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Abstract

Excitons are Coulomb-bound states of a negatively charged electron in the conduction band
and a positively charged hole in the valence band of a semiconductor or an insulator. Their
hydrogen-like absorption spectrum was first detected in 1951 in cuprous oxide (Cu2O). In
2014, a spectral scan using an ultra-narrow bandwidth laser extended the 𝑃 exciton series in
a natural Cu2O crystal to a principal quantum number of 𝑛 = 25. This breakthrough opened
up the field of Rydberg physics in semiconductors leading to numerous experimental and
theoretical studies investigating their behavior in external fields as well as exciton-plasma
and exciton-exciton interactions.

The present study reports on second harmonic generation (SHG) spectroscopy of dark-
and bright excitons in Cu2O. SHG is forbidden for laser light propagating along the high-
symmetry [110] and [001] crystal axis. By applying a magnetic field up to 10 T perpendicular
to the light direction, SHG becomes allowed due to the Zeeman- (ZE) and magneto-Stark
effect (MSE). The polarization selection rules for both mechanisms are derived from point
group theory considerations. The linear polarization angles of the incoming and outgoing
light can be controlled in order to differentiate between both SHG mechanisms.

The spin-forbidden dark paraexcitons are activated by admixture of the 𝑀 = 0 compo-
nent of the bright orthoexcitons in a magnetic field. The Rydberg series of dark paraexcitons
up to a quantum number of 𝑛 = 6 is detected using this method. Due to the electron-hole
exchange interaction, the paraexcitons are generally located energetically below the or-
thoexcitons. This order is found to be reversed for the 𝑛 = 2 state due to mixing of the
yellow 2𝑆 orthoexciton with the green 1𝑆 orthoexciton.

The blue series of excitons involves the same valence band as the yellow series but the
second-lowest conduction band. Accessing these states using linear optical spectroscopy is
challenging due to the high absorption in this spectral range. MSE and ZE-induced SHG
has been shown to be a suitable investigation method enabling the detection of blue 1𝑆,
2𝑆, and 2𝑃 excitons and magneto-excitons up to 𝑛 = 8. By analyzing their magnetic-field
shift and polariton effect, key properties of blue excitons, such as the resonance energies,
the exciton radius, the band gap, the reduced exciton mass, and the anisotropic conduction
band mass, are obtained.

Difference frequency generation with two-photon excitation (2P-DFG) allows experimen-
tal investigations of excitons in the time domain. The pulses of the first laser induce a
coherent exciton population by a two-photon excitation process. The pulses of the second
laser stimulate the emission of photons with the energy difference between the excitons and
the stimulating photons. By delaying the pulses of the second laser, the 2P-DFG signal
is measured as a function of time. This technique is used to measure the coherence times
of 1𝑆 and higher 𝑛 excitons and magnetic-field-induced quantum beats of the three 1𝑆
orthoexciton states.
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Zusammenfassung

Exzitonen sind Coulomb-gebundene Zustände eines negativ geladenen Elektrons im Leitungs-
und positiv geladenen Lochs im Valenzband eines Halbleiters oder Isolators. Ihr wasser-
stoffähnliches Absorptionsspektrum wurde 1951 erstmals in Kupferoxydul (Cu2O) nach-
gewiesen. Die 𝑃-Exziton-Serie wurde 2014 über einen spektralen Scan mit einem schmal-
bandigen Laser an einem natürlichen Cu2O-Kristall auf eine Hauptquantenzahl von 𝑛 = 25
erweitert. Dies eröffnete das Forschungsfeld der Rydberg-Physik in Halbleitern und führte
zu zahlreichen experimentellen und theoretischen Untersuchungen in externen Feldern sowie
zur Wechselwirkung von Exzitonen mit einem Elektronplasma und anderen Exzitonen.

Hier berichten wir über die Spektroskopie an dunklen und hellen Exzitonen in Cu2O
durch die Erzeugung der optischen zweiten Harmonischen [second harmonic generation
(SHG)]. SHG ist für Laserlicht, das entlang der Kristallachsen [110] und [001] eingestrahlt
wird, verboten. Durch Anlegen eines Magnetfelds bis zu 10 T senkrecht zur Einstrahlrich-
tung wird SHG durch den Zeeman- (ZE) und den Magneto-Stark-Effekt (MSE) erlaubt.
Für beide Mechanismen werden die Polarisations-Auswahlregeln aus Symmetriebetrachtun-
gen abgeleitet. Die Winkel des linear polarisierten ein- und ausfallenden Lichts können so
eingestellt werden, dass zwischen den jeweiligen SHG-Mechanismen unterschieden werden
kann.

Die spinverbotenen dunklen Paraexzitonen werden durch Beimischung des 𝑀 = 0-Anteils
der hellen Orthoexzitonen in einem Magnetfeld aktiviert. Die Rydberg-Serie der dunklen
Paraexzitonen wird mit dieser Methode bis zu einer Hauptquantenzahl von 𝑛 = 6 detektiert.
Aufgrund der Elektron-Loch-Austauschwechselwirkung liegen die Paraexzitonen energtisch
unterhalb der zugehörigen Orthoexzitonen. Diese Ordnung wird für den 𝑛 = 2 Zustand
aufgrund der Mischung des gelben 2𝑆 und des grünen 1𝑆 Orthoexzitons invertiert.

An der blauen Exziton-Serie ist das gleiche Valenzband wie bei der gelben Serie beteiligt,
aber das nächsthöhrere Leitungsband. Die Detektion dieser Zustände durch lineare optis-
che Spektroskopie stellt aufgrund der hohen Absorption in diesem spektralen Bereich eine
Schwierigkeit dar. MSE und ZE-induzierte SHG ist eine geeignete Untersuchungsmethode,
um die Detektion von blauen 1𝑆, 2𝑆 und 2𝑃 Exzitonen und Magneto-Exzitonen bis 𝑛 = 8 zu
ermöglichen. Durch Analyse ihrer magnetfeldinduzierten Verschiebung und des Polariton-
Effekts werden die Resonanzenergien, der Exzitonradius, die Bandlücke, die reduzierte Exzi-
tonmasse und die anisotropen Leitungsbandmassen der blauen Exzitonen ermittelt.

Die Differenzfrequenzerzeugung mit Zweiphotonenanregung (2P-DFG) ermöglicht zeit-
aufgelöste experimentelle Untersuchungen an Exzitonen. Die Pulse des ersten Lasers erzeu-
gen durch einen Zweiphotonenanregungsprozess eine kohärente Exzitonpopulation. Die
Pulse eines zweiten Lasers stimulieren die Emission von Photonen mit der Energie-Differenz
zwischen den Exzitonen und den stimulierenden Photonen. Durch Verzögerung der Pulse
des zweiten Lasers wird das 2P-DFG-Signal in Abhängigkeit der Zeit gemessen. Diese
Methode wird verwendet, um die Kohärenzzeiten des 1𝑆 und höherer Exzitonen sowie mag-
netfeldinduzierte Quantenbeats der drei 1𝑆 Orthoexziton-Zustände zu messen.
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Chapter 1

Introduction

Semiconductors have revolutionized a wide range of technologies and have become an in-
tegral part of our daily lives. Their electrical conductivity can be modified by introducing
dopant atoms into their crystal structure. This property lead to the development of the
first transistor by Shockley, Bardeen, and Houser Brattain [Bar+48], which is one of the
most influential inventions of the 20th century as it accelerated the rate of technological
progress. Nowadays, semiconductor materials serve as the fundamental building blocks of
electronic devices in the form of processor chips and data storage elements. Not only their
tunable electrical conductivity is exploited for applications, but also their optical proper-
ties, which are the basis for the light emitting diodes [Dho+20] and solar cells [Sha+15].
Their optical properties are influenced by the excitonic states, which are formed when an
electron is excited from the valence into the conduction band, leaving a hole in the valence
band. Due to the attractive Coulomb force between their opposite charges, they are bound
into hydrogen-like states, analogously described using the principal, angular momentum,
and magnetic quantum numbers 𝑛, 𝐿, and 𝑀. They have been theoretically predicted by
Frenkel [Fre31] and Wannier [Wan37] in the 1930s. Gross et al. [Gro+52; Gro56] and
Hayashi et al. [Hay+50; Hay+52] conducted the first experiments on the so-called yellow
exciton series in cuprous oxide (Cu2O) up to 𝑛 = 8. Measurements of their white light
absorption spectrum indicated an 𝑛−2 scaling of the binding energy similar to the absorp-
tion spectrum of hydrogen atoms. The energy series of these odd-parity 𝑃 (𝐿 = 1) exciton
states has recently been extended to 𝑛 = 25 [Kaz+14], later even to 𝑛 = 28 [Hec+20] and
𝑛 = 30 [Ver+21]. These high 𝑛 states have diameters up to 3 µm and are called Rydberg
excitons. Their experimental discovery opened up the field of Rydberg physics in semi-
conductors [Aßm+20], a research area previously limited to atoms [Gal94]. The highest 𝑛
Rydberg exciton state in any other material is 𝑛 = 5 in WS2 [Che+14]. Therefore Cu2O is
a well-suited host material for investigations of phenomena involving excitons. Numerous
theoretical and experimental studies on Rydberg excitons have been performed in recent
years involving the influence of externally applied electric [Hec+17a; Hec+18b] and mag-
netic fields [Rom+20a; Sch+17a; Rom+18; Hec+17b; Hec+18c; Zie+19; Zie+21] and the
exciton-plasma [Hec+18a; Sem+19] and exciton-exciton interaction [Wal+18]. Before the
Rydberg series has been extended to such high 𝑛, the electric quadrupole allowed 1𝑆 exciton
has received a lot of research interest in the two-photon spectroscopy community [Got+97;
Frö+87; Kon+96; Nak+99; Nak+00; Liu+05].

The investigations in recent years would not have been possible without the invention of
the laser developed by Maiman et al. [Mai60]. The high-intensity coherent radiation allowed
the advancement of experimental research in the field of nonlinear optics, which includes
processes such as second harmonic generation (SHG), sum frequency generation (SFG),
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Chapter 1 Introduction

difference frequency generation (DFG), and four-wave mixing (FWM). Optical harmonics
generation is an excellent method for investigations of exciton states in semiconductors
[Yak+18]. In this work, we will mainly focus on SHG, which was first demonstrated ex-
perimentally in quartz by Franken et al. in 1961 [Fra+61]. It is a coherent conversion of
two incoming photons into one outgoing photon of twice the energy and is very sensitive
to the symmetry of the addressed quantum state and the photon transitions, as both the
two-photon excitation and the single-photon emission processes need to be symmetry al-
lowed. Initially forbidden SHG processes may become allowed by reducing the symmetry of
the system by introducing perturbations or changing the crystal axis, along which the laser
light is linearly polarized or directed. An understanding of the underlying symmetries can
be accessed by measuring the SHG signal intensity as a function of the linear polarization
angles 𝜓 and 𝜑 of the incoming laser light and outgoing SHG light. If the experimentally ac-
quired polarization diagrams are in good agreement with a simulation that relies on derived
polarization selection rules, it suggests that the assumed mechanism and the underlying
symmetries are correct.

Previous results on SHG spectroscopy of excitons in external magnetic fields have been
achieved using nanosecond pulses emitted by an Nd:YAG laser and tuned in wavelength
by an optical parametric oscillator. Various materials such as ZnO [Laf13; Kam10], ZnSe
[War+18], GaAs [Sän06; Bru14; War+18], GaN [Bru14], EuTe and EuSe [Laf13; Kam10],
CdTe [Sän06] and Cu2O [Bru14] have been investigated with this setup.

For this work, a more advanced setup is used, which is equipped with a laser system pro-
ducing high peak intensity femtosecond and picosecond pulses, which are tunable through a
wide spectral range from ultra-violet to infrared light, as will be described in chapter 3. It
is optimized for nonlinear optical SHG and two-color experiments on various exciton states,
as will be presented in chapters 4-7. First nonlinear optical experiments using this setup
have been performed by Johannes Mund et al. [Mun19] on ZnO/(Zn,Mg)O and ZnSe/BeTe
quantum wells as well as on bulk Cu2O and ZnSe. The new fixed-wavelength femtosecond
pulse method [Mun+18] for measuring SHG spectra was introduced as an alternative to
the nanosecond pulse spectral scanning method of previous studies mentioned above. This
enabled Mund et al. to acquire high-resolution SHG spectra of even-parity 𝑆 and 𝐷 enve-
lope excitons up to 𝑛 = 9 in Cu2O. Using the point group theory tables of Koster et al.
[Kos+63], the SHG intensity was simulated as a function of the linear polarization angles
for SHG processes involving even and odd-parity excitons.

A major focus of this work is the extension of polarization selection rules to magnetic-
field-induced SHG mechanisms and to other nonlinear optical processes. In previous studies,
the SHG intensity was measured only for tuning the linear polarization angles of laser and
SHG light in parallel (𝜓 = 𝜑) and crossed (𝜓 = 𝜑 + 90∘) configurations from 0∘ to 360∘

degrees. For the first time, we will measure and simulate the SHG intensity as a function
of all possible combinations of 𝜓 and 𝜑 and plot it as two-dimensional diagrams. This will
open up more possibilities for identifying new mechanisms, distinguishing between them,
and finding (𝜓/𝜑) combinations, which only allow SHG of a single mechanism and suppress
all others. This method will turn out to be a powerful tool for magneto-optical spectroscopy
of excitons in Cu2O.

In chapter 4 the polarization selection rules for magnetic-field-induced SHG of yellow-
series excitons will be derived and the polarization dependence will be measured for several
SHG mechanisms. We choose a sample oriented in such a way, that SHG is symmetry-
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forbidden at zero magnetic fields. The Zeeman effect (ZE) and magneto-Stark effect (MSE)
are identified as the SHG-inducing mechanisms in a magnetic field.

In chapter 5 we discuss SHG mechanisms of spin-forbidden dark excitons (the so-called
paraexcitons), which do not interact with the light field. By applying a magnetic field
perpendicular to the laser light direction, optically active components of bright excitons
(the so-called orthoexcitons) are admixed, transferring oscillator strength to the paraex-
citons and thus inducing an SHG signal. The derived mechanisms will be tested on the
1𝑆 paraexciton and applied to detect a Rydberg series of paraexcitons. The simulated po-
larization diagrams allow finding linear polarization angle combinations to suppress SHG
of bright orthoexcitons, as they would otherwise overpower the weak SHG signals of dark
paraexcitons.

The yellow exciton series is energetically the lowest of the four known exciton series
in Cu2O and received the most interest in the past decade due to the Rydberg states.
Investigations of the blue series, which involves optical transitions to the second lowest
conduction band, are experimentally difficult to access via linear spectroscopy due to the
high absorption in this spectral range. In chapter 6 we will present magneto-optical SHG
spectroscopy results of blue-series excitons at an unprecedented level of detail. Important
parameters, such as the Rydberg energy, the exciton radius, and reduced mass as well as
the anisotropic electron mass of this conduction band for different crystal directions, will
be experimentally extracted.

In chapter 7, we will extend the polarization selection rules to a four-wave mixing pro-
cess, which we call difference frequency generation with two-photon excitation (2P-DFG).
The two-photon excitation channel that addresses exciton states in this process remains
unchanged from that of SHG. The pulses of a second laser, which are synchronized with
the excitation laser pulses, are directed onto the sample and stimulate the emission of a
fourth photon, which is detected at the difference frequency of the two-photon excitation
energy and the stimulation photon energy. Delaying the stimulating pulses allows spectro-
scopic measurements of excitons in the time domain. This method will be demonstrated on
excitons of the yellow series.
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Chapter 2

Theoretical background

In this chapter, we will establish the foundation for understanding the physical phenomena
involved in this work. This includes the theoretical background of nonlinear optics and
light-matter interaction, which is developed in Secs. 2.1 and 2.2 and covered by textbooks
[She84], [Boy08], [Han+10] and [Kli12]. The basic concepts of semiconductor physics, such
as the electronic band structure, excitons, exciton-polaritons and magneto-exciton, will
be described in Sec. 2.4. The descriptions are based on the textbooks [Gru16], [Kli12] and
[Kno63]. Group theory as a tool for understanding the symmetries of states and interactions
is explained in Sec. 2.3 based on the textbooks [Dre+08], [Sno+14] and [Kli12]. The point
group tables for multiplication, compatibility and coupling coefficients from Koster et al. in
Ref. [Kos+63] are of special importance for this work. They will be used in order to derive
polarization selection rules for nonlinear optical processes. In Sec. 2.5, we will present an
overview of the relevant optical properties of Cu2O and show previous results on exciton
spectroscopy in this material in order to establish a context for the investigations of this
work.

2.1 Electromagnetism and nonlinear optics

For the description of electromagnetic phenomena, we start with the four Maxwell’s equa-
tions. In differential form, they read:

Gauss’s law: div 𝑫 = 𝜌, (2.1)
Gauss’s law of magnetism: div 𝑩 = 0, (2.2)

Faraday’s law of induction: curl 𝑬 = − ∂
∂𝑡

𝑩, (2.3)

Ampère’s law: curl 𝑯 = ∂
∂𝑡

𝑫 + 𝒋, (2.4)

with the electric displacement D, the charge density 𝜌, the magnetic flux density 𝑩, the
electric field strength 𝑬, the magnetic field strength 𝑯 and the electrical current density 𝒋.
The relation between D and the polarization density in a medium P, the permettivity of
vacuum 𝜀0 and of a medium 𝜀𝑟 and the electric susceptibility 𝜒 is expressed by:

D = 𝜀0E + P = 𝜀0E + 𝜀0𝜒E = 𝜀0 (1 + 𝜒)⏟
𝜀𝑟

E. (2.5)
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2.1 Electromagnetism and nonlinear optics

The relation between B and the magnetization density in a medium M, the permeability
of vacuum 𝜇0 and of a medium 𝜇𝑟 and the magnetic susceptibility 𝜒𝑚 is expressed by:

B = 𝜇0(H + M) = 𝜇0H + 𝜇0𝜒𝑚H = 𝜇0 (1 + 𝜒𝑚)⏟
𝜇𝑟

H. (2.6)

The Lorentz force

FL = 𝑞(E + v × B), (2.7)

represents the final equation required to establish the foundation of electromagnetism. It
acts upon a particle with a charge 𝑞 propagating through an electromagnetic field with a
velocity v.

Electromagnetic radiation, such as light, is described by the electromagnetic wave equa-
tion in a vacuum

∆𝑬 − 1
𝑐2

∂2

∂𝑡
𝑬 = 0, (2.8)

which is derived (see e.g. Ref. [Nol11]) from Maxwell’s Eqs. (2.1), (2.3) and (2.4) assuming
𝜌 = j = M = 0. Here, 𝑐 = 1/√𝜀0𝜇0 is the vacuum speed of light.

A simple solution of this equation is the transverse plane wave described by

E(r, 𝑡) = E0𝑒𝑖(kr−𝜔𝑡), (2.9)

which propagates along the direction given by the wave vector k with a field amplitude 𝐸0.
For a fixed point r in space, the electric field oscillates with the angular frequency 𝜔 in time
𝑡. If the electric field oscillates along one axis, the electromagnetic wave is called linearly
polarized. Circular polarization is described by two perpendicular electric field components
with a phase shift of 𝜋/2. In this work, we will only consider linear polarization. An
equivalent expression to Eq. (2.9) can be derived for the magnetic field component of the
radiation. The electric and magnetic fields of the wave are perpendicular to each other
and to the propagation direction and oscillate in phase. Therefore the wave is completely
described just by the electric component, so we will not further consider the magnetic
component. The relation between k, 𝜔 and the wavelength 𝜆 is given by:

|k| = 𝑘 = 𝜔
𝑐

= 2𝜋
𝜆

. (2.10)

The group and phase velocities 𝑣g and 𝑣ph are defined by:

𝑣g = ∂𝜔(𝑘)
∂𝑘

, 𝑣ph = 𝜔(𝑘)
𝑘

. (2.11)

As seen in Eq. (2.10), the group and phase velocities are both equal to 𝑐 in a vacuum. This
is usually not the case for light propagating through a dielectric medium with a nonlinear
dispersion relation 𝜔(𝑘). Electromagnetic waves in a dielectric medium are described by
the equation [She84]:

∆𝑬 − 1
𝑐2

∂2

∂𝑡
𝑬 = 1

𝜖0𝑐2
∂2

∂𝑡
𝑷 . (2.12)

The electric field entering the medium displaces the charges inducing a polarization, which
in turn drives an electromagnetic field.
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Chapter 2 Theoretical background

In general, the charges are not displaced along the electric field. Therefore, P is not
parallel to E. The orientation of P depends on the symmetry of the crystal described
by the 𝜒(𝑛) tensors. For strong light fields, as those induced by high peak power laser
radiation, the displacement of the charges reaches the nonlinear part of the potential within
a noncentrosymmetric crystal, so that P is expressed in a series expansion [Boy08]:

𝑃𝑖 = 𝜖0[𝜒(1)
𝑖𝑗 𝐸𝑗 + 𝜒(2)

𝑖𝑗𝑘𝐸𝑗𝐸𝑘 + 𝜒(3)
𝑖𝑗𝑘𝑙𝐸𝑗𝐸𝑘𝐸𝑙 + ...]. (2.13)

The indices 𝑖, 𝑗, 𝑘, and 𝑙 represent the directional components of the polarization and
electric fields with respect to the spatial basis of 𝑥, 𝑦, and 𝑧. 𝜒(1)

𝑖𝑗 are the components of
a 3 × 3 second rank tensor for the linear susceptibility. The higher order susceptibilities
𝜒(2)

𝑖𝑗𝑘, 𝜒(3)
𝑖𝑗𝑘𝑙, ... are necessary for the description of nonlinear optical phenomena. In this work,

we will investigate the properties of these tensors not directly but by the group theoretical
methods later described in Sec. 2.3.

Now we consider two monochromatic light waves with frequencies 𝜔1 and 𝜔2, which enter
a medium. The oscillating electric fields are then described by

𝑬(𝑡) = 𝑬1𝑒−𝑖𝜔1𝑡 + 𝑬2𝑒−𝑖𝜔2𝑡 + c.c. (2.14)

in a fixed point r = 0. ”c.c.” are the complex conjugate terms. By inserting Eq. (2.14) into
Eq. (2.13) we get the second order polarization

𝑷 (2)(𝑡) = 𝜖0𝜒(2)[
SHG

⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑬2
1𝑒−𝑖2𝜔1𝑡 + 𝑬2

2𝑒−𝑖2𝜔2𝑡 +
SFG

⏞⏞⏞⏞⏞⏞⏞2𝑬1𝑬2𝑒−𝑖(𝜔1+𝜔2)𝑡 +
DFG

⏞⏞⏞⏞⏞⏞⏞2𝑬1𝑬∗
2𝑒−𝑖(𝜔1−𝜔2)𝑡

+ 2(𝑬1𝑬∗
1 + 𝑬2𝑬∗

2)⏟⏟⏟⏟⏟⏟⏟
OR

+𝑐.𝑐.]. (2.15)

The 2𝜔𝑖 terms describe second harmonic generation (SHG), which is sketched in Fig. 2.1(a).
Two light waves of frequency 𝜔1 are coherently converted into a light wave of double fre-
quency. In a particle picture, the light wave is quantized into the smallest possible energy
packet 𝐸ph = ℏ𝜔 carried by a photon. ℏ is the reduced Planck constant. SHG can then
be thought of as an absorption of two photons and a coherent emission of one photon with
twice the energy. The lower horizontal line in Fig. 2.1(a) is the ground state of the unexcited
crystal. The top line is the excited state, which is usually an exciton state in this work.

The 𝜔1 + 𝜔2 and 𝜔1 − 𝜔2 terms describe sum-frequency generation (SFG) and difference-
frequency generation (DFG) and are sketched in Figs. 2.1(b) and 2.1(c), respectively. Two
incoming photons of different frequencies are converted into an outgoing photon with the
sum or the difference of the incoming frequencies.

The last term in Eq. (2.15) represents optical rectification (OR). This process will not be
considered in this work.

The process in Fig. 2.1(d) is called difference-frequency generation with two-photon ex-
citation (2P-DFG), which is similar to DFG, but with two instead of a single photon in the
excitation channel. It is a special case of a process called four-wave mixing (FWM) involving
four photons. Here, we only consider the special case of the experiments in Sec. 7 involving
two photons from the first laser and one from the second laser. Thus the oscillating electric
fields of the combined laser light for the 2P-DFG process are described by:

𝑬(𝑡) = 2𝑬1𝑒−𝑖𝜔1𝑡 + 𝑬2𝑒−𝑖𝜔2𝑡 + c.c. . (2.16)
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2.2 Light-matter interaction

Figure 2.1 Energy schemes of nonlinear optical processes: (a) Second harmonic gen-
eration (SHG), (b) sum-frequency generation (SFG), (c) difference frequency generation
(DFG) and (d) difference-frequency generation with two-photon excitation (2P-DFG).
Later in Sec. 7 the DFG process will be called 1P-DFG analogously to the 2P-DFG termi-
nology. The horizontal lower (upper) line marks the energy level of the ground (excited)
state. The dotted lines mark the energy levels of states involved in virtual multi-photon
transitions. The arrows represent optical transitions with the photon-frequency 𝜔𝑖 corre-
sponding to the arrow length.

Inserting this equation into the third order term in Eq. (2.13) would lead to 216 terms.
Here we only show the relevant terms for 2P-DFG:

𝑷 (3)
2P-DFG(𝑡) = 𝜖0𝜒(3)[12𝑬2

1𝑬∗
2𝑒−𝑖(2𝜔1−𝜔2)𝑡 + c.c.]. (2.17)

For the highest conversion efficiency, the phase matching conditions [Boy08]

SHG: 𝒌2𝜔1
= 2𝒌𝜔1

, (2.18)
SFG: 𝒌𝜔1+𝜔2

= 𝒌𝜔1
+ 𝒌𝜔2

, (2.19)
DFG: 𝒌𝜔1−𝜔2

= 𝒌𝜔1
− 𝒌𝜔2

, (2.20)
2P-DFG: 𝒌2𝜔1−𝜔2

= 2𝒌𝜔1
− 𝒌𝜔2

(2.21)

need to be fulfilled.

2.2 Light-matter interaction
In Sec. 2.1, we have delivered a macroscopic description of nonlinear optical processes. Here
we will provide a microscopic description of the interaction between light and matter. We
start with the Hamiltonian for an electron with mass 𝑚0 and momentum p in a periodic
crystal potential 𝑉 (r) and apply the minimal coupling p → p−𝑒A, with elementary charge
𝑒 and vector potential A, in order to treat the light field as a small perturbation [Nol11;
Kli12], which only slightly affects the electron eigenenergies:

Hel = p2

2𝑚0
+ 𝑉 (r) (2.22)

⇒ H = (p − 𝑒A)2

2𝑚0
+ 𝑉 (r)

= p2

2𝑚0
+ 𝑉 (𝑟)

⏟⏟⏟⏟⏟
Hel

− 𝑒
𝑚0

pA
⏟

Hint

+ 𝑒2

2𝑚0
A2

⏟
Hdia

.
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Chapter 2 Theoretical background

The Hamiltonian can then be separated into three terms: The first one is again the initial
Hamiltonian of a single electron in a crystal potential. The last term is quadratic in A and
describes the effect of electric and magnetic fields on the electron eigenenergies, such as
the diamagnetic shift. In the following, we will only consider the second term Hint, which
describes the light-matter interaction. For the A we use the plane wave ansatz [Kli12]

A(𝑡) = e𝐴0𝑒𝑖(kr−𝜔𝑡) (2.23)

≈ e𝐴0[1 + 𝑖kr
1!

+ 𝑂((𝑖kr)2)], (2.24)

for which the exponential function is approximated via a Taylor series up to the second
term. 𝐴0 is the amplitude of the plane wave. According to Fermi’s golden rule [Kli12], the
optical transition rate between the ground state and an excited state is given by

𝑤𝑔→𝑒 = 2𝜋
ℏ

∣𝐻 int
𝑔 ˃𝑒∣2𝜌(𝐸𝑒). (2.25)

𝜌(𝐸𝑒) is the density of states at the energy of the excited state and 𝐻 int
𝑔 ˃𝑒 is the transition

probability

𝐻 int
𝑔 ˃𝑒 = ⟨𝜓𝑒|Hint|𝜓𝑔⟩ (2.26)

≈ e𝐴0
𝑚

⟨𝜓𝑒|e ⋅ p|𝜓𝑔⟩ + 𝑖e𝐴0
𝑚

⟨𝜓𝑒|(e ⋅ p)(k ⋅ r)|𝜓𝑔⟩.

⟨𝜓𝑒| is the excited and |𝜓𝑔⟩ the ground state. The (e ⋅p) term is known as the electric dipole
(ED) approximation of an optical transition and the (e ⋅ p)(k ⋅ r) term contains the electric
quadrupole (EQ) and magnetic dipole (MD) transitions [Kli12; Ell61]. The symmetries of
these processes and their role in optical selection rules in Cu2O will be discussed in Sec. 4.1.

Second harmonic generation is described in third-order perturbation theory involving
three optical transitions. Its transition rate is expressed by

𝑤SHG
𝑔 ˃𝑣 ˃𝑒 ˃𝑔 ∝ ∑

𝑣

⟨𝜓𝑔|Hint(2ℏ𝜔)|𝜓𝑒⟩⟨𝜓𝑒|Hint(ℏ𝜔)|𝜓𝑣⟩⟨𝜓𝑣|Hint(ℏ𝜔)|𝜓𝑔⟩
(𝐸𝑒 − 𝐸𝑔 − 2ℏ𝜔)(𝐸𝑣 − 𝐸𝑔 − ℏ𝜔)

. (2.27)

|𝜓𝑣⟩ are eigenstates, which are virtually excited as intermediate states in the two-photon
excitation sub-process. The SHG selection rules will be discussed in Sec. 2.3. The denom-
inator ensures, that the total expression increases for the photon energies matching the
resonance energy.

2.3 Group theory for semiconductor optics
Group theory is a powerful mathematical tool for the investigation of symmetry properties
of physical objects such as molecules or crystals. A group 𝐺 is an algebraic structure, which
is constructed by a set of elements {𝑎, 𝑏, 𝑐, ...} connected via an operation ” ∘ ” satisfying
the following four criteria [Dre+08]: i) Connection of any two elements of the group via
the specific operation results in another element of the group: 𝑎 ∘ 𝑏 = 𝑐 with 𝑎, 𝑏, 𝑐 ∈ 𝐺.
ii) Associativity must apply: (𝑎 ∘ 𝑏) ∘ 𝑐 = 𝑎 ∘ (𝑏 ∘ 𝑐). iii) An identity element 𝐸 must exist:
𝑎 ∘ 𝐸 = 𝑎 for any group element. iv) Any group element has to have an inverse element:
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2.3 Group theory for semiconductor optics

𝑎 ∘ 𝑎−1 = 𝐸. A subgroup is a subset of the group elements which fulfill all group criteria
by themselves. As an example, all real numbers form a group with respect to the operation
of multiplication. All integers form a subgroup, as they still satisfy all criteria and are a
subset of the real numbers.

In solid-state physics, the symmetry of crystals is described by point groups. A point
group is a set of all symmetry operations which map the crystal onto itself. These symmetry
operations include space inversion, reflections on mirror planes, rotations and combined
rotations followed by a reflection on a mirror plane.

The crystal structure of Cu2O is composed of a body-centered cubic oxygen sub-lattice
and a face-centered cubic copper sub-lattice, which is shifted by a quarter of a space di-
agonal. The unit cell of both sub-lattices is shown in Fig. 2.3(a). Each oxygen atom
is surrounded by four copper atoms in a tetrahedral arrangement. Therefore the crystal
symmetry of Cu2O is characterized by the Td point group in Schönflies notation ( ̄43𝑚 in
Hermann-Mauguin notation), which contains all geometric operations mapping a tetrahe-
dron into itself. Each copper atom is surrounded by two oxygen atoms on opposite sides.
Therefore inversion symmetry is satisfied with a copper atom as the reference point for
the symmetry operation. In literature, the Cu2O crystal structure is generally said to be
described by the Oh group [Kli12] in Schönflies notation (𝑚 ̄3𝑚 in Hermann-Mauguin no-
tation, which contains all (in total 48) geometric operations mapping an octahedron or a
cube into itself. This is not strictly the case due to the fact that there are no proper 90∘

rotations, which map the crystal onto itself. However, considering optical properties, which
are determined by the two lowest CBs and two highest VBs, all stemming from copper
orbitals as later shown in Fig. 2.3(c), the lower-lying electronic states of oxygen orbitals are
basically not involved and screen the Coulomb potential of the oxygen sub-lattice. Ignoring
the oxygen atoms would therefore lead to Oh symmetry for the copper sub-lattice, so parity
is considered a good quantum number.

Next, we explain the important concept of group representations. Dealing with geometric
operations as group elements, it is convenient to describe them by 𝑛 × 𝑛 matrices (e.g.
rotation and reflection matrices). A set of these matrices (one for each group element),
which exhibits the transformation behavior as stated in the multiplication table of the
group, is called a representation. In principle, there are infinitely many representations. A
representation is called reducible if the matrices can be brought into a block diagonal form.
More useful is the finite number of irreducible representations for a point group, of which
the matrices cannot be further simplified into a block diagonal form. They are denoted by
𝛤 ±

𝑖 with a lower counting index 𝑖 and ± for even or odd parity. In our case, they are used to
specify the transformation behavior and therefore the symmetry of physical states (such as
band electrons, excitons, and the induced polarization by photons in a solid) and external
perturbations (such as strain, electric and magnetic fields).

Introducing an additional influence on a physical system usually lowers the symmetry
so that the symmetry of the perturbed system is fully described by a subgroup. If a
representation 𝛤𝜓 of a physical state |𝜓⟩ is irreducible in the group 𝐺 but reducible in its
subgroup 𝐺sub, then the state splits into multiple states with different symmetries and lower
degeneracies. This behavior is specified in the compatibility tables. Note that group theory
only specifies the symmetries and degeneracies of split or coupled states, not their energetic
order or the absolute splitting energy, which have to be found out by quantum mechanical
methods.

11



Chapter 2 Theoretical background

For example, 𝑑 orbitals of a copper atom in free space transform as 𝐷+
2 in the full rotation

group SO(3), as they have even parity and an angular momentum of 𝑙 = 2. If these 𝑑 orbitals
are brought into a crystal field with Oh symmetry, their levels split into 𝛤 +

3 and 𝛤 +
5 states

according to the compatibility table A.1. This is shown in Fig. 2.3(c) and explains the VB
symmetry in a crystal field. The degeneracy of the states is specified in the identity element
column (usually the first column) of the character table A.2 of the Oh group.

In order to take the spin-orbit coupling for the VB into consideration, we look up the
symmetry of the spin 1/2 of the electron in the same compatibility table. In the full rotation
group, it has a 𝐷+

1/2 representation corresponding to a 𝛤 +
6 symmetry in the Oh group. To

find out the symmetry of the spin-orbit coupled VB states, one has to calculate the tensor
product of their irreducible representations. The product leads to reducible matrices, which
can be block diagonalized into sub-matrices, which are the irreducible representations of
the new eigenstates. The results are specified in the multiplication table of the Oh group
shown in Fig. A.3. The 𝛤 +

5 VB splits into a 𝛤 +
7 and a 𝛤 +

8 VB, as sketched in Fig. 2.3(c).
Now we turn to the symmetry considerations for selection rules of optical transitions

[Pas+91]. Group theory cannot specify quantitatively how strong an optical transition is,
but it can predict which transitions are and which are not allowed by symmetry. For an
optical transition between an initial and a final state to be symmetry allowed, the equation

⟨𝜓𝑓|Hint|𝜓𝑖⟩ →⟨𝛤𝑓|𝛤pol|𝛤𝑖⟩ = ⟨𝛤𝑓|𝛤pol ⊗ 𝛤𝑖⟩ ≠ 0 (2.28)

has necessarily to be satisfied. The initial state perturbed by the light field and the final
state therefore need to share the same symmetry component. As an example, single-photon
excitation from the ground state to a yellow series 𝑆 exciton is only possible for the or-
thoexciton state by a 𝛤 +

5 electric quadrupole transition:

⟨𝛤𝑆|𝛤pol|𝛤𝐺⟩ = ⟨ 𝜞 +
𝟓⏟

ortho

⊕ 𝛤 +
2⏟

para

| 𝛤 −
4⏟

ED

⊕ 𝛤 +
4⏟

MD

⊕ 𝛤 +
3 ⊕ 𝜞 +

𝟓⏟
EQ

⟩ = ⟨𝛤ortho|𝛤EQ⟩ ≠ 0. (2.29)

The symmetries are calculated in Sec. 4 in Eqs. (4.51),(4.52) and (4.53) for yellow-series
excitons and are stated in Eqs. (4.54), (4.55) and (4.56) for the light-induced polarization
in the solid.

An external perturbation, such as a magnetic field, can mix exciton states of different
symmetry and thus allows previously forbidden transitions. As an example, a single-photon
transition

⟨𝛤para|𝛤𝐵|𝛤ortho⟩⟨𝛤ortho|𝛤pol|𝛤𝐺⟩ ≠ 0 (2.30)

to the 𝛤 +
2 paraexciton state can be allowed by an applied magnetic field due to mixing with

the EQ allowed orthoexciton state:

⟨𝛤para⏟
𝛤 +

2

| 𝛤𝐵⏟
𝛤 +

4

| 𝛤ortho⏟
𝛤 +

5

⟩ = ⟨𝜞 +
𝟐 |𝜞 +

𝟐 ⊕ 𝛤 +
3 ⊕ 𝛤 +

4 ⊕ 𝛤 +
5 ⟩ ≠ 0. (2.31)

The SHG transition rate has been expressed in Eq. (2.27). Although each individual
transition of an SHG process may be, in principle, symmetry allowed, the whole SHG
process can still be forbidden for k along certain crystal axes or for certain combinations
of the polarization of incoming and outgoing light. Therefore we need to consider how
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2.4 Semiconductor optics: excitons, exciton-polaritons and magneto-excitons

the spatial components of eigenstates and perturbations are coupled. This information
is given in the coupling coefficient tables in Figs. A.4-A.9 from Ref. [Kos+63], which
contain the Clebsch-Gordon coefficients for the coupling of states of various symmetries.
They specify how the spatial components of two states with certain symmetries need to be
linearly combined so that the result exhibits the symmetry of the final state. This is the
basis for the derivation of the polarization-dependent SHG intensity, which will be presented
in great detail in Sec. 4.1.

2.4 Semiconductor optics: excitons, exciton-polaritons and
magneto-excitons

A semiconductor consists of atoms in a periodic structure, which are bound by covalent
or ionic bonds [Kit04; Gru16]. The valence orbitals of neighboring atoms share a significant
overlap so that their binding and antibonding states form electronic bands due to the Pauli
exclusion principle. Semiconductors have a bandgap 𝐸g in the order of a few eV, which is
a forbidden energy interval for electronic states. At the temperature 𝑇 = 0, the valence
band (VB) is fully occupied by electrons and the conduction band (CB) is empty, so the
semiconductor acts as an insulator exhibiting zero conductivity. For undoped semiconduc-
tors, thermal excitations into the conduction band are vanishingly small at temperatures
of about 1.4 K, which are the temperatures of our experiments. For so-called direct semi-
conductors, the maximum of the VB and the minimum of the CB are located at the same
𝑘 in a band structure diagram, as shown schematically in Fig. 2.2(a). An electronic band
is approximated as a parabola close to its dispersion extremum. The effective mass of an
electron is proportional to the inverse of the band curvature:

𝑚e = ℏ[∂2𝐸CB(𝑘)
∂2𝑘2 ]

−1

(2.32)

An electron can be excited from the VB into the CB by absorbing a photon with an energy
of at least the bandgap ℏ𝜔ph ≥ 𝐸g. For a direct semiconductor, the optical transition does
not require the involvement of a phonon, the quasiparticle of a quantized crystal vibration.
As the electron in the CB is no longer bound to its initial atom, a positively charged electron
vacancy remains in the VB, which is treated as a quasiparticle called a hole. It has the
opposite wavevector to the electron, positive charge and an effective mass according to the
curvature of the according VB [Eq. (2.32)].

Now we turn to the concept of excitons, which are the quasiparticles investigated in this
work. Excitons are electron-hole pairs bound by the Coulomb interaction and are there-
fore hydrogen-atom-like states in semiconductors and are described by the same quantum
numbers 𝑛 (principal), 𝑙 (angular) and 𝑚 (magnetic). The exciton wave function [Kli12]

𝜓𝑋(K) = 𝑒𝑖KR
√

𝛺
𝜓𝑒(r𝑒)𝜓ℎ(rℎ)𝜓env

𝑛,𝑙,𝑚(r𝑒 − rℎ) (2.33)

is composed of the Bloch functions 𝜓𝑒 and 𝜓ℎ of electron and hole, the envelope func-
tion 𝜓env

𝑛,𝑙,𝑚 describing the relative motion of electron and hole, the center of mass (R =
[𝑚𝑒r𝑒 + 𝑚ℎrℎ]/[𝑚𝑒 + 𝑚ℎ)]) motion 𝑒𝑖KR and a normalization factor 𝛺−1/2. The excitonic
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Chapter 2 Theoretical background

Figure 2.2 (a) Schematic band dispersion of a direct semiconductor with an excited
electron in the conduction band (CB) and a hole in the valence band (VB). (b) Exciton
dispersion according to Eq. (2.34). (c) Exciton-polariton dispersion displays the upper
polariton branch (UPB) and lower polariton branch (LPB) as solid lines. The vertical
double arrow marks the Rabi energy. The upper (lower) parabolic dashed line represents
the dispersion of the longitudinal (transverse) state. The straight dashed lines represent
the photon dispersion considering the background and static dielectric constants: Ph𝑏
according to 𝐸(𝑘) = 𝑐𝑘/(√𝜀𝑏ℏ) and Ph𝑠 according to 𝐸(𝑘) = 𝑐𝑘/(√𝜀𝑠ℏ).

eigenenergies and their dispersion relations are sketched in Fig. 2.2(b) and expressed by
[Gru16]:

𝐸𝑋
𝑛 (K) = 𝐸g + 𝐸kin(K) − 𝐸bind

= 𝐸g + ℏ2K2

2𝑀
− 𝜇

𝑚0

1
𝜀2

𝑟

𝐸H
Ryd

⏞⏞⏞⏞⏞𝑚0𝑒4

2(4𝜋𝜀0ℏ)2⏟⏟⏟⏟⏟⏟⏟
𝐸X

Ryd

1
𝑛2 (2.34)

They form a hydrogen-like series with binding energies proportional to 𝑛−2 for increasing
𝑛 below the bandgap 𝐸g with a parabolic dispersion 𝐸kin(K2), where K = k𝑒 + kℎ is the
combined wavevector of electron and hole. 𝑀 = 𝑚𝑒 + 𝑚ℎ is the total and 𝜇 = 𝑚𝑒𝑚ℎ

𝑚𝑒+𝑚ℎ
the

reduced exciton mass. The exciton radius is given by [Kli12]

𝑟𝑋
𝑛 = 𝑚0𝜀𝑟

𝜇
𝑎H

B⏟
𝑎𝑋

𝐵

𝑛2, (2.35)

with the hydrogen Bohr radius 𝑎H
B = 0.053 nm [Gru16] and the exciton Bohr radius 𝑎𝑋

B .
There are two types of excitons classified by the size of their Bohr radius. If the exciton
Bohr radius is significantly larger than the lattice constant in the range of several nm and a
binding energy of less than about 200 meV, it is considered a Mott-Wannier exciton [Kli12].
Due to the large Bohr radius, the excitonic wave function extends over many crystal unit
cells, which keeps the effective mass approximation valid. The so-called Frenkel excitons are
confined to one unit cell and have therefore a large binding energy usually above 200 meV
and a small Bohr radius in the range of one lattice constant [Kli12].
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2.4 Semiconductor optics: excitons, exciton-polaritons and magneto-excitons

As already mentioned in Sec. 2.1, an electromagnetic wave entering a dielectric medium
induces a polarization, which in turn drives an outgoing light wave. This coupling of the
photon to the polarization of an exciton in the medium leads to a new hybrid quasipar-
ticle, which is called the exciton-polariton. For the dispersion relation 𝜔(𝑘) of exciton-
polaritons, we start with the polariton equation

𝜀(𝜔) = 𝑐2k2

𝜔2 , (2.36)

which is a solution of the wave equation in a medium, see Eq. (2.12) with the ansatz in
Eq. (2.14).

The dielectric constant for a single exciton resonance ℏ𝜔𝑋 is given by [And95]:

𝜀(𝜔) = 𝜀𝑏 + 4𝜋𝛽(ℏ𝜔𝑋)2

(ℏ𝜔𝑋)2 − (ℏ𝜔)2 − 𝑖ℏ𝜔𝛾
. (2.37)

The background dielectric constant 𝜀𝑏 takes all higher frequency contributions into account
and 𝛾 is the radiative damping of the state. 𝛽 is the oscillator strength density per unit cell,
which quantifies the coupling strength between the light field and the exciton and leads to
an energy splitting

𝛥𝐸LT = 2𝜋ℏ𝜔𝑋
𝜀𝑏

𝛽 (2.38)

of the state into a transverse and a higher energy longitudinal component [Kli12]. Combin-
ing both equations leads to an implicit expression for the exciton-polariton dispersion of a
single state:

𝜀(𝜔) = 𝑐2k2

𝜔2 = 𝜀𝑏 + 4𝜋𝛽(ℏ𝜔𝑋)2

(ℏ𝜔𝑋)2 − (ℏ𝜔)2 − 𝑖ℏ𝜔𝛾
(2.39)

𝜔𝑋 is the frequency of the transverse exciton state. The dispersion relation is sketched for
the simplified case neglecting damping in Fig. 2.2(c). It shows the quadratic dispersion of
the longitudinal and transverse exciton state as well as the photon dispersions considering
the background dielectric constant 𝜖𝑏 for high and the background dielectric constant 𝜖𝑠 for
low-frequency contributions. The exciton-photon coupling induces an anticrossing leading
to an upper polariton branch (UPB) and a lower polariton branch (LPB). For small 𝑘 values,
the UPB is considered exciton-like as it is close to the longitudinal exciton dispersion with a
small group velocity. For increasing 𝑘 it approaches the light dispersion 𝜔(𝑘) = 𝑘𝑐/√𝜖𝑏. The
LPB starts photon-like for small 𝑘 with a dispersion of 𝜔(𝑘) = 𝑘𝑐/√𝜖𝑠 and approaches the
quadratic transverse exciton dispersion for increasing 𝑘. The smallest energetic difference
between the branches for the same 𝑘 value is called the Rabi energy [Kli12]

𝐸𝑅 = ℏ𝛺𝑅 = √𝛥𝐸LT𝐸𝑋(0)
2

, (2.40)

which is also a measure of the coupling strength. The exciton-polariton dispersion will
be extended to multiple exciton resonances and calculated for non-vanishing dampings in
Sec. 6.1 for blue-series excitons.
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Chapter 2 Theoretical background

In the following, we will explain the concept of magneto-excitons by briefly summariz-
ing the effects of external magnetic fields on excitons. The direct impact of a magnetic field
on the excitonic magnetic moment, which may be given by the spin or the orbital angular
momentum of its envelope function, is called the Zeeman effect (ZE). The linear energy
splitting of an exciton resonance in a magnetic field is given by [Kli12]

𝛥𝐸ZE,spin = ±1
2

|𝑔𝑒 ± 𝑔ℎ|𝜇𝐵𝐵 (2.41)

for the spin ZE, with the Landé 𝑔-factors 𝑔𝑖 of electron and hole and the Bohr magneton
𝜇𝐵 = 𝑒ℏ/2𝑚0. The orbital ZE-induced energy splitting is given by

𝛥𝐸ZE,orb = ±𝑔orb𝜇𝐵𝐵. (2.42)

Due to the positive parity of magnetic fields, only states of the same parity may be mixed.
More details are given in Sec. 5.1 for the yellow series 1𝑆 exciton in a magnetic field.

Another phenomenon called the magneto-Stark effect (MSE) arises due to the center of
mass motion of an exciton perpendicular to a magnetic field and is therefore maximal in
Voigt and absent in Faraday geometry. The Lorentz force [see Eq. (2.7)] acting in opposite
directions on the oppositely charged electron and hole separates their charge distributions
leading to an effective electric field [Tho+61]

EMSE = ℏ
𝑀

K × B (2.43)

with negative parity. Therefore only opposite parity states may be mixed by the MSE. The
mixing mechanism between exciton states induced by the MSE and ZE will be considered
for polarization dependence of magnetic-field-induced SHG in Sec. 4.1

The envelope of the exciton wave function is deformed by the Lorentz force, which can
also be treated as an admixture of other exciton states with different angular momentum
and increases linearly with increasing 𝐵. Additionally, the energy of a magnetic dipole
also increases proportionally to 𝐵, leading in total to a quadratic diamagnetic shift of the
exciton energies for increasing magnetic fields according to [Kli12]

Hdia(𝐵) = 𝑒2

8𝜇
2
3

⟨𝑟2
𝑛,𝑙⟩𝐵2 (2.44)

with the average of the squared exciton radius [Tai72]

⟨𝑟2
𝑛,𝑙⟩ = 𝑎𝑋

𝐵
2

2
𝑛2[5𝑛2 + 1 − 3𝑙(𝑙 + 1)]. (2.45)

A more extensive description of the diamagnetic shift will be given in Sec. 6.4.1 in the case
of blue-series excitons.

Another magnetic field effect on electrons and holes is characterized by the cyclotron
energy [Kli12]

𝐸c,𝑛L
(𝐵) = (𝑛L − 1

2
)ℏ(𝜔c,e + 𝜔c,h) (2.46)

= (𝑛L − 1
2

)ℏ𝑒
𝜇

𝐵. (2.47)
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2.5 Exciton spectroscopy in Cu2O

forming Landau levels similar to a quantum harmonic oscillator with the Landau quantum
number 𝑛L resulting in a linear energy shift with increasing magnetic field. The Lorentz
force also affects the relative motions of electrons and holes, forcing them, in a classical
picture, on quantized circular trajectories in the plane perpendicular to the magnetic field
leading to a shrinking of the excitonic radius. As the Lorentz force vanishes for motion
along the magnetic field, the free particle description for electron and hole is still valid in
this direction.

The quadratic diamagnetic shift dominates for the low-field regime, in which the exciton
binding energy is much larger than the cyclotron energy. In the high-field regime, the exciton
energies shift linearly as the cyclotron energy becomes larger than the binding energy. More
details will be given in Sec. 6.5 dealing with blue series magneto-excitons.

2.5 Exciton spectroscopy in Cu2O

Figure 2.3 (a) Cu2O crystal structure, of which the bcc oxygen and fcc copper unit cells
are depicted. (b) Complete Cu2O band structure calculated by spin density functional
theory in Ref. [Fre+09]. The rectangle marks the important region at the 𝛤 point, including
the four optically relevant electronic bands, which are sketched in (c) in more detail:
Symmetries of the relevant copper orbitals in the full rotation group 𝑆𝑂(3) as well as
their 𝑂h group symmetries in a crystal field and for included spin-orbit coupling. The
band-to-band transitions for the four exciton series are marked by colored vertical arrows.
Note the non-parabolicity of the highest VB.

Cu2O is a direct semiconductor with a cubic crystal structure and a lattice constant of
𝑎lat = 4.27 Å [Pei+09]. The copper atoms form a fcc and the oxygen atoms a bcc lattice
with a shift of a quarter space diagonal, as can be seen in Fig. 2.3(a). As explained in
Sec. 2.3, 𝑂h is the relevant point group for optical properties. A spin density functional
theory calculation of the electronic band structure by French et al. [Fre+09] is shown in
Fig. 2.3(b). The region at the 𝛤 point marked by the black rectangle involves the four
relevant bands, which are shown in a scheme in Fig. 2.3(c). Optical transitions between
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Chapter 2 Theoretical background

them lead to four exciton series denoted by the color of their light emission.
The yellow series has a band gap of 𝐸𝑔,y = 2.172 08 eV [Kaz+14] and involves the highest

VB composed by copper 3𝑑 orbitals, which have a 𝛤 +
5 symmetry in the crystal field and a

𝛤 +
7 symmetry if spin-orbit interaction is included. The CB stems from copper 4𝑠 orbitals

with 𝛤 +
1 symmetry in a crystal field. The spin-orbit coupling leads to a 𝛤 +

6 symmetry. The
effective electron and hole masses of the CB and VB are 𝑚𝑒 = 0.985 𝑚0 and 𝑚ℎ = 0.575 𝑚0,
respectively, resulting in a reduced exciton mass of 𝜇y = 0.363 𝑚0 and 𝑀y = 1.56 𝑚0
[Nak+12].

After Gross et al. [Gro+52] measured the yellow 𝑃 exciton series up to a quantum
number of 𝑛 = 8, the number of measured yellow exciton shells (states with specific 𝑛, 𝐿
configuration) has been extended to about 60, which are shown in the energy level scheme
in Fig.2.4. The exciton energy levels 𝑛 are plotted for the angular momentum quantum
number 𝐿 up to 5, which corresponds to an 𝐻 envelope. The 𝑃 series has been extended in
2014 up to 𝑛 = 25 [Kaz+14] and later to 30 [Ver+21].
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Figure 2.4 Binding energy levels of all excitons shells of the (a) yellow [Kaz+14; Hec+17a;
Hec+20; The+15], (b) green (Fig. 2.6), (c) blue [Far+21] and (d) violet series [Dau+66],
which have been experimentally observed. The angular momentum quantum number 𝐿 is
stated below and the band gap above each series.

Excitons in Cu2O are generally considered to be of Mott-Wannier type. An exception is
the 1𝑆 yellow exciton partly having Frenkel-like characteristics with a rather large binding
energy of 130 meV and a small radius of 7 Å [Kav+97]. As a consequence of the small
radius with a similar size as the lattice constant, the exciton is spread in 𝐾 space covering
a significant portion of the Brillouin zone so that the non-parabolic distortions, which are
indicated in the band structure scheme in Fig. 2.3(c), need to be considered. Thus the
so-called central-cell correction is taken into consideration as described in Ref. [Sch+17b].

As the lowest CB and upmost VB have the same parity, direct transitions are ED forbid-
den, leading to a small oscillator strength. 𝑆 and other even parity excitons are optically
allowed for EQ transitions. 𝑃 and other odd parity excitons are ED-allowed due to their
envelope function.
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2.5 Exciton spectroscopy in Cu2O

A spectrum of the yellow series measured in one photon absorption experiments by scan-
ning a narrow bandwidth laser through the relevant spectral range is shown in Figs. 2.5(a)
and 2.5(b). The spectrum is taken from Ref. [Hec20]. At 2.0328 eV in Fig. 2.5 the EQ
allowed 1𝑆 ground state is seen. It is a four-fold state consisting of three singlet-triplet
mixed bright orthostates and one pure spin-triplet dark paraexciton, the latter of which is
the narrowest spectral exciton line [Bra+07] in semiconductor optics and will be investi-
gated in SHG experiments in Sec. 5. Above 2.145 eV, the yellow 𝑃 series starts including
the 2𝑃 up to the 22𝑃 in this measurement. The 𝑃 excitons form a hydrogen-like series
according to Eq. (2.34) with a Rydberg energy of 92 meV [Kaz+14] and a Bohr radius of
11.1 Å [Kav+97]. A small deviation from the 1/𝑛2 binding energy scaling is explained by a
positive quantum defect of 𝛿 ≈ 0.3 for Rydberg 𝑃 states modifying the scaling according to
1/(𝑛 − 𝛿)2, which results from the spin-orbit interaction affecting the two highest VBs, as
derived in Ref. [Sch+16a]. The resonances are getting spectrally narrower and weaker in in-
tensity for increasing 𝑛. Energetically above the bandgap, the absorption starts to increase
steadily. The 𝑃 states interfere with a phonon continuum starting at about 2.0464 eV, the
sum of the 1𝑆 exciton and 𝛤 −

3 phonon of 13.6 meV [Tak+18].
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Figure 2.5 Experimentally obtained spectra of the yellow exciton series: One-photon
absorption spectrum of (a) the EQ allowed 1𝑆 exciton and (b) the ED allowed 𝑃 exciton
series with weak features of 𝐹 and 𝐻 states zoomed in the inset. The data are taken from
Ref. [Hec20]. The SHG spectrum in the same spectral range is taken from Ref. [Mun+18].
The excitons are excited by fs pulses as described in Sec. 3.3: ED-ED excited (c) 1𝑆 and
(d) higher 𝑛 𝑆 and 𝐷 exciton states. A weak feature of the ED-EQ excited 2𝑃 exciton is
observed. The 1𝑆 exciton of the green series, which is only weakly visible in panel (b),
gives a stronger signal in SHG and is spectrally located between the 2𝑃 and the 3𝑆 exciton.
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Chapter 2 Theoretical background

Figures 2.5(c) and 2.5(d) show the SHG spectrum of 𝑆 and 𝐷 excitons up to 𝑛 = 9
in the same energy range. The data is taken from Ref. [Mun+18]. The 1𝑆 exciton is by
far the most intense line in the series and its line width is limited by the resolution of the
spectrometer. There are only weak features of the 2𝑃 and 3𝑃 excitons in the SHG spectrum.
The 1𝑆 exciton of the green series, which is only weakly visible in the one-photon absorption
spectrum, exhibits a rather strong intensity compared to the yellow series Rydberg states.
It is energetically located between the yellow 2𝑆 and 3𝑆 states leading to a strong yellow-
green mixing. The green part in yellow excitons is quantified in Ref. [Sch+17b]. Each 𝑆
exciton has a lower energy dark paraexciton state, which is not visible in this spectrum
but can be activated by magnetic fields, as will be described in Sec. 5.5. In Sec. 4, we will
identify the magnetic-field inducing SHG mechanisms that mix the 𝑆, 𝑃 and 𝐷 states and
induce an SHG signal. This will be demonstrated by simulating and measuring the linear
polarization dependence of the SHG signal.

The green series with a bandgap of 𝐸𝑔,g = 2.306 eV (see Fig. 2.6) involves the same CB
as the yellow series but the second highest VB with 𝛤 +

8 symmetry, which also stems from
copper 3𝑑 orbitals. A one-photon transmission spectrum of green series 𝑃 excitons up to
𝑛 = 5 is shown in Fig. 2.6. The acquired resonance energies from the second derivative of
the spectrum are plotted as dots in Fig. 2.6(b). Fitting them with Eq. (2.34) modified with
the quantum defect leads to 𝛿green = −0.16 ± 0.14, which has the expected opposite sign to
𝛿yellow [Kaz+14]. Rommel et al. recently performed extensive numerical investigations on
the green-series excitons in Ref. [Rom+20b].
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Figure 2.6 (a) White-light absorption spectrum of the green exciton series up to 𝑛 = 5.
The light is focused onto a 6 µm thick part of a wedge-shaped natural sample. The
resonance energies are obtained in the second derivative of the spectrum shown as the
red line and plotted in panel (b): A fit according to Eq. (2.34) modified with a quantum
defect parameter 𝑛 → 𝑛 − 𝛿 indicates a quantum defect of 𝛿 = −0.16 ± 0.14 with the
opposite sign compared to the yellow series. The resulting band gap of 𝐸𝑔,g = 2.306 eV is
shown as the dotted line.

The blue series has a bandgap of 𝐸𝑔,b = 2.6326 eV [Far+21] and involves the same VB
as the yellow series and the second lowest CB, which stems from the copper 4𝑃 orbitals. In
a crystal field, these copper states form electronic bands with a 𝛤 −

3 symmetry, which turns
into a 𝛤 −

8 symmetry, including spin-orbit coupling. Transitions are ED allowed resulting in
a large oscillator strength density of 𝛽b = 2.93×10−3 [Dau+66] and thus a strong polariton
effect, which will be investigated in Sec. 6. In comparison, the oscillator strength density
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Figure 2.7 (a) One-photon reflection spectrum in the spectral range of the blue and violet
excitons. (b) SHG spectrum in the same spectral range at a magnetic field of 10 T in Voigt
configuration displaying blue series 𝑆 type magneto-excitons up to 𝑛 = 8 and no distinct
violet series resonances.

of blue-series excitons is about seven orders of magnitude larger than 𝛽y = 3.1 × 10−10

[Frö+06] of yellow-series excitons. The effective mass of electrons in this conduction band
is anisotropic and will be analyzed in Sec. 6.5.

The violet series has a bandgap of 𝐸𝑔,v = 2.756 eV [Dau+66] and involves the same VB
as the green series and the same CB as the blue series and is therefore also allowed for ED
transitions with an even larger oscillator strength density of 𝛽b = 4.62 × 10−3 [Ito+98].

One photon absorption measurements of blue and violet-series excitons in bulk crystals
are not possible due to the high absorption. A one-photon reflection spectrum of the blue-
violet spectral range is shown in Fig. 2.7(a). The visible spectral features are induced by the
1𝑆 excitons of each series and are not very insightful. Fig. 2.7(b) shows the SHG spectrum
at a magnetic field of 10 T, in which blue series magneto-excitons up to 𝑛 = 8 are detected.
Extensive experimental results will be presented in Sec. 6. The violet series consists of
broad lines with hardly any features resolved.

An energy level scheme for all measured states beyond the yellow exciton series, including
the results of this work, is shown in Fig. 2.4.
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Chapter 3

Experimental details

Our experimental setup is depicted in Fig. 3.1 and allows a wide range of nonlinear optical
spectroscopy experiments, applying processes such as second harmonic generation (SHG)
and difference frequency generation with two-photon excitation (2P-DFG) for polarization
and time-dependent measurements. The setup features a sophisticated laser system with
two separately tunable pulsed laser light sources with a wide spectral range, high peak
intensities and a repetition rate of 30 kHz. Two spectrometer setups allow for measuring
high-resolution spectra. The cryostat provides temperatures as low as 1.4 K and constant
magnetic fields up to 10 T. A collection of about 100 high-quality natural Cu2O crystals
in various orientations and thicknesses allows choosing the most suitable sample for the
different nonlinear optical experiments.

A detailed description of the beam path and the most important instruments will be given
in Sec. 3.1. The experimental methods are described in Secs. 3.2 to 3.5 and all samples
used are characterized in Sec. 3.6.

3.1 Setup
The setup for SHG experiments is shown in Fig. 3.1(a). The laser system provides the setup
with two separately tunable sources of laser pulses with a pulse duration of 200 fs and 3.3 ps
corresponding to the spectral full width at half maximum (FWHM) of 10 meV and 0.7 meV,
respectively, with a repetition rate of 30 kHz and an energy per pulse of up to 10 µJ. The
fs pulses are tunable in a wavelength range of 620 to 2900 nm and the ps pulses from 315
to 2700 nm. A more detailed description of the laser system is given in Sec. 3.1.1.

The laser light paths are directed along the setup by silver mirrors with a 1 inch diameter.
Two iris diaphragms (I) in front of the polarization optics ensure a reproducible adjustment.
With a neutral density filter wheel (FW) between the irises the average power of the laser
light can be continuously adjusted. The Glan-Thompson prism (GT) is set horizontally or
vertically to let through the linearly polarized signal or idler beam. The spectral ranges,
in which they are used, are marked in Fig. 3.3. If the half-wave plate (HWP) is rotated
by an angle 𝜓/2, the linear polarization of the laser light is turned by the angle 𝜓. A long
pass filter (F1) behind the polarization optics blocks SHG light induced in the HWP. The
average laser power, which is adjusted via the filter wheel, can be measured in front of the
cryostat window with a power meter. A lens in front of the cryostat with a focal length of
20 cm focuses the laser beam with a width of about 2 mm onto the sample with a spot size
of about 70 µm. The sample is mounted strain-free and cooled in super-fluid helium within
the VTI of the cryostat to a temperature as low as 1.4 K. A magnetic field of up to 10 T can
be applied in Faraday (B ∥ k) or Voigt geometry (B ⟂ k) by rotation of the cryostat, which
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3.1 Setup

has one coil pair and windows on all four sides. The cryostat is depicted in Fig. 3.4. A
lens behind the cryostat with a focal length of 25 cm collimates the light emerging from the
sample. A short pass filter (F3) blocks the laser light and allows the generated SHG light
to pass through. An HWP followed by a GT in the collimated beam path selects a specific
linear polarization with the angle 𝜑 for further detection. The GT is set to the preferred
polarization angle of the spectrometer, which is horizontal for the Acton and vertical for the
Spex spectrometer in the visible range. A lens with a focal length of 6.5 cm focuses the light
that emerged from the sample onto the slit of the spectrometer. With an adjustable slit
width down to 20 µm the spectral resolution of the Acton spectrometer is 80 µeV and that of
the Spex spectrometer 20 µeV in first and 10 µeV in second diffraction order. More details
on both spectrometers will be given in Sec. 3.1.3. The spectrally resolved signal light is
focused on the chip of a nitrogen-cooled charge-coupled device (CCD) camera for detection
and is read out via the WinSpec or LightField software. The CCD camera attached to the
Acton spectrometer has a pixel size of 20 µm with a chip size of 1340 × 400 pixels. The
CCD camera attached to the Spex spectrometer has a pixel size of 13.5 µm with a chip size
of 2048 × 512 pixels. An additional telescope with a ×4 magnification is placed in front of
the CCD camera in order to exploit the high resolution of the Spex spectrometer. Both
chips are silicon-based with a sensitive wavelength range from 200 to 1080 nm.

For 2P-DFG experiments, as will be presented in Sec. 7, the setup is modified and shown
in Fig. 3.1(b). Both laser beams are simultaneously used for the experiment. An additional
delay line equipped with a retro reflector, which can be moved remotely over a rail of 1 m
in steps of 100 nm, is placed into the ps laser light path. The ps pulses can therefore be
delayed by a total distance of 2 m corresponding to about 6.67 ns. Due to the longer path
of the light through the SHBC and the ps OPA of the ps pulses, the fs pulses have to be
delayed behind the fs OPA by about 4 m in order to establish a time overlap of both ps
and fs pulses in the sample. Therefore four additional mirrors are used to extend the fs
light path. Analogously to the exciting fs laser, additional polarization optics are placed for
the stimulating ps laser light, which turns its linear polarization by the angle 𝜃. Two more
irises ensure the reproducibility of the laser light adjustment. A prism with a rectangular
triangle base is placed about 1 cm below the fs light path in front of the focusing lens in
order to reflect the ps light from the side towards the sample and adjust the spatial overlap
of both laser beams. As the spectral resolution of 2P-DFG experiments is determined by
the spectral width of the stimulating ps laser, only the Acton spectrometer is used as it
provides a better signal-to-noise ratio and a larger spectral range, which is mapped onto
the CCD chip. As the laser light paths are about 4 m longer than in SHG experiments,
the laser light diverges to a larger beam diameter. Therefore the 6.5 cm focal length lens in
front of the Acton spectrometer is replaced by a lens with a focal length of 10 cm.
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Chapter 3 Experimental details

Figure 3.1 Setup configurations for (a) SHG and (b) 2P-DFG experiments: CCD - charge-
coupled device camera, DL - delay line, F1/F2 - long pass filter, F3 - short pass filter, fx
- lens with x-cm focal length, FW - neutral density filter wheel, GT - Glan Thompson
linear polarizer, I - iris diaphragm, 𝜆/2 - half-wave plate, LC - Light Conversion, M𝑖 -
mirrors relevant for DL adjustment (see Sec. 3.4), OPA - optical parametric amplifier, P -
prism, PS - periscope, S - sample, SHBC - second harmonic bandwidth compressor, WLS
- wavelength separator.
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3.1 Setup

3.1.1 Laser system
The laser system manufactured by Light Conversion consists of five devices, which are shown
in Fig. 3.1. The main device is the ”Pharos” pump laser, which generates femtosecond
pulses and feeds all other devices. For the spectral tuning of the femtosecond pulses, the
optical parametric amplifier (OPA) ”Orpheus” is additionally needed. For the conversion
to picosecond pulses and their spectral tuning, the second harmonic bandwidth compressor
”SHBC”, the ps-OPA ”Orpheus-ps” and the wavelength extender ”Lyra” are required.
More in-depth descriptions of these devices are found in their respective manuals.

Pharos contains a short pulse oscillator generating narrow bandwidth pulses (10−25 nm
corresponding to 70 − 90 fs) at a repetition rate of 76 MHz and an average power of up
to 2 W using Kerr lens mode locking. By the principle of chirped pulse amplification,
the pulses are spatially stretched to lower their peak intensity. Then they pass through
the regenerative amplifier, which contains the gain medium Yb:KGW (ytterbium-doped
potassium gadolinium tungstate), which is pumped by CW laser diodes. An internal Pockels
cell controls the injection and extraction of the pulses. A second Pockels cell acts as an
electro-optical pulse-picker setting the repetition rate of the emitted pulses. The amplified
pulses up to an average power of 9 W are compressed back to about 200 fs using the same
transmission diffraction grating as during the stretching. Heated components of Pharos are
cooled by the water-to-water chiller ”Termotek P307” with a cooling power of 570 W.

Figure 3.2 Scheme outlines the processes in an OPA. BS - beam splitter, DG - diffraction
grating, NC - nonlinear crystal, WLC - white light generation crystal, WLG - white light
generation.

The Pharos pulses pump the fs-OPA Orpheus. The basic principle of the OPA is
sketched in Fig. 3.2. The entering Pharos beam is divided by beam splitter BS1. ”Beam
1” passes through a white light generation crystal and generates a supercontinuum (450 −
1200 nm). A small spectral region of the white light is selected by a diffraction grating and
acts as the seed beam for a DFG process in a nonlinear crystal. The wavelength can be
tuned by changing the grating angle and therefore selecting a different wavelength for the
amplification process.
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The other part of the split Pharos beam is divided by beam splitter BS2 into ”beam
2” and ”beam 3” for two amplification stages achieved by difference frequency generation
processes. ”Beam 2” passes through a nonlinear crystal, in which the second harmonic with
a wavelength of 515 nm is generated, which acts as the pump beam for the DFG process.
The DFG process occurs in a nonlinear crystal, in which the seed beam from the white
light generation process and the SHG of ”beam 2” emerging from the nonlinear crystal are
superimposed. For optimal phase matching of the DFG process, the rotation angle of the
crystal is adjusted. Light with the difference frequency is generated and is called the idler.
The seed beam is amplified, gaining power from ”beam 2” in the DFG process and is called
the signal beam while being linearly polarized orthogonal to the idler. The pump ”beam
2” therefore loses power after this process.

”Beam 3” is also frequency doubled in the same nonlinear crystal as in the first stage and
is used as the pump beam for the second amplification stage. Depending on the required
wavelength, either the signal or the idler is chosen to pass through a wavelength separator
(WLS) mounted at the exit of Orpheus.

Now we turn to the conversion and spectral tuning of the picosecond pulses. First, the
≈ 200 fs pulses of 1030 nm from Pharos need to be stretched to ≈ 3 ps pulses of 515 nm
within the second harmonic bandwidth compressor SHBC. A beam splitter divides the
beam path. The two beams are inversely chirped by a transmission grating and prisms
and then superimposed in a nonlinear crystal, barium beta borate (BBO), so that the sum
frequency of both beams is generated and the pulses are stretched in time and therefore
spectrally compressed.

Figure 3.3 Average laser power output for the ps and fs OPAs.

Next the 1030 nm fs Pharos and 515 nm ps SHBC pulses feed the Orpheus-ps, in which
the ps pulses are spectrally tuned and amplified. Its tuning principle is similarly imple-
mented as in the Orpheus. The difference is, that the SHG stages for the Pharos beam are
not required, as the SHBC provides 515 nm wavelength. The Orpheus-ps additionally has
a third amplification stage, which keeps up to 95 % of the initial SHBC beam intensity.

For wavelengths above 630 nm the ps pulses just pass the following Lyra without further
modification. By inserting a nonlinear crystal into the light path, wavelengths from 630
to 520 nm are reached by SHG of the Orpheus-ps idler beam in a nonlinear crystal. For
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wavelengths from 520 to 315 nm the second harmonic of the Orpheus-ps signal beam is
generated. The wavelength separators for the specific spectral regions are mounted at the
exit of Lyra in order to select the signal or idler.

The average output power for the ps and fs OPAs for the whole operational spectral range
is shown in Fig. 3.3.

3.1.2 Cryostat

The superconducting split coil cryostat of the model ”Spectromag SM4000-11” is manufac-
tured by Oxford Instruments. A technical drawing of its layout is shown in Fig. 3.4

Figure 3.4 Scheme of the supercon-
ducting split coil cryostat. Adopted
from its manual.

Its upper part has a coaxial structure with multi-
ple layers including the variable temperature insert
(VTI) in the center surrounded by a 20 L liquid he-
lium (LHe) reservoir with an exhaust into the he-
lium recovery system. In order to reduce the he-
lium evaporation rate, a surrounding 24 L liquid ni-
trogen (LN2) reservoir with attached copper shields
thermally screens the liquid helium from the sur-
rounding room temperature and therefore reduces
the losses due to thermal radiation, which scales with
the fourth power of the temperature difference ac-
cording to the Stefan-Boltzmann law [Nol17]. Once
the cryostat is in an operational condition, the LHe
evaporates into the recovery system at a rate of about
168 mL/h in standby and about 400 mL/h at the
maximum magnetic field. The LN2 evaporates at
a rate of about 492 mL/h and is released into the
surrounding air. A vacuum chamber with a pressure
of about 10−6 mbar thermally isolates the VTI, the
liquid gas tanks from each other and the surrounding
room temperature air.

The lower part of the cryostat has a rectangular
cross-section containing the Helmholtz coil consisting
of wound NbTi fibers in a copper matrix [Bal96]. The
coils are located at the bottom of the helium reser-
voir and are therefore in a superconducting state at
a temperature of 4.2 K enabling magnetic fields of up
to 10 T requiring an electric current of 9.6 A/T. The
current can be injected into the coils with an external
power supply after the coil heater warms up the coil
material and partially breaks the superconductivity.
Then the current is increased until the targeted mag-
netic field is reached. The heater is then turned off
and the power supply is ramped down to zero while
the current still persists in the superconducting coils.
In this mode, the magnetic field has a very low decay
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rate of about 0.01 % per hour. Before the magnetic field can be changed again, the external
power supply has to be ramped up in current to match the value in the coils and connected
via the heater. The magnetic field is swept at a rate of 1 T/min below and 0.5 T/min above
7 T.

The sample is located within the VTI in the center of the coil pair. The cryostat has
one window on each side at the height of the sample chamber allowing for magneto-optical
transmission and reflection experiments in Faraday and Voigt geometry. The sample is
mounted strain free and screwed onto the lower part of a sample rod, which is inserted
into the VTI through an opening on the top side. For the cooling of the sample within
the VTI, a needle valve is opened letting LHe from the reservoir into the VTI. This allows
setting temperatures between 4.2 and 300 K, which can be stabilized with a PID controller,
balancing the setting of the needle valve and the VTI heater. For all experiments in this
work, the temperature has been set to 1.4 K by filling the VTI completely with liquid
helium, closing the needle valve and lowering the pressure in the VTI with an external
helium pump below 50 mbar, reaching sub lambda point temperatures (2.17 K), at which the
helium becomes superfluid. The temperature can be precisely measured with a calibrated
resistance cryogenic temperature sensor.

3.1.3 Spectrometers

The main spectrometer used for this work is the Acton series SpectraPro-2500i by Princeton
Instruments. It has a Czerny-Turner layout, as depicted in Fig. 3.5(a) and is corrected for
astigmatism. The signal beam emerging from the sample is focused onto its side slit, of
which the width can be manually adjusted from 10 to 3000 µm with a micrometer screw.
Then the light is reflected by a plane silver mirror behind the slit onto a concave mirror with
a focal length of fspec = 500 mm, which reflects the parallel light onto a reflective grating
with vertical grooves, which is blazed for 500 nm. Its rotation around the vertical axis is set,
so that its first optical diffraction maximum is directed onto the second identical concave
mirror, which focuses the spectrally resolved light onto the CCD camera chip. The spectral
resolution mainly depends on the number of grooves on the grating. For most experiments
in this work the 𝐺Acton × 𝐺Acton = 68 mm × 68 mm sized grating with 1800 grooves per
mm was used, which has a theoretical resolution of 1800/mm ⋅ 68 mm = 122400 grooves.
Consequently, a resolution of 2.0325 eV/122400 = 16.6 µeV is expected for the 1𝑆 yellow
exciton. Experimentally, a line width of 80 µeV is measured with the Acton spectrometer as
shown in Fig. 3.5(b). The reason for the large discrepancy is the insufficiently small size of
the CCD pixels. A widening telescope behind the focusing plane of the spectrometer, which
would magnify the spectral image on the CCD chip, could improve this issue. This technique
will be used for the Spex spectrometer. In order to achieve the best resolution, the grating
has to be illuminated as much as possible by the signal light beam, but not over-illuminated,
so that intensity is lost. Therefore, the focal length of the focusing lens in front of the
spectrometer slit has to be chosen correctly. For this, the aperture 𝐴spec = fspec/𝐺 ≈ 7.35
of the spectrometer has to be considered. Given a typical signal beam diameter in SHG
experiments of 𝑑 = 1 mm, a lens with a focal length of flens = 𝐴spec ⋅ 𝑑 = 7.35 cm has to be
chosen. Thus the best available lens with a focal length of 6.5 cm is used. An important
remark to mention is, that the laser spot size on the sample is about 60 µm in diameter.
The focus diameter of the signal beam on the slit is then reduced by a factor determined
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by the ratio 20 cm/6.5 cm ≈ 3 of the collimating lens behind the cryostat and the focusing
lens in front of the spectrometer and is therefore comparable to the minimum slit width of
20 µm set for the best resolution. Therefore no intensity is blocked by the slit, which would
be the case for a larger laser spot size in the sample.

Figure 3.5 (a) Scheme of a Czerny-Turner spectrometer with two spherical mirrors with
a focal length fspec and a square shaped diffraction grating with 𝐺 × 𝐺 dimensions. The
spectrum is focused on the CCD chip, which is placed at the position of the exit slit, as
done for the Acton spectrometer. Alternatively, the focal plane containing the spectrum
is magnified by two lenses and the CCD chip is placed at the focal plane behind the
telescope. For optimal resolution and intensity of the detected spectrum, the focal length
of the focusing lens has to be properly adjusted to the ratio fspec/𝐺 of the spectrometer
and the width 𝑑 of the laser beam. (b) Resolution demonstration of both spectrometers
using the zero-field SHG spectrum of the 1𝑆 orthoexciton (sample: H24, 𝜓/𝜑 = 0∘/90∘).

The second option for spectral analysis of the signal is the Spex 1704 spectrometer,
which also has a Czerny-Turner layout with a focal length of 1 m. The 𝐺Spex × 𝐺Spex =
100 mm × 100 mm sized grating has 1200 grooves per mm and thus a theoretical resolution
of 1200/mm ⋅ 100 mm = 120000, which would enable to measure the yellow 1𝑆 exciton with
an experimental line width of 2.0325 eV/120000 = 16.9 µeV. As shown in Fig. 3.5(b), the
experimental line width is 20 µeV, which is very close to the expected value. The reason for
this is the smaller pixel size of the CCD camera of 13.5 µm and the ×4 magnified spectral
image onto the CCD chip using an objective with a 35 mm followed by a 135 mm lens. An
additional advantage is, that with this grating the yellow exciton series in Cu2O can be
measured in second optical diffraction order by setting the grating angle to twice of the
analyzed wavelength. The resolution is then expected to be improved by a factor of two, as
confirmed in Fig. 3.5(b). Due to the larger focal length and the magnification in front of the
CCD chip, the intensity per pixel with the Spex spectrometer is reduced by a factor of about
13 in the first and about 56 in the second order compared to the Acton spectrometer, see
Ref. [Far18]. Therefore, the Spex spectrometer is only used, whenever the best resolution
is necessary. In this work, this was only the case for precise measurements of the yellow 1𝑆
exciton energy.

The calibration of both spectrometers is done with spectral lamps suitable for the inves-
tigated spectral region (Neon for the yellow series). The spectral lines are identified using
the NIST database [NIS23] and the vacuum wavelength in nm of each line is converted into
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an energy in eV according to

𝐸[eV] =
1239.842 [eV]

nm
𝜆[nm]

. (3.48)

3.2 Spectral scanning method with picosecond pulses

SHG is a second-order nonlinear optical process and therefore requires a coherent light
source with high peak intensity, preferably in the range of GW/cm2. This can be provided
by high-power pulsed lasers and focusing the laser beam down to a diameter of a few tens of
micrometers. Historically, SHG spectra have usually been measured by spectrally scanning
a high-power Nd:YAG nanosecond laser with a pulse duration of about 7 ns and a spectral
width of about 1 meV, as demonstrated in Ref. [Sän+06b; Sän+06a; Laf+13a; Laf+13b;
Bru+15].

As described in Sec. 3.1, our setup provides a picosecond pulsed laser with a pulse duration
of 3.3 ps and a spectral width of about 0.7 meV. Although its spectral width is similar
to that of the Nd:YAG lasers used in the past, the big advantage is, that it provides a
significantly higher repetition rate of 30 kHz compared to the 10 Hz of Nd:YAG lasers. This
high repetition rate reduces the scanning times for the same signal-to-noise ratio.

The measurement protocol is done as described in the following: The first step is to
select a spectral range for the scan so that all investigated resonances are included within
this range. If the resonance energies are already known from previous measurements or
publications, the range can be set directly. Otherwise, scanning of the laser energy by hand
and identifying all the relevant lines are required to choose an appropriate range, so that all
relevant lines are included in the scanning interval. Next one has to choose a reasonable step
size. It should be smaller than the line width of the resonances, although not much smaller
than the spectral resolution of the spectrometer. If the spectrum has larger gaps without
any resonances, e.g. the range between the 1𝑆 and the 2𝑆 excitons in the yellow series [see
Fig. 2.5], one can decide to exclude this range from the measurement, as nothing interesting
is expected. After that, one has to choose an appropriate integration time for each energy
step. On the one hand, the integration time should be long enough to ensure a sufficient
signal-to-noise ratio for the weakest resonances. On the other hand, the SHG intensity of
the strongest exciton line should not exceed 216 counts = 65536 counts for each readout
CCD pixel column, as it gets saturated and no additional counts are registered. If the
strongest and weakest exciton lines differ too much in their SHG intensity, one could split
the scanned spectral range into multiple parts with different and more suitable integration
times.

As soon as the spectral range and step size as well as the integration time are chosen, the
measurement procedure can be started. The spectrometer grating angle is set, so that the
central pixel column is set to the lower boundary of the chosen energy scanning range. The
laser is set to half of this energy and the SHG spectrum for this specific position is integrated
for the chosen integration time. Then the spectrometer energy setting is increased by the
chosen energy step size and the laser energy is increased by half of it and the spectrum is
integrated for the chosen time. This process is repeated until the whole chosen spectral
range is scanned.
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Figure 3.6 Methods for acquisition of SHG spectra. (a) The ps pulses are scanned
through the range of three narrow exciton resonances with small steps. For each step, the
SHG signal is collected within the region of interest (ROI) on the CCD chip, which may
be chosen to be broad (blue-shaded area) or as narrow as only the central pixel of the
power spectrum (red-shaded area). (b) The obtained spectrum with the broad ROI yields
more signal intensity, but the resolution is given by the width of the ROI. The narrow ROI
results in less intense lines with a resolution limited by the spectrometer and the scanning
step size. (c) The fs pulses are fixed to half of the exciton resonance energy. The power
spectrum covers all three resonances, of which the SHG signal is spectrally detected on
the CCD chip, as shown in panel (d). The resolution is limited by the spectrometer.

Once the whole spectral range is scanned, the measured data have to be evaluated.
There are different possibilities for how to process the data to obtain the SHG spectrum
with different advantages and disadvantages.

In the past, the SHG spectra, that have been measured with 10 Hz nanosecond pulses,
have been obtained by integration of the signal over the whole line width of the nanosecond
laser, as shown by the blue area in Fig. 3.6(a). Due to the low repetition rate, the signals
were comparably small and the signal-to-noise ratio could therefore be increased. The
disadvantage is, that the resolution of the obtained SHG spectrum will be given by the
spectral line width of the laser of about 1 meV, as shown by the blue line in Fig. 3.6(b).
For resonances with significantly larger line widths, e.g. blue and violet excitons with line
widths of at least 7 meV, such limitations in spectral resolution are not relevant. As the
ps pulses with a high repetition rate provide sufficient signals in most cases, one can apply
a different analysis method to obtain the SHG spectrum. Instead of integrating the signal
over the whole spectral width of the laser, one can only take the intensity of the central
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pixel column of the laser pulse, emphasized by the red area in Fig. 3.6(a). Although this
leads to a worse signal-to-noise ratio, the resulting resolution of the SHG spectrum will only
be limited by either the scanning step size or the resolution of the spectrometer, as depicted
by the red line in Fig. 3.6(b). This method would be more suitable for the yellow exciton
series, as it has sufficient SHG signals and requires a better resolution due to the narrow
line widths.

Note, that the second evaluation method is not suitable for 2P-PLE experiments, as one
can not select only the central energy of the laser to contribute to the PL intensity value for
a certain laser energy setting. As the PL intensity is immediately generated, if the exciton
line and the laser pulse overlap spectrally.

The final part is to ensure a correct calibration of the SHG spectrum. As the energy, which
is entered into the laser software Topas4, does not correspond exactly to the actual laser
energy and can vary slightly depending on the adjustment of the OPA and the ambient
temperature, an exact calibration is needed each measurement day. If the laser energy
is below the CCD sensitivity wavelength of 1050 nm, the laser power spectrum can be
measured directly by setting the spectrometer to the laser energy. Of course, one has to
reduce the laser power by several orders of magnitude first by placing many gray filters
into the beam path, and removing them one by one until the laser intensity is detectable.
For this measurement, the spectrometer has to be calibrated with a spectral pen lamp, as
described in Sec. 3.1.3. If the laser energy is above the CCD sensitivity wavelength, one has
to measure it indirectly by measuring its SHG signal generated in a BBO crystal, which is
placed into the beam path and calibrating the spectrometer for this setting.

This measurement should be done for the lower and upper energy of the scanned spectral
interval. The actual energies of the steps in between can then be interpolated linearly.

3.3 Fixed wavelength method with femtosecond pulses

A disadvantage of the scanning method is the long acquisition time for a single spectrum.
If a measurement plan requires varying one or even more parameters for the spectrum, the
total measurement time can quickly become unreasonably long. An elegant alternative SHG
measurement method was introduced by Johannes Mund et. al [Mun+18] in 2018, which
provides major benefits in some circumstances. Spectrally broad fs pulses have been used
not for scanning the spectrum as described in the previous chapter, but by fixing the laser
energy at half of the exciton energy and integrating for a reasonable amount of time and
thus obtaining the SHG spectrum of several exciton lines, as sketched in Fig. 3.6(c). The
broad power spectrum of the fs laser covers multiple exciton lines spread across a few meV
with line widths in the range of 80 µeV. Although the fs pulses are spectrally broad, the
SHG signal is only generated at the resonance energies. Therefore the spectral resolution
is only limited by the spectrometer, as shown in Fig. 3.6(d). As described in Sec. 3.1.3, we
have access to the Acton spectrometer with a spectral resolution of about 100 µeV and the
Spex spectrometer with a resolution of about 20 µeV or 10 µeV in second optical order.

As an example, the described advantage is especially important for the measurement
of the 2D polarization diagrams of several lines. The typical measurement time for one
diagram at a fixed excitation energy is about one hour. The total measurement time
with the scanning method would therefore scale with the number of investigated lines,
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whereas the femtosecond integration method would require only one polarization scan, as
all resonance lines are excited with one energy setting.

Finally one can draw the conclusion, that the picosecond pulse scan method is more
suitable if one has to spectrally scan a large range with spectrally broad lines. It is especially
beneficial, as the relative intensities of all lines are correctly measured, while providing
larger total signals compared to the femtosecond pulses, due to the larger power density.
The disadvantage of this method is the long acquisition time for a single SHG spectrum, due
to many scanning steps. Here lies the big advantage of the femtosecond pulse integration
method, as a whole SHG spectrum is measured with one laser energy setting. Although the
relative intensities of the exciton lines are distorted due to the Gaussian shape of the power
spectrum, this method is beneficial, if the focus of the investigations is put on the energies of
the resonances. If multiple parameters are varied, e.g. the magnetic field strength or linear
polarization angle settings, this method is significantly faster than the scanning method.
It is most suitable for multiple spectrally narrow lines, which are energetically located in a
small spectral interval of a few meV. An example of such a case is given in Fig. 4.12.

3.4 Difference-frequency generation with two-photon excitation

Difference-frequency generation with two-photon excitation (2P-DFG) is a nonlinear optical
process involving a resonant two-photon excitation of exciton states. An additional pulsed
laser is directed into the sample creating an overlap with the excitation laser, resulting
in a two-photon process in the emission channel. It is a special case of four-wave mixing
[Boy08], a third order nonlinear process characterized by 𝜒(3), with a degenerate two-photon
excitation frequency 𝜔exc and a different stimulation frequency 𝜔stim driving a new light wave
with a frequency of 𝜔DFG = 2𝜔exc − 𝜔stim, as depicted in Fig. 2.1(d). The excitation laser
creates an exciton population propagation coherently through the crystal in the form of
exciton-polaritons with quite a small group velocity of ≈ 104 m/s. The pulses of the second
laser can be delayed using a delay line, and their linear polarization angle can be rotated
using equivalent polarization optics as used for the excitation laser. It is directed towards
the sample by a total reflection within a prism, the basis area of which is shaped like an
isosceles right triangle. The light should enter and exit the prism at a normal angle to
reduce refraction at the surfaces. The total reflection occurs at an angle of 45∘. It is crucial
to mention that both laser beams should not be collinear before entering the sample, as
this third-order nonlinear process occurs in all transparent dielectric materials, such as the
lenses, the cryostat windows and filters, leading to an additional detected 2P-DFG signal
origination outside the sample and distorting the measurement. Therefore it is important,
that both beams are directed parallel with an offset onto the focusing lens in front of the
cryostat so that the lens focuses them into the sample leading to an overlap exclusively in
the sample and nowhere else. The exact spatial overlap is adjusted with a rotation and tilt
of the prism.

In the following, it is explained how to set up a 2P-DFG experiment considering the
aspects mentioned above. The first point to ensure is a correct and careful adjustment
of the delay line for the stimulating laser. It is achieved in two steps. A less accurate
pre-adjustment by hand and a more exact instrument-assisted adjustment.

The first adjustment step requires two adjustable mirrors in front of the delay line and a
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card, which is glued onto a metallic sheet folded at a right angle so that the angle can be
pressed against the edge of the delay line rail. When the card is positioned onto the delay
line and the metallic sheet is pressed against the rail edge, one can mark the position on the
card with a cross, in which the beam should enter the retro reflector, and pierce a pinhole
through the cross. Viewed from the front onto the round retro-reflector, the cross position
should be half a radius to the right of the center, so that the beam exits half a radius to
the left of the center. Next, the retro-reflector is moved as far back from mirror M2 as
possible and the card is positioned in the front of the delay line [see Fig. 3.1(b)]. Mirror M1
is adjusted so that the beam passes with maximum intensity through the pinhole on the
card. Then the card is positioned in the back of the delay line and mirror M2 is adjusted
so that the beam passes through the pinhole with maximum intensity. This is repeated for
several iterations until the beam passes through the hole in the front and back positions of
the card.

The second adjustment step requires an adjustment of the last mirror M2 in front of the
delay line and a power meter sensor head with a spatial resolution, which is able to display
at which position the beam hits the sensor. The sensor head is positioned behind the delay
line by hand so that the exiting beam hits the sensor in the center as well as possible.
The sensor head must not move during the adjustment process. The button ”relative”
is pressed, which defines the beam spot on the sensor as the new central position. Then
the retro-reflector is moved to the back position. The beam spot will move on the sensor
display and has to be put back into the center by adjustment of the mirror M2. Next, the
retro-reflector is moved to the front position and the button relative is pressed again. This
is one iteration, which should be repeated several times with increasing zoom of the power
display up to ×16, until the beam spot on the sensor stays in the center while moving the
delay line through the whole range. The delay line is now adjusted.

Once the delay line is adjusted, the ps- and fs-laser beams have to be adjusted for an
overlap within the sample. Therefore the ps-beam is reflected within a prism, which is
positioned about 1 cm to the side of the fs-laser beam. The cryostat is removed from the
beam path and an infrared indication card is positioned at the initial position of the sample.
Then the tilt and rotation screws of the prism are adjusted so that both beams overlap on
the infrared indication card.

Some experiments presented in Sec. 7 are performed with the excitation and stimulation
beam coming from the same direction, as shown in Fig.7.1(a), a better way is to shoot them
from opposite directions due to momentum conservation reasons, as shown in Fig. 7.1(b).
For this, the prism has to be placed behind the collimating cryostat lens about 1 cm to the
side of the fs-beam. As the infrared indication card can not be used for the adjustment of
the overlap of both beams, as they hit the card from opposite sides, a suitable way for this
adjustment is to use a thin paper card with a small pinhole. It should be placed at the
initial sample position on an adjustable XY-stage so that the excitation laser goes through
the pinhole with maximum intensity. The stimulation laser beam coming from the backside
should then be adjusted with the prism to go through the pinhole with maximum intensity,
resulting in an overlap of both beams within the pinhole.

The next step after the adjustment of the overlap in either geometry is to find the temporal
overlap of the ps- and fs- laser pulses. When adjusting it for the first time, the exact delay
distance between the ps- and fs-pulses is not known. Comparing at the beam exit points of
both OPAs, the ps-pulses are delayed by approximately 4 m compared to the fs-pulses, as
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they have a significantly longer beam path passing through the SHBC as seen in Fig. 3.1.
One suitable way to find out the delay distance is to place a fast diode into the overlap
at the initial position of the sample and read out the signal with an oscilloscope. One has
to insert enough gray filters for the protection of the diode. Once both pulses are seen,
the delay line is scanned to establish a temporal overlap of both pulses. If the delay is
exceeding the delay line range, additional mirrors have to be installed for a further delay
of the fs-laser, so that the temporal overlap is achievable within the range of the delay line.
The temporal overlap should occur at the beginning of the delay line so that the ps-pulses
responsible for the stimulation can be delayed over the leftover range of the delay line.

To find the exact delay line position, for which the temporal overlap between both pulses is
achieved, a BBO crystal is placed at the spatial overlap of both beams and the spectrometer
is set to the wavelength of the sum frequency generation (SFG). Then the delay line is
scanned and one has to look for the SFG signal. As the pulse duration of 3.3 ps corresponds
to a spatial width of about 1 mm, the SFG signal is only found within a range of 0.5 mm
on the delay line. Once it is detected, it has to be improved by further adjustments of
the prism, the transversal translation of the spectrometer lens and the beam spot on the
sample. At this point, the 2P-DFG signal should be visible, when the spectrometer is set
to the 2P-DFG wavelength. After minor adjustments to maximize this signal the cryostat
is moved back into the beam path and the 2P-DFG signal from the sample is detectable.

For time-resolved measurements, the narrow exciton signal should be adjusted as follows.
The delay line has to be set to a short delay time of about 10 ps after the temporal overlap.
Then the signal intensity of the exciton is maximized by adjusting the prism and the rotation
of the sample around the vertical axis for several iterations. If the exciton signal is adjusted
for the time overlap setting instead of a short delay setting as suggested, the time-dependent
signal might show an initial increase of the intensity within the first few hundreds of ps before
the following expected exponential decay.

As the experiment is adjusted, one can measure the time dependence of the 2P-DFG
signal following this protocol: As already described for other measurement types, one has
first to select the interesting delay line range, the step size and the integration time. Then
the delay line is scanned across the chosen range and for each step, the signal is measured
for the chosen integration time and saved for later analysis. For the analysis, the pixel of
maximum intensity of the resonance line is read out of each spectrum and plotted against
the delay time. The retro-reflector position in units of millimeters is converted into the
delay time

𝑡delay = 2𝑥𝑛air/𝑐 (3.49)

in units of picoseconds, with the retro reflector position 𝑥, the refractive index 𝑛air of air
and the vacuum speed of light 𝑐.

3.5 Polarization dependence

The measurement of the polarization dependence is of crucial importance. Coherent non-
linear optical processes are influenced by the symmetry of the excited states, the light in-
teraction and possible perturbations as strain or external electric or magnetic fields. They
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therefore underlay polarization selection rules, as introduced in Sec. 2.3 and further de-
scribed in Sec. 4.1. For the observation of the signal, it is required, that the excitation and
emission channel of the process are allowed by symmetry. By systematically measuring the
signal intensity of an exciton resonance while varying the incoming and outgoing polariza-
tion angles one can investigate and identify the underlying optical mechanism. In previous
works, only two cases of the polarizations have been shown in polar diagrams. Specifically,
the case in which the incoming and outgoing polarization are parallel and turned simultane-
ously also referred to as the parallel configuration, and the case, in which the incoming and
outgoing polarizations are orthogonal to each other and are turned simultaneously, is also
referred to as the crossed configuration. In principle, those two configurations are sufficient
for the identification of the process. In reality, small distortions or deviations from the
simulated diagrams are often difficult to detect and therefore leading to some uncertainty
in the identification of the underlying optical process. A more extensive picture is given by
measuring all possible polarization angle combinations, of course with a finite angular step
size of about 10∘, and showing the results in a contour plot, in which the signal intensity is
represented by a color scale in dependence of the linear polarization angles of the incoming
and outgoing light as the horizontal and vertical axis, respectively. By comparisons to the
simulated diagrams, small deviations are more easily revealed, and the optical process for
the simulation can be adjusted for a better match to the measurements.

The Glan-Thompson prism (GT) reflects the s-polarized light to the side and only lets
through the p-polarized light. The transmission axis is marked by a white line. It is
positioned into the laser beam and oriented horizontally or vertically depending on if the
signal- or idler-beam is in use for the set wavelength. The GT of the analyzer should be
oriented along the preferred direction of the spectrometer grating, which is horizontal for
the Acton spectrometer in the visible range. The half-wave plate is a birefringent crystal,
which has different refractive indices for the fast axis, marked by a line, and the axis
perpendicular to it. Consequently, the polarization component of the fast axis propagates
faster through the plate, leading to a phase difference of half a wavelength compared to
the orthogonal component, which results in an effective rotation of the linear polarization
of the incoming light. In particular, the linear polarization of the light is rotated by the
angle 𝜓, if the half-wave plate is rotated by the angle 𝜓/2. As 𝜓 = 0∘ in this work is
defined along the horizontal direction, the fast axis of the half-wave plate has to be exactly
between the horizontal orientation and the orientation of the Glan-Thompson prism for the
zero-position. As an example, if the GT is set to 90∘, the half-wave plate has to be set to
45∘, so that the linear polarization angle corresponds to 0∘. The Glan Thompson prisms are
oriented by hand but the rotation of the half-wave plates is controlled by motorized rotation
stages from OWIS. The motorized stages are accessed by the OWIS software, which is also
integrated in a Labview program for automated polarization dependence measurements.

The measurement protocol is described in the following. First, the exciton signal is
adjusted for maximum intensity. In many cases, in which the resolution is not important,
one can open the spectrometer slit and also switch to a grating with less line density for
an increase of the signal intensity. With an integration time of 1 s the measurement of the
full polarization dependence takes about one hour. Therefore the integration time should
not exceed about one second. The linear polarization angle 𝜓 of the incoming light and
𝜙 of the outgoing light are set to 0∘ and the spectrum is measured and saved. 𝜙 stays
fixed and 𝜓 is set to 10∘ and the spectrum is saved again. The measurements are repeated
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until 𝜓 = 360∘. The 𝜓-scan is repeated for 𝜙 settings up to 360∘ in 10∘ increments. Note,
that in many cases 𝜙 is only varied up to 180∘, as the signals are 180∘-periodic, and the
10∘ to 180∘ measurements can just be copied for the 190∘ to 360∘ range. The parallel and
crossed configurations can in principle be extracted from the full polarization dependence
diagram as the diagonals starting from 𝜓/𝜙 = 0∘/0∘ and 𝜓/𝜙 = 0∘/90∘. Nevertheless, it is
recommended to measure them separately, because one can choose longer integration times
for a better signal-to-noise ratio and smaller angular increments, as their measurement takes
much less time. Another reason is the fluctuating signal over the long measurement time
of the full polarization dependence. This can occur due to a change in temperature, a drift
in laser power or in the case of 2P-DFG experiments a worsening of the spatial overlap of
both lasers.

3.6 Samples
All used samples in this work (see Tab. 3.1) are cut out of a high-quality Cu2O crystal from
the Tsumeb mine in Namibia. This particular crystal has served in numerous investigations
of Rydberg excitons in the past two decades. To this day, about 120 samples with various
orientations and thicknesses have been cut out from this crystal and mounted strain-free in
brass sample holders as shown in Fig. 3.7(a). The experimental orientation of the sample is
shown in Fig. 3.7(b). In this chapter, the specific samples used for the experiments of this
work are characterized and the criteria for choosing the most suitable sample for different
optical experiments are described.

Figure 3.7 (a) Photo of sample H106 (see Tab. 3.1) in a brass holder with the cover plate
removed. Holes on all four sides allow for light transmission along different crystal axes.
(b) Experimental orientation of the sample with the orthogonal crystal axes X, Y and Z,
along which the light k, the magnetic field in Voigt geometry B and the effective electric
field EMSE of the MSE are directed.

For the magnitude of the SHG signal the crystal thickness is not significantly relevant,
as the fundamental beam passes through the sample without noticeable absorption but the
SHG photon is reabsorbed strongly with an absorption coefficient of about 25 mm−1 for the
1𝑆 exciton [Hec20]. Therefore the detectable SHG signal originates from the last few tens
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of micrometers in the sample and an additional thickness does not contribute significantly.
However, in very thin samples Fabry-Perot interferences can occur in the SHG spectra.
Although this is not noticeable, while the exciton lines are narrow as in the case of the yellow
series, it can distort the SHG spectra of spectrally broad exciton lines as in the case of the
blue excitons. On the other hand, the crystal orientation is crucial for SHG experiments.
For the case of Cu2O, SHG is allowed for excitation along the [111] and [112] and forbidden
along the [110] and [001] crystal axis. If the intent is to investigate the crystallographic SHG
effect the former two orientations should be chosen. The latter two orientations are suitable
if the intent is to measure magnetic-field-induced SHG contributions to avoid the more
complex interference with the crystallographic contribution. For a separation of different
magnetic-field induced SHG contribution, e.g. magneto-Stark effect and Zeeman effect, one
has to check the simulated polarization diagrams (see Figs. 4.7 and 4.10) and choose the
appropriate horizontal crystal axis. In contrast to SHG, the 2P-PLE signal scales with the
crystal thickness and therefore thick samples are recommended for excitation spectroscopy.
A special case occurs for the SHG experiments of paraexcitons. As the paraexciton is
spectrally close to the 𝛤 −

3 phonon side band of the orthoexciton, which emits a strong
PL signal, the weak SHG contribution can be overpowered by the 𝛤 −

3 phonon side band
emission in thick samples. In this case, very thin samples are recommended.

Table 3.1 List of used Cu2O samples with their internal designation, orientation and
thickness. Cuboid-shaped samples can be used for both horizontal directions by rotating
the sample holder by 90∘ and are therefore indicated by 𝑎 and 𝑏.

sample designation Z || k || Y || X || B || thickness (µm)
H2a [111] [1 ̄10] [11 ̄2] 3663
H2b [11 ̄2] [1 ̄10] [111] 4998
H13 [1 ̄10] [110] [001] 252
H24 [111] [11 ̄2] [1 ̄10] 30
H45b [1 ̄10] [001] [110] 4880
H45a [001] [1 ̄10] [110] 3424
H98 [001] [ ̄110] [110] 46
H100 [1 ̄10] [001] [110] 50
H106a [001] [1 ̄10] [110] 5325
H106b [1 ̄10] [1 ̄10] [001] 5245

For 2P-DFG experiments, it is also recommended to use thick samples, as the crystal is
transparent for all photons involved in the process. Therefore the detectable signal can be
collected from the whole sample volume. Thick crystals have the additional benefit, that
the portion of polaritons, which are reflected at the back surface of the crystal at a certain
time, is negligible compared to the total number of polaritons. The DFG contribution of
reflected polaritons in the direction of the spectrometer vanishes due to the conservation of
momentum, which has to be considered for this process. Samples, which are a few millime-
ters thick have the additional benefit of being able to be used along the other horizontal
axis, as long, as the mounting has additional openings. All the samples, which have been
chosen for the experiments of this work are depicted in Table 3.1 with their orientation and
thickness. Up to four sample mountings can be screwed onto the sample rod and can be
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interchanged during the experiment by moving the sample rod vertically. An additional
Cernox resistance can be mounted onto the sample rod for a more accurate measurement
of the temperature in the vicinity of the samples.
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Chapter 4

Magnetic-field-induced SHG of yellow-series
excitons

In this chapter, we investigate the yellow-series excitons in Cu2O under the influence of
an externally applied magnetic field B perpendicular to the light direction k using SHG
spectroscopy. The yellow series has been extensively investigated in the past. Excitons have
been discovered in 1952 by Gross et al. by measuring the absorption spectrum of the yellow
𝑃 exciton series up to a principal quantum number of 𝑛 = 8 [Gro+52]. The series has been
extended by Kaziemierczuk et al. in 2014 up to 𝑛 = 25 by scanning a spectrally narrow
laser through this spectral range [Kaz+14]. The odd parity series of 𝑆 and 𝐷 excitons has
first been measured by Fröhlich et al. in 1979 by two-photon absorption without applying
external perturbations [Frö+79] and further investigated by Uihlein et al. [Uih+81]. In
1996, the 1𝑆 exciton was observed via SHG by Shen et al. [She+96]. The SHG spectrum
of the spectrally narrow 𝑆 and 𝐷 Rydberg states up to 𝑛 = 9 was measured by Mund et al.
in 2018 by using spectrally broad femtosecond laser pulses [Mun+18].

SHG as a nonlinear optical process has the advantage, that it is highly dependent on the
symmetry of the investigated material and its exciton states. It exhibits a characteristic
dependence of the SHG intensity on the linear polarization angles of the three involved pho-
tons obeying the polarization selection rules, which can be derived by a symmetry analysis
using group theoretical multiplication and coupling coefficient tables from Ref. [Kos+63],
the important ones of which are shown in Sec. A. As explained in Sec. 3.5, this polariza-
tion dependence can also be measured experimentally. A comparison of the experimentally
measured polarization dependencies and the theoretically derived ones contributes to the
understanding of the underlying SHG mechanism. A good agreement suggests the correct-
ness of the proposed mechanism.

The crystal structure of Cu2O exhibits a cubic symmetry including space inversion and is
characterized by the Oℎ point group. For Cu2O as a centrosymmetric material, no SHG is
expected. Therefore SHG requires higher order optical transitions involving the light vector
k such as the electric quadrupole and magnetic dipole, as introduced in Sec. 2.2.

As demonstrated in Refs. [Mun+18] and [Mun+19], SHG on excitons in Cu2O is allowed
for k pointing along the low symmetry directions [111] and [11 ̄2] but is forbidden for k along
the high symmetry directions [110] and [001]. However, in the case of perturbation effects
such as internal strain, SHG might get allowed in forbidden k geometries as demonstrated
for the 1𝑆 exciton by Mund et al. [Mun+19].

Another type of perturbations are externally applied electric or magnetic fields, as demon-
strated for Cu2O in Refs. [Zhi+69; Sch+17a; Rom+18; Aßm+16; Hec+17a].

In this work, we will investigate various mechanisms of the magnetic field-induced SHG.
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Of special interest is the Voigt geometry, in which the magnetic field is applied perpendic-
ular to the light direction, as one would expect an influence of the magneto-Stark effect
(MSE) resulting in an effective electric field due to the excitonic center of mass motion
[Tho+60; Gro62] perpendicular to the magnetic field, as explained in Sec. 2.4. The MSE
was demonstrated in 1961 by Thomas et al. [Tho+61] in CdS and was recently identified
as the SHG-inducing mechanism in experiments on ZnO [Laf+13a].

K
Eeff

magnetic field

hole

electron

FLorentz on electron

FLorentz on hole

Figure 4.1 Sketch of the magneto-Stark effect. It shows a bound electron-hole pair
subject to Lorentz forces acting in opposite directions due to a motion perpendicular to
an external magnetic field. It results in an effective electric field, which separates the
charge distributions of electron and hole.

A visualization of the MSE in our geometry is sketched in Fig. 4.1. On the left, an
𝑆 exciton is shown by overlapping spherical charge distributions of the electron and hole
sharing the same center of charge. By moving along the excitation direction k perpendicular
to the magnetic field, the Lorentz force acts in opposite directions onto the electron and
hole, due to their opposite charges, leading to a separation of both charge distributions
along the Lorentz force axis. Evidently, this appears as if an electric field EMSE ∝ k × B
is acting upon them. The influence of the magnetic field on the excitons wave function is
associated with the Zeeman effect (ZE) and the influence of the effective electric field is
associated with the MSE. Therefore the MSE is absent in Faraday geometry, in which the
light vector and the magnetic field are aligned.

This chapter is structured in the following way: In Sec. 4.1 the method for the derivation of
polarization selection rules is explained and demonstrated for crystallographic, ZE-induced,
MSE-induced and interfering SHG mechanisms. In Sec. 4.2 we will present experimentally
obtained magnetic field series of ZE- and MSE-induced SHG spectra and the polarization
dependence diagrams for isolated and interfering magnetic-field induced SHG mechanisms.
The average excitation power of the fs-pulsed laser is set to about 10 mW. The results of
this chapter are published in Ref. [Far+20b].
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Chapter 4 Magnetic-field-induced SHG of yellow-series excitons

4.1 Simulation of polarization dependencies
In this section, we will derive the crystallographic and magnetic-field-induced SHG intensity
as a function of the two linear polarization angles of the incoming laser light and the
outgoing SHG light for various mechanisms. SHG schemes, as shown in Figs. 4.3, 4.6
and 4.9, turned out to be a very helpful visualization tool for finding and calculating the
polarization selection rules. They include the symmetries of the photon transitions, the
exciton states and the external fields.

Although SHG is a coherent process, in which two photons are converted into a single
photon, for our symmetry analysis it can be considered as a two-photon excitation, repre-
sented by the two up-pointing arrows on the left from the ground state (lower line) to the
exciton state (upper line), followed by a single-photon emission corresponding to the down-
pointing arrow on the right. The horizontal arrow between the exciton states represents
the coupling of these states by an external field.

For the derivation of the polarization-dependent SHG intensity, it is crucial to take into
account the exciton symmetry and the symmetries of the one- and two-photon processes.

We start with the derivation of the symmetries of the yellow series 𝑆, 𝑃 and 𝐷 excitons.
As an exciton is a bound state of an electron and a hole, its symmetry is given by the
product of symmetries of the conduction band, the valence band and the envelope function:

𝛤X = 𝛤VB ⊗ 𝛤CB ⊗ 𝛤env. (4.50)

𝛤𝑖 are the irreducible representations, which indicate the transformation behavior of a state
and therefore characterize its symmetry, as explained in Sec. 2.3. As shown in Fig. 2.3(c), the
yellow series involves the highest valence band with 𝛤 +

7 symmetry and the lowest conduction
band with 𝛤 +

6 symmetry. The symmetry of the envelope function depends on the orbital
quantum number 𝐿. 𝑆 orbitals (𝐿 = 0) are spherical and have positive parity resulting in
a 𝛤 +

1 symmetry. The symmetry of 𝑆 excitons is thus given by:

𝛤𝑆 = 𝛤 +
7 (2) ⊗ 𝛤 +

6 (2) ⊗ 𝛤 +
1 (1)

= 𝛤 +
2 (1) ⊕ 𝛤 +

5 (3). (4.51)

The single 𝛤 +
2 exciton is a pure spin-triplet state and therefore optically inactive for single-

photon transitions. In Cu2O, it is called the paraexciton and we will discuss the SHG
mechanisms and the Rydberg series of these states in Sec. 5.

𝑃 orbitals are isotropic around one axis and have negative parity resulting in a 𝛤 −
4 sym-

metry. For 𝑃 excitons we therefore get:

𝛤𝑃 = 𝛤 +
7 (2) ⊗ 𝛤 +

6 (2) ⊗ 𝛤 −
4 (3)

= 𝛤 −
2 (1) ⊕ 𝛤 −

3 (2) ⊕ 𝛤 −
4 (3) ⊕ 2𝛤 −

5 (3). (4.52)

𝐷 orbitals are similar to quadrupole fields resulting in a 𝛤 +
5 and 𝛤 +

3 symmetry. The
symmetry of 𝐷 excitons is thus calculated by:

𝛤𝐷 = 𝛤 +
7 (2) ⊗ 𝛤 +

6 (2) ⊗ [𝛤 +
5 (3) ⊕ 𝛤 +

3 (2)]
= [𝛤 +

2 (1) ⊕ 𝛤 +
5 (3)] ⊗ [𝛤 +

5 (3) ⊕ 𝛤 +
3 (2)]

= 𝛤 +
1 (1) + 2𝛤 +

3 (2) + 3𝛤 +
4 (3) + 2𝛤 +

5 (3) (4.53)
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For a strong coupling between an exciton state and a photon, both are required to exhibit
the same symmetry, as explained in Sec. 2.3 by Eq. (2.29).

The symmetry of the electric dipole (ED) in the first term of the expansion of Eq. (2.26)
and the symmetries of the electric quadrupole (EQ and EQ3) and magnetic dipole (MD) in
the second term are given by

𝛤D = 𝛤 −
4 , (4.54)

𝛤Q = 𝛤 +
5 ⊕ 𝛤 +

3 , (4.55)
𝛤MD = 𝛤 +

4 . (4.56)

Consequently, it follows from Eqs. (4.54), (4.55) and (4.56), that 𝑆 excitons interact with
the light field in electric quadrupole approximation (𝛤 +

5 ), 𝑃 excitons in electric dipole
approximation (𝛤 −

4 ) and 𝐷 excitons in electric quadrupole (𝛤 +
5 ⊕ 𝛤 +

3 ) and magnetic dipole
approximations (𝛤 +

4 ).
The experimental geometry is shown in Fig. 4.2. The laboratory coordinate system

Figure 4.2 Experimental geometry displaying the sample with the crystal axis X, Y and
Z and the relevant directions of the laser and SHG light (k), the magnetic field (B) in Voigt
configuration, the effective electric field (EMSE) and the linear polarization angles 𝜓 and
𝜑. The chosen sample for the experiments of this chapter is H100 (see Tab. 3.1) resulting
in Z ∥ k ∥ [1 ̄10], X ∥ B ∥ [110] ∥ E(𝜓 = 𝜑 = 0∘) and Y ∥ EMSE ∥ [001] ∥ E(𝜓 = 𝜑 = 90∘).

consists of the crystal axis vectors X, Y and Z and is specified for each investigated sample.
The wavevector of the light

k = ⎛⎜
⎝

𝑘1
𝑘2
𝑘3

⎞⎟
⎠

(4.57)

is directed along the Z direction of the sample. The magnetic field B is oriented along the
X direction of the sample, which also corresponds to a linear polarization angle of 𝜓 or
𝜑 = 0∘.
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As the electric dipole vector is always perpendicular to the k vector, it can be parame-
terized by rotating the horizontal crystal axis X by the angle 𝜓 around k. For this, we need
the general rotation matrix

Mrot(k, 𝜓) = (4.58)

⎛⎜
⎝

𝑘2
1(1 − cos 𝜓) + cos 𝜓 𝑘1𝑘2(1 − cos 𝜓) − 𝑘3 sin 𝜓 𝑘1𝑘3(1 − cos 𝜓) + 𝑘2 sin 𝜓

𝑘2𝑘1(1 − cos 𝜓) + 𝑘3 sin 𝜓 𝑘2
2(1 − cos 𝜓) + cos 𝜓 𝑘2𝑘3(1 − cos 𝜓) − 𝑘1 sin 𝜓

𝑘3𝑘1(1 − cos 𝜓) − 𝑘2 sin 𝜓 𝑘3𝑘2(1 − cos 𝜓) + 𝑘1 sin 𝜓 𝑘2
3(1 − cos 𝜓) + cos 𝜓

⎞⎟
⎠

.

The electric dipole vector 𝑂D can be expressed as the multiplication of the rotation matrix
Mrot and the X vector:

𝑂D(𝜓) = ⎛⎜
⎝

𝑑1(𝜓)
𝑑2(𝜓)
𝑑3(𝜓)

⎞⎟
⎠

= Mrot(k, 𝜓) ⋅ X (4.59)

The components of the electric dipole vector are denoted as 𝑑𝑖, as they will be relevant for
many other optical couplings in this section.

The electric quadrupole with 𝛤 +
5 ⊕ 𝛤 +

3 symmetry and the magnetic dipole with 𝛤 +
4 sym-

metry originate from the second term in the expansion in Eq. (2.26). For their vector
expression, one has to couple the electric dipole vector (𝛤 −

4 symmetry) with the k vector
(𝛤 −

4 symmetry) according to the coupling coefficient table A.7 for 𝛤 −
4 ⊗ 𝛤 −

4 → 𝛤 +
5 from

Ref. [Kos+63]. The 𝛤 +
5 electric quadrupole vector is therefore expressed by

𝑂Q(k, 𝜑) = 1√
2

⎛⎜
⎝

𝑘2𝑑3(𝜑) + 𝑘3𝑑2(𝜑)
𝑘3𝑑1(𝜑) + 𝑘1𝑑3(𝜑)
𝑘1𝑑2(𝜑) + 𝑘2𝑑1(𝜑)

⎞⎟
⎠

= ⎛⎜
⎝

𝑞1(k, 𝜑)
𝑞2(k, 𝜑)
𝑞3(k, 𝜑)

⎞⎟
⎠

(4.60)

and its components are denoted as 𝑞𝑖 for further couplings. The 𝛤 +
4 magnetic dipole vector

is constructed as

𝑂MD(k, 𝜑) = 1√
2

⎛⎜
⎝

𝑘2𝑑3(𝜑) − 𝑘3𝑑2(𝜑)
−𝑘1𝑑3(𝜑) + 𝑘3𝑑1(𝜑)
𝑘1𝑑2(𝜑) − 𝑘2𝑑1(𝜑)

⎞⎟
⎠

= ⎛⎜
⎝

𝑚1(k, 𝜑)
𝑚2(k, 𝜑)
𝑚3(k, 𝜑)

⎞⎟
⎠

(4.61)

and its components are denoted as 𝑚𝑖 for further couplings. The 𝛤 +
3 electric quadrupole

vector is consequently given by

𝑂Q3(k, 𝜑) = 1√
6

(−𝑘1𝑑1(𝜑) − 𝑘2𝑑2(𝜑) + 2𝑘3𝑑3(𝜑)
−

√
3𝑘1𝑑1(𝜑) −

√
3𝑘2𝑑2(𝜑) ) = (𝑞3,1(k, 𝜑)

𝑞3,2(k, 𝜑)) , (4.62)

with its components 𝑞3,𝑖.
Now we have all the necessary single-photon interaction vectors, which will be coupled

to higher order process vectors in the following paragraphs.
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4.1.1 Crystallographic SHG

Let us now turn to the derivation of the polarization-dependent SHG intensity for crystal-
lographic processes. First one has to find and identify all possible crystallographic SHG
processes by a symmetry consideration using the SHG schemes and the multiplication table
A.3 from Ref. [Kos+63]. As mentioned above we have already found all possible one-photon
processes for the SHG emission channel. Next, one has to find all two-photon processes for
the excitation of excitons with 𝛤 +

3 , 𝛤 +
4 , 𝛤 +

5 and 𝛤 −
4 symmetry, so that Eq. (2.28) is fulfilled.

Let us start with even parity excitons as they already involve a higher-order process in
the single-photon emission channel. So we only have to check, if they are excitable by an
ED-ED two-photon process. For this we use the multiplication table A.3 for the 𝑂ℎ group
from Ref. [Kos+63] and get

𝛤D ⊗ 𝛤D = 𝛤 −
4 ⊗ 𝛤 −

4 → 𝛤 +
1 ⊕ 𝛤 +

3 ⊕ 𝛤 +
4 ⊕ 𝛤 +

5 . (4.63)

Therefore the even parity 𝛤 +
3 , 𝛤 +

4 and 𝛤 +
5 excitons are in principle symmetry allowed via

ED-ED two-photon excitation combined with EQ, MD and EQ3 single-photon emission.
The SHG schemes are shown in Fig. 4.3.

Figure 4.3 Schematics of the crystallographic SHG processes for (a) even-parity 𝛤 +
5 (b)

odd-parity 𝛤 −
4 and (c) even-parity 𝛤 +

3 exciton states at zero magnetic field.

For the construction of the ED-ED excitation vector 𝑂5+
DD for 𝛤 +

5 excitons one has to
couple two 𝑂4−

D vectors using the coupling coefficient table A.7 for 𝛤 −
4 ⊗ 𝛤 −

4 → 𝛤 +
5 from

Ref. [Kos+63]:

𝑂5+
DD(𝜓) = 1√

2
⎛⎜
⎝

𝑑2(𝜓)𝑑3(𝜓) + 𝑑3(𝜓)𝑑2(𝜓)
𝑑1(𝜓)𝑑3(𝜓) + 𝑑3(𝜓)𝑑1(𝜓)
𝑑1(𝜓)𝑑2(𝜓) + 𝑑2(𝜓)𝑑1(𝜓)

⎞⎟
⎠

=
√

2 ⎛⎜
⎝

𝑑2(𝜓)𝑑3(𝜓)
𝑑1(𝜓)𝑑3(𝜓)
𝑑1(𝜓)𝑑2(𝜓)

⎞⎟
⎠

. (4.64)

In this nomenclature, the lower index denotes optical ED-ED (DD) transition in order to
address an exciton with 𝛤 +

5 (5+) symmetry. For the SHG intensity, we have to take the
absolute value squared of the scalar product of the excitation channel 𝑂5+

DD and emission
channel 𝑂5+

Q :

𝐼SHG
even (k, 𝜓, 𝜑) = 𝐼5+

DD/Q(k, 𝜓, 𝜑) ∝ ∣𝑂5+
DD(𝜓)𝑂Q(k, 𝜑)∣2 . (4.65)

The polarization diagram of this expression is plotted for k ∥ [111] and X ∥ [1 ̄10] in
three different diagram types in Fig. 4.4. Historically, the polarization dependence of an
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Chapter 4 Magnetic-field-induced SHG of yellow-series excitons

SHG mechanism has been displayed in polar plots for the parallel (𝜓 = 𝜑) and crossed
(𝜓 = 𝜑+90∘) polarization configurations as in Fig. 4.4(a). However, by plotting all possible
𝜓/𝜑 combinations in a 2D contour plot as in Fig. 4.4(b), more information is displayed.
Additionally, different SHG mechanisms can be distinguished more clearly. The parallel
and crossed configurations are contained in the 2D plots and marked as the black and red
diagonal tuning lines. A cartesian plot of both configurations is shown in Fig. 4.4(c).

Figure 4.4 Polarization dependent SHG intensity as a function of the linear polarization
angles 𝜓 of the laser and 𝜑 of the SHG light in three different diagram types for the
crystallographic SHG process of 𝛤 +

5 excitons (Fig. 4.3(a) and Eq. (4.65)): (a) Historically
used polar plot for the parallel (𝜓 = 𝜑) and crossed (𝜓 = 𝜑 + 90∘) polarization tuning.
(b) 2D contour plot for all linear polarization angle combinations. The SHG intensity
is represented by a rainbow color scale. Blue corresponds to zero and red to maximum
SHG intensity. The parallel and crossed configurations are contained as the black and red
diagonal lines. (c) Cartesian plot analogous to panel (a).

The 2D polarization diagrams for k along various crystal axis for the process in Fig. 4.3(a)
[Eq. (4.65)] are plotted in the first row of Fig. 4.5. As can be seen in Fig. 2.5 the 𝛤 +

5 𝑆 and 𝐷
excitons show much stronger SHG intensity compared to odd parity 𝛤 −

4 𝑃 excitons, as only
the 2𝑃 exciton is comparable to the 2𝑆 exciton. For higher principal quantum numbers the
𝑃 excitons are barely detectable, if at all. Therefore we call this mechanism the dominant
crystallographic mechanism.

Now we derive the weak crystallographic SHG mechanisms. Let us start with an
ED-ED excitation of 𝛤 +

4 𝐷 excitons, for which we use the coupling coefficient table A.7 for
𝛤 −

4 ⊗ 𝛤 −
4 → 𝛤 +

4 from Ref. [Kos+63] and get

𝑂4+
DD(𝜓) = 1√

2
⎛⎜
⎝

𝑑2(𝜓)𝑑3(𝜓) − 𝑑3(𝜓)𝑑2(𝜓)
−𝑑1(𝜓)𝑑3(𝜓) + 𝑑3(𝜓)𝑑1(𝜓)
𝑑1(𝜓)𝑑2(𝜓) − 𝑑2(𝜓)𝑑1(𝜓)

⎞⎟
⎠

= ⎛⎜
⎝

0
0
0
⎞⎟
⎠

. (4.66)

Here it becomes evident, that the ED-ED excitation of 𝛤 +
4 states is impossible for two

photons having the same linear polarization angle as in our experiment with only one
laser. Therefore this process is not relevant for our considerations here. However, using
two separate lasers with different linear polarization angles, this process will give an SHG
contribution.

Let us continue with ED-ED excitation of 𝛤 +
3 𝐷 excitons, for which we use the coupling
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4.1 Simulation of polarization dependencies

coefficient table A.7 for 𝛤 −
4 ⊗ 𝛤 −

4 → 𝛤 +
3 from Ref. [Kos+63] and get

𝑂3+
DD(𝜓) = 1√

6
(−𝑑1(𝜓)𝑑1(𝜓) − 𝑑2(𝜓)𝑑2(𝜓) + 2𝑑3(𝜓)𝑑3(𝜓)

−
√

3𝑑1(𝜓)𝑑1(𝜓) −
√

3𝑑2(𝜓)𝑑2(𝜓) ) (4.67)

Thus, for the SHG intensity of 𝛤 +
3 𝐷 excitons with ED-ED excitaion and EQ3 emission we

get

𝐼SHG
even Q3(k, 𝜓, 𝜑) = 𝐼3+

DD/Q3(k, 𝜓, 𝜑) ∝ ∣𝑂3+
DD(𝜓) ⋅ 𝑂Q3(k, 𝜑)∣2 . (4.68)

Next, we derive the SHG intensity of odd-parity 𝛤 −
4 𝑃 excitons, which emit light by

ED transition. For their excitation, we combine the odd-parity ED photon vector with
the even-parity EQ photon vector in order to address odd-parity 𝑃 excitons. We use the
coupling coefficient table A.8 for 𝛤 −

4 ⊗ 𝛤 +
5 → 𝛤 −

4 from Ref. [Kos+63]. The vector for this
two-photon transition consequently reads

𝑂4−
DQ(k, 𝜓) = 1√

2
⎛⎜
⎝

𝑞3(k, 𝜓)𝑑2(𝜓) + 𝑞2(k, 𝜓)𝑑3(𝜓)
𝑞1(k, 𝜓)𝑑3(𝜓) + 𝑞3(k, 𝜓)𝑑1(𝜓)
𝑞2(k, 𝜓)𝑑1(𝜓) + 𝑞1(k, 𝜓)𝑑2(𝜓)

⎞⎟
⎠

. (4.69)

The polarization-dependent SHG intensity is then calculated by

𝐼SHG
odd (k, 𝜓, 𝜑) = 𝐼4−

DQ/D(k, 𝜓, 𝜑) ∝ ∣𝑂4−
DQ(k, 𝜓)𝑂D(𝜑)∣

2
, (4.70)

Figure 4.5 Simulated 2D SHG polarization diagrams for the crystallographic SHG pro-
cesses for all relevant crystal orientations as expressed by Eqs. (4.65), (4.70) and (4.68)
and sketched in Fig. 4.3.

Now we have derived all possible crystallographic processes with only one higher-order
transition. Their polarization diagrams for various typical crystal orientations are plotted
in Fig. 4.5. It is striking, that for each crystal orientation, the mechanisms show the
same polarization dependence. It is therefore not possible to distinguish between them by
selecting a specific polarization angle setting. It also becomes evident, that the SHG signal
is absent for all polarization angles, if k is directed along the high-symmetry crystal [001]
and [110] axis.
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Chapter 4 Magnetic-field-induced SHG of yellow-series excitons

4.1.2 Zeeman-effect induced SHG
In this section, we derive the polarization dependence for different mechanisms of Zeeman
effect-induced SHG, which involves an even-parity magnetic-field coupling between exciton
states of the same parity. Therefore we need a general magnetic field vector

B = ⎛⎜
⎝

𝐵1
𝐵2
𝐵3

⎞⎟
⎠

. (4.71)

The distinction between Voigt and Faraday geometry is made later by inserting the crystal
axis, along which the magnetic field is applied. In order to find all possible mechanisms one
can take the crystallographic mechanisms as shown in Fig. 4.3 and extend each of them by a
magnetic-field coupling between same-parity excitons. All the mechanisms obtained by this
method are shown in Fig. 4.6. Similar to the dominant crystallographic SHG mechanism,
the dominant mechanism for ZE induced SHG is expected to involve 𝛤 +

5 excitons
both for the excitation and emission channel, which are additionally coupled by a magnetic
field, as shown in Fig. 4.6(a). Thus we take the ED-ED excitation operator from Eq. (4.64)

Figure 4.6 Schematics of the ZE-induced SHG processes for (a) even-parity 𝛤 +
5 (b) odd-

parity 𝛤 −
4 and (c) even-parity 𝛤 +

1 and 𝛤 +
3 coupled to 𝛤 +

4 and 𝛤 +
5 exciton states.

for 𝛤 +
5 excitons and couple it with the 𝛤 +

4 magnetic field from Eq. (4.71) to a 𝛤 +
5 operator

using the coupling coefficient table A.8 for 𝛤 +
5 ⊗ 𝛤 −

4 → 𝛤 +
5 from Ref.[Kos+63] and get

𝑂5+B5+
DD (𝜓) = 1√

2
⎛⎜⎜
⎝

𝐵2𝑂5+
DD,3(𝜓) − 𝐵3𝑂5+

DD,2(𝜓)
−𝐵1𝑂5+

DD,3(𝜓) + 𝐵3𝑂5+
DD,1(𝜓)

𝐵1𝑂5+
DD,2(𝜓) − 𝐵2𝑂5+

DD,1(𝜓)

⎞⎟⎟
⎠

(4.72)

= ⎛⎜
⎝

𝐵2𝑑1(𝜓)𝑑2(𝜓) − 𝐵3𝑑3(𝜓)𝑑1(𝜓)
−𝐵1𝑑2(𝜓)𝑑1(𝜓) + 𝐵3𝑑2(𝜓)𝑑3(𝜓)
𝐵1𝑑1(𝜓)𝑑3(𝜓) − 𝐵2𝑑2(𝜓)𝑑3(𝜓)

⎞⎟
⎠

. (4.73)

The nomenclature for the operators is now extended in the upper index by adding B for the
coupling mechanism and additionally a ”5+” referring to the 𝛤 +

5 symmetry of the excitons
in the emission channel, to which the two-photon excited states are coupled to. With the
Zeeman operator of the dominant process [Eq.(4.73)] and a quadrupole emission we get

𝐼SHG
ZE (k, 𝜓, 𝜑) = 𝐼5+B5+

DD/Q (k, 𝜓, 𝜑) ∝ ∣𝑂5+B5+
DD (𝜓)𝑂Q(k, 𝜑)∣2 . (4.74)

The lower index denotes the two-photon excitation with two electric dipoles (DD) and the
electric quadrupole emission (Q). The upper index again implies, that 𝛤 +

5 excitons are
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4.1 Simulation of polarization dependencies

excited (first ”5+”) and coupled by a magnetic field (B) to other 𝛤 +
5 states (last ”5+”),

from which the light is emitted. The polarization diagrams are shown for different crystal
orientations in the first line of Fig. 4.7 for the Voigt configuration and in the first line of
Fig. 4.8 for the Faraday configuration.

We continue with the derivation of weak processes for ZE induced SHG involving
odd-parity 𝑃 excitons with 𝛤 −

4 symmetry and even parity 𝐷 excitons with 𝛤 +
4 , 𝛤 +

3 and
𝛤 +

1 symmetries [see Eq. (4.53)]. We start with the weak mechanism of odd-parity 𝛤 −
4 𝑃

excitons, as sketched in Fig. 4.6(b), which can be excited by a combined ED-EQ transition,
as already shown in Eq. (4.69). We take this vector and couple it with a magnetic field to
a 𝛤 −

4 𝑃 exciton state, as it is the only odd parity single-photon operator. The excitation
vector of ED-EQ excited and magnetic field coupled states then reads

𝑂4−B4−
DQ (𝜓) = 1√

2
⎛⎜⎜
⎝

𝐵2𝑂4−
DQ,3(k, 𝜓) − 𝐵3𝑂4−

DQ,2(k, 𝜓)
−𝐵1𝑂4−

DQ,3(k, 𝜓) + 𝐵3𝑂4−
DQ,1(k, 𝜓)

𝐵1𝑂4−
DQ,2(k, 𝜓) − 𝐵2𝑂4−

DQ,1(k, 𝜓)

⎞⎟⎟
⎠

. (4.75)

The SHG intensity is calculated by the scalar product with an ED transition, of which the
absolute value is then squared:

𝐼4−B4−
DQ/D (k, 𝜓, 𝜑) ∝ ∣𝑂4−B4−

DQ (k, 𝜓) ⋅ 𝑂D(𝜑)∣
2

(4.76)

Note, that for blue excitons the process described in Eq. (4.76) is the dominant one, as it
addresses magnetic-field coupled blue 𝑆 excitons. This will be discussed later in Section 6.

We continue with the weak ZE processes, for which the even parity 𝛤 +
3 𝐷 excitons are

excited by two photons in ED approximation, as sketched in Fig. 4.6(c) and expressed in
Eq. (4.67). According to the multiplication table A.3 of Ref. [Kos+63], the 𝛤 +

3 excitons can
be coupled by a magnetic field to 𝛤 +

4 and 𝛤 +
5 excitons, which then can emit light by MD

and EQ transitions, respectively. Thus we get

𝑂3+B5+
DD (𝜓) = 1

2
√

6
⎛⎜⎜
⎝

−
√

3𝐵1𝑂3+
DD,1 − 𝐵1𝑂3+

DD,2√
3𝐵2𝑂3+

DD,1 − 𝐵2𝑂3+
DD,2

2𝐵3𝑂3+
DD,2

⎞⎟⎟
⎠

, (4.77)

𝑂3+B4+
DD (𝜓) = 1

2
√

6
⎛⎜⎜
⎝

−𝐵1𝑂3+
DD,1 +

√
3𝐵1𝑂3+

DD,2
−𝐵2𝑂3+

DD,1 −
√

3𝐵2𝑂3+
DD,2

2𝐵3𝑂3+
DD,1

⎞⎟⎟
⎠

(4.78)

for these magnetic field coupled 𝛤 +
3 exciton vectors and

𝐼3+B5+
DD/Q (k, 𝜓, 𝜑) ∝ ∣𝑂3+B5+

DD (𝜓)𝑂Q(k, 𝜑)∣2 , (4.79)

𝐼3+B4+
DD/MD(k, 𝜓, 𝜑) ∝ ∣𝑂3+B4+

DD (𝜓)𝑂MD(k, 𝜑)∣2 . (4.80)

for their SHG intensities.
Finally, we derive the polarization dependence of ZE-induced SHG mechanisms involving

the excitation of 𝛤 +
1 excitons. Although 𝛤 +

1 states cannot emit light directly, they can be
two-photon excited by a combined ED-ED transition

𝑂1+
DD(𝜓) = 1√

3
, (4.81)
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Chapter 4 Magnetic-field-induced SHG of yellow-series excitons

and coupled by a magnetic field to 𝛤 +
4 excitons

𝑂1+B4+
DD (𝜓) = 1√

3
⎛⎜
⎝

𝐵1
𝐵2
𝐵3

⎞⎟
⎠

, (4.82)

which can emit light by an MD interaction. Consequently, we get

𝐼1+B4+
DD/MD(k, 𝜓, 𝜑) ∝ ∣𝑂1+B4+

DD (𝜓)𝑂MD(k, 𝜑)∣2 , (4.83)

for the polarization-dependent SHG intensity.

Figure 4.7 Simulated 2D SHG polarization diagrams for the ZE-induced SHG processes
in Voigt configuration (k ∥ Z, EMSE ∥ Y and B ∥ X) for all relevant crystal orientations
as expressed by Eqs. (4.74), (4.76), (4.79), (4.80) and (4.83) and sketched in Fig. 4.6.

At this point, we have derived the polarization dependence of all possible ZE-induced SHG
mechanisms, which involve at most one higher-order optical transition. The polarization
diagrams for the derived weak ZE mechanisms are plotted in Fig. 4.7 for Voigt and in
Fig. 4.8 for Faraday geometry for various typical crystal orientations. In contrast to the
crystallographic mechanisms, the polarization plots of different ZE mechanisms all differ
significantly in their patterns giving the possibility to separate chosen mechanisms from
each other by a specific setting of linear polarization angles, as will be discussed in Sec. 4.2.

It is striking, that the orientations, which are symmetry forbidden in the case of crystal-
lographic mechanisms are still forbidden in Faraday geometry. However, in Voigt geometry,
almost all mechanisms with a few exceptions have an SHG contribution for all crystal
orientations and differ in their polarization dependence.

Note, that in Faraday geometry the linear polarization angles are rotated due to the Fara-
day effect. Experimental measurements of the polarization dependence will show shifted
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4.1 Simulation of polarization dependencies

patterns compared to the simulated diagrams. In Voigt geometry, however, this effect
is absent. Therefore the polarization diagrams can be measured directly as described in
Sec. 3.5.

Figure 4.8 Simulated 2D SHG polarization diagrams for the ZE-induced SHG processes
in Faraday configuration (k ∥ B ∥ Z) for all relevant crystal orientations as expressed by
Eqs. (4.74), (4.76), (4.79), (4.80) and (4.83) and sketched in Fig. 4.6.

4.1.3 Magneto-Stark effect induced SHG

In this section, we derive the polarization dependence of MSE-induced SHG mechanisms,
which include a coupling of opposite parity exciton states by an effective electric field

𝐸MSE = ⎛⎜
⎝

𝐸1
𝐸2
𝐸3

⎞⎟
⎠

, (4.84)

which has a negative parity with a 𝛤 −
4 symmetry. We will only consider MSE processes

with an excitation of even parity excitons with two ED transitions, which are then coupled
by the electric field to odd parity 𝛤 −

4 𝑃 excitons resulting in an ED emission. The excitation
of odd parity excitons would require a total of two optical transitions of higher order, one
in the excitation and one in the emission channel, as the electric field would couple the odd
parity excitons with even parity excitons, which could only emit light by EQ, MD or EQ3
transition.

Taking these considerations into account, the dominant mechanism of MSE-induced
SHG involves an ED-ED two-photon excitation of 𝛤 +

5 𝑆 or 𝐷 excitons already expressed
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Figure 4.9 Schematics of the MSE-induced SHG processes for (a) 𝛤 +
5 -𝛤 −

4 (b) 𝛤 +
3 -𝛤 −

4 and
(c) 𝛤 +

1 -𝛤 −
4 coupled exciton states.

in Eq. (4.64), which are coupled to 𝛤 −
4 𝑃 excitons leading to

𝑂5+E4−
DD (𝜓) = 1√

2
⎛⎜⎜
⎝

𝐸2𝑂5+
DD,3 + 𝐸3𝑂5+

DD,2
𝐸1𝑂5+

DD,3 + 𝐸3𝑂5+
DD,1

𝐸1𝑂5+
DD,2 + 𝐸2𝑂5+

DD,1

⎞⎟⎟
⎠

(4.85)

= ⎛⎜
⎝

𝐸2𝑑1(𝜓)𝑑2(𝜓) + 𝐸3𝑑3(𝜓)𝑑1(𝜓)
𝐸1𝑑2(𝜓)𝑑1(𝜓) + 𝐸3𝑑2(𝜓)𝑑3(𝜓)
𝐸1𝑑1(𝜓)𝑑3(𝜓) + 𝐸2𝑑2(𝜓)𝑑3(𝜓)

⎞⎟
⎠

. (4.86)

The 𝑃 excitons can then emit light in ED approximation resulting in the polarization-
dependent SHG intensity

𝐼SHG
MSE(𝜓, 𝜑) = 𝐼5+E4−

DD (𝜓, 𝜑) ∝ ∣𝑂5+E4−
DD (𝜓)𝑂D(𝜑)∣2 (4.87)

for this process.
Although the weak processes for MSE-induced SHG also include only ED transi-

tions, they involve the excitation of 𝛤 +
3 and 𝛤 +

1 𝐷 excitons. The vectors for these states
are given by

𝑂3+E4−
DD (𝜓) = 1

2
√

6
⎛⎜⎜
⎝

−𝐸1𝑂3+
DD,1 +

√
3𝐸1𝑂3+

DD,2
−𝐸2𝑂3+

DD,1 −
√

3𝐸2𝑂3+
DD,2

2𝐸3𝑂3+
DD,1

⎞⎟⎟
⎠

, (4.88)

𝑂1+E4−
DD (𝜓) = 1√

3
⎛⎜
⎝

𝐸1
𝐸2
𝐸3

⎞⎟
⎠

. (4.89)

With an additional ED transition in the emission channel, the SHG intensities result in

𝐼3+E4−
DD/D (𝜓, 𝜑) ∝ ∣𝑂3+E4−

DD (𝜓)𝑂D(𝜑)∣2 , (4.90)

𝐼1+E4−
DD/D (𝜓, 𝜑) ∝ ∣𝑂1+E4−

DD (𝜓)𝑂D(𝜑)∣2 . (4.91)

The polarization diagrams of the derived MSE-induced SHG mechanisms in Voigt geometry
are shown in Fig. 4.10 for various crystal orientations. In Faraday geometry the Lorentz
force and therefore also the MSE are absent.
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Finally, we have derived expressions for the polarization-dependent crystallographic, ZE-
induced and MSE-induced SHG processes for yellow excitons in Cu2O with at most one
higher-order optical transition. For each category, a dominant process is identified, which
will be backed up by experimental results in Sec. 4.2. The polarization diagram tables
will turn out to be useful tools to select experimental geometries in order to isolate certain
mechanisms.

Figure 4.10 Simulated 2D SHG polarization diagrams for the MSE-induced SHG pro-
cesses in Voigt configuration (k ∥ Z, EMSE ∥ Y and B ∥ X) for all relevant crystal
orientations as expressed by Eqs. (4.87), (4.90) and (4.91) and sketched in Fig. 4.9.

4.1.4 Interference
The last case we have to discuss is the interference of multiple mechanisms. If SHG of
an exciton resonance is induced by multiple mechanisms, an interference of the acting
mechanisms will occur. For the resulting SHG intensity, one has to add the operators of
the involved mechanisms with coefficients, before taking the absolute value squared. For
the experiments in Sec. 4.2 the interference of the dominant ZE [Eq. (4.74)] and MSE
[Eq. (4.87)] effects are of special importance and are expressed by

𝐼SHG
ZE+MSE(k, 𝜓, 𝜑) ∝ ∣(𝛼 ⋅ 𝑂5+B5+

DD (𝜓)𝑂Q(k, 𝜑) (4.92)

+𝛽 ⋅ 𝑂5+E4−
DD (𝜓)𝑂D(𝜑))/√𝛼2 + 𝛽2∣

2
,

with the coefficients 𝛼 and 𝛽.

4.2 Magnetic-field induced spectra and polarization dependencies
of different SHG mechanisms

In Sec. 4.1 we have derived the SHG intensity as a function of the linear polarization angles of
the incoming laser- and outgoing SHG light for various crystallographic and magnetic-field-
induced mechanisms and presented polarization diagrams for several crystal orientations.
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Chapter 4 Magnetic-field-induced SHG of yellow-series excitons

Figure 4.11 Magnetic field series from 10 to 0 T of SHG spectra of yellow 𝑛 ≥ 3 excitons
induced purely by (a) ZE (𝜓/𝜑 = 0∘/90∘) and (b) MSE (𝜓/𝜑 = 45∘/0∘) in the H100 sample
(see Tab. 3.1) with k ∥ [1 ̄10] and B ∥ [110]. The central photon energy of the fs-pulses is
set to 1.082 eV.

In this section, we will choose a suitable crystal orientation to suppress the crystallographic
mechanisms and demonstrate the ZE and MSE, by experimentally acquiring the polariza-
tion diagrams and comparing them to the simulations from Sec. 4.1. Then we will isolate
all the weak mechanisms from the dominant ones by choosing polarization settings, for
which only the weak mechanisms will give an SHG contribution. Moreover, we will identify
polarization settings, for which only one of the two dominant magnetic-field-induced mech-
anisms will contribute to the SHG signal. As each mechanism will have its characteristic
spectral features, we will measure the magnetic field series for each mechanism and look for
differences between them.

For the decision of which experimental geometry to choose we have to take a few factors
into consideration. Our primary focus is the magnetic-field-induced SHG mechanisms, for
which the suppression of crystallographic contributions is required. Examining the last four
columns in Figs. 4.5, 4.7, 4.8 and 4.10, it becomes evident, that this requirement is fulfilled
in Voigt geometry for k along [001] and [1 ̄10].

Next, we look at the polarization diagrams for the dominant ZE and MSE mechanisms,
which are shown in the first line of Figs. 4.7 and 4.10. One can draw the conclusion, that
k along [001] is therefore not suitable, as the ZE and MSE diagrams are indistinguish-
able. Consequently, the only suitable crystal orientation is k along [1 ̄10]. Between the two
orientations, Y ∥ [001] and B ∥ [110] is more suitable, as it allows to suppress the SHG
intensity of one mechanism for specific polarization angles, for which the other mechanism
still contributes. For instance, for a fixed 𝜓 = 180∘ only the ZE mechanism contributes to
the SHG signal with a twofold symmetry. On the other hand, for a fixed 𝜑 = 180∘ only
the MSE mechanism gives a contribution with a fourfold symmetry. Therefore we choose
this experimental orientation for our experiments in this chapter. The ”H100” sample ex-
hibits the described orientation (see Tab. 3.1) and is therefore chosen for the experiments
presented in this chapter.

If we assume at this point, that the derived polarization diagrams of the mechanisms
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4.2 Magnetic-field induced spectra and polarization dependencies of different SHG mechanisms

Figure 4.12 Magnetic-field-induced SHG spectra at 4 T of yellow 𝑛 ≥ 3 excitons for the
(a) dominant MSE (𝜓/𝜑 = 45∘/0∘), (b) dominant ZE (𝜓/𝜑 = 0∘/90∘) and the combined
weak mechanisms (𝜓/𝜑 = 90∘/90∘) in the H100 sample (see Tab. 3.1) with k ∥ [1 ̄10] and
B ∥ [110]. The central photon energy of the fs-pulses is set to 1.082 eV, as shown by (d)
the SH of the fs laser power spectrum as the gray area.

are correct, we have to choose the polarization setting 𝜓/𝜑 = 0∘/90∘ in order to measure
the SHG spectra, which are purely induced by the ZE and 𝜓/𝜑 = 45∘/0∘ for purely MSE-
induced SHG spectra. By setting the central photon energy of the fs laser at half of the
𝑛 = 3 exciton multiplet and measuring the SHG spectra as described in Sec. 3.3 for magnetic
fields from 0 to 10 T in steps of 2 T, we acquire the results which are shown in Fig.4.11.

Figs. 4.11(a) and 4.11(b) show the magnetic field series of SHG spectra purely induced
by the ZE and MSE mechanism, respectively. In both cases no SHG signal is detected
for 𝐵 = 0 T, as it is the symmetry-forbidden orientation, which confirms the polarization
plots of the fifth and sixth row in Fig. 4.5. In general, the SHG spectra induced by the
two mechanisms show differences in their spectral features. As an example, Fig. 4.11(a)
shows stronger signals in the 𝑆- compared to the 𝐷 excitons. For Fig. 4.11(b) the opposite
is true. At low magnetic fields the spectra are similar to the zero-field crystallographic
spectra as shown in Fig. 2.5(b). With increasing magnetic field the resonances split, shift
to higher energies and new resonances emerge. For both mechanisms, the integrated SHG
signal increases with increasing magnetic field, however, for higher 𝑛 the MSE-induced SHG
contribution increase overpowers that of the ZE.

Next, we want to experimentally confirm the polarization dependence, which we have
already derived theoretically and shown in Fig. 4.7 and 4.10. For this one has to choose an
exciton resonance in Fig.4.11, of which the SHG signal is only induced by one mechanism
to avoid an interference between both effects. A suitable exciton state for the ZE is the
3𝑆 exciton at 4 T, as it is strongly induced by the ZE but has a very weak MSE-induced
contribution. For a demonstration of the MSE polarization dependence, we choose by the
same logic the 3𝐷 exciton state, as it is predominantly induced by the MSE. The chosen
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Chapter 4 Magnetic-field-induced SHG of yellow-series excitons

Figure 4.13 (a) Simulated [according to Eq. (4.74) and Fig. 4.6(a)] and (b) experimentally
obtained 2D polarization diagrams of the ZE-induced SHG of the 3𝑆 exciton at 𝐵 = 4 T
in the H100 sample (see Tab. 3.1) with k ∥ [1 ̄10] and B ∥ [110], as shown in Fig. 4.12(a).
(c) Polarization-dependent intensity along the 𝜓 = 180∘ tuning line marked in panels (a)
and (b) by the red lines. Symbols represent the experimental data and lines represent the
simulation.

spectra are shown in Fig. 4.12 marked as (a) and (b), respectively. The gray spectrum (d)
shows the energy-doubled power spectrum of the fs pulse excitation and visualizes the fixed
wavelength spectroscopy method described in Sec. 3.3.

For the measurement of the full polarization dependence of the 3𝑆 exciton, the laser is kept
at the same energy setting as shown in Fig. 4.12, the magnetic field is fixed at 4 T and both
linear polarization angles 𝜓 and 𝜑 are tuned as described in Sec. 3.5. For the evaluation,
we take the intensity of the pixel at the dashed line marking the 3𝑆 exciton energy and
plot it according to the rainbow color scale against 𝜓 and 𝜑 in the contour plot shown in
Fig. 4.13(a). The experimental diagram is in good agreement with the simulation, which
is calculated according to Eq. (4.74) and shown in Fig. 4.13(b). This is an indication, that
no other mechanism contributes significantly at this energy. The polarization dependence
pattern has a twofold symmetry proportional to a cos4 shape along 𝜓 with broad minima
and narrow maxima and a twofold symmetry proportional to a sin2 shape along 𝜑 with
equally broad minima and maxima. The maximum intensity is detected at 𝜓/𝜑 = 0∘/90∘

and other equivalent settings shifted by 180∘ either in 𝜓 or 𝜑.
For the 3𝐷 exciton we can use the same polarization tuning data set, as it has covered the

whole spectral range and includes all exciton lines. For the analogous evaluation we take the
intensity of the pixel at the dashed line in Fig. 4.12 marking the 3𝐷 exciton energy and plot
it against 𝜓 and 𝜑 in the contour plot shown in Fig. 4.14(a). The experimental diagram is in
good agreement with the simulation, which is calculated according to Eq. (4.87) and shown
in Fig. 4.14(b). This again indicates, that no other mechanism contributes significantly at
this energy. The polarization dependence pattern has a twofold symmetry proportional to
a sin2(2𝜓) shape along 𝜓 and a twofold symmetry proportional to a sin2 shape along 𝜑 with
equally broad minima and maxima. The maximum intensity is detected at 𝜓/𝜑 = 45∘/0∘

and other equivalent settings shifted by 90∘ in 𝜓 or 180∘ 𝜑.
Comparing the polarization diagrams of the ZE and MSE it becomes evident, that the

tuning line for fixed 𝜓 = 180∘ (and equivalent angles) and varying 𝜑 only gives ZE contribu-
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Figure 4.14 (a) Simulated [according to Eq. (4.87) and Fig. 4.9(a)] and (b) experimentally
obtained 2D polarization diagrams of the MSE-induced SHG of the 3𝐷 exciton at 𝐵 = 4 T
in the H100 sample (see Tab. 3.1) with k ∥ [1 ̄10] and B ∥ [110], as shown in Fig. 4.12(b).
(c) Polarization-dependent intensity along the 𝜑 = 180∘ tuning line marked in panels (a)
and (b) by the black lines. Symbols represent the experimental data and lines represent
the simulation.

tion for any energy of the SHG spectrum and therefore never leads to an interference with
the MSE. The polarization dependence for this tuning line is shown in Fig. 4.13(c) with
the symbols representing the experimental data and the line representing the simulation.
Analogously, the same is true for the tuning line along 𝜓 for a fixed 𝜑 = 180∘ for the oppo-
site case, which is plotted in Fig. 4.14(c). This explains, why we have chosen 𝜓/𝜑 = 0∘/90∘

for the pure ZE spectrum and 𝜓/𝜑 = 45∘/0∘ for the pure MSE spectrum in Fig. 4.12. The
tuning line diagrams show a good agreement between theory and experiment and also vi-
sualize the shape of the polarization-dependent intensity as a vertical diagram axis instead
of the more abstract color scale in the contour plots.

As we have demonstrated the polarization dependence of the pure ZE and MSE we now
turn to the more general case of an interference between the two mechanisms. We can again
use the same measured data set but choose the spectral position marked by the rightmost
dashed line in Fig. 4.12 for the evaluation, as both effects contribute to the SHG intensity.
At this energy, the polarization-dependent SHG intensity is plotted in Fig. 4.15(a). The
diagram shows a more distorted shape representing interference of the pure diagrams. For
the simulation, we use Eq. (4.92) with the coefficient ratio of 𝛼/𝛽 = 4/3 and show the
resulting simulated polarization dependence in Fig. 4.15(b), which is in good agreement
with the experimentally obtained diagram. For better visualization, we arbitrarily choose
the tuning line along 𝜓 for a fixed 𝜑 = 200∘. The results are shown in Fig. 4.15(c) and
confirm the good agreement between theory and experiment.

Next, we turn to the experimental results of the weak ZE and MSE mechanisms. At
𝜓/𝜑 = 90∘/90∘ the contribution of both dominant effects is suppressed but all the weak
mechanisms are maximized. As very small signals are expected from the weak effects one
has to set 𝜓 very precisely to the minimum contribution of the dominant ZE and MSE at
around 90∘ for optimum suppression. The spectrum is then measured for the same laser
energy as before, a magnetic field of 4 T and a significantly longer integration time by a
factor of 250. The acquired spectrum is shown in Fig. 4.12(c) and differs in its spectral
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Figure 4.15 (a) Simulated [according to Eq. (4.92) with 𝛼/𝛽 = 4/3 and Figs. 4.6 and 4.9]
and (b) experimentally obtained 2D polarization diagrams of the interference of ZE- and
MSE induced SHG in the 𝑛 = 4 multiplet at 𝐵 = 4 T in the H100 sample (see Tab. 3.1)
with k ∥ [1 ̄10] and B ∥ [110], as shown in Fig. 4.12(a) and 4.12(b). (c) Polarization-
dependent intensity along the 𝜑 = 200∘ tuning line marked in panel (a) and (b) by the
black lines. Symbols represent the experimental data and lines represent the simulation.

features from the spectra of the dominant effects.
The simulated polarization dependencies of the weak mechanisms are shown in Figs. 4.16(a)

- 4.16(c). They could be reduced to three different patterns, as many of the mechanisms
show an identical polarization dependence pattern. The only possible way to measure the
polarization dependence of the weak mechanisms is to fix 𝜓 to 90∘ and tune 𝜑, as it is
the only tuning line at which the dominant mechanisms are suppressed. Luckily all the
weak mechanisms show the same twofold symmetry with a sin2(𝜑) shape, so no distortive
interference between the weak effects is expected. The measured data are shown as symbols
in Fig. 4.16(c) and are in good agreement with the simulation represented by the line.

Now we have demonstrated the polarization dependence of the dominant and weak ZE and
MSE-induced SHG mechanisms experimentally and confirmed the validity of our method
to derive and simulate the polarization dependence using our group theory considerations,
which gives us a powerful tool for further SHG and other multi-photon spectroscopy inves-
tigations.

As briefly mentioned before we now analyze the ratio of the ZE- and MSE-induced SHG
contributions for each multiplet in dependence of 𝑛, to find out which effect will dominate
the SHG contribution for increasing 𝑛. To avoid spectral overlap between adjacent multi-
plets, especially the higher 𝑛 ones, but still have enough induced SHG signal, we choose a
low but sufficient magnetic field of 1 T. The measured spectra for ZE- and MSE-induced
SHG are shown in Figs. 4.17(a) and 4.17(b), respectively. The gray areas mark the spectral
range, for which the intensity is integrated for each multiplet. The ratios of MSE- and
ZE-induced SHG intensities are shown in Fig. 4.17(c) in dependence of 𝑛. For 𝑛 = 3 and
4 they both have a very similar contribution. For 𝑛 = 5 and 6, however, the ratios grow
drastically to about 1.7 and 3.2, which results in an exponent of 6.4 ± 1 in a power function
fit. The purpose of this analysis is to show qualitatively, that the MSE dominates the ZE
for multiplets of increasing 𝑛, as only four multiplets are taken into consideration and the
𝑛 = 5 and 6 multiplets share an overlap increasing the errors.
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4.3 Conclusion

Figure 4.16 Simulated 2D polarization diagrams of the weak magnetic-field induced SHG
mechanisms of the 3𝑆 exciton at 𝐵 = 4 T in the H100 sample (see Tab. 3.1) with k ∥ [1 ̄10]
and B ∥ [110], as shown in Fig. 4.12(c): (a) ZE of excited 𝛤 −

4 states, (b) ZE and MSE of
excited 𝛤 +

3 states and (c) ZE and MSE of excited 𝛤 +
1 states. (d) Polarization-dependent

intensity along the 𝜓 = 90∘ tuning line marked in panels (a), (b) and (c) by the black
lines. Symbols represent the experimental data and lines represent the simulation.

Figure 4.17 Magnetic-field-induced SHG spectra at 4 T of yellow 𝑛 ≥ 3 excitons for the
(a) dominant ZE (𝜓/𝜑 = 45∘/0∘) and (b) dominant ZE (𝜓/𝜑 = 0∘/90∘) in the H100 sample
(see Tab. 3.1) with k ∥ [1 ̄10] and B ∥ [110]. The central photon energy of the fs pulses is
set to 1.082 eV. The colored boxes show the spectral range for each multiplet, of which
the intensity is integrated and plotted in panel (c) as the ratio of MSE to ZE-induced
intensity. The power function fit 𝑅(𝑛) = 𝑅0 + 𝑛𝑐 yields the fit parameters 𝑅0 = 1.0 ± 0.1
and 𝑐 = 6.4 ± 1.

4.3 Conclusion

In this chapter, we have investigated the SHG mechanisms of yellow-series excitons in a
magnetic field in Voigt geometry. The focus was set on excitation along symmetry-forbidden
crystal orientations suppressing crystallographic SHG and allowing only magnetic-field-
induced contributions such as the Zeeman effect mixing excitons of the same parity and the
Magneto-Stark effect, which results from the exciton motion perpendicular to the magnetic
field and mixes excitons of opposite parity. One dominant and several weak optical processes
involving combinations of different types of transitions (ED, EQ, and MD) and exciton states
(𝑆, 𝑃, 𝐷) of various symmetries are constructed for each effect using the group-theoretical
multiplication tables from Ref. [Kos+63]. The polarization-dependent SHG intensity is then
derived for each mechanism using coupling coefficient tables from Ref. [Kos+63] and plotted
in 2D diagrams, which are a novel extension to the usual polar plots of the parallel and
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crossed configurations traditionally used in the SHG community. The information of the
parallel and crossed configurations are still included in the 2D diagrams as diagonal tuning
lines starting from 𝜓/𝜑 = 0∘/0∘ and 𝜓/𝜑 = 0∘/90∘. This makes the 2D diagrams superior if
one tries to choose experimental parameters, such as sample and magnetic field orientations
and polarization angles, in order to suppress certain mechanisms and investigate spectral
features of isolated SHG-inducing effects.

Using this method we have chosen k along the [1 ̄10] and B along the [110] crystal
axis to suppress crystallographic SHG and set 𝜓/𝜑 = 0∘/90∘ to isolate the dominant ZE,
𝜓/𝜑 = 45∘/0∘ to isolate the dominant MSE and 𝜓/𝜑 = 90∘/90∘ to suppress both dominant
mechanisms and allowing all other weak mechanisms simultaneously. With these settings,
the magnetic-field series of SHG spectra for both dominant mechanisms is measured. With
increasing magnetic fields the emergence of multiple exciton lines is observed, which shift
in energy and split into multiple states.

At 𝐵 = 4 T the polarization dependence is measured and plotted for the 3𝑆 exciton in a
contour plot, which agrees with the simulation. In the same way, the polarization plot of the
3𝐷 exciton is in good agreement with the MSE simulation. For an arbitrarily chosen spectral
position in the 𝑛 = 4 multiplet an interference of both dominant mechanisms is observed in
the polarization plot, which is modeled with a good agreement using Eq. (4.92). At 𝐵 = 1 T
it is shown, that the MSE dominates the ZE in induced SHG intensity for increasing 𝑛, as
the ratio 𝐼MSE/𝐼ZE(𝑛) grows with a power of about 6.4 ± 1.

The presented method turns out to be a powerful tool for SHG spectroscopy of excitons, as
it can easily be applied to other exciton series in Cu2O, as will be demonstrated in Sec. 6.
For the detection of optically inactive paraexcitons, it is crucial to suppress the SHG of
optically active orthoexcitons, in which case this method will turn out to be very useful as
well (see Sec. 5). The derivation of polarization dependencies can also be extended to other
mechanisms involving external electric fields or strain, to other multi-photon processes such
as third harmonic generation (THG) or difference-frequency generation with two-photon
excitation (2P-DFG), as will be discussed in Sec. 7, and also to materials with other crystal
structures (e.g. ZnSe with T𝑑 symmetry).
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Chapter 5

SHG of paraexcitons activated by a magnetic
field

Exciton can be classified into bright and dark excitons. The bright excitons, also called
orthoexcitons in Cu2O, are spin-singlet-triplet mixed states which are optically active. The
dark excitons, also called paraexcitons in Cu2O, are pure spin-triplet states and do not
couple to the light field in single-photon transitions to all orders of perturbation in the
minimal coupling [Eq. (2.26)] as their excitation would require a spin-flip.

Nevertheless, dark excitons can be optically activated by symmetry-reducing pertur-
bations such as stress [San+11; Mys+83; Liu+05; Nak+02] or external magnetic fields
[Bra+07; Bay+00], leading to an admixture from optically active orthoexcitons transfer-
ring oscillator strength. The electron-hole short-range exchange interaction only affects the
orthoexcitons and lifts them energetically above the paraexciton. Due to the small 1𝑆 ex-
citon radius of 0.7 nm the exchange energy splitting is large. Dark excitons have a large
influence on the optical properties of semiconductors. Injected carriers, which relax into the
lowest paraexciton, do not lead to a strong light emission, as the large ortho-para splitting
suppresses the thermal population of the bright state. This suppression of the radiative
decay leads to large lifetimes in the range of several µs [Mys+79] and accordingly to a very
narrow spectral line width of 84 neV [Bra+07]. The long lifetimes make dark excitons more
suitable for quantum information processing [Poe+10] and also a good candidate for Bose-
Einstein condensation [Frö+18; Sno+14; Bei+17], which has recently been experimentally
demonstrated in bulk Cu2O in Ref. [Mor+22]. Furthermore, Brandt et al. have experimen-
tally demonstrated paraexciton polariton propagation beats with dephasing times of a few
tens of ns [Bra+09].

The fundamental question arises, whether it is experimentally possible to demonstrate
the observability of the Rydberg series of paraexcitons. In a bulk semiconductor, they
should also form a hydrogen-like series just as the orthoexcitons. So far only the ground
state of dark excitons has been observed in Cu2O [Bra+07; Far+20a; Kuw+77; San+11]
and other semiconductors such as KI [Bee+87]. The 𝑛 dependent exchange splitting has
therefore also never been experimentally investigated. Cu2O is the most suitable material
to look for these excited dark excitons, as it has by far the richest experimentally observed
exciton level structure with about 60 observed {𝑛,𝐿}-shells, including the 𝑃 exciton series
up to 𝑛 = 28 and the highest angular momentum quantum number of 𝐿 = 6 corresponding
to the 𝐻 exciton. Observation of the Rydberg series of paraexcitons would complete this
picture of the exciton level structure in Cu2O. Other popular semiconductors such as GaAs
have only two excited bright states [Feh+82] and 2D materials only five [Che+14].

In this chapter, we investigate the 1𝑆 paraexciton and the corresponding excited states up
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to a principal quantum number of 𝑛 = 6 by means of SHG in a magnetic field. Their energies
have been theoretically derived in Ref. [Sch+17b]. In Sec. 5.1 we clarify the singlet-triplet
terminology by deriving the spin structure of the 1𝑆 exciton and describing its spectral
splitting and shifting behavior in a magnetic field. There are two SHG processes, which we
will elaborate on. One involves the ED-ED excitation of the admixed 𝛤 +

5 part and the other
achieves a direct excitation of the 𝛤 +

2 part by an EQ-MD two-photon process. In Sec. 5.3
we derive the polarization selections rules for both mechanisms and plot the polarization
diagrams for the three orthoexciton eigenstates and the paraexciton for various crystal
orientations, which will be helpful for choosing the most suitable experimental geometry.
Section 5.4 deals with the magnetic field-dependent intensity increase of both processes as
a way to recognize the weaker EQ-MD excitation SHG process.

The understanding of the properties and the experimental knowledge achieved in the
investigations of the ground paraexciton state will then be applied in the search for the
excited Rydberg paraexciton states in Sec. 5.5. The experimental results on the observations
of the Rydberg states of 𝑛 = 3 to 6 are shown in Sec. 5.5.1 and the results on the 𝑛 = 2
paraexciton and the green 1𝑆 paraexciton will be presented and discussed in Sec. 5.5.2.
Finally, in Sec. 5.5.3 we discuss the experimentally observed ortho-para splitting energies.
The average excitation powers of the fs and ps-pulsed lasers are set to about 10 mW. The
results of this chapter are published in Refs. [Far+20a; Far+20c].

5.1 Spin-singlet-triplet terminology and exchange interaction

The optical properties, exchange interaction and mixing behavior in a magnetic field of
excitons are highly dependent on the spin composition. In this section, we derive the spin
composition of the yellow 1𝑆 para- and orthoexciton states for a clarification of the singlet-
triplet terminology [Das03; Far+20c].

The symmetry of 1/2 spins in the Oℎ point group is 𝛤 +
6 , as shown in the compatibility

table A.1 from Ref. [Kos+63]. As the electrons are excited into the CB with the Wannier
function 𝜙𝑠 stemming from Cu 4𝑠 orbitals with 𝛤 +

1 symmetry the electron spin states are
denoted by |↑𝑒⟩ and |↓𝑒⟩ and keep the 𝛤 +

6 symmetry, as sketched in Fig. 2.3(c).
The hole spins |↑ℎ⟩ and |↓ℎ⟩ in the VB are subject to the spin-orbit coupling, as the VB

with the Wannier functions 𝜙𝑦𝑧, 𝜙𝑧𝑥 and 𝜙𝑥𝑦 stems from Cu 3𝑑 orbitals with 𝛤 +
5 symmetry.

For the spin-orbit coupled hole states |↑𝐻⟩ and |↓𝐻⟩ we get

|↑𝐻⟩ = − 𝑖√
3

𝜙𝑦𝑧 |↓ℎ⟩ − 1√
3

𝜙𝑧𝑥 |↓ℎ⟩ + 𝑖√
3

𝜙𝑥𝑦 |↑ℎ⟩ ,

|↓𝐻⟩ = − 𝑖√
3

𝜙𝑦𝑧 |↑ℎ⟩ + 1√
3

𝜙𝑧𝑥 |↑ℎ⟩ − 𝑖√
3

𝜙𝑥𝑦 |↓ℎ⟩ (5.93)

in a quasi-spin notation according to the coupling coefficient table A.9 for 𝛤 +
5 ⊗ 𝛤 +

6 → 𝛤 +
7 .

As seen in Eq. (4.50) the 𝛤 +
7 VB hole states and the 𝛤 +

6 CB electron states are coupled
to the 𝑆 exciton states consisting of the paraexciton |𝑃 ⟩ with 𝛤 +

2 symmetry and the three
orthoexciton states |𝑂𝑦𝑧⟩, |𝑂𝑧𝑥⟩ and |𝑂𝑥𝑦⟩ with 𝛤 +

5 symmetry using the coupling coefficient
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table A.6 from Ref. [Kos+63] for 𝛤 +
6 (2) ⊗ 𝛤 +

7 (2) → 𝛤 +
2 (1) ⊕ 𝛤 +

5 (3). Thus we get

|𝑃 ⟩ = + 1√
2

|↑𝑒↓𝐻⟩ − 1√
2

|↓𝑒↑𝐻⟩ ,

|𝑂𝑦𝑧⟩ = + 𝑖√
2

|↑𝑒↑𝐻⟩ − 𝑖√
2

|↓𝑒↓𝐻⟩ ,

|𝑂𝑧𝑥⟩ = + 𝑖√
2

|↑𝑒↑𝐻⟩ + 1√
2

|↓𝑒↓𝐻⟩ ,

|𝑂𝑥𝑦⟩ = − 𝑖√
2

|↑𝑒↓𝐻⟩ − 𝑖√
2

|↓𝑒↑𝐻⟩ . (5.94)

for the quasi-spin composition of the para- and the three orthoexciton components. In order
to obtain the pure spin composition of these states, Eqs. (5.93) needs to be inserted into
Eqs. (5.94). This results in

|𝑃 ⟩ = 1√
6

𝜙𝑠[𝑖𝜙𝑥𝑦( |↑𝑒↓ℎ⟩ + |↓𝑒↑ℎ⟩⏟⏟⏟⏟⏟⏟⏟
√

2|𝑇0⟩

) − (𝜙𝑧𝑥 + 𝑖𝜙𝑦𝑧) |↑𝑒↑ℎ⟩⏟
|𝑇+1⟩

−(𝜙𝑧𝑥 − 𝑖𝜙𝑦𝑧) |↓𝑒↓ℎ⟩⏟
|𝑇−1⟩

], (5.95)

|𝑂𝑥𝑦⟩ = 1√
6

𝜙𝑠[−𝜙𝑥𝑦( |↑𝑒↓ℎ⟩ − |↓𝑒↑ℎ⟩⏟⏟⏟⏟⏟⏟⏟
√

2|𝑆⟩

) − (𝜙𝑦𝑧 − 𝑖𝜙𝑧𝑥) |↑𝑒↑ℎ⟩⏟
|𝑇+1⟩

−(𝜙𝑦𝑧 + 𝑖𝜙𝑧𝑥) |↓𝑒↓ℎ⟩⏟
|𝑇−1⟩

],

|𝑂𝑦𝑧⟩ = 1√
6

𝜙𝑠[−𝜙𝑦𝑧( |↑𝑒↓ℎ⟩ − |↓𝑒↑ℎ⟩⏟⏟⏟⏟⏟⏟⏟
√

2|𝑆⟩

) + 𝑖𝜙𝑧𝑥( |↑𝑒↓ℎ⟩ + |↓𝑒↑ℎ⟩⏟⏟⏟⏟⏟⏟⏟
√

2|𝑇0⟩

) + 𝜙𝑥𝑦( |↑𝑒↑ℎ⟩⏟
|𝑇+1⟩

+ |↓𝑒↓ℎ⟩⏟
|𝑇−1⟩

)],

|𝑂𝑧𝑥⟩ = 1√
6

𝜙𝑠[−𝜙𝑧𝑥( |↑𝑒↓ℎ⟩ − |↓𝑒↑ℎ⟩⏟⏟⏟⏟⏟⏟⏟
√

2|𝑆⟩

) − 𝑖𝜙𝑦𝑧( |↑𝑒↓ℎ⟩ + |↓𝑒↑ℎ⟩⏟⏟⏟⏟⏟⏟⏟
√

2|𝑇0⟩

) − 𝑖𝜙𝑥𝑦( |↑𝑒↑ℎ⟩⏟
|𝑇+1⟩

− |↓𝑒↓ℎ⟩⏟
|𝑇−1⟩

)].

|𝑆⟩ denotes the spin-singlet state and |𝑇0⟩, |𝑇+1⟩ and |𝑇−1⟩ denote the three spin-triplet
states. From these equations, it becomes evident, that the paraexciton is composed purely
of spin-triplet states and that all three orthoexciton components are mixtures of spin-singlet
and spin-triplet states, as indicated by the under brackets.

The light field cannot affect the spin part of the exciton function and is therefore not
able to change the spin. As a spin-triplet state has a total spin of 𝑆 = 𝑠𝑒 + 𝑠ℎ = 1, it would
require a spin flip, which is not possible due to the selection rule for an optical transition
of 𝛥𝑆 = 0 [Kli12].

The consequences on the energy of spin-singlet and -triplet states are described by the
exchange-interaction Hamiltonian

𝐻exch =
̄𝐽0

2
(1 − 𝑆2)𝑉uc𝛿(𝑟) (5.96)

with the exchange interaction strength ̄𝐽0 related to the exchange integral, the probability
density 𝛿(𝑟) of the electron and hole at 𝑟 = 0 and the volume of the unit cell 𝑉uc. Spin-
singlet states (𝑆 = 0) are therefore energetically lifted by the exchange energy 𝜀 in contrast
to spin-triplet states (𝑆 = 1), which are not affected by the exchange interaction.

A visual way to picture it would be, that the fermionic function as the product of the
spin part and the spatial part needs to be antisymmetric. As the spin part of spin-triplet
states is symmetric with even parity, the spatial part needs therefore to be antisymmetric
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Chapter 5 SHG of paraexcitons activated by a magnetic field

with a vanishing overlap of the electron and hole and therefore a vanishing exchange energy.
A spin-singlet state has an antisymmetric spin part and a symmetric spatial part, which
implies, that the overlap of the electron and hole charge distributions gives a non-zero
contribution leading to the lifting of this state by the exchange energy 𝜀.

We want to address here the occasional misunderstanding of why the paraexciton is called
a triplet exciton, although it is a single state and does not split in a magnetic field. On the
other hand, the orthoexciton with its optically active singlet part splits into three states in
a magnetic field. The singlet-triplet terminology referring to the optical activity and the
exchange interaction is based on the spin composition of the exciton.

But under the influence of an external magnetic field, the 1𝑆 exciton components form
the four eigenstates [Far+20c]

|𝑃 ⟩ = 1√
2

(|↑𝑒↓𝐻⟩ − |↓𝑒↑𝐻⟩),

|𝑂𝑀=0⟩ = |𝑂𝑥𝑦⟩ = − 1√
2

(|↑𝑒↓𝐻⟩ + |↓𝑒↑𝐻⟩),

|𝑂𝑀=+1⟩ = 1√
2

(|𝑂𝑧𝑥⟩ − 𝑖 |𝑂𝑦𝑧⟩) = |↑𝑒↑𝐻⟩ ,

|𝑂𝑀=−1⟩ = 1√
2

(|𝑂𝑧𝑥⟩ + 𝑖 |𝑂𝑦𝑧⟩) = |↓𝑒↓𝐻⟩ , (5.97)

which are characterized by the magnetic quantum number 𝑀. The multiplicity of the state
in a magnetic field is therefore determined not in the spin basis but in the total angular
momentum basis including the orbital momentum of the band states.

The mixing behavior of the four eigenstates in a magnetic field is described by the matrix
[Far+20a]

𝐻B(𝑎, 𝑏, 𝐵) =
⎛⎜⎜⎜⎜⎜
⎝

𝐸1𝑆𝑝
−𝑖𝑎𝐵 0 0

𝑖𝑎𝐵 𝐸1𝑆𝑝
+ 𝜀 0 0

0 0 𝐸1𝑆𝑝
+ 𝜀 − 𝑏𝐵 0

0 0 0 𝐸1𝑆𝑝
+ 𝜀 + 𝑏𝐵

⎞⎟⎟⎟⎟⎟
⎠

. (5.98)

in the basis of the eigenstates {|𝑃 ⟩ , |𝑂𝑀=0⟩ , |𝑂𝑀=−1⟩ , |𝑂𝑀=+1⟩} from Eq. (5.97). 𝐸1𝑆𝑝

is the zero-field energy of the paraexciton, 𝜀 the exchange energy, 𝑎 = 𝜇𝐵(𝑔𝑐 − 𝑔𝑣)/2 the
mixing parameter between the 𝑀 = 0 ortho- and paraexciton with the Bohr magneton 𝜇𝐵
and the 𝑔 value 𝑔𝑐 of the CB and 𝑔𝑣 of the VB and 𝑏 = 𝜇𝐵(𝑔𝑐 +𝑔𝑣)/2 the Zeeman parameter
of the 𝑀 = ±1 eigenstates.

Diagonalization of the matrix yields the eigenenergies

𝐸𝑝(𝐵) = 𝐸1𝑆𝑝
+ 1

2
(𝜀 − √𝜀2 + 4𝑎2𝐵2) ≈ 𝐸1𝑆𝑝

− 𝑎2𝐵2

𝜀
, (5.99)

𝐸𝑜,0(𝐵) = 𝐸1𝑆𝑝
+ 1

2
(𝜀 + √𝜀2 + 4𝑎2𝐵2) ≈ 𝐸1𝑆𝑝

+ 𝜀 + 𝑎2𝐵2

𝜀
, (5.100)

𝐸𝑜,±1(𝐵) = 𝐸1𝑆𝑝
± 𝑏𝐵. (5.101)

of the four states, which are plotted in Fig. 5.1 using the experimentally derived parameters
from Sec. 5.2. The 𝑀 = ±1 states split linearly apart and the 𝑀 = 0 ortho- and paraexciton
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5.2 Magneto-optical spectroscopy

are quadratically repelled. In principle, the 𝑘2 interaction and strain effects need to be
taken into consideration, as demonstrated by Mund et al. in Ref. [Mun+19]. As these
influences are only in the magnitude of a few µeV, our spectrometer can hardly resolve
them. Additionally, their influence is dominated by the magnetic-field-induced shifts far
below 0.5 T and can therefore be neglected for our experiments.

Figure 5.1 (a) Calculated eigenenergies of the four 1𝑆 exciton eigenstates in a magnetic
field in Voigt configuration according to Eqs. (5.99), (5.100) and (5.101). (b) Calculated
eigenenergies of the 1𝑆 orthoexciton eigenstates at magnetic fields below 10 mT including
𝑘2 splitting at zero field [Das+04; Mun+19; Sch+16b] for k along the [111] crystal axis.

5.2 Magneto-optical spectroscopy

For the experiments, we have used the Spex spectrometer with a resolution of 10 µeV for
spectral measurements and the Acton spectrometer for polarization and magnetic field-
dependent intensity measurements. Deviating information will be specified in the figure
captions. For the experiments on the 1𝑆 paraexciton, the ps laser was used without scan-
ning, as it has a higher spectral density and is broad enough to spectrally cover the orthoex-
citon components at 10 T but is narrow enough to suppress the orthoexciton excitation while
exciting the paraexciton, leading to less 𝛤 −

3 phonon emission of the orthoexciton which is
in the same spectral region as the paraexciton. For the measurements of the Rydberg se-
ries of paraexcitons, the fs laser was used, as it is spectrally broad enough to cover all the
Rydberg states. All experiments are performed at 𝑇 = 1.4 K and in magnetic fields of up
to 𝐵 = 10 T in Voigt configuration. More detailed specifications on the laser system, the
spectrometer and other components of the setup are discussed in Sec. 3.1. A variety of
samples have been chosen specifically for different mechanisms and dependencies and are
specified for each measurement in the figure caption.

The spectrum at 𝐵 = 10 T of the four 1𝑆 exciton states is measured with a high resolution
of 10 µeV and shown in Fig. 5.2(a). As all lines appear to have the same line width, it
suggests that they are physically even narrower. The line width of the paraexciton was
experimentally demonstrated to be about 80 µeV [Bra+07] while the orthoexciton states
have an FWHM of a few µeV [Das+04]. The orthoexciton is split into three states labeled
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Chapter 5 SHG of paraexcitons activated by a magnetic field

Figure 5.2 (a) SHG spectrum of the para- and three orthoexcitons at a magnetic field of
10 T in Voigt configuration in the H24 sample (see Tab. 3.1). The spectrum is measured
with the Spec spectrometer in second order with a resolution of 10 µeV. SHG of the
𝑀 = ±1 states appears at a linear polarization angle setting of 𝜓/𝜑 = 0∘/90∘ and that
of the paraexciton and 𝑀 = 0 orthoexciton appears at 𝜓/𝜑 = 45∘/0∘. The weak signals
of the paraexciton are multiplied by a factor of 300. Note the axis break. (b) Resonance
energies of all four 1𝑆 exciton states for magnetic fields up to 10 T in steps of 0.5 T.
Symbols represent experimentally obtained data and the solid lines are fits according to
Eqs. (5.99), (5.100) and (5.101). The inset shows a calculation including 𝑘2 splitting
[Das+04] at low magnetic fields.

by their magnetic quantum number 𝑀. The |𝑀| = 1 orthoexciton states are split by about
1 meV. The 𝑀 = 0 state is shifted to slightly higher energies closer to the 𝑀 = 1 state, due
to the repulsion with the paraexciton. The paraexciton is about 12 meV lower in energy
and its SHG signals are weaker by a factor of about 300. The polarization settings are
chosen, so that at 𝜓/𝜑 = 45∘/0∘ only the 𝑀 = 0 components have a contribution by the
ED-ED excitation SHG mechanism and at 𝜓/𝜑 = 0∘/90∘ only the |𝑀| = 1 components are
detectable. The complete polarization dependencies will be derived in Sec. 5.3.

For the investigation of how the exciton states split and shift with an increasing magnetic
field, the SHG spectrum is measured for magnetic fields up to 10 T in steps of 0.5 T. Each
exciton state in each spectrum is fitted with a Gaussian and the center wavelength is taken
as the energy for each state and magnetic field and the results are shown as color symbols
in Fig. 5.2(b). The data for the orthoexciton at 0 T are missing, as the three states can
not be resolved. The data for the paraexciton below 1.5 T are missing, because the signals
are too weak. The |𝑀| = 1 states split linearly apart. The 𝑀 = 0 states repel each other
quadratically due to mixing by the magnetic field. The experimental data are fitted with
the eigenvalues [Eqs. (5.99), (5.100) and (5.101)] of matrix [Eq. (5.98)]. The fit parameters
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Table 5.1 Experimental results of the exchange splitting energy 𝜀 and the 𝑔 factors of
the VB and CB obtained in this work and previous studies.

source 𝜀 (meV) 𝑔𝑐 𝑔𝑣 |𝑔𝑐 + 𝑔𝑣| |𝑔𝑐 − 𝑔𝑣|
this work 12.120 2.38 −0.72 1.66 3.1
[Kuw+77] 12 2.68 −1.02 1.66 3.70
[Frö+82] - 3.17 −1.53 1.64 4.70
[Hög+05] 12.117 - - - 3.26
[Cer+64] - - - 1.7 -

are summarized in the following:

𝑎 = 91 ± 3 µeV
T

, (5.102)

|𝑔𝑐 − 𝑔𝑣| = 3.1 ± 0.1, (5.103)

𝑏 = 48.1 ± 0.3 µeV
T

, (5.104)

|𝑔𝑐 + 𝑔𝑣| = 1.66 ± 0.01, (5.105)
𝜀 = 12.120 meV, (5.106)

𝑓𝑝(𝐵) = (5.6 ± 0.4) × 10−5𝐵2 ⋅ 𝑓𝑜. (5.107)

From these one can derive the 𝑔 factors

𝑔𝑐 = 2.38 ± 0.08, (5.108)
𝑔𝑣 = −0.72 ± 0.03. (5.109)

of the valence- and conduction band. The fit parameter for the energy splitting and the 𝑔
factors are compared to the results of previous publications in Table 5.1

5.3 Simulation and measurements of polarization dependencies

The 1𝑆 paraexciton is a pure spin-triplet state with 𝛤 +
2 symmetry, as seen in Eq. (5.95),

which is optically inactive in single-photon processes and ED-ED forbidden in two-photon
processes. However, the paraexciton can be excited by an admixture from the optically
active 𝛤 +

5 orthoexciton by strain [San+11] or a magnetic field [Bra+07]. The 𝛤 +
5 admix-

ture is then optically addressed by an ED-ED two-photon excitation and an EQ emission.
An alternative but a much weaker way for SHG of the paraexciton is to excite the 𝛤 +

2
paraexciton directly, by replacing both ED photons with even parity EQ and MD photons.
Excitation of excitons including MD transitions have been demonstrated for GaAs [Mic+96]
and alkali halides [Frö+94]. However, an orthoexciton admixture is again needed for a 𝛤 +

5
EQ emission for the SHG process.

For the derivation of the polarization dependencies we use the matrix
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Chapter 5 SHG of paraexcitons activated by a magnetic field

M𝐵(𝑎, 𝑏, B) =
⎛⎜⎜⎜⎜
⎝

−𝜀 𝑖𝑎𝐵𝑥 𝑖𝑎𝐵𝑦 𝑖𝑎𝐵𝑧
−𝑖𝑎𝐵𝑥 0 −𝑖𝑏𝐵𝑧 𝑖𝑏𝐵𝑦
−𝑖𝑎𝐵𝑦 𝑖𝑏𝐵𝑧 0 −𝑖𝑏𝐵𝑥
−𝑖𝑎𝐵𝑧 −𝑖𝑏𝐵𝑦 𝑖𝑏𝐵𝑥 0

⎞⎟⎟⎟⎟
⎠

, (5.110)

which describes the four states of the 1𝑆 exciton system in a {𝛤 +
2 , 𝛤 +

5,𝑦𝑧, 𝛤 +
5,𝑥𝑧, 𝛤 +

5,𝑥𝑦} basis.
Its eigenvectors |𝛬𝑖(𝐵)⟩ with 𝑖 = 0, 1, 2, 3 represent the paraexciton and the 𝑀 = −1,
𝑀 = 0 and 𝑀 = +1 eigenstates of the orthoexciton, respectively.

Figure 5.3 Schematics of SHG mechanisms for the 1𝑆 exciton states in a magnetic field.
(a) ED-ED excitation of the 𝛤 +

5 component of the 1𝑆 eigenstate |𝛬𝑖(𝐵)⟩ followed by an
EQ emission of the same state. (b) Direct excitation of the 𝛤 +

2 component of the 1𝑆
paraexciton |𝛬0(0)⟩ by an EQ-MD transition followed by an EQ emission of its magnetic-
field admixed 𝛤 +

5 component.

The described SHG process for all four states is schematically shown in Fig. 5.3(a). The
eigenvector of the state of interest is multiplied by the ED-ED excitation vector, which has
already been derived in Eq. (4.64), and also to the EQ emission vector derived in Eq. (4.60).
Note, that the vectors are extended to the same basis as the matrix in Eq. (5.110) by
an additional 𝛤 +

2 component in the top line and filling it with a 0. The polarization-
dependent TPA intensity is calculated by squaring the absolute value of the expression for
the excitation channel, which results in

𝐼TPA
DD,𝑖(k, 𝜓, 𝐵) = 𝐼5+

DD,𝑖(k, 𝜓, 𝐵) ∝ |𝛬𝑖(𝐵) ⋅ 𝑂5+
DD(k, 𝜓)|2. (5.111)

For the SHG intensity, the emission channel has to be multiplied by the excitation channel
before squaring the absolute value. Thus we get:

𝐼SHG
DD,𝑖(k, 𝜓, 𝜑, 𝐵) = 𝐼5+

DD/Q,𝑖(k, 𝜓, 𝜑, 𝐵)

∝ |[𝛬𝑖(𝐵) ⋅ 𝑂5+
DD(k, 𝜓)][𝛬𝑖(𝐵) ⋅ 𝑂5+

Q (k, 𝜑)]|2. (5.112)

The scheme for the SHG process with direct EQ-MD excitation of the paraexciton is
shown in Fig. 5.3(b). Using the coupling coefficient table A.8 of Ref. [Kos+63] for 𝛤 +

4 ⊗𝛤 +
5 →

𝛤 +
2 the EQ-MD two-photon excitation vector of the paraexciton reads

𝑂2+
QMD(k, 𝜓) = 𝑂5+

Q (k, 𝜓) ⋅ 𝑂4+
MD(k, 𝜓)/

√
3. (5.113)

68



5.3 Simulation and measurements of polarization dependencies

Figure 5.4 Simulated 2D polarization diagrams of the 𝑀 = 1, 𝑀 = 0 and 𝑀 = −1 ortho-
and the paraexciton in a magnetic field in Voigt geometry for various crystal orientations
for the ED-ED excitation SHG mechanism according to Eq. (5.112). In the last line the
polarization diagrams are shown for the EQ-MD excitation SHG mechanism according to
Eq. (5.114).

The excitation vector is multiplied with the paraexciton eigenvector |𝛬0(0)⟩ = {1, 0, 0, 0} at
𝐵 = 0, as it is excited directly with no need of the magnetic field admixture of the orthoex-
citon. The emission process has the same form, as in the ED-ED process. Consequently,
the polarization-dependent SHG intensity for the weak process reads

𝐼SHG
QMD,0(k, 𝜓, 𝜑, 𝐵) = 𝐼2+

QMD/Q,0(k, 𝜓, 𝜑, 𝐵)

∝ |[𝑂4+
QMD(k, 𝜓)][𝛬0(𝐵) ⋅ 𝑂5+

Q (k, 𝜑)]|2. (5.114)

The 2D polarization diagrams of the discussed processes are shown in Fig. 5.4 for the
Voigt and in Fig. 5.5 for the Faraday geometry for various crystal orientations. SHG of
the 𝑀 = ±1 components have the same polarization dependence for each individual crystal
orientation and are allowed in all crystal orientations in Voigt geometry but only for k along
[111] and [11 ̄2] in Faraday geometry. The 𝑀 = 0 ortho- and paraexcitons also show the
same polarization dependence for each individual crystal orientation but are only allowed
for k along [111] and k ∥ [11 ̄2] with B ∥ [ ̄110] in Voigt geometry, but only for k along [11 ̄2]
in Faraday geometry. The weak EQ-MD SHG process of the paraexciton is only allowed
for k along [001] and k ∥ [11 ̄2] with B ∥ [ ̄110] in Voigt geometry, but only for k along [11 ̄2]
in Faraday geometry.

For our experimental investigations of the ED-ED process we have chosen the H24 sample
(see Tab. 3.1) with k ∥ [111] and B ∥ [1 ̄10] in Voigt geometry, as all four eigenstates are
allowed in a magnetic field and show characteristic polarization dependencies. The TPA of
the ED-ED excitation process is measured in the H2b sample (see Tab. 3.1) oriented such,
that k ∥ [11 ̄2] with B ∥ [111] in Voigt geometry. For the weak signals of the EQ-MD process,
it is crucial to suppress the strong ED-ED process and to be able to distinguish the weak
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Chapter 5 SHG of paraexcitons activated by a magnetic field

Figure 5.5 Simulated 2D polarization diagrams of the 𝑀 = 1, 𝑀 = 0 and 𝑀 = −1
ortho- and the paraexciton in a magnetic field in Faraday geometry for various crystal
orientations for the ED-ED excitation SHG mechanism according to Eq. (5.112). In the
last line the polarization diagrams are shown for the EQ-MD excitation SHG mechanism
according to Eq. (5.114).

and the strong process by a specific choice of the polarization angle setting. Therefore we
have chosen the H98 sample (see Tab. 3.1) with k ∥ [001] with B ∥ [110] in Voigt geometry
for the experiments.

The polarization dependence of the two-photon excitation process has been measured at
𝐵 = 10 T, by monitoring the emission of the 𝛤 −

3 phonon for each 1𝑆 state. The polarization
dependencies are shown in Fig. 5.6(a) of the 𝑀 = 0 components, exhibiting a fourfold shape
with two intense and two less intense maxima. Note, that the paraexciton signals are about
two orders of magnitude smaller than the orthoexciton signals. Figure 5.6(b) shows the
TPA polarization dependencies of the |𝑀| = 1 components, having a twofold shape with
broader maxima than minima.

The ED-ED SHG polarization dependencies of all four states are measured according to
Sec. 3.5 at 𝐵 = 10 T. The experimental polarization diagrams are shown in Fig. 5.7(b). A
comparison with the simulations according to Eq. (5.112) in Fig. 5.7(a) indicates a good
agreement with theory and experiment. In Fig. 5.7(c) the 1D polarization diagrams are
shown for the black and red tuning lines of the contour plots. All four states have a
twofold symmetry along 𝜑, which is shifted by 90∘ comparing the 𝑀 = 0 and |𝑀| = 1
components. Along 𝜓 all states have a fourfold symmetry, however, the intensity of the
|𝑀| = 1 components has an additional constant background.

The polarization dependence of the three orthoexciton states is measured for four ad-
ditional crystal orientations for k along different crystal axis. The results are shown in
Fig. 5.8 and confirm the agreement between the experiment and simulation even more.

As mentioned before, for the measurement of the EQ-MD process the orientation of the
sample within the sample mounted and the cryostat, the polarization angles and a strain-
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Figure 5.6 ED-ED TPA polarization dependence of the 𝑀 = 0 orthoexciton and the
paraexciton in panel (a) and the 𝑀 = +1 and 𝑀 = −1 orthoexciton states in panel (b) in
a magnetic field in Voigt geometry for k along [11 ̄2] and B along [111] in the H2b sample,
see Tab. 3.1. Symbols represent the experimental data for the 𝛤 −

3 phonon intensity of the
corresponding state and the lines represent the simulation according to Eq. (5.111).

reduced position of the laser spot on the sample have to be set precisely so that contributions
from the strong ED-ED mechanism are suppressed. The measured polarization dependence
at 𝐵 = 10 T is shown in Fig. 5.9. As the signals are very weak, it was not realistic to
measure the full 2D diagram with the large integration times. Therefore only the tuning
lines for a fixed 𝜓 = 45∘ and 𝜑 = 180∘ are measured. The experimental data (symbols) are
in good agreement with the simulation (line) according to Eq. (5.114). The polarization
dependence has a fourfold cos(𝜓)2 shape along 𝜓 and a twofold sin (2𝜑)2 shape along 𝜑.
The TPA of the EQ-MD process of the paraexciton without an applied magnetic field could
not be detected via the monitoring of the 𝛤 −

3 phonon emission, as it is spectrally positioned
within the range of the strong impurity emission, which is induced by relaxation processes
of the strong three-photon ED processes above the violet bandgap.
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Chapter 5 SHG of paraexcitons activated by a magnetic field

Figure 5.7 (a) 2D polarization diagrams of the simulation of the ED-ED excitation SHG
process according to Eq. (5.112) and (b) experimental data of the 2D polarization diagrams
of the 𝑀 = 1, 𝑀 = 0 and 𝑀 = −1 ortho- and the paraexcitons in a magnetic field of
𝐵 = 10 T in Voigt geometry for k along [111] and B along [1 ̄10] in the H24 sample. (c)
Polarization-dependent SHG intensity along tuning lines marked in panels (a) and (b) by
the red and black lines. Symbols represent the experimental data and lines represent the
simulation.
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Figure 5.8 Experimental data of the 2D polarization diagrams of the 𝑀 = 1, 𝑀 = 0 and
𝑀 = −1 orthoexciton states in a magnetic field of 𝐵 = 10 T in Voigt geometry for k the
four different crystal axes [111], [11 ̄2], [1 ̄10] and [001] in the H2a, H2b, H45b and H45a
samples, respectively.
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Chapter 5 SHG of paraexcitons activated by a magnetic field

Figure 5.9 (a) 2D polarization diagrams of the simulation of the EQ-MD excitation SHG
process according to Eq. (5.114) for the paraexciton in a magnetic field Voigt geometry
for k along [001] and B along [110]. (b) Polarization-dependent intensity along the tuning
lines marked in panel (a) by the red and black lines. Symbols represent the experimental
data obtained in the H98 sample (see Tab. 3.1) and lines represent the simulation.

5.4 Magnetic-field dependent intensities

In Sec. 5.3, the polarization dependencies of three different optical processes addressing the
paraexciton in a magnetic field in Voigt geometry are group-theoretically derived and exper-
imentally demonstrated. In this section, we concentrate on the magnetic field-dependent
increase of the intensity for the same processes as an additional method to distinguish
between them.

As the magnetic field admixture of the ortho to the paraexciton represented by the
parameter ”𝑎” grows linearly with increasing magnetic field, the oscillator strength grows
quadratically. For the ED-ED TPA process the admixture is only needed once in the
excitation channel and therefore the intensity is expected to grow with a power of two. For
the ED-ED SHG process, the admixture is needed in the excitation and emission channel
leading to a magnetic field-dependent increase of the SHG intensity with the fourth power.
However, during the EQ-MD SHG process, the 𝛤 +

2 paraexciton is excited directly without
the need for an admixture, which is only required in the emission channel. Therefore the
SHG intensity will grow with the second power. Consequently, the two SHG mechanisms
can be experimentally distinguished by the magnetic field-dependent intensity increase.

The experimental data are plotted in Fig. 5.10. The colored symbols represent the ex-
perimentally obtained data of the ED-ED SHG in red, the ED-ED TPA in blue and the
EQ-MD SHG in green. The lines of the same color are the fits according to the power func-
tion 𝐼(𝐵, 𝑐, 𝑑) = 𝑐 ⋅𝐵𝑑 with the scaling factor 𝑐 and the power 𝑑. The black line visualizes a
𝐵4 and the gray line a 𝐵2 function for comparison as the experimental results deviate from
the expected power growth. The magnetic-field-dependent ED-ED SHG intensity grows
with a power of 3.71 ± 0.08 deviating only slightly from the expected power of 4 due to
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inhomogeneity of the strain on the sample, as the laser spot moves during the time of the
measurement over different sample spots due to temperature-dependent contraction of the
sample rod. This effect can be reduced by adjusting the laser on a more homogeneous
sample spot. The ED-ED TPA with a fitted growth power of 1.91 ± 0.04 does not deviate
by much from the expected quadratic growth, as the TPA process is not strongly influenced
by strain. The slight deviation might occur due to varying thickness or purity of the sample
region. For the power parameter of the EQ-MD SHG process, the fit result is 2.5 ± 0.2,
which might be due to a misalignment and therefore a contributing signal from the stronger
ED-ED SHG mechanism. Nevertheless, the comparison of the growth parameters of both
SHG processes shows a drastic difference and is therefore a good indication that the EQ-MD
mechanism is experimentally demonstrated.

Figure 5.10 Magnetic field dependent intensity of the three discussed optical processes of
the paraexciton in a double logarithmic diagram. Color symbols represent the experimental
data for the ED-ED excitation SHG process (red), the ED-ED excitation TPA (blue) and
the EQ-MD excitation SHG process (green) in the H24, H2b and H98 samples, respectively.
The lines represent the fit with a power function according to 𝐼(𝐵, 𝑐, 𝑑) = 𝑐 ⋅ 𝐵𝑑. The fit
results for the power parameter 𝑑 of the power function are 3.71 ± 0.08 for the ED-ED
SHG, 1.91 ± 0.04 for the ED-ED TPA and 2.5 ± 0.2 for the EQ-MD SHG. The black line
visualizes a 𝐵4 and the gray line a 𝐵2 function for comparison.

5.5 Rydberg series of paraexcitons

In the case of the 1𝑆 exciton, it is very clear to identify the paraexciton, as the ground
state multiplet has only four states and is not interfering with any other spectral lines in
this region. However, as already seen in Fig. 4.11, the spectral region of yellow Rydberg
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excitons exhibits a significantly higher density of different exciton states. It is more difficult
to find the weak features of Rydberg paraexcitons, as other more intense orthoexcitons
dominate the SHG spectrum and might shift into higher adjacent multiplets. Therefore we
need to establish the following criteria, by which we recognize and identify the Rydberg
paraexcitons. i) 𝑆 paraexcitons are single states of 𝛤 +

2 symmetry, which do not split into
multiple states with increasing magnetic field. ii) Due to Hund’s rules [Dem10] and the
exchange interaction, which only applies to the orthoexcitons with spin-singlet components,
the paraexciton is expected to be energetically located below the orthoexciton. iii) The
magnetic-field-induced admixture from the optically active orthoexciton to the paraexciton
leads to a nonlinear increase in SHG intensity and iv) to a quadratic repulsion with the
orthoexciton to lower energies with increasing magnetic field.

For better recognition, we will plot the second derivatives of the SHG spectra in depen-
dence on the magnetic field in a contour plot. As an example, we show the magnetic-field-
dependent SHG spectra in the contour plot in Fig. 5.11. The four mentioned criteria above
are easily recognized in this contour plot. The paraexciton emerges energetically below the
orthoexciton and exhibits a nonlinear SHG intensity increase, a quadratic repulsion to lower
energies and does not split into multiple states.

Figure 5.11 Second derivatives of SHG spectra in dependence of a magnetic field of 0 to
10 T in Voigt configuration in the spectral region of the 1𝑆 para- and orthoexciton states
in the H24 sample (see Tab. 3.1) with k along the [111] and the magnetic field B along
the [1 ̄10] crystal axis. For the measurement of the paraexciton, the linear polarization
angles are set to 𝜓/𝜑 = 45∘/0∘. In order to detect all three orthoexciton states at once,
the polarization angles are set to 𝜓/𝜑 = 45∘/60∘.

5.5.1 3𝑆 to 6𝑆 paraexcitons

Now we turn to the experimental results of the Rydberg 𝑆 paraexcitons in the multiplets
from 𝑛 = 3 to 6. The double photon energy of the femtosecond laser is set to 2.164 eV, as
shown in Fig. 4.12, and the SHG spectra are measured for magnetic fields between 0 and
7 T in steps of 0.25 T as described in Sec. 3.3. The second derivatives of the magnetic-field-
dependent SHG spectra are shown in the contour plot of Fig. 5.12(a). At 𝐵 = 3 T a single
line emerges about 1.5 meV below the 3𝑆 orthoexciton, which exhibits a nonlinear increase in
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intensity and a repulsion with the orthoexciton with increasing magnetic field. Fulfilling the
four mentioned criteria, it is therefore identified as the 3𝑆 paraexciton. The same properties
apply to the line emerging at 𝐵 = 2 T about 0.5 meV below the 4𝑆 orthoexciton and it is
consequently labeled the 4𝑆 paraexciton. Checking the same criteria for the 𝑛 = 5 multiplet,
the 5𝑆 paraexciton is barely visible as a weak shoulder in this experimental configuration.
Therefore we have chosen a different configuration, of which the experimental results from
0 to 10 T in steps of 0.2 T are shown in Fig. 5.12(b). The 3𝑆 and 4𝑆 paraexcitons are also
recognizable in this contour plot and assigned accordingly. Additionally, at about 𝐵 = 1 T
a single line appears below the 5𝑆 orthoexciton fulfilling the criteria and is therefore labeled
as the 5𝑆 paraexciton. At about 𝐵 = 5 T it is already covered by the 4𝐷 exciton shifting
into its spectral range. By zooming into the blue box covering the 𝑛 = 6 multiplet, which
is magnified in Fig. 5.12(c), the fourth derivative of the SHG spectra is shown to highlight
the very weak feature of the 6𝑆 paraexciton emerging at about 𝐵 = 1 T but already being
covered by the 5𝐷 exciton at 2 T. No clear experimental demonstrations could be achieved
up to now of even higher 𝑛 paraexcitons.

Figure 5.12 Second derivatives of SHG spectra in dependence of a magnetic field in
Voigt configuration in the spectral region of the yellow Rydberg exciton states from the
𝑛 = 3 multiplet to the band gap. The orthoexcitons are labeled with an index ”o” and
the paraexcitons with ”p”. (a) Experimental data between 0 and 7 T in steps of 0.25 T for
k ∥ [111] and B ∥ [11 ̄2] in the H2a sample (see Tab. 3.1). The linear polarization angles
are set to 𝜓/𝜑 = 0∘/0∘. (b) Experimental data between 0 and 10 T in steps of 0.2 T for
k ∥ [1 ̄10] and B ∥ [110] in the H100 sample (see Tab. 3.1). The linear polarization angles
are set to 𝜓/𝜑 = 0∘/90∘. (c) Fourth derivative of the SHG spectra in the magnified region
of the 𝑛 = 6 multiplet marked by the blue box in panel (b).
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5.5.2 Inversion of 2𝑆 para-ortho energetic order and green 1𝑆 paraexciton
In order to find the 2𝑆 paraexciton we choose the same experimental configuration as in
Fig. 5.12(a), but set the doubled central photon energy of the femtosecond laser to the
energy of the 2𝑆 orthoexciton and measure the SHG spectra for magnetic fields between
0 and 10 T in steps of 0.25 T. The experimental results are shown in Fig. 5.13(a). At
about 𝐵 = 3 T a single line emerges with a nonlinear SHG intensity increase exhibiting a
repulsion with the 2𝑆 orthoexciton, which has to be identified as the 2𝑆 paraexciton. The
striking difference to other multiplets is, that it violates criterion ii), as it is energetically
located above its corresponding orthoexciton. Remarkably, this reversed energetic order
has been predicted by the calculations of Schweiner et al. in Ref. [Sch+17b], in which
they diagonalized the Hamiltonian of the yellow exciton series with all angular quantum
numbers up to the 𝑛 = 5 multiplet, although they did not discuss the ortho-para inversion
for 𝑛 = 2. The yellow exciton series is highly influenced by the green series due to the spin-
orbit interaction between the two highest VBs. Therefore the green and yellow excitons
are mixed, especially in the case of the adjacent 1𝑆 green and 2𝑆 yellow excitons. In
Ref. [Sch+17b] the green part for each exciton state is even quantified as a percentage,
which is also shown in Tab. 5.2. With this information, we can interpret the reason for the
ortho-para inversion qualitatively with the sketched energy scheme in Fig. 5.13(b). Shown
are the 2𝑆 and 3𝑆 excitons of the yellow and the 1𝑆 exciton of the green series. In the
second column, the orthoexcitons are lifted up in energy due to the exchange interaction.
The paraexcitons are basically not affected by the exchange interaction and remain therefore
at the initial energy level. The crucial point is, that the exchange energy of the green 1𝑆
state is so large, that its orthoexciton is lifted up even above the yellow 2𝑆 orthoexciton.
The last row represents the on-switch of the spin-orbit interaction leading to a mixing of
yellow and green excitons and therefore to a repulsion between the green 1𝑆 exciton and
the yellow excitons, which is stronger, the larger the mixing percentage of the other series.

The green part of the yellow 3𝑆 exciton is not negligible with 4.49% [Ref. [Sch+17b]]
so it gets pushed slightly to higher energies. This effect becomes smaller for increasing 𝑛
excitons, as the green part of the 4𝑆 is 1.53% and that of the 5𝑆 exciton is 0.81%. The
green 1𝑆 exciton exhibits a strong mixing with yellow Rydberg excitons with its yellow part
of 63.12%. The yellow 2𝑆 exciton has a large green part of 10.88%. It repels from the
higher-lying 1𝑆 green exciton and gets strongly pushed even below its paraexciton, which
is not largely influenced by the green-yellow mixing having a small green part of 1.43%.
The ortho-para inversion is a rare case in semiconductor physics and has so far only been
reported in ceasium lead halide perovskites due to the Rashba effect in Ref. [Bec+18].
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Figure 5.13 (a) Second derivatives of SHG spectra in dependence of a magnetic field
between 0 and 10 T in steps of 0.25 T in Voigt configuration in the spectral region of the
yellow 2𝑆 and 3𝑆 excitons for k ∥ [111] and B ∥ [11 ̄2] in the H2a sample (see Tab. 3.1).
The linear polarization angles are set to 𝜓/𝜑 = 0∘/0∘. The orthoexcitons are labeled with
an index ”o” and the paraexcitons with ”p”. (b) Energy level scheme including the 2𝑆
and 3𝑆 excitons of the yellow and the 1𝑆 exciton of the green series (first column). In the
second column, the exchange interaction is switched on leading to the orthoexcitons being
elevated to higher energies. Note, that the 1𝑆 green orthoexciton is elevated above the
2𝑆 orthoexciton, due to the large exchange energy. In the third column, the green-yellow
mixing is activated leading to a repulsion of the 1𝑆 green exciton with both the 2𝑆 and
3𝑆 excitons. Note, that the 2𝑆 ortho exciton is pushed below its paraexciton leading to
an unexpected inversion of the ortho-para energetic order. Red circles indicate optically
active orthoexcitons and black circles mark the optically inactive paraexcitons. The yellow
and green coloring of the energy level bars indicates the strength of green-yellow mixing,
which is listed in Tab. 5.2 and taken from Ref. [Sch+17b].

As Ref. [Sch+17b] predicted the ortho-para inversion correctly and also provides infor-
mation about the energy of the green 1𝑆 paraexciton, we perform the experiment for its
detection. According to Ref. [Sch+17b], the green 1𝑆 paraexciton lies 30.8 meV below
its orthoexciton, which is significantly larger than the exchange splitting energy of about
12 meV of the yellow 1𝑆 exciton. We applied a magnetic field of 10 T in Voigt configuration
and directed the laser along the [1 ̄10] crystal axis with a doubled central photon energy
of the expected paraexciton and measured the SHG spectrum shown in Fig. 5.14. A weak
double-peak feature is detected for integration times of 30 minutes about 29 meV below
the 1𝑆 green orthoexciton, which we assign to the 1𝑆 green paraexciton. Unlike the yellow
𝑆 paraexcitons with a single 𝛤 +

2 state, the green 𝑆 paraexcitons have multiple states with
𝛤 +

3 (2) ⊕ 𝛤 +
4 (3) symmetry, indicated by the double peak structure.
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Figure 5.14 SHG spectrum in the energy range between the green 1𝑆 paraexciton and the
yellow 𝑛 = 3 multiplet at 𝐵 = 10 T in Voigt configuration for k ∥ [1 ̄10] and B ∥ [001] in the
H13 sample (see Tab. 3.1). The linear polarization angles are set to 𝜓/𝜑 = 45∘/0∘. The 1𝑆
green paraexciton appears as a weak doublet peak about 29 meV below its orthoexciton.
Note the logarithmic SHG intensity scale.

In conclusion, we have detected the Rydberg series of yellow 𝑆 paraexcitons up to a
quantum number of 𝑛 = 6 and the green 1𝑆 paraexciton using SHG spectroscopy in a
magnetic field in Voigt configuration of up to 10 T.

5.5.3 𝑛-dependent energy splitting

Now we take a look at the splitting energy 𝛥𝑛 of the yellow 𝑆 excitons as a function of the
principle quantum number 𝑛. The ortho- and paraexciton lines in the second derivatives of
the SHG spectra are fitted by Gaussians for each magnetic field and the central energy of
each Gaussian is taken as the magnetic-field-dependent energy for each line. The magnetic
field shift of each line is fitted by a quadratic function to extrapolate to the zero-field en-
ergy. The experimental results of the zero-field energy splittings of ortho- and paraexcitons
are plotted as open squares in Fig. 5.15 in dependence of 𝑛. Note the axis break in the
energy axis. The uncertainty of the parabolic fit of the magnetic-field-dependent energy is
represented by the error bars. The 𝑛 dependent exchange splitting in the hydrogen model
is proportional to the square of the wave function for zero distance between both charged
particles |𝛹𝑋(0)|2 and scales with 𝑛−3. We apply this fit to our experimental results but
exclude the 1𝑆 exciton splitting, as it is additionally affected by the central cell correction,
see Ref. [Sch+17b]. We also exclude the 2𝑆 exciton splitting, as it is majorly affected by
the yellow-green mixing resulting in its reversed energetic ortho-para order assigned with
a negative splitting energy. We get a reasonable fit for 𝑛 ≥ 3 as shown by the red line,
although the energy splitting is also highly influenced by the green-yellow mixing due to the
spin-orbit interaction between the involved VBs, resulting in a repulsion of the yellow states
with the green 1𝑆 exciton. A detailed theoretical follow-up investigation is done by Rommel
et al. in Ref. [Rom+21], in which they could isolate the effects of different types of inter-
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actions and calculate the 𝑛 scaling of the energy splitting for different cases, e.g. without
the green-yellow mixing. The full circles in Fig. 5.15 represent the theoretically calculated
ortho-para energy splittings taken from Ref. [Sch+17b], which predate our experimental
investigations and show a remarkable agreement with our results. The experimentally ob-
tained results for the resonance energies and the ortho-para splitting energies are listed in
Tab. 5.2 and compared to the corresponding calculated values from Ref. 5.2.

Figure 5.15 Energy splitting between ortho- and paraexcitons as a function of the prin-
cipal quantum number 𝑛 for yellow 𝑆 excitons up to 𝑛 = 6. The squares represent the
experimental data evaluated from Figs. 5.11, 5.12 and 5.13. The full blue circles are the
theoretically calculated splitting energies taken from Ref. [Sch+17b]. The red line is a
𝐸exch. = 𝑎 ⋅ 𝑛−3 fit to the experimental data starting from 𝑛 = 3. Note the break of the
exchange energy axis.

5.6 Conclusion

In this chapter, we have presented a study on SHG of paraexcitons in Cu2O under the
influence of a magnetic field in Voigt configuration. From magnetic field dependent SHG
spectra of the 1𝑆 paraexciton and 𝑀 = 0 and 𝑀 = ±1 orthoexciton states, which are
measured with resolutions as low as 10 µeV, the 𝑔 factors of the highest VB and lowest CB
are derived and the exchange energy is determined. The results are compared to previous
publications.

The SHG mechanisms of the magnetic-field coupled 1𝑆 para- and orthoexciton states,
including SHG by ED-ED and EQ-MD excitation, are experimentally demonstrated by
deriving the SHG polarization rules, simulating the polarization dependence diagrams for
various crystal orientations and comparing the simulated results to experimentally obtained
data for chosen experimental geometries.

The SHG mechanism by EQ-MD excitation is demonstrated by its quadratic dependence
of the SHG intensity on the magnetic field, which differs from the ED-ED excitation SHG,
which increases with the fourth power.

The mentioned properties are tested on the ground state exciton and applied for the
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Table 5.2 Experimental results for the resonance energies of yellow series ortho- and
paraexcitons and their energy splitting 𝛥𝑛 as a function of the principle quantum number
up to 𝑛 = 6. The analogous theoretical results from Ref. [Sch+17b] are shown for com-
parison up to 𝑛 = 5. Additionally, the green content (GC) is given in the third column.

state symmetry GC (%) 𝐸theo (eV) 𝛥𝑛,theo (meV) 𝐸exp (eV) 𝛥𝑛,exp (meV)
1𝑆𝑦,𝑝 𝛤 +

2 5.49 2.0200 12 2.02065 12.12
1𝑆𝑦,𝑜 𝛤 +

5 7.22 2.0320 2.03277
1𝑆𝑔,𝑝 𝛤 +

3,4 71.62 2.1245 30.8 2.1241 30.3
2.1262 28.2

1𝑆𝑔,𝑜 𝛤 +
5 36.88 2.1553 2.1544

2𝑆𝑦,𝑝 𝛤 +
2 1.43 2.1412 -1.3 2.13898 -1.27

2𝑆𝑦,𝑜 𝛤 +
5 10.88 2.1399 2.13771

3𝑆𝑦,𝑝 𝛤 +
2 0.48 2.15967 1.13 2.15906 1.39

3𝑆𝑦,𝑜 𝛤 +
5 4.49 2.16080 2.16045

4𝑆𝑦,𝑝 𝛤 +
2 0.21 2.16547 0.37 2.16503 0.52

4𝑆𝑦,𝑜 𝛤 +
5 1.53 2.16584 2.16555

5𝑆𝑦,𝑝 𝛤 +
2 0.10 2.16798 0.18 2.16766 0.28

5𝑆𝑦,𝑜 𝛤 +
5 0.81 2.16816 2.16794

6𝑆𝑦,𝑝 𝛤 +
2 - - - 2.16919 0.16

6𝑆𝑦,𝑜 𝛤 +
5 - - 2.16935

demonstration of the Rydberg series of paraexcitons. We have found the yellow 𝑆 paraexci-
ton states up to a quantum number of 𝑛 = 6 and the green 1𝑆 paraexciton. The para-ortho
order for the 2𝑆 exciton is observed to be reversed, which is explained by the spin-orbit
interaction of the involved VBs leading to mixing and therefore to a repulsion between the
yellow Rydberg states and the 1𝑆 green exciton. The zero-field splitting energies between
ortho- and paraexcitons are obtained from the magnetic field series of SHG spectra and
compared to the calculations of Schweiner et al. [Sch+17b]. It is found that for 𝑛 ≥ 3,
the splitting energies are in agreement with a 𝑛−3 scaling as expected from the hydrogen
model, although other interactions lead to deviations, which are discussed in great detail in
Ref. [Rom+21].

The demonstrated method can be applied to other semiconductors. Kapuściński et al.
have recently demonstrated the Rydberg series of dark excitons in monolayer WSe2 in a
magnetic field of up to 30 T [Kap+21].

With a higher spectral resolution, smaller magnetic field increments and lower excitation
powers, it is in principle possible to extend the Rydberg series of paraexciton to higher 𝑛.
Paraexcitons with higher angular momentum quantum numbers do also exist. But their
exchange splitting is close to zero, which complicates their detection. An exception are 𝐷
excitons, of which the orthoexcitons are energetically elevated by the yellow-green mixing
with the 1𝑆 green exciton leading to an energy splitting between the ortho- and para states.
The fine structure of 𝐷 excitons has recently been studied by Heckötter et al. [Hec+21].
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Chapter 6

SHG spectroscopy of blue-series excitons

Blue-series excitons involve a hole in the same 𝛤 +
7 VB as yellow-series excitons. However,

the electron is excited to the second lowest CB with 𝛤 −
3 symmetry, which originates from

Cu 4𝑝 orbitals, as shown in Fig. 2.3. Taking the electron spin into account leads to a
𝛤 −

8 symmetry for the conduction band, which is divided into two anisotropic subbands
exhibiting different curvatures. Violet-series excitons involve the same CB as blue-series
excitons but the second highest 𝛤 +

8 VB like the green excitons. In contrast to yellow
and green excitons, optical transitions to blue and violet-series excitons are ED-allowed,
leading to high oscillator strengths. The oscillator strength density of blue excitons is with
a value of 𝛽𝑏 = 2.93 × 10−3 [Dau+66] about seven orders of magnitude larger than the
value 𝛽𝑦 = 3.1 × 10−10 [Frö+06] for yellow excitons, which leads to strong light-matter
coupling and therefore requires to take polaritonic effects into consideration. In contrast to
yellow-series excitons, which lie energetically below the bandgap, the blue-series excitons
are subject to high optical absorption as they are energetically above the yellow and green
band gaps.

The high absorption is the reason why single-photon transmission experiments lead to
many difficulties for blue-series excitons. The first experiments were done by the method of
one-photon reflection in Ref. [Pas61] and only very broad spectral features of blue excitons
could be observed. The first single-photon transmission experiments have been made pos-
sible by very thin samples in the order of 100 nm of oxidized copper by Daunois et al. in
Ref. [Dau+66]. Due to the high strain in these samples, the excitonic spectral features were
split and shifted to higher energies. The group of N. Naka recently performed photolumi-
nescence experiments, as described in Ref. [Tak+18], by exciting above the violet bandgap.
The 1𝑆 and 2𝑆 of the blue series could be detected. Nonlinear optical experiments have
been performed before by Schmutzler et al. [Sch+13] using sum-frequency generation in-
volving a resonant EQ transition to the yellow 1𝑆 exciton and a further ED transition to
the blue 1𝑆 exciton-polariton.

Considering the described difficulties, it becomes evident that SHG is an exceptionally
suitable method for experimental investigations of blue-series excitons. High-quality natu-
ral bulk crystals of various thicknesses can be used as the fundamental beam passes through
the whole sample without significant losses. Although the SHG signal, which is generated
along the whole thickness, gets strongly absorbed, the signal of the last few nm can escape
the sample and be detected. Picosecond pulses, which can be scanned spectrally through
the energy range of blue-series excitons as described in Sec. 3.2, offer a sufficient resolution
for the rather broad resonance lines. As SHG is sensitive to changes of the involved sym-
metries, variation of the crystal orientations and application of magnetic fields will offer
several degrees of freedom to study different crystallographic and magnetic-field-induced
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SHG mechanisms and uncover key properties of blue-series excitons.
In Sec. 6.1, we calculate the quasi-particle solutions for excitons up to 𝑛 = 4 taking the

polariton effect into consideration. Then we derive the polarization dependencies for crystal-
lographic and magnetic-field-induced SHG in Sec. 6.2. In Sec. 6.3, experimental data on all
derived SHG mechanisms will be shown for excitation along the symmetry-allowed crystal
axis [111]. All SHG spectra are measured with an average ps laser excitation power of about
100 mW. Section 6.4 deals with experimental results, which involve excitation along the
symmetry forbidden [1 ̄10] crystal axis enabling the suppression of crystallographic SHG. In
the chosen crystal orientation, the three relevant magnetic-field-induced SHG mechanisms,
including the ZE effects of 𝛤 −

4 and 𝛤 +
5 states and the MSE can be individually switched on

by certain polarization settings of incoming and outgoing light, which will enable measuring
the SHG spectra of the 1𝑆 and 2𝑆 exciton-polaritons and the 2𝑃 exciton. By analyzing the
magnetic field shifts of 𝑛 ≤ 2 exciton resonances in Sec. 6.4.1 and 𝑛 ≥ 3 magneto-excitons
in high-field regime in Sec. 6.5, several key parameters of blue-series excitons such as the
anisotropic effective electron mass, the reduced exciton mass, the exciton Bohr radius and
the transverse resonance energies as well as the resonance energies on the upper polariton
branch will be obtained. The results of this chapter are published in Ref. [Far+21].

6.1 Polaritonic effect
In this section, we will briefly derive the quasi-particle solution for the blue series exciton-
polariton dispersion relation up to 𝑛 = 4, which will expand our understanding of the
experimentally obtained results. The calculations have been done by H. Stolz and are
described in more detail in Refs. [Far+21; Sto+18]. In order to obtain the exciton-polariton
dispersion, one has to solve the classical polariton equation [And95]

𝑐2
0𝐾2

𝜔2 = 𝜀(K, 𝜔) = 𝜀𝑏 +
𝑁

∑
𝑛=1

4𝜋𝛽𝑛𝐸2
𝑋𝑛(K)

𝐸2
𝑋𝑛(K) − (ℏ𝜔)2 − 𝑖ℏ𝜔𝛾𝑛

. (6.115)

for a fixed K and not a fixed photon energy. 𝑐0 is the vacuum speed of light, K the exciton
wavevector, 𝜔 the frequency, 𝜀 the dielectric function, 𝜀𝑏 the background dielectric constant,
𝑛 the principal quantum number, 𝛽𝑛 the oscillator strength density, 𝐸𝑋𝑛(K) the transverse
exciton energy dispersion and 𝛾𝑛 the homogeneous broadening. For the latter we use a
small letter 𝛾 in order to avoid confusion with irreducible representations. By applying the
rotating-wave approximation

𝐸2
𝑋 − (ℏ𝜔)2 = 2𝐸𝑋(𝐸𝑋 − ℏ𝜔), (6.116)

Eq. (6.115) is simplified to

𝜀(K, 𝜔) = 𝜀𝑏 +
𝑁

∑
𝑛=1

2𝜋𝛽𝑛𝐸𝑋𝑛(K)
𝐸𝑋𝑛(K) − ℏ𝜔 − 𝑖𝛾𝑛

2
. (6.117)

The background dielectric constant 𝜀𝑏 measured in Ref. [Ito+98] and shown in Fig. 6.1(a)
by black dots, is approximated using the Sellmeier equation

𝜀𝑏(𝐸) = 4.202 + 2.564
1 − (𝐸[eV]

3.166 )2 , (6.118)
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6.1 Polaritonic effect

which is shown by the red line in Fig. 6.1(a). It gives a good approximation for energies
lower than 2.65 eV. The dispersion relation of blue-series excitons unperturbed by the light
field is given by

𝐸𝑋𝑛(K) = 𝐸0,𝑛 + ℏ2

2𝑀𝑛
K2, (6.119)

with the transverse exciton energy 𝐸0,𝑛 at K = 0 and the total exciton mass 𝑀𝑛. The
oscillator strength density reads

𝛽𝑛 = ℏ2𝑒2

4𝜋𝜀0𝑚0𝐸2
𝑋𝑛

𝑓𝑛
𝑉

, (6.120)

with the electron charge 𝑒 and mass 𝑚0, the vacuum permittivity 𝜀0, the oscillator strength
𝑓𝑛 and the volume of the unit cell 𝑉. The best agreement with our experiments is achieved
with a value for 𝛽1𝑆𝐵 = 3.77 × 10−3, which is close to the average of the literature values
of 𝛽1𝑆𝐵 = 2.93 × 10−3 from Ref. [Dau+66] at 𝑇 = 4.2 K and 𝛽1𝑆𝐵 = 4.93 × 10−3 from
Ref. [Ito+98] at room temperature. The values for higher 𝑛 are obtained by extrapolation
using the 𝑛 scaling

𝛽𝑛,𝑆 = 𝛽1𝑆/𝑛3. (6.121)

as expected from the hydrogen model. The values for the damping are determined by the
empirical law

𝛾𝑛 = 13.9
𝑛

meV, (6.122)

which gives a good agreement with the experimentally obtained values for the line width of
13.3 meV for the 1𝑆 and 7.6 meV for the 2𝑆 exciton-polariton and extrapolates to higher 𝑛.

The splitting between the longitudinal and transverse exciton states is given by

𝛥𝐸LT,𝑛 = ℏ2𝑒2

2𝜀0𝜀𝑏𝑚0𝐸𝑋𝑛

𝑓𝑛
𝑉

, (6.123)

and is related to the oscillator strength density. All relevant parameters for the calculation
of the exciton-polariton dispersion are summarized in Table 6.1 up to 𝑛 = 4.

As the blue-series excitons are in close energetic proximity, their contribution to the
dielectric function has to be considered. Their binding energies are given by

𝐸bind,𝑛 = 1
𝑛2

𝜇𝑋
̃𝜀(𝐸bind,𝑛)2 𝐸H

Ryd, (6.124)

with the hydrogenic Rydberg energy 𝐸H
Ryd and the dielectric function ̃𝜀(𝐸), which is influ-

enced by optical phonons and can be calculated according to Ref. [Sto+18]

̃𝜀(𝐸) = ̃𝜀𝑏 ∏
𝑖

(𝐸2
LO,i − 𝐸2)

(𝐸2
TO,i − 𝐸2)

, (6.125)
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Chapter 6 SHG spectroscopy of blue-series excitons

Table 6.1 Relevant parameters for the calculation according to Eq. (6.117) of the exciton-
polariton dispersion up to 𝑛 = 4 (first column) as shown in Figs. 6.1(b), 6.1(c) and 6.1(d).
The exciton binding energies are calculated using Eq. (6.124) and shown in the second
column. The dielectric constants in the third column are obtained using Eq. (6.125)
The fourth column lists the dampings as calculated according to Eq. (6.122). The fifth
column gives the values for the oscillator strength density, which are calculated according
to Eq. (6.121). The longitudinal-transverse energy splittings are shown in the last column
and are obtained via Eq. (6.123).

𝑛 𝐸bind,𝑛 (meV) ̃𝜀(𝐸bind,𝑛) 𝛾𝑛 (meV) 𝛽𝑛 𝛥𝐸LT,𝑛 (meV)
1 53.30 7.63 13.9 3.768 × 10−3 3.93
2 13.35 7.62 7.64 4.582 × 10−4 0.491
3 6.29 7.41 4.16 1.351 × 10−4 0.146
4 3.56 7.38 2.70 5.689 × 10−5 0.061

using ̃𝜀𝑏 = 6.53 and the following phonon energies:

𝐸TO,1 = 18.8 meV, 𝐸LO,1 = 19.1 meV, (6.126)
𝐸TO,2 = 78.5 meV, 𝐸LO,2 = 82.1 meV. (6.127)

The best agreement with the experimental values for the resonance energies is achieved for
a reduced exciton mass of 𝜇𝑋 = 0.228 𝑚0, which leads to a binding energy of 53.30 meV.

The results of the quasi-particle solution for the blue series exciton-polariton dispersion
are shown in Fig. 6.1(b) and magnified in panel Fig. 6.1(c). The lower polariton branch
(LPB) converges to the photon dispersion line, as marked by the dashed nearly vertical
line, for lower 𝐾 and approaches the dispersion of the 1𝑆𝑇 exciton for higher 𝐾. The upper
polariton branch (UPB) converges to the photon dispersion line for higher 𝐾 and approaches
the dispersion of the highest exciton state for lower 𝐾. The intermediate polariton branches
approach the next lower exciton dispersion for decreasing values of 𝐾 and the next higher
exciton dispersion for increasing 𝐾.

A sharp 𝐾 excitation via the SHG process occurs at the intersection points of the polariton
branches and the two-photon dispersion line, which is marked by the gray nearly vertical
line at around 𝐾 = 3.5 × 107 m−1 and described by

𝐸(𝑘) = 𝑐
𝑛𝑏(𝐸

2 )
ℏ𝑘. (6.128)

The dots are the experimentally obtained values for the resonance energies, as presented
in Sec. 6.4, and have a good agreement with the polariton calculation, as they lie on the
dispersion lines (same color as dots) of the corresponding states. It shows that the excitation
of the 1𝑆 exciton-polariton via the SHG process occurs at about 10 meV above the transverse
state 1𝑆𝑇 of the 𝑛 = 1 exciton. The 2𝑆 exciton dip in the crystallographic SHG spectrum
shown in Fig. 6.6(a) can therefore not correspond to the 2𝑆 energy, as it is about 3 meV
higher than the 2𝑆 exciton-polariton energy. However, it can be explained as an interference
process between the 1𝑆 and 2𝑆 SHG signals.

Figure 6.1(c) shows the calculated 𝐾 dependent radiative damping of the exciton-polariton
states, which can be experimentally accessed by measuring the line width of the resonances.
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6.1 Polaritonic effect

Figure 6.1 (a) Background dielectric constant as measured in Ref. [Ito+98] (black dots)
and approximated using the Sellmeier approximation (6.118) (red line). (a) Quasi-particle
solution for the blue series exciton-polariton dispersion up to 𝑛 = 4. The lower polariton
(LP), shown as the orange line, approaches the photon dispersion in Cu2O (nearly vertical
black dashed line) for decreasing wave numbers and the transverse exciton dispersion
for higher 𝐾. The upper polariton (UP), shown as the violet line on the high energy
side, converges to the photon dispersion for higher 𝐾 and the 𝑛 = 4 exciton dispersion for
decreasing 𝐾. The relevant energy and wave number range is magnified in panel (c) and all
polariton branches are designated. The colored dots mark the intersection points between
the two-photon excitation dispersion and the polariton dispersion, at which a sharp 𝐾
excitation via the SHG process occurs. Panel (c) shows the 𝐾 dependent damping of all
polariton branches as solid lines. The colored dots are the experimentally obtained line
widths from the SHG spectra in Fig. 6.8.

The measured results for the line widths are extracted from the magnetic-field-induced SHG
spectra in Fig. 6.8(a) and 6.8(c), shown as colored dots, which have a decent agreement with
the calculations, as they only slightly deviate from the expected positions on the colored
lines.

As the last point, we want to justify the performed calculations by showing that the
necessary criteria for the formation of polaritons with a distinct wave vector are fulfilled. In
general, there are two cases. The first case is called the forced harmonics case and applies
if the condition

𝛾 < √8𝛥𝐸LT𝜀𝑏
𝑀𝑋𝑐2 𝐸2

𝑋(0) (6.129)

for spatial coherence is fulfilled.
The second case is called the quasi-particle case, which is present if temporal coherence

87



Chapter 6 SHG spectroscopy of blue-series excitons

is fulfilled. For this, the Rabi energy

ℏ𝛺𝑅 = √𝛥𝐸LT𝐸𝑋(0)
2

(6.130)

needs to be larger than the damping. In our experiments, the second case is fulfilled, as
the Rabi energy of about 70 meV is significantly larger than the homogeneous broadening
of about 13 meV.

6.2 Simulation of polarization dependencies

It is not necessary to derive the polarization-dependent SHG intensity for blue excitons
from the start. We will show below that the main optically active symmetry component of
blue 𝑆 exciton is the same as for yellow 𝑃 excitons and vice versa. Then we just access the
already derived polarization dependencies for yellow excitons in Sec. 4.1.

According to Eq. (4.50) and the involved 𝛤 +
7 VB and 𝛤 −

8 CB depicted in Fig. 2.3(c), the
symmetry of blue 𝑆 excitons is given by

𝛤𝑆, blue = 𝛤 +
7 (2) ⊗ 𝛤 −

8 (4) ⊗ 𝛤 +
1 (1)

= 𝛤 −
3 (2) ⊕ 𝛤 −

4 (3) ⊕ 𝛤 −
5 (3), (6.131)

with the main optically active component exhibiting 𝛤 −
4 symmetry and therefore having a

commonality with yellow 𝑃 excitons. Analogously, the symmetry of blue 𝑃 excitons is given
by

𝛤𝑃, blue = 𝛤 +
7 (2) ⊗ 𝛤 −

8 (4) ⊗ 𝛤 −
4 (3)

= 𝛤 +
1 (1) ⊕ 𝛤 +

2 (1) ⊕ 2𝛤 +
3 (2) ⊕ 3𝛤 +

4 (3) ⊕ 3𝛤 +
5 (3), (6.132)

with the main optically active component exhibiting 𝛤 +
5 symmetry, similar to yellow 𝑆

excitons.
The dominant crystallographic mechanisms for blue 𝑆 and 𝑃 excitons are shown in

Figs. 6.2(a) and 6.2(b), respectively. Blue 𝑆 excitons are excited by an ED-EQ two-photon
process [Eq. (4.69)] and emit light by ED emission [Eq. (4.59)] leading to the polarization-
dependent SHG intensity according to Eq. (4.70). SHG of blue 𝑃 excitons involves an
ED-ED two-photon excitation [Eq. (4.64)] and an EQ emission [Eq. (4.69)] resulting in the
polarization-dependent SHG intensity derived in Eq. (4.65).
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6.2 Simulation of polarization dependencies

Figure 6.2 Schematics of crystallographic SHG mechanisms for blue-series excitons. (a)
Odd-parity 𝛤 −

4 𝑆 excitons excited by an ED-EQ two-photon process followed by an ED
emission. (b) Even-parity 𝛤 +

5 𝑃 excitons excited by an ED-ED two-photon process followed
by an EQ emission.

The magnetic-field-induced SHG mechanisms are sketched in Fig. 6.3. The dominant
MSE mechanism [Fig. 6.3(a)] is the same as in the case of the yellow excitons and is thus
indicated in Eq. (4.87). It involves an ED-ED excitation of 𝑃 excitons, which are coupled
by an odd-parity effective electric field to 𝑆 excitons [Eq. (4.86)], which emit light by ED
emission. We name the product of the mentioned operators 𝑂5+𝐸4−

DD ⋅ 𝑂4−
D = 𝑂MSE.

As blue 𝛤 −
4 𝑆 excitons have a higher oscillator strength compared to their 𝑃 counterparts,

the dominant ZE is not the same as for yellow-series excitons. In the case of blue-series
excitons the dominant ZE involves ED-EQ excitation of 𝛤 −

4 states, which are coupled by an
even-parity magnetic field again to 𝛤 −

4 states [Eq. (4.75)]. Its SHG polarization dependence
is given in Eq. (4.76) and sketched in Fig. 6.3(b). The product of the mentioned excitation
and emission operators is denoted by 𝑂4−𝐵4−

DQ ⋅ 𝑂4−
D = 𝑂𝛤 −

4 ZE.
The dominant ZE of yellow-series excitons, as given in Eq. (4.74) and sketched in Fig. 6.3,

contributes only weakly for blue-series excitons. It involves ED-ED excited and magnetic-
field coupled 𝛤 +

5 states [Eq. (4.73)], which emit light by an EQ process. The product of the
mentioned excitation and emission operators is denoted by 𝑂5+𝐵5+

DD ⋅ 𝑂5+
Q = 𝑂𝛤 +

5 ZE.

Figure 6.3 Schematics of magnetic-field-induced SHG mechanisms for blue-series exci-
tons. (a) MSE involving excitation of 𝛤 +

5 𝑃 states and emission from 𝛤 −
4 𝑆 states. (b)

Dominant ZE of 𝛤 −
4 𝑆 states. (c) Weak ZE of 𝛤 +

5 𝑃 states.

For our experiments presented in Secs. 6.3 and 6.4 we will use two samples with different
orientations. In Sec. 6.3, we perform SHG experiments in the H2a sample (see Tab. 3.1),
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Chapter 6 SHG spectroscopy of blue-series excitons

Figure 6.4 Simulation of 2D SHG polarization diagrams of blue-series excitons for ex-
citation along the k ∥ [111] and an applied magnetic field along the [11 ̄2] crystal axis.
Crystallographic SHG of (a) 𝑆 and (b) 𝑃 states as sketched in Fig. 6.2. (c) 𝛤 −

4 ZE, (d)
𝛤 +

5 ZE and (e) MSE as sketched in Fig. 6.3.

which is symmetry-allowed for crystallographic SHG as k is directed along the [111] crystal
axis. The 2D polarization diagrams for the relevant SHG mechanisms from Figs. 6.2 and 6.3
are shown in Fig. 6.4. The polarization diagrams for the crystallographic SHG processes
of blue 𝑆 and 𝑃 excitons are identical, exhibiting diagonal stripes resulting in a sixfold
symmetry for the parallel and crossed polarization configurations. The ZE-induced SHG
polarization diagrams of blue 𝛤 −

4 and 𝛤 +
5 states are also identical with a twofold symmetry

along 𝜑 and constant along 𝜓. The MSE-induced SHG polarization diagram is irregularly
fourfold along 𝜓 and twofold along 𝜑.

In Sec. 6.4, we perform SHG experiments in the H45b sample (see Tab. 3.1), which is
symmetry-forbidden for crystallographic SHG as k is directed along the [1 ̄10] crystal axis.
The 2D polarization diagrams for the relevant SHG mechanisms from Figs. 6.2 and 6.3 are
shown in Fig. 6.5. The polarization diagrams for the crystallographic SHG processes of
blue 𝑆 and 𝑃 excitons show vanishing SHG for both, blue 𝑆 and 𝑃 excitons as expected for
a symmetry-forbidden orientation. The ZE-induced SHG polarization diagrams of blue 𝛤 −

4
and 𝛤 +

5 states show a twofold symmetry along 𝜓 and 𝜑 but differ by a 90∘ shift in 𝜓 and are
therefore distinguishable. The MSE-induced SHG polarization diagram is fourfold along 𝜓
and twofold along 𝜑. All three mechanisms can be individually isolated by a specific choice
of the polarization setting: For 𝜓 = 90∘ only the 𝛤 −

4 ZE, for 𝜓 = 0∘ only the 𝛤 +
5 ZE and

for 𝜑 = 0∘ only the MSE induces an SHG contribution. This property will be exploited in
Sec. 6.4 in order to measure SHG spectra induced by just one mechanism.

For the magnetic-field-induced SHG signals, the general case of interference will be
needed. To have a closer connection to the experiments, the amplitudes are scaled to
the SHG signal magnitude and not to the group theoretical magnitude resulting from the
coupling coefficient tables so that one can extract the relative SHG contributions for each
mechanism from the interfered signal. The SHG intensity consisting of the MSE, the 𝛤 −

4
ZE and the 𝛤 +

5 ZE contributions is given by

𝐼SHG
interf.(𝜓, 𝜑) = (6.133)

∣𝛼k
𝑂𝛤 −

4 ZE(𝜓, 𝜑)

∣𝑂𝛤 −
4 ZE∣

+ 𝛽k
𝑂MSE(𝜓, 𝜑)

∣𝑂MSE∣
+ 𝛾k

𝑂𝛤 +
5 ZE(𝜓, 𝜑)

∣𝑂𝛤 +
5 ZE∣

∣
2

.
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Figure 6.5 Simulation of 2D SHG polarization diagrams of blue-series excitons for ex-
citation along the k ∥ [1 ̄10] and an applied magnetic field along the [110] crystal axis.
Crystallographic SHG of (a) 𝑆 and (b) 𝑃 states as sketched in Fig. 6.2. (c) 𝛤 −

4 ZE, (d)
𝛤 +

5 ZE and (e) MSE as sketched in Fig. 6.3.

The division by the absolute values of their maximal amplitudes 𝑂𝑖 scales all the contribu-
tions to 1, so that the coefficients 𝛼k, 𝛽k and 𝛾k represent the relative contributions of the
real SHG signal induced by the three mechanisms.

6.3 SHG in symmetry-allowed geometry

For the SHG experiments on blue-series excitons, we have used the ps laser and the 0.5 m
Acton spectrometer in order to apply the spectral scanning method as described in Sec. 3.2.
The fixed wavelength fs laser method, as described in Sec. 3.3, would not work here be-
cause the blue excitons are spectrally broader than the fs-laser power spectrum. The lower
boundary of the resolution of the scanning method is limited by the spectrometer assuming
the scanning steps are in the order of the spectrometer resolution. However, the resolution
of about 100 µeV is sufficient, and similarly, small scanning steps are not required, as the
typical line width of blue excitons is in the order of several meV. Magnetic fields up to 10 T
are applied in Voigt configuration for the experiments.

For the SHG experiments in symmetry-allowed crystal orientations, we have chosen the
H2a sample, as characterized in Tab. 3.1. The excitation laser light is directed along the
[111] crystal axis, which has been shown in Sec. 4.1 to be symmetry-allowed for crystallo-
graphic contributions. Moreover, the sample has quite a large thickness of 3663 µm, which
is important for blue series exciton experiments, because the exciton lines are spectrally
broad and thin crystals would lead to fringes distorting the exciton line shape.

This section is divided into two parts: First, we will present the experiments at zero
magnetic field and discuss the properties and the spectral features of the crystallographic
signal. In the second part, we will elaborate on magnetic-field-induced SHG.

6.3.1 Experimental results at zero field

For this experiment, the magnetic field is absent and the linear polarization angles are set to
𝜓/𝜑 = 0∘/0∘. The spectral range of the blue excitons is scanned with the ps laser pulses in
steps of 0.55 meV in order to acquire the SHG spectrum, as described in Sec. 3.2, by moving
the laser and the spectrometer simultaneously in wavelength. An exemplary spectrum for
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Figure 6.6 (a) Crystallographic SHG spectrum (blue line) scanned with ps pulses in the
energy range of blue-series excitons for excitation along the [111] crystal axis in the H2a
sample (see Tab. 3.1) and a polarization setting of 𝜓/𝜑 = 0∘/0∘. An exemplary SHG
spectrum, as detected by the CCD camera, is shown as the gray area for a laser energy of
1.295 eV and a spectrometer energy setting of 2.590 eV. The inset shows the SHG intensity
of the 1𝑆 resonance, as marked by the vertical dashed line, in dependence on the average
excitation power up to 120 mW. The dots are the measured values and the red line is a
parabolic fit to the data with a good agreement. Panel (b) shows the 2D SHG polarization
diagram as measured at the 1𝑆 resonance energy. Panel (c) shows a polar plot for the
parallel and crossed polarization configurations, as marked by the black and red lines in
panel (b). The experimental results show a good agreement with the SHG polarization
dependence simulated according to Eq. (4.70), which is shown in the contour plot in panel
(d) and the polar plot in panel (e).

the energy setting at 2.59 eV is shown in Fig. 6.6(a) as the gray area. It has the spectral
shape of the ps pulse with a line width of about 1.1 meV. Its central pixel is taken for
the blue spectrum at the according energy. The scan yields the SHG spectrum represented
by the blue line. It has, apart from additional spectral features, a Lorentzian shape with
a maximum at an energy of 2.595 eV associated with the blue 1𝑆 exciton with a shoulder
about 10 meV lower in energy. On the high-energy side at about 2.624 eV, there is a dip,
which is a consequence of interference of the 1𝑆 and 2𝑆 excitons.

The dependence of the SHG signal on the laser excitation power at the maximum of the
spectrum, as marked by the vertical dashed line, is shown in the inset for excitation powers
up to 100 mW. The dots represent the experimental data and the red line is a quadratic
fit to the data implying a good agreement. The polarization dependence of the 1𝑆 SHG
signal at the same energy is shown in Fig. 6.6(b). The parallel and crossed configurations,
as indicated by the black and red tuning lines in the contour plot, are shown in a polar plot
in Fig.6.6(c) and exhibit sixfold symmetries shifted by 30∘ to each other. The simulated
contour plot for the crystallographic SHG for k along [111] is shown in Fig. 6.6(d) and the
according polar plots of the parallel and crossed polarization configurations are shown in
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Figure 6.7 (a) Magnetic-field-induced SHG spectra of blue-series excitons for excitation
along the [111] crystal axis of the H2a sample (see Tab. 3.1) and a polarization setting
of 𝜓/𝜑 = 90∘/90∘ for magnetic fields up to 10 T applied along the [11 ̄2] crystal axis.
The inset shows the SHG intensity of the 2𝑆/2𝑃 resonance maximum, as marked by the
vertical dotted line, as a function of the magnetic field up to 10 T. The dots are the
measured values and the red line is a parabolic fit to the data with a good agreement.
Panel (b) shows a magnification of the magneto-excitons at 𝐵 = 10 T. Panel (c) shows
the 2D SHG polarization diagram as measured at the emery of the dip (dashed line), as
seen in Fig. 6.6(a). Panel (d) shows a polar plot for the parallel and crossed polarization
configurations, as marked by the black and red lines in panel (c). The experimental results
show a good agreement with the SHG polarization dependence simulated according to
Eq. (6.133) with a coefficient ratio of 𝛼[111]/𝛽[111] = 4/3 and shown in the contour plot in
panel (d) and the polar plot in panel (e).

Fig. 6.6(e). The experimental and simulated results are in good agreement.

6.3.2 Experimental results in a magnetic field

In this section, we will analyze the magnetic-field-induced SHG contributions. For this, we
suppress the crystallographic SHG signal and maximize the MSE and ZE contributions by
setting the linear polarization angles to 𝜓/𝜑 = 90∘/90∘, as can be concluded from Fig. 6.4.
This setting needs to be carefully adjusted at zero magnetic field for a minimal SHG signal.
Then the magnetic field is ramped up to 10 T and the SHG spectrum is measured by the
same ps scanning method. The SHG spectra are measured for magnetic fields between 0
and 10 T in steps of 1 T and the results are shown in Fig. 6.7(a). The spectral features differ
from the crystallographic spectrum. At 10 T the 1𝑆 exciton appears at about 2.592 eV and
in addition, the 𝑛 = 2 exciton gives a contribution, which is about five times as strong as
the 1𝑆 exciton. On the high-energy side, there is a shoulder associated with the 3𝑆 exciton
and several oscillatory features magnified in Fig. 6.7(b), which shift to higher energies with
increasing magnetic field and are associated with the magneto-excitons up to 𝑛 = 6. We
will further investigate them in Sec. 6.5.
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The magnetic field dependence up to 10 T of the SHG intensity for the spectral maximum
at an energy of 2.621 eV is shown in the inset. The dots are the experimental data and the
red line represents a quadratic fit with a good agreement. Although no SHG contribution
is expected at zero field, we still detect a weak signal with the shape of the crystallographic
SHG shown in Sec. 6.3.1. A reason for it might be a slight misalignment of the sample so that
k deviates from the [111] direction leading to a slightly different polarization dependence
with a crystallographic contribution at 𝜓/𝜑 = 90∘/90∘.

In order to measure the polarization dependence of only the magnetic-field-induced SHG
contributions, one has to suppress the crystallographic contribution by choosing an excita-
tion energy for which the crystallographic SHG is minimized and the magnetic-field-induced
SHG gives sufficient signals. This is the case for the 1𝑆/2𝑆 interference minimum, which
is indicated by the dashed line in Fig. 6.7(a). The experimentally acquired polarization
dependence is plotted in Fig. 6.7(c) and has four intensity maxima at 𝜓/𝜑 = 90∘/90∘ and
analogous positions shifted by 180∘ in either 𝜓 or 𝜑. The parallel configuration (black line)
shows a twofold symmetry and is plotted in a polar plot in Fig. 6.7(d). The crossed config-
uration (red line) is also shown but has vanishingly small signals. The simulation is done
according to Eq. (6.133). As both ZEs exhibit the same polarization dependence, they are
summarized to one contribution with the coefficient 𝛼[111]. A ratio of 𝛼[111]/𝛽[111] = 4/3
leads to the polarization diagram shown in Fig. 6.7(e) and yields the best agreement with
the experimental data. The according tuning lines are shown in a polar plot in Fig. 6.7(f)
and confirm the good agreement.

6.4 SHG in symmetry-forbidden geometry

In this section, we will suppress crystallographic SHG by choice of excitation along a crystal
axis, which is symmetry-forbidden for zero-field SHG. For this, we select the H45a sample,
for which we can direct k along [1 ̄10], so no crystallographic SHG is expected. Its thickness
of 4880 µm is sufficient to avoid a modulation of the broad spectral lines by fringes. The
magnetic field is applied in Voigt configuration along the [110] crystal axis so that the
three mentioned magnetic-field-induced SHG mechanisms can be fully separated by choice
of the polarization setting, as already demonstrated for this specific crystal orientation for
yellow-series excitons in Sec. 4.2.

The simulated diagrams in Fig. 6.5 show the polarization dependence of the crystallo-
graphic SHG for blue 𝑆 excitons in panel (a), blue 𝑃 excitons in panel (b), the 𝛤 −

4 ZE in
panel (c), the 𝛤 +

5 ZE in panel (d) and the MSE in panel (e). The polarization setting for
maximizing the chosen mechanism and suppressing all others is 𝜓/𝜑 = 90∘/90∘ for the 𝛤 −

4
ZE, 𝜓/𝜑 = 0∘/90∘ for the 𝛤 +

5 ZE and 𝜓/𝜑 = 45∘/0∘ for the MSE. Next, we apply a magnetic
field of 10 T and scan the SHG spectrum in the range of blue excitons between 2.565 eV
and 2.6725 eV for the three mentioned polarization settings.

The blue line in Fig. 6.8(a) shows the acquired 𝛤 −
4 ZE SHG spectrum. Its spectral

features are similar to the magnetic-field-induced spectrum of the symmetry-allowed crystal
orientation in Fig. 6.7(a) from Sec. 6.3. The spectrum is again normalized to the intensity
of the 2𝑆/2𝑃 line, which has a line width of about 10.5 meV. The intensity of the 1𝑆 exciton
is about 40 % lower. On the high-energy side, we observe magneto-excitons up to 𝑛 = 8,
which are magnified in Fig. 6.8(b). For comparison, the zero-field spectrum with a vanishing
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6.4 SHG in symmetry-forbidden geometry

Figure 6.8 Magnetic-field-induced SHG spectra of blue-series excitons for excitation along
the [1 ̄10] crystal axis and a magnetic field of 10 T applied in Voigt configuration along the
[110] crystal axis of sample H45b (see Tab. 3.1). (a) 𝛤 −

4 ZE-induced (𝜓/𝜑 = 90∘/90∘) SHG
spectrum at 𝐵 = 10 T (blue line) and 0 T (black line). The spectral region of magneto-
excitons in a high-field regime is magnified in panel (b). (c) 𝛤 +

5 ZE- (𝜓/𝜑 = 0∘/90∘) and
MSE-induced (𝜓/𝜑 = 45∘/0∘) SHG spectra at 𝐵 = 10 T shown as the red and green lines,
respectively. Panels (d), (e) and (f) show the magnetic-field series of the 1𝑆, 2𝑃 and 2𝑆
resonances induced by the 𝛤 −

4 ZE, the MSE and the 𝛤 +
5 ZE, respectively. Panel (g) shows

the 2D SHG polarization diagram as measured at the 2𝑆/2𝑃 resonance energy (dashed
line). Panel (i) shows a polar plot for the parallel and crossed polarization configurations,
as marked by the black and red lines in panel (g). The experimental results show a good
agreement with the SHG polarization diagrams, which are shown in the contour plot in
panel (h) and the polar plot in panel (j) and are simulated according to Eq. (6.133) with
the coefficient ratios 𝛼[11̄0]/𝛾[11̄0] = 3.5 and 𝛼[11̄0]/𝛾[11̄0] = 4.

SHG signal is shown as the black line, which is an indication of a good alignment of the
experimental geometries.

The red line in Fig. 6.8(c) represents the 10 T SHG spectrum induced by the 𝛤 +
5 ZE,

which is normalized to the 𝑛 = 2 exciton intensity, which is about 17 times weaker, than
the 𝑛 = 2 line of the more dominant 𝛤 −

4 ZE-induced spectrum. In contrast to the spectrum
in Fig. 6.8(a), the 1𝑆 exciton is about twice as intense as the 𝑛 = 2 exciton. Moreover, the
𝑛 = 2 exciton with its line width of only 7.6 meV is about 30 % narrower than the 𝑛 = 2 line
in panel (a), which is an indication that the 𝛤 +

5 ZE induces a pure 2𝑆 exciton-polariton line
and the 𝛤 −

4 ZE a mixed 2𝑆/2𝑃 resonance. Energetically above the 2𝑆 exciton-polariton,
weak indications of magneto-excitons are observed, however, much weaker in comparison.

The green line in Fig. 6.8(c) shows the 10 T SHG spectrum induced by the MSE, which is
again normalized to its 𝑛 = 2 excitons intensity, which is about 10 times weaker, than the
2𝑆/2𝑃 line of the more dominant 𝛤 −

4 ZE. It has a similar intensity ratio as the dominant ZE,
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as the 1𝑆 exciton is about half as intense as the 𝑛 = 2 resonance. The 𝑛 = 2 exciton with
its line width of only 9.7 meV is about 8 % narrower than the 𝑛 = 2 resonance in Fig. 6.8(a),
which again indicates, that the 𝛤 −

4 ZE induces an SHG signal of a mixed 2𝑆/2𝑃 resonance.
As the 𝑛 = 2 resonance of the MSE is also about 2 meV lower in energy compared to the
2𝑆 exciton-polariton of the 𝛤 −

4 ZE spectrum, one can draw the conclusion that it is a 2𝑃
exciton resonance, as it is not subject to the polariton effect (see Fig. 6.1). Energetically
above the 2𝑃 exciton, no indications of magneto-excitons are observable, which indicates
that the MSE favors the induction of 𝑃 type excitons and both ZEs induce more 𝑆 type
exciton signals. This conclusion will be important in Sec. 6.4.1 on the magnetic-field shifts
of these three resonances and the mixing behavior between them.

Figs. 6.8(d), 6.8(e) and 6.8(f) show the magnetic-field series of the 1𝑆 exciton-polariton
(2 to 10 T) induced by the 𝛤 −

4 ZE, the 2𝑃 exciton (4 to 10 T) induced by the MSE and the
2𝑆 exciton-polariton (4 to 10 T) induced by the 𝛤 +

5 ZE, respectively. Their spectral shifting
behavior will be analyzed in Sec. 6.4.1.

The polarization dependence is measured at an energy of 2.621 eV, marked by the vertical
dashed line between the 2𝑆 exciton-polariton and the 2𝑃 exciton resonance and shown in
the contour plot in Fig. 6.8(g). It is an interference of all three mechanisms, but as the 𝛤 −

4
ZE is the dominant mechanism, the measured polarization plot has the most similarity with
it with intensity maxima at 𝜓/𝜑 = 90∘/90∘ and the corresponding points shifted either in 𝜓
or 𝜑 by 180∘ degrees. The slight distortions can be explained by the smaller contributions
of the other two mechanisms. The parallel configuration tuning line in Fig. 6.8(i) has
twofold symmetry with maxima at 𝜓 = 90∘ and the crossed one has a fourfold symmetry
with maxima starting at 45∘. The simulated plot according to Eq. (6.133) is shown in
Fig. 6.8(h) and yields the best agreement with the experiment for a coefficient ratio of
𝛼[11̄0]/𝛽[11̄0] = 3.5 and 𝛼[11̄0]/𝛾[11̄0] = 4. These ratios are in good agreement with the SHG
intensities at this energy, as the squared coefficients (𝛼[11̄0]/𝛾[11̄0])2 = 3.52 = 12.25 and
(𝛼[11̄0]/𝛾[11̄0])2 = 42 = 16 are similar to the ratios of the SHG intensities between the effects
of about 10 and 17. The tuning lines for parallel and crossed polarization configurations are
shown in the polar plots in Fig. 6.8(j) and confirm the good agreement with the experimental
data in Fig. 6.8(i).

6.4.1 Magnetic-field induced energy shift of 1𝑆, 2𝑆 and 2𝑃 resonances

In this section we analyze the magnetic-field-induced shifting behavior of the 1𝑆 and 2𝑆
exciton-polaritons and the 2𝑃 exciton unaffected by polaritonic effect. In order to obtain the
resonance energies of the three lines for each magnetic field, we take the second derivatives
of the SHG spectra in Figs. 6.8(d)-6.8(f), and fit each resonance with a Gaussian function.
The results are plotted in Fig. 6.9 as full circles with according error bars considering the
spectral resolution and the Gaussian fit errors.

We fit the data with an appropriate model, which takes the diamagnetic shifts and the
repulsions between the states due to field-induced mixing into account. The diamagnetic
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6.4 SHG in symmetry-forbidden geometry

Figure 6.9 Resonance energies of the 1𝑆 (blue dots), 2𝑃 (green dots) and 2𝑆 (red dots)
energies in dependence of the magnetic field up to 10 T. The energies are extracted by
Gaussian fits to the second derivatives of the SHG spectra in Figs. 6.8(d), 6.8(e) and 6.8(f).
The error bars take the spectral resolution and the fit errors of the Gaussians into account.
The solid lines are fits according to the eigenvalues of the three-level matrix in Eq. (6.136).

shifts are given by

𝐻dia(𝐵) = 𝑒2

8𝜇𝑋
(𝑥2 + 𝑦2)𝐵2

= 𝑒2

8𝜇𝑋

2
3

⟨𝑟2
𝑛,𝑙⟩𝐵2 (6.134)

= 𝑑𝑛,𝐿𝐵2,

with the reduced exciton mass 𝜇𝑋, the electron charge 𝑒, the diamagnetic shifts 𝑑𝑛,𝐿 with
the principal and angular momentum quantum numbers 𝑛 and 𝐿, and the average of the
squared exciton radius ⟨𝑟2

𝑛,𝐿⟩, which is calculated according to

⟨𝑟2
𝑛,𝐿⟩ = 𝑎2

0
2

𝑛2[5𝑛2 + 1 − 3𝐿(𝐿 + 1)]. (6.135)

With this equation the diamagnetic shifts 𝑑2,1 and 𝑑2,0 of the 2𝑃 and 2𝑆 resonances can
be expressed in terms of the 1𝑆 exciton 𝑑1,0 as 𝑑2,1 = 10𝑑1,0 and 𝑑2,0 = 14𝑑1,0. The
effective electric field due to the MSE mixes states of opposite parity (2𝑃 with both 1𝑆 and
2𝑆). Therefore we get the MSE mixing parameters 𝑀1𝑆2𝑃 and 𝑀2𝑆2𝑃. Consequently, the
three-level matrix can be expressed as

M3-level(𝐵) = ⎛⎜
⎝

𝐸1𝑆 + 𝑑1,0𝐵2 𝑀1𝑆2𝑃𝐵 0
𝑀1𝑆2𝑃𝐵 𝐸2𝑃 + 𝑑2,1𝐵2 𝑀2𝑆2𝑃𝐵

0 𝑀2𝑆2𝑃𝐵 𝐸2𝑆 + 𝑑2,0𝐵2

⎞⎟
⎠

, (6.136)

with the zero-field energies 𝐸1𝑆, 𝐸2𝑆 and 𝐸2𝑃 of the three resonances denoted in the index.
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By fitting the eigenvalues of matrix M3-level to the experimental data we get

𝐸1𝑆 = (2.5920 ± 0.0002) eV, (6.137)
𝐸2𝑆 = (2.6214 ± 0.0002) eV, (6.138)
𝐸2𝑃 = (2.6196 ± 0.0002) eV, (6.139)

𝑀1𝑆2𝑃 = (0.106 ± 0.004) meV
T

, (6.140)

𝑀2𝑆2𝑃 = (0.43 ± 0.02) meV
T

, (6.141)

𝑑1,0 = (0.62 ± 0.05) µeV
T2 . (6.142)

for the zero-field energies, the MSE mixing parameters and the diamagnetic shift of the
1𝑆 exciton-polariton. Consequently, the diamagnetic shift parameters of the 2𝑆 and 2𝑃
resonances are 𝑑2,0 = (8.7 ± 0.7) µeV/T2 and 𝑑2,1 = (6.2 ± 0.5) µeV/T2, respectively.

With the fit results, we can derive two additional parameters for the blue-series excitons:
The reduced exciton mass 𝜇𝑋,𝑏 and the exciton Bohr radius 𝑎𝑋,𝑏. According to Eq. (6.134),
the reduced exciton mass is given by

𝜇𝑋 = 𝑒2

8𝑑𝑛,𝑙

2
3

⟨𝑟2
𝑛,𝑙⟩. (6.143)

By inserting ⟨𝑟2
0,1⟩ = 3𝑎2

0 and the fit value for 𝑑1,0 = (0.62 ± 0.05) µeV/T2 we get 𝜇𝑋,𝑏 =
0.226(6) 𝑚0 for the reduced exciton mass of the blue series. This value is in good agreement
with the derived value 𝜇𝑋 = 0.228 𝑚0 from the polariton theory and about 27% smaller
than 𝜇𝑋,𝑦 = 0.363 𝑚0 [Nak+12] for the yellow exciton series.

For the derivation of the exciton Bohr radius for the blue series, we use the expression

𝑎𝑋 = 𝑚0
𝜇𝑋

𝜀(𝐸1𝑆)𝑎𝐻, (6.144)

according to the hydrogen model. With the hydrogen Bohr radius 𝑎𝐻, 𝜀(𝐸1𝑆) = 7.63 and
the derived value 0.226(6) 𝑚0 for 𝜇𝑋,𝑏 we get 𝑎𝑋,𝑏 = (1.79 ± 0.05) nm, which is about two
and a half times larger than 𝑎𝑋,𝑌 = 0.7 nm [Kav+97] for the yellow series.

6.5 Magneto-excitons and anisotropy of conduction band
In this section, we will derive the anisotropic effective electron mass 𝑚8𝐶

K of the 𝛤 −
8 CB

for K along three different crystal axis from the experimentally observed magnetic-field
dependent shifts of magneto-excitons in the high-field regime, which have already been
shown in Figs. 6.7(b) and 6.8(b).

First, we introduce the concept of magneto-excitons in the high-field regime, which are ex-
citons under the influence of strong magnetic fields, so that the cyclotron energy dominates
the Coulomb binding energy. At low magnetic fields, the excitons exhibit a diamagnetic
energy shift proportional to 𝐵2 according to Eq. (6.134), as demonstrated in Sec. 6.4.1. For
increasing magnetic fields, the cyclotron energy ℏ𝜔c increases linearly and surpasses the
Coulomb binding energy at a certain magnetic field, the so-called crossover magnetic field
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Table 6.2 Crossover magnetic fields 𝐵cross,𝑛 for blue series 𝑆 type magneto-excitons in de-
pendence of the principle quantum number up to 𝑛 = 8 calculated according to Eq. (6.150).

𝑛 1 2 3 4 5 6 7 8
𝐵cross,𝑛 (T) 92 17 6.0 2.7 1.4 0.8 0.5 0.4

𝐵cross. As a consequence, the quadratic diamagnetic shift transforms into a linear mag-
netic shift, as known from Landau levels, and scales with the principle quantum number
according to

𝐸𝑐,𝑛𝐿
(𝐵) = (𝑛 − 1

2
)ℏ(𝜔c,e + 𝜔c,h) = (𝑛 − 1

2
)ℏ( 𝑒𝐵

𝑚8𝐶
K

+ 𝑒𝐵
𝑚7𝑉 ) (6.145)

= (𝑛 − 1
2

) ℏ𝑒
𝜇𝑒ℎ

K
𝐵, (6.146)

with the cyclotron frequencies 𝜔c,e from the electron, 𝜔c,e from the hole, the electron charge
𝑒, the 𝛤 −

8 CB effective electron mass 𝑚8𝐶
K along the crystal axis K, the 𝛤 +

7 VB effective
hole mass and the reduced exciton mass 𝜇eh

K , which is calculated by

1
𝜇eh

K
= 1

𝑚8𝐶
K

+ 1
𝑚7𝑉 . (6.147)

The crossover magnetic field, at which the binding energy and the cyclotron energy are
equal, is calculated by equating the magnetic length

𝑙𝑛 = √ 2ℏ
𝑒𝐵cross,𝑛

(𝑛 − 1
2

) (6.148)

and the average exciton radius

⟨𝑟𝑛,𝑙⟩ = 𝑎𝑋
𝐵
2

[3𝑛2 − 𝑙(𝑙 + 1)]. (6.149)

The crossover magnetic field is accordingly expressed by

𝐵cross,𝑛 = 8ℏ
9𝑒𝑎𝑋

𝐵
2

(𝑛 − 1
2)

𝑛4 . (6.150)

The crossover magnetic fields are listed in Tab. 6.2 for blue-series excitons as a function of
the principle quantum number up to 𝑛 = 8. For 𝑛 ≥ 3 the crossover magnetic field lies below
10 T and therefore within the range of our experiments. The slopes of the magnetic-field-
dependent energy shifts are expected to have less influence by the parabolic diamagnetic
shift for increasing 𝑛. Therefore the slopes should converge to the expected Landau level
shift according to Eq. (6.146) for higher principal quantum numbers.

The experimental data on the magnetic-field dependent SHG spectra of magneto-excitons
are shown in Figs.6.10(a), 6.10(b) and 6.10(c) for the three different crystal orientations, for
which k is directed along the [111], [1 ̄10] and [001] crystal axis of the H2a, H45b and H45a
samples, respectively. The contour plots represent the second derivatives of the SHG spectra
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Figure 6.10 Second derivatives of the SHG spectra in the spectral range of blue series
magneto-excitons for magnetic fields between 4 to 10 T for the three different crystal
orientations: (a) K ∥ [111] and B ∥ [11 ̄2] of the H2a sample, (b) K ∥ [1 ̄10] and B ∥ [110]
of the H45b sample, (c) K ∥ [001] and B ∥ [110] of the H45a sample. The orange dots
mark the resonance energies and are obtained by Gaussian fits to the second derivatives
of the according SHG spectra. The orange lines are linear fits according to Eq. (6.146).

for a better evaluation of the resonance energies. The 𝑛 = 4 magnetoexciton emerges for
all crystal orientations at about 𝐵 = 5 T. Magneto-excitons with higher 𝑛 emerge at even
higher fields. An exception is the 𝑛 = 5 magnetoexciton in the k ∥ [001] case, of which
clear signals appear at about 𝐵 = 8.5 T. For the k ∥ [111] orientation, magneto-excitons
up to 𝑛 = 6 are observed. For the other two orientations, the highest quantum number
magnetoexciton, which is clearly observed, is 𝑛 = 8 with even weak indications of 𝑛 = 9 and
10 for k ∥ [001]. The slope of the magnetic-field-dependent energies is increasing for higher
𝑛, which leads to a ”fan” like appearance. For the 𝑛 = 3 magnetoexciton in Fig. 6.10(a),
the influence of the parabolic diamagnetic shift is clearly seen for lower magnetic fields, as
the crossover field is at about 6 T.

For the evaluation of the resonance energies, we fit Gaussian functions to the second
derivatives of the SHG spectra. The fit values of the central energies of the Gaussians are
plotted in Fig. 6.10 as orange dots. The slope for each 𝑛 is fitted with the linear function

𝑠K,𝑛 =
ℏ𝑒(𝑛 − 1

2)
𝜇K,𝑛

, (6.151)

⇔ 𝜇K,𝑛 =
ℏ𝑒(𝑛 − 1

2)
𝑠K,𝑛

, (6.152)

according to Eq. (6.146), ignoring the influence of the diamagnetic shift for lower magnetic
fields. For higher 𝑛 the slope is expected to converge to the Landau shift with a linear
magnetic field dependence.

In Fig. 6.11, we plot the fit results as color symbols with fit error bars for the slopes
converted into the parameter 𝜇K,𝑛, which would correspond to the reduced exciton mass
if the influence of the diamagnetic shift would not be present. The inset shows the same
results in a logarithmic plot. The converging behavior of the 𝜇K,𝑛 is clearly seen and fitted
with the empiric function

𝜇K,𝑛 = 𝜇𝑒ℎ
K + 𝑎K exp (−𝑏K𝑛), (6.153)
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Figure 6.11 𝑛 dependent parameter 𝜇K,𝑛 (open circles) calculated according to
Eq. (6.152) from the slope parameters of the linear fits of magneto-excitons shifts in
Fig. 6.10. The fit error of the slopes is shown as the error bars. The 𝜇K,𝑛 converge to the
reduced exciton mass 𝜇eh

K for increasing 𝑛, which is listed in Table 6.3 and are fitted using
the empirical function in Eq. (6.153). The other fit parameters are: 𝑎[001] = 2.609 𝑚0,
𝑎[11̄0] = 2.595 𝑚0, 𝑎[111] = 9.411 𝑚0, 𝑏[001] = 0.617, 𝑏[11̄0] = 0.620 and 𝑏[111] = 0.987. The
inset shows the same data in a logarithmic diagram.

with the fit parameters

𝑎[001] = 2.609 𝑚0, 𝑎[11̄0] = 2.595 𝑚0, 𝑎[111] = 9.411 𝑚0, (6.154)
𝑏[001] = 0.617, 𝑏[11̄0] = 0.620, 𝑏[111] = 0.987 (6.155)

of the exponential function and 𝜇𝑒ℎ
K as the obtained result for the reduced exciton mass,

which are shown in the second column of Tab. 6.3 for the crystal orientations listed in the
first column.

The 𝛤 −
8 CB effective electron masses for the three crystal orientations are shown in

Tab. 6.3 in the third column and calculated according to Eq. (6.147) using the reduced
exciton mass for the corresponding crystal axis and the value 𝑚7𝑉 = 0.575(50) 𝑚0 for the
isotropic 𝛤 +

7 VB hole mass from Ref. [Nak+12]. The effective electron mass exhibits a
significant anisotropy ranging from 0.304 𝑚0 along the [111] crystal axis up to 0.452 𝑚0
along the [001] axis. For comparison, the effective electron masses are extracted from the
band structure calculations from Ref. [Fre+08] and listed in the fourth and fifth column in
Table 6.3 for the two sub-bands. The experimental data seem to show the best agreement
with the 𝑚8𝐶

K,theo,1 values in the fourth column.
Due to the anisotropy of the 𝛤 −

8 CB the reduced exciton mass needs to be calculated
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Table 6.3 The crystal axis, along which the excitation laser is directed, are listed in the
first column. The second column shows the experimentally obtained electron-hole reduced
masses 𝜇𝑒ℎ

K,exp, as shown in Fig. 6.11. The value for the effective electron masses 𝑚8𝐶
K,exp

is calculated from the reduced mass according to Eq. (6.147) with 𝑚7𝑉 = 0.575(50) 𝑚0
from Ref. [Nak+12]. The fourth and fifth columns show the effective electron masses as
theoretically calculated from Ref. [Fre+08] for the two 𝛤 −

8 sub-bands distinguished by
𝑖 = 1 and 2.

K ∥ 𝜇𝑒ℎ
K (𝑚0) 𝑚8𝐶

K,exp(𝑚0) 𝑚8𝐶
K,theo,1(𝑚0) 𝑚8𝐶

K,theo,2(𝑚0)
[111] 0.199(17) 0.304 0.261 0.241
[1 ̄10] 0.220(9) 0.356 0.332 0.201
[001] 0.253(14) 0.452 0.488 0.169

using the relation to the 𝐴8 parameters

𝑚8𝐶
[100] = 1/(𝐴8 + 𝐴′

8), (6.156)

𝑚8𝐶
[111] = 1/(𝐴8 − 𝐴″

8), (6.157)

𝑚8𝐶
[11̄0] = 1/(𝐴8 − 1

2
√𝐴′2

8 + 3𝐴″2
8 ). (6.158)

from Ref. [Krü+19]. Solving the system of equations leads to the values

𝐴8 = 3.39(61)/𝑚0, (6.159)
𝐴′

8 = −1.17(75)/𝑚0, (6.160)
𝐴″

8 = 0.11(84)/𝑚0, (6.161)

of the 𝐴8 parameters. Therefore the reduced exciton mass is given by 𝜇𝑋 = 0.195(24)𝑚0
according to 1/𝜇𝑋 = 1/𝑚7𝑉 + 𝐴8. This value deviates by −14.5 % from the according value
as obtained in Sec. 6.1 and by −13.7 % from the reduced exciton mass obtained in Sec. 6.4.1.

6.6 Conclusion
In this chapter, we have presented extensive experimental data on crystallographic and
magnetic-field-induced SHG of the blue-series excitons in Cu2O. The derived SHG polar-
ization dependencies for the yellow series in Sec. 4.1 could also be used here, as blue 𝑆 (𝑃)
excitons have the same optically active symmetry component as yellow 𝑃 (𝑆) excitons. The
𝛤 −

4 ZE is the dominant magnetic-field-induced SHG mechanism and is interfering for exci-
tation along the [111] crystal axis with the weaker 𝛤 +

5 ZE and MSE mechanisms. However,
these three mechanisms can individually be switched on for k along the [1 ̄10] crystal axis
by specific settings of the linear polarization angles, which enabled us to excite the 1𝑆 and
2𝑆 exciton-polaritons as well as the 2𝑃 exciton individually. By measuring their magnetic
field series and analyzing their diamagnetic shifts and MSE-mixing-induced repulsions we
could extract blue series exciton parameters such as the reduced exciton mass and the Bohr
radius. Magneto-excitons up to a principal quantum number of 𝑛 = 8 are observed and the
anisotropic effective electron mass of the 𝛤 −

8 CB is extracted from the magnetic field shifts
along the three crystal axis [111], [1 ̄10] and [001].
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6.6 Conclusion

Table 6.4 Results for key parameters of blue-series excitons such as the resonance ener-
gies and line widths, the Rydberg and bandgap energies, the effective electron masses for
different crystal axis, the reduced exciton mass and the exciton Bohr radius, which are
obtained by our experiments and polariton calculations. 𝜇𝑋,1 is obtained from the diamag-
netic shifts in the three-level model in Sec. 6.4.1 and 𝜇𝑋,2 is obtained from the magnetic
field shifts of magneto-excitons and calculated with the 𝐴 parameters in Sec. 6.5. The
third column shows the corresponding literature values from the PL experiments from
Ref. [Tak+18] and the fourth column shows the values for the effective electron masses as
derived from the band structure calculations from Ref. [Fre+08] for comparison.

parameter this work [Far+21] [Tak+18] (PL) [Fre+08] (theory)
𝐸1𝑆 2.5920 eV
𝐸2𝑆 2.6214 eV
𝐸2𝑃 2.6196 eV
𝐸1𝑆𝑇

2.579 26 eV 2.5829 eV
𝐸2𝑆𝑇

2.619 21 eV 2.6209 eV
𝐸𝑔 2.6326 eV 2.6336 eV

𝐸Ryd 57.1 meV 50.7 meV
𝛾1𝑆 13.9 meV 23.9 meV
𝛾2𝑆 7.64 meV 20.1 meV
𝑎𝑋 1.79 nm

𝜇𝑋,1 0.226 𝑚0
𝑚8𝐶

[111] 0.304 𝑚0 0.261 𝑚0
𝑚8𝐶

[11̄0] 0.356 𝑚0 0.332 𝑚0

𝑚8𝐶
[001] 0.452 𝑚0 0.488 𝑚0

𝜇𝑋,2 0.195 𝑚0

Combining the experimental data and the polariton calculations from Sec. 6.1, additional
parameters such as the transverse resonance energies, the SHG resonance energy due to the
sharp excitation on the upper polariton branch, the bandgap and the Rydberg energy could
be determined. The obtained results for the mentioned parameters are summarized in
Tab. 6.4 and compared to literature data from previous publications.

SHG measurements can be extended to the violet series in the future. First measurements
are performed and presented in Fig. 2.7(b), which shows the 𝛤 −

4 ZE-induced SHG spectra
at 𝐵 = 10 T extended to the spectral range of the violet-series excitons. A comparison
to one-photon reflection measurements is shown in Fig. 2.7(a). Other nonlinear-optical
processes, such as THG with an efficient triple ED excitation and an ED emission, can also
be applied to study the properties of the blue-series excitons.
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Chapter 7

Difference frequency generation with
two-photon excitation of yellow-series
excitons

Difference frequency generation with two-photon excitation is a type of four-wave mixing,
which turned out to be a suitable optical method for polarization and time-dependent
measurements of excitonic states in semiconductors. One pulsed laser performs a two-
photon excitation similar to previous SHG experiments. Additionally, the pulsed light of a
second laser with a smaller frequency is directed onto the sample with spatial and temporal
overlap with the pulses from the first laser and stimulates a signal with the difference
frequency of 𝜔DFG = 2𝜔exc. − 𝜔stim., as shown in Fig. 2.1(d). The configuration of the
experimental setup for 2P-DFG experiments is shown in Fig. 3.1(b).

Compared to SHG, 2P-DFG has several benefits: i) Delaying the stimulating relative to
the exciting pulses allows measuring time-dependent phenomena such as the coherence of
excitons, cross-relaxation processes and beats between excitonic states. ii) The additional
photon in the emission channel allows to address a greater variety of states and provides
more possibilities for separating different mechanisms. iii) The detected signal originates
from the entire crystal thickness, because the crystal is transparent for all involved photons,
as opposed to SHG, for which the generated second harmonics photon is strongly absorbed
so that only the signal generated in the last section of the sample can escape.

Time-dependent phenomena, such as cross-relaxation, have already been measured in
Ref. [Yos+06] at the 1𝑆 exciton in Cu2O with a single laser setup. A two-photon excita-
tion along the [110] crystal axis excites the longitudinal orthoexciton component, which is
forbidden for single-photon emission. By cross-relaxation into a transverse component, the
EQ emission is monitored with a streak camera. A build-up of the signal with the cross-
relaxation time with a subsequent decay has been observed. For the same crystal direction,
the reverse process has been demonstrated in Ref. [Frö+87] by 1P-DFG. A transverse 1𝑆
component has been excited by an EQ process and an additional laser pulse has stimulated
the two-photon emission of a transverse component, again measuring the cross-relaxation
time. This experiment is described in Ref. [Han+98] for excitation along the [111] crystal
direction, in which electron and hole spin-flip processes and propagation effects have been
measured in the time domain.

Time-resolved transmission experiments have been performed in order to measure polari-
ton propagation beats [Frö+91]. The EQ excitation covers a large range of the upper and
lower polariton branches. The beats result from an interference between pairs of pulses on
the lower and upper polariton branches having the same group velocity and a phase shift
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7.1 Simulation of polarization dependencies

Figure 7.1 Experimental geometry for 2P-DFG experiments with (a) parallel and (b)
anti-parallel stimulation relative to the direction of excitation light.

after propagating a certain distance through the crystal. The difference in our experiments
is, that the two-photon excitation addresses a sharp point on the upper polariton branch
with a specific group velocity resulting in a strong coherence.

In Ref. [Frö+89], a four-photon process was demonstrated in RbI, addressing the lower
polariton branch of the 1𝑆 exciton by a three-photon difference frequency generation 𝜔LP =
2𝜔1 − 𝜔2 = 𝜔DFG.

A part of the experimental results in this chapter has been obtained during the Bachelor
theses of Sh. Mesgary [Mes21] and G. Uca [Uca22].

This chapter is structured as follows: The polarization-dependent 2P-DFG signal for the
𝛤 +

5 component of yellow 𝑆 and 𝐷 states as well as for the 1𝑆 exciton in a magnetic field
is derived in Sec. 7.1. The 𝛤 +

5 component is addressed by ED-ED processes both in the
excitation and the emission channels. Polarization, time and excitation power dependent
2P-DFG spectroscopy experiments of the 1𝑆 and higher 𝑛 excitons are presented in Secs. 7.2
and 7.3, respectively. Section 7.4 elaborates three different cases of magnetic-field-induced
quantum beats between the three 1𝑆 orthoexciton eigenstates in a magnetic field in Voigt
configuration, which are set by different choices of the polarization setting of the involved
light waves. Moreover, the beat frequencies are measured as function of the magnetic field
strength. The average excitation powers of the fs and ps pulsed lasers are set to about
30 mW and about 10 mW, respectively.

7.1 Simulation of polarization dependencies

The polarization selection rules and the derivation of the polarization dependence of SHG
processes as described in Secs. 4.1 and 5.3 can easily be extended to the 2P-DFG process.
The scheme for the 2P-DFG process of yellow-series 𝑆 excitons at zero field is shown in
Fig. 7.2(a). For the symmetry considerations, the excitation channel of the 2P-DFG process
for yellow-series 𝑆 excitons is identical to that of the SHG process given in Eq. (4.64). As
the emission channel also consists of a two-photon process, it is equivalent to the excitation
channel and one has to only insert the linear polarization angle 𝜃 for the stimulation and 𝜑
for the DFG photon. The experimental geometry for parallel and anti-parallel stimulation
relative to the excitation light direction is shown in Fig. 7.1. For yellow 𝑆 excitons the
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Chapter 7 Difference frequency generation with two-photon excitation of yellow-series excitons

Figure 7.2 Schematics for (a) the crystallographic 2P-DFG process of 𝛤 +
5 excitons and

(b) for magnetic-field-coupled 1𝑆 orthoexcitons.

ED-ED operator is therefore given by

𝑂5+
DD(𝜓) = 1√

2
⎛⎜
⎝

𝑑2(𝜓)𝑑3(𝜓) + 𝑑3(𝜓)𝑑2(𝜓)
𝑑1(𝜓)𝑑3(𝜓) + 𝑑3(𝜓)𝑑1(𝜓)
𝑑1(𝜓)𝑑2(𝜓) + 𝑑2(𝜓)𝑑1(𝜓)

⎞⎟
⎠

(7.162)

for the excitation channel and

𝑂5+
DD(𝜃, 𝜑) = 1√

2
⎛⎜
⎝

𝑑2(𝜃)𝑑3(𝜑) + 𝑑3(𝜃)𝑑2(𝜑)
𝑑1(𝜃)𝑑3(𝜑) + 𝑑3(𝜃)𝑑1(𝜑)
𝑑1(𝜃)𝑑2(𝜑) + 𝑑2(𝜃)𝑑1(𝜑)

⎞⎟
⎠

(7.163)

for the emission channel. The 2P-DFG intensity consequently reads:

𝐼2P-DFG
S-exc (𝜓, 𝜃, 𝜑) = 𝐼5+

DD/DD(𝜓, 𝜃, 𝜑) ∝ ∣𝑂5+
DD(𝜓)𝑂5+

DD(𝜃, 𝜑)∣2 . (7.164)

The 2P-DFG polarization dependencies of the 1𝑆 orthoexciton eigenstates in a magnetic
field are analogously derived as in Sec. 5.3. The scheme for the 2P-DFG process of the 1𝑆
orthoexciton eigenstates in a magnetic field is shown in Fig. 7.2(b). The eigenvectors 𝛬𝑖(𝐵)
of matrix Eq. (5.110) are multiplied with the excitation and emission channel expressions,
respectively, before the square of the absolute value of the product of both channels is taken.
The polarization-dependent 2P-DFG intensity is thus given by

𝐼2P-DFG
B,1S,i (𝜓, 𝜃, 𝜑, 𝐵) = 𝐼5+

DD/DD,i(𝜓, 𝜃, 𝜑, 𝐵) (7.165)

∝ ∣[𝛬𝑖(𝐵) ⋅ 𝑂5+
DD(𝜓)][𝛬𝑖(𝐵) ⋅ 𝑂5+

DD(𝜃, 𝜑)]∣2 . (7.166)

The polarization-dependent intensity for the individual two-photon processes is given by

𝐼2P-excit.
B,1S,i (𝜓, 𝐵) = 𝐼5+

DD,i(𝜓, 𝐵) ∝ ∣𝛬𝑖(𝐵) ⋅ 𝑂5+
DD(𝜓)∣2 (7.167)

for the excitation and

𝐼2P-emit.
B,1S,i (𝜃, 𝜑, 𝐵) = 𝐼5+

DD,i(𝜃, 𝜑, 𝐵) ∝ ∣𝛬𝑖(𝐵) ⋅ 𝑂5+
DD(𝜃, 𝜑)∣2 (7.168)

for the emission channel. The polarization diagrams for four different crystal orientations
are plotted in the first two rows in Fig. 7.3 for the emission channel according to Eq. (7.168)
and in the third row for the excitation channel according to Eq. (7.167).
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7.2 2P-DFG spectroscopy of yellow 1𝑆 exciton in time domain

Figure 7.3 2D polarization diagrams for the emission two-photon processes (stimulation
and DFG) addressing the |𝑀| = 0 (first row) and |𝑀| = 1 (second row) 1𝑆 exciton eigen-
states in a magnetic field in Voigt configuration for excitation along four different crystal
axis. The third row shows the 1D polarization diagrams for the two-photon excitation
channel for the same states and crystal orientations.

7.2 2P-DFG spectroscopy of yellow 1𝑆 exciton in time domain

For the 2P-DFG experiments the femtosecond laser is set to 1220 nm (1.016 eV) in order
to excite the 1S exciton via a two-photon ED-ED process. The picosecond laser is set
to a wavelength of 1707 nm (0.726 eV) and directed onto the same sample spot from the
same or the opposite direction (see Fig. 7.1) and its pulses are set into time overlap with
the femtosecond pulses as described in Sec. 3.4. The stimulated DFG signal is spectrally
resolved by the spectrometer and detected by the CCD camera. An example spectrum
is shown in Fig. 7.4(d) as the black line. It consists of a sharp exciton resonance peak
at about 1.306 eV, which is the energy difference between the two-photon exciton and the
stimulation energy. The FWHM of about 1 meV is determined by the spectral width of the
ps laser. The spectrum shows an additional broad spectral feature in the range from 1.29 eV
to 1.32 eV. Once the ps pulses are delayed by 2 ps relative to the fs pulses, the excitonic
2P-DFG signal remains, but the spectrally broad signal disappears as shown by the red line
in Fig. 7.4. The spectrally broad signal only occurs in the time overlap of both laser pulses
and is therefore interpreted as a coherent 𝜒(3) signal in the sample, which originates from
the third order nonlinearity in Eq. (2.13).

The 2P-DFG spectra as a function of delay time will be shown and discussed in Sec. 7.2.1
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Chapter 7 Difference frequency generation with two-photon excitation of yellow-series excitons

Figure 7.4 (a) 2P-DFG spectra and (b) 2P-DFG intensity of the 1𝑆 exciton as a function
of the delay time in the range between 𝑡delay = 0 ps and 4700 ps. (c) 𝜒(3) signal in a delay
time range between 𝑡delay = −6 ps and 4 ps. (d) Spectral cut at 𝑡delay = 0 ps (black line)
and 2 ps (red line), as marked in panel (c). The measurements are done with the geometry
shown in Fig. 7.1(a) in the H2a sample (see Tab. 3.1) at 𝐵 = 0 and 𝜓/𝜃 = 90∘/0∘ without
polarization optics in the emission channel.

and the coherence time of the 1𝑆 exciton as a function of the excitation power will be
investigated in Sec. 7.2.2. The polarization dependencies of the excitonic and the 𝜒(3)

signal are presented in Sec. 7.2.3.

7.2.1 Time-dependent measurements of 1𝑆 at zero field

As becomes evident from both spectra in Fig. 7.4(d) the 2P-DFG spectral features change
significantly as a function of the delay time. In order to investigate the dependence of the
excitonic and the 𝜒(3) signal on the delay time in more detail, the 2P-DFG spectrum is
measured for delay times between −6 and 4700 ps and shown in Fig. 7.4(a) in the form of
a 2D contour plot. The 2P-DFG intensity is represented by a color scale as a function of
the DFG energy on the horizontal and delay time on the vertical axis.

Figure 7.4(b) shows a cut at the energy of maximum intensity of the 1𝑆 2P-DFG signal
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7.2 2P-DFG spectroscopy of yellow 1𝑆 exciton in time domain

along the delay time axis. The excitonic signal drops in intensity immediately after the
temporal overlap of both laser pulses and then increases up to about 𝑡delay = 1.7 ns. After
that an exponential decay in the range of several ns is observed. The reason for the raise in
signal has not been clarified yet, as one would expect a maximal signal in time overlap with
an immediate decay for increasing delay time. However, in Sec. 7.2.2 the stimulating ps laser
is directed from the other side of the sample anti-parallel to the excitation laser, as shown
in Fig. 7.1(b). After careful adjustment of the involved laser beams the time-dependent
2P-DFG intensity shows the expected behavior of maximum signal in time overlap and a
subsequent decay.

Figure 7.4(c) shows a zoom in the delay time range of −6 ps to 4 ps, in which the time
dependence of the 𝜒(3) signal becomes evident. It only occurs in the time overlap of both
pulses. For larger delay times, the 𝜒(3) signal vanishes and only the excitonic signal remains.

7.2.2 Excitation-power dependent coherence times
For the experiments in this section the stimulating ps laser pulses are directed from the other
side of the sample opposite to the excitation fs laser pulses, as shown in Fig. 7.1(b). The
2P-DFG intensity of the yellow 1𝑆 exciton is measured for three different average excitation
powers of 20, 28 and 40 mW at a temperature of 1.4 K. Additionally, the measurement with
an average excitation power of 40 mW is repeated at a temperature of 1.8 K by slightly
closing the valve between the VTI and the helium pump and thus increasing the pressure
within the VTI resulting in a raise of the temperature. The experimental data are shown
in Fig. 7.5.

Figure 7.5 (a) 2P-DFG intensity of the 1𝑆 exciton at zero field in the H2a sample (see
Tab. 3.1) as a function of the delay time for three different average excitation powers and
two temperatures in a logarithmic diagram. The inset shows the extracted coherence times
as a function of the excitation power for 𝑇 = 1.4 K and 1.8 K.

As the stimulating laser pulses are directed from the opposite side, the 2P-DFG signal does
not drop significantly after the time overlap but stays at a high level, although not maximal.

109



Chapter 7 Difference frequency generation with two-photon excitation of yellow-series excitons

As the signal still raises slightly, the intensity of each measurement is normalized to 1 at
a delay time of 1 ns. The exponential function 𝐼2P-DFG

𝑃 (𝑡delay) = 𝑎𝑖 exp (𝑡delay/𝑡coherence) is
fitted to each data set and the coherence times are extracted, and plotted in the inset in
Fig. 7.5. It shows qualitatively, that the coherence time decreases for increasing excitation
power and increasing temperature. More detailed experiments investigating the coherence
times of the 1𝑆 exciton as a function of the temperature and excitation power will be
performed in the future.

7.2.3 Polarization dependent measurements

The 2P-DFG intensity of the 1𝑆 exciton as a function of the linear polarization angles is
measured for a fixed linear polarization angle 𝜃 = 0∘ of the stimulating ps laser. The linear
polarization angle 𝜓 of the excitation laser and 𝜑 of the 2P-DFG signal are varied from
0∘ to 360∘ degrees each in steps of 10∘, as described in Sec. 3.5. As the excitonic signal
is interfering with the 𝜒(3) signal, the polarization dependence of the exciton cannot be
directly taken from the measurements, since the background signal needs to be subtracted
for each spectrum. In order to achieve this, the intensity of the pixel at 𝐸DFG = 1.303 eV [see
Fig. 7.4(d)], which is at the same intensity level as the base of the excitonic signal on the 𝜒(3)

signal, is subtracted from the maximal exciton intensity at the pixel at 𝐸DFG = 1.306 eV
for each spectrum of a distinct polarization setting. With this method, the polarization
dependence of the 1𝑆 exciton is evaluated and shown in Fig. 7.6(b). It shows intensity
maxima at 𝜓/𝜑 = 0∘/0∘ and polarization settings shifted by 180∘ either in 𝜓 or 𝜑, which
are distorted and stretched along the diagonal. The simulation plot is calculated according
to Eq. (7.164) for a fixed stimulation polarization angle of 𝜃 = 0∘ and shown in Fig. 7.6(a).
It has a good agreement with the experimental plot.

Figure 7.6 (a) Simulated [according to Eq. (7.164)] and (b) experimentally obtained
2P-DFG polarization dependence of the 1𝑆 exciton in the H2a sample (see Tab. 3.1) at
zero field in the temporal overlap of the exciting and stimulating laser pulses, as shown in
Fig. 7.4(d).
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7.3 2P-DFG of higher 𝑛 excitons

Figure 7.7 (a) Experimentally obtained 2P-DFG intensity of the 𝜒(3) signal at 𝐵 = 0
and 𝑡delay = 0 as a function of 𝜓 and 𝜑 for 𝜃 fixed to 0∘. The polarization dependence
is measured for k along the [001], [110], [112] and [111] in the H106a, H106b, H2b, and
H2a samples (see Tab. 3.1), respectively. The right panel shows the same measurement in
amorphous quartz at room temperature. This indicates, that the polarization dependence
of the 𝜒(3) signal is independent of the crystal structure.

The polarization dependence of the 𝜒(3) signal is directly taken from the measurements at
an energy of 𝐸DFG = 1.303 eV, as already used for subtraction for the evaluation of the 1𝑆
exciton polarization dependence as described above. It is plotted in the fourth contour plot
in Fig. 7.7 for the same sample. It shows maxima at the same angle combinations as the
excitonic polarization dependence, however, not as strongly distorted along the diagonal. It
has been measured for multiple crystal orientations as well as in amorphous quartz at room
temperature for 𝜃 = 0∘, as shown in the other diagrams in Fig. 7.7. It always shows the
same polarization dependence and is therefore not dependent on the crystal structure. Up
to now, no method was found to simulate the polarization dependence of the 𝜒(3) signal.

7.3 2P-DFG of higher 𝑛 excitons
In this section, the 2P-DFG method is applied to yellow-series 𝑆 and 𝐷 excitons with higher
principal quantum numbers. Compared to the 1𝑆 exciton these states exhibit larger line
widths, as seen in Fig. 2.5, and are therefore expected to show smaller coherence times.
The exciting fs laser is set to half of the 3𝑆 exciton energy but the second harmonic of its
power spectrum covers the whole range from the 2𝑆 resonance to the bandgap.

Figure 7.8(a) shows the 2P-DFG spectra of higher 𝑛 excitons in the H106 sample (excita-
tion along [1 ̄10], see Tab. 3.1) as a function of the delay time in the range of −4.5 ps to 8 ps.
For this crystal orientation, SHG is forbidden, which demonstrates, that the 2P-DFG pro-
cess is not as symmetry restrictive as the SHG process. If all linear polarization angles are
equal, 2P-DFG represents an alternative method for two-photon absorption spectroscopy.
The 𝜒(3) signal occurs at delay times between −3.5 ps and 0.5 ps and vanishes after that.
Several narrow lines remain and decay within a few ps. Figure 7.8(b) shows the spectral
cuts at 0 ps and 3.3 ps delay time as marked by the horizontal red and orange lines in
Fig. 7.8(a). At 0 ps the signal of the green 1𝑆 exciton and the yellow 2𝑆, 3𝑆, 3𝐷 and 4𝑆
excitons is seen. At 3.3 ps the 2P-DFG signal of the green 1𝑆 exciton has almost completely
vanished. In contrast, the higher yellow excitons decay more slowly and their signal is still
clearly visible. As expected from the decreasing line width for increasing principal quantum
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Chapter 7 Difference frequency generation with two-photon excitation of yellow-series excitons

Figure 7.8 (a) Zero field 2P-DFG intensity of higher 𝑛 excitons in the H106b sample
(with k ∥ [1 ̄10], see Tab. 3.1) as a function of the DFG energy and for a delay time range
from 𝑡delay = −4.5 ps to 8 ps. (b) Spectral cuts at 𝑡delay = 0 ps and 3.3 ps. (c) 2P-DFG
intensity of the green 1𝑆 and yellow 3𝑆 and 3𝐷 excitons as functions of the delay time.
This measurement is performed in the H2a (with k ∥ [111], see Tab. 3.1) sample for smaller
delay time steps and larger integration times.

numbers scaling with 𝑛−3 [Kaz+14], the coherence time is expected to increase with the
inverse of this power.

A cut along the delay time axis from a more detailed measurement is shown in Fig. 7.8(c)
for the green 1𝑆 and yellow 3𝑆 and 3𝐷 excitons. The green 1𝑆 exciton shows a smooth
exponential decay with a decay time of about 0.55 ps. The yellow 3𝑆 and 3𝐷 excitons have
decay times of about 1.07 ps and 1.23 ps, respectively. Additionally, their decay is modu-
lated by oscillations with a beat period of about 1.5 ps equivalent to an energy splitting of
about 2.76 meV, which is in good agreement with their spectrally measured energy split-
ting of 2.744 meV as extracted from the SHG spectrum in Fig. 2.5(d). Measurements of
the coherence times of higher 𝑛 excitons as a function of the average excitation power are
planned for the future.

7.4 Magnetic-field-induced quantum beats of 1S exciton

The physics of the 1𝑆 excitons in a magnetic field is already described in Sec. 5.1. The main
points are shortly summarized in the following: The 1𝑆 exciton is a fourfold state consisting
of three optically active 𝛤 +

5 orthoexciton states and a single pure spin-triplet 𝛤 +
2 paraexciton

state, which is optically inactive and lies about 12.1 meV below the orthoexcitons due to
the exchange interaction. Although future efforts will be done to detect a 2P-DFG signal
of the paraexciton, it has not yet been achieved. Therefore we will only concentrate on the
orthoexciton states in this section. In an externally applied magnetic field, the orthoexciton
eigenstates are denoted by the magnetic quantum numbers 𝑀 = −1 and 𝑀 = +1, which
exhibit a linear Zeeman splitting proportional to the magnetic field strength and the 𝑀 = 0
state, which shows a weak quadratic shift to higher energies due to a repulsion with the
paraexciton, as shown in Fig. 5.2(b).

In a magnetic field, the states are expected to show a beating behavior in the time domain
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7.4 Magnetic-field-induced quantum beats of 1S exciton

Figure 7.9 (a) Simulated [according to Eq. (7.166)] and (b) experimentally obtained 2P-
DFG polarization dependence of the 1𝑆 exciton in the H106b sample (see Tab. 3.1) at
𝐵 = 10 T and 𝑡delay = 0.

with a frequency determined by the energy splitting of the states, which can be measured
by the 2P-DFG method. At 10 T the 𝑀 = −1 and +1 states are split by 962 µeV, which
would result in a beat frequency of about 𝑓 = 𝐸/(ℏ2𝜋) ≈ 232 GHz or a beat period of
𝑇 = 1/𝑓 ≈ 4.3 ps. Excitation with the 200 fs pulses is sufficiently short compared to the
beat period at 𝐵 = 10 T. This would not be the case if the ps laser would be used for
excitation.

Just as it has been demonstrated in Sec. 5.3 for the SHG process to separate the signal of
the 𝑀 = 0 from the 𝑀 = ±1 states by a specific linear polarization setting of incoming laser
and outgoing SHG light, it is also possible to select the 2P-DFG signal of different eigen-
states for certain polarization settings and therefore detect beats with different frequencies
involving different combinations of the three eigenstates. We will distinguish between the
following three cases: i) Measure the time-dependent 2P-DFG intensity while detecting only
the 𝑀 = 0 state, in which case no beating is expected. ii) The 2P-DFG signal of only the
𝑀 = +1 and −1 states is detected, leading to beats with a single frequency. iii) 2P-DFG
signal of all three states is detected resulting in irregular beats containing three different
frequencies.

In order to find a suitable experimental geometry we consider the polarization diagrams
of the two-photon processes in Fig. 7.3. For our experiments, we choose sample H106b (see
Tab. 3.1), for which the laser light is directed along the [1 ̄10] and the magnetic field along
the [001] crystal axis. At 𝜓 = 55∘ all three states are excited with a similar intensity. The
three cases are then set using the linear polarization setting of 𝜃 and 𝜑 in the emission
channel. Case i) is achieved for 𝜃/𝜑 = 90∘/90∘, case ii) for 𝜃/𝜑 = 0∘/90∘ and case iii) for
𝜃/𝜑 = 55∘/55∘.

The excitonic 2P-DFG signal is measured for the described three cases at 𝐵 = 10 T as a
function of the delay time for a range of −9 ps to 60 ps shown in Fig. 7.10. Figure 7.10(a)
shows case i) detecting only the 𝑀 = 0 signal. As expected, no beats are observed after

113
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Figure 7.10 2P-DFG intensity of the 1𝑆 orthoexciton eigenstates in a magnetic field of
10 T in Voigt configuration in the H106b sample (see Tab. 3.1) as a function of delay
time and DFG energy. The fs laser excites all three states with similar intensity with
𝜓 = 55∘, as shown in the lower panel in the second column in Fig. 7.3. (a) Detection of
only 𝑀 = 0 state at 𝜃/𝜑 = 90∘/90∘ with no quantum beats. (b) Detection of 𝑀 = +1
and 𝑀 = −1 states at 𝜃/𝜑 = 0∘/90∘ resulting in single frequency beats. (c) Detection of
𝑀 = 0, 𝑀 = +1 and 𝑀 = −1 states at 𝜃/𝜑 = 55∘/55∘ resulting in triple frequency beats.

the 𝜒(3) signal. In the time range of 60 ps the decay process is also not noticeable, as it
takes several nanoseconds. Therefore the intensity seems to stay constant as also shown in
the cartesian plot in the right panel of Fig. 7.10(a) representing the intensity along the cut
at the central signal energy. The lower panel shows the Fourier transform (FT), which is
calculated along the delay time axis for each pixel corresponding to a 2P-DFG energy. As
no beating is observed, there is also no peak visible in the frequency domain.

Figure 7.10(b) represents case i), in which beats between the 𝑀 = +1 and 𝑀 = −1
states are observed, which contain a single frequency with a 𝑠𝑖𝑛2 shape corresponding to
the energy splitting. The lower FT panel shows a frequency peak at about 233 GHz.

Figure 7.10(c) represents case iii) with irregular-looking beats clearly shown in the right
panel along the cut in time containing three frequencies, which are visible in the lower FT
panel. The high-frequency peak at 233 GHz corresponds to the beats between the 𝑀 = +1
and −1 states, the second highest frequency peaks results from the beats between the
𝑀 = −1 and 𝑀 = 0 states and the lowest frequency peak corresponds the beat between
the 𝑀 = +1 and 𝑀 = 0 states, as their energy splitting is slightly smaller than between
the 𝑀 = −1 and 𝑀 = 0 states due to the quadratic shift of the 𝑀 = 0 component moving
closer in energy to the 𝑀 = +1 state.

As the beat frequencies correspond to the splitting energy between the states, which are
in turn dependent on the magnetic field, they should decrease for decreasing magnetic fields.
Therefore the magnetic field series from 10 to 0 T in steps of 1 T is measured for a delay
time range from −7 ps to 212 ps and shown in Fig. 7.11 for case iii).
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7.4 Magnetic-field-induced quantum beats of 1S exciton

Figure 7.11 Magnetic field series of the triple frequency quantum beats from 0 to 10 T
in steps of 1 T in the H106 sample (see Tab. 3.1) introduced in Fig. 7.10(c).

The irregularity of these three-level beats is most evident in the contour diagram for
𝐵 = 10 T. The FT panel below shows clearly the three intensity peaks. The peaks in the
FT diagrams occur spectrally in the overlap of the 2P-DFG signals of the states involved
in the beating. The beats are therefore a result of the interference of the 2P-DFG signal
of different states as a function of time. The highest frequency peak at about 233.5 GHz is
associated with the beat between the 𝑀 = +1 and −1 states, the middle frequency peak at
135.6 GHz with the beats between the 𝑀 = +1 and 𝑀 = 0 states and the lowest frequency
peak at 98.5 GHz with the beat between the 𝑀 = −1 and 𝑀 = 0 states.

The frequencies resulting from the energy differences between the three states as a func-
tion of the magnetic field are expressed by

𝛥𝐸+1,−1 = 2𝑏𝐵, (7.169)

𝛥𝐸+1,0 = 𝑏𝐵 − 𝑎2𝐵2

𝜀
, (7.170)

𝛥𝐸0,−1 = 𝑎2𝐵2

𝜀
+ 𝑏𝐵, (7.171)

as derived from Eqs. (5.100) and (5.101) in Sec. 5.1. The two lower frequency peaks decrease
for lower magnetic fields and at the same time get closer together in energy. The reason is
the magnetic-field-induced quadratic shift of the 𝑀 = 0 state, which converges to the mean
energy value of the 𝑀 = −1 and 𝑀 = +1 states for decreasing magnetic fields.

The magnetic field dependence of the beat frequencies becomes evident in the FT panels
below the main ones. All frequency peaks are fitted with Gaussians in the time domain and
the fit parameter of the central position for each peak is plotted in Fig. 7.12 as a function
of the magnetic field. A linear fit of the high-frequency peak according to Eq. (7.169)
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Figure 7.12 Frequency (left axis) and corresponding energy splitting (right axis) obtained
from the FT panels of Fig. 7.11 displaying triple-frequency quantum beats as a function of
the magnetic field. Dots represent experimentally obtained data with error bars resulting
from the fit errors of the Gaussians in the frequency domain. Lines represent the fits
according to Eqs. (7.169), (7.170) and (7.171).

yields a Zeeman splitting parameter of 𝑏 = 48.25 ± 0.07, which deviates by 0.3 % from
the one obtained by SHG spectroscopy in Sec. 5.2. Fits of the two lower frequency peaks
according to Eqs. (7.170) and (7.171), taking the fit value for 𝑏, yield the shift parameters
𝑎+1,0 = 98 ± 2 and 𝑎0,−1 = 95 ± 4. Their mean value deviates by 6 % from the one obtained
by SHG spectroscopy in Sec. 5.2. It is therefore demonstrated, that the energy splittings
can be measured with 2P-DFG experiments in the time domain to a high accuracy.

7.5 Conclusion

In this chapter, we have demonstrated 2P-DFG as a nonlinear optical technique for mea-
suring time-dependent phenomena of excitons. The extensive group theoretical derivation
of the polarization selection rules for the SHG process from the three previous chapters
is extended to the 2P-DFG process by exchanging the single-photon process in the emis-
sion channel by a two-photon process with the linear polarization angles of the stimulating
ps laser light 𝜃 and of the DFG light 𝜑. The additional photon in the emission channel
compared to SHG provides an additional degree of freedom for addressing states of various
symmetries. As the 2P-DFG process is not as symmetry restrictive as the SHG process in
this regard, it gives access to more exciton states. In the case of 𝜓 = 𝜃 = 𝜑, 2P-DFG has
the same selection rules as two-photon absorption and is therefore an alternative method
for two-photon spectroscopy. It is demonstrated in Fig. 7.8 by measuring the 2P-DFG spec-
trum of higher 𝑛 exciton for excitation along the [1 ̄10] direction in Cu2O without external
perturbations, which is forbidden for SHG. However, the 𝜒(3) signal represents a difficulty
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for 2P-DFG spectroscopy as an alternative for two-photon spectroscopy for excitonic states
with lifetimes below a few picoseconds, as it would require measuring the spectrum for short
delay times. This would apply to 2P-DFG spectroscopy of green or blue-series excitons.
Despite it, a suitable choice of linear polarization settings can improve the intensity ratio
of the excitonic versus the 𝜒(3) signal.

The 2P-DFG intensity as a function of the three linear polarization angles has been
explicitly derived for the 𝛤 +

5 component of yellow-series 𝑆 and 𝐷 excitons in absence of
any external perturbations and plotted in 2D diagrams for fixed 𝜃. Measurements for the
2D polarization diagrams for the same case have resulted in a good agreement between
theory and experiment. Although the polarization selection rules for the 𝜒(3) signal have
not been derived, its polarization diagrams are measured for various crystal orientations
and for amorphous quartz and with and without an applied magnetic field. In all cases,
the resulting polarization diagrams show the same dependence. Therefore the conclusion
is drawn, that the polarization dependence of the 𝜒(3) signal does not dependent on the
crystal structure, which makes it predictable for future experiments.

The time dependence of the yellow 1𝑆 exciton is measured for stimulation laser light
directed from the same and opposite direction as the excitation laser light. For the case of
a parallel excitation and stimulation, the 2P-DFG signal drops significantly after the time
overlap of both laser pulses and builds up to the maximum signal within 1 to 2 ns, before
it starts to decay. Excitation and stimulation from opposite directions enable measuring
a decay process for the 2P-DFG signal without an initial drop and build-up of the signal.
This confirms the phase matching condition 2kexc. − kstim. = kDFG. Therefore the opposite
excitation-stimulation geometry was adapted during these investigations and is suggested for
future experiments. The time dependence for the yellow 1𝑆 exciton is additionally measured
for average excitation powers between 20 and 40 mW. A decrease of the coherence time from
3.488 ns to 3.138 ns is demonstrated qualitatively for increasing excitation power within the
measured excitation power range at a temperature of 1.4 K. The coherence time at an
excitation power of 40 mW has dropped by 18 % once the temperature has been increased
to 1.8 K.

The described method is applied to higher 𝑛 excitons. The 2P-DFG spectrum of the
yellow 2𝑆, 3𝑆, 3𝐷 and 4𝑆 as well as the green 1𝑆 exciton is measured. The resolution of
even higher 𝑛 excitons is limited by the spectral width of the stimulating laser pulses. The
coherence time for the yellow 3𝑆 and 3𝐷 excitons is measured to be larger than that of the
green 1𝑆 exciton.

Magnetic-field-induced beats of the yellow 1𝑆 exciton, which is split into the 𝑀 = +1, 0
and −1 eigenstates, are detected in time-dependent 2P-DFG measurements. At a polar-
ization setting of 𝜓/𝜃/𝜑 = 90∘/90∘/90∘ the 2P-DFG signal of only the 𝑀 = 0 state is
detected and no beats are observed. At 𝜓/𝜃/𝜑 = 55∘/0∘/90∘ and 𝐵 = 10 T beats between
the 𝑀 = +1 and −1 states with a single frequency of 233 GHz are detected. The beat
frequency is measured to be proportional to the magnetic field due to the linear Zeeman
splitting of both states. At 𝜓/𝜃/𝜑 = 55∘/55∘/55∘ beats between all three states with fre-
quencies of 233.5 GHz, 135.6 GHz and 98.5 GHz are detected at 10 T. It is possible to
measure beats with a high-intensity contrast, although the involved resonance lines cannot
be resolved spectrally.

More extensive coherence time measurements of the yellow 1𝑆 and higher 𝑛 excitons as
a function of the average excitation power and temperature are planned for the future.
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Moreover, the coherence times of yellow 𝑃 excitons will be measured by 1P-DFG and com-
pared to the coherence times of 𝑆 and 𝐷 excitons. For the correct geometry for future
1P-DFG and 2P-DFG experiments, the stimulating laser pulses have to be directed from
the opposite direction relative to the excitation pulses. With this geometry new attempts to
measure the 2P-DFG signal of the 1𝑆 paraexciton will be made, in order to look for hints of
Bose-Einstein condensation, which has been recently demonstrated in Ref. [Mor+22]. This
method will also be applied to excitonic states in other semiconductor materials, such as
ZnSe and GaAs.

The experimental setup allows for other two-color experiments such as sum frequency
generation. By varying the wavelength ratios of both lasers, one can tune the sharp excita-
tion on the upper polariton branch along 𝑘. Recently, a two-color experiment was performed
in order to check the power-dependent influence of three-photon excited electron plasma on
the line width and spectral position of yellow 𝑃 excitons. The fs-laser has passed a BBO
crystal generating second harmonic light with a Gaussian spectral shape covering the Ryd-
berg 𝑃 excitons, of which the absorption dips are detected on the Gaussian power spectrum.
By setting the SHG of the ps-laser for one case between the 1𝑆 and 2𝑆 excitons, which is
a spectral region without electronic states, a plasma is induced by three-photon excitation,
which blocks the Rydberg excitons and reduces the spectral absorption dips. This effect
is compared to the second case, in which the two-photon energy of the ps-pulse is set to
the 3𝑆 energy. In this case, the three-photon process is comparable to the first case, but
additionally 3𝑆 excitons are excited, which additionally interact with the 𝑃 exciton and
influence the absorption spectrum.

A similar experiment can be made for investigating the time-dependent effects of an
electron-hole plasma on 𝑆 and 𝐷 excitons by using the ps pulses to measure the SHG
spectrum of 𝑆 and 𝐷 excitons. The two-photon energy of additional fs pulses can be set
between the 1𝑆 and 2𝑆 energy in order to create a plasma by three-photon excitation. By
delaying the ps pulses the exciton-plasma interaction can be measured as a function of time.
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Chapter 8

Conclusions and outlook

In this work, we have presented extensive experimental results on second harmonic gener-
ation (SHG) spectroscopy of yellow and blue-series excitons in Cu2O under the influence
of magnetic fields. Additionally, the higher-order process of difference frequency genera-
tion with two-photon excitation (2P-DFG) was used for measurements of exciton coherence
times and magnetic-field-induced quantum beats of yellow-series excitons.

SHG mechanisms are characterized by their polarization diagrams, which are typically
shown as polar plots representing the SHG intensity on the radial axis as a function of
the linear polarization angle 𝜓 of the incoming laser light. The outgoing SHG light is
detected with a linear polarization angle 𝜑, which is parallel or perpendicular to the tuned
angle 𝜓. These two configurations are in most cases sufficient to explain the underlying
mechanism. However, the full picture is given if the SHG intensity is measured for all
possible combinations of 𝜓 and 𝜑 and plotted in 2D diagrams, in which the intensity is
represented by a color scale. The experimental acquisition of the full polarization diagrams
works well with the fixed wavelength fs pulse method, as the diagrams are obtained for
several exciton lines with just one measurement. This gives a large time advantage compared
to the narrow bandwidth ps and ns pulses, as they only allow the measurement of the
polarization dependence for one exciton resonance at a time.

The polarization diagrams are not only obtained experimentally but also simulated using
the point group tables of Koster et al. [Kos+63]. Mund et al. have already derived the
polarization selection rules for yellow-series 𝑆 and 𝑃 excitons [Mun+18]. Here, we have
extended the derivations of polarization selection rules to magnetic-field-induced SHG con-
sidering various mechanisms of the Zeeman effect (ZE) and magneto-Stark effect (MSE)
involving electric dipole (ED), electric quadrupole (EQ) and magnetic dipole (MD) transi-
tions. Further extensions to magnetic-field-activated dark paraexcitons and to the process
of difference frequency generation with two-photon excitation are accomplished. By sim-
ulating the polarization diagrams for all possible mechanisms and sample orientations, as
shown in Figs. 4.5, 4.7 and 4.10, the most suitable experimental orientation can be quickly
found.

This novel approach offers significant benefits for controlling the specific mechanisms con-
tributing to the measured SHG signal. In particular, it allows us to suppress all mechanisms
in the SHG spectrum but the one of interest to study its distinct spectral features. An ex-
ample of this approach is shown in Fig. 4.12, in which SHG spectra of yellow-series excitons
are depicted, which are purely induced by a magnetic field due to the Zeeman effect or the
magneto-Stark effect. This allowed us to study how the ratio of the intensity contributions
of both mechanisms scales with the principal quantum number 𝑛. As states of different
symmetry also exhibit a characteristic polarization dependence, it allows to suppress SHG
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contributions of a certain subset of excitonic states. This allowed choosing certain 𝜓/𝜑
settings for the detection of the Rydberg series of dark paraexcitons, as a large subset of
bright orthoexcitons could be suppressed, which would otherwise overpower the small SHG
signals of their dark counterparts. Cu2O has been the ideal material for the demonstration
of this method, as it is characterized by the point group Oh of the highest symmetry and
offers a rich spectrum of narrow excitonic states.

In chapter 4 the fixed wavelength femtosecond pulse method described in Sec. 3.3 was
used in order to measure the SHG spectra of 𝑛 ≥ 3 excitons of the yellow series with spectral
resolutions of 80 µeV. The laser light was directed along the high-symmetry crystal axis
[1 ̄10] in order to suppress crystallographic SHG, which has already been investigated in
Ref. [Mun+18]. The magnetic field was directed along the [110] crystal axis, in order
to induce the SHG via the dominant ZE and MSE, which are measured at polarization
settings of 𝜓/𝜑 = 0∘/90∘ and 𝜓/𝜑 = 45∘/0∘, respectively. The mentioned experimental
orientation is the most suitable for the presented experiments. It was chosen based on all
simulated polarization diagrams, which have been plotted for all SHG processes and crystal
orientations. SHG spectra for varying magnetic fields up to 10 T are measured at both
of these settings revealing their spectral features. The ZE involves magnetic-field-coupled
𝛤 +

5 excitons, which are two-photon excited by an ED-ED transition and emit light via an
EQ transition. The MSE involves the same excitation process, but the effective electric
field couples the 𝛤 +

5 states to 𝛤 −
4 states, which then emit light via an ED transition. The

ZE and MSE polarization diagrams are measured on the 3𝑆 and 3𝐷 excitons, respectively,
as they are almost purely induced by the according mechanism. In the general case, an
interference of both effects occurs. The polarization dependence at a random exciton line
in the 𝑛 = 4 multiplet is measured and modeled successfully including the interfering field
amplitudes of the ZE and MSE processes. Several weaker mechanisms have been identified,
which involve the magnetic and electric field coupling of 𝛤 +

1 , 𝛤 +
3 and 𝛤 +

4 exciton states and
other higher-order transitions such as the MD. Their polarization diagram is measured for
a fixed 𝜓 = 90∘. The ratio between the MSE and ZE-induced SHG intensity is found to
scale with a power of about 6.4 with the principle quantum number.

Chapter 5 reveals results on SHG spectroscopy of dark paraexcitons, which are pure spin-
triplet states with 𝛤 +

2 symmetry and do not couple to the light field. They gain oscillator
strength due to a magnetic field mixing with optically active orthoexcitons. The spectrum
of the 1𝑆 para and orthoexcitons is measured at 10 T at a resolution of 10 µeV using the
fixed wavelength method. In this case, not the fs but the ps pulses are used in order to
obtain the SHG spectra, as their power spectrum is sufficiently broad to cover the three
orthoexciton split at 10 T. But the ps pulses are at the same time narrow enough not
to excite the orthoexcitons when set to half of the paraexciton energy, as the 300 times
stronger orthoexciton SHG signals would overpower the weak paraexciton signals. Using
the group theory method, the polarization selection rules are derived for the dominant SHG
mechanism, which involves an ED-ED excitation and an EQ emission. The magnetic-field-
induced energy shift of all four states is measured in order to extract the 𝑔 factors of the
VB and the CB, as well as the mixing parameters between the |𝑀| = 0 and |𝑀| = 1
components. Direct excitation of the 𝛤 +

2 is shown to be possible via an EQ-MD transition.
For the SHG process, the magnetic field admixture of the 𝛤 +

5 states is still needed for the
EQ emission. The polarization diagram is measured in a sample oriented such, that the
laser light is directed along the [001] crystal axis, in which the dominant SHG mechanism

120



with an ED-ED excitation is suppressed, as the EQ-MD mechanism is expected to be much
weaker. These mechanisms are clearly identified by measuring their SHG intensity as a
function of the magnetic field. The ED-ED SHG mechanism is expected to scale with 𝐵4

and the EQ-MD with 𝐵2. The experimentally obtained values for the power parameter are
found to deviate by −7% for the ED-ED and by 25% for the EQ-MD SHG process from
the expected one.

The understanding of the polarization selection rules, which are tested and verified on
the 1𝑆 para and ortho excitons, are exploited in order to measure the Rydberg series of
paraexcitons up to 𝑛 = 6. The SHG contributions of a large subset of Rydberg exciton
states are suppressed by choosing suitable polarization angle settings in order to detect
the rather weak paraexciton signals. Plotting the second derivatives of the SHG spectra
as a function of the magnetic field instead of the real SHG spectra has helped to identify
the weak paraexciton SHG signals. A peculiarity is found for the 2𝑆 paraexciton, which is
energetically located above its orthoexciton against the expectation based on the Hund’s
rules. This results from the mixing of the yellow 2𝑆 orthoexciton with the green 1𝑆 orthoex-
citon. The experimentally obtained ortho-para splitting energies turned out to be in good
agreement with the calculated values by Schweiner et al. [Sch+17b], which were performed
four years prior to our experimental study. Further numeric investigations are performed
by Rommel et al. [Rom+21], quantifying the influence of different effects on the energy
splitting of ortho and para states, such as the spin-orbit coupling.

The excitons of the blue series are studied at an unprecedented level of detail using
SHG spectroscopy in magnetic fields and the results are presented in chapter 6. The SHG
polarization selection rules derived for yellow excitons in chapter 4 are directly applied to
blue excitons, as blue 𝑆 and yellow 𝑃 as well as blue 𝑃 and yellow 𝑆 excitons have the
same optically active symmetry components. The MSE and the ZEs of 𝛤 −

4 and 𝛤 +
5 excitons

are identified as the SHG-inducing mechanism in a magnetic field. The SHG spectrum
induced by each one of these mechanisms, while suppressing all others, is measured. It
allows to evaluate the magnetic-field-induced energy shifts of the 1𝑆, 2𝑆 and 2𝑃 resonances
and extract the reduced exciton mass of 0.226 𝑚0 and the exciton radius of 1.79 nm from
the data. Magneto-excitons in the high-field regime are detected up to 𝑛 = 8. Their
magnetic-field-induced energy shift approaches a linear trend for higher 𝑛 and increasing
magnetic fields. An analysis yields the anisotropic effective mass of CB electrons ranging
from 0.304 𝑚0 along the [111] to 0.452 𝑚0 along the [001] crystal axis. As the oscillator
strength of blue transitions is 7 orders of magnitude larger than that of yellow transitions,
the polariton effect is considered for the calculations of the dispersion relation of excitons
of the blue series by H. Stolz. SHG represents a sharp 𝑘 excitation on the upper polariton
branch. The calculations enabled to quantify the polariton shift of the 1𝑆 exciton, which is
observed about 13 meV higher compared to the transverse 1𝑆 exciton energy. Furthermore,
the Rydberg energy of 57.1 meV and the bandgap of 2.6326 eV is obtained.

In chapter 7 we have presented nonlinear optical measurements of yellow-series excitons
in the time domain using difference frequency generation with two-photon excitation (2P-
DFG). The fs pulses with a photon energy of 1.016 eV excites a population of yellow 1𝑆
excitons via a two-photon transition. Additional ps pulse set to 0.726 eV, which are directed
onto the sample, stimulate the 2P-DFG signal at 1.306 eV, which is spectrally resolved and
detected. With this method a coherence time of about 3.5 ns is measured for the 1𝑆 exciton
at an average excitation power of 20 mW. This is shown in the inset of Fig. 7.5. A reduction
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of the coherence time is qualitatively observed with increasing excitation powers and rising
temperatures. The 3𝑆 and 3𝐷 excitons exhibit coherence times of just over one ps as shown
in Fig. 7.8(c). In addition to the decay of their 2P-DFG signals, oscillations are observed
with a beat period of about 1.5 ps corresponding to their energy splitting. The polarization
diagram for a fixed linear polarization angle of the ps laser at 𝜃 = 0∘ and varying 𝜓 and 𝜑
is measured for the 1𝑆 exciton for k along the [111] crystal axis and is in agreement with
the simulation indicating the successful extension of the SHG polarization selection rules
to the 2P-DFG process by considering an additional photon in the emission channel.

The first experiments have been performed according to the experimental geometry shown
in Fig. 7.1(a), in which the ps pulses are directed nearly parallel with the fs pulses onto the
sample. Although this geometry resulted in sufficiently large signals, the 2P-DFG intensity
of the 1𝑆 exciton dropped after the temporal overlap of both pulses and has then increased
to its maximum for delay times of about 1.7 ns followed by an exponential decay. But
according to the phase matching condition in Eq. (2.21), the stimulating pulses have to be
directed anti-parallel to the exciting pulses, as shown in Fig. 7.1(b). Using this geometry,
the sudden drop of 2P-DFG intensity after the time overlap of both pulses did not occur.

By applying a magnetic field in Voigt geometry, the 1𝑆 ortho exciton splits into the
three eigenstates designated by their magnetic quantum numbers 𝑀 = −1, 𝑀 = 0, and
𝑀 = +1. For excitation along the [1 ̄10] and the magnetic field along the [001] crystal axis,
all three exciton states are excited at 𝜓 = 55∘ at about equal intensities. Choosing different
polarization settings 𝜃/𝜑 for the emission channel allows to control, which states contribute
to the 2P-DFG signal, as they exhibit different polarization dependencies. Measuring the
2P-DFG intensity as a function of time at 𝜃/𝜑 = 90∘/90∘ leads to a simple decay of the
signal with the coherence time in the range of several ns. A setting of 𝜃/𝜑 = 0∘/90∘ leads to
2P-DFG signals of the 𝑀 = −1 and 𝑀 = +1 states, which beat with a single frequency of
233.5 GHz corresponding to their energy splitting of 962 meV at 10 T. At 𝜃/𝜑 = 55∘/55∘ all
three states contribute to the 2P-DFG signal resulting in quantum beats containing three
frequencies, which can be obtained from the FFT analysis. The frequencies are obtained
for a series of magnetic fields and the magnetic field mixing parameters 𝑎 and 𝑏 are derived,
deviating by 0.3 % and 6 % from the values obtained in Sec. 5.2.

2P-DFG turned out to be a useful method for nonlinear optical measurements of excitons
in the time domain. Compared to SHG, it has three instead of just two degrees of freedom
considering the linear polarization angles and thus offers more possibilities to distinguish
between different mechanisms. This property can be used in the attempt of measuring
excitons involving transitions from the third highest VB with 𝛤 +

3 symmetry, as they can
clearly be distinguished from 𝛤 +

5 VB exciton states. This is not possible using SHG, as
𝛤 +

3 and 𝛤 +
5 states exhibit the same polarization dependence, as can be seen in Fig. 4.5.

Additional efforts will be made to search for 2P-DFG paraexciton signals using the anti-
parallel geometry for excitation and stimulation in order to detect hints of Bose-Einstein
condensation at temperatures below 1.4 K. We propose to apply this method to the excitons
of other semiconductors such as ZnSe. One difficulty is given by the 𝜒(3) signal, which occurs
in the temporal overlap of both laser pulses. If the coherence times of the investigated states
are in the range of a few ps and below, their 2P-DFG signal has to be measured at 𝑡delay = 0
leading to an interference with the 𝜒(3) signal. However, the 𝜒(3) signal exhibits the same
polarization dependence independent of the symmetry of the material. Additionally, it
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vanishes for certain polarization settings, which would allow measuring pure exciton signals
at 𝑡delay = 0.

The setup used for 2P-DFG experiments offers possibilities for further two-color exper-
iments in the time domain involving the energetically tunable ps and fs pulses. As an
example, the influence of an electron plasma on the Rydberg excitons can be investigated
as a function of the delay time. The ps pulses inject an electron plasma via a two or
three-photon excitation. The fs pulses probe the Rydberg excitons by measuring their SHG
signals in order to look for spectral broadening and shifting of the resonance lines or the
reduction in their intensity.
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Appendix A

Point group theory tables

Figure A.1 Full rotation group compatibility table for Oh point group from Ref. [Kos+63].
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Figure A.2 Character table for Oh point group from Ref. [Kos+63].

Figure A.3 Multiplication table for O and Td point groups from Ref. [Kos+63].

Figure A.4 Coupling coefficient table for 𝛤1 ⊗ 𝛤4 → 𝛤4 from Ref. [Kos+63].
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Appendix A Point group theory tables

Figure A.5 Coupling coefficient table for 𝛤3 ⊗ 𝛤4 → 𝛤4 ⊕ 𝛤5 from Ref. [Kos+63].

Figure A.6 Coupling coefficient table for 𝛤6 ⊗ 𝛤7 → 𝛤2 ⊕ 𝛤5 from Ref. [Kos+63].

Figure A.7 Coupling coefficient table for 𝛤4 ⊗𝛤4 → 𝛤1 ⊕𝛤3 ⊕𝛤4 ⊕𝛤5 from Ref. [Kos+63].
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Figure A.8 Coupling coefficient table for 𝛤4 ⊗𝛤5 → 𝛤2 ⊕𝛤3 ⊕𝛤4 ⊕𝛤5 from Ref. [Kos+63].

Figure A.9 Coupling coefficient table for 𝛤5 ⊗ 𝛤6 → 𝛤7 ⊕ 𝛤8 from Ref. [Kos+63].
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