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Tuning the nuclei-induced spin relaxation of localized electrons
by the quantum Zeno and anti-Zeno effects
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Quantum measurement back action is fundamentally unavoidable when manipulating electron spins. Here we
demonstrate that this back action can be efficiently exploited to tune the spin relaxation of localized electrons
induced by the hyperfine interaction. In optical pump-probe experiments, powerful probe pulses suppress the
spin relaxation of electrons on Si donors in an InGaAs epilayer due to the quantum Zeno effect. By contrast, an
increase of the probe power leads to a speed-up of the spin relaxation for electrons in InGaAs quantum dots due
to the quantum anti-Zeno effect. The microscopic description shows that the transition between the two regimes
occurs when the spin dephasing time is comparable to the probe pulse repetition period.
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Modification of quantum system dynamics due to the
interaction with a measurement apparatus can always
be described microscopically, for example, based on the
Schrödinger equation [1,2]. In many cases, however, the
general concepts of strong or weak measurements [3–6]
can be applied. The former, also known as von Neumann
type of measurements, is widely discussed nowadays for
measurement-based quantum computation [7–9], while weak
measurements are often implemented experimentally to
minimize the system perturbation.

Frequent measurements can lead to freezing of the quan-
tum dynamics, known as quantum Zeno effect [10,11], which
requires measurements with a repetition period TR shorter than
the Zeno time [12], τZ , the time of non-Markovian relaxation.
The less known and less universal is the quantum anti-Zeno
effect which is the acceleration of the system relaxation due
to the quantum back action [13–15]. It can occur when the
repetition period is longer than the Zeno time [12]. In fact, this
condition can be easily realized, but often the measurement in-
volves additional heating and other perturbations, from which
the quantum anti-Zeno effect can be challenging to separate.

The quantum Zeno effect is important for quantum infor-
mation processing [16,17], especially with spin-based qubits,
as it can be used to increase the electron spin relaxation
time; the quantum anti-Zeno effect, by contrast, allows one
to quickly erase spin polarization so that both effects should
be taken into account when measuring spin qubits. However,
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the short Zeno time of free charge carriers strongly hinders
reaching the regime of the quantum Zeno effect.

For localized electrons, the spin relaxation mechanisms
[18] related to orbital electron motion, such as Elliot-Yafet
[19,20], Bir-Aronov-Pikus [21], and Dyakonov-Perel [22], are
suppressed. Then, the hyperfine interaction with the lattice
nuclei plays the dominant role in electron spin relaxation
[23,24]. Due to the long nuclear spin coherence times, the
electron spin relaxation is hyperfine-induced and is essen-
tially non-Markovian [25–27]. In this case, the Zeno time
is of the order of the electron spin dephasing time T ∗

2 [28]
making the quantum Zeno effects particularly important for
localized electron spins [29–32]. As quantum dots represent
attractive candidates for scalable quantum information pro-
cessing, manifestations of the quantum Zeno effects were
reported: suppression of tunneling [33–36], stabilization of
optical emission [37–39], and nuclear spin freezing [40–42].
None of the previous studies, surprisingly, has addressed Zeno
effects for the nuclei-induced spin relaxation of localized car-
riers experimentally.

In our work, we apply the optical pump-probe technique
to manipulate the spin relaxation time of electrons localized
in quantum dots or on donors, utilizing the quantum Zeno
and anti-Zeno effects. Due to the scaling of the dephasing
time with the localization volume, T ∗

2 ∝ √
V , we observe

the opposite Zeno effects for these two systems for similar
experimental conditions.

Experiment. The first sample consists of 20 layers of n-
doped InGaAs self-assembled quantum dots (QDs) separated
by 70 nm barriers of GaAs. A δ doping of Si 16 nm above
each layer provides a single electron per QD on average.
The QD density per layer is about 1010 cm−2. Rapid thermal
annealing at 880 ◦C for 30 s shifts the average emission
energy to 1.3662 eV and reduces the spread of the QD size
distribution [43]. The second sample consists of a 10 μm thick
InGaAs epilayer with an indium fraction of 3%. It was grown
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FIG. 1. (a) PRC (orange) for the QD sample with Lorentzian fit
shown by the black dashed curve. The inset shows the mechanism
of polarization recovery in Faraday geometry. (b) Probe power de-
pendence of the zero field spin polarization 〈Sz〉 normalized by the
S0 measured at 1 T for the pump power Ppu = 0.5 mW (blue dots)
with its theoretical fit (orange curve) with Pπ = 103 mW, T = 6 K.
The sketches below illustrate the microscopic origin of the anti-Zeno
effect, see the theory part for an explanation.

by molecular beam epitaxy on a GaAs substrate. The sample
was doped with Si atoms providing a donor carrier density of
3.9 × 1016 cm−3 [44].

We use the pump-probe technique to measure the spin
dynamics using the Faraday rotation technique. We apply a
longitudinal magnetic field parallel to the optical z axis (Fara-
day geometry). Localized spin-singlet trion complexes are
resonantly excited for the QD sample and on the low-energy
PL flank for the epilayer sample. The laser pulses with a
duration of 2 ps are emitted with 1/TR = 1 GHz repetition
frequency. Samples are cooled to a temperature of 6 K in a
cryostat. The beams were focused on the sample into a spot
with 50 μm diameter for the pump and 45 μm diameter for
the probe, for which we measured the Faraday ellipticity. See
Sec. S1.A of the Supplemental Material for further technical
details and optical properties of samples.

Results. Figure 1(a) shows the spin polarization 〈Sz〉 of the
QD sample as a function of the magnetic field for a −50 ps
delay between pump and probe pulses, identical to a +950 ps
delay, the pump power is Ppu = 0.5 mW and the probe power
is Ppr = 1 mW. The trace is normalized to its value S0 in
high magnetic field of 1 T. At zero magnetic field, the spin
polarization is reduced by the hyperfine interaction with the
fluctuating nuclear spin bath of the host lattice [45]. The

FIG. 2. (a) Exemplary PRC for the epilayer sample with the
pump and probe powers stated by the labels. The black dashed curve
gives the Lorentzian fit with the HWHM of 0.03 mT. (b) Probe
power dependence of the normalized spin polarization (blue dots)
with its theoretical fit (orange curve) with Pπ = 80 mW. The sketches
illustrate the microscopic mechanism of the quantum Zeno effect, see
the theory part for an explanation.

longitudinal magnetic field Bz decouples the electron spins
from the nuclear environment and increases the spin polariza-
tion, leading to the polarization recovery curve (PRC) shown
in Fig. 1(a). The inset in Fig. 1(a) shows a sketch of the spin
stabilization: the projection of the average spin polarization
〈Sz〉 on the z axis rises to S0 with increasing longitudinal
magnetic field, shown by �L, and �N denotes the random
Overhauser field.

The PRC can be approximately fit by a Lorentzian, see
the black dashed line. The fit yields the half width at half
maximum (HWHM) of 130 mT, which together with the elec-
tron longitudinal g factor ge = −0.69 [43] gives the electron
spin dephasing time T ∗

2 = 0.13 ns. It is smaller than the pulse
repetition period TR = 1 ns.

Then we scan the probe power and show the corresponding
values of 〈Sz〉/S0 in Fig. 1(b). This ratio decreases with in-
crease of the pump power from one to zero, which reveals the
decrease of the electron spin relaxation time in zero magnetic
field. This corresponds to the quantum anti-Zeno effect.

In the epilayer sample, we observe the opposite behavior
using the same method. Figure 2(a) shows a PRC example for
Ppu = 0.3 mW and Ppr = 2 mW, together with a Lorentzian
fit. The HWHM of the PRC, in this case, is only 0.03 mT,
which is smaller than for the QD sample by more than three
orders of magnitude, c.f. Fig. 1(a). This is related to the larger
localization volume of electrons on shallow donors than in

L032032-2



TUNING THE NUCLEI-INDUCED SPIN RELAXATION OF … PHYSICAL REVIEW RESEARCH 5, L032032 (2023)

QDs, the resulting weaker role of the hyperfine interaction,
and, accordingly, the longer electron spin dephasing time T ∗

2
[44]. Further, Fig. 2(b) demonstrates the probe power de-
pendence of the spin polarization 〈Sz〉 at zero magnetic field
normalized to S0 at the saturation value of 3 mT. In stark
contrast to Fig. 1(b), the normalized spin polarization rises
with increasing measurement strength, revealing the quantum
Zeno effect.

The observation of opposite effects for the measurement
impact in the two samples for the same probe pulse repetition
period and similar other conditions calls for a theoretical
foundation.

Theory. The spin dynamics of localized electrons between
the pulses in the presence of hyperfine interaction with an
external magnetic field applied is described by the Bloch
equation [45]:

dS
dt

= (�L + �N ) × S − S
τs

. (1)

Here S is the spin of the electron, �L = geμBBz/h̄ is the
Larmor frequency with μB being the Bohr magneton, �N

is the spin precession frequency in the random Overhauser
field of the nuclear spins, and τs is the additional phenomeno-
logical electron spin relaxation time related, for example, to
the electron-phonon and spin-orbit interactions [46,47] [τs is
typically independent of B, which agrees with the flat PRC in
Figs. 1(a) and 2(a) in large magnetic fields]. The time scale
of the nuclear spin dynamics is much longer than that of the
electrons, so that �N can be assumed to be “frozen” [23] and
described by the probability distribution function F (�N ) ∝
exp[−2(�N T ∗

2 )2] [48]. Note that despite the pump helicity
modulation, a small degree of nuclear spin polarization along
the z axis can appear in the experiment [28], but it can be
accounted for as an additional contribution to the external
magnetic field.

The localized electron spins are pumped and probed opti-
cally through resonant spin-singlet trion excitation, with the
probe pulses arriving in effect shortly before the pump pulses.
Neglecting the electron spin dynamics between the probe and
pump pulses [49], following the approach of Ref. [50] we find
that the electron spin vectors before (S−) and after (S+), a
pulse pair are related by

S+
x = q2QS−

x , S+
y = q2QS−

y , S+
z = S−

z + g. (2)

Here g is the spin polarization created by the pump pulse,
q = cos(π/2

√
Ppr/Pπ ) < 1 describes the back action of the

probe pulse [51] with Pπ indicating the π pulse power [52].
The back action of the pump pulses is similarly described by Q
[50] (the difference in the power of Q is related to the circular
polarization instead of linear). In agreement with the general
quantum mechanical postulates [53,54], the measurement of
the z spin component destroys the transverse spin components
Sx and Sy. Microscopically, this is related to the trion excita-
tion, which obeys the selection rules for circular polarization
[55] and erases the quantum coherence between the spin-up
and spin-down electron states during the recombination [56].
In fact, 1 − q2 is the probability of trion excitation by the
probe pulse [57]. We assume the pump and probe pulses to be
exactly resonant with the optical transition, which maximizes

the Faraday ellipticity signal and suppresses pulse-induced
spin rotations [50].

The steady-state solution of Eqs. (1) and (2) yields the
electron spin polarization S−

z measured by the probe pulses
[28]. This solution has to be averaged over the random nuclear
fields to obtain the observed spin signal 〈Sz〉, while we neglect
the distribution of all the other parameters for simplicity.
Generally, this can be done only numerically [28], but in
some limiting cases, we find transparent analytical expres-
sions, which we give and discuss below.

A strong enough longitudinal magnetic field (�LT ∗
2 � 1)

decouples the electron and nuclear spins. The spin relaxation,
in this case, is Markovian with the time τs, so that the measure-
ment back action is negligible. Assuming slow spin relaxation
(τs � TR), we find that 〈Sz〉 equals to

S0 = gτs/TR. (3)

This gives spin polarization in the absence of hyperfine inter-
action.

At zero magnetic field, the electron-nuclei interaction leads
to spin relaxation, and thus to a smaller average spin 〈Sz〉. This
effect determines the amplitude and width of the PRC.

In the limit of TR � T ∗
2 , relevant for the quantum anti-Zeno

effect, pulsed excitation and detection can be described as
continuous spin generation and relaxation due to the measure-
ment back action:

dS
dt

= (�N + �L ) × S − S
τs

− 1 − q2

TR
(Sxex + Syey) + g

TR
ez.

(4)
Here eα , where α = x, y, z denote the unit vectors along the
corresponding axes, and the pump pulses are assumed to be
weak (Q → 1).

For very weak probe pulses, q → 1, the third term in
Eq. (4) vanishes and the average steady state solution gives
[45,58]

〈Sz〉
S0

= 1

3

1 + 3(�LT ∗
2 )2

1 + (�LT ∗
2 )2

. (5)

In zero magnetic field �L = 0, this gives 〈Sz〉/S0 = 1/3, as
expected for the isotropic hyperfine interaction [23].

For finite probe pulse power 1 − q, the steady state solution
of Eq. (4) can be written as Sz = gτ eff

s /TR with the effective
spin relaxation time

τ eff
s = τsTR cos2 θ

TR + (1 − q2)τs sin2 θ
, (6)

where θ is the angle between �N+�L and ez. Analytical
averaging over the nuclear fields for �L = 0 gives

〈Sz〉
S0

= μ

⎡
⎣√

μ + 1 arctanh

⎛
⎝

√
1

μ + 1

⎞
⎠ − 1

⎤
⎦, (7)

where μ = TR/[τs(1 − q2)]. Since TR 
 τs, one has μ ∼ 1 at
1 − q 
 1.

From Eq. (6), one can see that an increase of the probe
power (decrease of q) leads to a decrease of the spin relax-
ation time τ eff

s and the spin polarization 〈Sz〉 in agreement
with Fig. 1(b). Detailed analysis shows, however, that for
the chosen pump power, there are two contributions to the
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spin relaxation time: the quantum anti-Zeno effect, described
above, and heating of the nuclear spin bath by the probe pulses
[59]. Approximately, they contribute to a decrease of 〈Sz〉/S0

from 1/3 to 0 and from 1 to 1/3, respectively [28]. The
corresponding fit is shown by the orange curve in Fig. 1(b),
calculated numerically using the parameters T ∗

2 = 0.14 ns,
τs = 0.5 µs, and Pπ = 103 mW, and with account for the dy-
namic nuclear spin polarization. We note the good agreement
with the experimental results despite the simplicity of the
model as well as the agreement with previous estimates of the
system parameters [60,61].

The qualitative explanation of the quantum anti-Zeno ef-
fect is sketched at the bottom of Fig. 1. The pump pulse orients
the spin polarization along the z axis (i). Due to the strong
Overhauser field (T ∗

2 � TR), the spin polarization becomes
dephased and projected onto the Overhauser field direction
(�N ) within the time between the laser pulses (ii). After the
dephasing, the action of the probe pulse projects the spin onto
the z axis by canceling the transverse spin components (iii).
The cancellation varies depending on the probe power, accel-
erating the spin relaxation and reducing the relative average
spin polarization for higher powers at zero magnetic field.

We highlight that the spin relaxation’s acceleration is un-
related to a sample heating effect. A higher temperature
only changes the electron spin relaxation time τs, which is
unrelated to the nuclei, and scales the whole PRC with-
out changing its normalized amplitude. Thus, its suppression
unequivocally reveals the quantum anti-Zeno effect for the
nuclei-induced spin relaxation.

Next, we turn to the quantum Zeno effect, obtained for
a long spin dephasing time, T ∗

2 � TR. In this limit, from
Eq. (1) for �L = 0, one can see that between the pulses, the
in-plane spin components Sx/y are increased by ±�N,y/xTRSz.
On the other hand, according to Eq. (2), the probe and pump
pulses reduce them by (1 − q2Q)S−

x/y. Thus, in the steady
state, S+

x/y = ±�N,y/xTRSzq2Q/(1 − q2Q). At the same time,
from Eq. (1) we find that the z component of spin decreases
between the pulses by

S+
z − S−

z =
[

S+
z

τs
+

(
�2

N,x + �2
N,y

)
TRS+

z

2

+�N,yS+
x − �N,xS+

y

]
TR, (8)

which is much smaller than S0. This means that the spin
dynamics can be described by the effective spin relaxation
time τ eff

s , which is given by

1

τ eff
s

= 1

τs
+

(
�2

N,x + �2
N,y

)
TR(1 + q2Q)

2(1 − q2Q)
. (9)

The steady-state spin polarization similarly to Eq. (3) is given
by S−

z = gτ eff
s /TR. The averaging over the random nuclear

fields can be performed analytically with the result

〈Sz〉
S0

= −νEi(−ν) exp(ν), (10)

where ν = 4T ∗2
2 (1 − q2Q)/[τsTR(1 + q2Q)] and Ei(x) =

− ∫ ∞
−x e−t/tdt is the exponential integral function. This

derivation is valid for moderately strong pulses and short pulse
repetition periods when �N TR 
 1 − q2Q.

From Eq. (9), one can see that an increase of the probe
power (decrease of q) leads to an increase of the spin re-
laxation time τ eff

s , which is the quantum Zeno effect. This is
shown by the orange curve in Fig. 2(b), calculated numerically
with the parameters T ∗

2 = 88 ns, τs = 0.4 µs, Pπ = 80 mW,
1 − Q = 0.0021, and ge = −0.57, and describes the experi-
ment quite well, see Ref. [28] for the τs and Ref. [44] for T ∗

2
measurements.

Qualitatively, the quantum Zeno effect can be explained as
follows. The pump pulse orients the spin polarization along
the z axis (i). After the initialization, the spin starts to pre-
cess around the Overhauser field �N (ii). In this case, the
T ∗

2 � TR. For weak probe power, the effect of the probe on the
transverse spin components is negligible, and the average spin
polarization orients itself in the Overhauser field direction,
leading to low spin polarization values. Once the probe power
increases, it has a stronger impact on canceling the transverse
spin components, as sketched at the bottom of Fig. 2, enforc-
ing spin stabilization along the z axis (iii).

For the same reason, the probe pulses decelerate the elec-
tron spin precession in a transverse magnetic field. So we
measure the electron spin dynamics in the same sample us-
ing the extended pump-probe technique [62] for the different
powers of the probe pulses. We indeed observe [28] the
decrease of the electron spin precession frequency, which
demonstrates the quantum measurement back action (quan-
tum Zeno effect) directly in the time dynamics.

Conclusion. In this study, we have demonstrated exper-
imentally and theoretically that the quantum measurement
back action allows one to manipulate the spin relaxation time
of localized electrons, which is determined by the hyperfine
interaction with the nuclear spin fluctuations. The Zeno time
of non-Markovian spin dynamics in the studied systems dif-
fers by more than two orders of magnitude. It allowed us to
observe and describe the quantum anti-Zeno effect for quan-
tum dots and the quantum Zeno effect for donors using the
same laser repetition period. The effect of measurement back
action on the nuclei-induced spin relaxation was separated
from the heating effect by measuring PRC with a pump-
probe. As an outlook, we believe that this method will be
successfully applied to other systems with localized electrons
like colloidal quantum dots, nanoplatelets, perovskites, and
moiré quantum dots. Both quantum Zeno effects will be useful
for operating spin-photon interfaces generating many-body
entangled photon states for quantum information processing.
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