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Abstract

The hardware landscape has changed rapidly in recent years. Modern hard-
ware in today’s servers is characterized by many CPU cores, multiple sockets,
and vast amounts of main memory structured in NUMA hierarchies. In or-
der to benefit from these highly parallel systems, the software has to adapt
and actively engage with newly available features. However, the processing
models forming the foundation of many performance-oriented applications
have remained essentially unchanged. Threads, which serve as the central
processing abstractions, can be considered a “black box” that hardly allows
any transparency between the application and the system underneath.

On the one hand, applications are aware of the knowledge that could assist
the system in optimizing the execution, such as accessed data objects and
access patterns. On the other hand, the limited opportunities for information
exchange cause operating systems to make assumptions about the applications’
intentions to optimize their execution, e.g., for local data access. Applications,
on the contrary, implement optimizations tailored to specific situations, such
as sophisticated synchronization mechanisms and hardware-conscious data
structures.

This work presents MxTasking, a task-based runtime environment that
assists the design of data structures and applications for contemporary hardware.
MxTasking rethinks the interfaces between performance-oriented applications
and the execution substrate, streamlining the information exchange between
both layers. By breaking patterns of processing models designed with past
generations of hardware in mind, MxTasking creates novel opportunities to
manage resources in a hardware- and application-conscious way. Accordingly,
we question the granularity of “conventional” threads and show that fine-
granular MxTasks are a viable abstraction unit for characterizing and optimizing
the execution in a general way. Using various demonstrators in the context of
database management systems, we illustrate the practical benefits and explore
how challenges like memory access latencies and error-prone synchronization
of concurrency can be addressed straightforwardly and effectively.

iii



iv



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Open Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions and Outline . . . . . . . . . . . . . . . . . . . . 4

I MxTasking Layer 7

2 MxTasking Building Blocks 9

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 MxTask Abstraction . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 System Interface and Dispatching . . . . . . . . . . . . . . . . 12

2.4 Task Pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Single Queue . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Worker-to-Worker Queues . . . . . . . . . . . . . . . . 14

2.4.3 NUMA-local Queues . . . . . . . . . . . . . . . . . . . 15

2.5 Descriptor Allocation . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Cache Efficiency . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Annotation-based Memory Prefetching 21

3.1 Memory Prefetching . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Hardware-based . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Software-based . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Prefetching Annotated Data Objects . . . . . . . . . . . . . . 23

3.3 Static Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Dynamic Prefetching . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Scheduling Prefetch Instructions . . . . . . . . . . . . . 26

3.4.2 Monitoring Execution Times . . . . . . . . . . . . . . . 27

3.5 Extended Annotations . . . . . . . . . . . . . . . . . . . . . . 28

v



vi CONTENTS

4 Synchronization of Concurrent Tasks 31
4.1 Annotation-based Synchronization . . . . . . . . . . . . . . . . 32
4.2 Integrated Synchronization Primitives . . . . . . . . . . . . . . 33

4.2.1 Latches . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Optimistic Versioning . . . . . . . . . . . . . . . . . . . 33
4.2.3 Hardware Transactional Memory . . . . . . . . . . . . 35
4.2.4 Synchronization through Scheduling . . . . . . . . . . . 36

4.3 Selecting Synchronization Primitives . . . . . . . . . . . . . . 36
4.4 Dispatcher/Worker Interaction . . . . . . . . . . . . . . . . . . 37

4.4.1 The Dispatcher Side . . . . . . . . . . . . . . . . . . . 37
4.4.2 The Worker Side . . . . . . . . . . . . . . . . . . . . . 39

II Leveraging Tasks for Data Structures 41

5 MxTasking in Action 43
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Insert Task . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Node Splits . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.3 Beyond Insertion . . . . . . . . . . . . . . . . . . . . . 45

5.3 Annotation-based Synchronization . . . . . . . . . . . . . . . . 46
5.4 Annotation-based Prefetching . . . . . . . . . . . . . . . . . . 47
5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 48

5.5.1 Environment . . . . . . . . . . . . . . . . . . . . . . . 48
5.5.2 Annotation-based Prefetching . . . . . . . . . . . . . . 49
5.5.3 Epoch-based Memory Reclamation . . . . . . . . . . . 52
5.5.4 Comparison of Tasks and Threads . . . . . . . . . . . . 53
5.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 58

III Exploiting Tasks at the System Layer 61

6 Micro Partitioning 63
6.1 Hash-based Partitioning . . . . . . . . . . . . . . . . . . . . . 63
6.2 Micro Partitioning . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Micro Partitioning in Action . . . . . . . . . . . . . . . . . . . 66
6.4 Dispatching Micro Fragments . . . . . . . . . . . . . . . . . . 68

6.4.1 Annotation-driven Task Dispatching . . . . . . . . . . 68
6.4.2 Finalizing the Partitioning Phase . . . . . . . . . . . . 71
6.4.3 Parallel Partitioning . . . . . . . . . . . . . . . . . . . 71

6.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 71
6.5.1 Comparison with the State of the Art . . . . . . . . . . 72
6.5.2 Memory Access Patterns . . . . . . . . . . . . . . . . . 74



CONTENTS vii

6.5.3 Task-driven Micro Partitioning in Detail . . . . . . . . 76
6.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Engineering a Task-based DBMS 79
7.1 Control Flow Abstraction . . . . . . . . . . . . . . . . . . . . 80

7.1.1 Control Flow of Query Engines . . . . . . . . . . . . . 80
7.1.2 MxTask-based Control and Data Flow . . . . . . . . . 80
7.1.3 Task-driven Query Processing . . . . . . . . . . . . . . 82

7.2 Compiling Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.2.1 Data-centric Code-Generation . . . . . . . . . . . . . . 85
7.2.2 Tuning the Code Quality of FlounderIR . . . . . . . . 85

7.3 Prefetching Materialized Data . . . . . . . . . . . . . . . . . . 90
7.3.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.2 Annotation-based Prefetching . . . . . . . . . . . . . . 92
7.3.3 Generating Prefetch Instructions . . . . . . . . . . . . 94

7.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 95
7.4.1 Prefetching . . . . . . . . . . . . . . . . . . . . . . . . 95
7.4.2 Task Granularity . . . . . . . . . . . . . . . . . . . . . 98
7.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 100

8 Summary and Future Directions 101
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . 103

Acknowledgements 105

Bibliography 107

List of Figures 125



viii CONTENTS



1
Introduction

The fundamental structures of data processing models used today were designed
decades ago. At their inception, hardware was characterized by single-core
CPUs clocked at modest speeds and limited RAM capacities from today’s point
of view. Since then, the hardware landscape has changed significantly. Modern
servers are equipped with many CPU cores spread across multiple sockets, big
caches, and vast amounts of main memory, organized in a non-uniform memory
access (NUMA) fashion. Historically, the software experienced performance
improvements due to hardware advancements, such as increased CPU clock
frequencies, with minimal engagement required. However, we have reached
a point where relying only on faster hardware to achieve straightforward
performance boosts has ended. In order to leverage newly available resources,
software must adapt and explicitly exploit provided hardware features, e.g.,
massive parallelism, multi-level cache hierarchies, and SIMD instructions. And
the trend continues. Heterogeneous and specialized CPU cores and various
types of memory, such as persistent and high-bandwidth memory, can already
be found in increasingly complex systems today [118]. In the future, the
hardware is expected to become even more sophisticated. Although modern
hardware can accelerate software, it can also impede its efficiency. Massive
parallelism and heterogeneity have great potential for improving performance
but pose complex challenges, such as the efficient utilization of CPU resources,
synchronization of concurrency, and incorporation of coprocessors.

Owing to the increasingly affordable cost of DRAM, it has become common
practice for database management systems (DBMSs) to store data exclusively
in the main memory. Consequently, DBMSs are now combating memory
access latencies and bandwidth as a formidable foe [6, 24], particularly when
the hardware is confronted with unpredictable access patterns. In light of
this, hardware and software engineers have invested substantial efforts toward

1



2 CHAPTER 1. INTRODUCTION

optimizing data access. Hardware employs fast CPU caches to accelerate
recurring data access and attempts to bring data into caches proactively
before it is needed. Software developers, in turn, tackle this challenge by
designing data structures and algorithms hardware-consciously to respect the
characteristics of modern hardware. For example, they prioritize local over
remote data access in NUMA environments [80, 92], implement sequential
instead of random access patterns [101], and reorganize data accesses to align
with the properties of caches [100, 13]. Additionally, we can witness initiatives
focused on bringing data into caches before its actual demand to reduce memory
access latencies [34, 105, 124].

The rapid growth of parallel hardware has further led to an increased need
for optimizing the synchronization of concurrent control flows. Latches, as
mutual excluding synchronization primitives, for instance, reduce parallelism
by serializing accesses instead of optimally utilizing parallel resources. Conse-
quently, more intricate mechanisms have been proposed in the literature, such as
fine-grained latches [72], differentiation between reading and writing operations
to enable parallel reads, and optimistic variants speculatively performing read
operations [102, 94, 95]. Specific endeavors propose the implementation of data
structures that carefully avoid latches altogether [96, 147]. Nevertheless, most
of these techniques are tailored to particular situations and are cumbersome to
implement and apply universally.

1.1 Motivation

To fully develop its potential, the hardware requires explicit support from
the software. The abovementioned challenges—reducing memory access costs
and efficiently utilizing parallel resources—illustrate particular examples. The
efforts discussed also demonstrate that many of these problems are tackled at
the application level. DBMSs, for instance, tend to choose this road to squeeze
the last bit of performance out of the system. In fact, specific applications
have taken the step of re-implementing services traditionally provided by the
operating system (OS), such as thread scheduling and memory management,
to tailor them to their needs. In doing so, they bypass the OS and manage
resources in-house. SAP Hana serves as an illustrative example [117]. Other
work addresses the challenges within the OS to devise optimizations beyond
the boundaries of a single application. Linux, for instance, attempts to improve
data locality by migrating memory pages between NUMA nodes based on the
historical access pattern of the applications [142, 103, 43].

These two opposed methodologies need to be revised to address the problem
fundamentally. To accomplish this, the execution layer, e.g., the OS, needs
a comprehensive understanding of the application’s behavior and intention.
However, such information is hard to exchange as current interfaces lack the
possibilities to do so. Threads, the standard control flow abstraction, can be
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considered a “black box” that hardly provides any communication between
both layers. One of the reasons can be attributed to the coarse granularity:
During its execution, a thread typically performs numerous data accesses
and computations, making an accurate specification of a thread’s intention
challenging despite the knowledge available in the application.

In order to address this dilemma, specific frameworks interweave knowledge
from the application—specifically DBMSs—with the control flow. The basic
idea is to break computational work into fine granular packages, called tasks,
which are distributed to specialized worker threads with the assistance of
application knowledge. Which specific knowledge is leveraged to allocate tasks
to worker threads depends on the particular system. For example, DORA uses
its internal understanding of transactions to divide them into small execution
units scheduled with accessed data in mind [119]. As a result, the code is
migrated to the data instead of vice versa, avoiding disorganized access across
parallel transactions and diminishing contention on central components, e.g.,
the lock manager. The engines of HyPer and Umbra break down data into
small fragments (“morsels”) that are scheduled alongside the code for query
execution in a NUMA-aware manner [92, 115]. Decomposing work into tasks
enables the developer to design parallel software without worrying about the un-
derlying many-core hardware. HyPer and Umbra take advantage of task-based
parallelism by dynamically balancing the workload at runtime. Concluding
from these observations, we argue that tasks, as small and encapsulated work
units, might provide an appropriate level of granularity for expressing the
application’s characteristics and enabling optimizations in a general way.

1.2 Open Challenges

Expanding the concept of tasks as a central control flow abstraction presents
various unique challenges. In order to evaluate the viability of the methodology,
it is essential to address the following questions.

Exchange between Applications and the Execution Layer. Assuming
that tasks illustrate an appropriate unit to describe the execution behavior, ap-
plications and the execution layer need transparent interfaces in both directions
to specify and communicate this information. Examining which knowledge is
shared and how it is propagated becomes necessary. This may require a funda-
mental redesign of the interfaces between these two tiers. However, it offers the
potential to introduce new ways for optimizations: With information about
accessed data and access patterns, for example, the execution layer can base
optimizations on knowledge instead of relying on predictive models informed by
historical patterns. Moreover, the ramifications of such optimizations beyond
enhancing data locality in NUMA-based environments are uncertain. Plus,
utilizing finely-grained work packages introduces additional efforts, such as
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Figure 1.1: MxTasking software architecture and overview of this thesis.

dispatching, which must be minimized to ensure that the optimizations can
pay off.

Leveraging Tasks on the Application Level. The consequent transition
from a thread-based to a task-based processing model affects not only the
execution substrate but will also lead to changes in the application’s execution
methodology to benefit from the newly available optimization possibilities.
First, the granularity will shift toward well-defined and closed processing
units instead of long code sequences. This transformation can interfere with
the synchronization of concurrent control flows and require restructuring and
redesigning algorithms and data structures. Second, the application must
collect appropriate information to enable optimizations through an exchange.
The methods for collecting such information and the level of detail need to be
investigated.

1.3 Contributions and Outline

This thesis addresses the abovementioned challenges to optimize and ease
the implementation of performance-driven systems on today’s and future
many-core hardware. Throughout this work, we present MxTasking, a task-
oriented framework that facilitates the developer to convey the characteristics
of applications to the execution unit. The thesis is divided into three parts.
Part I delves into the details of MxTasking. Parts II and III demonstrate
how the task-based abstraction leverages efficiency and implementation, using
demonstrators sourced from various layers of a DBMS software stack. We
illustrate the system stack as an overview of this thesis in Figure 1.1.
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The thesis introduces the MxTask model in Chapter 2, exploring how
applications can effectively communicate their intention with the MxTasking
runtime. We present several building blocks that contribute to the performance
of MxTasking. In Chapters 3 and 4, we will report on two ways of using the
application knowledge to enhance the execution: bringing data into caches
before it is needed and streamlining the synchronization of concurrent tasks.
In Chapter 5, we show that these concepts can indeed optimize real-world
use cases by utilizing a task-based Blink-tree as a demonstrator. We conclude
the chapter with a comprehensive experimental evaluation that sheds light on
various aspects of MxTasking. MxTasking and the task-based Blink-tree were
introduced in

[109] Jan Mühlig and Jens Teubner. MxTasks: How to Make Efficient Synchro-
nization and Prefetching Easy. In Proceedings of the 2021 International
Conference on Management of Data, SIGMOD, pages 1331–1344. 2021.

Chapter 6 shifts the focus to the query execution engine. We examine how
tasks can be used to process substantial data volumes in cache-aware segments
while simplifying the implementation. Through an experimental evaluation,
we prove with the example of joins that tasks have the potential to enhance
the memory access pattern and require very little overhead. The technique
was introduced in

[110] Jan Mühlig and Jens Teubner. Micro Partitioning: Friendly to the
Hardware and the Developer. In 19th International Workshop on Data
Management on New Hardware, DaMoN, pages 27–34. 2023.

Chapter 7 takes up these concepts and reflects the engineering of an MxTask-
based DBMS. We show the applicability of MxTasking in the implementation of
complex control flows, specifically those necessary for query execution. This is
achieved by translating queries into a series of tasks that work collaboratively to
answer the request. Additionally, we discuss multiple techniques for optimizing
query compilation based on FlounderIR, which we use in our demonstrator
to generate code for tasks. FlounderIR is a low-level and assembly-near
intermediate representation that was initially introduced in

[52] Henning Funke, Jan Mühlig, and Jens Teubner. Efficient generation of
machine code for query compilers. In 16th International Workshop on
Data Management on New Hardware, DaMoN, pages 6:1–6:7. 2020

and extended in

[53] Henning Funke, Jan Mühlig, and Jens Teubner. Low-latency query
compilation. VLDB J., 31(6):1171–1184, 2022.

Finally, Chapter 8 wraps up this work. Throughout the thesis, we emphasize
the efficiency of various techniques used to build MxTasking and optimize the
execution with interim evaluations.
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The Bigger Picture. MxTasking, as described in this thesis, is one building
block of the overarching MxKernel1 vision, where we aim to address a dilemma
in the design of hardware-conscious system stacks. Conventional OSs conceal
the inner characteristics of the underlying hardware, thereby precluding op-
timizations that could address just these characteristics. MxKernel envisions
enhancing the transparency of the interfaces between applications and the
OS underneath in both directions. The MxKernel effort was initiated by Olaf
Spinczyk and Jens Teubner, who contributed fundamental ideas and discussions
in this context. Initial results of the MxTasking runtime as the central control
flow abstraction of the MxKernel system were presented in:

[117] Stefan Noll, Norman May, Alexander Böhm, Jan Mühlig, and Jens
Teubner. From the application to the CPU: holistic resource management
for modern database management systems. IEEE Data Eng. Bull., 42(1):
10–21, 2019.

[111] Jan Mühlig, Michael Müller, Olaf Spinczyk, and Jens Teubner. mxkernel:
A novel system software stack for data processing on modern hardware.
Datenbank-Spektrum, 20(3):223–230, 2020.

The Author’s Contributions. According to § 10 (2) of the doctoral regu-
lations of the computer science department at TU Dortmund University from
August 29, 2011, the author should indicate their own contributions to the
results of collaborations that are used. The author is the principal author of
the articles [109, 110] and of all contents from the articles that are used in
chapters of this thesis. He is responsible for the concepts, the implementations,
the presentation, and the analyses. Furthermore, the author of this thesis
co-authored [52], where he contributed parts of the implementation and [53],
where he contributed parts of the implementation and parts of Section 5. In
addition, he contributed results and parts of Section 4 in [117]. Finally, the
author of this thesis co-authored [111], where all authors have contributed
equally.

1http://mxkernel.org

http://mxkernel.org
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2
MxTasking Building Blocks

Parts of this chapter have been published in [109].

Contemporary software faces an ambitious mission: In order to meet the
demands for efficiency, applications must exploit highly parallel and heteroge-
neous systems with sophisticated memory structures. The responsibility for
this undertaking lies almost exclusively in the hands of an application. As
the complexity of hardware increases, the application mostly remains unaware
of its characteristics—or is compelled to rely on the assistance of external
libraries, e.g., libnuma [81]. And the situation is not different the other way
around: The execution runtime, such as an OS, has to guess the intentions of
the application running on top.

2.1 Background

We argue that the central problem stems from the characteristics of the prevail-
ing control flow abstraction, which can be traced back to the 1960s: threads.
Threads serve as a crucial interface between the OS and applications, intending
to abstract computing resources and enable multiple applications to share
these resources without mutual knowledge and fundamental understanding of
the hardware. However, threads pose a considerable challenge: Applications
cannot communicate their expertise to the OS. This results in a substantial
untapped potential for optimizing the application’s execution based on its
unique requirements and characteristics. Memory accesses serve as a prime
illustration. In increasingly complex memory hierarchies, applications tend to
store their data across multiple NUMA regions, which exhibit different access
latencies based on the accessing thread’s execution location [20, 108]. As a
result of the insufficient understanding, the OS is compelled to speculate on

9



10 CHAPTER 2. MXTASKING BUILDING BLOCKS

which CPU core a thread must be scheduled to access data locally. OSs try
to tackle this problem in various ways, for instance, by migrating memory
pages between NUMA regions to minimize remote accesses based on the access
pattern of threads [142, 103, 43]. In doing so, the OS bases its decisions on
the past, as the future is inherently unpredictable.

How applications synchronize concurrent accesses is another consequence
of the absence of information exchange between the application and the OS:
The application bears the responsibility of synchronization. This approach is
error-prone and cumbersome to implement as applications often use tailor-made
synchronization primitives built without knowledge of the actual hardware.
The primitive preference may vary based on the hardware characteristics, such
as the presence of hardware transactional memory (HTM). On the contrary,
the system knows about the hardware properties and the execution of other
applications at runtime—and could generalize synchronization if it knew about
the intentions of the applications. One reason for the missing exchange is the
longevity of threads: It is not apparent which data objects a thread will access
throughout its entire execution, making this information challenging to specify.

2.2 MxTask Abstraction

As a remedy, we present MxTasking, a task-based framework that assists the
design of latch-free and parallel data structures. One of the fundamental
tenets of MxTasking is to replace the “traditional” thread-based control flow
abstraction with what we call MxTasks. An MxTask is a small, closed unit of
work rather than a sequence of straight-line code to which a thread corresponds.
From the application’s point of view, MxTasking aligns with an event-based
design: When the application aims to perform computational work, it spawns
MxTasks that are received and processed by MxTasking asynchronously. Once
a task has been picked up for execution, it completes atomically and non-
preemptively, enabling tasks to share the stack and reducing the overhead of
context switches.

By definition, an MxTask accesses only one data object (or at least a few)
during execution. This characteristic renders tasks to be more fine-grained
than threads. The equivalent of using a thread is to spawn multiple tasks one
after the other, finishing a higher-level work package through collaborative
efforts. We will demonstrate the concept of tasking using the traversal of
a tree-like data structure as a running example. Conventional thread-based
implementations of tree traversals iteratively visit one node after the other,
following the nodes’ child pointers from the root down to a leaf node. This
pattern results in a lack of transparency for the thread and the underlying
system. It is almost impossible to predict which nodes a thread will access
during execution. The thread knows about the next node to visit only in
the short term. By employing the MxTasks methodology, we break down the
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MxTask
. . .

accessed data

core

NUMA region

execution time

priority

≪low≫, ≪normal≫,
or ≪high≫

core

core

1000 cycles

data

main memory≪read≫ or
≪write≫

Figure 2.1: MxTasking provides annotations to share application knowledge
with the underlying execution layer. Tasks can be annotated with its accessed
data objects, a specific core or NUMA region, and priority.

traversal into a series of tasks: Every task visits only a single node and spawns a
follow-up task for the next node to traverse. Consequently, it becomes concrete
to the developer which node an individual processing unit will access during
its execution when spawning that task. To make this knowledge also accessible
to the system, the developer can attach this expertise to every MxTask in the
form of annotations.

Annotations serve as an interface between the application and the underlying
MxTasking. The fundamental concept aims to enable the sharing of application-
based knowledge about runtime characteristics and effectively communicate
a task’s requests and requirements to the execution layer. As illustrated in
Figure 2.1, the application can, for example, request the execution of a task at
a specific CPU core or within a particular NUMA domain. However, the true
power of annotations lies in the possibility of annotating the data objects a
task will access. When spawning a task visiting a tree node during traversal,
the developer can share their knowledge with the execution layer, providing
the runtime with a detailed understanding of the interplay between code and
data. Internally, task annotations are stored as a part of the task object in a
structured manner. As such, annotated metadata are accessible to both the
developer and the runtime.

MxTasking exploits annotations in several ways. The association between
tasks and accessed data objects enables the runtime to load the data into
the cache before it is accessed by the application, aiming to hide memory
latencies behind the execution of further tasks. We will delve into details in
Chapter 3. Plus, MxTasking leverages the provided knowledge to coordinate the
tasks that concurrently access the same data object. Instead of bothering with
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// allocate an annotated tree root, that is accessed by tasks in parallel,
// read heavy, and highly frequented

1 tree->root =
mxtasking::new resource<TreeNode>(mxtasking::isolation::shared,
mxtasking::rw ratio::read heavy,
mxtasking::access frequency::high)

// spawn a lookup task that starts traversal at the root node
2 task = mxtasking::new task<LookupTask>(tree->root, key)
3 task->annotate(mxtasking::priority::high)
4 task->annotate(mxtasking::readonly)
5 task->annotate(tree->root, tree->node size())

6 mxtasking::spawn(task)

Figure 2.2: Example-based usage of the MxTasking API to create a tree node
and spawn a lookup task to start the traversal.

implementing various synchronization mechanisms (such as latches or optimistic
techniques), the developer can entrust this responsibility to the execution layer,
which will wrap synchronization around the task execution. All the developer
has to do is annotate tasks with the accessed data object and—to optimize
synchronization—indicate whether the task will read from or write to the
data. Furthermore, MxTasking can harmonize the designated synchronization
with the hardware substrate. The intricacies of this mechanism are discussed
in detail in Chapter 4. Note that the use of annotations by the developer
is optional, although more and better annotations may help MxTasking to
improve performance.

For the final execution of tasks, MxTasking spawns a group of worker
threads, each pinned to an individual logical CPU core. The primary mission
of each worker is to pick up and execute tasks assigned to its task pool. In light
of this, MxTasking mediates between the task-based execution model and the
thread model of the underlying OS.

2.3 System Interface and Dispatching

In Figure 2.2, we illustrate the MxTasking programmer interface. In the
example, we create a data object allowing shared access and assuming a read-
heavy workload and a high access frequency (line 1). In lines 2–5, we create a
high-priority lookup task, starting in read-only mode at the root of a search
tree. The task is finally spawned in line 6. Subsequently, the dispatcher will
select a specific worker as the recipient of that task and appends it to the
worker’s task pool. Notably, the dispatcher does not operate as a dedicated
service (e.g., within a separate thread that runs alongside the application).
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Instead, the application triggers dispatching by invoking a function on top.
Annotations primarily drive the allocation of tasks to the worker threads. In

the most basic scenario, the application requests a particular worker or NUMA
domain as an execution target—giving the application complete and lightweight
control over the dispatching process. If the application annotates a data object,
the selection of an appropriate worker depends predominantly on whether the
access requires synchronization. We will discuss additional synchronization-
dependent annotations and dispatching in Chapter 4. Otherwise, the dispatcher
spawns the task locally within the task pool of the worker that invokes the
dispatch.

To keep things simple, MxTasking does not track the load of workers
and desists from implementing sophisticated and load-balanced scheduling.
Therefore, we denote this process as dispatching instead of scheduling. Widely
used task-based frameworks, such as Intel Threading Building Blocks (TBB)
and OpenMP, incorporate load balancing by implementing task-stealing and
calculating the percentage of load to balance the system [38, 88].

2.4 Task Pool

From the application’s perspective, spawning a task and declaring it “ready
for execution” corresponds to pushing it into a worker’s task pool. From the
system’s point of view, the task is transferred to a queue-like data structure from
which a worker thread continuously picks tasks for execution. Consequently,
the task-receiving worker thread and multiple senders (primarily tasks executed
on several worker threads) access the task pool concurrently, necessitating
synchronization. This can result in increased overhead, such as cache coherence.
We will now present different task pool strategies utilized for task management
and discuss their strengths and weaknesses.

2.4.1 Single Queue

The task pool’s most straightforward implementation is using a single queue per
worker. Thanks to modern processors, which facilitate atomic instructions to
read and modify a value without needing the assistance of a higher-level latch,
the implementation of a single queue-based task pool becomes lightweight.
Compared to latches (e.g., spinlocks or mutexes), atomic instructions reduce
the synchronization overhead to a minimum, eliminating the need for senders
to wait for another [107]. TBB, as a prominent task-based example, employs
this strategy for internal task management [79]. However, intricate memory
hierarchies can negatively affect performance. When tasks are spawned at high
frequencies and directed toward a single task pool, multiple senders endeavor
to concurrently modify the same cache line to append their task to the queue’s
tail—which ends up in high contention. In our experiments, we observed
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Figure 2.3: Illustration of spawning tasks from different worker threads to the
identical task pool. The task pool can manage tasks within a single queue ( 1 ),
a direct connection between each pair of workers ( 2 ), or using one queue per
NUMA region to minimize contention ( 3 ).

that a single queue could become a bottleneck due to the high overhead for
cache coherency, particularly when tasks are sent from multiple NUMA regions
simultaneously to the same task pool. Figure 2.3 illustrates task dispatching
through multiple worker threads that send tasks to a single task pool using a
solitary queue (marked with 1 ).

2.4.2 Worker-to-Worker Queues

A potential solution that minimizes contention by reducing synchronization
requirements among transmitting worker threads is to provide each worker a
distinct location for appending tasks to the task pool of any other worker thread.
We illustrate this strategy in Figure 2.3 (highlighted with 2 ). For implementa-
tion, each task pool comprises a fixed collection of queues corresponding to the
number of worker threads alive within the system. Implicitly, each worker has
a slot to place tasks into another worker’s task pool. This approach guarantees
that two senders will not append their tasks to the identical queue, thereby
preventing potential communication among multiple senders. Consequently,
synchronization is streamlined as it solely entails the sender and the receiver.
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The limitation arises from the worker’s perspective: Every individual worker
thread is required to exert notable computational effort to retrieve all tasks
from the task pool. Given that modern hardware systems offer hundreds of
cores (and MxTasking uses one worker thread per logical core), the number
of queues required to pick tasks from scales accordingly. Since the equitable
distribution of tasks among all workers is an unrealistic scenario, some (or
many) queues will remain empty but must still be polled. This allocation
of substantial computational resources for performing lookups across several
queues diminishes the task execution throughput of a worker thread.

2.4.3 NUMA-local Queues

The two presented methods exhibit opposite ends of a spectrum regarding
contention overhead and dequeue effort, as indicated in Figure 2.3. A feasible
approach to balance these conflicting considerations is to use a limited number
of queues as an intermediary between the principles (marked as 3 ). Mitigating
contention among multiple NUMA domains is one critical factor in optimizing
the performance of shared data structures [152], such as the task pool. For that
reason, MxTasking utilizes one separate queue per NUMA region within each
task pool. In this manner, the number of queues to pick tasks from is kept low,
and the acceptance of contention is limited and almost exclusively emerges
between worker threads that belong to the same region. The only exception
of contention across NUMA borders occurs when a worker from one region
transfers a task into the pool from another region while the receiving worker
tries to pick that task at the same time. However, this is observed solely when
the queue comprises a small number of tasks or none at all, thereby signifying
a minimal workload that contention could affect.

According to our observations, various workloads spawn a more extensive
set of tasks within the local environment, targeting the task pool belonging to
the sender. The run-to-completion paradigm of MxTasks ensures no overlap
on a single worker when inserting and receiving tasks from the local task pool.
Thus, MxTasking uses an additional lightweight and non-synchronized queue
for locally spawned tasks.

Intermediate Evaluation

To understand the impact of the different task pool strategies, let us look
at the performance of these concepts using tree inserts as an illustrative
example. Note that we utilized all available cores on a two-socket machine;
further details on the hardware configuration and workload will be given
in Chapter 5. Within this particular workload, each node is linked to a
specific worker thread; writing tasks are dispatched to that worker while
reading tasks are processed locally (we will discuss further mechanisms for
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synchronization later in Chapter 4). Figure 2.4 depicts the measurement
results, breaking down the CPU cycles required for the insert operation
and efforts for dispatching and dequeuing tasks.

The findings confirm that tasks can be efficiently picked from a single
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Figure 2.4: Comparison of different
task pool concepts used to exchange
tasks between workers.

queue while dispatching causes no-
ticeable overhead due to contention,
negatively impacting performance.
Worker-to-worker queues consider-
ably minimize that contention among
worker threads and implicitly accel-
erate dispatching by 50 %; how-
ever, the computational effort for
receiving tasks triples compared to
a single queue. Adopting NUMA-
local queues for each worker is ben-
eficial for achieving a balance be-
tween contention and computational
effort. Compared to the worker-to-
worker model, utilizing NUMA-local
queues requires equivalent computa-
tional resources for task spawning.
On the other hand, receiving tasks
from queues increases by only 20 %
compared to a single queue per worker. By combining the best of both
worlds, NUMA-local queues experience 11 % and 20 % better performance
for this benchmark than single and worker-to-worker queues, respectively.

2.5 Descriptor Allocation

Each MxTask corresponds to a code segment and a descriptor that includes
annotations and execution arguments, such as the key to lookup and the tree
node to process. Upon task spawning, the descriptor is initially allocated in
memory. A task descriptor is typically sized to one or at least a few cache
lines, encompassing arguments for execution. As a single task is responsible for
processing only a fraction of a higher-level operation, the associated descriptors
are subject to frequent creation and deletion. Hence, allocating the task
descriptors is pivotal in achieving satisfactory performance. Using a global
heap to allocate memory, akin to the system’s native malloc call, will quickly
become a bottleneck, particularly when multiple worker threads simultaneously
request memory for new tasks.

The challenge of memory allocation is not limited to MxTasks. Various mem-
ory allocation libraries, including Hoard [19], jemalloc [46], and TCMalloc [54],
manage allocation within the user space to achieve superior performance. These
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Figure 2.5: MxTasks are allocated within a multi-level allocator to reduce
synchronization costs and enhance cache awareness.

allocators optimize memory allocation for scalability, heap fragmentation, and
caching behavior while reducing the number of system calls.

2.5.1 Scalability

Specific allocators like Hoard facilitate scalability using dedicated memory
heaps for each processor. Threads allocate memory from their local processor
heap instead of invoking the system-wide malloc interface to request memory
from the OS. Each processor-local heap holds a buffer of free memory and
delegates it to threads seeking to allocate memory. In turn, the processor heap
demands memory from the OS when the local buffer becomes empty, implicitly
reducing synchronization costs between the processors.

MxTasking extends this concept by providing an additional layer to the
allocation stack: A separated heap per worker thread becomes the point of
contact for descriptor allocation. Figure 2.5 outlines this approach. When
a task spawns a new one, it requests memory from the local heap. The
allocation process from this heap is characterized by its lightweight nature, as
the runtime guarantees that MxTasks execute until completion, thereby making
synchronization superfluous. When a worker-local heap runs out of memory, it
requests a new memory block from the processor heap with the capacity for a
series of descriptors. Since the worker threads of a socket operate on a shared
processor heap, it is imperative to ensure synchronization. The processor heap,
in turn, will allocate memory from the global heap in a NUMA-aware manner
when it has no memory in stock. As a result, memory management for MxTasks
requires only a single latch1 when allocating memory from the processor heap,
thereby enhancing scalability.

1Apart from latches used by the OS to allocate memory for specific NUMA regions.
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2.5.2 Cache Efficiency

After execution, the majority of the tasks are redundant for the application.
By then, their descriptors can be made available for subsequent allocations.
Inspired by TCMalloc, which keeps released memory under the ownership of the
previous thread, MxTasking returns the free descriptor to the worker-local heap
that executed the task (cf. 2 in Figure 2.5). The worker-local heap maintains
memory in a last-in, first-out list to enhance subsequent allocations’ chances
of finding the descriptor in the CPU cache. Implicitly, the allocator places
returned descriptors at the beginning of the list, and the following allocation
will pick the memory block that has been recently released.

Reducing inter-processor communication and providing NUMA-aware allo-
cation is a trade-off. Figure 2.5 illustrates a descriptor that is allocated by one
worker but released by a different one ( 1 ). The free block is pushed to the
heap of the releasing worker. In the worst case, this pattern affects multiple
processors, where a task is allocated within one and deleted in a different
NUMA region, shuffling the memory across NUMA borders. However, we
accept mixing the memory to diminish synchronization efforts by minimizing
communication.

Intermediate Evaluation
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Figure 2.6: Comparison of different
allocators used to allocate memory for
the task descriptors.

To understand the performance im-
pact of descriptor allocation for
task-based applications, we exam-
ine the efficacy of different alloca-
tors: glibc as the default backend
for malloc, jemalloc, TCMalloc,
and MxTasking’s multi-level alloca-
tor. As a representative workload,
we employ parallel tree lookups
which tend to stress the descrip-
tor allocator due to their short ex-
ecution duration. Figure 2.6 de-
picts the results, breaking down the
consumed CPU cycles of a single
lookup into costs for the runtime,
lookup, and descriptor allocation.
By using glibc as an example, the
findings indicate that the alloca-
tion overhead can become signifi-
cant, mainly attributable to the expenses associated with system calls
and synchronization. While TCMalloc and jemalloc minimize costs sub-
stantially with comparable performance, MxTasking’s multi-level allocator
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improves the performance by reusing already cached descriptors for the
following task allocation. As a result, we observe a reduction of about
9.5 % in the number of cycles consumed by the operation. Furthermore,
only 34 cycles are sampled for descriptor allocation during a tree lookup.

2.6 Related Work

The concept of asynchronous, fine-grained control flows has been discussed
several times in the recent past. Popular programming languages and envi-
ronments implement this approach, for example, NodeJS, C++, and Rust.
Tasks (others refer to them as lightweight threads or fibers) are typically
scheduled and executed at the user level. Some OSs provide native support for
lightweight threads, e.g., cooperatively scheduled fibers in Windows [5] and
tasks in macOS [130].

With Cilk, Blumofe et al. [23] published one of the first runtime systems for
parallel programming that schedules tasks onto OS threads. Aiming to simplify
the engineers’ work, Cilk focuses on the automatic load balancing of parallel
applications and easy integration into existing software programs. Cilk supports
lock/unlock calls on a latch variable to assist in synchronizing concurrent tasks.
Since then, various task frameworks have been developed (e.g., [48, 11, 74, 137,
65]). Intel provides the TBB framework [88, 128, 149], focusing on portability
and robust performance. TBB provides several synchronization primitives,
including scalable (reader/writer-) latches, partially based on HTM. It is
up to the developer to use them accordingly. For higher-level (and typically
stream-based) data flow processing, TBB supports a graph-based programming
interface and parallel container implementations, such as hash maps and
vectors. OpenMP [12] forms another example of a task-based framework widely
used in parallel software today. OpenMP enables developers to parallelize
loops and regions of code by using compiler directives, which require only
minimal modifications to the original code—making it easy to add parallelism
to existing programs. Internally, the runtime can create independent units of
work dynamically assigned to threads, allowing OpenMP to adapt to changing
workloads.

Tasks—and similar concepts—have also been exploited in the context of
DBMSs. Beyond HyPer, morsel-driven parallelism [92] has found its way
into several applications and query execution engines. For instance, Umbra’s
scheduler can adapt the size of tasks (i.e., the number of processed morsels) to
tune, e.g., for lower query latencies [144]. SiliconDB [44] targets heterogeneous
platforms based on a morsel-driven query engine. Similarly, Baumstark et
al. [17] exploited morsels for graph databases. TAMEX [151] translates logical
query plans into task graphs to benefit from the load-balancing and prioritiza-
tion possibilities of fine-granular work packages in parallel settings. Bang et
al. [16] utilize tasks for various index structures like B-trees and hash-tables,



20 CHAPTER 2. MXTASKING BUILDING BLOCKS

as well as transactional workloads. The primary concept entails dividing a
given multi-socket machine into multiple domains. The accessing tasks are im-
plicitly processed NUMA-aware by allocating data structures within a specific
domain.



3
Annotation-based Memory

Prefetching
Parts of this chapter have been published in [109].

Annotations provide the execution layer with knowledge from the application.
This understanding enables MxTasking to tackle a fundamental problem of
today’s software: Data processing systems suffer from memory access costs,
particularly when the data is not cached. The delay caused by the transfer of
data from memory to registers substantially reduces computational efficiency.
In order to reduce such waiting times, data can be brought close to the CPU
before it is needed, accelerating subsequent accesses. We will now explore a
first use case for utilizing annotations that assist task-based applications in
this process: prefetching annotated data objects. Once annotations have been
attached, MxTasking will improve runtime performance and hardware efficiency
by prefetching data into fast CPU caches before executing the accessing tasks.

3.1 Memory Prefetching

Memory prefetching plays a crucial role in improving the performance of modern
computer systems by hiding memory access latencies—aiming to bridge the
gap between the CPU’s processing speeds and slower main memory access
times. Prefetching can be initiated by either hardware or software.

3.1.1 Hardware-based

To bring data into the cache ahead of access, the CPU attempts to predict the
data that an application will likely access soon. The hardware prefetcher bases

21
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its prediction on identifiable access patterns in the data access stream [40,
139]. One basic form is adjacent prefetching, where the hardware prefetcher
speculatively fetches the neighboring cache line in addition to a requested one.
A common and more complex example is sequential access patterns, where
the hardware prefetcher identifies linear scans through a contiguous memory
block and loads potentially required cache lines into the cache. However, the
hardware prefetcher is limited to simple-to-detect access patterns. As soon as
the application—from the CPU’s point of view—randomly “jumps” through
the memory, it becomes impractical to identify associated patterns.

3.1.2 Software-based

The application often has a better perspective regarding the data that will be
needed subsequently. Software-based prefetching facilitates the program to hint
to the hardware about upcoming data access by executing specific prefetch
instructions. This gives the hardware the ability to asynchronously load data
into the cache that is unpredictable by a stream-based look-ahead. Operations
on tree-like data structures serve as excellent illustrations of random access
patterns that challenge prediction by only examining data streams. While
navigating through a tree and jumping from one node to the next, it is
not feasible for hardware to predict upcoming node accesses. Binary search,
typically utilized for node lookups, further complicates recognizing recurring
patterns.

While prior research has demonstrated that software-based prefetching can
indeed hide memory latencies (e.g., [34, 84, 105, 124]), it is also known to be
cumbersome to use. Its effectiveness relies on the developer’s comprehension
of the hardware, typically baked into manually tuned code. Plus, temporal
considerations pose significant challenges. In order to hide memory latencies,
the hardware requires a temporal gap between initiating prefetches and accessing
the data. If the software prefetches the memory too late, the hardware has too
little time to bring the data into the cache, which almost eliminates the benefit
of prefetching. If the prefetch occurs too early, the data may be already evicted
from the cache when accessing and has to be brought back. In both scenarios,
the performance is negatively affected by the penalty for the additional costs
of executing the prefetch instruction and potentially through the increased use
of the memory bandwidth.

And in practice, things are even more complex. The application usually
acquires knowledge of imminently accessed data only after the prefetching
opportunity has elapsed. Traversing a tree is an excellent example: Inner nodes
are browsed to determine the subsequent node to traverse. Upon identification,
the corresponding node is accessed promptly and scanned to continue the
navigation. As only little computation occurs between identification and access,
the temporal gap is insufficient for prefetching the node.

In order to tackle this challenge, various approaches interleave a set of
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requests. With group prefetching, Chen et al. introduced a technique to
leverage inter-tuple parallelism within hash joins [34]. This approach hides
cache misses related to one tuple behind the computational effort for another.
Group prefetching combines multiple iterations into a group and transforms the
probe operation. Each stage (e.g., calculating the hash value) is performed for
all grouped tuples before moving to the next stage (e.g., accessing the bucket).
Immediately after computing a stage for a tuple, the following memory reference
is prefetched. The reorganization of the code introduces a temporal gap between
the identification and access of data, during which the hardware can move the
data to the cache.

The idea of interleaving for various index joins is generalized by Psaropoulos
et al. [124]. Their approach builds on coroutines, corresponding to stackless
functions that can pause and continue execution with the assistance of the
compiler. Whenever attempting to access data (e.g., a tree node or hash
bucket), the coroutine executes a prefetch instruction and suspends. With a
series of coroutines waiting, the thread continues execution by transitioning to
the subsequent coroutine. The temporal window between the suspension and
resume of the coroutine enables the memory subsystem to load the requested
data into the cache. As a result, the actual load (initiated by the prefetch
instruction) is hidden behind the execution of other coroutines. Similarly,
Jonathan et al. exploit coroutines to hide memory latencies for state-of-the-
art index structures [73]. He et al. demonstrate the performance-related
benefits of software-based prefetching by interleaving coroutines to process
transactions [63].

3.2 Prefetching Annotated Data Objects

Using coroutines in combination with software-based prefetching demonstrates
the latter’s effectiveness. However, this approach has two drawbacks: It requires
extensive rebuilding of data structures and algorithms and provides only a
limited ability to control the timing of the prefetches. In contrast, annotated
tasks enable temporally separating the determination of accessed data objects
and their actual usage. This facilitates MxTasking to hide access latencies
behind the computational work of other tasks. Once dispatched, workers
“see” tasks and associated data annotations within their task pools. Based on
this information, the worker will inject prefetch instructions in-between task
executions. Consequently, tasks will find the annotated data in the cache at
the time of execution.

From the developer’s perspective, prefetching becomes surprisingly simple.
In fact, the prefetching mechanism in MxTasking is entirely transparent to the
application developers. All they need is to annotate the data objects that a task
will access and an optional hint, helping MxTasking to understand which data
segments to preload. As a consequence, applications built on MxTasks require
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Figure 3.1: To get an explicit view of the next tasks to execute and data
objects to prefetch, MxTasking extends the task pool by fixed-sized buffers.
This also reduces pointer-chasing.

no additional adaption to enable prefetching. In addition, the prefetching
mechanism is significantly more powerful than the existing approaches. In
contrast to hand-crafted solutions, MxTasking will automatically schedule
prefetch instructions even across task executions from different applications
operating on the same tasking instance.

Implementation Details. To adequately perform data prefetching, the
worker must “see” upcoming tasks and their annotations. Due to the temporal
demands of the memory subsystem, it may be insufficient to only prefetch the
subsequent task’s data object, necessitating examining more than one task in
line. The task pool, however, includes a set of queues that manage tasks like
a linked list, chaining tasks through pointers. Consequently, to inspect the
waiting tasks for their annotations, the worker must iterate over the chained
items, which results in expensive pointer chasing and implicit cache misses
for the task descriptors. To minimize implicit cache misses and streamline
the access to a specific imminent task (e.g., the third-closest task), we extend
the task pool by two additional buffers: one for a limited set of upcoming
tasks and one for associated prefetches. Figure 3.1 outlines this approach. The
worker contacts the task pool to refill the buffers whenever it runs out of tasks.
This kills two birds with one stone: The worker must interact with each task
descriptor only once when refilling the buffer instead of frequently traversing
the queue to find the next data object to prefetch, minimizing pointer chasing.
Plus, periodically picking tasks from the shared task pool, instead of after every
task execution, reduces contention between former senders and the worker.

During the transfer of tasks from the pool to the buffer, MxTasking strate-
gically positions the relevant prefetch information to ensure that the task’s
prefetches are initiated with an adequate lead time. In Figure 3.1, we assume
a prefetch distance of one. Before executing task 0, the worker performs instruc-
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Figure 3.2: Timeline of interleaved prefetching and task execution.

tions to prefetch the descriptor and the accessed data object of task 1. While
executing task 0, the hardware can move the requested data asynchronously
from memory into the cache, hiding the latencies behind computations. Fig-
ure 3.2 depicts a corresponding timeline, showing how prefetches initiate the
asynchronous transfer via the memory subsystem.

3.3 Static Prefetching

The prefetch distance for an adequate time gap depends on several factors.
These range from hardware-specific parameters, e.g., the time required to
bring data from memory into caches, to software characteristics, such as the
execution time of tasks, while the memory subsystem brings data into the
caches. Furthermore, online parameters such as current memory utilization
can impact the ideal prefetch distance.

MxTasking provides a central parameter for configuring the prefetch distance
in task units. Upon initiating the runtime, the developer can instruct MxTask-
ing always to prefetch a task’s data object the specified number of tasks
in advance. This way, the developer can tune the execution for the unique
attributes of a particular hardware system and the anticipated workload.
However, a single parameter can be inadequate, especially when multiple
applications simultaneously operate on top of one MxTasking instance. In
practical scenarios, a single application will spawn tasks with differing execution
durations, which may not align with a single predetermined prefetch distance.

3.4 Dynamic Prefetching

The natural progression of this mechanism is the dynamic adjustment of the
prefetch distance during workload execution. This ensures that sufficient time is
allocated between prefetching and execution for each task and its corresponding
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Figure 3.3: To schedule prefetches for annotated data objects, the worker
calculates the prefetch latency and finds a slot in the prefetch buffer to hide
the transfer from memory into the cache behind the execution of tasks.

accessed data object in applications with heterogeneous task durations. The
challenge of scheduling software-based prefetches is not limited to MxTasks:
Compilers and similar prefetching algorithms (e.g., [29, 90, 104, 8, 70]) face
a similar dilemma when optimizing accesses to pointer-based data structures
and loops by injecting prefetches into the generated code [126, 8]. To this
end, it is necessary to strategically position the prefetch instruction with a
suitable number of instructions prior to data access [90]. However, not the
exact number of instructions is the determining factor, but their execution time,
which can be approximated either with the help of cost models (e.g., [30, 150])
or profiling (e.g., [33, 78, 70]).

3.4.1 Scheduling Prefetch Instructions

In the MxTask-based world, the prefetch distance is established at the task level
rather than the instruction level, as the runtime inserts prefetch operations
only between the execution of two tasks. Upon appending a new task to the
task buffer, MxTasking calculates an appropriate slot within the prefetch buffer.
The challenge lies in finding a slot where enough tasks are executed between
the prefetch and the newly placed task to cover the prefetch latency. This
primarily depends on two key variables: (a) The prefetch latency, specified as
the product of the number of prefetched cache lines and the memory latency
for a single cache line, and (b) the execution time of tasks executed ahead of
the dispatched task.

Figure 3.3 illustrates dequeuing a task from the pool, which is annotated
with a data object requested to be positioned in the prefetch buffer. Upon
appending the task to the task buffer, the runtime aggregates the approximate
number of execution cycles for tasks scheduled in advance. The illustrated
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example involves prefetching annotated data with six cache lines1. Given an
exemplary latency of 200 cycles for prefetching a cache line, this sums up to
1200 cycles needed to prefetch the data object. The runtime compares the
necessary cycles with the tasks currently awaiting execution in the buffer and
subsequently computes an appropriate slot within the prefetch buffer.

In this illustration, we have taken two variables as given: The latency per
cache line and the execution time of tasks. The prefetch latency is contingent
upon the underlying hardware. It can be determined using third-party tools,
e.g., Intel’s Memory Latency Checker [1], which provides accurate results
according to our observation. The information about task execution times can
be made available to MxTasking in two different ways. First, the developer
can provide annotations to the tasks, specifying the anticipated duration of
their execution. Since this can be challenging, profiling tools (e.g., VTune [69]
and perf [97]) and static analysis tools can be of assistance (as commonly used
in embedded systems where satisfying given worst-case execution time bounds
is an essential factor for correct behavior, e.g., [125, 121, 45, 41]).

3.4.2 Monitoring Execution Times

Second, MxTasking can generate corresponding annotations automatically by
monitoring the tasks’ execution durations throughout the workload. This also
addresses the issue of offline estimations deviating from actual execution times,
which can stem from various factors, e.g., the characteristics of the underlying
hardware, the composition of the processed data, and the data placement with
associated access latencies. To keep the monitoring overhead low and minimize
the impact on the tasks’ execution, we sample tasks in batches and aggregate
the time for each task type (e.g., traversal or insert task). Although this is
only an approximation, the values converge toward the actual execution times
as time progresses. However, in contrast to annotating, monitoring always
provides insights into the past and does not need to align with the temporal
duration of forthcoming tasks.

Intermediate Evaluation

We compare static and dynamic prefetching with and without task moni-
toring to understand how dynamic prefetching can enhance MxTasking’s
built-in prefetching. As a workload, we use tree inserts in a parallel setting,
which include heterogeneous task execution times, such as short-running
traversals and more time-consuming insert operations. Figure 3.4 illustrates
the results.

The allocation of CPU cycles per insert operation is classified into
different categories: the insert, including the traversal, executing prefetch

1The prefetching size is a part of the annotation.
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Figure 3.4: Comparing static and dy-
namic prefetching.

instructions, monitoring task execu-
tion times, estimating the prefetch
distance, and other tasking and
system activity (e.g., dispatching).
The results indicate that dynamic
prefetching slightly improves effi-
cacy compared to utilizing a static
prefetch distance. Plus, in contrast
to the latter, dynamic prefetching
does not require any fine-tuning by
the developer to adjust the central
prefetch distance parameter. Ap-
proximately 44 cycles are spent on
determining the prefetch distance
for a single insert operation, which
includes the execution of four traver-
sal tasks and one insert task.

Monitoring the task execution
times at runtime requires additional
computational effort (66 cycles per operation), which stems from instruc-
tions to insert and look up execution times in a worker-local hash table.
Plus, we utilized memory barriers to prevent out-of-order execution before
and after the measurement of task execution times, which has an indirect
impact, too. For measuring without monitoring, we annotated the tasks
with observed execution times from an earlier iteration.

Despite the computational burden of monitoring and calculating the
prefetch distance, we observe that the insert operation exhibits a 4 %
increase in performance when employing dynamic prefetching as opposed
to static prefetching. In contrast, static prefetching is more effective for
lookup operations due to the workload comprising more homogeneous tasks.
However, any improvement to this mechanism will directly enhance the
performance of MxTask-based applications. Detailed comparisons with
additional metrics (e.g., memory stalls) will be presented later in Chapter 5.
Note that we used a static prefetch distance of two tasks for comparison,
which performed best in this benchmark.

3.5 Extended Annotations

The quantity of prefetched data directly impacts the costs of prefetching.
Software-based prefetching trades reduced memory access latencies for higher
capacity utilization of instruction and memory bandwidth. Besides, CPUs may
have only a limited buffer for outstanding data loads, including prefetches [2].
Hence, the application should carefully avoid prefetching too many or too
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1 1 0 1 ... 1 1 1
63 0

descriptor
type

prefetch type
(temporal,

non-temporal,
write)

data (60 bits)

1 0 0 1 ... 0 1 0 0 0 0 1

2 prefetch the 1st and 6th cache line:

1 1 0 1 ... 0 0 0 0 1 1 1

1 prefetch 448 B in size (7 cache lines):

0 1 - - ... 1 0 1 0 0 1 ...

address of the callback

3 invoke a callback that prefetches:

App::exec prefetch(data)

prefetch(data + 1024)
prefetch(data + 8192)
prefetch(data + 16384)
prefetch(data + 32768)
prefetch(data + 65536)

Figure 3.5: In addition to the data a task accesses, MxTasking accepts hints
about which data segments should be prefetched. Such hints can be provided in
the form of a size to be prefetched ( 1 ), specific cache lines ( 2 ), or a callback
implemented by the application ( 3 ).

large data volumes. During a tree lookup, for example, only a single pointer
or value is needed after identifying the index of the payload through a key
lookup. Assuming that the node is split into halves, one for keys and one for
child pointers or values, it may be supersized to prefetch the node entirely.
Achieving an optimal balance between preloading specific node segments and
tolerating cache misses is imperative, as accurately predicting the regions that
will be accessed is challenging. MxTasking can only perform this application
fine-tuning with the developer’s engagement. To assist the developer in this
process, MxTasking provides extended annotations to specify which segments of
a data object require prefetching. A corresponding hint’s most basic form is a
parameter specifying the amount to prefetch. To give the developer even more
control, MxTasking facilitates two additional types of hints: The specification of
particular cache lines and a callback2 that hands over the control of prefetching
to the application.

Zooming into the implementation details, the annotation utilizes a 64-wide
bitset3. MxTasking reads and interprets this hint at runtime and translates
it into specific prefetch instructions. Figure 3.5 illustrates the bitset. The

2Special thanks to Olaf Spinczyk for bringing up this idea.
3As annotations are stored as part of the task descriptor, their memory footprint should

be kept small.
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two most significant bits are used to indicate the particular denotation for
interpretation. The third and fourth most significant bits denote the nature
of the prefetched data, specifically whether it is temporal, non-temporal, or
intended for writing. Depending on the hardware, this affects how the CPU
manages the prefetched data within the cache. While temporal refers to data
that will be accessed repeatedly, non-temporal prefetches are intended for
data that is only accessed once. Therefore, to maximize cache utilization,
hardware systems tend to prioritize caching of temporal data, as non-temporal
data can pollute the cache [2]. Sharing application-based knowledge with the
hardware helps to minimize cache pollution. For example, we observed that
seldomly accessed nodes in a tree exhibit the best performance when prefetched
in a non-temporal manner. Conversely, prefetches signaling imminent write
access will invalidate copies in other caches [2]. The remaining 60 bits express
what exactly MxTasking should prefetch, depending on the annotation type,
sketched in the following.

Prefetch Size. The runtime can be directed to prefetch a contiguous data
segment by specifying a data object’s (prefetch-) size (cf. 1 in Figure 3.5).
This provides adequacy for a wide range of applications and has the potential to
be transformed into prefetch instructions in a computationally efficient manner,
as the data can be interpreted as an integer.

Specific Cache Lines. Alternatively, specifying a mask of accurate cache
lines (cf. 2 in Figure 3.5) can reduce the amount of unnecessary data. One
application is selective prefetching of a node during a tree lookup, where only
the node’s header (located at the beginning) and a specific cache line that
contains the intended value are needed.

Prefetching by the Application. Both forms of representation encounter
limitations when dealing with large data objects desired to prefetch in a scat-
tered manner. While the size-based representation only enables prefetching
data at a stretch, the fixed number of bits confines the mask-based repre-
sentation to a maximum of 60 cache lines (3.75 kB for 64-byte wide cache
lines). To enable prefetching of extensive and dispersed data, the developer
can annotate a callback that grants the application control over prefetching.
Internally, MxTasking interprets the 60 bits allocated for the data as a function
pointer invoked with the data object to be prefetched as an argument (cf. 3
in Figure 3.5). As a result, the application can handle complex prefetching
patterns for extensive data by executing software prefetches; scheduled by
MxTasking. For example, tasks within a task-based query engine may only
prefetch specific columns or rows of table fragments.



4
Synchronization of Concurrent

Tasks
Parts of this chapter have been published in [109].

We will now focus on exploiting annotations beyond “only” enhancing per-
formance: MxTasking employs annotations to synchronize concurrent tasks
accessing the same data object. On parallel platforms, synchronization can
quickly become a limiting factor of applications. For the developer, optimizing
the program for scalability becomes challenging while balancing the applica-
tion’s needs and the underlying hardware’s characteristics. The choice of an
appropriate synchronization mechanism often depends on the access pattern of
the application, the degree of parallelism, and the features of the underlying
hardware. In practice, at the time of implementation, the developer typically
lacks knowledge of the specific hardware on which the application will run.

The conventional (and uncomplicated) way to synchronize concurrent con-
trol flows is to use latches. Conversely, one of the most performant strategies
is building data structures that avoid latches (e.g., the Bw-Tree [96, 147])—
but this is notoriously difficult and error-prone. Somewhere in-between, op-
timistic primitives have shown superior performance for read-heavy work-
loads [31, 94, 95]. Nevertheless, the challenges are centered on the imple-
mentation and the customization to align with an individual application. In
recent years, hardware has also been developed to provide synchronization
support. HTM [64] appears to have the potential to facilitate synchronization
straightforwardly and effectively [42, 93].
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MxTask

Figure 2.1

core
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main memory

≪read≫ or ≪write≫

. . .
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≪low≫, ≪normal≫,
or ≪high≫

≪read-heavy≫, ≪balanced≫,
or ≪write-heavy≫

≪none≫, ≪exclusive≫ or
≪exclusive write; shared read≫

Figure 4.1: MxTasking provides annotations for data objects, enabling the
application to share the needs and characteristics with the underlying execution
layer. With the given knowledge, MxTasking will select a specific synchroniza-
tion primitive that is wrapped around the execution of concurrent tasks.

4.1 Annotation-based Synchronization

The attractiveness of HTM lies in its user-friendliness, as the developer merely
marks critical sections for synchronization purposes. By then, the hardware
will ensure the correctness of concurrently accessed data structures. Although
HTM has been deactivated on several available Intel processors and is ex-
cluded from further development [3], there are still efforts for different archi-
tectures to implement HTM, e.g., ARMv9 [4]. MxTasking provides a likely
comfortable and powerful way to apply synchronization to concurrent con-
trol flows—independently of the underlying hardware platform. Instead of
using (hardware-) specific instructions, the developer can express the appli-
cation’s synchronization requirements through the annotation interface. All
the developer needs is to annotate tasks and data objects. To facilitate syn-
chronization, MxTasking requires information about the accessed data during
a task’s execution and its access characteristics, i.e., either reading or writing.

Annotating also data objects with application-based knowledge offers the
runtime a comprehensive understanding of the interaction of code and data.
Figure 4.1 illustrates such annotations. Based on information like the desired
isolation level, the expected access frequency, and the predicted read-to-write
access ratio, MxTasking will choose a matching synchronization mechanism for
the data object. For instance, utilizing an optimistic primitive, as opposed
to an exclusive latch, is a more convenient approach for synchronizing the
heavy-read root node of a tree. Section 4.3 will provide a thorough discussion
on choosing an appropriate mechanism. Upon selecting a synchronization
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primitive, MxTasking guarantees to apply it to concurrent tasks. With the
tasks on the one hand and the annotated data objects on the other, the worker
can establish synchronization during the execution process.

4.2 Integrated Synchronization Primitives

MxTasking provides four basic synchronization primitives, sketched in the fol-
lowing. Some of them may be tunable, e.g., to distinguish between reading and
writing accesses or not. A task itself is unaware of the primitive MxTasking will
choose, i.e., the synchronization is decoupled from the task’s implementation.
However, the developer can request a particular primitive explicitly through
annotations. If not forced in such a way, MxTasking will select among its
built-in primitives at runtime, depending on the current system state and
annotations.

4.2.1 Latches

Spinlocks are known for their straightforward realization and simple usage.
Similar to the utilization in thread-based implementations, spinlocks can be
applied to synchronize concurrent tasks. MxTasking provides different spinlock
variants. For mutual exclusion, a simple spinlock can serialize all accesses,
whether tasks are read-only or not. Given an application that requests parallel
reads on a shared object, MxTasking chooses a reader/writer-lock instead.

In MxTasking, tasks are executed by a worker thread of the runtime system.
The corresponding worker thread will acquire and release latches automatically
on behalf of the executed task.

4.2.2 Optimistic Versioning

Latch-based protocols turn parallelism into concurrency. Especially for read-
dominated workloads, this may unnecessarily limit the achievable parallelism
and throughput. Here is where optimistic alternatives excel. The idea is to let
read operations run in parallel and without synchronization. Only concurrent
write accesses are protected from each other, e.g., by using latches. Conflicts
between read and write accesses are allowed to occur. However, they are
detected with the help of a version counter. More precisely, write accesses will
increment the version counter after each modification. Reading operations,
in turn, will check the version counter before and after they access the data
object. By comparing both versions, MxTasking can identify concurrent writes
and repeat the read operation until it is valid.

Optimistic mechanisms were shown to achieve better throughput on hard-
ware with high degrees of parallelism (e.g., [102, 31, 94, 95]). In-memory index
structures are an excellent example to illustrate the advantage of optimistic
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protocols. Although all tree-related operations need to visit the root node,
which may lead to high contention, modifications to the root node are rare.
Optimistic synchronization mechanisms can mitigate the negative impact of
latching overhead. Hence, the penalty of a repeated read operation arises only
rarely. The positive effects of optimistic versioning are amplified on platforms
(such as MxTasking) that possess knowledge of the underlying hardware cache
locality. Pessimistic synchronization strategies inevitably depend on data,
latches, or code to be exchanged between parallel units upon every access. In
contrast, optimistic versioning enables the hardware to replicate and cache data
structures for read-only accesses, thereby facilitating true parallelism. Hard-
ware cache coherence protocols ensure that messages are sent between cores
exactly and only when a true conflict arises. Note that write operations still
have to be synchronized in optimistic schemes. In this sense, MxTasking will
combine optimistic versioning with either a latch-based or a scheduling-based
(see below) synchronization primitive. The worker thread handles optimistic
versioning on behalf of the task that has requested synchronization. If the
worker detects a version mismatch, the task is reset and re-executed until the
execution is valid.

In this context, resetting a task involves only restoring the task’s descriptor
to its initial state before starting the read operation, which includes returning
parameters and annotations to their previous values. However, the reset cannot
revert changes made during the execution that affect the system, such as
tasks spawned. Thus, tasks should spawn follow-up tasks (or apply other
system-wide alterations) only when operating as a writer. In order to enable
MxTasks to spawn other tasks, the interface allows returning follow-up tasks
after executing. MxTasking will dispatch corresponding tasks only if the read
operation is successful.

Implementation Details. Similar to other optimistic procedures, operations
(or MxTasks in our context) that physically remove a shared object must be
treated with special care. Due to parallelism, one task may read a data object
while another frees the data physically. Consequently, the reading task will
operate on garbaged data without realizing it, potentially leading to errors.

Reference counting, hazard pointers [106], and epoch-based memory recla-
mation (EBMR) [49] are general approaches for safeguarding read accesses in
the presence of concurrent memory deallocation attempts. For performance
reasons, MxTasking implements an EBMR similar to Silo [141] and the de-
central procedure realized by the open BwTree [147]. When the application
removes objects logically, the release of physical memory is deferred until all
potential read operations have been completed. Time is generally separated
into coarse-grained epochs using a universal epoch counter that increases at
intervals (e.g., every 50 ms). All utilized threads provide a local epoch for
detecting possible conflicts of concurrent read and delete operations. When



4.2. INTEGRATED SYNCHRONIZATION PRIMITIVES 35

data objects are removed logically, they are marked as such and tagged with
the current global epoch. The thread-local epochs, in turn, represent the
relative progress to the global epoch. On entering a critical section, the thread
synchronizes the local with the global epoch. After leaving the critical path,
the worker resets its local value to infinity, indicating that the thread is not in
a crucial execution state.

At the onset of a new epoch, a separated garbage collection procedure
determines the minimal progress made by emphasizing the epoch with the
lowest thread-local value. Data entities deleted logically during an even earlier
epoch get safely reclaimed. Widely used implementations define critical sections
as logical operations that include optimistic reads (e.g., a tree insert including
the traversal). Consequently, the local epoch is updated at the beginning of
such an operation and reset afterward. By employing fine-grained tasks, logical
operations are fragmented into several work units executed by several worker
threads. Hence, it is ambiguous to determine the beginning and end of a logical
operation processed by several tasks. A similar scenario occurs when using
coroutines [63], which also possess asynchronous properties. Wrapping local
epoch updates around the execution of every MxTask leads to a considerable
number of fenced memory loads and stores. To avoid this potential inefficiency,
MxTasking updates the local to the global epoch after a limited number of
executed tasks (and also when idling to guarantee progress). The chosen
threshold becomes a trade-off between the maximum performance and the
delay in releasing logically freed memory. In our implementation, we keep
the number as small as possible without suffering from performance losses
(e.g., 50). For garbage collection of finally unused memory, MxTasking spawns
corresponding tasks at the beginning of a new epoch.

4.2.3 Hardware Transactional Memory

Although HTM appears user-friendly at first glance, the practical application
is considerably more complex. As transactions might fail, the developer has
to specify a fallback path using further synchronization (such as latches) to
guarantee that (HTM-) synchronized code makes progress [93, 62]. In addition,
HTM support is restricted to a particular range of hardware.

To streamline access to hardware-assisted synchronization, MxTasking inte-
grates HTM as a potential primitive to synchronize concurrent tasks automat-
ically. On the application’s behalf, the worker wraps hardware transactions
around task execution using appropriate CPU instructions. If a transaction
repeatedly fails, the worker moves to a fallback mode utilizing a traditional
spinlock. Consequently, the burden of handling implementation details falls on
the runtime instead of the application developers; they only need to annotate
the task appropriately. Plus, MxTasking will employ an alternative synchro-
nization primitive as a fallback if the underlying hardware lacks support for
HTM.
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4.2.4 Synchronization through Scheduling

In addition to “classical” synchronization mechanisms such as latches or version-
ing, the task-based execution model of MxTasking enables another powerful
synchronization mode: scheduling-based synchronization. As the simplest
form of scheduling-based synchronization, MxTasking can guarantee that tasks
accessing the same data object are executed sequentially. Such a guarantee is
easy to make: MxTasking will schedule tasks that access the same data object
to the same task pool. Tasks within one pool are executed in order by a worker
thread linked with that pool. Active waiting for resources to become obtainable
and contention can be avoided. In addition to mitigating issues related to con-
currency, scheduling-based synchronization can offer advantages, particularly
in NUMA settings. Instead of moving data objects between NUMA nodes,
scheduling-based synchronization effectively moves code to data. Systems like
DORA [119] and H-Store [75] have demonstrated that similar principles can
enhance cache locality and transaction throughput.

To that end, MxTasking maintains a record of allocated data objects and
links each data object to a specific worker. Whenever the application spawns
a task scheduled by synchronization, the dispatcher transfers the task to the
designated worker’s pool. Our prototype implements a round-robin scheduling
algorithm to allocate data objects to worker threads, achieving a balanced load
distribution within the system. However, data objects may exhibit varying levels
of access frequency. For instance, the root of a tree is typically visited more
frequently than a leaf node. To ensure equitable workload distribution among
the workers, the dispatcher also considers the access frequency annotation of a
given data object at its creation. Accordingly, workers once associated with
frequently accessed data are considered less often for subsequent assignments.

Scheduling-based synchronization can be made more general by annotating
dependencies between tasks (in the spirit of [22]). To illustrate, in a task-based
hash join implementation, the probe tasks must start after all build tasks have
completed populating the in-memory hash table. We will discuss this in more
detail later in Chapter 7.

4.3 Selecting Synchronization Primitives

For injecting synchronization, the runtime applies one of the described prim-
itives to every newly created data object that requests isolated access. The
developer can specify this primitive through explicit annotations or leave this
to MxTasking. In the latter case, the runtime uses a cost model considering
specified annotations detailing the access properties. The factors considered
include the isolation level, expected access frequency, and assumed read-write
ratio.

When requesting exclusive access to an object, serialization is guaranteed
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by using HTM, if supported by the underlying hardware, or through scheduling.
We observed in our benchmarks that scheduling exhibits superior performance
compared to spinlocks. Employing a less stringent form of isolation that
allows for parallel reads aligns with an optimistic synchronization strategy.
Based on the (by the developer) anticipated and annotated read-write ratio,
MxTasking uses scheduling techniques to prioritize writing tasks in scenarios
where reading operations predominate. Linking a specific task pool to data
objects for writing operations ensures that read-only tasks executed by the
same worker will succeed without the need for version checks or saving the
task’s state. Given written-heavy resources that are accessed infrequently or
in moderation, the primary challenge lies in managing scheduling overhead,
primarily caused by competition for access to a shared task pool. Since latch-
contention on infrequently accessed data rarely arises, but dispatching overhead
is invariable, the latter tends to be a more notable issue. Hence, MxTasking
prefers optimistic latches for such resources.

As an illustration, the synchronization of nodes in a task-based tree struc-
ture is achieved through various optimistic primitives. In general, operations
typically access nodes at higher levels in a read-only manner; leaf nodes, in turn,
are visited less often but are subject to more frequent modifications. Thus,
MxTasking determines optimistic scheduling for inner nodes and optimistic
latches for leaf nodes, assuming appropriate annotations by the developer.

4.4 Dispatcher/Worker Interaction

Figure 4.2 illustrates how the synchronization of tasks is based on the interaction
of the dispatcher and worker thread. The dispatcher guarantees the allocation
of MxTasks to the corresponding worker thread’s pool based on the access type
and synchronization mechanism. The worker, in turn, applies synchronization
primitives whenever needed.

4.4.1 The Dispatcher Side

The dispatcher assists the synchronization process by placing a set of tasks to
be serialized in the same task pool. This becomes necessary (a) when optimistic
scheduling is applied and the task modifies the annotated object or (b) when all
interactions with a data object are synchronized through scheduling. In both
instances, the dispatcher chooses the task pool linked to the annotated data
object as a destination (lines 1–3). The task pool associated with the object is
encoded within the object and specified upon the object’s instantiation.

Utilizing a global data structure, such as a hash table, for association suffers
from cache misses, as the structure can expand significantly. To avoid cache
misses when querying the data object for its associated task pool, MxTasking
utilizes pointer tagging (in the spirit of [115] and [21]). The task pool’s identifier
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dispatcher

dispatcher
input: task to spawn

1 if task has data object d annotated:
2 if d is synchronized by scheduling or t is writing:
3 assign task to task pool associated with d

4 else:
5 assign task to local task pool

6 else if task has specific core c annotated:
7 assign task to task pool of c

8 else:
9 assign task to local task pool

workerworker worker

worker
1 foreach task in task pool:
2 if task has synchronized data object d annotated:
3 if d is synchronized by scheduling:

4 execute task // no synchronization needed

5 else if d is synchronized by latch:

6 take latch of d // wrap latch around execution

7 execute task
8 release latch of d

9 else if d is synchronized optimistically:

10 if task is reading: // read without latch

11 backup task
12 repeat until v = v′

13 v ← version of d
14 execute task
15 v′ ← version of d
16 if v ̸= v′

17 reset task

18 else: // optimistic writer increases the version

19 execute task
20 increment version of d

21 else if d is synchronized with HTM:

22 begin transaction // wrap transaction around execution

23 execute task
24 commit transaction

25 else: // execute without synchronization

26 execute task

sender task

sender task

Figure 4.2: Interaction between the dispatcher and the worker to realize syn-
chronization of tasks. The dispatcher places tasks in a specific task pool,
depending on the synchronization primitive. The worker applies synchroniza-
tion around the task execution.



4.4. DISPATCHER/WORKER INTERACTION 39

is inscribed within the object’s pointer yielded by the memory allocator. By
that, the dispatcher can identify the associated pool using lightweight shift
instructions.

Suppose the data object is not synchronized by scheduling, and the task will
not write to the data. In that case, the dispatcher prioritizes the local task pool
to minimize dispatching overhead. In this context, local refers to the task pool of
the worker thread spawning the task (potentially while executing another task).
Exceptions of this rule are annotations that explicitly request the placement
of MxTasks, for example, on a specific core (lines 6–7). Annotating particular
NUMA regions to facilitate the development of NUMA-aware software is also
conceivable.

4.4.2 The Worker Side

The worker thread is responsible for applying the synchronization primitive as
needed, which is enveloped around the execution of a given task. Initially, the
worker assesses the annotated data object and its synchronization requirements
(line 2). Assuming synchronization is unnecessary, or scheduling already ensures
sequential and exclusive access, the worker executes the task straightforwardly
(lines 3–4 and 26). Otherwise, we distinguish between the three additional
mechanisms we discussed before. If the accessed object is synchronized through
a latch, the worker acquires the corresponding latch associated with the data
object before executing the task. Subsequently, the worker releases it (lines
5–8). We acquire the latch in shared mode using reader/writer latches whenever
possible.

In the light of optimistic versioning, the worker distinguishes between
reading and writing tasks. To verify the integrity of a data object during a
read-only operation, the worker conducts the version check before and after
the execution (lines 10–17). If the versions mismatch, it is necessary to retry
the read access. This also requires resetting tasks to their original state,
as parameters may have been changed during execution (lines 16 and 17).
Therefore, the worker saves the state before each optimistic read (line 11). To
ensure that the version increases, the worker increments it after completing a
writing task (line 20). In this illustration, we have considered the optimistic
approach under the condition that writing tasks are serialized by scheduling.
MxTasking implements yet another optimistic procedure in which write accesses
are synchronized by classical latches. For writing tasks, the worker will acquire
the latch. This makes scheduling appropriate tasks into a specific task pool
unnecessary. Reading operations proceed as described, but additionally, check
whether a writing task occupies the latch. If this is true, the read operation is
aborted prematurely and subsequently repeated.

Upon selecting transactional memory as the synchronization mechanism,
the worker initiates a new transaction before executing the task and commits
it afterward (lines 21–24). Although we simplified the representation in this
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illustration, in practice, multiple attempts are typically made to execute the
transaction in case of failure. One potential instance involves concurrent
accesses to the data object, with at least one being a write operation. If the
hardware aborts the transaction after repeated tries, the worker will employ
a spinlock to guarantee the task’s execution. After successfully starting the
transaction, the worker must ensure that the spinlock is available and not
held by another worker thread. If the data object is locked, the transaction is
aborted and repeated.



Part II

Leveraging Tasks for Data
Structures
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5
MxTasking in Action

Parts of this chapter have been published in [109].

Utilizing tasks to design data structures and algorithms generally differs from
well-understood thread-based programming. Morsel-driven parallelism [92]
and DORA [119] have already demonstrated the advantages of analytical-
and transactional processing in a task-like fashion. MxTasking surpasses the
existing task paradigm beyond the current standard by offering annotations to
optimize and simplify the execution, e.g., by prefetching data and taking care of
synchronization. This chapter provides pragmatic considerations for employing
MxTasks to build parallel software. We illustrate the simplicity of designing
latch-free, task-based data structures using a Blink-tree as a demonstrator.

5.1 Background

B-trees [18, 58] play a fundamental role as index structures for file systems
(e.g., BTRFS [129]) and DBMSs. As such, B-trees have been extensively
researched and refined with a focus on their caching behavior (e.g., [127, 60, 131])
and concurrency synchronization, leading to several B-tree variations. For
instance, the B+-tree [35] extends the B-tree by storing the payload exclusively
within the leaf node layer to enable more efficient range queries. Inner nodes
“only” guide a query for a specific key from the root toward the proper leaf node.
The B+-tree serves as the foundation for various synchronization-optimized
variants, such as the Blink-tree [91], Masstree [102], Bw-Tree [96, 147], and
BtreeOLC [95]. The Blink-tree focuses on reducing the number of simultaneously
held latches. To this end, newly inserted nodes are not immediately linked to
the parent, eliminating the necessity of retaining the parent’s latch. Instead,
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each node includes a pointer to its right sibling. A dedicated operation will
place a link within the parent node. Until then, the node is accessible for
parallel traverse operations through its left sibling. As a result, each logical
operation is transformed into a series of numerous small steps, each associated
with a single node. This pattern makes the Blink-tree match the task model,
executing every step as a task.

5.2 Operations

Classical thread-based implementations employ iterative procedures to navigate
from the root to a specific leaf node, sequentially accessing node by node
in succession. In task-based systems, every logical procedure becomes a
concatenation of multiple tiny steps, each of them related to a single node.
Contrarily to threads, MxTasks (and similar methodologies, e.g., [128, 124, 63,
73]) are executed asynchronously. For instance, instead of invoking an insert
method that returns upon completion, spawning an insert task that notifies
the caller after successfully inserting is the way to go.

5.2.1 Insert Task

The pseudocode depicted in Figure 5.1 provides an example of an insert task
implementation. The code implements the traversal of the tree (lines 1–15)
and the insertion (line 17) within a single task segment, taking the processed
node and the requested key-value pair as input parameters. During the tree
traversal, each step involves an examination of the accessed node to determine
whether it is an inner or a leaf node. If the node is of type inner, the task
identifies the subsequent node to visit using binary search (line 7). However,
parallel insert operations may have modified the node’s content during the
period between the spawning and execution of the task.

Sometimes, one of these insertions splits the node. At that point, a traversal
operation may have failed to locate the direct pointer to the node containing
the desired key. For that reason, each task verifies the key range of the accessed
node and follows to the right sibling as needed (lines 2–5). This may also
emerge in traditional (thread-based) implementations and is generally part of
the Blink-tree algorithm. However, the probability of occurrence is higher in
asynchronous models due to the extended time gap between node visits during
a singular traversal, depending on the current set of tasks awaiting execution.

In order to proceed with the traversal, the task instantiates a new MxTask

and spawns it, annotated with the subsequent node (e.g., lines 8–10). Labeling
the new task as a reader (line 10) enables MxTasking to execute the task in
parallel with other reading operations. In contrast, a thread-based implemen-
tation will invoke the child lookup iteratively in a loop until reaching a leaf
node. Given that the task executes on a leaf, it inserts the item and notifies
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insert task
input: node the task accesses, (key, value) to insert, callback to notify

1 if node->high key() ≤ key : // key is out of range of this node
2 next = node->right sibling()

3 task = mxtasking::new task<InsertTask>(next, key, value)
4 task->annotate(next, mxtasking::readonly)
5 mxtasking::spawn(task)

6 else if node->type() == inner: // continue traversal to the leaf
7 next = node->child(key)
8 task = mxtasking::new task<InsertTask>(next, key, value)
9 task->annotate(next, mxtasking::readonly)

10 mxtasking::spawn(task)

11 else if node->type() == branch: // child is a leaf; next task will insert
12 next = node->child(key)
13 task = mxtasking::new task<InsertTask>(next, key, value)
14 task->annotate(next, mxtasking::write)
15 mxtasking::spawn(task)

16 else: // found correct leaf, insert value, and notify callback
17 node->insert(key, value)
18 callback->insertion finished(key, value)

Figure 5.1: Pseudocode of an MxTask-based insert operation, inserting a key-
value pair into a Blink-tree. Each task operates on a single node and spawns a
new task for the next one.

the caller (lines 17 and 18). We use a callback function to respond to a client’s
request in an end-to-end setting. Another option would be to spawn a new
follow-up task that handles the response.

5.2.2 Node Splits

In this instance, we ignored the case of node splitting for the sake of simplicity.
Splitting becomes imperative if no capacity is available to insert an additional
record. Given that case, the insert task creates a new node and moves half of
the records. Subsequently, it spawns a follow-up task that places a reference
to the newly created node in its parent. The node can be accessed until the
connection is established by following the left neighbor’s sibling pointer.

5.2.3 Beyond Insertion

Implementing the corresponding update and lookup tasks is straightforward.
Instead of inserting the value into the leaf (line 17), the appropriate MxTask
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modifies or reads the requested record. Consequently, found values are passed
to the callback. In particular, we omit the “is writing”-annotation for lookups
since all steps during the lookup perform read-only accesses.

However, both tasks access a specific node segment of a leaf to modify or
read the value—contrarily to insertion tasks. If the node is not fully present
in the cache, accessing the value results in a cache miss (we will see why in
Section 5.4). Therefore, we split the update and lookup task into two steps.
The first uses the binary search to identify the value’s index, analogous to
performing a lookup for the next child node to traverse. The second entails the
lookup or update of the value to finalize the operation. Each step is performed
as a separate task. This separation enables annotating the exact accessed
segment of the node for prefetching, i.e., the cache line containing the value.

5.3 Annotation-based Synchronization

The code for the insert operation in Figure 5.1 comes without logic for syn-
chronization. Instead, MxTasking injects synchronization at runtime based
on annotations provided by the application. To make things work, we anno-
tate the insert task as read-only during the traversal (lines 4 and 9) and as
write whenever it might attempt to modify a node (line 14). Consequently,
MxTasking will wrap a pre-selected synchronization primitive around the task
execution based on the characteristics of the tree node.

To assist MxTasking in choosing a matching primitive, the Blink-tree passes
two attributes to the runtime whenever a node is created due to a node
split: The predicted access frequency and the expected read/write ratio. Both
properties are mainly related to the type of the newly created node. We
anticipate the root node to experience high access frequencies, as each request
will access the root node to start its traversal. For inner- and leaf nodes, we
expect medium to few accesses. And we expect the read/write ratio to be
inverted: The frequency of writing operations is higher for leaf nodes, while
inner nodes are primarily accessed in read-only mode during traversal and are
modified only after node splits. By communicating this knowledge, MxTasking
will prioritize optimistic synchronization mechanisms for nodes (logically) close
to the root node.

However, annotating a task as a writer at the appropriate time presents a
minor challenge. When labeling a task as writing too early, parallelism may
decrease due to the serialization of accesses. Doing this too late, contrarily,
requires re-annotating and re-scheduling the task, resulting in additional costs.
In order to inhibit, it is necessary to ascertain whether the subsequent node is
an inner or leaf node during the traversal, as modifications are mainly related
to leaf nodes, aside from inserting references after node splits. The most
straightforward way would be to query the type of the next node by accessing
its header. However, this causes additional cache misses. Note that these cache
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misses will not emerge during the traversal since MxTasking will prefetch the
node a task accesses (see below). To avoid this costly aspect, we propose a
new node type: Branch nodes represent inner nodes whose children are leaf
nodes. Accordingly, we annotate the insert task preemptively as writing when
the task reaches a branch node during traversal (lines 13–17). Tasks spawned
to insert a new child pointer after a node split are always labeled as writers.

5.4 Annotation-based Prefetching

So far, annotating tree nodes has been discussed solely within the context
of synchronization. In addition, MxTasking will exploit that annotation to
bring the node into the cache prior to its access—reducing memory stalls
while traversing the tree. However, software-based prefetching is a double-
edged sword: memory access latencies can be reduced while increasing memory
bandwidth utilization and imposing additional pressure on the CPU. Therefore,
it is imperative to exercise caution when annotating the data to be prefetched.

In tree-based data structures, only specific node segments are accessed
during execution. While a node’s header, which includes metadata like the
size, the type, and the latch variable, is accessed either way, not all keys and
values are of interest in practice. Since we use binary search to locate a specific
key—starting with the mid-key—it is not predictable which half of the keys
will be examined further. Consequently, the application faces the dilemma
of either prefetching the complete array of keys, despite the knowledge that
at least one-half of it will remain unused, or speculating and tolerating cache
misses. This becomes even more specific when accessing a value after locating
the index. The application can hint MxTasking to preload all values, although
only one will be accessed. Alternatively, it can tolerate a cache miss, given the
unpredictability of the accessed value at the time of annotating.

Intermediate Evaluation

We will now take a concrete look at the impact of prefetching specific node
segments on the overall performance of a lookup operation. To that end,
we vary the prefetch annotation so that the entire node, only the keys,
only a subset of the keys, or only the node header is prefetched. Figure 5.2
compares the CPU cycles for a single lookup within the Blink-tree. As a
baseline, we use a lookup with disabled prefetching. The lookup operation
(including the traversal) consumes many cycles, mainly due to memory
stalls. When prefetching the entire node with its header, keys, and values,
the cycles spent for the lookup are noticeably lower: only 540 cycles are
required for the operation, compared to 2400 cycles without prefetching.
This illustrates the efficacy of software prefetching in general.
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However, the cycles spent executing prefetch instructions exceed the
benefit notably, including effort for checking annotations and interpreting
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Figure 5.2: Prefetching different parts
of a tree node during traversal and
lookup.

prefetch hints. As a result, prefetch-
ing all data of the node is percepti-
bly slower than accepting the cache
misses.

Prefetching only the node’s
header already reduces the cycles
spent for the traversal by 39 %, com-
pared to not prefetching. This way,
the lookup “only” suffers from cache
misses for accessing the keys and
the payload. The node’s metadata,
in turn, will be found in the cache.
It is worth noting that prefetch-
ing also includes the descriptors of
MxTasks. The sweet spot, however,
lies in prefetching half of the keys.
Cache misses are accepted when the
searched key is located in the second
half to keep the number of prefetch
instructions reasonable.

The amount to prefetch per node also depends on the operation, e.g.,
insert or lookup. While we saw that, for lookups, prefetching the first half
of the keys has the most benefit, this is not true for insert operations. Due
to frequent data moves during (sorted) insertion, more extensive parts of
the node are affected, making it advantageous to prefetch half of the node
(which is equal to prefetching all keys).

5.5 Experimental Evaluation

To study the behavior, potential, and limits of MxTasking in real-world scenar-
ios, we use an in-memory Blink-tree that characterizes the behavior of modern
in-memory database engines. The implementation of the data structure fol-
lows state-of-the-art principles. We will use both read-heavy and write-heavy
workloads and consider different metrics such as throughput, instructions, and
stalled cycles to analyze the effect of annotation-driven prefetching, EBMR,
and MxTask-performance in total.

5.5.1 Environment

System. All benchmarks are evaluated on a two-socket Intel Xeon Gold 6226
machine, clocked at 2.7 GHz. Each of the two processors holds 12 cores, 24
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hardware threads, and 12 × 32 kB L1, 12 × 1 MB L2, and 1 × 19.25 MB
L3 data caches. For all benchmarks showing an ascending number of CPU
cores, the logical cores are ordered by NUMA regions, whereas the first 24
logical cores are located in the first region and the next 24 in the second. To
be precise, the first 12 cores of each region are physical cores only. From then,
hyperthreads are added step by step. Throughout the presentation of results,
we will hyperthreads as “SMT” regions. In addition, we will emphasize NUMA
borders with a dashed line.

Ubuntu 20.04 is used as OS, clang 13.0.1 as the compiler, configured to
apply optimization level -O3. Because all threads are pinned to corresponding
cores, we disabled the system’s NUMA balancing option for all experiments.
This way, the kernel will not migrate memory or threads between the regions.

Workload. Following former work [147], we rely on the Yahoo! Cloud Serving
Benchmark (YCSB) [36]. We use workloads A (read/update, 50/50) and C
(read-only), with Zipfian distribution and 100 million operations. Before
running both workloads, we initialize the tree with 100 million records and
refer to that workload as

”
insert only“ in the benchmarks. The tree stores

pairs of 64 b keys and 64 b payloads within 1 kB-sized nodes, correlating to a
fan-out of 59 children per inner node. For all implementations, we distribute
the workload operations in batches of 500 requests at a time to (worker)
threads. Whenever a thread finishes its assigned work, it picks the next batch.
Our pthread -based implementations use an atomic integer to acquire work
packages from a global list. Within task-based environments, we spawn one
low-prioritized task per core that takes the next batch (like the thread-based
implementations do) when almost no other task is ready for execution.

5.5.2 Annotation-based Prefetching

As discussed in Chapter 3, the fine granularity of tasks allows an accurate
annotation of the data an MxTask will access. Sharing this knowledge enables
MxTasking to prefetch that data from memory into CPU caches before the
task executes. Figure 5.3 compares the Blink-tree built on top of MxTasking
with and without annotation-based prefetching. We distinguish between two
mechanisms: Prefetching with a static distance and dynamically injecting the
prefetch distance, with and without monitoring.

Static Prefetching. Experiments regarding the static prefetch distance
indicated that the results behave as expected: If the interval is too small (e.g.,
1 for prefetching the next task ready), the workload does not benefit from
prefetching. Similarly, if the prefetch comes too late (more than 4 tasks apart),
the advantage becomes smaller but is still noticeable. For the measurements
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Figure 5.3: Effect of software-based prefetching for an MxTask-based Blink-tree,
comparing static, dynamic, and no prefetching.
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shown with a static prefetch distance, we specified a distance of 2, which
performed best on our experimental analysis of the prefetch distance.

Since the benchmark is mostly bound by memory latency, annotation-based
prefetching of tree nodes experiences a significant improvement. The through-
put increases by 24 % on average for inserts, 16 % for mixed reads/updates, and
40 % for the read-only workload. We demonstrate the outcome in Figure 5.3a.
Especially the traversal, implemented using binary search, is leveraged by
software-based prefetching. As binary search creates a hard-to-predict access
pattern for the CPU, hardware prefetching has a less beneficial impact. In
update-heavy workloads, we observe that memory prefetching has a less no-
ticeable effect. The reason is an increased latch contention caused by multiple
tasks trying to acquire the latch for a leaf node concurrently.

The impact of software-based prefetching becomes evident when observing
memory stalls, demonstrated in Figure 5.3b. Memory stalls refer to cycles
where the CPU actively waits to complete data transfers from memory (or
cache) into the register before it can continue execution. The prefetching
mechanism of MxTasking reduces the number of those stalled cycles, resulting
in increased throughput. This effect is, in particular, observable in read-only
workloads. Here, the number of memory stalls is reduced by up to 51 %. The
insert and read/update workloads also benefit with an average of 34 % and
40 % fewer memory stalls.

Figure 5.3c demonstrates the number of performed instructions per opera-
tion. Static prefetching utilizes approximately 300 additional instructions per
operation compared to the non-prefetching execution. This comprises specific
instructions necessary to initiate prefetching and instructions to schedule the
prefetches, even if the latter is straightforward, as prefetches are placed two
tasks ahead in the prefetch buffer. Nevertheless, these extra efforts reduce the
memory stalled cycles to such an extent that prefetching still pays off.

Dynamic Prefetching. The static prefetch distance refers to a central
configuration parameter tunable by the developer for all tasks simultaneously.
Consequently, the effectiveness of prefetching is limited to tasks having a
homogeneous runtime. In practice, however, this is rare, especially when
several applications are running on top of the same MxTasking instance. While
traversal and lookup tasks for the Blink-tree are approximately homogeneous,
the execution times of insert operations differ. The task that finally inserts a
key-value pair in the leaf node consumes significantly more CPU cycles than
the traversal (according to the monitoring results, more than 2 ×). Moving
data within a node or creating a new one is much more complex than loading
a value for a lookup. As the measured Blink-tree has a depth of five, every fifth
task has a significantly longer runtime in the insert-only workload.

To automatically inject the adjusted prefetch distance, MxTasking can mon-
itor the tasks’ execution times—or the developer can annotate the expected
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execution time to tasks at compile time. In addition, instead of “mindlessly”
inserting the prefetches at a statically determined offset in the prefetch buffer,
the offset is calculated by exploiting the (monitored) execution times of preced-
ing tasks in the task buffer. Both recording execution times and calculating
the prefetch distance require additional effort, observable in the form of instruc-
tions. Figure 5.3c demonstrates the impact. On average, monitoring execution
times and dynamically injecting the prefetch distance invokes 581 additional
instructions per operation, compared to no prefetching. Utilizing annotations
to hint to MxTasking about the execution time of tasks instead of monitoring1

requires “only” 400 additional instructions.

Particularly for memory stalls, dynamic prefetching is more effective than
static prefetching: Through the insert-heavy workload, dynamic prefetching
causes 5 % fewer memory stalls (cf. Figure 5.3b). For mixed and read-heavy
workloads, we can barely observe significant differences. This is to be ex-
pected since the workloads mostly show homogeneous execution times and
static prefetching performs properly. The effect is also observable with regard
to the throughput. However, the increased number of executed instructions,
particularly for monitoring purposes, diminishes the throughput. A natural
improvement would be to utilize the compiler (e.g., by implementing an ap-
propriate plugin) and annotate statically predicted task execution times while
generating the code.

Additionally, we used the average prefetch latency across both NUMA
regions for prefetch scheduling using Intel MLC [1]. Distinguishing between
local and remote latencies could improve accuracy. Due to the slightly better
performance, we will perform further measurements with a static prefetch
distance of 2.

5.5.3 Epoch-based Memory Reclamation

As discussed in Section 4.2, optimistic synchronization requires the coordina-
tion of concurrent physical removing and reading operations. To that end,
MxTasking adapts widely used EBMR (e.g., [102, 141, 147]) to a task-based
environment. Instead of wrapping local epoch updates around logical oper-
ations, an insert including the traverse, for instance, we focus on individual
tasks. MxTasking implements two approaches: Synchronizing the local and
global epoch before every task execution (resetting the local epoch afterward)
and batching a limited number of tasks before aligning the local to the global
counter. The results illustrated in Figure 5.4 prove that both mechanisms have
little to no impact on performance, using no EBMR as a baseline. The most
significant performance loss occurs during the execution of read-only workloads
when wrapping local epoch updates around every MxTask execution. Write-

1We annotated the execution times we observed in a previous iteration with monitoring
enabled.
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Figure 5.4: Scaling performance of EBMR in a task-based environment.

heavy workloads stay almost unaffected. Due to the slightly better performance,
we will perform further measurements with batching-based EBMR.

5.5.4 Comparison of Tasks and Threads

We argue that MxTasks offer a superior abstraction level to easily build scalable
software for modern and future many-core hardware—without decreasing
performance. To study this hypothesis, we compare different programming
models, libraries, and synchronization mechanisms: the Blink-tree on top of
MxTasking, common threads, and Intel’s TBB tasking library. Additionally, we
apply proven state-of-the-art index structures, including latch-free ones. For the
following benchmarks, we forced MxTasking to apply specific synchronization
primitives using appropriate annotations.

Serialized Access. Spinlocks are widely used to serialize and, as a result, syn-
chronize accesses to a specific resource. As discussed in Section 4.2, MxTasking
supports synchronization by scheduling for exclusive accesses. Although it is
well-known that serialization does not perform best for tree-like data structures,
we discuss some insights into comparable scheduling-based synchronization.
Figure 5.5 depicts the results, comparing the throughput of our Blink-tree
implementation, using scheduling for MxTasks and spinlocks for TBB-tasks and
threads. When utilizing TBB and threads, accesses to tree nodes are protected
by spinlocks. In contrast, MxTasks accessing the same tree node are dispatched
to the same task pool. Hence, tasks reading or writing the same tree node are
implicitly serialized since MxTasks execute in a run-to-completion semantic.

The results demonstrate that the scheduling-based synchronization offers
a significantly better performance related to spinlocks until utilizing multiple
hardware threads per physical core (from 13 logical cores) and the second
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Figure 5.5: Throughput when utilizing serialized synchronization for the Blink-
tree. We use spinlocks for threads and TBB and scheduling for MxTasks.

NUMA region (from 25 logical cores). Although MxTasks avoids latching, we
can observe two bottlenecks preventing this approach from scaling. First, every
operation starts by reading the tree’s root node. Regardless of subsequent
steps operating in parallel by distributing tasks to further tree nodes and
implicit additional CPU cores, the inherently sequential access to the root
limits parallelism and throughput. This also applies to spinlocks. Secondly,
moving tasks to task pools of other cores involves overhead. Even if the
operation is atomic, the expense of cache-coherence can degrade performance.
This affects, in particular, the task pool associated with the root node since
many producers try to (atomically) dispatch tasks concurrently. We observe
a similar effect using latches when many threads (or TBB tasks) access the
same cache line to acquire the root’s latch.

Reader/Writer-locks. Figure 5.6 demonstrates the results using reader/-
writer-locks as the synchronization primitive. This way, MxTasks are primarily
dispatched to the local worker, minimizing frequent spawn requests hitting a
single task pool. And, enabling parallel read operations, the root node stops
constituting the bottleneck.

Balancing the load in this fashion turned out to be a straightforward and
effective strategy for the given workload. However, as soon as cores in both
NUMA regions are utilized, the throughput also decreases. In this case, the
additional effort for keeping the latch variable coherent has a negative effect
and causes communication costs across the sockets. We obtain similar results
when using threads. Due to the built-in prefetching mechanism of MxTasking,
we can observe a benefit of up to 36 % more lookups per second compared to
threads. For both implementations, we borrowed the reader/writer-lock from
Facebook’s open-source folly library [47]. Contrarily, TBB provides different
synchronization mechanisms, partially based on HTM. Applying the HTM-
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Figure 5.6: Utilizing reader/writer-locks for synchronizing operations accessing
a Blink-tree.
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Figure 5.7: Utilizing HTM as a synchronization primitive for operations ac-
cessing a Blink-tree.

based reader/writer-lock to TBB, we notice less overhead due to latching and
implicit better performance: more than 2.5 × compared to MxTasking and
3.5 × to threads.

Hardware Transactional Memory. Using HTM to synchronize concurrent
tasks delegates synchronization to the underlying hardware. Previous work
(e.g., [42, 93, 99]) has found that the usage of HTM in tree-based (and thread-
based) data structures and beyond is straightforward and efficient. MxTask-
ing encapsulates the execution of tasks within a transaction. Similar to
reader/writer locks, tasks are mostly dispatched locally, which lowers worker
communication but may increase write contention (and, in the light of HTM,
transaction aborts).

Figure 5.7 depicts the results, comparing MxTasking-, TBB-, and thread-
based Blink-tree implementations synchronized with HTM. While recurring
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Figure 5.8: Optimistically synchronized Blink-tree and state-of-the-art index
structures.

transaction aborts lead to performance penalties in write-heavy workloads,
MxTasks benefit from automated prefetching in read-heavy workloads. Dur-
ing the read-only workload, it becomes evident that the hardware “forgives”
frequent cache misses thanks to hyperthreading: With 12 cores, MxTasking
achieves almost 1.4 × more lookup throughput than threads and TBB. The
difference decreases as the number of logical cores increases, up to the NUMA
boundary, from where a similar pattern is repeated.

Optimistic Synchronization. MxTasking utilizes optimistic synchroniza-
tion by providing versioned data objects and differentiating between reading
and modifying tasks. Read-only annotated MxTasks perform optimistically and
ensure the validity of the operation afterward. Modifications, in contrast, are
synchronized by the runtime2. Most executed tasks in the Blink-tree benchmark
are read-only, including the traverse needed by insert and update operations
to navigate to a leaf node.

Using threads and TBB as a fundament, optimistic synchronization re-
quires careful implementation on top of the application. This also applies to
state-of-the-art data structures like the open BwTree [147], Masstree [102],
and BtreeOLC [95]. Figure 5.8 compares our optimistic-synchronized Blink-
tree implementations and the named data structures. The state-of-the-art
implementations are borrowed from the index-microbench framework [146].
The MxTasks-based Blink-tree achieves the highest throughput throughout the
insert-only workload, 8.5 % more than its thread-based implementation and
BtreeOLC. The Blink-tree implementation based on TBB is comparable to the
results of Masstree but also scales beyond the first NUMA region. It is worth

2In practice, MxTasking mixes two variants of optimistic synchronization that differ in
synchronization of writing tasks: writer-scheduling for read-heavy data objects, e.g., inner
nodes, and applying latches for write-heavy objects, e.g., leaf nodes (cf. Section 4.4).
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Figure 5.9: Detailed, cycle-based analysis of the Blink-tree (using MxTasking,
threads, and TBB) and state-of-the-art index structures.

noting that BtreeOLC does not provide memory reclamation contrarily to all
other evaluated data structures.

Also, for the mixed read/update workload, MxTasking performs best. How-
ever, with adding more logical cores to the benchmark, the throughput does
not increase at a uniform rate. This is due to the higher contention on latch
variables, particularly when modifying a node’s values. On average, the MxTask-
based Blink-tree executes 15 % more operations than the thread-based variant
but only 4.7 % when utilizing all 48 cores. As observed within the insert-only
workload, Masstree scales until using the second NUMA region.

The most significant differences are noticeable in the read-only workload.
MxTasks accomplish 75 million lookups per second, 7 % more than Masstree
(69.8 M), utilizing all available cores. Note that both implementations benefit
from prefetching. The thread-based Blink-tree and BtreeOLC provide a similar
throughput (roughly 57 million read operations per second), proving that our
Blink-tree implementation meets the state-of-the-art. All measurements show
that TBB suffers from the additional effort caused by the runtime environment.

Cycle-based Comparison. Discovering the reasons for varying results, Fig-
ure 5.9 shows a cycle-accurate comparison between the task- and thread-based
implementations. MxTasking, Intel TBB, and pthread are related to the Blink-
tree. We distinguish between effort for performing the insert/update/lookup
operation, including the traversal, cycles spent in kernel mode (e.g., syscalls),
and synchronization, including memory reclamation. Additionally, we present
cycles consumed by the runtimes of MxTasking and Intel TBB. For MxTask-
ing, we further show the complexity of initiating memory prefetches. We
recorded those details using Intel VTune [69] and perf [97] for analyzing the
results. To be precise, the aggregated cycles only give an impression. Mapping
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spent cycles to function names is sometimes ambiguous, e.g., due to inlining.
One specific example is the prefetching mechanism of Masstree: Although
we know from the source code that prefetching instructions are executed and
the measurement results also suggest this, we could not always observe the
corresponding instructions through profiling tools.

The results prove the effectiveness of the prefetching mechanism used by
MxTasking: Traversing the tree and performing the operation requires fewer
cycles when applying MxTasks, compared to threads and TBB tasks. This is
especially true for lookups, which we can also observe in the measurements of
Masstree. Notably, prefetching during the insert-only benchmark consumes
significantly more cycles than during the mixed and read-only phases. Since
it is likely for insert operations to access the entire key set (e.g., to provide
space for a new entry through moving keys), we hinted MxTasking to preload
all keys. Consequently, more prefetch instructions are executed for insertion
tasks.

In comparison to other data structures, MxTasks spent fewer cycles for
synchronization, particularly during the read-only workload. Prefetching helps
to reduce these costs by loading the header of tree nodes that include the version
counter and latch variable. However, during the mixed read/update phase,
there is an additional overhead due to contention on the latch. As multiple
worker threads concurrently modify the latch’s cache line (and the cache
coherency protocol invalidates obsolete copies), prefetching cannot prevent
these memory stalls.

By prefetching, MxTasking pays off the overhead coming along with tasks,
mainly caused by task-spawning and managing annotations. Comparable
runtime overhead is also observable for the TBB scheduler. We cannot break
down these cycles more precisely since the profiler and/or the library do not
provide revealing function names. However, we assume this is an expense for
load balancing, task-stealing, and scheduling.

The results confirm that the abstraction of tasks and simplifying synchro-
nization and prefetching implemented in MxTasking do not cause substantial
performance degradation. In particular, the software-controlled prefetching
of data objects offers considerable increases in throughput. The findings of
Masstree strongly support this assumption. Integrating prefetching manu-
ally into threads and TBB requires considerably more effort: The application
engineer is likely forced to reorganize the data structure.

5.5.5 Summary

In the experimental evaluation, we examined the performance of MxTasking
using a task-based Blink-tree as a demonstrator. The analysis explored various
aspects of EBMR, software-based prefetching, and concurrency synchronization.
By conducting a comparative analysis with Intel TBB as an alternative task
implementation and state-of-the-art data structures, we observed that MxTasks
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noticeably enhances the performance of our Blink-tree implementation, particu-
larly for read-only workloads. The central aspect of performance optimization
is prefetching, which reduces the number of cycles in which the CPU waits
until data is loaded from memory into the registers. Through annotations,
MxTasking can preload accessed nodes so that tasks will find them (partially)
cached when executing. However, the mechanism must be used carefully to
ensure that the additional pressure in the form of instructions does not take
away its benefits. The experiments indicate that utilizing a static prefetch
distance, which determines the number of tasks to initiate prefetching in ad-
vance, is satisfactory for homogeneous workloads. In the case of the slightly
heterogeneous insert-only workload, where specific tasks exhibit a longer exe-
cution time, dynamic prefetching leads to a modest improvement despite the
extra effort needed to adjust the prefetch distance. We conclude that more
efficient prefetch instructions by the hardware could improve software-based
prefetching. The AVX512-based prefetch instructions are a noteworthy illustra-
tion, as they can prefetch multiple offsets starting from a base address through
a single instruction. Nevertheless, these instructions belong to the AVX512PF
instruction set, implemented exclusively on Intel Xeon Phi processors [2].

Annotations also help to decouple the synchronization from the application
logic. This results in a barely noticeable overhead and allows synchronization
mechanisms to be tailored to the underlying hardware substrate. Consequently,
synchronization needs not to be implemented by an MxTask-based application.
Instead, the developer can delegate it to the execution unit as annotated
synchronization requests, simplifying the implementation of concurrent ap-
plications. In summary, we found that MxTasking can leverage write-heavy
workloads by up to 8.5 % and read-only workloads by up to 30 % compared to
our thread-based implementation.
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6
Micro Partitioning

Parts of this chapter have been published in [110].

Following our previous observation that annotations assist the application in
bringing data proactively into caches, this chapter delves into how annotations
leverage the design of cache-aware algorithms and data structures. With mem-
ory accesses becoming the bottleneck of data-intensive systems, applications
must explicitly make use of caches to provide optimal performance. This is
particularly challenging for hash tables because of their random and hard-to-
predict access patterns, and led to the design of hardware-conscious algorithms.
Partitioning strategies break data into pieces small enough to fit into fast CPU
caches (e.g., to prepare for a partitioned hash join). The drawback of these
algorithms is their complexity in terms of design, development, and mainte-
nance. This has resulted in a literature debate on whether hardware-oblivious
algorithms may be the better choice: They are easier to design, do not require
an understanding of the underlying hardware characteristics, and may be more
robust when data or hardware behave differently than expected [13, 71, 15].

6.1 Hash-based Partitioning

One way to make hash tables cache-aware is to divide the data into smaller
partitions such that each partition’s hash table fits into a core’s private
cache [136, 24, 100, 13, 61]. A common (and simple) way to implement
such hash-based partitioning is to scan the data twice: Once to establish a
histogram and set up a contiguous memory region for each of the partitions
and a second time to move data to their proper partition. Figure 6.1 illustrates
this approach.

However, the appropriate number of partitions must be chosen carefully.

63
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Figure 6.1: Data partitioning using a histogram.

On the one hand, the data must be divided into sufficiently small enough
portions so that each partition leads to a cache-sized hash table. On the
other hand, too many partitions lead to several logical memory addresses that
exceed the capacity of the translation lookaside buffer (TLB)—which defines
an upper limit on the number of efficiently writable partitions that can be
handled simultaneously [24, 13].

More complex partitioning strategies have been developed in the literature
as a remedy. Radix partitioning [100, 148, 13, 61, 123, 133] performs the task
in multiple rounds, in each round keeping the partitioning fan-out below the
limits defined by TLBs. Software-managed buffers [132, 14, 133] buffer up
several tuples (usually one cache line in size) for each partition in the CPU
cache; once a buffer is at capacity, its tuples are copied to their in-memory
location at a stretch. In effect, TLB misses arise only once per buffer flush but
no longer for every single input tuple.

6.2 Micro Partitioning

Software-managed buffers are a two-edged sword. While they may indeed
reduce the number of incurred TLB misses by several factors, the overhead of
the extra memory stores becomes prohibitive when the partitioning fan-out
stays small. We argue that additional copying from the buffer to memory is
unnecessary. We introduce micro partitioning as an alternative to reduce TLB
thrashing during partitioning.

Micro partitioning follows the idea of buffers concerning memory density.
Like software-managed buffers, which reserve one cache line for each partition
as a buffer, we reserve small chunks of memory that we dub micro fragments
(or simply fragments). Micro fragments receive a limited number of tuples
during the partition phase. However, unlike software-managed buffers, micro
fragments go beyond the size of a cache line and are not temporary buffers.
Instead, they directly act as a (tiny) subset of the overall partitioned data
set. In this light, fragments resemble morsels [92] as used in the engines of
HyPer [114] and Umbra [115, 144].

For partitioning a relation into micro fragments, we first allocate a contigu-
ous memory block from the OS, large enough to accommodate all tuples. Like
hash-based partitioning, we maintain a map that associates each partition with
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scan & partition

micro
fragments

1 offsets = {0:0, 1:128, 2:256, . . . }

2 foreach tup in S:
3 part = tup.key & mask
4 offset = offsets[part]

5 out[offset] = tup

6 if is full(offset):
7 offsets[part]=

next fragment offset()

8 else:
9 offsets[part] + = 1

Figure 6.2: Materializing data into micro fragments of limited capacity.

its corresponding offset within the partitioned data set for inserting the next
tuple. However, in contrast to hash-based partitioning, these slots do not need
to be calculated prior to partitioning. Instead, we “allocate” a micro fragment
from the partitioned data (which is not an allocation in the sense of traditional
memory allocation; instead, we reserve a fixed number of offsets for each micro
fragment). As soon as one fragment is at capacity, we allocate the next from
the tuple-receiving data set, which relates to incrementing an overall micro
fragment counter multiplied by the fragment capacity to derive its offset. We
illustrate our approach in Figure 6.2 in combination with pseudocode. In that
sense, our approach levitates between “classical” hash-based partitioning (with
substantial and variable-sized partitions) and software-managed buffers (which
are limited to very few tuples).

The partitions’ physical layout becomes a fundamental difference to hash-
based partitioning: While hash-based partitioning stores a partition’s tuples in
a continuous line, micro partitioning splits the data over several locations. Ad-
ditional bookkeeping is needed to combine the fragments into logical partitions
processed at a stretch in the subsequent phase (e.g., building the hash table).
Figure 6.3 shows an example using queues of pointers as fragment directories to
represent logical partitions. As a bonus, micro partitioning eliminates the need
for a histogram: Since the tuples are consistently partitioned into fixed-sized
subsets, there is no need to determine boundaries in advance (or realign parti-
tioned tuples during partitioning when desisting from histograms). Instead, the
boundaries of the individual micro fragments are statically determined by their
capacity. Consequently, additional space is allocated since not every partition
is guaranteed to be sized by exactly a multiple of the capacity. However, this
is negligible considering contemporary servers’ large amounts of main memory.

The true strength of micro partitioning lies in the tightly spaced physical
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data set partitioned into micro fragments

fragment directories

Figure 6.3: Bookkeeping of micro fragments and their partitions. For each
logical partition, a fragment directory connects the fragments that form the
partition.

layout. Given the small size of each micro fragment, multiple fragments will fit
into a single memory page. This increases the chances that fewer virtual page
addresses must be translated into physical page addresses even with various
partitions—hence, fewer requests miss the TLB. Based on this, capacity is
a determining factor in the design of micro fragments. Two considerations
are necessary: If the capacity is too small, the phase that follows partitioning
(such as join or grouped aggregation) must reassemble many fragments. We
will discuss this fact later in Section 6.4. In contrast, when fragments are too
coarse-grained, the address space for the partitions written simultaneously
will span over multiple memory pages, which may reduce the TLB-friendly
advantage.

6.3 Micro Partitioning in Action

To understand the performance possibilities of micro partitioning, we compare
two fragment capacities with state-of-the-art (“classical”) radix partitioning in
a micro-benchmark fashion. For that purpose, we adopt the workload used by
Balkesen et al. [13], which partitions 16 byte-sized tuples. So far, we will only
focus on the partitioning phase and use a 4 GB relation as a workload (the
“entire” radix join will be addressed in Section 6.4). Accordingly, the influence
of the number of partitions is “only” limited to the TLB and does not affect
hash tables in the cache. However, we want to spot the potential and the
limits for different numbers of partitions. For capacity, we choose 128 tuples
and 256 tuples. With 16-byte wide tuples in this benchmark, the resulting
micro partitions are 2 kB (128 tuples per micro fragment) and 4 kB in size,
yielding two and one fragments on a 4 kB memory page, respectively. We run
the benchmark single-threaded on a machine with 64 DTLB and 1 536 STLB
entries (more hardware details are provided in Section 5.5).

Figure 6.4 demonstrates the results. While classical partitioning leads to a
comparatively large number of STLB misses with only a few partitions (Figure
6.4a), our approach with 128-tuple-wide micro fragments benefits from the
tight partition layout in memory. This becomes notably evident when moving
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Figure 6.4: Micro benchmark comparing state-of-the-art (“classical”) and micro
partitioning with capacities of 128 and 256 tuples.
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Figure 6.5: Comparing STLB misses during partitioning with and without
software-managed buffers.

from 1 024 (10 radix bits) to 2 048 partitions: As fragments with 128 tuples still
fit into the second-level TLB (one appropriate micro fragment only inhabits
half of a memory page), the number of simultaneously written memory pages
for classical partitioning and coarser fragments exceeds the TLB’s capacity.
The benchmark shows that even 256-tuple-sized micro fragments result in
considerably fewer STLB misses at a high fan-out (e.g., 14 radix bits), which
is also reflected in the execution time (see Figure 6.4b). This effect is also
observable with broader micro fragments (e.g., 512 tuples). Experiments on
additional hardware (with considerably smaller caches and less TLB capacities)
yielded very similar results.

Effect of Software-managed Buffers. Micro partitioning is related to
software-managed buffers to a certain extent: Tuples are written in condensed



68 CHAPTER 6. MICRO PARTITIONING

space to reduce TLB misses, while micro partitioning avoids copies from a
temporary buffer. As depicted in Figure 6.4, however, a large number of
partitions increases the amount of simultaneously written memory pages to
such an extent that also micro partitioning drives the TLB to its limit and
beyond. Software-managed buffers can also extend micro partitions in such
scenarios, just like “classical” hash-based partitioning. Figure 6.5 compares
partitioning with and without buffers for hash-based and micro partitioning,
using the STLB misses as a metric. The results indicate that software-managed
buffers have indeed a positive effect on micro partitions. Besides reducing
TLB misses at high partitioning fan-outs, utilizing software-managed buffers
on top of micro partitions shows fewer TLB misses than on top of classical
partitioning (and implicitly better performance).

6.4 Dispatching Micro Fragments

We saw how micro partitioning can provide a practical benefit. Let us now
turn our attention to assembling micro fragments for the subsequent step, such
as building or probing a hash table. By their design, classical partitioning
algorithms facilitate linear scanning of each partition. Our approach, contrarily,
spreads a logical partition over several dispersed locations, which must be glued
together for further processing.

Section 6.2 mentioned that fragments of a logical partition must be ac-
counted for to be processed at a stretch. A straightforward way would be
to take Figure 6.3 literally and maintain an explicit fragment directory that
associates a partition with all its fragments. However, this strategy has two
drawbacks: First, the resultant code grows more complicated and must be
tailor-made. Second, the scan of a partition for the subsequent phase is scat-
tered and thus nearly unpredictable for the hardware prefetcher. Notably,
hardware-based prefetching is known to assist linear scans on adequate volumes
of data and implicitly simple-to-identify access patterns.

6.4.1 Annotation-driven Task Dispatching

To reduce the implementation effort of micro partitioning-based algorithms,
we take advantage of the annotation mechanism of the MxTasking framework.
We augment each task with a label that we refer to as its task squad. The
task squad annotation logically connects (and makes this connection explicit to
the MxTasking runtime) MxTasks that process fragments from the same logical
partition.

When multiple tasks should access the same data structure in succession,
the application developer requests a task squad from MxTasking. In the light
of data partitioning, each partition relates to a unique task squad. Internally,
MxTasking pairs each squad with an individual task queue that receives only
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Figure 6.6: Illustration of the partition and build phases. During the partition
phase, tasks materialize tuples into micro fragments and spawn tasks if a
fragment is at capacity. Annotating appropriate tasks with task squads helps
the dispatcher to execute tasks partition-wise.

suitably annotated tasks. Whenever the dispatcher finds a task annotated
with a squad, the task will be sent to the squad’s queue instead of a worker’s
task pool. After requesting a bunch of task squads, the application enters a
phase during which it spawns all (or at least a series of) tasks required to
access a data object (e.g., a hash table) in bulk. We illustrate this procedure
in Figure 6.6. In the partitioning phase, the application spawns tasks that
scan the input relation and materialize tuples into micro fragments. To that
end, we also segment the relation into morsel-like relation fragments (statically
in advance) of the same size we use for micro fragments. Each task reads a
relation fragment in a one-to-one relationship.

When a micro fragment reaches its maximum capacity, we spawn a new
task to scan and process it during the subsequent phase. Before sending the
newly created task to the MxTasking runtime, we annotate the partition the
fragment belongs to as a task squad. Figure 6.7 depicts the pseudocode for
the task that partitions the data. We request (line 2) and annotate the task
with information about the task’s logical partition (line 11). Further, we
annotate the task with the data that it will scan (line 12). The latter will
empower MxTasking’s built-in prefetching mechanism. To keep matters simple,
we statically set the prefetch size to 1 kB. While annotating is optional, we
observed that the software-based prefetching mechanism built into MxTasking

complements hardware prefetching effectively, giving the latter sufficient time
to recognize the access pattern.

The annotation mechanism of MxTasking enables us to achieve two objec-
tives simultaneously: We delegate the bookkeeping and composition of micro
fragments to the underlying task execution engine, eliminating the need for
the developer to manage it manually. Plus, we take advantage of the built-in



70 CHAPTER 6. MICRO PARTITIONING

// create 1024 hash tables and one task squad for each partition
1 tables = new HashTable[1024]

2 partitions = mxtasking::new squads(1024)

3 offsets = {0:0, 1:128, 2:256, . . . , 1023:130944}

// the following loop is executed by multiple PartitionTasks
// note, that data is a subset of the to-partitioned relation

4 foreach tup in data:
5 part = tup.key & mask
6 offset = offsets[part]
7 out[offset] = tup // write the tuple to the partition

8 if is full(offset):
9 start = offset − 127

// create a task that probes the HT and annotate..
10 task = mxtasking::new task<ProbeHT>(tables[part], &out[start],

128)

11 task->annotate(partitions[part]) // ...the partition for dispatching
12 task->annotate(&out[start], 1kB) // ...data to prefetch
13 mxtasking::spawn(task) // commit the task

// allocate the next micro fragment
14 offsets[part] = next fragment offset()

15 else:
16 offsets[part] + = 1

// push all tasks accessing the micro fragments to the task-engine
17 mxtasking::spawn(partitions)

Figure 6.7: Pseudocode for partitioning the data using micro partitioning.
When a micro fragment is at capacity, we spawn a new task to process the
partitioned data and annotate it with the partition. Note that we chose a
capacity of 128 tuples per fragment in this example.
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software-prefetching mechanism to scan dispersed fragments while reducing
memory latencies. Most importantly, however, all hardware-specific aspects
are handled where they should be: in the MxTasking scheduler/dispatcher. All
developer-written code stays oblivious to the underlying hardware.

6.4.2 Finalizing the Partitioning Phase

After partitioning the input relations, the operator must move on to the next
phase. Up to this point, all tasks have found their way into squad-associated
queues but must still be published to the worker’s task pool to get executed.
Generally, this challenge can be addressed in several ways, e.g., by periodically
transferring the tasks or by the developer “spawning” the squads at the end
of the partition phase, which hints at the runtime to publish the tasks for
execution. We found that the latter is effective and straightforward to use (line
17 in Figure 6.7).

6.4.3 Parallel Partitioning

We still have to address the implementation of task-based micro partitioning
in a parallelized setting. In fact, this requires minimal effort. Since we have
implemented the entire set of operators around tasks, it does not matter (from
the implementation point of view) how many cores or worker threads execute
tasks in parallel. Solely the allocation of the fragments must be implemented
atomically. As this only involves incrementing an integer, atomic compiler
built-ins (or atomic C++ types like std::atomic) allow for a lightweight
solution.

We chose to allocate a distinct partition block to each logical CPU core.
This enables the tuple’s materialization respecting NUMA domains while the
partitioning remains unchanged from an implementation aspect. Nevertheless,
this coin has two sides: Partitions may be processed by one region even if
another materializes them. Due to the higher write latencies, we decided to
write the partitions NUMA-local instead of optimizing for local read accesses.

6.5 Experimental Evaluation

We perform the experimental evaluation using the machine described in Section
5.5: A two-socket machine with 24 physical and 48 logical cores in total. The
data TLB has a capacity of 64 and the STLB of 1 536 entries.

We implemented a parallel task-based radix join to evaluate micro parti-
tioning in a database-related context. For the benchmark, we follow former
work [13], joining two relations with 16 B-sized tuples (8 B key and payload
each). With 4 GB, we maintain the probe relation steady throughout the
benchmark. The build relation, however, varies with the number of partitions
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Figure 6.8: Comparison of the hardware-conscious radix join [13] using state-
of-the-art partitioning and our task-based implementation using micro parti-
tioning.

so that every partition allocates the entire L2 cache. This is equivalent to
the original Workload A of [13] at 10 radix bits, joining relations of 4 GB
and 256 MB. To classify our task-based join implementation, we choose the
hardware-conscious radix join of Balkesen et al. [13] for comparison. Each of
the following benchmarks utilizes all 48 available logical cores.

6.5.1 Comparison with the State of the Art

First, we compare the state-of-the-art radix-join implementation [13] with our
micro partitioning- and task-driven join. We demonstrate the results in Figure
6.8, analyzing partition granularities of 128 and 256 tuples. Similar to our
previous analysis of the partitioning stage (from Section 6.3), the storage layout
of micro fragments is advantageous for the partitioning phase: Partitioning
improves by up to 25 %. On average, micro partitioning demonstrates a
performance boost for the partitioning phase of 21 % when using 128-sized
fragments. Coarser-grained fragments (256 tuples in this case) lose some
advantage due to the less compact representation. However, the average
performance benefit is still 17 %. Even comparing end-to-end runtimes, micro
partitioning substantially improves performance. Using 128-wide fragments
leads to an 11 % improvement, whereas 256 tuples per fragment result in a
10 % improvement. Both values are averaged over all configurations.
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In contrast to partitioning, join times have increased significantly. On
average, the build and probe stages exhibit a performance degradation of 66 %
(128 tuples per fragment) and 44 % (256 tuples) compared to the thread-based
implementation. In the most extreme scenario (with 14 radix bits), the join
becomes twice as costly, while this is still limited when having fewer partitions.

We found two reasons for this. First, the micro partitioning-based join had
to be adapted: In the original implementation, only indexes of the materialized
tuples instead of the tuples’ data are stored in the table. The partitioned arrays
are accessed during the probe phase to check the tuple’s keys for matches.
The bucket-chaining mechanism is also built around array indexes, storing the
(possible) chained bucket for each index of the build relation’s tuples. However,
micro fragments do not produce a comparable coherent memory chunk. Thus,
we immediately store the keys and chained bucket references in the hash table,
resulting in a more extensive data structure.

Second, each executed task scans a small subset of tuples for further process-
ing (corresponding to the capacity of fragments). Using profiling tools (Intel
VTune [69] and perf [97]), we discovered that the hardware prefetcher performs
better on extended linear scans, which are given for coherent partitions.

Analyzing additional comparative measures (e.g., performance counters
as in Section 6.3) is problematic. We found that individual worker threads
occasionally stay idle between the partitioning and join stages until all partitions
have been realized. This leads to single workers frequently querying their task
queues, executing many instructions, and producing numerous TLB misses.
Although this has a minimal effect on the workload, it considerably impacts
the measurements—because this occurs when there is temporarily no work.
However, while reading performance counters, we cannot separate counted
events that emerged during idling and those that affect the join execution.
Implicitly, this shows optimization potential: With a tuned, e.g., more dynamic,
allocation of partitions to worker threads (such as task squad-level work
stealing), idle times may be reduced and the throughput can be increased.

We executed the benchmark on additional hardware to conduct a more
comprehensive evaluation of micro partitioning’s hardware awareness:

• Intel Xeon E5-2690 with 16/32 logical/physical cores, 64 dTLB and 512
STLB entries, and 256 kB L2 cache per physical core

• AMD EPYC 7501 with 64/128 logical/physical cores, 64 dTLB and 1 024
STLB entries, and 512 kB L2 cache per physical core.

We illustrate the outcomes obtained from that hardware in Figure 6.9. The con-
trast between “classical” partitioning and micro partitioning is notably greater
on both machines, in relative terms (compared to the hardware mentioned
above). Micro partitioning significantly improves partitioning performance,
particularly in cases where the partition fan-out is low, indicating that our
approach is not limited to a specific hardware configuration.
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Figure 6.9: Radix Join Benchmark (same as in Figure 6.8) executed on addi-
tional hardware.

6.5.2 Memory Access Patterns

We will now demonstrate how micro fragments affect memory access patterns.
To that end, we evaluate memory stores and loads that hit the partitioned
data during the partition phase (when the data is written) and the join phases
(which read the data). We focus only on accesses to the partition of the probe
relation. Perf was used to collect samples of memory operations. As the setup,
we have chosen 10 radix bits for partitioning and 128-sized fragments to join
relations of 4 GB and 256 MB.

Memory Stores. Figure 6.10 depicts the chronological order of memory
addresses written during the partitioning of the probe relation. We illustrate
only 4 of the 48 threads as examples for visual clarity. The results support our
argument that micro partitioning provides a more TLB-friendly write pattern.
The “classical” technique of radix partitioning materializes tuples by writing
them extensively throughout the partition array (Figure 6.10a)—accessing a
broad range of different memory addresses (and thus pages) simultaneously.
Accordingly, the figure demonstrates a complicated writing pattern.

In contrast, when employing micro fragments, the (worker-local) partitions
are written to ascending memory addresses (Figure 6.10b). The write operations
to memory regions near one another result in fewer simultaneously accessed
memory pages, making better use of the TLB.

Memory Loads. When utilizing micro partitioning, a logical partition
comprises many fragments that spread across the memory and are assembled
during the join phase. This results in a random read pattern, as seen in Figure
6.11b, similar to the write pattern of radix partitioning. However, annotated
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Figure 6.10: Comparing memory stores to the partitioned data array of the
state-of-the-art implementation and micro partitioning. For illustrative reasons,
the plot shows only the partitioning phase of the probe relation on four randomly
selected threads (worker threads in the context of MxTasking).
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Figure 6.11: Comparing memory loads during the probe phase.

tasks make the random read pattern predictable since the runtime knows
upcoming tasks and accessed partition fragments. Task-assisted prefetching
becomes a natural optimization that requires no effort from the developer.

In contrast, radix partitioning enables linear scanning of a contiguous
memory chunk per partition during the join phases (Figure 6.11a). Finally, it
is necessary to pick a battle: Random accesses during partitioning or random
accesses at the join phase, with the latter allowing for more optimization
potential—specifically in the dominating partitioning phase.

6.5.3 Task-driven Micro Partitioning in Detail

Utilizing micro partitioning with tiny fragments requires many tasks to process.
This raises the question of task-based runtime overhead. We will address this
question by breaking down the task-based radix join’s CPU time into several
individual parts. Figure 6.12 shows the CPU cycles per output tuple. Kernel,
partition, and join refer to radix join charges, while runtime and tasking are
MxTasking-related. The number of cycles represents all logical core cycles. We
used Intel VTune to record these samples.

Kernel. The measurement reveals that the OS kernel consumes several
cycles. Most of these relate to mapping virtual to physical memory pages
during partitioning. The findings are not surprising as we did not map the
partitions ahead of the benchmark to provide comparability with the thread-
based implementation of [13].

Runtime. We can also observe a variable quantity of cycles spent in the
MxTasking runtime. These are associated with the “usual” handling of tasks
(e.g., when fetching tasks from the queue) and—more frequently—worker idle
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Figure 6.13: Breaking down tasking cycles in Figure 6.12.

times. When a worker thread finds no tasks ready for execution, it aggressively
pulls for new tasks. For instance, before the partitions can be joined, it requires
the partitioning to complete by all worker threads, leaving some workers
temporarily without work.

Tasking. As Figure 6.13 shows, tasking includes costs for allocating and
dispatching tasks. Plus, for each task, we instruct the MxTasking runtime
to prefetch the task’s processed data which consumes additional instruction
bandwidth. The tasking costs are proportional to the capacity of micro
fragments: Given more fine-granular fragments, more tasks must be processed
(and implicitly, more data has to be prefetched by the software). We observed
this pattern also for coarser and finer fragments. During extended scans of the
partitioned data chunks, fragments with a granularity of 256 tuples benefit
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more from the hardware prefetcher—which we compensate with task-assisted
software prefetching for shorter scans. Despite the minor overhead of tasking,
MxTasking manages to keep it at a low level. Future optimizations promise to
improve the join performance, as enhancements to the framework will have a
direct positive impact.

6.5.4 Summary

In the experimental evaluation, we studied the performance of micro parti-
tioning as a unique technique for partitioning that is TLB- and cache-friendly.
Micro partitioning tightens the simultaneously accessed address space during
tuple materialization by separating the entire partition into tiny fixed-capacity
fragments. Combined with MxTasks, this approach also eases the implementa-
tion of partitioning: Spawning a new task for each fragment, annotated with the
proper partition, is all the developer has to do. The task dispatcher takes over
the assembling of fragments: With the help of the annotation, all tasks that
belong to the same partition execute in bulk—aiming to reuse the CPU cache
for partitioned data structures. However, micro partitioning is not limited
to MxTasks and can also be adapted to, e.g., morsel-driven execution models
and traditional threads. The findings demonstrate that micro partitioning
outperforms state-of-the-art radix partitioning by 21 % in our benchmarks
while boosting the end-to-end radix join by 11 %.



7
Engineering a Task-based DBMS

So far, our exploration of the task-based processing model has primarily focused
on its application in data structures and algorithms. The question of how
MxTasks will integrate into a more intricate system remained open. In this
chapter, we will address this challenge and delve into practical implications
and benefits through an in-depth examination of our MxTask-based DBMS
demonstrator, TunaDB.

Figure 7.1 provides an overview of TunaDB’s operating principle. TunaDB
accepts SQL queries and translates them into a sequence of tasks executed by
MxTasking that work collaboratively to generate the desired query results. The
query engine employs a sophisticated control flow abstraction to dynamically
chain task-based operators, which will be discussed in Section 7.1. The tasks’
code is compiled at runtime, leveraging FlounderIR [52, 53] to generate data-
centric code. In Section 7.2, we illustrate query compilation and discuss
optimizations related to FlounderIR.

Along with micro partitioning for (bloom-filtered [15, 89]) radix joins and
grouped aggregations, TunaDB utilizes task annotations in two additional
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Figure 7.1: Overview of TunaDB.
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ways. First, tasks are dispatched NUMA-consciously to access data locally
whenever possible, particularly in the case of relation fragments. Second,
TunaDB employs MxTasking’s prefetch mechanism so that tasks will find their
accessed data fragments right in the cache, which we discuss in Section 7.3.

7.1 Control Flow Abstraction

The basic control flows, as implemented for the task-based Blink-tree (cf. Chap-
ter 5) and micro partitioning (cf. Chapter 6), are not sufficient to utilize
tasks for a more intricate query engine. In the Blink-tree, for instance, each
task spawns a specific follow-up to continue the traversal or perform a specific
operation, e.g., a lookup. A straightforward case distinction drives the decision
on which task type to spawn as a follow-up; based on the type of the next
node to be visited. However, in a query engine, control flow chains must be
assembled at runtime as the operator sequence is unknown at compile time.

7.1.1 Control Flow of Query Engines

The pull-based iterator model [98] is a well-known approach for chaining and
pipelining operators, implemented in various DBMSs, which became popular
in the Volcano system [55, 57]. The control flow is transferred from operators
to their children by invoking a next() function, allowing them to request
(“pull”) the next tuple for processing. Upon receiving a tuple, an operator will
execute its code and return the result to its parent. This tuple-at-a-time model,
however, leads to many function calls that the compiler cannot inline since the
operator chain is first known at the query’s planning time. By passing multiple
tuples at a time through a Volcano-styled interface, MonetDB/X100 [25, 153]
reduces the number of function calls and allows vectorizing the operators’ code.

Push-based query engines operate reversely in terms of their control flow.
The evaluation of a query starts at the source operators of a query plan
and propagates data toward the root operator. Specific operators (e.g., hash
joins and aggregations) must materialize the data on the way up and have to
be declared as pipeline breakers. The push-based paradigm was popularized
by HyPer [114, 116] and has found significant application in other query
compilation engines (e.g., LegoBase [82], DBLAP [135], and ReSQL [53]).
However, the concept is not limited to compiling engines [140] and was found
to perform similarly to the pull-based approach [134, 39].

7.1.2 MxTask-based Control and Data Flow

The push-based methodology aligns with the asynchronous nature of the task-
based paradigm, making it a suitable choice for MxTask-based control and data
flows. This methodology has also been employed by other task graph computing
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Figure 7.2: Interaction of the application and MxTasking using MxTaskFlow.

systems (e.g., [88, 9, 11, 74, 66]). In the context of a query engine, a task
processes a data fragment and generates a follow-up task for further processing.
However, translating a chain of operations into a set of tasks entails a couple of
challenges. First, tasks that execute operators must know the type of follow-up
tasks to spawn. Second, not all tasks are allowed to run simultaneously due
to interdependencies among operators. For instance, all tasks of a hash join
probe must wait for the build side to finish before proceeding. To ease the
implementation of complex and task-based control flows, MxTasking provides
an additional component that manages the execution of tasks for control flows
specified at runtime.

An application expresses its control and data flow through an operator
graph that is transmitted to MxTaskFlow, along with initial data to process.
Figure 7.2 illustrates the interaction of the application and MxTasking. The
operator graph ( 1 ) represents the relationship between operators, describing
their chaining and interdependencies. Each node in the graph corresponds to
an operator, i.e., a piece of code executed by tasks. The input data for each
operator is either the output produced by its predecessor or a data fragment
provided by the application for the initial operators, e.g., tuples structured in
tables. When the application has specified its desired control flow and data to
process, MxTaskFlow ( 2 in Figure 7.2) translates the graph into tasks. To start,
MxTaskFlow spawns tasks executing the initial operators of the graph with the
data provided by the application. The result of a task execution is passed to
the subsequent operator for further processing by spawning an appropriate
task. By monitoring the states of tasks and operators, MxTaskFlow manages
dependencies, ensuring that no tasks are spawned that execute operators still
awaiting the completion of another one.
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Figure 7.3: Illustration of the entire pipeline from receiving an SQL query to
the execution of tasks.

7.1.3 Task-driven Query Processing

In this way, MxTasking decouples data and control flow from the operators’
implementation. An operator task must only return the data to process for the
subsequent operator. We will use relational query execution as an illustrative
instance for MxTaskFlow; however, the control flow abstraction is not limited to
this context and can also assist, for example, stream processing. Upon receiving
a query, the DBMS translates it into an (optimized) logical query plan. To
further transform the plan into an executable set of tasks, TunaDB maps the
logical plan to a physical operator graph. The process is demonstrated in
Figure 7.3, utilizing a hash join as an example. In the following, we will sketch
various features of MxTaskFlow that assist query execution.

Dependency Management. The hash join, as an example, constrains the
engine first to process all tasks of the build pipeline before tasks probing the
hash table are allowed to execute. In order to propagate these relationships for
MxTaskFlow, the application marks the corresponding dependencies between
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operators in the graph. Beneath the surface, MxTaskFlow organizes operators
into pipelines and establishes a dependency graph representing the constraints of
pipelines as specified by the application. To address inter-pipeline dependencies,
MxTaskFlow only spawns tasks executing operators whose dependencies are
already fulfilled (or do not have any). In the example illustrated in Figure 7.3,
only tasks associated with the HTBuild operator are spawned when starting
the query execution ( 1 ). Once all tasks within a given pipeline have been
processed, MxTaskFlow updates the dependency graph and propagates tasks
linked to (now) independent pipelines to the MxTasking runtime.

As a bonus, this allows executing multiple, dependency-free pipelines in par-
allel, e.g., those building separate hash tables. However, from our observations,
this only improves performance if the pipelines are small, each handled by a
few workers. It is imperative to have sufficient pipelines ready for execution to
keep workers (and consequently logical cores) busy, which limits the benefit to
rare scenarios. This observation aligns with findings made in HyPer [92].

Task Tracking. Once all of a pipeline’s tasks have been executed, MxTaskFlow
can start the dependent pipelines (or send the query result to the requesting
user). Nonetheless, determining the exact moment when all tasks within a
pipeline have been completed is not readily discernible. Since tasks are dis-
patched to the system in a manner commonly referred to as “fire and forget,”
they are executed asynchronously at an undefined point in time. The straight-
forward way to determine would be to count and compare the number of both
tasks spawned and executed. For example, Intel TBB uses atomic counters
to track the execution status of child tasks [68]. However, this results in high
pressure on the counter, frequently modified by multiple cores from multiple
NUMA regions concurrently.

To address this issue, we leverage that tasks pushed to task pools are
executed run-to-completion and in a first-in, first-out manner. By implication,
at a task’s execution time, all previously spawned tasks (dispatched to the
same worker) have been executed. We exploit this by spawning one additional
barrier task per operator and worker after all tasks of an operator have been
published. By incrementing an atomic counter once per worker (and comparing
it with the total number), the barrier task identifies the moment at which all
workers have completed all tasks of an operator. This notably reduces the
pressure on the counter, compared to incrementing per task. We highlight an
appropriate barrier in Figure 7.3 ( 2 ).

Parallelism. Vertical parallelism, which refers to executing different op-
erators simultaneously, becomes straightforward in an MxTask-based query
engine; without the need for additional exchange operators used in the Volcano
model [55, 56]. Once a task has been completed, the result can be streamed
into the next operator. If there are no dependencies to other pipelines, a
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corresponding task can be spawned directly, which will continue processing the
data. A worker can pick up that task for execution while others run side-by-
side with preceding operators. Also, intra-operator (“horizontal”) parallelism
feels natural by partitioning the data into small fragments: Tasks accessing
different fragments can execute in parallel on several worker threads. Notably,
this allows accessing fragments in a NUMA-aware manner since MxTaskFlow
dispatches tasks accordingly, similar to the morsel-driven framework [92]. How-
ever, intra-operator parallelism requires operators to be implemented in a
parallelism-aware way, at least those at the pipeline’s endpoint, such as, for
instance, hash table build and aggregation operators.

Execution Phases. So far, we have only addressed the execution phase,
where operators consume the result of the predecessor and produce new data
for the successor. The selection operator is a prime example for which this
is sufficient: Tuples passing the filter are streamed to the next operator.
However, certain operators, such as aggregation and sort, must consume all
data before producing a result that can be pushed to the next operator. For
this reason, MxTaskFlow distinguishes between two different execution phases:
The consume phase, in which data flows from one operator to the next (or
is only consumed), and the finalize phase, in which corresponding operators
can pass their collective results to the next node. Operators that group and
aggregate the results will consume all tuples (e.g., storing them in a hash table)
before materializing and streaming the data in the finalize phase.

After all tasks of an operator have been executed, and its predecessor has
committed that it will not spawn further tasks, MxTaskFlow spawns specific
tasks that invoke the finalize() function of an operator. However, different
operators may finalize in different ways. The partition operator, for instance,
will spawn worker-local partitioned tasks (cf. Chapter 6). In contrast, aggre-
gation operators may merge multiple, locally aggregated hash tables into a
single one. MxTaskFlow will either spawn a single task or multiple tasks for
worker-local finalization or initiate a more complex merge procedure on an
operator’s behalf, which can be expressed through annotations similar to task
annotations. For the merge routine, MxTaskFlow spawns a set of tasks, each
passing two locally computed results as arguments to the finalization code
until the result is finally merged. The query engine only needs to implement
the finalize() interface and annotate the graph nodes accordingly.

7.2 Compiling Tasks

Let us redirect our attention from the control flow abstraction toward particular
implementation intricacies of TunaDB. Compiling the query execution plan
into native code can yield significant performance benefits over interpretation
(which is only comparable when using vectorization [76]). The advantage is
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mainly driven by minimizing the overhead due to function calls and virtual
dispatching and by the ability to maintain a tuple in registers rather than in
the cache throughout the execution of pipelined operators [114].

7.2.1 Data-centric Code-Generation

How a query is transformed into machine code is crucial for performance.
Specifically, two factors are decisive: The time of compiling the query plan and
the quality of the generated code. For instance, HIQUE [87] emits high-level C
code, which is subsequently compiled and linked to the system. Although the
execution of compiled code demonstrates noteworthy efficiency, the compilation
process incurs costs ranging from several hundred milliseconds to a few seconds.

By directly generating intermediate representation (IR) code, systems can
eliminate the costly step of parsing and translating a higher-level language.
HyPer introduced data-centric code generation using LLVM IR [114, 116].
Since then, various systems have also adopted this approach (e.g., [50, 145, 86,
120, 53, 59]). For both C/C++ and LLVM IR, the compiler allows specifying
the level of optimization, enabling the adjustment of the balance between
better code quality and longer compilation times or lower code quality and
shorter compilation times. However, compilation times ranging from tens
to a few hundred milliseconds can significantly impact query performance
when dealing with small data volumes. HyPer and Umbra dynamically switch
between interpretation and compiling engines to address this challenge, starting
with interpreting bytecode and transitioning to optimized compiled code when
deemed advantageous [85, 77]. FlounderIR [52, 53] tackles high compilation
times by providing an IR similar to x86 64 assembly. By employing lightweight
abstractions such as virtual registers with explicit lifetime annotations and C++
function calls, FlounderIR achieves both efficient compilation and user-friendly
operation.

7.2.2 Tuning the Code Quality of FlounderIR

The translation process of FlounderIR is straightforward: The Register Allo-
cator converts virtual registers into machine registers while spilling values to
memory if necessary [52]. Subsequently, the instructions are translated into
assembly code (with nearly one-to-one correspondence) and compiled to native
code utilizing either Nasm or AsmJit [83] as a backend. In between, almost no
optimizations are made in favor of code quality, which keeps compilation time
low but also accepts low code quality as a tradeoff. However, some lightweight
and low-level optimizations can enhance the code quality while keeping compi-
lation times short. In the following, we will examine multiple examples. Note
that all presented optimizations relate to the x86 64 architecture and, more
precisely, to FlounderIR but can also be adapted for similar IRs.
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1 cmp counter, fragment size

2 jge end scan loop

3 scan loop:

4 mov l discount,
[fragment+counter*8+8192]

5 mov l tax,
[fragment+counter*8+10240]

6 mov l returnflag,
[fragment+counter+12288]

(a) FlounderIR

1 mov rdx, [rsp+24] ; spill

2 mov rax, [rsp+8] ; spill

3 cmp rdx, rax
4 jge end scan loop

5 scan loop:

6 mov rdx, [rsp+16] ; spill

7 mov rax, [rsp+24] ; spill

8 mov r9, [rdx+rax*8+8192]

9 mov rdx, [rsp+16] ; spill

10 mov rax, [rsp+24] ; spill

11 mov r8, [rdx+rax*8+10240]

12 mov rdx, [rsp+16] ; spill

13 mov rax, [rsp+24] ; spill

14 rex mov dil,[rdx+rax+12288]

(b) Assembly

Figure 7.4: Illustration of FlounderIR and the corresponding assembly, includ-
ing spill code.

Reducing Spill Instructions. The allocation of virtual registers, or vari-
ables in a general sense, to machine registers is a critical factor that notably
impacts the performance of a generated program [122]. Register allocation algo-
rithms try to find a mapping from virtual to machine registers, aiming to keep
as many values as possible in machine registers. However, due to the limited
number of machine registers, it is often unavoidable to spill values to memory
and load them as needed. Graph coloring [32] leads to favorable allocations, but
its computational complexity renders it unsuitable for compiling short-running
queries. Instead, TunaDB uses an improved linear scan algorithm [122] that
balances efficient register allocation and acceptable performance.

When virtual registers are spilled, the translation algorithm incorporates
mov instructions to facilitate loading spilled values from memory into temporary
registers. Subsequently, the values are written back as required, particularly
when instructions modify the value. Figure 7.4a shows a snippet of emitted
FlounderIR taken from a scan loop which is responsible for loading multiple
attributes from the scanned fragment into virtual registers. The assembly
code depicted in Figure 7.4b results from Flounder’s register allocation and
translation process. The present instance showcases the register allocation
process opting to spill the loop variables (counter and fragment size) along
with the pointer to the fragment that holds the data intended for scanning.
Consequently, it is necessary to load the pointer and the loop counter from the
stack into temporary registers to access the tuple’s attributes. We highlight
the relevant spill instructions in the figure.

Given that, in this illustrative snippet, the temporary machine registers
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1 mov rdx, [rsp+24] ; spill

2 cmp rdx, [rsp+8]
3 jge end scan loop

4 scan loop:

5 mov rdx, [rsp+16] ; spill

6 mov rax, [rsp+24] ; spill

7 mov r9, [rdx+rax*8+8192]
8 mov r8, [rdx+rax*8+10240]
9 rex mov dil,[rdx+rax+12288]

Figure 7.5: Assembly code after reducing spill instructions.

are not utilized to load other values, the repeated spill loads can be considered
unnecessary. An optimizer can remove the redundant mov directives following
the initial loading. However, this is only true inside a single basic block,
which relates to a sequence of instructions without any control flow transfer
instructions (such as branches or jumps). Hence, the optimizer must take care
of such block borders, as the control flow can jump from another program
segment. In this example, we cannot assume that the values are present in the
corresponding temporary registers when entering the scan loop, which starts
at the scan loop label.

Eliminating superfluous spill instructions can be implemented as a single
optimizer pass by tracking spill loads and perceiving their allocated values.
When identifying spill-code, the optimizer checks if the requested value is
already assigned to a temporary machine register. If so, the optimizer can
remove the spill-load and use that machine register as the operand within the
instruction. Figure 7.5 illustrates the code from Figure 7.4b after applying the
optimization. Primarily, the repeated spill loads within the loop are optimized
away. Umbra addresses this challenge by attempting to allocate a machine
register, in conjunction with a spill slot, to keep a spilled value in a register
above the scope of a single instruction [77].

In addition to eliminating repeated mov instructions, the optimizer can
use the memory location of the spilled value as an operand instead of moving
the value into a register. Figure 7.5 demonstrates an example by the cmp

instruction in line 2: The memory address pointing to the value of the virtual
register fragment size is used as a second operand instead of loading it into
a temporary register. Nevertheless, at least one of the operands must be a
machine register.

Reordering Branches. Another optimization concerns the placement of
branches in the code layout. Modern pipelined microprocessors divide the
process of executing instructions into several stages. This enables the CPU to
begin processing forthcoming instructions before the present one is completed.
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scan loop:
@unlikely

cmp a, 50
jle next tuple

; process tuple
next tuple:
add counter, 1
cmp counter, end
jle scan loop

ret

cold
path

(a) FlounderIR

scan loop:
cmp a, 50
jg process

next tuple:
add counter, 1
cmp counter, end
jle scan loop

ret

process:
; process tuple
jmp next tuple

hot
path

cold
path

(b) Optimized FlounderIR

Figure 7.6: Optimizing the hot path in a scan loop by moving less frequented
branches out of the loop.

In this process, CPUs can act speculatively, fetching and decoding the following
instructions despite the ambiguity surrounding their execution [2]. Conditional
jumps, used to follow a branch after testing a condition, can affect the specula-
tive execution when the CPU’s branch predictor is wrong [67]. We observed
that taking a branch by performing a jump operation is more expensive than
executing the branch without a jump operation. Hence, it may be beneficial to
organize conditional branches so that the branch executed most frequently is
placed sequentially after the condition, whereas the less frequently executed
branch is reached through a jump.

Here is where statistics such as data distributions, often maintained by
DBMSs to improve query plans, come into play. These statistics can provide
indications to the query compiler engine regarding frequently accessed branches.
By leveraging this knowledge, the FlounderIR optimizer can arrange compiled
predicates to coincide with modern CPU characteristics. Higher-level languages
enable the enrichment of conditional branches with metadata, e.g., built-ins like
builtin expect to hint to the compiler for a probably taken branch. Inspired

by this idea, we supplement FlounderIR with a similar concept: Annotations
allow the code-generating query engine to pass internal knowledge to the
IR optimizer. Annotations are implemented as pseudo-instructions and not
translated to “real” assembly instructions but assist the optimizer, similar to
FlounderIR’s built-in lifetime annotations for virtual registers. For example,
let us examine a query that applies a selective predicate a > 50. The natural
approach employed by FlounderIR for constructing a predicate is to produce
code that tests the condition and executes a jump operation to the end of the
loop if the tuple fails to satisfy the predicate. Figure 7.6a depicts an instance
of FlounderIR generated by TunaDB for the illustrated predicate. The hot
path in this example will follow the conditional jump, as only a small number
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of tuples satisfy the filter.
In addition, the example illustrates an annotation to hint to the FlounderIR

optimizer: It is unlikely that the tuple will pass the filter1. The annotation
facilitates the FlounderIR optimizer reorganizing the code layout so that the
frequently executed branch (skipping the tuple) is positioned immediately after
the condition evaluation (cmp a, 50). As we show in Figure 7.6b, the optimizer
moves the branch taken less frequently outside the scan loop. Consequently,
the hot path does not follow a jump. The cost incurred by the optimizer is
relatively low, as it merely requires a single scan of the code to identify specific
annotations, invert the predicate, and move instructions. Our findings indicate
that end-to-end performance increases by up to 9 % for queries with highly
selective predicates and tight scan loops.

Strength Reduction. With the help of strength reduction [10, 37], code
optimizers replace expensive with cheaper instructions. A simple form is
transforming time-consuming divisions and multiplications into weaker algo-
rithmic instructions, e.g., using shift operations if the divisor or multiplicand
is constant and of a power of two. In practice, compilers spend much effort
replacing multiplications and divisions with weaker (algorithmic) instructions,
for example, by using the address generation unit. However, it turned out
that complex reductions can rapidly increase the optimization time to such an
extent that it is not cost-effective for short-running queries. We found that
strength reduction for divisions and multiplications by shifting leads to a minor
but notable improvement in compute-bound segments.

We observed a more significant improvement in reducing branches for range
predicates. A smaller number of branches lead to fewer branch penalties. A
range predicate like a ≥ 10 and a ≤ 100 would naturally be translated into
two separate branches:

cmp a, 10
jl next tuple

cmp a, 100
jg next tuple

that are tested one after the other. By subtracting the lower bound from both,
the actual value to test and the upper bound, we can translate the predicate
to a single comparison:

sub a, 10
cmp a, 90
ja next tuple

In doing so, we exploit that the ja (jump above) instruction interprets a
comparison as unsigned, treating negative numbers as large positive ones that

1In TunaDB, we annotate predicates with a selectivity of less than 20 % as unlikely.
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fall out of the range. We have observed this type of strength reduction also in
widely used compilers like Clang and GCC.

Intermediate Evaluation

We will now examine in which way the optimizations improve the end-to-
end performance of queries compiled with FlounderIR. Figure 7.7 depicts
the relative execution time (including parsing, planning, and compiling) of
optimized FlounderIR compared to the unoptimized iteration for a subset
of TPC-H queriesa.
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Figure 7.7: Normalized execution
time of optimized FlounderIR, com-
pared to the unoptimized iteration.

Reducing spill accesses demon-
strates an improvement, especially
in queries 1 (12 %) and 3 (7 %).
Queries 5, 10, 12, and 14 benefit
from both spill access optimization
and branch reordering: execution
time is reduced by 7 % to 13 %. The
advantages of optimizing branches
by reordering the code layout and
reducing between predicates to a
single comparison are especially ev-
ident in the context of query 6, re-
ducing the execution time by 11 %.
The measurements suggest that ac-
cepting a modest increase in compi-
lation times for the sake of optimizations in lightweight IRs is a worthwhile
trade-off, as it leads to a significant improvement in execution time.

aTunaDB supports TPC-H queries without subqueries.

7.3 Prefetching Materialized Data

We will now focus again on the execution of tasks. Each MxTask accesses and
scans a discrete data fragment containing a few hundred tuples. The hardware
cannot discern in advance which memory a given task will access. Consequently,
the scan operation executed by a task experiences cache misses, at least during
the initial stages of execution, until the hardware prefetcher can identify a
sequential access pattern and starts proactively loading data into the cache.

7.3.1 Analysis

Let us analyze the access pattern and occurring cache misses that arise from
executing the query in Figure 7.8a: a simple scan that selects and aggregates a
few columns from the lineitem relation. For execution, the runtime initiates
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select sum(l extendedprice * l discount)

from lineitem

where

l shipdate <= ’1993-08-01’ and l shipdate > ’1994-01-01’

and l discount between 0.08 and 0.1
and l quantity < 24

(a) Example query
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Figure 7.8: Example query and sampled cache misses during query execution.

a sequence of tasks, each linked to its fragment. TunaDB stores tuples within
fragments in a Partition Attributes Across (PAX) layout [7], enabling tasks to
access only portions of the fragments. The layout of a fragment is presented
on the left-hand side of Figure 7.8b. Aside from the tuples, every fragment
stores metadata, e.g., the number of tuples, within the header at the initial
cache line.

In order to analyze, we sampled the last-level cache misses during the
execution of the example query. The heatmap depicted on the right-hand
side of Figure 7.8b presents an aggregation of cache misses for each cache
line across all relation fragments. Note that these numbers are only samples
and not definitive quantities. Since the l shipdate predicate has the lowest
selectivity of all given predicates, the plan optimizer prioritizes its evaluation
for every tuple. Consequently, the corresponding cache lines are accessed most
frequently besides the header. However, we can observe that only the first
cache line of the l shipdate column exhibits a significant amount of cache
misses. During execution, the hardware prefetcher identifies the sequential
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access pattern and proactively fetches the subsequent cache lines. Once a tuple
satisfies the first predicate, the subsequent predicates are evaluated sequentially.
Here is where things get more complicated for the hardware prefetcher: As only
a few tuples match the first predicate, the access pattern for the other columns
becomes ambiguous; not every loop iteration will access the columns besides
l shipdate. This poses a challenge for the hardware prefetcher to detect a
pattern. As a result, cache lines beyond those associated with l shipdate

experience notably more cache misses.

7.3.2 Annotation-based Prefetching

Task annotations can assist in reducing these cache misses during task-based
query execution. By annotating the data object the task will access, MxTasking
can bring the data into the cache prior to the task’s execution (cf. Chapter 3).
And in the context of MxTaskFlow, they are easy to use: The runtime auto-
matically annotates tasks with accessed fragments when spawning to execute
the operator graph. However, to optimize prefetching, MxTaskFlow must be
made aware of which segments of the fragment are accessed and should be
prefetched accordingly. In the best case, a task finds all accessed data already
cached when executing.

Depending on the size and number of accessed columns, this may require
prefetching several kilobytes, which induces pressure on the CPU due to the
execution of prefetch instructions and may pollute the cache. Furthermore, the
CPU’s Line Fill Buffer (LFB) capacity is limited to a few cache lines [2], which
is responsible for holding unfulfilled data loads, including those initiated by
software-based prefetch requests. Consequently, it becomes a tradeoff between
prefetching insufficient data and risking cache misses, and prefetching excessive
data, which results in an increased number of executed instructions and floods
the LFB and the cache. In light of this, two options exist: prefetching the first
cache lines of all accessed columns or prefetching some chosen columns entirely.

Prefetching the first cache lines of each column reduces cache misses in
the first iterations of the scan loop. But, software and hardware prefetching
interfere with each other. Cache misses train the hardware prefetcher; software
prefetching, in turn, prevents cache misses and, consequently, the hardware
prefetcher from recognizing a sequential access pattern [90]. As a result, the
cache misses only occur as the scan loop progresses. However, they cannot be
prevented entirely as the hardware prefetcher takes action only after detecting
some cache misses. We observed that this prefetching strategy improves query
performance if all columns are touched approximately equally, i.e., a query
segment has no or only lowly selective predicates. Nevertheless, in the case
of the example query, prefetching only the first cache lines results in slightly
worse performance, as the accesses are focused on l shipdate. We show the
partly prefetched heatmap in Figure 7.9a; prefetched cache lines are marked
with blue fill patterns.
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Figure 7.9: Heatmap of sampled cache misses of the lineitem fragment when
prefetching the fragment’s header and (a) multiple columns partly or (b) the
entire l shipdate column. Prefetched cache lines are marked with fill patterns.
We used the example query from Figure 7.8a as a workload.
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Columns accessed to a high degree exclusively and relatively small in size
are good candidates for our second strategy: prefetching specific columns
entirely. For instance, tuples in the example query in Figure 7.8a are filtered
by a highly selective predicate on the l shipdate column. Only about 3.5 %
of the tuples satisfy that predicate. Consequently, most iterations in the scan
loop will access l shipdate exclusively and discard the tuple afterward. In
contrast, the columns l extendedprice and l discount are mainly accessed
in conjunction due to their shared usage for aggregation. Prefetching only
one of the two columns is less advantageous as the CPU must await both
values to be loaded from memory (which may happen simultaneously, thanks
to out-of-order execution implemented in most contemporary processors).

Figure 7.9b illustrates the heatmap of cache misses while executing the
example query and prefetching l shipdate entirely due to its dominating
access pattern. This way, that column’s cache misses are reduced significantly,
consequently increasing performance. We observe an improvement of 10 %,
although cache misses may still occur when accessing non-prefetched columns.
In practice, both techniques can be combined flexibly for different query
pipelines, depending on the accessed columns and their interaction. TunaDB
uses a simple heuristic and primarily considers the selectivities of the predicates
to select one of the two variants: Predicates on a single column with a selectivity
of less than 10 % are considered dominant; this column is prefetched entirely.
However, this heuristic holds potential for further enhancements. Another
optimization is to start prefetching (either some columns entirely or all partly)
based on task annotations and continue by generating corresponding prefetch
instructions within the scan loop, eliminating the reliance on the hardware
prefetcher altogether.

7.3.3 Generating Prefetch Instructions

The optimal prefetching strategy may deviate across different pipelines within a
single query. TunaDB executes every pipeline (separated by pipeline breakers)
within a compiled query as a particular task type. As a result, different pipelines
consume and produce differently structured fragments that exhibit varying
access patterns. The radix join, discussed in Chapter 6, is an appropriate ex-
ample: During the probing phase, one pipeline will consume relation fragments
( 1 ) and produce partitioned micro fragments, which the probing pipeline
will consume ( 2 ); both pipelines may need unique prefetching patterns. We
illustrate this example in Figure 7.10.

To ensure that the data for each pipeline can be brought to the cache in
advance, TunaDB utilizes FlounderIR to generate a separate prefetch callback
for each pipeline. The callback considers the access pattern of the pipeline, such
as attribute conjunctions, and the physical data layout of the accessed data
fragment, which can be either the result of a previous pipeline or a relation in
the case of scanning. During execution, MxTaskFlow annotates the appropriate
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Figure 7.10: Illustration of query segments and appertaining prefetches.

callback pointer along with the accessed fragments to spawned tasks to hint at
the underlying runtime for prefetching through task annotations. MxTasking,
in turn, will schedule the callback and invoke it in-between task execution (cf.
Chapter 3).

7.4 Experimental Evaluation

We will now evaluate TunaDB to study the MxTask-abstraction in a more
complex environment, such as the granularity of tasks and annotation-driven
prefetching. As a workload, we rely on the TPC-H [26] benchmark suite,
using a scale factor of 50 and those queries that do not include subqueries.
Additionally, we have not implemented a sort operator in TunaDB and refrain
from sorting in all benchmarks. All workloads are executed on a two-socket
machine with 24 physical and 48 logical cores in total (further details are
already given in Section 5.5).

7.4.1 Prefetching

First, we evaluate the annotation-driven prefetching mechanism. Since the
different query pipelines (executed as tasks) have varying execution times,
we utilize MxTasking’s dynamic prefetching mechanism (as described in Sec-
tion 3.4). Figure 7.11 shows the relative execution performance, comparing
a non-prefetched with a prefetched run. To classify the results, we examine
the number of executed instructions, the number of memory stalls, and the
execution time for each query. We have recorded the details using the Linux
performance counter interface. To comprehend the interplay between software
prefetching and simultaneous multithreading (SMT), we employ the logical
cores as follows: Initially, we utilize all physical cores from both NUMA regions.
When all cores are in use, we gradually include hyperthreads until all logical
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Figure 7.11: Effect of prefetching for a subset of TPC-H queries, comparing a
prefetched execution with a non-prefetched one.

cores are effectively engaged. Note that we emphasized NUMA borders with a
dashed line.

The obtained measurements reveal two insights: The efficacy of prefetching
varies considerably across the queries, with specific queries exhibiting up to
a 15 % increase in execution speed. In contrast, other queries experience
occasional decreases of up to 2 % compared to non-prefetched execution. The
impact of prefetching on memory stalls varies across different queries. In some
queries, prefetching can reduce the number of stalled cycles by up to 42 %.
However, for other queries, the reduction in stalled cycles is more limited, with
improvements of about 7 %. Moreover, the number of memory stalls tends to
increase when using multiple hardware threads per physical core (irrespective
of whether the execution is prefetched). We will now examine the different
queries before looking at the interference of prefetching and SMT.
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Varying Efficiency in Queries. As discussed in Section 7.3, the accessed
columns play an important role in prefetching. Since not all accessed columns
can be prefetched, deciding whether all accessed columns should be prefetched
partially or some columns should be brought into the cache entirely is necessary.
Query 14 is an excellent example of the latter case: a join with a highly selective
predicate on the build side, which can be prefetched entirely, and a projection
on the altogether small probe relation. The materialized columns needed by
the query at an early stage (e.g., the join predicate for the probe relation,
which is hashed and partitioned) are so small that they can be prefetched
entirely. This reduces memory stalls between 42 % and 22 %, depending
on whether multiple hardware threads are used per physical core. Query
10 represents an example of a less prefetch-friendly query: Many columns,
including some larger text-containing ones, are accessed in conjunction, without
one attribute being accessed exclusively and therefore being a good target for
prefetching completely. As a result, all columns are prefetched partly, leading
to a lower prefetching efficiency since software-based prefetching does not train
the hardware prefetcher, and cache misses still occur as the scan loops make
progress.

Furthermore, we can observe that the coherence between reduced memory
stalls and reduced execution time is asymmetric across the queries. Throughout
the execution of query 1, for instance, prefetching reduces memory stalls by
up to 23 % (at 20 cores) while the execution time improves by up to 4 %. We
can observe a similar pattern for queries 3 and 5. For query 19, in contrast,
memory stalls are reduced by up to 20 % while the execution time improves by
up to 8 %. As of the example of query 1, we can determine with the assistance
of additional profiling tools (Intel VTune [69] and perf [97]) that prefetching
shifts the central bottleneck: from latency bound during the scan and loading
of the attributes to core bound during the computation of the hash and the
aggregation of grouped values in the hash table. Since we generate the code for
the hash table inserts and lookups using FlounderIR, we attribute this “new
bottleneck” to the less efficient code quality. Using more complex instructions
(e.g., SIMD) and a more mature hash table implementation may improve
performance noticeably as task execution is less affected by fetching data from
memory using prefetching. For queries utilizing bloom-filtered radix joins (e.g.,
queries 3, 5, and 10), we observe that the execution time is dominated by
lookups to the bloom filter on the probe side, where every lookup leads to a
cache miss. Because the corresponding filter address for each tuple depends
on the join predicate and is calculated during the scan, the filter’s memory
location cannot be predicted and annotated and implicitly not be prefetched
in advance by MxTasking.

Interference with SMT. The second insight we derive from the measure-
ments is that prefetching becomes less effective when we utilize two hardware
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Figure 7.12: Quantity of requests to the LFB without capacity available,
using query 6 as an example. We illustrate the measured counter values for a
not-prefetched run, a run with prefetching but only physical cores, and with
prefetching and all logical cores.

threads per physical core. To a certain degree, this phenomenon is inherent,
as SMT is known to hide memory stalls, particularly when the logical cores
are executing a similar instruction stream. Initial findings on the Blink-tree
(cf. Section 5.5) already suggest that the efficiency of prefetching is not uni-
form when utilizing SMT compared to its efficiency when using only a single
hardware thread per core. Our observations indicate another reason for this
is the limited capacity of the LFB, which manages the pending data accesses,
including software prefetch requests. While prefetching without SMT already
floods the LFB with requests, the effect becomes amplified with utilizing all
logical cores: the number of requests to insert an entry in the buffer but no
capacity left more than triples. We show the number of requests that hit a full
LFB in Figure 7.12 using TPC-H query 6 as an illustrative example. Based on
that observation, we assume that both hardware threads have to share one LFB
on a physical core, significantly reducing the improvement of software-based
prefetching using SMT.

7.4.2 Task Granularity

While designing task-oriented applications or data structures, the granularity
of a task may be an adjustable parameter. In certain workloads, the access
characteristics of the application imply task granularities. For example, MxTasks
traversing a Blink-tree, as described in Chapter 5, operate on a single node per
task. In contrast, the task-based radix join’s granularity is driven by hardware
characteristics. More precisely, the TLB capacity restricts the number of



7.4. EXPERIMENTAL EVALUATION 99

25 26 27 28 29 210211212213214215216
0

10

20

30

40

cy
cl

es
/

tu
p

le

better

query exec.

prefetching

MxTasking

(a) Single aggregation

25 26 27 28 29 210211212213214215216
0

20

40

60

80

100

cy
cl

es
/

tu
p

le

better

query exec.

prefetching

MxTasking

(b) Grouped aggregation

Figure 7.13: Effect of varying task granularities for different compute-intensive
queries.

tuples to prevent the partitioning phase from exceeding the limits while writing
to micro fragments (cf. Chapter 6). For various applications, however, the
granularity is arbitrary. Spawning MxTasks causes additional overhead that
could become a bottleneck when tasks are too short-lived.

In order to explore potential variations in task granularities, we execute
two queries that exhibit contrasting levels of computational intensity. The first
query aggregates only a single column (l quantity from lineitem), which
exerts considerable pressure on MxTasking components, such as the dispatcher
and the worker queues, owing to its low CPU utilization. The second query
projects and aggregates on five distinct columns and groups the result by two
columns (de facto query 1 of the TPC-H benchmark, but without selection),
which generates noticeably more CPU utilization by calculating the result.
Figure 7.13 depicts the results, grouping the consumed CPU cycles by efforts
for MxTasking, prefetching, and query execution. The results were recorded
with Intel VTune using all 48 logical cores. We vary the number of tuples per
task from 32 to 65 536.

We observe that the utilization of fine granularities results in noticeable
overhead for tasking-related components compared to the query execution
efforts for both queries. With a limit of 32 tuples per task, dispatching and
receiving tasks incur a comparable number of cycles to those required for
computing the results of the first query (cf. Figure 7.13a). As the granularity
increases, the overhead of tasking decreases. We can observe the same for
prefetching overhead, mainly driven by executing appropriate instructions.
Moreover, fine granularities cause additional overhead for each task. For
instance, task-local aggregation results are merged into a worker-local result
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after task execution, which appears more frequently with smaller tasks. In
conjunction with function call overhead (every task invokes the generated
code), this extra work overwhelms the advantage of prefetching on smaller
columns. Upon a granularity of 1 024 tuples per task, the task overhead becomes
negligible for both measured queries. We examine that the best-performing
granularity depends on the query intensity: The local minimum is achieved
at 32 768 tuples per task for the simple aggregation (Figure 7.13a) and at
2 048 tuples per task for the more compute-intensive grouped aggregation
(Figure 7.13b).

7.4.3 Summary

In this experimental evaluation, we analyzed different aspects of MxTasking
in the context of query execution: prefetching and task granularities. As
tasks must comprise a certain amount of tuples to minimize tasking overhead,
entirely prefetching a fragment’s data has proven to be impractical in some
cases. Specifically, on the Intel systems we used for the evaluation, the CPU
cannot buffer all software prefetching requests. Combined with efforts for
initiating prefetches, this limits the benefits of prefetching to specific parts of a
data fragment. The utilization of multiple hardware threads per physical core
further amplifies this effect. However, with certain strategies, specific columns
of a fragment can be prefetched advantageously, for example, by loading highly
selective columns in their entirety.



8
Summary and Future Directions

This thesis investigated the implications of a profound transition from a thread-
oriented to a task-based processing paradigm. In doing so, we addressed
a fundamental problem of the former: The abstraction of control flows by
“conventional” threads seems inadequate for exchanging relevant information
between the application and the execution substrate. The lack of effective
communication led to both tiers working around each other, missing out
on optimizations that leverage the resources available in today’s hardware
landscapes. As a remedy, we presented MxTasking, a task-based framework
that breaks with patterns of processing models designed for earlier generations
of hardware.

8.1 Summary

The unique selling point of MxTasks is to provide annotations that enable
algorithm engineers to transfer knowledge from the application level to the
control-flow abstraction. Consequently, the execution layer no longer has to
guess the applications’ intentions but can base optimizations on actual knowl-
edge the application provides. In Part I (“MxTasking Layer”), we discussed
two ways of leveraging this information by the MxTasking runtime. With the
knowledge of the data objects a task will access, the runtime can enhance
performance by injecting prefetch instructions that bring the relevant data
into fast CPU caches before execution. This way, expensive access latencies
are hidden behind the computational work of other tasks, reducing the time
the CPU has to wait for data to be transferred from memory into registers.
The additional benefit of data object annotations is the synchronization of
concurrent accesses. By understanding the interplay of code and data, MxTask-
ing can take over the synchronization of tasks—decoupling the error-prone
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utilization of synchronization mechanisms from the application logic. All the
developer has to do is annotate tasks with data objects accordingly. In order
to optimize synchronization, the annotation can be supplemented by the access
pattern, explicitly indicating whether the task will read or write the data
object. MxTasking, in exchange, picks the most appropriate synchronization
mechanism and harmonizes it with the underlying hardware.

Part II (“Leveraging Tasks for Data Structures”) studied the MxTask-
abstraction using a Blink-tree as a demonstrator that represents the behavior of
modern in-memory database engines. We have found that the prefetching mech-
anism is especially beneficial for data accesses that are particularly challenging
for the hardware to predict. Additionally, we demonstrated that sophisticated
and robust concurrency synchronization can be integrated seamlessly into
the data structure with minimal effort from the developer. Our evaluation
reveals that the utilization of MxTasks for a Blink-tree leads to a significant
enhancement in performance by up to 30 % compared to existing processing
models. Furthermore, the experiments indicate that this approach outperforms
state-of-the-art tree-like data structures.

In Part III (“Exploiting Tasks at the System Layer”), we focused on the
query execution engine in the light of database systems. First, we discussed
how task-based micro partitioning streamlines the design of hardware-conscious
algorithms, using radix joins as a showcase. The developer can request cache-
aware execution by annotating tasks accessing the same data structure. MxTask-
ing dispatches tasks appropriately to keep the data structure available in the
cache. Second, we reviewed how tasks drive the development of a push-
based query engine and saw how MxTasking decouples the data and control
flow abstraction from the operator implementation. Using our demonstrator
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Figure 8.1: Comparison of our MxTask-based DBMS TunaDB with state-of-the-
art DBMSs, using TPC-H with a scale factor of 50 on a two-socket machine.
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TunaDB, we studied the access patterns of tasks inside the query engine and
presented different strategies for prefetching data fragments. Throughout the
experimental evaluation, we found that prefetching can reduce cache misses and
memory stalls, in some cases significantly, and improve performance. Plus, the
modest overhead of MxTasking facilitates a broad range of task granularities.

Finally, we conclude this summary by briefly comparing TunaDB and state-
of-the-art DBMSs. Although it is crucial to exercise caution when interpreting
the findings1, the results presented in Figure 8.1 indicate the competitive
performance of our MxTask-based demonstrator.

8.2 Future Research Directions

The concepts presented in this work provide the potential for further promising
research directions, which we will discuss in the following. MxTasking, as
described in this thesis, constitutes a fundamental component of the MxKernel
initiative. MxKernel envisions enhancing the interfaces and integration of
the operating system and performance-oriented applications, such as DBMSs,
and enabling a seamless exchange in both directions to optimize execution
on sophisticated, modern hardware. In this light, our published MxTasking

implementation2 serves as the primary control flow abstraction in the MxKernel
prototype3. Although such an ambitious project requires substantial efforts, it
can resolve the ongoing conflict between the OS and DBMS for control over the
system. We expect to improve the efficiency of task-oriented applications, both
in the standalone MxTasking framework and within the MxKernel system.

Task variants tailored for heterogeneous landscapes, such as GPUs, FP-
GAs, many-core co-processors, and network-based processing, could attrac-
tively complement the MxTasking runtime environment. Query processing
on heterogeneous hardware has been discussed intensively in recent years
(e.g., [138, 113, 27, 28, 51]). Embedded in MxTasking, the scheduler could
make optimized and annotation-supported decisions about allocating task
variants on specific devices. In the context of MxKernel, appropriate task
variants can lead to an efficient and fair distribution of heterogeneous resources,
particularly across the boundaries of a single application. Preliminary ideas
were already presented by Müller et al. [112].

Throughout this thesis, we saw that annotation-based software prefetching
improves performance notably. Utilizing (query) compilers to estimate task
execution times and generate appropriate annotations could enhance this
mechanism’s robustness and prepare it for adoption across various applications.
Latency-conscious augmentations (e.g., for different NUMA regions) and the

1For example, TunaDB does not implement transaction handling and NULL values. Fur-
thermore, the logical query plans of the examined DBMSs differ.

2https://github.com/jmuehlig/mxtasking
3https://github.com/mmueller41/genode

https://github.com/jmuehlig/mxtasking
https://github.com/mmueller41/genode
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integration of diverse memory types, such as high-bandwidth and persistent
memory, enable further optimizations and improve performance. Plus, task-
based prefetching can extend beyond main memory: Prefetching of disk-based
data and, in general, asynchronous task-driven I/O would also be conceivable
(for example, in the sense of [143]).

Finally, the primary focus of TunaDB was on analytical query processing.
However, we have also found that tasks, particularly in conjunction with
annotations, can simplify synchronization for concurrent control flows. A
promising avenue for further exploration would be incorporating transaction
processing into the task-based abstraction model (in the spirit of DORA [119]).
This would enable the seamless integration of transaction handling into DBMSs
and applications beyond, harnessing the power of task annotations.
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