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Abstract

Graphs are among the most versatile abstract data types in computer science. With
the variety comes great adoption in various application fields, such as chemistry,
biology, social analysis, logistics, and computer science itself. With the growing
capacities of digital storage, the collection of large amounts of data has become the
norm in many application fields. Data mining, i.e., the automated extraction of
non-trivial patterns from data, is a key step to extract knowledge from these datasets
and generate value. This thesis is dedicated to concurrent scalable data mining
algorithms beyond traditional notions of efficiency for large-scale datasets of small
labeled graphs; more precisely, structural clustering and representative subgraph
pattern mining. It is motivated by, but not limited to, the need to analyze molecular
libraries of ever-increasing size in the drug discovery process.

Structural clustering makes use of graph theoretical concepts, such as (common)
subgraph isomorphisms and frequent subgraphs, to model cluster commonalities
directly in the application domain. It is considered computationally demanding for
non-restricted graph classes and with very few exceptions prior algorithms are only
suitable for very small datasets. This thesis discusses the first truly scalable structural
clustering algorithm StruClus with linear worst-case complexity. At the same
time, StruClus embraces the inherent values of structural clustering algorithms, i.e.,
interpretable, consistent, and high-quality results. A novel two-fold sampling strategy
with stochastic error bounds for frequent subgraph mining is presented. It enables fast
extraction of cluster commonalities in the form of common subgraph representative
sets. StruClus is the first structural clustering algorithm with a directed selection
of structural cluster-representative patterns regarding homogeneity and separation
aspects in the high-dimensional subgraph pattern space. Furthermore, a novel concept
of cluster homogeneity balancing using dynamically-sized representatives is discussed.

The second part of this thesis discusses the representative subgraph pattern mining
problem in more general terms. A novel objective function maximizes the number
of represented graphs for a cardinality-constrained representative set. It is shown
that the problem is a special case of the maximum coverage problem and is NP-hard.
Based on the greedy approximation of Nemhauser, Wolsey, and Fisher for submodular
set function maximization a novel sampling approach is presented. It mines candidate
sets that contain an optimal greedy solution with a probabilistic maximum error. This
leads to a constant-time algorithm to generate the candidate sets given a fixed-size
sample of the dataset. In combination with a cheap single-pass streaming evaluation
of the candidate sets, this enables scalability to datasets with billions of molecules
on a single machine. Ultimately, the sampling approach leads to the first distributed
subgraph pattern mining algorithm that distributes the pattern space and the dataset
graphs at the same time.
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Chapter

Introduction

1

Graphs are among the most versatile abstract data types in computer science. Re-
lational information—such as social interactions, closeness or similarity of objects,
connectivity, or semantic subject-object attributions—can be naturally modeled by
the connectivity structure of graphs. Attributed and labeled graphs allow annotating
entities and their relation, i.e., vertices and edges, with other types of data. Graphs
are used to model molecules, social networks, road and train networks, complex knowl-
edge, modular software architectures, hierarchical structures, metabolism models,
electric circuits, and many more. With the variety comes a great adoption in various
application fields, such as chemistry, biology, social analysis, logistics, and of course
computer science itself.

With the growing capacities of digital storage, the collection of large amounts
of data has become the norm and this changes the fundamental principles of data
collection. The approach of collecting specific data relevant for a specific task is
often replaced by a massive collection of data with low or no knowledge of the latter
applicability. This era of big data comes with the promise that such data may contain
hidden knowledge and that it can be revealed in a downstream knowledge discovery
process. Data mining, i.e., the automated extraction of non-trivial patterns from data,
is a key step in this knowledge discovery process. Moore’s Law used to grow at

10x every five years [and]
100x every 10 years. Right
now Moore’s Law is growing a
few percent every year. Every
10 years maybe only 2x. [. . . ]
So Moore’s Law has finished.

(Nvidia CEO Jensen Huang,
CES 2019)

At the same time, computing power does not grow at the same pace. Since clock
rates and single-core performance are hitting limits in recent years, parallelization is
more and more important to fully utilize modern computer resources. Also, Moore’s
law seems to hit an end or at least slow down. From a computer science point of
view, this implies a stronger focus on algorithmic aspects and a shift to scalability
beyond traditional notions of efficiency. In other words, polynomial complexities
considered efficient in the past no longer scale with the growing amount of data in
many application fields.

1



1 Introduction

Figure 1.1: Enzyme with a substance (black) docked to a binding cite (blue). The
catalytic site (i.e., the place where the chemical reaction is catalyzed) is
marked in red and altered by the docked substance. ©Thomas Shafee,
CC-BY 4.0

This thesis is dedicated to scalable data mining algorithms for multisets of labeled
graphs with linear and sublinear complexities, in particular, clustering and representa-
tive subgraph pattern mining algorithms. The major motivation stems from the need
to analyze large-scale molecular libraries for drug discovery. However, the presented
algorithms are not limited to this use case.

1.1 Molecular Libraries in the Context of Drug Discovery

Drug discovery is the process of finding drugs, i.e., chemical substances or molecules,
to cause a specific biological effect in a living organism. Its first step can be the
identification of a target inside the organism. This can be a receptor of a cell or
protein that is involved in the biological pathway of a disease.

After identifying a target, the next step is to find a suitable substance that alters
the function of the cell or protein. For example, the reaction rate of an enzyme (i.e.,
a protein acting as a catalyst for a chemical reaction in the metabolic process) can be
inhibited (decreased) or activated (increased) by a drug that docks to it. Figure 1.1
shows a docked substance to a protein. Since the protein and the drug substance
are flexible objects that apply reciprocal forces to each other, the prediction of the
docking behavior is a very challenging task [Men+11]. Especially, reverse engineering[Men+11] Meng et al.,

“Molecular Docking: A
Powerful Approach for

Structure-Based Drug
Discovery”. 2011

a specific substance from the intended binding site is usually not possible.

2



1.1 Molecular Libraries in the Context of Drug Discovery

Pharmaceutical companies have resorted to brute force chemical substances in a
highly automated high-throughput screening process. Thus, they apply a substance
to a target protein and observe possible activity, e.g., by using fluorescent indicators.
However, with an estimated number of 1012 to 10180 drug-like molecules [Bro09], this [Bro09] Brown,

“Chemoinformatics - an
introduction for computer
scientists”. 2009

process clearly has limits when it comes to covering the chemical (search) space. As
such, a virtual pre-selection process is typically applied to find novel drugs and to
advance into unexplored regions of the chemical space.

Enumeration of the complete drug-like chemical space is unfeasible even for modern
computers. Furthermore, many theoretical molecules can be ruled out for other
reasons, e.g., because there exists no known way to synthesize them in the real
world. For these reasons, a virtual pre-selection process usually starts with datasets of
candidate molecules. These candidates are often selected in such a way that desired
properties can be ensured (such as the synthesizability of the molecules [GC20]). [GC20] Gao and Coley, “The

Synthesizability of Molecules
Proposed by Generative
Models”. 2020

Virtually generated large-scale de-novo datasets (e.g., CHIPMUNK [Hum+18] or

[Hum+18] Humbeck et al.,
“CHIPMUNK: A Virtual
Synthesizable Small-Molecule
Library for Medicinal
Chemistry, Exploitable for
Protein–Protein Interaction
Modulators”. 2018

GDB-17 [Rud+12]) with billions of molecules are often combined with datasets of

[Rud+12] Ruddigkeit et al.,
“Enumeration of 166 Billion
Organic Small Molecules in
the Chemical Universe
Database GDB-17”. 2012

existing knowledge about known molecules (e.g., PubChem [Kim+20]). To narrow

[Kim+20] Kim et al.,
“PubChem in 2021: new data
content and improved web
interfaces”. 2020

down the set of candidates, the properties (e.g., activity, toxicity) of already known
molecules are used to reason about the properties of novel candidates. One of the
most fundamental assumption for such an analysis is that the structural similarity of
molecules implies similar bioactivity behavior [Mag+14]. Structural similarity analysis

[Mag+14] Maggiora et al.,
“Molecular Similarity in
Medicinal Chemistry”. 2014

is thereby a central problem during this phase of drug discovery. In particular, data
mining techniques are often used to extract structural commonalities and align them
with annotated properties.

1.1.1 Graph Representation of Molecules

Molecules are collections of atoms that are attracted by chemical bonds. While
molecules are flexible in shape, with three-dimensional arrangements (conformations),
they are often modeled or described by their structural formula (see fig. 1.2a for
an example), i.e., their atom-bond-connectivity. In a structural formula, atoms are
classified by their chemical element, e.g., carbon or hydrogen. The attraction forces,
i.e., the bonds between the atoms, can be classified by the number of valence elec-
trons and the way they are shared between atoms (e.g., single, double, or aromatic
bonds). Charges, isotopes, and some three-dimensional properties are sometimes
incorporated into these classifications. When it comes to the comparison of molecules,
it might be tempting to add as much and precise information as possible, i.e., to use
a three-dimensional representation. Interestingly, the structural formula as a basis
for comparisons has been proven to be more robust in many situations [Mag+14].
One reason is the variance in three-dimensional information (due to flexibility and
surrounding influences on the shape) and the uncertainty of three-dimensional infor-
mation due to restrictions of the measurement. Also, three-dimensional properties or
conformations are often not part of existing knowledge, which limits these approaches
by the amount of available information.

A molecule’s structural formula can be represented naturally as a graph. More
precisely, vertices represent atoms and edges represent bonds. Figure 1.2 shows an

3



1 Introduction

(a) Structural formula
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(b) Graph representation. Double bonds are
depicted as double edges, aromatic bonds
are depicted as snake shaped edges.

Figure 1.2: Example structural formula of a molecule alongside a graph representation.

example structural formula and a corresponding graph representation. Labels of
vertices and edges are derived from their classification. As seen in the example, some
hydrogens (label H) of the graph representation are only implied by the structural for-
mula. Implicit hydrogens can be unambiguously derived from the chemical properties
of the adjacent atoms.

1.1.2 Molecular Comparisons

Given a graph representation of a molecule it is possible to use graph comparison
methods to determine structural similarity. In drug discovery, the use of numerical or
boolean molecular fingerprints as an intermediate representation is a predominantly
observed practice [MS11]. Thus, a vectorized intermediate representation is used to[MS11] Maggiora and

Shanmugasundaram,
“Molecular Similarity

Measures”. 2011

compare graphs by means of classical vector distances, e.g., the Jaccard-Coefficient
or Lp-norms. Commonly used are structural or circular fingerprints. The former
encode the presence of subgraph patterns in the molecules. One problem with
these approaches is that a set of patterns must be preselected since the encoding of
all possible subgraph patterns would result in unfeasible large feature vectors (cf.,
section 2.6.1.2). Circular fingerprints—such as ECFP fingerprints [RH10]—encode[RH10] Rogers and Hahn,

“Extended-Connectivity
Fingerprints”. 2010

properties of the neighborhoods of vertices in an iterative procedure, similar to the
Weisfeiler-Lehman [Wei68] isomorphism test. While molecular fingerprints are broadly[Wei68] Weisfeiler, “A

reduction of a graph to a
canonical form and an

algebra arising during this
reduction”. 1968

applied due to their computational speed compared to graph-theoretical comparison
concepts, they suffer from their lossy representation and their limited interpretability
in the application domain.

Graph-theoretical concepts are another method to compare graphs. They include
distance measures directly applicable to graph data, e.g., the graph edit distance [SF83].[SF83] Sanfeliu and Fu, “A

Distance measure between
attributed relational graphs

for pattern recognition.” 1983

Furthermore (common) subgraph isomorphisms can express structural equivalence
of parts of graphs or molecules. This has the advantage, that commonalities can be
explained directly in the application domain (cf., fig. 1.3). As a result, these concepts
are considered highly consistent and interpretable [Kri15]. Common subgraph patterns[Kri15] Kriege, “Comparing

Graphs: Algorithms &
Applications”. 2015

can be used to derive classical distance measures if the size or the weight of common
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C

Figure 1.3: Commonality of two graphs expressed as common subgraph pattern C.

subgraph patterns is compared to the size or weight of the compared graphs [e.g.,
BS98; FV01; Wal+01]. Recent developments have shown, that the maximum common [BS98] Bunke and Shearer, “A

graph distance metric based
on the maximal common
subgraph”. 1998

[FV01] Fernández and
Valiente, “A graph distance
metric combining maximum
common subgraph and minimum
common supergraph”. 2001

[Wal+01] Wallis et al.,
“Graph distances using graph
union”. 2001

subgraph problem can be extended to incorporate domain-specific knowledge for drug
discovery [DKM18] and that the problem is solvable in polynomial time for most

[DKM18] Droschinsky,
Kriege, and Mutzel, “Largest
Weight Common Subtree
Embeddings with Distance
Penalties”. 2018

molecular graphs if blocks and bridges are preserved [DKM17]. Nevertheless, the high

[DKM17] Droschinsky,
Kriege, and Mutzel, “Finding
Largest Common
Substructures of Molecules in
Quadratic Time”. 2017

computational complexity of general graph-theoretic approaches is often a limiting
factor for their applicability.

1.1.3 Analysis of Molecular Libraries with Scaffold Hunter

Molecular similarity analysis is usually not a simple molecule-to-molecule comparison.
Instead, data mining tools use similarities to extract patterns from data and handle
datasets whose size make them intractable for human inspection. This section will
exemplarily present the software Scaffold Hunter to give an insight into computer-aided
drug discovery. It will serve as the main motivation for the content of this thesis.

Scaffold Hunter [Sch+17] is an award-winning1 visual analytics tool for molecular

[Sch+17] Schäfer et al.,
“Scaffold Hunter: a
comprehensive visual analytics
framework for drug
discovery”. 2017

datasets and drug discovery. The central concept is a multi-view-based (cf., fig. 1.4)
analytical reasoning process, that combines data mining techniques with highly
customizable interactive visualizations. By aligning structural and property-based
classifications with visual expressions of annotated properties, it is possible to greatly
reduce the complexity of dataset analysis while making patterns discoverable through
human perception. Thus, Scaffold Hunter interleaves human reasoning and learning
with a computer-aided structured view on data. This serves as an iterative filtering
and refinement process of candidate sets for drug discovery. Incorporating human
knowledge in an iterative process is especially useful when generating new hypotheses
in an explorative manner.

A typical workflow in Scaffold Hunter starts with the creation of a molecular dataset
by importing molecular data from (possibly multiple) external sources. These datasets
contain structural information of the molecules as well as annotated properties. The
properties can be imported from external sources or computed by various plugins, e.g.,
to create molecular fingerprints for latter comparisons, derive numerical properties
such as molecular weight from structural information, or compute predictions for
drug-likeliness. After data integration, it is possible to display the dataset in various
views.

1http://old.opentox.org/meet/opentoxeu2013/opentoxeuro13awards
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Figure 1.4: Scaffold Hunter showing a molecular dataset in multiple views and windows.
The table view displays the dataset structure with annotated properties
for each molecular structure. Also visible are the scaffold tree view (left
side) and the plot view (window in front).
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Figure 1.5: Hierarchical molecular clustering in Scaffold Hunter with attached heat
map. The heat map displays the values of annotated properties (rows) of
molecules (columns) with the help of color gradients. Property names are
displayed on the right side; color legends on the left side. The red bar in
the top dendrogram indicates a cutoff to determine a flat clustering with
3 clusters.

The refinement of a dataset is possible by creating subsets of the complete dataset
that are of special interest. These subsets can be created in various ways: Most
prominent is the manual selection of molecules or classes of molecules in the various
views of Scaffold Hunter. In addition, it is possible to filter datasets by property-,
similarity-, and substructure-based search criteria, by combining or intersecting
existing subsets, and by sampling. Thus, it is possible to compare and integrate the
results of multiple independent reasoning processes.

The name Scaffold Hunter originates from the concept of scaffold trees, a hierarchical
chemical classification scheme developed by Schuffenhauer et al. [Sch+07]. Scaffold [Sch+07] Schuffenhauer

et al. “The Scaffold Tree -
Visualization of the Scaffold
Universe by Hierarchical
Scaffold Classification”. 2007

trees reduce molecules to scaffolds, which are roughly speaking ring systems without
loose side chains. Molecules can then be classified by common scaffolds, which are
selected using a rule-based reduction scheme. This initial classification scheme was
later complemented by hierarchical clustering algorithms, including an accelerated
SAHN (Sequential Agglomerative Hierarchical Non-Overlapping) clustering algorithm
for metric distance measures [KMS14a]. The latest additions of data mining tools [KMS14a] Kriege, Mutzel,

and Schäfer, “Practical SAHN
Clustering for Very Large
Data Sets and Expensive
Distance Metrics”. 2014

are various dimension-reduction techniques to embed structural or property-based
similarities in low-dimensional representations.

Figure 1.5 show a hierarchical clustering of molecules with an attached heat map
developed during a Google Summer of Code project [Stu+15]. The dendrogram on [Stu+15] Sturm et al.,

“Extending the Scaffold
Hunter Visualization Toolkit
with Interactive
Heatmaps”. 2015

the top is cut by a distance threshold (horizontal red line), such that the dataset is
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Figure 1.6: Treemap view (left side) and scaffold tree view (right hand side) of Scaffold
Hunter. The selections (red highlighting in each view) are linked across
both views. colors in both views show visual representations of annotated
properties.

split into three different clusters (indicated by the colors of the dendrogram). The
heat map shows annotated properties for each molecule, mapping values to colors
for a quick visual perception. The screenshot reveals an alignment of the selected
clusters with activity properties. The properties themselves are also clustered on
the right side, making it easy to discover a high correlation of the several annotated
weight properties. Such insights are useful in various ways during drug discovery. For
example, one could add novel molecules with unknown activity to the clustering and
infer activities by inductive reasoning.

The treemap view in fig. 1.6 is another way to display hierarchical classifications
of molecules and scaffolds. A specific strength of this view is that classes aligning
with the selected property (mapped to the background color) are easy to catch, even
if they are present on different levels of the hierarchy. Furthermore, the screenshot
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Figure 1.7: Molecular cloud view of Scaffold Hunter

displays another strength of Scaffold Hunter, which is the global selection of molecules
spanning all views on the dataset. Here, the red selections in the left corners of the
treemap are also visible at the top of the scaffold tree view. The screenshot also shows
properties mapped to various visual representations of the scaffold tree view, such as
the background color of nodes, colored tree edges, and info bars showing distributions
of properties.

Figure 1.7 shows a view inspired by word clouds. The initial application to the
domain of cheminformatics by Ertl and Rohde [ER12] was extended in Scaffold Hunter [ER12] Ertl and Rohde “The

Molecule Cloud - compact
visualization of large
collections of
molecules”. 2012

with the integration of semantic layout algorithms. Thus, similar molecules (using a
broad range of similarity measures), are grouped close to each other. In this sense, a
semantic layout can serve similar goals as clustering with the difference that no hard
cluster borders are given. The relation between molecular similarity and an annotated
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property (mapped to the background color) is visible in the provided example. This
allows the user to get a quick glance at the similarity relation of molecules concerning
other properties such as the docking behavior.

It can be concluded, that various types of (unsupervised) classification are crucial
for visual analytic tasks, especially for complexity reduction and inductive reasoning.
Revealing (structural) patterns in a dataset can be the starting point to develop
hypotheses in the drug discovery process.

1.2 Contributions

This thesis presents novel data mining algorithms for the structural analysis of datasets
of small labeled graphs (e.g., molecules) with a special focus on scalability. It is shown
that consistent and interpretable graph-theoretical concepts are applicable to graph
data mining alongside scalability to large-scale datasets.

A novel structural projected clustering algorithm, named StruClus, for datasets
of small labeled graphs is present in chapter 3. To my knowledge, this is the first
approach using a directed selection of structural cluster-representative patterns with a
ranking function that respects homogeneity and separation aspects. Additionally, it is
the first approach that balances cluster homogeneity with the help of dynamically-sized
representatives and an adaptive minimum-support threshold. A new error-bounded
frequency test for maximal frequent subgraph sampling is able to accelerate the
clustering algorithm to scale to dataset cardinalities that other structural clustering
algorithms are unable to handle in a reasonable amount of time. The experimental
evaluation shows that StruClus outperforms competitors not only in terms of
running time but also in terms of quality by a large margin. In joint work with others,
StruClus was used for the novelty analysis of the CHI PMUNK molecular library.

In chapter 4 a distributed algorithm for representative subgraph pattern mining is
presented. To mine a set of representatives, a novel objective function is introduced
that maximizes the number of represented graphs for a given number of representatives.
It is shown that the problem is a special case of the maximum coverage problem and
is NP-hard. An adoption of the greedy approximation algorithm for submodular set
function maximization of Nemhauser, Wolsey, and Fisher [NWF78] for the problem[NWF78] Nemhauser, Wolsey,

and Fisher “An analysis of
approximations for maximizing

submodular set
functions—I”. 1978

is given. A novel sampling approach is presented to generate candidate sets, that
contain an optimal greedy solution with a probabilistic maximum error. Since the
sample size is fixed, this leads to a constant-time algorithm to generate the candidate
sets. In combination with a cheap single-pass streaming evaluation of the candidate
sets, this enables scalability to datasets with billions of molecules on a single machine.
During the experimental evaluation, it is shown that the sampling strategy can
increase performance by up to two orders of magnitudes even on medium-sized
datasets. Furthermore, the sampling approach enables a distributed computation of
representative sets. In addition to the speedups of the sampling approach, parallel
speedups in the range of two magnitudes can be achieved using 16 workers with 10
cores each. The usefulness of the objective is demonstrated by applying it to the
pre-clustering subroutine of StruClus, which results in a significantly increased
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clustering quality. To the best of my knowledge, the approach is the first subgraph
pattern mining algorithm that distributes the pattern space and the dataset graphs
at the same time.

1.3 Corresponding Publications
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I contributed as main author to the publications a and b. The publications c to f
are joint work with other authors. I have mentored the work published in h during a
Google Summer of Code project.

My contributions to Scaffold Hunter (cf., section 1.1.3) were especially focused on
clustering, data integration, iterative workflow concepts, mentoring of students, and
project management. These contributions are partialy published in the publications b
to e and h. The publications d and f are related to the similarity analysis of graphs.
The StruClus algorithm (cf., chapter 3) is presented and applied in the publications
a and g.

The publication g was awarded as very important paper by the ChemMedChem
Journal and presented as cover feature2. It was one of the 20 most read ChemMedChem
articles in 2017-2018. Furthermore, it received the interdisciplinary award3 of the
DFG priority program 1736 (Algorithms for BIG DATA).

The distributed representative mining algorithm presented in chapter 4 is unpub-
lished at this time.

2https://doi.org/10.1002/cmdc.201800126
3https://www.big-data-spp.de/publications/awards
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Chapter

Preliminaries

2

2.1 Basic Notation

The natural numbers including zero are denoted by N, the rational numbers by
Q and the real numbers by R. A restriction to a set of numbers is expressed as
superscript inequality, e.g., N>0 for strictly positive natural numbers. The boolean
set {true, false} is donated by B. A union of pairwise disjoint sets is indicated by
the symbol ⊎. A multiset M is a tuple (A,m), where A = {a1, . . . , an} is the
underlying set of M and m : A → N is a multiplicity function. M is also denoted
by {{am(a1)

1 , . . . , a
m(an)
n }}. The cardinality |M | of a multiset M = (A,m) is the

sum of all multiplicities, i.e.,
∑

a∈A m(a). The union (intersection) of two multisets
M = (A,mM ) and N = (B,mN ) is defined as a multiset Q = (C = (A∪B),mQ) with
∀c ∈ C : mQ(c) := max{mM (c),mN (c)} (∀c ∈ C : mQ(c) := min{mM (c),mN (c)}).
The support of a multiset M = (A,m) is the set of distinct elements of the underlying
set A with strictly positive multiplicity, i.e., {a ∈ A | m(a) > 0}. 1A : X → A is the
indicator function, that maps some x ∈ X to 1 if x ∈ A and maps to 0 otherwise. A k-
ary relationR ⊆ A1×· · ·×Ak is a subset of the Cartesian product of the sets A1, . . . , Ak.
For convenience, binary relations are written in the infix notation, i.e., a R b is written
iff (a, b) ∈ R and a 6R b otherwise. For a binary relation R ⊆ A1 × A2, A1 is called
domain of R and A2 codomain of R. An equivalence relation is a binary relation
∼ ⊆ A× A on a set A that is (a) reflexive, i.e., ∀a ∈ A : a ∼ a, (b) symmetric, i.e.,
∀a, b ∈ A : a ∼ b⇔ b ∼ a, and (c) transitive, i.e., ∀a, b, c ∈ A : a ∼ b ∧ b ∼ c⇒ a ∼ c.
The equivalence class of an element a ∈ A is written as [a] := {x ∈ A | x ∼ a}. The
quotient set {[a] | a ∈ A}, i.e., the set of all equivalence classes of a set A, is written
as A/∼. Let A be a set, ∼ an equivalence relation, and ρ : A/∼ → A be an injective
function that maps each equivalence class E ∈ A/∼ to any a ∈ E = [a]. Then, ρ
is called representative function of A under ∼, a is called representative of E under
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ρ, and [A]∼ := {ρ(x) | x ∈ A/∼} is called representative set of A for the equivalence
relation ∼ and the representative function ρ. The notations lex max and lex min are
used for the lexicographic maximum and minimum of tuples and strings.

2.2 Computation Models, Frameworks and Complexity

A model of computation defines in which way a mathematical problem can be solved on
an abstract type of computer. Such a model is the basis for computational complexity
analysis. Besides pure theoretical models, most of the models somehow abstract real
hardware in order to perform theoretical analysis that can predict the behavior of
algorithms on real-world machines. This section will cover models of computation
as well as computation frameworks, that are needed for the analysis of algorithms
presented in this thesis. Additionally, a model of computation defines the algorithmic
operations, that can be used in pseudocode. Thereby, this chapter will define some
operations that are not commonly used and reflect parallel or distributed execution.
This section is partially based on Savage [Sav98] and Cormen et al. [Cor+09].[Sav98] Savage Models of

computation - exploring the

power of computing. 1998

[Cor+09] Cormen et al.
Introduction to Algorithms,

3rd Edition. 2009

2.2.1 Random-Access Machine

A random-access machine (RAM) is an abstract machine, that processes sequential
algorithms. The RAM can be divided into two parts, the central processing unit
(CPU, or processor) and the random-access memory. The random-access memory is
a sequence of m b-bit words, where each word can be accessed by a unique address.
It holds the executed program as well as data, such as the problem input, states,
and (intermediate) results. Indirect addressing is supported by the RAM model,
i.e., memory can be accessed by an address, that is stored in another word of the
memory. The CPU operates in cycles, where each cycle fetches a command from
the memory—which is addressed by a program counter—and executes it. Such a
command can contain arithmetic operations (e.g., add, mult), logic operations (e.g.,
or, and), comparisons (e.g., equals), and jump instructions. Per default a program
is read sequentially in the order it is stored in memory, i.e., the program counter
is incremented after each cycle. Jump instructions are used to modify the program
counter (based on other operations such as comparisons) and override the sequential
order. They are the basis for loops (e.g., while or for statements), conditional jumps
(e.g., if or switch statements), and re-used subroutines.

2.2.1.1 Computational Complexity in the RAM Model

It is assumed, that each command or operation is atomic and performed in a single
cycle. Consequentially, the work that needs to be performed by an algorithm to
terminate can be measured in terms of operations. Furthermore, it is assumed that
each cycle requires an equal amount of time. Time and work are thereby equivalent
in the RAM model. Additionally, the amount of memory, i.e., the number of words
m, which are required to execute a program can be subject to analysis in the RAM
model.
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2.2.2 Parallel Random-Access Machine

A parallel random-access machine (PRAM) is an abstract machine, which processes
parallel algorithms. It consists of a set of RAMs and a shared random-access memory.
Thus, each RAM has access to its local and the shared memory. Each processor
Pid1

, . . . , Pidp
has a unique identifier id that is accessible to the program, such that

the program can make processor-dependent decisions. Each RAM executes its own
program. The PRAM assumes that each RAM is operating synchronously and executes
three steps in each cycle: (1) read a word from the shared memory to the local memory,
(2) execute a command, (3) write a word from the local memory to the shared memory.

The access to the shared memory of a PRAM can be either exclusive (E) or
concurrent (C) for read (R) and write (W) access. Thus, there exist four variants
exclusive read / exclusive write (EREW), concurrent read / exclusive write (CREW),
exclusive read / concurrent write (ERCW), and concurrent read / concurrent write
(CRCW). In the exclusive case, a valid program needs to ensure, that no two processors
access the same shared memory address in the same cycle. The concurrent write
variants can be furthermore divided into submodels which define the way possible
write conflicts are resolved: (a) the weak model restricts concurrent writes to the
value zero, (b) the common model restricts concurrent writes to writes of a common
value, (c) the arbitrary model selects a random write, (d) the priority model selects
the write of the RAM with the lowest / highest processor id, (e) the strong model
selects the write with the lowest / highest value. In this thesis, the CRCW PRAM
with the arbitrary write conflict model for the analysis of parallel algorithms is used,
if not stated otherwise.

The PRAM model gained the parameter p, i.e., the number of processors, in
comparison to the RAM model. In general, it is assumed that an unlimited number
of processors is available. However, a parallel algorithm for a fixed problem instance
does only require a certain amount of processors. Furthermore, an algorithm might
have a parameter pmax that reflects the maximum number of processors the algorithm
is allowed to use.

2.2.2.1 Computational Complexity in the PRAM Model

In alignment with the RAM model, work specifies the number of operations a parallel
algorithm performs on a PRAM, i.e., the sum of operations performed on each
processor. Consequentially, the amount of time, i.e., the number of concurrent cycles
until the algorithm terminates, is no longer equivalent to the performed work. When
the algorithm is parameterized by a maximum number of processors pmax, both
measures are often given in dependency of pmax. When ti is the running time with
i processors, t1

tp
is called speedup for p processors. Sometimes the time required by

a sequential algorithm tseq diverges from the parallel algorithm running time with
one processor. Thereby, speedup may also be given by tseq

tp
or in relation to another

processor count (e.g.,
t p

2

tp
) A parallel algorithm is called work optimal in the PRAM
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model if the work w(n) ∈ O(t1(n)) w.r.t. the input size n. It is called work efficient if
w(n) ∈ O(t1(n) polylog(n))

2.2.3 Distributed-Memory Computers

Definition 2.1 (Distributed-Memory computer). A distributed-memory
computer is a parallel computer, which consists of multiple computing nodes,
which communicate with each other by sending messages.

Thus, in contrast to shared-memory computers—which communicate with the help of
a common memory—, processors in distributed computers usually are much looser
tied to each other. Traditionally, a node was defined as a processor with local memory,
which was connected over a network with other nodes. However, with increasing core
counts, NUMA (non-uniform memory access) architectures, and increasingly powerful
hardware, it becomes increasingly popular to have multiple processes running on a
single hardware, that exchange messages with each other. It is also common practice
to define a node as a parallel shared-memory computer, i.e., a distributed model
might be a hybrid of shared- and distributed-memory layouts. This thesis will use the
following nomenclature:

Node: A node is a real piece of hardware, that is connected to other hardware via
some kind of network.

Worker: A worker is a process that communicates with other workers via message
exchange.

Task: A task is a piece of work, i.e., an algorithm or algorithm subroutine that can
be executed on a worker.

A worker can have shared resources with other workers if multiple workers run on the
same node, e.g., memory, caches, CPU cores, or thermal/power budget.

Distributed computing models usually assume that processor cycles are running
asynchronously for each node. The communication between nodes is considered to be
much more costly than between processors in a shared-memory model. A message
often has a latency α and a bandwidth limitation β associated with it. Thus, the
time a message of length l needs to be sent may be modeled as α+ lβ. The analysis
of distributed algorithms strongly depends on the network architecture (e.g., some
network topologies share resources, such that the message bandwidth or latency
between two nodes is influenced by other communication) and the parallel processing
framework, which often imposes limitations on the data or message flow.

2.2.4 Distributed Computation Models and Frameworks

Maybe the most prominent classical distributed computation framework is the message
passing interfaces (MPI) standard. It assumes computation nodes to be connected to
a network and provides a low-level API to send messages to other nodes. Besides some
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basic grouping of nodes in order to perform efficient communication, the framework
does not provide any further mechanisms to distribute work and data among the
nodes, perform synchronization, provide a coherent view on data, manipulated data,
or recover from failures. Thereby MPI is a very flexible, but low-level framework for
distributed computing.

Another class of distributed frameworks are distributed shared-memory (DSM)
abstractions (cf., [NL91]), which emulate a shared memory on a distributed computer. [NL91] Nitzberg and Lo,

“Distributed Shared Memory:
A Survey of Issues and
Algorithms”. 1991

In comparison with MPI, DSM frameworks provide a higher abstraction and provide a
unified view on the distributed memory. They provide mechanisms for cache coherence
and synchronization. However, data and work must be distributed manually in order
to ensure properties such as data locality.

In Big-Data analytics many high-level frameworks have been proposed recently,
that resolve around a data-centric viewpoint and provide high-level operations on
data rather than providing direct access to messaging or memory operations. This
abstraction usually provides some kind of load balancing, fault tolerance, and a rich
feature set for data manipulation. Examples are Hadoop1, Flink2, Storm3, Samza4,
Heron5 and Presto6. In the following the Spark framework—which implements the
concept of resilient distributed datasets (RDDs)—is presented in more detail, since the
implementations of distributed algorithms in this thesis are based on this framework.
The MapReduce framework is often considered a forerunner model and shares some
basic ideas.

2.2.4.1 MapReduce

Dean and Ghemawat introduced the MapReduce programming model in 2004 [DG04]. [DG04] Dean and Ghemawat,
“MapReduce: Simplified Data
Processing on Large
Clusters”. 2004

Their Google-internal implementation was quickly complemented by various open-
source projects, such as Hadoop1 and Phoenix7. The distribution of the data and
work is handled by the MaReduce implementation with the ability to break down
the work into smaller tasks. This enables the framework to recover from failures of
workers and to provide an automated task scheduling.

The MapReduce implementation of Dean and Ghemawat [DG08] runs in five phases: [DG08] Dean and Ghemawat
“MapReduce: Simplified Data
Processing on Large
Clusters”. 2008

input, map, shuffle, reduce, and output. The programmer does only specify a map

and a reduce function to implement the logic of the algorithm. The other phases are
handled by the MapReduce implementation. The type signatures of map and reduce

are defined as:

map : (K1,V1)→ seq[(K2,V2)]

reduce : (K2, seq[V2])→ seq[V2]

1https://hadoop.apache.org
2https://flink.apache.org
3https://storm.apache.org/
4https://samza.apache.org/
5https://heron.apache.org/
6https://prestodb.io/
7https://github.com/kozyraki/phoenix
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K1 and K2 are key types and V1 and V2 are value types. The map phase is often
associated with the extraction of features, while the reduce phase aggregates the
features to a common value. Several implementations relax the above definition to
allow other return types in the reduce phase. For example, Hadoop defines the reduce

functions type signature as (K2, seq[V2])→ seq[(K3,V3)].
In the input phase, the dataset is split into smaller parts, that align with record

boundaries. A record is an atomic unit of data, that must be processed as a whole.
The splits are then distributed to a set of workers (mappers), which apply the custom
map function on each record (map phase). The results of the map function are then
grouped by their key (shuffle phase) and fed to a set of workers (reducers), which apply
the reduce function (reduce phase). In the last step (output phase), the reducer’s
results are written to persistent storage.

A famous algorithmic example for MapReduce is the word counting algorithm. The
task is to count the number of occurrences of the words which are contained in a text.
A straightforward MapReduce implementation splits the text input into records of
words (strings). The mapper then outputs the word as the key and the number one
as the value. The reducers then sum up all the values for each key.

A major weakness of MapReduce is data locality. For example, the framework
presented in [DG08] does not provide any local aggregation of values. This is addressed[DG08] Dean and Ghemawat,

“MapReduce: Simplified Data
Processing on Large

Clusters”. 2008

by the combine phase of Hadoop, which lets the programmer specify a combine

function. The combine phase basically serves as a local reducer and is executed
after the map and before the shuffle phase. In the above word count example, this
would avoid the transfer of multiple key-value pairs with the same key from a single
mapper to the reducer of the key. Nevertheless, the shuffle phase usually transfers a
huge amount of data among the network to group the keys. A second weakness of
MapReduce is the forced persistence after each reduce phase, especially for iterative
algorithms which require multiple passes of the MapReduce phases. In this case, each
intermediate result is persisted in the output phase and needs to be re-read in the
input phase iteration.

2.2.4.2 Resilient Distributed Datasets

Zaharia et al. [Zah+12] presented the concept of Resilient distributed Datasets (RDDs)[Zah+12] Zaharia et al.
“Resilient Distributed

Datasets: A Fault-Tolerant
Abstraction for In-Memory

Cluster Computing”. 2012

in combination with an implementation called Spark8. RDDs are immutable dis-
tributed memory abstractions. While they can provide MapReduce functionality, they
provide many more operations. In comparison with MapReduce, RDDs aim to provide
a higher control and flexibility w.r.t. data locality and partitioning, data persistence
and in-memory computations, re-use of intermediate results, and data transformations.
RDDs are managed by a special worker, called driver, which can initiate distributed
operations on them. RDD operations are divided into transformations (cf., ta-
ble 2.1) and actions (cf., table 2.2). See [Zah+12] for an in-depth explanation of the
individual operations, which is out of the scope of this thesis. While transformations
are performed in a lazy fashion and define a new child RDD, actions actually launch

8https://spark.apache.org/
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Table 2.1: Basic resilient distributed dataset transformations as given in [Zah+12].
Additional transformations of interest—which are not part of the publication
but implemented in Spark—are shown in the second half of the table.
O,T,U,V,W are value types and K is a key type. RDD[X] is a resilient
distributed dataset of records with type X.

Name Parameter Input & Return Type

map f : T→ U RDD[T]→ RDD[U]

filter f : T→ B RDD[T]→ RDD[T]

flatMap f : T→ seq[U] RDD[T]→ RDD[U]

sample fraction ∈ Q≥0,≤1 RDD[T]→ RDD[T]

groupByKey ∅ RDD[(K,V)]→ RDD[(K, seq[V])]

union ∅ (RDD[T],RDD[T])→ RDD[T]

join ∅
(RDD[(K,V)],RDD[(K,W)])

→ RDD[(K, (V,W))]

cogroup ∅
(RDD[(K,V)],RDD[(K,W)])

→ RDD[(K, (seq[V], seq[W]))]

crossProduct ∅ (RDD[T],RDD[U])→ RDD[(T,U)]

mapValues f : V→W RDD[(K,V)]→ RDD[(K,W)]

sort
comparator ∈

f : (K,K)→ {−1, 0, 1} RDD[(K,V)]→ RDD[(K,V)]

partitionBy partitioner ∈ f : K → N>0 RDD[(K,V)]→ RDD[(K,V)]

repartition numPartitions ∈ N>0 RDD[(K,V)]→ RDD[(K,V)]

mapPartitions f : seq[T]→ U RDD[T]→ RDD[U]

zipPartitions

RDD[O], f : (seq[T],
seq[O])→ seq[U] RDD[T]→ RDD[U]

sampleExact
fraction ∈ Q≥0,≤1,

withReplacement ∈ B RDD[T]→ RDD[T]

19



2 Preliminaries

Table 2.2: Resilient distributed dataset actions. T and V are value types and K is a
key type. RDD[X] is a resilient distributed dataset of records with type X.
Non-RDD types are returned to the driver.

Name Parameter Input & Return Type

count ∅ RDD[T]→ N

collect ∅ RDD[T]→ seq[T]

reduce f : (T, T )→ T RDD[T]→ T

lookup k ∈ K RDD[(K,V)]→ seq[V]

save path not applicable (saves RDD to shared storage)

a computation. RDDs that are the result of a transformation remember their lineage,
i.e., they link to the parent RDDs involved in the transformation. Consequentially,
the application of several transformations leads to a directed acyclic graph (DAG)
of operations that depend on each other. When an action is applied, the scheduler
follows the lineage to derive tasks that can be executed by the workers.9

Similar to MapReduce, an initial RDD must be created by providing some data—e.g.,
reading from persistent storage—and individual records must be distributed among
the workers to perform distributed operations. Spark groups the records into so-called
partitions. Each partition contains several records and is worker local, i.e., cannot
span multiple workers. Consequentially, the number of partitions of an RDD limits
the worker-level concurrency. The partitioning of an RDD can be influenced directly
with the partitionBy transformation. Furthermore, several other transformations
influence the partitioning, e.g., groupByKey, union, and join. Other transformations,
such as map and filter retain the RDDs partitioning. Dependencies in the lineage
graph are classified into narrow and wide dependencies. Narrow dependencies are
defined as dependencies, where each parent RDDs partition is used in at most one
child partition. Wide dependencies are all other dependencies. Narrow dependencies
are special from a distributed point of view because they can be pipelined on a single
worker instance without communication over the network. A fitting RDD partitioning
is thereby a key factor to reduce network usage and obtain data locality.

In many cases, intermediate results—emerging from the application of transformations—
need to be accessed multiple times. In this case, it might be beneficial to remember and
re-use the intermediate results instead of re-computing them. Similar to MapReduce,
intermediate results can be stored on a shared persistent storage. However, in some
cases—especially in the case of iterative algorithms with many iterations—persisting
the data on a shared storage may cause a significant overhead w.r.t. time, disk us-
age, and network bandwidth. For this reason, RDDs provide a configurable local
caching mechanism, accessible via the methods persist and unpersist. Similar to

9In fact the scheduler of Spark is more sophisticated. For example, it groups several operations to
stages of narrow dependencies to increase worker local pipelining of transformations (cf., [Zah+12]).
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the lazy evaluation of transformations, calling persist on an RDD does not trigger
the computation. However, whenever the computation is caused by some action, the
intermediate result is cached locally by the worker who performed the computation
on a per partition basis. Caching modes are either in-memory, on a local storage, or a
memory-storage hybrid, which only uses the local storage whenever the cache exceeds
the local memory. The cache is evicted in a least recently used (LRU) fashion. In the
case of eviction, RDDs know their lineage and the missing partition elements can be
re-computed.

Without going into to much detail, it should be mentioned, that the Spark scheduler
uses the above concepts of lineage, partitioning, and caching for fault tolerance.
Whenever a worker fails (e.g., because of a hardware failure or an out-of-memory
situation), Spark re-schedules the computation. Given the lineage of the RDD, the
re-scheduled computations are performed using intact caches and partition elements
whenever possible.

2.2.5 Pseudocode

Algorithms given in this thesis have pseudocode keywords and header information
that are not part of common knowledge and will be explained in the following.

2.2.5.1 Header Information

The header of an algorithm always contains the input and output fields, which specify
the parametrization and the return values of an algorithm. In addition, the header
of an algorithm might specify a set of fixed parameters, which are assumed to be
globally visible in the pseudocode. These parameters are assumed to express variants
of an algorithm. Thus, passing them as parameters to the procedure would otherwise
clutter the pseudocode. Furthermore, the header of the pseudocode may specify
shared-memory variables for shared-memory parallelized algorithms. These variables
are also assumed to have a global scope and are accessible from all concurrent processes.
Finally, the header may contain other information, that is special to the context and
is explained alongside the algorithms.

2.2.5.2 Parallel Pseudocode

Multiple keywords are used to express parallelism in pseudocode. Loops annotated
with the keyword in parallel will be processed in parallel. It is assumed, that the
loop condition can be evaluated for all parallel executions at the time the loop is
entered. Thus, it is not allowed to have a condition, that depends on the result of
the body of the loop. Additionally, the keyword async is used to execute a procedure
asynchronously. Thus, the execution of the procedure is forked from the calling thread
and the execution of the calling process is not blocked. Asynchronous procedures
never have a return value and must write their results to shared-memory variables. If
a parallel execution needs to wait until some condition is met, the keyword wait until
is used. Furthermore, a synchronized block (keyword synchronized) is used to force
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mutually exclusive executions of code regions. If a process tries to enter such a region
while another process already executes it, the process waits until the other process
leaves the region. A synchronized block can be parameterized with a key to group
multiple code regions that need to be mutually exclusively executed. For example,
a data structure with multiple operations may group all modifying operations, such
that only a single processor can perform modifications at the same time.

2.3 Statistical Inference and Hypothesis Testing

Statistical inference describes the deduction of properties of a population from a
sample. The field of statistical inference includes methods for hypothesis testing, point
estimation, confidence intervals or sets, and others.

2.3.1 Notation

The sample space of a probabilistic experiment, i.e., the set of all possible outcomes,
is denoted by Ω. For some σ-Algebra A ⊆ P(Ω), a function Pr : A→ [0, 1] is called
probability measure if Pr(Ω) = 1 and Pr is σ-additive. Each element A ∈ A is called
an event. The triple (Ω,A,Pr) is then called a probability space. A measurable
function X : Ω→M which maps to some measurable space with set M and σ-Algebra
B ⊆ P(M) is called a random variable if X−1(B) = {ω ∈ Ω | X(ω) ∈ B} for all
B ∈ B. In this thesis, random variables are always denoted in uppercase letters. A
random variable is characterized by its probability distribution over M , which implies
a probability measure Pr[X = B] := Pr(X−1(B)) for every B ∈ B. Continuous
random variables, i.e., M = R, are uniquely quantified by their probability density
function fX : R→ R≥0 with Pr[X ≤ x] =

∫ x

−∞ fX(y)dy. Discrete random variables
are uniquely quantified by their probability mass function fX(x) = Pr[X = x], for
each x ∈M . If the distribution of a random variable X follows a probability mass or
density function fX , it is also written as X ∽ fX . The cumulative distribution function
FX : R→ [0, 1] is defined as FX(x) := Pr[X ≤ x] for a continuous random variable
X or a discrete random variable X with M ⊆ R. The y-quantile of a probability
density function can be calculated and is written as inverse function F−1

X (y) of the
cumulative distribution function. For a random variable X, the expected value is
denoted by µX , the variance by σ2

X , and the standard deviation by σX . A random
sample S = (x1, x2, . . . , xN ) is defined as observations of identically independent
random (i.i.d.) variables X1, X2, . . . , XN over Ω. During this thesis, such a random
sample is sometimes treated as multiset {{x1, x2, . . . , xN}}, when the ordering of the
sample is not relevant. In this manner, the notion of operations on multisets is also
applicable to random samples, e.g., |S| = N .

2.3.2 Basic Distributions

A selection of distributions used throughout this thesis is introduced in the following.
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2.3.2.1 Bernoulli Distribution

The Bernoulli distribution characterizes a discrete random variable X, that follows
the probability mass function

fX(x) = B1,p(x) =

{

1− p if x = 0,

p if x = 1

for x ∈ {0, 1} and a parameter p ∈ [0, 1]. A random variable that follows B1,p has a
variance σ2 = p(1− p) and an expected value µ = p. The event x = 1 is also called
success. The event x = 0 is called failure.

2.3.2.2 Binomial Distribution

A binomial distribution describes the number of successes x of n repetitions of a
Bernoulli experiment with parameter p. The probability mass function of a discrete
random variable X, that follows the binomial distribution is

fX(x) = Bn,p(x) =

(

n

x

)

px(1− p)n−x

for n ∈ N>0, p ∈ [0, 1], and x ∈ {0, . . . , n}. A random variable that follows Bn,p has a
variance σ2 = np(1− p) and an expected value µ = np.

2.3.2.3 Normal Distribution

The normal or Gaussian distribution characterizes a continuous random variable X,
that follows the probability mass function

fX(x) = Nµ,σ2(x) =
1√

2πσ2
e− (x−µ)2

2σ2

for the parameters µ ∈ R (expected value) and σ2 ∈ R>0 (variance). The probability
mass function N0,1(x) is called standard normal distribution or z-distribution. The

cumulative distribution function of N0,1 is written Φ(x) = 1√
2π

∫ x

−∞ e− y2

2 dy.

2.3.2.4 Poisson Distribution

The Poisson distribution describes the number of events that fall into an interval of a
fixed length t under the assumption that events occur with a constant rate λ that is
normalized by t. The probability mass function of a discrete random variable X, that
follows the Poisson distribution is

fX(x) = Poλ(x) =
λxe−λ

x!

for x ∈ N, and λ ∈ R>0. A random variable that follows Poλ has a variance σ2 = λ
and an expected value µ = λ.
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2.3.3 Hypothesis Testing

Hypothesis testing is a method of statistical inference. The question asked in hypothesis
testing is whether a statistical hypothesis is plausible under the observation of a sample
from a population.

In the following a statistical test problem will be formalized by the assumptions
of the test about the underlying sample S, the specification of a null hypothesis H0

in combination with an alternative hypothesis H1, a test statistic T = f(S), and a
test decision rule based on the test statistic T . The goal of a statistical test is to
decide whether H0 can be rejected with enough confidence (i.e., a high probability)
considering the test’s assumptions to be true. In other words, whether H1 holds with
a high probability. A statistical test can have two types of error. A type I error
is made if H0 is rejected by the test while H0 is true. A type II error is made if
H0 is not rejected, but H0 is false. These two types of errors are dependent. For a
fixed set of test parameters, only one error can be bounded to a fixed probability.
Conventionally, it is the type I error that is bounded by a significance level α, which
has to be specified a priori to the test application. More precisely, α is defined as
the maximum probability of a type I error. A fixed α implies a set of values of T for
which H0 can be rejected. This set is called critical or rejection region. It is common
practice that the result of a statistical test is not given in form of a binary decision,
but as a p-value. The p-value is the most extreme (i.e., lowest) value of α that would
result in a rejection of H0. Hence, the p-value is more precise regarding the confidence
of a possible rejection of H0.

2.3.4 Multiple Hypothesis Testing

Statistical experiments executing multiple hypothesis tests suffer from the so-called
multiple testing problem. The problem states, that with more experiments the
likelihood of a statistical error increases. This includes type I and type II errors.
The family-wise error rate (FWER) focuses on the type 1 error and is defined as the
probability of conducting at least one type I error in a family of tests. Consequentially,
if the FWER should be controlled by some significance level α, the individual tests
in the family must be executed with an adjusted (stricter) significance level. This
adjustment is called multiply hypothesis testing correction.

2.3.4.1 Simple Bonferroni Correction

The first-order Bonferroni Inequality is used for several multiple hypothesis testing
correction methods [Sha95]. The simple Bonferroni method is a conservative testing[Sha95] Shaffer, “Multiple

hypothesis testing”. 1995 correction, that does not require any assumptions about the p-value distribution
or dependencies between individual tests. To control the FWER of a family with
cardinality n and a significance level α, a corrected significance level of α

n
is applied

to each individual test. Consequentially, the method requires an a priori knowledge
about n.
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2.3.5 Basic Statistical Tests

A selection of statistical tests used throughout this thesis is introduced in the following.
This content of this section is based on [TK14]. [TK14] Taeger and Kuhnt,

Statistical Hypothesis Testing

with SAS and R. 2014

2.3.5.1 Binomial Test

The binomial test decides whether the proportion p of a population differs from a
value p0.

Assumptions: The random sample S is an observation of N independent random
variables Xi ∽ B1,p, 1 ≤ i ≤ N for some unknown p ∈ [0, 1]. Thus, X =
∑N

i=1 Xi ∽ BN,p.

Hypotheses:

(i) H0 : p = p0, H1 : p 6= p0

(ii) H0 : p ≤ p0, H1 : p > p0

(iii) H0 : p ≥ p0, H1 : p < p0

Test statistic:

t =
∑

x∈S

x

Test decision: Let Y ∽ BN,p0
. Reject H0 if

(i) FY (t) ≤ α
2 ∨ FY (t) ≥ 1− α

2

(ii) FY (t) ≥ 1− α
(iii) FY (t) ≤ α

2.3.5.2 Two-Sample Approximate Binomial Test on Equality

The two-sample approximate binomial test on equality is a large sample test on the
proportions p1 and p2 of two populations. It tests whether p1 differs from p2. The
binomial distribution can be approximated by the normal distribution w.r.t. the
central limit theorem. For this reason, this test is also known as the two-sample z-test
with pooled variance.

Assumptions: Each random sample Sj for j ∈ {1, 2} is an observations of Nj indepen-
dent random variables Xj,i ∽ B1,pj

, 1 ≤ i ≤ Nj for some unknown pj ∈ [0, 1].

Thus, Xj =
∑N

i=1 Xj,i ∽ BN,pj
. This is a large sample test. The absolute

frequencies of observations of success and failure must be larger than 5 in each
sample, i.e., N1p1 > 5∧N1(1− p1) > 5∧N2p2 > 5∧N2(1− p2) > 5 [TK14] for [TK14] Taeger and Kuhnt,

Statistical Hypothesis Testing

with SAS and R. 2014
a sufficient approximation ratio.

Hypotheses:
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(i) H0 : p1 = p2, H1 : p1 6= p2

(ii) H0 : p1 ≤ p2, H1 : p1 > p2

(iii) H0 : p1 ≥ p2, H1 : p1 < p2

Test statistic:

z =
p̂1 − p̂2

√

p̂(1− p̂)( 1
N1

+ 1
N2

)
, with p̂j =

∑

x∈Sj
x

Nj

, p̂ =
p̂1N1 + p̂2N2

N1 +N2
.

Test decision: Reject H0 if

(i) z < Φ−1( α
2 )

(ii) z > Φ−1(1− α)

(iii) z < Φ−1(α)

p-value:

(i) p = 2Φ(−|z|)
(ii) p = 1− Φ(z)

(iii) p = Φ(z)

2.4 Submodular Set Function Maximization

Combinatorial optimization (search) problems have to find a subset with optimal
value of objects from a superset. An objective function that assigns a value to such a
subset is called set function.

Definition 2.2 (Marginal Gain of a Set Function). Let A be a finite set
and f : P(A)→ R a set function over A. Then, the discrete derivative

∆f (x|X) := f(X ∪ {x})− f(X)

for some X ⊆ A and x ∈ A is called marginal gain of x w.r.t. X over A [cf.,
Bad+14[Bad+14] Badanidiyuru et al.,

“Streaming Submodular

Maximization: Massive Data

Summarization on the

Fly”. 2014

].

In other words, the marginal gain describes the additional value an object x ∈ A has
when it is added to a subset of A. A set function is said to be monotone increasing, if
∀X ⊆ A, x ∈ A \X : ∆f (x|X) ≥ 0.

Definition 2.3 (Submodular Set Function). Let A be a finite set. A set
function f : P(A) → R over A is called submodular iff one of the following
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equivalent conditions holds:

∀X,Y ⊆ A : f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (2.1)

∀X ⊆ Y ⊆ A, x ∈ A \ Y : ∆f (x|X) ≥ ∆f (x|Y ) (2.2)

∀X ⊆ A, x, y ∈ A \X : f(X ∪ {x}) + f(X ∪ {y}) ≥ f(X ∪ {x, y}) + f(X)(2.3)

∀X,Y ⊆ A : f(Y ) ≤ f(X)

+
∑

z∈Y \X

∆f (z|X)−
∑

z∈X\Y

∆f (z|X ∪ Y \ {z}) (2.4)

[cf., NWF78 [NWF78] Nemhauser, Wolsey,

and Fisher, “An analysis of

approximations for maximizing

submodular set

functions—I”. 1978

]

Some classical optimization problems are known to have submodular objective func-
tions, e.g., the maximum coverage problem. Additionally, a large number of objectives
occurring in data mining and machine learning problems are known to be submodular
[Bad+14]. [Bad+14] Badanidiyuru et al.,

“Streaming Submodular
Maximization: Massive Data
Summarization on the
Fly”. 2014

Problem 2.1 (MAX-CSSF). Constrained Submodular Set Function
Maximization

Input: A submodular set (utility) function f over a finite set A and a positive
cardinality constraint k.

Task:

arg max
X⊆A,
|X|≤k

f(X)

The constrained maximization problem is of special interest in this thesis (cf., chap-
ter 4). Without further restrictions, problem 2.1 (MAX-CSSF) is known to be
NP-hard [Fei98]. However, Nemhauser, Wolsey, and Fisher [NWF78] presented a [Fei98] Feige, “A Threshold

of ln n for Approximating Set
Cover”. 1998

[NWF78] Nemhauser, Wolsey,
and Fisher “An analysis of
approximations for maximizing
submodular set
functions—I”. 1978

greedy approximation (cf., algorithm 1) for the problem.

Algorithm 1: Greedy approximation for problem 2.1 (MAX-CSSF)

Input: finite set A, positive cardinality constraint k ∈ R>0, submodular set
function f

Output: solution set X

1 X0 ← ∅;
2 i← 1;
3 while i ≤ k and maxx∈A\Xi−1

∆f (x|Xi−1) > 0 do
4 Xi ← Xi−1 ∪ {arg maxx∈A\Xi−1

∆f (x|Xi−1)};
� ties settled arbitrary

5 i← i+ 1;

6 return Xi−1;
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Line 4 of algorithm 1 successively adds elements with maximum marginal gain to
the solution set until the cardinality constraint is reached or no more element with
strictly positive marginal gain exists. The second exit criterion is valid since marginal
gains are monotonically decreasing with i (cf., eq. (2.2)).

Lemma 2.1. For a monotone increasing submodular function f with f(∅) = 0,
algorithm 1 yields a solution with approximation ratio 1−(1− 1

k
)k ≥ (1− 1

e
) ≈ 0.63

for problem 2.1 (MAX-CSSF).

Proof. The original proof of Nemhauser, Wolsey, and Fisher [NWF78] covers the case[NWF78] Nemhauser, Wolsey,
and Fisher “An analysis of

approximations for maximizing
submodular set

functions—I”. 1978

of negative marginal gains and f(∅) 6= 0, while lemma 2.1 only states the special
case of positive marginal gains (i.e., monotone increasing submodular functions) and
f(∅) = 0. Therefore, the following proof will start with the general case and restrict
itself to the special case its second part.

Let OPT = f(T ) be the optimal solution value for a given instance of problem 2.1
(MAX-CSSF) with submodular function f over set A and cardinality constraint k. Let
Greedy = f(∅) + δ0 + · · ·+ δk∗−1 be the value of a particular result of algorithm 1
for the same instance where k∗ ≤ k is the solution size after termination and δi is
the marginal gain of the (i+ 1)th element added by the greedy approximation (i.e.,
δi = maxx∈A\Xi

∆f (x|Xi)). Furthermore, let the marginal gain be bounded from
below by −θ ≤ 0, i.e., ∀Y ⊆ A, y ∈ A \ Y : ∆f (y|Y ) ≥ −θ.

The proof is based on the submodular set function definition (2.4). Using the
bounded marginal gain the right sum of the inequality can bounded from below by
−|X \ Y | θ, resulting in the eq. (2.5).

∀X,Y ⊆ A : f(Y ) ≤ f(X) +
∑

z∈Y \X

∆f (z|X) + |X \ Y | θ (2.5)

Using this inequality, it is possible to relate OPT to the value of partial solutions
of the greedy approximation. Let t be an iteration of the greedy approximation, then
the following inequalities hold.

OPT ≤ f(∅) +

t−1
∑

i=0

δi + kδt + tθ, 0 ≤ t ≤ k∗ − 1

OPT ≤ f(∅) +
k∗−1
∑

i=0

δi + k∗θ, if k∗ < k (2.6)

The first inequality is easy to comprehend considering (a) ∀x ∈ A\Xt : ∆f (x|Xt) ≤ δt

(monotonically decreasing marginal gains), (b) δt ≥ 0 (otherwise the the algorithm
would have terminated before), (c) |Xt \ T | ≤ t (since |Xt| = t), and (d) |T \Xt| ≤ k .
The second inequality follows by setting t = k∗ − 1 and δk∗ ≤ 0, since the algorithm
only terminates prior to k iterations if maxx∈A\Xi−1

∆f (x|Xi−1) ≤ 0.
For the special case of θ = 0, the second inequality implies optimal solution values

for the greedy algorithm in case of k∗ < k, since OPT− f(∅) ≤∑k∗−1
i=0 δi. Thus, the
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sum of the marginal gains for the optimal solution is (smaller or) equal to the sum of
the marginal gains of the greedy approximation.

Since lemma 2.1 only states the special case θ = 0, the following proof will be a
simplified version of the proof presented in the original paper utilizing the above
stated fact that the greedy algorithm produces optimal solutions for k∗ < k. Thus is
is sufficient to prove the approximation ratio for k∗ = k in the following.

The inequalities (2.6) eliminate sequences of marginal gains that are not possible
to obtain as a result of the greedy algorithm s.t., k, k∗, θ, and f(∅) in relation to
OPT. With this insight, Nemhauser, Wolsey, and Fisher [NWF78] derive a family of [NWF78] Nemhauser, Wolsey,

and Fisher “An analysis of
approximations for maximizing
submodular set
functions—I”. 1978

bounds depending on θ for Greedy by minimizing the sum of marginal gains s.t.,
inequalities (2.6). For this task consider the following linear program (simplified for
θ = 0). Let j < k be a a positive integer and b a positive real number.

min

j
∑

i=0

xi

t−1
∑

i=0

xi + kxt ≥ 1− (k + t)b 0 ≤ t ≤ j (2.7)

The constraints of the linear program (2.7) exactly match the first k∗ inequalities
in (2.6) if b = θ

OPT−f(∅)+kθ
and xi = δi

OPT−f(∅)+kθ
. For P (b) := kb + min

∑j
i=0 xi

Nemhauser, Wolsey, and Fisher [NWF78] show that the following holds.

P (b) = 1 + (k − j − 1)b−
(

k − 1

k

)j+1

(2.8)

For j + 1 = k∗ = k, equation (2.9) is obtained.

P (b) ≥ 1 + (k − k)b−
(

k − 1

k

)k

= 1−
(

k − 1

k

)k

(2.9)

Substituting the above described values for b and xi in the definition of P (b), and
using the fact ∀j < k :

∑j
i=0 δi ≤ Greedy− f(∅) the following inequality is obtained.

P (b)(OPT− f(∅) + kθ) ≤ kθ + Greedy− f(∅) (2.10)

Substituting equation (2.9) into (2.10) with θ = 0 and f(∅) = 0 (cf., lemma 2.1)
results in equation (2.11).

OPT−Greedy

OPT
≤
(

k − 1

k

)k

⇔ Greedy

OPT
≥ 1−

(

k − 1

k

)k

The approximation ratio cannot be improved in the general case. Feige [Fei98] [Fei98] Feige “A Threshold of
ln n for Approximating Set
Cover”. 1998

has proven, that k-cover—a special case of problem 2.1 (MAX-CSSF)—cannot be
approximated in polynomial time within a ratio of (1− 1

e
+ ǫ), unless P = NP .
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Problem 2.2 (MAX-Cov). Maximum Coverage

Input: A finite family of sets F over U , a positive cardinality constraint k

Task:

arg max
X⊆F,
|X|≤k

∣

∣

∣

∣

∣

⋃

S∈X

S

∣

∣

∣

∣

∣

The NP-hard maximum coverage problem in is a special case of problem 2.1 (MAX-
CSSF) and f(X) :=

∣

∣

⋃

S∈X S
∣

∣ is a submodular set function. It is of special interest
in chapter 4.

Several distributed and streaming approximation algorithms have been proposed to
overcome the strict serial nature of the above-mentioned approximation algorithm.
Mirzasoleiman et al. [Mir+13] presented a two-round MapReduce algorithm called[Mir+13] Mirzasoleiman et al.

“Distributed Submodular
Maximization: Identifying

Representative Elements in
Massive Data”. 2013

GreeDi, which basically runs the approximation algorithm from Nemhauser, Wolsey,
and Fisher independently on m nodes and combines the results to a global solution.

The algorithm is a (1−e
− κ

k )(1−e
− l

k )
min(m,k) -approximation, where l is the final global solution

size and κ is the solution size on each node. Thus, l is a relaxation of the original
cardinality constraint in order to increase the solution’s utility. For the special case
of λ-Lipschitz continuous objective functions and further density assumptions, they
showed a better approximation ratio of (1 − e− κ

k )(f(Xcentral) − λak), where a is a
parameter of their density definition and Xcentral is the solution of the centralized
greedy algorithm of Nemhauser, Wolsey, and Fisher. Mirrokni and Zadimoghaddam
[MZ15] published another constant round, MapReduce algorithm with an expected[MZ15] Mirrokni and

Zadimoghaddam “Randomized
Composable Core-sets for

Distributed Submodular
Maximization”. 2015

approximation ratio of 0.545. They also follow the general idea to combine local
solutions to a global one. However, they have more sophisticated local algorithms,
which need to be β-nice. β-niceness basically assumes, that the local algorithms
produce results for which the marginal gain of a non-selected object is not more
than β times the average utility value of the selected objects. Badanidiyuru et al.
[Bad+14] presented the first efficient streaming algorithm which is a constant-factor[Bad+14] Badanidiyuru et al.

“Streaming Submodular
Maximization: Massive Data

Summarization on the
Fly”. 2014

approximation. The algorithm is called Sieve-Streaming and provides a 1
2 − ǫ

approximation by greedily selecting objects that exceed the threshold βOPT
k

. Since
the optimum is unknown, they maintain multiple selections for different thresholds,
which replace the single optimum. The thresholds are chosen such that they differ by
a constant factor, which limits the distance of the optimum to the closest threshold.
The highest value selection of any threshold is then selected as output.

A common problem of the distributed algorithms is the dependency of some
submodular functions f : P(A)→ R on A itself. In other words, the computation of
f(X) for some set X cannot be performed in an isolated black box. For example, for
some clustering tasks it is necessary to compute the distance of all objects in A to
the selected objects X ⊆ A in order to compute the utility of X. A counterexample
is the maximum coverage problem, where the cardinality of the set union can be

30



2.5 Graphs

computed independently of A. If A does not fit in the memory of a distributed worker,
a dependency on A imposes an additional computational challenge.

Definition 2.4 (Additively Decomposable Submodular Set Function). A
submodular set function f : P(A)→ R is said to be additively decomposable over
a ground set B iff there exists a submodular function fo for each object o ∈ A
and

∀X ⊆ A : f(X) =
∑

o∈B

fo(X)

holds.

Definition 2.4 distinguishes between the sets A and B, i.e., the domain of f and the set
over which the function is decomposable over. Nevertheless, in many cases (e.g., the
clustering example above) A and B are actually the same set. Given such an additively
decomposable submodular set function, one can distribute the work among several
distributed workers to compute the value of a set. Additionally, Badanidiyuru et al.
[Bad+14] proposed a sampling method for submodular set function maximization that [Bad+14] Badanidiyuru et al.

“Streaming Submodular
Maximization: Massive Data
Summarization on the
Fly”. 2014

utilized the decomposition w.r.t. to definition 2.4 with A = B on a random sample
S ⊆ A to overcome the dependency problem in the streaming setting. Given on a

sample of size 2 log( 2
δ

)k2+2k3 log(|A|)
ǫ2 , they presented a variant of Sieve-Streaming

that calculates a solution with approximation ratio ( 1
2 − ǫ)(OPT− ǫ) with probability

1− δ.

2.5 Graphs

Definition 2.5 (Simple Graph). A simple graph is a tuple G = (V,E),
comprising a finite set of vertices V (G) = V and a finite set of edges E(G) =
E ⊆ {{u, v} ⊆ V | u 6= v}

If not explicitly stated otherwise, the term graph will refer to simple graphs. Two
vertices u, v ∈ V are said to be adjacent to each other if e = {u, v} ∈ E. Furthermore,
the node u (or v respectively) and the edge e are said to be incident to each other. |G|
is used as a short term for |V (G)|+ |E(G)|. A multiset of graphs G := {{G1, . . . , Gn}}
is also called graph dataset. The infinite set of all simple graphs is written S. A
sequence of consecutive adjacent vertices (v1, . . . , vn) is called walk of length n− 1.
Walks with unique vertices are called paths. A graph is said to be connected if there
exists a path between any two vertices and disconnected otherwise. A contraction of
two vertices u, v to a vertex w in a Graph G = (V,E) results in a graph G′ = (V ′, E′)
with V ′ := V \ {u, v} ⊎ {w} and E′ := (E \ {{x, y} ∈ E | {x, z} ∩ {u, v} = ∅}) ∪
{{w, x} | x ∈ V ′ ∧ x is adjacent to u or v in G}. Each edge e = {w, x}, may be asso-
ciated to multiple edges (e′ = {u, x} and e′′ = {v, x}) in E. It is said, that e′ and e′′
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are merged to e by the contraction. The empty set symbol is used as a shortcut for
the empty graph ∅ := (∅, ∅).

Definition 2.6 (Subgraph). Let G and H be graphs. Then, G is a subgraph of
H, if V (G) ⊆ V (H) and E(G) ⊆ E(H).

If G is a subgraph of H, it is written G ⊆ H. G ⊂ H is a short form for |G| <
|H| ∧ G ⊆ H. If G is a subgraph of H, H is also termed supergraph of G. All
subgraphs of a graph G are written as G⊆ := {(V ′, E′) | V ′ ⊆ V (G), E′ ⊆ E(G)}.
The subgraphs of a graph dataset G are denoted as G⊆ := ∪G∈GG⊆. A subgraph G of
H is said to be (vertex) induced if E(G) = {{u, v} ∈ E(H) | u, v ∈ V (G)}

Definition 2.7 (Graph Isomorphism). Let G and H be two graphs. An
bijection ψ : V (G)→ V (H) is called isomorphism between G to H, if

∀u, v ∈ V (G) : {u, v} ∈ E(G)⇔ {ψ(u), ψ(v)} ∈ E(H).

The existence of a graph isomorphism between a graph G to a graph H is written G ≃
H. The graph isomorphism relationship is an equivalence relation. An isomorphism
ψ : V (G)→ V (G) between the vertices of a single graph G is called automorphism.
The decision problem “Are two graphs isomorphic?” is one of the few problems for
which it is unknown whether it is NP-complete or polynomial-time solvable [GJ79].[GJ79] Garey and Johnson,

Computers and Intractability:

A Guide to the Theory of

NP-Completeness. 1979 Definition 2.8 (Subgraph Isomorphism). Let G and H be two graphs. An
injection ψ : V (G)→ V (H) is called subgraph isomorphism from G to H, if

∀u, v ∈ V (G) : {u, v} ∈ E(G)⇒ {ψ(u), ψ(v)} ∈ E(H).

The existence of a subgraph isomorphism from a graph G to a graph H, is written
G ⊑ H. G < H is a short form for |G| < |H| ∧G ⊑ H. Both relations are transitive
and ⊑ is reflexive. A subgraph isomorphism can be seen as an isomorphism from a G to
a subgraph H ′ of H, where V (H ′) is the image of ψ, i.e., G ⊑ H ⇔ ∃H ′ : G ≃ H ′ ⊆ H.
A subgraph isomorphism from a graph G to a graph H is also called embedding of G
into H. The decision problem “Does a subgraph isomorphism between two graphs
exist?” is known to be NP-complete even when limited to quite simple graph classes
such as outerplanar graphs [Sys82].[Sys82] Sysło, “The subgraph

isomorphism problem for
outerplanar graphs”. 1982

Definition 2.9 (Induced Subgraph Isomorphism). Let G and H be two
graphs. An injection ψ : V (G)→ V (H) is called induced subgraph isomorphism
from G to H, if

∀u, v ∈ V (G) : {u, v} ∈ E(G)⇔ {ψ(u), ψ(v)} ∈ E(H).

An induced subgraph isomorphism can be also seen as an isomorphism from a graph
G to a vertex-induced subgraph H ′ of H, where V (H ′) is the image of ψ, i.e.,
G ⊑ H ⇔ ∃H ′ : G ≃ H ′ ⊆induced H.
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2.6 Graph Data Mining

Definition 2.10 (Common Subgraph Isomorphism). Let G and H be two
graphs. Then, an isomorphism ψ between G′ ⊆ G and H ′ ⊆ H is called common
subgraph isomorphism between G and H.

Any graph C ≃ G′ ≃ H ′ is called common subgraph of G and H. Any isomorphism
between any common subgraph C and G′ or H ′ induces a subgraph isomorphism
from C to G or H. In other words, a common subgraph C of two graphs G and H is
a graph for which H ⊒ C ⊑ G holds.

Definition 2.11 (Labeled Graph). Let G = (V,E) be a graph. G is called a
labeled graph, if it is equipped with an injective labeling function Γ : V ⊎E → L
that maps each vertex and each edge to a finite set of labels L = LV ∪ LE, such
that ∀v ∈ V : Γ(v) ∈ LV and ∀e ∈ E : Γ(e) ∈ LE.

A labeled graph G is also written as triple G = (V,E,Γ). Let G and H be two labeled
graphs equipped with the label functions ΓG and ΓH . Then, a graph isomorphism
ψ between G and H or a subgraph isomorphism ψ from G to H is said to be
label preserving, if (a) ∀v ∈ V (G) : ΓG(v) = ΓH(ψ(v)) and (b) ∀{u, v} ∈ E(G) :
ΓG({u, v}) = ΓH({ψ(u), ψ(v)}). In this thesis, it is assumed that all (sub)graph
isomorphisms of labeled graphs are label preserving, if not explicitly mentioned
otherwise.

2.6 Graph Data Mining

Graph data mining is a special field in data mining, which focuses on graph data. In
this thesis, we will focus on graph data in the form of multisets of graphs, i.e., graph
datasets as defined in section 2.5. In more general terms, graph mining also includes
the analysis of other graph datasets, such as networks or single graphs.

Definition 2.12 (Data Mining). Data mining is a subtask of the knowledge
discovery process in databases. The task is to enumerate (non-trivial) patterns or
models over the data. [FPS96 [FPS96] Fayyad,

Piatetsky-Shapiro, and Smyth,

“From data mining to

knowledge discovery in

databases”. 1996

]

Data mining is therefore an intermediate step in order to extract knowledge or
insights from data, which can be used for further reasoning about or interpretation of
the data. Throughout the literature, there are numerous methods, that fall under the
data mining task. Aggarwal and Han [AH14] identify four main data mining super [AH14] Aggarwal and Han

Frequent Pattern Mining. 2014problems: clustering, classification, outlier analysis, and frequent pattern mining.
Other sources, e.g., Aggarwal and Wang [AW10] and Fayyad, Piatetsky-Shapiro, and [AW10] Aggarwal and Wang

Managing and Mining Graph

Data. 2010
Smyth [FPS96], mention multiple other methods, such as summarization, regression,
discriminative pattern or feature mining, and dense subgraph mining.
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2.6.1 Graph Pattern Mining

In this thesis, a graph pattern is an identifier, that serves as a template for structural
features or commonalities of graphs in the sense of isomorphism or subgraph isomor-
phism relationship. Thus, the matter of interest is the enumeration of structural
features or commonalities that occur in the underlying dataset. A formal definition is
given below.

2.6.1.1 Graph Pattern Space

Definition 2.13 (Graph Pattern Space). Let S be the infinite set of all
simple graphs. Then, S/≃ is called the graph pattern space and each equivalence
class in S/≃ is called graph pattern.

The above definition is closely related to the concept of a complete graph invariant.
A complete graph invariant is a function I on S that fulfills the condition H ≃ G⇔
I(G) = I(H). Since ≃ is an equivalence relation, each graph pattern P ∈ S/≃ can
be uniquely identified by a single element of the equivalence class. With a fixed
representative function ρ of S under ≃ all graphs G ∈ P can be mapped to a unique
graph H ∈ P via C(G) := ρ([G]). Then, C is a complete graph invariant and the
graph H = ρ(G) is called canonical form of G and representative graph of P . The
representative set [S]≃ for some fixed representative function ρ is denoted as the
representative or canonical pattern space. For the sake of simplicity graph patterns
will be depicted by representative graphs in figures and examples.

The subgraph isomorphism relationships⊑ and < can be naturally extended to graph
patterns since the subgraph isomorphism relationship is preserved under the graph
isomorphism. Thus, for any G,G′, H ∈ S it holds, that G ⊑ H ∧G ≃ G′ ⇔ G′ ⊑ H
(the same is true for <). For this reason, the relations ⊑ and < are also used for
graph patterns and mixed forms of graph patterns and graphs in the following. Since
a common subgraph can be defined over the subgraph isomorphism relation (cf.,
definition 2.10), the term common subpattern is used in this thesis as the extension
of this concept to graph patterns. The concept of connectivity is also preserved under
the graph isomorphism. The size of a pattern P can be measured in terms of vertices,
edges, or the sum of both, i.e., (|V (ρ(P ))|, |E(ρ(P ))|, or |ρ(P )|) given an arbitrary
representative function ρ. Since the pattern size is independent of the representative
function, the simplified notions |V (P )|, |E(P )|, and |P | will be used for patterns in
analogy to the notation for graphs.

The pattern space can be partially ordered with the help of the subgraph isomor-
phism relation ⊑, i.e., (S/ ≃,⊑) forms a poset. The poset (S/ ≃,⊑) can be ranked
by the pattern size, such that rank level k contains all patterns of size k. The rank
definition thereby depends on the used measure of size, i.e., vertices, edges or the
sum of both. An example poset for a connected labeled graph pattern space is shown
in fig. 2.1. Furthermore, many graph mining problems (cf., section 2.6.1.3) do not
consider the complete infinite graph pattern space, but only the finite patterns that are
contained in the given problem instance in the form of subgraphs. Thus, for any graph
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∅0 vertices

1 vertex

1 edge

2 edges

Figure 2.1: Hasse diagram of the pattern space of connected labeled graph patterns
with |LV | = 2 partially ordered by the subgraph isomorphism relation ⊑.
Vertex colors indicate vertex labels.

dataset G the subgraph pattern space of G is defined as G⊑ := {P ∈ S/≃ | P ∩ G⊆ 6= ∅}.
The notation [G]⊑ := [G⊆]≃ is used for the representative or canonical subgraph pattern
space of a graph dataset G.

The above definitions naturally extend to labeled graphs using the label preserving
(sub)graph isomorphism. The extension to labeled graphs is also possible for all
following problem definitions over the (sub)graph pattern space(s), if not explicitly
mentioned otherwise. In this thesis, problem definitions for labeled graphs are omitted
in all cases which do not require special handling of labels besides using a label
preserving (sub)graph isomorphism.

2.6.1.2 Size of the Graph Pattern Space

The number of connected patterns grows exponentially with the size of the pattern,
regardless if vertices, edges, or the sum of both are considered as reference. The same
is true for a subgraph pattern space in the worst case. Even the subset of frequent
subgraph patterns (cf., section 2.6.2) may grow exponentially [JCZ13]. [JCZ13] Jiang, Coenen, and

Zito, “A survey of frequent
subgraph mining
algorithms”. 2013

Harary [Har55] presented recursive formulas to compute the number of unlabeled

[Har55] Harary “The number
of linear, directed, rooted,
and connected graphs”. 1955

non-isomorphic graphs (i.e., graph patterns) with n vertices and distinguished undi-
rected/directed, rooted/unrooted, and connected/disconnected graphs. However, no
asymptotic bounds are given. Table 2.3 lists the computed numbers for connected
simple non-isomorphic graphs up to n = 19.

Lupanov [Lup59; Lup62, (Russian)] (see [TK70] for an English summary) gave an [Lup59] Lupanov “Asymptotic
estimates of the number of
graphs with n edges”. 1959

[Lup62] Lupanov “An
asymptotic estimate of the
number of graphs and
networks with n edges,” 1962

[TK70] Turner and Kautz, “A
Survey of Progress in Graph
Theory in the Soviet
Union”. 1970

asymptotic bound G(n) for the number of unlabeled connected simple graph patterns
with n edges:

G(n) =

(

2

e

n

log2 n
γ(n)

)n
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Table 2.3: Number of connected simple graph patterns with n vertices [SI21, A001349]

n Number of Patterns with n Vertices

0 1

1 1

2 1

3 2

4 6

5 21

6 112

7 853

8 11117

9 261080

10 11716571

11 1006700565

12 164059830476

13 50335907869219

14 29003487462848061

15 31397381142761241960

16 63969560113225176176277

17 245871831682084026519528568

18 1787331725248899088890200576580

19 24636021429399867655322650759681644
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where

2 log logn

logn
. γ(n)− 1 .

log logn

logn

Clearly, the formulas of Harary; Lupanov also applies to the number of subgraphs
of a complete graph. Thus, given a maximum number of vertices, the unlabeled
subgraph pattern space is not smaller than the general pattern space in the worst
case. Since graphs with a single label can be interpreted as unlabeled graphs, the
number of labeled connected graph patterns exceeds the number of unlabeled graphs
w.r.t. to their size.

2.6.1.3 Generalized Graph Pattern Mining Problems

Graph pattern mining problems are defined to enumerate graph patterns of the
subgraph pattern space in this thesis. The limitation to subgraph patterns is quite
common in literature since many of the graph pattern mining problems have a
frequency bounded search space (cf., section 2.6.2). As a consequence, these problems
are intrinsically limited to subgraph patterns. Furthermore, this limitation has a
clear relation to the size of the search space, which is usually beneficial in terms
of computational complexity. Nevertheless, it should be mentioned, that there are
several valid use cases outside this boundary, such as finding common supergraphs
or generalized median graphs (i.e., the median graph is selected from a superset of
a dataset). For example, Ferrer et al. [Fer+09] used generalized median graphs for [Fer+09] Ferrer et al.

“Graph-Based k-Means
Clustering: A Comparison of
the Set Median versus the
Generalized Median
Graph”. 2009

clustering purposes. Throughout this thesis, graph pattern mining problems are
furthermore limited to connected graph patterns if not explicitly stated otherwise.

In the following, we will distinguish between the subgraph pattern enumeration and
optimization problem as given by the definitions below.

Problem 2.3 (SPE). Subgraph Pattern Enumeration

Input: A graph dataset G and a boolean utility function f : G⊑ → B.

Task: Enumerate all connected P ∈ G⊑ with f(P ) = true.

Problem 2.4 (SPO). Subgraph Pattern Optimization

Input: A graph dataset G and a utility function f : P(G⊑)→ R.

Task: Find S ∈ P(G⊑) of connected graph patterns with maximum/minimum
utility value f(S).

The maximization and minimization variants of SPO are denoted by MAX-SPO and
MIN-SPO.

2.6.2 Frequent Subgraph Pattern Mining

The frequent subgraph pattern mining problem is a broadly studied graph pattern
mining problem in the literature. This comes as no surprise since the related frequent
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itemset mining problem is a fundamental data mining problem and applied in a
variety of application domains, particularly to find association rules. The Apriori
algorithm [AS94] for the frequent itemset mining problem is one of the most cited[AS94] Agrawal and Srikant,

“Fast Algorithms for Mining
Association Rules in Large

Databases”. 1994

articles in computer science [21]. Note that this thesis will only cover the transactional

[21] Most Cited Computer

Science Articles. 2021

frequent subgraph pattern mining problem, i.e., graph datasets of multiple graphs as
input. The mining of frequent subgraphs from a single graph is not discussed.

To define the frequent subgraph pattern mining problem the terms graph pattern
support and frequent graph pattern are defined first:

Definition 2.14 (Graph Pattern Support). Given a graph dataset G and a
graph pattern P , let G⊒P := {{G ∈ G | P ⊑ G}} be the multiset off all graphs in
G that P is subgraph isomorphic to. Then, the support of P in G is defined as
suppG(P ) := |G⊒P |.

While the support is given as an absolute value in this definition, it is sometimes

beneficial to specify it as a fraction of the dataset cardinality, i.e.,
|G⊒P |

|G| . Thus,
whenever a support value of a pattern P is given as a fraction or percentage, the
appropriate definition will be used interchangeably. G⊒P is also called supporting
graph multiset of G. For a graph H ∈ G⊒P it is said, that H supports P and P
is supported by H. Definition 2.14 is aligned to the graph mining literature [e.g.,
IWM00; YH02].[IWM00] Inokuchi, Washio,

and Motoda, “An
Apriori-Based Algorithm for

Mining Frequent
Substructures from Graph

Data”. 2000

[YH02] Yan and Han, “gSpan:
Graph-Based Substructure

Pattern Mining”. 2002

Definition 2.15 (Frequent Graph Pattern). Given a graph dataset G and a
minimum support threshold suppmin > 0, a graph pattern P is said to be frequent
in G if and only if suppG(P ) ≥ suppmin.

The set of frequent graph patterns for a fixed minimum support suppmin and dataset G
will be denoted by G≥suppmin

freq (superscript may be omitted if unambiguously given from
the context). Analogously to the graph pattern support, suppmin can be alternatively
specified as a fraction or percentage. Since suppmin is defined to be larger than zero,
it follows directly, that a frequent graph pattern P must be in G⊑. Thus, the following
definition of the frequent subgraph pattern mining problem is intrinsically limited to
the subgraph pattern space.

Problem 2.5 (FSM). Frequent Subgraph Pattern Mining

Input: A graph dataset G and a minimum support threshold suppmin.

Task: Solve SPE with

fG(P ) :=

{

true P is frequent,

false otherwise.

For the efficient enumeration of frequent graph patterns one of the most central
insight is the following property of graph patterns:
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Lemma 2.2 (Support Anti-Monotonicity Property). Given a graph dataset
G the following property holds:

∀P,Q ∈ S/≃ : P ⊑ Q⇒ G⊒P ⊇ G⊒Q ⇒ suppG(P ) ≥ suppG(Q)

Proof. The property follows directly from the transitivity of the subgraph isomorphism
relationship and the definition of G⊒Q (cf., definition 2.14):

∀P,Q ∈ S/≃,∀G ∈ G⊒Q : P ⊑ Q⇒ P ⊑ Q ∧Q ⊑ G
⇒ ∀P,Q ∈ S/≃,∀G ∈ G⊒Q : P ⊑ Q⇒ P ⊑ Q ⊑ G
⇒ ∀P,Q ∈ S/≃,∀G ∈ G⊒Q : P ⊑ Q⇒ G ∈ G⊒P

⇒ ∀P,Q ∈ S/≃ : P ⊑ Q⇒ G⊒Q ⊆ G⊒P

⇒ ∀P,Q ∈ S/≃ : P ⊑ Q⇒ suppG(Q) ≤ suppG(P )

In other words, the partial ordering of patterns induced by their subgraph isomorphism
relationship is in reverse relation to the subset relationship of their supporting graphs.
Lemma 2.2 further implies: (a) Given an infrequent graph pattern, all superpatterns
are infrequent, too (upward closure property); (b) Given a frequent graph pattern, all
subpatterns are frequent, too (downward closure property). Considering the partially
ordered pattern space as depicted in fig. 2.1, the upward closure property offers
a support-based pruning of the search space for problem 2.5. Namely, given any
infrequent pattern Pk on a level-wise path (P0, . . . , Pk, . . . , Pn)—where Pi is a pattern
with poset rank i—each Pj with k ≤ j must be infrequent, too. Thus, any rank-
increasing exploration of the pattern space can stop at any infrequent pattern (cf.,
section 2.6.2.1). Figure 2.2 gives a visual example for support-pruned search space.
Furthermore, the downward closure property can be used to eliminate candidate
patterns (that might be frequent) if the candidate pattern has infrequent subpatterns
without ever computing the support of the candidate (cf., paragraph 2.6.2.1.4).

The implications of lemma 2.2 directly lead to the concept of maximal frequent
graph patterns.

Definition 2.16 (Maximal Frequent Graph Pattern). Given a graph dataset
G and a minimum support threshold suppmin > 0, a frequent graph pattern P is
said to be maximal if and only if it has no frequent superpattern.

The set of maximal frequent graph patterns for a fixed minimum support suppmin and
dataset G will be denoted by G≥suppmin

max freq (superscript may be omitted if unambiguously
given from the context). The concept of maximal patterns is derived from the frequent
itemset mining problem, where maximal frequent itemsets are defined as inclusion
maximal sets of items [AS94]. The restriction to maximal frequent graph patterns [AS94] Agrawal and Srikant,

“Fast Algorithms for Mining
Association Rules in Large
Databases”. 1994

serves multiple purposes. Some superproblems are interested in special properties of
them, e.g., the StruClus algorithm (cf., section 3.2) prefers large patterns over small
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Figure 2.2: Example of a support-pruned labeled connected pattern space with |LV | =
2 partially ordered by the subgraph isomorphism relation ⊑ depicted as
Hasse diagram. All graph patterns below the suppmin border are frequent;
all above are infrequent. Frequent graph patterns with blue background
are maximal. Vertex colors indicate vertex labels.

ones. Furthermore, maximal frequent graph patterns can be seen as a compressed
representation of all frequent graph patterns since the frequent graph patterns of
a dataset are the subpatterns of the maximal frequent graph patterns. Figure 2.2
highlights the maximal frequent graph patterns in an example of a support-pruned
pattern space.

Similar to maximal frequent graph patterns are closed frequent graph patterns.
Instead of being maximal w.r.t. a fixed support threshold, they are maximal regarding
their own support value.

Definition 2.17 (Closed Frequent Graph Pattern). Given a graph dataset
G and a minimum support threshold suppmin > 0, a frequent graph pattern P
is said to be closed if and only if it has no frequent superpattern P ′ such that
P < P ′ and suppG(P ) = suppG(P ′).

2.6.2.1 Frequent Subgraph Pattern Space Exploration

The above discussion gives rise to an immediate concept for frequent pattern enumer-
ation:

1. Start with an empty graph pattern.

2. Successively construct candidate patterns by extending or combining patterns
of smaller size.

3. Stop at infrequent graph patterns.
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To the best of my knowledge, all recent frequent subgraph pattern mining algorithms
follow this common bottom-up exploration strategy in one or another way. Refer to
section 2.6.2.2 for a discussion of implementations.

2.6.2.1.1 Apriori and Pattern Growth Candidate Generation There are two major
strategies w.r.t. the candidate generation (i.e., item 2 in the above concept).

The first strategy is based on the idea of the apriori itemset mining algorithm. As
such, frequent graph pattern mining algorithms based on this strategy are often called
apriori-based or pattern joining algorithms. In this strategy, unordered pairs {{P, P ′}}
of graph patterns of size k, sharing a common subpattern C of size k − 1, are joined
to candidate graph patterns S of size k + 1, such that S is a superpattern of P and
P ′. This includes self-joins, i.e., P = P ′. The size of a pattern in this context is either
measured in terms of vertices (vertex-based candidate generation) or in terms of edges
(edge-based candidate generation). It is important to distinguish these two variants
of candidate generation as they may lead to different k + 1-sized candidate patterns
based on the same pair of k-sized patterns. Some edge-based algorithms ignore
frequent patterns with a single vertex. In the following, the edge-based variant will
be described exemplarily. In contrast to the above join definition over graph patterns,
implementations operate on fixed pattern representations R ∈ P and R′ ∈ P ′. Thus,
C corresponds to (possibly multiple) common subgraph isomorphisms between R
and R′. Multiple subgraph isomorphisms for a single pair of pattern representatives
may exist for the following reasons ([see KK01]). First, there might exist multiple [KK01] Kuramochi and

Karypis, “Frequent subgraph
discovery”. 2001

automorphisms of a common subgraph, which leads to multiple common subgraph
isomorphisms covering the same set of vertices in R and R′. Second, multiple common
subgraphs of size k−1 may exist and even a fixed common subgraph may be associated
with different isomorphisms to subgraphs of R and R′ that cover different vertex
sets. A join between R and R′ is then performed for each existing common subgraph
isomorphism of size k − 1. In a first step, the vertex and edge sets of the two graphs
are joined. Afterwards, the vertices covered by the common subgraph isomorphism
are contracted. Note that in the case of labeled datasets, the contracted vertices
and the associated merged edges always have the same label, i.e., the contraction
does not lead to label conflicts. If the two uncovered vertices have no different labels,
two different candidates are created, one with contracted uncovered vertices and one
with separate uncovered vertices. Thus, in contrast to the apriori itemset joining, the
existence of multiple subgraph isomorphism of size k− 1 and the choice of contracting
the uncovered vertices may lead to multiple candidates when joining two patterns.
Figure 2.3 shows an example of such an apriori-based pattern joining with edge-based
candidate generation. A major challenge for the apriori-based graph pattern mining
algorithms is the identification of the common subgraph isomorphisms between all
frequent k-sized patterns in order to generate the candidate patterns of size k + 1.

The second candidate generation strategy is called pattern growth. This strategy
avoids the computationally demanding graph pattern joining from the apriori-based
candidate generation. Instead, candidates are constructed by extending frequent
patterns by frequent edge patterns. A sequence of such (single edge pattern) extensions
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C C C C C

. . .
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C ′

C

k + 1

k = 2

Figure 2.3: Example of apriori-based graph pattern joining with edge-based candidate
generation. Patterns of size k + 1 are created by joining two patterns of
size k. C and C ′ are the vertices in the pattern representatives covered
by the subgraph isomorphisms of the join. Straight lines indicate joins
of two distinct patterns, wave lines indicate self joins, and dashed lines
indicate further joining possibilities which are not shown in this example.
Vertex colors indicate vertex labels.
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frequent edge patterns

Figure 2.4: Possible connected frequent edge pattern extensions for a given graph
pattern in the pattern growth approach. Dashed edges and vertices
illustrate all possible extensions, consisting of one backward extension and
six forward extensions. The set of frequent edge pattern is depicted on
the right. Vertex colors indicate vertex labels.

can be seen as a depth-first search (DFS) ordered construction (cf., depth-first search
in [Cor+09]) of a graph pattern representative. As such, in the pattern mining [Cor+09] Cormen et al.,

Introduction to Algorithms,

3rd Edition. 2009
literature, a single extension is classified as forward extension (corresponding to a
DFS tree edge; not to confuse with DFS forward edges!) or backward extension
(corresponding to a DFS backward edge). Thus, a backward extension connects two
existing vertices and a forward extension expands a graph by connecting an existing
vertex of the pattern representation with a new vertex. For labeled graphs, the
connecting vertices must match the labels of the frequent edge pattern.

Definition 2.18 (Labeled Forward Extension). Let G = (V,E,Γ) be a labeled
graph, v ∈ V an explicit vertex of G, and H = ({u,w}, {e = {u,w}},Γ′) an arbi-
trary representative of an edge pattern P . Furthermore, let Γ(v)∩{Γ′(u),Γ′(w)} 6=
∅. Without loss of generality, let Γ(v) = Γ′(u). Then, the labeled graph
fw(G, v, P ) = G′ = (V ⊎ {x}, E ∪ {{v, x}},Γ ∪ ({v, x},Γ′(e)) ∪ (x,Γ′(w))) is
called forward extension of G with P at extension vertex v.

Definition 2.19 (Labeled Backward Extension). Let G = (V,E,Γ) be a
labeled graph, t, v ∈ V two explicit vertices of G with {t, v} 6∈ E, and H =
({u,w}, {e = {u,w}},Γ′) an arbitrary representative of an edge pattern P . Fur-
thermore, let |{Γ(t),Γ(v)} ∩ {Γ′(u),Γ′(w)}| = 2. Without loss of generality, let
Γ(v) = Γ′(u). Then, the labeled graph bw(G, t, v, P ) = G′ = (V,E ∪ {{t, v}},Γ ∪
({t, v},Γ′(e))) is called backward extension of G with P at extension vertices t
and v.

See fig. 2.4 for an example of forward and backward extensions.
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2.6.2.1.2 Depth- and Breadth-First Search The ranked poset of frequent patterns
as depicted in fig. 2.2 can be explored in a breadth-first (BFS) or depth-first (DFS)
fashion (see Cormen et al. [Cor+09] for DFS and BFS definitions). Apriori-based[Cor+09] Cormen et al.

Introduction to Algorithms,

3rd Edition. 2009
pattern mining algorithms are intrinsically bound to the breadth-first exploration since
the k-sized candidate pattern generation needs to consider all k− 1 sized pattern pairs
(cf., paragraph 2.6.2.1.1). Pattern growth algorithms in general are not limited to a
specific exploration order. However, as described in section 2.6.1.2, each poset rank
may contain an exponential number of patterns w.r.t. the rank level. As a result, most
sequential pattern growth algorithms use the depth-first exploration strategy since
it minimizes the number of patterns that need to be kept in memory. Nevertheless,
breadth-first or hybrid exploration orders are often utilized to parallelize or distribute
the work even for the pattern growth candidate generation as a consequence of the
sequential exploration dependency along the DFS tree edges.

2.6.2.1.3 Duplicate Elimination All candidate generation strategies can generate
isomorphic candidate graphs. For example, in the pattern growth scenario, the Hasse
diagram depicted in fig. 2.2 shows multiple rank-increasing level-wise construction
paths for a single pattern. For the apriori-based mining algorithm one source of
isomorphic candidates (among others), are multiple embeddings of a common subgraph
of size k − 1 such as C and C ′ in fig. 2.3. To avoid multiple enumerations of the
same pattern, isomorphic candidate pattern representatives need to be eliminated
during the mining process. In other words, graph pattern mining algorithms usually
operate explicitly, i.e., with an well-defined representative function ρ, or implicitly,
i.e., by eliminating duplicate patterns on each rank level, on a representative pattern
space [S]≃. In order to avoid computationally demanding pairwise isomorphism tests
on each rank level, canonical forms or graph invariants are commonly used. The
duplicate elimination strategies are quite diverse and often strongly linked to the
candidate generation and/or graph representation of the specific algorithm. For this
reason, the de-duplication strategies are discussed alongside the specific algorithms in
section 2.6.2.2.

2.6.2.1.4 Support Calculation To determine if a candidate pattern is frequent
the support of the pattern needs to be calculated. The support calculation is typi-
cally the major bottleneck of frequent subgraphs mining algorithms even for small
datasets [Wör+05]. There exist three major strategies for support calculation: linear[Wör+05] Wörlein et al., “A

Quantitative Comparison of
the Subgraph Miners MoFa,

gSpan, FFSM, and
Gaston”. 2005

dataset scans, transactions lists, and embedding lists.
Naively, support calculation can be performed as a linear scan over the graph dataset

to count the positive subgraph isomorphism relationships between the candidate and
the dataset graphs. Keeping in mind, that the subgraph isomorphism problem is
NP-hard and the number of frequent subgraphs may be exponential w.r.t. to the
graph size (cf., section 2.6.1.2), the above bottleneck statement comes as no surprise.
However, there are some common observations, to speed up the practical running
time when it comes to linear scans. First, the support does not need to be calculated
exactly. The linear scan can be aborted whenever the minimum support is reached
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or whenever it becomes unreachable, i.e., the remaining unchecked dataset graphs
are not enough to reach the minimum support. Second, one can limit the linear
scan to transaction lists of subpatterns. A transaction list is associated with a graph
pattern P and stores a reference to all dataset graphs that support P , i.e., G⊒P . This
is motivated by the anti-monotonicity property (cf., lemma 2.2), which limits the
supporting dataset graphs of a pattern candidate P ∈ G⊑ to the supporting dataset
graphs of each subpattern P ′

< P , i.e., the following relation holds:

G⊒P ⊆
⋂

P ′<P ∈G⊑

G⊒P ′ =
⋂

P ′
<P ∈G⊑,

|P ′|=|P |−1

G⊒P ′ =: CP (2.12)

In other words, G⊒P ′ is an upward closed set w.r.t. to the poset (G⊑,⊑). Since
the anti-monotonicity property is transitive it is sufficient to intersect only direct
subpatterns, i.e., |P ′| = |P | − 1. This is closely related to the upward closure property
(cf., definition 2.14) with the addition, that CP can serve as a candidate list for G⊒P .
Thus, we can omit all subgraph isomorphism tests to graphs in G \ CP , since

∀G ∈ G \ CP : P 6⊑ G

holds. However, the determination of all direct subpatterns and the associated
transaction lists causes additional overhead. First, retrieving the transaction lists
of all direct subpatterns of a pattern P requires to remember all transaction lists of
frequent patterns of size |P | − 1 and a BFS exploration strategy. Second, to retrieve
the transaction lists of all subpatterns, it is required to enumerate all subpatterns
and match the subpatterns to already mined patterns via isomorphism tests between
their representatives. Third, for large transaction lists (or graph datasets respectively)
the intersections themselves can be computationally demanding. For these reasons,
many DFS FSM algorithms avoid the intersection of multiple transaction lists and
only consider the transaction list of the parent pattern (w.r.t. to the DFS tree) to
calculate the pattern support.

Contrariwise to transaction lists, which store only the binary subgraph relationships
between a pattern and each dataset graph, embedding lists store all embeddings
(subgraph isomorphisms) of a pattern representative to each dataset graph. To
calculate the support of a pattern, it is thereby sufficient to count all the dataset
graphs for which at least one embedding exists. Embedding lists have the advantage,
that an extension of a pattern can be seen as an extension of existing embeddings.
Thus, given a pattern representative R, an extension vertex v (or two extension
vertices u, v in the case of a backward extension; cf., definitions 2.18 and 2.19) and
an embedding ψ : R → G to a dataset graph G ∈ G, one only needs to consider
adjacent vertices of ψ(v) (or edges between ψ(u) and ψ(v)) in order to find the
embeddings of the extended pattern representative. In other words, it is possible to
avoid the re-calculation of partial embeddings for a pattern P ∈ G⊑ that were already
calculated for some subpattern P ′

< P . On the downside, all embeddings of R to G
need to be enumerated and kept in memory, which is an exponential number w.r.t.
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the size of V (G) and factorial in V (R) for unrestricted graph classes in the worst
case [Wel20]. Contrariwise, transaction lists only need to store a binary relation and[Wel20] Welke, “Efficient

Frequent Subgraph Mining in
Transactional

Databases”. 2020

the associated subgraph isomorphism tests does not need to enumerate all embeddings
(i.e., it can terminate after the first embedding is discovered). In the context of
pattern growth algorithms, embeddings lists additionally allow the elimination of
some pattern extensions. Given an extension vertex v of a pattern representative R,
it is possible to enumerate all incident edges Eincident to ψ(v) for all embeddings ψ in
the embedding list of R. Only patterns found in Eincident need to be considered as
possible extensions of R at extension vertex v, i.e., the set of frequent edge patterns
can be pruned accordingly.

2.6.2.2 Frequent Subgraph Mining Algorithms

A plethora of different frequent subgraph pattern mining algorithms have been
proposed in the last two and a half decades. For this reason, this section will
only discuss a selection of FSM algorithms covering the most important algorithmic
techniques to solve the FSM mining problem as defined in problem 2.5 (FSM). In
particular, this section will not cover early ILP (Inductive Logical Programming)
approaches to graph pattern mining, such as presented in [DTK98], which were limited[DTK98] Dehaspe, Toivonen,

and King, “Finding Frequent
Substructures in Chemical

Compounds”. 1998

to very small pattern sizes. Frequent graph pattern mining algorithms for restricted
pattern classes—such as tree pattern mining algorithms—are not discussed either.
Since the algorithm of chapter 4 requires a full enumeration of all frequent patterns
and chapter 3 only uses a lightweight sampling method for maximal patterns, this
section will also not cover subgraph mining algorithms specifically designed to mine
closed or maximal frequent subgraph patterns.

Inokuchi, Washio, and Motoda [IWM00] presented the first apriori-based algorithm[IWM00] Inokuchi, Washio,
and Motoda “An Apriori-Based

Algorithm for Mining
Frequent Substructures from

Graph Data”. 2000

Apriori-based Graph Mining (AGM). It mines integer labeled disconnected induced
subgraph patterns with a breadth-first search pattern space exploration and node
counting. The algorithm uses normalized adjacency matrices—which are ordered by
the vertex labels—for pattern and dataset graph representation. In contrast to many
other algorithms, it does not eliminate all isomorphic patterns on each level. Instead,
it only normalizes the matrix representation of the pattern and keeps an index subject
to isomorphic instances with the help of a canonical matrix code. By doing so, the
identification of the common subgraph for the join can be performed by matching the
upper left part of the adjacency matrix. However, keeping multiple instances of the
same pattern comes at the cost of memory consumption and increases the number of
pairwise pattern representations that need to be considered for joining. For support
counting of a pattern P , AGM uses linear dataset scans. The upward closure property
is used to filter infrequent patterns prior to the linear dataset scan by checking if each
subgraph of size |P | − 1 is frequent, i.e., discovered as frequent pattern of rank |P | − 1.

In 2001 Kuramochi and Karypis [KK01] presented another apriori-based algorithm,[KK01] Kuramochi and
Karypis “Frequent subgraph

discovery”. 2001
named Frequent Subgraph Discovery (FSG). It outputs connected non-induced pat-
terns, uses a breadth-first search pattern space exploration, and edge counting. The
authors claim a speedup of several orders of magnitudes on chemical datasets in com-
parison with AGM. However, it should be noted that the tasks of the two algorithms

46



2.6 Graph Data Mining

are not identical (induced vs. non-induced patterns). In contrast to AGM, FSG
uses a sparse adjacency list representation for the graphs and pattern representatives.
Duplicate patterns are eliminated on each rank level using a canonical adjacency list
representation based on a node ordering that is obtained via a canonical adjacency
matrix code. To identify common subgraphs to join patterns on rank k, a canoni-
cal representation for each k − 1 subpattern of each discovered frequent pattern is
computed and kept in memory. For support counting of a pattern P , FSG uses the
candidate list CP as defined in eq. (2.12).

In 2002 Yan and Han [YH02] presented the Graph-Based Substructure Pattern [YH02] Yan and Han “gSpan:
Graph-Based Substructure
Pattern Mining”. 2002

Mining (gSpan) algorithm and Borgelt and Berthold [BB02] presented the MoFa

[BB02] Borgelt and Berthold
“Mining Molecular Fragments:
Finding Relevant
Substructures of
Molecules”. 2002

algorithm (sometimes called MoSS). A detailed description of the gSpan algorithm
is given in paragraph 2.6.2.2.1, since it is used as a base algorithm in chapter 4.
Subsequent extensions of the algorithms exist, covering closed graph pattern mining
(MoFa: [MBB04a], gSpan: [YH03]) and subgraph pattern mining with fuzzy chains

[MBB04a] Meinl, Borgelt,
and Berthold, “Discriminative
Closed Fragment Mining and
Perfect Extensions in
MoFa”. 2004

[YH03] Yan and Han,
“CloseGraph: Mining Closed
Frequent Graph
Patterns”. 2003

(MoFa: [MBB04b]). Jahn and Kramer [JK05] optimized the running time of the gSpan

[MBB04b] Meinl, Borgelt,
and Berthold, “Mining
Fragments with Fuzzy Chains
in Molecular Databases”. 2004

[JK05] Jahn and Kramer
“Optimizing gSpan for
molecular datasets”. 2005

algorithm in the context of molecular datasets. The two algorithms share several design
aspects. Both are pattern growth algorithms for connected non-induced patterns with
a depth-first search pattern space exploration and edge counting for labeled connected
patterns. While gSpan uses transaction lists for support counting, MoFa resorts to
embedding lists. MoFa uses these embedding lists to grow only possible extensions
from the embeddings in the dataset graphs as described in paragraph 2.6.2.1.4.
Additionally, they restrict the pattern growth step with a heuristic to avoid duplicate
enumerations of the same pattern. MoFa orders the vertices of the dataset graphs
in an arbitrary but fixed order. Given this ordering, the extensions of embeddings
are restricted, such that the extension vertex (cf., definition 2.18) has the lower order
in comparison with the adjacent vertex of the extensions edge pattern. Because of
the heuristic nature of this duplicate filtering step, MoFa still relies on duplicate
filtering on a global level, i.e., each mined pattern has to be compared with already
mined patterns. Subsequent extensions of these duplicate patterns cannot be pruned,
resulting in partially overlapping search trees in the pattern space. On the contrary,
gSpan uses a minimum DFS code pattern canonization, which completely filters
duplicate patterns by a local test after each pattern extension. The prefix property of
this canonization allows the pruning of the DFS search tree at non-canonical pattern
representations.

Huan, Wang, and Prins [HWP03] presented the Fast Frequent Subgraph Mining [HWP03] Huan, Wang, and
Prins “Efficient Mining of
Frequent Subgraphs in the
Presence of Isomorphism”. 2003

(FFSM) algorithm in 2003. It uses a hybrid join and extension strategy to explore
the search space in breadth-first order, embeddings lists, and a canonical matrix
representation of the graph patterns. Similar to the gSpan algorithm, FFSM com-
pletely filters duplicate patterns based on a local test on canonical representation. A
special property of their canonical matrix representation is, that the submatrix of a
connected subpattern is the canonical matrix of the subgraph. As a consequence, the
submatrices of a joined or an extended pattern candidate must be frequent canonical
representations of already mined patterns. Thus, testing on matrix identity offers the
classical downward closure property filtering (as given in eq. (2.12)). At the same
time, this procedure filters some of the non-canonical pattern representations. The

47



2 Preliminaries

remaining candidates then need to be tested, if they are in canonical form. FFSM
uses a hybrid pattern-join and pattern growth exploration since their join over canon-
ical submatrices is incomplete and would miss some pattern, otherwise. It should
be noted, that—in contrast to the previous algorithms10—FFSM is only suited for
undirected patterns and dataset graphs since their canonical matrix representation
strongly depends on its symmetry.

In 2004 Nijssen and Kok [NK04] presented the Gaston algorithm for undirected[NK04] Nijssen and Kok
“Frequent graph mining and

its application to molecular
databases”. 2004

graphs. It uses a pattern extension strategy to explore the search space in depth-first
order with edge counting and embeddings lists. The major novelty of the Gaston
algorithm is, that it splits the discovery of frequent subgraph patterns into three
phases. Each phase represents a special class of graph patterns: paths, free trees, and
cyclic patterns. After mining all frequent path patterns, it grows the tree patterns
from them and subsequently cyclic patterns. For all pattern classes, Gaston uses a
distinct canonical form and grow strategy. A special focus was put on the canonization
of the trees. The longest path in a tree is called backbone and their tree canonization
is based on the identification of such a backbone. Gaston uses the already mined
frequent paths from phase one as the backbone of the trees grown in phase two,
i.e., extensions of tree patterns which would lead to a different backbone are invalid.
With this restriction, Gaston is able to completely avoid the generation of duplicate
candidates for tree patterns. The lower complexity for the first two classes w.r.t. to
the subgraph isomorphism problem and canonization enable Gaston to avoid costly
operations for a portion of the frequent patterns. Nijssen and Kok especially targeted
molecular datasets, which have special properties that render the above strategy
effective.

In fact, Nijssen and Kok [NK04] were not the only ones that had the idea of splitting
the mining into multiple phases based on different pattern classes. In the same year,
Huan et al. [Hua+04] presented an algorithm, called Spanning Tree Based Maximal[Hua+04] Huan et al. “SPIN:

Mining Maximal Frequent
Subgraphs from Graph

Databases”. 2004

Graph Mining (SPIN), which uses a two-phase approach (trees and cyclic patterns).
The algorithm is specialized to mine maximal patterns only and thus outside the
scope of this thesis.

In addition to the above listed sequential algorithms, multiple distributed algorithms
have been proposed as well. Bhuiyan and Hasan [BH14] proposed a distributed[BH14] Bhuiyan and Hasan

“FSM-H: Frequent Subgraph
Mining Algorithm in

Hadoop”. 2014

MapReduce algorithm Frequent Subgraph Mining Algorithm in Hadoop (FSM-H)
in 2014. The same algorithm with some additional detail was republished in 2015
([BH15]). It uses the minimal DFS code of gSpan for canonization, a BFS exploration[BH15] Bhuiyan and Hasan,

“An Iterative MapReduce
Based Frequent Subgraph

Mining Algorithm”. 2015

order, and embedding lists for support calculation. Each poset rank is processed by
a separate MapReduce instance and the dataset is partitioned among the mappers.
In iteration k each mapper processes all k-sized frequent subgraph patterns which
have an absolute support of at least one in the partition element. It calculates all
extensions for these patterns and calculates the embeddings lists w.r.t. the assigned
dataset graphs. The mapper then emits the local support values with the minimal
DFS code as key. The reducers sum up to local support values.

10Some of these algorithms are presented for undirected graphs only. However, there exists trivial
extensions to the original algorithms to support directed graphs
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In the same year Lin, Xiao, and Ghinita [LXG14] presented another MapReduce [LXG14] Lin, Xiao, and
Ghinita “Large-scale frequent
subgraph mining in
MapReduce”. 2014

algorithm that works in three rounds (filter, sort, refine). It uses a canonical adjacency
matrix duplicate elimination, and a local mining approach similar to SPIN. The basic
idea is, that frequent pattern mining is possible in a single MapReduce round by
partitioning the dataset, enumerating the complete subgraph pattern space together
with the support values of each subgraph pattern on each partition element in the
map phase, and summing up the partial support values in the reduce phase. However,
this simple approach has the bottleneck, that the local enumeration cannot apply
any support-based pruning and the number of subgraph patterns sent to the reducers
is extremely high. For this reason, they calculate the probability for a pattern to
be globally infrequent based on the local support. Whenever the probability is low
enough the algorithm does not enumerate the pattern and does not send the pattern to
the reducers in the filter round. Consequentially, the support values of some patterns
are only partially available in the reduce phase. Nevertheless, the chosen approach
guarantees, that a frequent pattern is output by at least a single mapper. With
this partial information, it is possible to categorize the enumerated patterns in the
categories infrequent, probably frequent, and frequent in the sorting round. The exact
support values of the probably frequent patterns are then computed in the refinement
round by computing the local support on each dataset partition element.

Talukder and Zaki [TZ16] presented the frequent subgraph pattern mining algorithm [TZ16] Talukder and Zaki
“Parallel graph mining with
dynamic load balancing”. 2016

Parallel Graph Mining with Dynamic Load Balancing (ParGraph) implemented in
MPI and OpenMP. While the algorithm is tailored towards a single input graph, it
is easily adjustable to the transaction setting. In contrast to the above presented
distributed algorithms, they do not distribute the dataset graphs, but the pattern
space exploration among the workers. Consequentially, their algorithm aims to speed
up the computation for datasets that still fit in the memory of each worker. While
using a DFS-based exploration, they assign subspaces of the minimal DFS code
treeified pattern space rooted at some pattern to the workers. Since the subspaces
have a skewed distribution w.r.t. the amount of work, they implemented a distributed
work-stealing algorithm. Whenever a worker runs out of work, it steals some of the
unprocessed patterns of another worker. The unprocessed patterns naturally occur,
when a pattern can be extended in multiple ways and only some of these extensions
are already processed by the DFS traversal.

Petermann, Junghanns, and Rahm [PJR17] presented the DIMSpan algorithm in [PJR17] Petermann,
Junghanns, and Rahm
“DIMSpan: Transactional
Frequent Subgraph Mining
with Distributed In-Memory
Dataflow Systems”. 2017

2017. Similar to FSM-H, it uses a BFS exploration order and uses the minimum
DFS code canonization from gSPan in combination with embedding lists for support
counting. Also in alignment with FSM-H they keep a full copy of frequent patterns
(which have an absolute support of at least one in the partition element) in each
workers memory. However, instead of using the MapReduce distribution framework,
it relies on resilient distributed datasets in Spark. This allows the dataset and the
patterns to be kept in memory of the workers without the need to write intermediate
results to disk. Additionally, DIMSpan optimizes some details, such as using the
restricted pattern growth from gSpan in combination with the growth restriction of
MoFa to grow only patterns, that are possible w.r.t. the embedding lists. Another
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optimization is the usage of compressed pattern representations to reduce the memory
requirements for each worker and the bandwidth usage in order to communicate them.

Dias et al. [Dia+19] presented a general-purpose graph pattern mining framework[Dia+19] Dias et al. “Fractal:
A General-Purpose Graph

Pattern Mining System”. 2019
called Fractal in 2019. Although the framework is tailored towards a single input
graph, it has several interesting conceptual novelties and is therefore listed here.
Foremost, it generalizes the pattern space exploration process by allowing the user to
specify custom extension, aggregation and filtering primitives. Thus, the framework
can be used not only to implement a frequent subgraph mining algorithm, but many
other subgraph pattern mining problems, such as motif and clique extraction and
counting, subgraph querying, and keyword-based subgraph search. The main goal of
the framework is to let the user only specify the logical task at hand and to abstract
the technical details about the pattern space exploration, support counting, and load
balancing. Internally, the framework uses a gSpan-like pattern space exploration with
minimum DFS code canonization. The work is distributed in Spark and implements
a work-stealing approach similar to ParGraph. Thus, the framework also shares the
limitation of ParGraph to load the complete dataset into each worker’s memory.

2.6.2.2.1 gSpan Algorithm In the following, the gSpan algorithm [YH02] will be[YH02] Yan and Han, “gSpan:
Graph-Based Substructure

Pattern Mining”. 2002
discussed in more detail, since the implementations of algorithms given in chapter 4 are
based on gSpan. The gSpan algorithm is a pattern growth algorithm for undirected
labeled graphs with edge counting. However, the adoption to directed graphs is
possible with minor changes [Wör+05]. gSpan uses a so-called DFS code as graph[Wör+05] Wörlein et al., “A

Quantitative Comparison of
the Subgraph Miners MoFa,

gSpan, FFSM, and
Gaston”. 2005

representation. As mentioned in paragraph 2.6.2.1.1, a graph can be constructed by
adding a single vertex to the empty graph followed by a sequence of forward and
backward extensions. This extension sequence aligns with a DFS exploration order of
the final graph. The DFS code represents such a construction and DFS exploration
order. The following representation is based on [Bor07], which presented a simplified[Bor07] Borgelt, “Canonical

Forms for Frequent Graph
Mining”. 2007

representation compared to the original paper of Yan and Han. The representation
has the form:

lvs(td
←−
ts lelvd)m , (2.13)

where lv· are vertex labels, le is an edge label, t· are DFS exploration timestamps,
and m is the number of repeats. The subscripts s and d stand for source and
destination vertex, while the source vertex is defined to be the vertex with the lesser
DFS exploration timestamp. Thus, lvs is the label of the vertex for which the DFS
exploration is started or the first vertex added to the empty graph in the construction
process, depending on the viewpoint. Subsequently, each repetition in the parenthesis
is a DFS exploration step or an extension. The left arrow above the source timestamp
indicates reverse ordering (see below).

An example graph with DFS-exploration vertex timestamps is given in fig. 2.5. A
matching DFS code would be (with black edge labels):

21 32 31 43 42 52 (2.14)

Undoubtedly, there exist multiple DFS codes for a single graph w.r.t. different DFS
exploration or construction orders. Even for fixed DFS vertex timestamps, the
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1

23

4 5

Figure 2.5: Example DFS-exploration of a labeled graph. Vertex colors indicate vertex
labels. Vertex numbers indicate DFS exploration timestamps. DFS-tree
edges are depicted by straight lines; backward edges are depicted by dashed
lines.

backward edges might be added at an arbitrary position after the incident vertices
are present. For example, the following DFS code is different to eq. (2.14), but still
matches fig. 2.5:

21 32 43 52 31 42 (2.15)

On the other hand, a single DFS code might present multiple DFS exploration orders
as a consequence of automorphisms.

Lemma 2.3 (Canonical DFS Code). The lexicographically minimum DFS
code is a graph invariant. [YH02 [YH02] Yan and Han, “gSpan:

Graph-Based Substructure

Pattern Mining”. 2002

]

Based on the above DFS code definition, Yan and Han [YH02] and Borgelt [Bor07] [Bor07] Borgelt “Canonical
Forms for Frequent Graph
Mining”. 2007

define a minimal DFS code as a canonical of the represented graph pattern. Given
an ordering of the vertex and edge labels, one can sort each repetition in the code to
deduce an ordering of DFS codes. While the former definition is a bit more complex in
comparing each repetition, the above presented form given by [Bor07] can be simply
sorted lexicographically. The source time stamp is sorted in reverse order. The two
definitions are equivalent in the sense, that the same DFS exploration orders lead to
minimal DFS codes.

Lemma 2.4 (Canonical Prefix Property). Given a prefix p of a minimal DFS
code with m repeats (cf., eq. (2.13)), that aligns with the repetition boundaries
(i.e., for some i ≤ m), p is the canonical DFS code of the represented graph
pattern.

Given the lexicographic ordering of a minimal DFS code, the prefix property follows
directly. The minimal DFS code is used in gSpan to eliminate duplicate patterns.
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Using a DFS-based pattern growth approach, one can simply check whether the DFS
code aligning with the construction sequence is in canonical form. Furthermore, the
prefix property guarantees, that no extension of a non-canonical DFS code can be
canonical. Consequentially, similar to the support-based pruning, subspaces of the
search space rooted in a non-canonical exploration path can be pruned.

To test whether a DFS code is minimal, a backtracking algorithm is used that
enumerates different DFS exploration orders. As a consequence of the prefix property,
it is possible to prune the search whenever a non-canonical prefix is enumerated.
Still, a possibly exponential number of DFS exploration orders might be considered.
For example, a complete graph with uniform labels has an exponential number of
automorphism, since each vertex can be mapped to every other vertex. Thus, the
same DFS code is created for all the exploration orders. Only after adding the last
repetition to the DFS code, one can decide, that the generated code is not less than
the reference code., i.e., no canonization-based pruning can be applied.

To avoid some of these possibly computationally expensive minimal checks, gSpan
restricts the extension in such a way, that some non-canonical forms of DFS codes are
not generated in the first place. Especially, the extensions are restricted to generate
DFS codes that align with DFS explorations orders (and not e.g., a BFS exploration
order). Namely, backward extensions are restricted to the last added vertex, which is
called rightmost vertex in the literature. This is justified by the fact, that forward
extensions added afterwards will have a higher destination vertex timestamp, i.e., a
backward extension has a smaller repetition order. For example, the code in eq. (2.15)
cannot be minimal, because the backward extension is added too late. Additionally,
gSpan restricts forward extensions to extension vertices on the rightmost path, which
is defined as the path in the DFS tree from the DFS tree root to the rightmost vertex.

For the sake of completeness, it should be mentioned that [Bor07] also presented[Bor07] Borgelt, “Canonical
Forms for Frequent Graph

Mining”. 2007
a BFS code, that defines the minimal code based on the BFS exploration order.
However, even the BFS code can be used in conjunction with a DFS pattern space
exploration.

2.6.2.3 Computational Complexity and Practical Performance

The general FSM problem is known to the NP-hard [HBD07] while it is polynomial-[HBD07] Horváth, Bringmann,
and De Raedt, “Frequent
Hypergraph Mining”. 2007

time solvable for certain constrained pattern spaces [NM17]. Furthermore, the FSM

[NM17] Neumann and
Miettinen, “Reductions for

Frequency-Based Data Mining
Problems”. 2017

problem and even the frequent tree mining problem—which restricts the pattern space
to trees—cannot be solved in output polynomial time unless P = NP [Wel20]. This

[Wel20] Welke, “Efficient
Frequent Subgraph Mining in

Transactional
Databases”. 2020

hardness is closely related to the hardness of the support counting step. The subgraph
isomorphism problem has to be solved for the database scan respectively transaction
list setting. This problem is NP-complete even for quite restricted graph classes such
as outerplanar graphs or disconnected tree patterns [GJ79]. Positive exceptions of

[GJ79] Garey and Johnson,
Computers and Intractability:

A Guide to the Theory of

NP-Completeness. 1979

this hardness are biconnected outerplanar graphs [Lin89] and connected tree patterns

[Lin89] Lingas, “Subgraph
Isomorphism for Biconnected
Outerplanar Graphs in Cubic

Time”. 1989

when embedded into forests. Restricted to block and bridge preserving subgraph
isomorphisms it is possible to solve the FSM problem in incremental polynomial delay
time [HRW10]. Block and bridge preserving subgraph isomorphisms are restricted

[HRW10] Horváth, Ramon,
and Wrobel, “Frequent

Subgraph Mining in
Outerplanar Graphs”. 2010

to graphs which have a tree structure, where tree vertices are allowed to be replaced
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by biconnected outerplanar graphs. The corresponding subgraph isomorphism is
restricted to map blocks (biconnected outerplanar components) to blocks and bridges
(connecting tree paths) to bridges. Embedding lists do not lower the complexity
of the support counting step, since they solve the subgraph isomorphism problem
for a sequence of pattern extensions. Welke [Wel20] points out, that the size of the
embedding lists can be as high as the number of subgraph isomorphisms that are
considered by the Ullmann’s algorithm [Ull76] for the subgraph isomorphism problem. [Ull76] Ullmann, “An

Algorithm for Subgraph
Isomorphism”. 1976

Ullmann’s algorithm operates on a fixed ordering (v1, . . . , v|V (R)|) for the vertices of
a representative R of a pattern P which implies a sequence of induced subgraphs
(R1. . . . , R|V (R)|) where V (Ri) =

⋃i
1 vi. The number of subgraph isomorphism to a

graph G is then bound by:

|V (R)|
∑

i=1

( |V (G)|
|V (Ri)|

)

|V (Ri)|!.

The sequence of induced subgraphs aligns with an (vertex) extension sequence of
a rank-increasing level-wise pattern exploration with a vertex-induced subgraph
isomorphism.

Each pattern mining algorithm claims it superiority over its predecessors w.r.t. its
practical performance. However, survey papers, such as [Wör+05; JCZ13], indicate, [Wör+05] Wörlein et al., “A

Quantitative Comparison of
the Subgraph Miners MoFa,
gSpan, FFSM, and
Gaston”. 2005

[JCZ13] Jiang, Coenen, and
Zito, “A survey of frequent
subgraph mining
algorithms”. 2013

that there is no such dominance of a single algorithm over a broader selection of
graph datasets. While it is widely accepted, that the early apriori-based miners—
i.e., AGM and FSG—and MoFa are superseded by gSpan, FFSM, and Gaston,
the latter have their individual strengths and weaknesses. The major problem is,
that it is impossible to predict which algorithm will perform best or even well on a
specific dataset. Welke, Horváth, and Wrobel [WHW19] state, that the performance

[WHW19] Welke, Horváth,
and Wrobel “Probabilistic and
exact frequent subtree mining
in graphs beyond
forests”. 2019

often depends on some graph properties that are not formally captured and are
unknown. They especially name Gaston as an example. Embedding lists seem
to have a quite unpredictable behavior w.r.t. the number of embeddings. For some
datasets, the number of embeddings seems to explode with no apparent reason or
predictability [WHW19]. Wörlein et al. concluded, that “Contrary to common belief
embedding lists do not considerably speed up the search for frequent fragments”
[Wör+05, p. 402]. Instead, some instances become intractable because of memory
limitations.

2.6.2.4 Application to Other Subgraph Pattern Mining Problems

Frequent subgraph pattern mining algorithms are the basis of many algorithms, which
solve other subgraph pattern mining problems. This includes representative graph
pattern mining (cf., section 4.1), discriminative graph pattern mining, significant
graph pattern mining, graph pattern feature selection, and more. The variety of
applications is overwhelming, making it impossible to give a full overview of FSM
adaptations. Therefore, this subsection lists only a selection of examples in order to
present the general idea of adaptations.
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On the one hand, some algorithms use frequent subgraph pattern mining simply
as a subroutine to generate some structural features, which are then processed in a
separate step. For example, Hasan et al. [Has+07] used a two-step mine-and-select[Has+07] Hasan et al.

“ORIGAMI: Mining
Representative Orthogonal

Graph Patterns”. 2007

approach to mine representative subgraph patterns. Sugiyama et al. [Sug+15] mined

[Sug+15] Sugiyama et al.
“Significant Subgraph Mining

with Multiple Testing
Correction”. 2015

significant subgraph patterns on binary classified datasets with the help of an arbitrary
frequent subgraph pattern mining algorithm. Since they do not know the correct
parametrization of their model—especially a fitting minimum support threshold—in
advance, they present different search strategies (one-pass, LAMP, and LEAP). Some
of them repeatedly run a frequent subgraph pattern mining algorithm with different
minimum support values.

On the other hand, many algorithms for superproblems are directly integrated into
the pattern space exploration. The commonality here is, that the superproblems
objective function has some implication on the minimum support threshold. Thus,
they still use the exploration strategy of frequent subgraph pattern mining algorithms
with a support-based pruning, but prune subspaces by deducing frequency bounds
that are either global or specific to the currently explored subspace. For example,
Thoma et al. [Tho+10] used the gSpan algorithm to mine a set F of discriminative[Tho+10] Thoma et al.

“Discriminative frequent
subgraph mining with

optimality guarantees”. 2010

subgraph pattern features for graph classification. They modeled an internal feature
selection quality criterion called Correspondence-based Quality Criterion (CORK) to
minimize correspondences, which are pairs of graphs from different graph classes with
the same subgraph pattern features regarding F . They iteratively mine single optimal
patterns, subsequently adding them to their feature set F . Given a pattern P , they
deduced a minimal support threshold for the different graph classes for each subpattern
S < P based on the number of eliminated correspondences of P subject to F . Pan
et al. [Pan+15] presented another feature selection algorithm named Regularized Loss[Pan+15] Pan et al. “Finding

the best not the most:
regularized loss minimization
subgraph selection for graph

classification”. 2015

Minimization Subgraph Selection which integrated the model learning into the mining
process of gSpan in order to determine the performance of the selected features
specific to the selected machine learning algorithm. Terada, duVerle, and Tsuda
[TdT16] developed a significant pattern mining algorithm with confounding variables[TdT16] Terada, duVerle, and

Tsuda “Significant Pattern
Mining with Confounding

Variables”. 2016

that is not specific to graph pattern mining. However, they evaluated their approach
by integrating it into the gSpan algorithm deducing a frequency bound. Tsuda and
Kudo [TK06] and Tsuda and Kurihara [TK08] extended to gSpan algorithm to support[TK06] Tsuda and Kudo

“Clustering graphs by
weighted substructure

mining”. 2006

[TK08] Tsuda and Kurihara
“Graph Mining with

Variational Dirichlet Process
Mixture Models”. 2008

weighted subgraph patterns for clustering purposes.

2.6.3 Graph Clustering

Clustering is a broadly studied data mining topic with a plethora of variants and
specializations. With the variety of methods comes a variety of applications, such
as data summarization, stratified sampling, visual analytics, classification, image
segmentation, anomaly detection, novelty analysis of datasets, community detection, or
recommender systems, just to name a few. Clustering is often used as an intermediate
or pre-processing step for other data mining tasks or as a speed up-technique for
algorithms that benefit from pre-partitioned data.
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Definition 2.20 (Clustering). In most common terms, clustering refers to a
set of problems and methods to group (data) objects of a dataset X , i.e., a multiset
of objects, into a family of subsets C = {{C1, . . . , Cc}} with ∀C ∈ C : C ⊆ X based
on some notion of homogeneity. A family member C ∈ C is called cluster and C
is called clustering of X .

The multiset notion for C is necessary since hierarchical clustering methods might
enumerate the same cluster twice for different hierarchy levels. Some clustering
methods annotate each cluster with additional properties, such as cluster descriptions
in the form of centroids or cluster features (e.g., [Llo82; ZRL96]). Those cluster [Llo82] Lloyd, “Least squares

quantization in PCM”. 1982

[ZRL96] Zhang,
Ramakrishnan, and Livny,
“BIRCH: An Efficient Data
Clustering Method for Very
Large Databases”. 1996

descriptions are sometimes given in addition to C as part of the clustering algorithm’s
output.

The specific definition of homogeneity differs for different clustering problems or
methods. The concept is often closely related to some notion of similarity (or distance
cf., paragraph 2.6.3.1.3) or otherwise somehow linked objects. Given some underlying
truth of a dataset, clusters should be homogeneous in terms of some (unknown) class
labels or generative distributions. As such, clustering is also referred to as unsupervised
classification. While supervised classification extracts a classification model—i.e., a
model that assigns class labels to objects—based on specific label information given
for a training dataset, the absence of such information led to the term unsupervised
classification for clustering. As such, clustering can only rely on regularities of the
objects in relative terms.

Definition 2.20 is sometimes complemented by a separation criterion, which states
that clusters should not only be homogeneous, but separated as well. If not given
explicitly or implicitly in the clustering problem definition, the concept of separation
is also used to evaluate the quality of clusterings (cf., section 2.6.3.5). Similar to
homogeneity, separation is not universally defined and the specific definition strongly
depends on the specific clustering method, especially w.r.t. the assumptions about the
cluster shape (cf., paragraph 2.6.3.1.4) or the underlying generative model. Separation
definitions embrace concepts such as the pairwise distances between cluster centers
in relation to the compactness of clusters, the pairwise distances between cluster
members of different clusters (e.g., average or minimum), non-dense regions between
dense clusters, and others. More generally speaking, sets of objects from different
clusters should be less homogeneous than the clusters themselves.

This thesis focuses on graph clustering, i.e., clustering problems and methods that
deal with graph data.

Definition 2.21 (Graph (Set) Clustering). The term graph (set) clustering
refers to a specialized clustering problem or method, for which the dataset X
consists of graphs, i.e., is a graph dataset G as defined in section 2.5.

It should be noted, that the term graph clustering is ambiguously used in literature.
It is also used for clustering methods, which cluster vertices of a single input graph
based on intra-graph properties, such as connectivity. To avoid such ambiguity, this
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thesis will refer to such types of clusterings as vertex clusterings and use the term
graph clustering or graph set clustering solely as defined in definition 2.21.

2.6.3.1 Properties of Clustering Methods

Given the broad clustering definition above, specific clustering methods and their
results can be categorized with the help of the following properties. This section does
not claim to be comprehensive w.r.t. to clustering methods but presents concepts
central for the latter discussion of the StruClus algorithm in chapter 3.

2.6.3.1.1 Partitioning, Overlapping, and Fuzzy Clustering Clustering methods can
be distinguished by the way objects are assigned to clusters. Partitioning clustering
methods follow the mathematical partition definition of a multiset, i.e., a clustering
C := {{C1, . . . , Cc}} of a graph dataset G has the properties:

∀i, j ∈ {1, . . . , c}, i 6= j : Ci ∩ Cj = ∅ (2.16)
⋃

C∈C
= G (2.17)

∀i ∈ {1, . . . , c} : Ci 6= ∅ (2.18)

Prominent examples for partitioning clustering algorithms are the k-Means or Lloyd
algorithm [Llo82] and the family of SAHN clustering algorithms [And73; DE84]. In[Llo82] Lloyd, “Least squares

quantization in PCM”. 1982

[And73] Anderberg, Cluster

Analysis for Applications. 1973

[DE84] Day and Edelsbrunner,
“Efficient algorithms for

agglomerative hierarchical
clustering methods”. 1984

the latter, hierarchical, case, the partitioning nature is restricted to flat clusterings,
that can be derived from the hierarchy by cutting the hierarchy at a certain similarity
threshold (cf., paragraph 2.6.3.1.2). Overlapping clusterings on the other hand
may have non-empty overlaps between clusters, i.e., the property of eq. (2.16) is
not guaranteed. For example, the structural clustering algorithm of Seeland et al.
[See+10] assigns objects to multiple clusters if different structural features are shared[See+10] Seeland et al.

“Online Structural Graph
Clustering Using Frequent

Subgraph Mining”. 2010

with different clusters. Fuzzy clustering methods do not have a fixed assignment to
individual clusters, but a weighted or probabilistic assignment to each cluster, e.g.,
the fuzzy c-means algorithm [Dun73]. This view is closely related to a specific view[Dun73] Dunn, “A Fuzzy

Relative of the ISODATA
Process and Its Use in

Detecting Compact
Well-Separated
Clusters”. 1973

on datasets, which can be seen as a result of an underlying generative mixture model.
If such a model is constructed of overlapping individual distributions, each data point
might be the outcome of multiple individual experiments with certain probabilities.

2.6.3.1.2 Flat and Hierarchical Clusterings Given the unsupervised nature of
clustering problems, it is often a priori unclear which degree of granularity fits best the
higher-level task at hand. Even if a flat clustering algorithm provides some parameters
to adjust the granularity, the resulting clusterings with different granularities might
be quite different in terms of common cluster boundaries and hard to compare to each
other. Opposed to flat clustering methods, hierarchical methods thereby calculate not
only a single clustering result, but a nested clustering tree hierarchy such that multiple
flat clusterings can be obtained on different granularity levels. The hierarchical nature
of the results helps to relate individual clusters of different levels to each other.
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Common classes of hierarchical clustering methods are agglomerative and divisive
methods. The former methods start with individual objects as clusters on the lowest
level and successively merge these clusters up to a certain level of granularity. The
latter methods start with a single cluster of the complete dataset and successively split
the clusters until some abortion criterion is reached. A popular class of agglomerative
methods are subsumed under the term SAHN clustering [And73; DE84] (Sequential
Agglomerative Hierarchical Non-Overlapping clustering). SAHN methods derive
cluster to cluster distances based on distances between individual objects. The
resulting hierarchy is a binary tree, which can be visualized by a dendrogram (for an
example, see fig. 1.5).

Another approach to hierarchical clustering is the density-based OPTICS clustering
algorithm [Ank+99]. Here the hierarchy rank describes the degree of density, which is [Ank+99] Ankerst et al.,

“OPTICS: Ordering Points To
Identify the Clustering
Structure”. 1999

required to form a cluster. With higher densities, more and more clusters are split by
non-dense regions and more objects are classified as noise (cf., paragraph 2.6.3.1.5).

2.6.3.1.3 View on the Data Clustering methods utilize specific abstractions of
the datasets. Most commonly, data is represented by vectors (e.g., k-Means [Llo82] [Llo82] Lloyd, “Least squares

quantization in PCM”. 1982and CLIQUE [Agr+98]) or pairwise distances (e.g., DBSCAN [Est+96] or Jarvis-
[Agr+98] Agrawal et al.,
“Automatic Subspace
Clustering of High
Dimensional Data for Data
Mining Applications”. 1998

[Est+96] Ester et al., “A
Density-Based Algorithm for
Discovering Clusters in Large
Spatial Databases with
Noise”. 1996

Patrick [JP73]).

[JP73] Jarvis and Patrick,
“Clustering Using a Similarity
Measure Based on Shared
Near Neighbors”. 1973

In the former case, not only vectorial data that is naturally represented in such form
(e.g., data points in a predefined vector space such as L2) is applicable to the clustering
algorithm. Various types of data can be mapped to a vectorial representation given a
numerical feature extraction method for the objects at hand. Such numerical features
can be combined to so-called feature vectors, where each feature has a fixed position
or dimension in the vector. The associated vector space is then called feature space.
For a more detailed discussion of relevant feature extraction methods in the context of
graph data, see section 2.6.3.3. Vector spaces benefit from the possibility to add and
scale vectors. For example, this enables explicit computation of centroids, i.e., mean
vectors, that can serve as cluster descriptions or identifiers. Furthermore, it is possible
to derive topological subspaces of vectors by selecting certain features, dimensions, or
linear combinations of them (cf., section 2.6.3.2). Normed vector spaces are equipped
with a norm (sometimes called length or magnitude), which maps a vector to an
absolute scalar value. Most important this implies a distance function via subtraction
of vectors, which in turn can be used to measure homogeneity.

Definition 2.22 (Distance Function). Given a dataset X , a distance function
is a function d : X × X → R, where low values represent similar or homogeneous
and high values represent dissimilar or inhomogeneous object pairs.

A similarity function is of the same kind but reverses the direction of interpretation,
i.e., low values represent distant and high values represent similar objects. While
clustering methods for vector space may also utilize distances to measure homogeneity,
some clustering methods solely rely on pairwise distances. In this case, the dataset
provided to the clustering algorithm is either a distance matrix or a multiset of
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objects and a distance function. In both cases, the specific distance function is often
a parameter of the clustering algorithm and can be used to adapt the clustering
algorithm to the user’s needs or specific problem instances. The quadratic nature
of the distance matrix also leads to a quadratic best-case complexity. However,
some algorithms can omit the computation of all pairwise distances, utilizing special
properties of distance functions. Maybe the most prominent example is the use of the
triangle inequality of distance metrics, e.g., to build index structures that can answer
range queries to retrieve similar objects in sublinear time.

Definition 2.23 (Distance Metric). A distance function d : X × X → R is a
distance metric, iff the following properties hold for all O,Q, T ∈ X :

d(O,Q) = 0⇔ O = Q identity of indiscernibles (2.19)

d(O,Q) = d(Q,O) symmetry (2.20)

d(O,Q) ≤ d(O, T ) + d(T,Q) triangle inequality (2.21)

A fourth property can be derived from the above properties:
d(O,Q) ≥ 0 non-negativity (2.22)

It is important to notice that metrics themselves are often defined on specific forms of
data representation or interpretation. For example, the property described in eq. (2.19)
applied to some graph objects G and H interpreted as graph pattern representatives
does imply an isomorphism between G and H. However, when G and H are interpreted
as graphs, they must also have the same representation. Additionally, many distances
applied to the graph domain have a lossy intermediate representation, such as feature
vectors. In this case, non-isomorphic graphs may map to the same intermediate
representation and only the intermediate representation must be equal for a metric
distance of 0.

A third data representation, that is sometimes used by clustering algorithms—such
as kernel k-Means [Gir02]—is a (graph) kernel. In this case, the dataset domain is[Gir02] Girolami, “Mercer

kernel-based clustering in
feature space”. 2002

mapped to an implicit feature space with possibly infinite dimensions. A kernel is
a function, that expresses the inner product in this feature space. The associated
kernel matrix must be positive semi-definite and symmetric. An advantage of kernel
clustering methods in comparison with classical vector space is, that kernels can be
easily combined to transform the feature space, making it very flexible in terms of
adaptation to the task at hand. Such transformations enable cluster algorithms that
are bound to specific shapes of clusters to overcome this limitation in the original
representation. With kernels, it is still possible to express distances to centroids
objects without explicitly computing the centroid vector in the feature space, which
makes kernel methods superior over pure distances when expressing relative positions.

A fourth view on clustering graph data is the structural view, which is a central
concept for chapter 3. In this case, the graph data is directly interpreted in the
graph domain with graph-theoretic concepts like subgraph isomorphisms, common
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subgraphs, or median graphs11. Cluster homogeneity can be expressed by shared
structural features like common and frequent subgraphs or in similarity terms given
some representative or reference graph object. The avoidance of abstraction regarding
data representation makes structural clustering algorithms very transparent in terms
of interpretation. If structural commonalities are explicitly part of the clustering
result, these commonalities can be interpreted directly in the domain of application.
Interpretability is sometimes a problem with intermediate representations. For ex-
ample, it is usually not possible to map a vector representation back to the graph
domain. This makes it hard to interpret cluster descriptions, such as centroids or
cluster features. Additionally, the usually lossy transformations to a feature space is
a source of inaccuracy w.r.t. to the clustering results.

2.6.3.1.4 Shape of Clusters Clustering methods can be distinguished by the shape
of clusters they can find. This shape is strongly connected to the definition of
homogeneity a clustering algorithm has.

Many well know clustering methods—such as k-Means [Llo82]—assume, that [Llo82] Lloyd, “Least squares
quantization in PCM”. 1982clusters do have a spherical shape under some Lp norm. Thus, cluster objects are

assumed to be contained in a circle around some center or at least assigned to the
closest cluster center. To some extent, this concept is also applicable to clustering
algorithms relying solely on metric distances, where a sphere can be described by
objects with a certain distance to a reference object (e.g., median object). Since the
k-Means objective, to minimize the squared mean euclidean errors w.r.t. cluster
centroids, is equivalent to the minimization of cluster variance, this view aligns with
the idea that all objects from the same cluster should be pairwise similar. Clustering
algorithms that minimize the maximum pairwise distances in a cluster are also said
to produce compact clusters.

Of course, one can think of other shapes that form intuitive clusters, e.g., two
parallel lines, which never touch or a circle inside another circle. Other shapes
are often not explicitly defined by the clustering algorithms. Instead, more general
approaches are often used to express arbitrary shapes of clusters. One class of these
clustering methods transform the input space, such that spherical clusters in the
transformed space are non-spherical in the original space. An example is the Kernel
k-Means algorithm [Gir02], which allows the combination of different kernels to [Gir02] Girolami, “Mercer

kernel-based clustering in
feature space”. 2002

emphasize close distances, e.g., by applying a Gaussian kernel. Other clustering
algorithms exploit concepts of neighborhood. For example, density-based methods
like DBSCAN [Est+96] or OPTICS [Ank+99] use the concept of ǫ-neighborhood [Est+96] Ester et al., “A

Density-Based Algorithm for
Discovering Clusters in Large
Spatial Databases with
Noise”. 1996

[Ank+99] Ankerst et al.,
“OPTICS: Ordering Points To
Identify the Clustering
Structure”. 1999

(fixed radius) to identify dense regions of a dataset, i.e., regions with a high number
of other objects in their reciprocal neighborhoods. Clusters are then defined to be
densely connected objects in a transitive manner. Thus, dense clusters are separated
by non-dense borders. Also, spectral methods employ the concepts of neighborhoods
by constructing neighborhood graphs (e.g., ǫ- or k-nearest neighborhoods) of the

11Median graphs are defined w.r.t. some distance function. They can be either a set median or
general median graph, i.e., the search space is either the cluster objects or the subgraph pattern
space
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dataset, i.e., sparsening the complete distance graph. This sparse neighborhood graph
is then embedded into the euclidean space via spectral analysis and again clustered
with a standard clustering method like k-Means, or SAHN.

2.6.3.1.5 Noise In the context of clustering, noise can be defined as undesired
random defects in the dataset. This can be observed in form of additive noise w.r.t.
numerical features, outliers, or completely random objects that should not be part
of the dataset. Some clustering methods are known for their fragility w.r.t. noise.
For example, single linkage SAHN clustering can dramatically change its results if
otherwise separated clusters are bridged by noise objects. For centroid-based methods,
noise objects far away from the real clusters can drag the centroids away from their
real cluster center, if they are included in the centroid calculation. However, the
degree of noise influence on the clustering results is not only a matter of the used
algorithm but a product of the dataset structure and the clustering algorithm. For
example, for datasets with almost equidistant characteristics, very small changes to
the distances change the clustering results a lot. Contrariwise, well-separated clusters
would still be separated from each other given some degree of perturbation. Bilu and
Linial [BL10] introduced the concept of α-resilience, which states the robustness of a[BL10] Bilu and Linial “Are

Stable Instances Easy?” 2010 clustering outcome under a distance perturbation by a maximal factor of α.
For this reason, perturbation is often used to judge the robustness of clustering

methods or results. When the clustering results are not stable under small perturbation,
this might be a sign of a weak support for the clustering result.

Clustering methods cannot only be discriminated by their resilience of clustering
results under perturbation. In addition to this general perturbation resilience, some
clustering methods actively identify noise objects via some explicit definition of noise.
For example, the density-based DBSCAN algorithm [Est+96], does specify noise as[Est+96] Ester et al., “A

Density-Based Algorithm for
Discovering Clusters in Large

Spatial Databases with
Noise”. 1996

points in non-dense regions of the dataset. Some other methods create an explicit
noise cluster that attracts random objects, such that they are most likely excluded
from real clusters. For example, Davé [Dav91] added a noise prototype object with

[Dav91] Davé
“Characterization and

detection of noise in
clustering”. 1991

equal distance to all objects to the dataset of (fuzzy) k-Means clustering and fixed
this object to be the centroid of an explicit noise cluster.

2.6.3.2 High Dimensional Datasets

The dimensionality d of a vector space is defined to be the cardinality of its basis. In
clustering literature, however, dimensionality is often referred to as a property of a
vector representation, i.e., it is assumed, that a d-component vector is stemming from
the vector space Rd with standard basis. During this thesis, this will be denoted by
representational dimension.

There exist several reasons for high-dimensional datasets. For example, feature
extraction methods for complex objects, such as graphs, tend to produce a large number
of distinct features. Subspace and projected clustering algorithms are particularly
designed to address challenges, that arise in the context of high-dimensional datasets.
Before these clustering methods are described in paragraph 2.6.3.2.3, the challenges
of high dimensional datasets will be subject to discussion.
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2.6.3.2.1 Irrelevant Features Due to the unsupervised nature of clustering problems,
a clustering algorithm cannot discriminate relevant from irrelevant features for the
specific task at hand. Thus, adding irrelevant features to a feature vector is not only
superfluous but may actually harm clustering quality. For example, if the property
of interest is the aerodynamic behavior of the objects, adding a color feature to a
feature space, that otherwise contains only shape features, might cause a split of
clusters with homogeneous shape into different colors. Even worse, it may let the
color become the dominant feature for the clustering result, overshadowing the true
property of interest. Clustering methods are often used to find unknown regularities
in datasets with low a priori knowledge about them. For these reasons, it might not
be possible to select a small and relevant feature set for the task at hand. Instead,
having feature-rich datasets might actually reveal regularities, that would have stayed
undiscovered otherwise. Thus, including irrelevant features cannot be ruled out in
general.

2.6.3.2.2 Concentration Effect and Intrinsic Dimensionality If features or repre-
sentational dimensions are statistically independent, most common norms (including
Lp with p > 1) converge towards the value of the mean vector with an increasing
number of features. Consequentially, derived distances between objects also converge
towards a common value if more and more independent features are added and the
relative contrast dmax−dmin

dmin
of a distance d converges towards 0. This effect is called

concentration effect [Bey+99; ZSK12] and is associated with a bad clusterability since [Bey+99] Beyer et al.,
“When Is ”Nearest Neighbor”
Meaningful?” 1999

[ZSK12] Zimek, Schubert, and
Kriegel, “A survey on
unsupervised outlier detection
in high-dimensional numerical
data”. 2012

well-separated clusters are hard to find under these circumstances. Instead, every
subset of objects shows a similar homogeneity.

As mentioned before, the representational dimension of a dataset is not the same as
the dimension of a well-defined vector space. However, the underlying formal vector
space of the dataset is usually unknown and it is simply assumed to be the most
general one, i.e., Rd. Nevertheless, it is possible, that the dataset is contained in a
subspace of Rd with a smaller basis. Thus, the data points might be embedded into
another vector space Re with e < d via (linear) transformation. Such a transformation
can be distance preserving, i.e., the distance of two points is equal in the original and
transformed space. In the case that a distance preserving embedding into a lower-
dimensional vector space exists, clustering algorithms relying on the relative distances
produce the same results for the original and the transformed datasets. Regarding the
aforementioned concentration effect, this means that the original dataset has (linearly)
dependent dimensions, that are not statistically independent and consequentially do
not contribute to the concentration effect. Thus, a dataset with a high number of
representational dimensions, for which a distance preserving transformations to a
low-dimensional vector space exists, does not suffer from the concentration effect.

However, the notion of distance preserving is quite strict in the sense of the
concentration effect. There might also exist embeddings to much lower-dimensional
spaces when the distance preserving property is relaxed and the distance in the
embedded space does only approximate the original distance. For example, while two
vector dimensions in a dataset might be linearly independent, they might still be highly
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correlated and dependent in the probabilistic sense. Additionally, some dimensions or
linear combinations of them might have a very low variance in comparison with another
dimension. In this case, the low-variance dimensions do not contribute much to the
relative contrast of the distance as well. This leads to the term intrinsic dimensionality.
An intrinsic dimensionality measures the underlying dimensionality of the dataset in
a fuzzy way. There exist several definitions of intrinsic dimensionality (e.g., [FO71;[FO71] Fukunaga and Olsen,

“An Algorithm for Finding
Intrinsic Dimensionality of

Data”. 1971

Ams+15; TS22]). During this thesis, the definition of Chávez and Navarro [CN01]

[Ams+15] Amsaleg et al.,
“Estimating Local Intrinsic

Dimensionality”. 2015

[TS22] Thordsen and
Schubert, “ABID: Angle Based

Intrinsic Dimensionality —
Theory and analysis”. 2022

[CN01] Chávez and Navarro
“A Probabilistic Spell for the
Curse of Dimensionality”. 2001

is used, since it is applicable to general distance metrics and not limited to vector
space. Thus, it is also possible to measure the dimensionality of datasets that are
solely given in form of pairwise distance.

Definition 2.24 (Intrinsic Dimensionality). The intrinsic dimension of a

dataset in a metric space is iD := µ2

σ2 , where µ and σ2 are the mean and variance
of its histogram of distances. [CN01]

The definition directly aligns with the above-discussed concept of relative contrast. If
the variance is low compared to the mean value of distances, this means a low relative
contrast in a probabilistic sense. Datasets formed by d-component random vectors in
Lp space result in an expected intrinsic dimensionality iD ∈ Θ(d)

2.6.3.2.3 Subspace and Projected Clustering Methods Clustering methods for high
dimensional data need to cope with the above-mentioned challenges, i.e., irrelevant
attributes and the concentration effect in high dimensional spaces. Subspace and
projected clustering methods identify clusters in subspaces of the original dataset.
The idea is, that subspaces of relevant features may exist in which homogeneous
clusters can be found. Thereby, each cluster is assigned to a subspace. However,
the concept of a global cluster separation can become problematic, since different
clusters from different subspaces become incomparable in their cluster description.
For example, if clusters are described by centroids in a subspace, the centroids of
different clusters contain incomparable dimensions or features. The same is true for
separation definitions involving individual cluster elements. For this reason, subspace
and projected clustering methods usually solely depend on some cluster local concept
of homogeneity or separation, e.g., a fixed radius threshold for centroid-based methods,
densely connected regions [e.g., KKK04; Ass+07], or fixed grids [e.g., Agr+98][KKK04] Kailing, Kriegel,

and Kröger,
“Density-Connected Subspace

Clustering for
High-Dimensional Data”. 2004

[Ass+07] Assent et al.,
“DUSC: Dimensionality

Unbiased Subspace
Clustering”. 2007

[Agr+98] Agrawal et al.,
“Automatic Subspace

Clustering of High
Dimensional Data for Data
Mining Applications”. 1998

that are only separated in the given subspace. The difference between subspace
and projected clustering methods is, that the former enumerate all clusters in all
subspaces, while the latter only assigns a subspace to each cluster and dataset object.
Thus, subspace clustering methods can be seen as a special form of overlapping or
hierarchical clustering methods, while projected clustering methods partition the
data objects. The projected clustering task was introduced by [Agg+99] with the

[Agg+99] Aggarwal et al.,
“Fast Algorithms for

Projected Clustering”. 1999

PROCLUS algorithm. Similar to k-Medoid clustering, they try to find subspaces for
a set of medoid objects, such that the distance of the dataset objects to these medoid
is minimized in the assigned subspace. To cope with the combinatorial explosion
of subspaces with the number of considered dimensions, most subspace clustering
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methods explore subspace combinations in a frequent itemset mining apriori style
bottom-up strategy [e.g., KKK04], exploiting monotonic properties of their clustering
definition w.r.t. the subspace ordering. Furthermore, most subspace clustering methods
are axis-parallel [e.g., CFZ99], which means that only combinations of representative [CFZ99] Cheng, Fu, and

Zhang, “Entropy-based
Subspace Clustering for
Mining Numerical Data”. 1999

dimensions are considered as subspaces.

2.6.3.3 Graph Feature Extraction Methods

This section will cover the most important feature extraction approaches in the context
of drug discovery. Most important, it will cover extraction methods used during the
evaluation of the StruClus clustering algorithm in section 3.2.9.

Feature extraction methods for graph data are roughly categorized by the way
individual features are extracted. Furthermore, the methods can be distinguished
by their type, i.e., whether they encode binary or numerical features. While binary
feature vectors most commonly encode the presence or absence of some extracted
feature, numerical features are often counts of some kind or encode more abstract
domain-specific numerical properties (such as molecular weight).

Structural feature extraction methods encode subgraph pattern features, where
each dimension encodes the presence or the number of occurrences in a graph. Instead
of enumerating the complete subgraph pattern space, the features are selected with
different objectives. For example, frequent, significant, or discriminative patterns
that are mined for a particular problem instance (cf., section 2.6.1, [e.g., Tho+10; [Tho+10] Thoma et al.,

“Discriminative frequent
subgraph mining with
optimality guarantees”. 2010

Sug+15]) can be used as structural features. Other methods resort to the (complete)

[Sug+15] Sugiyama et al.,
“Significant Subgraph Mining
with Multiple Testing
Correction”. 2015

enumeration of restricted classes of subgraph patterns, such as graphlets (small graph
patterns with a maximum size, [e.g., She+09]), paths [e.g., GRB06], or trees [e.g.,

[She+09] Shervashidze et al.,
“Efficient graphlet kernels
for large graph
comparison”. 2009

[GRB06] Gedeck, Rohde, and
Bartels, “QSAR - How Good Is
It in Practice? Comparison of
Descriptor Sets on an
Unbiased Cross Section of
Corporate Data Sets”. 2006

KKM11]. Furthermore, feature extraction methods with manually selected feature

[KKM11] Klein, Kriege, and
Mutzel, “CT-Index:
Fingerprint-based Graph
Indexing Combining Cycles and
Trees”. 2011

sets exist, especially in the context of drug discovery [e.g., Dur+02], where relevant

[Dur+02] Durant et al.,
“Reoptimization of MDL Keys
for Use in Drug
Discovery”. 2002

features for drug-likeliness and other properties are identified w.r.t. domain knowledge.
Another class of graph feature extraction methods is based on vertex labeling.

Probably the most simple form is the plain usage of vertex labels contained in a
graph [Stö+19]. However, the absence of structural information limits those approaches.

[Stö+19] Stöcker et al.,
“Protein Complex Similarity
Based on Weisfeiler-Lehman
Labeling”. 2019

More sophisticated vertex labeling extraction methods encode structural information
in the vertex labeling, by encoding properties of the neighborhood into the vertex
labels. Maybe the most prominent example are methods based on the Weisfeiler-
Lehman isomorphism test, which iteratively derives vertex labels by encoding distinct
neighborhoods. Intended as an isomorphism test, these features are commonly used
to compare graphs [e.g., She+11; Stö+19]. In the context of drug discovery, similar

[She+11] Shervashidze et al.,
“Weisfeiler-Lehman Graph
Kernels”. 2011

methods (e.g., extended connectivity fingerprints [RH10]), are known under the term

[RH10] Rogers and Hahn,
“Extended-Connectivity
Fingerprints”. 2010

circular fingerprints.
Additionally to the above-mentioned feature extraction methods, there exist some

more exotic approaches, which are not fully covered here. For example, spectral
analysis of the adjacency matrix [e.g., LWH03] can be used to extract some features

[LWH03] Luo, Wilson, and
Hancock, “Spectral embedding
of graphs”. 2003

from the eigenvectors and values. However, spectral approaches are limited to graph
connectivity and cannot encode label information.
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2.6.3.4 Graph Distances

As discussed above, feature extraction methods can be used to derive feature vectors
for graphs. Distances and similarities for feature-vectors and -sets, e.g., the Jaccard-
Coefficient or the Lp-norm, can be applied to them for graph similarity analysis. In
addition graph distances, i.e., distances directly applicable to the graph domain, exist,
that do not rely on such an intermediate representation.

The graph edit distance [SF83; BA83] is a well-known example. It measures[SF83] Sanfeliu and Fu, “A
Distance measure between

attributed relational graphs
for pattern recognition.” 1983

[BA83] Bunke and Allermann,
“Inexact graph matching for

structural pattern
recognition”. 1983

similarity by the means of edit operations (e.g., insertions, deletions, or substitutions
of vertices and edges) to transform one graph into the other. To derive a distance
measure, the minimum number of necessary edit operations is calculated. Multiple
follow-up publications exist, e.g., to allow sophisticated weighting of edit operations
or other edit operations (such as merging and splitting of vertices).

Closely related to the graph edit distance are distance measures based on maximum
common subgraphs [Bun97]. Since a common subgraph can be interpreted as structural[Bun97] Bunke, “On a

relation between graph edit
distance and maximum common

subgraph”. 1997

commonality, it is possible to relate the size of such commonality to the size of the
compared graphs. Several metrics [e.g., BS98; Wal+01; FV01] have been proposed

[BS98] Bunke and Shearer, “A
graph distance metric based

on the maximal common
subgraph”. 1998

[Wal+01] Wallis et al.,
“Graph distances using graph

union”. 2001

[FV01] Fernández and
Valiente, “A graph distance

metric combining maximum
common subgraph and minimum

common supergraph”. 2001

which are based on this concept:

1− |mcs(G,H)|
max{|G|, |H|} [BS98]

1− |mcs(G,H)|
|G|+ |H| − |mcs(G,H)| [Wal+01]

|G|+ |H| − 2|mcs(G,H)| [FV01]

In these definitions, mcs(G,H) is defined to be a maximum common subgraph between
two graphs G and H. An interesting property of these distances is the exchangeability
of the used maximum common subgraph concept, i.e., using an induced / non-induced
or a connected / disconnected common subgraph isomorphism. Most importantly,
this includes domain-specific adoptions of the maximum common subgraph concept
such as presented by Droschinsky, Kriege, and Mutzel [DKM18]. However, not every[DKM18] Droschinsky,

Kriege, and Mutzel “Largest
Weight Common Subtree

Embeddings with Distance
Penalties”. 2018

maximum common subgraph definition preserves the metric properties.

2.6.3.5 Validation Measures

To evaluate a clustering method it is vital to have some validation measure to judge
the clustering results in terms of quality. Validation measures can be divided into
internal and external validation measures.

Internal validation measures express the quality of a clustering based on some notion
of homogeneity (and separation), i.e., some function m : P(X )→ R. Consequentially,
such an internal evaluation method should reflect the optimization criterion of a
clustering method. This includes previously mentioned clustering properties regarding
allowed overlap between clusters, the handling of special noise clusters, the shape
of clusters, and the applicability to subspaces. The standalone value of an internal
validation method is often not helpful to judge the quality of a clustering method
on its own, since the homogeneity of a clustering can be only as high as the internal
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properties of the underlying dataset allow. However, to compare different clustering
methods, their parametrization, or dataset properties, clustering results can be ranked
by their internal validation value. One must be very careful with the interpretation of
such rankings though. For example, different clustering methods may have different
optimization criteria and a single internal validation measure may not fit both methods.
The same is true for parametrization. The k-Means clustering algorithm, for example,
minimizes intra-cluster variance. This criterion is monotonically increasing with the
number of clusters. Thus, comparing two clusterings with a different number of
clusters, with an internal validation measure that reflects the k-Means optimization
criterion, is not possible based in the raw validation values without taking further
aspects into account. It can be concluded, that there is not one internal validation
measure that fits all clustering methods and the interpretation of such validation
values must include knowledge about the validation measure itself.

External evaluation methods measure the degree of agreement between two clus-
terings, i.e., some function m : P(X ) × P(X ) → R to compare two families of sets.
A typical approach to judge the quality of a clustering with an external validation
measure, is the use of a ground truth, i.e., the comparison of the clustering method’s
results with pre-defined class labels of an evaluation dataset. On the one hand, this
elides the necessity to explicitly match the optimization criterion of the clustering
method in comparison with internal validation measures. For example, whether the
shape of a cluster is spherical or arbitrary shaped does not matter. It is simply the
ground truth that reflects this property. On the other hand, this shifts the challenge
to the availability and selection of a fitting ground truth. If the agreement of a
clustering with a ground truth is high, one can conclude that the clustering produces
meaningful results. However, if the agreement is low, it does not necessarily mean
that the clustering results are meaningless. As a consequence of the unsupervised
nature, the clustering method might just have revealed another aspect of the dataset.
This is especially true, if complex datasets are evaluated, where multiple subspaces
with meaningful clusters exist. External evaluation methods may also be biased
towards some clustering parameters. Most prominently, the number of clusters is
known to cause a bias in most external evaluation measures. For example, external
evaluation measures often show systemically higher or lower values of agreement for
random clusterings with a high number of clusters in comparison with a low number
of clusters. For this reason there exist measurements that try to eliminate such
effects, e.g., by normalization with some expected value under the random clustering
assumption. Still, one needs to be careful when interpreting external clustering values
for clusterings which largely differ in the number of clusters, the size distribution, or
other parameters of a clustering.

During this thesis, three external validation measures are utilized: (a) The Fowlkes
& Mallows Index (FM) [FM83], (b) the Normalized Variation of Information measure [FM83] Fowlkes and Mallows,

“A Method for Comparing
Two Hierarchical
Clusterings”. 1983

(NVI) [Kra+05], (c) and the Purity measure [HZ13]. All measures are normalized to

[Kra+05] Kraskov et al.,
“Hierarchical clustering using
mutual information”. 2005

[HZ13] Hui and Zhongmon,
“Clustering Validation
Measures”. 2013

the range [0, 1] (FM, and NVI) or (0, 1] (Purity). NVI is the normalized version of
variation of information measure (VI) [Mei07] and is a distance. During evaluation all

[Mei07] Meilă, “Comparing
clusterings—an information
based distance”. 2007

external validation values are given in form of similarities to avoid confusion, i.e., a
value of 1 corresponds to a perfect agreement between the two clusterings and a value
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of 0 indicates no agreement at all. The similarity measure 1−NVI is also called joint
normalized mutual information measure [NEB10].[NEB10] Nguyen, Epps, and

Bailey, “Information
Theoretic Measures for
Clusterings Comparison:

Variants, Properties,
Normalization and Correction

for Chance”. 2010

FM and NVI measures are chosen in order to have some variation in the type of
measure. FM follows the counting-pairs approach and NVI is an information-theoretic
measure. Counting-pair approaches are defined over pairs of objects (O,Q) and
measure whether these pairs are in a common or in different clusters. Each pair
can fall into one of three categories: (a) O and Q are in the same cluster in both
clusterings, (b) O and Q are in different clusters in both clusterings, and (c) O
and Q are in the same cluster in one clustering, but in different clusters in the other
clustering. Items a and b are counted as agreement and item c as disagreement. The
exact way these counts are combined differs with different measurements in this class.
Information-theoretic measures are defined with the help of information-theoretic
concepts like conditional, joined, or mutual entropy. Roughly speaking, they measure
the amount of information contained of a clustering structure in relation to another
clustering.

Another reason to choose FM and NVI measures for evaluation is their robustness
w.r.t. clusterings of different sizes. However, FM and NVI are limited to partitioning
clustering algorithms. For this reason, the Purity measure complements the selection
to compare the StruClus algorithm (cf., chapter 3) to overlapping clustering methods.
As the name suggests, the Purity measure computes a weighted average over the
pureness of each cluster, where pureness is defined to be the largest fraction of objects
stemming from a single cluster in the other clustering. This makes the Purity measure
asymmetric. For example, if a single cluster is split in half, the Purity measure will
count one cluster with a pureness of 0.5 or two clusters with a pureness of 1 depending
on the directions of measurement. During this thesis, the direction of measurement is
always the average pureness of the clusters from the evaluated clustering w.r.t. to the
class labels of the ground truth.
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Chapter

Structural Clustering

3

As discussed in the introduction (cf., section 1.1.3), cluster analysis plays an important
role in drug discovery. It is a central tool to reduce the complexity of large-scale
molecular datasets in visual analytics. Furthermore, clustering is used to reason about
molecular properties and to infer properties for undiscovered areas of the chemical
space.

Classical clustering methods rely on data representations in the form of vectors or
pairwise distances (cf., paragraph 2.6.3.1.3). For graph datasets, these representations
cause limitations in terms of interpretability, since the cluster commonalities cannot
be described in the graph domain. Instead, cluster commonalities must be derived
manually by observing the cluster content. This somehow contradicts the purpose
of complexity reduction. The interpretation of such clusterings often requires the
knowledge to interpret vectorial representations and distances, which can be a hard
task, especially for a user with no computer science education. The high intrinsic
dimensionality of graph datasets [KMS14a] is linked to the so-called concentration effect [KMS14a] Kriege, Mutzel,

and Schäfer, “Practical SAHN
Clustering for Very Large
Data Sets and Expensive
Distance Metrics”. 2014

(cf., section 2.6.3.2) and a bad clusterability. As such, projected or subspace clustering
methods are often needed for high-quality clustering results. The transformation to a
vectorial representation is usually lossy, which adds an additional source of error in
the perturbation-sensitive situation of concentrated distances. Since such lossy vectors
cannot unambiguously be transformed back to the graph domain, this is also limiting
the interpretability of cluster descriptions like centroids or other cluster features.

Structural clustering algorithms solve the interpretability issues by describing cluster
commonalities in the graph domain. The projection to a selection of structural features
can be used for the design of projected structural clustering algorithms. However,
their high complexity often limits their applicability to relatively small datasets.
Instead, lightweight vectorial algorithms are often the only practical option to cluster
large-scale molecular datasets in a reasonable amount of time.
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(a) Cluster 1

(b) Cluster 2

Figure 3.1: Structural clusters generated with the StruClus algorithm. Grey boxes
show a structural cluster description.
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3.1 Related Work

This chapter is based on [SM17] and is dedicated to the scalable structural clustering [SM17] Schäfer and Mutzel,
“StruClus: Scalable
Structural Graph Set
Clustering with
Representative
Sampling”. 2017

algorithm StruClus for large datasets of small labeled graphs. Figure 3.1 shows an
example of structural clusters generated by StruClus.

3.1 Related Work

A variety of graph set clustering algorithms have been proposed in recent years. An EM
algorithm using a binomial mixture model over very high dimensional feature vectors,
which encode all frequent substructures, has been proposed by Tsuda and Kudo
[TK06]. Tsuda and Kurihara [TK08] published a follow-up algorithm in 2008 using a [TK06] Tsuda and Kudo

“Clustering graphs by
weighted substructure
mining”. 2006

[TK08] Tsuda and Kurihara
“Graph Mining with
Variational Dirichlet Process
Mixture Models”. 2008

Dirichlet Process mixture model. It prunes the set of frequent substructures to reduce
the number of representative dimensions of the feature vectors. A k-Median-like graph
set clustering algorithm was proposed by Ferrer et al. [Fer+09]. They approximate

[Fer+09] Ferrer et al.
“Graph-Based k-Means
Clustering: A Comparison of
the Set Median versus the
Generalized Median
Graph”. 2009

the discovery of a median graph by embedding graphs into an euclidean vector space.
The embedding is performed using the graph edit distance (cf., section 2.6.3.4) to a set
of pivot elements. Afterwards, the euclidean median is calculated and an approximate
median graph is selected based on the distance to the euclidean median. Seeland
et al. [See+10] presented a parallel overlapping graph set clustering algorithm, which

[See+10] Seeland et al.
“Online Structural Graph
Clustering Using Frequent
Subgraph Mining”. 2010

greedily adds a graph to an existing cluster whenever a common substructure of a
minimum size exists. New clusters are created whenever no existing cluster matches
the currently observed graph. Jouili, Tabbone, and Lacroix [JTL10] presented an

[JTL10] Jouili, Tabbone, and
Lacroix “Median Graph Shift:
A New Clustering Algorithm
for Graph Domain”. 2010

adoption of the mean shift clustering algorithm to the graph domain. They used the
edit path of the graph edit distance, to edit the graphs towards a common median
graph. All the previously presented algorithms have in common, that they are not
suitable for large-scale datasets. Dataset sizes in the experiments range from a few
hundred to a few thousand graphs.

XProj [Agg+07] is a scalable structural clustering algorithm for XML documents [Agg+07] Aggarwal et al.,
“Xproj: a framework for
projected structural
clustering of xml
documents”. 2007

or, more general, labeled trees. It projects the clusters to sets of approximate frequent
subtree patterns with a fixed size. The algorithm requires the enumeration of these
size-restricted frequent subtree patterns for each cluster in each iteration. An adoption
to general graphs is possible but would result in a large performance impact since many
subproblems will become much more complex. Another XML-document clustering
framework was presented by [PBM16]. The framework contains a structural variant [PBM16] Piernik, Brzezinski,

and Morzy, “Clustering XML
documents by patterns”. 2016

PathXP, which is based on the enumeration of frequent path patterns. Again, the
approach scales well to larger datasets but is restricted to very limited path patterns.

Some hybrid clustering algorithms try to overcome the structural complexity by
assisting the structural clustering with a vector-based representation. The afore-
mentioned algorithm of Ferrer et al. [Fer+09] is one example. The probably most
relevant competitor in terms of scalable structural clustering algorithms is a hybrid
approach of Seeland, Karwath, and Kramer [SKK14], called SCAP. It applies a [SKK14] Seeland, Karwath,

and Kramer “Structural
clustering of millions of
molecular graphs”. 2014

fingerprint-based pre-clustering, which partitions the data in a way that aligns with
structural properties with a high probability. Afterwards, a structural overlapping
clustering algorithm is run on each partition element, to refine the clustering. By
this, the superlinear growth of the structural clustering algorithm only applies to the
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smaller partition elements. In addition, they give a shared-memory parallelization to
utilize the resources of modern multiprocessor systems.

Both scalable algorithms in the above discussion, i.e., XProj and SCAP, depend
on fixed-sized subgraph pattern commonalities. While XProj tries to compensate for
this with large sets of partly overlapping commonalities, SCAP must be tried with
different parameters to find a suitable size for each dataset.

3.2 StruClus

This section presents the structural StruClus clustering algorithm, which is tailored
towards large-scale datasets of small labeled graphs. The design goal of the algorithm
was to achieve high-quality clusterings of molecular libraries, although it is not limited
to that use case. Besides the structural nature, StruClus is a partitioning flat
clustering algorithm with explicit noise handling which adapts the number of clusters
to the dataset structure. Furthermore, structural commonalities are not limited to a
subclass of patterns and the size of commonalities is dynamically adjusted with the
help of cluster homogeneity balancing.

Problem 3.1 (SPC). Structural Partitioning Graph Set Clustering

Input: A graph dataset G
Task: Find a partition C = {C1, . . . , Cc} of G, such that it maximizes clus-

ter homogeneity, minimizes the number of clusters, and respects a
minimum cluster separation.

The problem definition leaves the definition of homogeneity (cf., eq. (3.4)) and
separation (cf., eq. (3.13)) open at this point. To define them properly, the used
concept of a structural cluster has to be defined first.

Algorithm 2: StruClus Overview
Input: graph dataset G of non-empty graphs
Output: clustering C = {C1, . . . , Cc}, cluster representatives

R = {R(C1), . . . ,R(Cc)}
1 apply pre-clustering;
2 while not convergent do
3 split clusters;
4 merge clusters;
5 update cluster representatives;
6 assign graphs to closest cluster representatives;

A high-level description of the StruClus algorithm is given in algorithm 2. Initially,
StruClus applies a lightweight pre-clustering algorithm. Then, the intermediate
clustering result is refined using an optimization loop similar to the k-Means algorithm.
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Representatives

Members

Figure 3.2: Example of a structural cluster with an attached representative set. Vertex
colors indicate subgraph isomorphisms between the representatives and
members. The purple color indicates that a subgraph isomorphism from
the red and blue representatives is mapping to the same vertex.

In order to adapt to the number of clusters present in the dataset and to achieve a
good cluster separation, a cluster splitting and merging procedure is applied in each
iteration.

3.2.1 Structural Representatives to Express Commonalities in

Clusters

As discussed in paragraph 2.6.3.1.3, structural clustering algorithms resolve around
cluster commonalities described in the graph domain. The StruClus algorithm is
attaching a representative set of structural graph patterns (cf., definition 2.13) to
each cluster.

Definition 3.1 (Structural Cluster Representative Set). Given a cluster C,
a structural cluster representative set is defined as a set R(C) := {P1, . . . , Pk} ⊆
C⊑ of connected subgraph patterns, named representatives.

In the following, the graphs of a cluster will be denoted by the term cluster members
to distinguish them from the cluster representatives. With the exception of a single
noise cluster (which will be discussed later in more detail), the following invariant
holds.

∀C ∈ C : ∀G ∈ C : ∃P ∈ R(C) : P ⊑ G (3.1)

In other words, the subgraph isomorphism relation is the representative link between
the representative patterns and the cluster members. Additionally, the cardinalities of
the representative sets are limited to a fixed maximum number rmax of representatives,
i.e., ∀C ∈ C : |R(C)| ≤ rmax.

Figure 3.2 shows an example of a structural cluster with an attached representative
set. The vertex colors indicate the mapped vertices of the subgraph isomorphism
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relation. Thus, the blue representative is a common subgraph pattern of all cluster
members, while the red representative is only subgraph isomorphic to three of the four.
For each cluster member, there exists at least one representative that is subgraph
isomorphic to it.

As shown in the example, a representative, that is subgraph isomorphic to more
than a single member, is a common subgraph of these members and explicitly expresses
a structural commonality among them. If the representative set would contain only a
single pattern, eq. (3.1) would enforce the pattern to be a common subgraph of all
members. Having a larger representative set, on the other hand, allows to represent
more complex clusters, where cluster members are a composition of multiple frequent
patterns (cf., section 2.6.2) and not every frequent pattern is subgraph isomorphic
to each member (see the synthetic datasets of the evaluation in section 3.2.9 for an
example). It can be concluded, that one quality criterion for a representative P is its
support suppC(P ) in the cluster C it is associated with. A higher support is preferable
in terms of shared commonalities and thereby cluster homogeneity.

However, having an arbitrary common subgraph as a representative for a set of
graphs is not a sufficient condition to express a high degree of structural commonalities
among the graphs. To be meaningful, the size of the representative is also important.
If the size of the representative is small in comparison with the graphs it represents,
the shared structural commonality between the graphs is also small in relative terms.
In this sense, the representative power of a representative P ⊑ G w.r.t. a single cluster
member G will be defined as the relative number of covered edges by the subgraph
isomorphism:

rpow(P,G) :=
|E(P )|
|E(G)| (3.2)

For a uniform cluster C—that is, a cluster of isomorphic members—a representative
pattern P can be found, that achieves optimal values in both criteria, i.e., suppC(P ) =
100% and ∀G ∈ C : rpow(P,G) = 1. However, if non-isomorphic graphs should be
represented by a pattern, the maximum common subgraph is smaller than at least
one of the graphs and rpow(P,G) must be smaller than 1 for at least one graph
G. Vice versa, if the minimum support suppmin for a representative is lowered, it is
possible to leave more cluster members unrepresented by the representative and some
previously infrequent patterns may become frequent. These are always superpatterns
of the frequent patterns with higher support. Thus, there is a chance to increase
the representative power for the represented graphs if some graphs are allowed to be
unrepresented.

It was discussed above that multiple representatives are beneficial in cases, where a
cluster is formed by multiple frequent patterns. However, the connections between
different representatives were not addressed explicitly until now. Representative
patterns can be related in different ways. First, they can be either structurally similar
or dissimilar to each other. Second, they may share a large or small portion of the
members they represent. If patterns are similar to each other or they share a large
portion of supporting members, cluster members themselves are similar or share
common features, respectively. Contrariwise, clusters with dissimilar patterns that
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Representatives

Members

Figure 3.3: Example of a structural cluster that contains two separate subclusters.
Vertex colors indicate subgraph isomorphisms between the representatives
and members.

represent distinct parts of the cluster members are a problem in terms of member com-
monalities. Figure 3.3 shows a problematic example cluster C with two representatives
P1 and P2 that have no overlap in their supporting members, i.e., C⊒P1 ∩ C⊒P2 = ∅.
Consequentially, C actually contains two separate subclusters.

Observation 3.1. Let P1 and P2 be two representative patterns of a cluster
C, with suppC(P1) ≥ suppmin and suppC(P2) ≥ suppmin. Then, the following
inequality holds.

|C⊒P1
∩ C⊒P2

| ≥ 2 suppmin−|C| (3.3)

In other words, observation 3.1 states, that an overlap between the supporting members
of a representative can be enforced by choosing a sufficiently high minimum support
threshold and it is possible to avoid situations of separated subclusters in a single
real cluster. Representative patterns for StruClus are calculated using a maximal
frequent subgraph pattern mining algorithm (will be discussed in more detail below,
cf., section 3.2.2). By this, it is possible to enforce a minimum support for each
representative pattern.

Under the assumption, that the minimum support of representative patterns is
close to 1, cluster homogeneity is then defined as follows:

hom(C) :=

1
|R(C)|

∑

P ∈R(C)|E(P )|
1

|C|
∑

G∈C |E(G)| (3.4)

If the minimum support suppmin is close to 1, we can omit the fact, that some
representatives might not represent all cluster members. Thus, Equation (3.4) is
simply the average representative power as defined in eq. (3.2) with a low error margin
as a result of the relaxed subgraph isomorphism condition. This avoids subgraph
isomorphism tests and eases cluster homogeneity comparisons since it is not needed to
weigh the number of subgraph isomorphic representatives against the representative
power, e.g., for homogeneity balancing (cf., section 3.2.2.3).
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By using a structural cluster representative set of common subgraphs, cluster
commonalities are now solely measured w.r.t. to patterns in this set. In other words,
structural similarities or commonalities between cluster members that are not expressed
by the representatives are not considered. Since the cardinality of the representative
set is limited, not every common subgraph of the cluster members can be considered.
In this sense, structural clustering algorithms with somehow limited representative
sets are said to be structural projected clustering algorithms [cf., Agg+07]. This[Agg+07] Aggarwal et al.,

“Xproj: a framework for
projected structural

clustering of xml
documents”. 2007

is similar to classical projected clustering algorithms for vector space, which also
select a subset of relevant features of a cluster to measure intra-cluster similarities or
homogeneity.

3.2.2 Representative Update

As discussed above, a sufficiently high support of representative patterns is crucial in
order to have homogeneous clusters and a sufficient overlap between the supported
graphs of different representatives. For this reason, the initial calculation and update
of cluster representatives in StruClus is based on maximal frequent patterns (cf.,
definition 2.16). For each cluster, a representative update will be performed by mining
maximal frequent patterns in a first step (cf., section 3.2.2.1) and selecting the final
representatives by a ranking function in a second step (cf., section 3.2.2.2). The
reason to choose maximal frequent (and not simply frequent) patterns has two reasons.
First, the usage of maximal frequent patterns in combination with the representative
selection criterion (cf., section 3.2.2.2) ensures, that the representative set does not
contain patterns that are subgraph isomorphic in one or the other direction. Thus,
it helps to diversify the representative set and avoids situations in which the same
commonality is selected multiple times just in different sizes. Second, using only
maximal patterns can enforce an increase in homogeneity of a cluster, which will play
an important role in balancing cluster homogeneity (cf., section 3.2.2.3).

3.2.2.1 Probabilistic Maximal Frequent Subgraph Pattern Sampling

Enumerating all maximal frequent patterns can result in an exponential number of
representative candidates (cf., section 2.6.2). The enumeration and ranking of these
patterns is usually computationally demanding, especially since this process has to
be repeated for each cluster in each iteration of the StruClus algorithm. In order
to scale to large datasets with low constant factors (cf., experimental evaluation in
section 3.2.9), a twofold sampling method is used to calculate representative candidates
in a lightweight fashion.

3.2.2.1.1 Sampling in Pattern Space To avoid the high number of representative
candidates due to a complete maximal frequent subgraph enumeration, StruClus
draws a random sample M from the set of maximal frequent patterns Cmax freq of
a cluster C. Algorithmically, it can be achieved with the help of rank increasing
random walks on the poset of frequent patterns. Figure 3.4 shows an example of such
a random walk. To sample a single maximal frequent subgraph, the algorithm starts
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Figure 3.4: Example of a rank increasing random walk in the support pruned labeled
connected pattern space with |LV | = 2, partially ordered by the subgraph
isomorphism relation⊑, and depicted as Hasse diagram. All graph patterns
below the suppmin border are frequent; all above infrequent. Frequent
graph patterns with blue background are maximal. Vertex colors indicate
vertex labels.

with the enumeration of frequent edges and applies forward and backward extensions
(cf., definitions 2.18 and 2.19) until a maximal frequent pattern is reached. Thus,
the approach is quite similar to the pattern growth approach of frequent subgraph
enumeration algorithms as described in paragraph 2.6.2.1.1. However, instead of
branching into multiple possible pattern extensions, a single frequent extension (i.e.,
an extension that leads to a frequent pattern) is selected in a random fashion. This
technique was originally introduced as an intermediate step of the ORIMGAMI
representative pattern mining algorithm [Has+07]. [Has+07] Hasan et al.,

“ORIGAMI: Mining
Representative Orthogonal
Graph Patterns”. 2007A more precise description is given in algorithm 3. The algorithm starts with the

enumeration of frequent edge patterns in line 2. This can be performed by scanning
all edges in G to count the distinct vertex-edge-vertex label combinations. Then
algorithm 3 constructs m patterns in the loop starting in line 3. Starting with an
empty pattern, algorithm 3 enumerates all possible extensions for the current pattern
in line 6 to draw a random extension from this set in line 9. Implementation-wise, the
enumerated extensions can be stored in a lightweight fashion by referencing a node
or node pair (in the case of backward extensions) of P and an associated frequent
edge pattern from Efreq. The complete pattern can then be constructed in line 9.
The determination of an extension as frequent can be performed lazily, i.e., a random
extension is drawn and only applied if it is frequent. If the extension is not frequent,
algorithm 3 loops in line 8 until a frequent extension is found or the set of enumerated
extensions is depleted. In the former case, the first found frequent extension is applied
in line 11. In the latter case, P is a maximal frequent pattern and the extension loop
of line 5 exits to add the pattern to the output of the algorithm in line 13.
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Algorithm 3: Sampling of Maximal Frequent Graphs Patterns

Input: graph dataset G of non-empty graphs, cardinality m ∈ N≥1 of maximal
frequent patterns to sample, minimum support suppmin

Output: random sample of maximal frequent patterns M

1 M← ∅;
2 Efreq ← frequentEdges(G);
3 while |M| < m do in parallel
4 P ← ∅;
5 do
6 extensions← enumExtensions(P,Efreq);

� cf., definitions 2.18 and 2.19

7 Q← null;
8 while extensions 6= ∅ and (Q = null or not

isFrequent(Q,G, suppmin)) do
9 Q← extensions.getAndRemoveRandom();

10 if Q 6= null then
11 P ← Q;

12 while Q 6= null;
13 M←M ∪ {P};
14 return M;
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3.2.2.1.2 Sampling Cluster Members While the sampling of maximal frequent
patterns greatly improves the performance in comparison with enumeration algorithms,
the |C| subgraph isomorphism tests for each extension—including failed infrequent
extensions—remain a computational bottleneck for StruClus. For this reason,
StruClus calculates the support of patterns on random samples of the members
in addition to the pattern space sampling discussed above. This helps to reduce
the number of subgraph isomorphism tests in order to determine whether a pattern
is frequent or not. To limit the sampling-induced error probability, a probabilistic
sampling strategy is presented in the following.

Lemma 3.2. Given a graph dataset G, a uniformly distributed random sample
(with replacement) S = (G1, . . . , GN ) of graphs from G, and a pattern P ∈ G⊑, the
random variable suppS(P ) = |S⊒P | follows the binomial distribution B

n,
|G⊒P |

|G|

.

Proof. Given the sample space G and a fixed pattern P ∈ G⊑, P is either subgraph
isomorphic to a graph G ∈ G (G ∈ G⊒P ) or not (G ∈ G6⊒P = G \ G⊒P ). When picking
a graph G from G at random, the random variable X : G → {0, 1} with the events
G ∈ G⊒P (success, value 1) and G ∈ G6⊒P (failure, value 0) has a success rate of

p :=
|G⊒P |

|G| and a failure rate of
|G6⊒P |

|G| =
|G|−|G⊒P |

|G| = 1 − p. Thus, X follows the
Bernoulli distribution B1,p. Let S := (x1, . . . xN ) be the random sample representing
the observation of the random variables X(G1), . . . X(GN ), i.e., N i.i.d. random
variables following B1,p. Then, |S⊲P | =

∑

x∈S x is the number of successes and
follows the Binomial distribution BN,p.

A similar observation was also made by Lin, Xiao, and Ghinita [LXG14], which used [LXG14] Lin, Xiao, and
Ghinita “Large-scale frequent
subgraph mining in
MapReduce”. 2014

the binomial distribution to filter possible infrequent patterns for distributed frequent
pattern mining. With the help of lemma 3.2 it is possible to rephrase the decision
problem, to determine if a pattern is frequent or not, as a statistical hypothesis.

Statistical Hypothesis Test Question 3.1 (Frequent Test).

Input: A random sample (with replacement) S = (G11, . . . , G1N ) of
graphs from graph dataset G, a minimum support threshold
suppmin, a pattern P ∈ G⊑, and a significance level α.

Hypothesis: H0 : suppS(P ) = suppmin

Test Question: Can H0 be rejected w.r.t. the observation |S⊒P | and signifi-
cance level α?

Statistical Hypothesis Test Question 3.1 can be implemented using a binomial
test (cf., section 2.3.5.1). While the test hypothesis H0 is based on the rejection
of equality, it is actually necessary to decide if the pattern is above or below the
minimum support threshold. However, such a decision can be derived from the test
on equality and the computational costs of a second tests can be avoided. Let’s
assume that it should be determined whether a pattern P is frequent in a cluster

77



3 Structural Clustering

C based on the support suppS(P ) in some random sample S of C. Then, it is
possible to simply assume that suppC(P ) < suppmin iff suppS(P ) < |S| suppmin

|C| and

suppC(P ) ≥ suppmin iff suppS(P ) ≥ |S| suppmin

|C| if the hypothesis can be rejected
with some reasonable confidence level of α < 0.5. This relation between the test on
equality and the one-sided tests is justified by the test decision as given in 2.3.5.1 for
which the test on equality incorporates both single-sided tests with the half confidence
level. Thus, two single-sided tests corrected with the simple Bonferroni method (cf.,
section 2.3.4.1) would result in the same outcome.

With the above discussed statistical test, it is, therefore, possible to determine if
a single pattern P is either frequent or not with a probability of 1 − α under the
assumption, that H0 can be rejected with enough confidence. However, it is still
necessary to handle situations in which H0 cannot be rejected, i.e., situations in
which the real support suppC(P ) of P is very close to the minimum support threshold
suppmin. Since the cardinality |S| of the sample of cluster members S used for the
candidate test influences the test power, it might be enough to increase the sample
cardinality in order to reject H0. However, choosing a very large sample for all
tests contradicts the performance goal of the sampling approach. Since the real
support suppC(P ) of P in C is unknown, it is not possible to automatically select an
appropriate sample cardinality according to the situation. For this reason, StruClus
uses a sample size doubling strategy. Starting with a small first sample S1, the
frequency test is executed. If the rejection of the hypothesis fails, a second sample S2

with |S2| = 2|S1| is drawn. This process is repeated with |Si| = 2|Si−1| until H0

could be either rejected or the sample cardinality exceeds the cardinality of cluster C.
In the latter case, an exact support suppC(P ) is computed in order to determine if
P is frequent or not. Consequentially, the sampling approach is not faster than the
exact algorithm in the worst case.

Algorithm 4 shows the probabilistic determination of the classification as frequent
or infrequent in more detail. It serves as a drop-in replacement of the function
isFrequent in algorithm 3. It starts with a minimal sample cardinality in line 2 and
doubles the sample cardinality (line 8) as long it is smaller than |G| and the hypothesis
test in line 6 cannot be rejected. If the hypothesis is rejected, the probabilistic answer
is directly returned in line 7. Otherwise, the exact decision is returned in line 9. The
implementation of the algorithm avoids duplicate subgraph isomorphism tests. In order
to execute the hypothesis test, suppS(P ) is calculated using subgraph isomorphism
tests against S in line 5. If multiple tests are necessary, a new independent sample has
to be drawn for each test in line 4. Let’s assume, that SA and SB are two independent
samples of two different iterations. Then it can happen, that SA ∩ SB = I 6= ∅
holds. In order to calculate the support P ⊑ G for some G ∈ I, the second subgraph
isomorphism test can be avoided by caching the result of the first one. As a result,
algorithm 4 does only execute |G| subgraph isomorphism tests in the worst case.

The statistical test is repeated for each extension and each sample cardinality
doubling. As a consequence, a multiple hypothesis testing correction is necessary to
bound the family-wise error for each P to be a maximal frequent pattern of G.
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Algorithm 4: Probabilistic Frequency Decision
Input: graph dataset G of non-empty graphs, pattern P , minimum support

suppmin

Fixed Parameterization: minimum dataset sample cardinality smin,
maximum error probability α

Output: classification of P into frequent (true) or infrequent (false)
Subprocedure Of: algorithm 3

1 procedure isFrequent(P,G, suppmin)

2 s← smin;
3 while s < |G| do
4 S← randomSample(G, s);
5 support← suppS(P );
6 if binomialTestOnEquality(support, s suppmin

|G| , α) = rejected then

7 return support ≥ s suppmin

|G| ;

8 s← 2s;

9 return suppG(P ) ≥ suppmin;

Lemma 3.3. Let G be a graph dataset, smin a minimum sample cardinality, Efreq

the set of all frequent edge patterns in G, suppmin a minimum support threshold,
and vmax the (1− suppmin

G )-quantile of the sorted (increasing order) vertex counts,
i.e., |V (G)| for each G ∈ G. Then, the maximal number of binomial tests to
construct a maximal frequent substructure over G using algorithms 3 and 4 is
bounded by:

⌈

log
|G|
smin

⌉ ((

vmax

2

)

+ vmax

)

|Efreq| (3.5)

Proof. The sample cardinality is doubled at maximum
⌈

log |G|
smin

⌉

times if the test never

reaches the desired significance level. The vertex count |V (P )| of some P ∈ Gmax freq

is bounded by the vertex count of each supporting graph G ∈ G⊒P . In the worst
case P is supported by the suppmin-largest graphs of G. The vertex count of the
smallest supporting graph is then equal to the (1 − suppmin

G )-quantile of the sorted
vertex counts in increasing order. The number of applied frequent extensions is bound
by the number of edges in the complete graph with vmax vertices times the number
of available edge patterns |Efreq|. To decide whether P is maximal, a maximum
number of |Efreq| additional (infrequent) forward extensions for each vertex need to
be performed.

With the help of lemma 3.3 it is possible to apply a simple Bonferroni correction
(cf., section 2.3.4.1) to the significance level of algorithm 4.
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Corollary 3.4. Each subgraph pattern P ∈ M of algorithm 3 in combination
with algorithm 4 is a maximal frequent subgraph pattern with a probability of
at least 1 − α if a Bonferroni correction is applied to the significance level of
algorithm 4 according to lemma 3.3.

Proof. Follows directly from lemma 3.3.

3.2.2.2 Representative Selection

In the representative update step and during the pre-clustering phase of algorithm 2,
representatives have to be calculated for each cluster C ∈ Ci of the current iteration i.
With the help of algorithm 3, StruClus mines a set of representative candidates M

with a cardinality of m. Afterwards, the rmax best-ranked candidates are selected as
cluster representatives. With the sampling approach, it is possible, that highly ranked
previously found commonalities of the clusters are missed by chance, i.e., are not
contained in M. To avoid such situations the selected representatives R(C−1) of the
previous iteration i−1 are added to the candidate set, i.e., the ranking is performed on
the set M ∪R(C−1). The ranking function is defined over a representative candidate
pattern P , a cluster C, and the complete dataset G (i.e., the input of algorithm 2).

rank(P,C,G) :=
|C⊒P ||E(P )|
∑

G∈C⊒P
|E(G)|

(

suppC(P )

|C| − suppG(P )

|G|

)

(3.6)

As already discussed in section 3.2.1, the goal of StruClus is to maximize cluster
homogeneity w.r.t. eq. (3.4). For this reason, the first part of eq. (3.6) does reflect the
average representative power of the supporting graphs C⊒P of P in C.

Along with the representative power, it is necessary to have a sufficiently high
support in order to actually share commonalities among the members and force an
overlap between the supporting graphs of the representatives (cf., observation 3.1).
This second criterion will be enforced by the suppmin parameter of algorithm 3. The
ultimate value of suppmin will be selected by the cluster homogeneity balancing (cf.,
section 3.2.2.3). Nevertheless, it is still possible, that the support values of patterns
differ to some degree, as the support of a maximal frequent graph pattern must not
be exactly the suppmin threshold. Additionally, the representative patterns of the
previous generation are ranked alongside. They may have been mined with a different
minimum support threshold and their support may change with changing cluster
members in succeeding iterations. Higher support values are always preferable in
terms of shared commonalities, which is the reason why the representative power is
complemented with the support of the pattern. Extremely unbalanced cases in which
one criterion has a high and the other criterion has a very low value should be avoided,
since both criteria are needed to express homogeneous clusters. Thus, the ranking
function uses the product of the two criteria.

Finally, the ranking function also guides the representative selection process to
prefer patterns that are special to the cluster by subtracting the dataset-wide support
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of the pattern from the cluster-specific support. This avoids the development of
clusters towards indiscriminate representatives and avoids unnecessary cluster merging
operations (cf., section 3.2.4.2), which will be introduced later to guarantee a minimum
separation constraint.

3.2.2.3 Homogeneity Balancing

A sufficiently high homogeneity (cf., eq. (3.4)) of a cluster is necessary to produce
meaningful clustering results. However, it is not possible to a priori define the desired
homogeneity level, since the achievable homogeneity depends on the precise dataset
composition. In the one extreme, a dataset is formed of large groups of isomorphic
graphs. As such, uniform clusters of isomorphic graphs could be built with an optimal
homogeneity of one and a pattern support of 100% (cf., section 3.2.1). On the other
extreme are datasets where pairwise graphs only share very small common subgraphs.
The size of these common subgraphs then limits the homogeneity criterion too much
lower values. As a consequence, it is only possible to push the homogeneity of clusters
as far as the dataset allows.

The minimum support threshold suppmin for representative candidate mining plays
an important role in this process. As already discussed in section 3.2.1, a low
minimum support leads to a larger maximal frequent pattern in comparison with a
higher support as a consequence of the anti-monotonicity property (cf., lemma 2.2).
Thus, on the one hand, choosing a relatively low value for suppmin will increase the
homogeneity of a cluster as the size of the representatives in comparison with the
size of the members increase. On the other hand, if such a low-support pattern
is selected as representative (cf., section 3.2.2.2) this might lead to unrepresented
cluster members. These unrepresented members need to be assigned to another cluster
since the invariant of eq. (3.1) does no longer hold. In summary, a low minimum
support for representative candidate generation will lead to an increase in the cluster’s
homogeneity and a decrease in the cluster’s size. On the contrary, a higher support
will slow down this process of decreasing the cluster’s size and a value of one will halt
it completely.

The process of sorting out graphs needs to be stopped at some point to have clusters
of meaningful size. This is guaranteed by the convergence criterion (cf., section 3.2.6).
However, some clusters might converge very fast to a good homogeneity and others
need more iterations. The usage of a fixed minimum support threshold thereby may
lead to a situation where some clusters are relatively inhomogeneous while others are
already highly homogeneous. If the convergence criterion stops the algorithm at this
point, these inhomogeneous clusters are not meaningful. Conversely, if the algorithm
continues the process, homogeneous clusters unnecessarily decrease their size until
convergence is reached. As a consequence StruClus chooses the minimum support
cluster-specific to balance cluster homogeneity over all clusters. In a first step, the
relative homogeneity w.r.t. eq. (3.4) of each cluster C of a clustering C is calculated.

relHom(C, C) :=
hom(C)

1
|C|
∑

C′∈C hom(C ′)
(3.7)
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Equation (3.7) describes the relative homogeneity of a cluster C and returns a value
below 1 if the cluster has a lower homogeneity than the average and a value above
1 in the opposite case. This value is then linearly mapped to a suppmin value for
representative mining.

suppmin(C, C) := |C|















ls if relH(C, C) < lr,

hs if relH(C, C) > hr,

relH(C, C) hs−ls
hr−lr +

(

ls− lr hs−ls
hr−lr

)

otherwise.

(3.8)

The variables ls, hs, lr, hr represent low and high values for the relative (i.e., fractional)
minimum support and relative homogeneity. Thus, the linear function goes through
the points (|C|ls, lr) and (|C|hs,hr). Below and above these points, the suppmin values
are constantly bound by ls and hs. This helps to ensure the necessity to have a
minimum support well above 50% w.r.t. observation 4.12, i.e., ls≫ 50%. On the other
end, the minimum support cannot be above 100% by definition. Additionally, even
highly homogeneous clusters should be improved in homogeneity if the loss of very
few graphs leads to a significant increase in homogeneity. Thus, hs should be slightly
below 100% in practice. In order to not stop the increase of homogeneity for a low
homogeneous, but highly balanced intermediate clustering result, it is furthermore
necessary to choose hr above one. The convergence criterion (cf., section 3.2.6) will
then decide when to stop the process of homogeneity increase.

3.2.3 Cluster Assignment

During cluster assignment, each dataset graph G ∈ G is assigned to the cluster with
best-fitting representatives, i.e., representatives that maximize the homogeneity as
defined in eq. (3.4). Since the size of G is fixed, this boils down to choosing the
subgraph isomorphic representatives with maximum size in terms of edges. Besides
the representative power, the homogeneity objective does assume a high support for
each representative. While it is totally fine to have a few graphs in a cluster that are
only represented by a single or few representatives, it is preferable to have as many
matching representatives as possible. For this reason, StruClus uses the following
assignment similarity for a graph G and a cluster C. To emphasize patterns with large
representative power over multiple small patterns, the edge counts of the patterns are
squared.

aSim(G,C) :=
∑

P ∈R(C)
P ⊑G

|E(P )|2 (3.9)

With the help of this similarity, it is possible to choose the most similar cluster via
ranking.

Graphs that do not match any representative of any cluster—i.e., graphs with a
similarity of zero to all clusters—are considered noise. StruClus creates a single
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noise cluster in each iteration and assigns these graphs to it. Note, that this noise
cluster will be considered a regular cluster in the next iteration and only a single noise
cluster exists after each iteration. Thus, the invariant of eq. (3.1) is violated at most
for a single noise cluster.

3.2.4 Cluster Splitting and Merging

As discussed in the introduction StruClus adapts the number of clusters to the
dataset structure, i.e., it does not use a fixed number of clusters, such as k-Means. Up
to this point, noise clusters are the only way to add new clusters to the intermediate
clustering results. The cluster splitting and merging steps are another way to adapt
to the dataset structure and maintain a well-separated clustering result.

3.2.4.1 Cluster Splitting

It was discussed in section 3.2.2.3, that StruClus increases cluster homogeneity
by sorting out some unfitting graphs, i.e., choosing a minimum support below 100%
during candidate generation. However, since suppmin is limited from below by |C|ls
(cf., section 3.2.2.3), it might be impossible to find any representative that increases
homogeneity, i.e., the chosen representatives are already the largest frequent pattern
for suppmin = |C|ls. For very inhomogeneous clusters it might therefore be impossible
to increase the homogeneity to an average level. Additionally, convergence might be
very slow if the the required number of additional clusters is high and only a single
noise cluster is added in each iteration. A cluster splitting step is used for this reason.
It collects all graphs from all clusters with a relative homogeneity (cf., eq. (3.7)) value
below an a priori specified threshold relHommin.

splitGraphs := {G ∈ C ∈ C | relHom(C, C) < relHommin} (3.10)

Then thees graphs (cf., eq. (3.10)) are re-clustered by the pre-clustering algorithm
(cf., section 3.2.5). Thus, it can be seen as separate instance of StruClus with only
a single iteration on the subset splitGraphs ⊆ G. By mixing the members of several
inhomogeneous clusters it is possible to find inter-cluster commonalities, that would
have been infrequent in each of the previous clusters on their own. The resulting
clusters are then re-added to the main instance.

3.2.4.2 Cluster Merging

On the contrary to cluster splitting, which focuses on cluster homogeneity, cluster
merging ensures a minimum separation between clusters. Although the pre-clustering
ensures well-separated initial clusters (cf., section 3.2.5) two clusters may develop
towards each other or newly formed clusters (either noise clusters or re-added clusters
from the cluster splitting step) maybe similar to existing ones.

In the context of projected clustering algorithms, the separation between clusters
of different subspaces is often not considered, since the projected nature of clusters
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causes similarities to be cluster-specific. As such, separation constraints that rely on
intra-cluster comparisons of cluster members must resort to some set of features or
dimensions that do not align with the clusters’ specific subspaces. This contradicts
the original idea of subspace or projected clustering algorithms, which states, that
well-separated clusters may only exist in subspaces of a high dimensional superspace.
However, structural projected clustering algorithms as described in section 3.2.1 have a
special property. On the one hand, vectorial representations have numerical values for
each dimension in the dataset. Thus, two given objects may be close or far away when
they are projected to this dimension w.r.t. to the numerical value. On the other hand,
structural commonalities are encoded by the presence or absence of structural features.
Thus, one can encode such structural features in binary feature vectors of infinite
dimensionality (if the size of patterns is not limited), where each representational
dimension encodes a structural subgraph pattern. Given this viewpoint, StruClus
does only project a cluster to a subgraph pattern feature, if the feature is actually
present in the cluster. Consequentially, different clusters with the same representatives
also share commonalities w.r.t. the cluster members. This is fundamentally different
to classical vector space projected algorithms, where well-separated clusters within
the same subspace may exist. Nevertheless, the above described situation of identical
structural features is very strict and would not occur often in practice. For this reason,
StruClus extends this concept to similar cluster representatives. Recalling the binary
feature vector view on structural features, structural features are not independent. As
a result of the monotonicity property (cf., lemma 2.2), subgraph patterns of a pattern
are always present in the binary feature vector if the pattern itself is present.

Observation 3.5. Let C1 ∈ C and C2 ∈ C be two clusters of a common clustering
C, P1 ∈ R(C1) and P2 ∈ R(C2) two representative patterns of these clusters, and
Q with Q ⊑ P1 ∧Q ⊑ P2 be a common subgraph pattern of P1 and P2. Then, Q
is a common subgraph pattern of at least all represented graphs of P1 and P2, i.e.,
C1⊒P1

⊆ C1⊒Q
and C2⊒P2

⊆ C2⊒Q
.

Observation 3.5 implies, that the support of Q in C1 ∪ C2 is bounded from below
given that the support of P1 and P2 is bounded in their respective clusters. More
precisely it is bound by the weighted average and the following inequality holds.

suppC1∪C2
(Q) ≥ |C1| suppC1

(P1) + |C2| suppC2
(P2)

|C1|+ |C2|
(3.11)

Thus, if some common relative minimum support threshold was used to mine
P1 and P2, Q is a frequent subgraph of the merged cluster. Additionally, if such
a common subgraph pattern Q is relatively large in comparison with P1 and P2,
the representative power of rpow(Q,G) for some graph G ∈ C1⊒P1

∪ C2⊒P2
is also

close to the representative power of P1 or P2. In such cases, the merging of the
two clusters C1 and C2 would result in a homogeneous supercluster C1 ∪ C2 with
representative Q, assuming rmax = 1. From the reverse viewpoint, C1 and C2 would
not be well-separated in such a situation.
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In order to judge the separation of two clusters, it is, therefore, crucial to determine
if a relatively large common subgraph pattern of the representatives exists. The
following similarity is defined to make this judgment for two representative patterns
P1 and P2, where mcs(P1, P2) returns an arbitrary common subgraph pattern with
maximum edge count.

rSim(P1, P2) :=
|E(mcs(P1, P2))|

max{|E(P1)|, |E(P2)|} (3.12)

In other words, eq. (3.12) is the maximal factor of loss in representative power
rpow(Q,G) for some graph G ∈ C1⊒P1

∪ C2⊒P2
and some common subgraph pattern

Q of P1 and P2 w.r.t. rpow(P1, G) and rpow(P2, G). For the sake of completeness, it
should be mentioned that 1− rSim is a well-known distance introduced by Bunke and
Shearer [BS98] (cf., section 2.6.3.4). [BS98] Bunke and Shearer “A

graph distance metric based
on the maximal common
subgraph”. 1998

Finally, two clusters C1 and C2 are merged, whenever the following minimum
separation constraint is violated.

|{(P1, P2) ∈ R(C1)×R(C2) | rSim(P1, P2) ≥ rSimmax}| <
|R(C1)|+ |R(C2|

2
(3.13)

For example, if there exists a bipartite matching of similar representatives of two
clusters, they would be merged. The representatives of the merged cluster are then
chosen in a regular representative update (cf., section 3.2.2) with the addition of the
pairwise maximum common subgraphs of the representatives P1 ∈ C1 and P2 ∈ C2 to
the candidate set for representative ranking. The regular update is beneficial since
there might exist better representatives as the maximum common subgraph patterns.

3.2.5 Pre-Clustering

The refinement of intermediate results in StruClus is based on the idea of increasing
the representative power of representative patterns. To start with this process, it is
necessary to have an initial dataset partitioning (i.e., clustering). Choosing such a
partitioning at random would have the drawback, that each cluster would be drawn
from the same distribution and as a result would have highly similar commonalities.
Thus, clusters are expected to be not well-separated. Consequentially, this would
result in a high number of clusters to be merged and a very slow convergence of the
algorithm. Moreover, the commonalities would most likely have low representative
power.

For these reasons, StruClus applies a lightweight pre-clustering to find a better
starting point. To pre-cluster a dataset G, a set of maximal frequent subgraphs M is
sampled from Gmax freq with the help of algorithm 3 as described in section 3.2.2.1.
These maximal frequent graph patterns will serve as candidates for the representatives
of the initial clusters. However, M may contain very similar representatives. If such
similar representatives are used to construct different clusters, the above problem of
badly-separated initial clusters would still exist. In order to increase the diversity

85



3 Structural Clustering

of the initial representatives, the concept of α-orthogonal graph sets is used. This
concept was originally introduced by Chaoji et al. [Cha+08]. Given a set of graph[Cha+08] Chaoji et al.

“ORIGAMI: A Novel and
Effective Approach for

Mining Representative
Orthogonal Graph

Patterns”. 2008

pattern A (in our case M) and a similarity sim between them, an α-orthogonal subset
B ⊆ A of these patterns is defined to be a subset for which the following conditions
hold:

∀(P1, P2) ∈ B ×B : sim(P1, P2) ≤ α (3.14)

∀P1 ∈ A \B,∃P2 ∈ B : sim(P1, P2) > α (3.15)

In other words, α-orthogonal subsets of A are inclusion maximal sets of pairwise
dissimilar patterns. The pre-clustering repeatedly constructs such inclusion maximal
sets in random order of M. The largest α-orthogonal subset of M is then selected to
construct the initial clusters with a single representative for each cluster. For the sake
of well-separated clusters, StruClus reuses rSim of eq. (3.12) and sets α to rSimmax.
To assign the graphs of G to the clusters, the regular assignment similarity aSim
(cf., eq. (3.9)) does have the problem, that some graphs may not be represented, i.e.,
supported, by any pattern in the selected α-orthogonal subset. This is an undesired
property for the pre-clustering since this may result in a large noise cluster with
the same problems that the pre-clustering should actually avoid. For this reason a
softer distance, that does not drop to 0 in case a non-existing subgraph isomorphism
is desired. The similarity rSim would make sense in this context. However, the
computational complexity of the maximum common subgraph isomorphism is not
desirable for a lightweight pre-clustering phase. For this reason, the Jaccard-Similarity
is used, utilizing numerical graphlet fingerprints.

3.2.6 Convergence

As stated in problem 3.1 (SPC), the objective of StruClus is to maximize homogeneity
and minimize the number of clusters. Furthermore, it was discussed in section 3.2.2.3,
that the shrinking of clusters can help to increase cluster homogeneity. Increasing the
number of clusters therefore may help to increase overall homogeneity. In the most
extreme case, a clustering of singleton clusters would achieve perfect homogeneity,
if we dismiss the minimum separation constraint. The other extreme would be a
clustering of a single cluster with very low homogeneity. Both extreme cases are
undesired since they do not give any insight into the dataset structure. On the
contrary, a good clustering would explain or summarize a large portion of the data
with high homogeneity and with a simple model, i.e., relatively few clusters. Similar to
the idea of the minimum description length principle, StruClus, therefore, balances
the model complexity and the explained fraction of the data, i.e., homogeneity, in its
convergence criterion.

z(C) :=

∑

C∈C |C|hom(C)

|C| (3.16)
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The cluster splitting step sometimes introduces new clusters that are then re-
merged with existing ones. As a consequence, the convergence criterion fluctuates
and contains short-lived optima. The convergence criterion is therefore smoothed
over some iterations. Let w be an averaging width and Ci the intermediate clustering
result after the i-th iteration. Then, StruClus will terminate after the first iteration
c for which the following conditions hold.

c ≥ 2w ∧
∑c

i=c−w+1 z(Ci)
∑c−w

i=c−2w+1 z(Ci)
≤ 1 + ǫ (3.17)

3.2.7 Computational Complexity

The subgraphs isomorphism and the maximum common subgraphs problem are NP-
complete. As such, an exponential worst-case complexity w.r.t. the size of graphs in
the dataset G can be expected as long NP 6= P . Nevertheless, these problems can be
solved sufficiently fast for small graphs such as molecular structures for drug discovery,
which is exactly the setting StruClus was designed for. During the following analysis,
the size of a graph is considered to be bound by a constant maximum number of vertices
Vmax. Let Cmax be the intermediate clustering result with maximum cardinality, i.e.,
|Cmax| ≥ |Ci| for 1 ≤ i ≤ c, where c is the iteration of termination (cf., eq. (3.17)).

Lemma 3.6. Given a graph dataset G with ∀G ∈ G : |V (G)| ≤ Vmax, the running
time of StruClus is in O(c |Cmax||G|).

Proof. It was shown in lemma 3.3, that the number of frequent and infrequent
extensions is bound by

((

vmax

2

)

+ vmax

)

|Efreq| in order to mine a single representative
for a cluster C and vmax ≤ Vmax being the (1− suppmin

|C| )-quantile of the ordered vertex

counts in C. Given a constant maximum vertex count Vmax, the term
((

vmax

2

)

+ vmax

)

is constant, too. For a minimum support threshold that is bounded by ls (cf.,
section 3.2.2.3), at least ⌈ls|C|⌉ edges must be isomorphic to each other in order
to be frequent. For a maximum total number of

(Vmax

2

)

|C| edges in C, at most
(Vmax

2 )|C|
ls|C| =

(Vmax
2 )
ls frequent edge patterns can exist. Thereby, the number of frequent

edge patterns |Efreq| is also bounded by Vmax. For each of these extensions, the
number of subgraph isomorphism tests is in O(C). Thus, the running time to mine
single maximal frequent subgraph pattern is in O(C) as well.

In order to update the representatives of a cluster, a constant number of maximal
frequent subgraph patterns is mined as candidates. To rank a pattern P , the cluster-
specific support suppC(P ), the dataset-wide support suppG(P ), the set of supporting
graphs in the cluster C⊒P , and the summed edge counts of graphs in C⊒P have to be
computed. All these values can be calculated in a single pass over G with constant
time operations for each graph G ∈ G. Since the number of representatives of a cluster
is bound by rmax, the calculation of the homogeneity values for cluster homogeneity
balancing via mapping to a minimum support threshold (cf., section 3.2.2.3) is in
O(|G|).
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The overall complexity of the representative update step for all clusters—including
the calculation of the minimum support and the mining, ranking, and selection of
representative candidates—is therefore in O(|Cmax||G|).

In the assignment step, each dataset graph must be compared with each represen-
tative of all clusters w.r.t. the subgraph isomorphism relation. Since the number of
representatives for each cluster is again a constant, the complexity of the assignment
step is in O(|Cmax||G|).

The pre-clustering involves the calculation of a constant number of maximal frequent
subgraph patterns as described for the representative update step in O(|G|) time. Then
a constant number of α-orthogonal subsets of these candidate patterns is constructed.
During the greedy construction of these sets, each pattern must be compared to all
previously added patterns by the means of a maximum common subgraph isomorphism
calculation. Since the candidate sets have a constant size, the number of α-orthogonal
set constructions is a constant, and the maximum common subgraph calculations are
applied to graphs with a bound vertex count, the combined running time to construct
the α-orthogonal sets is also a constant. The dominating running time complexity
during pre-clustering is the final assignment phase with a complexity of O(|Cmax||G|).

For cluster splitting, the relHom values must be calculated for each cluster as
described in the running time analysis of the representative update. Afterwards, the
pre-clustering is applied to the graphs, i.e., some multiset X ⊆ G, of the selected
clusters. Both running times were already discussed above. Thus, the overall running
time is in O(|Cmax||G|).

Cluster merging involves the pairwise comparison over all representative sets, which
are bounded in their size. Furthermore, the representatives need to be updated for each
merged cluster. The running time of the former step is thereby in O(C2

max) and the
representative update complexity is as described above. Since O(C2

max) ⊆ O(|Cmax||G|)
holds, the overall running time of the merging step is in O(|Cmax||G|).

The computation of the convergence criterion is again using the well-discussed
average homogeneity value, i.e., it is in O(G).

In summary, every single step of StruClus has a complexity of O(|Cmax||G|) and
the overall running time is in O(c |Cmax||G|) for c iterations.

3.2.8 Implementation Details

3.2.8.1 Subgraph Isomorphism Implementation

Connected subgraph isomorphism tests are performed using a backtracking algorithm
described in [KKM11]. The CT-Index fingerprint pre-filtering—stemming from the[KKM11] Klein, Kriege, and

Mutzel, “CT-Index:
Fingerprint-based Graph

Indexing Combining Cycles and
Trees”. 2011

same publication—is applied, such that the backtracking algorithm is only executed
whenever the fingerprint test fails to eliminate the possibility of a subgraph isomor-
phism. These structural fingerprints are configured to have a length of 2048 bits and
contain the presence of subtrees with up to five and rings with eight or less vertices.
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3.2.8.2 Maximum Common Subgraph Implementation

A modified variant of the maximum common connected induced subgraph isomorphism
algorithm presented by Kriege and Mutzel [KM12] is used in the implementations of [KM12] Kriege and Mutzel

“Subgraph Matching Kernels
for Attributed Graphs”. 2012

this thesis. It computes a product graph and applies a backtracking maximum clique
algorithm on top of it. This backtracking algorithm extends cliques by adding further
vertices until the clique property is violated. The implementation in this thesis differs
from [KM12] in the way the search is pruned. Since any coloring of a graph is an upper
bound for the maximum clique size, a greedy coloring can be used to give an upper
bound for the number of non-clique vertices that can be added without violating the
clique property in the backtracking search. Whenever the current clique size plus the
number of additional greedily added colors is below the current maximum clique size,
the backtracking search is pruned.

3.2.8.3 Parallelization

The implementation of StruClus is shared-memory parallelized. Parallelization is
implemented on the following levels. The mining of maximal frequent patterns is
parallelized, such that each random walk is considered a unit of work (cf., line 3 in
algorithm 3). The mining is used during the pre-clustering step, which also parallelizes
similarity calculations during the construction of the α-orthogonal sets. Furthermore,
it is used in the representative update step, which additionally parallelizes the ranking
of each representative pattern candidate. The homogeneity calculation for cluster
splitting, convergence, and homogeneity balancing is parallelized on the cluster level.
Cluster merging is parallelized on the pairwise cluster comparison level. Furthermore,
each distance computation during cluster assignment (i.e., the subgraph isomorphism
tests of each representative pattern w.r.t. each dataset graph) is done in parallel.

3.2.9 Experimental Evaluation

The following evaluation can be divided into two major parts. Parametrization
experiments are presented in the first part to understand the general behavior of the
algorithm. In the second part, StruClus is compared to other clustering algorithms
in terms of running time and quality, namely SCAP [SKK14], PROCLUS [Agg+99], [SKK14] Seeland, Karwath,

and Kramer, “Structural
clustering of millions of
molecular graphs”. 2014

[Agg+99] Aggarwal et al.,
“Fast Algorithms for
Projected Clustering”. 1999

and Kernel K-Means [Gir02] (cf., sections 2.6.3 and 3.1).

[Gir02] Girolami, “Mercer
kernel-based clustering in
feature space”. 2002

3.2.9.1 Hardware, Software, and Test Setup

The evaluation was performed on a dual-socket NUMA system with two Intel Xeon
E5-2640v3 processors with 8 cores (+ 8 virtual Hyperthreading cores) and 128GiB
RAM (i.e., 64GiB per NUMA domain). Turbo Boost was disabled for stable and
comparable running times over different runs. Each experiment was fixed to a single
NUMA domain (in terms of cores and memory) to avoid random memory effects of
cross NUMA memory access during running time analysis.

Experiments were performed using the Ubuntu Server 16.04 operating system. Java
was installed in Version 1.8 (Oracle Java HotSpot(TM) 64-Bit Server VM).
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Table 3.1: Descriptive statistics of the real-world datasets for StruClus evaluation.

|V | |E|

Dataset G |G| Classes Min. Max. Avg. Min. Max. Avg. |LV | |LE |

AnchorQuery 65 700 12 11 90 79.19 11 99 86.02 6 5

Heterocyclic 10 000 39 9 69 42.99 10 79 47.35 25 5

StruClus, PROCLUS, and Kernel K-Means are implemented in Java. Java
was configured to use a minimum and maximum heap size of 50GiB (-Xmx and
-Xms parameter) to give enough headroom for other system processes and Java
Virtual Machine overhead. Setting the minimum heap size avoids, that the Java
VM incrementally increases the heap size during runtime, which in turn can cause
some avoidable garbage collections. The SCAP algorithm was implemented in
C++ and was compiled using the GCC 4.9.3 compiler with O3 optimization level.
The implementation of StruClus and SCAP are shared-memory parallelized and
configured to use all available cores during experiments. PROCLUS and Kernel
K-Means are sequential implementations. Their running times must be interpreted
keeping in mind, that a well-scaling parallelization is most probably possible.

All experiments are repeated 30 times if the average running time of the first 15
runs was below 2 hours and 15 times otherwise. As already described in section 2.6.3.5
quality is measured using the Normalized Variation of Information (NVI), Fowlkes
& Mellows Indes (FM), and Purity measures for comparison with a ground truth.
Since SCAP produces overlapping clustering results, Purity is used for comparisons
with SCAP and the other measure are used for comparisons with the partitioning
clustering algorithms.

3.2.9.2 Datasets

Datasets with known ground-truth class labeling are used for the evaluation of
StruClus.

AnchorQuery and Heterocyclic are two real-world chemical datasets. Both are
preliminary versions of subsets of the molecular CHI PMUNK [Hum+18] library. Each[Hum+18] Humbeck et al.,

“CHIPMUNK: A Virtual
Synthesizable Small-Molecule

Library for Medicinal
Chemistry, Exploitable for

Protein–Protein Interaction
Modulators”. 2018

molecule is the result of a chemical reaction of purchasable building blocks (i.e., smaller
molecules). The chemical reaction type during synthesization is used as the ground
truth class label. For the AnchorQuery dataset, 12 reaction types from the Anchor
Biased Library1 are utilized. Another 39 distinct reaction types from SciFinder2 are
used for the Heterocyclic dataset.

Table 3.1 shows some descriptive statistics of the real-world datasets. The reaction
type has a major influence on the size of the graphs and the label distribution. While
the Heterocyclic dataset has an average vertex count of 43 and an average edge count
of 47, the numbers for the AnchorQuery dataset are nearly double as high with 79

1http://anchorquery.csb.pitt.edu/reactions/
2https://scifinder.cas.org
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and 86. The set of edge labels is identical with five bond types: single, double, triple,
aromatic, and single or double. With 25 distinct chemical elements, the vertex label
set of the Heterocyclic dataset is much more diverse than that of the AnchorQuery
dataset with five labels.

In addition to the real-world datasets, synthetic datasets of varying cardinalities
are created. The goal was to create datasets of multiple common patterns per cluster.
In addition, complete noise graphs and inter-cluster common noise patterns should be
added, such that clustering algorithms should prefer clusters of multiple matching
patterns over selecting clusters with single pattern commonalities or patterns of low
representative power. The synthetic datasets have an average number of ≈ 35 vertices
and ≈ 51 edges. They contain 100 clusters and 5% noise graphs that are generated
as follows. Each cluster is formed by three cluster-specific seed patterns, which are
generated using a Poisson distributed number of vertices with a mean of ten. Vertex
labels are drawn from a set of ten labels, with label weights drawn from an exponential
distribution. Then, each edge of the complete graph is selected with a probability of
10% and three distinct edge labels are randomly assigned (weighting as above). In
addition to the three cluster-specific seed patterns, a common noise seed pool of ten
patterns is generated the same way. Finally, each graph of each cluster is generated by
a random selection of 3.5 seed patterns on average from the three cluster-specific seeds
and two random seeds of the noise pool. The so collected seeds are then combined
by connecting them via random edges. The number of edges per seed pair is drawn
from a Poisson distribution with a mean of five. The complete dataset is then created
by selecting a cluster at random and generating a cluster-specific graph as described
above for 95% of the graphs. In a last step, 5% noise graphs are added by randomly
creating vertices and randomly connecting them. The average number of vertices and
edges are drawn from a Poisson distribution with the same means as the generated
cluster graphs. The graph generation can lead to disconnected graphs. They are
replaced with connected graphs, generated with the same method.

3.2.9.3 Parametrization of StruClus

If not subject to discussion or explicitly stated otherwise the StruClus algorithms is
parameterized as follows. The maximum error probability for algorithm 4 is set to
α = 0.5. The minimum sample size is set to smin = 30. The number of representative
candidates during the representative update step was is to m = 25. The maximum
number of representative per cluster is set to rmax = 3. Too split clusters of low
homogeneity the threshold is set to relHommin = 0.6. The separation threshold for
cluster merging is set to rSimmax = 0.7. To map the relative homogeneity of a cluster
to a minimum support threshold for representative mining, the parameters ls, hs,
lr, and hr are set according to the discussion in section 3.2.2.3. The exact values
are ls = 0.7, hs = 0.95, lr = 0.6 (i.e., the the threshold for splitting), and hr = 1.1.
Convergence is determined with an averaging with of w = 3.
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Table 3.2: Comparison of average running times and quality values w.r.t. the cluster
member sampling strategy on the synthetic datasets. CV is the max. coef.
of variation per column. running times are given in hours.

|G| StruClus StruClus (Exact Support)

Running Time NVI FM Running Time NVI FM

CV < 0.08 < 0.03 < 0.07 < 0.07 < 0.02 < 0.04

1 000 0.05 0.90 0.75 0.05 0.90 0.77

5 000 0.15 0.94 0.85 0.27 0.95 0.86

10 000 0.19 0.95 0.87 0.59 0.93 0.85

50 000 0.33 0.94 0.87 2.69 0.92 0.85

3.2.9.4 Influence of Cluster Member Sampling

The described sampling strategy for cluster members in algorithm 4 is bound by a
maximum error probability α. In the worst case, this approach is not faster than the
exact determination of the support values. However, such a worst-case scenario is
unlikely in practice. This section will thereby demonstrate the effect of the sampling
strategy on the running time and the quality of the clustering for the synthetic datasets
of varying sizes.

The evaluation is set up as follows. StruClus is run in two different configurations.
In the first one, it is configured and parameterized as described in section 3.2.9.3.
This includes the cluster member sampling strategy with a maximum error probability
of α = 0.5. A relatively high error is affordable for two reasons. First, the Bonferroni
multiple hypothesis testing correction (cf., lemma 3.3) is quite conservative and
corrects the FWER for the worst case instead of the expected case. It is assumed, that
the test decision for every test is made with a test statistic exactly at the rejection
border. In addition, vmax is most likely an overestimation, successful extensions rule
out additional extensions between pairs of vertices, and it is extremely unlikely that
the worst-case number of sample size doubling steps is necessary. In other words,
the real error is most likely much smaller in the expected case. Second, the ranking
of frequent patterns (cf., section 3.2.2.2) can filter bad patterns candidates in an
independent non-probabilistic step.

In the second configuration, StruClus is run with an exact calculation to determine
whether a pattern is frequent or not. Thus, the cluster members are successively
tested on subgraph isomorphism to the pattern until either the minimum support
threshold is reached or the remaining untested graphs are not enough to reach the
threshold.

Table 3.2 shows the results of this evaluation setup. Quality-wise, no significant
difference between the two settings can be detected. Differences are always in the
range of the standard deviation and wins or losses are almost uniformly distributed
between the settings. In terms of running time, no difference can be seen for a dataset

92



3.2 StruClus

of 5000 graphs. This can be explained by the minimum sample cardinality smin = 30
(cf., algorithm 4). For most clusters, this threshold is about as large as the clusters
themselves. With increasing dataset size, the exact setting shows an almost perfect
linear scaling behavior. The sampling setting, on the other hand, shows a sublinear
growth of running time. For a dataset size of 50 000, the speedup w.r.t. the member
sampling strategy was about already above eight and is expected to increase for larger
datasets. This shows, that the frequent test is indeed a computational hotspot for
the StruClus algorithm and the sampling strategy can make a big running time
difference without sacrificing quality.

3.2.9.5 Influence of the Number of Candidates

The number of representative candidate patterns (i.e., parameter m of algorithm 3)
that are mined during the representative update step is fixed to an a priori chosen
value. The following experiment will evaluate the influence of this parameter on the
clustering quality. While more sophisticated selection strategies for this parameter
are easy to imagine (e.g., mine more patterns until the ranking function is no longer
increasing), the evaluation will show, that such a strategy is not worth the effort.

Figure 3.5 shows the quality of the clustering results for different values of m.
The clustering quality is largely insensitive in the tested range. The low number of
necessary pattern candidates might be a result of the already highly homogeneous
clusters, which may cause the number of maximal frequent patterns to be relatively
small. Furthermore, missed pattern commonalities might be found in later iterations.

The running time of the algorithm shows a linear increase with the number of
candidates. This highlights two aspects w.r.t. the algorithm behavior. First, the
representative update is dominating the overall running time. Second, the selection of
relatively few representative candidates does not lead to an increase in the number
of iterations, e.g., because convergence is slower in such settings. The result of the
AnchorQuery dataset, displayed in fig. 3.5c, shows a high variance in running time.
This is most probably an effect caused by the much larger representative sizes of
36.25/97 (mean/maximum), compared to 15.42/46 or 9.53/56 for the Heterocyclic
and synthetic datasets, respectively. Very large representatives can lead to very hard
instances for the subgraph isomorphism and maximum common subgraph algorithms
with exponential worst-case complexity, which can dominate the overall running time.

To conclude, a relatively low number of representative pattern candidates can be
selected to achieve a high performance without sacrificing quality.

3.2.9.6 Convergence and Iterative Changes

The behavior of StruClus w.r.t. the iterative changes is subject of interest in this
section. The experiment was set up as follows. The number of iterations was fixed
to 30. Then for each iteration, the number of clusters, the weighted average cluster
homogeneity (i.e., the numerator of the convergence criterion, cf., eq. (3.16)), and
clustering quality were measured. In addition, the termination iteration c w.r.t. to
the termination criterion, i.e., eq. (3.17), was determined.
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(a) Synthetic Dataset (size 10 000)
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(b) Heterocyclic Dataset
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(c) AnchorQuery Dataset

Figure 3.5: Influence of the number of candidate representative patterns on the cluster-
ing quality. CV is the max. coef. of variation per measurement category.
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(a) Synthetic Dataset (size 10 000)
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(b) Heterocyclic Dataset
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(c) AnchorQuery Dataset

Figure 3.6: Iterative behavior of StruClus for a fixed number of 30 iterations. The
iteration in which the algorithm would terminate is given as box plot on
the x-axis. The average homogeneity and the number of clusters, i.e., the
two criteria for convergence determination, are given by the orange and
blue line plots. In addition, the purple and green line plots represent the
NVI and FM quality values for intermediate results.
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Figure 3.6 shows the results for the different datasets. It is noticeable, that the
pre-clustering step usually creates many more clusters than present in the later
iterations. As a result, homogeneity is also high after the pre-clustering. However,
the number of clusters quickly drops to a fraction of the initial number and large
changes in almost all measurements are observable in the first iterations. In particular,
homogeneity decreases as well, but in a less drastic way. Thereby, the convergence
criterion is actually increasing. For the synthetic and AnchorQuery datasets, quality
increases in both measures with further iteration. Thus, it can be assumed, that the
iterative refinement of StruClus is useful w.r.t. to the underlying ground truth. The
AnchorQuery increase in quality is less smooth compared to the synthetic dataset,
aligning with some fluctuation in the number of clusters. These fluctuations are the
result of cluster splitting and merging steps and highlight the necessity to smooth
convergence over some iterations. The Heterocyclic dataset shows some differences in
comparison to the other two datasets. First, the pre-clustering results has the highest
quality w.r.t. the FM quality measure. Thus, the minimum separation constraint
might be chosen to strict and a more granular clustering might have led to better
results in terms of the ground truth. However, it should be noted that the ground
truth is not a universal truth and that other good clusterings, highlighting different
aspects, might exist. Second, the correlation between the FM and NVI measures
is low. The above effect of a high pre-clustering quality is not observable for the
NVI measure. Later iterations do not show any significant change in quality for the
NVI measure, while FM increases again after its first drop. This highlights the fact,
that quality measures themselves weigh different aspects of clusterings differently.
Especially counting pair measures, such as FM, are often sensitive to the number of
clusters, i.e., the number of clusters influences the expected value for e.g., random
clusterings. On the other hand, FM does seem to align much better with the latter
increase in cluster homogeneity.

Convergence usually stops the refinement after a few iterations (Iterations 15 to
21 in our examples with two outliers). As a result of the smoothing, this happens a
bit later than desired from a performance point of view. Nevertheless, the observed
fluctuations in the number of clusters would make a shorter averaging window less
reliable and may cause premature termination.

3.2.9.7 Parallel Scaling

In section 3.2.8.3 a simple parallelization of StruClus was introduced. To evaluate
the scaling of the algorithm with the number of cores, the number of cores was varied
using the synthetic dataset of cardinality 10 000. To avoid parallel advantages on the
java virtual machine level (e.g., through parallel garbage collection) the algorithm
instance was also pinned to a fixed set of cores.

Figure 3.7 shows the results of the experiment. With 8 cores StruClus achieves a
speedup of 7.15. Including the virtual hyperthreading cores, the speedup increased to
9.11.
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Figure 3.7: Scaling of the running time of StruClus with the number of cores on
the synthetic dataset of size 10 000. HT stands for hyperthreading.

3.2.9.8 Comparison with Other Clustering Algorithms

In this section, the performance of StruClus is compared to other clustering al-
gorithms in terms of performance and quality. The synthetic, AnchorQuery, and
Heterocyclic datasets are used for evaluation. The competing algorithms are SCAP,
PROCLUS, and Kernel K-Means. Since there exists a very high number of
clustering algorithms, it is impossible to compare StruClus to a wide range of
them. The three comparison algorithms are selected with the following rationale.
SCAP is a structural algorithm and, to the best of my knowledge, the only structural
clustering algorithm for large-scale datasets that is not limited to simple graph classes.
Seeland, Karwath, and Kramer [SKK14] compared SCAP with BIRCH [ZRL96], [SKK14] Seeland, Karwath,

and Kramer “Structural
clustering of millions of
molecular graphs”. 2014

[ZRL96] Zhang,
Ramakrishnan, and Livny,
“BIRCH: An Efficient Data
Clustering Method for Very
Large Databases”. 1996

an expectation-maximization Dirichlet process clustering algorithm for small graph
datasets of Tsuda and Kurihara [TK08], and a previous variant of their own al-

[TK08] Tsuda and Kurihara
“Graph Mining with
Variational Dirichlet Process
Mixture Models”. 2008

gorithm [See+11] which was limited to smaller datasets. SCAP outperformed all

[See+11] Seeland et al.,
“Parallel Structural Graph
Clustering”. 2011

competing algorithms in terms of clustering quality. BIRCH was able to succeed in
terms of running time. Thus, to some limited extent, the experimental comparison of
StruClus with SCAP also compares to the above-mentioned algorithms. PROCLUS
is a fast projected clustering algorithm with noise detection. A projected clustering
algorithm is included, since the high intrinsic dimensionality of graph datasets as
shown by Kriege, Mutzel, and Schäfer [KMS14a] suggests, that the application of an

[KMS14a] Kriege, Mutzel,
and Schäfer “Practical SAHN
Clustering for Very Large
Data Sets and Expensive
Distance Metrics”. 2014

algorithm for high dimensionality is necessary for high-quality results. Furthermore,
PROCLUS was studied intensively and performed well in various comparisons of
projected clustering algorithms (e.g., [Mül+09; PM06]). The Kernel K-Means

[Mül+09] Müller et al.,
“Evaluating Clustering in
Subspace Projections of High
Dimensional Data”. 2009

[PM06] Patrikainen and
Meila, “Comparing Subspace
Clusterings”. 2006

algorithm was selected since it allows the applicability of very flexible graph kernels
(cf., paragraph 2.6.3.1.4). The parametrization of the comparison algorithms is as
follows.

SCAP has two parameters: (a) the minimum vertex count of a shared common
subgraph pattern for a cluster, and (b) a similarity threshold for fingerprint-based pre-
partitioning and representative power of a cluster commonality. During the following
experiments, parameter (a) is set to eight, which corresponds to 80% of the average
seed size in the synthetic dataset. Also, the common subgraph pattern of the different
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reaction types in the AnchorQuery and Heterocyclic datasets are usually above this
size. The second parameter (b) was set to 0.2. It is important to understand, that
this parameter largely affects the clustering outcome and performance. Selecting a
high value will force a high minimal representative power of the cluster representative.
If a large value is chosen, smaller commonalities will not be considered during the
clustering. For the synthetic dataset, for example, a too high value would rule out
the seed patterns as commonalities and lead to a bad clustering. If a low value is
chosen, cluster commonalities may be not meaningful (SCAP chooses an arbitrary
pattern above this threshold, not necessarily the largest one) and the pre-partitioning
will be less effective, which in turn causes an increased running time. The value of
0.2 was the highest value to select a seed pattern in a graph of the synthetic dataset,
which is composed of the maximum number of seed patterns (i.e., 5). Again, the
selection of a value of 0.2 makes also sense w.r.t. the size of the reaction-type specific
substructures of the Heterocyclic and AnchorQuery datasets if compared with the
complete synthesized graphs. Thus, both parameters of SCAP are adjusted to fit the
ground truths in our datasets in order to get an optimal clustering result.

PROCLUS has also two parameters: (c) the number of clusters, and (d) the
mean dimensionality of the cluster subspaces. With the same rationale as above,
parameter (c) is set to the ground truth. Parameter (d) was set to 20, for which the
best clustering quality was achieved in comparison with the values in {10, 20, 30, 40, 50}
on the synthetic dataset. In addition to the parametrization, a feature extraction
method (cf., section 2.6.3.3) is necessary to convert the graph dataset into a vectorial
representation. For the experiments, all subgraph patterns of size 3 where enumerated.
The feature vector of a graph G then contains one representational dimension for each
pattern and the value of each dimension is the number of distinct subgraphs of size
3 of G that are isomorphic to the associated pattern. In other words, the counting
does not include automorphisms. The feature counts for the synthetic datasets were
in the range of 7 000 to 10 000. The application to the AnchorQuery and Heterocyclic
datasets resulted in much lower feature counts of 274 and 133 features.

Kernel K-Means is parameterized with (e) the number of clusters, and (f) a
kernel. Again, parameter (e) is set to the ground truth. Parameter (f) is set to the
Graphlet Kernel GK C3 [She+09], which uses the same feature space as the feature[She+09] Shervashidze et al.,

“Efficient graphlet kernels
for large graph

comparison”. 2009

extraction method for PROCLUS.
Table 3.3 shows the results for the synthetic datasets of varying cardinality. Missing

values indicate running times above a two-day time limit. Up to a dataset cardinality
of 10 000, SCAP was the fastest algorithm. For cardinalities of 50 000 and above
StruClus is the fastest algorithm with an increasing margin. For the dataset of
cardinality 500 000, StruClus was already more than 13 times faster than SCAP on
average. StruClus was the only algorithm, which was able to cluster the dataset of 1
million graphs in less than two days and was finished in 2.73 hours on average. While
SCAP shows an almost quadratic running time scaling behavior, the running time of
StruClus was sublinear up to a cardinality of 500 000. The sublinear behavior is
caused by the sampling of cluster members (cf., section 3.2.9.4). However, at some
point other linear running time aspects (cf., theoretical analysis in section 3.2.7) are
becoming more dominant. PROCLUS and Kernel K-Means were much slower.

98
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Table 3.3: Comparison of StruClus with SCAP, PROCLUS, Kernel K-Means
on the synthetic datasets. CV is the max. coef. of variation per column.
Missing values have running times above two days.

|G| StruClus SCAP PROCLUS Kernel K-Means

Running Time NVI FM Purity Running Time Purity Running Time NVI FM Running Time NVI FM

CV < 0.08 < 0.03 < 0.07 < 0.03 < 0.06 < 0.02 < 0.32 < 0.11 < 0.22 < 0.01 < 0.01 < 0.01

1 000 0.05 0.90 0.75 0.90 < 0.01 0.83 0.13 0.58 0.26 0.02 0.77 0.54

5 000 0.15 0.94 0.85 0.98 < 0.01 0.84 4.99 0.50 0.24 2.87 0.84 0.67

10 000 0.19 0.95 0.87 0.99 0.03 0.83 11.91 0.49 0.24 10.32 0.86 0.78

50 000 0.33 0.94 0.87 0.99 0.38 0.83 – – – – – –
100 000 0.47 0.93 0.86 0.99 1.21 0.86 – – – – – –
500 000 1.35 0.93 0.86 0.99 18.15 0.83 – – – – – –

1 000 000 2.73 0.91 0.84 0.98 – – – – – – – –

Both algorithms are unable to cluster the dataset of cardinality 50 000 in less than
two days. Although it should be remembered, that both algorithms are implemented
as single-core algorithms, even an optimal speedup with the number of physical cores
would not be enough to outperform their competitors. Additionally, both show a clear
superlinear growth in running time, while Kernel K-Means shows the sharpest
increase with an almost perfect quadratic behavior. Thus, they are not competitive
in comparison with StruClus for large-scale datasets.

In terms of quality, all experiments on the synthetic datasets are in favor of
StruClus. With an exception of the smallest dataset, all quality values of StruClus
are stable and in the range of the standard deviation. For the smallest dataset,
StruClus shows a small drop in quality which may have to do with the small number
of members per cluster. A visual inspection of the clustering results indicates more
clusters formed by noise commonalities. Thus, the overlap between common cluster
seed patterns might have been too small to reproduce them reliably. SCAP did not
show a similar behavior, but the clustering quality of StruClus was still higher for
the small dataset.

The second best quality (Purity values for PROCLUS and Kernel K-Means
were all below 0.55) was observed for SCAP with Purity values in the range of [83, 86]
compared to [98, 99] for StruClus (excluding the outlier for the smallest dataset).
However, the direct comparison must be interpreted with care, since SCAP is an
overlapping clustering algorithm. Since the Purity measure cannot detect cluster
splits of the ground truth, it is possible that a close reproduction of the ground
truth is a subset of the clustering and the other clusters represent noise seed pattern
commonalities. Such a situation would be a very good clustering result and would
not be reflected by the Purity measure appropriately. However, with 129 clusters
on average, this hypothesis does not seem to be very likely since it is very close to
the number of clusters in the ground truth. This is especially true when compared
to the 176 clusters on average for the StruClus algorithm. Additionally, SCAP
does only create new clusters for additional seeds if there exist graphs that cannot
be assigned to an existing cluster. Thus, additional noise seed clusters would not be
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Table 3.4: Comparison of StruClus with SCAP, PROCLUS, Kernel K-Means
on the real-world datasets. CV is the max. coef. of variation per column.
Missing values have running times above two days.

dataset StruClus SCAP PROCLUS Kernel K-Means

Running Time NVI FM Purity Running Time Purity Running Time NVI FM Running Time NVI FM

CV < 2.91 < 0.09 < 0.12 < 0.08 < 0.02 < 0.01 < 0.03 < 0.05 < 0.08 < 0.01 < 0.01 < 0.01

AnchorQuery 2.47 0.36 0.43 0.85 – – – – – – – –

Heterocyclic 1.07 0.46 0.53 0.66 0.01 0.58 0.01 0.29 0.29 3 .03 (Subset) 0.27 0 .29

created if the ground truth would have been found in advance. Therefore, a more
likely hypothesis is, that the single pattern commonality approach of SCAP has no
chance to differentiate between noise and clusters seed patterns. Thus, whether a
noise or cluster seed is selected as cluster commonality is purely determined by chance.

The high purity values for StruClus indicate, that StruClus has split up some
ground-truth clusters, but otherwise almost perfectly reproduced them. This over-
splitting might also be a result of the dataset noise, which was bundled as a single
noise cluster in the ground truth. Random commonalities in this noise might still be
interpreted as clusters by StruClus.

While Kernel K-Means still shows reasonable clustering results w.r.t. clustering
quality, PROCLUS shows the worst quality with a large margin. Especially the
counting pair FM measure indicates a rather small ground truth agreement with a
value 0.24.

Table 3.4 shows the comparison of the real-world datasets AnchorQuery and Hetero-
cyclic. It stands out, that only StruClus was able to cluster the AnchorQuery dataset
in less than two days in approximately two and a half hours. This is remarkable
compared to the running times of the Heterocyclic dataset. While the AnchorQuery
dataset is only about six to seven times larger, the running times of SCAP and PRO-
CLUS were less than a minute for the Heterocyclic dataset. The larger graph sizes
may be an explanation for the bad performance of the SCAP algorithm. However, the
feature counts of 274 for the AnchorQuery and 133 for Heterocyclic datasets do not
make a huge difference for the PROCLUS algorithm, especially when compared to
7 000 to 10 000 features for the synthetic datasets. The Kernel K-Means algorithm
was also surprisingly slow on the Heterocyclic dataset and was unable to finish a single
run in less than one day. A random subset of 5000 graphs was therefore given as input
for this algorithm. Qualitywise, StruClus outperformed all of its competitors with a
good margin. The quality scores for StruClus in compression with PROCLUS and
Kernel K-Means are almost doubled. In summary, StruClus demonstrated a more
predictable running time behavior and higher quality clusterings for the real-world
datasets.
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3.2.9.9 Application to Chemical De-Novo Library Novelty Analysis

In this section, a real-world application of StruClus is presented. A summary of
joint work with other authors [Hum+18] is given in the following. [Hum+18] Humbeck et al.,

“CHIPMUNK: A Virtual
Synthesizable Small-Molecule
Library for Medicinal
Chemistry, Exploitable for
Protein–Protein Interaction
Modulators”. 2018

Chemical de-novo libraries of molecules provide a pool of candidates to identify
novel lead structures for drug discovery. In drug discovery, lead structures serve as
a starting point in an iterative refinement process, e.g., to minimize side effects or
increase the potency of a drug. Today, a lead structure is often identified by a virtual
analysis of chemical properties. In a second step, these structures are then evaluated
in the wet lab, i.e., synthesized in the real world.

The molecular de-novo library CHI PMUNK [Hum+18] was designed for this purpose. [Hum+18] Humbeck et al.,
“CHIPMUNK: A Virtual
Synthesizable Small-Molecule
Library for Medicinal
Chemistry, Exploitable for
Protein–Protein Interaction
Modulators”. 2018

In order to contain molecules, that can be synthesized in the real world, CHI PMUNK
is based on the simulation of chemical reactions which are known to be reproducible
in the wet lab. Furthermore, the reactants or educts are taken from libraries that
contain purchasable molecules. However, the real-world accessibility of molecules in
the library is not the only important property in order to be a tool to find useful
lead structures. The novelty of lead structures is equally important to broaden the
scope into previously undiscovered fields. As such, the library must contain molecules,
which are not already contained in known and exhaustively studied libraries. More
precisely, similar structures should also not be contained in other libraries. Such
similar structures would most probably show similar characteristics and thereby could
serve as an alternative lead structure for the same task. To judge the novelty of a
library it is thereby necessary to compare the content of the library to other libraries
in terms of structural similarity.

StruClus was used for the novelty analysis of CHI PMUNK. The test setup was
as follows. The CHI PMUNK sub-libraries (CHI PMUNK Heterocycle, CHI PMUNK
MCR, CHIPMUNK TMC) were clustered together with libraries of purchasable
building blocks (namely ZINC [Irw+12], eMolecules3, and MolPort4) and the public [Irw+12] Irwin et al., “ZINC:

A Free Tool to Discover
Chemistry for Biology”. 2012

bioactivity database ChEMBL [Ben+13]. Each resulting cluster is interpreted as

[Ben+13] Bento et al., “The
ChEMBL bioactivity database:
an update”. 2013

a distinct part of the chemical space (i.e., the search space of possible molecular
structures). Now, if some clusters of the clustering are purely covered by graphs from
a single library, this can be interpreted as a part of the chemical space that is unique
to the specific library. The minimum separation constraint of StruClus guarantees
the diversity of different clusters, i.e., that different clusters are not covering a similar
part of the chemical space.

The large quantity of molecules in the CHIPMUNK and in the comparison li-
braries stresses the need for scalable clustering algorithms in this field of application.
Overall, the clustering algorithm had to cluster 44 123 633, 67 029 742, and 24 254 434
molecules for the novelty analysis of the CHI PMUNK MCR, CHI PMUNK TMC,
and CHI PMUNK Heterocycle, respectively.

Figure 3.8a shows the results of this evaluation for CHI PMUNK MCR sub-library
as an example of the complete analysis. Vertical bars in this plot show the fraction
of graphs from a certain molecular library (depicted by colors). Clusters are plotted

3http://www.emolecules.com
4http://www.molport.com/
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(a) CHIPMUNK MCR Evaluation. The x-axis is sorted by
the fraction of graphs from the CHIPMUNK MCR sub-
library.
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(b) Comparison with the same analysis conducted without
CHIPMUNK. The x-axis is sorted by the fraction of
graphs from the ChEMBL sub-library.

Figure 3.8: Cluster novelty analysis for the CHI PMUNK MCR sub-library. Clusters
are displayed on the x-axis. The fraction of graphs of each dataset is
displayed as stacked bar for each cluster. CoMol is the combined library
of eMolecules and MolPort.
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on the x-axis and sorted by the pureness of graphs from the chipmunk library. Thus,
most unique clusters of CHIPMUNK MCR are shown on the left side of the plot.
As the figure shows, there exists a large portion of the clusters which are uniquely
covered by the CHI PMUNK MCR library. To interpret the significance of the plot,
fig. 3.8b shows the same analysis for the ChEMBL library when CHI PMUNK MCR
is left out. It becomes evident, that the ChEMBL library shows much less uniqueness
in comparison with CHI PMUNK MCR.

3.3 Summary

A novel structural clustering algorithm, called StruClus, was presented. It scales
easily to graph datasets with millions of graphs. With the help of a two-fold sampling
strategy with stochastic error bounds, it was possible to keep the number of the
costly subgraph isomorphism tests low. In addition to the linear worst-case running
time, this leads to low constant factors in the complexity of the algorithm without
compromising quality. A cluster merging and splitting step was introduced to achieve
well-separated clusters even in the high-dimensional pattern space. In combination
with the homogeneity and separation-aware representative selection, this leads to high-
quality clustering results. As such, StruClus outperforms existing structural and
vectorial approaches in terms of running time and quality. The cardinality constrained
set of representatives with dynamic pattern size leads to highly interpretable clustering
results in the context of visual analytics.
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Chapter

Distributed Subgraph

Pattern Coverage

Maximization

4

Structural summaries or representatives can play an important role in various contexts.
The applications are versatile, ranging from human analysis such as visual analytics
(cf., Scaffold Hunter example in section 1.1.3) over the extraction of features for further
processing to compressed representations of datasets. Several structural clustering
algorithms [e.g., Agg+07], including the StruClus algorithm presented in section 3.2, [Agg+07] Aggarwal et al.,

“Xproj: a framework for
projected structural
clustering of xml
documents”. 2007

use representative mining to create cluster descriptions.
This chapter will discuss the problem to mine structural patterns to summarize a

graph dataset. In contrast to cluster representatives, these structural summaries are
tailored towards diverse and non-homogeneous collections of graphs. As a consequence,
the aspect of redundancy becomes important to provide small summaries with a high
expressiveness. When selecting representatives by a simple ranking function, as done
for the StruClus algorithm, multiple patterns may represent the same portion
of graphs. The representative definition in this chapter will address the issue of
redundancy explicitly. To cope with the computational complexity of this task,
distributed and parallel algorithms are of key interest.

4.1 Related Work

The term representative pattern mining is not specific to graph pattern mining.
The settings in which it is used vary, and there exists no unique definition. The
common goal is to find patterns in a dataset that describe the content of the dataset.
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Thus, the mined patterns should describe the dataset close enough to preserve some
characteristics. Even the frequent pattern mining problem is sometimes subsumed
under the umbrella of representative pattern mining since the frequent patterns
characterize a dataset. However, the number of frequent subgraph patterns may
be too large to be meaningful, even much larger than the original dataset. Given
this observation, some representative graph pattern mining algorithms are simply
motivated by the goal to reduce frequent patterns [Has+07]. Consequentially, the[Has+07] Hasan et al.,

“ORIGAMI: Mining
Representative Orthogonal

Graph Patterns”. 2007

cardinality k of the representative set is often restricted by some parameter. This
class of pattern mining problems are called (cardinality) constrained, said to have a
cardinality budget, or denoted by top-k representative pattern mining problems. In
addition to this complexity reduction, many representative pattern mining algorithms
include further objectives and quality criterion w.r.t. the domain of application.

Representative pattern mining is used for classified [e.g., Wan+16] and unclassi-[Wan+16] Wang et al., “RPM:
Representative Pattern

Mining for Efficient Time
Series Classification”. 2016

fied [e.g., RHS14; NR16] datasets. Similar to the machine learning nomenclature

[RHS14] Ranu, Hoang, and
Singh, “Answering Top-k

Representative Queries on
Graph Databases”. 2014

[NR16] Natarajan and Ranu,
“A Scalable and Generic

Framework to Mine Top-k
Representative Subgraph

Patterns”. 2016

and in alignment with [Mör07], this thesis will use the terms supervised and un-

[Mör07] Mörchen,
“Unsupervised Pattern Mining

from Symbolic Temporal
Data”. 2007

supervised pattern mining for classified and unclassified datasets. In the former
case, representative pattern mining is often interchangeably used with discriminative
pattern mining. Thus, the objective is the enumeration of class-specific patterns or
features, e.g., for later classification in order to enable the classifier to achieve good
classification performance or for manual inspection. In the latter case, the objective
function is to find a set of patterns or features that best describes the dataset at hand
without the knowledge of a supervised setting. In the context of graph pattern mining,
unsupervised representative pattern sets are also denoted by structural summaries.
The unsupervised setting includes problems, that incorporate some importance func-
tion [e.g., NR18], which closes the gap to the supervised setting when the importance[NR18] Natarajan and Ranu,

“Resling: a scalable and
generic framework to mine

top-k representative subgraph
patterns”. 2018

function is versatile enough. Graph pattern representatives often represent a subset of
graphs from the dataset by the means of some distance function that identifies similar
dataset graphs. In this case, the distance function is either combined with a threshold
to identify similar graphs [e.g., Has+07; NR16; NR18] or the distance function is used[Has+07] Hasan et al.,

“ORIGAMI: Mining
Representative Orthogonal

Graph Patterns”. 2007

to compare the relative closeness of the representative candidates [e.g., ZYL09] to the

[ZYL09] Zhang, Yang, and Li,
“RING: An Integrated Method

for Frequent Representative
Subgraph Mining”. 2009

dataset graphs. Additionally, some significant graph pattern mining algorithms fall in
the category of representative pattern mining. In this domain, solutions independent
of a similarity measure can be found. For example, He and Singh [HS06] presented

[HS06] He and Singh
“GraphRank: Statistical
Modeling and Mining of

Significant Subgraphs in the
Feature Space”. 2006

an unsupervised representative mining algorithm, that filters frequent subgraphs of a
precise dataset based on their deviation from a randomized stochastic model. Other
significant pattern mining algorithms handle classified datasets by finding patterns
that significantly differ in their support w.r.t. the class labels [e.g., TdT16].

[TdT16] Terada, duVerle, and
Tsuda, “Significant Pattern

Mining with Confounding
Variables”. 2016

A common quality criterion of representative miners is the diversity or redundancy of
the representative set, i.e., the representatives should be either dissimilar to each other
or represent dissimilar subsets of the dataset. For example, Hasan et al. [Has+07] mine
α-orthogonal sets of representatives, where the pairwise similarities of representatives
are bound by a similarity threshold α. Additionally, they introduce the concept of β-
representativeness, to minimize the set of unrepresented graphs in the dataset. Li and
Wang [LW15] presented an unsupervised representative approximate frequent subgraph[LW15] Li and Wang

“REAFUM: Representative
Approximate Frequent

Subgraph Mining”. 2015

mining algorithm, intending to reduce side effects of noisy data by incorporating an
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approximate support definition. Since the number of approximate frequent subgraph
patterns grows with the allowed deviation from the exact support definition, they
added a redundancy reduction filtering step into their algorithm. This is related to
the observation in the feature selection community, that the top-k ranked features do
not necessarily form the best feature set with cardinality k [Cov74], since features [Cov74] Cover, “The Best

Two Independent
Measurements Are Not the
Two Best”. 1974

might be redundant. A multitude of feature selection publications have identified this
redundancy reduction as their core problem besides maximizing feature dependency
on the class labels. For example, Peng, Long, and Ding [PLD05] defined a minimum [PLD05] Peng, Long, and

Ding “Feature Selection
Based on Mutual Information:
Criteria of Max-Dependency,
Max-Relevance, and
Min-Redundancy”. 2005

redundancy criterion to minimize the mutual information of features w.r.t. to the
datasets class labels in the classified setting.

As a consequence, representatives of many representative mining objectives cannot
be judged independent from each other, i.e., the representative power of a representative
set usually depends on the combination of representatives. Due to the combinatorial
explosion, many of these representative pattern mining problems are NP-hard [e.g.,
NR18; PLD05] and brute force approaches are usually infeasible. While this is [NR18] Natarajan and Ranu,

“Resling: a scalable and
generic framework to mine
top-k representative subgraph
patterns”. 2018

[PLD05] Peng, Long, and
Ding, “Feature Selection
Based on Mutual Information:
Criteria of Max-Dependency,
Max-Relevance, and
Min-Redundancy”. 2005

also true for submodular set objective functions (cf., section 2.4), there exist fast
approximation algorithms for this subset of objective functions. For this reason, the
utilization of submodular objective functions is a common pattern in representative
pattern mining [NR16; NR18; Tho+10].

[NR16] Natarajan and Ranu,
“A Scalable and Generic
Framework to Mine Top-k
Representative Subgraph
Patterns”. 2016

[Tho+10] Thoma et al.,
“Discriminative frequent
subgraph mining with
optimality guarantees”. 2010

Most representative graph pattern mining algorithms use frequent, closed, or
maximal subgraph pattern mining algorithms for candidate generation. While the
majority uses the classical bottom-up full enumeration strategies (cf., section 2.6.2.1)
there are some exceptions. Hasan et al. [Has+07] sampled maximal frequent subgraphs

[Has+07] Hasan et al.
“ORIGAMI: Mining
Representative Orthogonal
Graph Patterns”. 2007

utilizing random walks with strictly increasing poset ranks. Natarajan and Ranu
[NR18] used reinforced walks on the a dynamically extended edit map, where each
subgraph pattern is connected to another subgraph pattern if the edit distance (cf.,
section 2.6.3.4) between the two is one.

4.2 Beyond Frequent Pattern Analysis and Towards Big

Data Scalability

Almost all of the unsupervised representative graph pattern mining algorithms pre-
sented above (more precisely [Has+07; ZYL09; NR16; NR18]), are based on the idea [ZYL09] Zhang, Yang, and Li,

“RING: An Integrated Method
for Frequent Representative
Subgraph Mining”. 2009

to reduce the cardinality of frequent or important subgraph patterns sets, where
important patterns are usually highly scored frequent pattern w.r.t. some ranking
function. The only exception is [RHS14], which tries to select graphs from the dataset [RHS14] Ranu, Hoang, and

Singh, “Answering Top-k
Representative Queries on
Graph Databases”. 2014

itself as dataset representative, i.e., no subgraph patterns are considered at all. As
such, these approaches try to overcome the problem of frequent pattern analysis,
where the number of frequent patterns is usually so large, that it is hard to make
sense of them. Consequentially, they try to find a subset of the frequent patterns,
such that each frequent pattern is similar to one of the selected patterns, in alignment
with classical redundancy-focused feature selection methods.
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In contrast, the following work has the different goal of finding subgraph patterns
that most appropriately describe the dataset graphs. This is similar to the second-
order objective of β-representativeness introduced by Hasan et al. [Has+07]. However,
their approach only works well for soft distances like the graph edit distance. If
specific requirements for the representative relation between the frequent pattern
and the dataset graphs are required—e.g., the pattern must be subgraph isomorphic
to the dataset graph or the pattern must retain certain properties such as to not
brake circles—their sample of maximal frequent subgraph candidate patterns may
not contain fitting ones. In other words, a large fraction of dataset graphs may
remain unrepresented and some graphs may even be impossible to represent. For this
reason the following work will approach the representative problem from a different
angle. Instead of defining a fixed frequency or importance threshold and diversifying
the resulting patterns, the first step is the definition of a relation, which defines if
a subgraph pattern represents a graph dataset. Then, the goal is to find common
subgraph patterns, that are able to represent as many graphs as possible, dropping the
pattern-to-pattern diversification criterion of the existing approaches. The rationale
is, that some similar subgraph patterns that represent different parts of the dataset
should actually be part of a structural summary. During visual analysis of datasets,
it can be an important piece of information, that a dataset is composed of similar,
but distinct parts.

Furthermore, the previous approaches suffer from the problem, to select a support
threshold in advance. If the threshold is chosen too high, it is possible to completely
ignore important dataset graphs, that do not contain frequent patterns. Contrariwise,
if the threshold is chosen too low, the performance and representative set cardinality
is impacted. To overcome the high number of candidate patterns some of the existing
approaches also resort to maximal patterns, which increases sensitivity w.r.t. to the
support threshold.

In terms of performance, existing approaches are challenged by the classical com-
plexity issues of frequent subgraph pattern mining. More precisely, the number of
complex subgraph isomorphism tests is high as a result of the size of the pattern
space (cf., section 2.6.1.2). To calculate the support of each pattern, a subgraph iso-
morphism comparison with each dataset graph needs to be performed. The Origami
algorithm [Has+07] tackles the size of the pattern space by random sampling of[Has+07] Hasan et al.,

“ORIGAMI: Mining
Representative Orthogonal

Graph Patterns”. 2007

maximal patterns. However, they do not provide any quality guarantees for their
heuristic. Furthermore, all existing approaches rely on exact methods for the support
calculation. This limits the scalability to very large datasets. Last, all previous
approaches heavily rely on heuristics, when it comes to selecting the representative
set w.r.t. their optimization goal.

This chapter will provide a new approach that addresses these issues. To the best
of my knowledge, the algorithms presented in the following are the first unsupervised
subgraph pattern representative mining solutions with guaranteed approximation ratio
w.r.t. to the optimization goal, while providing scalability to datasets with billions of
graphs.
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4.3 Problem Formalization

The goal of this chapter is to mine a cardinality constraint structural summary S
for a given graph dataset G. The following problem definition will focus on binary
representative relations, such that each pattern in the structural summary either
represents a dataset graph or not. Additionally, a representative will always be
subgraph-isomorphic to the represented graph.

Definition 4.1 (Subgraph Pattern Coverage Relation). Given a graph
dataset G, a relation ⊳⊆ G⊑ × G is called subgraph pattern coverage relation, iff

∀P ∈ G⊑, G ∈ G : P ⊳ G⇒ P ⊑ G ∧ ∀G ∈ G ∃P ∈ G⊑ : P ⊳ G

holds and the evaluation of P ⊳ G does only depend on P , G and a fixed
parametrization of ⊳. It is said, that P covers G, if P ⊳ G.

It is important for statistical properties of the latter presented algorithms, that the
evaluation of ⊳ does not depend on the other patterns is the structural summary S, the
composition of the dataset G, or other factors. The notation G⊲P := {{G ∈ G | P ⊳ G}}
will be used for the subset of covered graphs by a pattern P in a dataset G. The
notation G⊲S :=

{

{G ∈ G
∣

∣

⋃

P ∈S G⊲P

}

} will be used for the subset of covered graphs
by a set of patterns S. Following the above definition, the subgraph isomorphism
relation itself is a subgraph pattern coverage relation. However, the representative
power is limited, since trivial matching patterns, such as the empty graph or single
vertex patterns do not provide a meaningful description of a (larger) covered dataset
graph. Thus, additional properties are required to provide a good representative
power (cf., representative power definition in eq. (3.2) for the StruClus algorithm
presented in chapter 3).

Definition 4.2 (Relative Size Thresholded Subgraph Pattern Coverage
Relation). Given a graph dataset G and a relative size threshold t ∈ (0, 1], the
relation ⊳t⊆ G⊑ × G is called relative size thresholded subgraph pattern coverage
relation and is defined as:

∀P ∈ G⊑, G ∈ G : P ⊳t G⇔ P ⊑ G ∧ |E(P )| ≥ t |E(G)|

The relative size thresholded subgraph pattern coverage relation will be the default
coverage relation in this chapter. However, the algorithms and problems presented
here are suited for any subgraph pattern coverage relation. For example, it is possible
to incorporate non-linear size thresholds, weights, constraint to retain certain type os
substructures (such as cycles), or label similarities into the most general subgraph
pattern coverage relation, i.e., definition 4.1.

Given such a binary coverage relation, the subgraph pattern mining problem is
defined as follows.
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G⊲P1

G⊲P2

G⊲P3

G⊲P4

Figure 4.1: Venn diagram of four example graph patterns (P1 to P4) covering different
portions of a dataset (simplified depiction as a two dimensional plane).
Each circle indicates the isolated utility of the associated pattern. Over-
lapping areas are only counted once for the combined utility.

Problem 4.1 (MAX-CSPC). Constraint Subgraph Pattern Coverage
Maximization

Input: A graph dataset G, a subgraph pattern coverage relation ⊳, and a positive
cardinality constraint k.

Task: Solve MAX-SPO with

fG,⊳,k(S) :=

{

|G⊲S | if |S| ≤ k,
−∞ otherwise.

Figure 4.1 displays a simplified example instance of the problem.

4.4 Problem Properties

Lemma 4.1. Problem 4.1 (MAX-CSPC) is a special case of problem 2.2 (MAX-
Cov).

Proof. Lemma 4.1 is shown by transforming problem 4.1 (MAX-CSPC) into prob-
lem 2.2 (MAX-Cov). MAX-CSPC is defined over problem 2.4 (SPO) with utility
function fG (cf., MAX-CSPC) and can be written as

arg max
S⊆G⊑

fG,⊳,k(S).

110



4.4 Problem Properties

Since, the utility fG,⊳,k(∅) = 0 is always greater than the utility of fG,⊳,k(S) for some
S with |S| > k one can add the cardinality constraint to arg max without altering the
solution. Subsequently, the second case of fG,⊳,k can be eliminated, since the arg max
cardinality constraint guarantees, that this case is impossible to observe.

arg max
S⊆G⊑,

|S|≤k

fG,⊳(S) (4.1a)

where

fG,⊳(S) := |G⊲S | =
∣

∣

∣

∣

∣

⋃

P ∈S

G⊲P

∣

∣

∣

∣

∣

(4.1b)

Now, it is possible to move the pattern to covered dataset graphs mapping G⊲P out
of the utility function fG,⊳ by replacing the input set G⊑ with G⊑⊳ := {{G⊲P | P ∈ G⊑}}.
This results in the task

arg max
S⊆G⊑⊳,

|S|≤k

∣

∣

∣

∣

∣

⋃

X∈S

X

∣

∣

∣

∣

∣

,

which is identical to MAX-Cov with the input G⊑⊳.

Strictly speaking, G⊑⊳ is a multiset of multisets, which does not exactly align with
the definition of problem 2.2 (MAX-Cov). However, when reducing G⊑⊳ to its support,
the solution does not change, since identical selected sets do not add any additional
value to the objective. Furthermore, the multisets G⊲P for each P ∈ G⊑ can be
transformed into indexed sets, where each multiplicity is mapped to a distinct object.
The solution of MAX-CSPC can be constructed from the transformed solution by
retaining a mapping of each pattern to its matching set in G⊑⊳.

Corollary 4.2. Problem 4.1 (MAX-CSPC) is a special case of problem 2.1
(MAX-CSSF) and fG,⊳ (cf., eq. (4.1b)) is a monotone non-decreasing submodular
function.

Corollary 4.2 follows directly from lemma 4.1, since problem 2.2 (MAX-Cov) has these
properties.

Lemma 4.3. Problem 4.1 (MAX-CSPC) is NP-hard.

Proof. Lemma 4.1 states, that problem 4.1 (MAX-CSPC) is a special case of the
NP-hard problem 2.2 (MAX-Cov). It remains to show, that the family of sets is not
restricted to a less complex subset of instances. Let F be an arbitrary family of sets
over U and let ⊳1 be a subgraph pattern coverage relation (as defined in definition 4.1)
with the additional constraint |V (P )| = 1. Lemma 4.3 is proven by constructing a
graph dataset G with a matching graph Gu for each u ∈ U , such that F and G⊑⊳1

are
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isomorphic. One unique vertex label lS is created for each set S ∈ F . For each u ∈ U
a graph Gu = (Vu, Eu) is added to G. Vu contains one vertex with label lS for each
set S that contains u. Then, only patterns P ∈ G⊑ with a single vertex will have a
non-empty set of covered graphs G⊲P . Without loss of generality, let lS be the label of
the vertex of some pattern PS with non-zero utility. Then, G⊲PS

will contain exactly
the matched graphs for elements of S, i.e., Gu for each u ∈ S.

Lemma 4.4. The utility function fG,⊳ is additively decomposable over G.

Proof. Lemma 4.4 is shown by giving an equivalent form of fG,⊳ (cf., eq. (4.1b)) that is
a sum over utility functions depending on single dataset graphs. Given the definition
of G⊲P , a graph G ∈ G is contained in the set

⋃

P ∈S G⊲P whenever P ⊳ G is true for at
least one pattern P ∈ S. Thus, we can rephrase fG,⊳ to sum up all covered graphs:

f ′
G,⊳(S) :=

∑

G∈G
fG(S)

where

fG(S) :=

{

1 if ∃P ∈ S : P ⊳ G,

0 otherwise.

4.5 A Baseline Sequential Greedy Algorithm

Solving problem 4.1 (MAX-CSPC) exactly is unfeasible even for very restricted
datasets. This is a result of the computational complexity of problem 2.1 (MAX-
CSSF) and the size of the subgraph pattern space (cf., section 2.6.1.2). However, given
the greedy approximation algorithm of Nemhauser, Wolsey, and Fisher (cf., section 2.4,
algorithm 1) it is straightforward to give an adoption, replacing the recursive formula
(cf., algorithm 1, line 4) with eq. (4.2).

Si = Si−1 ∪ { arg max
P ∈G⊑\Si−1

∆fG,⊳
(P |Si−1)} (4.2)

= Si−1 ∪ {arg max
P ∈G⊑

fG,⊳({P} ∪ Si−1)} (4.3)

Algorithm 5 shows the pseudocode of such an adoption. It successively adds
patterns Pmax with maximum gain in utility to the representative pattern set S until
the cardinality constraint k is reached (cf., lines 3 and 12). This is achieved by
looping over all patterns in the subgraph pattern space G⊑ in line 5 and determining
the pattern Pmax in line 7. It should be noted, that the determination of Pmax

depends on the ordering of G⊑ if multiple patterns with maximum utility gain
exist. Thus, the algorithm is only deterministic if the ordering of G⊑ is fixed. The
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Algorithm 5: Sequential Greedy MAX-CSPC

Input: graph dataset G, cardinality constraint k ∈ N≥1, subgraph pattern
coverage relation ⊳

Output: representative pattern set S, utility utilitymax

1 S ← ∅;
2 utilitymax ← 0;
3 while |S| < k do
4 Pmax ← null;
5 foreach P ∈ G⊑ do � G⊑ enumerated by FSM algorithm

6 utility← fG,⊳(S ∪ {P});
7 if utility > utilitymax then
8 Pmax ← P ;
9 utilitymax ← utility;

10 if Pmax = null then � All dataset graphs covered

11 return (S, utilitymax);

12 S ← S ∪ {Pmax};
13 return (S, utilitymax);

patterns are computed using a subgraph pattern enumeration method, e.g., a frequent
pattern mining algorithm parameterized with an absolute minimum support of 1 (cf.,
section 2.6.2). Algorithm 5 terminates with |S| < k in line 10 if no additional pattern
increases the utility. This situation occurs if and only if some S with |S| < k already
covers the complete dataset, i.e., G⊲S = G. Algorithm 5 can be optimized in several
ways, which is discussed in the following.

4.5.1 Streaming Pattern Enumeration

The enumeration of G⊑ can be performed interleaved with algorithm 5. Precisely,
lines 6 to 9 can be integrated as a subroutine in the pattern space exploration. Thus,
whenever a pattern is discovered it can be directly determined if this pattern is a
newly discovered maximum. This integration has the advantage, that G⊑ must not be
stored in memory. Instead, the patterns can be processed in a streaming fashion.

4.5.2 Removal of Covered Dataset Graphs

It is not necessary to compute the utility over the complete set S ∪{P} in line 6. The
overall utility can be written as sum over the utility of S and the marginal gain of P ,
i.e.,

fG,⊳(S ∪ {P}) = fG,⊳(S) + ∆fG,⊳
(P |S).

At this point, the set S and its utility are already fixed. Additionally, S covers a fixed
subset G⊲S of the dataset G. Graphs in G⊲S will not contribute to ∆fG,⊳

(P |S), since
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each covered graph is only counted once for the overall utility. Furthermore, the set
S does not have any utility for the uncovered graphs G′ := G \ G⊲S . Thereby it is
possible to remember the utility of S and compute ∆fG,⊳

(P |S) on G′ only, i.e.,

∆fG,⊳
(P |S) = ∆fG′,⊳

(P |S) = fG′,⊳({P})

holds. Consequentially, it is possible to compute G′ after adding a pattern to S and
use fG′,⊳({P}) in line 6. This does not only reduce the number of patterns for which
⊳ must be computed (against each dataset graph) but also reduces the cardinality of
the dataset for subsequent iterations.

4.5.3 Support-based Search Space Pruning

It is possible to bound the minimum support threshold suppmin of the FSM algo-
rithm for a given utility. Since ⊳ implies the subgraph isomorphism relation (cf.,
definition 4.1),

∀P ∈ G⊑ : suppG(P ) ≥ fG,⊳({P}) (4.4)

holds. Given the optimization from section 4.5.2, it is possible to adjust the suppmin

parameter of the FSM algorithm whenever the utility of the current found maximum
increases. The future maximum utility must be larger than the currently found
one to fulfill the condition in line 7 of algorithm 5. Thereby, suppmin can be set to
∆fG,⊳

(Pmax|S) + 1 = utilitymax + 1 after a change of the currently observed maximal
utility. For bottom-up miners (cf., section 2.6.2.1), it is possible to adjust suppmin

during runtime, i.e., it is not necessary to restart the algorithm with the new parameter
value. Thus, the pruning power increases for the up to this point undiscovered pattern
space.

4.5.4 Transaction List Re-Usage for Utility Computation

An FSM algorithm based on transaction or embedding lists needs to compute the
set G⊒P for a given P to calculate the pattern support1. Given the optimization
from section 4.5.2 one can compute the utility solely over a single pattern P . Since
G⊲P ⊆ G⊒P holds, one can reuse the already computed set G⊒P as a filtered input for
the computation of the utility over the single pattern P . Additionally, it is possible
to avoid the computationally expensive re-evaluation of the subgraph isomorphism
relation in the computation of G⊲P since this property is always fulfilled for the input
G⊒P .

4.5.5 Additional Search Space Pruning for ⊳t

For specific subgraph pattern coverage relations, other search space pruning strategies
are sometimes possible. For example, the relative size thresholded variant ⊳t can be

1For miners that do not completely enumerate G⊒P , but abort the calculation when the support
threshold is reached (cf., paragraph 2.6.2.1.4), this feature must be disabled.
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pruned additionally to the pruning presented in section 4.5.3, since an upper bound
for the utility can be calculated for a given multiset of graphs M (e.g., a transaction
list of a pattern). The pruning follows the observation that graphs that differ in
size more than the size threshold t cannot be covered by the same pattern since a
pattern P covering a graph G cannot be larger than G. Thereby, given the ordered
sizes s = (s1,. . . , sn) of the supporting graphs of a pattern P , one can compute the
maximal with window (si, . . . , sj) with 1 ≤ i ≤ j ≤ n, such that si ≥ tsj . Then,
fmax := j − i+ 1 bounds the utility fM,⊳ for all superpatterns of P . If utilitymax is
already larger than or equal to fmax, a bottom-up pattern space exploration can be
pruned at P .

4.5.6 The Optimized Algorithm

Algorithm 6: Optimized Sequential Greedy MAX-CSPC

Input: graph dataset G, cardinality constraint k ∈ N≥1, subgraph pattern
coverage relation ⊳, FSM algorithms fsm, pruning strategy pruning⊳

Output: representative pattern set S, utility of S

1 S ← ∅;
2 utilitysum ← 0;
3 G′ ← G;
4 while |S| < k and G′ 6= ∅ do
5 Pmax ← null;
6 utilitymax ← 0;
7 fsm.init(G′, pruning⊳);
8 (P,G′

⊒P )← fsm.next(1);
9 while P 6= null do

10 utility← fG′
⊒P

,⊳({P});
11 if utility > utilitymax then
12 Pmax ← P ;
13 utilitymax ← utility;

14 (P,G′
⊒P )← fsm.next(utilitymax + 1);

15 S ← S ∪ {Pmax};
16 utilitysum ← utilitysum + utilitymax;
17 G′ ← G′ \ G′

⊲Pmax
;

18 return (S, utilitysum);

Algorithm 6 integrates the above discussed optimizations. The streaming pattern
enumeration (cf., section 4.5.1) is realized by an iterator-like interface for the FSM
algorithm. It provides two operations, init and next. The operation init does
start a new pattern space exploration on a given dataset and a subgraph pattern
coverage relation-specific pruning strategy (e.g., as presented in section 4.5.5; possibly
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no-op). The operation next is parameterized with the minimum support threshold
to implement the support-based pruning optimization as given in section 4.5.3. It
returns a tuple of the next frequent pattern in the enumeration sequence together
with the associated supporting graphs in the dataset (as needed for the transaction
list re-usage presented in section 4.5.4). A null pattern is returned, if the enumeration
sequence reached its end. With the help of this interface, the foreach loop in line 5 of
algorithm 5 is replaced by the while loop in line 9 and two calls of next in lines 8
and 14 in algorithm 6. The parameter utilitymax + 1 in line 14 also implements the
support-based pruning (cf., section 4.5.3).

The removal of the covered dataset graphs as presented in section 4.5.2 is performed
in line 17, while G′ represents the filtered dataset. The init operation of the FSM
algorithm in line 7 is parameterized with G′ . The computation of the utility is now
performed on G′ and the single pattern P in line 10. As a consequence, the variable
utilitymax of algorithm 5 is now split into two variables utilitysum and utilitymax. The
former stores the utility of S and the latter stores the marginal gain of Pmax w.r.t.
S, i.e., ∆fG,⊳

(P |S). After computing Pmax in the loop starting at line 9 utilitymax

is added to utilitysum, since Pmax becomes a member of S. The check in line 10 of
algorithm 5 is replaced with a check on ∅ for G′ in the main loop (line 4). This is
correct since it is always possible to find a pattern that covers at least a single dataset
graph (e.g., the pattern that contains the dataset graph itself; cf., definition 4.1) as
long G′ is not empty.

The transaction list re-usage as presented in section 4.5.4 is realized by computing
the marginal utility gain of a pattern P in line 10 over G′

⊒P instead of using G′.

4.5.7 Analysis

Algorithm 6 will be subject to analysis in this section w.r.t. computational complexity
and approximation quality.

4.5.7.1 Computational Complexity

Since algorithm 6 includes the enumeration of frequent patterns, the complexity of
algorithm 6 is not less than the complexity of the FSM algorithm (cf., section 2.6.2.3).
Consequentially, a subexponential worst-case running time cannot be expected for
algorithm 6 unless P = NP.

Nevertheless, the FSM problem is solvable sufficiently fast for many kinds of datasets
(especially datasets of small graphs). It is shown in the following, that algorithm 6
scales linearly with k and that each iteration of the main loop (lines 5 to 17) only adds
a constant factor to the running time of the FSM algorithm as long as the relation
P ⊳ G can be evaluated in constant time given that the subgraph isomorphism relation
P ⊑ G is known (assumption ⊳).

The main loop is repeated min(k, |G|) times in the worst case, since each iteration
adds a pattern to S until |S| = k. Additionally, |S| is bound by |G|, since each pattern
represents at least one graph in the dataset. Let’s assume, that FSMG,suppmin

is the
running time for the FSM algorithm given the graph dataset G and the minimum
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support threshold suppmin. Furthermore, let Gi with 1 ≤ i ≤ k and G1 = G be the
graph dataset in iteration i of the main loop (line 4). As long as lines 5 to 17 only add
a constant factor to the running time of the FSM algorithm, the worst-case running
time of algorithm 6 is in O(

∑min(k,|G|)
i=1 FSMGi,1). Since the running time of the FSM

algorithm increases monotonically for lower values of suppmin, it is safe to assume a
minimum support of 1 in the worst case.

It has yet to be shown, that lines 5 to 17 only add a constant factor to the running
time of the FSM algorithm. It is clear, that lines 5 to 6, lines 11 to 13, and lines 12
to 13 are constant-time operations. Each line involving an FSM operation is part
of the FSM algorithm and does not contribute to the overhead. Under the above
mentioned assumption for ⊳ each relation P ⊳ G for G ∈ G′

⊒P in line 10 can be
evaluated in constant time since P ⊑ G is true by the definition of G′

⊒P . Thereby, it is
possible to relate the costs of each evaluation to a distinct graph in G′

⊒P . Since each
graph is associated with a cost of Ω(1) in the operation fsm.next, line 10 only adds
a constant factor to the running time of the FSM algorithm. The set minus operation
in line 17 requires a superlinear running time w.r.t. to G′ in the written form. With
hashing, it is possible to solve the set minus in expected linear time, but the worst
case is still quadratic. However, it is possible to avoid the set minus operation by
using the alternative formula G′ ← G′

6⊒P ∪ G′
⊒P 6⊲Pmax

instead. The multiset G′
6⊒P of

graphs that do not support a pattern P can be returned by fsm.next with a constant
factor overhead, since fsm.next already evaluates the subgraph isomorphism relation
for each graph in G′. The multiset G′

⊒P 6⊲Pmax
represents the uncovered graphs in the

multiset of supported graphs for a pattern P . It can be computed alongside the
computation of the utility in line 10 and the costs can be related to graphs in G′

⊒P as
shown for line 10.

To conclude, the running time of algorithm 6 is in O(
∑min(k,|G|)

i=1 FSMGi,1). Given

FSMmax := max
min(k,|G|)
i=1 FSMGi,1, this can be shortened to O(min(k, |G|) FSMmax).

4.5.7.2 Approximation Quality

Since algorithm 6 is a straightforward adoption of the greedy algorithm presented
by Nemhauser, Wolsey, and Fisher it shares the approximation quality, i.e., an
approximation ratio of 1− (1− 1

k
)k > (1− 1

e
) ≈ 0.63 in the worst case. As mentioned

in section 2.4, this approximation ratio cannot be improved until P = NP .

4.5.8 Implementation Details

The algorithm was implemented in Java using gSpan as FSM algorithm. The gSpan
algorithm uses the slightly modified code representation given by [Bor07] as described [Bor07] Borgelt, “Canonical

Forms for Frequent Graph
Mining”. 2007

in paragraph 2.6.2.2.1. The implementation is shared-memory parallelized as described
for the distributed variant of the algorithm (cf., algorithm 11). The details of the
parallelization are omitted at this point to avoid repetitions.

Subgraph isomorphism tests are implemented using the backtracking algorithm and
CT-Index fingerprint pre-filtering algorithms from [KKM11]. A more detailed descrip- [KKM11] Klein, Kriege, and

Mutzel, “CT-Index:
Fingerprint-based Graph
Indexing Combining Cycles and
Trees”. 2011

tion can be found in the implementation details of StruClus (cf., section 3.2.8.1).
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4.5.9 Experimental Evaluation

The goal of this evaluation is to see how the algorithm behaves w.r.t. different
parameters and dataset properties. Additionally, the evaluation results serve as a
baseline for the later evaluation of the distributed variant (cf., section 4.6.10). Each
experiment was repeated 20 times and run on 10 cores in parallel.

4.5.9.1 Computational Environment

4.5.9.1.1 Hardware Computational experiments are performed on the LiDO32

cluster and the cstd01 nodes. Each cstd01 node is a dual-socket NUMA system
with two Intel Xeon E5-2640v4 processors, 20 cores (i.e., 10 per NUMA domain,
hyperthreading cores are disabled), and 64 GiB of RAM (i.e., 32 GiB per NUMA
domain). The nodes have 2 TiB local storage (Seagate Constellation ES.3 HDD,
7200rpm, SATA 6) and access to a network-attached distributed file system (BeeGFS3).
The cstd01 nodes are connected over an Infiniband QDR Interconnect (40 Gbit/s)
with a maximum blocking ratio of 1 : 3.

4.5.9.1.2 Software LiDO3 nodes run on CentOS Linux 7 4 and are managed by the
SLUM5 workload manager. Java is installed in Version 1.8 (Oracle Java HotSpot(TM)
64-Bit Server VM).

4.5.9.1.3 Task Assignment and Environmental Configuration The processor and
memory affinity of each computation is restricted to a single NUMA domain. Thus,
two non-interfering computations can be launched per cstd01 node, each having
access to 10 cores and 32 GiB of memory. The minimum and maximum heap size of a
Java VM instance is set to 25 GiB (-Xmx and -Xms parameter), such that the heap size
plus the overhead of the Java VM always fits in the memory of a single NUMA domain
without causing any swapping. Setting the minimum heap size avoids, that the Java
VM slowly increases the heap size during runtime, which in turn can cause some
avoidable garbage collection overhead. Java VMs are configured to use the parallel
garbage collector for the young memory generation (parameter -XX:+UseParallelGC).

4.5.9.2 Datasets

Four real-world molecular dataset with different characteristics are used for experi-
mental evaluation: ChemDB6 [Che+07] (Version 2015-03-31), ChEMBL7 [Ben+13][Che+07] Chen et al.,

“ChemDB update—full-text
search and virtual chemical

space”. 2007

[Ben+13] Bento et al., “The
ChEMBL bioactivity database:

an update”. 2013

(Version 22.1), CHI PMUNK Heterocycle CoMol [Hum+18] (publication version,

[Hum+18] Humbeck et al.,
“CHIPMUNK: A Virtual

Synthesizable Small-Molecule
Library for Medicinal

Chemistry, Exploitable for
Protein–Protein Interaction

Modulators”. 2018

drug-like 500 g mol−1 variant), and Protein Interaction [Stö+19]. All datasets were

[Stö+19] Stöcker et al.,
“Protein Complex Similarity
Based on Weisfeiler-Lehman

Labeling”. 2019

2https://www.lido.tu-dortmund.de/cms/de/LiDO3/index.html
3https://www.beegfs.io
4https://www.centos.org/
5https://slurm.schedmd.com/
6http://cdb.ics.uci.edu/
7https://www.ebi.ac.uk/chembl/
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Table 4.1: Descriptive statistics of the evaluation datasets.

|V | |E|

Dataset G |G| Min. Max. Avg. Med. Min. Max. Avg. Med. |LV | |LE |

ChemDB 7 100 106 2 435 28.66 28 1 496 31.12 31 89 5

ChEMBL 1 678 393 2 876 29.79 27 1 894 32.18 30 34 5

CHI PMUNK Heterocycle CoMol Subset 4 158 909 4 39 27.56 28 4 46 29.71 30 62 6

Protein Interaction 2 242 972 4 126 5.17 4 3 125 4.17 3 717 1
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(a) Size distribution of the ChemDB dataset. The plot is
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(b) Label distribution of the ChemDB dataset. Labels are
sorted by their frequency. The most frequent labels
appear on the left.

Figure 4.2: Frequency distributions of the ChemDB dataset

pre-processed to remove duplicates and detect aromatic bonds (using CDKHuecke-
lAromaticityDetector8 of the Chemistry Development Kit [Wil+17]). Table 4.1 shows [Wil+17] Willighagen et al.,

“The Chemistry Development
Kit (CDK) v2.0: atom typing,
depiction, molecular formulas,
and substructure
searching”. 2017

an overview of some basic dataset statistics regarding dataset cardinality, graph sizes,
and label counts.

The ChemDB library is a collection of over 100 different sources, especially com-
mercially available molecules. It is targeting small molecules, such as building blocks
for further synthesization. ChemDB was already used in the original StruClus eval-
uation as a demonstration of the scalability of the algorithm to large-scale datasets.
It is the largest dataset used for the non-distributed experiments. Figure 4.2 shows
the size and label distributions of the dataset.

8https://cdk.github.io/cdk/1.4/docs/api/index.html?org/openscience/cdk/aromaticity/

CDKHueckelAromaticityDetector.html
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Figure 4.3: Frequency distributions of the ChEMBL dataset

The ChEMBL database is a manually curated public chemical library with a special
focus on drug-likeliness. In comparison with ChemDB is therefore a more restricted
dataset with different characteristics, e.g., containing fewer chemical elements (i.e.,
vertex labels). It is considered to have a broad coverage of existing chemical knowledge
in the context of drug discovery. The dataset was also used in the novelty analysis of
CHI PMUNK (cf., section 3.2.9.9). Figure 4.3 shows the size and label distributions
of the dataset.

The molecular de-nove library CHI PMUNK was already discussed in section 3.2.9.9
since the StruClus algorithm was applied for a novelty analysis. In the following
experimental evaluation, the CHI PMUNK Heterocycle CoMol subset is selected since
it fits in the memory of a single NUMA domain of a cluster node. The used drug-like
500 g mol−1 variant of the library shows smaller maximum graph sizes compared
to the non-synthetic datasets presented above. Figure 4.4 shows the size and label
distributions of the dataset.

The Protein Interaction dataset is a non-molecular graph dataset presented by
Stöcker et al. [Stö+19]. It contains simulated protein-interaction networks, where each[Stö+19] Stöcker et al.

“Protein Complex Similarity
Based on Weisfeiler-Lehman

Labeling”. 2019

vertex is labeled with a descriptor of a protein and the (unlabeled) edges represent
physical interactions between these proteins. In comparison with the molecular dataset,
the number of distinct vertex labels is very high and the graph sizes are very small with
5.17 vertices 54.17 edges on average. Figure 4.5 shows the size and label distributions
of the dataset.
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Figure 4.4: Frequency distributions of the CHI PMUNK Heterocycle CoMol dataset
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Figure 4.5: Frequency distributions of the Protein Interaction dataset
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4.5.9.3 Scaling with Isolated Parameters

Before an evaluation w.r.t. different datasets and different iterations of the algorithm
is performed in section 4.5.9.4, this section will focus on the running time (wall clock
time) effects of algorithm parameters and dataset properties. All experiments are
performed on a sample of the ChemDB dataset filtered to a maximum edge count to
perform the experiments in an appropriate time span. If the parameters themselves
are not suspect to evaluation, the sample cardinality is set to 10 000 and the filtering
is set to a maximal edge count of 30. The relative size thresholded subgraph pattern
coverage relation was parameterized with the thresholds t ∈ {0.3, 0.5, 0.7}.

Figure 4.6 focuses on the scaling of the algorithm given different dataset sizes. The
random sample of size 10 000 was multiplied to create datasets of sizes 20 000 to 50 000.
Multiplying the sample has the advantage, that random effects regarding the pattern
space can be ruled out. More precisely, all experiments will be performed on the
exact same (pruned) pattern space, since the utility-based pruning bound increases
by the same factor as the support values of individual patterns. Figure 4.6 shows an
almost perfect linear scaling with the dataset size for the lower values of the relative
size threshold parameter t. For t = 0.7 there exist some outliers with a high running
time, that cause the average running time (lineplot) to be above the 75th percentile
of the values. The dashed lines in the plots represent the extension of the average
values to a dataset size of 0. While a dataset of size 0 is a meaningless input, the
virtual value gives insight into the running time for pattern space exploration and
canonization without taking the support calculation into account. Even for the given
relatively small dataset sizes, the majority of time is spent performing the subgraph
isomorphism tests in the settings t ∈ {0.3, 0.5} and only a small fraction of the time
is spent on the canonization and extension of patterns. For t = 0.7 the overhead is
actually larger than the time for subgraph isomorphism tests for small sample sizes.
These observations are also reflected by the implementation of gSpan, which performs
the canonization-based search space pruning before the support-based pruning to
perform best in most cases and scale well to large dataset sizes.

It can also be seen in fig. 4.6 that the absolute overhead of the pattern space
exploration increases with larger values of t. This is a consequence of the fact, that
the number of represented graphs (i.e., the utility) by a pattern is monotonically
decreasing with larger values of t, i.e., ∀G,∀P ∈ G⊑,∀t < t′ : G⊲t′ P ⊆ G⊲tP , which in
turn causes the pruning of the search space to be less strict. The effect can also be
seen in fig. 4.7, which shows the relation between the relative size threshold and the
running time. Additionally, it presents the utility and solution pattern edge count.
For larger values of t the running time increases sharply, the utility is decreasing as
discussed above, and the edge count of the final pattern increases.

Increasing the maximum edge count of the graphs in the sample has a strong effect
on the running time. Figure 4.8 show the running time in relation to a maximum
edge count of 20, 30, and 40. The relative amount of graphs in the range of sizes 20
to 30 and 30 to 40 can be extracted from the size distribution of the ChemDB dataset
given in fig. 4.2a. This superlinear increase in running time can be attributed to the
high complexity of the subgraph isomorphism tests and the canonization test as well
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Figure 4.6: Scaling of the running time of algorithm 6 with different dataset sizes
given random samples of the ChemDB dataset. The samples of size 20 000
to 50 000 are constructed by multiplication of the 10 000 sample. The
dataset is filtered to graphs with an edge count of 30 or less.
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Figure 4.7: Scaling of the running time of algorithm 6 with different values of the
relative size threshold t given a random sample of size 10 000 of ChemDB
dataset. The dataset is filtered to graphs with an edge count of 30 or less.

as the combinatorial explosion of the graph pattern space w.r.t. the graph size (cf.,
section 2.6.1.2). The contrast increases for larger values of t, since its causes less strict
search space pruning. Thus, the pattern exploration extends to even higher ranks in
the pattern space.

As discussed in section 4.5.5, a maximum utility search space pruning can be applied
to ⊳t. Figures 4.6 to 4.8 differentiate between the enabled and disabled state of this
pruning strategy. Although the pruning strategy has some overhead to calculate fmax,
the benefit of the pruning outweighs the overhead. While the speedup is only a few
percent on average, the speedup is stable w.r.t. to different settings. Only fig. 4.6c
shows some cases where the additional pruning leads to a higher running time on
average. However, the variance in this plot is high, such that the larger dataset sizes
even outperform smaller sizes in some cases. Thus, the interpretation of the small
differences in this setting is not meaningful. As a consequence of the stable behavior,
the maximum coverage pruning is enabled for all future experiments.

4.5.9.4 Performance and Key Statistics for Individual Solution Elements

It is evaluated how the performance evolves over the different iterations of the algorithm
with increasing solution size in the following. More precisely, the wall clock time,
pattern utility, and pattern size will be evaluated for each individual addition to
the solution set S, i.e., each iteration of the main loop (line 4) of algorithm 6. The
relative size thresholded subgraph pattern coverage relation was parameterized with
the thresholds t ∈ {0.3, 0.5, 0.7}. With the exception of the Protein Interaction dataset
(which has relatively small graphs), the datasets are filtered to graphs with a maximum
edge count of 30, since the running time of the algorithm becomes infeasible for larger
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Figure 4.8: Scaling of the running time of algorithm 6 with different graph sizes given
a random sample of size 10 000 of ChemDB dataset. The dataset is filtered
to graphs with an edge count of 20, 30, and 40 or less.
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dataset graphs in combination with larger settings of t, otherwise. Computation was
aborted if the total running time (i.e., the summed running time over all performed
iterations) exceeds two days. The solution set cardinality |S| is limited to a maximum
of ten. Fewer iterations are given in the case of running time abortions.

Figures 4.9 to 4.12 show the results for the ChemDB, ChEMBL, CHIPMUNK
Heterocycle CoMol, and Protein Interaction datasets. The filtered datasets (max
edge count 30) have a cardinality of 3 523 595 (ChemDB), 909 321 (ChEMBL), and
1 687 491 (CHI PMUNK Heterocycle CoMol), respectively. Since the covered graphs
are removed after each iteration of the algorithm, the utility in the plots represents the
marginal gain (cf., definition 2.2) w.r.t. the solution set S of the previous iteration. As
a result of the submodular nature of the utility function (cf., eq. (2.2)) the marginal
gain is monotonically decreasing with each iteration. The uncovered dataset graphs
(cf., G′ in algorithm 6) show the other side of the same statistic, that is the dataset
size minus the summed utilities of the previous iterations.

Overall, the running times for these filtered datasets are ranging from a few minutes
to more than one day per iteration. This confirms the high sensitivity of the running
times w.r.t. some algorithm and dataset parameters as discussed in section 4.5.9.3.
The running time is influenced by the decreasing dataset size, which is clearly visible
in the setting t = 0.3 for the datasets ChemDB and CHI PMUNK Heterocycle CoMol
(figs. 4.9a and 4.11a). This effect is less observable for higher values of t, the ChEMBL
dataset, and especially the Protein Interaction dataset. Most likely, other factors of
the running time are more relevant in the latter settings. For example, higher values
of t cause lower utilities (as shown in the previous section in fig. 4.7), which causes
the differences in the dataset sizes to decrease. Additionally, as shown in fig. 4.6 and
discussed in section 4.5.9.3, the overhead for the pattern space exploration becomes
more relevant for higher values of t. The size of the solution pattern seems to have
a small impact on the performance in some situations. This is observable in e.g.,
fig. 4.9a at iterations 2 to 4, fig. 4.10a at iterations 5 to 7, and fig. 4.10c. However,
the effect is sometimes overshadowed by other parameters, such as in fig. 4.10a at
iteration 4, where a large drop in utility—w.r.t. iteration 3—-most likely caused a
relatively high running time for a small pattern. Furthermore, the Protein Interaction
dataset has a very large number of labels in combination with very small graphs. This
results in a smaller fraction of the dataset to be covered, fast subgraph isomorphism
tests, and shallow pattern space. As a result of the small coverage values, the overall
running time is less influenced by the decreasing dataset size, similar to settings with
high values for t.

The plots also reveal different characteristics of the datasets themselves. For
example, the CHI PMUNK Heterocycle CoMol dataset seems to be more homogeneous
than the other datasets. With a solution set of cardinality ten and t = 0.3 only 18%
of the CHI PMUNK Heterocycle CoMol remain unrepresented, while 43% and 48%
remain unrepresented for the ChemDB and ChEMBL datasets. Again, the Protein
Interaction dataset is very different with roughly 96% unrepresented graphs. This
observation is most likely a result of the way the datasets are composed. While
ChEMBL and ChemDB are broad collections of known molecules, the CHI PMUNK
datasets are synthesized using a fixed set of virtual reaction types. These reaction
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(b) Relative Size Threshold t = 0.5
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(c) Relative Size Threshold t = 0.7

Figure 4.9: Running Time, utility, uncovered graphs, and edge count of Pmax for each
iteration (i.e., addition to S) of algorithm 6 on the ChemDB dataset. The
dataset is filtered to graphs with an edge count of 30 or less. Execution
was aborted for each repeat, when the accumulated running time of the
individual iterations exceeds 2 days.
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(c) Relative Size Threshold t = 0.7

Figure 4.10: Running Time, utility, uncovered graphs, and edge count of Pmax for each
iteration (i.e., addition to S) of algorithm 6 on the ChEMBL dataset. The
dataset is filtered to graphs with an edge count of 30 or less. Execution
was aborted for each repeat, when the accumulated running time of the
individual iterations exceeds 2 days.
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(b) Relative Size Threshold t = 0.5
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(c) Relative Size Threshold t = 0.7

Figure 4.11: Running Time, utility, uncovered graphs, and edge count of Pmax for
each iteration (i.e., addition to S) of algorithm 6 on the CHIPMUNK
Heterocycle CoMol dataset. The dataset is filtered to graphs with an
edge count of 30 or less. Execution was aborted for each repeat, when
the accumulated running time of the individual iterations exceeds 2 days.
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(a) Relative Size Threshold t = 0.3
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(b) Relative Size Threshold t = 0.5
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(c) Relative Size Threshold t = 0.7

Figure 4.12: Running Time, utility, uncovered graphs, and edge count of Pmax for each
iteration (i.e., addition to S) of algorithm 6 on the Protein Interaction
dataset.
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types correspond to common substructures in the molecules, which may cause a high
coverage for these substructures if the relative size threshold is chosen appropriately.
The very high number of labels makes common subgraphs less likely in the case of
the Protein Interaction dataset.

4.6 Distributed and Sampling Algorithms

The experimental evaluation of algorithm 6 reveals high practical running times,
especially for large datasets with large molecules and high values of the relative size
threshold t. The goal of this section is the development of a distributed algorithm
utilizing dataset samples to tackle these challenging settings.

4.6.1 Distribution Challenges

Algorithm 6 computes a solution for problem 4.1 (MAX-CSPC) with the best ap-
proximation ratio we can hope for (cf., section 2.4), which is 1− 1

e
≈ 0.63. In terms

of parallelization, however, the greedy iterations are inherently sequential since the
marginal gain w.r.t. the utility depends on the existing solution.

As mentioned in section 2.4, there exist several distributed algorithms for problem 2.1
(MAX-CSSF), i.e., the submodular set function maximization problem in general.
However, all of the distributed solutions, that actually parallelize the computation
of the solution set S, have lower approximation ratios than the sequential greedy
algorithm. The best-known distributed approximation ratio of 0.545 is achieved by
Mirrokni and Zadimoghaddam [MZ15]. [MZ15] Mirrokni and

Zadimoghaddam “Randomized
Composable Core-sets for
Distributed Submodular
Maximization”. 2015

In addition, most distributed algorithms impose further restrictions on the utility
function. The GreeDi algorithm of Mirzasoleiman et al. [Mir+13], for example,

[Mir+13] Mirzasoleiman et al.
“Distributed Submodular
Maximization: Identifying
Representative Elements in
Massive Data”. 2013

requires some smoothness of the utility function to have a constant (expected) approx-
imation ratio, that does not degrade with the number of distributed workers. However,
the required λ-Lipschitz continuity cannot be guaranteed for problem 4.1 (MAX-
CSPC), since minimal modification of a graph pattern may result in an arbitrary high
change of utility, by changing the support of the pattern to zero.

A big challenge in the distribution of problem 4.1 (MAX-CSPC) is the dependency
of fG,⊳ on the graph dataset G during its evaluation. Many algorithms, such as the
one given in [MZ15], assume that the utility of some object o can be evaluated solely
based on S and o. Badanidiyuru et al. [Bad+14] approach this problem in their [Bad+14] Badanidiyuru et al.

“Streaming Submodular
Maximization: Massive Data
Summarization on the
Fly”. 2014

Sieve-Streaming algorithm with the help of reservoir samples in the presence of
additively decomposable submodular set functions (cf., definition 2.4). While this
property holds for fG,⊳, the resulting sample cardinalities for good approximation ratios
and moderately high cardinality constraints k range in the millions. Furthermore,
Sieve-Streaming requires a fixed input set to select the solution from, which is a
problem for subgraph pattern mining, where the subgraph patterns also depend on
the reservoir sample.
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For the above-mentioned reasons, no distributed computation of the solution set
S is performed in the following. Instead, distribution is focused on a single greedy
round of the sequential greedy approximation algorithm.

4.6.2 A Two-Phase Sampling Approach for a Single Greedy

Iteration

As discussed above, a major distribution challenge is the dependency of fG,⊳ on the
graph dataset G. A method to reduce this dependency to a random sample S of G
will be presented in the following. The method will focus on a single iteration (cf.,
eq. (4.2)) of the greedy approximation described in section 4.5. Given the discussed
optimization to remove uncovered graphs in each greedy iteration (cf., section 4.5.2),
the following subtask can be extracted from algorithm 6 (lines 5 to 14).

Problem 4.2 (MAX-CSPC-1). Single Subgraph Pattern Coverage
Maximization

Input: A graph dataset G and a subgraph pattern coverage relation ⊳.

Task: Solve

Pmax := arg max
P ∈G⊑

fG,⊳({P})

For the latter analysis, it should be noted, that Pmax is ambiguously defined and
multiple patterns with maximal utility might exist.

Algorithm 7: Two-phase sampling framework for problem 4.2 (MAX-CSPC-1)

Input: graph dataset G, subgraph pattern coverage relation ⊳
Output: graph pattern PmaxC

Phase 1: Compute a set of candidate patterns C ⊆ G⊑ given a random sample
S of G.

Phase 2: Select and return a pattern PmaxC
∈ C with maximal coverage regarding G,

i.e., fG,⊳({PmaxC
}) := maxP ∈C fG,⊳({P}).

Algorithm 7 describes a two-phase sampling framework for problem 4.2 (MAX-
CSPC-1). This framework will lay the foundation for a distributed computation of
problem 4.1 (MAX-CSPC) (cf., section 4.6.8). Additionally, it will lead to a non-
distributed sampling and streaming algorithm (cf., section 4.6.6), which only needs
to hold a random sample S of G in memory. A central concept of the framework
will be a stochastic candidate test (cf., Statistical Hypothesis Test Question 4.1 in
section 4.6.3.1) to bound the probability of an incorrect result w.r.t. problem 4.2
(MAX-CSPC-1).
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4.6.3 Phase 1 – Candidate Computation

This subsection will discuss the basics to compute the set of candidates C in phase 1
of algorithm 7.

4.6.3.1 Stochastic Model

A stochastic model for the coverage utility fG,⊳ is given below. This model will allow
the application of statistical hypothesis tests on random samples of G and is similar
to the model presented in lemma 3.2.

Lemma 4.5. Given a graph dataset G, an equally distributed random sample
(with replacement) S = (G1, . . . , GN ) of graphs from G, a pattern P ∈ G⊑, and
a subgraph pattern coverage relation ⊳, the random variable fS,⊳({P}) = |S⊲P |
follows the binomial distribution B

n,
|G⊲P |

|G|

.

Proof. Given the sample space G and a fixed pattern P ∈ G⊑ a graph G ∈ G is either
covered by P (G ∈ G⊲P ) or not (G ∈ G6⊲P = G \ G⊲P ). When picking a graph G from
G at random, the random variable X : G → {0, 1} with the events G ∈ G⊲P (success,
value 1) and G ∈ G6⊲P (failure, value 0) has a success rate of p := |G⊲P |

|G| and a failure

rate of |G6⊲P |
|G| = |G|−|G⊲P |

|G| = 1− p. Thus, X follows the Bernoulli distribution B1,p. Let
S := (x1, . . . xN ) be the random sample representing the observation of the random
variables X(G1), . . . X(GN ), i.e., N i.i.d. random variables following B1,p. Then,
|S⊲P | =

∑

x∈S x is the number of successes and follows the Binomial distribution
BN,p.

With the help of lemma 4.5 it is possible to statistically compare the coverage of
patterns to each other.

Statistical Hypothesis Test Question 4.1 (Candidate Test).

Input: Two equally distributed random samples (with replacement)
S1 = (G11, . . . , G1N ) and S2 = (G21, . . . , G2N ) of graphs
from graph dataset G, a reference pattern R ∈ G⊑, a candidate
pattern C ∈ G⊑, and a significance level α.

Hypothesis: H0 : fG,⊳({C}) = |G⊲C | ≥ |G⊲R| = fG,⊳({R})
Test Question: Can H0 be rejected w.r.t. the observations |S1⊲C

| and |S2⊲R
|

and significance level α?

In other words, given a reference pattern R, the test can identify candidate patterns,
that most likely do not have a better utility than R. Consequentially, such patterns
most likely do not have an optimal utility.
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4.6.3.2 Algorithm Outline for Phase 1

Given the above observation, it is possible to design an algorithm that generates
a candidate set C by enumerating G⊑ and keeping only the patterns for which H0

cannot be rejected (cf., algorithm 8).

Algorithm 8: Outline for phase 1 of algorithm 7
Input: random samples S1 and S2 of graph dataset G, reference pattern

R ∈ G⊑, subgraph pattern coverage relation ⊳, and confidence level α
Output: candidate set C

1 foreach P ∈ G⊑ do � G⊑ enumerated by FSM algorithm

2 if candidateTestS1,S2
(P,R, α) 6= rejected then

3 C← C ∪ {P};

4 if C = ∅ then
5 C← {R};
6 return C;

To always return a non-empty candidate set in algorithm 8, R is added to the
candidate set C in this case. While R ∈ G⊑ holds, i.e., R is tested as a candidate
pattern as well, R may get rejected. This is a consequence of the two independent
samples S1 and S2. While algorithm 8 outlines an algorithm idea, several open
aspects will be discussed in the following. These aspects involve questions regarding
the test realization, the test applicability, the selection of the reference pattern, and
performance optimizations from algorithm 6 that are omitted in algorithm 8.

4.6.3.3 Overall Error Bound and Independence of Individual Candidate Tests

The candidate test (cf., Statistical Hypothesis Test Question 4.1) was introduced
with the goal to bound the overall error of algorithm 8. More precisely, the aim
is to bound the probability of algorithm 8 to return an incorrect result. However,
the statistical hypothesis test itself only bounds the statistical error α of an isolated
random experiment for a single candidate pattern P . Since the candidate test needs
to be performed for each pattern P ∈ G⊑, the following questions arise:

1. Is it necessary to apply a multiple hypothesis testing correction to bound a
family-wise error rate?

2. Is it necessary for each test to be statistically independent? In other words,
is it sufficient to use the fixed random samples S1 and S2 for all tests or are
independent samples SP,1 and SP,2 needed for each pattern P .
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Lemma 4.6. Algorithm 8 computes a candidate set C which contains Pmax with
a probability of at least 1− α.

Proof. Without loss of generality, let Pmax be an arbitrary, but fixed pattern with max-
imal utility w.r.t. G (cf., problem 4.2 (MAX-CSPC-1)). Then, Pmax is either R or the
parameter of exactly one statistical hypothesis test candidateTestS1,S2

(Pmax, R, α).
If Pmax = R, R is contained in C. If Pmax 6= R, candidateTestS1,S2

(Pmax, R, α)
does reject Pmax with a probability of at most α, i.e., the probability of Pmax to
be contained in C is at least 1 − α. This test is not influenced by the outcome of
candidateTestS1,S2(P,R, α) with P 6= Pmax.

Both above questions are answered by the proofs observation, that a single test
actually bounds to the overall error and it is safe to discard any other test or pattern
without any influence on the worst-case error bound of the algorithm. Thus, no
multiple hypothesis testing correction must be applied and two fixed random samples
are sufficient.

Up to this point it was omitted, that Pmax is ambiguously defined in problem 4.2
(MAX-CSPC-1) and that multiple patterns with maximum utility may exist. This
does not change the outcome of lemma 4.6, since Pmax was defined as an arbitrary,
but fixed pattern with maximum utility. However, it is possible that Pmax is not
returned in phase 2 of algorithm 7.

Corollary 4.7. Algorithm 7 returns a pattern PmaxC
of maximum utility—i.e.,

fG,⊳({PmaxC
}) = maxP ∈G⊑

fG,⊳({P}) = fG,⊳({Pmax})—with a probability of at
least 1− α.

Proof. The fixed pattern Pmax from lemma 4.6 is contained in C with a probability of
at least 1−α. The returned pattern PmaxC

by phase 2 of algorithm 7 is defined to be a
pattern from C with maximal utility w.r.t. G, i.e., fG,⊳({PmaxC

}) = maxP ∈C fG,⊳({P}).
If Pmax is contained in C, the equality fG,⊳({PmaxC

}) = fG,⊳({Pmax}) holds, since
Pmax is defined as a pattern with maximum utility from G⊑ and there cannot exist a
pattern with higher utility in C ⊆ G⊑.

Thus, the ambiguity of Pmax does not worsen the worst-case error bound of algorithm 7.
In contrast, the success rate of algorithm 7 actually increases with each additional
pattern P ′ 6= Pmax with maximum utility since P ′ may be contained in C even if
the candidate test falsely rejects Pmax. However, this effect cannot be statistically
quantified, since the individual tests are not independent.

4.6.3.4 Statistical Test Realization

Multiple statistical tests for the two-sample binomial testing problem as required for
the candidate test from Statistical Hypothesis Test Question 4.1 are available. Exact
tests, such as Fisher’s, Barnard’s or Boschloo’s tests, are known to be hard to compute
for large sample sizes, since the values of the binomial coefficients become extremely
large. As a consequence, the two-sample approximate binomial test on equality (cf.,
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section 2.3.5.2) is used in the following. The test imposes several assumptions about
the setting in order to be applicable. Besides the obvious assumption of binomially
distributed samples, two further assumptions influence the algorithm design. First, the
two samples must be independent. This is guaranteed by the test statistics, which are
computed over individual random samples S1 and S2. Second, the test only computes
results with a reasonable approximation ratio if the absolute number of successes
and failures in both samples is larger than a minimum constant. As a statistical rule
of thumb (cf., [TK14]) this constant should be not less than five for non-extreme[TK14] Taeger and Kuhnt,

Statistical Hypothesis Testing

with SAS and R. 2014
significance levels, i.e., |S1⊲C

| > 5,
∣

∣S1 6⊲C

∣

∣ > 5, |S2⊲R
| > 5, and

∣

∣S2 6⊲R

∣

∣ > 5. This
limitation can be circumvented using a strategy, which is based on the observation
that the rejection region (cf., lemma 4.8) of the test is monotonically increasing with
|S2⊲R

| for a fixed sample size. The strategy includes the following rules: (a) If the
rejection region of the test is smaller than five, every pattern must be accepted as
candidate. (b) If

∣

∣S2 6⊲R

∣

∣ ≤ 5, use N − 6 as test statistic for R. (c) If
∣

∣S2 6⊲C

∣

∣ ≤ 5,
select C as candidate. Selecting a pattern unconditionally will lead to correct results
under all circumstances since the pattern will not be missed in phase 2 of algorithm 7.
Item a covers the assumption |S1⊲C

| > 5, since the rejection region is the threshold
for this test statistic. Furthermore, it covers the assumption |S2⊲R

| > 5, since the
rejections region is always smaller than |S2⊲R

| as long α is smaller than 50% (which
is a reasonable assumption in practice and a result of the symmetry of the normal
distribution). Item b is justified by the fact that

∣

∣S2 6⊲R

∣

∣ = x⇔ |S2⊲R
| = N − x, with

0 ≤ x ≤ N . As a consequence of the above-mentioned monotonicity of the rejection
region, it is safe two lower the test statistic |S2⊲R

| for the reference pattern without
missing a pattern as candidate.

4.6.3.5 Subgraph Pattern Space of the Sampled Dataset

Algorithm 8 enumerates the subgraph pattern space G⊑. This contradicts the goal
to be independent of G. For this reason, the subgraph pattern space S1⊑

of the
first random sample S1 is used in the final algorithm 9. Using S1 instead of S2 or
S1 ∪S2 has the benefit, that it enables a support-based search space pruning (cf.,
section 4.6.3.6). However, this change does influence the correctness of the algorithm
for a corner case. If the absolute maximal coverage is very small, it may happen, that
the probability of Pmax to be contained in S1⊑

is below 1− α. Consequentially, the
resulting error is higher than the parameter for the statistical test. On the contrary,
the correctness of the overall error is preserved, whenever the rejection region of an
exact9 hypothesis test is 1 or above. In this case, every pattern P ∈ G⊑ ∧ P 6∈ S1⊑

would be rejected by the candidate test anyway. This observation is important since
it makes the detection of such a situation possible, i.e., the algorithm can return
the validity of the result w.r.t. to corollary 4.7. The situation of very small utility
values is also problematic in the sense, that it typically leads to very large candidate

9The large sample restriction of the approximate binomial test on equality requires a rejection
region of at least exmin, where exmin is the lower bound of success and failure examples required for
sufficient test accuracy (cf., section 2.3.5.2).
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sets, possibly C = G⊑. However, the presented corner case has very limited practical
relevance. See section 4.6.10.3 for a detailed analysis of this topic.

4.6.3.6 Deriving a Support-based Pruning Bound

The optimized sequential algorithm 6 for problem 4.1 (MAX-CSPC) prunes the
pattern search space based on the minimum support threshold suppmin as described
in section 4.5.3. The central observation is, that the support of a pattern P cannot
be smaller than the coverage utility fG,⊳{P} (cf., eq. (4.4)). This inequality does no
longer hold for our sampled approach since patterns with a lower support than the
reference pattern R might be added to the candidate set as a consequence of the
statistical candidate test. However, for fixed sample sizes, a fixed significance level α,
and a fixed sample proportion p̂2 := |S2⊲R

| for a reference pattern R, it is possible to
compute the rejection region [−∞, p̂1l) ∪ (p̂1u,∞] of the two-sample binomial test on
equality (cf., section 2.3.5.2) as given in lemma 4.8. It should be noted, that lemma 4.8
is referencing the two-sided test, while Statistical Hypothesis Test Question 4.1 is
a one-sided test. However, the rejection threshold p̂1l for the one-sided test can be
derived by setting the significance level to α

2 (which increases the test power). Thus,
the inequality

∀P ∈ C : suppS1
(P ) ≥ p̂1l. (4.5)

holds. Since p̂1l ∈ R and suppS1
(P ) ∈ N the pruning threshold suppmin of the FSM

algorithm can be set to suppmin = ⌈p̂1l⌉ (the FSM algorithm is applied to S1 as
described in section 4.6.3.5).

Lemma 4.8 (Rejection Region of the Two-Sample Approximate Bino-
mial Test on Equality). Given the two-sample approximate binomial test on
equality with H0 : p1 = p2 (see section 2.3.5.2), a fixed sample size N = N1 = N2,
a fixed sample proportion p̂2, and a fixed significance level α the rejection region
for p̂1 is [−∞, p̂1l) ∪ (p̂1u,∞] with

p̂1l = a− b
p̂1u = a+ b

a =

(

y2

N
− p̂2y

2

N
+ 2p̂2

)

N

y2 + 2N

b =

√

((

y2

N
− p̂2y2

N
+ 2p̂2

)(

− N

y2 + 2N

))2

+

(

p̂2y2

N
− p̂2

2y
2

2N
− p̂2

2

)

2N

y2 + 2N

y = Φ−1
(α

2

)

Proof. We show that p̂1l and p̂1u are the most extreme values for p̂1 for which H0

cannot be rejected. Thus, we set Φ−1(α
2 ) = p̂1−p̂2

√

p̂(1−p̂)( 1
N1

+ 1
N2

)
, with p̂ = p̂1N1+p̂2N2

N1+N2
.
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Let y := Φ−1( α
2 ).

y =
p̂1 − p̂2

√

Np̂1+Np̂2
2N
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4.6.3.7 Choosing a Reference Pattern

Up to this point, it was assumed that the reference pattern R is a parameter of the
algorithm. Thus, the open question is how R should be chosen. A small candidate
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set C is desirable w.r.t. to the computational performance of phase 2 of algorithm 7.
Since the rejection region of the statistical test is monotonically increasing for larger
values of |S2⊲R

|, a strong reference pattern should have a high utility fS2,⊳({R}) in
the sample S2. Thus, the optimal reference pattern w.r.t. to a small candidate set
has maximum utility in S2.

ROPT := arg max
P ∈S2⊑

fS2,⊳({P}). (4.6)

Computing ROPT requires problem 4.2 (MAX-CSPC-1) to be solved for S2. A straight-
forward approach would be, to run lines 12 to 14 of algorithm 6 in a preprocessing
step for algorithm 8. Consequentially, this approach would require two runs of the
FSM algorithm for the subgraph pattern spaces S1⊑

(algorithm 8 with support-based
pruning optimization as described in section 4.6.3.6) and S2⊑

(calculation of ROPT).
Among other things, this involves the overhead of eliminating isomorphic pattern
representations during the mining process (cf., paragraph 2.6.2.1.3). To reduce the
overhead, an integrated computation of R, which requires only a single run of the FSM
algorithm, is presented in the following. The basic idea is to enumerate the patterns
P ∈ S1⊑

over S1 only, but keeping track of the utility fS2,⊳({P}) as well. Starting
with an empty reference pattern with utility 0, the algorithm subsequently updates
the reference pattern Rmax to be the reference pattern with maximum observed
utility up to this point (similar to the determination of Pmax in algorithm 6). The
integrated approach has two major consequences. First, it may happen that ROPT is
not enumerated by the FSM algorithm, i.e., ROPT 6∈ S1⊑

. In combination with the
support-based pruning, this event even becomes more likely, since the FSM algorithm
will filter patterns P with suppS1

(P ) < ⌈p̂1l⌉ (cf., section 4.6.3.6). Still the event, that
the pattern with the highest utility in S2 has a support less than the rejection region
in S1, is extremely unlikely. Most important, a non-optimal reference pattern will not
influence the correctness of the algorithm, i.e., it will only influence the performance
and memory requirements of the algorithm. Second, after updating Rmax with R′

max

(given fS2⊒P
,⊳(Rmax) < fS2⊒P

,⊳(R′
max)) it may happen, that patterns are contained

in the candidate set, which would have been discarded if R′
max would have been used

in advance. However, when the utility of a pattern is stored together with the tuple
in the candidate set, it is possible to filter the candidate set to contain only patterns
which do not fall in the rejection region of R′

max. This approach is valid because the
rejection region is monotonically increasing and the solution is the same as if we we
would have used R′

max right from the start.

4.6.4 A Sequential Algorithm for Phase 1

Algorithm 9 is a fully specified algorithm for the outline given in algorithm 8 and
implements the above-discussed aspects. As discussed in section 4.6.3.5, it loops
over the patterns P ∈ S1⊑

of the first random sample (line 7) interleaved with an
FSM algorithm. In lines 8 to 9 the utility is computed for each sample. Similar to
algorithm 6, the coverage utility for a pattern P is only computed over the supporting
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Algorithm 9: Phase 1 of Algorithm 7
Input: random samples S1 and S2 of graph dataset G, subgraph pattern

coverage relation ⊳, confidence level α ∈ [0, 0.5]
Fixed Parameterization: pruning strategy pruning⊳, FSM algorithm fsm,

minimum absolute number of Bernoulli examples
exmin ∈ N>0 (success and failure) for the
candidate test

Output: candidate set C and boolean validity of result

1 procedure phase1(S1, S2, ⊳, α)

2 Rmax ← null;
3 utilityRmax

← 0;
4 C← ∅;
5 p̂1l ← −∞;
6 fsm.init(S1,S2, pruning⊳);

� Uses S2 only for transaction lists computation S2⊒P

(P,S1⊒P
,S2⊒P

)← fsm.next(1);
7 while P 6= null do
8 utility1 ← fS1⊒P

,⊳({P});
9 utility2 ← fS2⊒P

,⊳({P});
10 if utility2 > utilityRmax

; then
11 Rmax ← P ;
12 utilityRmax

← utility2;
13 utilityRmax,valid ← min{utility2, |S2| − exmin − 1};
14 p̂1l ← rejectionThresh(utilityRmax,valid, |S2|, α);

� cf., lemma 4.8

15 C← {(C, utilityC) ∈ C | utilityC ≥ p̂1l};
16 if utility1 ≥ p̂1l or p̂1l < exmin or utility1 ≥ |S1| − exmin then
17 C← C ∪ (P, utility1);

18 (P,S1⊒P
,S2⊒P

)← fsm.next(max{1, ⌊p̂1l + 1⌋});

19 validity← p̂1l ≥ exmin;
20 if C = ∅ then
21 C← {(Rmax, 0)};
22 return ({C | (C, utilityC) ∈ C}, validity);
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graphs in the sample. However, since the FSM algorithm is applied to S1, only
S1⊒P

would be computed by an unmodified FSM algorithm. As discussed in the
preliminaries, the downward closure property enables a very efficient transaction list
computation (cf., paragraph 2.6.2.1.4) for a bottom-up exploration of the pattern space.
For this reason, the FSM algorithm is slightly modified to compute the transactions
list for the second random sample S2, even if these lists are not used by the FSM
algorithm itself. This enables fsm.next to additionally return S2⊒P

and to use the
optimized coverage utility computation, which skips the subgraph isomorphism test
(cf., section 4.5.4). The conditional block starting in line 10 handles the case in which
a new pattern with maximum utility is found in S2, i.e., Rmax has to be updated as
described in section 4.6.3.7. Besides the update of Rmax itself (line 11) and its utility
(line 12), this basically means to update the rejection threshold (line 14) and to filter
the candidate set to remove obsolete items (line 15) as described in sections 4.6.3.6
and 4.6.3.7. To have a valid statistical test setting, line 13 safeguards non-valid
parameters of rejectionThresh (cf., section 4.6.3.4, item b). The conditional block
in line 16 finally adds patterns to the candidate set C. Additional to the rejection
threshold-based filtering it also implements the safeguards described in items a
and c from section 4.6.3.4. The statistical validity of the algorithm as described in
section 4.6.3.5 is determined in line 19.

4.6.4.1 Computational Complexity of the Sequential Algorithm for Phase 1

Algorithm 9 utilizes an FSM algorithm to enumerate the patterns for the candidate
check. In alignment with the complexity analysis of algorithm 6, this analysis will
be orientated towards the overhead, that is caused by algorithm 9 for each pattern
returned by fsm.next.

At the very core, the FSM algorithm itself was modified to compute two separate
transaction lists. While the expected size of the second transaction list S2⊒P

for a
pattern P should be the same as for S1⊒P

, it might be much larger in the worst case.
The most extreme case, i.e.,

∣

∣S1⊒P

∣

∣ = 1 and
∣

∣S2⊒P

∣

∣ = |S2|, is possible. Additionally,
S2 might contain graphs of a different size, which is a parameter for the worst-case
asymptotic running time of the subgraph isomorphism tests. Thus, we cannot assume
the running time of our modified algorithm to have only a constant overhead w.r.t.
FSMS1,suppmin

Furthermore, the analysis in section 4.5.7.1 assigns costs to graph is the
transactions lists of a pattern. For these reasons, the running time FSMS1∪2,suppmin

will
be used as a reference in the following analysis, where suppmin is the support-based
pruning bound inflicted by the original instance and S1∪2 is the union of the two
samples S1 and S2. For the associated FSM instance

S1∪2⊒P
= {{G ∈ S1∪2 | P ⊑ G}}
= {{G ∈ S1 | P ⊑ G}} ∪ {{G ∈ S2 | P ⊑ G}}
= S1⊒P

∪S1⊒P

holds. Additionally, the frequent patterns in S1∪2 will be a superset of the frequent
patterns in S1 for a fixed absolute minimum support suppmin. Thus, the resulting
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complexity is not less than the original instance. As described in section 4.5.7.1, a
fixed suppmin value cannot be assumed. Instead, the upper bound FSMS1∪2,1 is used
for the analysis.

Given the above reasoning, we have the following costs assigned to each operation
of algorithm 9. Lines 2 to 6 are either constant-time operations or part of the FSM
algorithm. The costs to compute the utility in lines 8 and 9 can be assigned to
the transaction lists of the first and second sample as described in section 4.5.7.1.
Lines 12 to 14 are again constant-time operations. The filtering of the candidate
set C in line 15 requires some additional rationale in order to be a constant time
operation per pattern. The algorithm can resort to a utility sorted array of references
to candidate lists where each candidate hast the utility of the reference index. Since
utilityC ∈ [1, |S1|] holds, we can apply a bucket sort with O(1) insertion time, which
requires only O(|S1|) additional memory in comparison with a flat list representation.
The filtering step then only needs to discard all buckets with an index smaller than p̂1l.
In theory, this filtering step could be also placed before the return statement of the
procedure (line 22). However, this can result in a higher memory utilization, which
is a critical resource in practice. Lines 16 to 19 are again constant-time operations.
The mapping of the tuples (C,utilityC)→ C in line 22 requires a linear scan of the
candidates, which is linear in the number of observed patterns.

Overall, this results in a computational complexity of O(FSMS1∪2,1).

4.6.5 A Shared-Memory Parallel Algorithm for Phase 1

In this section, a shared-memory parallelized algorithm will be given for phase 1, which
is based on Algorithm 9. It incorporates a parallelized enumeration and candidate
evaluation of frequent patterns.

Observation 4.9. Given a fixed rejection threshold p̂1l each pattern’s candidate
status can be evaluated independently.

Since the greedy approximation algorithm of Nemhauser, Wolsey, and Fisher (cf.,
algorithm 1) does not require a deterministic tie-breaking rule to determine an object
with maximum utility (if multiple of such objects are present), the ordering of patterns
processed by the main loop in line 7 of algorithm 9 does not influence the correctness
of the algorithm. However, the premise of a fixed rejection threshold is not true for
an on the fly selection of a reference pattern (cf., section 4.6.3.7). Nevertheless, in a
shared memory environment, it is possible to share the variables and datastructures
Rmax, utilitymax, p̂1l, and C and perform synchronized updates on them.

A thread-safe candidate evaluation is given by the procedure candidateEval in
algorithm 10, which is based on lines 8 to 17 of algorithm 9. The synchronized
update of Rmax, utilitymax, and p̂1l has a duplicate nested if-clause to check if
utility2 > utilityRmax

. This avoids a synchronized check for each pattern, which can
cause lock contention. Instead, only real updates are performed in a synchronized
manner. This requires a second check to guarantee the correctness in cases where
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Algorithm 10: Shared-Memory Parallelized Candidate Evaluation
Input: subgraph pattern P ∈ G⊑ of a graph dataset G, subgraph pattern

coverage relation ⊳, supporting graphs S1⊒P
and S2⊒P

of the random
samples S1 and S2 drawn from G, confidence level α ∈ [0, 0.5]

Fixed Parameterization: minimum absolute number of Bernoulli examples
exmin ∈ N>0 (success and failure) for the
candidate test

Shared-Memory Variables: Rmax, utilityRmax
,C, p̂1l

Subprocedure Of: algorithm 11

1 procedure candidateEval(P , S1⊒P
, S2⊒P

, ⊳, α)

2 utility1 ← fS1⊒P
,⊳({P});

3 utility2 ← fS2⊒P
,⊳({P});

4 if utility2 > utilityRmax
; then

5 synchronized
6 if utility2 > utilityRmax

; then
7 Rmax ← P ;
8 utilityRmax

← utility2;
9 utilityRmax,valid ← min{utility2, |S2| − exmin − 1};

10 p̂1l ← rejectionThresh(utilityRmax,valid, |S2|, α);
� cf., lemma 4.8

11 synchronized C

12 C← {(C, utilityC) ∈ C | utilityC ≥ p̂1l};

13 if utility1 ≥ p̂1l or p̂1l < exmin or utility1 ≥ |S1| − exmin then
14 synchronized C

15 C← C ∪ (P, utility1);
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utilityRmax
was changed before the synchronized block is entered,i.e., several updates

are attempted in parallel.
It is required to parallelize the FSM algorithm itself to scale with the number of

processors since the frequent pattern enumeration of a sequential FSM algorithm is
not fast enough to saturate a parallel pipeline of candidate evaluations as given in
algorithm 10. As described in section 4.6.4.1 algorithm 9 only performs lightweight
and graph size-independent operations with a constant overhead w.r.t. enumerated
patterns and graphs in the transaction lists. The major computational work is actually
done in fsm.next, which involves the subgraph isomorphisms tests between the pattern
and each graph in the transaction lists as well as the canonical representation test
(cf., section 2.6.2). These operations have an exponential worst-case complexity w.r.t.
to the graph size and are not cheap in practice, even for moderately sized graphs.

The specific implementation of the FSM algorithm becomes relevant at this point.
This thesis will use the gSpan algorithm with a DFS code variant of [Bor07] (cf.,[Bor07] Borgelt, “Canonical

Forms for Frequent Graph
Mining”. 2007

paragraph 2.6.2.2.1) for the enumeration of frequent subgraph patterns. The gSpan
algorithm was chosen since it uses transaction lists. Embedding lists are known
to have an unpredictable behavior w.r.t. to memory consumption and performance,
i.e., some instance perform exceptionally bad while others are fast in comparison
with the transaction list setting (cf., section 2.6.2.3). Furthermore, the search space
canonization of gSpan is easy to parallelize, which will be shown in the following.

As described in section 2.6.1.1 the subgraph pattern space can be partially ordered
by the subgraph isomorphism relation and forms a poset ranked by the graph size.
The gSpan algorithm treeifies the search space by eliminating pattern representations
with non-minimal, i.e., non-canonical, DFS codes.

Definition 4.3. Let G be a graph dataset, let the vertex and edge labels in G
have an arbitrary fixed linear ordering, and let mincode : G⊑ → lvs(tdtslelvd)m

(cf., eq. (2.13)) be a representative function (of the patterns equivalence class),
that returns the lexicographically minimum DFS code of a graph pattern in G⊑.
Furthermore, let len : lvs(tdtslelvd)m → N return the length of a minimum DFS
code, i.e., zero in the case of the empty pattern [∅] and m+ 1, otherwise. Then,
MinDfsTreeG = (V,E) is called minimum DFS code tree iff

• V =
{

mincode(P )
∣

∣

∣
P ∈ [G]⊑

}

• E = {{v, w} ∈ V × V | v is prefix of w ∧ len(v) + 1 = len(w)}

MinDfsTreeG is the representative subgraph pattern space as constructed by
the gSpan algorithm when no support-based pruning is applied. It is rooted in the
empty pattern representative. Starting with this the root vertex, gSpan constructs
MinDfsTreeG adding frequent vertices and applying pattern extensions (cf., def-
initions 2.18 and 2.19) on them. Since the prefix property (cf., lemma 2.4) holds,
this construction sequence aligns with the connectivity of MinDfsTreeG . However,
the recursion tree of gSpan contains additional vertices, since non-canonical pattern
representatives are constructed by the pattern extension and pruned in a second step.
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Definition 4.4. Let MinDfsTreeG = (V,E) be a minimum DFS code tree.
Then, gSpanRecTreeG = (V ′, E′) is called (unpruned) gSpan recursion tree iff

• V ′ = V ∪ {fw(G, ·, ·) | G ∈ V } ∪ {bw(G, ·, ·, ·) | G ∈ V }, where fw(G, ·, ·)
and bw(G, ·, ·, ·) are all restricted forward and backward extensions that are
possible for a graph representative G (cf., definitions 2.18 and 2.19).

• E′ = {{v, w} ∈ V ′ × V ′ | v is prefix of w ∧ len(v) + 1 = len(w)}

Observation 4.10. Given a gSpan recursion tree gSpanRecTreeG, the con-
struction of a pattern representative codeP depends on the constructions of
ancestor pattern representatives, i.e., patterns that lay on the path from the root
to codeP itself. Thus, the patterns lineage exploration is inherently sequential.
Patterns in different branches of gSpanRecTreeG are independent and can be
explored in parallel up to their common ancestor(s).

Given this insight, a straightforward implementation could exploit the inherit
parallelism of a BFS-like exploration. However, as discussed in paragraph 2.6.2.1.2,
each poset rank of the pattern space may contain an exponential number of patterns
w.r.t. to the rank level. Keeping all patterns of a rank together with the associated
transaction lists in memory might be prohibitive for higher ranks. For this reason, the
following shared-memory parallelization will use a mixed exploration strategy, that
explores only as many branches as necessary to exploit a sufficient parallelism and
tries to keep the DFS-like fashion as much as possible.

Algorithm 11 implements a shared-memory parallelized version of algorithm 9. It
uses a priority queue priorityWorkQueue to store patterns in form of DFS codes,
i.e., vertices of the recursion tree gSpanRecTreeS1 , together with a reference to the
transaction lists of the parent. This queue holds the work, that can be processed in
parallel with the procedure processPattern (line 17). More precisely, each pattern’s
support calculation, canonical test, pruning, extension, and evaluation is considered
as an atomic unit of work. Whenever a pattern is extended, the extension is directly
enqueued into the work queue (line 24). At the other end, the loop in line 7 dequeues
these patterns to process them in parallel. The queue is prioritized by the size of the
patterns to prefer a DFS-like exploration. The algorithm keeps track of the number
of active processes (lines 10 and 26) for two reasons. First, to limit the maximum
number of parallel executions. For this, the algorithm waits in line 12 until the number
of active processes is below the maximum parallelism pmax. Second, the work queue
can be empty while instances of the procedure processPattern are still running.
Thus, additional patterns might be added to the work queue in the future. In this
situation, it is necessary to wait (line 12) until either all processes have terminated
or additional work is added to the queue. Otherwise, the abortion criterion of the
loop in line 7 may exit to early. The procedure processPattern is structured as
follows. The transaction lists for the first and second sample (S1⊒P

and S2⊒P
) are

calculated in lines 19 to 20 based on the transaction list of the parent pattern (S1⊒P ↓

145



4 Distributed Subgraph Pattern Coverage Maximization

and S2⊒P ↓
) in gSpanRecTreeS1

. The pattern exploration is pruned, if the support
of a pattern is below the rejection threshold, if it is not in canonical (i.e., minimal)
form, or if the subgraph pattern coverage relation specific pruning strategy returns
true (line 21). Then, the rightmost extensions of the pattern (cf., paragraph 2.6.2.2.1)
are calculated and added to the work queue in lines 22 to 24. Finally the pattern is
evaluated w.r.t. to algorithm 10 in line 25.

4.6.6 A Non-Distributed Streaming Algorithm for MAX-CSPC

The goal of this chapter is the development of a distributed algorithm. However,
the discussed sampling approach also leads to a non-distributed algorithm (cf., al-
gorithm 12), which will be presented in this section. Besides its inherent value in a
non-distributed setting, it will be utilized as a baseline to evaluate the distributed
algorithm in the latter experimental evaluation (cf., section 4.6.10). Furthermore, it
is useful for the evaluation of some basic properties of the sampling approach.

Algorithm 12 is an adoption of algorithm 6 for which the determination of Pmax

is replaced by the sampling approach. Thus, only the adjusted lines 5 to 12 will be
discussed here. For each pattern added to the solution set S, i.e., for each iteration of
the main loop, a random sample S (with replacement) of size 2s is drawn and split
into the two samples S1 and S2. In comparison with two separate sampling calls for
S1 and S2, the splitting approach requires only a single pass of G′. Next, algorithm 9
is called in line 7 to determine the candidate set. The latter lines 8 to 11 calculate
the coverage for each determined candidate with a single pass over G′. Last, Pmax is
determined by selecting the candidate with the highest coverage in line 12.

Algorithm 12 is shared-memory parallelized. The parallelization of phase 1 was
already discussed in section 4.6.5. Phase 2, or more precisely lines 9 to 11, is
straightforward to parallelize by running each evaluation of ⊳ in parallel. Given a
maximum parallelism pmax, the streaming fashion over G′ is preserved by ordering
the tuples (G,C) lexicographically by the orders G′ and C are kept in memory. Thus,
only the minimum number of graphs from G′ are kept in memory that are necessary
to have a sufficient parallelism.

To not clutter the code, algorithm 12 ignores the validity returned by algorithm 9 in
line 7. Handling of invalid situations would be possible, e.g., by adjusting the sample
size dynamically. However, the corner case of invalid results is very uncommon in
practice. During the following evaluation in section 4.6.10, no single instance returned
an invalid result. As such, handling this situation is a rather theoretical discussion
and will be omitted in the following.

4.6.7 A Distributed Algorithm for Phase 1

This section will present a distributed algorithm for phase 1 of algorithm 7.
The discussion related to the shared-memory parallelization (cf., section 4.6.5) made

clear that a distribution of the pattern space enumeration is necessary to scale with
a higher number of processors or workers. As already discussed for the procedure
processPattern of algorithm 11, each pattern’s support calculation, canonical test,
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Algorithm 11: Shared-Memory Parallelized Phase 1 of Algorithm 7
Input: random samples S1 and S2 of graph dataset G, subgraph pattern

coverage relation ⊳, confidence level α ∈ [0, 0.5]
Fixed Parameterization: pruning strategy pruning⊳, minimum absolute

number of Bernoulli examples exmin ∈ N>0

(success and failure) for the candidate test,
maximum parallelism pmax

Output: candidate set C and boolean validity of result
Shared-Memory Variables: Rmax, utilityRmax

,C, p̂1l, priorityWorkQueue

Subprocedure Of: algorithm 12

1 procedure phase1Parallel(S1, S2, ⊳, α)

2 Rmax ← null;
3 utilityRmax

← 0;
4 C← ∅;
5 p̂1l ← −∞;
6 priorityWorkQueue.enqueue(((),S1,S2));
7 while priorityWorkQueue 6= ∅ do
8 synchronized priorityWorkQueue

9 (codeP ,S1⊒P ↓
,S2⊒P ↓

)← priorityWorkQueue.dequeue();
� Prioritize large patterns

10 activeProcesses.atomicIncrement();
11 async processPattern(codeP ,S1⊒P ↓

,S2⊒P ↓
, ⊳, α);

12 wait until activeProcesses = 0 or (activeProcesses < pmax and
priorityWorkQueue 6= ∅);

13 validity← p̂1l ≥ exmin;
14 if C = ∅ then
15 C← {(Rmax, 0)};
16 return ({C | (C, utilityC) ∈ C}, validity);

17 procedure processPattern(codeP , S1⊒P ↓
, S1⊒P ↓

, ⊳, α)

18 P ← [codeP ];
19 S1⊒P

←
{

{G ∈ S1⊒P ↓

∣

∣ G ⊑ P
}

};
20 S2⊒P

←
{

{G ∈ S2⊒P ↓

∣

∣ G ⊑ P
}

};
21 if

∣

∣S1⊒P

∣

∣ ≥ ⌊p̂1l + 1⌋ and isMinimal(codeP ) and not pruning⊳(P)

then
22 foreach rightmost extension codeP ↑ of codeP do
23 synchronized priorityWorkQueue

24 priorityWorkQueue.enqueue((codeP ↑,S1⊒P
,S2⊒P

));

25 candidateEval(P,S1⊒P
,S2⊒P

, ⊳, α); � cf., algorithm 10

26 activeProcesses.atomicDecrement();
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Algorithm 12: Streaming MAX-CSPC

Input: graph dataset G, cardinality constraint k ∈ N>0, subgraph pattern
coverage relation ⊳, confidence level α ∈ [0, 0.5], sample size s ∈ N>0

Output: representative pattern set S, utility of S

1 S ← ∅;
2 utility

sum
← 0;

3 G′ ← G;
4 while |S| < k and G′ 6= ∅ do
5 S← randomSample(G′, 2s); � With replacement

6 (S1,S2)← split(S); � Split in half

7 (C, ·)←phase1Parallel(S1, S2, ⊳, α); � cf., algorithm 11

8 utility[]← (0, . . . , 0); � Initialize utilities with 0
9 foreach (G,C) ∈ G′ × C do in parallel � Stream over G′

10 if C ⊳ G then
11 utility[C].atomicIncrement();

12 Pmax ← arg maxC∈C utility[C];
13 S ← S ∪ {Pmax};
14 utilitysum ← utilitysum + utility[Pmax];
15 G′ ← G′ \ G′

⊲Pmax
;

16 return (S, utilitysum);
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pruning, extension, and evaluation can be bundled as a unit of work w.r.t. work
distribution. However, in contrast to the shared-memory parallelization, it is expensive
to share synchronized datastructures in a distributed environment. Maintaining a
shared work queue as done in algorithm 11 would not scale well among multiple
workers. Consequentially, it is beneficial to define a larger amount of work that can
be processed independently (cf., observation 4.10) without a per-pattern workload
balancing.

4.6.7.1 Related Distributed Frequent Subgraph Mining Algorithms

The above-described problem was already discussed in the literature and several
distributed algorithms for problem 2.5 (FSM) are described in section 2.6.2.2. While
most of these algorithms are compatible to the above-discussed sampling approach,
i.e., phase 1 of algorithm 7, the algorithm presented in [LXG14] requires a pre- [LXG14] Lin, Xiao, and

Ghinita, “Large-scale
frequent subgraph mining in
MapReduce”. 2014

defined support threshold for the filtering phase. This is problematic since the
pruning threshold p̂1l is adjusted on the fly (cf., sections 4.6.3.6 and 4.6.3.7) and a
minimum support threshold cannot be specified a priori. The other algorithms in
the transactional setting—i.e., FSM-H and DIMSpan [BH15; PJR17]—partition [BH15] Bhuiyan and Hasan,

“An Iterative MapReduce
Based Frequent Subgraph
Mining Algorithm”. 2015

[PJR17] Petermann,
Junghanns, and Rahm,
“DIMSpan: Transactional
Frequent Subgraph Mining
with Distributed In-Memory
Dataflow Systems”. 2017

the dataset and use a BFS exploration strategy that distributes all patterns of
the current rank to all the workers. This strategy offers a large amount of work
that can be processed independently on each subset of the dataset without inter-
worker communication, which makes such an approach well suited for the data-
centric MapReduce and Spark frameworks. Furthermore, if the dataset is partitioned
randomly, the expected work per partition element is equally distributed. However, as
discussed in the preliminaries (cf., paragraph 2.6.2.1.2), the combinatorial explosion
of patterns on each poset rank, has led to a preference of DFS based algorithms
in the sequential setting and the large number of frequent patterns on each poset
rank does also limit the scalability of such distributed approaches. More precisely,
a large number of workers results in a large communication overhead for pattern
distribution. Additionally, each worker’s memory must be large enough to hold the
frequent patterns of the current rank. The second drawback could be mitigated by
splitting the computation into multiple rounds, where each round processes a subset
of the patterns. However, such a mitigation precludes an embedding list support
counting as used by FSM-H and DIMSpan (which requires to track the embeddings
of the patterns for each dataset graph) and requires a transaction list approach.

These problems are not shared by ParGraph and Fractal [TZ16; PJR17], [TZ16] Talukder and Zaki,
“Parallel graph mining with
dynamic load balancing”. 2016

which distribute the patterns and not the dataset among the workers. Thus, several
DFS explorations are run on subsets of the pattern space similar to the shared-
memory parallelization in algorithm 11. Since the partitioning of the search space
into fixed subspaces does lead to an unbalanced work distribution, a work-stealing re-
balancing approach is used by both algorithms. While they are proposed for the single
graph setting, an adoption to the transactional setting is possible. Nevertheless, the
advantage to avoid the communication of the complete pattern space for distributed
support counting comes at the cost of holding the complete dataset in each worker’s
memory.
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In summary, existing approaches can be divided into two categories. They either
distribute the pattern space enumeration or the dataset graphs, but not both. As
discussed above, a major goal of the sampling approach for problem 4.2 (MAX-CSPC-
1) is the removal of the computational dependency of fG,⊳ on the complete dataset
G. Instead only a sample S of G is required to be held in memory. This makes the
above-discussed pattern distribution approaches applicable to a subset of the dataset
graphs and enables the distribution of work among workers which cannot hold the
complete dataset in memory. To the best of my knowledge, the following representative
mining algorithm is the first distributed subgraph miner, that distributes the pattern
space alongside the dataset itself. The precise implementation is given in the following.

4.6.7.2 Search Space Partitioning

Definition 4.5. Let gSpanRecTreeG(codeP ) be the subtree of gSpanRecTreeG
rooted in codeP . Then, gSpanRecTreeG(codeP ) is called work package rooted
in graph pattern representative codeP .

The recursion tree gSpanRecTreeG of gSpan was already subject to discussion in
section 4.6.5. A work package is a connected component of the recursion tree. Thus,
given the root pattern representative, the containing pattern representatives can be
constructed consecutively with a DFS- or BFS-based exploration.

Definition 4.6. The work packages for two pattern representatives codeP and
codeP ′ are said to be independent if gSpanRecTreeG(codeP ) does not contain
codeP ′ and vice versa.

Thus, similar to observation 4.10, two independent work packages do not overlap and
define a distinct amount of work that can be processed independently w.r.t. pattern
exploration. Given a bottom-up pattern exploration, the exploration starts with a
single (empty) pattern. Consequentially, a large enough set of independent work
packages have to be calculated in a preprocessing step to distribute the work among
the workers. From an algorithmic point of view, this can be done with a pruned
bottom-up exploration (e.g., DFS or BFS) of gSpanRecTreeG starting at the root
of the recursion tree. Then, the pruned branches are independent work packages.
Figure 4.13 shows the partitioning of the search tree given such a pruned exploration.

4.6.7.3 A Simple Distributed Algorithm for Phase 1 with Fixed Work Partitioning

Given the definition of independent work packages (cf., definition 4.6), algorithm 13
describes a simple distribution scheme for a fixed set of work packages in Spark.
In a first step, algorithm 13 partitions the work packages (line 2) as described in
section 4.6.7.2 by running a pruned bottom-up pattern exploration starting at the
empty pattern. Since the work packages obtained in such a way do not include the
patterns explored in the preprocessing step, the candidate evaluation as described in
algorithm 10 needs to be applied to these patterns. For this reason, a set of candidates
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1 vertex

1 edge

2 edges

pruning

Figure 4.13: The gSpan recursion tree (non-canonical pattern representations are
omitted for the sake of simplicity) partitioned into independent work
packages. The red area indicates a bottom-up exploration of the pattern
space with some pruning applied. The blue subtrees are independent
work packages defined by the subtrees root (blue squircles).

Algorithm 13: Fixed Work Distribution for Phase 1 of Algorithm 7 in Spark

Input: graph dataset G, sample fraction s ∈ Q≥0,≤1, subgraph pattern
coverage relation ⊳, confidence level α ∈ [0, 0.5], number or workers W

Output: candidate set C

1 sampleRdd← RDD(G)

.sampleExact(2sW, true)

.repartition(W);
2 (work,C)← initialWork(sampleRdd, ⊳, α);
3 workRdd← RDD(work).repartition(W);
4 C← C ∪ sampleRdd

.zipPartitions(workRdd, (s,w)→ (({{s}}, {w})))

.map((S, pwork)→ phase1Rooted(S, pwork, ⊳, α))

.collect();
5 return C;
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is returned alongside the work packages in line 2. In a second step, algorithm 13 runs a
local instance of a subgraph pattern mining algorithm for problem 4.2 (MAX-CSPC-1)
on each worker. For this, the procedure phase1Parallel of algorithm 11 was slightly
modified (named phase1Rooted) to start the exploration at the root of each assigned
work package. More precisely, phase1Rooted loops over all assigned work packages
and replaces the empty DFS code in line 6 of algorithm 11 with the work packages
root.

Lemma 4.11. Algorithm 13 is correct w.r.t. corollary 4.7.

In other words, algorithm 13 returns a pattern of maximum utility with a probability
of at least 1− α.

Proof. Let I be the set of local instances of algorithm 11, that are run by algorithm 13.
This includes one instance for each RDD partition as well as the one instance for
the initial work calculation. Each instance i ∈ I is restricted to a subset Si ⊆ G⊑
of the pattern space and calculates a candidate set Ci w.r.t. the problem Pmax,i :=
arg maxP ∈Si

fG,⊳({P}). The analysis in lemma 4.6 still applies to this restricted
problem and Ci will contain Pmax,i with probability 1− α. Since G⊑ =

⋃

i∈I Si holds,
Pmax is contained in one of the subsets Si for i ∈ I of the subgraph pattern space.
Let SPmax

be this subset. Then, Pmax is contained in SPmax
⊆ CPmax

with probability
1− α. The applicability of lemma 4.6 implies corollary 4.7.

Algorithm 13 does have two major weaknesses compared to the shared-memory
parallelization. First, the local reference pattern and rejection threshold does lead to
a less efficient support-based pruning and larger candidate sets. Second, as already
mentioned in the review of existing distributed FSM algorithms, an unbalanced
work distribution can lead to a poor worker utilization and scaling behavior. These
two weaknesses will be addressed in the following two sections (cf., sections 4.6.7.4
and 4.6.7.5).

4.6.7.4 Sharing the Rejection Threshold

In contrast to the shared-memory parallelization, the reference pattern and the
rejection threshold p̂1l are not shared among the workers. Given the analysis of
lemma 4.11, an instance i is restricted to a subset Si ⊆ G⊑ of the pattern space. As
a consequence, the local optimal pattern Pmax,i might have a lower utility than the
global optimal pattern Pmax. In this case, the values of the expected utility of the
local reference pattern Rmax,i and the expected local rejection threshold p̂1l,i are
lower than the global values. Ultimately, this leads to a less efficient support-based
pruning of the search space and larger candidate sets.

Observation 4.12. Given two distinct instances i, j ∈ I with independent,
equally sized random samples S1,i, S2,i, S1,j , and S2,j , p̂1l,i is a valid rejection
threshold for instance j and vice versa.
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The comparison of a candidate pattern with a reference pattern of another instance
aligns with the computation of the reference pattern in a non-distributed setting with
the exception, that S2,i and S2,j are not identical. However, the candidate test only
assumes, that the test statistic of the candidate pattern and the reference pattern are
independent. In fact, the samples in the non-distributed setting are only re-used for
multiple tests, since this lowers the computational complexity of the algorithm. It
is thereby possible to share the rejection threshold among the workers and mitigate
the weaknesses of local reference patterns. The Spark implementation is discussed in
section 4.6.7.6.

4.6.7.5 Work Balancing

Algorithm 13 does not balance the work after the initial partitioning of the work
packages. However, the work distribution of different work packages is usually skewed,
which leads to a poor worker utilization for a fixed work package partitioning. There
are several reasons for this skewness. For example, Dias et al. [Dia+19] mention [Dia+19] Dias et al. “Fractal:

A General-Purpose Graph
Pattern Mining System”. 2019

irregular degree distributions in the single graph setting and Talukder and Zaki
[TZ16] name different depths of the branches of the search tree. Since the subgraph [TZ16] Talukder and Zaki

“Parallel graph mining with
dynamic load balancing”. 2016

isomorphism complexity does scale exponentially with the size of a pattern in the
worst case, even small differences in the depths can result in a huge difference w.r.t. the
enumeration performance. Additionally, the canonization of pattern representatives
in the search tree is another source for a skewed distribution w.r.t. the number of
patterns in each branch of MinDfsTreeG . As discussed in paragraph 2.6.2.2.1 the
canonization of gSpan is based on sorting vertices and edges w.r.t. their labels. Let P
and P ′ be two patterns of the same rank with minimum DFS code codeP and codeP ′

and let codeP < codeP ′ . Then, as a result of the prefix property (cf., lemma 2.4),
the subtree of MinDfsTreeG rooted in codeP ′ does not contain any pattern Q ⊒ P .
Thus, given the minimum DFS code ordering of patterns of a fixed rank, more and
more patterns are excluded in the subtrees of MinDfsTreeG rooted in higher-ordered
patterns. This can lead to a very unbalanced recursion tree under some circumstances.
For example, in chemistry, carbon atoms are so frequent that they are the majority of
atoms and are contained in nearly all molecules. If the carbon label is sorted first in
this setting, this can lead to an accumulation of the majority of the frequent patterns
in a single work package rooted at the pattern with a single carbon atom.

Observation 4.13. The patterns in priorityWorkQueue of algorithm 11 define
independent work packages.

In retrospect, the shared-memory parallelization already keeps independent work
packages in the work queue. The discussion w.r.t. the initial work calculation for
algorithm 13 with a bottom-up exploration (as depicted in fig. 4.13) already showed,
how independent work packages can be obtained. Of course, this method still works,
when the root of the bottom-up exploration is not the empty pattern, but the root of a
work package. Since all parent patterns of the patterns in the work queue are already
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evaluated, the work queue actually represents the front of a combined bottom-up
exploration of the recursion tree.

In contrast to the fixed partitioned distributed algorithm 13, the work packages in
algorithm 11 are not explored entirely, but intermediate work packages are directly
fed back to the global work queue. On the one hand—as discussed before—this
fine-grained work synchronization among the different workers is not desired in the
distributed setting since it causes a huge synchronization overhead. On the other hand,
the other extreme—of no work synchronization after an initial work partitioning—
leads to a poor worker utilization. Thereby, it is beneficial to synchronize work only
when needed, i.e., if workers are idle. In this situation, a part of the work packages in
priorityWorkQueue of the active (non-idle) workers can be assigned to the idle ones
in a work-stealing fashion.

4.6.7.6 An Optimized Distributed Algorithm for Phase 1

This section presents an optimized distributed algorithm (cf., algorithm 16) for phase 1
of algorithm 7, which is built on top of algorithm 13 and integrates a shared rejection
threshold (cf., section 4.6.7.4) and work balancing (cf., section 4.6.7.5). Algorithm 16
is split into the subprocedures given in algorithms 14 and 15, which are adoptions of
the shared-memory parallelized algorithms 10 and 11.

Both of the above optimizations are based on worker to worker communication.
As discussed above, communication may be expensive in a distributed environment,
especially if shared values need to be synchronized frequently in a blocking fashion.
In fact, Spark does not have any mechanism to communicate between workers during
the runtime of a spark job. Thus, using Spark alone would require to stop all the
instances, collect their local state (i.e., the rejection threshold and the work queue)
in the master, combine the local states to a global one, and resume the instances
with w.r.t. the global state. While Spark can keep the local instances in the worker’s
memory without persisting the intermediate results, the synchronization over the
master is still expensive. This is especially true since Spark does not provide an
asynchronous collection of partial results from submitted jobs. Thus, it is not possible
to end an instance as soon as a new rejection threshold is found and have the result
immediately available in the master. Instead, the master has to wait until all other
instances are finished to retrieve the updated rejections threshold. This also means
that it is impossible to stop instances depending on events that occur in other instances.
Consequentially, a pure Spark implementation would need to implement polling with
a pre-defined polling interval. Such an interval is a performance-critical parameter
that will undoubtedly result in unnecessary synchronizations and/or periods in which
some local instances are idle or have out-of-date pruning bounds. In terms of the
shared rejection threshold, this means a less efficient pruning power than possible.
In terms of work balancing, this means a poor worker utilization. For this reason,
the latter implementation will use the distributed Apache Ignite10 database to share
global, i.e., distributed, information. Ignite provides ACID11-conform transactions

10https://ignite.apache.org/
11ACID: atomicity, consistency, isolation, durability
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Figure 4.14: Layout of the main datastructures for the distributed computation of
problem 4.2 (MAX-CSPC-1). Blue boxes indicate worker local datastruc-
tures. Red datastructures are subject to inter-worker synchronization or
balancing. Distributed atomic variable names are depicted by underlined
text.

as well as atomic updates of distributed variables, guaranteeing race condition free
non-blocking updates.

A reason to not allow any communication between workers in Spark is, that Sparks
fault tolerance is built on the immutability and reproducibility of intermediate results.
This allows the spark job scheduler to re-compute results tracking the tasks lineage.
After loosing a worker due to some failure, it can re-compute results based on still
intact intermediate results (cf., section 2.2.4.2). Consequentially, sharing values
between spark jobs can break this property if not used carefully. The same is true for
randomized algorithms, where intermediate results are not deterministic. Algorithm 16
will preserve fault tolerance if intermediate candidate sets of each partial exploration
instance is persisted during work balancing.

Figure 4.14 gives an overview of the layout of the main datastructures of algorithm 16.
Each worker has two local independent samples from the dataset and a local candidate
set. Additionally, each worker has a set of local work packages which are subject to
work balancing. Finally, each worker has a local view of globally distributed atomic
variables to share the pruning threshold and the total number of active workers for
work balancing.

Given the fact that the rejection threshold is monotonically increasing, the workers
can asynchronously update their local rejection threshold with the global value
or update the global value, whenever the two differ from each other. The local
exploration can run without a blocking rejection threshold synchronization. Whenever
the rejection threshold increases, i.e., by a local update or by an external update from
another worker, the candidates are filtered accordingly. Algorithm 14 is an adoption of
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Algorithm 14: Shared-Memory Parallelized Candidate Evaluation with Dis-
tributed Rejection Threshold Sharing
Input: subgraph pattern P ∈ G⊑ of a graph dataset G, subgraph pattern

coverage relation ⊳, supporting graphs S1⊒P
and S2⊒P

of the random
samples S1 and S2 drawn from G, confidence level α ∈ [0, 0.5]

Fixed Parameterization: minimum absolute number of Bernoulli examples
exmin ∈ N>0 (success and failure) for the
candidate test

Shared-Memory Variables: Rmax, utilityRmax
,C, p̂1l, p̂1l,oldglobal

Distributed Atomics: p̂1l,global

Subprocedure Of: algorithm 15

1 procedure candidateEvalDistrib(P , S1⊒P
, S2⊒P

, ⊳, α)

2 utility1 ← fS1⊒P
,⊳({P});

3 utility2 ← fS2⊒P
,⊳({P});

4 if utility2 > utilityRmax
; then

5 synchronized
6 if utility2 > utilityRmax

; then
7 Rmax ← P ;
8 utilityRmax

← utility2;
9 utilityRmax,valid ← min{utility2, |S2| − exmin − 1};

10 p̂1l ← rejectionThresh(utilityRmax,valid, |S2|, α);
� cf., lemma 4.8

11 if p̂1l > p̂1l,global then
12 async updateGlobalRejectionThresh(p̂1l);

13 if p̂1l,global > p̂1l,oldglobal then
14 synchronized p̂1l,oldglobal

15 if p̂1l,global > p̂1l,oldglobal then
16 p̂1l,oldglobal ← p̂1l,global;
17 synchronized C

18 C← {(C, utilityC) ∈ C | utilityC ≥ p̂1l,global};

19 if utility1 ≥ p̂1l,global or p̂1l,global < exmin or utility1 ≥ |S1| − exmin then
20 synchronized C

21 C← C ∪ (P, utility1);
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algorithm 10 which implements rejection threshold sharing between different instances.
The variable p̂1l is now split into three different variables: (a) p̂1l, which remains the
rejection threshold associated with the local reference pattern, (b) p̂1l,global, which
is a local view of the globally shared rejection threshold, i.e., the maximum of all
local rejection thresholds p̂1l, and (c) p̂1l,oldglobal which is a local copy of p̂1l,global

to track changes and act accordingly. While p̂1l,global is a view of the global Ignite
atomic, reading the value of p̂1l,global is a local non-blocking operation, that does
not involve communication with the Ignite instance. Instead, global changes of the
Ignite instance are asynchronously pushed to the workers, i.e., the update occurs in a
separate thread. Thereby p̂1l,global may increase its value at any time. This has the
effect, that comparisons for conditional executions may be outdated when the value is
used in some operation (cf., lines 12 and 18) or that composed conditionals (cf., line 19)
may use mixed values. In line 12, the global rejection threshold is updated with
a larger local value in the procedure updateGlobalRejectionThresh. This update
needs to take care, that it never updates the global value based on a comparison with
an outdated view. Ignite provides atomic updates, that do not only have the update
value as parameter, but also the expected global value. Whenever the global value
differs from the expected value, the update is not performed. In such a situation, it is
possible to re-check the condition against the updated global value and repeat until
the update succeeds or the local value is no longer larger than the global one. Since
this checked update needs to block in each iteration until the result is available to
the worker, the whole procedure is performed asynchronously in a separate thread
(async keyword). The local view of the global value p̂1l,global is directly increased to
the local update value and is increased in a later step if the global value was changed
to a higher value concurrently. In line 18, the conditional execution only serves
performance reasons, i.e., the candidate list only needs to be filtered w.r.t. to outdated
candidates, whenever the rejection threshold actually changes. Thus, filtering with a
better (i.e., in between increased) threshold is still a correct operation and would have
been performed in a future iteration otherwise. A similar effect can be observed for
line 19. Using an updated rejection threshold for some of the comparisons may lead
to a rejection of the pattern. Anyway, this pattern would have been filtered from the
candidate list in the next iteration. The only situation where the asynchronous update
may cause different results is when the global value is updated after the local worker
has performed the last candidate list filtering in line 18. Thus, the candidates set
may contain some outdated candidates below the rejection threshold. This case will
be handled by introducing an extra filtering step after all workers have finished their
work in algorithm 16 (line 13). In comparison with algorithm 10, the filtering of the
candidate set is now based on changes to the global rejection threshold. As discussed
for the update of the reference pattern in line 6, the shared-memory synchronization
is only performed if an updated value is detected to avoid lock contention, which
requires a second identical comparison to rule out concurrent modifications.

In contrast to the asynchronous update of the rejection threshold, work balancing is
performed with dedicated Spark synchronization points. Whenever a worker becomes
idle, it decrements the active worker’s atomic. If the total number of active workers
falls below a certain threshold, the Spark workers will halt their computation and
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return the remaining work packages to the master. The master then applies a re-
distribution strategy to assign the work packages to the workers and continues the
computation. The reason to not share the work packages via ignite is fault tolerance.
When the work packages and the candidate sets are persisted at synchronization
points, Spark can re-schedule failed tasks on workers. Persisting intermediate results
is necessary since the worker’s output is non-deterministic if it is halted before the
work packages are fully processed. This is a side effect of the non-deterministic
computation speeds in combination with the share-memory synchronizations and the
timed interruption of the spark tasks.

Algorithm 16 is an adoption of algorithm 13 which implements work balancing. It
uses algorithm 15 (an adoption of algorithm 11) to partially explore work packages.
Thus, only changes w.r.t. algorithm 15 are discussed for algorithm 15. Similar to
phase1Rooted, algorithm 15 starts the exploration at the root of the work packages
but also implements premature termination for work balancing. To start a local
computation, algorithm 15 picks up a state to resume from, which is the local
reference pattern Rmax, its utility utilityRmax

, and the candidate set C. Additionally,
the assigned work packages are added to the work queue in lines 8 and 9 to initialize
the algorithm. Since these work packages may come from another worker with different
samples and a different gSpanRecTree the old parent transaction lists of the work
packages root are no longer valid. Consequentially, the complete samples replace the
parent transaction lists for work packages. To implement the premature termination
for work balancing, the work loop in line 10 does exit whenever the number of active
workers falls below a specified minimum. To avoid situations in which synchronization
occurs too frequently, it is possible ot specify a minimum number of iterations before
the work balancing criterion becomes effective. If the computation is terminated w.r.t.
work balancing, the work loop may exit while there are still active processes that
may lead to additions to the candidate set C. Thus, it is necessary to add another
wait statement after the work loop in line 16. Before termination, phase1Partial

does decrement the distributed variable activeWorkers line 17. Finally, algorithm 15
returns the remaining work alongside the internal state to continue the work in the
next round of the partial pattern exploration.

Algorithm 16 actually distributes the work among the workers and is implemented
using Spark. First, it samples12 the datasetRdd in line 2. This RDD represents the
distributed graph dataset, that must be provided by the calling algorithm. The sample
is partitioned, such that each worker w has local access to a sample Sw of two times
the single sample size, which is then split into the samples S1,w and S2,w with size s
in algorithm 15. Furthermore, the algorithm will maintain a fixed partitioning, such
that the samples are never moved over the network to another worker. Later, each
worker will execute one instance of the partial miner, i.e., algorithm 15. The RDD
resultRdd will store the result of the partial miner. More precisely, this is the internal
state of the miner to resume the work after work balancing and the unprocessed
work packages which can be re-distributed among the workers. The resultRdd is
initialized by the procedure initialWork in line 4. This procedure follows the same

12The boolean parameter of sampleExact causes a sample with replacement (cf., section 2.2.4.2).
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Algorithm 15: Shared-Memory Parallelized Partial Search Space Exploration
for Phase 1 of Algorithm 7 with Premature Termination for Work Balancing
Input: random sample S of graph dataset G, subgraph pattern coverage

relation ⊳, confidence level α ∈ [0, 0.5], work packages work, resume
state state = (Rmax,init, utilityRmax,init

,Cinit)
Fixed Parameterization: pruning strategy pruning⊳, minimum number of

iteration before premature termination
iterationsmin, the minimum number of active
workers activeWorkersmin, maximum
shared-memory parallelism pmax

Output: resume state state, remaining work packages
Shared-Memory Variables: utilityRmax

, C, p̂1l, priorityWorkQueue,
activeProcesses

Distributed Atomics: p̂1l,global, activeWorkers

Subprocedure Of: algorithm 16

1 procedure phase1Partial(S, ⊳, α, work,
state = (Rmax,init, utilityRmax,init

,Cinit))

2 (S1,S2)← split(S);
3 Rmax ← Rmax,init;
4 utilityRmax

← utilityRmax,init
;

5 C← Cinit;
6 p̂1l ← −∞;
7 activeProcesses← 0;
8 for codewproot ∈ work do
9 priorityWorkQueue.enqueue((codewproot,S1,S2));

10 while priorityWorkQueue 6= ∅ and
(activeWorkersmin < activeWorkers or iterationsmin < iterations) do

11 synchronized priorityWorkQueue

12 (codeP ,S1⊒P ↓
,S2⊒P ↓

)← priorityWorkQueue.dequeue();
� Prioritize large patterns

13 activeProcesses.atomicIncrement();
14 async processPattern(codeP ,S1⊒P ↓

,S2⊒P ↓
, ⊳, α);

15 wait until activeProcesses = 0 or (activeProcesses < pmax and
priorityWorkQueue 6= ());

16 wait until activeProcesses = 0;
17 activeWorkers.atomicDecrement();
18 return ((Rmax, utilityRmax

,C), priorityWorkQueue);

19 procedure processPattern(codeP , S1⊒P ↓
, S1⊒P ↓

, ⊳, α)

20 P ← [codeP ];
21 S1⊒P

←
{

{G ∈ S1⊒P ↓

∣

∣ G ⊑ P
}

};
22 S2⊒P

←
{

{G ∈ S2⊒P ↓

∣

∣ G ⊑ P
}

};
23 if

∣

∣S1⊒P

∣

∣ ≥ ⌊p̂1l,global + 1⌋ and isMinimal(codeP ) and not pruning⊳(P)

then
24 foreach rightmost extension codeP ↑ of codeP do
25 synchronized priorityWorkQueue

26 priorityWorkQueue.enqueue((codeP ↑,S1⊒P
,S2⊒P

));

27 candidateEvalDistrib(P,S1⊒P
,S2⊒P

, ⊳, α);
� cf., algorithm 14

28 activeProcesses.atomicDecrement();



Algorithm 16: Optimized Distributed Algorithm for Phase 1 of Algorithm 7
in Spark

Input: graph dataset RDD datasetRdd (of some graph dataset G), subgraph
pattern coverage relation ⊳, confidence level α ∈ [0, 0.5], number or
workers W , sample fraction s ∈ Q≥0,≤1

Fixed Parameterization: pruning strategy pruning⊳, minimum number of
iteration before premature termination
iterationsmin, the minimum number of active
workers activeWorkersmin

Output: candidate set C and boolean validity of result
Distributed Atomics: p̂1l,global, activeWorkers

Subprocedure Of: algorithm 17

1 procedure phase1Distrib(datasetRdd, ⊳, α, W , s)
2 p̂1l,global ← −∞;
3 sampleRdd← datasetRdd

.sampleExact(2sW |G|, true)

.repartition(W)

.persist();
4 resultRdd← initialWork(sampleRdd, ⊳, α)

.repartition(W)

.persist(); � resultRdd of type (state,work)
5 work← resultRdd.map((state, pwork)→ pwork).collect();
6 while work 6= ∅ do
7 activeWorkers←W ;
8 workRdd← distributeWork(work, W);
9 prevResultRdd← resultRdd;

10 resultRdd← prevResultRdd.map((state, pwork)→ state)

.zipPartitions((sampleRdd,workRdd), zipFunc())

.map((state,S, pwork)→ phase1Partial(S, ⊳, α, pwork, state))

.persist();
11 work← resultRdd.map((state, pwork)→ pwork).collect();
12 prevResultRdd.unpersist();

13 sync(p̂1l,global); � Make sure the local view is up to date

14 C← resultRdd.map((state, pwork)→ state.C)

.filter((C, utilityC)→ utilityC ≥ p̂1l,global)

.map((C, utilityC)→ C)

.collect();
15 if C = ∅ then
16 C← resultRdd.map((state, pwork)→ state)

.max(compareBy(state.utilityRmax
))

.map(state→ state.Rmax)

.collect();

17 resultRdd.unpersist();
18 return C;

19 procedure zipFunc()

20 return
(stateSeq, sampleSeq,workSeq)→ (stateSeq[0], {{sampleSeq}}, {workSeq});
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logic as the simple distribution scheme of algorithm 13. Thus, a single instance of
algorithm 15 is executed on a single worker with a special pruning criterion to create
initial work packages. The resultRdd will only contain a single result tuple although
it is partitioned among the workers. Thus, all other workers with empty partition
element will resume from an empty state in the following. The algorithm then collects
the work in the master (line 5 and line 11 in later iterations) and re-distributes it
with the procedure distributeWork in line 8, i.e., it creates an RDD workRdd with
W partitions. With these datastructures at hand, the actual distributed pattern
exploration and discovery is performed in line 10. For this, the miners’ state of the
previous round (or pre-loop initialization) is combined with the samples and the
distributed work via zipPartitions and fed to an instance of algorithm 15 on each
worker. It is important to understand, that the zip operation does not involve any
movement of the state or sample across the network, since the combination occurs
locally on each worker, i.e., partition element. This process is repeated until no further
work packages are returned by the miners, i.e., the search space has been explored
completely. As discussed above, the premature termination of partial instances may
result in candidate lists with outdated candidates. Thus, a final filtering step is
performed in line 13 before collecting the resulting candidates. In alignment with
algorithm 8, the global maximal reference pattern is added to C whenever C is empty.
Last, the candidate list is returned.

Intermediate results of algorithm 16 are persisted via the procedure persist and
unpersisted via unpersist (cf., section 2.2.4.2). Otherwise, intermediate results would
have to be re-computed if accessed multiple times. It is important to recall, that
RDDs are lazily evaluated. Thus, data is only persisted after an action is performed.
For example, line 10 does not cause any distributed computation. Instead, the
computation is only performed after calling the collect action in line 11. Therefore,
unpersisting an RDD must be handled with care, especially in the case of succeeding
RDDs. More precisely, succeeding RDDs must have been evaluated and persisted
before unpersisting the precursor.

4.6.8 A Distributed Algorithm for MAX-CSPC

Given the distributed algorithm 16 for phase 1 of algorithm 7, this section will describe
the distributed algorithm 17 for problem 4.1 (MAX-CSPC). Since phase 2 is basically
the distributed computation of sums, there is no dedicated section to describe it.
Instead, this section will directly focus on the implementation, which is an adoption
of algorithm 12 in the distributed setting.

In a fist step, algorithm 17 creates an RDD of the dataset. Reading the dataset in
Spark is a distributed operation on a shared file system. Thus, G is just a lightweight
reference to the complete dataset and the dataset does not have to be held in memory
as a whole. Instead, Spark may split the dataset into small chunks that fit into the
worker’s memory and process the data in a streaming-like fashion. If the memory is

161



Algorithm 17: Distributed Algorithm for MAX-CSPC in Spark

Input: graph dataset G, cardinality constraint k ∈ N≥1, subgraph pattern
coverage relation ⊳, confidence level α ∈ [0, 0.5], number or workers W ,
sample fraction s ∈ Q≥0,≤1

Fixed Parameterization: pruning strategy pruning⊳, minimum number of
iteration before premature termination
iterationsmin, the minimum number of active
workers activeWorkersmin

Output: candidate set C and boolean validity of result
Distributed Atomics: p̂1l,global, activeWorkers

1 S ← ∅;
2 utility

sum
← 0;

3 datasetRdd← RDD(G).persist();
4 coverRdd← RDD(∅);
5 while |S| < k and datasetRdd.count() 6= 0 do
6 coverRdd.unpersist();
7 C←indexedSet(phase1Distrib(datasetRdd, ⊳, α, W , s));

� cf., algorithm 16

8 broadcast(C);
9 coverRdd← datasetRdd.map(G→ (G, coverVec(G))).persist();

10 utilities← coverRdd.map((G,V )→ V ).reduce((V1, V2)→ V1 + V 2);
� V is vector; reduce uses vector algebra

11 datasetRdd.unpersist();
12 i← arg maxi∈N<|C| utilities[i];
13 S ← S ∪ {C[i]};
14 utilitysum ← utilitysum + utilities[i];
15 datasetRdd← coverRdd.filter((G,V )→ V [i] = 0)

.map((G,V )→ G)

.persist();

16 datasetRdd.unpersist();
17 coverRdd.unpersist();
18 return (S, utilitysum);
19 procedure coverVec(G)

20 return (1⊳((C[0], G)),1⊳((C[1], G)), . . . ,1⊳((C[|C| − 1], G)));
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not sufficient, intermediate results are persisted to disk13. The loop in line 5 then
performs the iterative approximation algorithm as described in eq. (4.2) and Lines 7
to 13 solve problem 4.2 (MAX-CSPC-1) with probability 1−α. For this, the candidate
set is computed by algorithm 16 in line 7. The set is indexed, such that a candidate
pattern Ci can be identified by its index i and broadcasted to all the Spark workers in
line 8. Broadcasting is a more efficient way to copy data to all workers, than providing
the data as an argument to a function call, since it uses a tree-like distribution strategy
and does not send the data from the master to all workers directly. Furthermore,
broadcasted data is accessible by all tasks of the worker, avoiding redundancy in
case of multiple tasks per worker. After broadcasting the candidates, a cover vector
is computed for each dataset graph G in line 9, which contains a 1 at position i if
Ci ⊳ G. The vectors are summed up in line 10 to compute the overall utilities for each
candidate. The index of the candidate with maximum utility PmaxC

is computed in
line 12, such that PmaxC

can be added to S in line 13 and its utility can be added
to the overall utility utiltiysum in line 14. In a last step of the loop, the dataset is
filtered to the uncovered graphs in line 15. Finally, the solution set S and its utility
are returned in line 18

4.6.9 Analysis

4.6.9.1 Error Accumulation over Multiple Iterations

Since, the maximum error probability α (cf., corollary 4.7) is given for a single
iteration of algorithms 12 and 17, the probability of multiple errors increases for larger
solution sets or iterations (parameter k) respectively. To bound the overall error
probability, it is, therefore, necessary to apply a multiple hypothesis testing correction
w.r.t. k. A straightforward solution would be to apply the Bonferroni correction (cf.,
section 2.3.4.1) and use α′ = α

k
as the corrected parameter.

In the worst case, it may happen, that the utility of an erroneous pattern returned
by algorithms 12 and 17 is equal to 1. Since the random samples are drawn with
replacement only a single dataset graph may be contained in the sample s times.
Thus, in theory, this worst case can be observed for any dataset. Given this worst-case
scenario, an overall utility of at least (1− 1

e
+ ǫ)OPTk′ can still be expected, where

k′ := (1 − α)k is the number of expected correct results and OPTk′ is the optimal
utility w.r.t. a solution size of ⌊k′⌋. Such a solution is always possible if erroneous
patterns are simply ignored during analysis. In practice, however, it is extremely
unlikely that the above-discussed worst case actually occurs. The nature of the
binomial test makes it much more likely, that patterns with close to the optimal utility
are chosen than patterns with relatively low utility (experimental evaluation of this
statement is given in section 4.6.10.3).

Furthermore, errors are unlikely to accumulate as a sum of errors. Instead, it is likely
that an error can be (partially) corrected afterwards. Let iteration i with 1 ≤ i ≤ k

13Spark actually provides multiple persistence strategies (cf., section 2.2.4.2). Some of them have
the mentioned properties and some do not. It is assumed that an appropriate strategy is chosen in
the following.
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return the first erroneous pattern. Let furthermore Si,exact be the exact non-erroneous
solution to iteration i. Then the algorithm can be divided into two stages. First, the
stage of solution elements 1 to i (inclusive) (denoted by S1...i) and second, the stage
of solution elements Si+1...k to be added later. Thus the second stage operates on the
problem instance G2 := G \ G⊲S1...i

with the remaining cardinality budget k2 := k − i.
During this second stage, it is always possible to select a solution Sexact,i+1...k, that
would have been selected if the error in iteration i would not have occurred. There are
two reasons a part of the error is most probably corrected later on: First, there are
some dataset graphs Gmissed := G⊲Si,exact

\ G⊲Si
that are uncovered by Si and covered

by Si,exact. Vice versa, there may also exist some graphs Gadded := G⊲Si
\G⊲Si,exact that

are covered by Si and uncovered by Si,exact. Since |Gmissed| > |Gadded|, the overlap
of covered graphs between Sexact,i+1...k and S1...i is expected to be smaller than the
overlap between Sexact,i+1...k and S1...i−1 ∪ Si,exact. Thus, a part of the lost utility
is most likely re-added during the second stage. Second, there may exist a better
solution Si+1...k, than Sexact,i+1...k and such a solution would also compensate for
some of the lost utility.

Last, it should be noted, that erroneous solutions may not have a monotonically
decreasing utility with each iteration. It may even happen, that patterns with similar
utility and a low overlap of covered graphs simply flip the positions in the iteration
order.

4.6.9.2 Computational Complexity

4.6.9.2.1 Non-Distributed Streaming Algorithm In this paragraph, algorithm 12
will be analyzed w.r.t. its streaming model properties and its work complexity.

The streaming analysis is based on the streaming model of Henzinger, Raghavan,
and Rajagopalan [HRR98]. It allows multiple passes over a finite stream of data[HRR98] Henzinger,

Raghavan, and Rajagopalan
“Computing on data

streams”. 1998

objects. Subject of interest is the number of passes and the memory complexity s.t.,
the stream length. For each solution element, algorithm 12 requires three passes over
the dataset: The first pass is required for the sampling in line 5, the second one is
required to calculate the utility for each candidate pattern C ∈ C in line 9, and the
third pass is necessary to filter the dataset in line 15. Thus, the algorithm terminates
after a maximum of 3k passes. The memory complexity of the algorithm is dominated
by the random sampling. For this, it is required to know the number of graphs in the
dataset, which results in a logarithmic asymptotic worst case complexity. In practice
this number is negligible, especially in comparison to the memory requirements of the
FSM algorithm and the candidate patterns. Nevertheless the asymptotic worst case
memory complexities for corresponding parts do only depend on the sample size s,
which is a constant.

In the following, the asymptotic worst-case work complexity of algorithm 12 is
discussed. The work of algorithm 12 can be divided into two parts: Lines 8 to 12,
which corresponds to phase 2 of algorithm 7, and the rest of the algorithm, which
includes phase 1 (implemented in algorithm 11).

In the worst case, the candidate set C may contain each enumerated pattern of
the pattern space exploration, which may be the complete subgraph pattern space
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of the sample, i.e., C ⊆ S1⊑
⊆ G⊑ or the output of the FSM algorithm with a

support threshold of 1 on S1. This worst-case bound can be actually reached for
some subgraph pattern coverage relations. For example, a uniform dataset, which is a
dataset of isomorphic graphs, would have the same support value for each pattern. In
this case, no pattern could be rejected by the hypothesis test. For the relative size
thresholded subgraph pattern coverage relation ⊳t smaller patterns would be discarded.
Nevertheless, in the worst case, this is only a tiny fraction of the patterns, given the
combinatorial explosion of larger patterns in complete or dense graphs. However, in
practice, the pattern space is usually much more diverse and the candidate set is
usually much smaller than the complete subgraph pattern space of S1, i.e., C≪ S1⊑

(cf., the experimental evaluation section 4.6.10). To evaluate the candidate set, each
of the patterns has to be compared with each dataset graph, involving the subgraph
isomorphism test of the subgraph pattern coverage relation ⊳. Let w(P ⊳ G) be the
work that is required to evaluate the relation P ⊳ G) and wmax(⊳) the maximal work
required for any P ∈ S1⊑

and G ∈ G, then the overall worst-case work complexity for
phase 2 is in O(

∑

P ∈S1⊑
,G∈G w(P ⊳ G)) or O(

∣

∣S1⊑

∣

∣ |G| wmax(⊳)).

The work of the rest of algorithm 12, except lines 5 and 15, is asymptotically
identical to the running time of algorithm 6 (cf., section 4.5.7.1 for the corresponding
analysis) in relation to the sample S (instead of complete dataset G). Besides the
sampling in line 5 and the differences in algorithm 11, the main loop of algorithm 12
aligns with algorithm 6. It will be shown in the following, that algorithm 11 does only
have a constant overhead w.r.t. to the corresponding lines 5 to 14 in algorithm 6. For
this, the relevant differences between algorithm 6 and algorithm 9 will be discussed
first and the parallelization of algorithm 9 given by algorithm 11 will be discussed in
a second step.

From a complexity point of view, algorithm 9 and the corresponding parts in
algorithm 6 differ in three main aspects: (a) The support-based pattern space
pruning is bound by the rejection threshold of the candidate test and not by the
utility value. (b) Algorithm 9 maintains a second transaction list S2⊒P

for each
pattern. (c) The candidate set C replaces the single maximal pattern Pmax and C is
filtered whenever a new reference pattern is found. The analysis of algorithm 6 in
section 4.5.7.1 relates the asymptotic upper bound to the running time of the FSM
algorithm with a support threshold of 1 donated by FSMGi,1. While the rejection
threshold (cf., item a) implies a less strict pruning power in comparison with the
utility-based pruning, it is obviously respecting the bound FSMGi,1. The union of the
two transaction lists S1⊒P

and S2⊒P
(cf., item b) correspond to a single transaction

list S⊒P . Since the running time of algorithm 12 is related to S, the transaction
list S⊒P is actually part of the related frequent subgraph mining instance with a
minimum support of 1 and the analysis of algorithm 6 is still valid. Adding a pattern
to the candidate set C (cf., item c) is a constant time operation. However, the filtering
of the candidates in line 15 requires a linear scan of the candidates if implemented
naively. Using a bucket sorted candidate set instead of an unsorted set or list solves
this issue. In this case, insertions are still a constant time operation and the filtering
only requires the deletion of buckets with lower values. The amortized costs are linear
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in the number of additions to C and the size of S1, which is an upper bound for the
utility. Thus, the management of the candidate set only adds a constant overhead to
the overall work complexity.

The parallelization of algorithm 9, i.e., algorithm 11 and the related subprocedure
algorithm 10, does not change many aspects w.r.t. to work complexity. Besides some
synchronization blocks, the main difference is to maintain a sorted priority queue for
the work packages. Since the priority values are limited by maximum pattern size,
it is again possible to resort to a bucket sorted data structure, resulting in constant
time enqueue and dequeue operations. Thread synchronization can be considered a
constant work operation for modern hardware and a limited number of processors.

In summary, the complexity of the algorithm is divided into two parts related to
phase 1 and phase 2. The asymptotic worst-case work complexity is the same as for
the exact algorithm algorithm 6. The complexity of phase 2 is heavily influenced by
the actual candidate set cardinality. The work for the remaining lines 5 and 15 of
algorithm 12 is linear in |G| and can be asymptotically subsumed by the work assigned
to phase 2.

4.6.9.2.2 Distributed Algorithm Since Spark does not provide asymptotic worst-
case running times for all RDD operations, algorithm 17 makes use of a variety of
different RDD operations, and network effects are hard to estimate during analysis,
no exact worst-case analysis of the work required by algorithm 17 will be given here.
Nevertheless, some key aspects of performance are discussed below.

First, it should be noted, that phase 2 is a simple counting problem and that the
key phase of interest w.r.t. to distribution performance is phase 1. During this phase
algorithm 16 divides the gSpan recursion tree gSpanRecTree into independent
work packages (cf., definition 4.6), i.e., non-overlapping units of work. These work
packages are processed by algorithm 15 which is the partial variant of algorithm 11.
Thus, the accumulated work of all instances of algorithm 15 is expected to be very
close to the work of the pure shared memory variant. Minor deviations of the necessary
work are the result of the following factors: (a) The overhead necessary to update the
distributed atomics p̂1l,global and activeWorkers. These operations are lightweight
and limited in their frequency. The rejection threshold can be updated at most
one time for each pattern and at most as often as the optimal utility value of a
reference pattern (i.e., utilityRmax

). The number of active workers is only updated
at most once per instance. In case of update conflicts, the update is repeated, but
in each repeat, the number of conflicting updates is reduced by at least one pending
concurrent update. (b) The re-computation of transaction lists for distributed work
packages root patterns (transaction lists are initialized with the full sample in line 9
of algorithm 15). However, in the worst-case analysis of the non-distributed algorithm
(cf., paragraph 4.6.9.2.1), these transaction lists did contain all graphs from the
sample. Additionally, in practice, not many synchronization rounds are necessary (see
experiments below). Thus, a large amount of patterns is usually processed before
the termination of the partial miner, resulting in a negligible practical impact of this
aspect. (c) The different exploration order, caused by a more parallelized exploration
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of the search space and the distribution strategy of the work packages. The former
aspect is also observable for the shared-memory parallelization. The direction of this
running time effect is unclear, but a more random exploration order might actually
help to find good reference patterns with good pruning bounds faster at the beginning.
Thereby, it can even have a positive running time effect in cases where the sequential
algorithm fully explores low utility subspaces of the search space at the beginning
of the algorithm. (d) The delayed update of the rejection threshold. The delay
causes some miners to run with less than optimal pruning power for a short period of
time. However, a practically observable impact is unlikely given the usually quite low
network latency compared to the overall running time of the algorithm.

A larger impact on the performance of the algorithm can be expected due to
work package synchronization itself. This synchronization results in multiple rounds
of distributed computation for each solution element of algorithm 16. While the
candidate lists and samples are kept in the worker’s memory and are not transferred
over the network in between these rounds, synchronization needs some time in
order to await the termination of all miners, collect the miners’ work packages and
redistribute them. As discussed during the presentation of the algorithm, too frequent
synchronizations thereby might hurt the performance of the algorithm while too few
synchronizations might lead to a low utilization of available resources. The parameters
activeWorkersmin and iterationsmin were introduced to algorithm 16 to avoid
situations in which some miners, which run out of work very fast, cause very frequent
synchronization. Since the recursion tree gSpanRecTree is limited in depth by the
pattern size the cardinality of higher-level poset ranks should usually be high enough
for a good parallelization. Nevertheless, the DFS-like exploration order may result
in a situation where some miners only get very small work packages assigned. In
theory, this might even result in a linear number of synchronization rounds w.r.t.
to the number of processed patterns if more than W − activeWorkersmin workers
get constant-sized work packages assigned in each round. However, given a random
distribution strategy of work packages, this event is unlikely.

4.6.10 Experimental Evaluation

The goal of this chapter is the evaluation of the sampling-based approach w.r.t.
performance and quality. A focus is put on the influence of the sample cardinality on
the candidate set cardinality and the pruning power as well as the effectiveness of
the approach w.r.t. to different algorithm parametrization using the non-distributed
streaming algorithm 12. The distributed algorithm 17 is evaluated regarding the
practical scaling behavior in dependence on distribution parameters and problem
instances. It is furthermore demonstrated that the approach scales to hard and
very large-scale settings. Finally, the representative mining approach is applied
to the StruClus algorithm. It is demonstrate, that the objective of problem 4.1
(MAX-CSPC) can improve the clustering quality of this state of the art clustering
algorithm.
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Table 4.2: Descriptive statistics of the evaluation datasets.

|V | |E|

Dataset G |G| Min. Max. Avg. Med. Min. Max. Avg. Med. |LV | |LE |

PubChem Compounds 103 274 330 2 891 25.90 24 1 890 27.66 25 114 5

ChemDB 7 100 106 2 435 28.66 28 1 496 31.12 31 89 5

ChEMBL 1 678 393 2 876 29.79 27 1 894 32.18 30 34 5

CHI PMUNK Complete 18 292 556 3 52 28, 25 29 2 60 31.02 32 66 6

CHI PMUNK Heterocycle CoMol Subset 4 158 909 4 39 27.56 28 4 46 29.71 30 62 6

Protein Interaction 2 242 972 4 126 5.17 4 3 125 4.17 3 717 1

4.6.10.1 Computational Environment

The Hard- and software environment is identical to the environment for the non-
distributed evaluation (cf., section 4.5.9.1). In addition, Spark is installed in version
2.4.3 using Scala 2.12 and Hadoop 2.7. It is configured to use the local node storage
for persistence. Since the LiDO3 cluster does not have a Spark compatible cluster
manager installed, Spark’s standalone cluster manager was configured to launch from
a SLURM job.

4.6.10.2 Datasets

In addition to the previously used datasets (cf., section 4.5.9.2) two additional datasets,
CHI PMUNK Complete and PubChem, are used to demonstrate the scalability of the
approach. Table 4.2 shows the descriptive statistics of the complete list of datasets
used in the following evaluation.

The CHI PMUNK Complete dataset is a superset of the already known CHI PMUNK
Heterocycle CoMol dataset. It is the drug-like 500 g mol−1 variant of the CHI PMUNK
library including all subsets of the library as presented in [Hum+18]. Figure 4.15[Hum+18] Humbeck et al.,

“CHIPMUNK: A Virtual
Synthesizable Small-Molecule

Library for Medicinal
Chemistry, Exploitable for

Protein–Protein Interaction
Modulators”. 2018

shows the size and label distributions of the dataset.
The PubChem compound library [Kim+21] is an open chemistry database of the

[Kim+21] Kim et al.,
“PubChem in 2021: new data

content and improved web
interfaces”. 2021

National Institute of Health (NHI). It is the largest publicly available collection
of real molecules and aggregates publicly available data about the molecules from
many different sources. PubChem mostly contains small molecules. However, it also
contains larger molecules such as nucleotides, carbohydrates, lipids, peptides, and
chemically-modified macromolecules. For the experimental evaluation, a snapshot of
the compound library was downloaded on the 10th of July 2020. Figure 4.16 shows
the size and label distributions of the dataset.

4.6.10.3 Influence of the Sample Size and Error Probability

It was discussed during the evaluation of the exact algorithm, that the dataset size
has a linear influence on the running time of the algorithm if the search space is
identical. Besides the limits of the minimum sample size inflicted by the candidate
test to generate valid results, one might be tempted to choose very small sample
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Figure 4.15: Frequency distributions of the CHI PMUNK Complete dataset
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Figure 4.16: Frequency distributions of the PubChem dataset
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(a) Relative Size Threshold t = 0.3,
Maximum Error Probability α = 0.001
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(b) Relative Size Threshold t = 0.5,
Maximum Error Probability α = 0.001

10000 20000 30000 40000 50000 100000
Sample Size

0:00:00

0:33:20

1:06:40

1:40:00

2:13:20

2:46:40

3:20:00

Ru
nt

im
e 

(H
ou

rs
:M

in
ut

es
:S

ec
on

ds
)

Phase 1 Phase 2

0

5000

10000

15000

20000

Nu
m

be
r O

f C
an

di
da

te
s

(c) Relative Size Threshold t = 0.7,
Maximum Error Probability α = 0.001
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(d) Relative Size Threshold t = 0.3,
Maximum Error Probability α = 0.01
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(e) Relative Size Threshold t = 0.5,
Maximum Error Probability α = 0.01
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(f) Relative Size Threshold t = 0.7,
Maximum Error Probability α = 0.01
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(g) Relative Size Threshold t = 0.3,
Maximum Error Probability α = 0.1
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(h) Relative Size Threshold t = 0.5,
Maximum Error Probability α = 0.1
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(i) Relative Size Threshold t = 0.7,
Maximum Error Probability α = 0.1

Figure 4.17: Running Time w.r.t. different sample sizes s for algorithm 12 on the
ChemDB dataset. Running Time is differentiated w.r.t. phase 1 and
phase 2 of algorithm 7. The mean cardinality of the candidate set C

is given in orange with standard deviation given in lighter color. The
dataset is filtered to graphs with an edge count of 30 or less.
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sizes. However, the sample size also influences the power of the candidate test. The
larger the absolute utilities are the closer is the rejection threshold to the utility
of the reference pattern in relative terms. Thus, larger sample sizes most probably
increase the pruning power of the search space and thereby have a positive effect
on the running time. It should be noted though, that very large samples may not
tighten the search space pruning significantly, since the rejection threshold is bound
by the utility of the reference pattern. Besides the search space pruning implications,
a higher rejection threshold leads to smaller candidate sets, which in turn reduces
the number of comparisons in phase 2. As shown w.r.t. the pruning power there is a
natural limit to this effect since the candidate set will always contain at least a single
pattern. For these reasons, it is unclear which sample size leads to the best overall
running time from a theoretical point of view.

The maximum error probability α has a similar effect on the running time. Lower
error probabilities result in a lower test power and consequentially in a less tight
search space pruning and larger candidate set cardinalities.

The experiments in this section will therefore focus on the running time effect of
different sample sizes and error probabilities. They are limited to a single iteration of
the non-distributed streaming algorithm, i.e., algorithm 12, and the ChemDB dataset.
Figure 4.17 shows the wall clock running times of phase 1 and phase 2 (as divided in
the analysis of paragraph 4.6.9.2.1) and the cardinality of the candidate set w.r.t. the
sample sizes s ∈ {10 000, 20 000, 30 000, 40 000, 50 000, 100 000}, the maximum error
probabilities α ∈ {0.001, 0.01, 0.1}, and the relative size thresholds t ∈ {0.3, 0.5, 0.7}.

In all experiments, the running times of phase 2 are significantly lower than the
ones of phase 1. While a clear trend towards lower cardinalities of the candidate sets
in case of higher sample sizes is observable throughout all settings, the effect of the
low cardinalities and the resulting lower running times of phase 2 is almost negligible
w.r.t. the overall running times. Only in some very hard settings, i.e., a low error
probability α and a high relative size coverage threshold t, the running time of phase 2
has a limited effect on the overall running time.

Except for these hard cases, a general increase in running time w.r.t. larger sample
sizes can be seen for phase 1. The exception w.r.t. the hard cases comes as no
surprise since the test power decreases for lower error probabilities as discussed above.
Furthermore, higher values of the relative size coverage threshold lead to lower absolute
utilities and thereby lower test powers as well. Finally, the lesser pruning power might
cause the exponential worst-case complexity of the subgraph isomorphism and pattern
canonization tests to become more relevant in comparison to the linear sample size
effect.

To conclude, with low absolute utilities and low error probabilities it might be
beneficial to choose a sample size above 10 000 performance-wise. Additionally, the
running time of phase 2 linearly depends on the dataset size. Thus, given very large
datasets, which are magnitudes larger than ChemDB, phase 2 might become a more
crucial performance factor. Otherwise, the smaller sample sizes seem to perform
better. It is expected though, that the best sample size might vary for different
datasets and later iterations in case of larger solution set cardinalities. These aspects
will be evaluated in the following section 4.6.10.4.
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Table 4.3: Real errors and approximation ratios of worst results w.r.t. the experiments
presented in fig. 4.17 grouped by the relative size coverage threshold t and
the probabilistic error bound α.

α t Correct Results (Error Rate) Worst Approximation Ratio

0.001 0.3 120/ 120 (0.00%) 1

0.001 0.5 120/ 120 (0.00%) 1

0.001 0.7 120/ 120 (0.00%) 1

0.01 0.3 120/ 120 (0.00%) 1

0.01 0.5 120/ 120 (0.00%) 1

0.01 0.7 120/ 120 (0.00%) 1

0.1 0.3 115/ 120 (4.17%) 0.995

0.1 0.5 120/ 120 (0.00%) 1

0.1 0.7 113/ 120 (5.83%) 0.976

4.6.10.3.1 Real Errors and Approximation Ratios Given the theoretically bound
error probability as shown in lemma 4.6 it is an open question how tight this error
bound is in practice. Additionally, the algorithm might give close to optimal results if
an error occurs. In fact, it is much more likely that the algorithm outputs a close to
the optimal solution than a bad solution as a result of the binomial test nature.

Table 4.3 shows the errors for the experiments conducted above (cf., fig. 4.17).
The results are grouped by the error probabilities α and the relative size coverage
thresholds t, resulting in 120 repeats in each category and 360 repeats for distinct
values of α. For α ∈ {0.001, 0.01} no errors are present in the given repeats. This is
expected for α = 0.001, since the number of experiments is relatively low compared
to the error probabilities. However, at least a single error would be expected for the
other settings under a tight error bound assumption. If the bound would be tight, i.e.,
the expected real error would be equal to the α, at least one error would be expected
for 360 repeats (ignoring t) with a probability of ≈ 0.30 for α = 0.001, ≈ 0.97 for
α = 0.01, and ≈ 1.00 for α = 0.1. Overall, 12 errors are observed for α = 0.1, which
is about one-third of the maximal expected error. No trend is observable w.r.t. to t
and the tightness of the error bound.

Concerning the approximation ratios of the erroneous results, the worst result was
observed for the setting t = 0.7 and α = 0.1 with an approximation ratio of 0.976 and
an absolute utility of 8 186 instead of the optimal value 8 391. Thus, even in the case
of errors, high-quality results are observed.
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4.6.10.4 Performance and Key Statistics over Multiple Iterations of the

Streaming Algorithm

In alignment with the experiments conducted for the exact algorithm in section 4.5.9.4,
this section will evaluate the performance of the streaming algorithm 12 over dif-
ferent iterations. Figures 4.18 to 4.21 show the results for the ChemDB, ChEMBL,
CHI PMUNK Heterocycle CoMol, and Protein Interaction datasets filtered to 30 edges.
The maximum error probability per iteration is set to 0.01 for all experiments. In
addition to the known statistics “running time”, “utility”, “uncovered graphs”, and
“pattern edge count” from section 4.5.9.4, the running time will be split into phase 1
and phase 2. Furthermore, the cardinality of the candidate set C is added, such that
the running time of phase 2 can be judged in further detail. Since the cardinality of C
varies over different repeats with i.i.d. drawn random samples, the standard deviation
is given as transparent colored area around the line plot. The same is true for other
line plots if solutions diverge because of errors or ambiguities w.r.t. to the optimal
pattern (i.e., multiple patterns with equal utility; cf., corollary 4.7). Experiments are
performed with sample sizes s ∈ {10 000, 30 000} to judge if sample sizes above 10 000
(cf., previous evaluation of the sample size in section 4.6.10.3) are beneficial in later
iterations.

The overall running times of algorithm 12 are always faster than the running time
of algorithm 6. The speedups are in the range of one or two orders of magnitude
given s = 10 000 with very few exceptions. For the exact algorithms, the decreasing
dataset size led to lower running times in latter iterations in some cases. In some
other cases, this effect was overshadowed by other running time factors, such as
the absolute utility and the aforementioned effect on the pruning capabilities. In
the case of algorithm 12, this effect is no longer present during phase 1, since each
iteration will have equally sized samples. Furthermore, the experiments presented in
section 4.5.9.4 showed, that the utilities are usually dropping faster than the number
of uncovered graphs in the datasets in the first iterations. Thus, the absolute utilities
are expected to drop for constant-sized random samples in later iterations. For this
reason, a rise in the running times can be seen for phase 1 in some cases for later
iterations of the algorithm. However, this rise is usually moderate. In some cases
with t = 0.7, the running times and candidate set cardinalities even drop for later
iterations. Of course, there exists some performance-wise crossing point, where the
number of uncovered graphs gets close to the sample size. In this case, it would be
beneficial to switch over to the exact algorithm in later iterations. An adaption of the
exact algorithm to the distributed setting (evaluation see below) is straightforward if
the whole dataset fits in each worker’s memory. The candidate set cardinality has a
high variance w.r.t. different iteration in some cases. For example, iteration 7 of the
CHIPMUNK Heterocycle CoMol dataset in the setting t = 0.5 shows a very large
sample in contrast to the other iterations. Thus, there exist inherently hard instances,
where many patterns with close to optimal utility exist. In some other examples
a high variance w.r.t. the repeats are observed, which indicates a high number of
patterns with a utility on the border of the rejection threshold.

173



4 Distributed Subgraph Pattern Coverage Maximization

A sample size of s = 30 000 usually leads to an increase in the overall running
time. While the running times of phase 2 are often reduced significantly, the running
time increase in phase 1 usually outweighs these benefits. The Protein Interaction
dataset is an exception to this observation. It shows the unique characteristic, that
the running time of phase 2 is usually higher than the one of phase 1 for a sample size
of 10 000. This behavior could be explained by the low graph sizes. As a consequence,
the pattern space itself has only a few ranks and is most likely smaller than that of
the other datasets.

4.6.10.4.1 Error Accumulation over Multiple Iterations As discussed in the analysis
(cf., section 4.6.9.1) an error accumulation most probably is not a problem in real case
scenarios where close to optimal solutions are an option. During all the experiments,
only a single setting (ChEMBL dataset, s = 10000, t = 0.7) deviates from the non-
probabilistic results. Deviations are present in 5 of 20 results (repeats) at the end of the
10th iteration with 2 deviations being the results of an error attributed to the sampling
approach and the rest are ambiguities in the selection of the optimal pattern. Such
ambiguities express themselves in non-isomorphic patterns in comparison with the
exact result in the iteration before a utility deviation was observed. The approximation
ratio of the worst complete result (k = 10) is 0.98, while the worst approximation
ratio in a single iteration was 0.89. While the number of erroneous results is too low
to deduce statistically sound generalizations, the observed approximation ratios are
an example of the discussed non-amplifying behavior of errors.

4.6.10.5 Distributed Scaling

Since the distribution does not introduce any new errors in relation to pure shared
memory parallelization (cf., algorithm 12), the major question w.r.t. to the distributed
algorithm (cf., algorithm 17) is its scalability with the numbers of miners and its
overhead w.r.t. to the pure shared memory parallelized algorithm 12. To lower the
total amount of resources needed on the LiDO3 cluster, distributed experiments are
only repeated 10 times per parameter combination and are limited to a single solution
element, i.e., k = 1.

4.6.10.5.1 Distributed Parametrization This paragraph looks at the influence of
scaling parameters on the scaling behavior algorithm 17. Figure 4.22 shows the scaling
behavior w.r.t. activeWorkersmin ∈ {75%, 87.5%, 100%}. In other words, a fraction
of 1

4 , 1
8 , or 0 workers are allowed to idle in phase 1 without causing synchronization of

work packages. The ChemDB dataset is utilized and parameters are set to t = 0.7,
α = 0.01, and s = 10000. Thus, a problem instance was used, that needed about one
hour wall-clock time in the non-distributed setting. To provide comparability with the
non-distributed experiments, the dataset was again filtered to a maximum edge count
of 30. Since, the other parameter that influences the scaling behavior iterationsmin

did not had a significant effect on the running time during evaluation, a detailed
analysis will be omitted here and the parameter is fixed to iterationsmin = 1000 in
all distributed experiments.
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(a) Relative Size Threshold t = 0.3,
Sample Size s = 10 000
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(b) Relative Size Threshold t = 0.5,
Sample Size s = 10 000
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(c) Relative Size Threshold t = 0.7,
Sample Size s = 10 000
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(d) Relative Size Threshold t = 0.3,
Sample Size s = 30 000
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(e) Relative Size Threshold t = 0.5,
Sample Size s = 30 000
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(f) Relative Size Threshold t = 0.7,
Sample Size s = 30 000

Figure 4.18: Running Time, utility, uncovered graphs, edge count of Pmax, and mean
cardinality of the candidate set C for each iteration (i.e., addition to S)
of algorithm 12 on the ChemDB dataset. Running Time is differentiated
w.r.t. phase 1 and phase 2 of algorithm 7. The maximum error probability
is set to α = 0.01. The dataset is filtered to graphs with an edge count
of 30 or less.
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(a) Relative Size Threshold t = 0.3,
Sample Size s = 10 000
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(b) Relative Size Threshold t = 0.5,
Sample Size s = 10 000
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(c) Relative Size Threshold t = 0.7,
Sample Size s = 10 000
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(d) Relative Size Threshold t = 0.3,
Sample Size s = 30 000
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(e) Relative Size Threshold t = 0.5,
Sample Size s = 30 000
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(f) Relative Size Threshold t = 0.7,
Sample Size s = 30 000

Figure 4.19: Running Time, utility, uncovered graphs, edge count of Pmax, and mean
cardinality of the candidate set C for each iteration (i.e., addition to S)
of algorithm 12 on the ChEMBL dataset. Running Time is differentiated
w.r.t. phase 1 and phase 2 of algorithm 7. The maximum error probability
is set to α = 0.01. The dataset is filtered to graphs with an edge count
of 30 or less.
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(a) Relative Size Threshold t = 0.3,
Sample Size s = 10 000
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(b) Relative Size Threshold t = 0.5,
Sample Size s = 10 000
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(c) Relative Size Threshold t = 0.7,
Sample Size s = 10 000
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(d) Relative Size Threshold t = 0.3,
Sample Size s = 30 000

1 2 3 4 5 6 7 8 9 10
Solution Element (Ordered by Addition to S)

0:00:00

0:03:20

0:06:40

0:10:00

0:13:20

0:16:40

0:20:00

Ru
nt

im
e 

pe
r S

ol
ut

io
n 

El
em

en
t (

Ho
ur

s:
M

in
ut

es
:S

ec
on

ds
) Phase 1 Phase 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Ut
ilit

y 
(x

 1
e5

)

0.
0

0.
5

1.
0

1.
5

2.
0

Un
co

ve
re

d 
Gr

ap
hs

 (x
 1

e6
)

0
2

4
6

8
10

12
14

16

Ed
ge

 C
ou

nt
 o

f P
at

te
rn

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Nu
m

be
r o

f C
an

di
da

te
s (

x 
1e

3)

(e) Relative Size Threshold t = 0.5,
Sample Size s = 30 000
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(f) Relative Size Threshold t = 0.7,
Sample Size s = 30 000

Figure 4.20: Running Time, utility, uncovered graphs, edge count of Pmax, and mean
cardinality of the candidate set C for each iteration (i.e., addition to S) of
algorithm 12 on the CHI PMUNK Heterocycle CoMol dataset. Running
Time is differentiated w.r.t. phase 1 and phase 2 of algorithm 7. The
maximum error probability is set to α = 0.01. The dataset is filtered to
graphs with an edge count of 30 or less.

177



4 Distributed Subgraph Pattern Coverage Maximization

1 2 3 4 5 6 7 8 9 10
Solution Element (Ordered by Addition to S)

0:00:00

0:00:02

0:00:04

0:00:06

0:00:08

Ru
nt

im
e 

pe
r S

ol
ut

io
n 

El
em

en
t (

Ho
ur

s:
M

in
ut

es
:S

ec
on

ds
) Phase 1 Phase 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Ut
ilit

y 
(x

 1
e4

)

0.
0

0.
5

1.
0

1.
5

2.
0

Un
co

ve
re

d 
Gr

ap
hs

 (x
 1

e6
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ed
ge

 C
ou

nt
 o

f P
at

te
rn

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Nu
m

be
r o

f C
an

di
da

te
s (

x 
1e

2)

(a) Relative Size Threshold t = 0.3,
Sample Size s = 10 000
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(b) Relative Size Threshold t = 0.5,
Sample Size s = 10 000
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(c) Relative Size Threshold t = 0.7,
Sample Size s = 10 000
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(d) Relative Size Threshold t = 0.3,

Sample Size s = 30 000
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(e) Relative Size Threshold t = 0.5,
Sample Size s = 30 000
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Figure 4.21: Running Time, utility, uncovered graphs, edge count of Pmax, and mean
cardinality of the candidate set C for each iteration (i.e., addition to S)
of algorithm 12 on the Protein Interaction dataset. Running Time is
differentiated w.r.t. phase 1 and phase 2 of algorithm 7. The maximum
error probability is set to α = 0.01. The dataset is filtered to graphs with
an edge count of 30 or less.
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The experimental results show a good scaling behavior with a scaling factor of ≈ 12.0
for 16 workers and ≈ 7.3 for 8 workers on average given activeWorkersmin = 75%.
The total number of distributed rounds in these settings is close to 20 on average for
16 workers and lower for fewer workers.

The parameter activeWorkersmin has a huge impact on the scalability for larger
amounts of workers. In the settings activeWorkersmin ∈ {87.5%, 100%}, the running
time using 16 workers is even lower than for 8 workers. This is interesting to see
as the number of iterations does not increase by a large amount, especially in the
setting activeWorkersmin = 87.5%. Thus, other factors such as an increased amount
of work packages most probably played a role in the scaling behavior. Furthermore,
the settings with two workers show a more than linear scaling on average. The
differences are not huge enough, such that a random effect could completely be ruled
out. However, other effects such as a larger amount of randomness regarding the
search space exploration order (cf., analysis in paragraph 4.6.9.2.2) most probably
also played a role.

During phase 2 the scaling behavior is without flaws. Often a more than linear
scaling can be observed which might have to do with a different shared-memory
parallelization on the worker level. The shared-memory streaming algorithm uses
Java thread pools for parallelization and the distributed variant solely relies on Spark.
Spark uses batched parallelization strategies that might better utilize the caches of
the compute nodes and may need less overhead for task creation and management.

To measure the overall speedup w.r.t. to parallelization, algorithm 12 was also
executed on a single-core to compute the shared-memory parallelization speedup. The
experiment was applied to all datasets filtered to a maximum of 30 edges with k = 1
and s = 10000. All speedups were very close to the linear speedup (always above
90%). Given the above speedup of 12 for 16 workers, the overall speedup due to
parallelization and distribution on 16 workers with 10 cores was above 100.

4.6.10.5.2 Distributed Scaling for Other Datasets and Relative Size Coverage

Thresholds The scaling evaluation in paragraph 4.6.10.5.1 focused on a single dataset
and t = 0.7. The following experiments focus on different datasets and relative
size coverage thresholds with fixed scaling parameters to activeWorkersmin = 75%
and iterationsmin = 1000. The maximum error probability was again set to
α = 0.01. Table 4.4 shows the total running times and speedups w.r.t. to the shared-
memory parallelized exact algorithm 6, the sampling and streaming algorithm 12,
and the distributed algorithm 17. To get the speedups w.r.t. the pure sequential
implementation of algorithm 6, it is again (cf., paragraph 4.6.10.5.1) possible to
multiply the speedups with the interval [9, 10].

Overall the evaluation shows that the scaling behavior of the distributed algorithm 17
strongly depends on the total amount of work. In the extreme case, the running times of
the Protein Interaction datasets were already lower than 3 seconds using algorithm 12.
In such cases, the running times of the distributed algorithm even regressed. This comes
as no surprise since there exists a constant overhead to initialize and coordinate spark
workers. Thus, a key question w.r.t. to the effectiveness of distribution is whether the
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Figure 4.22: Running Time scaling of a single iteration of algorithm 17 w.r.t. the
number of miners in comparison with the pure shared memory paral-
lelization (SM, cf., algorithm 12). Experiments are conducted on the
ChemDB dataset with a relative size threshold t = 0.7, a maximum error
probability α = 0.01, and a sample size s = 10 000. Running Time is
differentiated w.r.t. phase 1 and phase 2 of algorithm 7. The dataset is
filtered to graphs with an edge count of 30 or less.
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Table 4.4: Running Times and speedups w.r.t. the shared-memory parallelized exact
algorithm 5, shared-memory streaming algorithm 12, and the distributed
algorithm 17. Running Times are evaluated for a single solution element
(k = 1), different datasets and different settings of the relative size coverage
threshold t. The sample size for algorithms 12 and 17 was set to s = 10 000.
Algorithm 17 was evaluated with activeWorkersmin = 75% and W = 16.
Datasets are filtered to a maximum edge count of 30. Running Times are
given in hours:minutes:seconds.

Running Time Speedup

Dataset t Algorithm 6 Algorithm 12 Algorithm 17 6 → 12 12 → 17 6 → 17

ChEMBL 0, 30 00:08:39 00:00:16 00:00:37 32.16 0.43 13.77

ChEMBL 0, 50 01:05:33 00:03:47 00:00:59 17.29 3.8 65.75

ChEMBL 0, 70 13:31:42 02:27:41 00:08:36 5.5 17.17 94.38

ChemDB 0, 30 00:45:11 00:00:16 00:00:27 166.75 0.58 96.95

ChemDB 0, 50 03:57:54 00:02:26 00:00:59 97.49 2.47 240.39

ChemDB 0, 70 18:40:42 01:28:11 00:07:10 12.71 12.28 156.11

CHI PMUNK Heterocycle CoMol 0, 30 00:28:23 00:00:35 00:00:44 47.97 0.81 38.65

CHI PMUNK Heterocycle CoMol 0, 50 04:20:32 00:04:38 00:01:17 56.19 3.57 200.8

CHI PMUNK Heterocycle CoMol 0, 70 1 days 10:47:23 01:05:40 00:09:46 31.78 6.72 213.55

Protein Interaction 0, 30 00:00:21 00:00:00 00:00:35 37.4 0.02 0.61

Protein Interaction 0, 50 00:00:36 00:00:01 00:00:39 33.39 0.03 0.93

Protein Interaction 0, 70 00:01:43 00:00:03 00:01:27 33.07 0.04 1.19
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Figure 4.23: Distributed speedup of algorithm 17 w.r.t. the running time of algo-
rithm 12. Dashed line shows the linear regression. Pearson Correlation
Coefficient is r = 0.97.

amount of work is large enough to justify the distribution-related overheads. Instances,
which require a few minutes to compute using algorithm 12, were accelerated, but show
relatively low speedups ranging from about 2.5 to 4. However, for instances that need
several hours using algorithm 12 the scaling behavior is much better with speedups
ranging from approximately 6.7 for the CHIPMUNK Heterocycle CoMol dataset
to 17.2 on the ChEMBL dataset. Overall, there is a strong correlation (Pearson
correlation coefficient is r = 0.97) between the running time of algorithm 12 and the
distributed speedup on the given instances. Figure 4.23 show a regression plot of
these two data points. Of course, a linear increase in speedup cannot be expected
beyond the number of workers. Nevertheless, it can be concluded, that the distribution
scales well on hard instances with a large amount of work. It should be remembered,
that the problem instances during the previous evaluation are chosen, such that
they are still solvable in a meaningful amount of time using the exact algorithm 6
in order to compare the performance of the different algorithms against each other
with a sufficient amount of repeats and parameter combinations. Thus, much harder
instances are common in the practical application of the algorithm, when dataset
filtering is not an option.

4.6.10.6 Hard and Big Instances

The goal of this section is to evaluate the limits of the distributed algorithm w.r.t.
to hard and big instances. The algorithm was parameterized the same way as in the
previous paragraph 4.6.10.5.2. A selection of hard instances is presented in table 4.5.
The ChemDB dataset was filtered to a maximal edge count of 40, 50, and 60. The
relative size threshold was set to t ∈ {0.5, 0.7}. The threshold t had the largest
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Table 4.5: Running Times w.r.t. the distributed algorithm 17 for a selection of hard
instances. Running Times are evaluated for a single solution element
(k = 1). The sample size for algorithms 12 and 17 was set to s = 10 000.
Algorithm 17 was evaluated with activeWorkersmin = 75% and W = 16.
Running Times are given in hours:minutes:seconds.

Dataset t Running Time Phase 1 Running Time Phase 2

ChemDB (|E| ≤ 40) 0, 50 00:03:10 (σ = 00:00:22) 00:00:45 (σ = 00:00:02)

ChemDB (|E| ≤ 50) 0, 50 00:17:29 (σ = 00:05:01) 00:07:05 (σ = 00:05:54)

ChemDB (|E| ≤ 60) 0, 50 00:33:44 (σ = 00:09:38) 00:12:59 (σ = 00:11:11)

ChemDB (|E| ≤ 40) 0, 70 01:07:03 (σ = 00:13:25) 00:01:04 (σ = 00:00:07)

ChemDB (|E| ≤ 50) 0, 70 11:32:16 (σ = 01:50:39) 00:06:17 (σ = 00:05:29)

ChemDB (|E| ≤ 60) 0, 70 17:36:45 (σ = 04:59:32) 00:07:09 (σ = 00:07:00)

CHI PMUNK Heterocycle CoMol (|E| ≤ ∞) 0, 50 00:02:15 (σ = 00:00:13) 00:00:29 (σ = 00:00:00)

CHI PMUNK Heterocycle CoMol (|E| ≤ ∞) 0, 70 02:01:37 (σ = 00:30:13) 00:00:41 (σ = 00:00:08)

influence on the running times. It is now possible to calculate the representatives of
medium values of t for some reasonable maximum edge counts in the context of drug
discovery. For example, the drug-like CHI PMUNK Heterocycle CoMol dataset was
processed in less than three minutes for a relative size threshold of t = 0.5.

In addition to the hard instances, the unfiltered CHI PMUNK Complete dataset,
as well as the PubChem compound library filtered to a maximal edge count of 50
(resulting in a dataset of 98 941 008 graphs) were processed by algorithm 17. The
results are shown in table 4.6. It stands out, that the PubChem instance with t = 0.5
and close to 100 million graphs was processed in less than 10 minutes. Also, the
complete CHIPMUNK library with almost 19 million graphs was processed in less
than one and a half minutes for t = 0.3. Both results demonstrate the scalability of
the approach to very large big data instances.

4.6.11 Application to StruClus

To demonstrate the usefulness of the representative mining approach, it is utilized as
a pre-clustering routine for the StruClus algorithm (cf., chapter 3).

The pre-clustering of StruClus serves as an initial lightweight clustering of
the dataset that should at best align with some structural commonalities. Thus,
the algorithm can build upon these commonalities in the later iterative refinement.
However, the existing approach (cf., section 3.2.5) is limited in two ways. First,
it does not guarantee the existence of a common substructure in a cluster, since
the assignment to each element of the α-orthogonal maximal frequent pattern set
M is performed using a similarity. Even if such a similarity would be based on
common substructures, low similarity assignments could still be based on different
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Table 4.6: Running Times w.r.t. the distributed algorithm 17 for a selection of big
instances. Running Times are evaluated for a single solution element
(k = 1). The sample size for algorithms 12 and 17 was set to s = 10 000.
Algorithm 17 was evaluated with activeWorkersmin = 75% and W = 16.
Running Times are given in hours:minutes:seconds.

Dataset t Running Time Phase 1 Running Time Phase 2

CHI PMUNK Complete (|E| ≤ ∞) 0, 30 00:00:56 (σ = 00:00:16) 00:02:22 (σ = 00:00:20)

CHI PMUNK Complete (|E| ≤ ∞) 0, 50 00:03:04 (σ = 00:00:31) 00:02:24 (σ = 00:00:19)

CHI PMUNK Complete (|E| ≤ ∞) 0, 70 00:53:35 (σ = 00:03:08) 00:03:44 (σ = 00:00:28)

PubChem Compounds (|E| ≤ 50) 0, 30 00:00:40 (σ = 00:00:01) 00:07:52 (σ = 00:00:01)

PubChem Compounds (|E| ≤ 50) 0, 50 00:01:27 (σ = 00:00:09) 00:07:53 (σ = 00:00:02)

PubChem Compounds (|E| ≤ 50) 0, 70 00:53:18 (σ = 00:14:12) 00:20:59 (σ = 00:07:48)

substructures. Second, M does not necessarily contain a similar pattern for each
dataset graph. While the patterns themselves are dissimilar, they might stem from a
subset of the dataset, leaving the rest of the dataset unrepresented. Such a situation
can occur if the unrepresented graphs do not contain maximal frequent subgraphs for
the chosen frequency threshold.

The representative mining, as defined in problem 4.1 (MAX-CSPC), can solve these
issues. When generating a representative set, each pattern P of the solution set S
represents a certain portion G⊲P of the dataset and P is a common substructure in
G⊲P . Furthermore, the objective is to maximize the number of covered dataset graphs.
Thus, the issue of unrepresented graphs is avoided.

The adoption of problem 4.1 (MAX-CSPC) as pre-clustering step for StruClus
looks as follows. The greedy algorithm 6 is used to iteratively calculate a subgraph
pattern Pmax with maximum utility. Then, G′

⊲Pmax
in line 17 is used to create a

cluster with the common subgraph pattern Pmax and the procedure is repeated for
the remaining graphs G′ \ G′

⊲Pmax
. Instead of using a fixed cardinality threshold k in

line 4, the algorithm is modified to stop when utilitymax drops below a minimum
utility threshold utilitymin. This minimum threshold guarantees, that noise graphs
are not added to very small or singleton clusters.

The evaluation is performed on the synthetic dataset with cardinality 10 000 (cf.,
section 3.2.9.2). The minimum utility threshold was set to utilitymin = 50. The
initial relative size threshold for the subgraph coverage relation ⊳t was set to t = 0.2.
In the cluster splitting step of StruClus (cf., section 3.2.4.1) the pre-clustering
is reused. In this step, the relative size threshold was set to match the average
homogeneity of the existing clusters. This guarantees, that newly created clusters are
not immediately split in the following iteration. The test environment is identical to
the setting in the StruClus evaluation (cf., section 3.2.9.1).
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Table 4.7: Comparison of average running times and quality values for StruClus
w.r.t. the classical and coverage-based pre-clustering routines. Running
Times are given in hours.

G Classical Pre-Clustering Coverage Pre-Clustering

Running Time NVI FM Running Time NVI FM

Synthetic 10 000 0.19 0.95 0.87 18.55 0.99 0.95

Table 4.7 shows the results of the experiment. It is noticeable, that the coverage
based pre-clustering is significantly slower than the classical variant as defined in
section 3.2.5 with an absolute running time of over 18 hours compared to just 11.4
minutes. The other two datasets used during the evaluation of StruClus (Heterocyclic
and AnchorQuery) had running times above 24 hours and are therefore left out in
this evaluation. While the sampling algorithm 17 can improve overall running time
for large-scale datasets, the tested instance has already only the size of the default
sample Cardinality in the previous experiments. Thus, while scalability to large-scale
datasets is still expected, the coverage-based pre-clustering adds a large constant to
the running time.

From the quality point of view, the coverage-based pre-clustering makes a significant
difference. With a score of 0.99 for the NVI measure and a score of 0.95 for the
FM measure, StruClus does almost perfectly reproduce the ground truth. This
is remarkable since the results of StruClus with classical pre-clustering already
outperformed other competitors with a fair amount of difference (cf., section 3.2.9.8).

4.7 Summary

A novel coverage-based subgraph pattern representative objective (cf., problem 4.1
(MAX-CSPC)) has been proposed. In contrast to existing representative subgraph
pattern mining algorithms, which focus on the diversification of (maximal) frequent
subgraph patterns, the objective is orientated toward the representation of the dataset
graphs directly. The flexible definition of the subgraph pattern coverage relation
allows the integration of addition constraints w.r.t. the application field. For example,
the (aromatic) ring structures in molecules are significantly different from chains w.r.t.
to chemical properties, since the corresponding molecular parts are either relatively
stable or flexible. Such an insight is easy to integrate into the coverage relation, e.g.,
by adding a constraint that rings must be preserved in a representative subgraph
pattern.

It was shown, that problem 4.1 (MAX-CSPC) is a special case of the maximum
coverage problem and that the problem is NP-hard. To the best of my knowledge,
this is the first scalable representative subgraph pattern mining algorithm with proven
approximation ratios for the representative objective. A novel sampling approach
leads to a constant-time algorithm to generate candidate sets, which contain an

185



4 Distributed Subgraph Pattern Coverage Maximization

optimal pattern with a stochastically bound error. The experimental evaluation shows,
that even in the case of false results, the results are of high quality and close to the
optimum. The sampling approach enables a streaming and a distributed algorithm for
the computation of the objective. The steaming implementation is able to accelerate
the baseline algorithm by one to two orders of magnitude for moderately sized datasets
with an increasing margin for larger datasets. The distributed variant utilizes the
sampling approach to be the first distributed subgraph pattern mining algorithm that
distributes the pattern space exploration and the dataset graphs at the same time.
The distributed algorithm is able to speed up the computation by a factor of two
magnitudes for 16 workers with 10 cores for instances with a sufficient amount of
work. The overall scalability was demonstrated by the processing of approximately
100 million graphs of the PubChem dataset in just a few minutes per iteration. While
the representative objective is useful in more general terms (e.g., in visual analytics of
molecular datasets), it was demonstrated, that the representative mining objective
can significantly increase the quality of the StruClus algorithm.
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Chapter

Conclusions

5

It has been shown that structural analysis of molecular datasets for drug discovery
can be extended to very large-scale datasets without sacrificing quality. Sampling
strategies for datasets play an important role to overcome the high computational
costs of graph-theoretical concepts in this context. The avoidance of intermediate
vectorial or distance-based representations of graph datasets can lead to more con-
sistent and interpretable data mining results. Parallelization and distribution of
algorithms can play an important role to make the running times applicable for visual
analytics processes. The Scaffold Hunter application was presented as an example
of a typical drug-discovery workflow in the early stages. To infer existing knowledge
about molecular graphs to de-novo datasets, structural summaries and unsupervised
classification are identified as key tools to work with large-scale datasets. As such, the
presented scalable approaches enable chemists to advance into previously undiscovered
regions of the chemical space, paving the way to novel drug discoveries.
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