel). On MNIST, the proposed methods are
robust to noise up to α = 3. On FMNIST, however, PRCGAN-W is less
robust compared to PRCGAN-L. While for small amounts of noise
our approaches gives the best results, for the larger amounts of noise,
DPR is equally good or even slightly better. This might be due to the
fact, that DPR uses random restarts, which might have helped coping
with local optima in the large noise regime. Also, PRCGAN-L and
PRCGAN-W perform best on EMNIST and KMNIST.

4.7.6 Robustness Against Randomly Missing Measurements

Furthermore, we consider the task of reconstructing images from par-
tial Fourier measurements and analyze how the different methods are
impacted by missing measurements. Some of the entries are randomly
set to zero by multiplying the measurements with a binary mask bRandom binary masks

(that exhibits the same symmetries as the Fourier transform). In de-
tail, the measurements are given as

y = b⊙ |Fx|, (4.9)

where ⊙ denotes elementwise multiplication.
Both unsupervised and supervised methods use the magnitudes

for the reconstruction error, where the terms of the missing entries
are omitted, i.e., images were reconstructed by minimizing the loss
∥y− b⊙ |FG(z)|∥2

2 for DPR and
∥∥y− b⊙ |FGϕ(z, y)|

∥∥2
2 for PRCGAN-

L. We did not retrain the models.
Figure 4.13 shows the MSE on the MNIST and the FMNIST dataset.

Interestingly, methods that get the measurements as input perform
worse than the DPR approach. The supervised methods are further
affected by missing magnitudes, since they also use them as input for
the network. Further training on masked Fourier magnitudes could
help mitigating this effect.

4.7.7 Results for Compressive Phase Retrieval

Besides the Fourier phase retrieval problem, a common studied prob-
lem is the compressive Gaussian phase retrieval problem. In this setup
a measurement matrix A ∈ Rm×n is sampled from a Gaussian distri-
bution N (0, 1/m) for varying numbers of measurements m. By in-
creasing the number of measurements m we can smoothly adjust the
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Figure 4.13: Reconstructions
from partial Fourier magni-
tudes: MSE of registered recon-
structions from partial Fourier
magnitudes.

difficulty of the problem. For a comprehensive evaluation we con-
sider eight different values for m. We start with a small number of
10 measurements and increase it up to the dimension of the flattened
image (m = 784, number of pixel in MNIST). For each m we sample a
measurement matrix A and we keep it fixed to train the different ap-
proaches. Analogous to the Fourier phase retrieval, we take the same
model architectures as described in Section 4.6.2. In Figure 4.14 we
plot the MSE of 1024 reconstructions against different values of m. For
the PRCGAN variants and the E2E approach, we retrain the model
for each value of m. Note that the training of the underlying VAE
for DPR is independent of the chosen measurement matrix A, so we
can optimize the latent space of the same VAE that we also use in the
Fourier phase retrieval experiments. However, for MNIST we observe
worse results using the latent dimension of 128, so in this case we keep
the latent dimension of 20 from the original work [30]. As expected,

Figure 4.14: Reconstruction
from Gaussian measurements:
comparison of the PRCGAN, the
E2E and generative prior ap-
proaches for different number of
measurements m.
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E2E (ours)

DPR

PRCGAN-D (ours)

PRCGAN-L (ours)

PRCGAN-W (ours)
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Figure 4.15: Reconstructions
from Gaussian measurements of
images from FMNIST for a vary-
ing number of measurements m.

reducing the number of measurements results in higher errors for all
methods as one can see from the plots in Figure 4.14. Note that DPR is
has the worst performance and is strongly influenced by the number
of measurements on both datasets. Lastly, we show an example for
the reconstruction performance of the proposed methods on FMNIST
in Figure 4.15. DPR fails to reconstruct the letters at all and E2E only
achieves useful results for the maximum number of measurements. In
contrast to that, PRCGAN-L and PRCGAN-W successful reconstruct
the images even for a small number of measurements.

4.8 Conclusion

In this work, we propose the PRCGAN for solving Gaussian and
Fourier phase retrieval. Our method can be seen as an end-to-end
learning approach augmented with an additional optimization pro-
cedure combining the best of both worlds. On the one hand, the
learning component allows our method to reconstruct images for par-
ticularly difficult instances of the phase retrieval problem, and on the
other hand, the subsequent latent or weight optimization produce
high quality reconstructions. Our ablation study shows that each
of the components of our model is necessary to achieve this. Fur-
thermore, we show that our method is robust to Poisson noise and
additive Gaussian noise and (at least to some extend) generalize better
to out-of-distribution data than other methods.
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Abstract. Fourier phase retrieval is the problem of recovering an
image given only the magnitude of its Fourier transformation. Ap-
proaches that are based on optimization, like the well-established
Gerchberg-Saxton or the hybrid input output algorithm, struggle at
reconstructing images from magnitudes that are not oversampled.
This motivates the application of learned methods, which allow re-
construction from non-oversampled magnitude measurements after a
learning phase. In this chapter, we want to push the limits of these
learned methods by means of a deep neural network cascade that
reconstructs the image successively on different resolutions from its
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non-oversampled Fourier magnitude. We evaluate our method on
four different datasets (MNIST, EMNIST, FMNIST, and KMNIST) and
demonstrate that it yields improved performance over other non-
iterative methods and optimization-based methods.

5.1 Introduction

In this chapter a purely learning-based neural network cascade for
the Fourier phase retrieval problem is discussed. This means that the
model does not involve any kind of optimization procedure besides
the training, and thus does not require any tuning at test time. While
the method discussed in this chapter achieves better results than pre-
vious non-iterative methods, its performance still lags behind methods
involving an optimization procedure at test time.

To tackle the non-oversampled phase retrieval problem we formu-
late phase retrieval as a learning problem. Concretely, end-to-endEnd-to-end learning

learning for phase retrieval directly recovers the image from the mag-
nitude only using a mapping that has been learned to solve the prob-
lem in a particular problem domain. The mapping is parameterized by
a neural network G that is trained to invert the measurement process,
i.e.,

x̃ ≈ G(y). (5.1)

Since the measurement process is known, training pairs can be gen-
erated on-the-fly from sample images of a given dataset. The weights
of G can then be learned using stochastic gradient descent by mini-
mizing a loss function. The benefit of end-to-end methods is the fast
computation of the reconstruction because only a single forward-pass
through the neural network is used to calculate the reconstruction.

5.2 Contributions

This chapter addresses the challenge of improving the performance of
non-iterative phase retrieval methods based on neural networks. We
show that a multi-scale approach based on cascading neural networks
is able to improve previous non-iterative phase retrieval methods.

5.3 Related Work

Cascades of neural networks have been proposed previously by
Schlemper et al. [77] but in the context of compressed sensing which
is a related but different problem than phase retrieval. Phase retrieval
has applications in many areas of research, e.g., in X-ray crystal-
lography [64], astronomical imaging [21] or microscopy [108]. We
distinguish between three classes of methods for phase retrieval:
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1. Iterative methods without a learned component: Gerchberg [23]
proposed a simple algorithm that is based on alternating reflec-
tions. The idea behind this algorithm is to iteratively enforce the
constraints in the Fourier space and the image space. Later Fienup
modified the Gerchberg-Saxton algorithm in different ways which
led to the input-output, the output-output and the hybrid-input-
output (HIO) algorithm [22], where the HIO algorithm is most com-
monly used for phase retrieval. Luke [59] analyzed the relaxed av-
eraged alternating reflection (RAAR) algorithm. In general, these
iterative methods without a learning component work well when
the signal is oversampled.

2. Iterative methods with a learned component: For non-oversampled
phase retrieval Işıl et al. [38] extend the HIO algorithm by a neu-
ral network that removes artifacts. Metzler et al. [63] and Wu et al.
[101] use the regularization-by-denoising framework [75] to solve
oversampled phase retrieval problems. Another class of learned
methods rely on the optimization of a latent variable of a learned
generative model [30, 88] and produce high quality results. How-
ever, these methods require a training phase and an optimization
phase during application and are therefore very costly.

3. Non-iterative methods with a learned component: Non-iterative
phase retrieval with a deep convolutional neural network that is
trained end-to-end is proposed by Nishizaki et al. [69]. Recently,
Manekar et al. [60] use symmetry breaking to solve the oversam-
pled phase retrieval problem with neural networks. The benefit of
non-iterative learned methods is the highly efficient reconstruction
of images using only a single forward-pass through the model while
also producing good results in the non-oversampled case.

5.4 Proposed Method

In this chapter, we propose to use a cascaded neural network archi-
tecture for Fourier phase retrieval. In the following, we refer to it as
cascaded phase retrieval (CPR) network. The CPR network consists of
multiple sub-networks G(1), . . . , G(q) which are updated successively
to reconstruct the different down-sampled instances of the original
image, where G(1), . . . , G(q) are fed with the intermediate reconstruc-
tion produced by the previous network. In that way, each of these
sub-networks can iteratively refine the reconstruction. In addition to
that, each of the sub-networks is provided with the measurement y
as an input. The first few sub-networks are trained to reconstruct a
down-sampled version of the image, where we denote the resolutions
by np × np for p = 1, . . . , q. The last sub-networks predict the image
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at full-resolution nq × nq. The nearest-neighbor interpolation scheme
is used for down-sampling the training images. Figure 5.1 shows an
overview of the CPR network architecture.

5.4.1 Loss Functions

A common choice for reconstruction tasks is the mean squared error
(MSE) which is defined for an image x and a corresponding recon-
struction x̂ as

L(p)
MSE(x, x̃) =

1
n2

p

np

∑
k=1

np

∑
l=1

(x[k, l]− x̃[k, l])2 . (5.2)

Although, it seems to work well in practice and provides good gra-
dients for training, the reconstructions tend to be blurry. This phe-
nomenon has been discussed by Pathak et al. [71]. Hence, we also
implement the mean absolute error (MAE), i.e.,

L(p)
MAE(x, x̃) =

1
n2

p

np

∑
k=1

np

∑
l=1
|x[k, l]− x̃[k, l]| (5.3)

for measuring the reconstruction error.

5.4.2 Training

During training, each sub-network G(p) is trained using an individual
loss L(p). Each sub-network is updated one after another, where the
loss L(p) influences only G(p) and does not impact the parameters of
the previous sub-networks.

Algorithm 1: Training algorithm for CPR network

Input: Dataset X, downsampling functions g1, . . . , gq, networks G(1), . . . , G(q), loss functions
L(1), . . . ,L(q)

1 for e = 1, . . . , N do
2 for batch (x1, . . . , xb) in X do
3 Calculate magnitudes y = (y1, . . . , yb) with yk = |F (xk)|, for k = 1, . . . , b
4 for p = 1, . . . , q do
5 Calculate X̃(p) = (x̃1, x̃2, . . . , x̃b), where x̃k = gp(xk) for k = 1, . . . , b
6 if p == 1 then
7 X̂(p) = Gp(y)
8 else
9 X̂(p) = Gp(y, X̂(p−1))

10 Update network parameters using ∇L(p)
(

X̂(p), X̃(p)
)

11 end
12 end
13 end
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Alternatively, the CPR network could be trained in an end-to-end
fashion, however, since the intermediate reconstructions have different
resolutions, we would need to carefully choose weights to balance the
influence of each loss function L(1), . . . ,L(q). The training procedure
is shown in more detail in Algorithm 1.

5.5 Experimental Evaluation

In this section, we empirically evaluate the performance of our model.
In order to do this, we report the results of the fully-convolutional
residual network (ResNet) employed by Nishizaki et al. [69], the multi-
layer-perceptron (MLP) used in our previous work [88] and the PRC-
GAN [88]. In addition to these learned networks we include the results
of the well-established HIO algorithm [22] and the RAAR algorithm
[59] as a baseline.

5.5.1 Datasets

For the experimental evaluation we use the MNIST [55], the EMNIST
[13], the FMNIST [102] and the KMNIST [12] datasets. All datasets
consist of 28× 28 grayscale images. MNIST contains images of dig-
its, EMNIST contains images of letters and digits, FMNIST contains
images of clothing and KMNIST contains images of cursive Japanese
characters. Although these datasets are considered to be toy datasets
when it comes to classification tasks, they provide quite challenging
data for two-dimensional Fourier phase retrieval. For the EMNIST
dataset we use the balanced version of the dataset.

5.5.2 Experimental Setup

We compare our CPR approach with the MLP and the ResNet that
are trained to minimize LMSE for the MNIST, the EMNIST and the
KMNIST dataset. The LMAE is used for the FMNIST dataset. Fur-
thermore, we report the results of an MLP trained with an adversarial
loss in combination with LMAE (PRCGAN) as proposed in our pre-
vious work [88]. For our proposed CPR network we consider a cas-Architecture

cade of five MLPs with three hidden layers where we increased the
scales of the (intermediate) reconstructions according to Table 5.1. The
number of hidden units for each sub-network is also shown in Ta-
ble 5.1. Furthermore, we compare the results with a CPR network that
produces intermediate reconstructions at full scale. We refer to this
variant as CPR-FS. All sub-networks are trained using dropout [86],
batch-normalization [37] and ReLU activation functions. For the last
layer we use a Sigmoid function to ensure that the predicted pixels are
in [0, 1]. To optimize the weights we used Adam [50] with learning rate
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10−4. We train all versions of the CPR network for 100 epochs with the
LMSE, except for the FMNIST dataset where we use LMAE for the final
layer. These choices gave the best results on the validation dataset.

We ran the HIO algorithm and the RAAR algorithm for 1000 steps
each and allowed three random restarts, where we selected the recon-
struction x̂ with the lowest magnitude error. For HIO we set β = 0.8
and for RAAR we set β = 0.87.

G(1) G(2) G(3) G(4) G(5)

Scale
CPR 7× 7 12× 12 17× 17 22× 22 28× 28
CPR-FS 28× 28 28× 28 28× 28 28× 28 28× 28

Layer size
CPR 1136 1336 1536 1736 1936
CPR-FS 1936 1936 1936 1936 1936

Table 5.1: Scales used for the (in-
termediate) reconstructions and
number of hidden units used for
each network of the cascade.

5.5.3 Metrics

For a quantitative evaluation we compare the MSE and the MAE as
defined in Equation 5.2 and Equation 5.3.

Because translating signals by a constant shift or rotating them by Shifts and rotations

180° does not change their Fourier magnitude, we considered these
reconstructions equally correct. Thus, we register the predictions (and
their rotated variants) using cross-correlation as described by Brown
[6] before calculating the evaluation metrics.

5.5.4 Results

Figure 5.2 compares six reconstructions by the different methods on
the MNIST and the FMNIST test dataset. We observe that the HIO
algorithm and the RAAR algorithm fail to recover the image in most
of the cases. From all learned methods, the Resnet produced the worst
reconstructions. The estimated images are very blurry and in some
cases the reconstruction exhibit deformations (e.g., the last two images
from the FMNIST dataset that are shown in Figure 5.2). The PRCGAN
produces reconstructions that are sharp and overall the visual qual-
ity is similar to the reconstructions of the MLP. Most of the learned
methods struggle to recover the first image of the MNIST dataset (de-
picting the "5") . We suppose that this sample is very different from
the samples that were used to train the networks. Only, the CPR and
the CPR-FS network are capable of recovering this image.

Table 5.2 shows the MSE and the MAE of the reconstructions. Over-
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Table 5.2: Quantitative compar-
ison of the reconstructions pro-
duced by the different methods.
We report MSE and MAE be-
tween the reconstructions and
the original images of the test
dataset. The best result is
printed bold and the second-
best are underlined.

MNIST EMNIST
MSE (↓) MAE (↓) MSE (↓) MAE (↓)

HIO [22] 0.0441 0.1016 0.0653 0.1379

RAAR [59] 0.0489 0.1150 0.0686 0.1456

ResNet [69] 0.0269 0.0794 0.0418 0.1170

MLP [88] 0.0183 0.0411 0.0229 0.0657

PRCGAN [88] 0.0168 0.0399 0.0239 0.0601

CPR (ours) 0.0123 0.0370 0.0153 0.0525

CPR-FS (ours) 0.0126 0.0373 0.0144 0.0501

FMNIST KMNIST
MSE (↓) MAE (↓) MSE (↓) MAE (↓)

HIO [22] 0.0646 0.1604 0.0835 0.1533

RAAR [59] 0.0669 0.1673 0.0856 0.1559

ResNet [69] 0.0233 0.0820 0.0715 0.1711

MLP [88] 0.0128 0.0526 0.0496 0.1168

PRCGAN [88] 0.0151 0.0572 0.0651 0.1166

CPR (ours) 0.0115 0.0503 0.0447 0.1068

CPR-FS (ours) 0.0113 0.0497 0.0433 0.1034

Figure 5.2: Reconstructions
from the Fourier magnitudes of
samples from the MNIST test
dataset.

MNIST

HIO [22]

RAAR [59]

ResNet [69]

MLP [88]

PRCGAN [88]

CPR (ours)

CPR-FS (ours)

Original
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FMNIST

HIO [22]

RAAR [59]

ResNet [69]

MLP [88]

PRCGAN [88]

CPR (ours)

CPR-FS (ours)

Original

Figure 5.3: Reconstructions from
the Fourier magnitudes of sam-
ples from the FMNIST test
dataset.

all, the learned methods outperform RAAR and HIO by a large mar-
gin. For MNIST, EMNIST and KMNIST we see that the CPR network
greatly improves the reconstruction quality compared to the other
learned methods. We hypothesize that our proposed CPR network
yields better results when the signals of interest have a small support
(e.g., MNIST, EMNIST, KMNIST). However, for signals with a large
support (e.g., Fashion MNIST) we only observe a small improvement
compared to the other learned methods.

5.5.5 Intermediate Prediction at Full-Scale

We briefly study the effect of predicting down-sampled versions of the
image. Therefore, we evaluate the CPR-FS network which produces
full-scale intermediate reconstructions. Table 5.2 also shows that the
CPR-FS network performs similarly in terms of the overall reconstruc-
tion quality. For the EMNIST, the FMNIST and the KMNIST dataset
the full-scale variant is slightly better. However, due to the larger in-
put, the sub-networks need to have more parameters and thus training
is more expensive.

5.5.6 Ablation Study

In this section, we demonstrate that increasing the number of sub-
networks has a beneficial effect on the overall reconstruction quality.
To do so, we train five network cascades exemplarily on the EMNIST
dataset where we increase the number of sub-networks from one to
five. We report the MSE on the test dataset after 50 epochs. Fig-
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ure 5.4 shows that the MSE for the EMNIST dataset decreases with
an increasing number of sub-networks used for the CPR-FS approach.
Furthermore the gain in terms of MSE saturates after q = 5, such that
additional sub-networks do not bring any further improvements. We
expect the same relative behavior on the other datasets when increas-
ing q.

Figure 5.4: Test MSE on the EM-
NIST test dataset for different
number of sub-networks. Error
bars indicate the 95% confidence
interval.
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5.6 Conclusion and Future Work

In this chapter, we use a cascade of neural networks for non-oversampled
Fourier phase retrieval. Our approach successively reconstructs im-
ages from their Fourier magnitudes and outperforms other existing
non-iterative networks noticeably in terms of the reconstruction qual-
ity. However, non-iterative methods do not yet reach the reconstruc-
tion quality of iterative methods with a learning component which
require high computational cost at test time.

Future work could also evaluate different strategies for training the
neural network cascade. For example, greedy sub-network-wise train-
ing could be implemented and compared with our training procedure.
Moreover, the CPR network architecture can easily be adapted to solve
inverse problems other than Fourier phase retrieval.



6
Optimizing Intermediate Representa-
tions of Generative Models for Phase
Retrieval

Corresponding publication. The contents of this chapter have been pub-
lished as:

Tobias Uelwer, Sebastian Konietzny, and Stefan Harmeling. Opti-
mizing intermediate representations of generative models for phase
retrieval. Transactions on Machine Learning Research, 2022. ISSN 2835-
8856. The first two authors contributed equally.

This work has also been presented at the NeurIPS 2022 AI4Science
Workshop.

Personal contributions. Tobias Uelwer conceived the idea of applying
intermediate layer optimization of generators to the phase retrieval
problem. He did the literature review, chose the used generative mod-
els together with Sebastian Konietzny and designed the experimental
evaluation and ablation experiments. Sebastian Konietzny proposed
the initialization schemes, implemented the model and performed hy-
perparameter tuning and experiments. Tobias Uelwer wrote the initial
draft of the manuscript which was later edited together with Stefan
Harmeling. The project was supervised by Stefan Harmeling.

Remarks. Due to copyright issues the reconstructions of images from
the CelebA dataset are not shown in this thesis. Please, refer to the
published paper. Furthermore, we report MSE values instead of PSNR
values (which were used in the published version) to improve compa-
rability with the other methods in this thesis.

Abstract. Phase retrieval is the problem of reconstructing images from
magnitude-only measurements. In many real-world applications the
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problem is underdetermined. When training data is available, gener-
ative models allow optimization in a lower-dimensional latent space,
hereby constraining the solution set to those images that can be syn-
thesized by the generative model. However, not all possible solutions
are within the range of the generator. Instead, they are represented
with some error. To reduce this representation error in the context
of phase retrieval, we first leverage a novel variation of intermediate
layer optimization (ILO) to extend the range of the generator while
still producing images consistent with the training data. Second, we
introduce new initialization schemes that further improve the quality
of the reconstruction. With extensive experiments on the Fourier phase
retrieval problem and thorough ablation studies, we can show the ben-
efits of our modified ILO and the new initialization schemes. Addi-
tionally, we analyze the performance of our approach on the Gaussian
phase retrieval problem.

6.1 Introduction

In this chapter, we revisit the DPR method [30] that is based on opti-
mizing the latent space of a trained generative model. It is known, that
optimizing intermediate layers in generative models can lead to excel-
lent results in various linear inverse problems like inpainting, super-
resolution, denoising and compressed sensing, as shown by Daras
et al. [16]. We demonstrate that this approach, termed intermediate
layer optimization (ILO), can be extended to solve the more difficult
non-linear inverse problem of phase retrieval. In particular, we intro-
duce an additional additional initialization schemes and a refinement
step that further improves reconstruction performance. Additionally,
we propose different learned and unlearned initialization schemes.
The learned initialization scheme trains an encoder to predict a point
in the latent space that corresponds to the reconstruction. In contrast
to the conditional GAN approach presented in Chapter 4 this encoder
can be trained for a fixed generator network.

6.2 Related Work

In the following, we give a short overview of the various approaches
distinguishing between classical optimization-based and learning-
based methods.

6.2.1 Methods without Learning for Phase Retrieval

One of the first (Fourier) phase retrieval algorithms is Fienup’s error-
reduction (ER) algorithm [22] that is based on alternating projections.
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In his work, Fienup [22] also introduced the hybrid-input-output
(HIO) algorithm which improved the ER algorithm. The Gaussian
phase retrieval problem was approached by Candes et al. [8] who
used methods based on Wirtinger derivatives to minimize a least-
squares loss. Wang et al. [97] considered a similar idea but used a
different loss function and so-called truncated generalized gradient it-
erations. Holographic phase retrieval is a related problem, which aims
to reconstruct images from magnitude measurements where a known
reference is assumed to be added onto the image. This problem was
approached by Lawrence et al. [54] using untrained neural network
priors. Untrained neural networks have also been used by Chen et al.
[10] for solving different phase retrieval problems. Phase retrieval
using the RED framework [75] was done by Metzler et al. [63], Wang
et al. [98] and Chen et al. [11]. However, these works focus on the re-
construction of images from coded diffraction pattern measurements
or 4× oversampled Fourier magnitudes.

6.2.2 Learning-based Methods for Phase Retrieval

Recently, learning-based methods for solving phase retrieval problems
gained a lot of momentum. They can be classified into two groups:
supervised methods and unsupervised methods.

Supervised methods. These methods directly learn a mapping that re-
constructs images from the measurements. Learning neural networks
for solving Fourier phase retrieval was done by Nishizaki et al. [69].
This approach was later extended to a neural network cascade by Uel-
wer et al. [87], who also used conditional generative adversarial net-
works to solve various phase retrieval problems [88]. While giving im-
pressive results, all of these supervised approaches have a drawback
for the Gaussian phase retrieval setup, since the measurement opera-
tor must be known at training time. Supervised learning of reference
images for holographic phase retrieval was done by Hyder et al. [36]
and Uelwer et al. [89] gave further insights.

Unsupervised methods. Unsupervised methods are agnostic with re-
spect to the measurement operator, because they are trained on a
dataset of images without the corresponding measurements. Genera-
tive models for Gaussian phase retrieval have been analyzed by Hand
et al. [30] and Liu et al. [57]. Killedar and Seelamantula [45] apply
a sparse prior on the latent space of the generative model to solve
Gaussian phase retrieval. Alternating updates for Gaussian phase
retrieval with generative models was proposed by Hyder et al. [35].
Manekar et al. [61] used a passive loss formulation to tackle the non-
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oversampled Fourier phase retrieval problem.
In the context of these related works, the method that we propose in

this chapter can be seen as an unsupervised learning-based approach
that can optionally be extended with a supervised component, as we
detail in Section 6.3.2.

6.2.3 Optimizing Representations of Generators for Inverse Problems

Generative models have been used to solve linear inverse problems,
e.g., compressed sensing [5], image inpainting [106]. To decrease the
representation error and thereby boost the expressiveness of these gen-
erative models, the idea of optimizing intermediate representations
was successfully applied in the context of compressed sensing [82], im-
age inpainting and super-resolution [16]. The former paper called this
approach generator surgery, the latter intermediate layer optimization
(ILO).

6.2.4 Contributions

The contributions made in this chapter are the following:

1. We show that the idea of optimizing intermediate representations in
generative models can be applied to solve phase retrieval problems.
However, given the difficulty of these non-linear inverse problems
an additional subsequent optimization step is required to obtain
good results.

2. We also show that the need for multiple runs with random restarts
for generator-based approaches to solve inverse problems can be
reduced by using different initialization schemes.

Further intuition and motivation will be given in Section 6.3.1. In
extensive experiments, we consider the underdetermined Fourier and
Gaussian phase retrieval (with real and complex measurement matri-
ces) and show that our method provides state-of-the-art results. By an-
alyzing various combinations of methods and generator networks, we
show the influence of the choice of the generator. In further ablation
studies, we show the importance of each component of our method.

6.3 Phase Retrieval with Generative Models

The basic idea of applying a trained generative model G to the phase
retrieval problem is to plug G(z) into the least-squares data fitting
term and to optimize over the latent variable z, i.e.,

min
z

∥∥|A(G(z))| − y
∥∥2

2. (6.1)
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This method has been used for Gaussian phase retrieval (with real-
valued A) by Hand et al. [30]. While this approach yields good results,
the reconstruction quality is limited by the range of the generator net-
work G. This issue is, for example, also discussed in the work of Asim
et al. [2]. In the following, we explain how the range of G can be
extended by optimizing intermediate representations of G instead of
only solving Equation 6.1 with respect to the latent variable z.

Notation. For the exposition of the method we use the following no-
tation: The generator network G = Gk ◦ · · · ◦ G1 can be written as
the concatenation of k layers G1, . . . , Gk. The subnetwork consisting
of layers i through j is denoted by Gj

i = Gj ◦ · · · ◦ Gi. Note, that
G = Gk

1 = Gk
i+1 ◦ Gi

1 for 1 ≤ i ≤ k. The output of layer Gi is writ-
ten as zi, i.e., zi = Gi(zi−1). The input of G is z0.

Furthermore, we define the ℓ1-ball with radius r > 0 around z as, ℓ1-ball

Br(z) =
{

x
∣∣ ∥x− z∥1 ≤ r

}
. (6.2)

6.3.1 Phase Retrieval with Intermediate Layer Optimization (PRILO)

G1 G2 G3 Gkz0 z1 z2 . . . G(z)

A: Forward optimizationB: Back-projection

C: Refinement

Gk
3G2

1

Figure 6.1: Structure of the gen-
erator network and, in blue, the
parts relevant for steps A, B and
C.

The key idea of ILO is to vary the intermediate representations
learned by a sub-network of the generator G while ensuring an overall
consistency of the solution. The latter is particularly challenging for
non-linear problems like phase retrieval. As we will show in the exper-
iments, additional steps and special initialization schemes are essential
to obtain useful results. All of these steps will be explained next.

The generator network captures the prior knowledge and restricts
the solutions of the (underdetermined) phase retrieval problem. In this
work, we use two important ideas:

Range extension: Hidden representations zi for i > 0 are allowed to
vary outside the range of Gi

1. This will reduce the representation
error of the generator.
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Image consistency: Solutions must be realistic, non-degenerate and
similar to the the training dataset. This is achieved by back-
projection ensuring that zi is not too far away from the image
of some z0.

Note that one has to strive for a trade-off between range extension and
image consistency, where range extension facilitates the optimization,
while image consistency regularizes the solution.

Concretely, we repeatedly split the generator G into sub-networksSubdividing the generator network

Gi
1 and Gk

i+1 and iteratively optimize the intermediate representations
zi resulting from Gi

1 (instead of simply optimizing the initial latent
variable z0). In this way, we go outside the range of the sub-network
Gi

1 to reduce the mean-squared magnitude error. To make the resulting
image more consistent we back-project zi closer to the range of Gi

1. We
will show that z0 from the back-projection is not only a good candidate
for the overall optimization, but also serves as a good initialization for
further optimization leading to a significant refinement of the overall
solution.

To get started, we initially optimize the input variable z0 (minimize
Equation 6.1). This provides starting points for all intermediate repre-
sentations zi for i > 0. The overall procedure then iteratively applies
the following three steps to different intermediate layers:

A. Forward optimization: vary the intermediate representation zi to
minimize the magnitude error while staying in the ball with radius
ri around the current value of zi, i.e.,

z∗i = argmin
z∈Bri (zi)

∥∥|A(Gk
i+1(z))| − y

∥∥2
2. (6.3)

Note, that this step possibly leaves the range of Gi
1 (range exten-

sion). By introducing ball-constraints on the optimized variable we
avoid overfitting the measurements.

B. Back-projection: find an intermediate representation Gi
1(z0) that is

close to the optimal z∗i from step A, i.e.,

z̄0 = argmin
z∈Bsi (0)

∥∥Gi
1(z)− z∗i

∥∥2
2, (6.4)

where 0 ∈ Rl denotes the vector of all zeros. By doing so we ensure
that there exists a latent z0 that yields the reconstruction. Thereby,
we regularize the solution from step A to obtain image consistency.

While these two steps have been shown to improve the overall perfor-
mance of linear inverse problems, we found that for phase retrieval the
following refinement step significantly improves the reconstructions.
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C. Refinement: Our intuition here is that the back-projected latent
z̄0 serves as a good initialization for further optimization. Starting
from the z̄0 found in step B, we again optimize the measurement
error

z∗0 = argmin
z∈Br0 (z̄0)

∥∥|A(G(z))| − y
∥∥2

2. (6.5)

Note, that as we only optimize the latent variable of G, we do not
have to apply the back-projection again for this refinement step.

These steps are applied repeatedly to the different intermediate rep-
resentations. Multiple strategies for selecting the layers to optimize are
possible. In practice it turned out to be sufficient to treat the layers
once from left to right. Thus, we recommend to start with the layers
closer to the input and then progress further with the layers closer to
the output. Starting with the later layers can cause problems as they
offer too much flexibility and no regularizing effect. The final recon-
struction is obtained as x∗ = G(z∗0). Steps A, B and C are visualized in
Figure 6.1.

The three optimization problems stated in Equations 6.3-6.5 are
solved using projected gradient descent. This means that after each
gradient descent step the iterate is projected back onto the appropriate
ℓ1-ball. In our implementation this projection is implemented using
the method described by Duchi et al. [20].

6.3.2 Initialization Schemes

Due to the difficulty of the phase retrieval problem, many methods
are sensitive to the initialization. Candes et al. [8] proposed a spectral
initialization technique that is often used for compressive Gaussian
phase retrieval. Since it requires one to solve a large eigenvalue prob-
lem, this method can be quite costly. A common approach to improve Random restarts

reconstruction performance is to use random restarts and to select the
solution with the lowest magnitude error after the optimization [30].
However, this requires running the method multiple times. Instead, we
propose two fast initialization schemes that use the generative model
and the available magnitude information before the optimization.

Magnitude-Informed Initialization (MII). Deep generative models can
generate a lot of images at relatively low cost: instead of optimiz-
ing Equation 6.1 with random restarts, we sample a set of starting
points Z = {z(0)0 , . . . , z(p)

0 } and select the one with the lowest magni-
tude mean-squared error (MSE),

zinit
0 = argmin

z∈Z

∥∥|A(G(z))| − y
∥∥2

2, (6.6)
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before the optimization. The empirical reason for this choice is that the
MSE between the unknown target image and the initial reconstructions
G(z) for z ∈ Z strongly correlates with the MSE of their magnitudes
(correlation ρ = 0.91). This initialization scheme is applicable to other
reconstruction algorithms that search in the latent space of a generative
model as well.

Learned Initialization (LI). The generator is trained on a dataset of im-
ages that are characteristic for the problem. We use the generator to
train an encoder network Eθ that maps magnitude measurements y to
latent representations z0. Once the encoder is trained, we can use it to
predict an initialization for the optimization discussed in Section 6.3.1.

A naive way to train the encoder network is to create input/output
pairs by starting with random latent vectors z0 and combining them
with the magnitudes |A(G(z0))| of the corresponding image. The dis-
advantage is that the original training images are only implicitly used
in this approach (because those were used to train the generator). To
leverage the generator and also the training images, we estimate the
weights θ of the encoder Eθ , such that encoded magnitudes Eθ(y) gen-
erate an image G(Eθ(y)) that is close to the original image x. This idea
originates from GAN inversion [109].

More precisely, we minimize a combination of three loss functionsLoss function

to train the encoder

LMSE(G(Eθ(y)), x) + λpercLperc(G(Eθ(y), x))

+λadvLadv(Dϕ(G(Eθ(y)), Dϕ(x))),
(6.7)

where LMSE is the image MSE, Lperc the LPIPS loss [107], and Ladv is
a Wasserstein adversarial loss [1] with gradient penalty [28] (using the
discriminator network Dϕ). In our experiments, we set λperc = 5 · 10−5

and λadv = 0.1. Note, that the generator network is fixed and we
only optimize the encoder weights θ and the discriminator weights ϕ

to solve a learning objective.
Additionally, we also found it helpful to apply a small normally-

distributed perturbation with mean 0 and standard deviation σ = 0.05Random perturbation

to the predicted latent representation. We do so because using a fixed
initialization leads to a deterministic optimization trajectory when run-
ning the optimization multiple times.

For better exploration of the optimization landscape we also applyGradient noise

gradient noise during optimization. In combination with the projec-
tion onto the feasible set the update reads as

z(k+1) = P
(

z(k) − α
(
∇z f

(
z(k)

)
+ u(k)

))
, (6.8)

where f is the objective function corresponding to the current step,
u(k) ∼ N (0, σ2

k I) with σ2
k = η

(1+k)γ and P is the projection onto Br(x(0)).
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In our experiments we set η = 0.02 and γ = 0.55. This noise decay
schedule was proposed by Welling and Teh [100] and is also discussed
by Neelakantan et al. [67] in the context of neural network training.

One drawback of the learned initialization is that it requires one to
retrain the encoder network when the measurement matrix changes.
In the following, we only evaluate this approach for the Fourier phase
retrieval problem.

6.4 Experimental Evaluation

We evaluate our method on the following datasets: MNIST [55], EM- Datasets

NIST [13], FMNIST [102], and CelebA [58]. The first three datasets
consist of 28 × 28 grayscale images, whereas the latter dataset is a
collection of 200, 000 color images that we cropped and rescaled to a
resolution of 64× 64.

Similar to Hand et al. [30], we use a fully-connected variational au- Architectures

toencoder (VAE) for the MNIST-like datasets and a DCGAN [73] for
the CelebA dataset. Both architectures were also used by Bora et al. [5]
for compressed sensing. Details about the VAE training are described
in Appendix B.1. Going beyond existing works, we are interested in
improving the performance on the CelebA dataset even further, thus
we considered deeper, more expressive generators, like the Progressive
GAN [42] and the StyleGAN [43]. Since the optimization of the initial
latent space for deeper generators is more difficult, we expect signifi-
cantly better results by adaptively optimizing the successive layers of
these models. Our implementation is based on open-source projects1 1 https://github.com/rosinality/

progressive-gan-pytorch2 3. In total our computations took two weeks on two NVIDIA A100
2 https://github.com/rosinality/

style-based-gan-pytorch
3 https://github.com/giannisdaras/

ilo

GPU. Detailed hyperparameter settings can be found in Appendix B.2.

6.4.1 Phase Retrieval with Fourier Measurements

For the problem of Fourier phase retrieval, we compare our method
first with the ER algorithm [22] and the HIO algorithm [22] (both
having no learning component) and then with the following super-
vised learning methods: an end-to-end (E2E) learned multi-layer-
perceptron [88], a residual network [69], a cascaded multilayer-
perceptron [87], and a conditional GAN approach [88]. Additionally,
we apply DPR which was originally only tested on Gaussian phase
retrieval [30].

Table 6.1 and Table 6.2 show the mean squared error (MSE) and the
mean structural similarity index measure (SSIM) [99]. Each reported
number was calculated on the reconstructions of 1024 test samples. We
allow four random restarts and select the generated sample resulting
in the lowest measurement error. As one can see, more expressive

https://github.com/rosinality/progressive-gan-pytorch
https://github.com/rosinality/progressive-gan-pytorch
https://github.com/rosinality/style-based-gan-pytorch
https://github.com/rosinality/style-based-gan-pytorch
https://github.com/giannisdaras/ilo
https://github.com/giannisdaras/ilo
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models result in better reconstructions. Furthermore, we note that our
proposed initialization schemes, i.e., the LI and MII, lead to improved
performance. Reconstructions using the DCGAN and the Progressive
GAN can be found in the appendix of the published paper.

Surprisingly, our unsupervised PRILO-MII approach often quan-
titatively outperforms the supervised competitors (MNIST and EM-
NIST). Only for FMNIST we get slightly worse results which we at-
tribute to the performance of the underlying generator of the VAE.
Notably, we outperform DPR that uses the same generator network,
which shows that the modifications explained in this chapter are ben-
eficial. Summarizing, among classical and unsupervised methods our
new approach performs best, often even better than the supervised
methods.

The CelebA dataset is more challenging and the influence of the
choice of the generator networks is substantial. We consider the DC-
GAN [73], the Progressive GAN [42] and the StyleGAN [43] as base
models for our approach (second column in Table 6.2). Furthermore,
the new initialization schemes have a strong impact. For fairness, we
also combined the existing DPR approach [30] with the various gener-
ator models and the initialization schemes. Thus we are able to study
the influence of the different components. Among the generators,
StyleGAN performs best. MII improves the results, while LI achieves
even better reconstructions. For all previously mentioned combina-
tions, our new method PRILO is better than DPR.

To further support our claims, we performed additional experi-
ments on the high-resolution FFHQ dataset [43] using the StyleGAN
architecture. Although, the reconstruction capabilities of all consid-
ered methods are still limited, our proposed changes improve the re-
constructions. Please, refer to the published paper to view the recon-
struction.

6.4.2 Phase Retrieval with Gaussian Measurements

Beyond Fourier phase retrieval, compressed Gaussian phase retrieval
is a similarly challenging problem, where the measurement matrix A
has real- or complex-valued normally-distributed entries. For the real-
valued case, we sample from a zero-mean Gaussian with variance 1/m,Sampling a real-valued measurement

matrix

A = (akl)k=1,...,m
l=1,...,n

∼ N
(

0,
1
m

)
, (6.9)

where m is the number of measurements. The entries of the complex-
valued measurement matrix are obtained by sampling real and imagi-Sampling a complex-valued measure-

ment matrix nary parts from a zero-mean Gaussian with variance 1/(2m),

A = (akl + ibkl)k=1,...,m
l=1,...,n

with akl , bkl ∼ N
(

0,
1

2m

)
. (6.10)
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CelebA
Base model Learning MSE (↓) SSIM (↑)

ER [22] − − 0.1015 0.0637

HIO [22] − − 0.1005 0.0510

DPR [30] DCGAN unsup. 0.0321 0.4457

DPR-MII DCGAN unsup. 0.0260 0.4898

PRILO DCGAN unsup. 0.0259 0.5159

PRILO-MII DCGAN unsup. 0.0222 0.5264

DPR Progressive GAN unsup. 0.0285 0.5276

DPR-MII Progressive GAN unsup. 0.0217 0.5738

PRILO Progressive GAN unsup. 0.0244 0.5665

PRILO-MII Progressive GAN unsup. 0.0203 0.5910

DPR StyleGAN unsup. 0.0352 0.4859

DPR-MII StyleGAN unsup. 0.0209 0.5972

PRILO StyleGAN unsup. 0.0307 0.5143

PRILO-MII StyleGAN unsup. 0.0139 0.6358

E2E [88] − sup. 0.0123 0.6367

PRCGAN-L [88] − sup. 0.0093 0.6846

DPR-LI StyleGAN sup. 0.0099 0.7021

PRILO-LI StyleGAN sup. 0.0094 0.7247

Table 6.2: Fourier phase re-
trieval on CelebA: Our pro-
posed PRILO combined with LI
and StyleGAN achieves the best
results in terms of MSE and
SSIM, also against enhanced ver-
sion of DPR, which uses LI
and StyleGAN. Best values are
printed bold and second-best
are underlined.

We directly compare our results with the results of the DPR method
for real- and complex-valued measurement matrices (the real-valued
case was already covered in [30]). Figure 6.2 shows the MSE and the
SSIM values for different numbers of measurements m. Our proposed
method PRILO-MII (orange) improves DPR’s results (blue) by a mar-
gin. Note that for compressive Gaussian phase retrieval only unsu-
pervised methods are tested, since each measurement matrix requires
retraining the model.

6.4.3 Ablation Studies

In our experiments, we observed that the performance can be im-
proved by re-running the optimization procedure with a different ini-
tialization and selecting the result with the lowest magnitude error
which is a common practice in image reconstruction. However, this
approach is quite costly. Our initialization schemes described in Sec-
tion 6.3.2 can be used to achieve a similar effect without the need
of re-running the whole optimization procedure multiple times. In
Figure 6.3, we compare the single randomly initialized latent vari-
able, 5000 initialization using the MII approach and slightly perturbed
learned initialization (LI). Again, we consider a test set of 1024 sam-



intermediate layer optimization 93

0 100 200 300 400 500
m

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

M
SE

 (r
eg

ist
er

ed
)

DPR
DPR-MII

PRILO
PRILO-MII

(a) MNIST: real-valued measurement matrices

0 500 1000 1500 2000 2500 3000
m

0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
SE

 (r
eg

ist
er

ed
)

DPR
DPR-MII

PRILO
PRILO-MII
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(c) MNIST: complex-valued measurement matrices
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(d) CelebA: complex-valued measurement matrices

Figure 6.2: Real and com-
plex Gaussian phase retrieval on
MNIST and CelebA: PRILO-MII
greatly improves DPR’s recon-
struction results. Note, that we
also combine DPR with our MII.
For MNIST we used the VAE
and for CelebA the StyleGAN as
base model.
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ples. Although, we are still using restarts in combination with our
initialization, we observe that already for a single run our initializa-
tion outperforms the results of 5 runs.

Table 6.3: Ablation experiments
using StyleGAN on CelebA for
Fourier measurements.

MSE (↓) SSIM (↑)

PRILO-LI 0.0094 0.7247

only initialization 0.0246 0.4777

only step A 0.0102 0.7108

only step A and B 0.0108 0.7063

no ball constraint 0.0115 0.6974

PRILO-MII 0.0139 0.6358

only initialization 0.0380 0.3565

only step A 0.0220 0.5861

only step A and B 0.0236 0.5719

no ball constraint 0.0260 0.5540

In order to assess the impact of each step on the reconstruction per-
formance, we perform an ablation study. We compare our complete
PRILO-MII and PRILO-LI models with different modified versions of
the model: for one, we consider omitting every optimization, i.e., we
only compare with the initialization. Next, we omit the back-projection
step (B) and the refinement step (C). We also compare with the vari-
ant of our model which we only omit step C. Finally, we analyze the
impact of the ball-constraints. Table 6.3 shows that each of the compo-
nents is important to reach the results. Notably, only using step A and
B (which corresponds to naïvely applying the approach by Daras et al.
[16] to phase retrieval) gives worse results than only step A. However,
in combination with our proposed step C the approach gives better
results.

6.5 Conclusion

Generative models play an important role in solving inverse problem.
In the context of phase retrieval, we observe that optimizing interme-
diate representations is essential to obtain excellent reconstructions.
Our method PRILO, used in combination with our new initializa-
tion schemes, produces better reconstruction results for Gaussian and
Fourier phase retrieval than existing (supervised and unsupervised)
methods. Notably, in some cases our unsupervised variant PRILO-MII
even outperforms existing supervised methods. We also show that the
initialization schemes we introduced can easily be adapted to different
methods for inverse problems that are based on generative models,
e.g., DPR. Our ablation study justifies that each of our used compo-
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Figure 6.3: Effect of the number
of initializations and number of
restarts onto the reconstruction
performance. Shaded areas in-
dicate the 95%-confidence inter-
val.

nents is essential to achieve the reported results.

Limitations

During our experiments, we observed that some hyperparameter tun-
ing is necessary to achieve good results: the selected intermediate layer
highly influences the results and also the radii for the constraints play
an important role. Furthermore, our approach is in some cases not
able to reconstruct the finer details and is still (to some extend) lim-
ited by the generative model (FMNIST results reported in Table 6.1).
Furthermore, generator-based methods for non-oversampled Fourier
phase retrieval still struggle to reconstruct high-resolution images as
demonstrated in appendix of the published paper.

Broader Impact Statement

This work discusses a method for reconstructing images from their
magnitude measurements. Whether this method can have negative
societal impacts is difficult to predict and depends on the specific ap-
plication, e.g., in X-ray crystallography or microscopy. For example,
in some applications the reconstructed images could contain sensitive
information, which could lead to data security issues if the method is
not applied properly.
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A Closer Look at Reference Learning
for Phase Retrieval

Corresponding publication. The contents of this chapter have been pub-
lished as:

Tobias Uelwer, Nick Rucks, and Stefan Harmeling. A closer look at
reference learning for fourier phase retrieval. In NeurIPS 2021 Workshop
on Deep Learning and Inverse Problems, 2021.

Personal contributions. Tobias Uelwer did the literature review, im-
plemented the unrolled error-reduction algorithm, proposed the new
baseline reference and designed and conducted the experiment evalu-
ation. Furthermore, he wrote large parts of the manuscript and created
the plots and figures. He edited the manuscript together with Stefan
Harmeling and Nick Rucks. Stefan Harmeling supervised the project.

Abstract. Reconstructing images from their Fourier magnitude mea-
surements is a problem that often arises in different research areas.
This process is also referred to as phase retrieval. In this work, we con-
sider a modified version of the phase retrieval problem, which allows
for a reference image to be added onto the image before the Fourier
magnitudes are measured. We analyze an unrolled error-reduction
(ER) algorithm that can be used to learn a good reference image from
a dataset. Furthermore, we take a closer look at the learned reference
images and propose a simple and efficient heuristic to construct refer-
ence images that, in some cases, yields reconstructions of comparable
quality as approaches that learn references.

7.1 Introduction

The problem discussed in this chapter differs from the more general
phase retrieval problem considered in the previous chapters. In the fol-
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lowing we want to shed some light onto reference learning for Fourier
phase retrieval. On the on hand side, we propose a modified Error-
reduction algorithm that can be used to reconstruct images and learn
references in such a setting. On the other hand, we argue that learning
reference images is not always necessary and one can instead use a
more simple reference image that yields comparable results to learned
references.

7.2 Related Work

The idea of unrolling algorithms has been considered before for other
phase retrieval problems: The performance of an unrolled ER algo-
rithm for phase retrieval has been analyzed by Schlieder et al. [78].
Naimipour et al. [66] unrolled the Wirtinger flow algorithm for com-
pressive phase retrieval. Unlike our work, these papers augment ex-
isting phase retrieval algorithms with learnable parameters which is
different from the reference based phase retrieval we consider in this
work.

The Fourier phase retrieval problem with a reference image was firstPhase retrieval with a reference

analyzed by Kim and Hayes [49, 48]. Recently, Hyder et al. [36] showed
that such a reference can be learned from a rather small dataset using
an unrolled gradient descent algorithm. While it is interesting that this
is possible, a couple of questions arise which we discuss in this work.

7.3 Contributions

The contributions of this chapter can be summarized as follows:

1. We modify the well-established error-reduction (ER) algorithm [22]
so that it utilizes a reference. Furthermore, we show that this modi-
fied ER algorithm can be unrolled to learn a reference image (similar
to the approach of Hyder et al. [36]).

2. We answer the question under which conditions learning a refer-
ence image for Fourier phase retrieval is really necessary. For this,
we propose a simple baseline reference image that is easily con-
structed and compare its performance with the learned references
in the oversampled and the non-oversampled case.

7.4 Unrolling the ER Algorithm to Learn a Reference

The phase retrieval algorithm discussed by Hyder et al. [36] is a gradi-
ent descent method that requires extensive parameter tuning of its step
size. For this reason, we unroll the ER algorithm, which typically con-
verges within a few iterations. The ER algorithm iteratively replaces
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the magnitude of the current estimate with the measured magnitude
and enforces a positivity-constraint on the image after the reference
has been subtracted. Algorithm 2 shows our modified version of ER
that utilizes a reference image. We learn the reference by calculating Unrolling

the mean squared error (MSE) between outputs of the ER algorithm
after n iterations and the corresponding original images. Then we
perform backpropagation to calculate the gradient with respect to the
reference u and update it using a gradient descent step. These steps
are repeated for multiple batches until convergence is achieved.

Algorithm 2: ER algorithm for phase retrieval with reference

Input: Fourier magnitude y ∈ Rd×d, reference image
r ∈ Rd×d, initialization x0 ∈ Rd×d, number of
iterations n

Output: Reconstruction xn ∈ Rd×d

1 for k = 0, . . . , n− 1 do
2 pk+1 ← F (xk + r)/|F (xk + r)| // Estimate phase

3 x̄k+1 ← F−1(pk+1 ⊙ y)− r // Fourier constraints

4 xk+1 ← max(0, x̄k+1) // Image constraints

5 end
6 return xn

7.5 Constructing References Mimicking the Learned Ones

Learned ref. from [36] Learned ref. for ER (ours)

Figure 7.1: Comparison of
different learned references.
For each of the two learned
methods, the shown references
are trained on the following
datasest: MNIST, EMNIST,
FMNIST, SVHN, CIFAR-10.

Learning the reference image is computationally expensive. The
most obvious baseline reference is a random image. For this, we sam-
ple the pixel values from a uniform distribution U (0, 1). Looking at
various learned reference images produced by the algorithm of Hyder
et al. [36] and our unrolled ER algorithm (Figure 7.1), we see that most
pixels are either zero or one. This suggests to also consider random
binarized reference images.

However, looking more closely at those learned reference images
(Figure 7.1), we see that all references exhibit flat areas. Furthermore,
the learned references do not show any symmetries. These observa-
tions suggest trying a simple reference image as a baseline mimicking
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those features. To construct such a reference, we start with a black
image that has a white square in the bottom right corner. After blur-
ring this image with a Gaussian filter, we normalize and add weighted
Poisson noise to every pixel. Finally, we binarize the image appropri-
ately. A resulting simple reference is shown on the right in Figure 7.2.

Figure 7.2: Our simple refer-
ence.

In the next section, we compare the performance of these different
references for reconstructing images from their oversampled and non-
oversampled magnitude measurements.

7.6 Comparing Baseline and Learned References

0 20 40 60 80 100
0.000

0.005

0.010

0.015

0.020

0.025
MSE on training set
MSE on validation set

Figure 7.3: Training and vali-
dation MSE between reconstruc-
tions and original images of the
FMNIST dataset.

Experimental Setup. To study whether references are necessary at all,
we also reconstruct images from measurements that were taken with-
out adding a reference onto the image. In that case, the trivial ambi-
guities (translation and flip) cannot be resolved by the reconstruction
algorithm. Therefore, we register the reconstructions appropriately
before calculating the error. For fair comparison, we register the re-
constructions of the other methods before calculating the MSE as well.

We evaluate the reconstructions of images from the MNIST [55],
the EMNIST [13], the FMNIST [102], the CIFAR-10 [53], and the
SVHN [68],datasets. We convert the images from the CIFAR-10 and
the SVHN dataset to grayscale. We consider non-oversampled magni-
tude measurements as well as measurements that are oversampled by
a factor of two in each dimension. To solve the Fourier phase retrieval
problem, we use a similar algorithm as Hyder et al. [36]. We run the
algorithm for 500 steps and set the step size to α = 1.95, which wasHyperparameters

chosen on a validation dataset. For each of the datasets, we use 1000
images for testing and we train the references on 100 training images
using Adam [50] with a learning rate of 0.01. We use batches of size
10. During training, we unroll the ER algorithm for 15 steps and use
500 steps to reconstruct the images at test time.

Similar to the intensities of the images, we restrict the entries of the
reference image to lie between 0 and 1 as using larger values makes
the problem trivial to solve, i.e., even a random reference with values
between 0 and 100 yields perfect reconstructions.

Results. Table 7.1 shows that our unrolled ER algorithm is able to
learn references of similar quality as the method proposed by Hyder
et al. [36]. We see that the reconstruction errors of our simple reference
are quite close to the errors of the learned methods in the oversampled
case. Figure 7.3 shows the training and the validation loss for a refer-
ence trained using our unrolled ER algorithm on the FMNIST dataset.
We can observe that only a few stochastic gradient descent steps are
necessary to drastically decrease training and validation error. Also,
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Figure 7.4: Reconstructions of
the MNIST, the FMNIST and
the CIFAR-10 dataset from non-
oversampled and oversampled
Fourier magnitudes using differ-
ent references.
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Method MNIST EMNIST FMNIST SVHN CIFAR-10

N
on

-o
ve

rs
am

pl
ed No reference 0.035615 0.063414 0.042417 0.013985 0.035134

Random reference 0.052724 0.079784 0.046670 0.012393 0.030222

Random reference (binary) 0.055324 0.081130 0.049436 0.012447 0.029299

Simple reference (ours) 0.060027 0.089347 0.067549 0.011270 0.024128

Hyder et al. [36] reference 0.002607 0.014687 0.013649 0.010131 0.024141

Unrolled ER reference (ours) 0.002181 0.015427 0.019863 0.008775 0.020020

O
ve

rs
am

pl
ed

No reference 0.020566 0.032907 0.021068 0.007516 0.020518

Random reference 0.005350 0.025308 0.011484 0.003670 0.009848

Random reference (binary) 0.001170 0.010994 0.006842 0.002462 0.007310

Simple reference (ours) 0.000761 0.003681 0.000848 0.000187 0.000495

Hyder et al. [36] reference 0.000132 0.000023 0.000073 0.000126 0.001415

Unrolled ER reference (ours) 0.000071 0.000257 0.000055 0.000055 0.000125

Table 7.1: Comparison of the
mean squared reconstruction er-
ror (lower is better) using differ-
ent references for Fourier phase
retrieval from non-oversampled
and oversampled magnitudes.
Best values are printed bold and
second-best are underlined.

our ER algorithm requires only a small number of iterations in training
to learn a good reference. Figure 7.4 visualizes some reconstructions.
In the non-oversampled case, the learned references produce better
reconstructions than our simple reference. Surprisingly, the random
references that we use as baseline perform worse on the MNIST-like
datasets than using no baseline in the non-oversampled case. In the
oversampled case, the learned references, as well as our simple refer-
ence, produce almost perfect reconstructions. Therefore, we conclude
that learning references is not necessary when the Fourier magnitudes
are oversampled.

7.7 Conclusion

In this chapter, we discuss how the ER algorithm can be unrolled in
order to learn a reference image for phase retrieval. We show that our
unrolled ER algorithm performs comparably to an existing method
and requires only a few unrolling steps while having no hyperparam-
eters that require extensive tuning. Furthermore, we provide a simple
reference which puts the benefit of a learned reference into perspective,
especially when oversampled magnitude measurements are available.

7.8 Broader Impact

Fourier phase retrieval is a fundamental and relevant imaging problem
in many areas of science, e.g., in X-ray crystallography or microscopy.
Ethical or societal consequences depend on the exact application of
the phase retrieval algorithm. Our insights set the performance gain
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of learned reference images for phase retrieval into perspective. We
propose a simpler and more efficient approach for reference construc-
tion which yields similar results and requires less computation and
thus less energy.





8
Conclusion

In this thesis, we have shown how deep learning can be applied to Summary

phase retrieval problems. We have taken a look at unsupervised meth-
ods that train a generative model on similar images without having
knowledge about the corresponding measurements. These methods
usually rely on optimizing the latent variable of the generative model
to reconstruct the image. Going beyond this latent optimization, we
have shown that optimization of intermediate representations of the
generative model can further improve the reconstruction quality. In
contrast to that, supervised methods use images paired with their
corresponding measurements during training. One instance of super-
vised learning is end-to-end learning, which learns a mapping from
magnitude measurements to the images. We combine both ideas and
show how this can further improve the reconstruction performance of
(conditional) generative adversarial networks.

These learning-based methods produce outstanding reconstructions
that surpass the performance of existing methods when training data
is available. In addition, we analyzed the robustness of learning-based
models to different forms of noise in the measurement process and
studied the generalization abilities of these models to different data
distributions. We also have taken a look on reference based phase
retrieval and discussed whether learning an additive reference is nec-
essary.

Table 8.1 gives an overview of the optimization-based and learning-
based methods discussed in this thesis.

Future work could focus on improving the computational runtime Future work

of learning-based methods, especially those involving costly optimiza-
tion procedures. In this thesis, we evaluated the methods on bench- Real world data

mark image datasets and simulated measurements, which is a short-
coming of our experiments. However, this has been addressed by the
work of Ye et al. [104] who applied our PRCGAN (among other meth-
ods) to measurements that were obtained in an optical experiment:
a lens-based system consisting of a Helium-neon laser, a phase-only
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Method Publication Learning End-to-end Iterative Reference Image

ER Fienup [22] no no yes no
IO Fienup [22] no no yes no
OO Fienup [22] no no yes no
HIO Fienup [22] no no yes no
RAAR Luke [59] no no yes no
ResNet Nishizaki et al. [69] supervised yes no no
E2E Uelwer et al. [88] supervised yes no no
DPR Hand et al. [30] unsupervised no yes no
PRCGAN-D Uelwer et al. [88] supervised yes no no
PRCGAN-L Uelwer et al. [88] supervised no yes no
PRCGAN-W Uelwer et al. [88] supervised no yes no
CPR Uelwer et al. [87] supervised yes no no
CPR-FS Uelwer et al. [87] supervised yes no no
PRILO Uelwer et al. [90] unsupervised no yes no
PRILO-MII Uelwer et al. [90] unsupervised no yes no
PRILO-LI Uelwer et al. [90] supervised no yes no

Unrolled GD Hyder et al. [36] supervised no yes yes
Unrolled ER Uelwer et al. [89] supervised no yes yes

Table 8.1: Overview over the
methods for Fourier phase re-
trieval considered in this thesis.
All methods can also be modi-
fied to solve compressive Gaus-
sian phase retrieval.

spatial light modulator and a CMOS camera was used to capture the
magnitude-only measurements. This shows that our method is also
applicable to realistic settings.

Furthermore, it would be interesting to further evaluate learning-
based methods in other realistic measurement setups. Whether deep
learning can be used to solve problems like X-ray crystallography re-
mains an open question, but recent breakthroughs in other areas of
research like AlphaFold [41] gives cause for optimism.
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Appendices

A Code

A.1 Fienup’s Phase Retrieval Algorithms

1 import numpy as np
2

3

4 def fienup_phase_retrieval(
5 mag, mask=None, beta=0.8, steps=200, mode="hybrid", verbose=True
6 ):
7 """
8 Implementation of Fienup's phase-retrieval methods. This function
9 implements the input-output, the output-output and the hybrid method.

10

11 Note: Mode 'output-output' and beta=1 results in
12 the Gerchberg-Saxton algorithm.
13

14 Parameters:
15 mag: Measured magnitudes of Fourier transform
16 mask: Binary array indicating where the image should be
17 if padding is known
18 beta: Positive step size
19 steps: Number of iterations
20 mode: Which algorithm to use
21 (can be 'input-output', 'output-output' or 'hybrid')
22 verbose: If True, progress is shown
23

24 Returns:
25 x: Reconstructed image
26

27 Author: Tobias Uelwer
28 Date: 30.12.2018
29

30 References:
31 [1] E. Osherovich, Numerical methods for phase retrieval, 2012,
32 https://arxiv.org/abs/1203.4756
33 [2] J. R. Fienup, Phase retrieval algorithms: a comparison, 1982,
34 https://www.osapublishing.org/ao/abstract.cfm?uri=ao-21-15-2758
35 [3] https://github.com/cwg45/Image-Reconstruction
36 """
37

38 assert beta > 0, "step size must be a positive number"
39 assert steps > 0, "steps must be a positive number"
40 assert (
41 mode == "input-output" or mode == "output-output" or mode == "hybrid"
42 ), "mode must be 'input-output', 'output-output' or 'hybrid'"
43

44 if mask is None:
45 mask = np.ones(mag.shape)
46

47 assert mag.shape == mask.shape, "mask and mag must have same shape"
48

49 # sample random phase and initialize image x
50 y_hat = mag * np.exp(1j * 2 * np.pi * np.random.rand(*mag.shape))
51 x = np.zeros(mag.shape)
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52

53 # previous iterate
54 x_p = None
55

56 # main loop
57 for i in range(1, steps + 1):
58 # show progress
59 if i % 100 == 0 and verbose:
60 print("step", i, "of", steps)
61

62 # inverse fourier transform
63 y = np.real(np.fft.ifft2(y_hat))
64

65 # previous iterate
66 if x_p is None:
67 x_p = y
68 else:
69 x_p = x
70

71 # updates for elements that satisfy object domain constraints
72 if mode == "output-output" or mode == "hybrid":
73 x = y
74

75 # find elements that violate object domain constraints
76 # or are not masked
77 indices = np.logical_or(
78 np.logical_and(y < 0, mask), np.logical_not(mask)
79 )
80

81 # updates for elements that violate object domain constraints
82 if mode == "hybrid" or mode == "input-output":
83 x[indices] = x_p[indices] - beta * y[indices]
84 elif mode == "output-output":
85 x[indices] = y[indices] - beta * y[indices]
86

87 # fourier transform
88 x_hat = np.fft.fft2(x)
89

90 # satisfy fourier domain constraints
91 # (replace magnitude with input magnitude)
92 y_hat = mag * np.exp(1j * np.angle(x_hat))
93 return x

A.2 RAAR Algorithm

1 import numpy as np
2

3

4 def P_M(x, mag):
5 """
6 Implements Equation (2).
7

8 Parameters:
9 x: current iterate

10 mag: measured magnitude
11 """
12 F_x = np.fft.fft2(x)
13 v0_hat = mag * (F_x / (np.abs(F_x) + 1e-9))
14 return np.real(np.fft.ifft2(v0_hat))
15

16

17 def P_Spos(x, mask=None):
18 """
19 Implements Equation (3).
20

21 Parameters:
22 x: current iterate
23 mask: support mask, mask=None corresponds full support
24 """
25 if mask is None:
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26 return np.maximum(0, x)
27 else:
28 return np.maximum(0, x) * mask
29

30

31 def R_M(x, mag):
32 """
33 Implements reflector for M.
34

35 Parameters:
36 x: current iterate
37 mag: measured magnitude
38 """
39 return 2 * P_M(x, mag) - x
40

41

42 def R_Spos(x, mask=None):
43 """
44 Implements reflector for Spos.
45

46 Parameters:
47 x: current iterate
48 """
49 return 2 * P_Spos(x, mask) - x
50

51

52 def T_star(x, mag, mask=None):
53 return 0.5 * (R_Spos(R_M(x, mag), mask) + x)
54

55

56 def V(x, mag, beta, mask=None):
57 return beta * T_star(x, mag, mask) + (1 - beta) * P_M(x, mag)
58

59

60 def RAAR(mag, beta=0.8, steps=200, verbose=True, mask=None):
61 """
62 Implementation of the relaxed averaged alternating reflections
63 (RAAR) algorithm.
64

65 Parameters:
66 mag: Measured magnitudes of Fourier transform
67 mask: Binary array indicating where the image should be
68 if padding is known
69 beta: Positive step size
70 steps: Number of iterations
71 verbose: If True, progress is shown
72

73 Returns:
74 x: Reconstructed image
75

76 Author: Tobias Uelwer
77 Date: 04.10.2022
78

79 References:
80 [1] Luke, D. Russell. "Relaxed averaged alternating reflections
81 for diffraction imaging." Inverse problems 21.1 (2004): 37.
82 """
83

84 assert beta > 0, "step size must be a positive number"
85 assert steps > 0, "steps must be a positive number"
86

87 x = np.random.rand(*mag.shape)
88

89 for i in range(1, steps + 1):
90

91 if i % 10 == 0 and verbose:
92 print("step", i, "of", steps, "(beta:" + str(beta) + ")")
93

94 x = V(x, mag, beta, mask)
95 # beta +=0.001
96

97 x = np.real(x)
98

99 return x
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A.3 Neural Network Architectures

1 import torch

2 import torch.nn as nn

3 import numpy as np

4

5

6 class MLP(nn.Module):

7 def __init__(self, imsize=(1, 28, 28), outsize=(1, 28, 28), h=2048):

8 super(MLP, self).__init__()

9 self.imsize = imsize

10 self.outsize = outsize

11 self.layers = nn.Sequential(

12 nn.Linear(imsize[0] * imsize[1] * imsize[2], h),

13 nn.ReLU(inplace=False),

14 nn.Linear(h, h),

15 nn.BatchNorm1d(h),

16 nn.ReLU(inplace=False),

17 nn.Linear(h, h),

18 nn.BatchNorm1d(h),

19 nn.ReLU(inplace=False),

20 nn.Linear(h, h),

21 nn.BatchNorm1d(h),

22 nn.ReLU(inplace=False),

23 nn.Linear(h, outsize[0] * outsize[1] * outsize[2]),

24 nn.Sigmoid(),

25 )

26

27 def forward(self, x):

28 N = x.shape[0]

29 out = self.layers(x.view(N, -1))

30 return out.view(N, *self.outsize)

31

32

33 class FCIL(nn.Module):

34 def __init__(self, h):

35 super(FCIL, self).__init__()

36 self.h = h

37 self.layers = nn.Sequential(

38 nn.Linear(h, h),

39 nn.BatchNorm1d(h),

40 nn.ReLU(),

41 nn.Linear(h, h),

42 nn.BatchNorm1d(h),

43 nn.ReLU(),

44 )

45

46 def forward(self, x):

47 shape = x.shape

48 x = x.view(shape[0], self.h)

49 return self.layers(x).view(*shape)

50

51

52 class ConvolutionalNetwork(nn.Module):

53 def __init__(self, imsize=(3, 64, 64), outsize=(3, 64, 64), s=32):

54 super(ConvolutionalNetwork, self).__init__()

55

56 self.imsize = imsize

57 self.outsize = outsize

58 self.s = s

59

60 padding, fcil_size = self.calculate_padding_and_fcil_size()
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61

62 self.layers = nn.Sequential(

63 nn.Conv2d(imsize[0], imsize[0], kernel_size=1, padding=padding),

64 nn.BatchNorm2d(imsize[0]),

65 nn.ReLU(),

66 nn.Conv2d(imsize[0], 1 * s, kernel_size=5, padding=2),

67 nn.BatchNorm2d(1 * s),

68 nn.ReLU(),

69 nn.MaxPool2d(kernel_size=2, stride=2),

70 nn.Conv2d(1 * s, 2 * s, kernel_size=3, padding=1),

71 nn.BatchNorm2d(2 * s),

72 nn.ReLU(),

73 nn.MaxPool2d(kernel_size=2, stride=2),

74 nn.Conv2d(2 * s, 4 * s, kernel_size=3, padding=1),

75 nn.BatchNorm2d(4 * s),

76 nn.ReLU(),

77 nn.MaxPool2d(kernel_size=2, stride=2),

78 nn.Conv2d(4 * s, 4 * s, kernel_size=3, padding=1),

79 nn.BatchNorm2d(4 * s),

80 nn.ReLU(),

81 nn.MaxPool2d(kernel_size=2, stride=2),

82 FCIL(h=fcil_size),

83 nn.UpsamplingNearest2d(scale_factor=2),

84 nn.ConvTranspose2d(4 * s, 4 * s, kernel_size=3, padding=1),

85 nn.BatchNorm2d(4 * s),

86 nn.ReLU(),

87 nn.UpsamplingNearest2d(scale_factor=2),

88 nn.ConvTranspose2d(4 * s, 2 * s, kernel_size=3, padding=1),

89 nn.BatchNorm2d(2 * s),

90 nn.ReLU(),

91 nn.UpsamplingNearest2d(scale_factor=2),

92 nn.ConvTranspose2d(2 * s, 1 * s, kernel_size=3, padding=1),

93 nn.BatchNorm2d(1 * s),

94 nn.ReLU(),

95 nn.UpsamplingNearest2d(scale_factor=2),

96 nn.ConvTranspose2d(

97 1 * s, self.outsize[0], kernel_size=5, padding=2

98 ),

99 nn.Sigmoid(),

100 )

101

102 def calculate_padding_and_fcil_size(self):

103 imsize = self.imsize

104 p0 = 2 ** (int(np.ceil(np.log2(imsize[-2])))) - imsize[-2]

105 p1 = 2 ** (int(np.ceil(np.log2(imsize[-1])))) - imsize[-1]

106 padding = (p0, p1)

107 fcil_size = (

108 4 * ((imsize[1] + p0) // 16) * ((imsize[2] + p1) // 16) * self.s

109 )

110 return padding, fcil_size

111

112 def forward(self, x):

113 N = x.shape[0]

114 out = self.layers(x)[..., : self.outsize[-2], : self.outsize[-1]]

115 return out

116

117

118 class ConvolutionalDiscriminator(nn.Module):

119 def __init__(self, imsize=(3, 64, 64), s=64):

120 super(ConvolutionalDiscriminator, self).__init__()

121 self.layers = nn.Sequential(

122 nn.Conv2d(imsize[0], s, 4, 2, 1, bias=False),

123 nn.LeakyReLU(0.2, inplace=False),
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124 nn.Conv2d(

125 s, 2 * s, kernel_size=4, stride=2, padding=1, bias=False

126 ),

127 nn.BatchNorm2d(2 * s),

128 nn.LeakyReLU(0.2, inplace=False),

129 nn.Conv2d(

130 2 * s, 4 * s, kernel_size=4, stride=2, padding=1, bias=False

131 ),

132 nn.BatchNorm2d(4 * s),

133 nn.LeakyReLU(0.2, inplace=False),

134 nn.Conv2d(

135 4 * s, 8 * s, kernel_size=4, stride=2, padding=1, bias=False

136 ),

137 nn.BatchNorm2d(8 * s),

138 nn.LeakyReLU(0.2, inplace=False),

139 nn.Conv2d(

140 8 * s, 1, kernel_size=4, stride=1, padding=0, bias=False

141 ),

142 nn.Sigmoid(),

143 )

144

145 def forward(self, x):

146 output = self.layers(x)

147 return output.view(-1)

A.4 Training and Testing Code for PRCGAN

1 import copy

2 import matplotlib.pyplot as plt

3 import numpy as np

4 import torch

5 import torch.nn as nn

6 import torch.optim as optim

7 import lpips as lp

8 import tqdm

9 import models

10

11

12 def poisson_noise(magn, alpha=1, device=None):

13 """

14 Add poisson noise to magnitudes.

15

16 Parameters:

17 magn: Batch of magnitudes.

18 alpha: Level of noise.

19 device: Device on which noise is stored (PyTorch device)."""

20 intens = magn**2

21 alpha_2 = alpha**2

22 lmd = intens / alpha_2

23 if device is not None:

24 lmd[(lmd == 0)] = 1e-15

25 intens_noise = (

26 alpha_2 * torch.distributions.poisson.Poisson(lmd).sample()

27 )

28 magn_noise = torch.sqrt(intens_noise)

29 else:

30 intens_noise = alpha_2 * np.random.poisson(lmd, magn.shape)

31 magn_noise = np.sqrt(intens_noise)

32 return magn_noise
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33

34

35 def calc_mags(x):

36 """

37 Calculated Fourier magnitudes for a batch of images x.

38

39 Paramters:

40 x: batch of images.

41 """

42 ft = torch.fft.fft2(x)

43 mags = torch.abs(ft)

44 return mags

45

46

47 def calc_meas(A, x):

48 """

49 Calculated Gaussian magnitudes for a batch of images x.

50

51 Paramters:

52 A: measurement matrix.

53 x: batch of images.

54 """

55 m = A.shape[1]

56 n = x.shape[-1] * x.shape[-2]

57 assert m <= n

58 N = x.shape[0]

59 C = x.shape[1]

60 compressed = (x.view(N, C, -1) @ A).view(N, C, m)

61 compressed = torch.abs(compressed)

62

63 compr_pad = nn.functional.pad(

64 compressed, (0, n - m), mode="constant", value=0

65 ).reshape(x.shape)

66

67 return compressed, compr_pad

68

69

70 def train_e2e(

71 model,

72 loss_fn,

73 optimizer,

74 device,

75 trainloader,

76 epochs,

77 val=None,

78 lpips_lmd=None,

79 A=None,

80 plot=False,

81 file=None,

82 ):

83 model = model.to(device=device)

84 history = []

85

86 loss_fn_vgg = lp.LPIPS(net="vgg").to(device)

87

88 for e in range(epochs):

89 pbar = tqdm.tqdm(trainloader)

90 for x in pbar:

91

92 model.train()

93

94 # move x to device and reduce to magnitude information in fourier space

95 x = x.to(device=device)
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96 if A is not None:

97
_, x_in = calc_meas(A, x)

98 else:

99 x_in = calc_mags(x)

100

101 # compute loss as pixel wise distance to original input

102 x_pred = model(x_in)

103 if lpips_lmd is not None:

104 loss = torch.mean(

105 torch.mean(torch.abs(x - x_pred), dim=(1, 2, 3))

106 + lpips_lmd * loss_fn_vgg(x, x_pred)

107 )

108 else:

109 loss = loss_fn(x_pred, x)

110 history.append(loss.item())

111

112 optimizer.zero_grad()

113 loss.backward()

114 optimizer.step()

115

116 pbar.set_description(

117 "epoch: {:3d} loss: {:3.4}".format(e + 1, loss.item())

118 )

119

120 if plot:

121 plt.plot(history)

122 plt.show()

123 if file is not None:

124 torch.save(model.state_dict(), file + "_{:03d}.sd".format(e + 1))

125 if val is not None:

126 x = next(iter(val)).to(device)

127 x_rec = model(calc_mags(x))

128 print(

129 "SSIM:",

130 ssim(x_rec.detach().cpu().numpy(), x.detach().cpu().numpy())[

131 0

132 ],

133 )

134

135 return history

136

137

138 def train_cgan(

139 gen,

140 disc,

141 g_opt,

142 d_opt,

143 device,

144 trainloader,

145 start_epoch=0,

146 end_epoch=100,

147 val=None,

148 loss_fn="mae",

149 lmd=1,

150 lpips_lmd=None,

151 plot=False,

152 file=None,

153 ):

154 """

155 Training algorithm for PRCGAN.

156

157 Parameters:

158 gen: Generator network (PyTorch model).



references 125

159 disc: Discriminator network (PyTorch model).

160 g_opt: Optimizer for generator network (PyTorch optimizer).

161 d_opt: Optimizer for discriminator network (PyTorch optimizer).

162 device: Device used for training (PyTorch device).

163 trainloader: Dataloader for training set.

164 start_epoch: Epoch at which to start.

165 end_epoch: Epoch at which to end.

166 val: Whether after model is evaluated after each epoch.

167 loss_fn: Reconstruction loss. Can be "mae" or "mse".

168 lmd: Weight for reconstruction loss.

169 lpips_lmd: Weight for LPIPS loss. If None, LPIPS is not used.

170 plot: Indicates whether intemedate reconstructions and loss history

171 are shown.

172 file: Path to checkpoints folder.

173 """

174 disc = disc.to(device=device)

175 gen = gen.to(device=device)

176

177 history_g = []

178 history_d = []

179 history_mse = []

180

181 loss_fn_vgg = lp.LPIPS(net="vgg").to(device)

182

183 if start_epoch > 0:

184 assert file is not None

185 disc.load_state_dict(

186 torch.load(file + "_netD_{:03d}.sd".format(start_epoch))

187 )

188 gen.load_state_dict(

189 torch.load(file + "_netG_{:03d}.sd".format(start_epoch))

190 )

191

192 re = False # Helper variable to restart if loss is NaN.

193 for e in range(start_epoch, end_epoch):

194 pbar = tqdm.tqdm(trainloader)

195 for x in pbar:

196

197 x = x.to(device=device)

198 mags = calc_mags(x)

199

200 z = torch.randn(*x.shape).to(device)

201 zm = torch.cat([z, mags], dim=1)

202

203 gen.train()

204 gen_output = gen(zm)

205

206 xm = torch.cat([x, mags], dim=1)

207 disc.train()

208 disc_output_real = disc(xm)

209 disc_output_generated = disc(torch.cat([gen_output, mags], dim=1))

210

211 if loss_fn == "mse":

212 rec_loss = torch.mean((x - gen_output) ** 2)

213 elif loss_fn == "mae":

214 rec_loss = torch.mean(torch.abs(x - gen_output))

215

216 if lpips_lmd is not None:

217 rec_loss = rec_loss + lpips_lmd * torch.mean(

218 loss_fn_vgg(x, gen_output)

219 )

220

221 g_loss = (
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222 -torch.mean(torch.log(disc_output_generated)) + lmd * rec_loss

223 )

224

225 history_g.append(g_loss.item())

226 g_opt.zero_grad()

227 g_loss.backward()

228 g_opt.step()

229

230 disc_output_real = disc(xm)

231 disc_output_generated = disc(

232 torch.cat([gen_output.detach(), mags], dim=1)

233 )

234 d_loss = -torch.mean(

235 (

236 torch.log(disc_output_real)

237 + torch.log(1 - disc_output_generated)

238 )

239 / 2.0

240 )

241 history_d.append(d_loss.item())

242 d_opt.zero_grad()

243 d_loss.backward(retain_graph=True)

244

245 d_opt.step()

246

247 mse_loss = torch.mean((x - gen_output) ** 2)

248 history_mse.append(mse_loss.detach().cpu().item())

249

250 pbar.set_description(

251 "epoch: {:3d} loss: {:3.4}".format(e + 1, rec_loss.item())

252 )

253

254 if torch.isnan(rec_loss):

255 re = True

256 break

257 if re:

258 break

259

260 if plot:

261 # Plotting code

262 plt.plot(history_g[-10000:], label="Gen loss")

263 plt.plot(history_d[-10000:], label="Disc loss")

264 plt.plot(history_mse[-10000:], label="MSE")

265 plt.legend()

266 plt.show()

267

268 test_outputs, test_images = test_generator(

269 gen, device, dataloader["val"]

270 )

271 plot_grid(

272 np.vstack(

273 [

274 test_images[:16],

275 test_outputs[:16],

276 test_images[16:32],

277 test_outputs[16:32],

278 ]

279 ),

280 figsize=(8, 8),

281 )

282

283 mse_val = np.mean((test_outputs - test_images) ** 2)

284 print("Mean squared dist:", mse_val)
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285

286 if file is not None:

287 # Save checkpoints

288 torch.save(

289 gen.state_dict(), file + "_netG_{:03d}.sd".format(e + 1)

290 )

291 torch.save(

292 disc.state_dict(), file + "_netD_{:03d}.sd".format(e + 1)

293 )

294 if val is not None:

295 # Validate model

296 x = next(iter(val)).to(device)

297 z = torch.randn(*x.shape).to(device)

298 gen.eval()

299 zm = torch.cat([z, calc_mags(x)], dim=1)

300 x_rec = gen(zm)

301 print(

302 "SSIM:",

303 ssim(x_rec.detach().cpu().numpy(), x.detach().cpu().numpy())[

304 0

305 ],

306 )

307 if re:

308 # Reset training

309 gen = models.ConvNet(imsize=(6, 64, 64), outsize=(3, 64, 64), s=64)

310 disc = models.ConvDiscriminator(imsize=(6, 64, 64), s=64)

311 train_cgan(

312 gen,

313 disc,

314 g_opt,

315 d_opt,

316 device,

317 trainloader,

318 start_epoch=e,

319 end_epoch=end_epoch,

320 val=val,

321 lmd=lmd,

322 lpips_lmd=lpips_lmd,

323 plot=plot,

324 file=file,

325 )

326

327

328 def test_cgan(model, device, testloader, alpha=None, A=None):

329 """

330 Testing algorithm for PRCGAN.

331

332 Parameters:

333 model: Trained PyTorch model

334 device: Indicates on which PyTorch device the model

335 is executed

336 testloader: Dataloader to obtain test data.

337 alpha: Level of noise. If None, no noise is added.

338 A: Measurement matrix for Gaussian phase retrieval. If None,

339 Fourier measurements are considered.

340 """

341 model = model.to(device=device)

342 model.eval()

343

344 test_images = []

345 outputs = []

346

347 for i, data in enumerate(testloader):
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348 if i == 16:

349 break

350 z = torch.randn(*data.shape).to(device)

351 data = data.to(device=device)

352

353 if alpha is not None:

354 x_in = poisson_noise(calc_mags(data), alpha, device)

355 elif A is not None:

356
_, x_in = calc_meas(A, data)

357 else:

358 x_in = calc_mags(data)

359

360 net_input = torch.cat([z, x_in], dim=1)

361 output = model(net_input)

362

363 test_images.append(data.cpu().numpy())

364 outputs.append(output.cpu().detach().numpy())

365

366 return np.concatenate(outputs), np.concatenate(test_images)

367

368

369 def opt_prc(

370 sample_in,

371 model,

372 device,

373 mode="prc-l",

374 lr1=1e-2,

375 lr2=1e-6,

376 max_steps=10000,

377 A=None,

378 ):

379 """

380 Optimization algorithms for PRCGAN-L and PRCGAN-W.

381

382 Parameters:

383 sample_in:

384 model: Trained PyTorch model of generator.

385 device: Indicates on which PyTorch device the model

386 is executed

387 mode: Can be "latent" or "weight" for latent and weight

388 optimization, respectively.

389 lr1: Learning rate for latent optimizer.

390 lr2: Learning rate for weight optimizer.

391 max_steps: Maximum number of iterations.

392 A: Measurement matrix for Gaussian phase retrieval. If None,

393 Fourier measurements are considered.

394 """

395 model.to(device)

396 model.eval()

397

398 z = torch.randn((sample_in.shape), requires_grad=True, device=device)

399

400 state_dict = copy.deepcopy(model.state_dict())

401 z_opt = optim.Adam([z], lr=lr1)

402 gen_opt = optim.Adam(list(model.parameters()), lr=lr2)

403

404 losses = []

405 last_out = model(torch.cat([z, sample_in], dim=1))

406

407 for i in tqdm.tqdm(range(max_steps)):

408 if A is not None:

409
_, x_in = calc_meas(A, last_out)

410 else:
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411 x_in = calc_mags(last_out)

412

413 mse_all = torch.mean((x_in - sample_in) ** 2, dim=(1, 2, 3))

414 loss = torch.sum(mse_all)

415

416 if mode == "latent":

417 z_opt.zero_grad()

418 elif mode == "weight":

419 gen_opt.zero_grad()

420 else:

421 z_opt.zero_grad()

422 gen_opt.zero_grad()

423 loss.backward()

424 if mode == "latent":

425 z_opt.step()

426 elif mode == "weight":

427 gen_opt.step()

428 else:

429 z_opt.step()

430 gen_opt.step()

431

432 last_out = model(torch.cat([z, sample_in], dim=1))

433

434 losses.append(loss.item())

435

436 model.load_state_dict(state_dict)

437

438 return last_out.detach(), losses, mse_all

A.5 Unrolled ER Algorithm

1 import torch

2 import torchvision

3 import matplotlib.pyplot as plt

4 import numpy as np

5 from data import *
6 from util import *
7 from imageio import imsave

8 from skimage.registration import phase_cross_correlation

9

10 # Load data

11 x_train, x_test = load_CIFAR10()

12 x_train = x_train[0:100]

13 x_val = x_test[-100:]

14 x_test = x_test[0:1000]

15

16 s = (64, 64) # Size of magnitude

17 si = (32, 32) # Size of image

18

19 def ER_reference(y, u, imsize=(32, 32), s=(64, 64), steps=100):

20 """

21 Implements the error-reduction algorithms with a reference image.

22

23 Parameters:

24 y: magnitude measurement.

25 u: known reference image.

26 imsize: size of image.

27 s: size of magnitude.

28 steps: number of iterations.
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29 """

30

31 # Initialize reconstruction with zeros.

32 x = torch.zeros(len(y), 1, *imsize)

33

34 for i in range(steps):

35 # Fourier domain constraints

36 intermed = torch.fft.ifft2(phase(x + u, s=s) * y)[:, :, :32, :32].real

37

38 # Image domain constraints

39 x = intermed - u

40 x[x < 0] = 0 # Enforce Positivity

41 return x

42

43 if __name__ == "__main__":

44 train_generator = torch.utils.data.DataLoader(

45 x_train, batch_size=10, shuffle=True

46 )

47 u = torch.rand(32, 32, requires_grad=True)

48 opt = torch.optim.Adam([u], lr=0.01)

49 losses = []

50

51 # Training loop

52 for epoch in range(10):

53 print(epoch)

54 for i, batch in enumerate(train_generator):

55 # Calculate measurements of training batch

56 y = magnitude(batch + u, s=s, norm="backward")

57

58 # Reconstruct batch using current reference

59 x_rec = ER_reference(y, u, imsize=(32, 32), s=s, steps=15)

60

61 # Calculate loss and back-propagate through ER algorithm

62 loss = torch.mean(torch.square(x_rec - batch))

63 losses.append(loss.item())

64 loss.backward()

65 opt.step()

66

67 # Clip reference to [0,1]

68 u.data[u < 0] = 0.0

69 u.data[u > 1] = 1.0

70

71 # Calulcate measurements

72 y = magnitude(x_test + u, s=s, norm="backward")

73

74 # Reconstruct test images

75 rec = ER_reference(y, u, imsize=(32, 32), s=s, steps=500).detach()

76

77 def cross_correlation(moving, fixed):

78 """

79 Registers two images using cross-correlation.

80

81 Parameters:

82 moving: moving image.

83 fixed: fixed image.

84 """

85 if moving.shape[-1] == 3:

86 moving_gray = rgb2gray(moving)

87 fixed_gray = rgb2gray(fixed)

88 elif moving.shape[-1] == 1:

89 moving_gray = moving[..., 0]

90 fixed_gray = fixed[..., 0]

91 else:
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92 print("Image channel Error!")

93

94 shift, error, diffphase = phase_cross_correlation(

95 moving_gray, fixed_gray

96 )

97 out = np.roll(moving, -np.array(shift).astype(np.int), axis=(0, 1))

98 return out, error

99

100 def register_cross_correlation(predicted_images, true_images, torch=True):

101 """

102 Registers two batches of images using cross-correlation.

103

104 Parameters:

105 moving: moving image.

106 fixed: fixed image.

107 torch: indicates whether input batches are torch.tensors.

108 """

109 pred_reg = np.empty(

110 predicted_images.shape, dtype=predicted_images.dtype

111 )

112

113 for i in range(len(true_images)):

114 if torch:

115 true_image = true_images[i].transpose(1, 2, 0)

116 predicted_image = predicted_images[i].transpose(1, 2, 0)

117 else:

118 true_image = true_images[i]

119 predicted_image = predicted_images[i]

120

121 shift_predict, shift_error = cross_correlation(

122 predicted_image, true_image

123 )

124 rotshift_predict, rotshift_error = cross_correlation(

125 np.rot90(predicted_image, k=2, axes=(0, 1)), true_image

126 )

127

128 if torch:

129 pred_reg[i] = (

130 shift_predict.transpose(2, 0, 1)

131 if shift_error <= rotshift_error

132 else rotshift_predict.transpose(2, 0, 1)

133 )

134 else:

135 pred_reg[i] = (

136 shift_predict

137 if shift_error <= rotshift_error

138 else rotshift_predict

139 )

140

141 return pred_reg

142

143 # Calculate registered MSE for test images.

144 x_rec_reg = register_cross_correlation(

145 np.array(rec),

146 x_test.numpy(),

147 )

148 mse_vals = [

149 mse(torch.tensor(x_rec_reg[i, None]), x_test[i, None]).item()

150 for i in range(len(x_rec_reg))

151 ]

152 print("MSE: %f +/- %f" % (np.mean(mse_vals), np.std(mse_vals)))
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B Supplementary Materials

In the following we provide some supplementary materials for Chap-
ter 6.

B.1 VAE Architecture

For the MNIST, FMNIST and EMNIST dataset we use a variational
autoencoder (VAE) as a generator. The encoder and the decoder each
consist of three layers with ReLU activation function, where each layer
had 500 hidden units. The latent space was chosen 100-dimensional. It
was trained using a Bernoulli-likelihood and Adam with learning rate
10−3 for 100 epochs.

B.2 Hyperparameters

Table 2: Hyperparameters for
PRILO and PRILO-MII on the
MNIST and EMNIST datasets.

Repetitions Variable Steps ℓ1-radius

1 Initial optimization z0 150 100

1

Forward optimization z1 150 50

Back-projection z0 - -
Refinement z0 - -

9

Forward optimization z2 300 100

Back-projection z0 - -
Refinement z0 - -

Table 3: Hyperparameters for
PRILO and PRILO-MII on the
Fashion-MNIST dataset.

Repetitions Variable Steps ℓ1-radius

1 Initial optimization z0 100 100

1

Forward optimization z1 100 10

Back-projection z0 - -
Refinement z0 - -

4

Forward optimization z2 200 40

Back-projection z0 - -
Refinement z0 - -
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Repetitions Variable Steps ℓ1-radius (zi) ℓ1-radius (z0)

1 Initial optimization z0 100 1000 1000

1

Forward optimization z1 100 200 100

Back-projection z0 100 1000 1000

Refinement z0 100 1000 1000

1

Forward optimization z2 100 200 100

Back-projection z0 100 1000 1000

Refinement z0 100 1000 1000

Table 4: Hyperparameters for
PRILO (based on StyleGAN) on
the CelebA dataset. Note that z0

is passed into each layer. That
is why we have to apply ℓ1-
regularization also for z0 when
optimizing the latter layers.

Repetitions Variable Steps ℓ1-radius (zi) ℓ1-radius (z0)

1 Initial optimization z0 2000 1000 1000

3

Forward optimization z1 400 100 100

Back-projection z0 100 1000 1000

Refinement z0 2000 1000 1000

Table 5: Hyperparameters
for PRILO-MII and PRILO-LI
(based on StyleGAN) on the
CelebA dataset. Note that z0

is passed into each layer. That
is why we have to apply ℓ1-
regularization also for z0 when
optimizing the latter layers.
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