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Abstract—Emerging nonvolatile memory yields, alongside
many advantages, technical shortcomings, such as reduced cell
lifetime. Although many wear-leveling approaches exist to extend
the lifetime of such memories, usually a tradeoff for the gran-
ularity of wear leveling has to be made. Due to iterative write
schemes (repeatedly sense and write), wear out of memory in
certain systems is directly dependent on the written bit value
and thus can be highly imbalanced, requiring dedicated bit-wise
wear leveling. Such a bit-wise wear leveling so far has only be
proposed together with a special hardware support. However,
if no dedicated hardware solutions are available, especially for
commercial off-the-shelf systems with nonvolatile memories, a
software solution can be crucial for the system lifetime. In this
work, we propose entirely software-based bit-wise wear level-
ing, where the position of bits within CPU words in the main
memory is rotated on a regular basis. We leverage the LLVM
intermediate representation to adjust load and store operations of
the application with a custom compiler pass. Experimental eval-
uation shows that the lifetime by applying local rotation within
the CPU word can be extended by a factor of up to 21×. We
also show that our method can incorporate with coarser-grained
wear leveling, e.g., on block granularity and assist achievement
of higher lifetime improvements.

Index Terms—Bit rotation, intermediate representation (IR),
LLVM, nonvolatile main memory, wear leveling.

I. INTRODUCTION

DUE TO the widely realized implementation of iterative
write schemes [1], [2], [3] in emerging nonvolatile

main memory (NVM), wear out of such memories becomes
highly nonuniform even on the bit granularity. When applying
iterative write schemes, memory cells are sensed before every
write operation and only adequate write pulses are applied
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in an iterative manner until the target cell value is reached.
As a result, writing a memory cell with the value it con-
tained before, causes no wear out while changing the cell value
causes memory wear out. On a single-level cell memory, a sin-
gle bit is stored per memory cell, thus cells wear out from bit
flips only.

In order to accommodate for limited memory lifetime,
a broad landscape of wear-leveling methods for NVM is
explored in [4], [5], [6], [7], [8], [9], and [10]. The major-
ity of these methods considers memory wear out to happen
uniformly within blocks of a certain granularity (e.g., words,
cache lines, and memory pages) and therefore wear levels
such as entire blocks. Hence, these methods do not accom-
modate for iterative write scheme memories. Considering a
simple example of a 64-bit counter variable, increased by one
each time its written, a uniform wear-out assumption would
consider all 8 bytes to be written on every update of the vari-
able and cause wear out. Indeed, when only incrementing the
counter, the least significant bit is updated every time and
causes wear out. Each higher significant bit is only updated
half as often as the next lower significant bit, thus a loga-
rithmic distribution of wear out is caused within the 8 bytes.
While it may seem unrealistic that all memory content of a
program behaves similar like such variables, an initial case
study reveals a way higher wear out within the lower signif-
icant bits compared to the higher significant bits for a broad
range of typical benchmark applications [11].

Motivated by this observation, we investigate the problem
of wear leveling on a bit granularity in order to accom-
modate for iterative write scheme memories in this article.
While several solutions exist to perform such wear leveling
with special hardware support [4], [12], in this work, we
propose our problem solution—Memory Carousel, which is
an entirely software-based wear-leveling method for iterative
write scheme memories. The main idea is to rotate the phys-
ical position of logic bits within memory words continuously
in the operating systems and simultaneously preserve the cor-
rectness of program execution on the rotated memory space
with the support of bit shift operations in the compiler pass.

Our Novel Contributions: Fig. 1 illustrates the overview of
Memory Carousel. Basically, we provide two services, i.e.,
one in OS and another one in the LLVM compiler, and the
key component of our approach is to maintain the correct-
ness of program execution on the rotated memory space.
We compile the target application to LLVM intermediate
representation (IR), patch all load and store operations with
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Fig. 1. Overview of Memory Carousel, where the solid arrows show the
stages passes by the applications memory accesses. The dashed arrow visu-
alizes the need of synchronization between the two provided services in this
work.

special inverse rotation code, and ultimately compile the appli-
cation to machine code. In a nutshell, our contributions can
be listed as follows.

1) An operating system service to continuously rotate a
certain memory region, denoted as memory interval, in
order to move the physical position of highly worn-out
bits to the entire memory space.

2) An LLVM pass that extends load and store operations
by inverse rotation code and therefore maintains the
correctness of data load and store and therefore of the
application execution.

3) A lightweight synchronization scheme between the oper-
ating system component and the LLVM code to avoid
race conditions during rotation of the memory.

4) A Valgrind-based offline profiling tool, approximately
simulating our wear-leveling method on a given target
application in order to allow a tradeoff decision between
lifetime improvement and caused overheads.

Extensive evaluation with a full system simulation allows
precise analysis of the improvement of memory lifetime with
respect to the iterative write scheme and the caused over-
heads. We show that we can improve the memory lifetime
by up to a factor of 21×, and that we are able to identify
applications, where our method causes higher overheads than
improvements upfront, by using our Valgrind-based profiling
tool. The corresponding source code is ready to be released
open source.

II. SYSTEM MODEL

As a target system for our method, we assume small
systems with application processors in this work. The con-
sidered system can be equipped with classic volatile memory
(e.g., DRAM) and with additional nonvolatile memory. In this
article, we focus on storing application-specific data structures
within NVM. Storing the allover infrastructure (i.e., the oper-
ating system, drivers, stack, etc.) is beyond the scope of this

work. The system software can decide to load certain memory
contents to the NVM in order to provide persistence. In this
work, we assume that the target application is loaded with
the full memory footprint to such an NVM scratchpad and
the operating system and system software resides separately
in volatile memory. We further consider the NVM to be a
scratchpad memory, which is usually small (e.g., few hundred
kilobytes) and fast, and we assume it is not covered by further
caches, thus all memory requests directly go to the NVM.

As motivated by [1], [2], and [3], in this work, we focus
on iterative write scheme memories, i.e., cells are only written
when the cell value is changed. Hence, the memory hardware
reads out the cell value prior to an update and only applies
an adequate update operation to the cell in an iterative man-
ner. We assume a single-level cell, i.e., one bit corresponds
to exactly one memory cell. That is, the wear out of each
memory cell is linearly related to the amount of bit flips in
the memory cell. If multilevel cells are used, analysis of the
wear out is still possible but requires more detailed modeling,
since not all changes of a cell value may cause the same wear
out, which is considered out of scope in this work.

Our implementation provides a custom synchronization
mechanism, which relies on memory access permissions and
memory permission violation traps, which we assume to be
provided by an MMU. However, the implementation can be
straightforward adopted to another synchronization scheme,
which does not depend on the presence of an MMU. In
this article, the proposed methods are implemented as a real
system service in a simulation system [13]. As the simu-
lated system of this setup, gem5 [13] is configure to run the
VExpress_GEM5_V2 machine, with a DerivO3 ARMv8 64-
bit CPU. This configuration corresponds to an ARMv8 appli-
cation processor (e.g., in desktop PCs or powerful embedded
systems), including, among others, multiple cores, pipelining,
and out-of-order execution.

III. BIT-WISE MEMORY WEAR OUT

Technical realizations of emerging nonvolatile memory
bring up various schemes for managing read and write
accesses to the memory. One dedicated scheme is the iterative
write scheme [1], [2], [3]. If a cell already contains the tar-
get value, the cell is not updated at all. For the other cells,
write pulses are applied in iterative steps until they reach the
target value. Applying this method can help to reduce laten-
cies, energy consumption, and even the total memory wear out,
since cells are not unnecessarily stressed. The wear out, how-
ever, becomes less uniform, since some bits of the memory
may be flipped more often than others. In consequence, if the
memory lifetime should be extended, the uneven wear out of
single bits needs to be well leveled and spread across all other
bits. In this section, we illustrate the problem by investigating
a concrete example and present means to quantify the problem.

A. Memory Age Analysis

First, we investigate the uneven amount of bit flips within a
programs memory interval. In this work, we adopt full system
simulations [14], where we can assess the memory content
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before and after a write operation in order to determine the
bit flips per memory cell. Since the iterative write scheme is
assumed, the wear out cannot be determined by investigating
the amount of write accesses to a certain memory location
directly as the built-in approach. The memory contents rather
have to be investigated and it has to be determined if the write
access causes a bitflip in a certain cell or not. We extend the
simulation environment so that collected data can be further
processed and indicators about the possible lifetime extension
of the memory can be computed.

Assuming that the wear out could be ideally spread within
words, we compute the achieved endurance AEp(i) of a pro-
gram p and its implementation i in memory interval I. This
is achieved by measuring all bit flips from a start address s
to an end address e, with I = [s, e]. The number of bit flips
produced by p(i) over I shall be called flip_count

AEI
p(i) =

mean(flip_count)

max(flip_count)
. (1)

This effectively provides a metric indicating the quality of
wear leveling within I, during a programs p(i) execution. A
memory interval could be ideally wear leveled, if bit flips
are redirected in a way, that all bits face exactly the same
amount of flips, i.e., the mean amount of bit flips equals the
maximum amount of flips. Without adding additional fresh
memory, lifetime could not be further improved. Assuming
that the memory becomes unusable once the first bit dies, the
relation between the mean and max flip count is the fraction
of the ideal memory lifetime achieved. An AE of 1 means
that all bit flips are evenly distributed and no further improve-
ments can be made. An AE of 0.5, for instance, means that
the lifetime can be doubled with ideal wear leveling.

The achieved endurance of a program’s execution can be
further compared to another implementation of the program,
with applied wear leveling, with p(wl). The run without wear
leveling is the base-line run p(b). These two runs can now be
compared in regards to the introduced overhead OV, endurance
improvement EI, and the lifetime improvement LI.

The OV describes how many bit flips are introduced in addi-
tion to the base run. When OV = 1.45, this means that the
wear-leveled run introduces 45% more bit flips compared to
the base run

OVI =
∑I

i flip_countip(wl)
∑I

i flip_countip(b)

. (2)

Equation (2) computes the caused overhead (OV), by summing
up the total amount of bit flips across all intervals for a baseline
run and a run with wear leveling and building the fraction
between both. Thus, the additional bit flips, caused by the
wear leveling are reported in this overhead calculation.

A wear-leveled run should increase its AE in comparison
to its base run. This improvement is represented by the EI
metric. The larger EI, the better is the analyzed wear-leveling
approach

EII = AEI
p(wl)

AEI
p(b)

. (3)

Fig. 2. Comparison of logical write accesses (red) and real bit flips (Data:
green, BSS: blue, Heap: black). The x-axis shows normalized Bit addresses
and is scaled by 106. The y-axis shows the number of bit flips.

The improvement in endurance is a metric to compare differ-
ent wear-leveling approaches. However, it does not take the
introduced overhead into account

LII = EII

OVI . (4)

Therefore, the lifetime improvement LI is introduced, repre-
senting the actual lifetime increase of a memory module.

B. Initial Case Study

To provide intuition and to motivate the need for the afore-
mentioned possible improvement that can be gained when
iterative write schemes and bit-wise wear leveling are applied,
we consider the memory portion of the Dijkstra benchmark
application [13]. Fig. 2 depicts the analyzed amount of write
accesses to memory cells after a full system simulation of
the benchmark. The red line indicates the total amount of
logical write accesses (no iterative write scheme). The points
indicate the real number of bit flips per memory cell, where
green means data, blue means bss, and black means heap.
Although accesses are always the same for each memory word,
however this is not the case for bit flips, as shown in the
zoomed in part of Fig. 2 in Fig. 3.

First it can be observed that for many memory cells, the
number of real bit flips is by orders of magnitude smaller than
the number of write accesses. However, it can also be observed
that for some memory cells, the peak number of bit flips is
very close to the number of write accesses. By calculating the
shortest paths between nodes in a graph, the Dijkstra algorithm
has an achieved endurance of AE = 3.2e−6. As mentioned
before, a small AE indicates room for improvement, since it
compares the actual wear out against a theoretical optimal
wear-leveled wear out. Hence, an AE = 3.2e−6 implies that
at least one peak exists, that is 106 times larger compared to
the theoretical ideal wear-leveled bitflip distribution.
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Fig. 3. Zoom-in portion of Fig. 2 at 5e5 and onward, to show how bit flips
are distributed over a memory size of 512 bits.

IV. MEMORY CAROUSEL: BIT ROTATION

Performing wear leveling on bit granularity at the hardware
level has been discussed in [4] and [12]. Realizing this at the
software level, however, is rarely considered. In this work,
we present a method, named Memory Carousel to perform
bit-wise wear leveling at the software level, not to compete
with hardware solutions, but to allow for an alternative when
hardware solutions are not available. Our method performs
wear leveling by rotating words, i.e., 64 bits. This spreads the
high and nonuniform stress of single bits equally to all bits
within the word.

Two major components are developed to achieve wear lev-
eling on a specific memory interval. As shown in Fig. 1, these
components (orange) are set in context with the target system.
The first one is an operating system service, continuously
rotating memory words in the targeted memory interval. This
service can be triggered by a memory trap, as shown in this
work, or by any other triggers, e.g., a timer or some other
external interrupts. The second component is an LLVM pass,
patching all memory accesses in the target application and
therefore guaranteeing correct execution with rotated memory
words. The pass not only restores loaded data and applies
the rotation to stored data, but also applies the rotation selec-
tively on nearly arbitrary memory intervals. Therefore, the
wear-leveled region can be chosen freely.

A. Rotation Operation

Fig. 4 illustrates the design principle of the rotation opera-
tion. In order to realize such a rotational wear leveling, two
steps are required: 1) regular rotation of the memory con-
tent and 2) modification of the executed program to anticipate
the memory rotation. While 1) is rather straight forward and
2) draws a major challenge. The executed application has to
be modified to not just load and process memory contents, but
to load the memory content, undo the rotation (in the follow-
ing called “unrotation”) in order to retrieve the correct value,
and then to process the result.

Fig. 4. Illustration of bitwise rotation of memory words. The grayscale
indicates the wear out. Rows visualize different amounts of rotation, and
overlapping them will result in a more evenly spread wear out.

This rotation and unrotation could be introduced at various
levels: The application source code could be directly mod-
ified by, for instance, only allowing special data types that
perform the unrotation. The application source code could
also be rewritten by a preprocessor before compiling, which
would require an extension of the programming language (e.g.,
C/C++). An alternative approach would be to post-process
the assembly code that is generated by the compiler. Memory
instructions (e.g., load and store instructions) could be replaced
by a code block that performs the unrotation in place. This
solution, however, would become architecture dependent and
possibly sophisticated, since a wide variety of memory access
instructions may exist. A hybrid solution, which we apply
in our method, is to modify the intermediate language dur-
ing the compilation process. Hereby, we rewrite LLVM-IR
code, which requires a very limited language support, since
LLVM-IR only includes one type of load and store instruc-
tions. Furthermore, in LLVM-IR, we are independent of the
underlying CPU architecture and assembly language.

B. Memory Access in LLVM-IR

The idea of an IR is to represent all target architectures a
compiler can handle, while being as close to machine code as
possible. LLVM-IR implements a store and a load instruction.
These two instructions are the only ones writing and reading
from memory. Which is highly advantageous in contrast to
assembly code, where many different kinds of read-and-write
instructions exist. The way memory is abstracted in LLVM-
IR has one major drawback. It does not implement a bounded
registers model, therefore the number of registers is arbitrar-
ily large. Modern compilers use register allocation to map
intermediate values to machine registers. During this process
values are pushed on the stack, once all registers are used and
alive values still exist. Those operations are called spill and fill
operations. An optimal register allocation generates the small-
est possible number of spills and fills to implement the given
program in its target assembly. Resulting in the stack being
partially abstracted away in LLVM-IR. Thus, our proposed
method to rotate memory word in the IR level can not cover
the stack.

Parts of the stack are still covered by LLVM-IR, such as
function parameters and function calling for example are cov-
ered by LLVM-IR. This raises the issue that memory accesses
in LLVM-IR have to distinguish between stack accesses and
other memory regions for our approach.
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Algorithm 1 Loading a N-Bit Value From a 64-Bit Rotated
Memory Word

1: Given: address p∗, rotation amount at rot∗ and s∗, e∗ as
the memory interval borders

2: Offset ← p ∗ mod8
3: p∗aligned ← p ∗ − Offset
4: s← Load s∗
5: e← Load e∗
6: if p∗ ∈ [s, e] then
7: rot← Load rot∗ � Critical Load
8: Wordrot ← Load p∗aligned

9: Word← Wordrot ≫ rot
10: OffsetBit ← Offset ∗ 8
11: Value64Bit ← Word ≫ OffsetBit
12: Value← Truncate Value64Bit to N-Bits
13: else
14: Value← Load p∗
15: end if

Fig. 5. Illustration of the rotation operation ≫.

C. Rotated Memory Load and Store

For all patched loads and stores, we assume a global variable
exists, containing the current rotation amount. The code block
that replaces all load or store operations in the original code
is presented on a high level in Algorithms 1, and 2, where the
operators ≪, ≫ are left/right rotation operations and �, �
are left/right logic shifts with zero fills. Fig. 5 illustrates how
the rotation operations can be realized with logic shift and or
operations.

Load: The offset of the load address p∗ is calculated first in
case the pointer is not 8-byte aligned. The calculation assumes
a byte-addressable memory. Next the upper and lower bounds
of the rotated memory region are loaded, if the address is
within this region, the word has to be rotated, otherwise the
value is loaded as before. In case the value has a datatype
smaller than 64 bits, it is also rotated to the front of the
memory word, so that the bits not containing the value can
be truncated.

Store: In contrast to the rotated load, storing a value in
a memory word requires more steps. Again the offset is

Algorithm 2 Storing a N-Bit Value to a 64-Bit Rotated
Memory Word

1: Given: address p∗ and its value p, rotation amount at rot∗
and s∗, e∗ as the memory interval borders

2: Offset ← p ∗ mod8
3: p∗aligned ← p ∗ − Offset
4: s← Load s∗
5: e← Load e∗
6: if p∗ ∈ [s, e] then
7: rot← Load rot∗ � Critical Load
8: Wordrot ← Load p∗aligned

9: Word← Wordrot ≫ rot
10: OffsetBit ← Offset ∗ 8
11: Wordalign ← Word ≫ OffsetBit
12: Word← Word� N
13: Word← Word� N
14: p64 ← Zero extend p to 64
15: Wordp ← Word | p64
16: Wordp,align ← Wordp ≪ OffsetBit
17: Wordp,rot ← Wordp,align ≪ rot
18: Store Wordp,rot in p∗
19: else
20: Store p in p∗
21: end if

computed and applied to the memory region, when the address
is checked. If the address is in the rotated memory section,
the 64-bit word is loaded and rotated similarly as for the load.
Algorithms 2 differs from the load after line 12, where the
loaded word is shifted left and right by the values bit width to
fill the old value with zeros. Afterwards, a bit-wise logic OR
operation can be applied to the word and the zero-extended
value. This results in a word with the new value at the begin-
ning. In case the value was not stored at the beginning of the
word, it has to be rotated back in place by the calculated offset,
where the rotation can be applied and the word is stored.

Please note that the whole offsetting-related rotation and
truncating can be skipped for 64-bit data types. This is possi-
ble, because the LLVM-IR is type aware, so patches for such
data types in fact consist of fewer instructions, which leads
to reduced computational and program size overheads. Hence,
lines 2, 3, 10, and 12 in Algorithm 1 can be omitted, and lines
2, 3, 10, and 16 in Algorithm 2 can also be omitted. In addi-
tion, LLVM-IR does not implement a rotation operand. Thus,
all rotations consist of a left shift, a right shift, and a bit-wise
OR operation, as shown in Fig. 5.

D. Repetitive Memory Rotation

In the previous sections, we have introduced our method to
patch load and store operations in LLVM-IR to safely access
rotated memory under the assumption that a global variable
exists that holds the rotation amount, i.e., by how many bits a
value shall be rotated. However, this method does not level the
wear of memory (as the rotation amount is not changed), but
“only” ensures the correct execution of the program on rotated
memory. In the following, we present an interrupt-safe solution
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for changing the rotation amount and rotating the designated
memory during program execution.

To level wear outs over an entire memory word (64 Bit),
during execution, we aim to rotate it at least 63 times within a
certain time period (e.g., several hours). Since rotating intro-
duces overhead and we target small applications, rotating at
least 63 times once during the application execution should
be the ideal compromise between wear leveling and overhead.
However, this might not be the case for lager applications. To
ensure this, we run the patched program once without memory
rotation and count all X store accesses. This number X could
also be approximated with offline analysis (e.g., static analy-
sis or with a performance monitoring tool). In order to initiate
the rotation of the memory from software, we use a write
counter that triggers an overflow trap when the performance
counter register overflows. The performance counter register
is set to 264 − (X ÷ 64), ensuring 63 rotations during pro-
gram execution. This trap causes a function to iterate over the
target memory locations and load 64-bit words into registers,
rotate them by one bit, and store them again. However, if this
rotation is applied immediately, rotation could occur during a
critical section. All sections between loading a memory word
and loading the rotation amount can be regarded as critical.
When a rotation trap is triggered between these two loads,
the resulting value is off by one rotation leading to undefined
program behavior.

To guarantee the correctness of patched program execution,
we have to synchronize this rotation trap with all patched
load/store operations. To solve this, we employ a specific
mechanism here to reduce the overhead. The current rota-
tion offset is stored in a global variable that is read by every
patched load/store operation exactly once and at the beginning
in the patched code. This is done before the memory word is
rotated. These critical loads are marked with � in Algorithms 1,
and 2. On the performance counter register overflow trap,
we set the memory permissions of this variable to not allow
any access. Thus, load/store operations which already read the
variable still can continue and load the memory with the old
rotation offset.

Once unrotation operations are completed and the next oper-
ation is about to start, it causes a trap while loading the rotation
offset. Within this trap handler, we rotate the entire memory
and update the rotation offset variable. After the trap handler
finishes, the application repeats the load of the offset vari-
able and sees a consistent offset variable and rotated memory.
This implementation assumes that the rotated memory is only
accessed by one task. However, the concept can be straight for-
ward extended to a multicore system. In such a scenario, all
cores have to cause the trap of accessing the rotation variable
before the rotation and update of the variable can be triggered.
In addition to a slightly increase of the time overhead due to
busy waiting, this can potentially cause deadlocks, which have
to be prevented.

E. Extensions With Coarser Wear-Leveling Approaches

The concept of bit-wise wear leveling, as introduced in the
previous sections, is intended to wear-level uneven bit usage

within CPU words (e.g., 64 bits). During a program execution,
such uneven bit wear out can easily occur, as already shown
in the case study. However, beyond the granularity of single
bits, larger memory blocks itself may be also unevenly used.
If for instance, multiple contiguous words in memory belong
to the same logical data object, the bits within the words may
be uneven used due to the written values, but the object itself
may be used on another frequency than other objects.

To account for this, our bit-wise wear leveling is designed in
a fashion to work side by side with other, coarser-grained wear
leveling mechanisms. Such mechanisms usually work on a
memory address level, change the physical position of memory
contents from time to time, and adjust the memory accesses
accordingly in order to maintain correctness. As one candidate
for such wear leveling, we also study how our proposed bit-
wise wear leveling works along with small block wear-leveling
approaches. Although we do not consider caches, we study
an existing method, working on cache-line granularity [13].
Please note that our strategy is compatible to any arbitrary-
sized blocks, e.g., [3], [12], [15], and [16].

We assume blocks of a fixed width, 64 bytes. In addition,
we assume that words within each block are offsetted by one
word within the block on regular intervals. Words always stay
within their block and wrap around at the end and are shifted
to the beginning of the block. Since full system simulations are
adopted, we include a simulation of such blocks wear leveling
based on the memory trace. The simulation then is indepen-
dent of whether the method would be realized in hardware or
software. Please note that, we do not assess the introduced
additional overheads of the technical realization. Instead, we
show how well our bit-wise wear leveling can work along with
such coarser-grained methods in the next section.

V. VALGRIND PROFILER: PREANALYSIS

Depending on the application, bit usage within single words
can be highly uniform or nonuniform. In case the usage is
not uniform, Memory Carousel is able to achieve significant
lifetime improvements of underlying nonvolatile memory. If,
however, the bit usage of the application is already nearly
uniform, our bit-rotation approach cannot gain much improve-
ments and possibly even diminishes memory lifetime due to
the introduced overheads. Therefore, it is crucial to estimate
in advance, whether it is beneficial to apply our method. To
this end, we develop a preanalysis method based on Valgrind,
and propose an indicator called Pseudo Endurance, which is
detailed in the following. Although the memory traces from
our Valgrind tools only approximate the real memory trace, the
relations between intensively flipped bits and less intensively
flipped bits are represented and can be assessed.

A. Valgrind-Based Profiling Tool

The Valgrind-based profiling tool performs the preanalysis
of the program throughout its subtool Lackey [17], which
outputs the traces for the different load and store instructions
performed by the program and their corresponding addresses.
The developed tool focuses on the store operations that are of
interest. It builds a histogram for the addresses and the number of
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Fig. 6. Comparison of access counts from gem5 (full system) simulation
(top) and Valgrind (bottom), for the Dijkstra benchmark. The x-axis shows
normalized bit addresses and the y-axis shows the number of accesses.

store operations performed on them. It also provides a histogram
for the bitwidths and the store operations performed.

This tool allows to derive an approximate memory trace
by executing the program on almost native speed. Therefore,
every application can be executed for a short time frame (e.g.,
several minutes) and a distribution of uneven bit usage within
words can be recorded. Based on this recording, a thresh-
old can be defined if bit wear leveling should be applied or
not. Since usual applications for embedded systems are rather
small, a recorded memory trace over several minutes should
be sufficient to capture the representative access pattern.

B. Preanalysis and Indicator

The preanalysis is performed on the benchmarks, com-
piled for, and analyzed on an AMD64 desktop workstation.
This provides a fast analysis, compared to the simulation
setup. However, memory is linked differently and addresses
are virtual, as the benchmarks are measured on Linux and
simulations are run on AARCH64 bare-metal. Therefore, the
organization and ordering of memory is different for the
preanalysis. Furthermore, Valgrind does not trace the writ-
ten memory content, but rather only provides a histogram of
memory accesses. Thus, the preanalysis only provides logic
memory accesses and not the real amount of bit flips. However,
the goal of the preanalysis is to determine a ratio between
the intensively used memory portions and occasionally used
memory portions.

Fig. 6 illustrates a comparison for the Dijkstra bench-
mark between the real amount of memory accesses from our

Fig. 7. Comparison of access counts from gem5 (full system) simulation (top)
and Valgrind (bottom), for the crc32 benchmark. The x-axis shows normalized
bit addresses and the y-axis shows the number of accesses.

full-system simulation and the logic memory accesses from
the preanalysis. Indeed the memory layout of two analyses
are different, but the trend of memory accesses for the first
half of the memory space is comparable. For the example in
Fig. 7, we can observe that the memory accesses between the
real amount and the logic memory accesses are drastically
different than the example in Fig. 6.

In order to quantify the results of the preanalysis, we pro-
pose the Pseudo Endurance PE, similar to AE defined in
Section III. The difference between these two metrics is that
PE is calculated via access counts, gathered by Lackey. Similar
to AE, a small value for PE should indicate that wear-leveling
methods should provide a note worthy life time improvement

PEI
p(i) =

mean(access_count)

max(access_count)
. (5)

For the example in Fig. 6, the PE is reported as 0.00013 while
the AE of the full-system simulation is reported as 3e−6.
Fig. 7 illustrates the same comparison for the crc32 bench-
mark, where the PE is reported as 0.016 and the AE as 0.99.
It can be observed, that although the pseudo endurance dif-
fers largely from the achieved endurance, both indicators tend
similarly to smaller and larger values for different benchmarks.

VI. EVALUATION

In order to evaluate the performance of our approach,
we conducted full-system simulations in gem5 with a cycle-
accurate memory simulator and present the performance of
the baseline and Memory Carousel, according to the four met-
rics defined in Section III. In addition, we present the results
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derived by our profiling tool to demonstrate the effectiveness
of the preanalysis for guiding the usage of Memory Carousel.

A. Evaluation Setup and Benchmarks

The evaluation setup was based on the software-managed
wear leveling for NVMs by Binkert et al. [13]. All sim-
ulations were executed on a high-end AMD64 server. The
programs were running on Unikraft [18], a library-based
unikernel operating systems, and were simulated in gem5
with NVMain 2.0 [19], i.e., a cycle-accurate Nonvolatile-Main
memory simulator. Within this setup, gem5 simulated a real-
istic ARMv8 CPU. Although our solution should work on
multi core systems, with minor changes to the synchroniza-
tion process, we decided to simulate a single-core CPU. Since
the simulation did not contain an operating system, Unikraft
served as a runtime system and executed bare-metal on the
system. Unikraft provides the required machine-specific boot
code and drivers, but also basic primitives for memory man-
agement and rudimentary library support. NVMain, as a plugin
extension to gem5, hooks into the simulation loop and is called
on every single memory access. In this article, we used the
default memory trace configuration for NVMain, which has the
purpose to only generate memory traces, since memory tim-
ing is not evaluated in this work. We extended NVMain with a
custom trace writer, which provides detailed information about
the bitwise wear out.

The benchmarks consist of crc32, Dijkstra, lesolve, quick-
sort 64 bit (qsort-b), quick-sort 8 bit (qsort), and sha imple-
mentations. All these benchmarks were executed on the setup
with two different implementations: 1) the original program,
which is further called “base,” without any of our methods
applied. 2) the program with our LLVM-IR pass and the trap
triggered memory rotation, which is further called “rot.” We
also executed the program with our proposed LLVM-IR pass,
patching all loads and stores, but without the memory rota-
tion trap. An unpatched run is needed to arrive at a baseline
of write accesses during the programs execution. This enables
us to apply exactly 63-bit rotations on the memory word as
mention in Section IV-D. All metrics used for analysis are
described in Section III-A.

It is worth noting that our LLVM-IR pass was only applied
to the benchmark programs C/C++ files and all operat-
ing system routines were not patched. Therefore, overhead
introduced by the operating system was the same for all bench-
marks, the rotation interrupt being the only exception. Also,
note that all presented results do not include the program stack.

B. Simulation and Analysis Results

In this section, we only focus on the results on the data,
bss, and heap memory interval I. For each benchmark we
calculate our metrics, as presented in Section III. Please refer
to Table I for the numbers. The first row of each benchmark
is the “base” run, without our method applied. The second
row shows the metrics of the “rot” run and additional metrics,
comparing with the benchmarks base run. In the context of our
formalism presented in Section III the benchmark, e.g., crc32,
would be the program p and “base” or “rot” the corresponding

TABLE I
SIMULATION RESULTS FOR DATA, HEAP, AND BSS

ON OUR BENCHMARKS

Fig. 8. Half logarithmic diagram of the lifetime improvements for all six
benchmarks.

implementation i, so the AE of crc32’s base run would map to
AEI

crc32(base). All metrics are multiples of the base run and are
therefore unitless. With the achieved endurance AE being the
only exception, this is comparing against a theoretical ideal
memory distribution with even wear out. For better compar-
ison, the lifetime improvement of all six benchmarks is also
visualized in Fig. 8.

In addition, we simulated a block wear-leveling approach
as described in Section IV-E. Assessing the overhead of such
an approach, would require to track the memory content of an
entire block in order to determine the amount of bitflips upon
the relocation of a block. Since this is not feasible for our full-
system simulation, we are limited to a best-case assumption,
i.e., that no bit flips are caused upon a relocation and a worst-
case assumption, i.e., that all bits are flipped upon a rotation.
This leads to generating four results for each benchmark with
an optimistic and pessimistic result for each of the two runs,
thus a lower and a upper bound. Since neither the optimistic,
nor the pessimistic result is realistic, we focus our discussion
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TABLE II
SIMULATION RESULTS WITH ADDITIONAL BLOCK WEAR-LEVELING

SIMULATION. WHERE THE SUFFIX *P REPRESENTS THE PESSIMISTIC

AND *O THE OPTIMISTIC SIMULATION

on the Endurance Improvement EI for these results, please
see Fig. 9. For completeness, all other metrics can be found
in Table II.

At a first glance it can be seen that, our approach worsens
the memory lifetime for two benchmarks, namely: crc32 and
sha. However, both crc32 and sha do not write to the targeted
memory, resulting in an AE of nearly 1. The simulated block
wear leveling does not introduce an overhead in contrast to
our method. This is the case since block wear leveling, as
simulated, only triggers after a specific amount of writes. In
contrast, our method is applied in a way it triggers exactly 63
times over the benchmark duration and therefore introducing
an overhead to unwritten memory. Also, worth mentioning is
that all block wear-leveling simulations improve the worsened
EI of our approach for those benchmarks. Due to the existence
of such anomalies, we propose a profiling method as described
in Section V.

Also noteworthy is lesolve, where our approach is only
able to slightly improve upon. The reason for this is, that
lesolve works on a very small memory region on data and the
remaining memory behaves similar to crc32 and sha. However,
as discussed in Section IV-C, our method can be applied to
an arbitrary memory interval, inside data, bss, and heap,
and therefore it can be optimized for such cases.

Fig. 9. Half logarithmic diagrams of the endurance improvement’s EI of the
simulated memory block wear leveling.

To show this, we measure an optimized version of lesolve
(opt-rot), where we apply our wear-leveling solution only to a
small memory interval. This interval is the memory region with
the most accesses in the benchmark. After this optimization
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lesolve opt-rot becomes the best-performing benchmark of our
method with a lifetime improvement LI of 34.41×. Please note
that this result uses a different memory interval and should not
be directly compared to other results in the tables and figures.
However, such optimization requires a deep understanding of
the program memory access patterns and can only be utilized
after time-consuming analysis like presented here. Moreover,
all accesses occur only within one array, holding intermediate
results. If there is a need to wear level multiple data objects,
they have to be linked in a single interval for our method to
still be applicable.

In summary, in three of six benchmarks, Memory Carousel
provides a significant lifetime improvement LI, namely,
Dijkstra, qsort, and qsort-b. They obtain an LI > 15 and their
EI’s are further improved by the block wear-leveling simu-
lation. However, for the optimized lesolve opt-rot, the block
wear leveling does not provide a significant gain.

Although many concepts toward wear leveling on different
garnularities exist in related work, a direct comparison is usu-
ally challenging. Not only is source code rarely published and
straight forward applicable, but also the assumptions about
the memory and wear-out model differ a lot. A war-leveling
scheme, designed for noniterative write scheme memories may
achieve totally different results on a memory with iterative
write semantic. Nonetheless, we intend to give a rough intu-
ition to the range of lifetime improvement, other published
work can achieve. The work, we base our simulation system
on [13], provides an MMU-based coarse-grained wear-leveling
methods, which can achieve a lifetime improvement (con-
sidering caused overheads) of 10× to 30×. A fine-grained
extension, targeting the stack memory can further achieve an
improvement of a few hundred times for a small set of specific
benchmarks. Another page-based wear-leveling scheme [20]
also reports lifetime improvements in a range of 5× to 200×
for various approaches and benchmarks. Hence, the lifetime
improvement of memory carousel plays in a similar range as
other published methods and is intended to be a compatible
extension toward such methods.

C. Execution Time Overhead

Our approach does not only affect the memory wear out,
it also increases the execution time of the benchmarks. To
measure the increase in execution time, we took the simulated
execution cycles of the memory controller and CPU in gem5.
We decided to use the memory controller cycles because they
are easily accessible with the NVMain module from gem5.
Also, the difference to CPU cycles is minimal. The measured
cycles of the rotated run are divided by the cycles of the base
run, to provide the multiple of the cycles our approach needs
compared to normal execution.

As shown in the first row of Table III, Dijkstra needs 14
times longer with our approach applied and has the highest
cycle multiplier of all benchmarks. The qsort benchmark has
the smallest multiplier of 4.1. The remaining four benchmarks
are nearly evenly distributed between these two. So the run-
time impact depends strongly on the program. The second row
shows the cycle multiplier of the patched programs without the

TABLE III
MULTIPLIER OF MEMORY AND CPU CYCLES OF THE PATCHED

EXECUTION COMPARED TO NORMAL EXECUTION

TABLE IV
PSEUDO ENDURANCE PE MEASURED WITH VALGRIND

FOR ALL BENCHMARKS

memory rotation trap. Since the values in both rows do not dif-
fer much from each other, we can say that the actual rotation
of the memory does not contribute much to the run-time over-
head. Most overhead is introduced by conditional branching
before every load and store operation. Moreover, the number
of rotations is exactly ×63 and thus constant. In contrast, the
additional branches behave in a linear manner to the run time,
so the longer the program executes the more branches are exe-
cuted, while the memory rotation from the operating system
service stays the same. Overall, the longer the benchmark runs,
the smaller the impact of memory rotation.

D. Results of Preanalysis

All calculated PE’s on I = [Data, BSS, and Heap] can
be found in Table IV. As presented previously, indeed our
method is not able to improve the lifetime of crc32 and sha,
but does so for the remaining four benchmarks. This can be
observed to be clearly reflected in the pseudo endurance, i.e.,
the result is larger by two orders of magnitude for the bench-
marks, which cannot be improved by our method. Except for
lesolve, which only provided a diminishing lifetime improve-
ment. This suggests that the Valgrind-based profiling can be
well used to estimate in advance whether the overheads of our
method can be leveraged by the gained lifetime improvement.
Although we could simply define a decisive threshold for the
pseudo endurance in our scenario, this would be dependant on
the system and also on the configuration, i.e., how often the
rotation is supposed to happen.

E. Comparison to State-of-the-Art

In the literature, several approaches for NVM wear level-
ing can be found. Table V shall provide a brief comparison
among these and our method, whereas Section VII provides
more information about each approach. We compare the granu-
larity of memory units for wear leveling, the achieved lifetime
improvement, whether a method moves entire blocks or bits
within a block, if the method is aging aware, requires special
hardware or a general MMU, and if it is applicable to general
applications or only special software. One method can switch
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TABLE V
COMPARISON OF STATE-OF-THE-ART NVM WEAR-LEVELING METHODS

whether or not it is aging aware. Another method can switch
whether or not it is implemented on special hardware.

It should be noted that most are block based, i.e., they remap
memory blocks as a wear-leveling action and therefore they do
not operate on a bit granularity, like our method. It should be
further noted, that some methods either propose special hard-
ware or rely on the availability of an MMU. Flip-N-Write [4]
operates on bit granularity, but requires special hardware.
Balanced Gray Codes [6], in contrast, are only applicable to
numeric values, i.e., they are not generally applicable.

Although many state-of-the-art approaches achieve a signifi-
cantly higher lifetime improvement in comparison to Memory
Carousel, none of them can operate under the same system
assumptions of extremely limited hardware. Hence, Memory
Carousel can still help to improve the lifetime of NVM
systems, when other methods are not applicable.

VII. RELATED WORK

In the literature, several previous works have been proposed
against the limited endurance of nonvolatile memories, which
is highly related to the lifetime. They range from working on
fine-grained levels [4], [5], [6], [11] to coarse-grained memory
blocks [7], [8], [9] or even with multiple granularities, such
as [10] and [13]. To improve memory lifetime, the previous
works used either aging-aware strategies, e.g., [15], [16], [20],
[21], and [22], or nonaging-aware strategies, e.g., [3], [11], and
[23]. For the completeness, we select some representatives to
review their insights and thus position our work in the following.

The principle of aging-aware strategies is to assess the
age of cell via tracking memory accesses to apply wear
leveling. For example, Han et al. [7] proposed to predict
the next possible writings and swaps the areas where the
data may be written. Gogte et al. [21] adopted a sampled-
based approach to approximate the write distribution, together
with an advanced debugging feature offered by Intel. On
the contrary, the nonaging-aware strategies do not track the
access patterns but rather perform their actions periodically
[3], [9] or randomly, e.g., [5], [12], and [23]. Zhou et al. [3]
proposed to shift the data of a memory row one byte at a
time periodically. Curling-PCM periodically moves the hot
areas over the memory [9]. It can be configured to manage
the memory space in different granularity. Qureshi et al. [12]

proposed to randomize the address-space together with the
well-known Start-Gap approach, which keeps moving one
memory line from its location to a neighboring location.
Another example is Walloc that uses lazy copy over write and
scatters the data all over the free memory in a “Less Allocated
First Out” manner [5].

A main challenge with most of these wear-leveling solu-
tions is that they need modification or special supports of
the underlying hardware which cannot be trivially integrated
with other systems. Alternatively, software-based approaches,
which are relatively more portable, have been more attractive.
WoLFRAM uses a programmable resistive address decoder to
change the address and swap it in a write-access-pattern aware
manner, by adding one specific controller for each memory
bank [22]. Hakert et al. [14] proposed to use a red-black tree
to maintain the estimated age of physical memory pages with-
out special hardware supports. Huang et al. [10] proposed to
change the file system structure into a new structure to pro-
vide different granularity levels for reducing the NVM wear.
However, none of them have tackled the wear out of memories
employing the iterative write scheme.

A few existing solutions in the literature are similar to ours.
Flip-N-Write uses one extra bit to either store the data in the
right order or reversed [4], which relies on the modification of
microarchitecture. The decision is done based on comparing
the to-be-written data with the data that is already stored in the
same location. The format that requires less bit flips should be
applied. Zhao et al. [11] proposed a strategy to flip data within
the memory based on a write count in order to level out how
much data is written to the same location. However, the real-
ization details are not discussed. Recently, Kulandai et al. [6]
proposed to use gray coding of the data in order to achieve the
least possible bit flipping between different writes. However,
as stated by the authors, additional hardware support is needed
to translate nibbles and bytes from the integer representation
to Gray codes, which might not be realistic. Overall, Memory
Carousel differs than all of them in the fact that it does not
require any hardware modification.

VIII. CONCLUSION

In this article, we present Memory Carousel, a software-
based solution to the problem of wear-leveling iterative write
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scheme nonvolatile memories. Within this method, we con-
tinuously rotate the applications memory in order to spread
the wear out of intensively flipped bits evenly across memory
words. We realize applications correctness with an LLVM
pass, patching all load, and store operations. The major draw-
back of this approach is that the application stack cannot be
wear-leveled due to spill and fill operations and the calling
conventions. Our method could be extended to also wear level
the stack, when patching assembly code directly or LLVM
machine IR, instead of LLVM IR. This, however, would make
the solution dependant on the system architecture, which is
also considered out of scope.

Extensive evaluation highlights that software-based bit wear
leveling has to be carefully applied. For certain bench-
mark applications, our method causes an overhead, which
exceeds the gained improvement by far. On the other hand,
when applied to a different subset of applications, we can
achieve a significant lifetime improvement of up to 21× and
even allow further potential for coarser-grained wear level-
ing. Nevertheless, with the help of our valgrind-based offline
profiling, we can clearly separate the applications, which
gain lifetime improvement from the ones, which cause unrea-
sonable overheads. Thus, when profiling a target application
upfront, we can apply our method to meaningful scenarios
only. We further highlight that if not the entire memory space
is wear leveled, but the worn-out regions are chosen carefully,
further lifetime improvement of up to 34× can be achieved
on an application that would slightly profit otherwise. This
however is only possible with a deep understanding of the
programs access pattern and worn-out memory regions have
to be identified by the programmer, as currently no automated
analysis exists.

For future work, we identify the choice of memory regions
of interest as a crucial problem. When limiting the wear lev-
eling to such regions only, higher lifetime improvements can
be gained. In consequence, we aim to extend our valgrind-
based profiling tool to already identify such regions upfront
and configure the wear leveling accordingly.
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