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Abstract: Nanofiltration is well suited to separate monovalent ions from multivalent ions, such as the
separation of Li+ and Mg2+ from seawater, a potential lithium source for the production of lithium-ion
batteries. To the best of our knowledge, there is no existing work on the optimization of a multi-stage
membrane plant that differentiates between different ions and that is based on a validated transport
model. This study presents a method for modeling predefined membrane interconnections using
discretization along the membrane length and across the membrane thickness. The solution-diffusion–
electromigration model was used as the transport model in a fundamental membrane flowsheet,
and the model was employed to optimize a given flowsheet with a flexible objective function. The
methodology was evaluated for three distinct separation tasks, and optimized operating points were
found. These show that permeances and feed concentrations might cause negative rejections and
positive rejections (especially for bivalent ions) depending on the ions’ properties and fluxes, thereby
allowing for a favorable separation between the ions of different valence at optimized conditions.
In an application-based case study for the separation of Li+ and Mg2+ from seawater, the method
showed that under optimal conditions, the mol-based ratio of Mg2+/Li+ can be reduced from 2383 to
2.8 in three membrane stages.

Keywords: membrane separation; solution-diffusion–electromigration; process design; modeling;
optimization; ion permeances; lithium; magnesium

1. Introduction

Nanofiltration allows separating monovalent ions from multivalent ions. Hence,
nanofiltration might be applied to the separation of Li+ and Mg2+ ions from seawater.
This is of interest since seawater is by far the largest source (~230 billion tons) for these
ions on Earth [1,2]. In the fabrication steps of lithium-ion batteries, the ratio of Mg2+/Li+

should be as low as possible to minimize the use of sodium carbonate to precipitate
Mg2+ [3]. However, the mass-based Mg2+/Li+ ratio in seawater is about 8500 [4]. Thus,
a suitable separation process is necessary to achieve much lower ratios. At ratios below
6, the purification steps from the conventional lithium purification method can be
combined with membrane separation [5,6]. Through coupling with the increasingly
relevant reverse osmosis systems, nanofiltration can represent a promising process to
separate Li+ and Mg2+ ions from seawater and other aqueous sources such as salt lakes.
Such complex hybrid processes require optimized designs provided by reliable trans-
port models that are predictive or, at least, extrapolative. However, to the best of our
knowledge, a purely predictive physical model does not exist for nanofiltration. This
is probably due to the particularly complex interaction behavior caused by different
phenomena and interactions between charged solutes and the membrane. In addition
to size exclusion, the Donnan effect and the dielectric exclusion effect play a role in elec-
trolyte separation [7]. The Donnan effect is caused by the mostly negative charge on the
membrane surface, which leads to an electric potential difference (the so-called Donnan

Processes 2023, 11, 2355. https://doi.org/10.3390/pr11082355 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11082355
https://doi.org/10.3390/pr11082355
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-4682-5094
https://orcid.org/0000-0001-8975-3313
https://orcid.org/0000-0003-1074-177X
https://doi.org/10.3390/pr11082355
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11082355?type=check_update&version=1


Processes 2023, 11, 2355 2 of 19

potential) at the membrane–feed interface. Thus, the counter ions are rejected due to
electrostatic repulsion. Concomitantly, to maintain the solution’s electroneutrality, the
co-ion is repelled [8]. Dielectric exclusion occurs because the dielectric constant in the
bulk solution differs from that in the membrane pores. Mirror charges induced by this
difference lead to a higher rejection, especially for divalent ions [9]. Nevertheless, there
are models to describe aqueous nanofiltration, such as the Spiegler–Kedem transport
model [10], Teorrell–Meyer–Sievers model [11] and the Donnan–steric-pore–dielectric
exclusion model (DSPM-DE) [12]. The latter has been applied for different nanofiltration
applications, such as the separation of NaCl /Na2SO4 [13], the purification of amine
solutions [14], and the prediction of rejection of various single salt solutions [15]. Wang
and Lin [16] stated that the DSPM-DE model requires excessive experiments and lacks
in prediction performance. The different models in nanofiltration were summarized
recently in the works of Bandini and Boi [17] and Yaroshchuk et al. [18]. These mod-
els require a set of parameters to characterize the nanopores (if present). In contrast,
Yaroshchuk et al. [18–20] introduced the so-called solution-diffusion–electromigration
model (SDEM) which is based on the assumption of virtual solutions, defined to be
in thermodynamic equilibrium with an infinitely small volume of the membrane. It
is an extension of the classical solution-diffusion model and assumes that there is no
convective coupling between transmembrane volume flux and solute transport. Con-
sequently, only one phenomenological parameter, the ion permeance, is required by
the SDEM to describe the ion transport within a membrane. These ion permeances
also account for the important relation between different transmembrane ion fluxes via
spontaneously arising electric field. Unlike the Spiegler–Kedem and solution diffusion
model, it is also possible to accurately model low and negative rejections. A detailed
description of the derivation of the model as well as application examples can be found
in the works of Yaroshchuk et al. [19,20]. Recently, research groups have started to apply
the SDEM [21,22], e.g., Labastida and Yaroshchuk [21] used the SDEM model to fit ion
permeances to experimental data obtained by a rotating disk-like membrane in order
to study the effect of concentration polarization. Recently, the model was extended by
López et al. [22], who also considered the formation of the MgSO4 ion pairs resulting
from an equilibrium dissociation reaction and determined a permeance for the ion pair
species as well. However, the relationship between ion rejection and permeate flux was
not significantly affected by this extension of the model.

Besides the above-described local flux models, an optimization model for multistage
membrane separation is required to design complex membrane plants. Several works with
different levels of complexity exist in the literature on the optimized design of membrane
plants, especially for reverse osmosis. While some works even consider the hydrodynamics
in the membrane cell [23], most of the published works treat mass transfer in a very
simplified way [24]. Skiborowski et al. [24] developed a superstructure to optimize a
reverse osmosis process by simultaneously considering the operating parameters and
process structure. However, the presence of different ions or of an electric field in the
membrane were not accounted for in the applied solution-diffusion model. Furthermore,
Kotb et al. [25] optimized various arrangements of a reverse osmosis plant by minimizing
total cost per volume flow of permeate. In addition to the simplified solution-diffusion
model (SDM) with one parameter for salt and one for water, the concentration polarization
was also taken into account using film theory [25]. A multi-objective optimization for
membrane networks in seawater desalination was proposed by Du et al. [23]. They mainly
evaluated pressure loss in the membrane module as well as the process economics by
suggesting different energy recovery options.

The literature on optimization and designs of nanofiltration processes is scarce. Garg
and Joshi [26] performed an optimization and techno-economic analysis for nanofiltration
and reverse osmosis. The model was obtained by response surface methodology. Here, the
relationships between several explanatory variables (temperature, pressure, and concentra-
tion) and one or more response variables (rejection, energy consumption) were examined
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and regressed. A similar approach was taken by Alves et al. [27] who found the optimal
transmembrane pressure and temperature for the purification of xylitol using the surface
response methodology. However, instead of ion rejections, only total salt rejection was con-
sidered and optimization was limited to a small-scale membrane system with a membrane
area of 0.015 m2. Geralded and Alves [28] developed a computer program to model solute
transport in nanofiltration membranes using the Donnan steric partitioning pore and di-
electric exclusion model (DSPM-DE) with incorporation of electrolyte solution non-ideality
and concentration polarization effects. Although the local flux was considered in detail,
process optimization, multi-stage processes, or changes along the membrane length were
not considered. The latter was taken up by Roy et al. [29] who also used the DSPM-DE to
simulate nanofiltration modules with flat-sheet and spiral-wound leaves to investigate the
influence of various operating parameters on the performance. The modules were divided
into segments to account for pressure drop and varying solute concentration. However,
mathematical optimization and interconnection of these modules were not investigated.

Therefore, in this work, we demonstrate the modeling of multi-stage membrane
separations by means of the sophisticated SDEM with permeances obtained from simple
lab experiments. Thus, for the first time, the SDEM is applied in the discretization along the
module length of a membrane stage to account for changing conditions (i.e., pressure and
concentration). In addition, the pressure drop was taken into account to model the reduced
driving force along the module. Computation time was kept low by transforming the set of
differential and algebraic equations into a fully algebraic system of equations and using an
advanced initialization strategy. In particular, the SDEM model is used for the first time to
optimize operating conditions such as pressure and membrane area. Furthermore, a multi-
stage membrane process is proposed and calculated for the first time for the important
separation task Li+/Mg2+. The model equations, solution, and initialization methods are
presented in Section 2, followed by their application in three case studies in Section 3. Both
a hypothetic test mixture and two real mixtures with experimental data were used as case
studies. The resulting process configurations were discussed regarding the membrane
module connections and dominant transport effects.

2. Computational Methods

While most models for multi-ionic solutions contain a large number of parameters,
Yaroshchuk et al. [20] were able to develop a model with only one adjustable parameter
per ion, namely the single-ion permeance Pi (cf. Equation (1)). It is important to note that
the model neglects the convective coupling between trans-membrane volume flux of the
solvent (usually water) and solute flux. Derived from the SDEM of Yaroshchuk et al. [20], the
definition of the electrochemical potential and setting activity coefficients equal to 1 across
the membrane, n equations of the following form were obtained (n represents the number of
different ions in the solution) to describe the molar solute flux ji of ion i through a membrane:

ji = −Pi
dci
dx

− ciPiZi
F

RT
dφ

dx
(1)

In Equation (1), ci is the ion concentration in the virtual solution, x is the transmem-
brane coordinate, zi is the ion charge, F is the Faraday constant, and φ the electrostatic
potential. Pi is the product of local diffusion and partition coefficients, where the
partition coefficient is the ratio of concentrations in the real and virtual solutions. In
principle, Pi is not constant but a function of position and concentration. For simplicity,
we assumed Pi to be constant across the membrane, which in turn implies that the local
partition coefficient does not change across the membrane. This assumption was also
made by Yaroshchuk [19] and Fridman-Bishop [30]. In addition to the flux equations,
the electroneutrality condition (cf. Equation (2)) has to be fulfilled in every point of the
virtual solution.

n

∑
i=1

ci · Zi = 0 (2)
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2.1. Orthogonal Collocation

Orthogonal collocation is a numerical method to solve differential equations and
differential-algebraic equations considering boundary conditions by transforming the set
of equations into purely algebraic equations. Yaroshchuk and Bruening [9] developed
analytical solutions for special applications, which enable a fast and simple calculation
of the flux and concentration profile. However, analytical solutions are restricted to
a small number of ion species. In order to solve the differential-algebraic equation
system in a general way, we transformed the Equations (1) and (2) into an algebraic
system of equations using orthogonal collocation, which can be solved by any non-linear
programming solver. We used v = 6 collocation points, four internal collocation points,
and one at z0 = 0 and one at zv = 1. Note that z is the dimensionless transmembrane
coordinate z = x

δ . Thus, the boundary conditions were taken into account when solving
the system of Equations (1) and (2). The first boundary condition at z0 = 0 describes
the feed concentration of the components in the respective node. The second boundary
condition results from the relationship between ion concentration in the permeate cP

i , ion
flux ji and the total permeate volume flux Jv:

ji = cP
i · Jv (3)

To solve Equations (1) and (2), the concentration profile of an ion and the electrostatic
potential over the membrane thickness δ, so-called modelled variables y, were approxi-
mated using polynomials y(z) with coefficients αi:

y(z) = θ0 + θ1z + θ2z2 + . . . + θvzv (4)

Thus, for a polynomial of degree v, v collocation points were set across the thickness of
the membrane. In this work, the collocation points were not chosen equidistantly, but result
from the roots of the shifted Lagrange polynomials. The equation system can be solved by
forming the derivatives of Equation (4), mathematically transforming and inserting it into
Equations (1) and (2). A detailed description can be found in our previous paper [31].

2.2. Model Development

A tool was developed in this work to solve and optimize a steady-state multi-stage
membrane process in order to use the SDEM also for engineering applications. To account
for the changes in fluxes, ion concentrations, and feed pressures along the membrane length
in each stage, the membrane was axially discretized. That is, “feed” relates to the inlet into
each node, and thus, ion concentrations and pressure vary from node to node. Figure 1
schematically depicts the structure of a membrane stage consisting of N nodes elements
connected in series. Thus, the retentate flow rate of the j-th node is the feed flow rate into
the j + 1-th node. This is analogous to the concentrations of the feed and retentate stages.
The permeate streams from each node were virtually combined in a mixing point to the
final permeate stream.

In each node, the ion flux was obtained by solving Equations (1)–(3). The total permeate
flux J j

v in the node j is given here by the permeability QH2O of salt water, the feed pressure pF

supplied by the pump, the permeate pressure pP the osmotic pressure difference π j,F − π j,P ,
and the pressure loss within the node ∆pj

f according to Equation (10):

J j
v = QH2O ·

(
pF − pP −

(
π j,F − π j,P

)
− ∆pj

f

)
(5)
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Figure 1. Membrane discretization scheme with N nodes. The feed variables denote the inlet states
into the respective node, i.e., the feed pressure and the feed concentrations vary from node to node.

The calculation of the pressure drop ∆pj
f in every node of a tube module is pre-

sented in Supplementary Materials S1. The pressure loss between the stages was ne-
glected [25]. The osmotic pressures in the permeate πP and in the feed πF were calcu-
lated in a simplified way using Van ‘t Hoff equation for dilute solutions [16,17]:

π
j
F/P = RT ·

N

∑
i=1

cj
i F/P (6)

In a single node j, all streams were distinctly determined by the mass balance (assum-
ing no excess volume) and component balance according to Equations (7) and (8):

cj,F
i ·

.
V

F,j
= cj,F

i ·
.

V
P,j

+ cj,R
i ·

.
V

R,j
(7)

.
V

F,j
=

.
V

P,j
+

.
V

R,j
(8)

The flux model was solved in all nodes in parallel. To enable interconnection from mul-
tiple membrane modules, the retentate or permeate streams from the first stage were then
connected to a second membrane stage to provide a permeate or retentate concentration.

Note that the stage-cut, i.e., the ratio of permeate-to-feed volume stream was specified
in advance for each stage. The modeling problem was first solved for a small number of
membrane nodes using the Matlab™ solver fmincon with a sequential quadratic program-
ming algorithm (SQP). Solving this reduced problem with significantly fewer variables
yielded initial values for simulating the problem with more nodes. Figure S1 depicts a
flowchart of the calculation algorithm. All computations have been performed on a PC
with an AMD Ryzen 7 5700 U CPU.

For the three case studies conducted in this study, the constraints and objective func-
tions used are listed in the respective Sections 3.1–3.3 to increase readability and under-
standing of the study.

2.3. Optimization

The presented process model was additionally subjected to optimization with respect
to different target objective functions. Possible objective functions are for instance the
rejection of a specific component Ri, the recovery of a component Reci , or the membrane
area to fulfil a specific separation task. The nonlinear constraints to be fulfilled are given by
Equations (1)–(3), (5)–(8) and (S1)–(S6). Finally, the optimization gave the feed pressure in
every stage to fulfil the separation task as it can be supplied by pumps and the necessary
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membrane area. The ion rejection Ri, the recovery of a component RecP
i in the permeate,

and the separation factor SFi,k of an entire stage are defined as follows:

Ri = 1 −
cP

i
cF

i
(9)

SFi,k =

cF
i

cF
k

cP
i

cP
k

(10)

RecP
i =

cP
i ·

.
V

P

cF
i ·

.
V

F (11)

A full list of the variables can be found in Table S1 in the Supplementary Materials.
In this study, our focus was primarily on the fundamental aspects of our modeling and
optimization approach, namely the transport model and operating conditions. We made
a conscious decision not to extend the optimization to include costs due to their inherent
uncertainty and the common practice among companies to utilize custom cost parameter
matrices. Nevertheless, it is worth noting that incorporating additional functions into our
framework can be easily achieved without significant effort, providing potential avenues
for future extensions.

3. Results

The performance of the optimization approach presented in Section 2.3 was evaluated
by three case studies. In the first case study, Section 3.1, published ion permeances were
used to simulate and optimize a multi-stage nanofiltration process for a system with three
ions. In the second case study, Section 3.2, ion permeances were fitted to experimental flux
data for a system with four ions. In contrast to the first case study, the membrane area
for a given separation task served as the target function to be minimized. In a third case
study, the focus was placed specifically on the separation of Li+ and Mg2+ from an aqueous
stream. Here, the permeances used were derived from experimental data as well.

3.1. Case Study 1—Modeling and Optimization of a Hypothetic Mixture

The proposed methodology for nanofiltration system optimization was applied to
investigate the operational characteristics of a multi-stage nanofiltration system of a hy-
pothetical multi-electrolyte mixture in order to separate the ions A− and B2− of the two
salts MA and M2B. By using an analytical solution of the SDEM model, Yaroshchuk and
Bruening [19] predicted the behavior of the ion rejections versus the permeate flux Jv. The
ion permeances [19] and other parameters used in this case study are listed in Tables S2–S4.

A three-stage process was simulated with the parameters from Table S2 according
to the model scheme in Section 2.2. As an additional condition, it was specified that
the permeate flow of a stage corresponds to 25% of the feed flow of the respective stage,
the so-called stage-cut. With a fixed feed pressure, a lower stage cut would result in a
smaller membrane and vice versa. The supplied pump pressure was set to 8 bar in all
stages. Further, the seawater permeance was set in this work, as it was not specified in the
original work from Yaroshchuk and Bruening [19], which is why the pressure could not
be re-converted from Yaroshchuk and Bruening [19] and thus, was set to 8 bar. Due to the
fixed pump pressure and permeance, the permeate flux results directly from Equation (10).

Nevertheless, the ion feed concentrations and the temperature were inherited also
from Yaroshchuk and Bruening [19], and thus, only the number of nodes and the stage-cut
and saltwater permeance were set to fixed input value in this case study.

Figure 2 presents the resulting process flow diagram with all relevant flows and
concentrations of the three ions A−, B2−, and M+. Due to the constant pump pressure at
the feed of all stages, the area of the membrane stages decreases according to the stage-cut.
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Figure 2. Modeled three-stage membrane flowsheet of case study 1 with fixed pump pressure in each
stage (ppump = 8 bar) including parameters of Tables S2 and S3. Ion concentrations and rejections in
the ci and Ri vector are in the order A−, B2−, and M+.

Figure 3 shows the calculated ion rejections in the first node of each stage as a function
of the total permeate flux for the corresponding feed concentrations. Interestingly, the ion
rejections differ from stage to stage. The divalent ion B2− has the lowest permeance of the
ions and thus shows the highest rejection. The monovalent anion A− exhibits a negative
rejection at low permeate fluxes, which changes to a positive rejection for higher permeate
fluxes. This might be caused by spontaneous electric fields that accelerate the permeation
of A− to ensure a net-zero current. Moreover, the feed concentration of B2− decreases from
stage to stage (cf. Figure 3b,c), and negative rejection of A− no longer occurs. This indicates
that the concentration of B2− is crucial for the occurrence of accelerating/deaccelerating
electric fields and negative rejections [19].

The vertical lines in Figure 3 show the operating points simply resulting from the
specified pressure and the given saltwater permeance. Note, these input settings were not
optimized but arbitrarily chosen in this work. Recognizably, these operating points are
not the operation conditions of optimal separation performance, which would occur at the
maximum distance of the rejection curves of A− vs. B2−. Hence, there is huge potential
for more effective separation by shifting the operating point towards higher fluxes. The
separation factors between component A− and B2− at the operating points are 3.7 (stage 1),
2.8 (stage 2), and 3.9 (stage 3), respectively.

Achieving a more effective separation of A− from B2− might also be possible by
optimization. Thus, an objective function was defined within the SDEM to maximize the
difference between the rejections of ions A− and B2−:

obj =

(
1 −

cP
A−

cF
A−

− 1 −
cP

B2−

cF
B2−

)
(12)

Figure 4 illustrates the optimized three-stage membrane process with modeled ion
concentrations, ion rejections, and fluxes in each of the three stages. The separation factors
for the separation of ions A− from B2− were increased to 13.95 (stage 1), 8.34 (stage 2), and
12.87 (stage 3), respectively. In comparison to the modeling with constant pump pressures,
this is an increase of greater than 300%.
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in blue. (a) corresponds to the first node in the first membrane stage and (b,c) to the second and third
membrane stage, respectively.
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Figure 4. Optimized three-stage membrane flowsheet of case study 1 with optimized pump pressure
in each stage with parameters of Tables S2 and S4. Ion concentrations and rejections in the ci and Ri

vector are in the order A−, B2−, and M+.
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A more detailed picture of this result is given in the following. Figure 5 shows the
calculated ion rejections in the first node of each stage as a function of the total permeate flux
for the optimized flowsheet in Figure 4. The computational time including the initialization
was 104.04 s with 1019 variables to be computed. By the applied optimization, the operating
point, marked in Figure 5 as a vertical line, is shifted to the right to higher permeate fluxes,
thereby maximizing the separation of the ions A− and B2. However, the operating and
investment costs at the optimized operating point in Figure 5 will change (compared to
Figure 2 setup) caused by the smaller membrane area and the higher required pressure. If
the operating point were at the minimum of A− in Figure 5, the concentration of A− in the
permeate would become maximum, but the separation of A− and B2− would not, due to
the significantly lower rejection of B2−.
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Figure 5. Ion rejections of three membrane stages as a function of the total permeate flux calculated by
the SDEM model and operating point at optimized pump pressure with parameters of Tables S2 and S4.
Calculated rejections of ion species A− are depicted in yellow, B2− in red, and M+ in blue. (a) corresponds
to the first membrane stage and (b,c) to the second and third membrane stage, respectively.

A more detailed insight is provided in Figure 6a illustrating the variation of the
concentrations over the dimensionless membrane coordinate for the first node in the first
membrane stage. The ions B2− and M+ show a positive rejection (negative slope) with high
concentration gradients. In contrast, concentration of A− increases over the coordinate
resulting in negative rejection (concentration of A− in the permeate is higher than at the
feed side). This is caused by the mass transport against the concentration gradient due to
the attraction of anions by the electric field. The considerable increase in the concentration
of A− at the end of the membrane might be explained by the electrostatic potential gradient,
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cf. Figure 6a. Due to the significant increase in the electric field gradient at the end of the
membrane, these ions are accelerated significantly towards the permeate side. Vice versa,
M+ is decelerated because of its positive charge.
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Figure 6. Transmembrane ion concentrations of the virtual solution in the first stage and first node of
case study 1 (a) and feed concentrations as a function of membrane node in the first membrane stage
(b) with parameters of Tables S2 and S3. Calculated concentrations of ion species A− are depicted in
yellow, B2− in red, and M+ in blue.

The concentration profile of the retentate stream along the membrane length is shown
in Figure 6b for the 25 membrane nodes. A− shows a negative rejection (approx. −43%
over the length) with constant slope, while non-linear effects occur for B2− and M+ over the
membrane coordinate. Counterintuitively, the concentration of M+ increases more strongly
than of B2−, which might be due to the higher concentration of M+ in the feed.

To sum up, this case study showed that the relationship between permeate flux and
ion retention can be optimized with respect to the operating conditions (here: the pump
pressure). The developed model is successful independent of the number of ion species.
The used method revealed important information about the multistage membrane process.
Instead of considering a single constant feed concentration, the entire process is considered.
The separation did not appear as promising as it did for the initial concentrations in the
first node and in the first stage. This result must be taken into account when selecting
membranes for an industrial process, since the model only requires a few parameters and
the expense of multiple membrane stages may therefore be justified.

3.2. Case Study 2—Modeling and Optimization of a Real Mixture

In the second case study, the developed method was applied to experimentally obtained
rejection data of a real mixture. For this purpose, a mixture of water, MgSO4, and a trace
salt NaI was considered. This system was investigated by Pages et al. [32] in a series of
experiments of different dominant and trace salts. The membrane they used was an NF270
(Dow Chemical) with an active layer of semi-aromatic poly(piperazine). The ion rejections
were obtained at transmembrane pressure differences between 4.5 bar and 20 bar at a constant
temperature of 23 ◦C. We performed a regression to determine the ion permeances from
the differential-algebraic equation system from Equations (1)–(3) for various total permeate
fluxes Jv using the experimental rejection data from Pages et al. [32] (cf. Table S5). The
so-determined ion permeances and the average deviations of experimental and fitted ion
rejections are listed in Table S6 at the feed concentration as given by Pages et al. [32]. Note
that saltwater permeance and number of nodes were set to fixed values in this work. The
result of the parameter regression is depicted in Figure 7, which illustrates the calculated
ion rejections. These calculations were performed for different total permeate fluxes at the
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experimental rejection data using the conditions and parameters listed in Tables S6 and S7.
Thus, the calculated course also corresponds to the relationship between Jv and Ri in the first
node of the first stage of the membrane structure. Mg2+ and SO4

2− already show high rejections
of more than 95% even at low permeate fluxes. Due to the significantly higher concentrations
of Mg2+ and SO4

2− compared to Na+ and I−, these rejections are also almost equal due to the
electroneutrality condition in the solution. The Na+ rejection also increases with increasing
permeate flux but is clearly lower than the rejection of Mg2+ and SO4

2−. The rejection of I− is
consistently negative, especially at small permeate fluxes. Spontaneously arising electric fields
to ensure zero net current accelerate I− ions and enable ion transport through the membrane
against the concentration gradient. The SDEM can reflect these data well with the regressed
parameters, except for a slight deviation for I− at higher transmembrane volume fluxes. Thus,
the obtained model can be used for further process design and membrane stage optimization.

In the flowsheet optimization of the second case study, we took a different approach by
defining the membrane area as the objective function to be minimized. The stage cut was
then treated as a free variable, and additional constraints were established to ensure proper
separation in each stage. In the first stage, the requirement was set to recover a minimum
of 50% of species I− in the permeate. For the second stage, specific conditions were chosen
to limit the presence of Mg2+ in the permeate to a maximum of 6% relative to the feed, to
ensure that at least 27% of I− was present in the permeate, and to maintain a minimum I−

concentration of 0.4 · 10−3 mol L−1 in the permeate. These constraints were arbitrarily set
to demonstrate the range of possibilities achievable through this model-based optimization
approach. For the optimized flowsheet for this case study, refer to Figure 8 The computational
time including the initialization was 137.03 s with 1220 variables to be computed.
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Our model allows considering the changes in the rejection courses in further nodes as the
model explicitly accounts for the dependence on the feed concentrations into the nodes. The
changes over the nodes are illustrated in Figure 9, showing the relation between Jv and ion
rejections for chosen membrane nodes. The minimum I− rejection is even more pronounced
in later nodes, caused by the increased concentration of divalent Mg2+ ions, while the
rejections of the other three ion species (Na+, Mg2+, SO4

2−) do not differ significantly at the
different nodes. It should be noted that the rejection of the entire first stage is RI− = −0.929,
although the rejection of I− is RI− < −1 in each node of the first stage. This is the result of
the feed concentration of the first node and the merged permeate streams.
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Explicit calculation of all relevant variables in each node and all collocation points
allowed considering the respective contributions to the ion flux, which are shown in
Figure 10. Mg2+ is transported through the membrane by diffusion. In contrast, the
electrostatic field with the negative potential in the direction of the permeate side decelerates
the ion flux. Thus, the diffusive contribution increases along the membrane length due
to the low permeance, causing an increased driving force (i.e., concentration gradient).
In later nodes, the electromigration contribution for Mg2+ transport also increases due
to the increase in the gradient of the electrostatic potential. However, the increase in
diffusion predominates, so that the ion flux in the posterior nodes increases. For SO4

2−,
this is different. Here, diffusion and electromigration act in the same direction. Similar
to Mg2+, the diffusion fraction across the node increases, resulting in an increasing ion
flux, accompanied by an increase in the electrostatic potential. Na+ ions behave similarly
to Mg2+ ions, so that the ion flux also increases in the posterior nodes. In contrast, the
diffusion of iodide anions acts in the direction of the feed side, due to the negative rejection
(i.e., the greater I− concentrations in the permeate). Electromigration exerts an attractive
effect on iodide that prevails over diffusion and results in an approximately constant ion
flux across all nodes.

3.3. Case Study 3—Application on Lithium Separation from Aqueous Sources

While the first two case studies presented were based on hypothetical test systems,
the third case study focuses on a real-system separation task. The growing demand for
lithium in the electrical and automotive industries necessitates the exploration of new
lithium sources. Seawater is an abundant reservoir of lithium; however, its concentration
is extremely low, measuring at 0.21 ppm. Nanofiltration has proven to be effective in
significantly reducing the ratio of divalent ions such as Mg2+ and Ca2+ to Li+. In this study,
a novel method was developed to optimize the plant layout, enabling high rejection of Mg2+

while maintaining or even increasing the concentration of Li+ in the membrane stages due
to slightly negative rejection. Table S8 shows the parameters used for this case study. Aside
from lithium, the most important cations in seawater are listed. The permeances were
obtained by fitting to experimental data in one of our previous papers [31]. The rejection
difference between Mg2+ and Li+ was chosen as the objective function to be maximized and
the stage-cut was fixed to 0.25. Note that the variables in this case study are mass-based,
according to the original experimental values.

The results of the flowsheet optimization are shown in Figure 11. The system converges
in the first stage to an operating pressure of 35.73 bar, which decreases slightly by 0.01 bar
in this membrane stage due to pressure loss in the module. The resulting membrane area of
30.92 m2 provides the set stage cut of 0.25. Due to the high Mg2+ rejection, a SF of 13.6 and
a rejection difference of 0.93 was achieved in the first stage. As can be seen in Figure 12,
the divalent ions Ca2+ and Mg2+ have significantly higher rejection for all permeate fluxes,
while the monovalent cations initially have negative rejection for low permeate fluxes,
which later changes to positive rejection. In the second stage, negative rejection of Li+ is
no longer achieved and the operating point shifts slightly to the left to a lower pressure of
12.66 bar. However, the permeate flux through the membrane remains largely unchanged,
as the osmotic pressure in the feed has also decreased significantly in the second stage.
In the third stage, the ratio of Mg2+ to Li+ can then be significantly reduced again to a
mol-based ratio of 2.8.

Another possibility to further reduce this ratio would be to maximize the separation
factor as a target function. However, this would result in very high residues and thus also
considerably lower the concentration of Li+ in the permeate. The computational time was
179 s with 1622 variables to be computed.
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Figure 11. Optimized three-stage membrane flowsheet of case study 3 with optimized pump pressure
in each stage including parameters of Tables S8 and S9. Ion concentrations and rejections in the ci

and Ri vector are in the order Cl−, Na+, Li+, Mg2+, K+, Ca2+.
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and third membrane stage, respectively.

4. Conclusions

In this work, a method was developed to efficiently model predefined membrane
interconnections with set variables using a discretization both along the membrane length
and across the membrane thickness. All resulting differential equations were transformed into
an algebraic system of equations, which can be solved by any non-linear programming solver.
To the best of our knowledge, this is the first time that the solution-diffusion–electromigration
model has been used as a transport model in a basic membrane flowsheet. In addition to
simulating the process, the model was also used to optimize a given flowsheet where the
objective function was flexibly set, in this case to maximize the difference in ion rejections and
the minimization of the membrane. Apart from the problem specification, the initialization
method only required the definition of the stage cut, thereby reducing the required inputs to
a minimum. Additional constraints might be set (e.g., cions < saturation limit).

The resulting detailed information about the multi-stage membrane process was used
to investigate which transportation mechanism predominates for each ion. The introduced
methodology was evaluated specifically for three different separations tasks, the separation
of two anion species in the first case study using a hypothetical mixture of water and two
salts, and the separation of an anion and a cation species in the second case study with real
experimental data of an aqueous two-salt mixture. Furthermore, in a third case study with
experimentally obtained permeances, it was shown how the presented method performs in



Processes 2023, 11, 2355 16 of 19

the design and optimization of a process for the separation of highly demanded lithium
ions from divalent ions. Therefore, the number of total ion species in the system was
different in the case studies. Depending on the ions’ properties (i.e., charges, permeances,
and feed concentrations), negative rejections were achieved for some ions, allowing for a
favorable separation between these ions from the other ions. To exploit these relations, the
optimal pressure was optimized by the model taking into account the osmotic pressure
difference and the pressure losses within the membrane module.

To increase the applicability in industry, extensions of the model in terms of cost
functions, osmotic pressure calculations for high concentrated solutions and optimization
of the arrangement of membrane stages are desirable in the future. The method presented
here offers the flexibility to integrate with an established robust flowsheet optimization
approach, contributing to the ongoing trend of automated flowsheet generation through
the utilization of artificial intelligence.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr11082355/s1. Supplementary Materials S1: Details on modeling and
optimization, Figure S1: Flow of calculation algorithm. Table S1: List of variables. Table S2: Parameters
used for case study 1 in Equations (1) and (5). Permeances (Equation (1)) of the artificial equimolar
mixture of the dissolved salts MA and M2B are taken from Yaroshchuk and Bruening [14]. Table S3:
Case Study 1—used parameters without optimization in modeling with constant pump pressure (8 bar)
in Equations (S1), (S2), (S5), and (S6). Additional parameters are listed in Table S2. Table S4: Case
Study 1—used parameters with optimization of the pump pressure in Equations (S1), (S2), (S5), and (S6).
Additional parameters are listed in Table S2. Table S5: Experimental rejections of MgSO4 and NaI used
for case study 2 with NF270 (Dow Chemicals) at T = 23 ± 2 ◦C, transmembrane pressure difference
7–20 bar, and a cross-flow rate of 0.7 m s−1 from Pages et al. [28]. Feed concentrations of 0.1 mol L−1

MgCl2 and 0.0005 mol L−1 NaI. Table S6: Parameters used for case study 2 in Equations (1) and (5). Salt
feed concentrations were taken from Pages et al. [28]. Permeances were regressed to the MgSO4 + NaI
experiment by Pages et al. [28] at transmembrane pressure 7–20 bar at cross-flow rate of 0.7 m s−1 a,
T = 23 ± 2 ◦C with NF270 membrane (Dow Chemicals), and feed concentrations of 0.1 mol L 1 MgCl2 and
0.0005 mol L−1 NaI. Table S7: Case Study 2—used parameters with optimization of the pump pressure in
Equations (S1), (S2), (S5), and (S6). Additional parameters are listed in Table S6. Table S8: Parameters used
for case study 3 in Equations (1) and (5). Permeances were regressed to five subsystems of the involved
ions at transmembrane pressure 5–40 bar at cross-flow rate of 2.05 m s−1, T = 20 ◦C with NFAL membrane
(Alfa Laval), and AMem = 17 cm2 [25]. Table S9: Case Study 3—used parameters with optimization of
the pump pressure in Equations (S1), (S2), (S5), and (S6). Additional parameters are listed in Table S8.
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Abbreviations

Latin letters
∼
VH2O Molar volume m3 mol−1

cF,j
i Feed concentration of ion in node j mol L−1

cP,j
i Permeate concentration of ion in node j mol L−1

cR,j
i Retentate concentration of ion in node j mol L−1

Ach Cross-sectional area of the membrane channel m2

Ap Cross-sectional area of the pipe m2

Ash Cross-sectional area of the module’s shell part m2

.
V

F,j
Feed volume flow in node j L min−1

.
V

P,j
Permeate volume flow in node j L min−1

.
V

R,j
Retentate volume flow in node j L min−1

J j
v Transmembrane volume flux in node j m s−1

Pi Permeance of ion i µm s−1

QH2O Saltwater permeability m s−1 bar−1

Zi Charge number of ion i -
ci Concentration of ion i mol L−1

dch Diameter of membrane channel m
ji Transmembrane ion flux of ion i mol m−2 s−1

lch Length of membrane channel m
i Component index -
k Component index -
j Node index -
nt Parallel tubes in membrane module -
pF Feed pressure supplied by pump bar
vj,ch Velocity in membrane channel in node j m s−1

vp Velocity in pipe m s−1

F Faraday constant C mol−1

f Fanning friction factor -
n Number of ion species -
N Number of nodes -
R Molar gas constant J K−1 mol−1

Re Reynolds number -
SDEM Solution-diffusion–electromigration model
SDM Solution-diffusion model
T Temperature K
v Number of collocation points -
x Transmembrane coordinate m
∆p f ,j Pressure loss within the membrane channels bar
∆pin Pressure loss at the module inlet bar
y Arbitrary variables to demonstrate the method of collocation -
z Collocation point -
Greek letters
ρ Saltwater density kg m−3

α Polynomial coefficients -
δ Membrane thickness µm
πP,j Osmotic permeate pressure in node j bar
πF,j Osmotic feed pressure in node j bar
φ Dimensionless electrostatic potential in the virtual solution -
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