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Remarks on wave propagation in an acoustic metamaterial modeled as a
relaxed micromorphic continuum
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In order to describe elastic waves propagation in metamaterials, i.e. solids with heterogeneities or microstructure, it is neces-
sary to consider non-local or higher-order models. The relaxed micromorphic model (RMM) proposed here can describe these
effects as a continuous material with enriched kinematics. We present a new unit cell giving rise to a metamaterial for acoustic
application. The microstructure is engineered to show a band-gap in the low acoustic regime (600-2000 Hz) for which waves
cannot propagate through the material. We concentrate on the size effects to make full advantage of the particularly beneficial
structure that the model provides. The RMM material parameters are fitted using a new algorithm relying on cutoffs and
asymptotes (obtained via a Bloch-Floquet analysis). In particular, by enhancing the kinetic energy of the model with a new
inertia term, we enable decreasing curves (modes with negative group velocity).

© 2023 (copyright holder)

1 Introduction

Metamaterials are materials with heterogeneous microstructure whose mechanical properties go beyond those of classical
materials. They can show various unusual static/dynamic responses and we will focus on the so-called band-cap phenomena
[6, 14, 3, 4].

The direct finite element modeling of structures with its interior geometry is often unfeasible due to the extremely tight mesh-
ing that would be needed to correctly cover the interior microstructure. Thus, in actual engineering designs, a homogenized
model with enriched kinematics to approximate the metamaterial’s finite-size behavior is needed.

We propose to use an inertia-augmented relaxed micromorphic model. This model is based on the static relaxed micromorphic
model [9, 8, 5] involving an additional macroscopic displacement field P ∈ R3×3 and has been augmented with additional
inertia terms accounting for coupled space-time derivatives of the micro-distortion tensor [1, 2, 10, 11, 12]. In this work, we
present a guideline for the fitting procedure of this relaxed micromorphic model.

1.1 A metamaterial for acoustic control

The unit cell we use here is designed for acoustic control achieving a band-gap at relatively low frequencies (600− 2000 Hz).
This is obtained using polyethylene as a relatively soft base-material giving rise to lower wave speeds compared to aluminum,
titanium, and other metals. Further, the adoption of a labyrinth-type geometry, cf. Figure 1, consisting of a circular center
connected by thin bars, allows enabling local resonance phenomena of relatively low frequencies.
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a

Fig. 1: Geometry of the unit cell. Left: details of one unit cell (rotated by 45 degrees) showing the tetragonal symmetry. For a = 20mm as
the size of the unit size we consider later, both the bars and holes have a thickness of 0.4mm each. Right: A 3x3 section of the metamaterial
made up of this unit cell (red dashed square) showing how the cells are connected.

2 Relaxed micromorphic modelling of finite-size metamaterials

The Lagrangian Lm for the relaxed micromorphic model enhanced with the additional micro-inertia term Curl Ṗ is [1, 2, 10,
11]

Lm

(
u̇,∇u̇, Ṗ ,Curl Ṗ ,∇u, P,CurlP

)
= W (∇u, P,CurlP )︸ ︷︷ ︸

strain energy

− J(u̇,∇u̇, Ṗ ,Curl Ṗ )︸ ︷︷ ︸
kinetic energy

, (1)

W (∇u, P,CurlP ) =
1

2
⟨Ce sym(∇u− P ), sym(∇u− P )⟩ (2)

+
1

2
⟨Cc skew(∇u− P ), skew(∇u− P )⟩+ 1

2
⟨Cmicro symP, symP ⟩

+
1

2
⟨Ls symCurlP, symCurlP ⟩+ 1

2
⟨La skewCurlP, skewCurlP ⟩,

J(u̇,∇u̇, Ṗ ,Curl Ṗ ) =
1

2
ρ∥u̇∥2 + 1

2
⟨Jm sym Ṗ , sym Ṗ ⟩+ ⟨Jc skewṖ , skewṖ ⟩ (3)

+
1

2
⟨Te sym∇u̇, sym∇u̇⟩+ 1

2
⟨Tc skew∇u̇, skew∇u̇⟩

+
1

2
⟨Ms symCurl Ṗ , symCurl Ṗ ⟩+ 1

2
⟨Ma skewCurl Ṗ , skewCurl Ṗ ⟩

where u ∈ R3 is the macroscopic displacement field, P ∈ R3×3 is the non-symmetric micro-distortion tensor, ρ is the
macroscopic apparent density, Jm, Jc, Te, Tc, Ms, Ma, are 4th order micro-inertia tensors, and Ce, Cc, Cmicro, Ls, and La are
4th order elastic tensors. In absence of external body loads, we have the following equilibrium equation [10, 2, 9]

ρü−Div σ̂ = Div σ̃ , σ = σ̃ − s− Curlm− Curl m̃ , (4)

where we set

σ̃ := Ce sym(∇u− P ) + Cc skew(∇u− P ) σ̂ := Te sym∇ü+ Tc skew∇ü ,

σ := Jm sym P̈ + Jc skewP̈ , s := Cmicro symP , (5)

m := Ls symCurlP + La skewCurlP , m̂ := Ms symCurl P̈ +Ma skewCurl P̈ .

© 2023 (copyright holder) www.gamm-proceedings.com
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3 Dispersion curves

We use the dynamic material’s behavior by considering elastic waves as the basis to fit the parameters of the relaxed micromor-
phic model. Thereby, the model’s consistency is checked against a standard Bloch-Floquet analysis of the wave propagation
performed using the unit cell described in Figure 1 with built-in periodic Bloch-Floquet boundary conditions from Comsol
Multiphysics®. We highlight the key points of the fitting procedure in the blue shaded boxes below.

The most general three-dimensional case results in an unsesible amount of independent parameters for the relaxed micromor-
phic model. Here, we focus on a simpler setting:

1. We consider a plane strain ansatz, i.e. the components of u and P depend only on {x1, x2} with vanishing out-of-plane
components u3 = P13 = P31 = P23 = P32 = P33 = 0.

2. We consider a tetragonal symmetry for the geometry of the unit cell and thus for all elastic and micro-inertia tensors of
the relaxed micromorphic model.

The time harmonic ansatz for the components vj of the displacement u and the micro-distortion tensor P is

vj = Ψj e
i(k1x1+k2x2−ωt), (6)

where Ψj is a scalar amplitude, (k1, k2)T = k (sinϕ, cosϕ)T represents the wavevector with ϕ as the angle giving the
direction of propagation, k the wave vector length, and ω is the frequency.

Substituting the ansatz (6) in the equilibrium equations (4), we obtain the homogeneous algebraic linear system

AΨ = 0 , (7)

where A = A(ω, k, ϕ) ∈ C6×6 is the acoustic tensor which depends on the frequency ω, the wave vector length k, the angle of
propagation ϕ and all the constitutive parameters of the relaxed micromorphic model. The non-trivial solutions of the system
(7) are obtained when A is singular, i.e. when detA = 0, which provides relations between ω = ω(k, ϕ) (or k = k(ω, ϕ)),
the so-called dispersion relations.

Aligning the angle of incidence ϕ with a symmetry axis of the unit cell’s geometry simplifies

detA = p(k2, k4, k6, k8, ω2, ω4, ω6, ω8, ω10, ω12) = p1(k
2, k4, ω2, ω4, ω6)p2(k

2, k4, ω2, ω4, ω6) , (8)

where p1 and p2 are independent dispersion polynomials for shear and pressure waves, respectively.

3. We assume a 0◦ or 45◦ angle of incidence for the fitting procedure.

To avoid repeating the time-consuming fitting procedure when changing the size of the cell and the base material’s properties
while keeping the geometry of the unit cell, we emphasize the following two observations from the Bloch-Floquet analysis
with Comsol Multiphysics®:

• The dispersion curves scale inversely in both ω and k with respect to the size a of the unit cell.

• The dispersion curves scale proportionally in ω with respect to the speed of the wave of the bulk material composing the
unit cell;

We can show the same invariance properties1 analytically for the relaxed micromorphic model

Lc → tLc =⇒ p(ω, k) → 1

t2
p(tω, tk), (9)

(Ce,Cc,Cmicro,Ls,La) → a(Ce,Cc,Cmicro,Ls,La)
ρ → bρ

=⇒ p(ω, k) → a3p
(√ b

a
ω, k

)
. (10)

1 The scaling properties can have this simple shape by collecting an additional ρ and L2
c in front of all micro-inertia tensors [13].

www.gamm-proceedings.com © 2023 (copyright holder)
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4 Fitting of the relaxed micromorphic parameters

Overall, the relaxed micromorphic model has 19 parameters2 in the plane strain tetragonal symmetry case

ρ , Lc, Cmicro ∼ {κm, µm, µ
∗
m}, Cc ∼ {µc}, Ce ∼ {κe, µe, µ

∗
e}, Ls,La ∼ {α1}, (11)

Jm ∼ {κγ , γ1, , γ
⋆
1}, Jc ∼ {γ2}, Te ∼ {κγ , γ1, γ

⋆
1}, Tc ∼ {γ2}, Ms,Ma ∼ {β1}. (12)

We present an efficient automatic fitting procedure relying exclusively on the data from the Bloch-Floquet analysis done with
Comsol Multiphysics®:

4. We set the characteristic length Lc = a equal the size of the unit cell, cf eq. (9), and compute the macroscopic apparent
density ρ as the product of the base material’s density times the unit cells area percentage.

We can compute the parameters of the meso-scale Ce depending on the micro-parameters Cmicro and a new set of macro-
parameters Cmacro with the same structure [5, 7, 10]

Ce = Cmicro (Cmicro − Cmacro)
−1Cmacro , −→ µe =

µm µM

µm − µM
, κe =

κm κM

κm − κM
, µ∗

e =
µ∗
m µ∗

M

µ∗
m − µ∗

M

. (13)

In the limit of infinitesimal small unit-cells or rather of an indefinitely large body, these macro-parameters are obtained as the
homogenization to a classical anisotropic Cauchy material [5, 7]

cp =

√
κM + µM

ρ
, cs =

√
µ∗
M

ρ
, cp =

√
κM + µ∗

M

ρ
, cs =

√
µM

ρ
, (14)

where cp, cs are the speed of pressure and shear wave, respectively, for 0◦ of incidence while cp, cs describe an incidence
angle of 45◦. The numerical values can directly be obtained by the slope of the acoustic curves at the origin k = 0.

5. We fit the macro parameters κM, µM, µ∗
M by the slope of the corresponding acoustic dispersion curves

µM = c2s ρ , µ∗
M = c2s ρ , κM = (c2p − c2s )ρ = (c2p − c2s )ρ . (15)

The cut-offs of the dispersion curves describe the frequency of the (higher) optic modes at k = 0 and play an important role in
fitting the material parameters of the relaxed micromorphic model [7, 5, 10]. They allow for a simplified analytical expression
of the roots of the dispersion polynomial as shown in Table 1 with

ωr =

√
µc

ρL2
c γ2

, ωs =

√
µe + µm

ρL2
c γ1

, ωss =

√
µ∗
e + µ∗

m

ρL2
c γ

∗
1

, ωp =

√
κe + κm

ρL2
cκγ

. (16)

0◦ 45◦

shear
ω2 = ωss

ω3 = ωr

ω2 = ωs

ω3 = ωr

0◦ 45◦

pressure
ω2 = ωs

ω3 = ωp

ω2 = ωss

ω3 = ωp

Table 1: Cut-offs expressions for the pressure waves (left) and for the shear waves (right). The expressions ωs and ωss change from pressure
to shear and shear to pressure, respectively, when going from 0 to 45 degrees of incidence.

6. We write the micro-inertia parameters κγ , γ1, γ
⋆
1 , γ2 as a function of the remaining elastic material parameters and the

numerical values of the cut-offs

κγ =
κe + κm

ρL2
cω

2
p

, γ1 =
µe + µm

ρL2
cω

2
s

, γ∗
1 =

µ∗
e + µ∗

m

ρL2
cω

2
ss

, γ2 =
µc

ρL2
cω

2
r

. (17)

2 We write “m” for “micro” and “M” for “macro” for the corresponding elastic parameters to shorten the following expressions.

© 2023 (copyright holder) www.gamm-proceedings.com
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We remain with 10 independent parameters κm, µm, µ
∗
m, µc, κγ , γ1, γ

⋆
1, γ2, α1, β1. The analytical expressions of the disper-

sion curves, i.e. the roots of the dispersion polynomial (8), are unmanageable which makes it impossible to find further analytic
identification of more parameters. Therefore, one is usually left with a very computationally heavy numerical minimization
(we use Mathematica) to find the remaining material parameters. Here, we show a much faster alternative semi-analytical
approach.

We consider the asymptotes (k → ∞) of all dispersion curves (6 values each for 0◦ and 45◦). The limit allows for simplified
analytical expressions because we can omit terms of the dispersion polynomial which are of lower order in k and thus, we
obtain simpler roots. However, in contrast to the analytical expression of the cut-offs (16), the asymptotes’ expressions are
still very large and cannot be shown here. This is mainly due to the fact that we must solve a full third-order polynomial while
we only had two non-zero cut-offs each before.

7. We fit the remaining 10 parameters κm, µm, µ
∗
m, µc, κγ , γ1, γ

⋆
1, γ2, α1, β1 by minimizing the mean square error of the

asymptotes’ expressions and the numerical values obtained via Bloch-Floquet analysis of the periodicity limit k = 1
2Lc

.

4.1 Results

The fitting shown in Figure 2 behaves well for all frequencies ω and wavenumber k for 0◦ of incidence but looses some
precision for an incidence angle of 45◦. The achieved overall precision allows us to explore the dispersive metamaterial’s
characteristics at a satisfactory level. We want to emphasize that we only fixed the dispersion curves at k = 0 and in the limit
k → ∞, the well-behaving shape in-between is an automatic result of the relaxed micromorphic model. In particular, with
the additional micro-inertia term Curl Ṗ , we can fit a dispersion curve with negative group velocity perfectly, the lower optic
pressure curve for 45◦, for the first time.

The fitting of the curves below the band-gap is not perfect due to the degenerated structure of Curl Ṗ and CurlP in a plane
problem [13], resulting in an isotropic behavior with only a single independent parameter α1, β1 each. This causes four
asymptotes of the relaxed micromorphic model to coincide.
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Fig. 2: Dispersion curves ω(k) for 0 degrees (left) and 45 degrees (right) with pressure curves colored in yellow and shear in blue. The dots
are the points computed with Comsol Multiphysics® while the smooth curves show the analytical expression of the dispersion curves for the
relaxed micromorphic model with an enhanced kinetic energy. The horizontal dashed lines show the asymptotes of the latter.

8. We can change the unit cell’s size and its base material properties afterward: The scaling follows rule (9), i.e. we must
change the characteristic length Lc to the new unit size a, and rule (10), i.e. we scale all elastic parameters of the relaxed
micromorphic model Ce,Cc,Cmicro,Ls,La as well as the macroscopic apparent density ρ in consistency to the change
in the unit cell’s bulk material properties.
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