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Abstract: The wave equation with stochastic coefficients can
be classically homogenized on bounded time intervals; solutions
converge in the homogenization limit to solutions of a wave
equation with constant coefficients. This is no longer true on large
time scales: Even in the periodic case with periodicity ε, classical
homogenization fails for times of the order ε−2. We consider the
one-dimensional wave equation and are interested in the critical
time scale ε−β from where on classical homogenization fails. In
the general setting, we derive upper and lower bounds for β in
terms of the growth rate of correctors. In the specific setting
of i.i.d. coefficients with matched impedance, we show that the
critical time scale is ε−1.

MSC: 35B27, 74J05

1. Introduction

We are interested in homogenization limits for the wave equation with two x-
dependent coefficients, density ρ and stiffness a. We focus on the case that these
coefficients are random and consider, for a length scale parameter ε > 0, the scaled
functions ρε(x) := ρ(x/ε) and aε(x) := a(x/ε). The wave equation with unknown
uε then reads

(1.1) ρε∂
2
t u

ε −∇ · (aε∇uε) = fε ,

where fε is given and the equation is completed with initial conditions for uε and
∂tu

ε. The fundamental question of classical homogenization theory is to determine
effective coefficients ρ̄ and ā such that solutions uε of (1.1) converge, in some appro-
priate sense, to a solution ū of the wave equation with the effective x-independent
coefficients ρ̄ and ā.

In the setting of periodic homogenization, one assumes that ρ and a are periodic
functions. Classical homogenization on bounded time intervals [0, T0] was investi-
gated in [8]. It is worth mentioning that the homogenization of the wave equation
is more involved than the homogenization of the corresponding parabolic problem;

1Institut für Mathematik, MLU Halle-Wittenberg, Theodor-Lieser-Straße 5, 06120 Halle
(Saale), Germany. mathias.schaeffner@mathematik.uni-halle.de

2Fakultät für Mathematik, TU Dortmund, Vogelspothsweg 87, 44227 Dortmund, Germany.
ben.schweizer@tu-dortmund.de
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the difference is that the energy of high frequency contributions of solutions is not
dissipated and may contribute error terms for the entire time of interest.

The seminal work [17] treated the question of larger time spans in periodic media.
It was shown that a dispersive version of the wave equation must be considered in
order to treat longer time spans. The effect was also clearly demonstrated in [12].
The first rigorous convergence result was given in [15] for one space dimension and
in [9, 10] for arbitrary space dimension. All these approaches show that dispersive
effects are relevant on time intervals [0, T0ε

−2], for additional analysis see also
[1, 4], and, for the same effect in lattice equations, [19]. In particular, classical
homogenization cannot hold on this time scale. In [3], the authors show that,
in the periodic case, ε−2 is indeed the critical scale and classical homogenization
holds on every scale ε−2+δ for δ > 0. Regarding methods we would like to mention
that Bloch Analysis was used in [9, 10, 17], while more direct energy methods are
the basis of [1, 3, 15], and the later stochastic contributions. For general results
regarding the two methods we mention [2].

Let us now turn to stochastic models, given by maps

(1.2) ρ : Rd × ΩP → [Λ−1,Λ] and a : Rd × ΩP → [Λ−1,Λ]

for some probability space (ΩP ,A,P) and some Λ > 0. We emphasize that positive
upper and lower bounds for the coefficients are used. Suppressing, as usual, the
stochastic parameter ω ∈ ΩP , we write rescaled coefficients as

(1.3) ρε(x) := ρ(x/ε) = ρ(x/ε, ω) and aε(x) := a(x/ε) = a(x/ε, ω) .

For the wave equation (1.1) with stochastic coefficients, there are several positive
homogenization results available. In [7], convergence to the solution of a dispersive
limit equation is shown in dimension d ≥ 4. It is even shown that arbitrary orders of
convergence can be achieved by introducing a cascade of corrections in the equation
in sufficiently large dimensions. This was recently put in a new perspective in [11].
For a quite general approach see [16]. For a detailed analysis of one-dimensional
wave equations with stochastic coefficients on fixed time intervals we refer to [13].

An important difference between random and periodic homogenization is the
growth of correctors. In the periodic case, there exist bounded correctors to all
orders, which is not true in a general random setting. Even under the best possible
mixing assumptions, in general, there are only bounded correctors of order d/2 (see,
e.g., [7, Appendix C]). In particular, in the one-dimensional case, even the first order
corrector is not bounded. The long-time homogenization results mentioned above
rely either on periodic Bloch wave analysis or on expansions involving bounded
higher order correctors. The fact that these correctors are only bounded if the
dimension is sufficiently large leads to the dimensional restriction mentioned earlier.
In particular, we are not aware of a stochastic homogenization result valid until
the dispersive time-scale in dimension d ≤ 3.

In this contribution, we consider the one-dimensional case (where even first order
correctors are unbounded). We are not concerned with possible dispersive limit
equations, but rather with critical time scale for classical homogenization (non-
dispersive constant coefficients limit model). We are interested in the following
question for stochastic media:

For which parameters β ∈ [0, 2] is the constant coefficient wave
equation a good replacement for (1.1) on time intervals [0, T0ε

−β] ?
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The critical number β will depend on the properties of the stochastic medium. In
this contribution, we obtain two results related to this question: In the first result,
we consider very general random media. These are characterised by a parameter
γ ≥ 0, which is essentially the growth rate of correctors. We provide a lower crit-
ical value β− = β−(γ) > 0 and an upper critical value β+ = β+(γ) > 0 with the
following properties: For parameters 0 ≤ β < β−, homogenization with classical
limits works on [0, T0ε

−β] for all models of class γ. For parameters β > β+, sto-
chastic homogenization with classical limits is not valid for all models of class γ on
time intervals [0, T0ε

−β]. The precise formulation of this result and the formulas for
β−(γ) and β+(γ) are given in Theorem 2.6. Unfortunately, the two critical values
do not coincide. The most standard stochastic medium (using i.i.d. coefficients)
has the model parameter γ = 1/2, the two critical parameters are β− = 1/3 and
β+ = 1. In this sense, we have bounds for the critical time scale, but we cannot
determine the exact value of the critical time scale at which stochastic homoge-
nization fails. In our second main result, we consider the case of i.i.d. coefficients
with matched impedance, i.e., ρ a is a constant function. In this setting, we show
that ε−1 (corresponding to β = 1) is the critical time-scale until which classical
homogenization works, see Theorem 5.1.

To the best of our knowledge, we provide the first negative results on stochas-
tic homogenization for the wave equation. The negative results in Theorem 2.6
and Theorem 5.1 rely on the same mechanism: the speed of wave packages in
the random medium and in the corresponding (constant coefficient) homogenized
equation is different on large time-scales. As mentioned above, we show that in
the case of i.i.d. coefficients with matched impedance, homogenization works until
that time-scale. This result relies on explicit formulas for solutions of the wave
equations with matched impedance. In the general case, the situation is not clear
and our analysis leaves open the following question: Consider the elementary i.i.d.
stochastic medium with γ = 1/2, β− = 1/3 and β+ = 1. What is the “real” critical
value β∗ ∈ [1/3, 1] with the property that homogenization holds for β < β∗ and
homogenization fails for β > β∗? We tried to find this value at least with numerical
experiments, but we did not succeed to determine β∗ ∈ [1/3, 1].

Our arguments for counter-examples are one-dimensional. We give some remarks
on higher dimension in Subsection 2.4.

2. Notation and main result

2.1. Homogenized coefficients and correctors. In the one-dimensional case,
the homogenized coefficients are given by simple formulas. Essentially, the effective
density ρ̄ is the arithmetic mean of ρ and the effective permeability ā is the harmonic
mean of a. Since we also consider non-ergodic media, we have a very general
dependence on the spatial variable x ∈ Rn; this requires slightly more involved
definitions. In any case, the stochastic setting allows to take expectations: In the
probability space (ΩP ,A,P) we denote the expected value of a random variable
f : ΩP → R with brackets 〈.〉 and set 〈f〉 :=

∫
ΩP
f(ω) dP(ω).

Since we do not impose stationarity or ergodicity of the medium, our definition
of effective coefficients involves several averages. In one space dimension, we use
the following concept.
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Definition 2.1 (Effective coefficients in the sense of averages). For ρ, a : R×ΩP →
R, we define the effective coefficients in the sense of averages as

(2.1) ρ̄ := lim
|r|→∞

〈
−
∫ r

0

−
∫ y

0

ρ(s) ds dy

〉
, ā := lim

|r|→∞

〈
−
∫ r

0

−
∫ y

0

1/a(s) ds dy

〉−1

,

demanding on the model functions ρ and a that the two limits of (2.1) exist. Note
that we use a special sign convention for integrals, see (2.2) below.

In (2.1) and similar expressions in the subsequent text, we are interested in
averages of the integrand. This means that, when we write

∫ y
0
g(s) ds for negative

y, we are indeed interested in the value of
∫

[y,0]
g(s) ds. In other words, we want that

integrals over positive functions are positive, even when the limits of the integrand
are not ordered in the usual way. We therefore set, for y < 0,

(2.2)

∫ y

0

g(s) ds :=

∫ 0

y

g(s) ds and −
∫ y

0

g(s) ds := |y|−1

∫ 0

y

g(s) ds .

For periodic and, more generally, for stationary media, (2.1) can be replaced
by simpler expressions. For stationary media, expectations are independent of y,
hence ρ̄ = 〈ρ(y, .)〉 and ā = 〈1/a(y, .)〉−1 for arbitrary y ∈ R. When the stochastic
medium is ergodic, then spatial averages converge to expected values, hence, in
this case, it is not necessary to take expectations in (2.1). For periodic media, the
formula is even simpler: One can omit the expectation and integrate only over one
periodicity cell.

In the one-dimensional setting, we can write the two wave equations of interest
as follows. For coefficients ρ, a given by (1.2) and rescaled coefficients ρε, aε given
by (1.3) and a source f : R × R+ → R, we consider the sequence of solutions
uε : R× [0,∞)→ R of the ε-problem

(2.3) �εu
ε := ρε∂

2
t u

ε − ∂x (aε∂xu
ε) = f with uε(·, 0) = ∂tu

ε(·, 0) = 0 ,

and the solution ū : R× [0,∞)→ R of the limit problem

(2.4) �̄ū := ρ̄∂2
t ū− ∂x (ā∂xū) = f with ū(·, 0) = ∂tū(·, 0) = 0 .

We use here trivial initial data for notational convenience. This article is about
the question whether or not the homogenized solution ū is a good approximation
for the heterogeneous media solution uε. The answer depends on the time span of
interest and on the “quality” of the stochastic media. We will measure the latter
in terms of growth rates of the correctors.

We turn to the construction of correctors and harmonic coordinates. The one-
dimensional corrector equation reads ∂y[a(y)(1 + ∂yΦ(y))] = 0 for y ∈ R. For a
given coefficient field a, one seeks a solution Φ : R → R of this equation. In one
space dimension, the solution is given by an integral: Since the argument in the
squared brackets must be independent of y, the squared bracket coincides with
some constant. Below we conclude that the constant value is indeed the effective
coefficient, a(y)(1 + ∂yΦ(y)) = ā for every y ∈ R. Dividing by a(y) and integrating
over y, this formula can be used to define Φ. The procedure for the corrector Ψ for
ρ is similar.
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Definition 2.2 (Correctors). Let ρ, a : R× ΩP → (0,∞) be stochastic coefficients
and let ρ̄ and ā be two positive numbers. We define corresponding correctors as

Ψ(y) := Ψ(y, ω) :=

∫ y

0

{
ρ(s)

ρ̄
− 1

}
ds , Φ(y) := Φ(y, ω) :=

∫ y

0

{
ā

a(s)
− 1

}
ds ,

(2.5)

where we suppressed the argument ω also in ρ and a.

Rescaling. Rescaled coefficients are defined by ρε(x) = ρ(x/ε) and aε(x) = a(x/ε).
The correctors are rescaled as Φε(x) := εΦ(x/ε) and Ψε(x) := εΨ(x/ε). We note
that Φε satisfies, for every x ∈ R,

∂x[(aε(x)(1 + ∂xΦε(x))] = 0 ,

and

(2.6) aε(x)(1 + ∂xΦε(x)) = ā .

Harmonic coordinates. Related to the correctors are harmonic coordinates. Later
on we use the function F (y) := y + Φ(y) to perform a change of coordinates that
simplifies the equation. The rescaling for the function F is given by Fε(x) :=
εF (x/ε) = x+ Φε(x).

2.2. Model classes and first main result. Let (ΩP ,A,P) be a probability
space, let ρ and a be stochastic coefficients, and let the space dimension be d = 1.

Definition 2.3 (Model class parameter γ). For fixed Λ ≥ 1 we consider maps
ρ, a : R × ΩP → [ 1

Λ
,Λ]. Given ρ and a and two numbers ρ̄ and ā, we denote

the corresponding correctors as Ψ and Φ, see Definition 2.2. We define the set of
supercritical parameters γ′ as

Γsc :=

{
γ′ ∈ [0,∞]

∣∣∣∣ ∃C, ρ̄, ā ∈ R ∀r ∈ R :(2.7) 〈
−
∫ r

0

|Ψ(y)|2 dy
〉

+

〈
−
∫ r

0

|Φ(y)|2 dy
〉
≤ C(1 + |r|γ′)2

}
.(2.8)

The model class parameter γ is set to be

γ := inf Γsc .(2.9)

With this definition, we associate to a model (given by random fields a and ρ) a
model class parameter γ = γ(ρ, a).

Remarks: 1.) The class is a number γ ∈ [0, 1]. We recall that we always assume
boundedness of a and ρ. Under this assumption, the functions Φ and Ψ have at
most linear growth, which implies (1,∞) ⊂ Γsc and hence γ ≤ 1. By definition,
there always holds γ ≥ 0.

2.) Interpretation and periodic media. With γ ∈ [0, 1] defined as above, we say
that (ρ, a) defines a model of class γ. The quantity γ quantifies the sublinearity of
the correctors. We recall the periodic coefficients have bounded correctors, hence
the model parameter for periodic coefficients is γ = 0.

3.) Effective coefficients in the sense of optimal correctors. The definition can
also be used to define effective coefficients: The numbers ρ̄ and ā for which the
optimal growth rate in (2.7) is obtained are the effective coefficients in the sense of
optimal correctors.
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We emphasize that the two possible definitions of effective coefficients are closely
related. We will show in Lemma 4.4 the following: When the growth of (2.7) holds
for ρ̄ and ā and for a number γ′ < 1, then ρ̄ and ā are the effective coefficients in
the sense of averages of Definition 2.1.

Example 2.4 (The simplest stochastic medium). Let (aj)j∈Z and (ρj)j∈Z be i.i.d.
random variables, chosen with a uniform distribution in [1, 2]. We define a and ρ
by setting a(x) = aj and ρ(x) = ρj for x ∈ [j, j + 1). This defines a stochastic
model. The model class parameter of this model is γ = 1/2.

Let us sketch how to calculate the model parameter γ. For large y ∈ N, the
quantities Φ(y) and Ψ(y) of (2.5) are sums of y i.i.d. random variables with van-
ishing expected value. This means that the growth of the variance of Φ is given by
〈|Φ(y)|2〉 ∼ σ2y for some σ. We conclude that the expressions in (2.7) behave like
(we write the formulas for Φ and consider a large number r ∈ N):〈

−
∫ r

0

|Φ(y)|2 dy
〉
∼ 1

r

r∑
y=1

〈|Φ(y)|2〉 ∼ 1

r

r∑
y=1

σ2y ∼ 1

r

σ2

2
r2 =

σ2

2
r .

Therefore, for every γ′ > 1/2, the growth estimate of (2.7) holds; this implies
γ ≤ 1/2. The growth of Φ is also estimated from below by the above calculation,
and the calculations for Ψ are identical, hence γ = 1/2.

For media with growth parameter γ ∈ (1/2, 1) we refer to Appendix C.

Definition 2.5 (Homogenization time parameter β). Let ρ, a : R × ΩP → R
be stochastic coefficients and let β ∈ [0,∞) be a positive number. We say that
classical homogenization works with parameter β if the following holds: For any
f ∈ C2(R×R+,R) with compact support and any T0 > 0, the solutions uε of (2.3)
and ū of (2.4) satisfy

(2.10) lim
ε→0

sup
t∈[0,T0ε−β ]

〈
‖∂tuε(·, t)− ∂tū(·, t)‖L2(R)

〉
= 0 .

Loosely speaking: β ≥ 0 is the parameter such that classical stochastic homog-
enization works on time intervals [0, T0ε

−β].

We can now formulate our first main result.

Theorem 2.6 (Critical parameters). Let γ ∈ [0, 1] be a number such that a model
of that class exists. With the critical parameters

(2.11) β− :=
1− γ
1 + γ

, β+ :=
1− γ
γ

there holds:

(1) For β ∈ [0, β−): For all coefficients (ρ, a) of class γ, classical homogeniza-
tion works with parameter β.

(2) For β ∈ (β+,∞): There exist coefficients (ρ, a) of class γ such that classical
homogenization does not work with parameter β.

Remark 2.7 (The class of models with i.i.d. coefficients). We described the case of
i.i.d. coefficients in Example 2.4 and noted that it corresponds to γ = 1/2 and the
bounds. In this case, we have β− = (1/2)/(3/2) = 1/3 and β+ = 1. Accordingly,
Theorem 2.6 implies that, for all β ∈ [0, 1/3), classical homogenization is valid.
We emphasize that part (2) of Theorem 2.6 does not imply that there exists i.i.d.
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coefficients such that for β > 1 homogenization fails. It only ensures that there
exist a model of class γ = 1/2 such that homogenization fails.

However, as mentioned above, Theorem 5.1 provides a sharp threshold for i.i.d.
coefficients with matched impedance, ai ρi = 1 for all i ∈ Zd. The threshold is
β = β+ = 1.

Section 3 is devoted to the first claim of the theorem, the positive homogenization
result. Section 4 is devoted to the second claim of the theorem, the negative result.

2.3. The case of matched impedance. The main novelty of Theorem 2.6 is part
(2), which regards the failure of classical homogenization on sufficiently large time
spans. In the special class of media with matched impedance one can understand
well the mechanism of this failure. It is related to a large likelihood of a wrong
averaged wave speed on a considerable time span. We would like to mention that
we learned the techniques for matched impedance media from [13].

A medium with matched impedance is one for which the product ρ·a is a constant
function. Here, we assume that ρ(x, ω) · a(x, ω) = 1 holds for all x ∈ R and for
P-almost every ω ∈ ΩP .

In this section, we sketch the idea leading to negative results on homogenization
in the case of matched impedance. For precise statements and rigorous proofs, we
refer to Theorem 5.1 in Section 5. In addition, we provide in Theorem 5.1 a positive
homogenization results which is significantly stronger than part (1) of Theorem 2.6.

A stochastic medium with matched impedance. We consider coefficients a = a(x)
that are piecewise constant in the intervals, a(x) = aj for every x ∈ [j, j+ 1) =: Ij.
The numbers aj ∈ [Λ−1,Λ] are chosen as i.i.d. random variables. A possible choice
is to pick aj according to a uniform distribution from the interval [1, 2]. We set
ρj = 1/aj for every j and ρ(x) := ρj for all x ∈ Ij. The construction guarantees a
constant impedance, ρ · a = 1 on R.

Solutions of the wave equation. In this setting, there is an explicit formula for
solutions. Let g : R → R of class C2 be an arbitrary function with compact
support in R+. We define a function u as follows: For every x > 0, we set

(2.12) u(x, t) := g

(
x− j
aj
− t+

j−1∑
i=0

1

ai

)
for x ∈ Ij ,

using the convention
∑−1

i=0 ti := 0. We extend trivially by setting u(x, t) = 0 for
x < 0. We claim that u solves the wave equation.

Before we verify the claim, let us calculate the initial values of u. For x < 0,
there holds u(x, 0) = 0. For 0 ≤ x ∈ Ij, there holds x = j + h for some h ∈ [0, 1)

and u(x, 0) = g(h/aj +
∑j−1

i=0 (1/ai)). In particular, g does not coincide with the
initial values of u.

Let us now show that, independent of initial data, u solves the wave equation.
In the interior of the interval Ij, we can calculate classically

ρ∂2
t u(x, t)− a∂2

xu(x, t) = (ρj − aj/a
2
j︸ ︷︷ ︸

=1/aj=ρj

)g′′

(
x− j
aj
− t+

j−1∑
i=0

1

ai

)
= 0 .
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It remains to show continuity of u and of the fluxes a∂xu at the interfaces, i.e., in
x = j ∈ Z. Regarding continuity of u we calculate

lim
x↗j

u(x, t) = g

(
j − (j − 1)

aj−1

− t+

j−2∑
i=0

1

ai

)
= g

(
1

aj−1

− t+

j−2∑
i=0

1

ai

)
= lim

x↘j
u(x, t) .

We now verify the continuity of fluxes at x = j ∈ Z

lim
x↗j

a(x)∂xu(x, t) = g′

(
1

aj−1

− t+

j−2∑
i=0

1

ai

)
= lim

x↘j
a(x)∂xu(x, t) ,

where we exploited aj−1/aj−1 = 1 = aj/aj. We have verified that u is a solution of
the wave equation with coefficients a and ρ (see Appendix A for a integral repre-
sentation of solutions of the Cauchy-Problem in the case of matched impedance).

Homogenization. Let us now consider the rescaled coefficients aε = a(·/ε) and
ρε = ρ(·/ε). A solution uε of the wave equation is given by formula (2.12), which
is modified to

(2.13) uε(x, t) = g

(
x− εj
aj

− t+

j−1∑
i=0

ε

ai

)
for x ∈ [εj, ε(j + 1)).

We note that one can also express j in terms of x as j = bx/εc in order to have a
single formula for all x > 0.

The effective parameter ā is the harmonic average of aj, with our choices it is
given by a simple expectation, ā−1 = 〈1/aj〉 for any j ∈ Z. The effective parameter
ρ̄ is the arithmetic average of ρj, in our setting ρ̄ = 〈ρj〉 = 〈1/aj〉 = ā−1. We see
that the impedance of the effective medium is again 1 and that the effective speed
is c̄ = ā. The effective wave equation is

(2.14)
1

ā
∂2
t ū− ā ∂2

xū = 0 .

A solution to this equation is given, for x > 0, by

(2.15) ū(x, t) = g
(x
ā
− t
)
.

We claim that stochastic homogenization fails in this setting on time intervals
[0, T0ε

−β] when we choose β > 1. To see this, it suffices to compare uε of (2.13)
and ū of (2.15). This is sufficient since, for t in bounded time intervals, there holds
uε ≈ ū for small ε > 0 (and recall that rigorous results are presented in Section 5).

Calculating the distance. Let us assume that the support of g is contained in [0, 2],
that the maximal value of g is 1 and that this maximum is attained in the point
x = 1. The solution ū is a shift of the initial values, in this sense it is a wave that
travels with speed ā to the right. For every observation point x > 1, the peak
of the wave arrives at the time T̄ (x) at which the argument of g in (2.15) is 1,
i.e., T̄ (x) := −1 + (x/ā). In more mathematical terms: For x > 1, the function
ū(x, .) : [0,∞)→ R has its maximum at t = T̄ (x), the value in this maximum is 1.

We want to calculate the time instance T̄ε(x) at which the function uε(x, .) :
[0,∞) → R is maximal. The maximum of uε(x, .) is at the point T̄ε(x) for which
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the argument of g in (2.13) is 1, hence

(2.16) T̄ε(x) =
x− jε
aj

− 1 +

j−1∑
i=0

ε

ai
,

where j is such that x ∈ [εj, ε(j + 1)) holds, that is, j = bx/εc.
We are interested in the mismatch of the arrival times for the ε-solution and the

homogenized solution,

(2.17) ∆ε(x) := T̄ε(x)− T̄ (x) =
x− εbx/εc

aj
+

j−1∑
i=0

ε

ai
− x

ā
.

Let us consider a fixed grid point x = εj. At this point, the expected value of the
mismatch is

(2.18) 〈∆ε(x)〉 =

〈
−x
ā

+

j−1∑
i=0

ε

ai

〉
= εj

(
1

ā
−
〈

1

ai

〉)
= 0 .

This agrees with intuition, we expect that the wave arrives at the time that is
suggested by the homogenized equation.

For our analysis, it is not sufficient to calculate the averaged arrival time. Ho-
mogenization fails when, with a positive probability, we observe a wrong arrival
time in the stochastic medium. Let us therefore calculate the typical size of the
random variable ∆ε(x). For the calculation we use the quantity σ ≥ 0, defined
by the expectation σ2 :=

〈
|(1/ai)− (1/ā)|2

〉
for any i. The number σ > 0 is the

variance of the single entry in the sum. The independence of the random variables
ai allows to calculate, again for x = εj,

〈
|∆ε(x)|2

〉
=

〈∣∣∣∣∣εjā −
j−1∑
i=0

ε

ai

∣∣∣∣∣
2〉

= ε2

〈∣∣∣∣∣
j−1∑
i=0

1

ā
− 1

ai

∣∣∣∣∣
2〉

= ε2

〈
j−1∑
i=0

∣∣∣∣1ā − 1

ai

∣∣∣∣2
〉

= ε2j σ2 .

(2.19)

For β ≥ 0 and ε ∈ (0, 1
4
], we consider jε = bε−1−βc and xε = εjε. Clearly, we have

|xε| ≤ 2ε−β, jε ≥ 1
2
ε−1−β, and the arrival times of the pulse uε and the pulse ū

typically differ by the order

(2.20) |T̄ε(xε)− T̄ (xε)| = |∆ε(xε)| = O(
√
ε2jεσ2) ≥ O(σ

√
ε1−β) .

For β ≥ 1, this deviation is not small. We therefore expect that, typically, the
two waves arrive at x with an order 1 mismatch, which leads also to an order 1
mismatch between the two solutions of the wave equation. The calculation strongly
suggests that homogenization fails on the time scale ε−β for β ≥ 1.

We recall that rigorous result – positive and negative – are given in Section 5.

2.4. Remarks on higher dimensions. In Theorem 2.6, we provide two critical
parameters, β− and β+. The lower critical parameter, β− = β−(γ) = (1−γ)/(1+γ),
is related to positive homogenization results. It is derived in Section 3. The
techniques of that section are well-established and independent of the dimension.
It is possible to define a growth rate of correctors also in higher dimensions and to
derive, with similar methods as in Section 3, positive homogenization results until
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time-scales ε−β− , where β− depends on the growth rate. We mentioned that recent
advances in quantitative stochastic homogenization yield optimal estimates on the
growth of the correctors for large classes of random media, see e.g. [5, 14] and the
references therein.

The upper critical parameter β+ = β+(γ) = (1− γ)/γ is based on the construc-
tion of counter-examples. The counter-examples use either media with matched
impedance or media-adapted domain transformations. In any case: If one consid-
ers layered media in dimension d > 1, then the one-dimensional counter-examples
still provide examples where homogenization is not occuring. We mention that a
restriction to initial values with compact support would still require some work,
but we would not expect severe difficulties to the construction of counter-examples.

On the other hand, for stochastic media that exploit the full liberty of media
in higher dimension, we do not have any counter-examples and they cannot be
constructed easily following the ideas that are used in this contribution.

3. The lower critical parameter

In this section we derive estimates for the homogenization error and prove part
(1) of Theorem 2.6: uε ≈ ū when t is not too large.

Following a standard approach, we first compare the solution uε of (2.3) with
the two-scale expansion ū + Φε∂xū of the solution ū of (2.4). This comparison is
the aim of the subsequent lemma.

Lemma 3.1 (Energy estimate for the error). Let (ρ, a) be a model of class γ ∈ [0, 1)
with bounds given by Λ > 0. Then, for every γ′ > γ and every M ≥ 1, there exists
C = C(Λ, γ′,M) > 0 such that the following is true: Let f ∈ C2(R × R+) be
supported in [−M,M ] × [0,M ], for ε ∈ (0, 1] let uε and ū be the unique solutions
to (2.3) and (2.4), respectively, and let zε be defined as

(3.1) zε := uε − (ū+ Φε∂xū) .

For every T ≥ 1 holds

sup
t∈[0,T ]

〈Eε(t)〉 ≤ Cε2(1−γ′)T 2(1+γ′)‖f‖2
C2(R×R+) ,(3.2)

where

(3.3) Eε(t) :=
1

2

∫
R
ρε|∂tzε(x, t)|2 + aε|∂xzε(x, t)|2 dx .

Proof. The following argument closely follows [18, Lemma 3.3]. Clearly, it suffices
to prove the claim for M = 1. We therefore fix f ∈ C2(R × R+) with support in
[−1, 1]× [0, 1].

Step 1: Equation for zε. We claim that zε of (3.1) satisfies

(3.4) �εzε = ρεg
(1)
ε + ∂x(aεg

(2)
ε ) ,

where �ε is defined in (2.3) and the error functions are

(3.5) g(1)
ε := −(Φε − (ρ̄/ρε)Ψε)∂

2
t ∂xū , g(2)

ε := Φε∂
2
xū− (ρ̄/aε)Ψε∂

2
t ū .
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With the help of (2.3), (2.4) and (2.6) we compute

�εzε
(2.3)
= f −�ε(ū+ Φε∂xū)

(2.4)
= �̄ū−�ε(ū+ Φε∂xū)

= (ρ̄− ρε)∂2
t ū− ρεΦε∂

2
t ∂xū− ∂x((ā− aε(1 + ∂xΦε))∂xū− aεΦε∂

2
xū))

(2.6)
= (ρ̄− ρε)∂2

t ū− ρεΦε∂
2
t ∂xū+ ∂x(aεΦε∂

2
xū) .(3.6)

The first term on the right-hand side in (3.6) can be expressed with the help of Ψε,
defined in (2.5):

(ρ̄− ρε)∂2
t ū = −(ρ̄∂xΨε)∂

2
t ū = −ρ̄∂x(Ψε∂

2
t ū) + ρ̄Ψε∂x∂

2
t ū .

The claimed identity (3.4) follows.

Step 2: Energy estimate. We claim that

sup
t∈[0,T ]

〈Eε(t)〉 ≤ 8TΛ

∫ T

0

〈
‖g(1)

ε (·, s)‖2
L2(R))

〉
+
〈
‖∂tg(2)

ε (·, s)‖2
L2(R))

〉
ds

+ 8Λ sup
t∈[0,T ]

〈
‖g(2)

ε (·, t)‖2
L2(R))

〉
.(3.7)

The derivation of (3.7) follows with a standard procedure of the theory of the
linear wave equation: We multiply (3.4) with ∂tzε and integrate, for arbitrary
t ∈ [0, T ], over R × (0, t). Since zε satisfies homogeneous initial conditions, an
integration by parts allows to write the energy expression of (3.3) in the form

Eε(t) =

∫ t

0

∫
R
�εzε ∂tzε .

Equation (3.4) therefore yields, using again zε(·, 0) = 0,

Eε(t) =

∫ t

0

∫
R

[
ρεg

(1)
ε + ∂x(aεg

(2)
ε )
]
∂tzε

=

∫ t

0

∫
R

{
ρεg

(1)
ε ∂tzε + aε∂tg

(2)
ε ∂xzε

}
−
∫
R
aε(x)g(2)

ε (x, t)∂xzε(x, t) dx .(3.8)

Taking expectations and using ρε ≤ Λ, we estimate the first term on the right hand
side, for arbitrary t ∈ [0, T ]:〈∫ t

0

∫
R
ρεg

(1)
ε ∂tzε

〉
≤
∫ t

0

〈(∫
R
ρε(x)|g(1)

ε (x, s)|2 dx
)1/2(∫

R
ρε(x)|∂tzε(x, s)|2 dx

)1/2
〉
ds

≤
√

2Λ

∫ t

0

〈
‖g(1)

ε (·, s)‖2
L2(R)

〉 1
2 〈Eε(s)〉

1
2 ds

≤ 1

4
sup
s∈[0,T ]

〈Eε(s)〉+ 2TΛ

∫ T

0

〈
‖g(1)

ε (·, s)‖2
L2(R)

〉
ds ,
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where we use Youngs inequality in the last inequality. A similar calculation allows
to estimate the expectation of the second term on the right hand side of (3.8):〈∫ t

0

∫
R
aε∂tg

(2)
ε ∂xzε

〉
≤ 1

4
sup
s∈[0,T ]

〈Eε(s)〉+ 2TΛ

∫ T

0

〈
‖∂tg(2)

ε (·, s)‖2
L2(R)

〉
ds .

Regarding the last term in (3.8), we find, for every t ∈ [0, T ],〈∫
R
|aεg(2)

ε (x, t)∂xzε(x, t)| dx
〉
≤ 1

4
sup
s∈[0,T ]

〈Eε(s)〉+ 2Λ sup
s∈[0,T ]

〈
‖g(2)

ε (·, s)‖2
L2(R)

〉
.

Combining the last three displayed formulas with (3.8), we obtain (3.7).

Step 3: Estimating g
(1)
ε and g

(2)
ε . The solution ū of (2.4) can be expressed by the

following d’Alembert type representation formula with c =
√
ā/ρ̄:

(3.9) ū(x, t) =
1

2ρ̄

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s) dy ds .

This representation of ū allows to estimate the error functions. We claim that there
exists C = C(Λ) ∈ [1,∞) such that, for every t ∈ [0, T ],

Gε(t) :=
〈
‖g(1)

ε (·.t)‖2
L2(R))

〉
+
〈
‖∂tg(2)

ε (·, t)‖2
L2(R))

〉
+
〈
‖g(2)

ε (·, t)‖2
L2(R))

〉
≤ C‖f‖2

C2(R×R+)

∫
Ut

〈
|Φε|2 + |Ψε|2

〉
,(3.10)

where the domain of integration is, with c =
√
ā/ρ̄ as above,

(3.11) Ut := [−ct− (1 + c),−ct+ (1 + c)] ∪ [ct− (1 + c), ct+ (1 + c)] .

To show (3.10), we exploit formula (3.9). In combination with the assumption
supp f ⊂ [−1, 1] × [0, 1], the formula implies supp ū(·, t) ⊂ Ut. Additionally, for a
constant C = C(Λ) ∈ [1,∞), it yields bounds for ū:

‖∂2
t ∂xū‖∞ + ‖∂2

t ū‖∞ + ‖∂2
xū‖∞ + ‖∂3

t ū‖∞ + ‖∂t∂2
xū‖∞ ≤ C‖f‖C2(R×R+) ,(3.12)

where we use the shorthand notation ‖ · ‖∞ := ‖ · ‖L∞(R×R+).
Let us estimate the first term of Gε(t). Combining Fubini’s theorem with the

facts that ū is deterministic and ρ/ρε ≤ Λ2, we obtain〈
‖g(1)

ε (·, t)‖2
L2(R)

〉
=

∫
R

〈
|(Φε − (ρ̄/ρε)Ψε)∂

2
t ∂xū(·, t)|2

〉
≤ 2Λ4

∫
R

〈
|Φε|2 + |Ψε|2

〉
|∂2
t ∂xū(x, t)|2 dx

≤ 2Λ4‖∂2
t ∂xū‖2

L∞(R×R+)

∫
supp ū(·,t)

〈
|Φε|2 + |Ψε|2

〉
≤ C‖f‖2

C2(R×R+)

∫
Ut

〈
|Φε|2 + |Ψε|2

〉
,

where C = C(Λ) ∈ [1,∞). The terms involving g
(2)
ε and ∂tg

(2)
ε can be estimated

analogously, and the claimed estimate (3.10) follows.
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Step 4: Conclusion. Combining (3.7) and (3.10), we obtain with C = C(Λ)

sup
t∈[0,T ]

〈Eε(t)〉 ≤ C‖f‖2
C2(R×R+)T

∫ T

0

∫
Ut

〈
|Φε|2 + |Ψε|2

〉
+ C‖f‖2

C2(R×R+) sup
t∈[0,T ]

∫
Ut

〈
|Φε|2 + |Ψε|2

〉
.(3.13)

We begin by estimating the first term on the right-hand side of (3.13). For the set
Ut ⊂ [−cT − (c+ 1), cT + c+ 1] we use the characteristic function 1Ut , defined as
1Ut(x) = 1 if x ∈ Ut and 1Ut(x) = 0 otherwise. The definition of Ut implies, for
every x ∈ R, ∫

R
1Ut(x) dt ≤ 4

(
1 +

1

c

)
.

We can therefore calculate

T

∫ T

0

∫
Ut

〈
|Φε|2 + |Ψε|2

〉
= T

∫ T

0

∫ cT+c+1

−cT−(c+1)

〈
|Φε(x)|2 + |Ψε(x)|2

〉
1Ut(x) dx dt

≤ T

∫ cT+c+1

−cT−(c+1)

〈
|Φε(x)|2 + |Ψε(x)|2

〉 ∫
R
1Ut(x) dt dx

≤ 4

(
1 +

1

c

)
T

∫ cT+c+1

−cT−(c+1)

〈
|Φε(x)|2 + |Ψε(x)|2

〉
dx .

At this point we exploit the growth conditions (2.7). For every γ′ ∈ (γ, 1) there
exists C = C(γ′,Λ) ∈ [1,∞) such that, for ε ∈ (0, 1] and T ≥ 1,

T

∫ cT+c+1

−cT−(c+1)

〈
|Φε|2 + |Ψε|2

〉
≤ 4(c+ 1)T 2−

∫ 2(c+1)T

−2(c+1)T

〈
|Φε|2 + |Ψε|2

〉
= 4(c+ 1)T 2ε2−

∫ 2(c+1)T/ε

−2(c+1)T/ε

〈
|Φ|2 + |Ψ|2

〉
(2.7)

≤ CT 2ε2(T/ε)2γ′ .(3.14)

To estimate the second term on the right-hand side in (3.13), we use Ut ⊂ [−cT −
c− 1, cT + c+ 1] for all t ∈ [0, T ] and thus for γ′ ∈ (γ, 1)

sup
t∈[0,T ]

∫
Ut

〈
|Φε|2 + |Ψε|2

〉
≤
∫ cT+c+1

−cT−(c+1)

〈
|Φε|2 + |Ψε|2

〉 (3.14)

≤ CTε2(T/ε)2γ′ ,

where C = C(γ′,Λ) ∈ [1,∞). Inserting in (3.13) yields the claim (3.2). �

Lemma 3.1 allows to prove part (1) of Theorem 2.6. We repeat the desired
statement in the subsequent lemma.

Lemma 3.2. Let (ρ, a) be a model of class γ ∈ [0, 1). Then, for all β ∈ [0, 1−γ
1+γ

),

classical homogenization works with parameter β in the sense of Definition 2.5.

Proof. Because of 1−γ
1+γ

= 0 for γ = 1, it suffices to consider γ ∈ [0, 1). Let β ∈
[0, (1− γ)/(1 + γ)) be given and let f ∈ C2(R×R+) be supported in [−1, 1]× [0, 1].
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We study the solutions of (2.3) and (2.4), uε and ū. We want to show that, for
every T0 ≥ 1, there holds

lim
ε→0

sup
t∈(0,T0ε−β)

〈
‖∂t(uε(·, t)− ū(·, t))‖2

L2(R)

〉
= 0 .

By continuity, we find γ′ ∈ (γ, 1) such that β ∈ [0, 1−γ′
1+γ′

). The triangle inequality

together with Λ−1 ≤ ρε ≤ Λ yields〈
‖∂t(uε(·, t)− ū(·, t))‖2

L2(R)

〉
≤ 2Λ

(
〈Eε(t)〉+ Λ

〈
‖Φε∂t∂xū(·, t)‖2

L2(R)

〉)
,(3.15)

where Eε is defined in (3.3). We estimate the two terms on the right-hand side
separately. For the first term we use Lemma 3.1 with T = T0ε

−β and find a constant
C = C(γ′,Λ) ∈ [1,∞) such that, for every ε ∈ (0, 1],

sup
t∈(0,T0ε−β)

〈Eε(t)〉 ≤ Cε2(1−γ′)(T0ε
−β)2(1+γ′)‖f‖2

C2(R×R+)

= Cε2(1−β−γ′(1+β))T
2(1+γ′)
0 ‖f‖2

C2(R×R+) .

Hence, limε→0 supt∈(0,T ε−β)〈Eε(t)〉 = 0 follows from 1− β − γ′(1 + β) > 0.

It remains to find bounds for the term 〈‖Φε∂t∂xū(·, t)‖2
L2(R)〉. We use computa-

tions that are similar to those of Step 3 and Step 4 in the proof of Lemma 3.1. In
particular, we use that by the explicit expression (3.9) of the homogenized solution
ū in terms of f , which provides

‖∂t∂xū‖L∞(R×R+) ≤ C‖f‖C2(R×R+) and suppu(·, t) ⊂ Ut ,

where C = C(Λ) ∈ [1,∞) and the set Ut is defined in (3.11). For every t ∈ [0, T ]
we have Ut ⊂ [−cT − c− 1, cT + c+ 1] and thus〈

‖Φε∂t∂xū(·, t)‖2
L2(R)

〉
=

∫
R

〈
|Φε|2

〉
|∂t∂xū(·, t)|2

≤ C‖f‖2
C2(R×R+)

∫
supp(ū(·,t))

〈
|Φε|2

〉
≤ C‖f‖2

C2(R×R+)

∫ 2(c+1)T

−2(c+1)T

〈
|Φε|2

〉
(3.14)

≤ C̃Tε2(T/ε)2γ′ ,

where C̃ = C̃(γ′,Λ) ∈ [1,∞). Hence, for every ε ∈ (0, 1] and T = T0ε
−β,

sup
t∈(0,T0ε−β)

〈
‖Φε∂t∂xū(·, t)‖2

L2(R)

〉
≤C̃ε2(1−γ′)−β(1+2γ′)T 1−2γ′

0 ‖f‖C2(R×R+) .

The right-hand side converges to zero as ε→ 0 provided that 2(1−γ′)−β(1+2γ′) >

0, which is satisfied by the assumption β < 1−γ′
1+γ′

. �

4. The upper critical parameter

This section is devoted to counter-examples to stochastic homogenization of the
wave equation. We want to show that a model-independent homogenization result
cannot hold when correctors are growing fastly.

The construction will be based on a coordinate transformation that is given by
a diffeomorphism F : R → R. We compare the wave equation in the original and
in the new coordinates. We show that, when the original model defined a model of
class γ, also the coefficients in the new coordinates define a model of class γ.
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In Subsection 4.2 we use a diffeomorphism F that is given by a corrector. The
growth properties of F imply that homogenization cannot take place for both
models, the original model and the transformed model. This provides the coun-
terexample.

4.1. The wave equation in new coordinates. In this section, we use a general
diffeomorphism F : R → R to define new coordinates. We always assume that F
is of class C1 and strictly monotonically increasing with a positive lower bound for
the derivative.

Given F , we construct also a rescaled map: We set Fε(x) := εF (x/ε) such that
∂xFε(x) = ∂yF (x/ε). The coordinate transformation z = Fε(x) is equivalent to
z/ε = F (x/ε) and hence equivalent to x/ε = F−1(z/ε).

Coefficients are always scaled without any multiplication with ε. For coefficients
in new coordinates we have, e.g.,

(ρ ◦ F−1)ε(z) := (ρ ◦ F−1)(z/ε) = ρ(x/ε) = ρε(x) = ρε ◦ F−1
ε (z) .

We next calculate the wave equation in the new coordinates (z, t).

Lemma 4.1 (Transformed wave equation). Let F : R → R be a diffeomorphism.
We consider new spatial coordinates in the form z = Fε(x) := εF (x/ε). Let uε be
a solution of the wave equation (2.3) with coefficients ρε and aε. In the coordinates
(z, t) we consider the new function vε := uε ◦ F−1

ε . We can this as

vε ◦ Fε = uε or vε(z) = uε(x) for z = Fε(x) .

We use the transformed coefficients

(4.1) ρ̃ := (ρ/∂yF ) ◦ F−1 , ã := (a ∂yF ) ◦ F−1 ,

which provides after ε-dilation the formulas ρ̃ε(z) = ρ̃(z/ε) = (ρε/∂xFε)(F
−1
ε (z))

and ãε(z) = ã(z/ε) = (aε∂xFε)(F
−1
ε (z)). Regarding the right hand side, we define

f̃ε(z) := (f/∂xFε)(F
−1
ε (z)). Then the equation for vε = vε(z, t) reads

(4.2) ρ̃ε(z)∂2
t v

ε(z)− ∂z(ãε(z)∂zv
ε(z)) = f̃ε(z) ,

where we suppressed the argument t.

Proof. We have to transform the terms of (2.3). In the subsequent calculations,
we always suppress the argument t. The spatial arguments are always related by
z = Fε(x). For the first term of (2.3) we find

ρε(x) ∂2
t u

ε(x) = ρε(x) ∂2
t v

ε(z) = ρ̃ε(z) ∂2
t v

ε(z) ∂xFε(F
−1
ε (z)) .

The elliptic term of (2.3) reads

∂x (aε∂xu
ε) (x) = ∂x (aε ∂x[v

ε ◦ Fε]) (x)

= ∂x (aε(x) ∂zv
ε(Fε(x)) ∂xFε(x))

= ∂x (ãε(Fε(x)) ∂zv
ε(Fε(x)) )

= ∂z (ãε(z)∂zv
ε(z)) ∂xFε(F

−1
ε (z)) .

The right hand side of (2.3) is f . When we divide the re-written equation (2.3) by
∂xFε(x) = ∂xFε(F

−1
ε (z)), we obtain (4.2). �
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Remark 4.2 (Two problem adapted diffeomorphisms). For two particular choices
of F , the transformation yields a wave equation (4.2) that has one constant coeffi-
cient. We use the correctors Φ and Ψ of (2.5).

Harmonic coordinates: Let the transformation be given by F (y) := y+Φ(y). We
observe that ∂yF = 1 + ∂yΦ = ā/a > 0. With this choice of F , we obtain aε∂xFε =
ā. The transformed system then has the coefficients ρ̃ε(z) = (ρεaε/ā)(F−1

ε (z)) and
ãε(z) = ā for all z ∈ R.

Coordinates for the density: With the choice F (y) := y + Ψ(y) we have ∂yF =
1 + ∂yΨ = ρ/ρ̄ > 0. We find ρ̄ ∂xFε = ρε. The transformed system has the
coefficients ρ̃ε(z) = ρ̄ and ãε(z) = (aερε/ρ̄)(F−1

ε (z)) for all z ∈ R.

Let us now evaluate the homogenized coefficients in the new coordinates. In-
terestingly, independent of the choice of the transformation F , the homogenized
coefficients remain unchanged.

The subsequent lemma derives this fact, but it contains also an additional result
about the order of the transformed system. We find that, when the original system
has the order γ, then the system in the new coordinates has also the order γ.

Lemma 4.3 (Properties of the transformed model). Let (ρ, a) be a stochastic model
of class γ ∈ [0, 1]. Let F : R × ΩP → R be a random family of diffeomorphisms
F (., ω) : R → R. We assume that c0 ≤ ∂yF (y, ω) ≤ C0 holds for two constants
0 < c0 < C0, for all ω ∈ ΩP and all y with |y| ≥ 1. We furthermore assume that,
for every γ′ > γ, there exists C such that

(4.3)

〈
−
∫ r

0

|F (y, .)− y|2 dy
〉
≤ C(1 + |r|γ′)2

for all r ∈ R. We consider the transformed coefficients ρ̃ := (ρ/∂yF ) ◦ F−1 and
ã := (a∂yF ) ◦ F−1. Then there holds:

(1) The transformed model (ρ̃, ã) is again of class γ.
(2) The effective coefficients in the sense of optimal correctors are identical for

the original and for the transformed model.
(3) In the case γ < 1, the effective coefficients in the sense of averages are

unchanged in the sense that

lim
|r|→∞

〈
−
∫ r

0

−
∫ y

0

ρ̃(s) ds dy

〉
= ρ̄ = lim

|r|→∞

〈
−
∫ r

0

−
∫ y

0

ρ(s) ds dy

〉
(4.4)

lim
|r|→∞

〈
−
∫ r

0

−
∫ y

0

1/ã(s) ds dy

〉−1

= ā = lim
|r|→∞

〈
−
∫ r

0

−
∫ y

0

1/a(s) ds dy

〉−1

.(4.5)

Proof. Step 1: L2-norm in transformed coordinates. The upper and lower bounds
C0 and c0 on the growth of F imply that L2-norms in transformed coordinates
are equivalent to L2-norms in original coordinates. More precisely, for any L2-
function g : R → R and any integration bounds 0 < r < R, there holds, with the
substitution p = F (s),

(4.6)

∫ R

r

|g ◦ F |2(s) ds =

∫ F (R)

F (r)

|g(p)|2 |∂yF (F−1(p))|−1 dp ≤ c−1
0

∫ C0R

c0r

|g(p)|2 .

A similar calculation can be performed for a lower bound and for the inverse trans-
formation.
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Step 2: Assertions 1. and 2. The main point is that the transformed system is of
class γ, but the subsequent calculation provides also that the effective coefficients
are not changed. We consider a parameter γ′ > γ such that, for effective coefficients
ρ̄ and ā, the corresponding correctors of the original model satisfy the growth
estimate with γ′. We define the corrector Ψ̃ with the transformed coefficient ρ̃ and
the same number ρ̄. We calculate, with the change of coordinates p = F (s) in the
second line,

Ψ̃(y) :=

∫ y

0

{
ρ̃(p)

ρ̄
− 1

}
dp =

1

ρ̄

∫ y

0

(ρ/∂yF )(F−1(p)) dp− y

=
1

ρ̄

∫ F−1(y)

0

ρ(s) ds− y

=

∫ F−1(y)

0

{
ρ(s)

ρ̄
− 1

}
ds+

(
F−1(y)− y

)
= Ψ(F−1(y)) +

(
F−1(y)− y

)
.

We now exploit that, for some C > 0 and all r > 0, the growth estimate holds for
the original model: 〈−

∫ r
0
|Ψ(y)|2 dy〉 ≤ C(1 + |r|γ′)2. Evaluating the corresponding

expression for the first term of Ψ̃(y), we get〈
−
∫ r

0

|Ψ(F−1(y))|2 dy
〉
≤ C

〈
−
∫ C0r

0

|Ψ(y)|2 dy
〉
≤ C(1 + |r|γ′)2 .

Regarding the second term we obtain with Jensens inequality∣∣∣∣〈−∫ r

0

(F−1(y)− y) dy

〉∣∣∣∣2 ≤ 〈−∫ r

0

|F−1(y)− y|2 dy
〉

≤ C

〈
−
∫ C0r

0

|s− F (s)|2 ds
〉
≤ C(1 + |r|γ′)2 ,

where we used (4.3) in the last inequality. We conclude

(4.7)

〈
−
∫ r

0

|Ψ̃(y)|2 dy
〉
≤ C(1 + |r|γ′)2

and thus the claim for Ψ̃. The same calculation can be performed for Φ. Since
γ′ > γ was arbitrary, we conclude that the transformed model has an order not
greater than γ.

Since the argument can be also used in the opposite direction, we also know
that the class γ of the original problem is less than or equal to the class of the
transformed system. This shows that the two classes actually coincide. Since we
have used the numbers ρ̄ and ā of the original model in the calculation, we have
obtained also the second assertion.

Step 3: Effective coefficients in the sense of averages. The subsequent lemma
provides Assertion 3. Loosely speaking, the lemma shows that, for γ < 1, the
effective coefficients in the sense of averages coincide with the effective coefficients
in the sense of optimal correctors. �

Lemma 4.4 (On the two definitions of effective coefficients). Let (ρ, a) be a sto-
chastic model of class γ ∈ [0, 1). Let ρ̄, ā ∈ R be such that the corresponding
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correctors have the following property: For every γ′ > γ there is C > 0 such that,
for all r ∈ R,

(4.8)

〈
−
∫ r

0

|Φ(y)|2 dy
〉

+

〈
−
∫ r

0

|Ψ(y)|2 dy
〉
≤ C(1 + |r|γ′)2 .

Then the effective coefficients in the sense of averages are well-defined and coincide
with ρ̄ and ā.

Proof. We perform all calculations for ρ and Ψ, the calculations for a and Φ are
analogous. Furthermore, we can restrict ourselves to r > 0, the calculations for
negative r are identical. Because of γ < 1 we can furthermore assume γ′ < 1. Our
goal is to study the expression

ρ∗ := lim
r→∞

〈
−
∫ r

0

−
∫ y

0

ρ(s) ds dy

〉
= lim

r→∞

〈
−
∫ r

0

ρ̄

y
(Ψ(y) + y) dy

〉
= ρ̄ + lim

r→∞

〈
−
∫ r

0

ρ̄

y
Ψ(y) dy

〉
.

The lemma is proven when we show that the limit in the last line exists and that
it vanishes.

With this aim, we use a dyadic decomposition of the integral. For a large number
r, we select the natural number K with r ∈ (2K−1, 2K ]. With constants C that
depends only on the upper bound of ρ, we calculate for the squared absolute value
with Jensen’s inequality∣∣∣∣〈−∫ r

0

1

y
Ψ(y) dy

〉∣∣∣∣2 ≤
〈
−
∫ r

0

∣∣∣∣1yΨ(y)

∣∣∣∣2 dy
〉
≤ C

r
+

1

r

〈∫ 2K

1

∣∣∣∣1yΨ(y)

∣∣∣∣2 dy
〉

≤ C
1

2K−1
+

1

2K−1

K∑
k=1

∣∣∣∣ 1

2k−1

∣∣∣∣2
〈∫ 2k

2k−1

|Ψ(y)|2 dy

〉
.

Using estimate (4.8) with r = 2k we find, with the constant C changing in the last
inequality,〈∫ 2k

2k−1

|Ψ(y)|2 dy

〉
≤ 2k

〈
−
∫ 2k

0

|Ψ(y)|2 dy

〉
≤ 2k C (1 + |2k|γ′)2 ≤ C 2k(1+2γ′) .

Inserting above we obtain∣∣∣∣〈−∫ r

0

1

y
Ψ(y) dy

〉∣∣∣∣2 ≤ C 2−K + C 2−K
K∑
k=1

2−2k 2k(1+2γ′)

≤ C 2−K + C 2−K
K∑
k=1

2k(2γ′−1) .

For γ′ ≤ 1/2, this tends obviously to zero for K →∞. For γ′ ∈ (1/2, 1), the second
expression can be estimated by

2−K
K∑
k=1

2k(2γ′−1) ≤ C 2−K2K(2γ′−1) ≤ C 2K(2γ′−2) ,

which tends to zero because of γ′ < 1. This shows ρ∗ = ρ̄ and hence the claim. �
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4.2. Failure of stochastic homogenization. We claim that stochastic homog-
enization must fail on large time scales. The principle approch to the proof can
be described as follows. We fix a model class parameter γ and fix a parameter β
beyond the critical threshold β+. Let us assume that homogenization works with
the parameter β. We consider a model (ρ, a) of class γ. Then, for any γ′ > γ,
a change of coordinates provides a new model (ρ̃, ã) that satisfies the corrector
estimates with parameter γ′, hence the new model is again of class γ. Then both
models, the old one, (ρ, a), and the new one, (ρ̃, ã), allow homogenization. On the
other hand, the coordinate transformation has a growth that is essentially γ, and
this fact yields a contradiction to the fact that the ε-solutions of both models are
close to the homogenized solution (and hence close to each other).

Proposition 4.5 (Upper critical parameter). Let γ ∈ (0, 1) be such that a model
with this model class parameter exists. Then

β+ :=
1− γ
γ

is an upper critical parameter in the sense of Theorem 2.6: For any β ∈ (β+,∞)
there are coefficients (ρ, a) of class γ such that classical homogenization does not
work with parameter β.

Proof. Step 0: Preparation. We perform a proof by contradiction. We assume
that, for some β > β+, classical homogenization works with parameter β for all
coefficients (ρ, a) of class γ. From now on we consider γ and β > β+ as fixed
and wish to derive a contradiction. Because of β > β+ we can choose a number
0 < γ̃ < γ such that γ̃ (1 + β) > 1.

We furthermore choose a model (ρ, a) of class γ. The contradiction will be
derived from the fact that homogenization cannot work simultaniously for (ρ, a)
and the transformed model (ρ̃, ã).

In the proof, we fix some function f , consider rescaled stochastic coefficients
ρε(x) = ρ(x/ε) and aε(x) = a(x/ε), and study the solution uε of the wave equation
(1.1) for fε = f . Another object is the solution ū of the effective wave equation

(4.9) ρ̄∂2
t ū− ā∂2

xū = f .

Since, by assumption, classical homogenization works for the parameter β, we know
that uε − ū→ 0 holds in the sense of (2.10): For every T0 > 0, as ε→ 0,

(4.10) sup
t∈(0,T0ε−β)

〈
‖∂tuε(., t)− ∂tū(., t)‖L2(R)

〉
→ 0 .

Step 1: The limit solution. Let us first make a choice for the right hand side
f . We choose a smooth non-negative function f with support in [−1, 1] × [0, 1]
which satisfies f > 0 on [−3/4, 3/4] × [1/4, 3/4]. The generalized d’Alembert
representation formula in one space dimension allows to write the solution ū with
the help of integrals over f . With c2 = ā/ρ̄ and initial data u0 = u1 = 0, the limit
solution reads

(4.11) ū(x, t) =
1

2cρ̄

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(x′, s) dx′ ds .

The formula implies that, for every time instance t > 0, the function ū(., t) has its
support in [−ct−(1+c),−ct+(1+c)]∪ [ct−(1+c), ct+(1+c)]. The function ū(., t)
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is positive in the point x = ct, and non-negative everywhere. Loosely speaking, ū
is a combination of two wave pulses, both positive, one located at x = ct and the
other located at x = −ct.

Step 2: Model class γ. Since (ρ, a) is of class γ, the parameter γ̃ is below
the infimum over admissible growth rates, γ̃ < γ = inf Γsc; this implies that,
considering the constants Ck = k ∈ N,

(4.12) ∃r = rk ∈ R :

〈
−
∫ r

0

|Φ(y)|2 dy
〉

+

〈
−
∫ r

0

|Ψ(y)|2 dy
〉
> Ck(1 + |r|γ̃)2 .

We can choose a subsequence k → ∞ such that either Φ is the critical quantity
along the sequence or Ψ is the critical quantity along the sequence. Since the
argument for Φ is analogous, we assume from now on that Ψ is the critical quantity
and that, for r = rk,

(4.13)

〈
−
∫ r

0

|Ψ(y)|2 dy
〉
> Ck(1 + |r|γ̃)2 .

For every k, we choose rk to be the smallest r with this property. For large k, there
must hold r = rk ≥ 2, so we always assume this lower bound in the following.

We claim that, for every k, there exists a critical point yk ∈ [rk/2, rk] such that
the expectation is large,

(4.14)
〈
|Ψ(yk)|2

〉
> Ck(1 + |yk|γ̃)2 .

Indeed, assuming that (4.14) fails to hold and exploiting that r was chosen minimal
in (4.13), we can calculate∫ r

0

〈
|Ψ(y)|2

〉
dy =

∫ r/2

0

〈
|Ψ(y)|2

〉
dy +

∫ r

r/2

〈
|Ψ(y)|2

〉
dy

≤ r

2
Ck(1 + |r/2|γ̃)2 +

r

2
Ck(1 + |r|γ̃)2 ≤ r Ck(1 + |r|γ̃)2 ,

in contradiction to (4.13).
We choose the transformation F := id + Ψ. Inequality (4.14) reads then

(4.15)
〈
|F (yk)− yk|2

〉
> Ck(1 + |yk|γ̃)2 .

In this sense, the coordinate transformation produces large errors at some points.

Let us now exploit in another way that the model class is γ. For every γ′ > γ
there exists a constant C such that

(4.16)

〈
−
∫ r

0

|F (y, .)− y|2 dy
〉

=

〈
−
∫ r

0

|Ψ(y)|2 dy
〉
≤ C(1 + |r|γ′)2

for all r ∈ R. Property (4.16) verifies one of the assumptions on F in Lemma 4.3.
The other assumption, 0 < c0 ≤ F (y, ω)/y ≤ C0, follows from the fact that

∂yF (y) = 1 + ∂yΨ(y) =
ρ(y)

ρ̄
∈
[
mρ

ρ̄
,
Mρ

ρ̄

]
,(4.17)

and similarly in the case that ∂yF (y) = 1 + ∂yΦ(y).

Step 3: Transformation of the equation. We recall that the model (ρ, a) and the
coordinate change F are fixed. We use the transformation of Lemma 4.1. The func-
tion vε is defined by vε◦Fε = uε, the new coefficients are ρ̃ε(z) := (ρε/∂xFε)(F

−1
ε (z))
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and ãε(z) := (aε∂xFε)(F
−1
ε (z)), the new sources are f̃ε(z) := (f/∂xFε)(F

−1
ε (z)).

The transformed equation is given by (4.2),

(4.18) ρ̃ε(z)∂2
t v

ε(z)− ∂z(ãε(z)vε(z)) = f̃ε(z) .

Because of (4.16) with arbitrary γ′ > γ, Lemma 4.3 yields that ρ̃ and ã define
again a model of class γ and that the homogenized system is again given by ρ̄ and
ā. By our assumption, classical homogenization works with parameter β also for
the coefficients (ρ̃, ã). This implies that the solutions v̂ε of

ρ̃ε∂
2
t v̂

ε − ∂z(ãεv̂ε) = f

with zero initial conditions satisfy, as ε→ 0,

(4.19) sup
t∈(0,T0ε−β)

〈
‖∂tv̂ε(·, t)− ∂tū(·, t)‖L2(R)

〉
→ 0 ,

just as uε in (4.10).

Step 4: Only a small error is introduced by changing from f̃ε to f . This step is
slightly technical. We have to show that it is not relevant if we consider the solution
vε of (4.18) or the solution v̂ε of (4.2). To show this, we study the difference
wε := vε − v̂ε with the aim to derive

(4.20) sup
t∈(0,T0ε−β)

〈
‖∂twε‖L2(R)

〉
→ 0

as ε→ 0. Together with (4.19), this implies

(4.21) sup
t∈(0,T0ε−β)

〈
‖∂tvε(·, t)− ∂tū(·, t)‖L2(R)

〉
→ 0 .

To derive (4.20), we start from the equation for wε,

�εw
ε = f̃ε − f =: gε .

In view of Lemma B.1, it suffices to show for the space integrals Gε(x, t, ω) =∫ x
0
gε(s, t, ω) ds the convergence

(4.22) sup
t≥0

∫
R

〈
|Gε(·, t)|2

〉
+
〈
|∂tGε(·, t)|2

〉
dx→ 0

as ε → 0. We compute for x > 0 and suppress the argument t after the first
equality,∫

R
〈|Gε(·, t)|2〉 =

〈∫
R

∣∣∣∣∫ x

0

f̃ε − f ds
∣∣∣∣2 dx

〉

=

〈∫
R

∣∣∣∣∣
∫ F−1

ε (x)

0

f(s) ds−
∫ x

0

f(s) ds

∣∣∣∣∣
2

dx

〉
=

〈∫
R

∣∣∣∣∣
∫ F−1

ε (x)

x

f(s) ds

∣∣∣∣∣
2

dx

〉

=

〈∫
R

∣∣∣∣∫ x

Fε(x)

f(s) ds

∣∣∣∣2 ∂xFε dx
〉
.

We consider the case F (y) = y + Ψ(y). Equation (4.17) together with F (0) = 0
imply the deterministic lower bound |Fε(x)| ≥ mρ

ρ̄
|x| for all x ∈ R and ω ∈ ΩP .



22 Bounds for the time horizon in stochastic homogenization

Hence, supp f(·, t) ⊂ [−1, 1] implies that∣∣∣∣∫ x

Fε(x)

f(s) ds

∣∣∣∣ = 0 for every x with |x| ≥ 1 + mρ
ρ̄
.

We therefore obtain with R := 1 + mρ
ρ̄

,∫
R

〈
|Gε(·, t)|2

〉
=

〈∫ R

−R

∣∣∣∣∫ x

Fε(x)

f(s) ds

∣∣∣∣2 ∂xFε dx
〉

≤ Mρ

ρ̄
‖f‖2

L∞

〈∫ R

−R
|Ψε(x)|2 dx

〉
=
Mρ

ρ̄
‖f‖2

L∞ε
3

∫ R/ε

−R/ε
〈|Ψ|2〉

=
2RMρ

ρ̄
‖f‖2

L∞ε
2 −
∫ R/ε

−R/ε
〈|Ψ|2〉 → 0

as ε → 0. In the convergence of the last line we exploited the sublinear growth
of Ψ (compare, e.g., (4.16), and note that we can choose γ < γ′ < 1). The time
derivative of Gε in (4.22) is treated with the same calculation, replacing f by ∂tf .

Step 5: Derivation of a contradiction. The remainder of this proof uses the
following observation: By the error estimates (4.10) and (4.21), uε and vε are close
to each other. This is in contradiction with the definition of vε through vε◦Fε = uε

and the large deviation (4.15) of the transformation at the points yk.
Let us turn to the details of the argument. In Step 2 of this proof, we have

constructed a sequence of points yk such that 〈|F (yk) − yk|2〉 > k(1 + |yk|γ̃)2,
see (4.15). Since F remains bounded on bounded sets by the upper bound on
|∂yF |, we know that necessarily |yk| → ∞. Given the sequence yk, we choose the

sequence εk := |yk|−1/(1+β). The choice is made such that ε1+β
k |yk| = 1, and hence

εk|yk| = ε−βk . Upon choosing a subsequence, we can assume that all points yk have
the same sign; without loss of generality we assume that the sign is positive. We
consider the rescaled points xk := εkyk = ε−βk and the time instances tk := xk/c

with c =
√
ā/ρ̄ as introduced above.

The overall picture is that the functions uε ≈ ū = v̄ ≈ vε must all have a pulse
at position xk at time tk. Let us quantify this statement. Writing short ε = εk, the
triangle inequality and ū = v̄ yield

‖∂tū(., tk)− ∂t(ū ◦ Fε)(., tk)‖L2(R) ≤ ‖∂tū(., tk)− ∂tuε(., tk)‖L2(R)

+ ‖∂tuε(., tk)− ∂tvε(Fε(.), tk)‖L2(R) + ‖∂tvε(Fε(.), tk)− ∂t(v̄ ◦ Fε)(., tk)‖L2(R) .

(4.23)

The second term on the right hand was introduced to make the calculation clear;
it vanishes identically. Taking expectations, (4.10) provides convergence to 0 as
k →∞ for the first term on the right hand side. In the third term we can exploit
the upper and lower bounds c0 and C0 on the growth of F . Such bounds imply that
the L2-norm in transformed coordinates is equivalent to the original coordinates
in the sense of (4.6). This allows to estimate the third term by C‖∂tvε(., tk) −
∂tv̄(., tk)‖L2(R), which vanishes after taking expectations in the limit ε → 0 by
(4.21). Altogether, we obtain from (4.23) for the expected value

(4.24) 〈‖∂tū(., tk)− ∂t(ū ◦ Fε)(., tk)‖L2(R)〉 → 0 .
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We want to lead (4.24) to a contradiction with the fact that the function ∂tū(., tk)
has non-trivial values in a neighborhood of xk, but vanishing values at positive
points that are more than O(1) away from xk.

The transformation satisfies 〈|F (yk)−yk|2〉 > k|yk|2γ̃ by (4.15). Given this lower
bound for the expected value, there necessarily exists a subset Ω1 ⊂ ΩP of events
with positive measure, P(Ω1) = p1 > 0 such that |F (yk, ω)− yk|2 > k|yk|2γ̃ for all
ω ∈ Ω1.

We calculate the mismatch in ε-rescaled variables, writing again short ε instead
of εk. Because of xk := εyk, Fε(xk) = εF (yk), and ε := |yk|−1/(1+β), we find, for
ω ∈ Ω1,

(4.25) |Fε(xk, ω)− xk| = ε|F (yk, ω)− yk| ≥ ε
√
k |yk|γ̃ =

√
k ε1−γ̃(1+β) .

We had chosen γ̃ in Step 0 such that γ̃(1 + β) > 1. Because of this choice, the
exponent in the last expression of (4.25) is negative, which means that the mismatch
|Fε(xk, ω)− xk| is arbitrarily large.

This provides a contradiction with (4.24). For every ω ∈ Ω1, the function
∂tū(., tk) has its support (on the positive axis) around the point xk. On the other
hand, ∂t(ū◦Fε)(., tk) vanishes around around the point xk because of (4.25). Being
a fixed positive quantity on a set with positive measure, and boing non-negative
everywhere, the expectation of the norm in (4.24) cannot vanish in the limit. We
have found the desired contradiction. �

5. Sharp homogenization results for matched impedance

Let us introduce a stochastic medium with matched impedance. As in Sec-
tion 2.3, we focus on the situations of i.i.d. coefficients, extensions to correlated
coefficients are possible. Fix Λ > 1 and let a : Z × ΩP → [Λ−1,Λ] be such that
the random variables (aj)j∈Z with aj := a(j, ·) are i.i.d.. We define the random
coefficients ρ, a : R× ΩP → [Λ−1,Λ] by

a(x, ω) := aj(ω), ρ(x, ω) :=
1

aj(ω)
for x ∈ [j, j + 1) .

The rescaled coefficients are aε := a(·/ε) and ρε := ρ(·/ε).

Theorem 5.1 (Critical parameter for media with matched impedance). Let the
stochastic medium (ρ, a) be as described above. Then ε−1 is the critical time horizon
for classical homogenization in the following sense:

(1) Let β > 1 and T0 > 0 be two numbers. Let f : R× [0,∞)→ R be supported
on [−1, 1] × (0, 1) with the property that the corresponding homogenized
solution does not have compact support. Then the solution uε of (2.3) and
the solution ū of (2.4) satisfy

(5.1) lim sup
ε→0

sup
t∈(0,T0ε−β)

〈
‖∂tuε(., t)− ∂tū(., t)‖L2(R)

〉
> 0 .

(2) Let 0 ≤ β < 1 and T0 > 0 be two numbers. Let f : R × [0,∞) → R be
smooth and supported on [−1, 1]×(0, 1). Then the solutions uε and ū satisfy

(5.2) lim sup
ε→0

sup
t∈(0,T0ε−β)

〈
‖∂tuε(., t)− ∂tū(., t)‖L2(R)

〉
= 0 .
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Proof of part (1) of Theorem 5.1. The underlying idea of the proof is to use the
exact solutions to the homogeneous wave equation with piecewise constant coeffi-
cients of (2.13). We recall that a matched impedance is needed in order to have
explicit solution in that form.

We allow here not only a right-going wave (with shape function g), but addi-
tionally a left-going wave (with shape function h). For times t > 1, the function
uε solves a wave equation with vanishing right hand side. This allows to express
uε with g and h. Writing vε instead of uε for times t > 1, and allowing that g and
h depend also on ε, an adaption of formula (2.13) reads

(5.3) vε(x, t) := gε

(
x− εj
cj

− t+

j−1∑
i=0

ε

ci

)
+ hε

(
x− εj
cj

+ t+

j−1∑
i=0

ε

ci

)
for x ∈ [εj, ε(j + 1)). On the other hand, a comparable solution v̄ of the homoge-
nized equation with ρ̄ and c̄ = ā reads, compare (2.15):

(5.4) v̄(x, t) := ḡ
(x
c̄
− t
)

+ h̄
(x
c̄

+ t
)
.

When we include also left-going waves, we do not only have that vε and v̄ are
solutions to the corresponding homogeneous wave equations, but, moreover, every
solution of the one-dimensional wave equation can be written with appropriate gε,
hε, ḡ, and h̄ in the above form.

Our proof relies on two observations. (i) For appropriate g- and h-functions,
there holds, for t > 1: uε = vε and ū = v̄ with gε ≈ ḡ and hε ≈ h̄. (ii) For large
times, solutions vε and v̄ have their main wave pulses at very distant points. This
implies (5.1).

Step 0: Preparation. We fix the right hand side f with support on [−1, 1]×(0, 1)
as in the Theorem and β > 1. We perform a proof with a contradiction argument
and assume that convergence holds in (5.1), i.e., as ε→ 0,

(5.5) sup
t∈(0,T0ε−β)

〈
‖∂tuε(., t)− ∂tū(., t)‖L2(R)

〉
→ 0 .

Step 1: Representation of uε and ū. The function ū = ū(x, t) is a solution of
a homogeneous wave equation with coefficients c̄ for t > 1. We can therefore, for
appropriate functions ḡ and h̄, write ū in the form of (5.4): ū(x, t) = v̄(x, t) for
t > 1 for v̄ as in (5.4). This defines ḡ and h̄. Note that ḡ 6= 0 or h̄ 6= 0 holds by
assumption on f .

For fixed ε > 0, we can also use a representation formula for uε. As a solution
of a homogeneous wave equation with coefficients ρε and aε for t > 1, there exist
functions gε : R→ R and hε : R→ R such that uε has the form of (5.3), uε(x, t) =
vε(x, t) for t > 1 for vε as in (5.3). This defines gε and hε.

By finite speed of propagation, all functions g and h have support in some interval
[−M,M ], where M depends on the support of f and the bounds for the coefficients
in the equations.

The convergence (5.5) implies, for fixed t ≥ 1,

(5.6)
〈
‖∂tuε(., t)− ∂tū(., t)‖L2(R)

〉
→ 0 .

Suppressing the arguments of the functions, which are as in (5.3) and (5.4), this is
a convergence 〈

‖∂ξgε − ∂ξhε − ∂ξḡ + ∂ξh̄‖L2(R)

〉
→ 0 .
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For a sufficiently large time instance t, the functions gε and ḡ are non-vanishing
only for x > 0, and the functions hε and h̄ are non-vanishing only for x < 0. We
therefore conclude the convergence

(5.7)
〈
‖∂ξgε − ∂ξḡ‖L2(R)

〉
+
〈
‖∂ξhε − ∂ξh̄‖L2(R)

〉
→ 0 .

Step 2: The two solutions to inhomogeneous problems. From now on, we consider
only large times t > TM > 1, where the lower bound TM is determined by M .
Additionally, we consider only positive positions x > 0. Choosing TM large enough,
in the representation formulas, only the contributions of gε and ḡ appear.

We introduce a new function, wε. The function is defined as in the rule (5.3),
but with the shape function ḡ:

(5.8) wε(x, t) := ḡ

(
x− εj
cj

− t+

j−1∑
i=0

ε

ci

)
.

The subsequent calculation uses first a triangle inequality and then the conver-
gence (5.7) for the first term and the convergence (5.5) for the second term:

sup
t∈(TM ,T0ε−β)

〈
‖∂twε(., t)− ∂tv̄(., t)‖L2(R+)

〉
(5.9)

≤ sup
t∈(TM ,T0ε−β)

〈
‖∂twε(., t)− ∂tvε(., t)‖L2(R+)

〉
+ sup

t∈(TM ,T0ε−β)

〈
‖∂tvε(., t)− ∂tv̄(., t)‖L2(R+)

〉
→ 0 .

Step 3: Deviation of wε and v̄. We will now verify that (5.9) leads to a con-
tradiction. We can assume that ḡ 6= 0 is satisfied, otherwise we switch to x < 0
and consider h instead of g. Since ḡ has support in ξ ∈ [−M,M ], the functions
ū(., t) = v̄(., t) and ∂tū(., t) = ∂tv̄(., t) have support in x ∈ [c̄ t−M, c̄ t+M ].

Fix an arbitrary T1 ∈ (0, T0) and consider the sequence of time instances t :=
tε := T1ε

−β. We claim that there exists an event Ω1 ⊂ ΩP with P(Ω1) > 0, such
that

(5.10) supp (∂tw
ε(., t;ω)) ∩ [c̄ t−M, c̄ t+M ] = ∅

for every ω ∈ Ω1. Loosely speaking: With a positive probability, the pulse of wε is
not approximately moving with speed c̄.

Using the claim, we can conclude the proof: Since the ‖∂tv̄(., t)‖L2(R+) is a pos-
itive quantity for every t > 1, (5.10) yields a contradiction to (5.9). This contra-
diction implies that (5.1) is true.

Step 4: Verification of the claim. The corresponding calculation was performed
before, see (2.19) with the resulting mismatch of arrival times (2.20). When the
mismatch exceeds CM for sufficiently large C > 0, then (5.10) holds. �

Proof of part (2) of Theorem 5.1. Let f be as in the statement and let uε and ū
be corresponding solutions. It suffices to show the statement (5.2) with ∂tu

ε and
∂tū replaced by uε and ū. Indeed, since f is smooth and ρε, aε are independent
of time, the time derivatives ∂tu

ε and ∂tū are again solutions for a wave equation
with trivial initial data and the result for values can be applied to derivatives.
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Step 1: Homogenization for finite time. For every fixed T0 > 0, we find C =
C(T0,Λ, f) <∞ with

(5.11) sup
t∈(0,T0]

〈
‖uε(·, t)− ū(·, t)‖2

L2(R) + ‖∂tuε(·, t)− ∂tū(·, t)‖2
L2(R)

〉
≤ Cε .

The statement is classical and we display a proof relying on Lemma 3.2 for com-
pleteness. Setting ā := 〈a−1

0 〉−1 and ρ̄ := 〈a−1
0 〉, we deduce from a = ρ−1, the

definitions of Φ and Ψ of (2.5), and the scaled correctors Ψε(x) = εΨ(x/ε) and
Φε(x) = εΦ(x/ε) that

Ψ(y) = Φ(y) =

∫ y

0

ā

a(s)
− 1 ds and Ψε(x) = Φε(x) =

∫ x

0

ā

aε(ξ)
− 1 dξ .

We claim that there exists C = C(Λ) such that

(5.12) 〈|Φε(x)|2〉 = 〈|Ψε(x)|2〉 ≤ Cε(|x|+ ε) .

In order to show the claim, we consider in the following, without loss of generality,
only points x > 0. We can estimate expected values with the function bpc :=
sup{z ∈ Z | z ≤ p} as

〈
|Φε(x)|2

〉
≤ ε2

〈∣∣∣∣∫ bx/εc
0

ā

a(s)
− 1 ds

∣∣∣∣2〉+ ε2

〈∣∣∣∣∫ x/ε

bx/εc

1

a(s)
− 1

ā
ds

∣∣∣∣2〉

≤ ε2

〈∣∣∣∣bx/εc−1∑
i=0

ā

ai
− 1

∣∣∣∣2〉+ ε2Λ2

≤ ε2

(
(x/ε)

〈(
ā

a0

− 1

)2
〉

+ Λ2

)
,

where we use in the last inequality the fact that the (ai)i∈Z are i.i.d., in particular,〈(
ā

ai
− 1

)(
ā

aj
− 1

)〉
=

〈(
ā

ai
− 1

)〉〈(
ā

aj
− 1

)〉
= 0 ∀i 6= j .

This shows the claim, estimate (5.12) for Φε and, hence, also for Ψε.

Inserting (5.12) into (3.13), we obtain

sup
t∈[0,T ]

〈Eε(t)〉 ≤ Cε ,

where C = C(Λ, f, T ) and Eε is given in (3.3). Inserting the above estimate and
(5.12) into (3.15), we deduce

sup
t∈(0,T0]

〈
‖∂tuε(·, t)− ∂tū(·, t)‖2

L2(R)

〉
≤ Cε

for some C = C(Λ, T0, f). The remaining estimate for uε(·, t) − ū(·, t) follows by
integrating in time, exploiting that uε and ū have trivial initial conditions.

Step 2: The two solutions of the inhomogeneous problem. We use the function
Fε(x) =

∫ x
0
aε(s)

−1 ds, which defines harmonic coordinates (note that we use our
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particular sign convention for integrals when x is negative). Lemma A.1 allows, for
t ≥ 2, to represent the solutions:

uε(x, t) =
1

2
(gε(Fε(x)− (t− 2)) + gε(Fε(x) + (t− 2))) +

1

2

∫ Fε(x)+(t−2)

Fε(x)−(t−2)

hε(y) dy ,

ū(x, t) =
1

2
(ḡ(x

ā
− (t− 2)) + ḡ(x

ā
+ (t− 2))) +

1

2

∫ x
ā

+t−2

x
ā
−t−2

h̄(y) dy ,

where gε, hε and ḡ, h̄ are given by the relations

uε(x, 2) = gε(Fε(x)), ∂tu
ε(x, 2) = hε(Fε(x))

and

ū(x, 2) = ḡ

(
x

ā

)
, ∂tū(x, 2) = h̄

(
x

ā

)
.

We will later use several properties of the functions uε, ū and the representing
functions gε, ḡ and hε, h̄. The smoothness of f implies that there exists L = L(Λ, f)
such that

(5.13) ‖∂xū(·, 2)‖∞ + ‖∂x∂tū(·, 2)‖∞ + ‖ḡ′‖∞ + ‖h̄′‖∞ ≤ L .

Moreover, there exists M = M(Λ) such that

(5.14) ∀x ∈ R \ (−M,M) : |∂tuε(x, 2)|+ |∂tū(x, 2)|+ |∂tū(āFε(x))| = 0 ,

where we use for the last term on the right-hand side Λ−1x ≤ Fε(x) ≤ Λx.

Step 3: Estimate for the error term Iε. We will work with several triangle
inequalities to estimate uε − ū. One of the differences that appears is

Iε(x, t) := gε
(
Fε(x)− (t− 2)

)
− ḡ
(
x

ā
− (t− 2)

)
.

We claim that, for all β < 1, there holds

(5.15) lim
ε→0

sup
t∈[2,T0ε−β ]

〈∫
R
|Iε(x, t)|2 dx

〉
= 0 .

We use the triangle inequality to split Iε into two other terms and write

(5.16) |Iε(x, t)| ≤ |I(1)
ε (x, t)|+ |I(2)

ε (x, t)|
with

I(1)
ε (x, t) := gε(Fε(x)− (t− 2))− ḡ(Fε(x)− (t− 2)) ,

I(2)
ε (x, t) := ḡ(Fε(x)− (t− 2))− ḡ(x

ā
− (t− 2)) .

We begin with the term I
(2)
ε . Using that ḡ has support in (−M,M), the estimates

‖ḡ′‖L∞(Rd) ≤ L <∞ and Λ−1|x| ≤ |Fε(x)| ≤ Λ|x|, we obtain〈∫
R
|I(2)
ε (x, t)|2 dx

〉
≤ L2

∫ t−2+ΛM

t−2−ΛM

〈∣∣∣∣Fε(x)− x

ā

∣∣∣∣2〉 dx
=
L2

ā

∫ t−2+ΛM

t−2−ΛM

〈
|Φε(x)|2

〉
dx ≤ Cε(t+ 1) ,

where we used (5.12) in the last step and a constant C = C(Λ, f) <∞.
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We now estimate the term involving I
(1)
ε . A change of variables with y =

F−1
ε (Fε(x) − (t − 2)) and, accordingly, dy = (F−1

ε )′(Fε(x) − (t − 2))F ′ε(x) dx with
pre-factor (F−1

ε )′(Fε(x)− (t− 2))F ′ε(x) ≥ Λ−2 allows to calculate〈∫
R
|I(1)
ε (x, t)|2 dx

〉
≤ Λ2

〈∫
R
|gε(Fε(y))− ḡ(Fε(y))|2 dy

〉
≤ 2Λ2

(〈∫
R
|uε(y, 2)− ū(y, 2)|2 dy

〉
+

〈∫
R
|I(2)
ε (x, 2)|2 dx

〉)
,(5.17)

where we use triangle inequality and the definition of gε and ḡ in the second in-
equality.

We can now combine (5.17) and (5.11) (with T0 = 2). We obtain, for some
C = C(f,Λ) <∞ and arbitrary t > 2:〈∫

R
|Iε(x, t)|2 dx

〉
≤ Cε(1 + t) .

With this estimate, we have shown the claim of (5.15).

Step 4: Estimate for the error term Jε. We now consider the term

(5.18) Jε(x, t) :=

∫ Fε(s)+(t−2)

Fε(x)−(t−2)

hε(y) dy −
∫ x

ā
+(t−2)

x
ā
−(t−2)

h̄(y) dy .

We claim that this term satisfies

(5.19) ∀T0 > 0, β < 1 : lim
ε→0

sup
t∈[2,T0ε−β ]

〈∫
R
|Jε(x, t)|2 dx

〉
= 0 .

We start the proof by writing

Jε(x, t) =
3∑

k=1

J (k)
ε (x, t)

with

J (1)
ε (x, t) :=

∫ Fε(x)+(t−2)

Fε(x)−(t−2)

hε(y)− ∂tū(F−1
ε (y), 2) dy ,

J (2)
ε (x, t) :=

∫ Fε(x)+(t−2)

Fε(x)−(t−2)

∂tū(F−1
ε (y), 2)− ∂tū(āy, 2) dy ,

J (3)
ε (x, t) :=

∫ Fε(x)+(t−2)

Fε(x)−(t−2)

∂tū(āy, 2) dy −
∫ x

ā
+(t−2)

x
ā
−(t−2)

h̄(y) dy .

Recalling hε(y) = ∂tu
ε(z, 2) for z = F−1

ε (y), we obtain, using the corresponding
substitution in the first equality,〈∫

R
|J (1)
ε (x, t)|2 dx

〉
=

〈∫
R

∣∣∣∣ ∫ F−1
ε (Fε(x)+(t−2))

F−1
ε (Fε(x)−(t−2))

(∂tu
ε(z, 2)− ∂tū(z, 2))F ′ε(z) dz

∣∣∣∣2 dx〉
(5.14)

≤ Λ2

〈∫
Uε(t)

∣∣∣∣∫ M

−M
|∂tuε(z, 2)− ∂tū(z, 2)| dz

∣∣∣∣2 dx〉 ,
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where the outer domain of integration is

Uε(t) := {x ∈ R | (F−1
ε (Fε(x)− (t− 2)), F−1

ε (Fε(x) + (t− 2))) ∩ (−M,M) 6= ∅}
and where we used ‖F ′ε‖∞ ≤ Λ.

Because of Fε(0) = 0 and ‖F ′ε‖L∞ , ‖(F−1
ε )′‖L∞ ≤ Λ, we obtain Uε(t) ⊂ U(t)

for some deterministic U(t) satisfying |U(t)| = C(1 + t) for some C = C(Λ). We
therefore find C = C(Λ, f) such that, changing the constant from one line to the
next, 〈∫

R
|J (1)
ε (x, t)|2 dx

〉
≤ C(1 + t)

〈∫
R
|∂tuε(z, 2)− ∂tū(z, 2)|2 dz

〉
(5.11)

≤ C(1 + t)ε .(5.20)

In order to estimate the term involving J
(2)
ε , we substitute again z = F−1

ε (y)
with dy = F ′ε(z) dz = 1

aε(z)
dz and obtain〈∫

R
|J (2)
ε (x, t)|2 dx

〉
=

〈∫
R

∣∣∣∣ ∫ F−1
ε (Fε(x)+(t−2))

F−1
ε (Fε(x)−(t−2))

∂tū(z, 2)− ∂tū(āFε(z), 2)

aε(z)
dz

∣∣∣∣2 dx〉
(5.14)

≤ Λ2

〈∫
Uε(t)

∣∣∣∣ ∫ M

−M
|∂tū(z, 2)− ∂tū(āFε(z), 2)| dz

∣∣∣∣2 dx〉 ,
where Uε(t) ⊂ U(t) with |U(t)| ≤ C(1 + t) are as above. The Cauchy-Schwarz
inequality implies〈∫

R
|J (2)
ε (x, t)|2 dx

〉
≤ Λ2|U(t)|

〈∫ M

−M
|∂tū(z, 2)− ∂tū(āFε(z), 2)|2 dz

〉
≤ C(1 + t)‖∂x∂tū‖2

∞

∫ M

−M
〈|z − āFε(z)|2〉 dz ,

where C = C(Λ). We use the equality |z − āFε(z)| = |Φε(z)| to conclude from
(5.12) and ‖∂x∂tū‖∞ ≤ C(Λ, f), that

(5.21)

〈∫
R
|J (2)
ε (x, t)|2 dx

〉
≤ C(1 + t)ε

for some C = C(Λ, f). It remains to estimate the term involving J
(3)
ε . We observe

that ∂tū(āy, 2) = h̄(y) and thus

|J (3)
ε (x, t)| ≤ 2‖h‖∞

∣∣∣Fε(x)− x

ā

∣∣∣ = 2‖h‖∞|Φε(x)|/ā

for all x ∈ R. Furthermore, J
(3)
ε (x, t) = 0 holds unless

(Fε(x)− (t− 2), Fε(x) + (t− 2)) ∩ (−M,M) 6= ∅ or(x
ā
− (t− 2),

x

ā
+ (t− 2)

)
∩ (−M,M) 6= ∅ .

Arguing similar to the case of J
(2)
ε we deduce with help of (5.12)

(5.22)

〈∫
R
|J (3)
ε (x, t)|2 dx

〉
≤ C(1 + t)ε

for some C = C(Λ, f). Combining (5.20)–(5.22), we obtain (5.19), and have there-
fore shown the claim for Jε.
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The estimate for Iε from Step 3 together with the estimate for Jε from Step 4
provide the estimate for uε − ū and hence the theorem. �

Appendix A. Representation of matched impedance solutions

We state and prove a d’Alambert-type representation formula for solutions of the
initial-value problem with matched impedance. We use this formula in the proof
of Theorem 5.1.

Lemma A.1. For Λ ≥ 1, let a, ρ : R → [Λ−1,Λ] be coefficients such that aρ = 1
holds almost everywhere. We use the function F (x) :=

∫ x
0

(a(s))−1 ds (with the
standard sign convention for integrals). Then, for arbitrary g, h ∈ L∞(R) with
compact support, the unique solution u of the wave equation

ρ∂2
t u− ∂x(a∂xu) = 0 with u(·, 0) = g ◦ F, ∂tu(·, 0) = h ◦ F

is given by

(A.1) u(x, t) =
1

2
(g(F (x)− t) + g(F (x) + t)) +

1

2

∫ F (x)+t

F (x)−t
h(y) dy .

Proof. Uniqueness of the solution is known, the attainment of the initial values is
easily checked. We only have to show that the expression in (A.1) solves the wave
equation. We compute

∂2
t u(x, t) =

1

2

(
g′′(F (x)− t) + g′′(F (x) + t) + h′(F (x) + t)− h′(F (x)− t)

)
.

Using F ′(x) = 1/a(x), we obtain for the first spatial derivative of u

a(x) ∂xu(x, t) =
1

2

(
g′(F (x)− t) + g′(F (x) + t) + h(F (x) + t)− h(F (x)− t)

)
.

Taking another spatial derivative, the chain rule yields

∂x (a(x)∂xu(x, t)) =
1

a(x)
∂2
t u(x, t) .

Because of ρ = 1/a, we have found that u solves the wave equation. �

Appendix B. A small right hand side in the wave equation

In this section, we formulate and prove a technical lemma which is used in the
proof of Proposition 4.5.

Lemma B.1. Let L ≥ 1 be a bound for the support of functions. We consider,
for every ε > 0, a function gε : R × R+ × ΩP → R such that gε(·, ω) is supported
in [−L,L] × [0, L] for every ω ∈ ΩP . We furthermore assume that the quantity
Gε(x, t, ω) :=

∫ x
0
gε(s, t, ω) ds satisfies

lim
ε→0

sup
t≥0

∫
R

〈
|Gε(·, t)|2

〉
+
〈
|∂tGε(·, t)|2

〉
dx = 0 .

Then, for every M ∈ [1,∞) and every sequence of coefficients aε, ρε : R×ΩP → R
satisfying aε, ρε ∈ [1/M,M ] for all ε > 0, the sequence of solutions wε of

(B.1) �εw
ε := ρε∂

2
tw

ε − ∂x(aε∂xwε) = gε , with wε(·, 0) = ∂tw
ε(·, 0) = 0
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satisfies

(B.2) lim
ε↘0

sup
t≥0

〈
‖∂twε(·, t)‖2

L2(R)

〉
= 0 .

Proof. Throughout the proof we denote by Eε(t) the energy of wε(·, t) that is

Eε(t) :=
1

2

∫
R
ρε|∂twε(·, t)|2 + aε|∂xwε(·, t)|2 .

The definition of Gε imply that wε solves the equation

�εw
ε = ∂xGε .

Now we can apply the same (standard) testing procedure as in Step 2 of the proof
of Lemma 3.1. By multiplying the above equation with ∂tw

ε and integrating, we
obtain (with help of integration by parts)

Eε(t) =

∫ t

0

∫
R
(∂xGε)∂tw

ε =

∫ t

0

∫
R
(∂tGε)∂xw

ε −
∫
R
Gε(·, t)∂twε(·, t) .

As in Step 2 of the proof of Lemma 3.1, we deduce from the above identity that

sup
t∈[0,T ]

〈Eε(t)〉 ≤ CT

∫ T

0

∫
R
〈|∂tGε|2〉+ C sup

t∈[0,T ]

∫
R
〈|Gε(·, t)|2〉 ,

where C = C(M) > 0. Recall that gε and thus Gε is supported in time in [0, L]
and thus we obtain by sending T →∞

sup
t≥0

Eε(t) ≤ C(L2 + 1) sup
t≥0

(

∫
R

〈
|∂tGε(·, t)|2

〉
+
〈
|Gε(·, t)|2

〉
dx→ 0 as ε→ 0 ,

which completes the proof. �

Appendix C. Media with γ ∈ (1/2, 1)

Our standard random medium has identically distributed independent values of
ρ and a, which results in a model parameter γ = 1

2
(growth of correctors). When

the values of ρ (or a) are not independent in the different cells, but have a positive
correlation, then every value of γ in the interval (1

2
, 1) can occur. This is what we

show in this section with a construction from [6].
For simplicity, we consider media with constant ρ, say ρ ≡ 1, and random a.

An extension to more general models, in particular models (a, ρ) of class γ ∈ (1
2
, 1)

with matched impedance (ρa ≡ 1) is straightforward. Let us emphasize that the
following construction and computations are essentially contained in [6], where
precise 1D elliptic homogenization results in correlated media are proven.

For a given probability space (ΩP ,A,P) let {g(x) |x ∈ R} be a stationary Gauss-
ian process. We suppose that, for every x ∈ R, the random variable g(x, ·) : ΩP →
R has zero mean and variance one, 〈g(x)〉 = 0 and 〈g(x)2〉 = 1 for every x. More-
over, we suppose that the autocorrelation function

Rg(t) := 〈g(x)g(x+ t)〉
satisfies, for some exponent α ∈ (0, 1) and some factor κg > 0,

(C.1) Rg(t) ∼ κgt
−α as t→∞ , which is defined as: lim

t→∞
tαRg(t) = κg .

Our aim is to define coefficients a : R× ΩP → R that satisfy uniform bounds. We
will define them by truncating the Gaussian variable g(x). We fix a nonlinear map
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T : R → R satisfying |T (x)| ≤ 1
2

and T (x) = −T (−x) for all x ∈ R. Possible

choices are T = 1
2
sgn or T = 1

4
arctan. We consider the random field

ϕ(x, ω) := T (g(x, ω)).

The following properties of ϕ are proven in [6, Proposition 2.2]:

Lemma C.1 (see [6]). Let α ∈ (0, 1) be a number and let T , g, and ϕ be as above.
Then ϕ defines a stationary random process with 〈ϕ(x)〉 = 0 and 〈ϕ(x)2〉 = V2 for
all x ∈ R. The autocorrelation function of ϕ, given by R(τ) := 〈ϕ(x)ϕ(x + τ)〉,
satisfies

(C.2) R(τ) ∼ κgV1τ
−α as τ →∞ .

The two constants are

V1 = (2π)−
1
2

∫
R
gT (g) exp(−g2/2) dg , V2 = (2π)−

1
2

∫
R
T 2(g) exp(−g2/2) dg .

We are now in a position to construct, for every γ ∈ (1
2
, 1), a model of class γ.

Corollary C.2. Let γ be a number in the interval (1
2
, 1). We choose the parameter

α := 2(1 − γ) ∈ (0, 1) and consider g and ϕ as in Lemma C.1. Then (ρ, a) with
ρ ≡ 1 and a : R× ΩP → R given by

a(x, ω) :=
1

1 + ϕ(x, ω)

defines a model of class γ.

Proof. By construction, we have |ϕ| ≤ 1
2

and thus 2
3
≤ a ≤ 2 on R×ΩP . Moreover,

we have 〈
1

a(x)

〉
= 1 + 〈ϕ(x)〉 = 1 ,

and thus ā = 1, see (2.1). Accordingly, the corrector Φ of (2.5) is given by

Φ(y) =

∫ y

0

{
ā

a(s)
− 1

}
ds =

∫ y

0

ϕ(s) ds .

The choice ρ ≡ 1 yields ρ̄ = 1 and Ψ ≡ 0. In order to show that (a, ρ) defines a
model of class γ = 1− α

2
it suffices to show the following two statements (compare

(2.7)):

(C.3) ∀γ′ > 1− α

2
: lim sup

r→∞

1

r2γ′

〈
−
∫ r

0

|Φ(y)|2 dy
〉

= 0

and

∀γ′ < 1− α

2
: lim inf

r→∞

1

r2γ′

〈
−
∫ r

0

|Φ(y)|2 dy
〉

= +∞ .(C.4)
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We show (C.3), the computations for (C.4) are similar. As a preparation, we
re-write a double integral with the substitution rule:∫ y

0

∫ y

0

ϕ(s)ϕ(t) dt ds =

∫ y

0

∫ y

s

ϕ(s)ϕ(t) dt ds+

∫ y

0

∫ s

0

ϕ(s)ϕ(t) dt ds

=

∫ y

0

∫ y−s

0

ϕ(s)ϕ(s+ τ) dτ ds+

∫ y

0

∫ y−t

0

ϕ(t+ τ)ϕ(t) dτ dt

= 2

∫ y

0

∫ y−s

0

ϕ(s)ϕ(s+ τ) dτ ds .

Using this formula and the autocorrelation function R(τ) := 〈ϕ(s)ϕ(s + τ)〉, we
find〈

−
∫ r

0

|Φ(y)|2 dy
〉

=

〈
−
∫ r

0

∣∣∣∣∫ y

0

ϕ(s) ds

∣∣∣∣2 dy〉 =

〈
−
∫ r

0

∫ y

0

∫ y

0

ϕ(s)ϕ(t) dt ds dy

〉
= 2−
∫ r

0

∫ y

0

∫ y−t

0

R(τ) dτ dt dy .

Combining (C.2) and |R(τ)| = |〈ϕ(x)ϕ(x+ τ)〉| ≤ 1
4

(which follows from |ϕ| ≤ 1
2
),

we obtain the existence of a constant C > 0 such that R ≤ C on [0, 1] and
|R(τ)| ≤ Cτ−α on [1,∞). This allows to calculate the expression of (C.3):

1

r2γ′

〈
−
∫ r

0

|Φ(y)|2 dy
〉

=
2

r2γ′
−
∫ r

0

∫ y

0

∫ y−t

0

R(τ) dτ dt dy

≤ 2C

r2γ′
−
∫ r

0

∫ y

0

(∫ min{y−t,1}

0

dτ +

∫ y−t

min{y−t,1}
τ−α dτ

)
dt dy

≤ 2C

r2γ′
−
∫ r

0

∫ y

0

1 +
(y − t)1−α

1− α
dt dy

=
2C

r2γ′
−
∫ r

0

y +
1

(1− α)(2− α)
y2−α dy

≤ 2C

r2γ′

(
r +

1

(1− α)(2− α)
r2−α

)
.

This implies (C.3) because of 2γ′ > 2− α > 1.
As noted above, the computations for (C.4) are analogous. This shows that the

model class is indeed γ. �
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