
MODEL-BASED QUALITY ASSURANCE

OF

INSTRUMENTED CONTEXT-FREE SYSTEMS

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund

an der Fakultät für Informatik

von

MARKUS THEO FROHME

Dortmund

2023

Tag der mündlichen Prüfung:
12.09.2023

Dekan:
Prof. Dr.-Ing. Gernot A. Fink

Gutachter:
Prof. Dr. Bernhard Steffen
Prof. Dr. Bengt Jonsson

Abstract

The ever-growing complexity of today’s software and hardware systems makes quality
assurance (QA) a challenging task. Abstraction is a key technique for dealing with this
complexity because it allows one to skip non-essential properties of a system and focus on
the important ones. Crucial for the success of this approach is the availability of adequate
abstraction models that strike a fine balance between simplicity and expressiveness.

This thesis presents the formalisms of systems of procedural automata (SPAs), systems
of behavioral automata (SBAs), and systems of procedural Mealy machines (SPMMs). The
three model types describe systems which consist of multiple procedures that can mutually
call each other, including recursion. While the individual procedures are described by
regular automata and therefore are easy to understand, the aggregation of procedures
towards systems captures the semantics of context-free systems, offering the expressiveness
necessary for representing procedural systems.
A central concept of the proposed model types is an instrumentation that exposes the

internal structure of systems by making calls to and returns from procedures observable.
This instrumentation allows for a notion of rigorous (de-) composition which enables a
translation between local (procedural) views and global (holistic) views on a system. On
the basis of this translation, this thesis presents algorithms for the verification, testing, and
learning of (instrumented) context-free systems, covering a broad spectrum of practical QA
tasks. Starting with SPAs as a “base” formalism for context-free systems, the flexibility of
this concept is shown by including features such as prefix-closure (SBAs) and dialog-based
transductions (SPMMs).
In a comparison with related formalisms, this thesis shows that the simplicity of the

proposed model types not only increases the understandability of models but can also
improve the performance of QA tasks. This makes SPAs, SBAs, and SPMMs a powerful
tool for tackling the practical challenges of assuring the quality of today’s software and
hardware systems.

iii

Acknowledgements

First, I would like to thank Bernhard Steffen for his guidance over the last years. My
academic career will always be connected with you: From allowing me to join your chair as
a student assistant during my bachelor studies, throughout my master studies in which you
introduced me to the wonderful field of active automata learning, up until this interesting
journey of my PhD. Having spent over a third of my life on your side has definitely left its
mark.

What I enjoy and admire most about working with you is your ability to always take a step
back from a problem and tackle it from a completely different point of view. Sometimes,
your uncompromising approach of throwing things away and starting completely new
from scratch was a little bit difficult and definitely caused some headaches in the past.
However, it was always justified in the end by finding a better and more elegant solution.

I would like to thank Bengt Jonsson for agreeing to act as a referee for this thesis on a
rather short notice. While we have not had much contact prior to this thesis, especially
your work on register automata follows a similar line of thought of enriching models to
capture more and more practically relevant traits of systems. It is an interesting question
for the future, whether there exist some fruitful connection points between the procedural
hierarchy discussed in this thesis and the data registers of your work.
I would like to thank Falk Howar for his support and insights as a mentor during my

PhD thesis. Being a fellow contributor and co-maintainer of LearnLib, you always had an
open ear for discussions on improving the library and continued to push the project with
your own ideas, making LearnLib the tool it is today.

Furthermore, I would like to thank my colleagues at the chair of programming systems at
TU Dortmund university and especially my roommates over the years: Johannes Neubauer,
Hendrik Grewe, and Alexander Bainczyk (chronological order). You were always on board
for cracking even the most un-appropriate jokes which helped me to survive long, draining
days. Yet, at the same time, we could always have fruitful discussions to push forward the
projects that we were working on.
Last but not least, I would like to thank my family for supporting me throughout my

whole life. From making it possible for me to attend university in the first place to allowing
me to fully focus on my studies when necessary. I hope to make you proud of me.

v

Contents

1 Introduction 1

1.1 Scope of this Thesis . 5
1.1.1 Contributions . 5
1.1.2 Limitations . 8

1.2 Overview . 9

2 Preliminaries 11

2.1 Formal Languages . 11
2.1.1 Generators . 13
2.1.2 Acceptors . 15
2.1.3 Transducers . 16
2.1.4 Generalizations . 18

2.2 Model Verification . 19
2.3 Model-Based Testing . 21
2.4 Active Automata Learning . 24

2.4.1 Learning Loop . 25
2.4.2 Characteristics of Learning Algorithms 26

3 Instrumented Context-Free Systems 27

3.1 Motivation . 27
3.1.1 Instrumentation . 28

3.2 SPAs . 29
3.2.1 Semantics . 31
3.2.2 Properties of Instrumented Words . 34
3.2.3 Expansion and Projection . 36
3.2.4 (De-) Composition Properties . 38
3.2.5 Instrumentation, Expansion, and Language 40

3.3 SBAs . 44
3.3.1 Semantics . 47
3.3.2 (De-) Composition Properties . 50
3.3.3 Reductions . 54

3.4 SPMMs . 55
3.5 Monitors . 59

3.5.1 Monitor-SOS . 60

vii

Contents

3.6 Summary . 61

4 Model Verification of Instrumented Context-Free Systems 63

4.1 General Notes . 63
4.2 SPAs . 63

4.2.1 Examples . 66
4.3 SBAs . 68
4.4 SPMMs . 69
4.5 Summary . 69

5 Model-Based Testing of Instrumented Context-Free Systems 71

5.1 General Concepts . 71
5.2 SPAs . 72

5.2.1 Computing Access Sequences, Terminating Sequences, and Return
Sequences . 72

5.2.2 SPA Conformance Test . 75
5.3 SBAs . 76

5.3.1 Computing Access Sequences and Terminating Sequences 76
5.3.2 SBA Conformance Test . 78
5.3.3 Example . 81

5.4 SPMMs . 82
5.5 Summary . 82

6 Active Automata Learning of Instrumented Context-Free Systems 85

6.1 General Concepts . 85
6.2 SPAs . 87

6.2.1 Exploration Phase . 87
6.2.2 Verification Phase . 88
6.2.3 Example . 94
6.2.4 Termination and Complexity . 98
6.2.5 Optimization Heuristics . 100

6.3 SBAs . 102
6.3.1 Simplifications . 103
6.3.2 Adjustments . 104
6.3.3 Termination and Complexity . 106

6.4 SPMMs . 107
6.5 Summary . 108

7 Transformations Between SPAs and VPAs 111

7.1 Visibly Push-Down Automata . 111
7.1.1 Semantics . 112
7.1.2 Canonicity . 113

7.2 SPAs as SEVPAs . 115

viii

Contents

7.3 SEVPAs as SPAs . 117
7.3.1 De-Aliasing . 120
7.3.2 Alphabet Abstraction Refinement . 124
7.3.3 Concretization Equivalence . 127

7.4 Discussions . 130
7.4.1 Return-Matched Visibly Push-Down Languages and Visibly Push-

Down Transducers . 130
7.4.2 SPA-Based Learning of Visibly Push-Down Languages 131

7.5 Summary . 132

8 Related Work 133

8.1 Model Verification . 133
8.1.1 Context-Free Model Verification . 134

8.2 Model-Based Testing . 135
8.3 Active Automata Learning . 136

8.3.1 Context-Free Active Automata Learning 138
8.4 Black-Box Checking and Learning-Based Testing 139

9 Practical Application of Instrumented Context-Free Systems 141

9.1 Instrumentation . 141
9.2 Document Modeling . 142

9.2.1 DTD Learning . 143
9.2.2 Document-Driven Process Verification 145
9.2.3 XSD-Based Documents . 147

9.3 Monitoring and Life-Long Learning . 148
9.3.1 Monitoring . 148
9.3.2 Life-Long Learning . 151

9.4 Black-Box Checking and Other Symbioses . 151

10 Evaluation 155

10.1 Qualitative Discussion . 155
10.2 Quantitative Discussion . 158

10.2.1 Models . 159
10.2.2 Active Automata Learning . 167

10.3 Summary . 171

11 Summary and Future Work 173

11.1 Summary . 173
11.2 Future Work . 174

11.2.1 Extensions of Procedural Models . 174
11.2.2 Extensions of Applications . 176
11.2.3 Extensions of Transformations . 179

List of Acronyms 181

ix

Contents

List of Algorithms 185

List of Figures 187

List of Listings 189

List of Symbols 191

List of Tables 195

Bibliography 197

x

CHAPTER 1

Introduction

Over the last decades, both software and hardware have found their way into our lives
to a point where today one can barely think of a world without them: medical support
systems, global e-commerce or the private entertainment sector are just a few examples
where computer systems and programs play an essential role. A catalyst for this rise in
digitization was (and still is) the growing complexity of software and hardware, which
allows software programs and hardware devices to perform more and more challenging
tasks.
Crucial for establishing and sustaining today’s level of integration and dependency on

both software and hardware is having thorough quality assurance (QA) to guarantee that
both software and hardware operate as intended. On the one hand, there are requirements

which specify the intended behavior of an application. On the other hand, there are
(software or hardware) systems that have to correctly implement these requirements.

For QA, the huge complexity of powerful systems comes at a cost: For example, consider
a world-wide operating, distributed web application. Verifying that after clicking a button,
the browser sends the correct data over a network socket, which is then routed to a specific
server so that it is successfully stored in a sector of the server’s hard-drive while thousands
of other users simultaneously use the website is not practical. However, by not properly
addressing the technical properties of systems, correctness may not be assured thoroughly
and potentially result in catastrophic (both monetary and life-threatening) failures. Some
of the classic examples of such failures include the floating-point division bug in early
Pentium® central processing units or the failed launch of the Ariane 5 heavy-lift launch
vehicle. But even in recent history, after years of experience and development, such
failures continue to occur [79, 106, 141].

The challenge for QA is to find a trade-off between thoroughness and performance/feasi-
bility, which has attracted the interest and investment of computer scientists and software
engineers alike. A very powerful and promising means to address this issue is the in-
troduction of models. The key idea is to introduce an additional (often formal) layer,
a model, to serve as a mediator between the requirements of a system and the system
itself. Towards the system, it is able to provide an abstraction that blends out certain
technical aspects of the system and focus on behavioral aspects that are important for its
requirements, therefore providing performance/feasibility. Towards the requirements,
it is able to provide a formal view on the system that allows for mathematical proofs
of properties, therefore providing thoroughness. Throughout this thesis, this concept is
referred to as model-based quality assurance (MBQA).

1

Chapter 1 Introduction

Figure 1.1

The three basic components of MBQA and possible interactions between them.

ModelsRequirements Systems

Verification Testing

Learning

Black-Box Checking

Figure 1.1 sketches the three main components of MBQA and some of the potential
interactions between them. At the center of MBQA, there are models. For software and
hardware systems, one typically chooses some form of transition system, i.e., a graph-like
structure with system states and transitions between them. These model types often
naturally mimic the internal structure of a system and are able to closely capture its
operational semantics. Examples for systems that focus on actions, i.e., when external
inputs progress the system state, are deterministic finite acceptors (DFAs), Mealy ma-
chines [121] or labeled transition systems (LTSs). Examples for systems that primarily
expose observable behavior in the form of state propositions are Kripke transition sys-
tems (KTSs) [108]. Possible extensions of these model types, e.g., to include additional
properties, or combinations thereof are also possible.
Introducing a formal model as a mediator between the requirements and the system

directly impacts these two components as well. Specifications (of requirements) now
have to target the model instead of the actual implementation. This has the potential
to allow for more idiomatic specifications because it is now possible to abstract from
technical details and articulate requirements in some form of domain-specific language,
depending on the chosen model type. In case of state-based and transition-based models
(and systems) this often involves logics whose formulae describe (properties of) paths in
a transition system. Popular examples of these kinds of logics are linear temporal logic
(LTL) [140], computational tree logic (CTL) [46] or the (modal) µ-calculus [107].
Systems now need some form of additional interface in order to translate between

abstract model actions (or propositions) and concrete system actions (or propositions).
Here, it is important to establish a consistent set of actions across all three components of
the MBQA setup. For example, if the requirements state that an action a must be possible
at a certain point, the model and ultimately the system must be able to recognize and
interpret this very action correctly to be able to reliably verify the requirement. At the
same time, this modeling of actions offers an additional parameter to control the level of
abstraction, e.g., using a high-level interaction such as “login to the application” versus
using a low-level interaction such as “write a value to a register”.

2

Compared to classic QA, the process of assuring quality in case of MBQA is a two-step
process. The first step — from requirements to models — is called model verification or
model checking [18, 47] and describes the process of verifying that the model adheres to
the behavior that is specified by the requirements. As discussed above, the formalism for
the requirements often describes desired (properties of) paths of the model. In this case,
the verification question can be answered by checking whether the requirements specify
paths that are missing in the model or if the model exhibits paths that are not allowed by
the requirements. There exists a long history of model checking tools that answer this
question for various requirement logics and model types [19, 20, 27, 28, 45, 78, 81, 100,
154, 162].
The second step — from models to systems — is called model-based testing [36, 111]

and often concerns the (automated) generation of test cases in order to check properties
of the system. In the context of MBQA, the sub-field of conformance testing [68, 111] is
often of most interest, as it deals with the question of equivalence between the model
and the system. In an offline (or development) environment, this involves generating
test cases that traverse characteristic transitions of the model and when executed on
the system are used to compare the observed behavior with the expected behavior of
the model. In reminiscence of Dijkstra1, these are often best-effort heuristics as their
(provable) correctness often depends on additional knowledge about the system. In an
online (or production) environment, concepts such as monitoring [54] can be used to
observe the behavior of the system while it is in use and verify the observed behavior
against the expected behavior of the model.
However, employing a model also adds new challenges to the QA process of a system.

Creating a formal specification and a formal model may be a very tedious and error-prone
task. First, formalizing correct requirements needs particular knowledge about the used
specification language [147, 170, 174] and may require a substantial amount of additional
person-hours [69, 175]. Using and overly complex specification formalism may cause
additional confusion [110, 152]. Second, these requirements need to be implemented
in a formal model in addition to the actual system implementation, which also requires
knowledge about the specific modeling language to do so efficiently [120]. Any error in
the specification or model could potentially invalidate any results obtained from MBQA.
This problem gets amplified if one chooses to employ MBQA during the development
process of a system as multiple iterations of the above steps become necessary. Here, the
trade-off between return and investment may scare off potential users.
Specifically for the problem of constructing a model, a potential solution would be to

create models from a system automatically. For software systems, there are a number of
static code analysis tools available [14, 27, 142] that allow one to analyze and transform
source code into formal models such as data-flow graphs or control-flow graphs which
can then be used to verify properties. Some of the aforementioned model checkers [19,
27, 28, 78] also come with integrated analysis tools and operate directly on the source
code of a program.

1“Program testing can be used to show the presence of bugs, but never to show their absence!” — Dijk-
stra [50].

3

Chapter 1 Introduction

However, for a truthful model, these methods require full access to the system’s source
code. Nowadays, software is complex and consequently often composed of many individual
components, potentially third-party libraries or external services to which access to the
corresponding source code is not obtainable. This can often render the above approaches
obsolete since fundamental parts of the system may not be properly analyzable. A similar
situation occurs for hardware systems, where, for example, circuit plans can be abstracted
to models but third-party components confront the hardware designers with the same
problems. Another challenge, specifically for source-to-model transformers, is that these
tools create very verbose models when operating on large code bases. It often requires
manual intervention by introducing custom symbolic abstractions in order to allow for
humane specifications of requirements.

A powerful means to tackle the above challenges is active automata learning (AAL).
In AAL, a learning algorithm (or simply learner) interacts with a system under learning
(SUL) by means of testing, i.e., by interacting with the system based on previously defined
symbolic actions. By observing the responses of the SUL to the tests, the learner constructs
a formal (automaton-based or transition system-based) hypothesis model of the SUL that
describes the observed behavior. AAL provides solutions for the above challenges by

1. operating on a previously defined set of symbols, meaning that the inferred model
has the exact granularity that the user has specified, and by

2. automatically inferring a model based on the observable behavior of the system
without needing access to its internals.

In its seminal introduction [15], AAL is motivated from a theoretical point of view
as an efficient solution to the broader problem of grammatical inference of unknown
formal languages. However, AAL quickly gained traction in practical scenarios because
formal languages can be easily associated with successful executions of software or
hardware systems. The requirement of AAL to actively interact with an SUL can be easily
implemented by testing, i.e., executing the respective tests on the given (software or
hardware) system. Although AAL is in general neither correct nor complete, there are
several success stories [1, 2, 6, 26, 41, 57, 91, 99, 131, 136, 143, 158, 167, 172] which
position AAL as a powerful provider of models to enable MBQA in practice.

As indicated in Figure 1.1, the three disciplines of verification, testing, and learning
can also be combined into a joint approach called black-box checking (BBC) [135]. BBC
establishes the concept of a feedback loop in which learning first constructs a hypothesis
model of a system which is then directly verified by a model checker. This may potentially
detect violations against the requirements which are then checked on the system in order
to determine whether the system actually fails the requirement, or the hypothesis model
of the learner needs a refinement which starts a new learning cycle. Here, the three
disciplines are not treated in isolation but in unison which has the potential to further
boost the quality and performance of the MBQA process.

4

1.1 Scope of this Thesis

1.1 Scope of this Thesis

The appeal of MBQA is one’s freedom to decide which model type to use, giving one the
ability to find a favorable trade-off between thoroughness and performance/feasibility of
QA. Crucial for the success of MBQA-based techniques is the availability of intuitive yet
powerful and expressive models that support the previously discussed workflows.

1.1.1 Contributions

This thesis presents the model types of systems of procedural automata (SPAs), systems of
behavioral automata (SBAs), and systems of procedural Mealy machines (SPMMs), which
describe procedural systems modeled after context-free grammars (CFGs) or context-free
languages (CFLs), respectively. While SPAs constitute a “base” formalism for describing
procedural systems holistically, SBAs introduce the notion of prefix-closure and SPMMs
introduce the notion of transduction. As a result, the three formalisms provide abstractions
for procedural systems that are tailored towards different use-cases that can be found in
real-world scenarios.

Essential to the concepts of the three model types is an instrumentation that makes calls
to and returns from procedures observable, exposing the internal structure of systems.
This instrumentation allows for a notion of rigorous (de-) composition of systems into
their individual procedures, providing expressive, intuitive, and performant models for
the three discussed disciplines of MBQA.

The contributions of this thesis are based on five peer-reviewed research papers whose
results are summarized, aligned with each other, and expanded on in this document.

Paper 1

Markus Frohme and Bernhard Steffen. “Compositional learning of mutually recursive

procedural systems”. In: International Journal on Software Tools for Technology Transfer
23.4 (2021), pp. 521–543. doi: 10.1007/s10009-021-00634-y.

The paper presents the notion of SPAs, an AAL algorithm for inferring SPA models, and

a performance comparison with the competing formalism of visibly push-down automata

(VPAs). The concept of SPAs is based on Bernhard Steffen’s earlier work on context-free

process systems (CFPSs) [37]. Regarding the learning process, the notion of query expansion

and counterexample projection was proposed by Bernhard Steffen, whereas I incorporated the

concept of incremental alphabet extensions in order to successively obtain access sequences,

terminating sequences, and return sequences that are required for the query expansion

throughout the learning process. Regarding counterexample analysis, the idea of the alpha-

gamma transformation was proposed by Bernhard Steffen, whereas I established the property

of monotonicity to allow for a Rivest & Schapire-style counterexample analysis process.

Furthermore, I implemented the code that was made publicly available and conducted the

experiments.

In this thesis, I further integrate SPAs into the discussed MBQA processes by formalizing
(and implementing) the processes of SPA verification and SPA conformance testing. I show

5

https://doi.org/10.1007/s10009-021-00634-y

Chapter 1 Introduction

the equivalence between SPA languages and the general context-free interpretation of
instrumented systems, which underlines the soundness of SPAs to capture the semantics
of context-free systems. Regarding comparability, I further present transformations from
SPAs into VPAs and vice versa. On the qualitative side, this highlights differences and
similarities between the two formalisms and makes QA techniques for one model type
applicable to the other model type. On the quantitative side, this allows me to analyze
fundamental model properties in this thesis which explain the results observed in the
paper.

Paper 2

Markus Frohme and Bernhard Steffen. “From Languages to Behaviors and Back”. In: Lecture

Notes in Computer Science 13560 (2022). Ed. by Nils Jansen, Mariëlle Stoelinga, and

Petra van den Bos, pp. 180–200. doi: 10.1007/978-3-031-15629-8_11.

The paper presents the notion of SBAs, an AAL algorithm for inferring SBA models, and

compares the performance of an “SBA inference + reduction” process with the standard

SPA inference process. The paper was motivated by my idea to extend SPAs to support a

transduction mechanism similar to the results of [133]. However, concerned with the length

of the paper, I pursued the idea of prefix-closed formal languages as the foundation for the

concerned transductions instead because it allowed me to re-use existing notation and results

of SPAs. It was Bernhard Steffen’s idea to include the return symbol in the procedural alphabet

in order to distinguish between returnability and reachability and it was his idea to provide

an alternative (graph-based) characterization of SBAs to better address the reactive systems

community. In mutual discussions, we developed the idea of using alphabet extensions to

tackle divergent states. Furthermore, I formalized and proved several of the required properties

for the query expansion, counterexample projection, and the learning algorithm of SBAs and

implemented the code for executing the benchmarks.

In this thesis, I further integrate SBAs into the discussed MBQA processes by formalizing
(and implementing) the processes of SBA verification and SBA conformance testing.
Furthermore, I pursue my original idea of the paper by formalizing SPMMs as an SBA-
based specialization for (instrumented) context-free transductions and discussing the
necessary adjustments for the verification, testing, and learning thereof, providing a third
model type for practical MBQA. In a distinct benchmark, I compare the native SPMM
formalism with its SBA-based characterization to showcase its performance benefit.

Paper 3

Markus Frohme and Bernhard Steffen. “Never-Stop Context-Free Learning”. In: Lecture

Notes in Computer Science 13030 (2021). Ed. by Ernst-Rüdiger Olderog, Bernhard Steffen,

and Wang Yi, pp. 164–185. doi: 10.1007/978-3-030-91384-7_9.

The paper evaluates the performance of the SPA learning algorithm of Paper 1 in the context

“never-stop learning”. The idea of never-stop learning has been conceptualized by Bertolino

et al. [26] and has been pushed by Bernhard Steffen in other contexts such as the TTT

algorithm [96]. Therefore, the initial idea of the paper was inspired by Bernhard Steffen

6

https://doi.org/10.1007/978-3-031-15629-8_11
https://doi.org/10.1007/978-3-030-91384-7_9

1.1 Scope of this Thesis

and the presented benchmarks have been selected in mutual discussions with me. The

implementation, conduction, and evaluation of the benchmarks was done by me.

Some of the rather intriguing concepts are only sketched in the paper. In particular,
I formalize my proposed optimizations that allow for the good performance of the SPA
learner in the “external redundancy” setting in this thesis and provide a more fine-grained
evaluation of their impact. Furthermore, the concept of “procedural characterizing sets” is
subsumed in this thesis by my work on the conformance testing of SPAs.

Paper 4

Markus Frohme and Bernhard Steffen. “A Context-Free Symbiosis of Runtime Ver-

ification and Automata Learning”. In: Lecture Notes in Computer Science 13065

(2021). Ed. by Ezio Bartocci, Yliès Falcone, and Martin Leucker, pp. 159–181. doi:

10.1007/978-3-030-87348-6_10.

The paper is an extension of Paper 3 that specifically tackles the search of counterexamples in

the context of SPA learning. Therefore, it was inspired by the initial never-stop learning vision

of Bernhard Steffen. The idea of the self-optimizing stack structure was proposed by Bernhard

Steffen and the formalization of an SPA monitor via structural operational semantics (SOS)

was developed in mutual discussions with me. Furthermore, I implemented, conducted and

evaluated the various benchmarks scenarios.

In this thesis I provide a generalized notion of monitors that allows one to incorporate
both SPA and SBA semantics. This direct comparison allows one to easily see how, e.g.,
SBAs, due to their prefix-closure, allow for much more intuitive and performant monitors.

Paper 5

Markus Frohme and Bernhard Steffen. “Active Mining of Document Type Definitions”. In:

Formal Methods for Industrial Critical Systems - 23rd International Conference, FMICS
2018, Maynooth, Ireland, September 3-4, 2018, Proceedings. Ed. by Falk Howar and

Jiri Barnat. Vol. 11119. Lecture Notes in Computer Science. Springer, 2018, pp. 147–161.

doi: 10.1007/978-3-030-00244-2_10.

The paper presents a (fictional) case-study for the practical application of SPAs as a model

type. The idea of interpreting opening tags and closing tags of extensible markup language

(XML) documents and establishing a relation between SPAs and document type definitions

(DTDs) was motivated by me, after having seen similar approaches for the related formalism

of VPAs. The use-case of the general data protection regulation (GDPR) as well as the particular

example presented in the paper was developed in mutual discussions with Bernhard Steffen.

The elaboration of the running example was done by me.

In this thesis, I expand on the practical application of SPAs, SBAs, and SPMMs by dis-
cussing the technical aspects of system instrumentation and elaborating other application
domains where the three proposed model types naturally fit into.

Overall, the published papers and their consolidations and extensions in this thesis aim
at providing expressive, performant, but also intuitive formalisms that offer powerful tools

7

https://doi.org/10.1007/978-3-030-87348-6_10
https://doi.org/10.1007/978-3-030-00244-2_10

Chapter 1 Introduction

for tackling the practical challenges of MBQA. This also involves actual implementations
of theoretic concepts. Unfortunately, throughout my research for this thesis, I have
come across several open-source tools in this field that have been abandoned. Either the
developers or researchers no longer respond to e-mails or tools are no longer able to run in
current environments. While there is certainly money to be made with MBQA, as several
closed-source or paid tools show, I think open-source is an integral part for the progress of
research, either by verifying the work of each other or allowing for fruitful collaborations.
In order to give back to this eco-system, I have implemented several of the presented
algorithms in this thesis and in part already have submitted or plan to submit them to the
open-source tools LearnLib and AutomataLib [95]. This work also includes coordinating
third-party submissions such as the model checker of [162] which has been contributed
by the authors and is used for the verification of SPAs, SBAs, and SPMMs in this thesis.
LearnLib and AutomataLib are (mainly) developed at the faculty of computer science at
TU Dortmund university and look back on a history of over fifteen years with hopefully
many more to come. By (re-) integrating my work into these libraries, I hope to enable
future researchers and practitioners to profit off of the results of this thesis.
Note that throughout this thesis, I occasionally use the pronoun “we”. It is meant to

include the reader in discussions on the same level. Especially, it does not represent “we”
as in multiple authors. This thesis is the sole work of my own.

1.1.2 Limitations

This thesis makes certain assumptions that are not investigated further and are postponed
to potential future work.

As previously mentioned, the definition of abstract symbolic interactions is an important
part of MBQA as it is the unifying component across requirements, models, and systems.
At the same time, it is also a highly individual problem because the interactions are
often specific to the actual system at hand. Sometimes, it is even necessary to handle an
infinite domain of symbols, e.g., when working with numerical values such as the natural
numbers N. It is hard to make general assumptions about the symbolic interactions and
elaborating on possible cases goes beyond the scope of this thesis. Therefore, this thesis
follows an approach that is common in literature by assuming that the symbolic definitions
are already present. This also holds for the instrumentation. While this thesis briefly
discusses the technical aspects of instrumenting systems and presents scenarios where
such an instrumentation is inherently provided by systems, it is generally assumed that the
considered systems are able to correctly interpret SPA-based, SBA-based, and SPMM-based
interactions as it makes highlighting the conceptual and algorithmic properties of these
formalisms easier and clearer.

The comparison of performance between SPAs and VPAs is restricted to the VPA-based
formalisms available in LearnLib and AutomataLib [95], namely 1-single-entry visibly
push-down automata (SEVPAs), as it allows for a re-use of existing implementations for the
evaluation. In the comparison, the variation of n-SEVPAs shows some interesting properties
that may be investigated in some distinct, future work. While the presented evaluation

8

1.2 Overview

is sufficient for providing a general intuition and bringing across the central points, a
thorough analysis requires additional work. However, formalizing and implementing the
verification, testing, and learning of n-SEVPAs is beyond the scope of this thesis.

The work on context-free transductions is restricted to deterministic transductions that
follow an incremental lock-step pattern. This means, for each input symbol sent to the
system, the system responds with a single deterministic output symbol before the next input
symbol is processed. A well-known formalism to implement these semantics for regular
formal languages are Mealy machines [121]. While there exist more general concepts of
context-free transductions such as rational transductions or sequential transductions [24],
this is beyond the scope of this thesis. Especially in the context of (regular) MBQA, Mealy
machines and their semantics have proven themselves as a solid formalism with a lot of
applicable use-cases. Since one of the main themes of this thesis is to lift these concepts to
the context-free level by means of composition, work on more general formalisms is left
for future research.

Finally, the topics of verification, testing, and learning are presented as the ingredients
of BBC. This thesis briefly discusses the interactions of the respective disciplines and
discusses some particularly fruitful applications in the context of SPAs, SBAs, and SPMMs.
However, a thorough analysis of this process and the potential impact on the individual
techniques is beyond the scope of this thesis and deferred to future research.

1.2 Overview

The remainder of this thesis is structured as follows:

Chapter 2 introduces preliminary notation and sketches the concepts of verification, test-
ing, and learning required for understanding the corresponding work on SPAs, SBAs,
and SPMMs.

Chapter 3 introduces the formalisms of SPAs, SBAs, and SPMMs. It establishes central
properties of the formalisms and discusses specific application profiles such as
monitoring.

Chapter 4 presents the translations of SPAs, SBAs, and SPMMs to CFPSs. It establishes
the notion of word-to-path equivalence such that model checkers for CFPSs can be
used to verify SPAs, SBAs, and SPMMs languages (transductions).

Chapter 5 presents a methodology for constructing conformance tests for SPAs, SBAs, and
SPMMs.

Chapter 6 presents AAL algorithms for SPAs, SBAs, and SPMMs within the minimally ade-
quate teacher (MAT) framework and analyzes their query complexity. Furthermore,
it presents several heuristics for improving the practical performance of the learners.

Chapter 7 discusses the formalism of VPAs and presents language-equivalent transforma-
tions from SPAs into SEVPAs and vice versa.

9

Chapter 1 Introduction

Chapter 8 presents work from related fields of research, including formalisms for proce-
dural and recursive systems and the verification, testing, and learning thereof.

Chapter 9 discusses aspects of the practical application of SPAs, SBAs, and SPMMs. This
covers the technical aspects of instrumentation, particularly fruitful application
domains, as well as potential symbioses between the difference disciplines of MBQA.

Chapter 10 discusses qualitative and quantitative properties of SPAs, SBAs and SPMM,
including comparisons with the competing formalism of VPAs.

Chapter 11 concludes this thesis by summarizing its results and presenting an outlook on
future research.

10

CHAPTER 2

Preliminaries

This chapter introduces several formal notations that are used throughout this thesis and
sketches the topics of verification, testing, and learning. The chapter is meant to give an
intuition for these processes in preparation for the work on the verification, testing, and
learning of (instrumented) context-free systems. Related work on these topics is presented
in Chapter 8.

2.1 Formal Languages

The foundational concept for the work of this thesis are formal languages. Essential to
formal languages are alphabets which represent collections of alphabet symbols.

Definition 1 (Alphabet)
An alphabet I is a non-empty, finite set of symbols over some domain. The elements of I are

called alphabet symbols, denoted a ∈ I .

As discussed in Chapter 1, alphabets are a core concept of model-based quality assurance
(MBQA) as they describe the abstract interactions that are shared across requirements,
models, and systems. Depending on the context, alphabets (or symbols) may be classified
into sub-categories such as input alphabets which represent (input) interactions with
a system or output alphabets which represent observable responses from a system. As
discussed in Section 1.1.2, this thesis assumes that the alphabet definitions are always
clear from the context. Given an alphabet, we continue with the definition of words over
an alphabet.

Definition 2 (Words over an alphabet)
Let I denote an alphabet. A word w over I is a finite concatenation of alphabet symbols, i.e.,

w= a1 · a2 · . . . · an with ai ∈ I for all i ∈ {1, . . . , n}.

• We write an to denote the n-fold repetition of a, i.e., an =

n times︷ ︸︸ ︷
a · . . . · a.

• We write ϵ to denote the empty word that contains no symbols.

• We write In to denote the set of all words over I with length n, i.e.,

In = {a1 · . . . · an | ai ∈ I}.

• We write I∗ to denote the set of all finite words over I , i.e., I∗ =
⋃

n∈N In.

• We write I+ to denote the set of all non-empty finite words over I , i.e., I+ = I∗ \ {ϵ}.

• We write |I | to denote the size of I , i.e., the cardinality of the set.

11

Chapter 2 Preliminaries

In the following, let w ∈ I∗ denote a word over I with w= a1 · a2 · . . . · an.

• We write w[i] to denote the i-th symbol of w, i.e., w[i] = ai for all i ∈ {1, . . . , n}.

• We write w[i, j] to denote the sub-word of w that starts at index i and ends at index j,

i.e., w[i, j] = ai · . . . · a j. For i > j, we have w[i, j] = ϵ.

• We write w[, i] to denote the prefix ending at index i, i.e., w[, i] = a1 · . . . · ai. For i < 1,

we have w[, i] = ϵ.

• We write w[i,] to denote the suffix starting at index i, i.e., w[i,] = ai · . . . · an. For

i > n, we have w[i,] = ϵ.

• We write |w| to denote the length of w, i.e., |w|= n.

In the following, let v ∈ I∗ denote another word over I with v = b1 · b2 · . . . · bm.

• We write w = v to denote that w and v are equal. Two words w and v are equal iff

|w|= |v| and ai = bi for all i ∈ {1, . . . , n}.

• We write w · v to denote the concatenation of words, i.e., w · v = a1 · . . . · an · b1 · . . . · bm.

• We call v a prefix of w iff there exists an index i ∈ {1, . . . , n} such that v = w[, i].

Furthermore, ϵ always constitutes a valid prefix of any word.

• We call v a suffix of w iff there exists an index i ∈ {1, . . . , n} such that v = w[i,].

Furthermore, ϵ always constitutes a valid suffix of any word.

• We write Pref(w) to denote the set of all prefixes of w.

• We write Suff(w) to denote the set of all suffixes of w.

Words over an alphabet represent sequences of individual alphabet symbols. In the
context of MBQA, alphabet symbols are meant to represent interactions with a software
system or a hardware system. This means that a word corresponds to a run or an execution

of a system. The aggregation of several, e.g., successful, runs of a system, serves as a
means to describe the behavior of a system. On a formal level, this is concept is denoted
via formal languages.

Definition 3 (Formal language)
Let I be an alphabet. A formal language L is a set of words over I , i.e., L ⊆ I∗.

Let L1, L2 denote two formal languages.

• We write L1 · L2 to denote the language of pair-wise concatenations, i.e.,

L1 · L2 = {l1 · l2 | l1 ∈ L1, l2 ∈ L2}.

With formal languages, there exists an intuitive yet formally precise formalism for
describing system behavior. One can decide if a system meets its requirements by checking
whether a system language contains “bad” words or is missing “good” words. The question
of conformance then corresponds to the question of language equivalence between, e.g.,
the requirements and the model or the model and the system. Crucial for the ability of a
formal language to capture the behavior of a system is the expressiveness of the language,
as the following example illustrates.

12

2.1 Formal Languages

Example 1 (Expressiveness of two languages)
Let I = {a, b} be an alphabet and L1 = {a

n · bm | n, m ∈ N} and L2 = {a
n · bn | n ∈ N} be two

languages over I . Intuitively, L1 is simpler than L2 because each word of L1 consists of an

arbitrary number of as followed by an arbitrary number of bs. In contrast, a system described

by L2 requires some kind of counting mechanism to ensure the same number of as and bs.

A popular classification of formal languages is given by Chomsky [43] who proposes
a hierarchy of four language classes, i.e., sets of languages: regular languages (Lreg),
context-free languages (Lcf), context-sensitive languages (Lcs), and recursively enumerable
languages (Lre). Each language class is strictly less expressive than the subsequent one, i.e.,
Lreg ⊊ Lcf ⊊ Lcs ⊊ Lre. For example, the language L1 of Example 1 is a regular language,
whereas the language L2 of Example 1 is a context-free language but not a regular
language.

As mentioned in Chapter 1, the challenge but also the opportunity of models is to find
a favorable trade-off between complexity and expressiveness. In Chomsky’s hierarchy,
regular languages are the simplest language class but they exhibit a lot of useful closure-
properties. Not only do operations such as union, intersection, and concatenation yield a
regular language again, but also these operations can be computed in polynomial time
(with respect to the size of their formalism, see below). This makes (and has made)
regular languages a convenient formalism for MBQA, as it allows one to transfer concepts
such as composition from the system level to the model level.

At the same time, regular languages lack natural support for concepts such as recursion
and one either needs to introduce additional abstraction to describe these concepts or move
up in the hierarchy. However, with increasing expressiveness, the language properties
become much harder to manage. For example, already with context-free languages, the
intersection of two context-free languages may no longer be context-free, i.e., they cannot
be described by a context-free formalism anymore. Furthermore, problems such as the
language equivalence problem of two context-free languages is no longer decidable. Here,
a lot of the comfort known from regular languages is no longer available. For a more
thorough analysis see, e.g., [83].
Previewing the contents of Chapter 3, systems of procedural automata (SPAs) (and

by extension systems of behavioral automata (SBAs) and systems of procedural Mealy
machines (SPMMs)) describe context-free systems in which the entry points and exit
points of procedures are made explicitly observable. This enables a notion of rigorous (de-)
composition of systems into their procedural components, which offers the expressiveness
of context-free systems combined with the ease of regular systems. We continue with
looking at regular languages and context-free languages in more detail and discuss
extensions such as the incorporation of outputs to describe dialog systems in which users
interact with a system in a bi-directional manner.

2.1.1 Generators

A generator is a form of recipe for constructing words of a language. As languages are used
to describe (successful) runs of a system, a generator-based interpretation of a language

13

Chapter 2 Preliminaries

can be seen as a roadmap for possible executions. A versatile formalism for defining (up
to recursively enumerable) languages is that of unrestricted formal grammars [83].

Definition 4 (Unrestricted formal grammar)
An unrestricted formal grammar is a tuple G = 〈N , T, P, S〉 where

• N denotes the non-empty, finite alphabet of non-terminal symbols,

• T denotes the non-empty, finite alphabet of terminal symbols,

• P ⊆ (N ∪ T)+ × (N ∪ T)∗ denotes the non-empty, finite set of production rules, and

• S ∈ N denotes the initial non-terminal symbol.

We define the derivation relation −→⊆ (N ∪ T)∗ × (N ∪ T)∗ such that t1 −→ t2 iff 〈p1, p2〉 ∈ P

and t2 is constructed from the syntactical substitution of p1 with p2 in t1. We define the

transitive closure of −→ as =⇒. We define the language of a grammar G as the union of all

terminal derivations, i.e.,

L(G) = {w ∈ T ∗ | S =⇒ w}.

The expressiveness of a formal grammar is inherently defined by its production rules.
By limiting the structure of production rules, it is possible to restrict the language of a
formal grammar to different language classes. As mentioned before, regular languages
and context-free languages are of particular interest for this thesis and therefore, we
continue with the specific grammars for these languages classes.

Definition 5 (Regular grammar)
A formal grammar G = 〈N , T, P, S〉 is called regular iff its production rules are limited to

either

• P ⊆ N × (T ∪ (N · T)∪ {ϵ}) (left-recursive) or

• P ⊆ N × (T ∪ (T · N)∪ {ϵ}) (right-recursive).

Definition 6 (Context-free grammar)
A formal grammar G = 〈N , T, P, S〉 is called context-free iff its production rules are limited to

• P ⊆ N × (N ∪ T)∗.

Furthermore, this thesis only considers minimal grammars, i.e., grammars that do not
contain any redundant non-terminals.

Definition 7 (Minimal formal grammar)
Let G = 〈N , T, P, S〉 be a formal grammar. We call G minimal iff

∀n ∈ N : ∃w ∈ L(G), w′ ∈ (N ∪ T)∗, i ∈ {1, . . . , |w′|}:

S −→ . . . −→ w′ −→ . . . −→ w∧ w′[i] = n,

i.e., every non-terminal symbol occurs in at least one intermediate representation of a terminal

derivation.

It is easy to see how a (regular or context-free) formal grammar can be minimized
by removing any unreachable non-terminal symbols and their corresponding production
rules without affecting the generated language.

14

2.1 Formal Languages

2.1.2 Acceptors

Besides the generator-based characterization of formal languages, there also exists a
parser-based or acceptor-based characterization. Here, rather than actively constructing
words of a formal language, a formalism reads arbitrary words and decides whether they
belong to a formal language afterwards. The two concepts are closely linked with each
other as each approach can be implemented via the other: Given a generator, it can accept

an arbitrary word iff it is a member of the set of generated words. Given a parser, it
can iterate over all possible words over an alphabet and generate a word whenever it is
accepted by the parser. However, depending on the context, one of the two approaches
may be more convenient to use and therefore it is helpful to briefly present this second
characterization as well.

Regarding parsers or acceptors, this thesis only needs to consider a formalism for regular
languages. Here, a broadly used formalism is that of deterministic finite acceptors (DFAs).

Definition 8 (DFA)
A DFA is a tuple A= 〈Q, q0, I ,QF ,δ〉 where

• Q denotes the non-empty, finite set of states,

• q0 ∈Q denotes the initial state,

• I denotes the input alphabet,

• QF ⊆Q denotes the set of accepting states, and

• δ : (Q× I)→Q denotes the state transition function.

We define the generalized transition functions δ : (Q× I∗)→Q and δ : I∗→Q as

δ(q, u · v) = δ(δ(q, u), v) ∀q ∈Q, u ∈ I , v ∈ I∗,

δ(q,ϵ) = q ∀q ∈Q,

δ(w) = δ(q0, w) ∀w ∈ I∗.

Alternatively, the transition function may also be represented as a relation δ ∈Q× I ×Q and

we use both interpretations interchangeably, depending on which is more convenient.

From a parser-based perspective, a DFA receives a word and consumes it symbol-wise
from left to right. Depending on whether this process terminates in an accepting state, the
DFA either “accepts” or “rejects” the word. For DFAs, we establish a series of properties.

Definition 9 (Properties of DFAs)
Let A= 〈Q, q0, I ,QF ,δ〉, A1, A2 denote some DFAs over an alphabet I .

• We define the size |A| of a DFA A as the number of its states, i.e., |A|= |Q|.

• We define the language L(A) of a DFA A as L(A) = {w ∈ I∗ | δ(w) ∈QF}.

• A direct consequence of the above language definition is that for ev-

ery w ∈ L(A) with w= a1 · . . . · an there exists a path q0 · . . . · qn in A with

δ(qi , ai+1) = qi+1∀qi ∈Q, i ∈ {0, . . . , n− 1}.

• We call a DFA A1 equivalent to another DFA A2 (denoted as A1 ≡DFA A2) iff

L(A1) = L(A2).

• Unless specified otherwise, we consider total DFAs in this thesis, i.e., DFAs where the

15

Chapter 2 Preliminaries

transition function is defined for all possible input arguments. In a partial DFA, δ may

be undefined for certain input arguments. In this case, the DFA may no longer be able

to determine a successor state and the parsed input sequence is rejected. Note that a

partial DFA can be easily made total by adding a (rejecting) sink-state and setting this

sink state as the successor of every undefined transition, including self-loops for the sink

state itself. As a result, we omit any specialized syntax for dealing with partial DFAs.

• We call a DFA A1 minimal iff there exists no other, equivalent DFA A2 such that

|A2|< |A1|. Sometimes, minimal DFAs are also called canonical because a minimal DFA

is also a unique (up to isomorphism) representation for a regular language. Minimality

(or canonicity) is no practical limitation, as there exists algorithms for minimizing

DFAs in polynomial (in the size of the DFA and its alphabet) time [82, 134].

2.1.3 Transducers

Formal languages provide a precise formalism for describing successful runs of a system.
However, rather than only distinguishing between good runs and bad runs of a system,
one may want to express the characteristics of a system from an interactive point of view,
e.g., by describing how certain inputs to a system result in certain outputs from the system.
A possible way to achieve this goal is by extending the previously introduced concepts to
the notion of bi-languages. Typically, bi-languages connect words of two different domains
(alphabets), which allow one to associate input words with output words. This concept
leads to the general notion of transductions.

Definition 10 (Transduction)
Let I denote an input alphabet and O denote an output alphabet. A transduction from I∗ to

O∗ is a relation T ⊆ I∗ ×O∗.

Note that while relations are generally non-directional, we interpret transductions as a
mapping from inputs to outputs throughout this thesis. As discussed in Section 1.1.2, this
thesis focuses on deterministic transductions that follow an incremental lock-step pattern.
This means, for each input symbol there exists a unique output symbol such that their
respective prefixes are a valid transductions as well. Formally, a transduction T satisfies
these properties iff the following statements hold:

∀〈wa, wo〉 ∈ T : |wa|= |wo|∧ (2.1)

∀〈wa, wo〉 ∈ T : ∀i ∈ {1, . . . , |wa|}: 〈wa[, i], wo[, i]〉 ∈ T∧ (2.2)

∀w ∈ I∗ : |{〈wa, wo〉 ∈ T | w= wa}| ≤ 1 (2.3)

where Equations (2.1) and (2.2) ensure that (all prefixes of) input words are mapped to
output words of equal length and Equation (2.3) ensures (input-) determinism. Technically,
the empty transduction 〈ϵ,ϵ〉 may be considered here as well, but it does not hold any
significant information that distinguishes a system from another one.

Behaviorally, these types of transductions can be used to model dialog systems in which
the system interaction is based on an alternating sequence of input actions (from the user

16

2.1 Formal Languages

or client) and output reactions (from the system). In cases where the input language
resembles a regular formal language, these transductions can be represented by Mealy
machines [121].

Definition 11 (Mealy machine)
A Mealy machine is a tuple M = 〈Q, q0, I , O,δ,λ〉 where

• Q denotes the non-empty, finite set of states,

• q0 ∈Q denotes the initial state,

• I denotes the input alphabet,

• O denotes the output alphabet,

• δ : (Q× I)→Q denotes the state transition function, and

• λ : (Q× I)→Q denotes the output function.

We define the generalized transition functions δ : (Q × I∗)→ Q and δ : I∗ → Q identical to

Definition 8 and the generalized output functions λ : (Q× I∗)→ O∗ and λ : I∗→ O∗ as

λ(q, u · v) = λ(q, u) ·λ(δ(q, u), v) ∀q ∈Q, u ∈ I , v ∈ I∗,

λ(q,ϵ) = ϵ ∀q ∈Q,

λ(w) = λ(q0, w) ∀w ∈ I∗.

Similar to DFAs, we may interpret δ and λ as relations if it is more convenient.

Interestingly, Mealy machines merge the ideas of generators and parsers from the
previous two (sub-) sections, since aMealymachine “parses” input symbols and “generates”
output symbols. Similar to DFAs, we introduce some specific properties of Mealy machines.

Definition 12 (Properties of Mealy machines)
Let M = 〈Q, q0, I , O,δ,λ〉, M1, M2 denote some Mealy machines over an input alphabet I and

an output alphabet O.

• We define the size |M | of a Mealy machine M as the number of its states, i.e., |M |= |Q|.

• We define the transduction T (M) of a Mealy machine M as

T (M) = {〈w,λ(w)〉 | w ∈ I∗}.

• We call a Mealy machine M1 equivalent to another Mealy machine M2 (denoted as

M1 ≡Mealy M2) iff T (M1) = T (M2).

• Unless specified otherwise, we consider total Mealy machines in this thesis, i.e., Mealy

machines where the transition function and output function are defined for all possible

input arguments. In a partial Mealy machine, δ or λ may be undefined for certain

input arguments. In this case, the Mealy machine is no longer able to emit valid output

symbols and the transduction process stops.

• We call a Mealy machine M1 minimal iff there exists no other, equivalent Mealy machine

M2 such that |M2|< |M1|. Similar to DFAs, minimality also implies canonicity and the

minimization algorithms for DFAs can be easily adjusted towards Mealy machines.

Regarding expressiveness, Mealy machines are able to process regular languages sim-
ilar to DFAs. This is easily shown by transforming a Mealy-based transduction into a
prefix-closed regular language. Two commonly used transformations involve either the

17

Chapter 2 Preliminaries

synchronous transduction over the cartesian product of the input alphabet and the output
alphabet or the alternating transduction over the union of the two alphabets. For exam-
ple, let λ(a1 · a2) = o1 · o2 be a Mealy-based transduction. The corresponding DFAs may
either accept the word 〈a1, o1〉 · 〈a2, o2〉 (synchronized) or a1 · o1 · a2 · o2 (alternating). By
transforming a Mealy machine on a per-transition basis, the described transduction can
be directly embedded in a (prefix-closed) regular language.

However, note that the reverse process, i.e., representing a synchronous or alternating
transduction of a prefix-closed DFA via a Mealy machine, may introduce a kind of semantic
gap. A prefix-closed DFA may at some point reject an input symbol which would terminate
the transduction. In contrast, (total) Mealy machines by definition continue to transduce
input symbols until there are no more input symbols left to process. One possibility to
express rejection via Mealy machines is to introduce a specific “error” output symbol and
an error-sink state which is accessed when the DFA would reject the word.

2.1.4 Generalizations

While DFAs and Mealy machines are tailored towards different use-cases, they share a lot
of concepts that are generalized to labeled transition systems (LTSs) with outputs in the
following. Specifically for techniques from the field of model verification and model-based
testing (MBT), this allows for a unified presentation of concepts that can be applied to
both DFAs and Mealy machines, respectively.

Definition 13 (LTS (with outputs))
An LTS with outputs is a tuple L = 〈Q, q0, I , D,δ,λ〉 where

• Q denotes the non-empty set of states,

• q0 ∈Q denotes the initial state,

• I denotes the input alphabet,

• D denotes the output domain,

• δ : (Q× I∗)→Q denotes the state transition function, and

• λ : (Q× I∗)→ D denotes the output function.

Similar to DFAs and Mealy machines, we generalize the transition function and the output

function to words over I via

δ(w) = δ(q0, w) ∀w ∈ I∗,

λ(w) = λ(q0, w) ∀w ∈ I∗,

and may use the relation-based interpretation of these functions if convenient.

Note that the above definition of LTSs (with outputs) only considers (input-) deter-
ministic transition systems. While many verification algorithms and testing algorithms
are able to handle non-deterministic systems as well, this thesis only uses LTSs (with
outputs) to generalize the (hierarchical) behavior of DFAs and Mealy machines which
are deterministic by definition. However, Definition 13 does allow for infinite state LTSs
which is particularly useful when talking about (deterministic) context-free systems.
Specifically for the DFA-based and Mealy machine-based procedures discussed in this

18

2.2 Model Verification

thesis, the following two definitions give a direct construction for the respective LTSs (with
outputs).

Definition 14 (DFA-based LTS)
Let A= 〈QA, qA

0, IA,QA
F ,δA〉 denote a DFA. The LTS-based interpretation of A is given by

LDFA = 〈Q, q0, I , D,δ,λ〉 such that

• Q =QA,

• q0 = qA
0,

• I = IA,

• D = {true, false},

• δ = δA, and

• λ(q, w) =

¨
true if δA(q, w) ∈QA

F

false otherwise

for all q ∈Q, w ∈ I∗.

Definition 15 (Mealy-based LTS)
Let M = 〈QM , qM

0 , I M , OM ,δM ,λM 〉 denote a Mealy machine. The LTS-based interpretation
of M is given by LMealy = 〈Q, q0, I , D,δ,λ〉 such that

• Q =QM ,

• q0 = qM
0 ,

• I = I M ,

• D = (OM)
∗
,

• δ = δM , and

• λ = λM .

2.2 Model Verification

Formal languages establish a rather input-focused characterization of systems. A second,
widely-used interpretation is based on Kripke transition systems (KTSs) [108] which
originally omit labels but instead characterize each state via an observable set of atomic

propositions. Often a mixture of both approaches, e.g., a labeled KTS, can be found, too.
What unifies these different model types is the fact that they are transition systems which
exhibit their behavior via paths. As a result, the verification of such models often involves
a formal specification of paths that the models are required or prohibited to take. The
process of model verification then checks whether there are any discrepancies between
the specified paths of the requirements and the possible paths of the model.

The central idea for the verification of instrumented context-free systems in this thesis
is to transform models of SPAs, SBAs, and SPMMs into other formalisms for which there
already exist verification techniques. Especially, it is not the goal to develop yet another
specification formalism. In order to give an intuition for such existing specification for-
malisms and their semantics, the following sketches the concepts of the computational
tree logic (CTL) [46]. We continue with formalizing the notion of paths of LTSs.

19

Chapter 2 Preliminaries

Definition 16 (Paths)
Let I be an input alphabet and L = 〈Q, q0, I , D,δ,λ〉 denote an LTS over I . A path
τ ∈ (Q× I ×Q)∗ is a sequence of transitions, i.e., τ= 〈q1, a1, q2〉 · 〈q2, a2, q3〉 · . . ., such that

〈q j , a j , q j+1〉 ∈ δ for all j. We define the set of paths of maximum length originating in q ∈Q

as Paths(q). Depending on L, paths of maximum length may either be finite or infinite.

Note that CTL formulae are originally meant to specify paths of KTSs. However, in the
context of formal languages, labeled paths are the more popular way to express behavior.
As a result, we look at a slightly adjusted version of CTL for LTSs, that includes actions and
omits atomic propositions. Its concepts are similar to action-based CTL (ACTL) by Nicola
et al. [132], however, its syntax is more akin to the Hennessy-Milner logic (HML) [76] or
the modal µ-calculus [107]. This adjustment is chosen as the syntax returns in Chapter 4,
where the language verification of SPAs, SBAs, and SPMMs is presented on the basis of a
model checker for (alternation-free) modal µ-calculus formulae.

Definition 17 (Syntax of CTL formulae with actions)
Let I be an input alphabet and a ∈ I . CTL formulae with actions over I consist of state
formulae and path formulae, where state formulae are constructed according to the grammar

Φ −→ true | Φ1 ∧Φ2 | ¬Φ | Aϕ | [a]Φ

and path formulae according to the grammar

ϕ −→ ¬ϕ | XΦ | Φ1 UΦ2.

From the above syntax, we can derive the dual operators as well as the “finally” and “globally”

path operators.

Eϕ = ¬A¬ϕ (exists),

〈a〉Φ = ¬[a]¬Φ (diamond a),

EFΦ = E(trueUΦ) (exists finally),

AFΦ = A(trueUΦ) (always finally),

EGΦ = ¬AF¬Φ (exists globally), and

AGΦ = ¬EF¬Φ (always globally).

The basic boolean constants and boolean operators follow the commonly known se-
mantics of propositional logic including the standard derivations of false, ∨,⇒, and⇔.
The temporal modalities A (pronounced “all”) and E (pronounced “exists”) require all
paths (respectively, that there exists at least one path) originating in a given state to
satisfy the path formula ϕ. The input modalities [a] (pronounced “box a”) and 〈a〉 (pro-
nounced “diamond a”) serve as “filters” compared to the generic quantifiers and require
all a-successors (respectively, that there exists at least one a-successor) of a given state to
satisfy the formula Φ. The semantics are formalized as follows:

20

2.3 Model-Based Testing

Definition 18 (Satisfaction relation of CTL formulae with actions)
Let I be an input alphabet and L = 〈Q, q0, I , D,δ,λ〉 denote an LTS over I . Let Φ,Φ1,Φ2 be

CTL state formulae and ϕ be a CTL path formula. For a state q ∈Q, we have the satisfaction

relation

q |= true ⇔ true,

q |= ¬Φ ⇔ q ̸|= Φ,

q |= Φ1 ∧Φ2 ⇔ q |= Φ1 ∧ q |= Φ2,

q |= Aϕ ⇔∀τ ∈ Paths(q): τ |= ϕ, and

q |= [a]Φ ⇔∀〈q, a, q1〉 · . . . ∈ Paths(q): q1 |= Φ.

For a non-empty path τ= 〈q1, a1, q2〉 · 〈q2, a2, q3〉 · . . . we have the satisfaction relation

τ |= ¬ϕ ⇔ τ ̸|= ϕ,

τ |= XΦ ⇔ q2 |= Φ, and

τ |= Φ1 UΦ2 ⇔∃ j ≥ 1: (q j |= Φ2 ∧ (∀1≤ k < j : qk |= Φ1)).

We say that an LTS L satisfies a CTL state formula with actions Φ iff q0 |= Φ.

For details about the actual model checking algorithm, the reader may refer to the
respective literature as the implementation of a model checker itself is beyond the scope
of this thesis. CTL formulae with actions may be directly transformed into ACTL formulae
of [132]. The diamond operator 〈a〉Φ corresponds to the existentially quantified action
formula EXa Φ, whereas as the box operator [a]Φ corresponds to the universally quantified
action formula AXa Φ. The verification thereof is discussed in [132]. Alternatively, one
can transform the CTL formulae with actions into the (alternation-free) modal µ-calculus,
where the box operator and the diamond operator exist with identical semantics and the
existential quantifier and the universal quantifier correspond to the smallest and greatest
fix-point operators, respectively. See, e.g., [35] for further transformations.

2.3 Model-Based Testing

The field of MBT covers a plethora of techniques with different goals and purposes [36,
111]. In this thesis, we are specifically interested in the sub-field of conformance testing [68,
111]. Conformance testing takes a known (white-box) model and tries to verify whether
an unknown (black-box) implementation behaves equivalent to the model. Typically, this
involves a set of tests that are executed on the implementation whose responses are then
compared to the expected outputs of the model. Sometimes monitoring, i.e., the analysis
of logged traces in production, may be used for this purpose as well, although conceptually
it falls more into the field of runtime verification.
In this thesis, we focus our notion of conformance testing on DFA-based systems and

Mealy-based systems. Therefore, we formalize the concept of conformance testing as
follows:

21

Chapter 2 Preliminaries

Definition 19 (Conformance test)
Let I denote an input alphabet, D denote an output domain, and ψ ∈ {DFA, Mealy} de-

note a model type. Let Lm
ψ
= 〈Qm, qm

0 , I , D,δm,λm〉 denote a ψ-based LTS model over I and

L
i
ψ
= 〈Qi , qi

0, I , D,δi ,λi〉 denote a ψ-based LTS implementation over I . A conformance test
for Lm

ψ
is a set of test words CT(Lm

ψ
) ⊆ I∗ such that

(∀w ∈ CT(Lm
ψ): λ

m(w) = λi(w))⇒ Lm
ψ ≡ψ L

i
ψ.

Note that, in general, it is not possible to construct a finite conformance test. Even for
simplest formalisms such as DFAs, the true black-box equivalence problem is impossible to
solve [126]. It is easy to see, how for any finite conformance test, one can construct an
(unknown) implementation that behaves equivalent to the model for the test words, but
in-equivalent for any other word.

As a consequence, the correctness and completeness of conformance testing algorithms
often need to be analyzed under certain assumptions about the unknown implementation.
For example, if one assumes an upper bound on the number of states of Li

ψ
, one can simply

traverse all possible transitions of Li
ψ
and verify the reached states afterwards. These

assumptions usually dictate the structure of a conformance test as well. For example, if
the implementation supports a kind of reset mechanism, the conformance test may consist
of multiple independent test cases whose evaluation is separated by intermediate resets.
If the implementation is strongly connected, i.e., every state is connected to every other
state (possibly via a sequence of multiple transitions), the conformance test may consist
of only a single test word and does not require the implementation to support a reset
mechanism.

The discussions of Chapter 5 try to treat conformance testing as general as possible. The
core idea of conformance testing SPAs, SBAs, and SPMMs is to conclude global conformance
from the conformance of the respective procedural components. As a result, whichever
assumptions about the procedures of an implementation hold in a certain scenario, dictate
the structure, the correctness, and the completeness of the global conformance test.
To give an intuition for the computation of conformance tests, the remainder of this

section briefly sketches the ideas of the W-method [44] whose ideas return in Chapter 5.
The W-method computes a set of multiple test words which require the black-box im-
plementation to support a reset mechanism. In case of software systems and hardware
systems this is often relatively easy to achieve by means of restarting or rebooting the sys-
tem or by using separate logical instances, e.g., a different account per test. Furthermore,
the W-method requires an upper bound on the number of states of the implementation in
order to reason about the correctness and completeness of the constructed conformance
test. In the following, we assume the even stronger property that the model and imple-
mentation have the same amount of states, which allows for a simplified presentation of
the W-method.
The core idea of the W-method revolves around two sets: a transition cover set and a

characterizing set. A transition cover set contains input words that traverse each transition
of a transition system. It can be easily constructed from a state cover set, i.e., a set

22

2.3 Model-Based Testing

containing input words that traverse each state of a transition system, and concatenating
each element with an input symbol. A characterizing set is a set CS such that for two
arbitrary states s1, s2 of a transition system, CS contains at least one input word w for
which s1 and s2 exhibit different observable behavior when processing w. By computing
the two sets based on the model and constructing the cartesian product of the two sets,
the W-method ensures that each transition of the unknown implementation transfers the
system into a state that is behaviorally equivalent to its counterpart in the model, ensuring
conformance. Note that the W-method considers ϵ an element of the transition cover set
as well, in order to validate the initial state of an automaton.

The work on SBAs and SPMMs requires a more generalized notion of state cover sets
and transition cover sets that allows for a restriction of the set of eligible input symbols
and that works with potentially partial systems. Therefore, we first look at the notion of
reachable states and then discuss the respective sets.

Definition 20 (Reachable states)
Let I be an input alphabet and L = 〈Q, q0, I , D,δ,λ〉 be an LTS over I . The set of reachable
states of L over I ′ ⊆ I is a maximal set ReachI ′(L) ⊆Q such that

∀q ∈ ReachI ′(L): ∃w ∈ I ′∗ : δ(q0, w) = q,

i.e., ReachI ′(L) contains all states of L that are reachable from q0 via symbols of I ′.

Definition 21 (State cover set)
Let I be an input alphabet and L = 〈Q, q0, I , D,δ,λ〉 be an LTS over I . A state cover set for L
over I ′ ⊆ I is a (minimal) set SCSI ′(L) ⊆ I ′∗ such that

∀q ∈ ReachI ′(L): ∃w ∈ SCSI ′(L): δ(q0, w) = q,

i.e., for every reachable state there exists a word in SCSI ′(L) that reaches the state.

Definition 22 (Transition cover set)
Let I be an input alphabet and L = 〈Q, q0, I , D,δ,λ〉 be an LTS over I . A transition cover set
for L over I ′ ⊆ I is a set TCSI ′(L) ⊆ I ′∗ such that

TCSI ′(L) = SCSI ′(L) · I
′,

i.e., for every outgoing transition (with respect to I ′) of a reachable state there exists a word

in TCSI ′(L) whose last symbol traverses the transition.

Note that the above sets can be easily computed via, e.g., a breadth-first or depth-first
reachability analysis that is restricted to the allowed symbols. While state cover sets do
not need to be minimal, any redundant access sequence does not hold any additional
value. Therefore, a minimal state cover set may be preferred for reasons of efficiency. If
the input alphabet is not restricted, i.e., I ′ = I , the subscript may be omitted.

The definition of the characterizing set does not require any restrictions of the alphabet.

23

Chapter 2 Preliminaries

Definition 23 (Characterizing set)
Let I be an input alphabet and L = 〈Q, q0, I , D,δ,λ〉 be an LTS over I . A characterizing set
for L is a (minimal) set CS(L) ⊆ I∗ such that

∀q1, q2 ∈Q : ∃w ∈ CS(L): λ(q1, w) ̸= λ(q2, w),

i.e., for every pair of states there exists a word in CS(L) that exposes an observable in-

equivalence.

In a minimal LTS, there exist no equivalent states, i.e., states that produce the same
output for all possible input sequences. As a result, for every pair of states, there must exist
at least one input sequence that separates the two states via their observable behavior.
Therefore, the union of all pair-wise separating sequences constitutes a straightforward
characterizing set. Again, the characterizing set does not need to be minimal, but redun-
dant elements do not increase its characterizing property any further.

2.4 Active Automata Learning

Active automata learning (AAL) describes the process of inferring an automaton-based
model on the basis of observations from actively querying a system. In [15], Angluin
introduces the fundamental concepts of this process which many of today’s AAL algorithms
still build upon: the minimally adequate teacher (MAT) framework. This framework
provides the learning algorithm with a teacher that grants access to two kinds of queries:
membership queries (MQs) and equivalence queries (EQs).

Membership Queries and Membership Query Oracles An MQ is a word over an (input)
alphabet for which the learner wants to query the system’s behavior. Access to the system
under learning (SUL) is formalized via a membership query oracle (MQO) which receives
an MQ and responds with the system’s behavior. Conceptually, MQOs can be seen as a
function mqo: I∗→ D for some input domain I and some output domain D. This thesis
focuses on the boolean output domain for acceptor-based learning processes, e.g., for
DFAs, and word-based output domains over some output alphabet for transduction-based
learning processes, e.g., for Mealy machines. However, more complex output domains
are possible (cf. Section 8.3). Similar to MBT, MQOs can be implemented via testing, i.e.,
translating the abstract input symbols to actual system inputs and executing the respective
queries on the SUL while returning the observed response from the system.

Remark 1

In her seminal work, Angluin [15] uses AAL to infer formal languages. Hence, the term

membership query is chosen because it answers the question “is the word a member of the
unknown language?”. Despite the fact that many modern algorithms deal with more complex

output domains, the term “membership query” prevails throughout literature. Similarly,

the term is used interchangeably throughout this thesis for acceptor-based inference and

transduction-based inference as well.

24

2.4 Active Automata Learning

Figure 2.1

AAL in the MAT framework.

Learner MQO

SULEQO

➋ MQ

➌ Response

➍ EQ➎
Counter-

example

➏ Hypothesis

➊ Start

Equivalence Queries and Equivalence Query Oracles An EQ consists of a hypothesis model
for which the learner wants to know whether it is equivalent to the unknown target system.
This test is performed by an equivalence query oracle (EQO). As discussed in Definitions 9
and 12, the notion of equivalence may differ depending on the targeted automaton type
of the inference process and the methods for determining (in-) equivalence may vary from
case to case. If the EQO detects an in-equivalence, a counterexample ce ∈ I∗ is returned
which exposes mismatching behavior between the hypothesis model and the SUL.

2.4.1 Learning Loop

Many AAL algorithms based on the MAT framework often use MQs and EQs in a loop-like
fashion, alternating between an exploration phase and a verification phase. This structure
is sketched in Figure 2.1.

Exploration Phase

The learning loop starts with the exploration phase (➊) in which the learner posts MQs
(➋) to obtain information about the unknown system. Via the MQO, these queries are
delegated to the SUL and its responses, e.g., successful termination, emitted outputs,
etc., are returned to the learning algorithm (➌) which constructs an (initial) hypothesis
consistent with the observations.

Verification Phase

Once the learner has constructed a (tentative) hypothesis from the observations, it poses
an EQ to the EQO (➍). The EQO may then interact with the SUL to potentially detect
in-equivalent behavior. If the EQO determines that the hypothesis and the SUL are not
equivalent, it returns a counterexample to the learner (➎), which the leaner may use to

25

Chapter 2 Preliminaries

refine the hypothesis model, e.g., by adding new states to the hypothesis model. The
newly discovered characteristics often require the learner to explore new properties about
the system which leads to another iteration of the exploration phase with new MQs.
Otherwise, if the EQO determines that the hypothesis and target system are equivalent,
the learning process terminates and the last constructed hypothesis is returned (➏).

Recall from Section 2.3 that the general black-box equivalence problem is impossible to
solve even for simplest model types such as DFAs [126]. This makes AAL in general neither
a complete nor a correct process because the EQO may not detect all in-equivalencies.
However, there exist plenty of success stories of applying AAL in practice (cf. Section 8.3).

2.4.2 Characteristics of Learning Algorithms

The two major challenges of AAL algorithms (and what is mostly used as distinguishing
features between them) are

1. to efficiently store the information about the observed behavior which directly affects
what and how many queries are posed during the exploration phase and

2. to efficiently analyze counterexamples from EQs in order to extract only relevant
information for refining the current hypothesis.

As a result, most MAT-based AAL algorithms are presented, analyzed, and compared with
each other by how they tackle these two challenges. Therefore, Chapter 6 focuses on how
the learners for SPAs, SBAs, and SPMMs access the information from the SUL during the
exploration phase and how the information from counterexamples during verification are
processed to refine the current hypotheses.

26

CHAPTER 3

Instrumented Context-Free Systems

This chapter presents the model types of systems of procedural automata (SPAs), systems
of behavioral automata (SBAs), and systems of procedural Mealy machines (SPMMs).
It establishes the formal definitions and semantics of the formalisms and elaborates on
several properties that are used by the techniques of the remaining chapters. Specifically
for SPAs and SBAs, this includes a monitor-based interpretation which allows for additional
use-cases in the context of model-based testing (MBT).

3.1 Motivation

Consider the exemplary context-free grammar (CFG) Gpalin in Example 2.

Example 2 (A CFG for palindromes over the letters a, b, c [61])
Let Gpalin = 〈N , T, P, S〉 denote a CFG with

• N = {F, G},

• T = {a, b, c},

• P is given by the following set of production rules in Backus-Naur form (BNF)

F -> a | a F a | b | b F b | G | ϵ

G -> c | c G c | F

and

• S = F .

It is easy to see that the context-free language (CFL) induced by Gpalin consists of
palindromes2 over the letters a, b, c. However, one should note a special property of Gpalin:
It uses two distinct non-terminal symbols to “split the work” of emitting terminal symbols.
The production rules of the non-terminal symbol F emit the terminal symbols a and b

whereas the production rules of the non-terminal symbol G emit the terminal symbol c.
For the induced language, this property is insignificant because one can easily construct
a second CFG for palindromes over a, b, c that only uses a single non-terminal symbol.
However, in the context of model-based quality assurance (MBQA), where models should
reflect properties of a system, this deliberate decision of decomposing the system into
two modular components is an essential piece of information about the structure and the
semantics of a system.

2Palindromes are words that are identical when read left-to-right and right-to-left.

27

Chapter 3 Instrumented Context-Free Systems

Its importance is linked to the way we continue to interpret context-free systems in
this thesis: With non-terminals we associate the notion of procedural invocations, i.e.,
delegating the flow of execution to some independent (possibly recursive) component
upon whose return the local work continues, whereas the local work is represented by
terminal symbols.

Consider the production rule “F -> a F a” from Example 2. It states that a valid run

of procedure F may consist of three subsequent actions: First, the procedure executes the
terminal action a. After that, it calls another procedure (here a recursive call to itself) and
delegates its execution to the invoked procedure. After returning from the call, it performs
a final terminal action a before terminating itself. Being able to assign such behaviors to
individual components and procedures of a system is paramount for a precise and sound
application of MBQA.

Remark 2

Due to the established connection between non-terminals of a CFG and the concept of invoking

procedures, we use the terms “context-free system” and “procedural system” interchangeably

for the remainder of this thesis.

3.1.1 Instrumentation

A major challenge for accessing these internal characteristics of CFLs is that non-terminal
symbols are not observable in the induced language. Techniques such as MBT or active
automata learning (AAL) which rely on the observable behavior of a (black-box) system
cannot distinguish between a system like in Example 2 and a system using only a single
non-terminal or procedure.

To tackle this issue, this thesis proposes an instrumentation that makes the start and the
end of procedural invocations observable. Intuitively, this is realized by modifying each
procedure to perform an observable call action at the start of a procedural invocation and
to perform a second observable return action before its termination. Taking Example 2 as
a reference, Example 3 shows such an instrumentation.

Example 3 (An instrumented CFG of palindromes over the letters a, b, c)
Let Gpalin−inst = 〈N , T, P, S〉 denote a CFG with

• N = {sF , sG},

• T = {a, b, c, F, G, R},

• P is given by the following set of production rules in BNF
sF-> F a R | F a sF a R | F b R | F b sF b R | F sG R | F R
sG-> G c R | G c sG c R | G sF R

and

• S = sF .

Each non-terminal symbol X of the original grammar is now interpreted as a new
terminal symbol and a distinct terminal return symbol R is introduced. Furthermore,
the production rules have been updated according to a pattern known from bracketed

languages [70]: Each production rule is prepended by the call symbol of the respective non-

28

3.2 SPAs

terminal and the new return symbol is appended to each production rule indiscriminately.
A generalization of this instrumentation is formalized in Definition 24.

Definition 24 (Instrumentation)
Let G1 = 〈N1, T1, P1, S1〉 denote an arbitrary CFG and r /∈ T1 denote a distinct return symbol.

We define the instrumentation G2 = 〈N2, T2, P2, S2〉 of G1 as follows:

• N2 = {sX | X ∈ N1},

• T2 = N1 ⊎ T1 ⊎ {r},

• P2 = {〈ĚLHS, LHS · RHSN1 7→sN1
· r〉 | 〈LHS, RHS〉 ∈ P1}, and

• S2 = sS1.

where wZ 7→sZ represents the word w in which every symbol z ∈ Z has been mapped to sz. From

the construction of P2, it directly follows that G2 is context-free, too.

Instrumentation is a crucial mechanism for exposing key structural properties of a
system. One can easily see by looking at the induced language of the instrumented system
of Example 3 that the separation of work between the two involved procedures now
becomes observable. Previous terminal symbols a and b are “nested” in matching pairs of
observable symbols F and R whereas as the symbol c is “nested” in pairs of observable
symbols G and R.

At first sight, such an instrumentation adds an additional challenge when using MBQA in
practice. Besides the regular translation of abstract alphabet symbols to concrete systems
actions, the instrumentation requires the system to support additional and potentially not
originally available interactions. However, instrumentation is a well-established concept in
software and hardware engineering so that there exists a variety of tools and frameworks
to implement these modifications. Furthermore, there exist certain application domains
where such information is an inherent part of system semantics which may be exploited for
free. Chapter 9 discusses the technical aspects of providing the proposed instrumentation
in practice as well as some fruitful application domains. In the following, we assume to
have a functional instrumentation available for the ease of presentation.

3.2 SPAs

SPAs aim at providing an efficient and intuitive model for describing context-free systems.
The core idea of SPAs is to represent the production rules of a CFG via a set of deterministic
finite acceptors (DFAs). For each non-terminal symbol of the grammar, there exists
a corresponding DFA that accepts the language of right-hand sides of the respective
production rules. Therefore, each DFA represents an individual procedure that may
contain (potentially recursive) calls to other procedures. To give an intuition for this
representation, consider Figure 3.1 that shows such a DFA-based representation of the
system of Example 2.
This representation has several major advantages: First, it is easy to understand.

Automaton-based structures often closely align with the internal structure of software
systems and hardware systems and allow one to visually outline important areas of
a system. Compared to the rather flat structure of production rules, this boosts the

29

Chapter 3 Instrumented Context-Free Systems

Figure 3.1 (from [61])

Two DFAs accepting the right-hand sides of the respective production rules of Gpalin of
Example 2. Sink states and corresponding transitions are omitted for readability.

Procedure: F

F0 F2

F1

F4

F3

F5

a

b

G

F

F

a

b

Procedure: G

G0 G1 G2 G3
c

F

G c

understanding of system semantics. Furthermore, the semantics of SPAs (cf. Section 3.2.1)
follow the standard copy-rule semantics known from the expansion of CFGs. This allows
procedures to be seen in isolation, irrespective of the context in which they are executed. In
comparison, related formalisms that also deal with context-free structures (cf. Chapter 7),
use joint, stack-based execution semantics, which implicitly add a global state that one
has to continuously keep track of.

Second, this representation is complete, i.e., it is able to cover the set of all CFLs. From
Definitions 4 and 6 it follows that for each CFG there can only exist a finite amount of
finite production rules and therefore only a finite amount of finite right-hand sides for each
non-terminal. Since every finite language of finite words is regular, the production rules
of a non-terminal are representable by a DFA. Due to the equivalence of regular languages
and regular expressions [83], a DFA-based representation even supports syntactic sugar
like the extended Backus-Naur form (EBNF) [92, 173].
Lastly, this representation supports a canonical form. As DFAs (and in case of SPMMs,

Mealy machines) support canonical representations themselves, the aggregation of these
automata yields a canonical representation, too. This proves useful for various techniques
from the field of verification, testing, and learning. Using the piecewise application of
minimization algorithms [82, 134] for the individual automata, directly allows one to
construct minimized aggregations which remove potentially hard to detect redundancies
of the CFG-based representation.
As discussed in Section 3.1.1, exposing the internal structure of a context-free system

via observable behavior is not possible because the language of a system only includes
terminal symbols. This problem transfers to the DFA-based interpretation as well. To
decide whether a procedural execution such as “a F a” is successful, the respective DFA
needs to parse the non-terminal symbol F . To address this issue, the language definition
of SPAs directly includes the proposed instrumentation which allows for a transfer of these
information between global interpretations and local interpretations of words.
Prior to detailing the semantics of SPAs, we continue with the introduction of some

additional notation first. In order to better distinguish between the roles of each alphabet
symbol, the notion of an SPA input alphabet partitions the set of input symbols according
to their effect on the system.

30

3.2 SPAs

Definition 25 (SPA input alphabet [61])
An SPA input alphabet is a disjoint union Σ = Σcall ⊎Σint ⊎ {r} where

• Σcall denotes the call alphabet,
• Σint denotes the internal alphabet, and
• r denotes the return symbol.

We write Σproc = Σcall ⊎Σint to denote the procedural (sub-) alphabet of Σ.

Intuitively, call symbols represent symbols that correspond to calls to other procedures.
In the context of plain CFGs (cf. Example 2), these symbols correspond to the non-terminal
symbols of the grammar. Internal symbols represent the atomic actions of a procedure
and correspond to the terminal symbols of a CFG. The return symbol corresponds to the
artificial symbol that is appended to each production rule during instrumentation. For the
exemplary systems in Examples 2 and 3 the corresponding SPA input alphabet is given by
Σ = {F, G} ⊎ {a, b, c} ⊎ {R}.

In the following, a special markup token is used in order to better distinguish between
a local, procedural interpretation of a word and a global, instrumented interpretation of a
word. We use b to denote the procedural interpretation of a symbol, word, or alphabet and
add (or remove) this markup token to dynamically switch to the procedural (or global)
interpretation of a symbol, word or alphabet. Note that this token is only used for reasons
of clarity and does not change or transform the actual input symbols. We continue with
the formalization of procedural automata and their aggregation towards SPAs.

Definition 26 (Procedural automaton [61])
Let Σ be an SPA input alphabet and c ∈ Σcall denote a procedure. A procedural automaton
for procedure c is a DFA P c = 〈Qc , qc

0
, bΣproc,Q

c
F ,δc〉.

Definition 27 (SPA [61])
Let Σ be an SPA input alphabet with Σcall = {c1, . . . , cn}. An SPA over Σ is a tuple

S = 〈P c1 , . . . , P cn〉 such that for each call symbol there exists a corresponding procedural

automaton. The initial procedure of S is denoted as c0 ∈ Σcall.

3.2.1 Semantics

For formally specifying the semantics of SPAs, structural operational semantics (SOS) [139]
is used. The SOS formalism allows one to specify operational semantics via a set of rules
that transform some form of application state. These state transformations can optionally
be guarded by generic constraints and so-called control components that may also be
transformed by the SOS rules. This formalism is chosen because on the one hand, it is a very
intuitive yet powerful way of specifying behavioral properties which makes formulating
and understanding proofs easier. On the other hand, it is implementation-independent
which means that in practice, SPAs may be implemented with different techniques such as
push-down automata, graph-transformations, or grammar-based interpretations as long
as they are behaviorally equivalent to the SOS specification.
Typically, SOS-based proofs follow the structure of a deduction tree. An initial con-

figuration represents the root of a tree and each node branches into several child-nodes

31

Chapter 3 Instrumented Context-Free Systems

depending on which transformation rules are applicable. The leaves of this tree then
represent the inferable statements. However, this thesis uses a more familiar interpretation
based on transition systems. Here, the configurations consisting of states and control
components form the nodes of a transition system which are connected with each other
via (guarded) transitions that correspond to the (guarded) transformation rules of the
SOS formalism. Whether one SOS configuration can be deducted from another SOS
configuration then transforms into a reachability problem. Hence, a deduction tree of SOS
rules is often referred to as an SOS system in the following.
Notation-wise, the classic SOS formalism is extended to support a notion of emitting

symbols in order to specify a generative mechanism (cf. Section 2.1.1). The statement

guard

(s1,σ1)
o
−→ (s2,σ2)

for some states s1, s2 and some control components σ1,σ2 denotes that this transformation
(if applicable) emits a symbol o. This notation is generalized to output sequences by writing

(s1,σ1)
w
−→∗(s2,σ2)

to denote that there exists a sequence of individual (applicable) transformations starting
in configuration (s1,σ1) and ending in configuration (s2,σ2), whose concatenation of
emitted symbols yields w.
For defining the semantics of SPAs via SOS, we first look at the notion of an SPA stack

which is used to model the control components of the SOS rules and then continue with
the formal definition of the (instrumented) language of an SPA.

Definition 28 (SPA stack domain/configuration [61])
Let Σ be an SPA input alphabet. We define ΓSPA = bΣ∗ ⊎ {⊥} as the SPA stack domain with ⊥

as the unique bottom-of-stack symbol. We use • to denote the stacking of elements of ΓSPA

where writing elements from left to right displays the stack from top to bottom and we write

ST(ΓSPA) to denote the set of all possible stack configurations.

Definition 29 (Language-SOS of an SPA [61])
Let Σ be an SPA input alphabet and S be an SPA over Σ. Using tuples from bΣ∗ × ST(ΓSPA) to

denote a system configuration, we define three kinds of SOS transformation rules:

1. call-rules:
bw ∈ L(P c)

(bc · bv,σ)SPA

c
−→ (bw ·br,bv •σ)SPA

for all bc ∈ bΣcall,bv ∈ bΣ∗, bw ∈ bΣ∗proc,σ ∈ ST(ΓSPA).

2. int-rules:
−

(ba · bv,σ)SPA

a
−→ (bv,σ)SPA

for all ba ∈ bΣint,bv ∈ bΣ∗,σ ∈ ST(ΓSPA).

32

3.2 SPAs

3. ret-rules:
−

(br,bv •σ)SPA

r
−→ (v,σ)SPA

for all bv ∈ bΣ∗,σ ∈ ST(ΓSPA).

The language of an SPA is then defined as

L(S) = {w ∈ Σ∗ | (bc0,⊥)SPA

w
−→∗(ϵ,⊥)SPA}.

We call a word w ∈ Σ∗ admissible in S iff ∃bv ∈ bΣ∗,σ ∈ ST(ΓSPA) such that

(bc0,⊥)SPA

w
−→∗(bv,σ)SPA.

To showcase the language-SOS, Example 4 presents an exemplary run through the SOS
system of the SPA S = 〈P F , PG〉 based on Figure 3.1, using F as the initial procedure.

Example 4 (An exemplary run of the SPA based on Figure 3.1 with initial procedure
F [61])
The SOS system starts with the configuration (bF ,⊥)SPA. Since ba · bF · ba ∈ L(P F), we can apply

a call-rule to perform the transition

(bF ,⊥)SPA

F
−→ (ba · bF · ba · bR,ϵ •⊥)SPA.

Parsing the internal symbol ba via the corresponding int-rule, we perform

(ba · bF · ba · bR,ϵ •⊥)SPA

a
−→ (bF · ba · bR,ϵ •⊥)SPA.

Since bG ∈ L(P F), we can apply a call-rule to perform the transition

(bF · ba · bR,ϵ •⊥)SPA

F
−→ (bG · bR, ba · bR • ϵ •⊥)SPA.

Since bc ∈ L(PG), we can apply a call-rule to perform the transition

(bG · bR, ba · bR • ϵ •⊥)SPA

G
−→ (bc · bR,bR • ba · bR • ϵ •⊥)SPA.

Parsing the internal symbol bc via the corresponding int-rule, we perform

(bc · bR,bR • ba · bR • ϵ •⊥)SPA

c
−→ (bR,bR • ba · bR • ϵ •⊥)SPA.

Now we use two ret-rules to parse two consecutive return symbols

(bR,bR • ba · bR • ϵ •⊥)SPA

R
−→ (bR, ba · bR • ϵ •⊥)SPA

R
−→ (ba · bR,ϵ •⊥)SPA.

Parsing the internal symbol ba via the corresponding int-rule, we perform

(ba · bR,ϵ •⊥)SPA

a
−→ (bR,ϵ •⊥)SPA.

33

Chapter 3 Instrumented Context-Free Systems

Applying a ret-rule again, we get

(bR,ϵ •⊥)SPA

R
−→ (ϵ,⊥)SPA.

Here, nomore transformations are applicable and the process stops. Collapsing these individual

steps, we have

(bF ,⊥)SPA

F ·a·F ·G·c·R·R·a·R
−−−−−−−−−−→∗(ϵ,⊥)SPA.

Hence, F · a · F · G · c · R · R · a · R ∈ L(S).

Note how the language-SOS implicitly instruments the languages of the individual
procedures of an SPA. Call-rules emit the respective call symbol when constructing the
state of the invoked procedure and append a return symbol that is emitted by the ret-rule
prior to returning from the procedure again. Since the runs of words of the language
of an SPA need to terminate with an empty “stack” (or rather control component), this
instrumentation results in a form of matchedness or nesting that is further analyzed in
the following sections. Also, Section 3.2.5 shows that these semantics coincide with the
classic expansion semantics of CFGs when applied to an instrumented (cf. Definition 24)
system, i.e., the language-SOS is effectively a shortcut for the process of instrumentation
and expansion.
Given the language semantics of SPAs, we continue with the presentation of several

SPA-related properties.

Definition 30 (Properties of SPAs)
Let Σ be an SPA input alphabet and S = 〈P c , . . .〉, S1, S2 denote some SPAs over Σ.

• We write |S|=
∑

c∈Σcall
|P c | to denote the size of an SPA.

• We call an SPA S minimal (with respect to Σ) iff

– each procedural automaton P c is minimal (with respect to bΣproc) and

– ∀c ∈ Σcall : ∃w ∈ L(S), i ∈ {1, . . . , |w|}: w[i] = c.

Note that the latter property requires all procedural automata to be reachable (by

means of the language-SOS system) and describe a non-empty language.

• We call an SPA S1 equivalent to another SPA S2 (denoted as S1 ≡SPA S2) iff

L(S1) = L(S2).

In the following, we only consider minimal SPAs with respect to Σ unless specified
otherwise. Note that for SPAs, minimality also implies canonicity because minimal DFAs are
unique (up to isomorphism) and SPAs are uniquely defined by their (canonical) procedural
automata.

3.2.2 Properties of Instrumented Words

The instrumentation induced by the language-SOS implies a nesting structure of call
symbols and return symbols that allows for reasoning about the scope of procedural
invocations. To access and characterize these structural properties, some utility functions
are necessary.

34

3.2 SPAs

Definition 31 (Call-return balance [61])
Let Σ be an SPA input alphabet. The call-return balance is a function β : Σ∗→ Z, defined as

β(ϵ) = 0,

β(u · v) = β(v) +

1 if u ∈ Σcall

0 if u ∈ Σint

−1 if u= r

for all u ∈ Σ, v ∈ Σ∗.

Intuitively, the call-return balance returns the number of open (unmatched) call symbols,
which may be negative if there are more open (unmatched) return symbols. One the basis
of the call-return balance, it is possible to classify words regarding their matchedness.

Definition 32 ((Minimally) call-, return-, and well-matched words)
Let Σ be an SPA input alphabet. We write

• CM(Σ) to denote the set {w ∈ Σ∗ | ∀w′ ∈ Suff(w): β(w′)≤ 0} of call-matched words,
• RM(Σ) to denote the set {w ∈ Σ∗ | ∀w′ ∈ Pref(w): β(w′)≥ 0} of return-matched

words,
• WM(Σ) to denote the set CM(Σ)∩ RM(Σ) of well-matched words,
• MCM(Σ) to denote the set {w ∈ (Σ∗ · {r}) | w ∈ CM(Σ)} of minimally call-matched

words,
• MRM(Σ) to denote the set {w ∈ (Σcall ·Σ

∗) | w ∈ RM(Σ)} of minimally return-matched
words, and

• MWM(Σ) to denote the set MCM(Σ)∩MRM(Σ) of minimally well-matched words.

For well-matched words, there exists an alternative, inductive characterization that is more

convenient for some proofs. We may alternatively define WM(Σ) ⊆ Σ∗ as the smallest set such

that

• Σ∗
int
⊆WM(Σ),

• ∀c ∈ Σcall, w ∈WM(Σ): c ·w · r ∈WM(Σ), and

• ∀w1, w2 ∈WM(Σ): w1 ·w2 ∈WM(Σ).

In order to reason about procedural scopes, it is necessary to find the matching return
symbols within instrumented words. This is formalized via the notion of a maximum

well-matched suffix function.

Definition 33 (Maximum well-matched suffix function)
Let Σ be an SPA input alphabet and w ∈ Σ∗. We define the maximum well-matched suffix
function ρw : N>0→ N as

ρw(x) =max{i ∈ {x − 1, . . . , |w|} | w[x , i] ∈WM(Σ)}.

Note that if there exists no well-matched suffix of w[x ,], e.g., if w[x] = r, then ρw(x)

returns x − 1 as w[x , x − 1] = ϵ ∈WM(Σ).

35

Chapter 3 Instrumented Context-Free Systems

Remark 3

In [61] the definition of ρ (there called find-return function) returns the index of the return

symbol. Therefore, certain theorems from [61] that are presented in this thesis use indices

that are shifted by one.

Furthermore, an instances set is used to quickly access the procedural invocations
occurring in an instrumented word.

Definition 34 (Instances set [61])
Let Σ be an SPA input alphabet and w ∈ Σ∗. We define the instances set Instw ⊆ Σcall ×N as

Instw = {〈c, i〉 | w[i] = c ∈ Σcall}.

3.2.3 Expansion and Projection

As Definition 29 suggests, the procedural automata of an SPA inherently define its lan-
guage. This relationship is concretized via the notion of expansion and projection: Ex-
pansion describes the process of transforming a local, procedural word into a global,
instrumented word, which allows one to analyze the behavior of an individual procedure
on the full system. Projection describes the reverse process of projecting from a global
word the individual behaviors of all procedures occurring in the global word. For the
remaining chapters of this thesis, these two concepts are of crucial importance as they
allow for a formalization of two essential (de-) composition properties (cf. Section 3.2.4)
that are able to lift various concepts of regular systems to the context-free environment of
SPAs.

We continue with looking at the notion of the gamma expansion first. Essential for the
expansion process is the concept of so-called access sequences, terminating sequences,
and return sequences.

Definition 35 (Access sequences, terminating sequences, and return sequences [61])
Let Σ be an SPA input alphabet and S be an SPA over Σ. The context of a procedure c ∈ Σcall

(denoted as Contc ⊆ Σ
∗ ×Σ∗) containing the access sequences and return sequences of c

and the set of terminating sequences of c (denoted as TSc ⊆ Σ
∗) are defined as

〈as, rs〉 ∈ Contc ∧ ts ∈ TSc ⇔∃w ∈ L(S): ∃〈c, i〉 ∈ Instw : w= as · ts · rs ∧

ts= w[i + 1,ρw(i + 1)].

Intuitively, an access sequence of a procedure c is an admissible word that transitions
the language-SOS system to the start of procedure c, i.e.,

(bc0,⊥)SPA

as
−→∗(bw ·br,σ)SPA

for all bw ∈ L(P c), 〈as, ·〉 ∈ Contc, and some matching σ ∈ ST(ΓSPA). A terminating sequence
represents a successful run from the start of a procedure to its end, possibly containing
some nested calls to other procedures, i.e.,

(bw · br,σ)SPA

ts
−→∗(br,σ)SPA

36

3.2 SPAs

for some matching bw ∈ L(P c), ts ∈ TSc ,σ ∈ ST(ΓSPA). A return sequence of a procedure c

guarantees to reach the final language-SOS configuration of an SPA after accessing the
procedure via the matching access sequence and successfully terminating it, i.e.,

(bc0,⊥)SPA

as·ts
−−→∗(br,σ)SPA

rs
−→∗(ϵ,⊥)SPA

for all 〈as, rs〉 ∈ Contc , ts ∈ TSc, and some matching σ ∈ ST(ΓSPA). In the following, asc, tsc,
and rsc may be used as shorthand notations for elements 〈as, rs〉 ∈ Contc, and ts ∈ TSc,
respectively.

To give an example of the three kinds of sequences, Example 5 shows a possible access
sequence, terminating sequence, and return sequence for procedure PG of the SPA of
Example 4. Note that the language of an SPA often contains multiple words and therefore
there may exist multiple terminating sequences and pairs of access sequences and return
sequences. Section 6.2.5 formalizes and exploits this fact to boost the performance of SPA-
based AAL. However, for reasons of simplicity, this chapter assumes a single representative
for the access sequence, terminating sequence, and return sequence of each procedure.

Example 5 (Exemplary access sequence, terminating sequence, and return sequence of
an SPA word [61])
Let S be the SPA based on Figure 3.1 and let w= F · a · F · G · c · R · R · a · R ∈ L(S). A possible

access sequence, terminating sequence, and return sequence for procedure G are:

• access sequence: F · a · F · G,

• terminating sequence: c, and

• return sequence: R · R · a · R.

The process of expanding a local, procedural word then consists of a symbol-wise
processing that replaces each procedural invocation with a concatenation of the respective
call symbol, the respective terminating sequence, and the return symbol. Definition 36
formalizes this process.

Definition 36 (Gamma expansion [61])
Let Σ be an SPA input alphabet. The gamma expansion γ: bΣ∗proc→WM(Σ) is defined as

γ(ϵ) = ϵ,

γ(bu · bv) =
¨

u · tsu · r · γ(v) if bu ∈ bΣcall

u · γ(v) if bu ∈ bΣint

for all bu ∈ bΣproc,bv ∈ bΣ∗proc.

Note that γ requires an environment which provides at least one terminating sequence
(of which γmay select an arbitrary one) for every call symbol occurring in its argument. In
the context of MBT (cf. Chapter 5) terminating sequences are computed on the basis of the
model and in the context of AAL (cf. Chapter 6) terminating sequences are extracted from
counterexamples, so that γ is always applicable. As discussed previously, the remainder of
this chapter assumes that all the corresponding terminating sequences are available.

37

Chapter 3 Instrumented Context-Free Systems

Figure 3.2 (from [61])

The gamma expansion of a local word of a procedural automaton Pp. By additionally
embedding the transformedword into a context of an access sequence and return sequence,
the local word can be fully transformed to a global word of the system.

Local word:

Global word:

ba1·ba2·bc1·ba3·ba4·bc2·ba5

bw

asp·a1·a2·c1·tsc1
·r·a3·a4·c2·tsc2

·r·a5·rsp

γ(bw)

Figure 3.2 visualizes the expansion process. Note that by embedding the expanded
word in a context of access sequence and return sequence, one can further establish a
direct equivalence between the local behavior of the concerned procedure and the global
behavior of the system (cf. Theorem 2).
The second type of transformation is denoted as alpha projection. Essentially, this

process reverses the gamma expansion by parsing a (well-matched) instrumented word
and replacing each occurrence of a nested, instrumented invocation with its procedural
equivalent. The process is formalized in Definition 37.

Definition 37 (Alpha projection [61])
Let Σ be an SPA input alphabet. The alpha projection α: WM(Σ)→ bΣ∗proc is defined as

α(ϵ) = ϵ,

α(u · v) =

¨
bu ·α(v[ρv(1) + 2,]) if u ∈ Σcall

bu ·α(v) if u ∈ Σint

for all u ∈ Σproc, v ∈ Σ∗.

Note that α expects a well-matched word as an argument. When u is a call symbol,
ρv(1) + 1 represents the index of the matching return symbol. Continuing after this
symbol guarantees that the argument to the recursive application is well-matched, too.
This projection process is visualized in Figure 3.3.

3.2.4 (De-) Composition Properties

Definitions 36 and 37 allow for the formalization of the two fundamental properties of
SPAs.

Theorem 1 (Projection theorem [61])
Let Σ be an SPA input alphabet, S be an SPA over Σ, and w ∈WM(Σ) starting with c0.

w ∈ L(S)⇔∀〈c, i〉 ∈ Instw : α(w[i + 1,ρw(i + 1)]) ∈ L(P c)

38

3.2 SPAs

Figure 3.3 (from [61])

The alpha projection of an instrumented global word, which replaces nested procedural
invocations so that it is interpretable in the local context of the concerned procedure.

Global word:

Local word:

a1·a2·c3·w2·r·a3·a4·c2·w3·r·a5

w

ba1·ba2·bc3·ba3·ba4·bc2·ba5

α(w)

Proof. This equivalence is based on the fact that for every emitted call symbol c of the
language-SOS of S, there needs to exist a corresponding word bv ∈ L(P c). One can verify
this property for each call symbol by checking the membership of the projected, procedural
word in the language of the respective procedural automaton. For the full proof, see the
localization theorem in [61].

Theorem 1 states that the semantics of an SPA are characterized by its individual
procedures. Testing whether an (instrumented) word is a member of the language of an
SPA can be answered equivalently by testing whether each projected run of the invoked
procedures is a member of the respective procedural languages. This notion of rigorous
(de-) composition allows for the implementation of various MBQA concepts for SPAs via
its procedural, regular components: In the context of verification, existing techniques
for regular systems may be used to verify the components of an SPA. In the context of
testing (cf. Chapter 5), conformance tests for SPAs can be constructed via an aggregation
of regular conformance tests for the involved procedures. In the context of AAL (cf.
Chapter 6), a learner for SPAs can be constructed via an aggregation of simultaneous
regular learners for the involved procedures.

However, in order to implement the proposed methods of verifying, testing, and learning
SPAs on the basis of their procedures, there needs to exist the possibility to evaluate local,
procedural behavior on the global, instrumented system. This process is formalized in the
expansion theorem.

Theorem 2 (Expansion theorem [61])
Let Σ be an SPA input alphabet and S be an SPA over Σ.

bw ∈ L(P c)⇔ as · γ(bw) · rs ∈ L(S)

for all c ∈ Σcall, 〈as, rs〉 ∈ Contc.

Proof. This equivalence is based on the fact that pairs of access sequences and matching
return sequences of a procedure c provide an admissible context for arbitrary bw ∈ L(P c).
One can then show by induction that

(bw · br,σ)SPA

γ(bw)
−−→∗(br,σ)SPA

39

Chapter 3 Instrumented Context-Free Systems

holds for all bw ∈ L(P c) and some matching σ ∈ ST(ΓSPA). For the full proof, see Corollary 1
in [61].

Theorem 2 allows for the evaluation of local language properties of procedural automata
on the global SPA system. Especially in the contexts of MBT and AAL, this property proves
useful as here, only the instrumented, global system is available for executing the respective
tests. Theorem 2 allows one to transform these procedural tests and evaluate them on the
global SPA system.

Concluding the concepts of projection and expansion, the following corollary establishes
the notion of SPA equivalence which sets the re-occurring theme for the verification,
testing, and learning of SPAs.

Corollary 1 (Equivalence of SPAs)
Let Σ be an SPA input alphabet and S1 = 〈P

c
1
, . . .〉, S2 = 〈P

c
2
, . . .〉 be two SPAs over Σ. We have

S1 ≡SPA S2⇔∀c ∈ Σcall : P c
1 ≡DFA P c

2 .

Proof. This is a direct consequence of Theorem 1 which characterizes the language of an
SPA via the language of its procedures. Consequently, if each procedural automaton of S1

is equivalent to its counterpart of S2, the two SPAs describe the same language. Hence,
the two systems are equivalent.

3.2.5 Instrumentation, Expansion, and Language

This section establishes the property that for a given context-free system, the language
of the respective SPA coincides with the CFL of the instrumented system. On the one
hand, this underlines the soundness of the language-SOS to capture the semantics of an
instrumented, context-free system. On the other hand, this establishes an alternative
characterization of the semantics of SPAs that may be used in other contexts. Especially for
model verification, Chapter 4 discusses an approach that is based on general context-free
model checking. With establishing the above relationship, the model checker can be
provided with an instrumented description of an SPA in order to verify its language.

In order to compare the two formalisms and reason about their equivalence, we look at
an SOS-based description of CFLs. Since SPAs already serve as intuitive representations of
CFGs, this description is implemented via an expansion-SOS for SPAs.

Definition 38 (Expansion-SOS of an SPA)
Let Σ be an SPA input alphabet and S be an SPA over Σ. We use tuples from (bΣ∗ × {⊥}) to
denote a system configuration, i.e., we omit any specific control components. We define two

kinds of SOS transformation rules:

1. expansion-rules:
bw ∈ L(P c)

(bc · bv,⊥)Exp

ϵ
−→ (bw · bv,⊥)Exp

for all bc ∈ bΣcall, bw,bv ∈ bΣ∗.

40

3.2 SPAs

2. emission-rules:
−

(ba · bv,⊥)Exp

a
−→ (bv,⊥)Exp

for all ba ∈ bΣint,bv ∈ bΣ∗.

The set of expanded words of an SPA is then defined as

Exp(S) = {w ∈ Σ∗ | (bc0,⊥)Exp

w
−→∗(ϵ,⊥)Exp}.

It is easy to see that the expansion-SOS replicates the semantics of CFG derivations.
Whenever a call symbol (representing a non-terminal symbol) is processed, the expansion-
rule replaces the symbol with a production of the concerned procedure (bw ∈ L(P c)).
All internal symbols (representing terminal symbols) are directly emitted by emission-
rules. Consequently, the set of expanded words of an SPA coincides with the CFL of the
corresponding CFG represented by the SPA.
For incorporating the proposed instrumentation of Definition 24, it is necessary to

construct an instrumented SPA to reflect the modified production rules. Therefore, we first
look at an instrumented SPA input alphabet to account for the new non-terminal symbols
and terminal symbols.

Definition 39 (Instrumented SPA input alphabet)
Let Σ be an SPA input alphabet. We write sΣ = sΣcall ⊎ (Σcall ⊎Σint ⊎ {r})⊎ {⊥} to denote the

instrumented SPA input alphabet. We write sΣproc = sΣcall ⊎ (Σcall ⊎Σint ⊎ {r}) to denote the

instrumented procedural (sub-) alphabet of sΣ.

For the two systems described in Examples 2 and 3, the instrumented SPA input al-
phabet is given by sΣ = {sF , sG} ⊎ {F, G, a, b, c, R} ⊎ {⊥}. The previous call symbols F and G

are now treated as internal symbols which allows the expansion-SOS to emit them as
observable symbols and the new call symbols (sΣcall) are used to represent the previous ex-
pansion points of the non-terminal symbols. Applying this instrumentation to a procedural
automaton P c involves three major modifications.

• Every previous c-transition needs to be replaced by a sc-transition to account for the
new call symbols,

• a new initial state needs to be added that performs an (observable) c-transition to
the old initial state, and

• all previous accepting states need to perform an r-transition into a new, single
accepting state.

These steps are formalized via the notions of instrumented procedural automata and
instrumented SPAs.

Definition 40 (Instrumented procedural automaton)
Let Σ be an SPA input alphabet and P c = 〈Q, q0, bΣproc,QF ,δ〉 be a procedural automaton for

some c ∈ Σcall. The instrumented procedural automaton is a DFA sP c = 〈sQ,sq0, bsΣproc, sQF , sδ〉

such that

• sQ =Q ⊎ {init, end},

41

Chapter 3 Instrumented Context-Free Systems

• sq0 = init,

• sQF = {end},

• – sδ(q,bsc) = δ(q,bc) ∀q ∈Q,bsc ∈ bsΣcall,

– sδ(init,bc) = q0,

– sδ(q,br) = end ∀q ∈QF ,

– sδ(q, ba) = δ(q, ba) ∀q ∈Q, ba ∈ bΣint.

Note that the above definition of sδ is partial. The instrumented procedural automaton can be

easily made total (and minimal) via a post-processing step as discussed in Definition 9.

Definition 41 (Instrumented SPA)
Let Σ be an SPA input alphabet with Σcall = {c1, . . . , cn} and S = 〈P c1 , . . . , P cn〉 be an SPA over

Σ. We define the instrumented SPA over sΣ as sS = 〈sP c1 , . . . , sP cn〉. The initial procedure of sS

is denoted as sc0 ∈ sΣcall.

To give an intuition for instrumented SPAs, Figure 4.1 shows the structure of the
instrumented SPA based on Figure 3.1. However, note that Figure 4.1 displays a context-
free process system (CFPS) and therefore uses a slightly different markup, e.g., the
sc-transitions are shown as dashed (name-based) edges with regular c labels, et cetera.

In the following, we look at the comparison between the expansion-SOS of the instru-
mented SPA and the language-SOS of the original SPA. This requires some utility lemmas
first.

Lemma 1

Let Σ be an SPA input alphabet and S denote an SPA over Σ. Let bu ∈ bΣ∗proc,bv ∈ bΣ∗, w ∈WM(Σ)

and σ ∈ ST(ΓSPA). We have

(bu · bv,σ)SPA

w
−→∗(bv,σ)SPA⇒ α(w) = bu.

Proof. This is a direct generalization of Lemma 2 of [61].

Lemma 2

Let Σ be an SPA input alphabet and P c be a procedural automaton for some c ∈ Σcall. We

have

L(sP c) = {bc} · L(P c)bΣcall 7→
bsΣcall
· {br}.

Proof. This is a direct consequence of the construction of sP c (cf. Definition 40). Here,
LX 7→sX represents the language L where for all words w ∈ L, every occurrence of x ∈ X in
w has been replaced with sx ∈ sX .

Lemma 3

Let Σ be an SPA input alphabet and S be an SPA over Σ. Let sS be the instrumented SPA over
sΣ and c ∈ Σcall, w ∈WM(Σ). We have

(bu · bv,σ)SPA,S

w
−→∗(bv,σ)SPA,S ⇔ (bubΣcall 7→

bsΣcall
· bvbΣcall 7→
bsΣcall

,⊥)Exp,sS

w
−→∗(bvbΣcall 7→
bsΣcall

,⊥)Exp,sS

for some bu ∈ bΣ∗proc,bv ∈ bΣ∗,σ ∈ ST(ΓSPA). We use “SPA, S” and “Exp, sS” to emphasize the SPAs

that the respective SOS systems refer to.

42

3.2 SPAs

Proof. “⇒”: Via structural induction over w.

• Let w ∈ Σ∗
int
: Internal symbols are only emitted by int-rules (cf. Definition 29)

which directly concludes that bu= w ∈ Σ∗
int
. Since the instrumentation does not

impact internal symbols, we have bubΣcall 7→
bsΣcall
= bu and by subsequent application of

emission-rules (cf. Definition 38) the statement directly follows.

• Let w= c · x · r with c ∈ Σcall, x ∈WM(Σ) such that the statement holds for x: By
Lemma 1, we can conclude bu= α(w) = bc. We can unfold the premise of the implica-
tion to

(bc · bv,σ)SPA,S

c
−→ (by ·br,bv •σ)SPA,S

x
−→∗(br,bv •σ)SPA,S

r
−→ (bv,σ)SPA,S

for some by ∈ L(P c). Since bu= bc, we have bubΣcall 7→
bsΣcall
= bsc and by by ∈ L(P c) and

Lemma 2 we know that bc · bybΣcall 7→
bsΣcall
·br ∈ L(sP c). By the expansion-rule of Defi-

nition 38 and our induction hypothesis we can then conclude

(bsc · bvbΣcall 7→
bsΣcall

,⊥)Exp,sS

ϵ
−→ (bc · bybΣcall 7→

bsΣcall
· br · bvbΣcall 7→
bsΣcall

,⊥)Exp,sS

c
−→ (bybΣcall 7→
bsΣcall
·br · bvbΣcall 7→
bsΣcall

,⊥)Exp,sS

x
−→∗(br · bvbΣcall 7→

bsΣcall
,⊥)Exp,sS

r
−→ (bvbΣcall 7→
bsΣcall

,⊥)Exp,sS .

• Let w= w1 ·w2 with w1, w2 ∈WM(Σ) such that the statement holds for w1, w2:
Again, by Lemma 1, we can conclude bu= α(w1 ·w2). Since both w1, w2 are in-
dependently well-matched, they do not share matching call symbols or return
symbols. As a result α can be applied in a piecewise fashion and we have
bu= α(w1 ·w2) = α(w1) ·α(w2). By subsequent application of the induction hypothe-
sis (first with bu= α(w1) and then with bu= α(w2)) we can directly conclude

(α(w1)bΣcall 7→
bsΣcall
·α(w2)bΣcall 7→

bsΣcall
· bvbΣcall 7→
bsΣcall

,⊥)Exp,sS

w1
−→∗(α(w2)bΣcall 7→

bsΣcall
· bvbΣcall 7→
bsΣcall

,⊥)Exp,sS

w2
−→∗(bvbΣcall 7→
bsΣcall

,⊥)Exp,sS

by applying the argumentation from the previous two induction steps depending on
whether the expansion-SOS processes call symbols or internal symbols of α(w1) and
α(w2).

“⇐”: Analogously to the first direction by arguing each case in reverse order.

Theorem 3

Let Σ be an SPA input alphabet and S denote an SPA over Σ. Let sS be the instrumented SPA

43

Chapter 3 Instrumented Context-Free Systems

over sΣ. Then we have

w ∈ L(S)⇔ w ∈ Exp(sS)

for all w ∈ Σ∗.

Proof. We use “SPA, S” and “Exp, sS” to emphasize the SPAs that the respective SOS systems
refer to. We have

w ∈ L(S)⇔ (bc0,⊥)SPA,S

w
−→∗(ϵ,⊥)SPA,S (3.1)

⇔ (bc0 · ϵ,⊥)SPA,S

w
−→∗(ϵ,⊥)SPA,S (3.2)

⇔ (bsc0 · ϵ,⊥)Exp,sS

w
−→∗(ϵ,⊥)Exp,sS (3.3)

⇔ (bsc0,⊥)Exp,sS

w
−→∗(ϵ,⊥)Exp,sS (3.4)

⇔ w ∈ Exp(sS) (3.5)

Equation (3.1) directly follows from Definition 29. Equation (3.3) follows from Lemma 3
and Equation (3.5) follows from Definition 38.

Figure 3.4 summarizes the relationship of the two approaches. The base system may be
described by either a CFG or an SPA, as they are only different syntactical representations
for the same information. For constructing the (instrumented) language of the base
system, one may either use the language-SOS (cf. Definition 29) directly or the two-step
process involving instrumentation (cf. Definition 24) and expansion (cf. Definition 38).
Theorem 3 shows that both approaches describe the same language, so it is merely a
question of convenience which one to choose.

3.3 SBAs

As motivated in Chapter 1, a central requirement for the successful application of MBQA in
practice is the ability to precisely describe system behavior with models. SPAs describe a
system holistically: The language of an SPA is minimally well-matched so it is necessary to
always consider full runs of a system in order to reason about their validity as ill-matched
runs are invalid by default. This property may cause challenges in practice because it
forces runs of a system to terminate with an empty “stack”. For example, if an erroneous
behavior is encountered within a nested procedural invocation, the concerned run still
needs to correctly terminate in order to not mask this error.
One can lift this constraint by considering prefix-closed languages for modeling system

behavior, i.e, languages L such that for every w ∈ L, Pref(w) ⊆ L holds. For example,
consider the word F · a · F · G · c · R · R · a · R from Example 4. To decide whether F , F · a,
etc. are still valid steps in a system, it would be convenient to check whether F , F · a, etc.
are members of the language of the SPA.
However, introducing prefix-closure to an SPA language directly impacts the inherent

link between the global language of an SPA and the local languages of its procedures (cf.
Theorem 1) as this link is built upon the holistic interpretation that procedures describe

44

3.3 SBAs

Figure 3.4

The relationship between the instrumentation, expansion, and language of SPAs.

A→ . . .
B→ . . .
. . .

sA→ . . .
sB→ . . .
. . .

Base system Instrumented system

Language

Instrumentation
(Definition 24)

Expansion
(Definition 38)

Language
(Definition 29)

syntactic transformations
semantic transformations

45

Chapter 3 Instrumented Context-Free Systems

terminating invocations. Especially, one cannot simply consider prefix-closed procedural
automata. Consider the SPA constructed from the two automata of Figure 3.1. Making
procedure F accept the word a · F does not make the induced SPA accept the word F · a · F .
Instead, the corresponding SPA would wrongfully accept F · a · F · R · R, i.e., a word that is
not a prefix of any w ∈ L(Gpalin−inst) (cf. Example 3).
The crux of this issue is the question about what knowledge the local, procedural

languages encode. In the language-SOS of an SPA, call-rules use procedural words to
progress the SOS configurations by setting the concatenation of the procedural word
and the return symbol as the new system state. Here, procedural languages encode
termination because they decide when returning, i.e., emitting the r symbol, is possible.
For prefix-closed semantics, it is necessary to encode reachability. These are two different
properties: In arbitrary DFAs, parsing an accepted word w may at some point traverse
non-accepting states. So while w is terminating and consequently reachable, there exist
prefixes of w that are not terminating but still reachable.
The challenge for prefix-closed systems is that termination and reachability are two

separate concepts that cannot be simultaneously encoded via the binary acceptance
criterion of DFAs. A possible way to tackle this issue is to model termination explicitly
by including the return symbol in the input alphabet of a procedural automaton and
treating it as a first-class citizen of the procedural language. This idea leads to the notion
of behavioral automata and consequently SBAs.

Remark 4

Note that [62] uses the terms “returnability” and “returnable” to describe the concepts of

“termination” and “terminating” procedures.

Definition 42 (Behavioral automaton [62])
Let Σ be an SPA input alphabet and c ∈ Σcall denote a procedure. A behavioral automaton
for procedure c is a DFA P c

B = 〈Q
c , qc

0
, bΣ,Qc

F ,δc〉.

Definition 43 (SBA [62])
Let Σ be an SPA input alphabet with Σcall = {c1, . . . , cn}. An SBA over Σ is a tuple

SB = 〈P
c1

B , . . . , P
cn

B 〉 such that for each call symbol there exists a corresponding behavioral

automaton. The initial procedure of SB is denoted as c0 ∈ Σcall.

By including the return symbol in the input alphabet of behavioral automata, termination
is no longer managed externally, e.g., via a language-SOS, but internally via explicit
transitions. However, this change requires additional constraints on the local languages in
order to guarantee a semantically correct description of valid system behavior.

Definition 44 (Validity of SBAs)
Let Σ be an SPA input alphabet and SB be an SBA over Σ. Let Term ⊆ Σcall denote the set of

terminating procedures. A procedure c is terminating iff

∃bw ∈ L(P c
B): bw[|bw|] = br.

We call SB valid, if each behavioral automaton P c
B is valid. A behavioral automaton P c

B is

valid iff it satisfies the following properties:

46

3.3 SBAs

• prefix-closure, i.e,

bw ∈ L(P c
B)⇒ bv ∈ L(P c

B) ∀bw ∈ bΣ∗,bv ∈ Pref(bw).

• return-closure, i.e,

bw ∈ L(P c
B)⇒ bw · br · bv /∈ L(P c

B) ∀bw ∈ bΣ∗,bv ∈ bΣ+.

• call-closure, i.e.,

bw ∈ L(P c
B)⇒ bw · bp · bv /∈ L(P c

B) ∀bw ∈ bΣ∗,bp /∈ Term,bv ∈ bΣ+.

Intuitively, prefix-closure allows one to check on a language level whether a run tra-
verses reachable transitions. Once a system diverges from such a path, i.e, a word is
rejected, every continuation of this word is also rejected. Return-closure ensures that
behavioral automata are procedurally consistent. Since the return symbol denotes the
end of a procedural invocation, any behavior beyond the first occurrence of br should
generally be inaccessible as the (global) behavior returns to the procedure that called
the respective behavioral automaton. Similarly, call-closure enforces that continuations
of non-terminating procedures should not represent reachable behavior on a procedural
level. In the following, we only consider valid SBAs unless specified otherwise.

3.3.1 Semantics

For defining the language of SBAs, we use SOS again. For modelling the control component
of an SOS configuration, we re-use the stack domain of SPAs (cf. Definition 28).

Definition 45 (Language-SOS of an SBA [62])
Let Σ be an SPA input alphabet and SB be an SBA over Σ. Using tuples from bΣ∗ × ST(ΓSPA) to

denote a system configuration, we define three kinds of SOS transformation rules:

1. call-rules:
bw ∈ L(P c

B)

(bc · bv,σ)SBA

c
−→ (bw,bv •σ)SBA

for all bc ∈ bΣcall, bw,bv ∈ bΣ∗, σ ∈ ST(ΓSPA).

2. int-rules:
−

(ba · bv,σ)SBA

a
−→ (bv,σ)SBA

for all ba ∈ bΣint, bv ∈ bΣ∗, σ ∈ ST(ΓSPA).

3. ret-rules:
−

(br,bv •σ)SBA

r
−→ (bv,σ)SBA

for all bv ∈ bΣ∗, σ ∈ ST(ΓSPA).

47

Chapter 3 Instrumented Context-Free Systems

The language of an SBA SB is defined as

L(SB) = {w ∈ Σ
∗ | ∃σ ∈ ST(ΓSPA): (bc0,⊥)SBA

w
−→∗(ϵ,σ)SBA}.

We call a word w ∈ Σ∗ admissible in SB iff ∃bv ∈ bΣ∗,σ ∈ ST(ΓSPA) such that

(bc0,⊥)SBA

w
−→∗(bv,σ)SBA.

There exist two fundamental differences between the definitions of SPA languages and
SBA languages. First, termination is now encoded in the languages of behavioral automata
as they range over the complete input alphabet bΣ. As a result, call-rules no longer enforce
return symbols when extending the SOS state but delegate this decision to words of
the involved procedural automata. The constraints on valid SBAs (cf. Definition 44)
ensure that this change still results in valid global behavior by including call symbols
to non-terminating procedures or the return symbol at most once as the last symbol.
Second, the language definition no longer requires an empty stack for termination. While
Definition 45 still allows for minimally well-matched words, the language may now also
contain minimally return-matched words.

These changes make SBA languages prefix-closed. As all SOS rules emit the first symbol
of the current state,

(bc0,⊥)SBA

w
−→∗(ϵ,σ1)SBA

for some σ1 ∈ ST(ΓSPA) directly implies

(bc0,⊥)SBA

u
−→∗(bv,σ2)SBA

v
−→ (ϵ,σ1)SBA

for some σ1,σ2 ∈ ST(ΓSPA) and w= u · v. Due to the prefix-closure of behavioral automata,
one is always able to find a procedural word that omits the symbol bv so that the SOS
system terminates on (ϵ,σ2)SBA after emitting u. Via induction, one can then directly
conclude that for any w ∈ L(SB), there exists w′ ∈ L(SB) for all w′ ∈ Pref(w) as well.

It should be noted that SBAs are able to describe even more languages than just prefix-
closed SPA languages. Due to the possibility to accept words with arbitrary stack contents,
SBAs can represent systems with non-terminating procedures. This may be especially useful
in cases of live systems which exhibit some form of non-terminating main-loop. Here, there
exists no suitable SPA-based representation which would require the termination of all
procedures. Instead, SBAs allow for such representations that go beyond the prefix-closure
of SPA systems.

To give an intuition of the semantics of SBAs, let us consider a variation of Example 4 in
which a prefix of the originally well-matched word is emitted. In order to reason about the
traversal of an SBA-based SOS system, we first need to transform the involved procedures
to behavioral automata. This involves incorporating the return symbol and adjusting the
acceptance of states accordingly. Figure 3.5 shows the transformed behavioral automata
and Example 6 shows an exemplary run of the SOS system of the respective SBA.

Example 6 (A run of the SBA based on Figure 3.5)
The SOS system starts with the configuration (bF ,⊥)SBA. Since ba · bF · ba ∈ L(P F

B), we can apply

48

3.3 SBAs

Figure 3.5 (from [62])

Behavioral automata based on the automata of Figure 3.1. Sink states and corresponding
transitions are omitted for readability.

Procedure: F

F0 F2

F1

F4

F3

F5 F6

ba
bb

bG

bF

bF
ba
bb

bR

bR

bR

bR

Procedure: G

G0 G1 G2 G3 G4
bc

bF

bG bc

bR

bR

a call-rule to perform the transition

(bF ,⊥)SBA

F
−→ (ba · bF · ba,ϵ •⊥)SBA.

Parsing the internal symbol ba via the corresponding int-rule, we perform

(ba · bF · ba,ϵ •⊥)SBA

a
−→ (bF · ba,ϵ •⊥)SBA.

Since bG ∈ L(P F
B), we can apply a call-rule to perform the transition

(bF · ba,ϵ •⊥)SBA

F
−→ (bG, ba • ϵ •⊥)SBA.

Since bc · bR ∈ L(PG
B), we can apply a call-rule to perform the transition

(bG, ba • ϵ •⊥)SBA

G
−→ (bc · bR,ϵ • ba • ϵ •⊥)SBA.

Parsing the internal symbol bc via the corresponding int-rule, we perform

(bc · bR,ϵ • ba • ϵ •⊥)SBA

c
−→ (bR,ϵ • ba • ϵ •⊥)SBA.

Now we use a ret-rule to parse the return symbol

(bR,ϵ • ba • ϵ •⊥)SBA

R
−→ (ϵ,ϵ • ba • ϵ •⊥)SBA.

Here, nomore transformations are applicable and the process stops. Collapsing these individual

steps, we have

(bF ,⊥)SBA

F ·a·F ·G·c·R
−−−−−−→∗(ϵ,ϵ • ba • ϵ •⊥)SBA.

Since ϵ • ba • ϵ •⊥ is a valid element of ST(ΓSPA), we have F · a · F · G · c · R ∈ L(SB).

Recall that Definition 45 does not require an empty stack to emit a word and especially
not a “canonical” stack in the form of ϵ • ϵ • . . . •⊥. While the prefix-closure of behavioral

49

Chapter 3 Instrumented Context-Free Systems

automata would certainly allow for such stack configurations, it would be an unnecessary
constraint as reaching the empty state ϵ is the determining factor for the termination.

Similar to SPAs, we continue with a series of properties of SBAs.

Definition 46 (Properties of SBAs)
Let Σ be an SPA input alphabet and SB = 〈P

c
B, . . .〉, SB1, SB2 denote some SBAs over Σ.

• We write |SB|=
∑

c∈Σcall
|P c

B| to denote the size of an SBA.

• We call an SBA SB minimal (with respect to Σ) iff

– each behavioral automaton P c
B is minimal (with respect to bΣ) and

– ∀c ∈ Σcall : ∃w ∈ L(SB), i ∈ {1, . . . , |w|}: w[i] = c.

Note that the latter property requires all behavioral automata to be reachable (by

means of the language-SOS system) and describe a non-empty language.

• We call an SBA SB1 equivalent to another SBA SB2 (denoted as SB1 ≡SBA SB2) iff

L(SB1) = L(SB2).

In the following, we only consider minimal SBAs with respect to Σ unless specified
otherwise. For SBAs, minimality also implies canonicity because minimal DFAs are unique
(up to isomorphism) and SBAs are uniquely defined by their (canonical) behavioral
automata.

3.3.2 (De-) Composition Properties

In analogy to SPAs, SBAs pursue the same idea of translating between the global, instru-
mented language and local, procedural languages of the respective behavioral automata
via projection and expansion. However, by adding the return symbol to the input alphabet
of behavioral automata, termination, i.e., the emission of the return symbol r, is now a
procedural decision. Furthermore, SBA languages are prefix-closed. These two changes
impact the ability to translate between the two views.

In the following, we look at the necessary adjustments for the projection and expansion
of SBA words. We continue with an SBA-specific adaption of Lemma 1 which leads to the
corresponding theorems for SBAs afterwards.

Lemma 4

Let Σ be an SPA input alphabet, bu ∈ bΣ∗proc,bv ∈ bΣ∗, w ∈WM(Σ) and σ ∈ ST(ΓSPA). We have

(bu · bv,σ)SBA

w
−→∗(bv,σ)SBA⇒ α(w) = bu.

Proof. Similar to Lemma 1, this is a direct generalization of Lemma 2 of [61]. Note
that while we discuss the language-SOS of SBAs, the constraint of w ∈WM(Σ) forces
all (potentially nested) calls occurring in w to have a matching return symbol in w as
well. As a result, we can apply the argumentation of the well-matched SPA case without
problems.

Theorem 4 (Behavioral projection theorem [62])
Let Σ be an SPA input alphabet and SB be an SBA over Σ. Let w ∈MRM(Σ) be a non-empty,

50

3.3 SBAs

minimally return-matched word starting with c0. Then we have

w ∈ L(SB)⇔∀〈c, i〉 ∈ Instw : α(u) · bv ∈ L(P c
B)

where u= w[i + 1, j], j = ρw(i + 1) and bv =
¨
ϵ if j = |w|

bw[j + 1] otherwise

Proof. “⇒”: Let w ∈ L(SB) and 〈c, i〉 ∈ Instw be arbitrary. We distinguish between the two
cases for bv.

• Let bv = ϵ. Since w[i] is a call symbol and w[i + 1, j] is a well-matched word of
maximum length, we know by Definition 45 that

(bc · bx ,σ)SBA

c
−→ (by , bx •σ)SBA

w[i+1, j]
−−−−−→∗(ϵ, bx •σ)SBA

for some bx ∈ bΣ∗, by ∈ bΣ∗proc,σ ∈ ST(ΓSPA). Note that by cannot contain an br sym-
bol because w[i + 1, j] is well-matched and j = |w|. By Lemma 4, we know that
α(w[i + 1, j]) = by. Due to the applicability of the call-rule, we know that by ∈ L(P c

B)

and the statements directly follows.

• Let bv = bw[j + 1]. We know that w[j + 1] is either a call symbol or the return symbol
because otherwise j would not be the maximum index such that w[i + 1, j] ∈WM(Σ),
contradicting our assumption. By Definition 45, call-rules and ret-rules (for emitting
such a symbol) require the first symbol of the current SOS configuration to be a call
symbol or the return symbol as well. We have

(bc · bx ,σ1)SBA

c
−→ (by1 · bv · by2,σ2)SBA

w[i+1, j]
−−−−−→∗(bv · by2,σ2)SBA

v
−→ (bz,σ3)SBA

for some bx , by2,bz ∈ bΣ∗, by1 ∈ bΣ∗proc,σ1,σ2,σ3 ∈ ST(ΓSPA). Similar to the previous case,
we know by Lemma 4 that α(w[i + 1, j]) = by1 and according to the call-rules of
the language-SOS by1 · bv · by2 ∈ L(P c

B). Due to the prefix-closure of P c
B, we have

by1 · bv ∈ L(P c
B) and the statement directly follows.

“⇐”: We show via contraposition that

w /∈ L(SB)⇒ ∃〈c, i〉 ∈ Instw : α(u) · bv /∈ L(P c
B).

Without loss of generality, let w= w1 ·w2 for some w1 ∈ Σ
∗, w2 ∈ Σ. Due to the prefix-

closure of L(SB), we can shorten every rejected word to a word that is rejected because of
its last symbol, i.e., there exist bx1 ∈ bΣ∗,σ1 ∈ ST(ΓSPA) such that

(bc0,⊥)SBA

w1
−→∗(bx1,σ1)SBA

but ∄ bx2 ∈ Σ
∗,σ2 ∈ ST(ΓSPA) such that

(bc0,⊥)SBA

w1·w2
−−−→∗(bx2,σ2)SBA.

51

Chapter 3 Instrumented Context-Free Systems

Such a decomposition has to exist because otherwise (i.e., w1 ·w2 = w, bx2 = ϵ,
σ2 ∈ ST(ΓSPA)) w would be in the language of the SBA, contradicting our assumption.
Let 〈c∗, i∗〉 ∈ Instw such that i∗ ≤ |w1| is the largest possible index. This means, it is the
context of procedure c∗ in which the symbol w2 cannot be emitted. We distinguish whether
w2 is a call symbol, an internal symbol, or the return symbol.

• Let w2 ∈ Σcall. Then w2 cannot be an element of the maximum well-matched word
w[i∗ + 1, j] and therefore bv = bw2. We have

(bc∗ · bx ,σ1)SBA

c∗
−→ (by · bw2,σ2)SBA

w[i∗+1, j]
−−−−−→∗(bw2,σ2)SBA

w2
−/−→ (bz,σ3)SBA

for some bx ,bz ∈ bΣ∗, by ∈ bΣ∗proc,σ1,σ2,σ3 ∈ ST(ΓSPA). Note that we do not need to
consider any continuations beyond bw2 because w is shortened. By Lemma 4, we
know that α(w[i∗ + 1, j]) = by. Since the last transformation is not applicable, we can
directly conclude from the call-rule of c∗ that α(w[i∗ + 1, j]) · bv ̸∈ L(P

c∗
B).

• Let w2 ∈ Σint. Then w2 is the last symbol of the maximum well-matched word
w[i∗ + 1, j] and therefore bv = ϵ. We have

(bc∗ · bx ,σ1)SBA

c∗
−→ (by · bw2,σ2)SBA

w[i∗+1, j−1]
−−−−−−−→∗(bw2,σ2)SBA

w2
−/−→ (bz,σ3)SBA

for some bx ,bz ∈ bΣ∗, by ∈ bΣ∗proc,σ1,σ2,σ3 ∈ ST(ΓSPA). Note that we do not need to con-
sider any continuations beyond bw2 because w is shortened. Since w[i∗+1, j−1] is also
well-matched, we can conclude by Lemma 4 that α(w[i∗ + 1, j − 1]) = by and since α
is applied piecewise for internal symbols, we can conclude α(w[i∗ + 1, j]) = by · bw2.
Since the last transformation is not applicable, we can directly conclude from the
call-rule of c∗ that α(w[i∗ + 1, j]) ̸∈ L(P

c∗
B).

• Let w2 = r. The argumentation is identical to the case of w2 ∈ Σcall.

To give an intuition for this projection, Figure 3.6 shows an example of the three
different cases for bv (bv = ϵ,bv ∈ bΣcall,bv = br) for a word of the SBA based on Figure 3.5.

Similar to SPAs, the expansion process of local words of behavioral automata requires a
set of sequences for transforming them into words for the global, instrumented system.
However, contrary to SPAs, the prefix-closure of SBA languages allows one to omit return
sequences for this process. We continue with the SBA-specific formalization of access
sequences and terminating sequences and the respective expansion process afterwards.

Definition 47 (Access sequences and terminating sequences for SBAs)
Let Σ be an SPA input alphabet and SB be an SBA over Σ. The set of access sequences of
procedure c ∈ Σcall (denoted as ASc ⊆ Σ

∗) and the set of terminating sequences of procedure
c ∈ Σcall (denoted as TSc ⊆ Σ

∗) are defined as

ASc = {w ∈ L(SB) | w[|w|] = c} and

TSc = {w ∈WM(Σ) | ∃as ∈ ASc : as ·w · r ∈ L(SB)}.

52

3.3 SBAs

Figure 3.6 (from [62])

A visualization of the different (de-) composition cases of Theorem 4 for a word of the
SBA based on Figure 3.5.

F a F b G c R b

〈c, i〉 u v

bc · bR ∈ L(PG
B)

〈c, i〉 u v = ϵ

bb · bG ·bb ∈ L(P F
B)

〈c, i〉 u v

ba · bF ∈ L(P F
B)

Note that the separate definition of ASc and TSc (compared to, e.g., Definition 35) is
necessary to account for the possibility of non-terminating procedures, i.e., procedures
which have access sequences but no terminating sequences. Furthermore, due to the
prefix-closure of SBAs and the omission of the return sequence, it is necessary to append an
additional return symbol in order to verify the correctness of the terminating sequences.
Again, asc and tsc may be used as a shorthand notation for elements as ∈ ASc and ts ∈ TSc.

Theorem 5 (Behavioral expansion theorem)
Let Σ be an SPA input alphabet and SB = 〈P

c
B, . . .〉 be an SBA over Σ. Let bw= bu · bv with

bu ∈ bΣ∗proc,bv ∈ bΣ. We have

bu · bv ∈ L(P c
B)⇔ as · γ(bu) · v ∈ L(SB)

for all c ∈ Σcall, as ∈ ASc.

Note that due to the return-closure and call-closure of valid behavioral automata, any word

that extends beyond a non-continuable symbol is rejected by default and therefore cannot

be used in the states of the language-SOS system of SBAs. As a result, only bv can be non-

continuable, bu can be constrained to bΣ∗proc, and γ can expand every call symbol occurring in bu.
Furthermore, the above expansion does not account for the empty word. Since valid behavioral

automata are prefix-closed by construction and the empty word is the trivial element of any

(non-empty) prefix-closed language, there is no practical need to explicitly cover this case.

Proof. Let c ∈ Σcall and as ∈ ASc be arbitrary.
“⇐”: By Definitions 45 and 47, we know from the premise of the implication that

(bc0,⊥)SBA

as
−→∗(bx ,σ1)SBA

γ(bu)·v
−−−→∗(ϵ,σ2)SBA

53

Chapter 3 Instrumented Context-Free Systems

for some bx ∈ L(P c
B),σ1,σ2 ∈ ST(ΓSPA). Since the emission of a single symbol v requires the

consumption of a single symbol from the state of the SOS configuration, we can further
restrict bx to be of the form bx = by · bz with by ∈ bΣ∗proc,bz ∈ bΣ, i.e,

(bc0,⊥)SBA

as
−→∗(by · bz,σ1)SBA

γ(bu)
−−→∗(bz,σ1)SBA

v
−→ (ϵ,σ2)SBA.

What remains to be shown is that by · bz = bu · bv. Since γ always emits well-matched words,
we can apply Lemma 4 and know that α(γ(bu)) = by. Since α is the inverse function of γ,
we can directly conclude that by = α(γ(bu)) = bu. Since the emission of a single symbol v

requires the first symbol of the state of the SOS configuration to be bv, we can directly
conclude that bz = bv. This concludes the statement.
“⇒”: We show via contraposition that as · γ(bu) · v /∈ L(SB)⇒ bu · bv /∈ L(P c

B). Similar to the
argumentation of the “⇐”-case of Theorem 4, we know that as · γ(bu) · v /∈ L(SB) implies a
non-applicable transformation in the SOS system, i.e.,

(bc0,⊥)SBA

as
−→∗(bx ,σ1)SBA

γ(bu)·v
−−/−−→∗(ϵ,σ2)SBA

for some bx ∈ bΣ∗. Assume that bx ∈ L(P c
B). Using the same argumentation from the “⇐”-case

of this theorem, we can conclude that bx = α(γ(bu)) · bv = bu · bv. However, in this case we have

(bx ,σ1)SBA

γ(bu)·v
−−−→∗(ϵ,σ2)SBA,

contradicting our assumption. As a result, we can conclude bx = bu · bv /∈ L(P c
B).

Intuitively, Theorem 5 establishes a similar expansion mechanism to Theorem 2 but
with the exclusion of the last symbol of each local word. Due to the return-closure and
call-closure of valid behavioral automata, any word that continues beyond a call (symbol)
to a non-terminating procedure or the return symbol is rejected by default and therefore
does not require expansion. Only for words where these symbols do not occur at all or
as the last symbol, querying the global system is relevant. Consequently, if expansion is
required, bu only contains internal symbols or call symbols for which terminating sequences
exist and therefore can be correctly processed by γ.

Similar to SPAs, Theorem 4 provides an alternative characterization of SBA equivalence.

Corollary 2 (Equivalence of SBAs)
Let Σ be an SPA input alphabet and SB1 = 〈P

c
B1

, . . .〉, SB2 = 〈P
c
B2

, . . .〉 be two SBAs over Σ. We

have

SB1 ≡SBA SB2⇔∀c ∈ Σcall : P c
B1
≡DFA P c

B2
.

Proof. The argumentation is identical to Corollary 1 using the projection of Theorem 4.

3.3.3 Reductions

SBAs extend the concept of SPAs by introducing the property of prefix-closure to their
languages. For any given SPA S, one can construct a corresponding SBA SB such that

54

3.4 SPMMs

L(SB) = {w | w ∈ Pref(w′), w′ ∈ L(S)}. Internally, this is achieved by distinguishing between
termination and reachability via prefix-closed behavioral automata that explicitly model
return transitions. In the following, we briefly look at the reverse process, i.e., reducing
the language of an SBA to its well-matched core via a transformation back into an SPA.
Reduction is an interesting concept as it describes the intersection of SBA languages

with the set of well-matched words WM(Σ). Its motivation lies in the (de-) composition
properties of SBAs, specifically the expansion of local words to global words. Compared
to the expansion process of SPAs, SBA expansion does not require concatenating return
sequences to transformed local words, allowing one to skip symbols. Especially in the
context of MBT and AAL, this has practical relevance. In MBQA, where words correspond
to input sequences on a system, reducing the length of words directly reduces the amount
of steps a system has to execute during testing or learning. If the system supports prefix-
closed semantics, one may simulate SPA-based testing or learning via SBAs and a reduction
afterwards. The evaluation in [62] shows that this approach can boost the performance
of these processes in some situations. However, note that this process is most of the time
only reasonable for SBAs which consist of only terminating (cf. Definition 44) procedures
as non-terminating procedures cannot be represented by SPAs. The reduction of a non-
terminating procedure would make it unreachable in the SPA-based interpretation.
Formally, reducing an SBA is a straight forward process. Recall from the motivation of

behavioral automata that termination needs to be explicitly encoded via return transitions.
In order to reverse this process, one only needs to look at the acceptance of return
successors to determine the acceptance of states in a procedural automaton.

Definition 48 (Reduction of a behavioral automaton)
Let Σ be an SPA input alphabet and P c

B = 〈Q
c , qc

0
, bΣ,Qc

F ,δc〉 denote a behavioral au-

tomaton for a procedure c ∈ Σcall. We define the reduced behavioral automaton
R(P c

B) = 〈R(Q
c), R(qc

0
), bΣproc, R(Qc

F), R(δc)〉 as follows:

• R(Qc) =Qc,

• R(qc
0
) = qc

0
,

• R(δc) = {〈p, ba, q〉 ∈ δc |ba ∈ bΣproc}, and

• R(Qc
F) = {p ∈Qc |∃q ∈Qc

F : δc(p,br) = q}.

Note that the above construction not necessarily constructs a minimal automaton, as it may

contain equivalent and unreachable states. This is only a technical detail, as one can easily

minimize arbitrary DFAs (cf. Definition 9).

The concept of reduction is then generalized to an SBA by reducing each of its behavioral
automata by means of Definition 48 and constructing an SPA from these reduced automata.
To give an intuition for this process, consider the SBA based on Figure 3.5. The reduced

SBA is described by the SPA based on Figure 3.1.

3.4 SPMMs

With SPAs and SBAs, the previous sections present two intuitive formalisms for describing
(prefix-closed) languages of instrumented context-free systems. However, as with generic

55

Chapter 3 Instrumented Context-Free Systems

formal languages in the context of MBQA in general, they are limited to only distinguish
between valid and invalid behavior of a system. Either a word is a member of the respective
language, i.e., representing a successful run of the system, or not, i.e., representing a failed
run of the system. This section discusses a formalism tailored towards reactive systems
which offer clients a dialog-based form of interaction consisting of input actions and
observable output reactions. As discussed in Section 1.1.2, the focus is on deterministic
transductions that follow an incremental lock-step pattern known from Mealy machines
in case of regular input languages.

Semantically, these systems are based on SBAs. Recall from Section 2.1.3 that Mealy-
based transductions can be easily represented via prefix-closed DFAs. With SBAs, not only
does there exist a globally prefix-closed formalism, but also its procedural components,
i.e., the behavioral automata, are prefix-closed as well. This directly suggests the idea of
systems of procedural Mealy machines (SPMMs). However, as discussed in Section 2.1.3
as well, there exist certain pitfalls when representing Mealy-based transductions with
DFAs. Specifically in the context of instrumented systems, the roles of symbols pose
additional challenges as, e.g., call symbols or the return symbol need to maintain their
roles throughout possible transformations.

We continue with the syntactical introduction of SPMMs and their components and look
at the semantic properties afterwards.

Definition 49 (SPA output alphabet)
An SPA output alphabet is a disjoint union Ω = Ωint ⊎ {�,�} where Ωint denotes the internal
output alphabet, � denotes the “success” output symbol, and � denotes the “error” output
symbol.

Similar to SPA input alphabets, we use b (as in bΩ) to denote output symbols that are
interpreted in a local, procedural context and add (remove) this markup token to switch
between local and global contexts.

Definition 50 (Procedural Mealy machine)
Let Σ be an SPA input alphabet, Ω be an SPA output alphabet and c ∈ Σcall denote a pro-

cedure. A procedural Mealy machine for procedure c over Σ and Ω is a Mealy machine

P c
M = 〈Q

c , qc
0
, bΣ, bΩ,δc ,λc〉.

Definition 51 (SPMM)
Let Σ be an SPA input alphabet with Σcall = {c1, . . . , cn} and Ω be an SPA output alphabet.

An SPMM over Σ and Ω is a tuple SM = 〈P
c1

M , . . . , P
cn

M 〉 such that for each call symbol there

exists a corresponding procedural Mealy machine. The initial procedure of SM is denoted as

c0 ∈ Σcall.

In order to formalize the semantics of SPMMs on the basis of SBAs, we need a notion of
validity similar to Definition 44.

Definition 52 (Validity of SPMMs)
Let Σ be an SPA input alphabet, Ω be an SPA output alphabet, and SM be an SPMM over Σ and

56

3.4 SPMMs

Ω. Let Term ⊆ Σcall denote the set of terminating procedures. A procedure c is terminating iff

∃q ∈Qc : λc(q,br) = Ò�.

We call SM valid, if each procedural Mealy machine P c
M is valid. A procedural Mealy machine

P c
M is valid iff it satisfies the following properties:

• instrumentation-consistency, i.e,

∀(q, ba,bo) ∈ λc : ba ∈ (bΣcall ∪ {br})⇒ bo ∈ {Ò�,Ò�}.

• error-closure, i.e,

∀q ∈Qc , ba1, ba2 ∈ bΣ : λc(q, ba1) =
Ò�⇒ λc(δc(q, ba1), ba2) =

Ò�.

• return-closure, i.e,

∀q ∈Qc , ba ∈ bΣ : λc(δc(q,br), ba) = Ò�.

• call-closure, i.e.,

∀q ∈Qc , ba ∈ bΣ,bp /∈ Term: λc(δc(q,bp), ba) = Ò�.

Intuitively, instrumentation-consistency enforces that all procedural actions, i.e., calling
procedures or returning from procedures, must output any of the distinct “success” symbol
or “error” symbol. This constraint is necessary for embedding the transduction semantics
into behavioral automata via a synchronous alphabet construction (see below). Especially
for the return symbol, allowing arbitrary output symbols would result in multiple eligible
return symbols which the SBA formalism does not support. One may justify this constraint
by the fact that instrumentation itself already requires enhancing a system with “external”
symbols that previously had no outputs at all. Therefore, enforcing fixed outputs for these
symbols does not impact the transduction semantics of the original system.
Error-closure is the equivalent of the prefix-closure of behavioral automata from a

complementary point of view. Rather than requiring all prefixes to be accepted as well,
now all continuations of once “rejected” steps (denoted via the “error” output symbol)
must continue to exhibit this behavior. Return-closure and call-closure are direct adaptions
from behavioral automata, adjusted to the respective “error” output symbol.
To give an intuition for the structure and properties of SPMMs, consider Figure 3.7

which shows the procedural Mealy machines based on the palindrome system of Figure 3.5.
For modeling the transduction of an SPMM via an SBA, it is necessary to unify the input

alphabet and output alphabet of the SPMM into a single alphabet in order to be compatible
with the SBA. For this task, we use a synchronous pairing of inputs and outputs via the
notion of a synchronous SPA input alphabet.

Definition 53 (Synchronous SPA input alphabet)
Let Σ be an SPA input alphabet and Ω be an SPA output alphabet. The synchronous SPA
input alphabet is a disjoint union Σ× = Σ×

call
⊎Σ×

int
⊎ {r×} over Σ×Ω such that

• Σ×
call
= Σcall × {�},

57

Chapter 3 Instrumented Context-Free Systems

Figure 3.7

Procedural Mealy machines based on the palindrome system of Figure 3.5 where input
a outputs x , input b outputs y, and input c outputs z. Sink states and corresponding
transitions (with output �) are omitted for readability.

Procedure: F

F0 F2

F1

F4

F3

F5 F6

ba/bx
bb/by

bG/Ò�

bF/Ò�

bF/Ò�
ba/bx
bb/by

bR/Ò�

bR/Ò�

bR/Ò�

bR/Ò�

Procedure: G

G0 G1 G2 G3 G4
bc/bz

bF/Ò�

bG/Ò� bc/bz

bR/Ò�

bR/Ò�

• Σ×
int
= Σint ×Ωint,

• r× = 〈r,�〉.

The semantics-preserving translation of procedural Mealy machines to behavioral au-
tomata follows the classic Mealy-to-DFA translation steps with special focus on correctly
associating the “error” output symbol with the rejection of DFAs.

Definition 54 (Behavioral chracterization of a procedural Mealy machine)
Let Σ be an SPA input alphabet, Ω be an SPA output alphabet, and SM = 〈P

c
M , . . .〉 be an SPMM

over Σ and Ω. The behavioral characterization of P c
M = 〈Q

c , qc
0
, bΣ, bΩ,δc ,λc〉 for c ∈ bΣcall is

given by the DFA P c
B = 〈Q

′c , q′
c

0, bΣ×,Q′
c

F ,δ′
c
〉 such that

• Q′
c
=Qc,

• q′
c

0 = qc
0
,

• Q′
c

F =Qc,

• δ′
c
= {〈p, 〈ba,bo〉, q〉 ∈Q′

c
× bΣ× ×Q′

c
| δc(p, ba) = q,λc(p, ba) = bo,bo ̸= Ò�}.

Note that the above construction does not construct a total or minimal automaton, as it

contains undefined transitions and potentially unreachable states. The behavioral automaton

can be easily made total and minimal via a post-processing step as discussed in Definition 9.

It is easy to see, how the resulting behavioral automata and consequently the resulting
SBA represent all error-free transductions of the original SPMM. For every non-“error”

output-labeled transition ·
a/o
−−→ ·, there exists a corresponding 〈a, o〉-labeled transition in

the respective behavioral automaton reaching an accepting state. Every transition with
an output � is left undefined so that after totalization and minimization, every one of
these transitions lead into a rejecting sink state, representing in SBA semantics that no
further call action, internal action, or return action is possible. The requirements on valid
procedural Mealy machines (cf. Definition 52) directly ensure that the corresponding
behavioral automata are valid as well. The proposed translation directly leads to the
following correspondence between the transductions of SPMMs and words of the translated
SBAs.

58

3.5 Monitors

Definition 55 (Transduction of an SPMM)
Let Σ be an SPA input alphabet, Ω be an SPA output alphabet, SM = 〈P

c
M , . . .〉 be an SPMM

over Σ and Ω, and SB = 〈P
c
B, . . .〉 be the transformed SBA over Σ×. We define the transductions

T (SM) of SM as

T (SM) = {〈a1 · . . . · an, o1 · . . . · on〉 ∈ (Σ
∗ ×Ω∗) | 〈a1, o1〉 · . . . · 〈an, on〉 ∈ L(SB)}.

As previously mentioned, the above definition only covers error-free transductions and
may not represent a left-total relation. This can be easily compensated for by extending
T (SM) with a global (error-) closure which to any non-mapped input sequence wa assigns
the output sequence of the maximum prefix of wa that is found in T (SM) and fills the
remaining output symbols (to reach equal length) with repetitions of �.
With the semantics of SPMMs defined via SBAs, the question arises whether a native

Mealy-based formalism is actual necessary for describing deterministic (instrumented)
context-free transductions with a lock-step-based pattern. The increases in comprehensi-
bility and efficiency very much justify this step. Comparing the SPMM based on Figure 3.7
with its respective SBA-based representation, the synchronous alphabet alone results in a
lot of “noise” in form of additional input symbols and transitions which mask the essential
characteristics of the system. Chapter 10 shows that a native SPMM-based representation
of a transduction is much more efficient which, especially in the context of MBT and AAL,
allows for a nice boost in performance of the respective techniques.

Note that alternatively, one could try to embed the transduction semantics using alter-
nating input and output symbols that are discussed in Section 2.1.3 as well. However,
especially for instrumented systems, the special role of individual symbols would introduce
quite a few corner cases. For example, in order to denote that a return symbol can be

executed successfully (·
br/Ò�
−−→ ·), one would need to return on the output symbol (breaking

the semantics of SBAs) or encode the output after the br-successor in the calling procedure
(making models harder to understand). An experimental implementation of this approach
is used in Chapter 10 for comparison and shows no significant benefit.
Furthermore, Section 11.2.1 discusses some possible generalizations of SPMMs that

would allow for true extensions that the current SBA-based characterization does not
support such as individual return outputs. Here, the extended semantics would further
speak for a native transduction formalism.

3.5 Monitors

With SPAs and SBAs, the previous sections present formalisms for (prefix-closed) lan-
guages of instrumented context-free systems for which the latter of the two is also used
as the foundation of instrumented context-free transductions in the form of SPMMs. The
corresponding language definitions (cf. Definitions 29 and 45) characterize the respective
languages from a generator-based point of view by describing how words of these lan-
guages can be constructed from a given SPA or SBA. As discussed in Section 2.1.2, formal
languages may equivalently be characterized from an acceptor-based point of view via a

59

Chapter 3 Instrumented Context-Free Systems

formalism that parses a word and decides whether it belongs to the language in question.
In this section, we look at acceptor-based approaches for the instrumented languages

discussed in this thesis. Specifically, we look at monitors, i.e., programs that are given an
SPA, SBA, or SPMM and monitor input sequences, e.g., by observing a running system,
to decide whether the observed system behavior matches the expected behavior of the
SPA, SBA, or SPMM. Monitoring is a powerful tool in practice as it allows one to utilize
use-cases from (potentially in-production) systems to supplement the testing of the system.
Section 9.3 discusses the impact of monitoring on the MBQA process in more detail.

3.5.1 Monitor-SOS

In order to characterize the general approach to monitoring the concerned systems, we
return to SOS because it allows one to focus on functional properties while abstracting
from technical implementation details. The central concept is a generic monitor pattern

that defines a monitor on the basis of a language-SOS.

Definition 56 (Monitor-SOS pattern)
Let Σ be an SPA input alphabet and ψ ∈ {SPA, SBA} denote a model type over Σ. Let w ∈ Σ∗

denote a (non-empty) word such that w= u · v for u ∈ Σ, v ∈ Σ∗. We define the monitor-SOS
of a monitor Mon as

(si ,σi)ψ
u
−→ (si+1,σi+1)ψ

(u · v,⊥)Mon→ (v,⊥)Mon

with si ∈ bΣ∗,σi ∈ ST(ΓSPA) for all i ∈ {1, . . . , |w|+ 1}.

A monitor Mon accepts a word w, iff

(w,⊥)Mon −→
∗(ϵ,⊥)Mon

with s1 = bc0,σ1 = ⊥.

Intuitively, an input symbol can be successfully parsed iff the corresponding language-
SOS emits this symbol beginning from a valid initial configuration. Note that the input
sequence in the state of the monitor configuration is processed on a symbol-wise basis.
Since the language-SOSs of SPAs and SBAs also emit symbols on a symbol-wise basis, the
monitor-SOS also supports an “online” processing style which does not require the full
input sequence to be known beforehand. The decision whether the configuration (ϵ,⊥)Mon

is reached, depends on when the monitor is questioned for a verdict.
While Definition 56 provides a very intuitive characterization of the functionality of

a monitor, it provides no guidance on possible implementations. A major challenge for
this task is the fact that the respective language-SOSs emit words non-deterministically.
Both for SPAs and SBAs, the call-rules of the respective language-SOSs (cf. Definitions 29
and 45) only require the next state to be a member of the respective procedural languages
but do not further specify which word to choose. To tackle this problem, one can use
the notion of rigorous (de-) composition of SPAs and SBAs (cf. Theorems 1 and 4) to

60

3.6 Summary

decompose global words into multiple local words of involved procedures. Since each
procedural language is a regular language, one can use the procedural (or behavioral)
automata for parsing these languages. This directly allows for an implementation of a
global monitor on the basis of a hierarchy of individual regular monitors.

Exploiting the notion of rigorous (de-) composition also highlights the nuances between
SPAs and SBAs again. As discussed in Section 3.3, SPAs describe a system holistically,
i.e., the procedural traces answer the question whether it is possible to return from a
procedural invocation. As a result, the procedural membership question can often3 only be
answered after monitoring the complete procedural trace, i.e., after parsing the matching
return symbol of an invoked procedure. As a result, the explicit monitor-SOS for SPAs
presented in [59] always has to check whether it is still possible to accept the current
procedural trace.

In contrast, SBAs allow for a much more fine-grained monitor. Since behavioral automata
are prefix-closed, any continuations of rejected words are also rejected. As a result, an
SBA-based monitor can truthfully answer the procedural membership question after every
monitored symbol and therefore check the validity of a call-rule after every parsed input
symbol as well. In general, this makes SBAs a much more suited for describing applications
that should be monitored.
Due to the SBA-based characterization of SPMMs, a similar result holds for SPMM-

based monitors. A native SPMM-based monitor can simply compare the expected output
symbol of the SPMM with the monitored output symbol of the system to directly detect
mismatches.

3.6 Summary

This section concludes the chapter by summarizing its main results.

• SPAs (Definition 27) are an automaton-based formalism for describing procedural
systems. The languages of SPAs (Definition 29) describe arbitrary instrumented
(Definition 24) CFLs (Theorem 3).

• SPAs exhibit a notion of rigorous (de-) composition of instrumented global words into
procedural local words, which allows for a global-to-local projection (Theorem 1)
and a local-to-global expansion (Theorem 2).

• SBAs (Definition 43) describe prefix-closed SPA languages (Definition 45) and
support additional features such as non-terminating procedures.

• Similar to SPAs, SBAs also support a notion of rigorous (de-) composition supporting
projection (Theorem 4) and expansion (Theorem 5) between instrumented global
words and procedural local words.

• SPMMs (Definition 51) are a specialized formalism for instrumented context-free
transductions that follow a deterministic lock-step-based pattern. Their semantics
are defined via SBAs over a synchronous alphabet of input symbols and output
symbol (Definition 55).

3One can only ignore the remaining symbols if the DFA enters a (rejecting or accepting) sink state.

61

Chapter 3 Instrumented Context-Free Systems

• All formalisms may be used in a monitor-based context (Definition 56) for a parser-
based interpretation of the languages (transductions).

62

CHAPTER 4

Model Verification of Instrumented Context-Free

Systems

This chapter presents an approach for verifying (the language and transductions of)
systems of procedural automata (SPAs), systems of behavioral automata (SBAs), and
systems of procedural Mealy machines (SPMMs). This process is based on a translation
of the respective models into context-free process systems (CFPSs) [37] and using an
existing model checker for CFPSs [162]. Furthermore, Section 7.2 presents the translation
of SPAs into visibly push-down automata (VPAs) for which Section 8.1.1 discusses further
verification techniques.

4.1 General Notes

Before discussing the suggested translations, one should note that SPAs, SBAs, and SPMMs
already provide an innate support for model verification. Due to the notion of rigorous
(de-) composition of the three model types into their respective procedural components
(cf. Theorems 1 and 4), one can easily use existing model verification techniques for
(regular) models to verify inner-procedural behavior. As a result, the following sections
specifically focus on the verification of the global systems.

4.2 SPAs

The topic of this section is the translation of SPAs into CFPSs [37]. SPAs and CFPSs
share a lot of similarities in the sense that both formalisms describe context-free systems
that are composed of individual procedural components. CFPSs consist of (multiple)
procedural abstractions, called procedural process graphs (PPGs), which can mutually call
each other following the classic expansion semantics known from context-free grammars
(CFGs). Due to the previously discussed relations between the instrumentation, expansion,
and language of SPAs (cf. Section 3.2.5), translating the semantics of SPAs into CFPSs
reduces to incorporating the proposed instrumentation into the respective PPGs of the
target CFPSs. For this task, the concepts of the construction of instrumented procedural
automata (cf. Definition 40) are re-used.

63

Chapter 4 Model Verification of Instrumented Context-Free Systems

Definition 57 (Induced PPG)
LetΣ be an SPA input alphabet and P c = 〈Qc , qc

0
, bΣproc,Q

c
F ,δc〉 denote a procedural automaton

for c ∈ Σcall. We define the induced PPG for P c as a tuple iPPGc = 〈Σc , Trans,→c ,σ
s
c ,σ

e
c〉where

• Σc = {{startc}, {endc}} ∪ {{q
c} | qc ∈Qc} is a set of state classes,

• Trans= Act∪N is a set of transformations, where

– Act = Σ is a set of actions and

– N = Σcall is a set of names,

• →c=→
Act
c ∪→

N

c is the transition relation where

– →Act
c =→

Act
start ∪→

Act
int
∪→Act

end
with

∗ →Act
start= {〈startc , c, qc

0
〉},

∗ →Act
int
= {〈q1, a, q2〉 | q1, q2 ∈Qc , ba ∈ bΣint,δ

c(q1, ba) = q2},

∗ →Act
end
= {〈q, r, endc〉 | q ∈Qc

F}, and

– →N

c = {〈q1, a, q2〉 | q1, q2 ∈Qc , ba ∈ bΣcall,δ
c(q1, ba) = q2},

• σs
c = {startc},

• σe
c = {endc}.

Intuitively, an induced PPG is a graph-based representation of an instrumented pro-
cedural automaton. Most of the structural information is copied, where transitions for
internal symbols are translated to action-based edges and transitions for call symbols are
translated to name-based edges which represent expansion points for procedural calls.
Furthermore, two additional states, startc and endc, are used as designated start node and
end node in order to incorporate the instrumentation semantics:

• startc ensures that every run throughout the graph initially traverses an action-
based edge labeled with the corresponding call symbol prior to reaching the node
representing the initial state of the procedural automaton, and

• connecting each node that corresponds to an accepting state of the procedural
automaton with the endc node ensures that the PPG has to traverse an r-labeled,
action-based edge prior to reaching the end state.

It is easy to see, how this construction directly reflects the notion of instrumentation of
Definitions 24 and 40. Note that the above construction also ensures that induced PPGs
are terminating and guarded as required by [37].
By aggregating the induced PPGs of each procedure of an SPA, one can construct the

corresponding induced CFPS.

Definition 58 (Induced CFPS)
Let Σ be an SPA input alphabet and S be an SPA over Σ. We define the induced CFPS for S

as a tuple iCFPSS = 〈N , Act,∆, P0〉 such that

• N = Σcall is a set of names,

• Act = Σ is a set of actions,

• ∆ = {iPPGc | c ∈ Σcall} is a finite set of induced PPGs with names in N and

• P0 = iPPGc0 is the “main” PPG.

Let→N=
⋃

c∈Σcall
→N

c . We denote by Exp(iCFPSS) the (potentially infinite state) expansion

64

4.2 SPAs

Figure 4.1

The induced CFPS of the SPA based on Figure 3.1. Nodes and transitions created from the
sink states of the procedural automata are omitted for readability. Action-based edges are
depicted via solid lines, name-based edges via dashed lines.

startF endF

iPPGF

F

a

b

G

F

F

a

b

R

R

R

R
startG endG

iPPGG

G c

F

G c

R

R

of P0 in which recursively every name-based edge 〈p, c, q〉 ∈→N is replaced by a copy of iPPGc

such that p = startc and q = endc [37].

An example of an induced CFPS is shown in Figure 4.1 which depicts the induced CFPS
of the palindrome SPA based on Figure 3.1.
Please note that in [37] the semantics of CFPSs are usually interpreted in the context

of an environment and a valuation function V : AP→ 2Σc which associates with atomic
propositions a set of state classes in which they hold. As discussed in Section 2.2, this thesis
mainly focuses on (labeled) path-equivalence and therefore implicitly assumes a constant
valuation function that returns the empty set. However, in certain situations, users may
enhance the induced CFPS with atomic propositions for some convenient shortcuts when
specifying requirements.
In the following, we look at the equivalence between words of an SPA language and

the existence of a correspondingly labeled path from startc0
to endc0

in the expansion of P0

of the induced CFPS. This directly enables one to use CFPS model checkers with support
for input modalities for the verification of SPA languages.

Theorem 6

Let Σ be an SPA input alphabet, S be an SPA over Σ and iCFPSS be the induced CFPS of S.

Let w= a1 · . . . · an ∈ L(S) denote a word of S. Then we have

w ∈ L(S)⇔ startc0

a1
−→ . . .

an
−→ endc0

with startc0
, . . . , endc0

∈ Exp(iCFPSS).

Proof. The statement directly follows from the construction of induced CFPSs and in-
duced PPGs. By Definition 57, induced PPGs exhibit the same structural properties as
instrumented procedural automata (cf. Definition 40). The start edge and the end edge
correspond to the bc-labeled transition and the br-labeled transition respectively, the in-
ternal edges correspond to the internal transitions, and the named-edges correspond to
the sc-labeled transitions (for sc ∈ sΣcall). This means, for a procedural automaton P c, its
instrumented version sP c accepts a word iff there exists a correspondingly labeled path

65

Chapter 4 Model Verification of Instrumented Context-Free Systems

in iPPGc from startc to endc in which each occurrence of a sc (for all sc ∈ sΣcall) traverses a
correspondingly labeled name-based edge. By Definition 58, induced CFPSs exhibit the
same structural properties as instrumented SPAs (cf. Definition 41). Since the expansion
of CFPSs follows the same semantics as Definition 38 and we have identical expansion
points (named edges and sc-transitions), Theorem 3 directly concludes the statement
where startc0

corresponds to (bsc0,⊥)Exp and endc0
corresponds to (ϵ,⊥)Exp.

Theorem 6 allows one to relate words of an SPA language L(S) to paths in the induced
CFPS iCFPSS, that terminate in endc0

. One has to pay special attention to this property,
as specifying requirements in temporal logics such as the computational tree logic (CTL)
with actions (cf. Definition 17) may often only cover prefixes of paths. In order to
address “whole-word” verification, one has to encode “termination” of an SPA word via the
CTL formula “AX false”. This formula is only satisfied by nodes which have no outgoing
edges. When constructing induced CFPSs from SPAs with total procedural automata, this
formula only holds in endc0

of the initial expansion of P0 as all other end nodes of nested
expansions of induced PPGs coincide with some inner nodes. Consequently, this formula
identifies the CFPS state that corresponds to the final structural operational semantics
(SOS) configuration (ϵ,⊥)Exp and allows one to determine the well-matchedness of the
word that is represented by a path.

4.2.1 Examples

To give an intuition for the proposed process of SPA language verification, this (sub-)
section presents some exemplary formulae and their satisfiability. Burkart et al. [37]
present model checking algorithms for CFPSs and CFPS-like structures [38], that allow
one to verify modal µ-calculus formulae for these systems. In the following, we focus
on alternation-free µ-calculus formulae which directly cover the set of CTL-expressible
requirements including actions (cf. Definition 17). In [162], Steffen and Murtovi present
an implementation of the model checker of [37] that is publicly available as a part of
AutomataLib (which is a part of LearnLib [95]) and is used for evaluating the formulae of
this example.

Table 4.1 shows a set of CTL formulae with actions that are evaluated on the SPA based
on Figure 3.1. For this, the SPA is taken and transformed into the corresponding induced
CFPS of Figure 4.1 such that the model checker of [162] can be run. For reference, the
table also provides the translated modal µ-calculus formulae.
The first formula is violated because there exists no word in the language of the SPA

that contains two subsequent bs. Note that while the original palindrome language
(cf. Example 2) certainly allows for subsequent bs, e.g., in the palindrome bbcbb, the
production rules of F can only emit a single b before delegating to another procedure
(non-terminal). Since the language-SOS incorporates the instrumentation, this delegation
is explicitly observed. By adjusting for this fact, one can see that the corresponding second
formula is satisfied.
As previously discussed, “AX false” may be used to encode well-matched SPA words.

With the third formula, one checks whether the system allows for finite palindromes. The

66

4.2 SPAs

T
a
b
le

4
.1

A
se
to

fC
T
L
fo
rm

ul
ae

ev
al
ua

te
d
on

th
e
ex
em

pl
ar
y
SP

A
ba

se
d
on

Fi
gu

re
3.
1.

In
ad

di
ti
on

,t
he

ta
bl
e
sh
ow

s
th
e
µ
-c
al
cu

lu
s
fo
rm

ul
ae

as
tr
an

sl
at
ed

by
th
e
to
ol

of
[1
62

].
H
er
e,

th
e
un

-p
ar
am

et
er
iz
ed

bo
x
m
od

al
it
ie
s
([
])

an
d
di
am

on
d
m
od

al
it
ie
s
(〈
〉)

re
pr
es
en

t
th
e

un
iv
er
sa
lly

qu
an

ti
fie

d
an

d
ex
is
te
nt
ia
lly

qu
an

ti
fie

d
X
op

er
at
or
s,
re
sp
ec
ti
ve
ly
.

F
o
rm

u
la

D
e
sc
ri
p
ti
o
n

|=?

1.
E

F
(〈

b
〉〈

b
〉t

ru
e)

T
he

re
ex
is
ts

a
(s
ub

-)
pa

th
la
be

le
d

b
b
.

✗
µ

Z
0
.(
((
〈b
〉(
〈b
〉t

ru
e)
)
∨
(〈
〉Z

0
))
)

2.
E

F
(〈

b
〉〈

F
〉〈

b
〉t

ru
e)

T
he

re
ex
is
ts

a
(s
ub

-)
pa

th
la
be

le
d

b
F
b
.

✓
µ

Z
0
.(
((
〈b
〉(
〈F
〉(
〈b
〉t

ru
e)
))
∨
(〈
〉Z

0
))
)

3.
E

F
(A

X
fa

ls
e)

T
he

re
ex
is
ts

a
pa

th
to

th
e
fin

al
st
at
e.

✓
µ

Z
0
.(
((
[]

fa
ls

e)
∨
(〈
〉Z

0
))
)

4.
A

F
(A

X
fa

ls
e)

A
ll
pa

th
s
ev
en

tu
al
ly

re
ac
h
th
e
fin

al
st
at
e.

✗
µ

Z
0
.(
((
[]

fa
ls

e)
∨
((
〈〉

tr
u
e)
∧
([
]Z

0
))
))

5.
A

G
(E

F
(A

X
fa

ls
e)
)

O
n
al
lp

at
hs

th
er
e
ex
is
ts

a
pa

th
to

th
e
fin

al
st
at
e.

✓
ν

Z
1
.(
((
µ

Z
0
.(
((
[]

fa
ls

e)
∨
(〈
〉Z

0
))
))
∧
([
]Z

1
))
))

6.
A

G
([

F
](

A
F
(〈

R
〉t

ru
e)
))

G
lo
ba

lly
,a

ll
F
-s
uc
ce
ss
or
s
m
us
t
ha

ve
an

R
-s
uc
ce
ss
or

ev
en

tu
al
ly
.

✓
ν

Z
1
.(
((
[F
](
µ

Z
0
.(
((
〈R
〉t

ru
e)
∨
((
〈〉

tr
u
e)
∧
([
]Z

0
))
))
))
∧
([
]Z

1
))
))

67

Chapter 4 Model Verification of Instrumented Context-Free Systems

fourth formula is violated because the palindrome system allows for infinite recursion in
which, e.g., procedure F , repeatedly invokes itself. Therefore, there exists an infinite path
that may not reach the final state. However, with the fifth formula one can verify that at
least termination is always possible in the system. This makes perfect sense because one
can at any time decide to no longer perform recursive calls.

4.3 SBAs

For verifying instrumented context-free behaviors in the form of SBAs, several of the
previously presented concepts are re-usable. Recall that the main differences between
procedural automata and behavioral automata concern the prefix-closure and the addition
of the return symbol to the input alphabet of behavioral automata. Due to the prefix-
closure, requirements no longer need to encode well-matched words via the utility formula
“AX false”. However, the transformation now needs to actively filter out paths of rejected
words, which in case of holistic SPAs are implicitly filtered out by not reaching a return
edge. Furthermore, due to the inclusion of the return symbol, adding a return edge
now needs to be decided on the basis of the acceptance of br-successors and not on the
basis of the acceptance of the states themselves. These adjustments are formalized in
Definition 59.

Definition 59 (Induced behavioral PPG)
Let Σ be an SPA input alphabet and P c

B = 〈Q
c , qc

0
, bΣ,Qc

F ,δc〉 denote a behavioral au-

tomaton for c ∈ Σcall. We define the induced behavioral PPG for P c
B as a tupel

iPPGc
B = 〈Σc , Trans,→c ,σ

s
c ,σ

e
c〉 such that

• Σc = {{startc}, {endc}} ∪ {{q
c} | qc ∈Qc

F} is a set of state classes,

• Trans= Act∪N is a set of transformations, where

– Act = Σ is a set of actions and

– N = Σcall is a set of names,

• →c=→
Act
c ∪→

N

c is the transition relation where

– →Act
c =→

Act
start ∪→

Act
int
∪→Act

end
with

∗ →Act
start= {〈startc , c, qc

0
〉},

∗ →Act
int
= {〈q1, a, q2〉 | q1, q2 ∈Qc

F , ba ∈ bΣint,δ
c(q1, ba) = q2},

∗ →Act
end
= {〈q, r, endc〉 | q ∈Qc

F ,δ(q,br) ∈Qc
F}, and

– →N

c = {〈q1, a, q2〉 | q1, q2 ∈Qc
F , ba ∈ bΣcall,δ

c(q1, ba) = q2},

• σs
c = {startc},

• σe
c = {endc}.

The main differences between Definition 57 and Definition 59 concern the set of state
classes and the notion of→Act

end
. For the construction of Σc (and the transitions between

the state classes) only the set of accepting states Qc
F is considered to prevent including

paths which correspond to rejected words. Furthermore, the construction of →Act
end

no
longer requires the source state to be accepting but the source state to have an accepting
br-successor. When applying this transformation to an SBA such as the one described

68

4.4 SPMMs

in Figure 3.5, we see that the induced behavioral PPG coincides with the one shown
in Figure 4.1. Here, however, the sink nodes and corresponding edges are not omitted
for readability but actually do not exist. Otherwise, the switch to behaviors does not
significantly impact the structural properties of induced behavioral PPGs compared to
(plain) induced PPGs. Especially, the notion of induced behavioral CFPS is similar to
Definition 58 and therefore omitted here.
As previously mentioned, the utility formula “AX false” is no longer needed to denote

the well-matchedness of words (paths). As seen in formulae one, two and six of Table 4.1,
one can easily and intuitively describe prefixes of words as well so that the adaption of
requirements to SBAs and their respective behaviors is straightforward.

4.4 SPMMs

For the verification (of the transductions) of SPMMs, it is possible to exploit its characteri-
zation via SBAs (cf. Section 3.4). By transforming SPMMs into SBAs first, the concepts of
Section 4.3 can be directly applied to verify the transduction steps of the original SPMMs.
While the SBA-based interpretation introduces some overhead such as the larger input
alphabet, this only affects the verification process but not the specification of requirements

in, e.g., CTL. A transduction step such as ·
a/o
−−→ · in the SPMM context can be directly

represented by an 〈a, o〉 input modality in the SBA context.

4.5 Summary

This section concludes the chapter by summarizing its main results.

• The verification of SPA languages can be implemented via a (path-) equivalent
translation into CFPSs, which allows one to use existing model checkers for the
actual verification process. This embedding requires a special formula to correctly
encode well-matched words.

• The verification of SBA languages only requires a minor adjustment of the construc-
tion of the respective CFPSs (to correctly incorporate the semantics of termination
and reachability) and stays identical to the SPA case otherwise. Especially for the
specification of requirements, it is no longer necessary to actively encode well-
matched words.

• The verification of SPMMs is based on the translation of SPMMs into equivalent
SBAs as proposed in Section 3.4, which directly enables one to utilize the presented
SBA verification for the verification of transductions.

69

CHAPTER 5

Model-Based Testing of Instrumented

Context-Free Systems

This chapter presents the construction of conformance tests for systems of procedural
automata (SPAs), systems of behavioral automata (SBAs), and systems of procedural Mealy
machines (SPMMs). The topic involves general concepts for the conformance testing of
SPAs as well as necessary adjustments for SBA-based and SPMM-based conformance
testing using the example of the W-method [44].

5.1 General Concepts

The notion of rigorous (de-) composition is a central concept for the construction of
conformance tests of SPA, SBA, and SPMM. According to Theorems 1 and 4, the languages
of SPAs and SBAs (and via a translation to SBAs, the transductions of SPMMs as well)
are fully characterized by the languages of their respective procedural components.
Therefore, by verifying the conformance of each model-procedure with its corresponding
implementation-procedure, one can automatically conclude the conformance of the global
SPA, SBA, and SPMM model with the respective implementation. Since the procedures
of SPAs, SBAs, and SPMMs are represented by regular automata, i.e., (prefix-closed)
deterministic finite acceptors (DFAs) or Mealy machines, existing concepts from regular
conformance testing can be used to construct these procedural tests. The main topics of
the following sections then concern the execution of these local conformance tests on the
global system and the handling of potential challenges of this process.
Note that by decomposing the global conformance tests into procedural conformance

tests and delegating the constructions thereof to existing approaches, the global confor-
mance tests are subject to the same assumptions and guarantees as the procedural ones.
This is especially important for the aspects of correctness and completeness. Since the
black-box equivalence problem is impossible to solve even for simplest formalisms such
as DFAs [126], it is not possible to provide any better results for SPAs, SBAs, or SPMMs.
Instead, the following sections focus on involving the procedural conformance tests in the
most generic way possible in order to allow for the transfer of assumptions and guarantees
for regular systems to instrumented context-free systems. This should allow one to easily
modify the construction of global conformance tests (by using difference approaches for
constructing the procedural conformance tests) in order to meet one’s individual needs.

71

Chapter 5 Model-Based Testing of Instrumented Context-Free Systems

5.2 SPAs

In order to evaluate procedural conformance tests on a global system, Theorem 2 states
that the membership property of a single local word of a procedure (of an SPA) can be
evaluated on the global SPA system by expanding the local word via the gamma expansion
(cf. Definition 36) and embedding the expanded word in a valid context. However, this
process requires access sequences, terminating sequences, and return sequences of the
involved procedures. Therefore, the construction of an SPA conformance test is a two-step
process. First, the computation of access sequences, terminating sequences, and return
sequences for the involved procedures of a given SPA model and the validation thereof
on the implementation. Second, the construction of the global conformance test via the
union of the individual expanded procedural conformance tests. The following two (sub-)
sections present an algorithmic approach for implementing these two steps.

5.2.1 Computing Access Sequences, Terminating Sequences, and Return

Sequences

Algorithm 5.1 sketches the algorithmic approach for extracting access sequences, termi-
nating sequences, and return sequences for a given SPA model. In essence, the algorithm
operates in two separate phases. The first phase extracts a terminating sequence for
each procedure, whereas the second phase extracts a pair of matching access sequence
and return sequence for each procedure. Both phases follow the structure of a fix-point
computation.

First Phase

The first phase, from Line 2 to Line 17, starts with initializing some global variables. The
set of currently eligible alphabet symbols Σcur is set to the internal alphabet of the given
SPA input alphabet Σ, the set of finished procedures Σfin for which a terminating sequence
is already computed is set to the empty set, and the boolean flag stable for indicating a
fix-point is set to false.
The main computation loop of the first phase, from Line 7 to Line 16, iterates over

the currently unfinished procedures and uses Dijkstra’s single-source-shortest-path algo-
rithm [49] to compute paths from the initial state to the accepting states of the currently
investigated procedure c, using only the set of currently eligible symbols bΣcur. Here, the
paths are assumed to be encoded via the words that transition P c from its initial state qc

0
to

an accepting state qc
f
, therefore SP ⊆ L(P c). If there exists at least one path (cf. Line 9), an

arbitrary one is selected and its expansion is stored as the terminating sequence. Note that
the computation of shortest paths is restricted to bΣcur so that all terminating sequences
required for the expansion process are available to γ. Since all procedures are reachable
in minimal SPAs, there exists at least one terminating sequence for every procedure and
by the finiteness of words of SPA languages there exists at least one terminating sequence
that only consists of internal symbols, representing the start of the fix-point computation.
Furthermore, by Theorem 2, γ(bw) constitutes a valid terminating sequence for c.

72

5.2 SPAs

Algorithm 5.1

Computation of access sequences, terminating sequences, and return sequences of SPAs.

Input: A minimal SPA S over a given SPA input alphabet Σ
Output: The values of asc, tsc, and rsc for each c ∈ Σcall

1: function computeASTSRS(S,Σ)
2: Σcur← Σint

3: Σfin← ;

4: stable← false

5: while not stable do

6: stable← true

7: for c ∈ (Σcall \Σfin) do

8: SP←
⋃

qc
f
∈Qc

F
DijkstraSSSP(qc

0
, bΣcur, qc

f
)

9: if SP ̸= ; then

10: bw← choose(SP)

11: tsc ← γ(bw)
12: Σcur← Σcur ∪ {c}

13: Σfin← Σfin ∪ {c}

14: stable← false

15: end if

16: end for

17: end while

18: asc0
← c0

19: rsc0
← r

20: Σfin← {c0}

21: stable← false

22: while not stable do

23: stable← true

24: for c ∈ Σfin do

25: for bw ∈
��⋃|Qc |

k=0
bΣk

proc

�
∩ L(P c)
�
do

26: for i ∈ {1, . . . , |bw|}: w[i] ∈ (Σcall \Σfin) do

27: asw[i]← asc · γ(bw[, i − 1]) ·w[i]

28: rsw[i]← r · γ(bw[i + 1,]) · rsc

29: Σfin← Σfin ∪ {w[i]}

30: stable← false

31: end for

32: end for

33: end for

34: end while

35: return {〈asc , tsc , rsc〉 | c ∈ Σcall}

36: end function

73

Chapter 5 Model-Based Testing of Instrumented Context-Free Systems

Afterwards, the set of eligible alphabet symbols and finished procedures is extended by
c. In subsequent iterations of the processing loop (cf. Line 7) this means that the algorithm
no longer investigates procedures for which a terminating sequence has already been
computed and that a call symbol c becomes eligible for computing subsequent terminating
sequences only after a terminating sequence for procedure c itself has been found, ensuring
correct expansions.
The management of the fix-point indicator stable ensures that whenever a new termi-

nating sequence is discovered, the set of procedures for which no terminating sequence
has been computed yet is re-investigated. Note that we only consider minimal SPAs (cf.
Definition 30) which ensures that each procedure accepts a non-empty language and
each call symbol is reachable from the main procedure of S. Consequently, the step-wise
extension of Σcur ensures that the algorithm always finds a shortest path to an accepting
state eventually and therefore computes a valid terminating sequence for all procedures
of the given SPA model.

Second Phase

The second phase, from Line 18 to Line 34, starts with storing the trivial pair of access
sequence and terminating sequence of the main procedure c0 and re-initializing the set of
finished procedures accordingly. Similar to the first phase, the boolean flag stable indicates
an (initially unstable) fix-point throughout the main computation loop.
The loop from Line 24 to Line 33 iterates over the set of finished procedures, i.e.,

procedures which provide an admissible context because access sequences and return
sequences have already been found for them. Each of these procedures are analyzed
regarding accepted paths up to length |Qc |, again, encoded as words over the respective
alphabet. Line 26 scans each path for occurrences of call symbols that have not yet been
added to the set of finished procedures. For each such call symbol w[i], the concatenation
of the access sequence of the currently investigated procedure c, the expanded prefix
bw[, i − 1], and the call symbol w[i] itself constitutes a valid access sequence for w[i] and
is stored as such. Since the currently investigated path bw reaches an accepting state,
the concatenation of the return symbol, the expanded suffix of bw[i + 1,], and the return
sequence of the currently inspected procedure c also constitutes a valid return sequence
for the current procedure. Afterwards, w[i] is added to the set of finished procedures and
a re-evaluation is triggered by setting the fix-point flag to false.

Note that the outer loop (cf. Line 24) only iterates over finished procedures. Therefore,
the referenced access sequences asc and return sequences rsc are always well-defined.
Since the new access sequence and return sequence are (in part) constructed from the
same accepted local word, the new pair of sequences forms a valid context as well.
Compared to the first phase, the second phase traverses the call-hierarchy in reverse

order, starting from the initial procedure and traversing the hierarchy to the inner-most
calls. Again, the minimality of S ensures that each procedure is involved in at least one
accepted word of S so that this step-wise extension process successfully computes a pair
of (matching) access sequence and return sequence for each procedure of S.

74

5.2 SPAs

5.2.2 SPA Conformance Test

In order to use the extracted sequences in the construction of an SPA conformance test,
it is necessary to verify whether they constitute actual access sequences, terminating
sequences, and return sequences of the implementation as well. By Definition 35, this
can be simply verified by testing whether the concatenations of the three sequences are
accepted by the implementation. Consequently, these concatenations can be seen as the
initial tests of the SPA conformance test. We continue with the introduction of a utility
notation to later reference these tests.

Definition 60 (Set of extracted access sequences, terminating sequences, return se-
quences)
Let Σ be an SPA input alphabet and S be an SPA over Σ. We define the set of extracted access
sequences, terminating sequences, and return sequences as follows:

EATR(S) = {asc · tsc · rsc | 〈asc , tsc , rsc〉 ∈ computeASTSRS(S,Σ)}.

Implementing the idea of Section 5.1, the SPA conformance test can be directly con-
structed from the union of the (expanded) individual conformance tests. The correctness
of this approach (with respect to the assumptions about the conformance tests for the
procedural automata) directly follows from Theorem 1.

Definition 61 (SPA conformance test)
Let Σ be an SPA input alphabet and S be an SPA over Σ. We define the SPA conformance
test as

CT(S) = EATR(S)∪

¨ ⋃
c∈Σcall

{asc · γ(bw) · rsc | bw ∈ CT(P c)}

«

where CT(P c) denotes the conformance test for procedure P c of S and the respective ac-

cess sequences, terminating sequences, and return sequences are taken from the results of

Algorithm 5.1.

Theorem 7 (SPA conformance)
Let Σ be an SPA input alphabet, Smod be a valid SPA model over Σ, and Simpl be an (unknown)

valid SPA implementation over Σ. CT(Smod) is a conformance test for Smod, i.e.,

(∀w ∈ CT(Smod): w ∈ L(Smod)⇔ w ∈ L(Simpl))⇒ Smod ≡SPA Simpl

with respect to the assumptions about the procedural conformance tests.

Proof. This is a direct consequence of the notion of rigorous (de-) composition of SPAs.
By Theorem 1, we know that the global languages of Smod and Simpl are characterized
by the local languages of the involved procedures. By Definition 19, a conformance test
can test the equivalence of (in this case) DFAs with respect to the assumptions about
regular conformance tests. By Theorem 2, these tests of the procedural conformance
tests can be answered by the (global) SPA implementation with the chosen expansion
in Definition 61. By aggregating the individual conformance tests and verifying the

75

Chapter 5 Model-Based Testing of Instrumented Context-Free Systems

extracted access sequences, terminating sequences, and return sequences we can verify
the (language-) equivalence of each individual procedural automaton which directly
concludes the (language-) equivalence of the concerned SPAs (cf. Corollary 1).

5.3 SBAs

In analogy to SPAs, Theorem 5 provides a means to evaluate the local behavior of behav-
ioral automata on the global system that they constitute. Therefore, the construction of
conformance tests for SBAs follows a similar approach to Section 5.2: By computing the
respective sequences required by the expansion process and using expanded conformance
tests of the (regular) behavioral automata, the global conformance between a model
and an implementation can be tested. However, both, the computation of sequences and
the computation of the procedural conformance tests need to be adjusted to the specific
semantics of SBAs. The following (sub-) sections discuss these adjustments.

5.3.1 Computing Access Sequences and Terminating Sequences

Regarding sequence computation, one major difference between SPAs and SBAs is the
fact that procedural automata (of SPAs) encode termination with the acceptance of states,
whereas behavioral automata (of SBAs) use explicit return-transitions into accepting
states. As a result, the computation of terminating sequences needs to be adjusted. Rather
than computing paths to arbitrary accepting states, only states whose br-successors are
accepting must be considered. By Definition 44, behavioral automata of valid SBAs only
accept words containing at most one return symbol and only if it constitutes the last
symbol of the word. Consequently, when expanding these words in the call-rules of
the language-structural operational semantics (SOS) of SBAs, they emit well-matched
subsequences (well-matched with respect to the expanded call symbol) and therefore
their expansions represent valid terminating sequences for the respective procedure.

A second major difference between SPAs and SBAs is the fact that SBAs describe prefix-
closed languages. On the one hand, this allows for non-terminating procedures, i.e.,
procedures for which no terminating sequences exist. On the other hand, by Theorem 5,
evaluating procedural tests on the global system only requires access sequences and
terminating sequences of the involved procedures which allows one to skip the computation
of return sequences.
Algorithm 5.2 summarizes the above changes in an algorithmic notation. Since it

operates in a similar fashion to Algorithm 5.1, we focus only on the changes needed to
address the SBA semantics. Line 4 explicitly denotes the set of terminating procedures
in order to restrict the computation of terminating sequences to them (cf. Line 8).
Furthermore, the reachability analysis is restricted to states with accepting br-successors
(cf. Lines 9 and 10). The computation of access sequences (from Line 20 onward) remains
identical to Algorithm 5.1 with only the computation of return sequences removed. The
result of the algorithm (cf. Line 35) is updated to account for non-terminating procedures
which do not posses terminating sequences.

76

5.3 SBAs

Algorithm 5.2

Computation of access sequences and terminating sequences of SBAs.

Input: A minimal SBA SB over a given SPA input alphabet Σ
Output: The values of asc and tsc (if available) for each c ∈ Σcall

1: function computeASTS(SB,Σ)
2: Σcur← Σint

3: Σfin← ;

4: Σterm← {c ∈ Σcall|∃bw ∈ L(P c
B): bw[|bw|] = br}

5: stable← false

6: while not stable do

7: stable← true

8: for c ∈ (Σterm \Σfin) do

9: Qc
term = {q ∈Qc | δc(q,br) ∈Qc

F}

10: SP←
⋃

q∈Qc
term

DijkstraSSSP(qc
0
, bΣcur, q)

11: if SP ̸= ; then

12: bw← choose(SP)

13: tsc ← γ(bw)
14: Σcur← Σcur ∪ {c}

15: Σfin← Σfin ∪ {c}

16: stable← false

17: end if

18: end for

19: end while

20: asc0
← c0

21: Σfin← {c0}

22: stable← false

23: while not stable do

24: stable← true

25: for c ∈ Σfin do

26: for bw ∈
��⋃|Qc |

k=0
bΣk

proc

�
∩ L(P c

B)
�
do

27: for i ∈ {1, . . . , |bw|}: w[i] ∈ (Σcall \Σfin) do

28: asw[i]← asc · γ(bw[, i − 1]) ·w[i]

29: Σfin← Σfin ∪ {w[i]}

30: stable← false

31: end for

32: end for

33: end for

34: end while

35: return {〈asc , tsc〉 | c ∈ Σterm} ∪ {〈asc〉 | c ∈ (Σcall \Σterm)}

36: end function

77

Chapter 5 Model-Based Testing of Instrumented Context-Free Systems

5.3.2 SBA Conformance Test

Before discussing the details of SBA conformance tests, we look at the notion of extracted
access sequences and terminating sequences.

Definition 62 (Set of extracted access sequences and terminating sequences)
Let Σ be an SPA input alphabet and SB be an SBA over Σ. We define the set of extracted
access sequences and terminating sequences as follows:

EAT(SB) ={asc · tsc · r | 〈asc , tsc〉 ∈ computeASTS(SB,Σ)}∪

{asc | 〈asc〉 ∈ computeASTS(SB,Σ)}

Note that due to skipping the return sequences and computing the terminating sequences
based on br-successors, it is necessary to append an additional return symbol in order to
verify the correctness of the extracted terminating sequences. For validating the access
to non-terminating procedures, it suffices to test the respective access sequences. This
construction aligns with Definition 47.
Recall that for SPAs, one can simply use the (local) conformance tests of the involved

procedures and use the union of the expanded words as a conformance test for the (global)
SPA system. However, SBAs introduce a major challenge for this concept by including the
return symbol in the input alphabet of behavioral automata. Transferring the approach of
SPAs to SBAs leads to problems with the decidability of conformance tests of behavioral
automata.
To give an intuition for this problem, consider how, e.g., the W-method [44] (cf. Sec-

tion 2.3) constructs a conformance test: Each word of a transition cover set is concatenated
with each word of a characterizing set. Since behavioral automata contain br-transitions,
the transition cover set necessarily contains words that traverse these br-transitions. Con-
catenating these words with any non-empty element from the characterizing set results in
(local) test words that extend beyond an initial occurrence of br. Not only is the expansion
of such words (specifically the return symbol) undefined (cf. Definition 36), but also
any continuation beyond a (local) return symbol escapes the scope of a procedure in the
global context. In general, this leads to non-predictable behavior because the response
of the global system depends on the access sequence of the procedure of which the local
conformance test has no knowledge of. Similarly, calls to non-terminating procedures also
cannot be expanded correctly because they do not have terminating sequences.

For tackling these issues, this thesis proposes a set of adjustments for the construction
of the procedural conformance tests. In the following, these adjustments are sketched
via an adapted version of the W-method [44] which constructs a conformance test from
the cartesian product of a transition cover set and a (state) characterizing set. Other
approaches for computing conformance tests need to be adjusted individually, but the
ideas remain the same.
For the problem of traversing “critical” transitions in the transition cover set, i.e.,

successors of non-terminating call-transitions or successors of return-transitions, the
computation of the transition cover set is modified. First, the procedural input alphabet

78

5.3 SBAs

bΣ is partitioned into “non-continuable” input symbols bΣncon, i.e., call symbols to non-
terminating procedures and the return symbol as well as “continuable” input symbols
bΣcont, i.e., the rest. Then, the computation of the state cover set is restricted to bΣcont and
two distinct transition cover sets are computed depending on the input symbols that are
used to extend the state cover set.

Definition 63 ((Non-) continuable transition cover sets)
Let Σ be an SPA input alphabet that is partitioned into “non-continuable” input symbols
bΣncon and “continuable” input symbols bΣcont with respect to an SBA SB over Σ. Let P c

B denote

a behavioral automaton of SB for c ∈ Σcall. We define the “non-continuable” transition cover
set nTCS and the “continuable” transition cover set cTCS of a behavioral automaton P c

B as

nTCS(P c
B) = SCSbΣcont

(P c
B) ·
bΣncon,

cTCS(P c
B) = SCSbΣcont

(P c
B) ·
bΣcont.

By the construction of the respective transition cover sets, one can directly conclude the
following properties.

Lemma 5

Let Σ be an SPA input alphabet and SB be an SBA over Σ. Let P c
B denote a behavioral

automaton of SB for c ∈ Σcall.

1. nTCS(P c
B) only contains words that end with call symbols to non-terminating procedure

or the return symbol.

2. cTCS(P c
B) does not contain any words with call symbols to non-terminating procedure

or the return symbol.

Proof. This is a direct consequence of Definition 63.

The union of the two transition cover sets almost resembles the classic transition cover
set over the full alphabet bΣ (cf. Definition 22). The only exceptions are outgoing transitions
of states that are only reachable via non-continuable symbols. However, by the call-closure
and return-closure of valid behavioral automata (cf. Definition 44), all these uncovered
transitions must lead into a single rejecting sink state. In particular, the union of the two
transition cover sets cover all remaining transitions and reaches all states.
The construction of the characterizing set does not require any modifications. Due to

the return-closure and call-closure of valid behavioral automata, any continuations beyond
non-continuable input symbols transfer the behavioral automata into a sink state. As a
result, any word that extends beyond the initial occurrence of a non-continuable symbol
cannot distinguish any states as the observable behavior is always identical (rejection).
Hence, these words cannot be part of any characterizing set of behavioral automata. The
following lemma summarizes this property.

Lemma 6

Let Σ be an SPA input alphabet and SB be an SBA over Σ. For each behavioral automaton

P c
B of SB, the characterizing set of P c

B, CS(P c
B), contains no words that extend beyond a call

symbol of a non-terminating procedure or a return symbol.

79

Chapter 5 Model-Based Testing of Instrumented Context-Free Systems

Proof. This is a direct consequence of the return-closure and call-closure of P c
B (cf. Defini-

tion 44). Any continuation of a word that traverses a return-transition or a call-transition
of a non-terminating procedure transitions the behavioral automaton into a rejecting sink
state, making it impossible to distinguish behavior beyond this input.

What remains to be discussed is how the transition cover sets and the characterizing
set need to be connected. In analogy to the original W-method [44], one constructs
the cartesian product of the continuable transition cover set and the characterizing set
but excludes the non-continuable transition cover set from this process. Note that the
purpose of appending elements from the characterizing set is to distinguish the state
that is reached by the respective word of the transition cover set from all other states.
For non-continuable transitions, this is no longer necessary in valid behavioral automata.
Here, the characterization of the state is achieved by external constraints (call-closure
and return-closure of valid behavioral automata) and mutual characterization across the
involved procedures of the SBA, i.e., verifying that a procedure is indeed non-terminating.
For all remaining (continuable) transitions, the proposed construction resembles the
original W-method [44], inheriting its properties (and requiring its assumptions) regarding
correctness and completeness.

Definition 64 (SBA conformance test)
Let Σ be an SPA input alphabet and SB be an SBA over Σ with behavioral automata P c

B for

c ∈ Σcall. Let γ
′ : (bΣ∗proc ·
bΣncon)→ Σ

∗ denote the adjusted expansion function that expands

words with the exception of the last symbol, i.e.,

γ′(bw) = γ(bw[, |bw| − 1]) ·w[|bw|].

We define the (W-method-based) SBA conformance test as

CT(SB) = EAT(SB)∪

¨ ⋃
c∈Σcall

{asc · γ
′(bw) | bw ∈ nTCS(P c

B)∪ ((cTCS(P c
B)∪ {ϵ}) · CS(P c

B))}

«
.

Note that the adjusted expansion function is just a shorthand notation for the default
SBA expansion of Theorem 5. Furthermore, by Lemmas 5 and 6 only the last symbol passed
to γ′ may be a call symbol of a non-terminating procedure or a return symbol. Therefore,
all calls to γ are well-defined. The inclusion of ϵ in the construction of the cartesian
product with the characterizing set is due to the special semantics of the W-method
(cf. Section 2.3). One can then show, that a conformance test constructed according to
Definition 64 constitutes a proper conformance test for a given SBA.

Theorem 8 (SBA conformance)
Let Σ be an SPA input alphabet, Smod

B be a valid SBA model over Σ, and S
impl

B be an (unknown)

valid SBA implementation over Σ. CT(Smod
B) is a conformance test for Smod

B , i.e.,

(∀w ∈ CT(Smod
B): w ∈ L(Smod

B)⇔ w ∈ L(S
impl

B))⇒ Smod
B ≡SBA S

impl

B

with respect to the (W-method-based) assumptions about the procedural conformance tests.

80

5.3 SBAs

Proof. This is a direct consequence of the notion of rigorous (de-) composition of SBAs.
By Theorem 4, we know that the global languages of Smod

B and S
impl

B are characterized
by the local languages of the involved behavioral automata. For transitions labeled with
continuable input symbols, the construction of procedural conformance tests coincides
with the W-method. For transitions with non-continuable inputs, the behavior is defined
by external constraints (cf. Definition 44). As a result, the procedural conformance tests
can ensure conformance with respect to the assumptions about the original algorithm
(here, the W-method [44]). By Theorem 5, these tests of the procedural conformance
tests can be answered by the (global) SBA implementation with the adjusted expansion
used in Definition 64. By aggregating the individual conformance tests and verifying
the extracted access sequences and (if available) terminating sequences one can verify
the (language-) equivalence of each behavioral automaton which directly concludes the
(language-) equivalence of the concerned SBAs (cf. Corollary 2).

5.3.3 Example

To give an intuition for the construction of an SBA conformance tests, let us look at the
computation described in Definitions 62 and 64 for the SBA based on Figure 3.5. For the
computation of the extracted access sequences and terminating sequences, it is easy to see
that both behavioral automata P F

B and PG
B describe terminating procedures. Therefore, a

potential set of extracted access sequences and terminating sequences is given by

EAT(SB) = {〈F,ϵ〉, 〈F · a · G,ϵ〉},

where 〈F,ϵ〉 denotes the pair of extracted sequences for P F
B and 〈F · a · G,ϵ〉 denotes the

pair of extracted sequences for PG
B .

For the computation of the local conformance tests, we focus on the steps for P F
B as the

process for PG
B is analogous. First, the input alphabet is partitioned into “non-continuable”

and “continuable” input symbols. We have

bΣncon = {bR} and
bΣcont = {ba,bb,bc, bF , bG}.

A possible state cover set on the basis of bΣcont is given by

SCSbΣcont
(P F

B) = {ϵ, ba,bb,bc, bG, ba · bF ,bb · bF}
which covers all states except F6, including the omitted sink state (via bc). The respective
transition cover sets are constructed by

nTCS(P F
B) = SCSbΣcont

(P F
B) ·
bΣncon

cTCS(P F
B) = SCSbΣcont

(P F
B) ·
bΣcont

which cover all transitions except the outgoing transitions of F6. A possible characterizing
set for P F

B is given by
CS(P F

B) = {ϵ, ba,bb, bF , bF · ba,bR}.

81

Chapter 5 Model-Based Testing of Instrumented Context-Free Systems

The local conformance test for P F
B is then given by

CT(P F
B) = nTCS(P F

B)∪ ((cTCS(P F
B)∪ {ϵ}) · CS(P F

B)).

With the exception of test words that extend beyond non-continuable input symbols, this
local conformance test covers the same characteristics that the regular W-method would
cover. Note that the properties of successors of transitions labeled with non-continuable
input symbols, e.g., F6, are still checked by nTCS(P F

B). The only transitions (and potentially
the sink state) that are omitted by the proposed conformance tests are the ones that have
their behavior defined by the external constraints of validity (cf. Definition 44), e.g., the
outgoing transitions of F6. Therefore, these transitions (and the sink state) do not need
to be tested if the implementation is a valid SBA as well. Furthermore, by looking at the
structure of the individual test words, one sees how the adjusted expansion function γ′

(cf. Definition 64) is able to expand the words without any problems.

5.4 SPMMs

The construction of conformance tests for SPMMs is based on the equivalent characteriza-
tion of the concerned transductions as SBAs languages. Using the suggested techniques to
represent deterministic transductions that follow an incremental lock-step pattern via a
prefix-closed language over the cartesian product of input symbols and output symbols, the
concepts and results of Section 5.3 directly apply to SPMMs. Therefore, from a qualitative
point of view, there is no further investigation into the construction of conformance tests
for SPMMs needed.
However, it is worth noting that many of the algorithms for constructing (regular)

conformance test (cf. Section 8.2) are originally designed for Mealy machines or can be
easily adapted to natively work on Mealy machines. In practice, this allows one to skip
any transformation or mapping layer as discussed in Section 2.1.3 and directly work with
native Mealy-based models. As a consequence, the resulting characterizing sets may be
smaller because they can exploit the explicit semantics of Mealy machines. However, the
overall approach to constructing a conformance test for SPMMs remains identical to the
SBA case.

5.5 Summary

This section concludes the chapter by summarizing its main results.

• The notion of rigorous (de-) composition of the (global) behavior of SPAs, SBAs, and
SPMMs into the (local) behaviors of their respective procedures allows one to con-
struct conformance tests for the global systems from the aggregation of conformance
tests for the local procedures.

• For SPAs, this involves

82

5.5 Summary

1. the computation of access sequences, terminating sequences, and return se-
quences on the basis of the SPA model and

2. the computation of procedural (regular) conformance tests for the individual
procedures of the model.

After verifying the extracted sequences, they are eligible for the expansion process
of Theorem 2 in order to evaluate the union of expanded (local) conformance tests
on the (global) SPA implementation.

• For SBAs, the process is similar but requires slight adjustments to correctly handle
the distinct notion of termination of behavioral automata and the fact that SBAs may
contain non-terminating procedures. For the computation of (local) conformance
tests of behavioral automata, one can
1. omit the computation of return sequences because they are not necessary for

the expansion process and
2. omit the verification of successors of non-continuable transitions because their

behavior is defined externally via constraints of valid behavioral automata.
After verifying the extracted sequences, they are eligible for the expansion process of
Theorem 5 in order to evaluate the adjusted local conformance tests on the (global)
SBA implementation.

• The construction of conformance tests for SPMMs follows directly from the previous
discussions about representing lock-step-based transductions via prefix-closed lan-
guages (cf. Section 3.4). Here, computing native Mealy-based conformance tests
may boost the performance of the conformance testing process by reducing the
length of the tests.

83

CHAPTER 6

Active Automata Learning of Instrumented

Context-Free Systems

This chapter presents an algorithmic approach for inferring models of systems of procedural
automata (SPAs), systems of behavioral automata (SBAs), and systems of procedural Mealy
machines (SPMMs) in the context of the minimally adequate teacher (MAT) framework.
This approach implements the inference of the global models on the basis of a simultaneous
inference of their involved procedural components. Furthermore, this chapter analyzes
the correctness and complexity of the inference processes and presents several heuristics
for improving their practical performance.

6.1 General Concepts

Key to learning SPA-based, SBA-based, and SPMM-based systems is the notion of rigorous
(de-) composition presented in Sections 3.2.4 and 3.3.2. As Theorems 1 and 4 state, the
(global) behavior of SPAs, SBAs, and (via embedding in SBAs) SPMMs is alternatively
characterized by the behavior of the individual (local) procedures. Therefore, the problem
of learning SPA-based, SBA-based, and SPMM-based systems can be re-interpreted as a
problem of learning their respective procedures. In all cases, the concerned procedures
are represented by deterministic finite acceptors (DFAs) or Mealy machines, for which
(regular) active automata learning (AAL) algorithms exist and to which this task can
be delegated. Consequently, the main task for SPA, SBA, and SPMM learners can be
streamlined to organizing a simultaneous inference of individual procedures and taking
care of properly transforming information between the global, instrumented system under
learning (SUL) and the individual local learning algorithms.
The concepts of expansion and projection play an essential role in this process as the

two techniques directly allow one to map information between the global view and the
local views of a system. As discussed in Section 2.4, many MAT-based learning algorithms
alternate between an exploration phase and a verification phase: During the exploration
phase a learner poses membership queries (MQs) to explore the properties of a system
and during the verification phase a potential counterexample is provided to the learner
in order to refine the current system hypothesis. Figure 6.1 shows how the concepts of
expansion and projection lift the regular AAL loop of Figure 2.1 to the level of SPA-based,
SBA-based, and SPMM-based systems.

85

Chapter 6 Active Automata Learning of Instrumented Context-Free Systems

Figure 6.1

The regular AAL loop of Figure 2.1 tailored towards the model types of SPAs, SBAs, and
SPMMs.

Learner
Global

Learn
er

Loca
l

Learn
ers Proc. MQOsProc. MQOsProc. MQOs

SULEQO

Proc. MQs

Responses

E
x
p
a
n
s
io

n

EQ

Proj.

counter-

example

Hypothesis

Start

The SPA, SBA, and SPMM learners presented in this chapter act as managers of various
local (regular) learners for the involved procedures and delegate the actual inference
processes to them. Due to the results of Theorems 2 and 5, the regular learners can be
provided with special procedural membership query oracles (MQOs) that answer the local
MQs of the regular learners on the instrumented SUL using the presented expansions. Once
the local learners have conjectured their procedural hypotheses, the global hypotheses
for the respective formalisms are constructed. As a consequence of Theorems 1 and 4,
counterexamples to these global hypotheses can be reduced to counterexamples of at
least one involved procedure. Therefore, in contrast to the expansion of local MQs, the
global counterexamples of the equivalence query oracle (EQO) are projected to local
counterexamples of individual procedures. Since the refinement of procedural hypotheses
is part of the regular learning loop, it can be delegated to the regular learners of the
concerned procedures as well.

By formalizing these concepts with a special emphasis on a general, language-based
characterization, it is possible to employ arbitrary (MAT-compatible) regular AAL algo-
rithms for inferring the individual procedures. This means that the global SPA, SBA, and
SPMM learner instances can be parameterized with its regular learner instances, which
lifts the notion of rigorous (de-) composition from the model level to the learning level.
This is a particularly interesting aspect, as Chapter 10 shows that the properties of regular
AAL algorithms transfer to the context-free level. In practice, this allows for a fine-grained
adjustability to individual needs.

In accordance with the structure of the AAL loop, the following sections present in detail
the implementations of the exploration phases and verification phases of the learning
algorithms for SPAs, SBAs, and SPMMs.

86

6.2 SPAs

6.2 SPAs

We continue with the exploration phase and verification phase of the SPA learner and look
at the algorithmic properties of the presented approach. Throughout this section, HSPA

denotes the current SPA hypothesis that is constructed from the individual procedural
hypotheses of the respective local learners. Furthermore, note that in the context of AAL,
formal languages are often seen from a parser-based point of view (answering queries,
etc.). Therefore, SPAs are referred to in a parser-based interpretation as well, e.g., when
talking about SPAs accepting a word (cf. Section 3.5).

6.2.1 Exploration Phase

As sketched in Section 6.1, the exploration phase of the SPA learner essentially consists
of the simultaneous exploration phases of regular learners for the involved procedures.
Given Theorem 2, each MQ of a procedural learner can be answered by the instrumented
SUL after expansion. However, for this expansion to work, one requires access sequences,
terminating sequences, and return sequences for the involved procedures. At the start
of the inference process, these sequences are unknown to the SPA learner and therefore
local MQs cannot be expanded properly.

Note that this problem is two-fold: The lack of (matching) access sequences and return
sequences means that it is not possible to embed a local MQ in a global context, i.e., a
procedural learner cannot pose any MQs at all. The lack of terminating sequences means
that a local MQ cannot contain any procedural calls to the respective procedure because
they cannot be expanded properly. The proposed approach tackles these problems via the
concepts of deferred learner activation and incremental alphabet extension.
For both concepts, positive counterexamples play an important role. Positive coun-

terexamples are words ce ∈WM(Σ) which are accepted by the SUL but rejected by the
current SPA hypothesis HSPA. Therefore, any call symbol c ∈ Σcall that occurs in a positive
counterexample allows one to extract a valid access sequence, terminating sequence, and
return sequence of c.

For tackling the problem of missing contexts (access sequences and return sequences),
the activation of procedural learners is deferred. When constructing the tentative SPA
hypothesis HSPA, the leaner constructs a hypothesis that rejects any words that contain call
symbols of non-active learners. This forces counterexamples that contain call symbols of
non-active learners to be positive, providing access sequences and return sequences of the
involved procedures. Upon extracting the respective sequences from the counterexample,
the SPA learner activates the respective local learners of the concerned procedures and
uses their actual procedural hypotheses for subsequent constructions of HSPA. This means
for the start of the learning loop, the initial hypothesis of the SPA learner is an empty
hypothesis that rejects all words w ∈WM(Σ) so that the first counterexample guarantees
an access sequence, terminating sequence, and return sequence for at least the initial
procedure c0.

This process is synchronized with the proposed incremental alphabet extension. During
the learning process, the learner maintains a set of active alphabet symbols, denoted

87

Chapter 6 Active Automata Learning of Instrumented Context-Free Systems

Σact ⊆ Σproc, that keeps track of the alphabet symbols that local learners are allowed to
use to explore the properties of the procedures. This set is initialized with Σint and
extended by a call symbol c only after a terminating sequence tsc is observed via a positive
counterexample because only then the gamma expansion is able to properly expand local
MQs containing cs. Therefore, the procedural hypotheses are partial automata initially
(with respect to the procedural SPA input alphabet Σproc) and become total throughout the
learning process as terminating sequences are discovered. Since the global SPA hypothesis
HSPA rejects any calls to non-active procedures, the (partial) procedural hypotheses are
never queried for undefined information.
Note that this decision makes intermediate hypotheses non-minimal (or rather only

minimal with respect to Σact, cf. Definition 30) which needs some special treatment if
the intermediate hypotheses are directly used by other processes (cf. Section 9.4). Other
than that, the two concepts do not cause any problems with the individual procedural
inference processes. All local learners operate independently of each other and (regular)
AAL is monotone with respect to alphabet extension.

6.2.2 Verification Phase

During the verification phase, the SPA learner receives a counterexample that indicates
a mismatch between the behavior of the SUL and the current SPA hypothesis HSPA. In
the context of SPAs, there exist two kinds of counterexamples: Positive counterexamples

are words ce ∈WM(Σ) which are accepted by the SUL but wrongfully rejected by HSPA,
whereas negative counterexamples are words that are rejected by the SUL but wrongfully
accepted by HSPA.
The following discussions generalize the two cases by only distinguishing between an

accepting SPA SA = 〈P
c1

A , . . . , P
cn

A 〉 and a rejecting SPA SR = 〈P
c1

R , . . . , P
cn

R 〉. In case of a positive
counterexample, i.e., if ce ∈ L(SUL) and ce /∈ L(HSPA), the SUL represents the accepting sys-
tem and the SPA hypothesis represents the rejecting system, i.e., SA = SUL and SR = HSPA.
In case of a negative counterexample, i.e., if ce /∈ L(SUL) and ce ∈ L(HSPA), the SUL rep-
resents the rejecting system and the SPA hypothesis represents the accepting system,
i.e., SR = SUL and SA = HSPA. This generalization shows that the counterexample analysis
process is symmetrical for both positive counterexamples and negative counterexamples
as only the mapping of the SUL and HSPA to SA and SR changes but not the analysis process
itself.

The following corollary presents the general approach of analyzing SPA counterexam-
ples.

Corollary 3 ([61])
Let Σ be an SPA input alphabet, ce ∈WM(Σ) be a counterexample and SA, SR be two SPAs

over Σ such that ce ∈ L(SA) and ce /∈ L(SR). Theorem 1 states that

∀〈c, i〉 ∈ Instce : α(ce[i + 1,ρce(i + 1)]) ∈ L(P c
A)

and via negation

∃〈c, i〉 ∈ Instce : α(ce[i + 1,ρce(i + 1)]) /∈ L(P c
R).

88

6.2 SPAs

These two properties directly suggest a two-step approach for refining HSPA:
1. In the global step, the SPA learner analyzes ce to determine a (not necessarily unique)

procedure P∗R of SR that rejects its respective projected trace and
2. in the local step, the corresponding procedural learner uses the projected sub-trace

as a local counterexample for the affected procedure.
If ce is a positive counterexample, i.e., if SA = SUL and SR = HSPA, SA describes the correct
behavior. Here, P∗A accepts the projected trace and P∗R should behave the same way.
Consequently, the projected trace constitutes a positive local counterexample for P∗R of
HSPA. If ce is a negative counterexample, i.e., if SR = SUL and SA = HSPA, SR describes the
correct behavior. Here, P∗R rejects the projected trace and P∗A should behave the same way.
Consequently, the projected trace constitutes a negative local counterexample for P∗A of
HSPA.
The following discussions refer to this counterexample extraction as a function called

analyzeCounterexample that for a given counterexample returns a tuple containing the
concerned procedure P∗R or P∗A (identified via their respective call symbol) as well as the
projected local counterexample trace α(ce[i + 1,ρce(i + 1)]). We continue with a sketch of
the global SPA refinement process to highlight its interaction with the exploration phase
and an efficient implementation for the analyzeCounterexample function afterwards.

Algorithmic Sketch for Handling Global Counterexamples

Algorithm 6.1 sketches themain refinement process of the SPA learner. Before discussing its
details, recall from Section 6.2.1 that positive counterexamples are crucial for extracting
access sequences, terminating sequences, and return sequences, which are required
for activating the individual procedural learners and expanding calls to the respective
procedures. Furthermore, recall that the initial SPA hypothesis represents an empty
system that rejects all input words. Consequently, the SPA learner receives a positive
counterexample before any local learners are activated.
From Line 2 to Line 16 the learner specifically handles the case of a positive coun-

terexample. By Definition 29, all words in the language of an SPA begin with the initial
procedure. Consequently, in Line 3, one can truthfully identify the initial procedure of
the SUL from the first symbol of any positive counterexample. As previously discussed,
the set Σact keeps track of the currently eligible alphabet symbols (including activated call
symbols) and is initialized with Σint. Therefore, this set can be used in the check of Line 4
to identify any previously unobserved procedures. If such a procedure is detected, the
counterexample directly provides the respective access sequence, terminating sequence,
and return sequence. Line 5 to Line 7 extract the sequences and Line 8 removes the
procedure from future analysis.
In Line 11, the algorithm updates the procedural learners according to the new infor-

mation available.
• Procedural learners that are not active due to the lack of access sequences and

return sequences are now activated and begin with the inference of the respective
procedures according to the usual AAL workflow.

89

Chapter 6 Active Automata Learning of Instrumented Context-Free Systems

Algorithm 6.1 (from [61])

Refinement step of the SPA learner that extracts access sequences, terminating sequences,
and return sequences from positive counterexamples and delegates a projected local
counterexample to the respective procedural learner.

Input: A counterexample ce ∈WM(Σ) and a boolean value answer indicating whether ce

is a positive or negative counterexample.
1: function refineSPAHypothesis(ce, answer)
2: if answer then

3: c0 ← ce[1]

4: for all c ∈ detectNewProcedures(ce,Σact) do
5: asc ← extractAccessSequence(ce, c)
6: tsc ← extractTerminatingSequence(ce, c)
7: rsc ← extractReturnSequence(ce, c)
8: Σact ← Σact ∪ {c}

9: end for

10: for all c ∈ (Σcall ∩Σact) do

11: updateProceduralLearner(c,Σact)
12: end for

13: if ce ∈ L(HSPA) then

14: return

15: end if

16: end if

17: 〈c,Òcelocal〉 ← analyzeCounterexample(ce)
18: refineProceduralHypothesis(P c ,Òcelocal, answer)
19: end function

90

6.2 SPAs

• Procedural learners that already are active synchronize their input alphabet with the
current set of Σact, which may involve posing queries containing new call symbols
that are now properly expandable.

After relaying the information about the respective sequences to the procedural learners,
every learner for a procedure c ∈ (Σcall ∩Σact) is active and all local hypotheses of the
concerned procedures are total automata with respect to the current set of Σact.
Since the detection of new access sequences, terminating sequences, and return se-

quences affects the procedural hypotheses and therefore the current SPA hypothesis HSPA,
Line 13 checks whether the initial counterexample ce still is a valid (positive) counterexam-
ple for the (potentially updated) global hypothesis. If this is not the case, the refinement
step is terminated early. Otherwise, the algorithm continues with the proposed way of
handling global counterexamples. Line 17 extracts the local counterexample on the basis
of Corollary 3 and Line 18 delegates the actual refinement process to the local learner of
the concerned procedure.
It is worth noting that the SPA learner does not depend on any specific properties

of the regular learner(s), which re-iterates the fact that one can use arbitrary (MAT-
compatible) regular learning algorithms for inferring SPAs. Section 6.2.4 shows that these
steps guarantee progress in the (global) hypothesis progression towards inferring the
final SPA model. For now, we continue with looking at an efficient implementation for the
analyzeCounterexample method.

Efficient Analysis of Global Counterexamples

For efficiently analyzing SPA counterexamples, it is possible to pursue an approach similar
to the one of Rivest et al. [146] for regular systems. In their work, the authors replace
a prefix of a given counterexample with an access sequence of the current hypothesis’
state reached by the prefix. By checking different lengths of prefixes in a binary search
fashion and evaluating the responses of the SUL to the constructed queries, the authors can
pinpoint an input symbol that transitions the current hypothesis and the SUL in provably
different states and therefore trigger a hypothesis refinement.
The first part of the two-step analysis process derived from Corollary 3 only requires

one to identify a rejecting procedure. Therefore, for applying the concepts of Rivest and
Schapire to the case of SPAs, it is sufficient to perform a similar style of binary search
over the procedural calls (or rather the respective returns) of a counterexample. For a
given return symbol in a counterexample, the analysis process needs to transform the
prefix up to this return symbol such that it only contains procedural invocations that are
guaranteed to be admissible in SR. By comparing the behavior of SR with the expected
behavior of the counterexample, one is able to determine a procedure of SR that rejects its
respective projected trace and continue to extract the local counterexample.

To formally define this process, we look at the notion of ts-conformance and the alpha-

gamma transformation.

Definition 65 (ts-conformance [61])
Let Σ be an SPA input alphabet and S be an SPA over Σ. Let TS denote a set of terminating

91

Chapter 6 Active Automata Learning of Instrumented Context-Free Systems

sequences for various procedures of S. We call S ts-conform with respect to TS iff the language-

SOS system of S satisfies the following property: ∀tsc ∈ TS: ∃bw ∈ L(P c),σ ∈ ST(ΓSPA):

(bw ·br,σ)SPA

tsc
−→∗(br,σ)SPA.

The analysis process requires that SR is ts-conform with respect to the set of terminating
sequences that are used by the gamma expansion. In the context of the SPA learner, this
means the terminating sequences that are extracted from positive counterexamples (cf.
Line 6, Algorithm 6.1). It is easy to see that in the case of negative counterexamples this
property trivially holds, as SR maps to the SUL and all terminating sequences are extracted
from accepted words of the SUL. In case of positive counterexamples, HSPA needs to be
ts-conform with respect to the extracted terminating sequences. The following lemma
states, how this property can be checked on SPAs.

Lemma 7 ([61])
Let Σ be an SPA input alphabet, S be an SPA over Σ, and TS be a set of terminating sequences

for various procedures of S. Let etsc = c · tsc · r denote the embedded terminating sequence
for each tsc ∈ TS.

S is ts-conform wrt. TS⇔∀tsc ∈ TS: ∀〈c′, i〉 ∈ Instetsc
: α(etsc[i + 1,ρetsc

(i + 1)]) ∈ L(P c′).

Proof. This is a direct consequence of Theorem 1 if we consider for each c ∈ Σcall an SPA
Sc (based on S) which uses c as initial procedure.

Verifying ts-conformance of the current SPA hypothesis HSPA can be done by simply
checking whether the projections of the currently extracted terminating sequences (in-
cluding nested invocations) are accepted by the involved procedures. If there exists a
(nested sub-) sequence that is not accepted by a procedural hypothesis, the projected
sequence directly constitutes a positive local counterexample. This positive counterex-
ample is valid because it is constructed from an extracted terminating sequence, i.e.,
an accepted (sub-) word of the SUL. By refining the affected procedural hypotheses via
standard means of AAL, the procedures (and consequently HSPA) can be made ts-conform
with respect to the extracted terminating sequences. Recall that Algorithm 6.1 always
activates procedural learners before analyzing a positive counterexample via the call to
the analyzeCounterexample method (which requires the ts-conformance) so that there
always exists a correctly initialized procedural learner for processing the potential local
counterexamples.

We continue with the introduction of the alpha-gamma transformation.

Definition 66 (Alpha-gamma transformation [61])
Let Σ be an SPA input alphabet and w ∈WM(Σ). We define

J·K: WM(Σ)→WM(Σ)

as

JwK= γ(α(w)).

92

6.2 SPAs

We generalize J·K to (minimally) return-matched words wmrm ∈MRM(Σ) and obtain a trans-

formation

J·K∗ : MRM(Σ)→MRM(Σ)

that is defined via the piecewise application of J·K as follows:

JwmrmK∗ = Jci1
·w1 · . . . · cin

·wnK
∗ = ci1

· Jw1K · . . . · cin
· JwnK.

Note that if wmrm happens to be (minimally) well-matched, J·K∗ coincides with J·K.

For a given well-matched word, the alpha-gamma transformation replaces every pro-
cedural invocation with a terminating sequence of the respective procedure. If an SPA
is ts-conform with respect to the terminating sequences used by γ, this means that the
transformed word only contains nested calls that are accepted by the respective pro-
cedures. The generalized alpha-gamma transformation is used to transform prefixes of
counterexamples to prefixes that are guaranteed to not contain any nested calls that
are rejected by a ts-conform SPA. This transformation introduces a notion of acceptance
monotonicity that allows one to define a binary-search style analysis in order to identify
a rejecting procedure of SR similar to the approach of Rivest et al. [146]. Theorem 9
formalizes this property.

Note that the following discussion requires the existence of at least two return symbols
in a counterexample. If the counterexample only contains a single return symbol, i.e., the
counterexample exposes an in-equivalence in the main procedure, no counterexample
analysis is required, as the rejecting procedure is trivially given by c0.

Theorem 9 (Acceptance monotonicity of J·K∗ [61])
Let Σ be an SPA input alphabet, w ∈WM(Σ), and S be an SPA over Σ that is ts-conform with

respect to the terminating sequences used by γ. Furthermore, let rh, rk be indices of return

symbols of w with rh < rk. Then we have

Jw[, rh]K
∗ ·w[rh + 1,] ∈ L(S)⇒ Jw[, rk]K

∗ ·w[rk + 1,] ∈ L(S).

Proof. This implication is based on the fact that for all admissible words v ∈MRM(Σ), JvK∗

is also admissible in a ts-conform SPA. Furthermore, the admissibility of a word is decided
on call-rules of the language-structural operational semantics (SOS), since they are the
only rules which are guarded by the procedural membership question. Hence, when the
call symbols in w[rh + 1,] do not cause a word to be rejected, then the call symbols of its
suffix w[rk + 1,] do neither. For the full proof, see Theorem 2 in [61].

On the basis of the acceptance monotonicity of J·K∗, it is now possible to define a binary
search for identifying the rejecting procedure of SR. There exist two extreme points:

JϵK∗ · ce /∈ L(SR)

(the unprocessed counterexample) and

JceK∗ · ϵ ∈ L(SR)

93

Chapter 6 Active Automata Learning of Instrumented Context-Free Systems

(the terminating sequence of the main procedure). This means that there exists a de-
composition in-between for which the acceptance flips. The analysis process investigates
various return symbol indices ri of the counterexample by asking membership questions

Jce[, ri]K
∗ · ce[ri + 1,]

?
∈ L(SR).

If the decomposition is accepted by SR, the process continues the analysis with a lower
return index than ri because by Theorem 9 the answers to all decompositions at higher
return indices are already known. If the decomposition is rejected by SR, the process
continues the analysis with a higher return index than ri because by contraposition of
Theorem 9 the answers to all decompositions at lower return indices are already known.
The process terminates when the lowest return index rl is found such that

Jce[, rl]K
∗ · ce[rl + 1,] ∈ L(SR).

Let cl denote the matching call symbol of rl and il denote its index, i.e., ρce(il + 1) + 1= rl

and ce[il] = cl . Since rl is the lowest return index such that the decomposition is accepted
by SR, i.e., a decomposition with an even lower index is rejected, the call symbol ce[il] in
the un-processed counterexample was not emitted because

α(ce[il + 1, rl − 1]) /∈ L(P cl).

This property directly identifies a rejecting procedure of SR and allows one to extract
a local counterexample. Figure 6.2 visualizes this binary search-style counterexample
analysis process by contrasting the two scenarios of investigating higher and lower return
indices.
Note that determining il and rl requires one to pose MQs on SR. In case of negative

counterexamples, SR maps to the SUL and therefore, these MQs result in actual queries to
the system. However, in case of positive counterexamples, SR maps to HSPA and therefore,
these MQs can be answered by the (in-memory) hypothesis HSPA. Consequently, positive
counterexamples can be analyzed and processed without any (query) costs.

6.2.3 Example

To give an intuition for the learning process, this (sub-) section presents the first iterations
of the SPA learner for inferring a SUL based on Figure 3.1.

Start As described in Section 6.2.1, the SPA learner initially has no knowledge of any
procedures or access sequences, terminating sequences, or return sequences thereof. As a
result, the learner cannot activate any procedural learners and the first hypothesis model
H0

SPA resembles the empty SPA which describes the empty language. Other than that, only
global variables such as Σact are initialized accordingly.

94

6.2 SPAs

F
ig
u
re

6
.2

(f
ro
m

[6
1
])

T
he

tw
o
po

ss
ib
le

sc
en

ar
io
s
du

ri
ng

th
e
an

al
ys
is
of

co
un

te
re
xa

m
pl
es
:
T
he

to
p
tw

o
im

ag
es

ea
ch

sh
ow

a
ru
n
of

a
co
un

te
re
xa

m
pl
e

in
S

R
,w

he
re

da
sh
ed

lin
es

in
di
ca
te

th
at

an
ill
eg

al
pr
oc
ed

ur
al

in
vo

ca
ti
on

ha
s
oc
cu

rr
ed

th
at

ir
re
co
ve
ra
bl
y
ca
us
es

S
R
to

re
je
ct

th
e

tr
ac
e.

O
n
th
e
le
ft
-h
an

d
si
te

th
e
er
ro
r
oc
cu

rs
in

u
.
H
er
e,

th
e
(e
xt
en

de
d)

al
ph

a-
ga

m
m
a
tr
an

sf
or
m
at
io
n
re
pl
ac
es

th
e
vi
ol
at
in
g

pr
oc
ed

ur
al

in
vo

ca
ti
on

w
it
h
an

ad
m
is
si
bl
e
pr
efi

x,
w
hi
ch

ca
us
es

th
e
tr
an

sf
or
m
ed

tr
ac
e
to

be
ac
ce
pt
ed

.
T
hi
s
in
di
ca
te
s
th
at

fu
rt
he

r
an

al
ys
is
,
i.e

.,
bi
n
ar
y
se
ar
ch

,
sh
ou

ld
co
n
ti
nu

e
w
it
h
sp
lit
ti
n
g

u
.
O
n
th
e
ri
gh

t-
ha

n
d
si
te

th
e
er
ro
r
oc
cu

rs
in

v
.
H
er
e,

th
e
er
ro
r

pr
ev
ai
ls
ev
en

af
te
r
th
e
(e
xt
en

de
d)

al
ph

a-
ga

m
m
a
tr
an

sf
or
m
at
io
n
,
w
hi
ch

in
di
ca
te
s
th
at

fu
rt
he

r
an

al
ys
is
,
i.e

.,
bi
n
ar
y
se
ar
ch

,
sh
ou

ld
co
nt
in
ue

w
it
h
sp
lit
ti
ng

v
.

u
v

c i
1

w
1

c i
2

w
2

c i
3

w
3

r
w

4
r

w
5

c i
4

w
6

r
w

7
c i

5
w

8
c i

6
w

9
r

w
1

0
r

w
1

1
r

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

al
ph

a-
ga

m
m
a
tr
an

sf
or
m
at
io
n

Ju
K∗

v

c i
1

w
1

c i
2

ts
c i

2
r

w
5

c i
4

ts
c i

4
r

w
7

c i
5

w
8

c i
6

w
9

r
w

1
0

r
w

1
1

r
·
·

·
·

·
·
·

·
·
·
·
·
·
·
·
·
·
·

u
v

c i
1

w
1

c i
2

w
2

c i
3

w
3

r
w

4
r

w
5

c i
4

w
6

r
w

7
c i

5
w

8
c i

6
w

9
r

w
1

0
r

w
1

1
r

·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·

al
ph

a-
ga

m
m
a
tr
an

sf
or
m
at
io
n

Ju
K∗

v

c i
1

w
1

c i
2

ts
c i

2
r

w
5

c i
4

ts
c i

4
r

w
7

c i
5

w
8

c i
6

w
9

r
w

1
0

r
w

1
1

r
·
·

·
·

·
·
·

·
·
·
·
·
·
·
·
·
·
·

95

Chapter 6 Active Automata Learning of Instrumented Context-Free Systems

First Counterexample As the first counterexample, the SPA learner may receive the
tuple 〈F · a · R, true〉. This constitutes a positive counterexample because F · a · R ∈ L(SUL)

and F · a · R /∈ L(H0
SPA). The SPA learner continues with analyzing the counterexample

according to Algorithm 6.1. From the positive counterexample, the SPA learner infers
that F identifies the initial procedure and stores this information in c0 accordingly. Given
the current valuation of Σact, the detection of new procedures (cf. Line 4 to Line 9)
determines F as a new procedure and stores the respective sequences accordingly. The
counterexample yields asF = F , tsF = a, rsF = R. With the availability of the new sequences,
Line 11 now starts the procedural learner for P F over Σact = {F, a, b, c}. The resulting
procedural hypothesis (which also constitutes the subsequent SPA hypothesis H1

SPA) is
shown in Figure 6.3a. Note that the hypothesis model for PG is still missing because the
respective procedural learner is not yet activated. Furthermore, P F has no bG-transitions
due to a missing terminating sequence for procedure G.
Activating the procedural learner of P F and constructing H1

SPA from the hypothesis
model of P F also changes the behavior of the SPA hypothesis compared to the initial empty
hypothesis H0

SPA. Most importantly, the initial counterexample 〈F · a · R, true〉 is no longer
a valid counterexample for the current SPA hypothesis because F · a · R ∈ L(H1

SPA). As a
result, the refinement step terminates early at the check of Line 13 and the counterexample
is handled successfully.

Second Counterexample As the second counterexample, the SPA learner may receive
the tuple 〈F · G · F · b · R · R · R, true〉. This constitutes a positive counterexample because
F · G · F · b · R · R · R ∈ L(SUL) and F · G · F · b · R · R · R /∈ L(H1

SPA) due to G not being an el-
ement of Σact. Again, the SPA learner continues with analyzing the counterexample
according to Algorithm 6.1. Given the current valuation of Σact, the detection of new
procedures (cf. Line 4 to Line 9) determines G as a new procedure and stores the respective
sequences accordingly. The counterexample yields asG = F · G, tsG = F · b · R, rsG = R · R.
Updating the procedural learners on the basis of the new active alphabet symbols (cf.
Line 11) results in adding the call symbol G to the procedural learner of P F (due to
the now available tsG) as well as the activation of the procedural learner of PG over
Σact = {F, G, a, b, c} (due to the now available asG, tsG, and rsG). The resulting proce-
dural hypotheses (which constitute the subsequent SPA hypothesis H2

SPA) are shown in
Figure 6.3b.
Both procedures are now total with regard to bΣproc of Figure 3.1. Similar to the first

counterexample, the activation of the procedural learner of PG (and consequently the
construction of its procedural hypothesis model) affects the SPA hypothesis such that the
second counterexample is no longer a valid counterexample for H2

SPA. As a result, the
refinement step terminates early with the check of Line 13 again.

Third Counterexample As the third counterexample, the SPA learner may receive the
tuple 〈F · a · F · a · R · a · R, true〉. Again, this constitutes a positive counterexample because
F · a · F · a · R · a · R ∈ L(SUL) and F · a · F · a · R · a · R /∈ L(H2

SPA). Contrary to the first two
counterexamples, this counterexample does not contain any new information about

96

6.2 SPAs

previously unobserved procedures. Therefore, there are no preliminary updates to the
current SPA hypothesis and Algorithm 6.1 proceeds with Line 17 in order to analyze the
counterexample. Since the given counterexample is a positive one, SA maps to the SUL
and SR maps to H2

SPA. For the analysis of the counterexample, SR, i.e., H2
SPA, needs to be

ts-conform with respect to the currently stored terminating sequences. For tsF = a, P F

needs to accept the word ba. For tsG = F · b · R, PG needs to accept the (projected) word bF
and due to the nested call within the terminating sequence, P F needs to accept the word
bb as well. H2

SPA satisfies these properties as seen in Figure 6.3b.
The analysis process continues with applying the alpha-gamma transformation in a

binary search style pattern in order to detect a violating procedure P∗R . Starting with the
return index ri = 5, the transformation yields

JF · a · F · a · RK∗ · a · R= F · Ja · F · a · RK · a · R= F · a · F · a · R · a · R

which represents the original counterexample that is rejected by SR (H2
SPA). Here, the

error still preserves after the transformation and according to Theorem 9, only higher
return indices need to be investigated for further information. Analyzing the return index
ri = 7 results in the (trivial) replacement of the counterexample with the terminating
sequence of procedure F , i.e.,

JF · a · F · a · R · a · RK∗ = JF · a · F · a · R · a · RK= F · a · R,

which is accepted by the (ts-conform) SR. As a result, the lowest return index rl such
that the transformed counterexample is accepted by SR is given by rl = 7 which directly
identifies F (the matching call symbol) as the violating procedure and ba · bF · ba as the
(projected) local counterexample. Line 18 delegates this local counterexample to the
respective procedural learner of P F for its refinement. The result of this process (and
consequently, the updated SPA hypothesis H3

SPA) is shown in Figure 6.3c.

Fourth Counterexample As the fourth counterexample, the SPA learner may receive the
tuple 〈F · G · c · a · F · R · R · R, false〉. This constitutes a negative counterexample because
F · G · c · a · F · R · R · R /∈ L(SUL) and F · G · c · a · F · R · R · R ∈ L(H3

SPA). As Algorithm 6.1
skips the search for new sequences for negative counterexamples, the refinement step
directly proceeds with Line 17 in order to analyze the counterexample. Since the given
counterexample is a negative one, SR maps to the SUL and SA maps to H3

SPA. Since the
terminating sequences used by γ are extracted from accepted runs of the SUL, SR is trivially
ts-conform with respect to these sequences.

Regarding the analysis of the counterexample using the alpha-gamma transformation,
the algorithm may start with the return index ri = 7. The resulting transformation yields

JF · G · c · a · F · R · RK∗ · R= F · JG · c · a · F · R · RK · R= F · G · F · b · R · R · R.

Here, the transformation “swallows” the error occurring in PG by replacing the original in-
vocation with its terminating sequence. This effect is detectable due to the ts-conformance
of SR, which makes it accept the transformed counterexample. By the results of Theorem 9,

97

Chapter 6 Active Automata Learning of Instrumented Context-Free Systems

the binary search continues to analyze the (only) lower return index ri = 6. The resulting
transformation yields

JF · G · c · a · F · RK∗ · R · R= F · G · Jc · a · F · RK · R · R= F · G · c · a · F · a · R · R · R

which is rejected by SR. This terminates the counterexample analysis because the algorithm
has found the lowest return index rl = 7 such that Jce[, rl]K

∗ · ce[rl + 1,] ∈ L(SR). The
violating procedure (PG) is identified by the matching call symbol and bc · ba · bF is extracted
as the (projected) local counterexample. Line 18 delegates this local counterexample to
the respective procedural learner for the refinement of PG. The result of this process (and
consequently, the updated SPA hypothesis H4

SPA
) is shown in Figure 6.3d.

Further Counterexamples The learning process continues with receiving counterexamples
that further expose in-equivalences in the procedures of the current SPA hypothesis. Due
to the proposed counterexample analysis (cf. Corollary 3) and its implementation using
the alpha-gamma transformation with its properties of monotonicity (cf. Theorem 9), the
global counterexamples continue to be projected to local counterexamples of the involved
procedures so that the soundness of the respective procedural learners guarantees that
the final SPA hypothesis eventually coincides with the SUL shown in Figure 3.1.

6.2.4 Termination and Complexity

For discussing the properties of termination and complexity of the SPA learner, recall that
in the MAT framework, a learner has access to MQs for exploring the behavior of the
SUL and equivalence queries (EQs) to verify the intermediate hypotheses. The following
analysis assumes that the SUL is represented by a minimal SPA of size n such that |P ci |= ni

for all ci ∈ Σcall. Under the assumption that one uses one of the well-known regular learning
algorithms which are able of infer canonical procedural hypotheses of P ci with a maximum
of ni EQs, the following holds.

Theorem 10 (Correctness and termination [61])
Let Σ be an SPA input alphabet and SSUL be a minimal SPA over Σ with size n. Having access

to a MAT for L(SSUL), the SPA learning algorithm infers a minimal SPA model Smod with

Smod ≡SPA SSUL requiring at most n+ 1 EQs.

Proof. This property is based on the fact that every valid global counterexample detects
an inconsistency in one of the procedures of HSPA and therefore allows one to extract a
local counterexample. Every local counterexample increases the number of states of the
concerned procedures until they are equivalent to their SUL counterpart and therefore no
more global counterexamples can expose any inconsistencies in the concerned procedures.
Since every procedural hypothesis requires a maximum of ni local counterexamples before
equivalence is achieved and one additional EQ is required to indicate equivalence, the
bound directly follows. For the full proof, see Theorem 4 in [61].

98

6.2 SPAs

Figure 6.3

The procedural hypothesis models of HSPA after the respective counterexample refinements.
Sink states and corresponding transitions are omitted for readability.

Procedure: F

F0

ba,bb

(a) The procedural hypothesis models of H1
SPA

after the first counterexample refinement.

Procedure: F Procedure: G

F0

bG, ba,bb

G0 G1

bG, ba,bb

bF ,bc

bF , bG, ba,bb,bc

(b) The procedural hypothesis models of H2
SPA

after the second counterexample refinement.

Procedure: F Procedure: G

F0 F1 F2
bG, ba,bb

bF

ba
G0 G1

bG, ba,bb

bF ,bc

bF , bG, ba,bb,bc

(c) The procedural hypothesis models of H3
SPA

after the third counterexample refinement.

Procedure: F Procedure: G

F0 F1 F2
bG, ba,bb

bF

ba
G0 G1

bF ,bc

bG

(d) The procedural hypothesis models of H4
SPA

after the fourth counterexample refinement.

99

Chapter 6 Active Automata Learning of Instrumented Context-Free Systems

Regarding query complexity, the notion of rigorous (de-) composition results in a query
complexity of the SPA learner that is determined by the aggregation of the individual
query complexities of the regular learning algorithms of the involved procedures.

Theorem 11 (Query complexity [61])
Let Σ be an SPA input alphabet and SSUL be a minimal SPA over Σ with size n and k

procedures. Let Cci
denote the query complexity of the local learner for inferring procedure P ci

with ci ∈ Σcall, and let m denote the length of the longest (global) counterexample. Having

access to a MAT for L(SSUL), inferring a minimal SPA model Smod such that Smod ≡SPA SSUL

has a query complexity of O
��∑k

i=1 Cci

�
+ n log2 m
�
.

Proof. This directly follows from the compositional nature of the SPA inference process:
Procedural hypotheses are constructed by their corresponding procedural learners and
therefore require the respective amount of membership queries. In addition to that,
the global counterexample analysis can be implemented in a binary search fashion and
therefore only adds a logarithmic term to the query performance. For the full proof, see
Theorem 5 in [61].

6.2.5 Optimization Heuristics

As Theorem 11 shows, the query complexity of the SPA learner is mainly determined by the
query complexity of the involved procedural learners. This means that any performance
improvements in the field of regular AAL can be directly transferred to the learning process
of (instrumented) context-free systems. This not only affects query complexity but also
symbol complexity, i.e., the number of symbols occurring in the posed MQs. Another major
factor that affects this metric of the SPA learner is the gamma expansion, specifically the
length of the used access sequences, terminating sequences, and return sequences.
In the following, we look at the exchangeability of terminating sequences and (pairs

of matching) access sequences and terminating sequences between two independent
query expansions. This opens up the way to optimizing, i.e., shortening, these sequences
throughout the learning process and establishing a notion of automated self-optimization
during learning. Recall from Definition 35 that there exist no special structural restrictions
on the three types of sequences as long as the combined sequences represent an accepted
word of an SPA. The two proposed optimization heuristics are based on the ideas of
terminating sequence invariance and context invariance.

Theorem 12 (Terminating sequence invariance)
Let Σ be an SPA input alphabet and S be an SPA over Σ.

(bc · bv,σ)SPA

c·tsc ·r
−−−→∗(bv,σ)SPA

for all c ∈ Σcall, tsc ∈ TSc and some matching bv ∈ bΣ∗proc.

Proof. This directly follows from Definitions 29 and 35. Since terminating sequences
are extracted from accepted words of an SPA, we can choose the respective w of Defini-
tion 35 such that we have w[i] = c, w[i + 1,ρw(i + 1)] = tsc , w[ρw(i + 1) + 1] = r for some

100

6.2 SPAs

matching 〈c, i〉 ∈ Instw. Since the respective w is an accepted word of S, there exists an
admissible path in the language-SOS system that emits c · tsc · r after emitting the access
sequence w[, i − 1]. By Definition 29 c can only be emitted if bc is the first alphabet symbol
of the state of the current SOS configuration and the well-matchedness of tsc ensures that
we reach the same σ after emitting the matching return symbol. This directly concludes
the statement.

Theorem 13 (Context invariance)
Let Σ be an SPA input alphabet, S be an SPA over Σ, c ∈ Σcall, and tsc ∈ TSc.

asc · tsc · rsc ∈ L(S)

for all 〈asc , rsc〉 ∈ Contc.

Proof. Let c ∈ Σcall, 〈asc , rsc〉 ∈ Contc be arbitrary and tsc ∈ TSc be fixed. We have to show
that asc · tsc · rsc ∈ L(S) or equivalently

(bc0,⊥)SPA

asc ·tsc ·rsc
−−−−−→∗(ϵ,⊥)SPA.

Since 〈asc , rsc〉 ∈ Contc, there exists by Definition 35 a ts′c ∈ TSc such that asc · ts
′
c · rsc ∈ L(S).

By Definition 29 we have

(bc0,⊥)SPA

asc[,|asc |−1]
−−−−−−−→∗ (bc · bw1,σ)SPA

c
−→ (bw2 ·br, bw1 •σ)SPA
ts′c
−→∗ (br, bw1 •σ)SPA

r
−→ (bw1,σ)SPA

rsc[2,]
−−−→∗ (ϵ,⊥)SPA

for some bw1, bw2 ∈ bΣ∗proc,σ ∈ ST(ΓSPA). Since tsc ∈ TSc, we know by Theorem 12 that

(bc · bw1,σ)
c·tsc ·r
−−−→ (bw1,σ)

which allows us to replace ts′c with tsc, i.e., there exists a bw3 ∈ L(P c) such that

(bc0,⊥)SPA

asc
−→∗(bw3 ·br, bw1 •σ)SPA

tsc
−→∗(br, bw1 •σ)SPA

rsc
−→∗(ϵ,⊥)SPA

which concludes the statement.

Theorems 12 and 13 state that one can arbitrarily exchange terminating sequences and
contexts (pairs of matching access sequences and return sequences) without affecting
the membership property of the concerned word. As a result, the gamma expansion may
choose arbitrary representatives when expanding local queries to global queries without
affecting the correctness of the answers to procedural MQs. This is a powerful enabler for
reducing the effective symbol complexity of the learning process in practice. Rather than
restricting the analysis of positive counterexamples to extracting the initial terminating

101

Chapter 6 Active Automata Learning of Instrumented Context-Free Systems

sequences and (pairs of matching) access sequences and return sequences only, the SPA
learner may scan every positive counterexample to see if it contains shorter instances of
the respective sequences. If it finds shorter sequences, the leaner can replace the existing
representatives and therefore construct shorter expanded queries afterwards. This concept
adds a sense of automated self-improvement to the learning process.

Especially for terminating sequences, this concept can be applied recursively. Access
sequences, terminating sequences, and return sequences from positive counterexamples
may contain nested procedural calls themselves. Theorem 12 allows one to replace these
invocations with arbitrary, i.e., shortest, terminating sequences as well. For example, this
means that a positive counterexample that initially improves the terminating sequence
of a procedure c may also improve the access sequence of a procedure c′ if it contains
nested calls to c. By repeatedly, e.g., for every positive counterexample, analyzing the
existing sequences for possible replacements of nested procedural invocations with new
terminating sequences, the learner may further reduce the symbol complexity of the
expansion mechanism.

Depending on the chosen procedural learners, there may exist another source for finding
short(er) terminating sequences besides positive counterexamples. Some (regular) AAL
algorithms represent states of their current hypothesis via representatives bw ∈ bΣ∗proc. If a
state is accepting, the corresponding representative constitutes a successful run of the
procedure. This representative (possibly gamma-expanded if it contains nested calls) is
another candidate for a shorter terminating sequence. For example, if the initial state
of a procedural hypothesis is accepting, ϵ is a valid (shortest) terminating sequence
for this procedure, irrespective of what other terminating sequences are extracted from
positive counterexamples. This search for terminating sequences can be performed for all
procedural learners independently and does not require any additional interaction with
the SUL as the representatives can be extracted from the hypotheses directly.

By constantly analyzing positive counterexamples and the current hypotheses of the
procedural learners (if possible), one can repeatedly look for shorter access sequences,
terminating sequences, and return sequences in order to continuously improve the symbol
performance of the SPA learner throughout the learning process. Section 10.2.2 shows the
impact of these optimizations by comparing setups that use the previously mentioned steps
and setups that simply use the initial sequences obtained from positive counterexamples.

6.3 SBAs

The SBA learner needs to address the semantic characteristics of SBAs, namely the prefix-
closure of both the global language and the individual procedural languages. Compared to
the SPA case, there are two aspects of prefix-closure that allow one to simplify the learning
process and two aspects that require additional adjustments of the learning process. We
continue with the simplifications first and then look at the necessary adjustments.

102

6.3 SBAs

Figure 6.4

Extraction of a local counterexample from a reduced global counterexample ce. The
context of the in-equivalent action u can be determined by the highest index i∗ such that
β(ce[i∗, |ce| − 1])> 0.

context

ci1
w1 ci2

w2 ci3
w3 r w4 u· · · · · · · ·global counterexample

bw2 ·bci3
· bw4 · bu

α-projection
local counterexample

6.3.1 Simplifications

The first simplification concerns the expansion of local queries during the exploration
phase. Theorem 5 shows that for answering procedural MQs on the global SUL, it is
sufficient to concatenate an access sequence with the specifically expanded procedural
query, i.e., there is no need for return sequences anymore. Consequently, the discovery
and management of these sequences can be removed from the learning process.

The second simplification concerns the analysis of counterexamples. For regular SPAs,
an intricate analysis for determining a violating procedure is required which may involve
executing additional queries on the SUL (cf. Section 6.2.2). For prefix-closed languages,
this process can be simplified by establishing the notion of reduced counterexamples which
expose an inconsistency between the current hypothesis and the SUL at the last symbol of
the counterexample.

Definition 67 (Reduced counterexample)
Let Σ be an SPA input alphabet, ce ∈ Σ∗ denote a counterexample, and SA, SR denote two

SPAs over Σ such that ce ∈ L(SA) and ce /∈ L(SR). We call ce reduced iff ce[, |ce| − 1] ∈ L(SR).

As shown in Figure 6.4, a reduced counterexample directly allows one to identify the
procedure that causes the in-equivalent behavior by determining the context in which
ce[|ce|] is emitted. The local counterexample can be extracted by projecting the suffix up
to the corresponding call symbol without requiring an intricate analysis process involving
the alpha-gamma transformation anymore. This also makes any related checks such as the
ts-conformance of the current hypothesis model obsolete. All this is a direct consequence
of Theorem 4.
The additional requirement (towards the EQO) to provide reduced counterexamples

only needs minor adjustments. Any test for equivalence that the EQO wants to perform

103

Chapter 6 Active Automata Learning of Instrumented Context-Free Systems

only needs to be evaluated in a step-wise fashion such that the (global) counterexample
is returned after the first observed mismatch in behavior. Given that SBAs naturally
represent reactive systems, this step-wise evaluation is easily achievable. For SULs that do
not support this type of interaction, a reduced counterexample can still be constructed
by testing multiple prefixes of the initial counterexample. Since the index of the first
mismatching symbol can be determined via a binary search, this approach performs no
worse than the SPA case.

6.3.2 Adjustments

The first adjustment addresses the fact that behavioral automata include the return
symbol in their procedural alphabet. As a result, procedural MQs may now also include
the return symbol. More critically, procedural MQs may contain symbols beyond the return
symbol. Similar to the situation during conformance testing (cf. Section 5.3.2), the gamma
expansion cannot properly expand these queries in order to evaluate them on the SUL.
Again, the notion of return-closure of behavioral automata comes as a remedy. As these
queries are rejected by valid behavioral automata, the procedural MQOs can short-circuit
these queries, i.e., upon detecting that a local query extends beyond a return symbol, the
query is neither expanded nor delegated to the SUL but answered with false immediately.
By allowing only the last symbol of a local query to be the return symbol and expanding
queries similar to Theorem 5, one can circumvent any problems regarding expansion
without affecting the correctness of the answers to the queries.
Besides query expansion, including the return symbol in the procedural alphabet may

also affect the validity of intermediate hypotheses. If the procedural learner does not (yet)
investigate successors of return transitions, it may happen that intermediate procedural
hypotheses violate the required return-closure of behavioral automata. For example,
consider an initial hypothesis with only a single accepting state in which all transitions
loop back into the initial state. This inconsistency can be easily addressed via a structural
analysis which verifies that all return successors lead into a rejecting sink state. If a
procedural hypothesis does not satisfy this property, paths starting at the initial state and
ending with the respective return transitions can be used as negative counterexamples to
refine the hypothesis. By repeatedly checking this property, e.g., after each refinement,
the SBA learner can assure the return-closure of the current procedural hypotheses. Note
that these operations, i.e., accessing a hypothesis model and supplying a counterexample,
are all standard operations for (regular) AAL algorithms. As a result, one can still use any
MAT-compatible learner for SBA learning.
The second adjustment concerns the process of incorporating information from coun-

terexamples during the verification phase. For SPAs (cf. Section 6.2.1), positive coun-
terexamples provide access sequences, terminating sequences, and return sequences that
allow the SPA learner to extend the learning alphabet of procedural learners and progress
the exploration of procedural hypotheses. While the SBA learner no longer needs return
sequences for query expansion, access sequences and terminating sequences are still very
much required.

104

6.3 SBAs

Figure 6.5 (from [62])

A hypothesis of P F
B of Figure 3.5 without any procedural G transitions (left) and after

incorporating the information of a positive counterexample “F · G” (right).

F0 F2

F1

F4

F3

F5 F6

ba
bb

bF

bF
ba
bb

bR

bR

bR

bR
F0 F2

F1

F4

F3

F5 F6

F?

ba
bb

bF

bF
ba
bb

bR

bR

bR

bR

bG
?

?

However, with prefix-closed languages, a positive counterexample may no longer provide
these two sequences simultaneously. Consider a potential positive counterexample F · G

for the SBA based on Figure 3.5. While it provides access sequences for both procedures F

and G, it does not provide terminating sequences for any of the two procedures. Therefore,
the SBA learner may activate the procedural learners of F and G but it cannot add the
two call symbols to the set of active learning symbols. However, at the same time, the
hypothesis of procedure F needs to reflect the behavior of G, i.e., the successful invocation
of G. Otherwise, the learning process potentially deadlocks with a valid counterexample
but no hypothesis refinement.
The problem with the above type of counterexamples is that it introduces divergent

states, i.e., states for which future behavior cannot be determined yet. Figure 6.5 visualizes
this problem. The divergent state may at some point have valid accepting successors.
For example, if the SBA learners receives the positive counterexample “F · G · c · R · R”, it
can extract c as a terminating sequence for G and the respective procedural MQOs can
properly expand calls to G. However, in an instance where the learning process terminates
without such a counterexample, all transitions of the divergent state must lead into a sink
state because procedure G is found to be non-terminating.

Divergent states pose new challenges for the AAL process of SBAs because they may not
necessarily represent actual states in the hypothesis. In case of Figure 6.5, the divergent
state F? later coincides with the state F5. As a result, the hypothesis construction is no
longer guaranteed to be a monotonic process which is a fundamental requirement for a
lot of termination and correctness proofs of learning algorithms.
The SBA learner may tackle this problem by re-using the idea of incremental alphabet

extension. When a new call symbol is first encountered in a positive counterexample and
no terminating sequence can be extracted, the learner may extend the active learning
alphabet with a non-terminating version of the call symbol. When the procedural MQOs are
given local queries that continue beyond non-terminating call symbols, they short-circuit

105

Chapter 6 Active Automata Learning of Instrumented Context-Free Systems

these queries and directly answer them with false without delegating the query to the
SUL, similar to queries that extend beyond the return symbol. As a result, the divergent
states are forced to materialize as non-terminating states, i.e., all its successors lead into
the sink state. Note that local queries that end with non-terminating call symbols, e.g.,
“bG” in case of P F

B of Figure 6.5, do not need their last symbol expanded (cf. Theorem 5)
and can still be answered correctly by the (prefix-closed) SUL. This means that the
information of a positive counterexample, such as F · G, can be correctly incorporated
into the tentative hypothesis of procedure F . If the learner at some point later receives
a global counterexample that provides a terminating sequence, such as “F · G · c · R · R”,
it adds a terminating version of the call symbol to the active learning alphabet, which is
treated similar to the SPA case.

This means that the procedural hypotheses of SBAs are generally defined over bΣ⊎ bΣ′
call

,
where in this case bΣ′

call
denotes the set of non-terminating call symbols. In order to decide

which version is the correct one, the learner simply maintains a mappingΣcall→ bΣcall ⊎ bΣ′call

throughout the learning process that decides for each call symbol if the non-terminating
or terminating version should represent the behavior of the hypothesis, depending on
whether it has found a terminating sequence or not. Using this mapping, the learner can
always provide a unique and deterministic view on the procedural hypotheses that reflects
the current knowledge of the learning process.
Note that if the SBA learner directly receives a positive counterexample that provides

a terminating sequence, e.g., “F · G · c · R · R” instead of “F · G” in the case Figure 6.5, no
non-terminating call symbol needs to be introduced and the learning process may proceed
directly like in the case of SPAs.

6.3.3 Termination and Complexity

Given that the approach for tackling divergent states is (at least in this thesis) implemented
via incremental alphabet extension and (regular) AAL algorithms behave monotonically
with respect to additional alphabet symbols, the general argumentation for termination
and correctness known from SPAs (cf. Section 6.2.4) directly applies to SBAs as well.
However, regarding query complexity, the previously discussed simplifications and

adjustments change the dimension of this bound. On the one hand, the complexity of
procedural learners often depends on the size of the procedural hypothesis and the number
of its input symbols. By dealing with divergent states via additional input symbols, the
size of the procedural alphabet increases up to |bΣ|+ |bΣcall| (compared to |Σproc| for SPAs).
On the other hand, reduced global counterexamples do not require any analysis. This
leads to the following query complexity of the SBA learner.

Theorem 14 (Query complexity)
Let Σ be an SPA input alphabet and SSUL

B be a minimal SBA over Σ with k procedures. Let Cci

denote the query complexity of the local learner for inferring procedure P
ci

B with ci ∈ Σcall.

Having access to a MAT for L(SSUL
B) that returns reduced counterexamples, inferring a minimal

SBA model Smod
B such that Smod

B ≡SBA SSUL
B has a query complexity of O

��∑k
i=1 Cci

��
.

106

6.4 SPMMs

Proof. Similar to Theorem 11, this directly follows from the compositional nature of the
SBA inference process: Procedural hypotheses are constructed by their corresponding
procedural learners and therefore require the respective amount of membership queries.
Analyzing reduced counterexamples does not cause any additional queries.

6.4 SPMMs

Formally, the semantics of SPMMs are defined via SBAs over the cartesian product of
some SPA input alphabet and some SPA output alphabet. Consequently, the results of
Section 6.3 directly lead to a possible implementation of an SPMM learner. Therefore, this
section primarily focuses on possible advantages that native Mealy-based representations
of procedures offer in the context of AAL. For example, consider the SPMM based on
Figure 3.7 and its respective SBA-based characterization, i.e., an output-enriched version
of the SBA based on Figure 3.5. For the procedural learner of P F

B to infer the transduction
〈a, x〉 it would need to pose the procedural MQs 〈ba, bx〉, 〈ba, by〉, and 〈ba,bz〉 only to have
solely the query 〈ba, bx〉 get answered with true. Here, the learner requires three queries to
determine a single transduction step.

With a native transduction-based SUL that operates in a deterministic and incremental
lock-step-based pattern similar to SPMMs, the learner (MQO, respectively) simply poses
the query ba so that the system answers it with bx , requiring only a single query for the same
amount of information. Many (regular) AAL algorithms have been extended to support
these kinds of MQs in order to infer native Mealy machines (cf. Section 8.3). Therefore,
by implementing a native SPMM learner that is provided with procedural learners which
use a Mealy-specific MQO, the performance of the learning process can be improved by
requiring fewer queries.
While many of the ideas of Section 6.3, such as the handling of divergent states via

incremental alphabet extension, directly apply to the SPMM case as well, there is a slight
adjustment needed for short-circuiting queries. As discussed in Section 6.3.2, handling
procedural MQs that contain symbols beyond non-terminating call symbols or the return
symbol are short-circuited to be rejected automatically. In lock-step-based transductions,
the number of symbols of an output word must match the number of symbols of the input
word, even if the query needs to be short-circuited because it contains non-continuable
input symbols. This requirement can be easily met by first evaluating the query up until the
first non-continuable input symbol on the SUL. Due to the prefix-closure of the considered
transductions, the SUL still answers all inputs up until this symbol correctly. For the
remainder of the query, the procedural MQO then simply repeats the “error” output symbol
� as this symbol represents the rejecting behavior of behavioral automata. This small
adjustments allows the procedural MQOs to transfer the SBA-specific semantics seamlessly
to the SPMM case. Figure 6.6 sketches this process for an exemplary query.
Compared to SBAs, SPMM-based transductions furthermore allow for an easier con-

struction of reduced counterexamples. Since the output words essentially record all
intermediate responses of the system, the symbol (index) at which the behavior of the
SUL and the behavior of the current SPMM hypothesis differ is easily determined by a

107

Chapter 6 Active Automata Learning of Instrumented Context-Free Systems

Figure 6.6

A comparison between answering SBA queries and SPMM queries with a non-terminating
call symbol c1.

〈ba1,bo1〉 〈ba2,bo2〉 〈ba3,bo3〉 〈bc1,Ò�〉 〈ba4,bo4〉 〈br,Ò�〉· · · · ·

short-circuited to

false

SBA

Query:

Response:

ba1 ba2 ba3 bc1 ba4 br· · · · ·

evaluated on the SUL to

bo1 · bo2 · bo3 ·
Ò�

short-circuited to

Ò� · Ò�·

SPMM

Query:

Response:

symbol-wise comparison of the output symbols. Cutting off the counterexample after the
first mismatch of output symbols directly yields the reduced counterexample required for
identifying the violating procedure.

6.5 Summary

This section concludes the chapter by summarizing its main results.

• Similar to the field of model-based testing (MBT), the notion of rigorous (de-)
composition of SPAs, SBAs and SPMMs allows one to implement the inference of
the global system as a simultaneous inference of the local procedures.

• For SPAs,
– the exploration phase is a straightforward implementation of Theorem 2 in
which the inference of individual procedures is deferred until the learner has
all necessary information about access sequences, terminating sequences, and
return sequences available.

– the verification phase involves a two-step process, in which (first) the global
counterexample for the SPA is analyzed to identify a violating procedure via
an efficient binary search so that (second) the actual refinement is delegated
to the corresponding procedural learner by constructing a projected (local)
counterexample according to Theorem 1.

– the invariance of terminating sequences and contexts (pairs of access sequences
and return sequences) offers one the possibility to replace these sequences
during the learning process, allowing for an automated optimization of the
query expansion process.

• For SBAs,

108

6.5 Summary

– the inference process simplifies because the prefix-closure of SBA languages
no longer requires the management of return sequences. Furthermore, the
semantics of SBAs allow for the notion of reduced counterexamples in which the
violating procedure can be determined directly without requiring additional
analysis like in the SPA case.

– the inference process requires adjustments because access sequences and ter-
minating sequences may no longer occur simultaneously. In order to represent
non-terminating procedures (or procedures for which terminating sequences
are unknown at the time), the proposed SBA learner distinguishes between ter-
minating call symbols and non-terminating call symbols, in order to guarantee
a sound progression using incremental alphabet extension.

– the otherwise similar concepts to the case of SPAs allow one to exploit the
previously established properties such as sequence invariance.

• For SPMMs, the direct response mechanism of lock-step pattern-based SULs allows
one to implement more efficient procedural MQs compared to the SBA case.

• For all formalisms, the required steps (expansion, projection, refinement, etc.) do not
require any modifications to (regular) AAL algorithms. As a result, the proposed SPA,
SBA, and SPMM learners may be parameterized by any MAT-compatible (regular)
learners for the inference of the respective procedures.

109

CHAPTER 7

Transformations Between SPAs and VPAs

This chapter discusses the formalism of visibly push-down automata (VPAs) by Alur
et al. [11] and their relationship with systems of procedural automata (SPAs), systems
of behavioral automata (SBAs), and systems of procedural Mealy machines (SPMMs).
It compares the expressiveness of VPAs with the expressiveness of SPAs and presents
potential transformations between the two formalisms.

7.1 Visibly Push-Down Automata

One of the essential concepts of SPAs, SBAs, and SPMMs is an instrumentation that makes
calls to and returns from procedures observable. This concept is similar to visibly push-
down languages (VPLs) by Alur et al. [11]. VPLs are defined over a (visibly push-down)
alphabet which partitions its symbols into call symbols, internal symbols and (multiple)
return symbols. VPLs are accepted by VPAs which are classic push-down automata whose
stack operations are determined solely by parsing call symbols and return symbols, hence
the term visibly push-down automata. The stack represents a call stack and keeps track of
the current nesting of call symbols.

To allow for a closer comparison between SPAs and VPAs, we first look at the notion of
a visibly push-down alphabet and then the formal definition of VPAs.

Definition 68 (Visibly push-down alphabet [11])
A visibly push-down alphabet is a disjoint union eΣ = eΣcall ⊎ eΣint ⊎ eΣret where

• eΣcall denotes the finite call alphabet,
• eΣint denotes the finite internal alphabet, and
• eΣret denotes the finite return alphabet.

Similar to SPAs, the following uses a special markup token e to denote when input
symbols, words, or alphabets are interpreted in a VPA context.

Definition 69 (VPA [11])
Let eΣ be a visibly push-down alphabet. A VPA over eΣ is a tuple V = 〈Q,Qin, Γ ,δ,QF 〉 where

• Q is a finite set of locations,

• Qin ⊆Q is a set of initial locations,

• Γ is a finite stack alphabet including a special bottom-of-stack symbol ⊥,

• δ = δcall ⊎δint ⊎δret is the transition relation where

111

Chapter 7 Transformations Between SPAs and VPAs

– δcall ⊆ (Q× eΣcall ×Q× (Γ \ {⊥})) is the call transition relation,

– δint ⊆ (Q× eΣint ×Q) is the internal transition relation,

– δret ⊆ (Q× eΣret × Γ ×Q) is the return transition relation, and

• QF ⊆Q is a set of accepting locations.

Note that while the above definition allows for non-deterministic VPAs, non-deterministic
VPAs and deterministic VPAs are equally expressive [11]. Therefore, the following sections
assume all VPAs to be deterministic for reasons of simplicity. Furthermore, the following
sections assume all VPAs to be total, i.e., the transition relations describe functions that
are defined for all possible input parameters. Similar to regular automata, VPAs can be
made total by introducing a sink location and adding transitions to that sink location for
all previously undefined transitions.

7.1.1 Semantics

A run of a VPA induces a transition system where each state is characterized by a location
q ∈Q and a stack configuration σ over the domain ΓVPA = (Γ \ {⊥})

∗ ⊎ {⊥}. Again, • is
used to denote the stacking of elements where the display of elements from left to right
denotes the stack contents from top to bottom. ST(ΓVPA) denotes the set of all possible
stack configurations. Definition 70 then formally defines a run of a VPA.

Definition 70 (Run of a VPA [11])
Let eΣ denote a visibly push-down alphabet and V denote a VPA over eΣ. Let ew= ea1 · . . . · eak ∈ eΣ∗
denote a word over eΣ. The ew-induced run of V is a sequence τ= 〈q0,σ0〉, . . . , 〈qk,σk〉 such

that

• qi ∈Q for all i ∈ {0, . . . , k},

• σi ∈ ST(ΓVPA) for all i ∈ {0, . . . , k},

• q0 ∈Qin,

• σ0 = ⊥,

• ∀i ∈ {1, . . . , k} the following holds:

– if eai ∈ eΣcall, then ∃γ ∈ Γ such that 〈qi , eai , qi+1,γ〉 ∈ δcall and σi+1 = γ •σi,

– if eai ∈ eΣint, then 〈qi , eai , qi+1〉 ∈ δint and σi+1 = σi,

– if eai ∈ eΣret, then ∃γ ∈ Γ such that 〈qi , eai ,γ, qi+1〉 ∈ δret and γ ̸= ⊥∧σi = γ •σi+1

or γ= σi = σi+1 = ⊥.

We call a run accepting iff qk ∈QF . The language of a VPA is defined as the set of all words

whose induced runs are accepting, i.e.,

L(V) = {ew ∈ eΣ∗ | the ew-induced run is accepted by V}.

Remark 5

Note that Definition 70 is cited from [11]. However, the definition contains off-by-one errors

on the indices of the locations used in the constraints on the transition relation. Instead, it

should read “if eai ∈ eΣcall, then ∃γ ∈ Γ such that 〈qi−1, eai , qi ,γ〉 ∈ δcall and σi = γ •σi−1”, et

cetera.

This directly leads to the definition of VPLs.

112

7.1 Visibly Push-Down Automata

Definition 71 (VPL [11])
Let eΣ be a visibly push-down alphabet. A language L ⊆ eΣ∗ is a called a VPL iff there exists a

VPA V such that L = L(V).

Note that the acceptance of a word only depends on reaching an accepting location, i.e.,
there are no requirements on the structure of the stack. This means that VPAs can accept
return-matched words, i.e., words with un-matched call symbols (non-empty stack), and
call-matched words, i.e., words with un-matched return symbols (return transitions with
empty stack), as well. As a consequence, VPLs are (in general) strictly more expressive
than SPA languages and SBA languages.

For the comparison between VPAs and SPAs, this thesis restricts itself to VPAs that only
accept well-matched languages. It can be argued that this restriction does not impact
many practical scenarios. In general, VPAs (thus VPLs) do not support a canonical form
which is a fundamental requirement for many techniques from the fields of model-based
testing (MBT) and active automata learning (AAL). Alur et al. [12] propose a special
form of VPAs, called k-module single-entry visibly push-down automata (SEVPAs), which
support canonicity and are limited to describe well-matched VPLs only. Therefore, the
remaining discussion about transformations between SPAs and VPAs focuses on analyzing
the equivalence of SPAs and SEVPAs. Section 7.4 briefly looks at concepts such as behaviors
(SBAs) and transductions (SPMMs) in the context of VPAs. Furthermore, there exist
other, e.g., grammar-based, representations of VPLs [21] but this chapter focuses on the
automaton-based one due to its similarity with SPAs, which allows for a certain level of
convenience when discussing transformations between the two formalisms. We continue
with the presentation of k-SEVPAs and their properties.

7.1.2 Canonicity

In model-based quality assurance (MBQA) (especially in MBT and AAL) it is important
to have canonical, i.e., minimally unique (up to isomorphism), models in order to make
reasonable statements about the correctness and termination of algorithms. Alur et al. [12]
show that, in general, VPAs do not support canonical representations unless one constrains
the structure of a VPA. For a canonical representation, Alur et al. [12] introduce the notion
of a k-module single-entry visibly push-down automaton (k-SEVPA). A k-SEVPA is a VPA in
which the locations are partitioned into k+ 1 modules M0, . . . , Mk and the call alphabet is
partitioned into k classes C1, . . . , Ck. For i ∈ {1, . . . , k}, every call symbol from a partition
class Ci transitions the k-SEVPA into a designated entry location q∗

i
∈ Mi and the matching

return symbols transition the k-SEVPA back into the module in which the call symbol was
processed. M0 is considered the main module which contains the initial location(s) and
accepting locations. Definition 72 formalizes these concepts.

Definition 72 (k-SEVPA [12])
Let eΣ be a visibly push-down alphabet and {eΣ j

call
}k

j=1
be a partition of eΣcall. A VPA

V = 〈Q,Qin, Γ ,δ,QF 〉 is a k-SEVPA with respect to {eΣ j

call
}k

j=1
iff there is a partition {M j}

k
j=0

of Q and distinguished locations q∗
j
∈ M j for every j = 1, . . . , k such that

113

Chapter 7 Transformations Between SPAs and VPAs

• q0 ∈ M0,

• Γ = {⊥} ⊎ (Q× eΣcall),

• if 〈q,ec, q′, 〈q,ec〉〉 ∈ δcall for some ec ∈ eΣ j

call
, then q′ = q∗

j
,

• if 〈q, ea, q′〉 ∈ δint for some ea ∈ eΣint, then ∃ j : q, q′ ∈ M j,

• if 〈q′,er, 〈q,ec〉, q′′〉 ∈ δret for some ec ∈ eΣcall, then ∃ j : q, q′′ ∈ M j,

• QF ⊆ M0.

Note that the constraints about the initial state, accepting states, and the transition
relations imply that k-SEVPAs can only describe well-matched VPLs. For every call transi-
tion from q to q′ (pushing a tuple 〈q,ec〉 onto the stack), the matching return transition
(popping the tuple 〈q,ec〉 from the stack) needs to return to the module of q. Given that
the initial location and all accepting locations are restricted to the main module and that
there are no return transitions possible with an empty stack, accepted runs must terminate
with an empty stack, ensuring the well-matchedness of accepted words.

Furthermore, the stack alphabet is chosen as the most fine-grained stack alphabet
possible as every call transition uses the unique combination of the current location and
the respective call symbol as the element to push onto the stack. On the one hand, this
increases the size of the resulting k-SEVPAs as there need to exist return transitions for
all possible stack symbols. On the other hand, it removes a free parameter of k-SEVPAs,
which allows for simpler definitions.

The theoretical background to k-SEVPAs is the decomposition of a VPL into k+ 1 con-
gruences such that their respective equivalence classes can be used to construct canonical
modules which comprise the k-SEVPA. This is similar to the construction of canonical
regular automata based on the equivalence classes of the Nerode congruence [130]. The
following discussion uses a slightly adjusted characterization of (well-matched) VPLs
proposed by Isberner [93]. It uses only a single congruence which results in the creation
of a 1-SEVPA that merges the main module M0 with the single module M1, i.e., there
exists a single initial location which is also the target location of every call transition. For
formally introducing this unified congruence, we first look at the notion of context pairs.

Definition 73 (Context Pairs [93])
Let eΣ be a visibly push-down alphabet. The set of context pairs over eΣ, CP(eΣ), is defined as

CP(eΣ) = {〈eu,ev〉 ∈ (WM(eΣ) · eΣcall)
∗ ×MC(eΣ) | β ′(eu) = −β ′(ev)}

where β ′ represents the (trivially generalized) call-return balance of Definition 31 that

supports multiple return symbols.

Definition 74 (A unified congruence for well-matched VPLs [93])
Let eΣ be a visibly push-down alphabet and let L be a well-matched VPL over eΣ. The relation
≃L ⊆WM(eΣ)×WM(eΣ) is defined via

ew≃L ew′⇔∀〈eu,ev〉 ∈ CP(eΣ): eu · ew · ev ∈ L⇔ eu · ew′ · ev ∈ L

for all ew, ew′ ∈WM(eΣ).

114

7.2 SPAs as SEVPAs

The set of context pairs plays an important role for constructing canonical SEVPAs
because in analogy to the regular case, they represent “discriminators” that distinguish
between the different equivalence classes of a language. However, contrary to the regular
case, it is necessary to consider the full syntactic congruence for well-matched VPLs rather
than the simpler right-congruence. Given a ≃L congruence, the ≃L-induced 1-SEVPA is
constructed as follows:

Definition 75 (A ≃L-induced 1-SEVPA [93])
Let eΣ be a visibly push-down alphabet and L be a well-matched VPL over eΣ. The ≃L-induced

1-SEVPA is a tuple V≃L
= 〈Q,Qin, Γ ,δ,QF 〉 where

• Q =WM(eΣ)/≃L,

• Qin = {[ϵ]≃L
},

• Γ = {⊥} ⊎ (Q× eΣcall),

• δ = δcall ⊎δint ⊎δret where

– δcall = {〈[ew]≃L
,ec, [ϵ]≃L

, 〈[ew]≃L
,ec〉〉 | ∀ew ∈WM(eΣ),ec ∈ eΣcall},

– δint = {〈[ew]≃L
, ea, [ew · ea]≃L

〉 | ∀ew ∈WM(eΣ), ea ∈ eΣint},

– δret = {〈[ew]≃L
,er, 〈[ew′]≃L

,ec〉, [ew′ ·ec · ew · er]≃L
〉 | ∀ew, ew′ ∈WM(eΣ),er ∈ eΣret,ec ∈ eΣcall},

• QF = {[ew]≃L
| ew ∈ L}.

Here, [ew] represents the equivalence class of ew in the quotient set WM(eΣ)/≃L.

The above definition specifically describes the construction of 1-SEVPAs as presented
in [93]. However, it is easy to see, how the unified congruence can be generalized to
several per-module congruences for any given k-partition of the call alphabet in order to
construct a corresponding k-SEVPA [12].

7.2 SPAs as SEVPAs

Isberner [93] shows that in order to construct a 1-SEVPA from a unified congruence ≃L,
one does neither need to consider all possible context pairs nor all possible well-matched
words. Instead, a set of characterizing context pairs as well as a set of short prefixes as
representatives of locations suffice to construct a 1-SEVPA describing the language. This
section presents how these two sets can be constructed from an SPA S in order to construct
a language-equivalent SEVPA by means of Definition 75.

The set of relevant context pairs is specific to a VPL since it needs to properly distinguish
between accepted and rejected words of that language. Given an SPA S, its (global) lan-
guage is characterized by the (local) languages of its involved procedures (cf. Theorem 1)
which in turn are characterized by their states. Therefore, by uniquely characterizing each
state, it is possible to cover all relevant language characteristics. Given that procedures of
S are regular deterministic finite acceptors (DFAs), it is possible to use existing algorithms
to compute such characterizing sets (cf. Definition 23) for each procedure. In order to
correctly transfer their characterizing properties into the context of well-matched VPLs, it
is further necessary to embed the elements of the characterizing sets in their respective
context using the corresponding access sequences, terminating sequences, and return

115

Chapter 7 Transformations Between SPAs and VPAs

sequences (cf. Theorem 2). The respective sequences can be computed as described in
Algorithm 5.1. For a characterizing sequence bw of procedure c, the corresponding context
pair is then given by 〈asc ,γ(bw) · rsc〉. Note that by definition of access sequences, return
sequences, and the gamma expansion, these tuples satisfy the constraints of Definition 73.
Furthermore, recall that the membership property of an expanded, procedural word is
invariant under valid terminating sequences and pairs of access sequences and return
sequences (cf. Theorems 12 and 13). Therefore, any valid instances of the three sequences
can be used for the construction of the context pairs.

Additionally, one needs to include a special (base) context pair for separating the
initial location, the accepting location, and a (potential) rejecting sink location of the
main module because these locations are modeled externally via (bc0,⊥) and (ϵ,⊥) in
Definition 29. Definition 76 summarizes these steps in a formal definition of SPA-induced
context pairs.

Definition 76 (SPA-induced context pairs)
Let Σ be an SPA input alphabet and S be an SPA over Σ. Let P c denote a procedural automaton

of S for c ∈ Σcall. We define the SPA-induced context pairs as

CPS(Σ) =

� ⋃
c∈Σcall

{〈asc ,γ(bw) · rsc〉 | bw ∈ CS(P c)}

�
∪ {〈ϵ,ϵ〉}.

The combination of Definitions 74 and 76 offers ameans for a fix-point-style computation
of representatives. Starting with ϵ as the definitive representative of the initial location,
the different cases of Definition 75 for δint and δret suggest new candidates for equivalence
classes (representatives, respectively). Note that δcall does not need to be considered
explicitly because in the specific case of 1-SEVPAs from [93], all call-transitions must
lead to the initial state. By using the previously computed set of SPA-induced context
pairs, one can check whether a new candidate, e.g., ew · ea, falls into an already discovered
equivalence class or represents a new one. In the latter case, ew · ea serves as a representative
of the newly discovered equivalence class and the construction of the respective 1-SEVPA
according to Definition 75 starts anew. These steps are repeated until a fix-point is reached
where no more new equivalence classes can be detected. By evaluating the context pairs
on S, i.e., choosing L = L(S) in Definitions 74 and 75, this construction ensures that the
resulting 1-SEVPA describes L(S).

Note that due to the finiteness of S, CPS(Σ) only distinguishes between a finite amount
of representatives. In the context of Definition 74 this means that the unified congruence
≃L(S) only has a finite amount of equivalence classes and specifically that each SPA language
constitutes a valid well-matched VPL. Given that the set of context pairs is constructed
from the (white-box) model of S, this set is complete and correct. Theorem 15 summarizes
this result.

Theorem 15

Let Σ be an SPA input alphabet and S be an SPA over Σ. Let ≃L(S) denote the unified

congruence for L(S) according to Definition 74, where CP(eΣ) is replaced with CPS(Σ) of

116

7.3 SEVPAs as SPAs

Definition 76. Let V≃L(S)
denote the ≃L(S)-induced 1-SEVPA according to Definition 75 where

the representatives of the locations are constructed iteratively on the basis of Definition 76.

Then we have

L(S) = L(V≃L(S)
).

Proof. This is a direct consequence of Isberner [93] and the construction of CPS(Σ) and
V≃L(S)

. The construction of CPS(Σ) on the basis of a (white-box) model of S ensures that
CPS(Σ) contains all context pairs for characterizing L(S). By the results of Isberner [93],
≃L of Definition 74 only needs a set of characterizing context pairs to fully classify L

and the construction of V≃L
yields a 1-SEVPA such that L(V≃L

) = L. Using L = L(S) in the
methods of Isberner [93] directly concludes the statement.

Intuitively, one can think of this process as a white-box version of a VPL-based AAL
algorithm. Instead of using counterexamples and the analysis thereof to infer new locations
and context pairs that distinguish the locations of a system, the (white-box) model of
the SPA serves as a means to directly extract the necessary information and iteratively
construct the 1-SEVPA model.

Characterizing a VPL via context pairs and representatives of equivalence classes of its
language congruence allows for a flexible framework of transformation, as visualized in
Figure 7.1. At the center, there are context pairs and representatives (possibly partitioned
into various modules) as the core characterization of a VPL. These may be inferred from
various sources such as AAL or the previously discussed analysis of SPAs. Using this core
characterization, one is able to construct canonical models in the form of SEVPAs. Depend-
ing on the provided partitioning of the respective context pairs and representatives, this
allows for k-SEVPAs for arbitrary k ∈ {1, . . . , |eΣcall|}. The above SPA-based transformation
focuses on a (non-partitioned) 1-SEVPA transformation, but with slight adjustments other
partitions can be easily implemented.

7.3 SEVPAs as SPAs

The previous section shows how to construct a SEVPA for representing a given SPA
language. In general, the reverse process is not possible. For example, consider the VPL
L = {ccarcbr r} over the SPA input alphabet Σ = {c} ⊎ {a, b} ⊎ {r}. The corresponding
SEVPA is shown in Figure 7.2. It is easy to see that this language cannot be represented
by an SPA: It would require a single procedural automaton P c such that for the first
invocation of c, it would have to accept the procedural language L(P c) = {bcbc}, for the
second invocation of c, it would have to accept the procedural language L(P c) = {ba}, and
for the third and final invocation of c, it would have to accept the procedural language
L(P c) = {bb}.
The main reason why a SEVPA can describe this language but an SPA cannot is the

fact that SEVPAs can select individual return successors based on the current location.
Depending on whether it reaches a location via a, b, or two invocations of c, it can
independently decide with which location the run should continue. This enables SEVPAs
to alias different procedural behaviors behind a single call symbol. In contrast, SPAs

117

Chapter 7 Transformations Between SPAs and VPAs

Figure 7.1

Context pairs and representatives of equivalence classes characterize VPLs.

(partitioned) context pairs

Module Context Pairs

M0 {〈p1, s2〉, 〈p2, s2〉, . . .

M1 {〈p1, s2〉, 〈p2, s2〉, . . .

.

+
representatives of
equivalence classes

SPA

AAL

. . .

1-SEVPA

. . .

k-SEVPA

Figure 7.2

A SEVPA accepting the language L = {ccarcbr r}. Sink locations and corresponding
transitions of the individual modules are omitted for readability.

main module q0 q f

c module q1 q2 q3 q4 q5ec
ea
eb

er/(q1,ec)ec er/(q2,ec)

ec er/(q0,ec)

118

7.3 SEVPAs as SPAs

Figure 7.3

An SPA accepting the language L = {c5c3arc4 brr}. The initial procedure is c5. Sink states
and corresponding transitions of the individual procedures are omitted for readability.

Procedure: c5

q1 q2 q5

bc3 bc4

Procedure: c3

q1 q3
ba

Procedure: c4

q1 q4

bb

follow the classic copy-rule semantics. When calling a procedure, the actions that follow
the matching return symbol are already pre-determined by the current context and the
invoked procedure cannot affect them (cf. Definition 29).
For representing a well-matched VPL via an SPA, the main challenge is to move the

decision about the return successor from the return of a procedure to the invocation
of a procedure. Let us look at the slightly adjusted language L′ = {c5c3arc4 brr}. Here,
the individual procedural behaviors are de-aliased by encoding the returning locations
in separate call symbols. As shown in Figure 7.3, it is easy to see how this modification
allows for an SPA-based representation.
De-aliasing is one of the major concepts to incorporate the expressiveness of SEVPAs

into the SPA formalism. However, the refinement of call symbols creates a semantic
gap between the original SEVPA/VPL and its SPA-based representation because the two
formalisms no longer operate over the same input alphabet. This second issue can be
tackled with a concept similar to automated alphabet abstraction refinement (AAAR) [86].
Given a word of a VPL, one may use a series of tests to determine for each occurrence
of an aliased (or “abstract”) call symbol, its de-aliased (or “concrete”) representative. By
repeating this step for all call symbols of a word, words over the abstract visibly push-down
alphabet can be transformed into words over the concrete SPA input alphabet and thus
use the SPA formalism to answer, e.g., membership questions for abstract SEVPA words.
As each concrete call symbol has a unique, abstract source symbol, this process is easily
reversible in order to map concrete words (generated by an SPA) to abstract words again.
Please note that, technically, the above concepts do not allow for true language equiv-

alence between arbitrary SEVPAs and SPAs. Even well-matched VPLs can start with
arbitrary call symbols (multiple different ones or none at all) and do not have to terminate
with a return symbol. In contrast, SPA languages are necessarily minimally well-matched
(cf. Definitions 29 and 32). This discrepancy can be easily compensated for by embed-
ding the VPL of a SEVPA V in a distinct (main) call symbol and a return symbol, i.e.,
{main} · L(V) · {r}, and using this call symbol for the main procedure of the transformed
SPA. Since this is an external modification to the language that does not affect L(V) itself,
it is a mere technical tweak to achieve (formal) language equivalence. This modification
does not require any internal constraints on the SEVPA/VPL structure itself.

We continue with the construction of de-aliased SPAs from given SEVPAs and then look
at how alphabet abstraction refinement can be implemented via characterizing sets.

119

Chapter 7 Transformations Between SPAs and VPAs

7.3.1 De-Aliasing

The following discussion assumes, for the ease of presentation, that the visibly push-
down alphabets of the concerned SEVPAs only contain a single return symbol, i.e., only
SEVPAs over SPA input alphabets are considered. It should be noted that the presented
concepts can be easily generalized to arbitrary visibly push-down alphabets by considering
a separate concrete call symbol for each possible combination of a location and a return
symbol. Furthermore, only SEVPAs in the form of n-SEVPAs (where n denotes the number
of call symbols) are considered, i.e., there exists a separate module for each individual
(abstract) call symbol. This allows one to identify a module by its respective call symbol
as opposed to a partition class index. Note that this is only a technical detail, as each
well-matched VPL has an equivalent k-SEVPA representation for all k ∈ {1, . . . , n} [12].

Recall that in all runs of a k-SEVPA, each call from a module Mx to a module My must
have its matching return symbol transition the k-SEVPA from module My back to module
Mx again (cf. Definition 72). This means, when calling a procedure ec ∈ eΣcall in a location
q ∈ Mx (which fixes the top-of-stack symbol to 〈q,ec〉), there only exist a maximum of
|My | distinct return successors (if each q′ ∈ My selects a different return successor in Mx).
Therefore, when trying to determine the return successor at the call of module My for the
SPA-based semantics, it is only necessary to distinguish between |My | different behaviors.
This directly leads to the idea to introduce a separate concrete call symbol (to My) for
each location of the module My . Each of the corresponding procedures for these concrete
call symbols then represent a run of My that terminates at the respective location. As a
result, the procedures are structurally similar to the module My , except for the accepting
states which are determined based on the source of the encoded return transitions. To give
an example of this transformation, Figure 7.4 shows this concept applied to the SEVPA of
Figure 7.2.

For each location qi ∈ Mc, there exist distinct procedures that exhibit similar structural
properties to the module c. They each have the same amount of states (locations) and an
identical transition relation for internal alphabet symbols. Return transitions are omitted
because they are implicitly encoded by the acceptance of states. For call transitions, they
incorporate the proposed mechanism to explicitly decide return successors at the call
symbol. For example, take the return transition 〈q3,er, 〈q1,ec〉, q2〉 ∈ δret of the SEVPA-based
representation in Figure 7.2. It states that if one has called module c from q1 (top-of-stack
symbol) and parses r while being in q3, the SEVPA should transition into q2. In the SPA-
based representation, this equates to the (intra-procedure) transition from q1 to q2 when
calling the refinement of module c that terminates in q3 (c3). By choosing the concrete
call symbol that corresponds to the source location of the respective return transition, one
ensures to only model valid return transitions of the SEVPA-based representation. With
similar reasoning, the corresponding c4 and c5 transitions are chosen.

The main module (main procedure) constitutes a special case. By definition [12],
the main module M0 of a k-SEVPA does not contain any meaningful return transitions.
Consequently, the previous transformations are not necessary for constructing the main
procedure. Instead, it suffices to use the acceptance of locations of M0 to identify the

120

7.3 SEVPAs as SPAs

Figure 7.4

The SEVPA of Figure 7.2 transformed into an SPA. Sink states, unreachable procedures,
and corresponding transitions are omitted for readability.

Procedure: main q0 q f

bc5

Procedure: c5 q1 q2 q3 q4 q5

ba
bb

bc4

bc3

Procedure: c4 q1 q2 q3 q4 q5

ba
bb

bc4

bc3

Procedure: c3 q1 q2 q3 q4 q5

ba
bb

bc4

bc3

121

Chapter 7 Transformations Between SPAs and VPAs

accepting states of the main procedure, as the acceptance of a word in the context
of a SEVPA directly corresponds to successfully returning from the main procedure in
the context of an SPA. Note that explicitly representing the main module as a distinct
procedure also requires one to introduce an additional initial call symbol for the SPA-based
representation. Here, the previously mentioned “main” call symbol is used for embedding
the concerned VPLs in order to make it minimally well-matched.

In the following, we continue with a formalization of the transformation sketched above.
We first look at the transformation from abstract alphabet symbols to concrete alphabet
symbols in order to initialize the de-aliasing process for a given SEVPA. Afterwards, we
look at the transformation of individual modules to multiple procedures and aggregate
these procedures to a complete SPA to finish the transformation.

Definition 77 (Alphabet concretization)
Let Σ be an SPA input alphabet with n call symbols and let “main” denote a designated call

symbol for embedding a VPL. Let V be an n-SEVPA over Σ with modules M0, . . . , Mn. We

define the concretized SPA input alphabet as a tuple qΣ = qΣcall ⊎Σint ⊎ {r} (with respect to

V) such that
qΣcall = {ci, j | ci ∈ Σcall, q j ∈ Mi , i ∈ {1, . . . n}} ∪ {main}.

We write qΣproc = qΣcall ⊎Σint to denote the procedural (sub-) alphabet of qΣ.

Similar to SPAs, we use a special markup token q to denote when input symbols, words,
or alphabets are interpreted in a concretized context. If the call symbol is clear from
the context, e.g., when the symbol itself is unique like in Figure 7.4, the index i may be
omitted for a simpler notation.

Definition 78 (Module concretization)
Let Σ be an SPA input alphabet with n call symbols and V be a (total) n-SEVPA over Σ

with modules M0, . . . , Mn. Let qΣ be the concretized SPA input alphabet (with respect to V)

and let Mi = {q0, . . . , qk} be the set of locations of module i ∈ {1, . . . , n} where q∗
i
denotes the

designated entry-point of the module Mi. The module concretization qMi of Mi induces a

set of procedural automata {qP ci, j | q j ∈ Mi} such that for qP ci, j = 〈qQci, j ,qq
ci, j

0
,
bqΣproc, qQ

ci, j

F , qδci, j 〉 we

have

• qQci, j = Mi,

• qq
ci, j

0
= q∗

i
,

• qδci, j = qδ
ci, j

call
⊎ qδ

ci, j

int
with

– qδ
ci, j

call
= {〈qu,bcx ,y , qv〉 ∈ qQci, j × bqΣcall × qQci, j | 〈qy ,er, 〈qu,ecx〉, qv〉 ∈ δret},

– qδ
ci, j

int
= δint,

• qQ
ci, j

F = {q j}.

Since we consider deterministic SEVPAs, there only exists a single qv for all possible pairs of

qy ,er and 〈qu,ecx〉. Hence, the transition functions of the induced procedural automata are

deterministic as well. However, the induced procedural automata are not total as transitions

for the call symbol “main” are undefined.

122

7.3 SEVPAs as SPAs

Definition 79 (Main-module concretization)
Let Σ be an SPA input alphabet with n call symbols and V be a (total) n-SEVPA over Σ with

modules M0, . . . , Mn. Let qΣ be the concretized SPA input alphabet (with respect to V). The

main-module concretization qM0 of M0 induces a procedural automaton qPmain such that for

qPmain = 〈qQmain,qqmain
0

,
bqΣproc,

qδmain, qQmain
F 〉 we have

• qQmain = M0,

• qqmain
0
= q0 ∈Qin,

• qδmain = qδmain
call
⊎ qδmain

int
with

– qδmain
call
= {〈qu,bcx ,y , qv〉 ∈ qQmain × bqΣcall × qQmain | 〈qy ,er, 〈qu,ecx〉, qv〉 ∈ δret},

– qδmain
int
= δint,

• qQmain
F =QF .

The same remarks about determinism and totality of Definition 78 hold for the main-module

concretization.

Definition 80 (SEVPA concretization)
Let Σ be an SPA input alphabet with n call symbols and V be a (total) n-SEVPA over Σ with

modules M0, . . . , Mn. The concretization of V over qΣ is defined by the tuple qS = 〈qP1, . . .〉 such

that qPi ∈ { qM0} ∪
�⋃

k∈{1,...,n}
qMk

�
. The initial procedure of qS is main ∈ qΣcall.

Note that, in general, the proposed concretization does not yield minimal SPAs. On the
one hand, this concerns individual procedures. For example, consider the transformed
SPA in Figure 7.4. Each (non-main) procedural automaton contains equivalent states
as one easily sees when comparing the procedures with their minimized versions in
Figure 7.3. One the other hand, this concerns the aggregation of procedures. For example,
the concretization of the SEVPA of Figure 7.2 would also create procedures qP c1 and qP c2 . In
Figure 7.4, these procedures are omitted because no accepted word of the SPA contains
the call symbols c1 or c2.

The lack of minimality is mainly due to the fact that VPLs are characterized via paths
in VPAs and in the case of k-SEVPAs the decision whether a well-matched word belongs
to a VPL is decided in the main module. The proposed concretization transforms modules
individually based on their structural characteristics. Therefore, the transformation also
includes paths that reach a rejecting state in the main module. However, in the (gen-
erative) language definition of SPAs (cf. Definition 29), the decision about admissible
(or “accepting”) runs is decided at the call symbols. This results in a filtering of such
“sink-paths” which contain call symbols that cannot terminate in accepting locations.

This technical detail can be easily addressed by adding a post-processing step that first
strips the (concretized) SPA input alphabet of unreachable call symbols and then totalizes
and minimizes the remaining procedural automata with respect to the remaining SPA
input alphabet. Applying this post-processing step would transform the SPA of Figure 7.4
into the SPA of Figure 7.3. However, specifically the discussion about the concretization
equivalence in Section 7.3.3 continues to use the non-minimized representation produced
by the proposed transformation because it allows for a more direct comparison between
paths in a SEVPA and paths in its concretized SPA version.

123

Chapter 7 Transformations Between SPAs and VPAs

7.3.2 Alphabet Abstraction Refinement

The proposed transformation in Section 7.3.1 transforms a given SEVPA V over an SPA
input alphabet Σ into a concretized SPA qS over qΣ. As a result, a well-matched VPL
L(V) cannot be directly described by qS. This section presents a translation process that
transforms words of a SEVPA V over Σ to words of qS over the corresponding qΣ.

The main challenge of this process is determining for each abstract call symbol occurring
in a word w ∈ Σ∗, which concrete call symbol it should be represented by in the concretized
version. Summarizing the proposed alphabet concretization of Definition 77, each abstract
call symbol ci ∈ Σcall introduces concrete call symbols ci, j ∈ qΣcall for each location q j ∈ Mi.
Consequently, the index for identifying the module (i) can already be inferred from the
given ci. What remains to be determined is the location q j in which the run exits the
module. This is a basic state (or location) identification problem: Given the well-matched
(sub-) word starting with the abstract call symbol ci and ending with its matching return
symbol, which location is reached after parsing the (sub-) word?

Since the SEVPA is available as a white-box model, it is possible to use existing techniques
from the field of MBT to answer this question. The state (location) identification problem
can be solved using characterizing sets (cf. Definition 23). Note that compared to the
regular case, characterizing sets for SEVPAs consist of tuples of input words, as different
locations can only be distinguished by using the syntactical congruence (cf. Definition 74).
To give an intuition, Figure 7.5 presents the characterizing set of the module c of the SEVPA
of Figure 7.2. For this example, the characterizing set is displayed as binary decision
tree. Inner nodes represent elements of the characterizing set, whereas leaves represent
locations of the SEVPA.
In order to determine the location that is reached by an input sequence v ∈WM(Σ), v

is sifted through the decision tree such that for each inner node 〈p, s〉, the membership
of p · v · s in the language of V is tested. Depending on the answer, the sifting process
continues with either the “true” successor or the “false” successor until a leaf node is
encountered which identifies the location that v reaches.

Remark 6

This thesis does not go into details about computing characterizing sets of SEVPAs as this

topic is beyond its scope. However, note that AAL and MBT share a lot of similar concepts.

One can exploit the fact that both fields need to deal with the problem of state identification.

While MBT has white-box access to automaton models, AAL needs external counterexamples

in order to separate states.

For example, the characterizing set of Figure 7.5 has been extracted from the discrimination

tree of the VPA adaption of the TTT algorithm [96] presented in [93, Chapter 6]. Since

the SEVPA is available as a white-box model, it is possible to provide the AAL algorithm

with a white-box equivalence query oracle (EQO) to guarantee a correct and complete set of

discriminators.

In order to use characterizing sets for the translation of full words w of a well-matched
VPL, w is processed in a symbol-wise fashion such that the state (location) identification
problem is solved for every occurrence of a call symbol. For the exemplary word ccarcbr r

124

7.3 SEVPAs as SPAs

Figure 7.5

The characterizing set for locations of module c of the SEVPA of Figure 7.2. The checking
sequences are organized in a tree-like fashion, essentially representing a decision tree
for determining locations. qsink denotes the sink location that has been omitted from
Figure 7.2.

<c, r>

<c, c b r r>

false

q5

true

<c c, r c b r r>

false

q2

true

<c c a r c, r r>

false

q3

true

<c c, a r c b r r>

false

q4

true

qsink

false

q1

true

125

Chapter 7 Transformations Between SPAs and VPAs

of Figure 7.2 and the characterizing set of Figure 7.5, this process is as follows:
• The first call symbol c has its matching return symbol r at the very end of the

input word. Therefore, the inner sub-sequence consists of carcbr. Sifting this sub-
sequence through the decision tree results in reaching the leaf q5. As a result, the
first call symbol c is translated to c5.

• The second call symbol c has its matching return symbol prior to the third call
symbol. Therefore, the inner sub-sequence consists of a. Sifting this sub-sequence
through the decision tree results in reaching the leaf q3. As a result, the second call
symbol c is translated to c3.

• The third and final call symbol c has ist matching return symbol at the last but one
position of the input word. Therefore, the inner sub-sequence consists of b. Sifting
this sub-sequence through the decision tree results in reaching the leaf q4. As a
result, the third call symbol c is translated to c4.

Using the above technique, the abstract SEVPA-based input word ccarcbr r is trans-
formed to the concrete SPA-based input word c5c3arc4 brr. When embedding the abstract
word in the designated main symbol and return symbol, it is easy to see how both words
behave equivalently in their respective formalisms (cf. Figures 7.2 and 7.4). We continue
with the formalization of this translation process.

Definition 81 (Location identification function)
Let Σ be an SPA input alphabet with n call symbols and V be a (total) n-SEVPA over Σ. Let Mi

be a module of V for i ∈ {0, . . . , n} where q∗
i
denotes the designated entry-point of the module.

Let CS(Mi) be a characterizing set of module Mi and let w= a1 · . . . · ak ∈WM(Σ) be a well-

matched word. We define the location identification function LIMi
: WM(Σ)→ {ci,· ∈ qΣcall}

such that LIMi
(w) = ci, j iff w induces a run τ= 〈q∗

i
,σ0〉, . . . , 〈qk,σk〉 for some σi ∈ ST(ΓVPA)

and CS(Mi) classifies qk as q j. This means LIMi
identifies the location that is reached by w

when parsed from the designated entry point of module Mi.

As the previous example shows, the location identification function may be implemented
on the basis of sifting words through a (characterizing) decision tree. The translation
process is then defined by a symbol-wise processing of abstract well-matched VPL words,
which replaces each (abstract) call symbol with its concretized representative.

Definition 82 (Abstract translation)
Let Σ be an SPA input alphabet and w= u · v be an abstract well-matched word over Σ with

w ∈ Σ+, u ∈ Σ, v ∈ Σ∗. The abstraction translation is a function κ: WM(Σ)→WM(qΣ) such

that

κ(ϵ) = ϵ,

κ(u · v) =

¨
LIMi
(v[,ρv(1)]) · κ(v) if u= ci ∈ Σcall

u · κ(v) otherwise.

It is easy to see how the proposed translation transforms symbols within their classes,
i.e., call symbols to call symbols, et cetera. As a result, the resulting concretized words
are well-matched as well.

126

7.3 SEVPAs as SPAs

It is worth noting that when evaluating the location identification function of the abstract
translation, one needs to query the original SEVPA for performing the membership tests.
Recall from Section 7.3 that one of the key contributors to the expressiveness of SEVPAs
is the fact that return successors can be determined after a run throughout a module
whereas SPAs need to determine the return successor upon calling a procedure. It is not
possible to encode this information directly in an SPA model. While the concretized SPA
is completely detached from the original SEVPA, translating abstract words to concrete
words keeps a (hidden) dependency on the original SEVPA. This is due to the way the
alphabet concretization is implemented. A similar effect occurs with the original concept
of AAAR [86] as well.
Furthermore, recall from Section 7.3.1 the fact that concretized SPAs are, in general,

not minimal. When minimizing a concretized SPA like in Figure 7.3, one can also simplify
the respective characterizing sets of the modules by removing elements that characterize
obsolete procedures. For example, in the case of Figure 7.3 it is not necessary to identify
c1 and c2 since neither call symbols occur in any accepted word of the concretized SPA.
Instead, they may be aggregated to a single csink symbol that is not part of the final
(concretized) SPA input alphabet so that words containing this call symbol are rejected
automatically by qS. This modification also allows one to reduce the number of tests that
the respective LIMi

functions have to perform since elements such as 〈c, c · b · r · r〉 or
〈c · c, a · r · c · b · r · r〉 can be removed from the characterizing set (or decision tree, cf.
Figure 7.5).

7.3.3 Concretization Equivalence

This (sub-) section concludes the transformation of SEVPAs into SPAs by showing that
the combination of the proposed concretization and the abstract translation allows one to
represent an arbitrary well-matched VPL (embeded in the context of a main procedure)
via an SPA-based formalism. First, we look at some utility lemmas before continuing with
the main theorem of this section.

Lemma 8

Let Σ be an SPA input alphabet and w= w1 ·w2 with w1, w2 ∈WM(Σ). We have

α(w1 ·w2) = α(w1) ·α(w2),

κ(w1 ·w2) = κ(w1) · κ(w2), and

α(κ(w1 ·w2)) = α(κ(w1)) ·α(κ(w2)).

Proof. The first two equalities directly follow from Definitions 37 and 82 and the fact that
w1 and w2 are independently well-matched. The third equality is a direct consequence of
the nested application of the previous two equalities.

Lemma 9

Let Σ be an SPA input alphabet with n call symbols and V be a (total) n-SEVPA over Σ

with modules M0, . . . , Mn. Let qΣ be the concretized SPA input alphabet (with respect to V)

127

Chapter 7 Transformations Between SPAs and VPAs

and qS be the concretized (non-minimized) SPA over qΣ. Let w= a1 · . . . · ak ∈WM(Σ) and

〈q j ,σ0〉, . . . , 〈q j′ ,σk〉 be a w-induced run of module Mi for i ∈ {0, . . . , n} with q j , q j′ ∈ Mi and

σl ∈ ST(ΓVPA) for l ∈ {0, . . . , k}, i.e, w induces a run starting in location q j and terminating

in location q j′ . Then we have
qδci,·(q j ,α(κ(w))) = q j′

or
qδmain(q j ,α(κ(w))) = q j′

respectively, i.e., the concretized, projected, w-induced run connects the same states (identified

via their respective locations) in all Mi-induced concretizations qP ci,· (qPmain) as well.

Proof. We prove the cases for Mi with i ∈ {1, . . . , n} via structural induction over w. By
using qPmain instead, the case for the main module M0 is shown analogously.

• Let w= a1 · . . . · ak ∈ Σ
∗
int
. By Definition 82, we have κ(w) = w= a1 · . . . · ak ∈ Σ

∗
int

and by Definition 37 we have α(w) = ba1 · . . . · bak ∈ bΣ∗int
. By Definition 78, all internal

transitions of qP ci,· are identical to Mi, so that bw traverses the same states (locations)
as Mi, concluding the statement.

• Let w= cx · v · r for some cx ∈ Σcall, v ∈WM(Σ) such that the induction hypothesis
holds for v. We know that the w-induced run transitions V from q j to the ini-
tial location of module Mcx

to some location qy ∈ Mcx
and via a return transition

〈qy ,er, 〈q j ,ecx〉, q j′〉 ∈ δret to q j′ . By Definition 82, we have κ(w) = qw= cx ,y · κ(v) · r

and by Definition 37 we have α(qw) = bcx ,y . By Definition 78, the previous return
transition results in a bcx ,y -labeled call transition from the state q j to q j′ in all qP ci,·

and therefore
qδci,·(q j ,α(κ(w))) =

qδci,·(q j ,bcx ,y) = q j′ .

• Let w= w1 ·w2 with w1, w2 ∈WM(Σ) such that the induction hypothesis holds for
w1, w2. Since both w1 and w2 are independently well-matched, this means that the
w-induced run of Mi consists of 〈q j ,σ0〉, . . . , 〈q j′′ ,σm〉, . . . , 〈q j′ ,σk〉 with q j′′ ∈ Mi and
m= |w1|. By induction hypothesis, we know that

qδci,·(q j ,α(κ(w1))) = q j′′ and qδci,·(q j′′ ,α(κ(w2))) = q j′ .

Since the generalized transition function of DFAs is defined via repeated nested
applications (cf. Definition 8), we can conclude using Lemma 8 that

qδci,·(q j ,α(κ(w))) =
qδci,·(q j ,α(κ(w1)) ·α(κ(w2))) =

qδci,·(q j′′ ,α(κ(w2))) = q j′ .

Lemma 10

Let Σ be an SPA input alphabet with n call symbols and V be a (total) n-SEVPA over Σ

with modules M0, . . . , Mn. Let qΣ be the concretized SPA input alphabet (with respect to V)

and qS be the concretized (non-minimized) SPA over qΣ. Let w= a1 · . . . · ak ∈WM(Σ) and

〈q j ,σ0〉, . . . , 〈q j′ ,σk〉 be a w-induced run of module Mi for i ∈ {0, . . . , n} with q j , q j′ ∈ Mi and

128

7.3 SEVPAs as SPAs

σl ∈ ST(ΓVPA) for l ∈ {0, . . . , k}, i.e, w induces a run starting in location q j and terminating

in location q j′ . Then we have

(α(κ(w)) · br,σ)SPA

κ(w)
−−→∗(br,σ)SPA

for some σ ∈ ST(ΓSPA), i.e., given the configuration (α(κ(w)) ·br,σ)SPA, the language-SOS of
qS can emit κ(w).

Proof. We prove the cases for Mi with i ∈ {1, . . . , n} via structural induction over w. By
using qPmain instead, the case for the main module M0 is shown analogously.

• Let w= a1 · . . . · ak ∈ Σ
∗
int
. By Definition 82, we have κ(w) = w= a1 · . . . · ak ∈ Σ

∗
int

and by Definition 37 we have α(w) = ba1 · . . . · bak ∈ bΣ∗int
. The statement then directly

follows by repeated applications of int-rules.
• Let w= cx · v · r for some cx ∈ Σcall, v ∈WM(Σ) such that the induction hypothesis

holds for v. We know that the w-induced run transitions V from q j to the ini-
tial location of module Mcx

to some location qy ∈ Mcx
and via a return transition

〈qy ,er, 〈q j ,ecx〉, q j′〉 ∈ δret to q j′ . By Definition 82, we have κ(w) = qw= cx ,y · κ(v) · r

and by Definition 37 we have α(qw) = bcx ,y . For the v-induced (sub-) run, we know

by Lemma 9 that qδcx ,y (q∗x ,α(κ(v))) = qy and by construction of qP cx ,y we know that
qy ∈ qQ

cx ,y

F , hence α(κ(v)) ∈ L(qP cx ,y). By application of a call-rule and the induction
hypothesis we can then show

(bcx ,y · br,σ)SPA

cx ,y

−−→ (α(κ(v)) · br,br •σ)SPA

κ(v)
−−→∗(br,br •σ)SPA

r
−→ (br,σ)SPA

which concludes the statement.
• Let w= w1 ·w2 with w1, w2 ∈WM(Σ) such that the induction hypothesis holds for

w1, w2. Since both w1 and w2 are independently well-matched, this means that the
w-induced run of Mi consists of 〈q j ,σ0〉, . . . , 〈q j′′ ,σm〉, . . . , 〈q j′ ,σk〉 with q j′′ ∈ Mi and
m= |w1|. Given Lemma 8, we can write α(κ(w)) as α(κ(w1)) ·α(κ(w2)). Given the
configuration (α(κ(w1)) ·α(κ(w2)) · br,σ)SPA, the SOS-system processes the state of a
configuration in a symbol-wise fashion so that we can conclude with the argumen-
tation from the previous two cases that

(α(κ(w1)) ·α(κ(w2)) ·br,σ)SPA

κ(w1)
−−−→∗(α(κ(w2) · br,σ)SPA

κ(w2)
−−−→∗(br,σ)SPA

which concludes the statement.

Theorem 16 (Concretization equivalence)
Let Σ be an SPA input alphabet with n call symbols and V be a (total) n-SEVPA over Σ with

modules M0, . . . , Mn. Let qΣ be the concretized SPA input alphabet (with respect to V) and qS

be the concretized (non-minimized) SPA over qΣ. Then we have

w ∈ L(V)⇔main · κ(w) · r ∈ L(qS)

for all w ∈WM(Σ).

129

Chapter 7 Transformations Between SPAs and VPAs

Proof. “⇒”: Since we have w ∈ L(V), we know that there exists a w-induced run from
the initial location q0 of V to an accepting location q f of V . By Lemma 9, we know that
qδmain(q0,α(κ(w))) = q f and by Definition 79, we know that q f ∈ qQmain

F . Therefore, we
have α(κ(w)) ∈ L(qPmain). With Lemma 10 we can then conclude

(Ömain,⊥)SPA

main
−−→ (α(κ(w)) ·br,ϵ •⊥)SPA

κ(w)
−−→∗(br,ϵ •⊥)SPA

r
−→ (ϵ,⊥)SPA

and by Definition 29 we have main · κ(w) · r ∈ L(qS).
“⇐”: We show via contraposition that w /∈ L(V)⇒main · κ(w) · r /∈ L(qS). Since we have
w /∈ L(V), we know that there exists a run from the initial location q0 of V to a rejecting lo-
cation qr of V . By Lemma 9, we know that qδmain(q0,α(κ(w))) = qr and by Definition 79, we
know that qr /∈ qQmain

F . Since qPmain is constructed from a deterministic n-SEVPA, there exists
no other (accepting) state that α(κ(w)) reaches. Therefore, we have α(κ(w)) /∈ L(qPmain).
Hence, the word main · κ(w) · r contains a rejected, projected procedural invocation and
by negation of Theorem 1, we can conclude that main · κ(w) · r /∈ L(qS).

Essentially, Theorem 16 states that only for accepted, w-induced runs of a VPA V , there
exist main · κ(w) · r paths in the language-SOS system of qS reaching the final configuration
(ϵ,⊥)SPA. As a result, the membership question for V can be answered on the basis of an
SPA model using the proposed abstract translation function and the embedding into a
designated main procedure.

Note that for the ease of argumentation, Lemmas 9 and 10 and Theorem 16 assume that
the concretized SPA qS is not minimized which allows for a direct correspondence between
locations of V and states of qS. However, at the core of their proofs, the statements only
require the language properties of procedural automata. If the procedural automata of qS

were canonical, e.g., due to a prior minimization, it would essentially only introduce an
additional mapping of locations to states that one would need to account for. As a result,
the proposed post-processing steps of Section 7.3.1 to cleanup the concretized SPA qS does
not affect its ability to describe (embedded) well-matched VPLs.

7.4 Discussions

This section discusses further ideas and concepts in relation to the transformations between
SPAs and SEVPAs.

7.4.1 Return-Matched Visibly Push-Down Languages and Visibly Push-Down

Transducers

As discussed in Section 7.1.2, the concept of SEVPAs provides canonical VPA models for
well-matched VPLs, which makes them an interesting counterpart to SPAs for considering
transformations. However, VPAs, in general, also allow for describing call-matched VPLs
and return-matched VPLs. Especially for the latter class of languages, this thesis presents
the concept of SBAs which represent (instrumented) context-free behaviors by means of

130

7.4 Discussions

prefix-closed languages. The question arises whether a similar transformation can be
established for return-matched VPLs. To the best knowledge of the author, there exists
no work on learning or testing VPAs in the context of return-matched VPLs including
possible consequences for the canonicity of VPA-based models. In particular, the work
of Isberner [93] and his characterization via the unified congruence for well-matched
VPLs (cf. Definitions 74 and 75) does not allow for return-matched languages. Since the
constructed VPAs are essentially 0-SEVPAs (recall that the unified congruence merges the
main module M0 with the single call-module M1 of a 1-SEVPA), one cannot separate well-
matched words from return-matched words via the acceptance of locations alone. Finding
relationships between SBAs and corresponding VPA-based formalisms is an interesting
topic for future research but goes beyond the scope of this thesis.
With SPMMs, this thesis presents an interpretation of SBAs for modelling (instru-

mented) deterministic transductions that follow an incremental lock-step pattern, using
a distinct Mealy-based representation. On the side of VPAs, a similar concept is imple-
mented by so-called visibly push-down transducers (VPTs) [144]. VPTs extend VPAs by
an output function that associates with each transition a possible output symbol. Via
non-determinism, i.e., allowing ϵ-inputs and ϵ-outputs on transitions, VPTs allow for a
powerful transduction formalism for which several closure properties known from regular
VPAs / VPLs no longer hold. An extensive analysis of VPTs is given in [155] and further
work by the author [56]. VPTs clearly supersede the expressiveness of SPMMs, specifi-
cally due to the support of non-determinism. Its impact is easy to see, as already for the
regular case, non-deterministic Mealy machines are able to describe transductions that
deterministic Mealy machines cannot. It is an interesting question whether the subclass of
deterministic VPTs with incremental lock-step output behavior exhibit properties that allow
for a comparison to or even a transformation into SPMMs. However, this question is also
beyond the scope of this thesis and may be investigated separately in future research.

7.4.2 SPA-Based Learning of Visibly Push-Down Languages

With the ability to represent (embedded) well-matched VPLs via SPAs as presented in
Section 7.3, the question arises whether the involved techniques can be directly integrated
into the disciplines of MBQA. Specifically for AAL, the properties of SPA models with
regard to, e.g., model size, may potentially improve the performance of the learning
process. However, the task of de-aliasing abstract call symbols introduces an overhead
that does not justify this approach.

The major issue of this approach is the fact that an SPA learner does not know the full
concretized SPA input alphabet beforehand. Instead, it becomes a part of the inference
process as well. During the exploration phase, this is not a problem as the procedural
membership query oracles (MQOs) can easily map the concrete call symbols back to
the abstract call symbols in order to evaluate expanded membership queries (MQs) on
the VPL-based system under learning (SUL). However, during the verification phase, the
learner receives a VPL-based counterexample that first needs to be concretized in order
to refine the SPA hypothesis operating over the concretized SPA input alphabet. For this

131

Chapter 7 Transformations Between SPAs and VPAs

task, the learner needs to account for the possibility to observe abstract call symbols for
which the correct concretization has not yet been found. Based on the construction of the
concretized SPA input alphabet (cf. Definition 77), the learner needs to keep track of the
possible locations of the modules in order to determine the correct concrete call symbol.
At this point, the SPA learner needs to perform the same work of an n-SEVPA learner

including additional work (queries) for the SPA inference. For example, consider for the
SPA of Figure 7.4 the situation that c3 gets split into c3 and c4 because the SPA learner
has detected that there exist locations q3, q4 (cf. Figure 7.5). While the procedural
learner of P c4 can be started independently, all bc3 transitions in the hypotheses of the
remaining learners need to be re-evaluated because the mapping of (the abstract) c has
changed. Here, the alternative of using an n-SEVPA learner directly and using an offline
transformation of the n-SEVPA into an SPA (which requires no additional queries) has
the better query performance. However, a direct VPL-via-SPA approach may hold some
benefits in scenarios where the full VPA semantics only extend to a few procedures or
modules (cf. Section 11.2.2).

7.5 Summary

This section concludes the chapter by summarizing its main results.

• In general, VPAs are more expressive than SPAs because VPAs can describe (call-
matched, return-matched, non-minimally well-matched) languages that SPAs can-
not.

• SPA languages can be represented via VPAs by means of k-SEVPAs, which are
a structurally constrained form of VPAs that support canonical representations
and describe well-matched VPLs. The transformation is based on the canonical
construction of k-SEVPAs using equivalences classes and representatives of the
concerned language congruence(s) which can be inferred from a white-box analysis
of the respective SPA.

• Embedded well-matched VPLs, i.e., minimally well-matched VPLs with a designated
main procedure, can be represented by SPAs via a two-step transformation process:
1. a concretization step of the respective VPAs de-aliases the behavior of call

symbols, that depends on the reached locations within modules when returning
from the call and

2. a translation step of (abstract) VPL words to (concretized) SPA words allows
one to query the transformed SPA formalisms for the original membership
question.

132

CHAPTER 8

Related Work

This chapter presents related work from the field of model-based quality assurance (MBQA)
concerning verification, testing, and learning of systems. As systems of procedural au-
tomata (SPAs), systems of behavioral automata (SBAs), and systems of procedural Mealy
machines (SPMMs) represent model types, this chapter focuses on related work on proce-
dural systems and possible relationships to the presented formalisms of this thesis. For a
contrasting juxtaposition with the “competing” model type of visibly push-down automata
(VPAs), see Chapter 7. For a discussion on the practical impact of the two competing
model types (in the context of active automata learning (AAL)), see Chapter 10.

8.1 Model Verification

The field of model verification comprises a plethora of different formalisms and verification
techniques [18, 47]. This is due to the fact that specifications involve a lot of different
stakeholders which all have different requirements and expectations. Vardi [170] rightfully
notes in his paper that specifications need to address several needs such as

• expressiveness, i.e., the possibility to describe the intended behaviors,
• usability or complexity, i.e., the ease of describing intended properties, and
• compositionality, i.e., the notion of closure when incrementally combining behavioral

traits.
As a result, many popular specification formalisms can be found nowadays. Linear

time-based logics such as the linear temporal logic (LTL) [140] interpret the global
system behavior as a single (in-) finite linear sequence which progresses as the system
runs. Branching-time logics such as the computational tree logic (CTL) [46] interpret a
system by unrolling paths of the system in a tree-like fashion. There also exist combined
approaches such as the computational tree logic with linear time assertions (CTL*) [52]
which allows for an even more expressive formalism as neither LTL nor CTL subsumes
the other. Some logics such as linear temporal logic with past (PLTL) [119] add new
semantics in the form of past-modalities to linear-time specifications. See, e.g., [105] for
a survey.
A common property of the previously mentioned logics is the fact that they interpret

system behavior on the basis of state properties. As a result, the underlying model types
for these logics are often based on Kripke transition systems (KTSs) or variations thereof.
In contrast, logics such as the Hennessy-Milner logic (HML) [76] or action-based CTL

133

Chapter 8 Related Work

(ACTL) [132] introduce the notion of input modalities and express behavior via labeled
transitions between system states. Here, the respective model types are often based on
labeled structures such as labeled transition systems (LTSs) which focus on a different
type of system semantics.

There also exist combined logics such as the (modal) µ-calculus [107] which supports
specifying both state properties and input modalities and consequently operate on merged
models types such as labeled KTSs. It is quite fittingly described by Burkart et al. [38] as
“the assembly language for temporal logics” due to its low-level syntax and semantics, but
its exceptional expressiveness. One can often find the (modal) µ-calculus at the core of
model checker tools, as the µ-calculus subsumes logics such as LTL and CTL. By translating
other logics to the (modal) µ-calculus, developers of model checkers can focus on a single
implementation while offering more convenient specification “front-ends” to the end-users.

Due to the notion of rigorous (de-) composition of SPAs, SBAs, and SPMMs, the above
logics and corresponding tools may be used for the verification of individual procedures.
However, there has also been put a lot of effort into the global verification of context-free
systems.

8.1.1 Context-Free Model Verification

Chapter 4 presents the transformations of SPAs, SBAs, and (via embedding in SBAs)
SPMMs into context-free process systems (CFPSs) so that one can use the approach by
Burkart et al. [37] to verify (alternation-free) modal µ-calculus formulae on SPA models
and SBA models. Later work of the authors [38] considers generalizations of CFPSs that
allow for model checking of the full modal µ-calculus.
Section 7.1 presents another transformation from SPAs into VPAs that opens up fur-

ther possibilities for model verification. For example, the characteristics of VPAs can be
equivalently described via recursive state machines (RSMs) [109]. Alur et al. present the
CaRet [9] logic which allows one to verify linear-time properties on RSMs and conse-
quently on words of visibly push-down languages (VPLs). CaRet integrates the special
roles of call symbols and return symbols by offering special procedural modalities that
allow one to explicitly address the beginning and the end of procedural invocations. This
ability allows one to intuitively specify and verify inter-procedural and intra-procedural
properties in a pre-condition and post-condition type of fashion. There exist several ex-
tensions to CaRet such as HyCaRet [33] which extends CaRet formulae by additionally
allowing existential qualifiers, and visibly linear temporal logic (VLTL) [34] which gener-
alizes4 CaRet formulae to cover the full spectrum of VPLs. There also exist fixpoint-based
verification logics for RSMs [8] and VPLs [32]. Furthermore, Alur et al. have presented a
generalization of VPAs called nested word automata (NWAs) [10]. For NWAs there exist
verification logics such as nested word temporal logic (NWTL) and NWTL+ [13] which
add support for new (procedural) modalities and operators. The execution semantics of
RSMs can alternatively be expressed via push-down systems (PDSs) [7] as well.

4VLTL uses a different syntax than CaRet but CaRet formulae can be transformed into equivalent VLTL
formulae in linear time [34].

134

8.2 Model-Based Testing

For many of the procedural model types (CFPSs, PDSs, RSMs, VPAs), there exist a rich
tool landscape [20, 73, 103, 161, 162, 163] that provides access to various verification
algorithms that either use well-known logics or offer tool-specific formats as specification
formalisms. With the ability to translate the semantics of (at least) SPAs to many of these
formalisms, the above verification logics become applicable to the model types presented
in this thesis as well.

8.2 Model-Based Testing

Model-based testing (MBT) [36, 111] and for this thesis specifically, conformance test-
ing [68, 111], covers a variety of techniques which each target different goals and en-
vironments. Section 2.3 sketches the W-method [44] as an example of a conformance
testing algorithm. This section puts this approach into context of other methods and
discusses some adjustments depending on the properties at hand.
One major requirement of the W-method to be applicable is the possibility to reset a

system so that a conformance test can consist of multiple, independent tests. In the context
of modeling hardware systems or software systems, this is often a reasonable assumption,
as systems usually can be rebooted or restarted. Furthermore, this property also aligns
with the requirements of AAL, as AAL algorithms need to pose multiple, independent
queries to the system, which is often implemented via a reset.
A straight-up improvement of the W-method is the partial W-method by Fujiwara et

al. [65]. It splits the conformance test into different phases and introduces the concept of
state-local characterizing sets which overall allow for the construction of fewer and shorter
test cases. Both approaches can be extended to cover additional states that are not yet
represented by a (hypothesis) model. If given an upper bound for the number of states of
the implementation, both approaches can use this extension to construct conformance
tests that answer the equivalence problem provably correct. This methodical and fine-
grained analysis of models makes the two methods a powerful but also time-expensive
approach for model-based testing (MBT). Specifically for AAL, where MBT may be used to
implement equivalence query oracles (EQOs), Smetsers et al. [159] show that introducing
fuzzing to the ((partial) W-method-based) construction of conformance tests can improve
the performance of detecting in-equivalences.
Sometimes, hardware systems and software systems may have the possibility to emit

status messages about the current state, e.g, when using a debug build of a software.
In this case, the construction of a conformance test can be drastically simplified because
there is no longer a need for an elaborate state characterization as this task can be directly
implemented via status messages. Methods as simple as transition cover sets or transition
tours [66] (if strongly-connected) mixed with status messages can then be used for
conformance testing.

Sometimes, hardware systems and software systems may not be resettable or it may be
expensive to do so. This step can be compensated for if the system exhibits other structural
properties such as a strong connectedness, i.e., when all states are reachable from each
other. Here, resets can be directly be replaced by synchronizing sequences [104, 138, 151]

135

Chapter 8 Related Work

which transition a system into a pre-determined, e.g., initial, state. Alternatively, homing

sequences [80, 148, 151] may be used to transition the system into uniquely determinable
states and continue with the characterization of these states. See, e.g., [68, Section 4.5],
for an overview of alternatives depending on the systems characteristics. Note that while
many methods for conformance testing are originally presented for systems with transition
outputs such as Mealy machines, it is easy to adjust them to work with acceptor-based
systems by, e.g., interpreting the acceptance of a successor state as the “output” of a
transition.

With the notion of rigorous (de-) composition of SPAs, SBAs, and SPMMs, many of the
concepts and extensions of MBT of regular systems can be lifted towards (instrumented)
context-free systems. The concepts discussed in Chapter 5 provide a guidance for handling
the specific semantics of the difference model types (such as transitions of non-continuable
input symbol in case of SBAs and SPMMs) so that one can construct conformance tests for
(instrumented) context-free systems that meet the individual requirements of the MBT
scenario at hand.

8.3 Active Automata Learning

The seminal work on AAL was proposed by Angluin [15]. She introduced the concept of
the minimally adequate teacher (MAT) framework which enables a learning algorithm to
actively query a system (or an unknown language) for information bymeans of membership
queries (MQs) and equivalence queries (EQs). With the LStar algorithm, she presented
an algorithm for inferring regular formal languages (in polynomial time) based on this
framework. Since then, the (MAT-based) field of AAL has experienced a plethora of
improvements and extensions.

One dimension concerns the algorithmic aspects of learners. LStar uses an observation

table, a table-based structure in which rows represent (not necessarily unique) access
sequences to hypothesis states and columns represent distinguishing futures that separate
the behavior of states. The cells of the table store answers of MQs that are constructed
from the concatenation of the respective row-label and column-label. Consequently, this
data-structure and hence the (query-) performance of the learner grows quadratically in
the number of rows and columns. Kearns et al. [101] propose an AAL algorithm that
manages a reduced set of in-equivalent access sequences of hypothesis states and uses
a discrimination tree to organize the distinguishing futures. In practice, this reduces
the multiplicative dependency between access sequences and distinguishing futures that
LStar suffers from and allows the algorithm of Kearns and Vazirani to lower the number
of queries for inferring a model.

Another aspect that affects the (query) complexity of learning algorithms is the handling
of counterexamples. The original LStar algorithm [15] adds all prefixes of a coun-
terexample to the rows of the observation table and uses the notion of closedness and
consistency to construct hypotheses consistent with the observations. In a similar fashion,
Maler et al. [116] propose to add all suffixes of a counterexample to the columns of
the observation table whereas Shahbaz et al. [156] optimize this idea to only include

136

8.3 Active Automata Learning

suffixes of the distinguishing future of a counterexample. Rivest et al. [146] propose
a novel analysis of counterexamples that performs a binary search on transformations
of the counterexample to extract only a single distinguishing future that can be added
to the columns of the observation table. Together with an improved book-keeping of
in-equivalent but prefix-closed access sequences, the proposed approach improves even
the asymptotic query performance of the learning algorithm. An abstract framework for
formalizing counterexample analysis and further analysis strategies are presented in [97].

Howar [84] combines the previous two major improvements with the proposal of the
“observation pack” algorithm. It maintains a prefix-closed set of (in-equivalent) access
sequences to enable the counterexample analysis of Rivest et al. [146]. The single suffixes
extracted from counterexamples are then organized in a discrimination tree. The TTT
algorithm by Isberner et al. [96] distills this concept by adding a post-processing step to
ensure suffix-closure of distinguishing futures in order to reduce their redundancy, which
further boosts the symbol performance of the learner in cases of long counterexamples.
Recently, Howar et al. [85] proposed the concept of lazy partition refinement which
incorporates the TTT effect on-the-fly. The impact of these changes can be seen in the
comparisons with the original algorithms [85, 96].

Besides the algorithmic aspects of AAL, practical applicability plays another important
role for the growing interest in this field of research. On the one hand, this is due to
the growing expressiveness of models. Originally, Angluin [15] proposed her algorithm
for the inference of regular languages, i.e., a deterministic finite acceptor (DFA)-based
inference process being only able to describe binary properties. Hungar et al. [91] exploit
the prefix-closure of systems to boost query performance and Margaria et al. [118] later
generalize this concept to reactive systems by proposing an adaption of the LStar algorithm
for inferring Mealy machines. Especially for describing hardware systems and software
systems, data-management [4, 6, 30, 40, 51, 58, 86, 88, 94, 115] and recursion [93, 109]
are essential for comprehensive descriptions of behavior. In situations where uncertainty
or “noise” might be an issue, learning probabilistic automata [55, 164, 165] may be an
adequate solution. Often, certain application domains allow AAL algorithms to exploit
properties of the environment. For example, the “ADT” learner [64] for inferring Mealy
machines exploits the direct output semantics of Mealy machines to incorporate adaptive
distinguishing sequences [112] instead of fixed distinguishing suffixes to separate system
states, improving the query performance of the learner in certain scenarios [122].

On the other hand, this is due to pragmatic solutions for bridging the gap between
theoretical concepts and the practical problems. Concepts, such as filters [2, 6, 86, 117] for
dealing with (data-) abstraction, caching [77, 117], or parallelism [77, 90] for boosting
performance, lower the entry hurdle for applying AAL in real-world scenarios. Along with
the development of various tools to support this process [6, 31, 39, 95, 102, 125, 127,
128, 169] there have been several success-stories of AAL in practical scenarios [1, 2, 6,
26, 41, 57, 91, 99, 131, 136, 143, 158, 167, 172].

As the learning of SPAs, SBAs, and SPMMs is not an isolated process, but rather a
simultaneous process of multiple (regular) inference processes, learning (instrumented)
context-free systems has a strong connection with the related work. Improvements in

137

Chapter 8 Related Work

the field of regular language inference also positively affect the inference process of
instrumented context-free systems as shown in Chapter 10. Furthermore, the notion of
rigorous (de-) composition may allow more of the regular extensions to be lifted to the
context-free level, as discussed in Chapter 11.

8.3.1 Context-Free Active Automata Learning

Specifically for procedural systems, the work on the inference of context-free languages
(CFLs) on the basis of queries already starts with Angluin’s seminal work on AAL. However,
the approach presented in [15] requires a special type of non-terminal MQ which, to the
best knowledge of the author, has prevented any application in practical MBQA scenarios.
Unfortunately, there exist rather negative results for the general inference of CFLs. [16]
shows that there exists no polynomial-time algorithm for inferring CFLs with only EQs
and [17] shows that there exists no polynomial-time algorithm for inferring CFLs with
only MQs. The results of [114] conjecture that similar results may hold even if both types
of queries are available. Positive results can be found if the expressiveness of languages is
reduced to, e.g., simple deterministic languages (SDLs) [98]. However, note that [98]
uses extended EQs which allow for more expressive hypothesis models (arbitrary CFLs)
than ultimately inferred ones (SDLs).
Special attention should be given to whether the learning algorithms target CFLs or

context-free grammars (CFGs). Especially CFL-focused learning algorithms may often
expect systems to be described by a CFG in some kind of normal form, such as the
Chomsky normal form [42] or the Greibach normal form [72]. While from a mere
language perspective these transformations do not cause any problems, they do change
the semantics of a system in the context of MBQA. Returning to Example 2, recall that there
exist multiple different CFGs to describe palindromes over {a, b, c} but it is a deliberate
design decision to delegate the emission of cs to procedure G. These information get lost
after transformations into certain normal forms.
A common theme for CFG-focused learning algorithms is that the interactions with

the system under learning (SUL) are enriched by some form of structural information.
For example, [150] uses structural MQs and structural EQs to infer tree automata for
describing the original CFG of a system. Similar approaches can also be found in the field
of passive learning of CFGs [67, 149]. These specialized queries (or training samples in
case of passive learning) share a lot of concepts with the proposed instrumentation of
this thesis, as they allow the learner to extract crucial information about the scope of a
procedure or non-terminal, respectively. However, it may be argued that providing these
information via the inherent observable language of the system, e.g., via call symbols
and return symbols as proposed by VPLs [11], may be more practical. The different
types of queries remain relatively simple (similar to the regular case) and providing the
hierarchical information to the learner may be (technically) easier to implement on the
SUL level rather than the query level. Especially for VPLs, [93, 109] provide positive
results for the inference of these (instrumented) languages and the work of this thesis can
be seen as a specialization of this line of thought.

138

8.4 Black-Box Checking and Learning-Based Testing

8.4 Black-Box Checking and Learning-Based Testing

With the verification, testing, and learning of systems, the previous sections cover the
related work on individual disciplines of MBQA. With black-box checking (BBC), Peled
et al. [135] propose a concept for system verification that involves all three disciplines
simultaneously. As the name suggests, BBC deals with the verification (or model-checking)
of properties of black-box systems. Since black-box systems do not provide any reasonable
model for the verification process, AAL and MBT may be used for the inference of such a
model.

However, instead of executing these processes independently of each other, BBC proposes
to exchange information between the model checker and the learning algorithm in order
to enable a fruitful feedback loop. The model checker is used to verify properties on
intermediate hypothesis models of the learner. If a property is violated, this may either be
because the system does indeed violate the property or the hypothesis model is not yet
accurate enough. The two cases can be distinguished by testing and the answer either
solves the verification problem earlier (if the property is indeed violated by the system) or
provides a counterexample for the learning algorithm (if the hypothesis model violates
the property but the SUL does not). Here, the properties to be verified on the system serve
as a guided counterexample search, which is particularly useful given that the general
black-box equivalence problem is impossible to solve (cf. Section 2.3).

On the basis of the results of Chapters 4 to 6, one may implement a similar BBC workflow
for (instrumented) context-free systems as well. Particularly for SPAs, SBAs, and SPMMs,
Section 9.4 discusses some additional relationships between the individual processes, that
make BBC especially fruitful for the presented model types.

Another approach to combine multiple individual disciplines of MBQA is that of learning-
based testing (LBT) by Meinke and Sindhu [123, 124]. Instead of using AAL like BBC,
LBT uses passive automata learning for constructing models of the black-box system. By
aggregating potential counterexamples from model verification, LBT constructs a set of
test cases that are evaluated on the black-box system via testing. Similar to BBC, these test
cases either disprove a property directly or (in case of a false negative or false positive)
uncover new behavior of the system. However, in LBT, these test cases (and the responses
of the system to them) are used as training data for a passive learning algorithm and there
exists no active learner that explores the system autonomously. Here, the learning process
is more property-centric as any behavior irrelevant to the properties is not considered for
model construction. Regarding LBT, Section 11.2.2 briefly discusses how the concept may
be applied to SPAs, SBAs, and SPMMs.

139

CHAPTER 9

Practical Application of Instrumented

Context-Free Systems

This chapter elaborates on various scenarios for the practical application of systems of
procedural automata (SPAs), systems of behavioral automata (SBAs), and systems of
procedural Mealy machines (SPMMs). It discusses the technical aspects of instrumenting
systems and showcases application domains in which the proposed model types integrate
naturally. The discussions focus on the conceptual aspects of employing SPAs, SBAs, and
SPMMs in practice. For a performative evaluation, see Chapter 10.

9.1 Instrumentation

Before discussing the (technical) aspects of instrumenting a system, note that this process
is only mandatory for active automata learning (AAL). If one is not interested in the
hierarchical properties of a system, both themodel verification process and themodel-based
testing (MBT) process can easily be adjusted to omit this information. The instrumented
call symbols and return symbol can be simply filtered out from requirements and tests if
these information are not relevant. Only AAL requires these semantics because it is the
only process (in this thesis) that does not have access to a (white-box) model containing
the structural information to begin with.

Providing an interface to a system that supports the proposed instrumentation in order
to execute instrumented tests or queries may pose challenges. Specifically hardware
systems may face the challenge of immutability which makes it hard to alter a system
after construction. However, it can be argued that this specific problem is subsumed by the
general problem of applying model-based quality assurance (MBQA) to hardware-based
systems. Since most testing and learning tools are software-based, they also require a
software-based interface to interact with hardware systems. This may either be achieved
by corresponding adapters or virtualization, e.g., hardware description languages, which
are effectively software systems again. As a result, the following discussions focus on the
instrumentation of software systems.

For instrumenting software systems, there exists a large corpus of techniques and tools
from the field of runtime verification (RV). RV faces a similar challenge of instrumenting
systems in order to verify properties during execution, which allows one to utilize many
of the existing solutions for this problem. See, e.g., [54] for a survey. Especially for

141

Chapter 9 Practical Application of Instrumented Context-Free Systems

programming languages that use intermediate representations, such as the bytecode of
the Java virtual machine (JVM) or the intermediate representation of the low-level virtual
machine (LLVM), instrumenting a system is (technically) an easy process as concepts such
as aspect-oriented programming allow one to inject the necessary instrumentation code
prior to the execution on the actual hardware. Systems that are ahead-of-time compiled
to native machine code, e.g., systems written in C, may be instrumented at link-time or
execution-time using techniques such as dynamic binary instrumentation (DBI). See, e.g.,
tools such as [137] or [168].

If MBQA is used during development where the code of the system is available, one can
also use code transformations, e.g., via pre-processors or compiler plugins, to incorporate
the instrumentation during compilation. A lot of existing tools for code verification pursue
this path (see, e.g., [19] for an example). In situations where the source-code is available,
processes such as AAL become somewhat redundant because there is no longer a need for
inferring a system model as it can be directly constructed from the source-code. However,
the instrumentation may still be relevant if one is interested in verifying and testing
the hierarchical properties of (instrumented) context-free systems. Furthermore, the
control-flow graphs or data-flow graphs constructed from source-to-code transformers
may be very verbose. In conjunction with manually defined input symbols (which play
an important role for the degree of abstraction), applying AAL in scenarios where the
source-code is available may still have its benefits.
In conclusion, implementing the proposed instrumentation requires some additional

effort but it is in general not an obstacle for employing the proposed concepts in practice
as there exist plenty of techniques and tools to support the necessary modifications in
various scenarios.

9.2 Document Modeling

Besides the active modification of systems to incorporate the instrumentation required by
SPAs, SBAs, or SPMMs, there also exist application domains where this kind of structure is
natural. Specifically for SPAs, a rather intriguing example of this situation is the modeling
of documents whose structure resembles a tag language. A prominent and widely used
example of such a tag language is the extensible markup language (XML).

XML documents consist of a series of (hierarchically nested) tags which give structure
to the information that a document describes. For every opening tag there must exist a
matching closing tag at some point later in the document. Tags may be enriched with
attributes and plain text may be used between tags to represent unstructured information
of the document.

By interpreting individual tags as procedures, the concept of opening tags and closing
tags directly corresponds to the notion of call symbols and return symbols. As a con-
sequence, it is possible to associate words of an SPA with instances of XML documents.
This allows one to represent the structure of certain XML documents via an SPA and vice
versa. An SPA-based interpretation of XML documents not only captures the syntactical
properties of the documents, e.g., the well-matchedness of tags, but also allows one to

142

9.2 Document Modeling

discuss semantic properties of documents by utilizing the previously discussed techniques
of MBQA.
Note that in XML documents, every opening tag needs a matching closing tag with

the same name, i.e., an <abc> tag needs to be followed by a matching </abc> tag at
some point. In the context of SPA languages this means that there exist multiple return
symbols (one for each call symbol) whereas SPAs only support a single return symbol. This
discrepancy is easily addressed by a thin translation layer (or mapper) that maps actual
XML tags to abstracted call symbols and the return symbol. In particular, this mapper can
be stateful such that when mapping a return symbol it has access to the current nesting
hierarchy. This means one can easily map, e.g., the word “a · b · r · r” to <a>
and vice versa. Using such a mapper also allows one to translate other language features of
XML documents, such as tag-attributes or arbitrary contents within tags, to, e.g., internal
alphabet symbols.

Especially in the context of the world wide web, these structured documents are often
used for the exchange of data between servers and clients. For example, the simple object
access protocol (SOAP) [160] is a widely used standard for web-services that is based
on sending hypertext transfer protocol (HTTP) requests with XML-encoded payloads.
With the concept of mapping, it is also possible to describe other tag-languages such as
the JavaScript object notation (JSON) which is a commonly used format in the context
of representational state transfer (REST)-ful web services. Therefore, the concept of
document modeling covers a broad area of application and is highly relevant for many
real-world applications.
The following (sub-) sections expand on the idea of SPA-based interpretations of XML

documents and discuss some practical examples for this approach.

9.2.1 DTD Learning

[60] elaborates on the concept of learning document type definitions (DTDs) based on
analyzing the behavior of a black-box XML document validator. The paper discusses a
(fictional) e-commerce shop that receives transaction data, e.g., orders, in the form of XML
documents which contain information such as the ordered items, customer information,
et cetera. Listing 9.1 gives an example of such an XML document that represents a valid
order of the e-commerce shop. Each transaction consists of several records (<records>,
<record>) which contain information about the transaction itself (<tInf>, <date>,
<reference>) as well as customer information (<cInf>) and the purpose or duration
of their storage (<trans>, <crm>, <adv>, <delDate>, <disclaimer>, <agreement>).
The internal (DTD-based) description of what orders the e-commerce shop would classify
as valid is shown in Listing 9.2.
As previously discussed, words of an SPA language may be transformed into XML

documents with the help of a translation layer (or mapper) that maps between symbols of
an SPA input alphabet and elements of an XML document. As shown in [60], this mapper
may be used to further fine-tune the degree of detail with which the XML document

143

Chapter 9 Practical Application of Instrumented Context-Free Systems

Listing 9.1 (from [60])

An exemplary XML document representing a valid order of the e-commerce shop.

<records >
<record id="123">

<date>2018 -05 -10</date>
<tInf>Order No. 3434-CBGAE -45</tInf>
<reference >catalog:CBGAE -4566X</reference >
<reference >db:0234 .23423 -2</reference >
<cInf type="address">Otto -Hahn -Str. 14</cInf>
<purpose >

<trans/>
<delDate >2018 -05 -17</delDate >

</purpose >
<cInf type="e-mail">user@example.org</cInf>
<purpose >

<crm/>
<disclaimer >Until canceled </disclaimer >

</purpose >
</record >

</records >

Listing 9.2 (from [60])

A DTD-based description of valid orders.

<!ELEMENT records (record +)>
<!ELEMENT record (date ,

((tInf , reference +) |
(cInf , purpose))+) >

<!ELEMENT date (# PCDATA)>
<!ELEMENT tInf (# PCDATA)>
<!ELEMENT reference (# PCDATA)>
<!ELEMENT cInf (# PCDATA)>
<!ELEMENT purpose ((trans , delDate) |

(crm , disclaimer) |
(adv , agreement)) >

<!ELEMENT trans EMPTY>
<!ELEMENT crm EMPTY >
<!ELEMENT adv EMPTY >
<!ELEMENT delDate (# PCDATA)>
<!ELEMENT disclaimer (# PCDATA)>
<!ELEMENT agreement (# PCDATA)>

<!ATTLIST record id CDATA #IMPLIED >
<!ATTLIST cInf type CDATA #REQUIRED >

144

9.2 Document Modeling

structure should be analyzed. For the following example, the partitioning

Σcall = {records,record,purpose,cInf},

Σint = {date,tInf,reference,trans, . . . ,id,type}, and

r = {R}

is chosen. This allows for the introspection of the four procedures (tags, respectively)
<records>, <record>, <purpose>, and <cInf> while treating the other elements as
(internal) atoms. By using the mapper to translate SPA words to XML documents, the
e-commerce shop directly serves as an implementation of a membership query oracle
(MQO) by testing whether the shop accepts the (translated) documents as valid orders.
Here, the system does not require any additional instrumentation.
The result of the AAL process is an SPA-based description of the document structure

(DTD) that the e-commerce shops classifies as valid. Figure 9.1 shows the procedures
of the learned SPA model. Besides the syntactical properties of the documents (well-
matchedness, tag-names, etc.), the SPA-based interpretation of the structure of XML
documents directly opens the way for verifying semantic properties as well. The use-case
in [60] is motivated by the (at that time relatively new released) general data protection
regulation (GDPR) [53] which requires companies that process user data to (among other
things) precisely describe which data the company stores and for what purpose. Given
the SPA of Figure 9.1, one easily sees how the techniques presented in Chapter 4 can be
used to verify properties such as “Every recorded customer information (<cInf>) must be
justified by a purpose” or “Every type of purpose must be accompanied by its respective
approval” to make sure that the e-commerce shop adheres to the GDPR requirements.
The generalization of this process (or rather the DTD-/XML-specific MBQA approach)

is summarized in Figure 9.2. Steps ➊ and ➋ cover the exploration phase of the AAL
algorithm. Here, membership queries (MQs) (with the help of a mapper) correspond to
actual XML documents whose validity (membership) is checked by the backend of the
e-commerce shop. Steps ➌ and ➍ cover the verification phase of AAL, which may use
concepts from (context-free) MBT (cf. Chapter 5) to search for counterexamples given
the current hypothesis model. Eventually, the learning process finishes and returns a
hypothesis model in form of an SPA (➎) which may either be subject to further context-free
model checking (➏, cf. Chapter 4) or transformed into a corresponding DTD specification
(➐) that may be subject to further verification as well (➑).

This example shows how an SPA-based MBQA process can be implemented with relative
ease (only requiring a simple mapper) for a practical real-world application.

9.2.2 Document-Driven Process Verification

[166] extends the idea of Section 9.2.1 to the concept of document-driven process veri-

fication. The idea of this concept is to not only model inputs or outputs of systems as,
e.g., XML, documents but also internal workflows. This concept is a powerful enabler
for SPA-based MBQA because the proposed instrumentation is no longer a factor that
needs to be incorporated externally but an internal part of the core semantics (given

145

Chapter 9 Practical Application of Instrumented Context-Free Systems

Figure 9.1 (from [60])

An SPA-based representation of the document structure of accepted orders of the e-
commerce shop. Sink states and corresponding transitions are omitted for readability.
Note that the image is directly exported from the implementation of the SPA learner and
therefore lacks the b markup for the procedural context of input symbols.

record

record

id

date

date

tInf

cInfreferencetInf

reference

cInf

purpose

tInf

cInf

trans crm adv

delDate disclaimer agreement

type

pcdata

Proc.: records Proc.: record Proc.: purpose Proc.: cInf

146

9.2 Document Modeling

Figure 9.2 (from [60])

MBQA of DTD-based XML documents.

Learner SPA DTD

MQO

XML Validator

EQO

MBT
Model Checker

<?xml . . .

. . .

. . . ➊ ✓ / ✗➋

EQ
➌

Counter-

example

➍

➎

<!ELEMENT . . .

. . .

➐

➑➏

a fitting document type). Especially in large data-processing pipelines with multiple,
micro-service-like components, documents allow for a convenient way to manage the
global system complexity by using individual documents for individual components or
processes. Furthermore, using documents for internal processing directly serves as a kind
of logging framework which may be used for auditing, et cetera.
It is worth noting that in [166], this concept is elaborated in the context of whole

product-line hierarchies, involving optional behavior in the form of (context-free) modal
transition systems. However, the final products are always based on fully specified processes
described by definitive documents, making this idea compatible with the concepts of
Section 9.2.1.

9.2.3 XSD-Based Documents

Both, Section 9.2.1 ([60], respectively) and Section 9.2.2 ([166], respectively), only
consider DTD-based XML documents. This is because DTD-based document generation
directly combines the expansion semantics of context-free grammars (CFGs) with the
proposed instrumentation of Definition 24 (via opening tags and closing tags), which nicely
aligns with the semantics of SPAs, making the translation between the two formalisms
very intuitive. However, with XML schema definitions (XSDs) there exists a strictly more
powerful formalism than DTDs for specifying the structure of XML documents. Contrary
to DTDs, XSDs allow one to specify the contents of a tag, i.e, the behavior of a procedure,
depending on the context in which the tag is embedded. For example, given a tag c, an XSD
is able to specify the two documents <a><c>foo</c> and <c>bar</c>.
This is not possible with DTDs or SPAs. As a result, not all XSD-based XML documents
can be described by SPAs.

147

Chapter 9 Practical Application of Instrumented Context-Free Systems

Figure 9.3 (from [96])

The monitor-based “never-stop learning” approach, proposed by Bertolino et al. [26].

Target System

Clients

Δ⚪♦ΩΦ⚪♦ΩΩθ

Model Validator

ΩθΔ⚪♦ΩΦ⚪♦Ω

Membership Queries Counterexample

ΩθΔ⚪♦ΩΦ⚪
♦Ω⚪ΩΦ⚪♦ΩΩθΩθΔΦ

⚪♦Ω⚪ΩΦ⚪♦ΩΩ⚪⚪θΩθΔ⚪
♦ΩΦ⚪♦ΩΦ♦Φ♦ΩθΔ⚪♦♦⚪♦ΩΦ
ΩθΔ⚪♦ΩΦ⚪♦Ω⚪ΩΦ⚪♦ΩΩ⚪⚪
θΩθΔ⚪♦ΩΦ⚪♦ΩΦ♦Φ♦ΩθΔ⚪
♦ΩΦΩΦ♦Φ♦ΩθΔ⚪♦♦ΩΦ

Ω♦ΔΩΦ♦ΦΩθ

Monitoring Data (traces)

Learner

Ω

θ,∆

♦

Φ⚪
⚪

Ω,θ

θ,∆,♦

Ω,Φ

Φ,⚪

∆,♦ Ω

Ω,θ,∆,♦

Φ

⚪

♦,Φ

θ

Ω,∆
θ,♦

θ

Ω,∆

♦,⚪
♦

Φ

θ,∆,Φ

θ,Φ

Ω,∆

Hypothesis

However, XSD-based XML documents can be fully described by visibly push-down
automata (VPAs) [11]. Chapter 7 specifically discusses the differences and similarities
between SPAs and VPAs and presents transformations between the two formalisms.
These transformations allow one to construct SPA-based descriptions of XSD-based XML
documents and apply SPA-based MBQA methods to these documents as well.

9.3 Monitoring and Life-Long Learning

One of the main challenges for AAL in practice is the search of counterexamples. As
discussed in Section 2.4, the black-box equivalence problem is, in general, impossible to
solve. At the same time, counterexamples are the driving force in AAL as each counterex-
ample triggers a hypothesis refinement which makes the inferred model more precise. A
particular interesting approach to tackle this challenge is that of monitor-based never-stop

learning [26] or live-long learning as depicted in Figure 9.3. The following sections discuss
the results of [59, 63] which apply this concept to instrumented context-free systems.

9.3.1 Monitoring

The main idea of this approach is to augment the system under learning (SUL) with
a monitoring mechanism that is able to track interactions with and responses of the
system. At first, the learner constructs a hypothesis model of the system via the classic
learning loop, using conventional means of finding counterexamples. Then, if no more

148

9.3 Monitoring and Life-Long Learning

counterexamples can be found and the application appears to be functional, the system is
put into a production environment where external clients now interact with the system.
During this time, a monitor records the interactions with the system and compares the
recorded traces with the expected behavior of the hypothesis model.
If at one point the monitor detects a discrepancy between the recorded behavior and

the behavior of the model, one of the following two situations have occurred:
1. The hypothesis behaves correctly and the system behaves faulty. In this case, the

monitor has detected a bug in the system and the recorded trace can be used to
reproduce the error and eventually fix the bug in the system.

2. The hypothesis behaves faulty and the system behaves correctly. In this case,
the recorded trace represents a counterexample to the hypothesis model and the
recorded trace can be used to refine the hypothesis model in a successive refinement
step.

It is usually human resources, e.g., developers or quality assurance (QA) staff, who
distinguish between the two cases, which is a common practice in the field of machine
learning (cf. human-in-the-loop (HITL)).

One can think of this approach as a user-driven search for counterexamples which has
shown great success in large-scale projects [5, 23, 25, 89, 99]. Especially in situations
where systems are under-specified and therefore concepts such as model verification
cannot be consulted for searching counterexamples, monitoring proves as a useful tool to
observe and analyze the system from an external perspective.

In the context of instrumented context-free systems, [59] presents a notion of a (struc-
tural operational semantics (SOS)-based) monitor for SPAs. Essential to this monitor is
the exploitation of the notion of rigorous (de-) composition of SPAs. As the refinement
of SPA hypotheses essentially only requires projected counterexamples for the violating
procedures (cf. Corollary 3), the monitor may perform these projections on-the-fly while
simultaneously keeping track of the currently invoked procedure. As a result, when the
monitor detects a mis-match in behavior, not only can it immediately provide a correct
counterexample without any further analysis steps but also the resource consumption of
the monitor is drastically reduced because the continuous projections of procedural runs
allow the monitor to represent (potentially long but successful) invocations with a single
call symbol.
Figure 9.4 shows an excerpt of the benchmark results of [59] that nicely show the

impact of this concept. Even if the observed traces reach a length of a billion symbols, the
maximum resource consumption of the monitor, i.e., the maximum number of symbols
it needs to store at any time to successfully replicate the behavior, only reaches the
thousands. Only for some corner-case scenarios where a system barely performs any
procedural invocations (cf. procedural weights 0.01 and 0.1), the monitor needs to track
all observed symbols due to the lack of possibilities to apply the proposed projection. As
for the length of the extracted counterexamples, the second half of Figure 9.4 shows that
(except for the corner-case scenarios again) the monitor is also able to extract efficient, i.e.,
short, counterexamples for the procedural learners, which further boost the performance
of the learning process.

149

Chapter 9 Practical Application of Instrumented Context-Free Systems

Figure 9.4 (from [59])

An excerpt of the (median) benchmark results of the SPA monitor.

1e+00

1e+03

1e+06

1e+09

1e+00 1e+03 1e+06 1e+09

Trace Length

M
a
x
.
R

e
s
o
u
rc

e
 C

o
n
s
u
m

p
ti
o
n

Proc. Weight

0.01

0.1

0.5

1

2

5

1e+00

1e+03

1e+06

1e+09

1e+00 1e+03 1e+06 1e+09

Trace Length

P
ro

c
.
C

o
u
n
te

re
x
a
m

p
le

 L
e
n
g
th

Proc. Weight

0.01

0.1

0.5

1

2

5

The idea of reducing counterexamples can be found in other contexts that deal with
(potentially infinite) domains as well. For example, in [3] the authors describe how
the tool “Tomte” uses a pre-processing step to remove potentially redundant loops from
expensive-to-analyze counterexamples for register automata. However, the proposed
reduction is purely heuristic and requires a post-processing step to verify that the shortened
counterexample is still valid. For instrumented context-free systems, the reduction via
projections is an inherent semantically valid transformation that comes at no additional
(query) costs.

The discussion in Section 3.5 shows that an SPA-based monitor is limited to verifying the
termination of procedures. When observing monitor-friendlier reactive systems (modeled
via, e.g., SBAs or SPMMs), the monitor may be simplified even further and the results
shown in Figure 9.4 may be applied to an even broader field of systems.

150

9.4 Black-Box Checking and Other Symbioses

9.3.2 Life-Long Learning

While a monitor for instrumented context-free systems can be implemented efficiently, it
may still observe counterexamples only after days worth of observations, which makes
them multiple orders of magnitude longer than “normal” counterexamples. [63] analyzes
the impact of these monitor-based counterexamples on the learning process. In essence,
counterexamples may contain a lot of inter-procedural redundancy, i.e., the redundancy
of procedural invocations until the violating procedure is entered, and intra-procedural
redundancy, i.e., the redundancy within a procedure until a violating action occurs, until
the eventual cause of in-equivalent behavior is exposed. [63] shows that the combination
of the proposed SPA monitor and SPA learner is able to perform well in these situations,
too.

Remark 7

[63] calls inter-procedural redundancy external redundancy and intra-procedural redun-

dancy internal redundancy.

For the inter-procedural redundancy, the notion of rigorous (de-) composition of SPAs
allows for an efficient extraction of (local) counterexamples. As discussed in Section 9.3.1,
the continuous projection of successfully terminated procedural invocations and the
bookkeeping of the currently active procedure allow the SPA monitor to directly provide
a projected procedural counterexample in case a mis-behaving action is detected. As a
result, the global analysis for identifying the violating procedure (which is mainly affected
by the inter-procedural redundancy) can be circumvented and the SPA learner may directly
move to the procedural refinement.
For the intra-procedural redundancy, the possibility to parameterize the SPA learner

with arbitrary regular learners for the involved procedures allows one to transfer the
properties of the (local) learners to the (global) learning process. As Figure 9.5 from [63]
shows, algorithms such as the TTT algorithm [96] which specifically tackles the issue of
redundancy within counterexamples allows one to drastically improve the query perfor-
mance of the inference process compared to other configurations by better dealing with
the intra-procedural redundancy within projected counterexamples. Here, the beneficial
properties of its local learning behavior also positively affects the global learning behavior.
Overall, the benchmark results of [59, 63] show that the properties of SPAs allow for

a fruitful application of monitor-based life-long learning of instrumented context-free
systems. Similar, if not improved, results can be expected from SBAs and SPMMs as well.

9.4 Black-Box Checking and Other Symbioses

As presented in Section 8.4, black-box checking (BBC) describes the joint approach of
verification, testing, and learning to boost the performance of the (black-box) model
checking process. Besides the “classic” improvements found in this approach, BBC allows
for some intriguing solutions to particular practical problems of SPA-based, SBA-based,
and SPMM-based MBQA.

151

Chapter 9 Practical Application of Instrumented Context-Free Systems

Figure 9.5 (from [63])

An excerpt of the benchmark results of different SPA learner parameterizations.

1e+05

2e+05

3e+05

4e+05

5e+05

0 250 500 750 1000

Procedural Counterexample Length

Q
u
e
ri

e
s
 [
#
]

Algorithm

SPA|DT

SPA|KV

SPA|LStar

SPA|RS

SPA|TTT

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

0 250 500 750 1000

Procedural Counterexample Length

S
y
m

b
o
ls

 [
#
]

Algorithm

SPA|DT

SPA|KV

SPA|LStar

SPA|RS

SPA|TTT

Recall from Chapter 6 that the SPA, SBA, and SPMM learners deal with the problem
of missing access sequences, terminating sequences, and return sequences (in case of
SPAs) via deferred learner activation. This concept culminates in the initial hypothesis
which constitutes an empty SPA, SBA, or SPMM. Using only MBT for the search of
counterexamples poses a challenge in this situation, as there exists no useful hypothesis
model to generate test cases for. Even if the SPA, SBA, or SPMM hypotheses contain
some non-empty procedural hypotheses, MBT still cannot cover procedures for which the
corresponding regular learner has not yet been activated. Here, model verification comes
as a remedy. By including requirements such as “the main procedure should successfully
execute action a”, the model checker finds that, e.g., the initial SPA hypothesis, violates
this property and checks the SUL for confirmation. If the SUL satisfies this property, a
positive counterexample is constructed that includes a successful invocation of the main
procedure, activating the respective procedural learner. This way, by including similar

152

9.4 Black-Box Checking and Other Symbioses

requirements for all involved procedures, model verification can be used to activate the
respective procedural learners of the global learner and improve the performance of
subsequent conformance tests. This is particularly fruitful application of the BBC concept,
as requirements are normal inputs to this process and do not require any adjustments.

A similarly fruitful connection can be found between the learning and testing of models.
While Chapter 5 presents a methodical approach for the conformance testing of the
concerned model types, concepts such as the W-method often face practical problems
due to the sheer amount of generated test cases. Especially for the counterexample
search during AAL, this can be a performance concern. In practical challenges such as
the ZULU challenge [48], promising results for the search of counterexamples have been
shown by learning-based techniques [87]. Here, the intermediate data structures of
learning algorithms, e.g., observation tables or discrimination trees (cf. Section 8.3),
provide sensors for (states of) the SUL which are promising starting points to explore the
system for in-equivalences. Since the inference of SPAs, SBAs, and SPMMs is based on
the simultaneous inference of their respective regular procedures, a similar approach can
be pursued for (instrumented) context-free systems, if the procedural learners support
exposing the necessary information.
Note that for the successful exploration of the regular procedures on the global SUL,

one requires access sequences, terminating sequences, and return sequences (in case of
SPAs) similar to the conformance testing of models (cf. Chapter 5). Conveniently, the
respective global learning algorithms already record the necessary sequences as they need
them for query expansion as well. As a result, the same concept from regular learning
and regular testing can be seamlessly lifted to the (instrumented) context-free case.

153

CHAPTER 10

Evaluation

This chapter discusses the qualitative and quantitative properties of systems of procedural
automata (SPAs), systems of behavioral automata (SBAs), and systems of procedural
Mealy machines (SPMMs) in comparison with competing formalisms. It summarizes the
results of [61, 62, 63] and provides analyses to explain these results. Furthermore, this
chapter analyzes the impact of the sequence optimizations of Section 6.2.5, which have
not been discussed previously.

10.1 Qualitative Discussion

Discussing the qualitative aspects of a formalism is generally a challenging task because
the perception of quality is often highly subjective. For example, often the size of models is
used as a measure for the “complexity” of a formalism, where large models are considered
complex and hard to understand. At the same time, having a low(er)-level and possibly
more explicit representation of a system can make it easier to grasp the concrete properties
of a system, which are otherwise only seen at a second glance. For the following discussion
it should be noted that the arguments are based on the author’s point of view and the
reader may come to different conclusions.
The essential characteristic of SPAs, SBAs, and SPMMs is the notion of rigorous (de-)

composition. Being able to (de-) compose a global, oftentimes highly complex, system
(into) from individual and, more importantly, independent components is a key enabler
for the analysis and understanding of systems. Similar to the criteria of Vardi [170] for
specification formalisms (cf. Section 8.1), one may analyze the three formalisms regarding
their applicability as model types.
Regarding expressiveness, SPAs are able to cover the whole set of (instrumented)

context-free languages (CFLs) (cf. Theorem 3). SBAs add the notion of prefix-closure
to a language. This not only covers prefix-closure of SPA languages but also includes
new semantics such as non-terminating procedures which are not expressible via the SPA
formalism. SPMMs add support for deterministic, symbol-wise transductions that follow
an incremental lock-step pattern. While the class of context-free transductions strictly
supersedes the class of SPMM-based transductions, e.g., by transductions of unequal
input lengths and output lengths, SPMMs still provide an intuitive entry to context-free
transductions. Overall, the three formalisms allow one the capture the core semantics of
context-free (or procedural) systems.

155

Chapter 10 Evaluation

Regarding usability and complexity, SPAs, SBAs, and SPMMs benefit from the notion
of rigorous (de-) composition as it allows them to represent their essential components,
i.e., their procedures, via deterministic finite acceptors (DFAs) or Mealy machines. These
procedural models types are simple, well-known, and their interaction which is based
on the classic copy-rule semantics known from context-free grammars (CFGs) is easy to
understand. The benefits of these properties become clear especially in a comparison with
competing formalisms such as visibly push-down automata (VPAs). While VPAs support
some notion of locality with the introduction of modules in the case of single-entry visibly
push-down automata (SEVPAs), even the semantics of SEVPAs are still defined globally.
The behavior of an individual module still needs information about the global context of a
run in order to correctly determine, e.g., return transitions. Even for simple systems such
as Figures 7.2 and 7.3 in Section 7.3, one easily sees the discrepancy in understandability.
This effect becomes more apparent as the complexity of a system grows. Figure 10.1
shows the 1-SEVPA-based representation (or rather the “0-SEVPA”-based representation
of [93], cf. Section 7.1.2) of the document type definition (DTD) model of the use-case
discussed in Section 9.2.1. Comparing the model of Figure 10.1 with the SPA model
based on Figure 9.1, one is able to make out certain areas with similar structure but
especially the interactions between different procedures (calls to and returns from) are
much more evident in the SPA-based representation. While VPAs offer, in general, more
expressiveness, this property also comes at the cost of increased complexity.

Regarding composition, SPAs, SBAs, and SPMMs are the incarnation of this concept
as the three formalisms are inherently defined as the composition of DFAs or Mealy
machines. Extending any existing model is as simple as adding a new call symbol and a
corresponding procedure (DFA or Mealy machine). The new procedure can be directly
referenced by existing procedures via the respective call transitions. One of the major
benefits of the notion of rigorous (de-) composition compared to, e.g., VPAs, is that
the individual components (procedural automata, behavioral automata, or procedural
Mealy machines) still have individual well-defined local semantics (that of DFAs or Mealy
machines). This allows one to have both a global and a local view on the system, its
components, and their respective behaviors. For example, from a bottom-up point of view,
the simple and independent procedural components are aggregated to a greater, more
complex, system. Similarly, from a top-down point of view, the functionality of the global
system can be explained by various individual procedures that constitute the system.

Besides semantic properties, the notion of SPAs, SBAs, and SPMMs also offers bene-
fits on a technical level. As formalisms for (instrumented) context-free systems, there
exist different ways of implementing their semantics. This thesis presents stack-based
characterizations that use a stack as the control component of the respective (language-)
structural operational semantics (SOS) systems. Alternatively, they may be implemented
using a CFG-based characterization or unrolling procedural invocations via graph transfor-
mation/rewriting [145]. The semantics of the proposed instrumentation and procedural
systems are embeddable in various environments.

Furthermore, the idea of (de-) composition is extensible. As shown with SBAs and
SPMMs, the core concept of SPAs can be easily extended with just minor adjustments

156

10.1 Qualitative Discussion

Figure 10.1

A 1-SEVPA representation of the document structure of valid orders of the e-commerce
shop of the example of Section 9.2.1. Call transitions, sink locations, and corresponding
transitions are omitted for readability.

L0

L1

id

L2

date L4

trans

L5

crm

L6

adv

L7

type

date

L8

tInf

L9

delDate disclaimer agreement

pcdata

L10

R/(L2,cInf) R/(L11,cInf) R/(L12,cInf)

L11

reference

L12

R/(L10,purpose)

tInf

reference

L13

R/(L0,record) R/(L13,record) R/(L0,record) R/(L13,record)

L14

R/(L0,records)

157

Chapter 10 Evaluation

such as including the return symbol in the procedural alphabet or considering an input
alphabet over the cartesian product of some input domain and output domain. The core
concepts of expansion and projection (and consequently the notion of rigorous (de-)
composition) remains similar across all three formalisms. Adding additional properties
may be implemented with similar ease and are briefly sketched in Chapter 11.
Concluding the qualitative discussion, SPAs, SBAs, and SPMMs provide a viable tool

for the model-based quality assurance (MBQA) of (instrumented) context-free systems.
The central enabler of these formalisms is the proposed instrumentation. While certain
types of instrumentation, e.g., for VPAs, have fewer structural constraints and therefore
allow for more general models (cf. Chapter 7), investing into a concise instrumentation as
proposed in this thesis may offer qualitative and quantitative benefits later. Preempting the
results of the quantitative discussion in Section 10.2, systems that support the proposed
instrumentation yield smaller models and therefore perform better in the processes of
MBQA such as active automata learning (AAL) (compared to VPAs). In situations where
systems support the proposed type of instrumentation, having models in the form of SPAs,
SBAs, and SPMMs, that support processes such as verification, testing, and learning, allows
one to improve the MBQA experience and the success of its practical application.

10.2 Quantitative Discussion

For a quantitative discussion about the proposed model types, [61, 62] provide an initial
comparison of SPAs and VPAs ([61]) as well as SPAs and SBAs ([62]) in the context of
AAL. In order to elaborate on these results, Section 10.2.1 compares the model sizes
of the different formalisms which directly provide an explanation for the observed data
and an indication for the performance of other MBQA processes. Regarding SPAs and
VPAs, the results of Chapter 7 allow for the transformation of SPAs into SEVPAs and vice
versa, which makes it possible to analyze the respective models sizes for a given language.
Regarding SPAs and SBAs, [62] shows by comparing the “classic” SPA-based learning to
the combination of (prefix-closed) SBA learning and reduction (cf. Definition 48) that
exploiting the available semantics of a system can improve the performance of the AAL
process in certain situations. Here, this section continues this line of thought by comparing
properties of SPMM-based representations of (instrumented) context-free transductions
with their equivalent SBA-based representations in order to gauge the impact of the native
model type.
Specifically in the context of AAL, [63] observes the fact that properties of regular

learners transfer to the context-free context when using them as procedural learners for
SPAs. A rather simple optimization heuristic therefore consists of using efficient regular
learners as procedural learners. [63] shows how the notion of rigorous (de-) composition
of SPAs allows one to tackle practical problems of AAL such as long counterexamples.
Enabled by the same notion, Section 10.2.2 analyzes the impact of the sequence opti-
mizations proposed in Section 6.2.5. The section elaborates on the potential performance
improvements of this heuristic by comparing learning setups that use and do not use
sequence optimizations.

158

10.2 Quantitative Discussion

All benchmarks use the implementations (learners, automaton types, etc.) available in
version 0.16.0 of the open-source library LearnLib [95].

10.2.1 Models

For the comparison of SPAs and SEVPAs (and later SPMMs and SBAs), the benchmarks
use synthetically generated model instances. While one may argue that these systems
do not adequately represent real-life systems, synthetic systems allow for a more precise
manipulation of their properties in order to gauge their impact on models and related
processes. In contrast, real-life benchmarks (without any further analysis of systems
properties) often only yield an individual data point without the ability to compare it to
related data or systems.

SPAs as SEVPAs

For comparing the size of SPA models with the size SEVPA models, this comparison
takes SPA languages and analyzes the SEVPA-based representations of these languages.
Therefore, the benchmark starts with creating random SPAs, transforming them into a
SEVPAs, and comparing the sizes of the models. The complete benchmark suite covers a
series of twenty-five runs of which the averaged results are reported. We continue with
looking at the details of a single run.

Generation For generating a random SPA, the benchmark first constructs a fixed SPA input
alphabet Σ with four call symbols, ten internal symbols and the single return symbol, i.e.,
|Σ|= 15. Based on this alphabet, it generates four random procedural automata over bΣproc

with x ∈ {2, 4,8} states each. For each procedural automaton and for each of its states,
the successor states and acceptance are sampled according to a uniform distribution.
The four procedural automata are then composed to an SPA according to four different
configurations.

• Configuration 1 randomly selects one procedural automaton and uses it for all four
call symbols, i.e., the SPA contains three duplicate procedures.

• Configuration 2 randomly selects two procedural automata and samples the re-
maining two procedures from the selected ones, i.e, the SPA contains two duplicate
procedures.

• Configuration 3 randomly selects three procedural automata and samples the re-
maining one from the selected ones, i.e, the SPA contains one duplicate procedure.

• Configuration 4 uses all four procedural automata, i.e, the SPA contains no duplicate
procedures.

For each configuration, the main procedure (call symbol) is selected at random as well.
Note that the benchmark always checks that the generated SPA is minimal with respect
to Σ (cf. Definition 30) and contains the necessary number of states, i.e., no procedural
automata contain any equivalent states. If the SPA fails to meet these properties, the run
restarts with a fresh set of randomly generated procedural automata.

159

Chapter 10 Evaluation

Measurements For comparing the size of the SPA-based representation and the SEVPA-
based representation, we look at the number of states (locations, respectively) and the
number of transitions. Furthermore, the benchmark constructs a 1-SEVPA-based repre-
sentation (or rather the “0-SEVPA”-based representation of [93], cf. Section 7.1.2) and a
n-SEVPA-based representation. The 1-SEVPA-based representation unifies all locations
in a single module and therefore does not duplicate equivalent locations across multiple
modules. The n-SEVPA-based representation is more akin to the structure of SPAs as it
contains one module per call symbol.

Results Table 10.1 shows the averaged results (including standard deviation) of twenty-
five benchmark runs. The first observation is the fact that the size of the SPA models stays
constant throughout all configurations. This was to be expected because the procedural
automata are the generated source models of this benchmark suite and adhere to the
chosen parameters. Therefore, they provide a reference for the size of the other model
types.
The second observation concerns the size of the n-SEVPA-based models. Here, we see

that the size remains consistent across all configurations as well. Similar to the SPAmodels,
the n-SEVPA models describe each procedure in a separate module (set of locations) that
does not share behavior with other modules. We see a slightly higher state (location)
count because the transformation of Section 7.2 introduces a two-location main module
that calls the initial procedure and for each module a sink-location is added with which
rejected words transition into the main module again. Hence, the overhead is linear in
the number of call symbols, i.e., 2+ |Σcall|. The increase in the transition count is more
notable. This is due to the fact that the amount of (return-) transitions depends (in part)
on the size of the stack alphabet which in case of SEVPAs is given by the product of all
locations (across several modules) and call symbols. In contrast, procedural automata are
only affected by the number of their local states and the size of bΣproc.
The most notable observation can be made for the 1-SEVPA models. For the first

configuration which exhibits a lot of similarity between the procedures, the 1-SEVPA
models allow for the most compact representations of the languages, beating both the
SPA models and n-SEVPA models. For the smallest systems (x = 2) this even holds true
for the second configuration. However, with increasing diversity across the different
procedures (i.e., increasing configuration number), the 1-SEVPA models fall victim to
the combinatorial state explosion of handling up to four different procedural behaviors
in a single module. Here, the data indicate that the 1-SEVPA models do not scale well
with diversity across procedures. This is an interesting observation as it provides an
explanation for the (in part) drastic performance differences between SPA and 1-SEVPA
learning processes observed in [61, 63].

1-SEVPAs as SPAs

This comparison looks at the inverse direction and takes random well-matched visibly
push-down languages (VPLs) in order to analyze the size of the SPA representations

160

10.2 Quantitative Discussion

T
a
b
le

1
0
.1

Si
ze
s
of

SP
A
,1

-S
E
V
PA

an
d

n
-S
E
V
PA

m
od

el
s
fo
r
(r
an

do
m
)
SP

A
la
ng

ua
ge

s.

C
on

fig
ur
at
io
n

#
of

st
at
es

/
lo
ca
ti
on

s
#

of
tr
an

si
ti
on

s

x
=

2
x
=

4
x
=

8
x
=

2
x
=

4
x
=

8

SPA

1
8
.0
±

0
.0

1
6
.0
±

0
.0

3
2
.0
±

0
.0

1
1
2
.0
±

0
.0

2
2
4
.0
±

0
.0

4
4
8
.0
±

0
.0

2
8
.0
±

0
.0

1
6
.0
±

0
.0

3
2
.0
±

0
.0

1
1
2
.0
±

0
.0

2
2
4
.0
±

0
.0

4
4
8
.0
±

0
.0

3
8
.0
±

0
.0

1
6
.0
±

0
.0

3
2
.0
±

0
.0

1
1
2
.0
±

0
.0

2
2
4
.0
±

0
.0

4
4
8
.0
±

0
.0

4
8
.0
±

0
.0

1
6
.0
±

0
.0

3
2
.0
±

0
.0

1
1
2
.0
±

0
.0

2
2
4
.0
±

0
.0

4
4
8
.0
±

0
.0

x
=

2
x
=

4
x
=

8
x
=

2
x
=

4
x
=

8

1-SEVPA

1
3
.0
±

0
.0

5
.3
±

0
.5

9
.6
±

0
.5

7
8
.0
±

0
.0

1
8
8
.6
±

2
7
.6

5
0
4
.0
±

4
5
.0

2
5
.0
±

0
.0

1
7
.7
±

0
.5

6
5
.8
±

0
.4

1
7
0
.0
±

0
.0

1
5
0
4
.9
±

7
0
.6

1
8
2
4
0
.4
±

2
1
9
.6

3
9
.0
±

0
.0

6
5
.5
±

0
.7

5
0
9
.2
±

4
.0

4
5
0
.0
±

0
.0

1
8
0
9
0
.4
±

3
4
9
.9

1
0
4
4
1
6
4
.6
±

1
6
1
7
8
.4

4
1
6
.9
±

0
.3

2
5
1
.1
±

7
.5

3
8
4
2
.3
±

7
7
.4

1
3
8
2
.3
±

4
0
.4

2
5
5
9
7
7
.4
±

1
4
8
8
6
.4

5
9
1
2
9
2
8
4
.9
±

2
3
6
4
3
4
4
.1

x
=

2
x
=

4
x
=

8
x
=

2
x
=

4
x
=

8

n-SEVPA

1
1
4
.0
±

0
.0

2
2
.0
±

0
.0

3
8
.0
±

0
.0

9
8
0
.0
±

0
.0

2
2
4
4
.0
±

0
.0

6
3
0
8
.0
±

0
.0

2
1
4
.0
±

0
.0

2
2
.0
±

0
.0

3
8
.0
±

0
.0

9
8
0
.0
±

0
.0

2
2
4
4
.0
±

0
.0

6
3
0
8
.0
±

0
.0

3
1
4
.0
±

0
.0

2
2
.0
±

0
.0

3
8
.0
±

0
.0

9
8
0
.0
±

0
.0

2
2
4
4
.0
±

0
.0

6
3
0
8
.0
±

0
.0

4
1
4
.0
±

0
.0

2
2
.0
±

0
.0

3
8
.0
±

0
.0

9
8
0
.0
±

0
.0

2
2
4
4
.0
±

0
.0

6
3
0
8
.0
±

0
.0

161

Chapter 10 Evaluation

Table 10.2

Sizes of SPA models for (random) well-matched VPLs.

1-SEVPA SPA

|V | |δ| |qΣcall| |qS| # of transitions

8.0 ± 0.0 368.0 ± 0.0 33.0 ± 0.0 297.0 ± 0.0 12771.0 ± 0.0

16.0 ± 0.0 1248.0 ± 0.0 65.0 ± 0.0 1105.0 ± 0.0 82875.0 ± 0.0

32.0 ± 0.0 4544.0 ± 0.0 129.0 ± 0.0 4257.0 ± 0.0 591723.0 ± 0.0

of these languages. Therefore, similar to the previous (sub-) section, the benchmark
generates random 1-SEVPAs and uses the concepts of Section 7.3 to construct language-
equivalent SPAs. The benchmark focuses on VPLs described by 1-SEVPAs (or rather
“0-SEVPAs” of [93], cf. Section 7.1.2), which allows for the use of existing functionality
of LearnLib in order to execute the benchmarks. Note that this decision does not affect
the concerned VPLs, as the choice of k for a k-SEVPA is only relevant for constructing a
canonical representation.
Again, the complete benchmark suite covers a series of twenty-five runs of which the

averaged results are reported. We continue with looking at the details of a single run.

Generation Similar to the previous section, the benchmark first constructs a fixed SPA
input alphabet Σ with four call symbols, ten internal symbols and a single return symbol,
i.e., |Σ|= 15. The benchmark generates a random SEVPA V over Σ with x ∈ {8,16, 32}

locations. For each location, the internal successors, return successors, and its acceptance
are sampled according to a uniform distribution. Recall that the successors of call tran-
sitions are predetermined by the module entry. Note that the benchmark always checks
that the generated SEVPA is canonical and contains the necessary number of locations,
i.e., no SEVPA contains two equivalent locations. If a SEVPA fails to meet this property,
the run restarts with a new randomly generated SEVPA.

Measurements For analyzing the size of the SPA representation of the concerned VPL, we
first look at the degree of refinement of the SPA, i.e, the number of required procedures
to de-alias the different behaviors of the (abstract) call symbols. This number also indi-
cates the size of the procedural alphabet, as we have |qΣproc|= “# of procedures”+ |Σint|.
Furthermore, we look at the number of states and the resulting amount of transitions of
the procedural automata.

Results Table 10.2 shows the averaged results (including standard deviation) of twenty-
five benchmark runs. When looking at the number of procedures, we see that the con-
cretized SPAs require the maximum degree of refinement to describe the respective VPLs.
We have |qΣcall|= 4x + 1 for all sizes, where “4x” denotes the amount of location-specific
call symbol refinements for each abstract call symbol of Σcall and “+1” denotes the addi-
tional call symbol of the main procedure. Regarding the size of the procedural automata,

162

10.2 Quantitative Discussion

we see that they have to maintain the complete structural information of their originating
modules. We have |qS|= |qΣcall| · (x + 1), where “+1” denotes an additional sink state in
each procedural automaton. The amount of transitions is the product of |qΣproc| and |qS|.
It is worth noting that for twenty-five benchmark runs the standard deviation is zero,

i.e., every randomly generated SEVPA translates into an SPA with the maximum degree
of refinement. The (likely) explanation for this effect is the fact that for any location in
the main module of the SEVPAs there always exist paths to accepting locations, e.g., via
internal symbols. Therefore, irrespective of the procedural behavior of the SEVPAs, each
location can always reach an accepting location and therefore all procedural invocations
are of relevance in the SPA representations. In this situation, the concretization merely
resembles a cartesian unfolding of calls and locations. Here, SEVPAs are the more prefer-
able representations for the concerned VPLs. However, randomly generated VPLs exhibit
no inherent structure, which amplifies this effect. To get a more nuanced insight into
the different representations, we continue to look at a second benchmark that concerns
constrained 1-SEVPAs.

Constrained 1-SEVPAs as SPAs

For constraining the structure of VPLs, this comparison considers randomly generated
SEVPAs which exhibit “procedural dead-ends”. Again, the complete benchmark suite
covers a series of twenty-five runs of which the averaged results are reported. We continue
with looking at the details of a single run.

Generation This benchmark starts with constructing a SEVPA identical to the previous
benchmark. Then, it randomly selects a (non-initial) location and transforms it into a sink.
A sink s is a rejecting location such that all internal transitions and return transitions from
s lead to s as well. Furthermore, all calls originating in s, i.e., return transitions where s

is part of the top-of-stack tuple, also lead to s. This benchmark considers three different
configurations in which it randomly selects x% (for x ∈ {25,50, 75}) of the remaining
(non-sink) locations and turns them into procedural dead-ends by updating all their return
transitions to lead into s, i.e., returning in any of the sampled locations results in (global)
rejection.

Measurements The benchmark collects the same data as in the previous one.

Results Table 10.3 shows the averaged results (including standard deviation) of twenty-
five benchmark runs. For the number of procedures, we see that it scales nearly linearly
with the amount of dead-ends, i.e., the 25% configuration contains about 25% less proce-
dures compared to the previous benchmark, etc. Here, we see that the size of the SPA
representations highly depends on the ability of well-matched SEVPA runs to reach an
accepting location. Any procedural invocations that can be discarded, are discarded by
the concretized SPAs.

163

Chapter 10 Evaluation

Table 10.3

Sizes of SPA models for (random) well-matched VPLs with procedural dead-ends.

1-SEVPA SPA

|V | |δ| |qΣcall| |qS| # of transitions

2
5
%

8.0 ± 0.0 368.0 ± 0.0 22.3 ± 4.4 178.2 ± 35.4 5904.3 ± 1870.3

16.0 ± 0.0 1248.0 ± 0.0 44.7 ± 6.3 714.9 ± 101.1 39702.4 ± 9989.5

32.0 ± 0.0 4544.0 ± 0.0 93.0 ± 9.8 2976.0 ± 313.5 309477.1 ± 60702.6

5
0
%

8.0 ± 0.0 368.0 ± 0.0 15.9 ± 4.8 127.0 ± 38.7 3467.2 ± 1649.2

16.0 ± 0.0 1248.0 ± 0.0 28.7 ± 9.2 458.9 ± 147.7 19058.6 ± 10580.3

32.0 ± 0.0 4544.0 ± 0.0 62.9 ± 12.0 2013.4 ± 382.4 151207.7 ± 51935.2

7
5
%

8.0 ± 0.0 368.0 ± 0.0 8.5 ± 4.8 68.2 ± 38.4 1439.7 ± 1046.5

16.0 ± 0.0 1248.0 ± 0.0 15.2 ± 6.5 243.8 ± 104.6 6811.5 ± 4145.0

32.0 ± 0.0 4544.0 ± 0.0 34.1 ± 11.9 1091.8 ± 381.4 52535.0 ± 31579.1

A similar trend is seen for the total number of states of the procedural automata. We see
that the number of states directly corresponds to the product of the number of locations
of the SEVPAs and the number of procedures.5 This allows one to draw two interesting
conclusions: First, due to the introduction of a sink location in the SEVPAs, this sink is
now also directly a state in the respective procedural automata and does not introduce
additional states like in the previous benchmark. Second, the remaining structure of
the modules still needs to be fully represented as there exist corresponding states for
every location. The (likely) explanation for this effect is the fact that, similar to the
previous benchmark, all locations of the modules are reachable from the module entry
via internal transitions and therefore relevant for the SPA representations. Hence, any
further restrictions on the internal transitions of modules ,ay potentially reduce the size of
the SPA representations further.

Regarding the number of transitions, the reductions in size apply in a super-linear
fashion rather than in linear steps of 25%, 50%, or 75%. This is due to the fact that the
number of transitions scales multiplicative with the number of states and the number of
alphabet symbols (which depends on the number of procedures) which each experience
individual reductions.

However, even in the configurations with the largest amount of procedural dead-
ends, the size of the SEVPA representations still notably outperforms the size of the SPA
representations. While the benchmark shows that SPAs have the potential to scale with the
variability of VPLs, they are (quantitatively) a more verbose formalism for representing
the concerned native VPLs.

5The raw data shows this correspondence. The displayed averaged data introduces some errors due to
rounding.

164

10.2 Quantitative Discussion

Interpretation

In summary, the benchmark results of the comparisons between SPAs and SEVPAs align
with the impressions of the qualitative discussion (cf. Section 10.1). SPAs (and by extension
SBAs and SPMMs) are tools for modeling (instrumented) context-free systems. For systems
where these tools are applicable (by means of the proposed instrumentation), they provide
efficient models that yield concise system representations for the processes of MBQA.
However, the advantages of these model types are not universal and there exist situations
where they are outperformed by existing approaches such as VPAs.

This leads to the question: “When to use which formalism?”. Interestingly, this question
shifts the spotlight from the model types to the instrumentation mechanism. By imple-
menting the instrumentation proposed in this thesis (cf. Definition 24), one enables the
application of SPA, SBA, and SPMM model types and their benefits (efficiency, under-
standability, etc.). Especially for use-cases where this type of instrumentation can be
found naturally (cf. Chapter 9), this results in fruitful applications that can outperform
currently existing approaches. For systems where no such instrumentation is possible,
existing alternatives may provide (quantitatively) better results.
SPAs, SBAs, and SPMMs offer system developers an efficient model type if they are

willing or able to provide the necessary environment. Furthermore, the central role of the
instrumentation opens up interesting fields of future research. Being able to automate or
automatically optimize the proposed instrumentation of a system may be a key enabler for
SPA-based, SBA-based, and SPMM-based MBQA of (instrumented) context-free systems.
Section 11.2.2 discusses some ideas in that direction.

SPMMs vs. SBAs

Section 3.4 introduces SPMMs as a native formalism for (instrumented) context-free
transductions. However, the verification, testing, and learning of SPMMs is formalized on
the basis of SBAs over the cartesian product of some input domain and output domain.
This (sub-) section analyzes the size of “native” SPMM models and their equivalent SBA-
based representations in order to elaborate on the potential performance improvements
given by the specialized representations. Similar to the previous comparisons, the whole
benchmark suite covers a series of twenty-five runs of which the averaged results are
reported. We continue with looking at the details of a single run.

Generation The benchmark generates an SPMM in analogy to configuration “4” of the
“SPAs as SEVPAs” benchmark (cf. Section 10.2.1). It starts with constructing an SPA input
alphabet containing four call symbols, ten internal symbols and the single return symbol
as well as an SPA output alphabet containing ten internal output symbols and the two
procedural output symbols. Then, it generates four random procedural Mealy machines
with x ∈ {2, 4,8} states each such that successors and outputs are sampled according to a
uniform distribution. For each procedural Mealy machine, a (non-initial) state s is selected
at random and transformed into a sink state, i.e, a state with reflexive transitions for all
a ∈ bΣ with output Ò�. For the remaining call transitions of the procedural Mealy machine,

165

Chapter 10 Evaluation

Table 10.4

Sizes of SBA models for (random) SPMM-based transductions.

SPMM I ×O-SBA I ·O-SBA

|SM | # of trans. |SB | # of trans. |SB | # of trans.

8.0 ± 0.0 120.0 ± 0.0 12.0 ± 0.0 1500.0 ± 0.0 51.4 ± 2.1 1388.9 ± 57.3

16.0 ± 0.0 240.0 ± 0.0 20.0 ± 0.0 2500.0 ± 0.0 120.9 ± 3.1 3264.8 ± 85.0

32.0 ± 0.0 480.0 ± 0.0 36.0 ± 0.0 4500.0 ± 0.0 257.0 ± 5.6 6940.1 ± 152.4

a coin-flip decides whether they output Ò� or transition into s with output Ò�. Similarly, all
remaining return transitions of the Mealy machine are updated to transition into s with
outputs randomly sampled from {Ò�,Ò�}. If these modifications introduce equivalent states
in a procedural Mealy machine or the composed SPMM is no longer valid, the run restarts
with new randomly generated procedural Mealy machines.

Measurements For evaluating the efficiency of an SPMM model, we look at the size of
the generated SPMM, the size of the (behaviorally) equivalent SBA over the synchronous
alphabet, and the size of the (behaviorally) equivalent SBA over the alternating alphabet.
Note that Section 2.1.3 only briefly sketches the acceptor-based characterization of trans-
ductions using alternating input symbols and output symbols and Section 3.4 does not
consider it due to all the corner-cases it introduces. The SBA model over the alternating
alphabet is only meant as an additional data-point to better position the results of SPMM
and the following paragraphs do not go into further details about the construction of such
SBAs.

In order to get a better insight into the structural properties of the different SBA models,
the size of the models is split into the number of states and the number of respective
transitions.

Results Table 10.4 shows the averaged results (including standard deviation) of twenty-
five benchmark runs. For the SPMM models, we see that the respective size matches the
configured parameters.
For the number of states of the synchronous SBAs, we see that the SBAs have exactly

four states more than the originating SPMMs. This is due to the fact that the sink states in
the generated SPMMs may still be valid states in successful invocations of the procedure,
e.g., the targets of successful return-transitions. As a result, the transformed SBAs need
to introduce additional (actual) sink states that are used for, e.g., successors of return
transitions, et cetera. Together with the non-existing variance, this indicates that the
synchronous SBAs are structurally very similar to the original SPMMs. However, regarding
the number of transitions, we see that the synchronous SPA input alphabet drastically
increases the number of transitions of the SBAs by about an order of magnitude. This
heavily impacts the performance of testing and learning these kinds of systems and
therefore favors the original SPMM models.

166

10.2 Quantitative Discussion

For the alternating SBAs, we see similar results. Here, the number of states drastically

increases as each ·
a/o
−−→ · transition in the SPMMs introduces additional states in the

corresponding SBAs due to alternating ·
a
−→ ·

o
−→ · transitions. While the number of outgoing

transitions per state is not as high as for the synchronous SBAs, we see that the total number
of transitions begins to outnumber the synchronous versions with increasing number of
states. Additionally, we start to see some variance in the data. This is mainly due do
the fact that the successors of input-labeled transitions may be merged if the subsequent
output-labeled transitions can separate the transduction steps again. Depending on the
actual modeled transductions, this happens more often or not. However, given the total
number of states, the impact of this effect is not sufficient for making alternating SBAs a
competitive formalism.

Overall, these results support the efforts of formalizing a native Mealy-based formalism
for modeling deterministic transductions that follow an incremental lock-step pattern.
While the actual performance impact may differ from case to case, e.g., depending on
the number of output symbols used, this benchmark shows that exploiting native system
semantics such as dialog-based interactions, can result in a relatively great reduction
in model size, which improves comprehensibility and performance — two important
properties of practical MBQA.

10.2.2 Active Automata Learning

This section analyzes properties of SPAs in the context of AAL. In particular, we look at the
optimizations of access sequences, terminating sequences, and return sequences discussed
in Section 6.2.5. In AAL, algorithms are often analyzed by their query complexity, i.e., the
number of membership queries (MQs) (and the number of symbols therein) that a learner
poses during the inference process. On the one hand, this allows one to abstract from
technical details, such as hardware platforms or programming languages, and compare
different approaches on an algorithmic and conceptional level. On the other hand, for
many practical applications the effective runtime of the inference process is determined by
the performance of the system under learning (SUL) [90], i.e., the query performance of
a learning algorithm has the most impact on the actual runtime. Therefore, a particularly
interesting question in the context of SPA, SBA, and SPMM learning is how much the
proposed optimizations can boost the learning performance. The following benchmark
investigates this question for the case of SPAs.

Optimization of Access Sequences, Terminating Sequences, and Return Sequences

This benchmark constructs learning processes that infer synthetic systems again. Similar
to previous benchmarks, the complete benchmark suite covers a series of twenty-five runs
of which the averaged results are reported. We continue with looking at the details of a
single run.

167

Chapter 10 Evaluation

Generation For constructing the SUL that is inferred by the SPA learner, the benchmark
uses the same system of configuration “4” of the “SPAs as SEVPAs” benchmark (cf. Sec-
tion 10.2.1), i.e., an SPA consisting of four randomly generated procedural automata with
x ∈ {2,4, 8} states over an SPA input alphabet containing four call symbols, ten internal
symbols and the single return symbol.

Algorithms Recall that the SPA learner can be parameterized with arbitrary regular
learning algorithms that are used as procedural learners. In each run, the benchmark
infers the same system with four different procedural learning algorithms, namely:

• LStar, the original AAL algorithm by Angluin [15],
• RS, the LStar variant using the counterexample analysis of Rivest et al. [146],
• DT, the discrimination tree algorithm (sometimes called “observation pack” algo-

rithm) by Howar [84], and
• TTT, the algorithm by Isberner et al. [96].

Counterexamples For generating counterexamples, the benchmark uses the SPA confor-
mance test proposed in Definition 61. On the basis of the generated (white-box) SUL, it
generates a set of test words that cover the characteristics of the system. The equivalence
query oracle (EQO) then simply iterates over all these tests, executes them on both the
current hypothesis model and the actual system, and returns the input sequence of a test
as a counterexample if the results mismatch.
Additionally, the benchmark distinguishes between two configurations: It orders the

test cases in lexicographical order and denotes as “short-to-long” the ascending order
and as “long-to-short” the descending order. This distinction is meant to influence the
extraction of the respective sequences of the SPA learner in order to gauge the impact of
the potential improvements of the suggested optimizations.

Measurements For measuring the (query) performance of a learning setup, the following
data are collected:

• #EQ, i.e., the number of equivalence queries (EQs) that have been posed during the
learning process. This number minus one corresponds to the number of refinement
steps each algorithm performs.

• #MQ, i.e., the number of MQs that the learning algorithm poses during hypothesis
construction. This number excludes any MQs that are posed by the EQOs during the
counterexample search but includes MQs posed by the (procedural) learners during
counterexample analysis and hypothesis exploration.

• #S, i.e., the (cumulated) number of symbols of each of all recorded MQs.

Furthermore, a distinction is made between a “base” case which does not optimize
the discovered access sequences, terminating sequences, and return sequences and an
“optimized” case which replaces the respective sequences whenever a shorter one can be
constructed.

168

10.2 Quantitative Discussion

Results Table 10.5 shows the averaged number of EQs, MQs and symbols (including
standard deviation) of twenty-five benchmark runs. We first look at the number of EQs
and the number of MQs. The overall observation is that there are nearly no differences
between the base configuration and the optimized configuration. This was to be expected
because the proposed optimizations only replace the respective sequences with shorter
ones but maintain their characteristics of accessing, terminating, and returning from
procedures. Occasionally, we can see a slight decrease in performance, e.g., in the number
of MQs of the RS algorithm in the thirty-two-state system of the short-to-long configuration
or in the number of EQs and MQs of the RS algorithm in the thirty-two-state system of the
long-to-short configuration. This can be explained by the fact that for each refinement,
the SPA learner must verify that the procedural automata are ts-conform with respect to
the currently extracted terminating sequences (cf. Definition 65). Here, using shorter
terminating sequences covers fewer transitions and therefore potentially discovers fewer
inconsistencies directly. As a result, more global counterexamples may be needed to trigger
the procedural refinements. However, as the data shows, this impact is mostly negligible.
Other than that, we see performance characteristics similar to the ones from regular

language inference processes. On average, the LStar algorithm poses the most MQs
due to its internal management of the observation table. As a result, the algorithm more
thoroughly explores the system by itself and requires fewer counterexamples, i.e., EQs.
In contrast, the discrimination tree-based algorithms (DT and TTT) require fewer MQs
but more EQs. Furthermore, we observe the general trend that with increasing system
size, the number of EQs and MQs also increases, which was to be expected. It is worth
noting that for the smallest system configuration, all learners require the same amount
of MQs. Recall that for the SPAs with eight states and four procedures, each procedure
only consists of two states6 which are discovered as soon as the learner is initialized. In
the short-to-long configuration this means that a learner only needs one EQ to activate
each procedural learner and a final one to determine equivalence. In the long-to-short
configuration, a longer counterexample can uncover more than one procedure, which
results in a total EQ count of below five.
The most notable impact of the proposed optimizations appears in the amount of

(cumulated) symbols. First of all, we see a decrease in symbol count from the base case to
the optimized case in all configurations, even in the ones where the optimizations result in
an increase of MQs. Since the optimizations come for free (cf. Section 6.2.5), it is almost
always advisable to use them, except in cases where resets (and therefore an increase
in the number of MQs) dominate the actual query runtime. Generally, the impact of the
performance improvements increases with increasing system size as small improvements
continue to aggregate over multiple MQs. For the short-to-long configuration, we see
improvements of about two percent up to improvements of about ten percent. For the
long-to-short configuration, we see improvements of about ten percent up to improvements
of about twenty-five percent.
For the base case, the long-to-short configuration performs worse than the short-to-

long configuration. This was to be expected, since longer counterexamples result in

6One accepting state, one rejecting state. There exist no other minimal two-state automata.

169

Chapter 10 Evaluation
T
a
b
le

1
0
.5

Im
pact

of
access

sequence,term
in
atin

g
sequence,an

d
retu

rn
sequence

replacem
en

ts
on

the
query

perform
ance

of
the

SPA
inference

process.
T
he

abbreviations
X
Y
(Y

)
are

constructed
from

X
∈
{B
=
base

,O
=
optim

ized
},

Y
(Y
)
∈
{M

Q
,E

Q
,S
=
sym

bol}.

short-to-long
counterexam

ple
order

|S
|

A
lg.

#
B
EQ

#
O
EQ

#
B
M
Q

#
O
M
Q

#
B
S

#
O
S

8

L
S
t
a
r

5
.0
±

0
.0

5
.0
±

0
.0

1
1
6
.0
±

0
.0

1
1
6
.0
±

0
.0

7
7
6
.8
±

5
2
.9

7
5
9
.8
±

5
3
.8

R
S

5
.0
±

0
.0

5
.0
±

0
.0

1
1
6
.0
±

0
.0

1
1
6
.0
±

0
.0

7
7
6

.8
±

5
2
.9

7
5
9
.8
±

5
3
.8

D
T

5
.0
±

0
.0

5
.0
±

0
.0

1
2
4
.0
±

0
.0

1
2
4
.0
±

0
.0

8
1

8
.2
±

5
6
.4

8
0
1
.2
±

5
7
.4

T
T
T

5
.0
±

0
.0

5
.0
±

0
.0

1
6
2
.0
±

0
.0

1
6
2
.0
±

0
.0

1
1
0
4

.4
±

7
6

.0
1
0
8
3
.0
±

7
6
.8

16

L
S
t
a
r

1
0
.6
±

1
.2

1
0
.6
±

1
.2

8
6
3
.8
±

1
4
0
.2

8
6
3
.8
±

1
4
0
.2

7
9
6

2
.9
±

1
4
9
1
.2

7
3
3
5
.1
±

1
4
3
8
.5

R
S

1
1
.3
±

1
.1

1
1
.3
±

1
.1

6
3
8
.9
±

6
0
.5

6
3
8
.9
±

6
0
.5

5
4
4
7
.8
±

8
4
7
.5

4
8
8
2
.8
±

6
7
0
.6

D
T

1
2
.4
±

0
.8

1
2
.4
±

0
.8

5
2
8
.3
±

2
1
.9

5
2
8
.3
±

2
1
.9

4
4
5
6
.6
±

5
2
2
.2

4
0
6
7
.8
±

3
5
4
.8

T
T
T

1
2
.4
±

0
.8

1
2
.4
±

0
.8

5
8
4
.0
±

2
4
.6

5
8
4
.0
±

2
4
.6

4
9
4
7
.1
±

5
6
9
.4

4
5
3
2
.8
±

3
8
8
.6

32

L
S
t
a
r

1
6
.6
±

1
.7

1
6
.6
±

1
.7

3
1
0
5
.9
±

3
1
0
.2

3
1
0
5
.9
±

3
1
0
.2

3
3
0
9

5
.8
±

3
9
6
1
.1

3
0
8
3
4
.0
±

3
9
3
0
.5

R
S

1
8
.9
±

2
.0

1
8
.9
±

2
.0

2
2
5
7
.3
±

2
1
9
.2

2
2
6
2
.0
±

2
1
6
.6

2
2
0
4
0
.8
±

2
2
6

9
.4

1
9
9
5
3
.2
±

2
3
4
3
.8

D
T

2
6
.8
±

1
.1

2
6
.8
±

1
.1

1
5
8
3
.5
±

5
1
.0

1
5
8
3
.5
±

5
1
.0

1
5
3
2
2
.0
±

8
1
0
.2

1
4
1
6
1
.8
±

9
5
7
.8

T
T
T

2
6
.8
±

1
.2

2
6
.8
±

1
.2

1
6
2
5
.8
±

6
0
.9

1
6
2
5
.8
±

6
0
.9

1
5
6
0
6
.6
±

8
3
5
.0

1
4
4
1
2
.1
±

9
7
6
.4

long-to-short
counterexam

ple
order

|S
|

A
lg.

#
B
EQ

#
O
EQ

#
B
M
Q

#
O
M
Q

#
B
S

#
O
S

8

L
S
t
a
r

3
.9
±

0
.7

3
.9
±

0
.7

1
1
6
.0
±

0
.0

1
1
6
.0
±

0
.0

8
1
4
.9
±

6
0
.3

7
7
5
.0
±

5
9
.1

R
S

3
.9
±

0
.7

3
.9
±

0
.7

1
1
6
.0
±

0
.0

1
1
6
.0
±

0
.0

8
1
4

.9
±

6
0
.3

7
7
5
.0
±

5
9
.1

D
T

3
.9
±

0
.7

3
.9
±

0
.7

1
2
4
.0
±

0
.0

1
2
4
.0
±

0
.0

8
5

7
.4
±

6
4
.0

8
1
7
.5
±

6
3
.0

T
T
T

3
.9
±

0
.7

3
.9
±

0
.7

1
6
2
.0
±

0
.0

1
6
2
.0
±

0
.0

1
1
5
3

.0
±

8
1

.8
1
1
0
2
.8
±

8
2
.2

16

L
S
t
a
r

1
0
.2
±

1
.3

1
0
.2
±

1
.3

8
4
3
.5
±

1
3
2
.8

8
4
3
.5
±

1
3
2
.8

8
1
7

0
.6
±

2
2
3
9
.4

7
0
4
1
.1
±

1
4
5
2
.5

R
S

1
0
.5
±

1
.4

1
0
.5
±

1
.4

6
3
1
.1
±

7
4
.2

6
3
1
.1
±

7
4
.2

5
2
1
6
.2
±

1
1
0
1
.6

4
6
3
1
.1
±

7
3
0
.3

D
T

1
1
.9
±

0
.9

1
1
.9
±

0
.9

5
3
0
.6
±

2
1
.0

5
3
0
.6
±

2
1
.0

4
6
3
5
.1
±

8
3
1
.8

4
0
3
1
.3
±

4
0
7
.3

T
T
T

1
1
.9
±

0
.9

1
1
.9
±

0
.9

5
7
8
.6
±

2
2
.7

5
7
8
.6
±

2
2
.7

5
0
0
8
.0
±

8
5
2
.8

4
4
0
1
.4
±

4
1
3
.8

32

L
S
t
a
r

1
6
.1
±

1
.5

1
6
.1
±

1
.5

3
0
7
7
.1
±

3
7
3
.4

3
0
7
7
.1
±

3
7
3
.4

3
8
9
1

0
.1
±

1
2
1
0
9
.9

3
0
9
7
8
.9
±

5
9
6
2
.6

R
S

1
8
.0
±

1
.9

1
8
.1
±

1
.9

2
2
1
7
.0
±

1
9
6
.5

2
2
1
7
.1
±

1
9
6
.4

2
3
2
8
5
.7
±

6
3
9

9
.2

1
9
1
1
3
.0
±

3
1
3
0
.0

D
T

2
6
.8
±

1
.4

2
6
.8
±

1
.4

1
5
9
4
.4
±

5
2
.1

1
5
9
4
.4
±

5
2
.1

1
9
2
5
8
.8
±

5
3
3
8
.7

1
4
9
1
0
.2
±

1
9
5
5
.6

T
T
T

2
6
.8
±

1
.6

2
6
.8
±

1
.6

1
6
2
7
.2
±

6
7
.5

1
6
2
7
.2
±

6
7
.5

1
9
1
0
5
.4
±

4
6

9
1

.2
1
5
0
1
6
.7
±

1
7
2
3
.1

170

10.3 Summary

longer extracted sequences. However, as we see in the optimized case, the proposed
optimizations almost boost the symbol performance of the long-to-short configuration to
the level of the short-to-long configuration, occasionally beating it. This effect is in part
supported by the reduced number of EQs and MQs in the long-to-short configuration.
Longer counterexamples contain more information and therefore, may trigger multiple
refinements at once. The proposed optimizations allow one to benefit from this effect
without being (fully) affected by the negative impact of long counterexamples (long
sequences). This effect may even be more impactful in live-long learning scenarios.
Overall, this evaluation underlines one central aspect of SPAs: scalability through the

notion of rigorous (de-) composition. Only because of the fact that procedures contribute
independently to the behavior of an SPA, one is able to exchange access sequences,
terminating sequences, and return sequences. In the context of AAL, this benchmark
shows how this property easily enables a free (symbol) performance boost of up to almost
twenty-five percent. Due to similar properties of SBAs and SPMMs, the same heuristic
should also be able to boost the (symbol) performance of their respective inference
processes. It is an interesting question for future research, whether the notion of rigorous
(de-) composition allows for further optimizations.

10.3 Summary

This section concludes the chapter by summarizing its main results.

• While a qualitative evaluation is highly subjective, SPAs, SBAs, and SPMMs support
various concepts that enable intuitive representations of systems and therefore offer
an attractive formalism for context-free MBQA.

• Quantitatively, SPAs (and it is reasonable to assume SBAs and SPMMs as well) hit a
sweet spot for appropriately instrumented systems. While SPAs support transforma-
tions into SEVPAs and vice versa, SPAs are a more compact representation for SPA
languages, whereas SEVPAs are a more compact representation for VPLs that are
not an SPA language.

• In the context of AAL, these benefits transpire to the practical application of MBQA.
The properties of SPAs, SBAs, and SPMMs enable the application of optimization
heuristics which (in part significantly) boost the performance of the concerned
disciplines for free.

171

CHAPTER 11

Summary and Future Work

This chapter concludes this thesis by summarizing its major results and presenting an
outlook on potential future research topics.

11.1 Summary

This thesis presents the three formalisms of systems of procedural automata (SPAs), systems
of behavioral automata (SBAs), and systems of procedural Mealy machines (SPMMs).
SPAs are an automaton-based formalism for describing procedural systems modeled after
context-free grammars (CFGs), in which individual deterministic finite acceptors (DFAs)
represent the production rules of the involved non-terminal symbols. Calls to procedures
are implemented via similar expansion semantics and, therefore, SPAs are able to represent
systems modeled after context-free languages (CFLs). SBAs extend this concept by the idea
of prefix-closure which allows for further features such as non-terminating procedures.
SPMMs introduce the concept of dialog-based interactions, providing an entry model to
context-free transductions.
A central trait of all three formalisms is an instrumentation that makes entries to and

exits from procedural invocations observable. Returning to Example 2, it is easy to see
how there exist multiple alternatives to describing an identical palindrome system, e.g.,
with using only a single non-terminal symbol (procedure). The proposed instrumentation
of this thesis makes these otherwise hidden architectural properties of systems observable
and treats them as first-class citizens.

Furthermore, the proposed instrumentation enables a notion of rigorous (de-) composi-
tion. Similar to the model types, where the “global” model is comprised of multiple “local”
components or procedures, the global observable behavior of a system can be interpreted in
local contexts of the involved procedures as well. Via projection and expansion, this thesis
shows how to exploit the proposed instrumentation in order to establish an equivalence
between the globally observable behavior and the locally observable behavior.

Based on this equivalence, this thesis presents algorithms for the verification, testing, and
learning of the above models types for implementing the model-based quality assurance
(MBQA) of instrumented context-free systems. Specifically for testing and learning of
models, the provided algorithms exploit the notion of rigorous (de-) composition by
implementing the two processes via simultaneous testing and learning of the individual
components, respectively. While a similar approach is possible for the verification of

173

Chapter 11 Summary and Future Work

systems, this thesis additionally presents an approach for global system verification which
allows one to specify global system requirements more intuitively.

In a comparison with competing formalisms such as visibly push-down automata (VPAs),
this thesis shows that SPAs (and by extension SBAs and SPMMs) hit a sweet spot for certain
system structures or types of system instrumentation, respectively. This thesis shows
that both formalisms can be transformed into each other (with some minor technical
adjustments) and that there exist certain systems for which SPAs (SBAs, SPMMs) provide
the more efficient representations and systems where existing approaches such as VPAs
provide the more efficient representations.

Regarding the applicability of SPAs, SBAs, and SPMMs in practice, this thesis discusses
the technical aspects of and solutions for implementing the proposed instrumentation that
allow one to use the three model types in real-world MBQA processes. This also includes
scenarios in which the proposed instrumentation occurs naturally such as (document
type definition (DTD)-based) extensible markup language (XML) document verification.
Especially for combined approaches such as black-box checking (BBC), the model types
allow for fruitful connections between the individual disciplines of MBQA in which, e.g.,
learning can benefit from verification, and testing can benefit from learning. Furthermore,
SPAs, SBAs, and SPMMs support various usage profiles such as full system descriptions, e.g.,
document-based business processes, or stream-based system interfaces, e.g., monitoring
of behavior, which make them a versatile tool for various scenarios.

Concluding this thesis, SPAs, SBAs, and SPMMs provide intuitive formalisms for model-
ing the behavior of instrumented context-free systems. With the availability of algorithms,
implementations, and tools for the verification, testing, and learning of these models, they
provide a novel utility in the tool-box of MBQA for improving the applicability, quality,
and success of quality assurance (QA) in practice.

11.2 Future Work

On the basis of the results shown in this thesis, there exist various directions for extensions
and future research.

11.2.1 Extensions of Procedural Models

One promising direction for future research is the integration of new system semantics
by extending the models to capture additional properties. In part, this concept is already
applied in this thesis. While SPAs form the “base” formalism that introduces concepts such
as projection, extension, and (de-) composition, model types such as SBAs and SPMMs can
be seen as extensions that add properties such as prefix-closure and transductions while
preserving the core principles of SPAs. The following sections present further possible
extensions.

174

11.2 Future Work

Generalized Procedural Mealy Machines

Section 3.4 presents SPMMs as a formalism for a specific class of (instrumented) context-
free transductions. Key to the formalization of SPMMs is an instrumentation that assigns
successful and erroneous output symbols to the procedural call and return transitions,
which allows for the characterization of SPMM transductions as a prefix-closed language
over the cartesian product of input symbols and output symbols. However, in a more
generalized setting, one may want procedural actions to emit arbitrary outputs. Here, the
current characterization via SBAs reaches a limit.

While call symbols can certainly support multiple outputs, e.g., by introducing distinct
(cartesian) call symbols in the form of 〈c1, o1〉, 〈c1, o2〉, . . ., this is not possible for return
symbols. Using 〈r, o1〉, 〈r, o2〉, . . ., would introduce multiple return symbols which SBAs do
not support. Note that this problem is caused by the characterization of transductions
via formal languages. The procedural Mealy machines used in SPMMs easily support
individual output symbols for individual return transitions while only requiring a single
return (input) symbol. In order to support multiple output symbols on the global system
level, it is necessary to apply the presented input transformations of SPAs and SBAs to
output words as well. By projecting and expanding the outputs of a system, it should
be a relatively straightforward process to establish the same notion of rigorous (de-)
composition for this generalized class of (instrumented) context-free transductions.

(Sub-) Sequential Transducers

In a similar fashion to generalized SPMMs, one may consider more general classes of trans-
ductions such as sequential transducers (STs) or subsequential transducers (SSTs) [24].
An ST can be thought of as a Mealy machine whose (transition-) output function does
not emit single output symbols but words over the output alphabet. Every run of an ST
then outputs the concatenation of words of the traversed transitions. This concept can be
extended to, e.g., SSTs which include state output words as well.
Crucial for enabling new procedural model types is the possibility to integrate an

instrumentation that allows one to isolate the procedural components. Specifically for
transductions, the work on and results of SPMMs gives a reference as to how to implement
such an instrumentation for other model types such as SSTs. In turn, establishing a similar
notion of rigorous (de-) composition then directly allows one to lift existing approaches
for the “base” model type to a procedural context. For example, Vilar [171] presents
an active automata learning (AAL) algorithm for SSTs, which may be used for learning
systems of procedural SSTs in a similar fashion to how regular Mealy learners are used
to learn SPMMs. Implementations for the verification and testing of such systems follow
analogously.

Orthogonal System Properties

The motivation of SPAs, SBAs, and SPMMs is to provide model types that allow one to
capture essential hierarchical properties of systems in an intuitive fashion. There exists a

175

Chapter 11 Summary and Future Work

lot of research on model types that cover other, orthogonal system properties such as data
flow, time, or probability (cf. Chapter 8). A particularly interesting question would be how
these independent dimensions can be combined with an instrumentation that exposes the
internal structure of a system. Specifically the combination of data flow, e.g., via register
automata, and hierarchy allows for very concise models of software systems, as these two
concepts are a core feature of many modern programming languages. Finding fruitful
combinations of properties potentially opens up a huge area for future research.
Yet, the work on SPAs, SBAs, and SPMMs shows that integrating hierarchy to existing

system properties does not invalidate prior work. It should be the goal to keep up the
central notion of rigorous (de-) composition in order to apply the already existing research
and algorithms for the verification, testing, and learning of procedural components. Similar
to how this thesis lifts regular MBQA to the context-free level, integrating other system
properties may involve only a thin translation or aggregation layer as well.

11.2.2 Extensions of Applications

Besides extending the expressiveness of models, another line of (future) research may
involve improving the applicability of the proposed concepts.

Self-Adjusting Instrumentation / Instrumentation Learning

Chapter 10 compares (among other things) the two formalisms of SPAs and single-
entry visibly push-down automata (SEVPAs). The conducted benchmarks show that
both formalisms have their respective sweet spots. While native SPA languages are
efficiently represented by SPAs but not by SEVPAs, native (well-matched) visibly push-
down languages (VPLs) are efficiently described by SEVPAs but not by SPAs. The question
of which formalism to use is strongly connected to the question of what instrumentation
is available.

This question opens up an interesting dimension for future research. This thesis always
assumes a fixed alphabet and a fixed instrumentation. A possible extension to this concept
would be a dynamic or self-adjusting instrumentation that introduces new call symbols on
demand. Similar to the idea of automated alphabet abstraction refinement (AAAR) [86]
which already plays an important role in the AAL process of SBAs and SPMMs, such an
approach could gradually refine call symbols as needed by the behavior of the system.
Formalizing this idea as a separate learning process could enable intuitive SPA models
where otherwise different models, e.g., SEVPAs, would have been used due to performance
concerns.

Section 7.4.2 already discusses a similar idea. However, in Section 7.4.2 the “concretiza-
tion layer” is inside the SPA learner while the system still uses “abstract” call symbols,
resulting in a lot of overhead compared to native SEVPA learning. With a self-adjusting
instrumentation, the concretization moves into the system (or an external translation
layer) thereby changing the exposed behavior. Here, the system adjusts towards the
proposed instrumentation of this thesis which may favor the proposed MBQA processes
compared to, e.g., SEVPA-based ones (cf. Chapter 10).

176

11.2 Future Work

In a related line of thought, it would be interesting to see whether effects similar
to classic (regular) AAL could be observed in practice. Within the minimally adequate
teacher (MAT) framework, the existence of equivalence queries (EQs) allows for the
formalization of correctness properties and termination properties of learning algorithms.
In practice, however, EQs can only be approximated or require additional knowledge
about the system under learning (SUL). Yet, there exist several success stories about the
successful application of AAL (cf. Section 8.3). Similarly for SPAs, SBAs, and SPMMs,
the existence of a correct instrumentation allows one to reason about the construction of
algorithms for the verification, testing, and learning of the model types. It is an interesting
question for future research whether approximation or additional knowledge would allow
one to compensate for, e.g., an unreliable instrumentation or whether, e.g., an adjustable
learner similar to Section 7.4.2 could successfully handle such systems.

X-by-Construction / Design for X

A similar line of thought concerns the automated integration of an instrumentation.
Movements such as model-driven development (MDD) (or model-driven engineering
(MDE)) [157] pick up on the power of models and already use them as first-class citizens
during system development. Rather than constructing models a posteriori, e.g., via
manual modeling or AAL, models are used a priori as the basis of an application. Using
code-generators, these models are transformed into other models, are enhanced with
various aspects, and ultimately are generated to executable code that integrates into
the final application. By specifying and validating properties of these transformers and
code-generators, one is able to establish a notion of correctness-by-construction [74, 75],
meaning that certain traits of the source models directly manifest in the generated code.
Generalizing this concept to not only cover correctness but arbitrary, non-functional
properties leads to the concept of X-by-construction [22].

A particularly promising example of applying this concept in the context of SPAs, SBAs,
and SPMMs is the tool Cinco [129]. Cinco allows one to build domain-specific integrated
modeling environments that can be used for MDD or MDE. Lybecait et al. [113] coin
the term “Design for ’X’” which is the Cinco-specific approach of implementing X-by-
construction. Especially in the context of this thesis, incarnations of this concept in the
form of “Design for Learnability” or “Design for Testability” could include an automated
integration of the proposed instrumentation or the generation of alphabet definitions in
order to execute tests or queries on the final application. Since Cinco-products, among
other things, support modeling formal business processes with expansion semantics similar
to CFGs, SPAs, SBAs, and SPMMs appear to be a natural model type for the MBQA of
Cinco-product-based applications.

Counterexample Search in Active Automata Learning

Chapter 6 skips the discussion of searching counterexamples due to the topic being
out of scope of this thesis. While model-based testing (MBT) (cf. Chapter 5) and BBC
(cf. Section 9.4) are often used as successful heuristics to implement the search for

177

Chapter 11 Summary and Future Work

counterexamples in practice, there still exists a lot of room for future research in this
field. For example, in the context of regular AAL, Smetsers et al. [159] find that adding
fuzzing to the classic MBT-based counterexample search may reduce the time of finding
counterexamples. It would be interesting to see, whether similar effects can be observed
when learning (instrumented) context-free systems, i.e, whether results from regular
counterexample search transfer to the context-free level as well. The notion of rigorous
(de-) composition and in what ways it can be exploited, e.g., local counterexample search
versus global counterexample search, is an interesting topic for future research.

Passive Learning and Learning-Based Testing

This thesis presents AAL algorithms for the inference of SPAs, SBAs, SPMMs in the context
of the MAT framework. For the learning of models, one may also consider alternatives such
as passive automata learning which infers models from a fixed training set of annotated
runs. The work on passive automata learning predates the work on AAL (see, e.g., [29, 71]
for examples of early popular passive automata learning algorithms for regular systems)
and still is a very important area of automata learning today for scenarios where only
pre-recorded data is available.

In the context of AAL, the notion of rigorous (de-) composition allows one to infer
SPAs, SBAs, SPMMs via a simultaneous inference of the involved procedures. Here, in
analogy to the active case, a passive SPA (SBA, SPMM) learner could project runs from
the global training set to runs of the individual procedures in order to construct local
training sets. While the (passive) inference of the individual procedures is generally not a
problem, the projection step becomes a challenge. Recall from Section 6.2.2 that negative
counterexamples require an intricate analysis process (including additional queries to
the SUL) in order to determine violating procedures. Similarly, if the global training
set contains a rejected run, it requires an analysis step to correctly construct the local
training sets of the involved procedures. However, in a passive learning scenario, there
exists no possibility to further analyze negative samples for the procedure(s) that is (are)
responsible for rejecting the run.

A potential solution to this problem is to consider hybrid approaches like in learning-
based testing (LBT) where passive learning is used to construct hypotheses but an active
component, e.g., a membership query oracle (MQO), is used to evaluate test cases. Here,
the active component may be exploited to not only evaluate individual test cases but also
project and construct local training sets. This would allow SPAs to provide a possible
solution for context-free LBT, which in itself would be an interesting topic for future
research. For model types like SBAs and SPMMs, this problem may be less drastic due to
the notion of reduced counterexamples (cf. Definition 67). Here, ensuring reduced traces
during the construction of training data allows one to later exploit this property for an
easier construction of local training sets because only the last active procedure can be
responsible for rejection.

178

11.2 Future Work

11.2.3 Extensions of Transformations

With Chapter 7, this thesis presents transformations from the proposed formalism of
SPAs to VPAs and vice versa. It is an interesting question for future research, whether
there exist more such transformations to other formalisms. Motivated by the use-case of
XML documents, Schwentick [153] presents a survey of different automaton types for
tree-based structures which have an inherent link to the (instrumented) CFLs discussed in
this thesis. Formalisms such as bottom-up tree automata (BTAs), top-down tree automata
(TTAs), or tree-walking automata (TWAs) follow the approach of separating the structure
of trees from the structure of the corresponding automaton models, which enables a
separate traversal of both components. While the previous formalisms receive inputs in
the form of trees, they relate to formalisms such as VPAs which receive document-based
descriptions of the same input.
As summarized in [153], (arbitrary) BTAs and (non-deterministic) TTAs are equally

expressive to SEVPAs (which are referred to as “depth-synchronous push-down automata”).
Here, the class of deterministic TTAsmay be of special interest as these automata are strictly
less expressive than their non-deterministic version. Examples of trees that cannot be
accepted by deterministic TTAs exhibit similar problems of SEVPA-based words that
cannot be accepted by SPAs (without transformations). It is an interesting question
for future research, whether a correspondence between SPAs and deterministic TTAs
could be established. Such a link would allow one to use the verification, testing, and
learning of SPAs as a document-based approach for the verification, testing, and learning
of deterministic TTAs.

179

List of Acronyms

AAAR Automated Alphabet Abstraction Refinement
AAL Active Automata Learning
ACTL Action-based CTL

BBC Black-Box Checking
BNF Backus-Naur Form
BTA Bottom-up Tree Automaton

CFG Context-Free Grammar
CFL Context-Free Language
CFPS Context-Free Process System
CTL Computational Tree Logic
CTL* Computational Tree Logic with Linear Time Assertions

DBI Dynamic Binary Instrumentation
DFA Deterministic Finite Acceptor
DTD Document Type Definition

EBNF Extended Backus-Naur Form
EQ Equivalence Query
EQO Equivalence Query Oracle

GDPR General Data Protection Regulation

HITL Human-In-The-Loop
HML Hennessy-Milner Logic
HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation
JVM Java Virtual Machine

KTS Kripke Transition System

181

List of Acronyms

LBT Learning-Based Testing
LLVM Low-Level Virtual Machine
LTL Linear Temporal Logic
LTS Labeled Transition System

MAT Minimally Adequate Teacher
MBQA Model-Based Quality Assurance
MBT Model-Based Testing
MDD Model-Driven Development
MDE Model-Driven Engineering
MQ Membership Query
MQO Membership Query Oracle

NWA Nested Word Automaton
NWTL Nested Word Temporal Logic

PDS Push-Down System
PLTL Linear Temporal Logic With Past
PPG Procedural Process Graph

QA Quality Assurance

REST Representational State Transfer
RSM Recursive State Machine
RV Runtime Verification

SBA System of Behavioral Automata
SDL Simple Deterministic Language
SEVPA Single-Entry Visibly Push-down Automaton
SOAP Simple Object Access Protocol
SOS Structural Operational Semantics
SPA System of Procedural Automata
SPMM System of Procedural Mealy Machines
SST Subsequential Transducer
ST Sequential Transducer
SUL System Under Learning

TTA Top-down Tree Automaton
TWA Tree-Walking Automaton

VLTL Visibly Linear Temporal Logic

182

List of Acronyms

VPA Visibly Push-down Automaton
VPL Visibly Push-down Language
VPT Visibly Push-down Transducer

XML Extensible Markup Language
XSD XML Schema Definition

183

List of Algorithms

5.1 Computation of access sequences, terminating sequences, and return se-
quences of SPAs . 73

5.2 Computation of access sequences and terminating sequences of SBAs . . . 77

6.1 Refinement step of the SPA learner . 90

185

List of Figures

1.1 The three basic components of MBQA . 2

2.1 AAL in the MAT framework . 25

3.1 Two DFAs accepting the right-hand sides of production rules of Gpalin . . . 30
3.2 The gamma expansion of a local word of a procedural automaton Pp . . . 38
3.3 The alpha projection of an instrumented global word 39
3.4 The relationship between the instrumentation, expansion, and language of

SPAs . 45
3.5 Behavioral automata based on the automata of Figure 3.1 49
3.6 A visualization of the different (de-) composition cases of Theorem 4 . . . 53
3.7 Procedural Mealy machines based on the palindrome system of Figure 3.5 58

4.1 The induced CFPS of the SPA based on Figure 3.1 65

6.1 The regular AAL loop tailored towards SPAs, SBAs, and SPMMs 86
6.2 An example of the SPA counterexample analysis 95
6.3 The procedural hypothesis models of HSPA . 99
6.4 Extraction of a local counterexample from a reduced global counterexample 103
6.5 Divergent states during the refinement of a behavioral automaton 105
6.6 A comparison between answering SBA queries and SPMM queries 108

7.1 Context pairs and representatives of equivalence classes characterize VPLs 118
7.2 A SEVPA accepting the language L = {ccarcbr r} 118
7.3 An SPA accepting the language L = {c5c3arc4 brr} 119
7.4 The SEVPA of Figure 7.2 transformed into an SPA 121
7.5 The characterizing set for module c of the SEVPA of Figure 7.2 125

9.1 An SPA-based representation of an XML document structure 146
9.2 MBQA of DTD-based XML documents . 147
9.3 The monitor-based “never-stop learning” approach 148
9.4 An excerpt of (median) benchmark results of the SPA monitor 150
9.5 An excerpt of benchmark results of different SPA learner parameterizations 152

10.1 A 1-SEVPA-based representation of an XML document structure 157

187

List of Listings

9.1 An exemplary XML document representing a valid order 144
9.2 A DTD-based description of valid orders . 144

189

List of Symbols

Alphabets

I , O An input alphabet, output alphabet, page 11.
In The set of words over I of length n, page 11.
I∗ The set of words over I of arbitrary, finite length, page 11.
I+ The set of words over I of non-zero, finite length, page 11.
Σ An SPA input alphabet, page 31.
Σact The set of active alphabet symbols during the learning process, page 88.
Σcall The call alphabet of an SPA input alphabet, page 31.
Σcont The set of continuable input symbols of an SBA, page 79.
Σcur The set of currently eligible symbols of an SPA input alphabet during the com-

putation of access sequences, terminating sequences, and return sequences,
page 72.

Σfin The set of finished call symbols of an SPA input alphabet during the computa-
tion of access sequences, terminating sequences, and return sequences, page
72.

Σint The internal alphabet of an SPA input alphabet, page 31.
Σncon The set of non-continuable input symbols of an SBA, page 79.
Σproc The procedural alphabet of an SPA input alphabet, page 31.
sΣ An instrumented SPA input alphabet, page 41.
sΣcall The call alphabet of an instrumented SPA input alphabet, page 41.
sΣproc The procedural alphabet of an instrumented SPA input alphabet, page 41.
eΣ A visibly push-down alphabet, page 111.
eΣcall The call alphabet of a visibly push-down alphabet, page 111.
eΣint The internal alphabet of a visibly push-down alphabet, page 111.
eΣret The return alphabet of a visibly push-down alphabet, page 111.
qΣ A concretized SPA input alphabet, page 122.
qΣcall The call alphabet of a concretized SPA input alphabet, page 122.
qΣproc The procedural alphabet of a concretized SPA input alphabet, page 122.
Σ
× A synchronous SPA input alphabet, page 57.
Ω An SPA output alphabet, page 56.
Ωint The internal alphabet of an SPA output alphabet, page 56.

191

List of Symbols

Contexts

b The procedural interpretation of symbols, words, etc., page 31.
e The VPA-based interpretation of symbols, words, etc., page 111.
q The concretized interpretation of symbols, words, etc., page 122.

Functions

|A| The size of a DFA A, page 15.
|I | The size of an alphabet I , page 11.
|M | The size of a Mealy machine M , page 17.
|S| The size of an SPA S, page 34.
|SB| The size of an SBA SB, page 50.
|w| The length of a word w, page 12.
α The alpha projection, page 38.
β The call-return balance, page 35.
γ The gamma expansion, page 37.
κ The abstract translation function, page 126.
ρw The maximum well-matched suffix function for a word w, page 35.
Exp(S) The expansion of an SPA S, page 41.
Exp(iCFPSS) The expansion of an induced CFPS of an SPA S, page 64.
LIMi

The location identification function of module Mi, page 126.
R(P c

B) The reduction of a behavioral automaton P c
B, page 55.

J·K The alpha-gamma transformation, page 92.
J·K∗ The generalized alpha-gamma transformation, page 93.

Languages

L A formal language, page 12.
L1 · L2 The concatenation of two formal languages L1 and L2, page 12.
L(A) The language of a DFA A, page 15.
L(G) The language of a formal grammar G, page 14.
L(S) The language of an SPA S, page 33.
L(SB) The language of an SBA SB, page 48.
CM(Σ) The set of call-matched words over Σ, page 35.
RM(Σ) The set of return-matched words over Σ, page 35.
WM(Σ) The set of well-matched words over Σ, page 35.
MCM(Σ) The set of minimally call-matched words over Σ, page 35.
MRM(Σ) The set of minimally return-matched words over Σ, page 35.
MWM(Σ) The set of minimally well-matched words over Σ, page 35.

Models

A A DFA, page 15.
G A formal grammar, page 14.

192

List of Symbols

H A hypothesis model, page 87.
iCFPSS An induced CFPS for an SPA S, page 64.
iPPGc An induced PPG for a procedural automaton P c, page 64.
iPPGc

B An induced behavioral PPG for a behavioral automaton P c
B, page 68.

L An LTS, page 18.
LDFA A DFA-based LTS, page 19.
LMealy A Mealy-based LTS, page 19.
M A Mealy machine, page 17.
M j The module j of a SEVPA, page 113.
P c A procedural automaton for procedure c, page 31.
sP c An instrumented procedural automaton for procedure c, page 41.
qP ci, j A concretized procedural automaton for procedure ci, j, page 122.
P c

B A behavioral automaton for procedure c, page 46.
P c

M A procedural Mealy machine for procedure c, page 56.
q∗

j
The designated entry location of module M j of a SEVPA, page 113.

S An SPA, page 31.
sS An instrumented SPA, page 42.
qS A concretized SPA, page 123.
SA An accepting SPA, page 88.
SB An SBA, page 46.
SM An SPMM, page 56.
SR A rejecting SPA, page 88.
V A VPA, page 111.
V≃L

A ≃L-induced VPA. page 115.

Relations

≡DFA The equivalence relation between two DFAs, page 15.
≡Mealy The equivalence relation between two Mealy machines, page 17.
≡SBA The equivalence relation between two SBAs, page 50.
≡SPA The equivalence relation between two SPAs, page 34.
≃L The unified congruence with respect to a well-matched language L, page 114.

Sets

ΓSPA The stack domain for SPAs, page 32.
ΓVPA The stack domain for VPAs, page 112.
ASc The set of access sequences for procedure c, page 52.
Contc The context of a procedure c, page 36.
CP(eΣ) The set of context pairs over WM(eΣ), page 114.
CPS(Σ) The set of S-induced context pairs over WM(Σ), page 116.
CS(L) The characterizing set for an LTS L, page 24.
CT(L) The conformance test for an LTS L, page 22.
EATR(S) The set of extracted access sequences, terminating sequences, and return

sequences of an SPA S, page 75.

193

List of Symbols

EAT(SB) The set of extracted access sequences and terminating sequences of an SBA
SB, page 78.

Instw The instances set of the word w, page 36.
Pref(w) The set of all prefixes of w, page 12.
ReachI (L) The set of states of an LTS L reachable by symbols of I , page 23.
SCSI (L) The state cover set over I of an LTS L, page 23.
ST(ΓSPA) The set of stack configurations for SPAs, page 32.
ST(ΓVPA) The set of stack configurations for VPAs, page 112.
Suff(w) The set of all suffixes of w, page 12.
T (M) The transductions of a Mealy machine M , page 17.
T (SM) The transductions of an SPMM SM , page 59.
TCSI (L) The transition cover set over I of an LTS L, page 23.
cTCS(PB) The continuable transition cover set of a behavioral automaton PB, page 79.
nTCS(PB) The non-continuable transition cover set of a behavioral automaton PB, page

79.
TSc The set of terminating sequences for procedure c, page 36, 52.

Symbols and Words

ϵ The empty word, page 11.
a An arbitrary alphabet symbol, page 11.
c0 The initial procedure of SPAs, SBAs, and SPMMs, pages 31, 46, 56.
ce A counterexample, page 25.
r The return symbol of an SPA input alphabet, page 31.
asc An access sequence for procedure c, page 37.
tsc A terminating sequence for procedure c, page 37.
rsc A return sequence for procedure c, page 37.
u, v, w, . . . Symbols and words, page 11.
w · v The concatenation of symbols and words, page 12.
w[i] The i-th symbol of the word w, page 12.
w[i, j] The sub-word of w, ranging from index i to j (inclusively), page 12.
w[, i] The prefix of w, ending at index i (inclusively), page 12.
w[i,] The suffix of w, beginning at index i (inclusively), page 12.
⊥ The bottom-of-stack symbol, page 32.
� The “success” symbol of an SPA output alphabet, page 56.
� The “error” symbol of an SPA output alphabet, page 56.

194

List of Tables

4.1 A set of CTL formulae evaluated on the exemplary SPA based on Figure 3.1 67

10.1 Sizes of SPA, 1-SEVPA and n-SEVPA models for (random) SPA languages . 161
10.2 Sizes of SPA models for (random) well-matched VPLs 162
10.3 Sizes of SPA models for (random) well-matched VPLs with procedural

dead-ends . 164
10.4 Sizes of SBA models for (random) SPMM-based transductions 166
10.5 Impact of access sequence, terminating sequence, and return sequence

replacements on the query performance of the SPA inference process . . . 170

195

Bibliography

[1] Fides Aarts, Joeri de Ruiter, and Erik Poll. “Formal Models of Bank Cards for
Free”. In: Sixth IEEE International Conference on Software Testing, Verification and

Validation, ICST 2013 Workshops Proceedings, Luxembourg, Luxembourg, March

18-22, 2013. IEEE Computer Society, 2013, pp. 461–468. doi: 10.1109/ICSTW.
2013.60 (cit. on pp. 4, 137).

[2] Fides Aarts, Julien Schmaltz, and Frits W. Vaandrager. “Inference and Abstraction
of the Biometric Passport”. In: Leveraging Applications of Formal Methods, Verifi-

cation, and Validation - 4th International Symposium on Leveraging Applications,

ISoLA 2010, Heraklion, Crete, Greece, October 18-21, 2010, Proceedings, Part I. Ed.
by Tiziana Margaria and Bernhard Steffen. Vol. 6415. Lecture Notes in Computer
Science. Springer, 2010, pp. 673–686. doi: 10.1007/978-3-642-16558-0_54
(cit. on pp. 4, 137).

[3] Fides Aarts et al. “Algorithms for Inferring Register Automata - A Comparison of
Existing Approaches”. In: Leveraging Applications of Formal Methods, Verification

and Validation. Technologies for Mastering Change - 6th International Symposium,

ISoLA 2014, Imperial, Corfu, Greece, October 8-11, 2014, Proceedings, Part I. Ed. by
Tiziana Margaria and Bernhard Steffen. Vol. 8802. Lecture Notes in Computer
Science. Springer, 2014, pp. 202–219. doi: 10.1007/978-3-662-45234-9_15
(cit. on p. 150).

[4] Fides Aarts et al. “Automata Learning through Counterexample Guided Abstrac-
tion Refinement”. English. In: FM 2012: Formal Methods. Ed. by Dimitra Gian-
nakopoulou and Dominique Méry. Vol. 7436. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, pp. 10–27. doi: 10.1007/978-3-642-32759-
9_4 (cit. on p. 137).

[5] Fides Aarts et al. Establishing basis for learning algorithms. Tech. rep. Feb. 2010.
url: http://hal.archives-ouvertes.fr/inria-00464671/en/ (cit. on
p. 149).

[6] Fides Aarts et al. “Generating models of infinite-state communication protocols
using regular inference with abstraction”. In: Formal Methods Syst. Des. 46.1
(2015), pp. 1–41. doi: 10.1007/s10703-014-0216-x (cit. on pp. 4, 137).

197

https://doi.org/10.1109/ICSTW.2013.60
https://doi.org/10.1109/ICSTW.2013.60
https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/978-3-662-45234-9_15
https://doi.org/10.1007/978-3-642-32759-9_4
https://doi.org/10.1007/978-3-642-32759-9_4
http://hal.archives-ouvertes.fr/inria-00464671/en/
https://doi.org/10.1007/s10703-014-0216-x

Bibliography

[7] Rajeev Alur, Ahmed Bouajjani, and Javier Esparza. “Model Checking Procedural
Programs”. In: Handbook of Model Checking. Ed. by EdmundM. Clarke et al. Cham:
Springer International Publishing, 2018, pp. 541–572. doi: 10.1007/978-3-
319-10575-8_17 (cit. on p. 134).

[8] Rajeev Alur, Swarat Chaudhuri, and Parthasarathy Madhusudan. “A Fixpoint
Calculus for Local and Global Program Flows”. In: SIGPLAN Notices 41.1 (Jan.
2006), pp. 153–165. doi: 10.1145/1111320.1111051 (cit. on p. 134).

[9] Rajeev Alur, Kousha Etessami, and Parthasarathy Madhusudan. “A Temporal Logic
of Nested Calls and Returns”. In: Tools and Algorithms for the Construction and

Analysis of Systems, 10th International Conference, TACAS 2004, Held as Part of

the Joint European Conferences on Theory and Practice of Software, ETAPS 2004,

Barcelona, Spain, March 29 - April 2, 2004, Proceedings. Ed. by Kurt Jensen and
Andreas Podelski. Vol. 2988. Lecture Notes in Computer Science. Springer, 2004,
pp. 467–481. doi: 10.1007/978-3-540-24730-2_35 (cit. on p. 134).

[10] Rajeev Alur and Parthasarathy Madhusudan. “Adding nesting structure to words”.
In: Journal of the ACM 56.3 (2009), 16:1–16:43. doi: 10.1145/1516512.
1516518 (cit. on p. 134).

[11] Rajeev Alur and Parthasarathy Madhusudan. “Visibly Pushdown Languages”. In:
Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing.
STOC ’04. Chicago, IL, USA: Association for Computing Machinery, 2004, pp. 202–
211. doi: 10.1145/1007352.1007390 (cit. on pp. 111–113, 138, 148).

[12] Rajeev Alur et al. “Congruences for Visibly Pushdown Languages”. In: Automata,

Languages and Programming: 32nd International Colloquium, ICALP 2005, Lisbon,

Portugal, July 11-15, 2005. Proceedings. Ed. by Luís Caires et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 1102–1114. doi: 10.1007/11523468_89
(cit. on pp. 113, 115, 120).

[13] Rajeev Alur et al. “First-Order and Temporal Logics for Nested Words”. In: Logical
Methods in Computer Science 4.4 (2008). doi: 10.2168/LMCS-4(4:11)2008
(cit. on p. 134).

[14] Afshin Amighi et al. “Sound Control-Flow Graph Extraction for Java Programs
with Exceptions”. In: Software Engineering and Formal Methods - 10th International

Conference, SEFM 2012, Thessaloniki, Greece, October 1-5, 2012. Proceedings. Ed.
by George Eleftherakis, Mike Hinchey, and Mike Holcombe. Vol. 7504. Lecture
Notes in Computer Science. Springer, 2012, pp. 33–47. doi: 10.1007/978-3-
642-33826-7_3 (cit. on p. 3).

[15] Dana Angluin. “Learning Regular Sets from Queries and Counterexamples”. In:
Information and Computation 75.2 (1987), pp. 87–106. doi: 10.1016/0890-
5401(87)90052-6 (cit. on pp. 4, 24, 136–138, 168).

[16] Dana Angluin. “Negative Results for Equivalence Queries”. In: Machine Learning

5 (1990), pp. 121–150. doi: 10.1007/BF00116034 (cit. on p. 138).

198

https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1007/978-3-319-10575-8_17
https://doi.org/10.1145/1111320.1111051
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1145/1516512.1516518
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1007/11523468_89
https://doi.org/10.2168/LMCS-4(4:11)2008
https://doi.org/10.1007/978-3-642-33826-7_3
https://doi.org/10.1007/978-3-642-33826-7_3
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/BF00116034

Bibliography

[17] Dana Angluin and Michael Kharitonov. “When Won’t Membership Queries Help?”
In: Journal of Computer and System Sciences 50.2 (1995), pp. 336–355. doi:
10.1006/jcss.1995.1026 (cit. on p. 138).

[18] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008. isbn: 978-0-262-02649-9 (cit. on pp. 3, 133).

[19] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. “A decade of software
model checking with SLAM”. In: Commun. ACM 54.7 (2011), pp. 68–76. doi:
10.1145/1965724.1965743 (cit. on pp. 3, 142).

[20] Thomas Ball and Sriram K. Rajamani. “Bebop: A Symbolic Model Checker for
Boolean Programs”. In: SPIN Model Checking and Software Verification, 7th In-

ternational SPIN Workshop, Stanford, CA, USA, August 30 - September 1, 2000,

Proceedings. Ed. by Klaus Havelund, John Penix, and Willem Visser. Vol. 1885.
Lecture Notes in Computer Science. Springer, 2000, pp. 113–130. doi: 10.1007/
10722468_7 (cit. on pp. 3, 135).

[21] Joachim Baran and Howard Barringer. “A Grammatical Representation of Visibly
Pushdown Languages”. In: Logic, Language, Information and Computation, 14th

International Workshop, WoLLIC 2007, Rio de Janeiro, Brazil, July 2-5, 2007,

Proceedings. Ed. by Daniel Leivant and Ruy J. G. B. de Queiroz. Vol. 4576. Lecture
Notes in Computer Science. Springer, 2007, pp. 1–11. doi: 10.1007/978-3-
540-73445-1_1 (cit. on p. 113).

[22] Maurice H. ter Beek et al. “X-by-Construction - Correctness Meets Probability”. In:
Leveraging Applications of Formal Methods, Verification and Validation: Verification

Principles - 9th International Symposium on Leveraging Applications of Formal

Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part I. Ed.
by Tiziana Margaria and Bernhard Steffen. Vol. 12476. Lecture Notes in Computer
Science. Springer, 2020, pp. 211–215. doi: 10.1007/978-3-030-61362-4_11
(cit. on p. 177).

[23] Amel Bennaceur et al. “Machine Learning for Emergent Middleware”. In: Trust-
worthy Eternal Systems via Evolving Software, Data and Knowledge - Second Inter-

national Workshop, EternalS 2012, Montpellier, France, August 28, 2012, Revised

Selected Papers. Ed. by Alessandro Moschitti and Barbara Plank. Vol. 379. Com-
munications in Computer and Information Science. Springer, 2012, pp. 16–29.
doi: 10.1007/978-3-642-45260-4_2 (cit. on p. 149).

[24] Jean Berstel. Transductions and context-free languages. Vol. 38. Teubner Studien-
bücher : Informatik. Teubner, 1979. doi: 10.1007/978-3-663-09367-1 (cit. on
pp. 9, 175).

[25] Antonia Bertolino et al. Further development of learning techniques. Research
Report. Feb. 2011. url: https://hal.inria.fr/inria-00584926 (cit. on
p. 149).

199

https://doi.org/10.1006/jcss.1995.1026
https://doi.org/10.1145/1965724.1965743
https://doi.org/10.1007/10722468_7
https://doi.org/10.1007/10722468_7
https://doi.org/10.1007/978-3-540-73445-1_1
https://doi.org/10.1007/978-3-540-73445-1_1
https://doi.org/10.1007/978-3-030-61362-4_11
https://doi.org/10.1007/978-3-642-45260-4_2
https://doi.org/10.1007/978-3-663-09367-1
https://hal.inria.fr/inria-00584926

Bibliography

[26] Antonia Bertolino et al. “Never-stop Learning: Continuous Validation of Learned
Models for Evolving Systems through Monitoring.” In: ERCIM News 2012.88
(2012), pp. 28–29. url: http://ercim-news.ercim.eu/en88/special/
never-stop-learning-continuous-validation-of-learned-models-

for-evolving-systems-through-monitoring (cit. on pp. 4, 6, 137, 148).

[27] Dirk Beyer and M. Erkan Keremoglu. “CPAchecker: A Tool for Configurable Soft-
ware Verification”. In: Computer Aided Verification - 23rd International Conference,

CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. Ed. by Ganesh
Gopalakrishnan and Shaz Qadeer. Vol. 6806. Lecture Notes in Computer Science.
Springer, 2011, pp. 184–190. doi: 10.1007/978-3-642-22110-1_16 (cit. on
p. 3).

[28] Dirk Beyer et al. “The software model checker Blast”. In: STTT 9.5-6 (2007),
pp. 505–525. doi: 10.1007/s10009-007-0044-z (cit. on p. 3).

[29] Alan W. Biermann and Jerome A. Feldman. “On the Synthesis of Finite-State
Machines from Samples of Their Behavior”. In: IEEE Trans. Computers 21.6 (1972),
pp. 592–597. doi: 10.1109/TC.1972.5009015 (cit. on p. 178).

[30] Benedikt Bollig et al. “A Fresh Approach to Learning Register Automata”. In:
Developments in Language Theory: 17th International Conference, DLT 2013, Marne-

la-Vallée, France, June 18-21, 2013. Proceedings. Ed. by Marie-Pierre Béal and
Olivier Carton. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 118–
130. doi: 10.1007/978-3-642-38771-5_12 (cit. on p. 137).

[31] Benedikt Bollig et al. “libalf: The Automata Learning Framework”. In: Computer

Aided Verification, 22nd International Conference, CAV 2010, Edinburgh, UK, July

15-19, 2010. Proceedings. Ed. by Tayssir Touili, Byron Cook, and Paul B. Jackson.
Vol. 6174. Lecture Notes in Computer Science. Springer, 2010, pp. 360–364. doi:
10.1007/978-3-642-14295-6_32 (cit. on p. 137).

[32] Laura Bozzelli. “Alternating Automata and a Temporal Fixpoint Calculus for Visibly
Pushdown Languages”. In: CONCUR 2007 - Concurrency Theory, 18th International

Conference, CONCUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceedings.
Ed. by Luís Caires and Vasco Thudichum Vasconcelos. Vol. 4703. Lecture Notes
in Computer Science. Springer, 2007, pp. 476–491. doi: 10.1007/978-3-540-
74407-8_32 (cit. on p. 134).

[33] Laura Bozzelli and Ruggero Lanotte. “Hybrid and First-Order Complete Extensions
of CaRet”. In: Automated Reasoning with Analytic Tableaux and Related Methods -

20th International Conference, TABLEAUX 2011, Bern, Switzerland, July 4-8, 2011.

Proceedings. Ed. by Kai Brünnler and George Metcalfe. Vol. 6793. Lecture Notes
in Computer Science. Springer, 2011, pp. 58–72. doi: 10.1007/978-3-642-
22119-4_7 (cit. on p. 134).

200

http://ercim-news.ercim.eu/en88/special/never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring
http://ercim-news.ercim.eu/en88/special/never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring
http://ercim-news.ercim.eu/en88/special/never-stop-learning-continuous-validation-of-learned-models-for-evolving-systems-through-monitoring
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1007/978-3-642-38771-5_12
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-540-74407-8_32
https://doi.org/10.1007/978-3-540-74407-8_32
https://doi.org/10.1007/978-3-642-22119-4_7
https://doi.org/10.1007/978-3-642-22119-4_7

Bibliography

[34] Laura Bozzelli and César Sánchez. “Visibly Linear Temporal Logic”. In: Automated

Reasoning - 7th International Joint Conference, IJCAR 2014, Held as Part of the

Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014. Proceedings.
Ed. by Stéphane Demri, Deepak Kapur, and Christoph Weidenbach. Vol. 8562.
Lecture Notes in Computer Science. Springer, 2014, pp. 418–433. doi: 10.1007/
978-3-319-08587-6_33 (cit. on p. 134).

[35] Julian C. Bradfield and Colin Stirling. “Modal mu-calculi”. In: Handbook of Modal

Logic. Ed. by Patrick Blackburn, J. F. A. K. van Benthem, and Frank Wolter. Vol. 3.
Studies in logic and practical reasoning. North-Holland, 2007, pp. 721–756. doi:
10.1016/s1570-2464(07)80015-2 (cit. on p. 21).

[36] Manfred Broy et al. Model-Based Testing of Reactive Systems: vol. 3472. Lecture
Notes in Computer Science. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2005. doi: 10.1007/b137241 (cit. on pp. 3, 21, 135).

[37] Olaf Burkart and Bernhard Steffen. “Model checking for context-free processes”.
In: CONCUR ’92. Ed. by W.R. Cleaveland. Vol. 630. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 1992, pp. 123–137. doi: 10.1007/BFb0084787
(cit. on pp. 5, 63–66, 134).

[38] Olaf Burkart and Bernhard Steffen. “Model Checking the Full Modal Mu-Calculus
for Infinite Sequential Processes”. In: Automata, Languages and Programming.
Ed. by Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela.
Vol. 1256. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1997,
pp. 419–429. doi: 10.1007/3-540-63165-8_198 (cit. on pp. 66, 134).

[39] Sofia Cassel, Falk Howar, and Bengt Jonsson. “RALib: A LearnLib extension for
inferring EFSMs”. In: DIFTS 5 (2015) (cit. on p. 137).

[40] Sofia Cassel et al. “Learning Extended Finite State Machines”. English. In: Software
Engineering and Formal Methods. Ed. by Dimitra Giannakopoulou and Gwen
Salaün. Vol. 8702. Lecture Notes in Computer Science. Springer International
Publishing, 2014, pp. 250–264. doi: 10.1007/978-3-319-10431-7_18 (cit. on
p. 137).

[41] Chia Yuan Cho et al. “Inference and analysis of formal models of botnet command
and control protocols”. In: Proceedings of the 17th ACM Conference on Computer

and Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010.
Ed. by Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov. ACM, 2010,
pp. 426–439. doi: 10.1145/1866307.1866355 (cit. on pp. 4, 137).

[42] Noam Chomsky. “On Certain Formal Properties of Grammars”. In: Information

and Control 2.2 (1959), pp. 137–167. doi: 10.1016/S0019-9958(59)90362-6
(cit. on p. 138).

[43] Noam Chomsky. “Three models for the description of language”. In: IRE Transac-

tions on Information Theory 2.3 (1956), pp. 113–124. doi: 10.1109/TIT.1956.
1056813 (cit. on p. 13).

201

https://doi.org/10.1007/978-3-319-08587-6_33
https://doi.org/10.1007/978-3-319-08587-6_33
https://doi.org/10.1016/s1570-2464(07)80015-2
https://doi.org/10.1007/b137241
https://doi.org/10.1007/BFb0084787
https://doi.org/10.1007/3-540-63165-8_198
https://doi.org/10.1007/978-3-319-10431-7_18
https://doi.org/10.1145/1866307.1866355
https://doi.org/10.1016/S0019-9958(59)90362-6
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813

Bibliography

[44] Tsun S. Chow. “Testing Software Design Modeled by Finite-State Machines”.
In: IEEE Transactions on Software Engineering 4.3 (1978), pp. 178–187. doi:
10.1109/TSE.1978.231496 (cit. on pp. 22, 71, 78, 80, 81, 135).

[45] Alessandro Cimatti et al. “NuSMV 2: An OpenSource Tool for Symbolic Model
Checking”. In: Computer Aided Verification, 14th International Conference, CAV

2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings. Ed. by Ed Brinksma
and Kim Guldstrand Larsen. Vol. 2404. Lecture Notes in Computer Science.
Springer, 2002, pp. 359–364. doi: 10.1007/3-540-45657-0_29 (cit. on p. 3).

[46] EdmundM. Clarke and E. Allen Emerson. “Design and synthesis of synchronization
skeletons using branching time temporal logic”. In: Logics of Programs. Ed. by
Dexter Kozen. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982, pp. 52–71.
doi: 10.1007/BFb0025774 (cit. on pp. 2, 19, 133).

[47] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The
MIT Press, Cambridge, MA, USA, 1999. isbn: 9780262032704 (cit. on pp. 3,
133).

[48] David Combe et al. Zulu - Active learning from queries competition. http://labh-
curien.univ-st-etienne.fr/zulu/index.php. Version from 01.08.2010
(cit. on p. 153).

[49] Edsger W. Dijkstra. “A note on two problems in connexion with graphs”. In:
Numerische Mathematik 1 (1959), pp. 269–271. doi: 10.1007/BF01386390
(cit. on p. 72).

[50] Edsger W. Dijkstra. “Chapter I: Notes on Structured Programming”. In: Structured
Programming. GBR: Academic Press Ltd., 1972, pp. 1–82. isbn: 0122005503
(cit. on p. 3).

[51] Samuel Drews and Loris D’Antoni. “Learning Symbolic Automata”. In: Tools and
Algorithms for the Construction and Analysis of Systems: 23rd International Confer-

ence, TACAS 2017, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings,

Part I. Ed. by Axel Legay and Tiziana Margaria. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2017, pp. 173–189. doi: 10.1007/978-3-662-54577-5_10
(cit. on p. 137).

[52] E. Allen Emerson and Joseph Y. Halpern. “"Sometimes" and "Not Never" Revisited:
On Branching Versus Linear Time”. In: Conference Record of the Tenth Annual

ACM Symposium on Principles of Programming Languages, Austin, Texas, USA,

January 1983. Ed. by John R. Wright et al. ACM Press, 1983, pp. 127–140. doi:
10.1145/567067.567081 (cit. on p. 133).

[53] “Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation)”. In: Official Journal of the Euro-

202

https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/BFb0025774
http://labh-curien.univ-st-etienne.fr/zulu/index.php
http://labh-curien.univ-st-etienne.fr/zulu/index.php
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1145/567067.567081

Bibliography

pean Union L119 (2016), pp. 1–88. url: http://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=OJ:L:2016:119:TOC (cit. on p. 145).

[54] Yliès Falcone et al. “A Taxonomy for Classifying Runtime Verification Tools”. In:
Runtime Verification - 18th International Conference, RV 2018, Limassol, Cyprus,

November 10-13, 2018, Proceedings. Ed. by Christian Colombo and Martin Leucker.
Vol. 11237. Lecture Notes in Computer Science. Springer, 2018, pp. 241–262.
doi: 10.1007/978-3-030-03769-7_14 (cit. on pp. 3, 141).

[55] Lu Feng, Marta Kwiatkowska, and David Parker. “Compositional Verification
of Probabilistic Systems Using Learning”. In: Proceedings of the 2010 Seventh

International Conference on the Quantitative Evaluation of Systems. QEST ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 133–142. doi: 10.
1109/QEST.2010.24 (cit. on p. 137).

[56] Emmanuel Filiot et al. “Visibly Pushdown Transducers”. In: Journal of Computer

and System Sciences 97 (2018), pp. 147–181. doi: 10.1016/j.jcss.2018.05.
002 (cit. on p. 131).

[57] Paul Fiterău-Broştean and Falk Howar. “Learning-Based Testing the Sliding Win-
dow Behavior of TCP Implementations”. In: Critical Systems: Formal Methods and

Automated Verification - Joint 22nd International Workshop on Formal Methods

for Industrial Critical Systems - and - 17th International Workshop on Automated

Verification of Critical Systems, FMICS-AVoCS 2017, Turin, Italy, September 18-20,

2017, Proceedings. Ed. by Laure Petrucci, Cristina Seceleanu, and Ana Cavalcanti.
Vol. 10471. Lecture Notes in Computer Science. Springer, 2017, pp. 185–200.
doi: 10.1007/978-3-319-67113-0_12 (cit. on pp. 4, 137).

[58] Paul Fiterău-Broştean, Ramon Janssen, and Frits W. Vaandrager. “Learning Frag-
ments of the TCP Network Protocol”. In: Formal Methods for Industrial Critical

Systems - 19th International Conference, FMICS 2014, Florence, Italy, Septem-

ber 11-12, 2014. Proceedings. Ed. by Fréd Éric Lang and Francesco Flammini.
Vol. 8718. Lecture Notes in Computer Science. Springer, 2014, pp. 78–93. doi:
10.1007/978-3-319-10702-8_6 (cit. on p. 137).

[59] Markus Frohme and Bernhard Steffen. “A Context-Free Symbiosis of Runtime
Verification and Automata Learning”. In: Lecture Notes in Computer Science
13065 (2021). Ed. by Ezio Bartocci, Yliès Falcone, and Martin Leucker, pp. 159–
181. doi: 10.1007/978-3-030-87348-6_10 (cit. on pp. 7, 61, 148–151).

[60] Markus Frohme and Bernhard Steffen. “Active Mining of Document Type Def-
initions”. In: Formal Methods for Industrial Critical Systems - 23rd International

Conference, FMICS 2018, Maynooth, Ireland, September 3-4, 2018, Proceedings.
Ed. by Falk Howar and Jiri Barnat. Vol. 11119. Lecture Notes in Computer Science.
Springer, 2018, pp. 147–161. doi: 10.1007/978-3-030-00244-2_10 (cit. on
pp. 7, 143–147).

203

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1109/QEST.2010.24
https://doi.org/10.1109/QEST.2010.24
https://doi.org/10.1016/j.jcss.2018.05.002
https://doi.org/10.1016/j.jcss.2018.05.002
https://doi.org/10.1007/978-3-319-67113-0_12
https://doi.org/10.1007/978-3-319-10702-8_6
https://doi.org/10.1007/978-3-030-87348-6_10
https://doi.org/10.1007/978-3-030-00244-2_10

Bibliography

[61] Markus Frohme and Bernhard Steffen. “Compositional learning of mutually recur-
sive procedural systems”. In: International Journal on Software Tools for Technology

Transfer 23.4 (2021), pp. 521–543. doi: 10.1007/s10009-021-00634-y (cit.
on pp. 5, 27, 30–33, 35–40, 42, 50, 88, 90–93, 95, 98, 100, 155, 158, 160).

[62] Markus Frohme and Bernhard Steffen. “From Languages to Behaviors and Back”.
In: Lecture Notes in Computer Science 13560 (2022). Ed. by Nils Jansen, Mariëlle
Stoelinga, and Petra van den Bos, pp. 180–200. doi: 10.1007/978-3-031-
15629-8_11 (cit. on pp. 6, 46, 47, 49, 50, 53, 55, 105, 155, 158).

[63] Markus Frohme and Bernhard Steffen. “Never-Stop Context-Free Learning”. In:
Lecture Notes in Computer Science 13030 (2021). Ed. by Ernst-Rüdiger Olderog,
Bernhard Steffen, andWang Yi, pp. 164–185. doi: 10.1007/978-3-030-91384-
7_9 (cit. on pp. 6, 148, 151, 152, 155, 158, 160).

[64] Markus Theo Frohme. “Active Automata Learning with Adaptive Distinguish-
ing Sequences”. In: CoRR abs/1902.01139 (2019). arXiv: 1902.01139 (cit. on
p. 137).

[65] Susumu Fujiwara et al. “Test Selection Based on Finite State Models”. In: IEEE
Transactions on Software Engineering 17.6 (1991), pp. 591–603. doi: 10.1109/
32.87284 (cit. on p. 135).

[66] Sato Fumiaki et al. “Test Sequence Generation Method for Systems-Based Finite
Automata – Single Transition Checking Method Using W Set”. In: Transactions
of the Institute of Electronics, Information and Communication Engineers J72-B-I.3
(1989), pp. 183–192. doi: 10.1002/ecja.4410730303 (cit. on p. 135).

[67] Pedro Garcia and Jose Oncina. Inference of recognizable tree sets. Tech. rep. Dept.
Syst. Inform. Comput., Univ. Politécnica Valencia, Valencia, Spain, DSIC/II/47/93,
1993 (cit. on p. 138).

[68] Angelo Gargantini. “Conformance Testing”. In: Manfred Broy et al. Model-Based

Testing of Reactive Systems: vol. 3472. Lecture Notes in Computer Science. Secau-
cus, NJ, USA: Springer-Verlag New York, Inc., 2005, pp. 87–111. doi: 10.1007/
11498490_5 (cit. on pp. 3, 21, 135, 136).

[69] Marco Gario et al. “Model Checking at Scale: Automated Air Traffic Control Design
Space Exploration”. In: Computer Aided Verification - 28th International Conference,

CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II. Ed. by
Swarat Chaudhuri and Azadeh Farzan. Vol. 9780. Lecture Notes in Computer
Science. Springer, 2016, pp. 3–22. doi: 10.1007/978-3-319-41540-6_1
(cit. on p. 3).

[70] Seymour Ginsburg and Michael A. Harrison. “Bracketed Context-Free Languages”.
In: Journal of Computer and System Science 1.1 (1967), pp. 1–23. doi: 10.1016/
S0022-0000(67)80003-5 (cit. on p. 28).

[71] E. Mark Gold. “Complexity of Automaton Identification from Given Data”. In: Inf.
Control. 37.3 (1978), pp. 302–320. doi: 10.1016/S0019-9958(78)90562-4
(cit. on p. 178).

204

https://doi.org/10.1007/s10009-021-00634-y
https://doi.org/10.1007/978-3-031-15629-8_11
https://doi.org/10.1007/978-3-031-15629-8_11
https://doi.org/10.1007/978-3-030-91384-7_9
https://doi.org/10.1007/978-3-030-91384-7_9
https://arxiv.org/abs/1902.01139
https://doi.org/10.1109/32.87284
https://doi.org/10.1109/32.87284
https://doi.org/10.1002/ecja.4410730303
https://doi.org/10.1007/11498490_5
https://doi.org/10.1007/11498490_5
https://doi.org/10.1007/978-3-319-41540-6_1
https://doi.org/10.1016/S0022-0000(67)80003-5
https://doi.org/10.1016/S0022-0000(67)80003-5
https://doi.org/10.1016/S0019-9958(78)90562-4

Bibliography

[72] Sheila A. Greibach. “A New Normal-Form Theorem for Context-Free Phrase Struc-
ture Grammars”. In: Journal of the ACM 12.1 (1965), pp. 42–52. doi: 10.1145/
321250.321254 (cit. on p. 138).

[73] Matthew Hague and C.-H. Luke Ong. “Analysing Mu-Calculus Properties of Push-
down Systems”. In: Model Checking Software - 17th International SPIN Workshop,

Enschede, The Netherlands, September 27-29, 2010. Proceedings. Ed. by Jaco van de
Pol and Michael Weber. Vol. 6349. Lecture Notes in Computer Science. Springer,
2010, pp. 187–192. doi: 10.1007/978-3-642-16164-3_14 (cit. on p. 135).

[74] Anthony Hall. “Correctness by Construction: Integrating Formality into a Com-
mercial Development Process”. In: FME 2002: Formal Methods - Getting IT Right,

International Symposium of Formal Methods Europe, Copenhagen, Denmark, July

22-24, 2002, Proceedings. Ed. by Lars-Henrik Eriksson and Peter A. Lindsay.
Vol. 2391. Lecture Notes in Computer Science. Springer, 2002, pp. 224–233. doi:
10.1007/3-540-45614-7_13 (cit. on p. 177).

[75] Anthony Hall and Roderick Chapman. “Correctness by Construction: Developing
a Commercial Secure System”. In: IEEE Softw. 19.1 (2002), pp. 18–25. doi:
10.1109/52.976937 (cit. on p. 177).

[76] Matthew Hennessy and Robin Milner. “Algebraic Laws for Nondeterminism and
Concurrency”. In: Journal of the ACM 32.1 (1985), pp. 137–161. doi: 10.1145/
2455.2460 (cit. on pp. 20, 133).

[77] Marco Henrix. “Performance improvement in automata learning”. Master Thesis.
Radboud University, Nijmegen, 2015 (cit. on p. 137).

[78] Thomas A. Henzinger et al. “Temporal-Safety Proofs for Systems Code”. In: Com-

puter Aided Verification, 14th International Conference, CAV 2002,Copenhagen,

Denmark, July 27-31, 2002, Proceedings. Ed. by Ed Brinksma and Kim Guldstrand
Larsen. Vol. 2404. Lecture Notes in Computer Science. Springer, 2002, pp. 526–
538. doi: 10.1007/3-540-45657-0_45 (cit. on p. 3).

[79] Tim Hepher. “Exclusive: A400M probe focuses on impact of accidental data
wipe”. In: Reuters (June 9, 2015). url: https://www.reuters.com/article/
us-airbus-a400m-idUSKBN0OP2AS20150609 (visited on 2022-12-07) (cit. on
p. 1).

[80] Thomas N. Hibbard. “Least Upper Bounds on Minimal Terminal State Experiments
for Two Classes of Sequential Machines”. In: Journal of the ACM 8.4 (1961),
pp. 601–612. doi: 10.1145/321088.321098 (cit. on p. 136).

[81] Gerard J. Holzmann. “The Model Checker SPIN”. In: IEEE Trans. Software Eng.

23.5 (1997), pp. 279–295. doi: 10.1109/32.588521 (cit. on p. 3).

[82] John Hopcroft. “An N Log N Algorithm for Minimizing States in a Finite Automa-
ton”. In: Theory of Machines and Computations. Ed. by Zvi Kohavi and Azaria
Paz. Academic Press, 1971, pp. 189–196. doi: 10.1016/B978-0-12-417750-
5.50022-1 (cit. on pp. 16, 30).

205

https://doi.org/10.1145/321250.321254
https://doi.org/10.1145/321250.321254
https://doi.org/10.1007/978-3-642-16164-3_14
https://doi.org/10.1007/3-540-45614-7_13
https://doi.org/10.1109/52.976937
https://doi.org/10.1145/2455.2460
https://doi.org/10.1145/2455.2460
https://doi.org/10.1007/3-540-45657-0_45
https://www.reuters.com/article/us-airbus-a400m-idUSKBN0OP2AS20150609
https://www.reuters.com/article/us-airbus-a400m-idUSKBN0OP2AS20150609
https://doi.org/10.1145/321088.321098
https://doi.org/10.1109/32.588521
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1016/B978-0-12-417750-5.50022-1

Bibliography

[83] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-

guages and Computation. Addison-Wesley, 1979. isbn: 0-201-02988-X (cit. on
pp. 13, 14, 30).

[84] Falk Howar. “Active Learning of Interface Programs”. PhD thesis. TU Dortmund
University, 2012. doi: 10.17877/DE290R-4817 (cit. on pp. 137, 168).

[85] Falk Howar and Bernhard Steffen. “Active Automata Learning as Black-Box Search
and Lazy Partition Refinement”. In: A Journey from Process Algebra via Timed

Automata to Model Learning - Essays Dedicated to Frits Vaandrager on the Occasion

of His 60th Birthday. Ed. by Nils Jansen, Mariëlle Stoelinga, and Petra van den Bos.
Vol. 13560. Lecture Notes in Computer Science. Springer, 2022, pp. 321–338.
doi: 10.1007/978-3-031-15629-8_17 (cit. on p. 137).

[86] Falk Howar, Bernhard Steffen, and Maik Merten. “Automata Learning with Auto-
mated Alphabet Abstraction Refinement”. In: Verification, Model Checking, and

Abstract Interpretation. Ed. by Ranjit Jhala and David Schmidt. Vol. 6538. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2011, pp. 263–277.
doi: 10.1007/978-3-642-18275-4_19 (cit. on pp. 119, 127, 137, 176).

[87] Falk Howar, Bernhard Steffen, and Maik Merten. “From ZULU to RERS - Lessons
Learned in the ZULU Challenge”. In: Leveraging Applications of Formal Methods,

Verification, and Validation - 4th International Symposium on Leveraging Appli-

cations, ISoLA 2010, Heraklion, Crete, Greece, October 18-21, 2010, Proceedings,

Part I. Ed. by Tiziana Margaria and Bernhard Steffen. Vol. 6415. Lecture Notes
in Computer Science. Springer, 2010, pp. 687–704. doi: 10.1007/978-3-642-
16558-0_55 (cit. on p. 153).

[88] Falk Howar et al. “Inferring Canonical Register Automata”. In: Verification, Model

Checking, and Abstract Interpretation. Ed. by Viktor Koncak and Andrey Ry-
balchenko. Vol. 7148. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2012, pp. 251–266. doi: 10.1007/978-3-642-27940-9_17 (cit.
on p. 137).

[89] Falk Howar et al. “On Handling Data in Automata Learning - Considerations from
the CONNECT Perspective”. In: Leveraging Applications of Formal Methods, Verifi-

cation, and Validation - 4th International Symposium on Leveraging Applications,

ISoLA 2010, Heraklion, Crete, Greece, October 18-21, 2010, Proceedings, Part II. Ed.
by Tiziana Margaria and Bernhard Steffen. Vol. 6416. Lecture Notes in Computer
Science. Springer, 2010, pp. 221–235. doi: 10.1007/978-3-642-16561-0_24
(cit. on p. 149).

[90] Falk Howar et al. “The Teachers’ Crowd: The Impact of Distributed Oracles on
Active Automata Learning”. In: Leveraging Applications of Formal Methods, Verifi-

cation, and Validation. Ed. by Reiner Hähnle et al. Communications in Computer
and Information Science. Springer Berlin Heidelberg, 2012, pp. 232–247. doi:
10.1007/978-3-642-34781-8_18 (cit. on pp. 137, 167).

206

https://doi.org/10.17877/DE290R-4817
https://doi.org/10.1007/978-3-031-15629-8_17
https://doi.org/10.1007/978-3-642-18275-4_19
https://doi.org/10.1007/978-3-642-16558-0_55
https://doi.org/10.1007/978-3-642-16558-0_55
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-16561-0_24
https://doi.org/10.1007/978-3-642-34781-8_18

Bibliography

[91] Hardi Hungar, Oliver Niese, and Bernhard Steffen. “Domain-Specific Optimization
in Automata Learning”. In: Proc. 15th Int. Conf. on Computer Aided Verification. Ed.
by Warren A. Hunt Jr. and Fabio Somenzi. Vol. 2725. Lecture Notes in Computer
Science. Springer Verlag, July 2003, pp. 315–327. doi: 10.1007/978-3-540-
45069-6_31 (cit. on pp. 4, 137).

[92] ISO/IEC 14977:1996 Information Technology - Syntactic Metalanguage - Extended

BNF. Tech. rep. 1996. url: https://www.iso.org/standard/26153.html
(cit. on p. 30).

[93] Malte Isberner. “Foundations of Active Automata Learning: An Algorithmic Per-
spective”. PhD thesis. Technical University Dortmund, Germany, 2015. doi: 10.
17877/DE290R-16359 (cit. on pp. 114–117, 124, 131, 137, 138, 156, 160, 162).

[94] Malte Isberner, Falk Howar, and Bernhard Steffen. “Learning register automata:
from languages to program structures”. In: Machine Learning (2013), pp. 1–34.
doi: 10.1007/s10994-013-5419-7 (cit. on p. 137).

[95] Malte Isberner, Falk Howar, and Bernhard Steffen. “The Open-Source LearnLib: A
Framework for Active Automata Learning”. In: CAV 2015. 2015. doi: 10.1007/
978-3-319-21690-4_32 (cit. on pp. 8, 66, 137, 159).

[96] Malte Isberner, Falk Howar, and Bernhard Steffen. “The TTT Algorithm: A
Redundancy-Free Approach to Active Automata Learning”. English. In: Runtime

Verification. Ed. by Borzoo Bonakdarpour and Scott A. Smolka. Vol. 8734. Lecture
Notes in Computer Science. Springer International Publishing, 2014, pp. 307–322.
doi: 10.1007/978-3-319-11164-3_26 (cit. on pp. 6, 124, 137, 148, 151,
168).

[97] Malte Isberner and Bernhard Steffen. “An Abstract Framework for Counterexample
Analysis in Active Automata Learning”. In: Proceedings of the 12th International

Conference on Grammatical Inference, ICGI 2014, Kyoto, Japan, September 17-19,

2014. Ed. by Alexander Clark, Makoto Kanazawa, and Ryo Yoshinaka. Vol. 34.
JMLR Workshop and Conference Proceedings. JMLR.org, 2014, pp. 79–93. url:
http://proceedings.mlr.press/v34/isberner14a.html (cit. on p. 137).

[98] Hiroki Ishizaka. “Polynomial time Learnability of Simple Deterministic Lan-
guages”. In:Machine Learning 5 (1990), pp. 151–164. doi: 10.1007/BF00116035
(cit. on p. 138).

[99] Valérie Issarny et al. “CONNECT Challenges: Towards Emergent Connectors for
Eternal Networked Systems”. In: 14th IEEE International Conference on Engineering

of Complex Computer Systems, ICECCS 2009, Potsdam, Germany, 2-4 June 2009.
IEEE Computer Society, 2009, pp. 154–161. doi: 10.1109/ICECCS.2009.44
(cit. on pp. 4, 137, 149).

207

https://doi.org/10.1007/978-3-540-45069-6_31
https://doi.org/10.1007/978-3-540-45069-6_31
https://www.iso.org/standard/26153.html
https://doi.org/10.17877/DE290R-16359
https://doi.org/10.17877/DE290R-16359
https://doi.org/10.1007/s10994-013-5419-7
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-11164-3_26
http://proceedings.mlr.press/v34/isberner14a.html
https://doi.org/10.1007/BF00116035
https://doi.org/10.1109/ICECCS.2009.44

Bibliography

[100] Gijs Kant et al. “LTSmin: High-Performance Language-Independent Model Check-
ing”. In: Tools and Algorithms for the Construction and Analysis of Systems - 21st

International Conference, TACAS 2015, Held as Part of the European Joint Confer-

ences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18,

2015. Proceedings. Ed. by Christel Baier and Cesare Tinelli. Vol. 9035. Lecture
Notes in Computer Science. Springer, 2015, pp. 692–707. doi: 10.1007/978-
3-662-46681-0_61 (cit. on p. 3).

[101] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learn-

ing Theory. Cambridge, MA, USA: MIT Press, 1994. isbn: 0-262-11193-4 (cit. on
p. 136).

[102] Ali Khalili and Armando Tacchella. “Learning Nondeterministic Mealy Machines”.
In: Proceedings of the 12th International Conference on Grammatical Inference,

ICGI 2014, Kyoto, Japan, September 17-19, 2014. Ed. by Alexander Clark, Makoto
Kanazawa, and Ryo Yoshinaka. Vol. 34. JMLR Workshop and Conference Proceed-
ings. JMLR.org, 2014, pp. 109–123. url: http://proceedings.mlr.press/
v34/khalili14a.html (cit. on p. 137).

[103] Florent Kirchner et al. “Frama-C: A software analysis perspective”. In: Formal

Aspects Comput. 27.3 (2015), pp. 573–609. doi: 10.1007/s00165-014-0326-7
(cit. on p. 135).

[104] Igor Konstantinovich Klyachko Alexander Anatolevich. Rystsov and M. A. Spivak.
“In extremal combinatorial problem associated with the bound on the length of
a synchronizing word in an automaton”. In: Cybernetics and Systems Analysis 23
(Mar. 1987), pp. 165–171. doi: 10.1007/BF01071771 (cit. on p. 135).

[105] Savas Konur. “A survey on temporal logics for specifying and verifying real-
time systems”. In: Frontiers of Computer Science 7.3 (2013), pp. 370–403. doi:
10.1007/s11704-013-2195-2 (cit. on p. 133).

[106] Philip Koopman. A Case Study of Toyota Unintended Acceleration and Software

Safety. Nov. 14, 2014. url: http://chess.eecs.berkeley.edu/pubs/1081.
html (visited on 2023-06-19) (cit. on p. 1).

[107] Dexter Kozen. “Results on the Propositional µ-Calculus”. In: Automata, Languages

and Programming, 9th Colloquium, Aarhus, Denmark, July 12-16, 1982, Proceed-

ings. Ed. by Mogens Nielsen and Erik Meineche Schmidt. Vol. 140. Lecture Notes
in Computer Science. Springer, 1982, pp. 348–359. doi: 10.1007/BFb0012782
(cit. on pp. 2, 20, 134).

[108] Saul A. Kripke. “Semantical Considerations on Modal Logic”. In: Acta Philosophica

Fennica 16 (1963), pp. 83–94 (cit. on pp. 2, 19).

[109] Viraj Kumar, Parthasarathy Madhusudan, and Mahesh Viswanathan. “Minimiza-
tion, Learning, and Conformance Testing of Boolean Programs”. In: CONCUR
2006 – Concurrency Theory: 17th International Conference, CONCUR 2006, Bonn,

Germany, August 27-30, 2006. Proceedings. Ed. by Christel Baier and Holger Her-

208

https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-662-46681-0_61
http://proceedings.mlr.press/v34/khalili14a.html
http://proceedings.mlr.press/v34/khalili14a.html
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/BF01071771
https://doi.org/10.1007/s11704-013-2195-2
http://chess.eecs.berkeley.edu/pubs/1081.html
http://chess.eecs.berkeley.edu/pubs/1081.html
https://doi.org/10.1007/BFb0012782

Bibliography

manns. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 203–217. doi:
10.1007/11817949_14 (cit. on pp. 134, 137, 138).

[110] Robert P. Kurshan. “Formal Verification in a Commercial Setting”. In: Proceedings
of the 34th Annual Design Automation Conference. DAC ’97. Anaheim, California,
USA: Association for Computing Machinery, 1997, pp. 258–262. doi: 10.1145/
266021.266089 (cit. on p. 3).

[111] David Lee and Mihalis Yannakakis. “Principles and Methods of Testing Finite State
Machines – A Survey”. In: Proceedings of the IEEE 84.8 (1996), pp. 1090–1123.
doi: 10.1109/5.533956 (cit. on pp. 3, 21, 135).

[112] David Lee and Mihalis Yannakakis. “Testing Finite-State Machines: State Identi-
fication and Verification”. In: IEEE Trans. Computers 43.3 (1994), pp. 306–320.
doi: 10.1109/12.272431 (cit. on p. 137).

[113] Michael Lybecait, Dawid Kopetzki, and Bernhard Steffen. “Design for ‘X’ through
Model Transformation”. In: Proc. of the 8th Int. Symp. on Leveraging Applications

of Formal Methods, Verification and Validation, Part I Modeling (ISoLA 2018).
Vol. 11244. Lecture Notes in Computer Science. Springer, 2018, pp. 381–398.
doi: 10.1007/978-3-030-03418-4_23 (cit. on p. 177).

[114] Wolfgang Maass and György Turán. “Lower Bound Methods and Separation
Results for On-Line Learning Models”. In: Machine Learning 9 (1992), pp. 107–
145. doi: 10.1007/BF00992674 (cit. on p. 138).

[115] Oded Maler and Irini-Eleftheria Mens. “Learning Regular Languages over Large
Alphabets”. In: Tools and Algorithms for the Construction and Analysis of Systems:

20th International Conference, TACAS 2014, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France,

April 5-13, 2014. Proceedings. Ed. by Erika Ábrahám and Klaus Havelund. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 485–499. doi: 10.1007/978-
3-642-54862-8_41 (cit. on p. 137).

[116] Oded Maler and Amir Pnueli. “On the Learnability of Infinitary Regular Sets”. In:
Information and Computation 118.2 (1995), pp. 316–326. doi: 10.1006/inco.
1995.1070 (cit. on p. 136).

[117] Tiziana Margaria, Harald Raffelt, and Bernhard Steffen. “Knowledge-based rel-
evance filtering for efficient system-level test-based model generation”. In: In-
novations in Systems and Software Engineering 1.2 (2005), pp. 147–156. doi:
10.1007/s11334-005-0016-y (cit. on p. 137).

[118] Tiziana Margaria et al. “Efficient test-based model generation for legacy reactive
systems”. In: HLDVT ’04: Proceedings of the High-Level Design Validation and Test

Workshop, 2004. Ninth IEEE International. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 95–100. doi: http://dx.doi.org/10.1109/HLDVT.2004.
1431246 (cit. on p. 137).

209

https://doi.org/10.1007/11817949_14
https://doi.org/10.1145/266021.266089
https://doi.org/10.1145/266021.266089
https://doi.org/10.1109/5.533956
https://doi.org/10.1109/12.272431
https://doi.org/10.1007/978-3-030-03418-4_23
https://doi.org/10.1007/BF00992674
https://doi.org/10.1007/978-3-642-54862-8_41
https://doi.org/10.1007/978-3-642-54862-8_41
https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.1007/s11334-005-0016-y
https://doi.org/http://dx.doi.org/10.1109/HLDVT.2004.1431246
https://doi.org/http://dx.doi.org/10.1109/HLDVT.2004.1431246

Bibliography

[119] Nicolas Markey. “Past is for Free: on the Complexity of Verifying Linear Temporal
Properties with Past”. In: 9th International Workshop on Expressiveness in Concur-

rency, EXPRESS 2002, Satellite Workshop from CONCUR 2002, Brno, Czech Republic,

August 19, 2002. Ed. by Uwe Nestmann and Prakash Panangaden. Vol. 68. Elec-
tronic Notes in Theoretical Computer Science 2. Elsevier, 2002, pp. 87–104. doi:
10.1016/S1571-0661(05)80366-4 (cit. on p. 133).

[120] Franco Mazzanti, Alessio Ferrari, and Giorgio Oronzo Spagnolo. “Towards formal
methods diversity in railways: an experience report with seven frameworks”. In:
STTT 20.3 (2018), pp. 263–288. doi: 10.1007/s10009-018-0488-3 (cit. on
p. 3).

[121] George H. Mealy. “A method for synthesizing sequential circuits”. In: The Bell
System Technical Journal 34.5 (1955), pp. 1045–1079. doi: 10.1002/j.1538-
7305.1955.tb03788.x (cit. on pp. 2, 9, 17).

[122] Jeroen Meijer and Jaco van de Pol. “Sound black-box checking in the LearnLib”.
In: Innov. Syst. Softw. Eng. 15.3-4 (2019), pp. 267–287. doi: 10.1007/s11334-
019-00342-6 (cit. on p. 137).

[123] Karl Meinke, Fei Niu, and Muddassar A. Sindhu. “Learning-Based Software Test-
ing: A Tutorial”. In: Leveraging Applications of Formal Methods, Verification, and

Validation - International Workshops, SARS 2011 and MLSC 2011, Held Under the

Auspices of ISoLA 2011 in Vienna, Austria, October 17-18, 2011. Revised Selected

Papers. Ed. by Reiner Hähnle et al. Vol. 336. Communications in Computer and
Information Science. Springer, 2011, pp. 200–219. doi: 10.1007/978-3-642-
34781-8_16 (cit. on p. 139).

[124] Karl Meinke and Muddassar A. Sindhu. “Incremental Learning-Based Testing for
Reactive Systems”. In: Tests and Proofs - 5th International Conference, TAP@TOOLS

2011, Zurich, Switzerland, June 30 - July 1, 2011. Proceedings. Ed. by Martin
Gogolla and Burkhart Wolff. Vol. 6706. Lecture Notes in Computer Science.
Springer, 2011, pp. 134–151. doi: 10.1007/978-3-642-21768-5_11 (cit. on
p. 139).

[125] Karl Meinke and Muddassar Azam Sindhu. “LBTest: A Learning-Based Testing
Tool for Reactive Systems”. In: IEEE Sixth International Conference on Software

Testing, Verification and Validation (ICST), 2013. Mar. 2013, pp. 447–454. doi:
10.1109/ICST.2013.62 (cit. on p. 137).

[126] Edward F. Moore. “Gedanken-Experiments on Sequential Machines”. In: Annals
of Mathematical Studies 34 (1956), pp. 129–153 (cit. on pp. 22, 26, 71).

[127] Edi Muskardin et al. “AALpy: An Active Automata Learning Library”. In: Automated

Technology for Verification and Analysis - 19th International Symposium, ATVA 2021,

Gold Coast, QLD, Australia, October 18-22, 2021, Proceedings. Ed. by Zhe Hou and
Vijay Ganesh. Vol. 12971. Lecture Notes in Computer Science. Springer, 2021,
pp. 67–73. doi: 10.1007/978-3-030-88885-5_5 (cit. on p. 137).

210

https://doi.org/10.1016/S1571-0661(05)80366-4
https://doi.org/10.1007/s10009-018-0488-3
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1007/s11334-019-00342-6
https://doi.org/10.1007/s11334-019-00342-6
https://doi.org/10.1007/978-3-642-34781-8_16
https://doi.org/10.1007/978-3-642-34781-8_16
https://doi.org/10.1007/978-3-642-21768-5_11
https://doi.org/10.1109/ICST.2013.62
https://doi.org/10.1007/978-3-030-88885-5_5

Bibliography

[128] Muhammad Muzammil Shahbaz. “Reverse Engineering Enhanced State Models
of Black Box Software Components to support Integration Testing”. PhD thesis.
Institut Polytechnique de Grenoble, Dec. 2008 (cit. on p. 137).

[129] Stefan Naujokat et al. “CINCO: A Simplicity-Driven Approach to Full Generation
of Domain-Specific Graphical Modeling Tools”. In: Software Tools for Technology
Transfer 20.3 (2017), pp. 327–354. doi: 10.1007/s10009-017-0453-6 (cit. on
p. 177).

[130] Anil Nerode. “Linear Automaton Transformations”. In: Proceedings of the American

Mathematical Society 9.4 (1958), pp. 541–544. doi: 10.2307/2033204 (cit. on
p. 114).

[131] Johannes Neubauer, StephanWindmüller, and Bernhard Steffen. “Risk-Based Test-
ing via Active Continuous Quality Control”. In: International Journal on Software

Tools for Technology Transfer 16.5 (2014), pp. 569–591. doi: 10.1007/s10009-
014-0321-6 (cit. on pp. 4, 137).

[132] Rocco De Nicola and Frits W. Vaandrager. “Action versus State based Logics for
Transition Systems”. In: Semantics of Systems of Concurrent Processes, LITP Spring

School on Theoretical Computer Science, La Roche Posay, France, April 23-27, 1990,

Proceedings. Ed. by Irène Guessarian. Vol. 469. Lecture Notes in Computer Science.
Springer, 1990, pp. 407–419. doi: 10.1007/3-540-53479-2_17 (cit. on pp. 20,
21, 134).

[133] Oliver Niese. “An Integrated Approach to Testing Complex Systems”. PhD thesis.
TU Dortmund University, Germany, 2003. doi: 10.17877/DE290R-14871 (cit.
on p. 6).

[134] Robert Paige and Robert Endre Tarjan. “Three Partition Refinement Algorithms”.
In: SIAM J. Comput. 16.6 (1987), pp. 973–989. doi: 10.1137/0216062 (cit. on
pp. 16, 30).

[135] Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. “Black Box Checking”.
In: Formal Methods for Protocol Engineering and Distributed Systems: FORTE XII /

PSTV XIX. IFIP Advances in Information and Communication Technology. Ed. by
Jianping Wu, Samuel T. Chanson, and Qiang Gao. Boston, MA: Springer US, 1999,
pp. 225–240. doi: 10.1007/978-0-387-35578-8_13 (cit. on pp. 4, 139).

[136] Andrea Pferscher and Bernhard K. Aichernig. “Fingerprinting Bluetooth Low
Energy Devices via Active Automata Learning”. In: Formal Methods - 24th Interna-

tional Symposium, FM 2021, Virtual Event, November 20-26, 2021, Proceedings. Ed.
by Marieke Huisman, Corina S. Pasareanu, and Naijun Zhan. Vol. 13047. Lecture
Notes in Computer Science. Springer, 2021, pp. 524–542. doi: 10.1007/978-
3-030-90870-6_28 (cit. on pp. 4, 137).

[137] Pin - A Dynamic Binary Instrumentation Tool. url: https://www.intel.com/
content / www / us / en / developer / articles / tool / pin - a - dynamic -

binary - instrumentation - tool . html (visited on 2023-03-19) (cit. on
p. 142).

211

https://doi.org/10.1007/s10009-017-0453-6
https://doi.org/10.2307/2033204
https://doi.org/10.1007/s10009-014-0321-6
https://doi.org/10.1007/s10009-014-0321-6
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.17877/DE290R-14871
https://doi.org/10.1137/0216062
https://doi.org/10.1007/978-0-387-35578-8_13
https://doi.org/10.1007/978-3-030-90870-6_28
https://doi.org/10.1007/978-3-030-90870-6_28
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html

Bibliography

[138] Carl Pixley, Seh-Woong Jeong, and Gary D. Hachtel. “Exact Calculation of Syn-
chronization Sequences Based on Binary Decision Diagrams”. In: Proceedings of the
29th Design Automation Conference, Anaheim, California, USA, June 8-12, 1992.
Ed. by Daniel G. Schweikert. IEEE Computer Society Press, 1992, pp. 620–623.
url: http://portal.acm.org/citation.cfm?id=113938.149645 (cit. on
p. 135).

[139] Gordon D. Plotkin. A Structural Approach to Operational Semantics. Tech. rep.
DAIMI FN-19. University of Aarhus, 1981 (cit. on p. 31).

[140] Amir Pnueli. “The Temporal Logic of Programs”. In: Proceedings of the 18th Annual

Symposium on Foundations of Computer Science. SFCS ’77. USA: IEEE Computer
Society, 1977, pp. 46–57. doi: 10.1109/SFCS.1977.32 (cit. on pp. 2, 133).

[141] Kevin Poulsen. “Software bug contributed to blackout”. In: The Register (Feb. 12,
2004). url: https://www.theregister.com/2004/02/12/software_bug_
contributed_to_blackout/ (visited on 2022-12-07) (cit. on p. 1).

[142] Dan Quinlan and Chunhua Liao. “The ROSE source-to-source compiler infrastruc-
ture”. In: Cetus users and compiler infrastructure workshop, in conjunction with

PACT. 2011 (cit. on p. 3).

[143] Harald Raffelt, Bernhard Steffen, and Tiziana Margaria. “Dynamic Testing Via
Automata Learning”. In: Hardware and Software: Verification and Testing. Ed. by
Karen Yorav. Vol. 4899. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2008, pp. 136–152. doi: 10.1007/978-3-540-77966-7_13 (cit. on
pp. 4, 137).

[144] Jean-François Raskin and Frédéric Servais. “Visibly Pushdown Transducers”. In:
Automata, Languages and Programming, 35th International Colloquium, ICALP

2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic,

Semantics, and Theory of Programming & Track C: Security and Cryptography

Foundations. Ed. by Luca Aceto et al. Vol. 5126. Lecture Notes in Computer
Science. Springer, 2008, pp. 386–397. doi: 10.1007/978-3-540-70583-3_32
(cit. on p. 131).

[145] Arend Rensink. “The GROOVE Simulator: A Tool for State Space Generation”. In:
Applications of Graph Transformations with Industrial Relevance, Second Interna-

tional Workshop, AGTIVE 2003, Charlottesville, VA, USA, September 27 - October

1, 2003, Revised Selected and Invited Papers. Ed. by John L. Pfaltz, Manfred Nagl,
and Boris Böhlen. Vol. 3062. Lecture Notes in Computer Science. Springer, 2003,
pp. 479–485. doi: 10.1007/978-3-540-25959-6_40 (cit. on p. 156).

[146] Ronald L. Rivest and Robert E. Schapire. “Inference of finite automata using
homing sequences”. In: Inf. Comput. 103.2 (1993), pp. 299–347. doi: http:
//dx.doi.org/10.1006/inco.1993.1021 (cit. on pp. 91, 93, 137, 168).

212

http://portal.acm.org/citation.cfm?id=113938.149645
https://doi.org/10.1109/SFCS.1977.32
https://www.theregister.com/2004/02/12/software_bug_contributed_to_blackout/
https://www.theregister.com/2004/02/12/software_bug_contributed_to_blackout/
https://doi.org/10.1007/978-3-540-77966-7_13
https://doi.org/10.1007/978-3-540-70583-3_32
https://doi.org/10.1007/978-3-540-25959-6_40
https://doi.org/http://dx.doi.org/10.1006/inco.1993.1021
https://doi.org/http://dx.doi.org/10.1006/inco.1993.1021

Bibliography

[147] Kristin Yvonne Rozier. “Specification: The Biggest Bottleneck in Formal Methods
and Autonomy”. In: Verified Software. Theories, Tools, and Experiments - 8th In-

ternational Conference, VSTTE 2016, Toronto, ON, Canada, July 17-18, 2016,

Revised Selected Papers. Ed. by Sandrine Blazy and Marsha Chechik. Vol. 9971.
Lecture Notes in Computer Science. 2016, pp. 8–26. doi: 10.1007/978-3-319-
48869-1_2 (cit. on p. 3).

[148] Igor Konstantinovich Rystsov. “Polynomial Complete Problems in Automata The-
ory”. In: Inf. Process. Lett. 16.3 (1983), pp. 147–151. doi: 10.1016/0020-
0190(83)90067-4 (cit. on p. 136).

[149] Yasubumi Sakakibara. “Efficient Learning of Context-Free Grammars from Positive
Structural Examples”. In: Inf. Comput. 97.1 (1992), pp. 23–60. doi: 10.1016/
0890-5401(92)90003-X (cit. on p. 138).

[150] Yasubumi Sakakibara. “Learning Context-Free Grammars from Structural Data in
Polynomial Time”. In: Theoretical Computer Science 76.2-3 (1990), pp. 223–242.
doi: 10.1016/0304-3975(90)90017-C (cit. on p. 138).

[151] Sven Sandberg. “Homing and Synchronizing Sequences”. In: Manfred Broy et al.
Model-Based Testing of Reactive Systems: vol. 3472. Lecture Notes in Computer
Science. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005, pp. 5–33. doi:
10.1007/11498490_2 (cit. on pp. 135, 136).

[152] Thomas Schlipf et al. “Formal verification made easy”. In: IBM Journal of Research

and Development 41.4 & 5 (1997), pp. 567–576. doi: 10.1147/rd.414.0567
(cit. on p. 3).

[153] Thomas Schwentick. “Automata for XML - A survey”. In: Journal of Computer and

System Sciences 73.3 (2007), pp. 289–315. doi: 10.1016/j.jcss.2006.10.003
(cit. on p. 179).

[154] Stefan Schwoon. “Model checking pushdown systems”. PhD thesis. Technical
University Munich, Germany, 2002 (cit. on p. 3).

[155] Frédéric Servais. “Visibly Pushdown Transducers”. PhD thesis. Université Libre de
Bruxelles, Belgium, 2013 (cit. on p. 131).

[156] Muzammil Shahbaz and Roland Groz. “Inferring Mealy Machines”. In: FM ’09: Pro-

ceedings of the 2ndWorld Congress on Formal Methods. Eindhoven, The Netherlands:
Springer Verlag, 2009, pp. 207–222. doi: http://dx.doi.org/10.1007/978-
3-642-05089-3_14 (cit. on p. 136).

[157] Alberto Rodrigues da Silva. “Model-driven engineering: A survey supported by the
unified conceptual model”. In: Comput. Lang. Syst. Struct. 43 (2015), pp. 139–155.
doi: 10.1016/j.cl.2015.06.001 (cit. on p. 177).

213

https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.1016/0020-0190(83)90067-4
https://doi.org/10.1016/0020-0190(83)90067-4
https://doi.org/10.1016/0890-5401(92)90003-X
https://doi.org/10.1016/0890-5401(92)90003-X
https://doi.org/10.1016/0304-3975(90)90017-C
https://doi.org/10.1007/11498490_2
https://doi.org/10.1147/rd.414.0567
https://doi.org/10.1016/j.jcss.2006.10.003
https://doi.org/http://dx.doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/http://dx.doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1016/j.cl.2015.06.001

Bibliography

[158] Wouter Smeenk et al. “Applying Automata Learning to Embedded Control Soft-
ware”. In: Formal Methods and Software Engineering - 17th International Confer-

ence on Formal Engineering Methods, ICFEM 2015, Paris, France, November 3-5,

2015, Proceedings. Ed. by Michael J. Butler, Sylvain Conchon, and Fatiha Zaïdi.
Vol. 9407. Lecture Notes in Computer Science. Springer, 2015, pp. 67–83. doi:
10.1007/978-3-319-25423-4_5 (cit. on pp. 4, 137).

[159] Rick Smetsers et al. “Complementing Model Learning with Mutation-Based
Fuzzing”. In: CoRR abs/1611.02429 (2016). arXiv: 1611.02429 (cit. on pp. 135,
178).

[160] SOAP 1.2 Specification by the W3C. url: https://www.w3.org/TR/soap12/
(visited on 2023-06-10) (cit. on p. 143).

[161] Fu Song and Tayssir Touili. “PoMMaDe: pushdown model-checking for malware
detection”. In: Joint Meeting of the European Software Engineering Conference

and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,

ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013. Ed. by
Bertrand Meyer, Luciano Baresi, and Mira Mezini. ACM, 2013, pp. 607–610. doi:
10.1145/2491411.2494599 (cit. on p. 135).

[162] Bernhard Steffen and Alnis Murtovi. “M3C: Modal Meta Model Checking”. In:
Formal Methods for Industrial Critical Systems - 23rd International Conference,

FMICS 2018, Maynooth, Ireland, September 3-4, 2018, Proceedings. Ed. by Falk
Howar and Jiri Barnat. Vol. 11119. Lecture Notes in Computer Science. Springer,
2018, pp. 223–241. doi: 10.1007/978-3-030-00244-2_15 (cit. on pp. 3, 8,
63, 66, 67, 135).

[163] Dejvuth Suwimonteerabuth, Javier Esparza, and Stefan Schwoon. “Symbolic
Context-Bounded Analysis of Multithreaded Java Programs”. In: Model Checking

Software, 15th International SPIN Workshop, Los Angeles, CA, USA, August 10-12,

2008, Proceedings. Ed. by Klaus Havelund, Rupak Majumdar, and Jens Palsberg.
Vol. 5156. Lecture Notes in Computer Science. Springer, 2008, pp. 270–287. doi:
10.1007/978-3-540-85114-1_19 (cit. on p. 135).

[164] Martin Tappler et al. “L∗-Based Learning of Markov Decision Processes”. In: Formal

Methods - The Next 30 Years - Third World Congress, FM 2019, Porto, Portugal,

October 7-11, 2019, Proceedings. Ed. by Maurice H. ter Beek, Annabelle McIver,
and José N. Oliveira. Vol. 11800. Lecture Notes in Computer Science. Springer,
2019, pp. 651–669. doi: 10.1007/978-3-030-30942-8_38 (cit. on p. 137).

[165] Martin Tappler et al. “Active Model Learning of Stochastic Reactive Systems”. In:
Software Engineering and Formal Methods - 19th International Conference, SEFM

2021, Virtual Event, December 6-10, 2021, Proceedings. Ed. by Radu Calinescu and
Corina S. Pasareanu. Vol. 13085. Lecture Notes in Computer Science. Springer,
2021, pp. 481–500. doi: 10.1007/978-3-030-92124-8_27 (cit. on p. 137).

214

https://doi.org/10.1007/978-3-319-25423-4_5
https://arxiv.org/abs/1611.02429
https://www.w3.org/TR/soap12/
https://doi.org/10.1145/2491411.2494599
https://doi.org/10.1007/978-3-030-00244-2_15
https://doi.org/10.1007/978-3-540-85114-1_19
https://doi.org/10.1007/978-3-030-30942-8_38
https://doi.org/10.1007/978-3-030-92124-8_27

Bibliography

[166] Tim Tegeler et al. “Product Line Verification via Modal Meta Model Checking”. In:
From Software Engineering to Formal Methods and Tools, and Back: Essays Dedicated

to Stefania Gnesi on the Occasion of Her 65th Birthday. Ed. by Maurice H. ter Beek,
Alessandro Fantechi, and Laura Semini. Cham: Springer International Publishing,
2019, pp. 313–337. doi: 10.1007/978-3-030-30985-5_19 (cit. on pp. 145,
147).

[167] Max Tijssen. “Automatic modeling of SSH implementations with state machine
learning algorithms”. Bachelor Thesis. Radboud University, Nijmegen, 2014 (cit.
on pp. 4, 137).

[168] Valgrind. url: https://valgrind.org/ (visited on 2023-03-19) (cit. on p. 142).

[169] Abhay Vardhan and Mahesh Viswanathan. “LEVER: A Tool for Learning Based
Verification”. In: Computer Aided Verification, 18th International Conference, CAV

2006, Seattle, WA, USA, August 17-20, 2006, Proceedings. Ed. by Thomas Ball and
Robert B. Jones. Vol. 4144. Lecture Notes in Computer Science. Springer, 2006,
pp. 471–474. doi: 10.1007/11817963_43 (cit. on p. 137).

[170] Moshe Y. Vardi. “Branching vs. Linear Time: Final Showdown”. In: Tools and Algo-

rithms for the Construction and Analysis of Systems, 7th International Conference,

TACAS 2001 Held as Part of the Joint European Conferences on Theory and Practice

of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings. Ed. by Tiziana
Margaria and Wang Yi. Vol. 2031. Lecture Notes in Computer Science. Springer,
2001, pp. 1–22. doi: 10.1007/3-540-45319-9_1 (cit. on pp. 3, 133, 155).

[171] Juan Miguel Vilar. “Query learning of subsequential transducers”. In: Grammatical

Inference: Learning Syntax from Sentences, 3rd International Colloquium, ICGI-96,

Montpellier, France, September 25-27, 1996, Proceedings. Ed. by Laurent Miclet
and Colin de la Higuera. Vol. 1147. Lecture Notes in Computer Science. Springer,
1996, pp. 72–83. doi: 10.1007/BFb0033343 (cit. on p. 175).

[172] Stephan Windmüller et al. “Active Continuous Quality Control”. In: 16th In-

ternational ACM SIGSOFT Symposium on Component-Based Software Engineer-

ing. CBSE ’13. New York, NY, USA: ACM SIGSOFT, 2013, pp. 111–120. doi:
10.1145/2465449.2465469 (cit. on pp. 4, 137).

[173] Niklaus Wirth. “What Can We Do about the Unnecessary Diversity of Notation
for Syntactic Definitions?” In: Commun. ACM 20.11 (1977), pp. 822–823. doi:
10.1145/359863.359883 (cit. on p. 30).

[174] Andreas Zeller. “Specifications for Free”. In: NASA Formal Methods - Third Interna-

tional Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings.
Ed. by Mihaela Gheorghiu Bobaru et al. Vol. 6617. Lecture Notes in Computer
Science. Springer, 2011, pp. 2–12. doi: 10.1007/978-3-642-20398-5_2
(cit. on p. 3).

[175] Yang Zhao and Kristin Yvonne Rozier. “Formal Specification and Verification of a
Coordination Protocol for an Automated Air Traffic Control System”. In: ECEASST
53 (2012). doi: 10.14279/tuj.eceasst.53.787 (cit. on p. 3).

215

https://doi.org/10.1007/978-3-030-30985-5_19
https://valgrind.org/
https://doi.org/10.1007/11817963_43
https://doi.org/10.1007/3-540-45319-9_1
https://doi.org/10.1007/BFb0033343
https://doi.org/10.1145/2465449.2465469
https://doi.org/10.1145/359863.359883
https://doi.org/10.1007/978-3-642-20398-5_2
https://doi.org/10.14279/tuj.eceasst.53.787

	Introduction
	Scope of this Thesis
	Contributions
	Limitations

	Overview

	Preliminaries
	Formal Languages
	Generators
	Acceptors
	Transducers
	Generalizations

	Model Verification
	Model-Based Testing
	Active Automata Learning
	Learning Loop
	Characteristics of Learning Algorithms

	Instrumented Context-Free Systems
	Motivation
	Instrumentation

	SPAs
	Semantics
	Properties of Instrumented Words
	Expansion and Projection
	(De-) Composition Properties
	Instrumentation, Expansion, and Language

	SBAs
	Semantics
	(De-) Composition Properties
	Reductions

	SPMMs
	Monitors
	Monitor-SOS

	Summary

	Model Verification of Instrumented Context-Free Systems
	General Notes
	SPAs
	Examples

	SBAs
	SPMMs
	Summary

	Model-Based Testing of Instrumented Context-Free Systems
	General Concepts
	SPAs
	Computing Access Sequences, Terminating Sequences, and Return Sequences
	SPA Conformance Test

	SBAs
	Computing Access Sequences and Terminating Sequences
	SBA Conformance Test
	Example

	SPMMs
	Summary

	Active Automata Learning of Instrumented Context-Free Systems
	General Concepts
	SPAs
	Exploration Phase
	Verification Phase
	Example
	Termination and Complexity
	Optimization Heuristics

	SBAs
	Simplifications
	Adjustments
	Termination and Complexity

	SPMMs
	Summary

	Transformations Between SPAs and VPAs
	Visibly Push-Down Automata
	Semantics
	Canonicity

	SPAs as SEVPAs
	SEVPAs as SPAs
	De-Aliasing
	Alphabet Abstraction Refinement
	Concretization Equivalence

	Discussions
	Return-Matched Visibly Push-Down Languages and Visibly Push-Down Transducers
	SPA-Based Learning of Visibly Push-Down Languages

	Summary

	Related Work
	Model Verification
	Context-Free Model Verification

	Model-Based Testing
	Active Automata Learning
	Context-Free Active Automata Learning

	Black-Box Checking and Learning-Based Testing

	Practical Application of Instrumented Context-Free Systems
	Instrumentation
	Document Modeling
	DTD Learning
	Document-Driven Process Verification
	XSD-Based Documents

	Monitoring and Life-Long Learning
	Monitoring
	Life-Long Learning

	Black-Box Checking and Other Symbioses

	Evaluation
	Qualitative Discussion
	Quantitative Discussion
	Models
	Active Automata Learning

	Summary

	Summary and Future Work
	Summary
	Future Work
	Extensions of Procedural Models
	Extensions of Applications
	Extensions of Transformations

	List of Acronyms
	List of Algorithms
	List of Figures
	List of Listings
	List of Symbols
	List of Tables
	Bibliography

