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Abstract 

Proteins were long believed to be rigid, well-defined structures and specificity of their 

interactions to be determined only by unique geometric match. This paradigm began to shift 

with increased evidence of protein dynamics on the broad range of time scales and discovery 

of intrinsic protein disorder. The recent breakthrough in protein structure predictions allows 

to make a very cheap initial guess by simply submitting the amino acid sequence to neural 

networks such as AlphaFold2. However, flexibility of the polypeptide chains plays the key role 

in protein functions, their un-, re- and misfolding pathways and is far from being predicted by 

purely in silico methods. Understanding the conformational landscape which protein chain 

occupies statically and dynamically is essential for understanding of cellular processes and 

ultimately, designing efficient drugs, safe pesticides, and industrial biotechnological processes. 

NMR spectroscopy is an indispensable technique studying disordered molecules site-

specifically, both in solution and in the solid state.  

Protein disorder covers the continuum between the static set of defined states and dynamic 

ensembles. The position within this spectrum is also defined by the conditions of the chosen 

experiment and the timescale it accesses. Dynamic disorder can be converted into static 

disorder by freeze-trapping and studied in the solid phase. In solid-state NMR, static disorder 

manifests itself as the presence of additional peaks or, in case of a continuous distribution of a 

geometrical parameter, line broadening. Converting the distribution of the resonance 

frequencies into conformational ensembles is not a trivial task due to the multitude of factors 

that contribute to the nuclear resonance frequencies. Only few attempts of analysis have been 

made, however, the only information routinely extracted from the signals is the ensemble-

average parameters such as chemical shifts at the peak maxima, average relaxation rates, 

distance restraints, etc.  

This works proposes approaches to analyze residue-specific static disorder by 

interpretation and quantification of heterogeneously broadened lines in solid-state NMR 

spectra. The analysis is based on the dominant working hypothesis that the broadening of the 

backbone signals results from the backbone conformational distribution. The engineered 

analytical routines reconstruct the distributions of the backbone dihedral angles φ and ψ in two 

ways: on the basis of database analyses and by help of dihedral-angle predictors. The workflows 

are tested on a model sample as well as on the naturally heterogeneous sample of a functional 

amyloid (EAS∆15 rodlets), where they are compared to estimating heterogeneity from peak 

widths. The analysis of the EAS∆15 sample demonstrates the power of the proposed analysis for 

rather challenging systems where the only available high-resolution physico-chemical data are 

the peak shapes in the solid-state NMR spectra.   
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Zusammenfassung 
Lange Zeit ging man davon aus, dass Proteine starre, wohldefinierte Strukturen sind und die 

Spezifität ihrer Wechselwirkungen nur durch ihre jeweilige geometrische Passung bestimmt 

wird. Dieses Paradigma begann sich mit zunehmendem Bewusstsein der Proteindynamik auf 

einer Vielzahl von Zeitskalen sowie der intrinsischen Proteinunordnung zu ändern. Der jüngste 

Durchbruch bei der Vorhersage von Proteinstrukturen ermöglicht eine sehr günstige, erste 

Abschätzung, indem einfach die Aminosäuresequenz an neuronale Netze wie AlphaFold2 

übermittelt wird. Die Flexibilität der Polypeptidketten spielt jedoch eine Schlüsselrolle bei den 

Proteinfunktionen und ihren Ent-, Rück- und Fehlfaltungswegen und kann bislang durch reine 

in-silico-Methoden nicht zuverlässig vorhergesagt zu werden. Das Verständnis der 

Konformationslandschaft, die mit einer Proteinkette statisch und dynamisch assoziiert ist, ist 

für das Verständnis zellulärer Prozesse und letztlich für die Entwicklung effizienter 

Arzneimittel, sicherer Pestizide und industrieller biotechnologischer Prozesse von 

wesentlicher Bedeutung. Die NMR-Spektroskopie ist eine unverzichtbare Technik zur 

Untersuchung ungeordneter Moleküle sowohl in Lösung als auch im festen Zustand.  

Die Unordnung von Proteinen umfasst das gesamte Kontinuum zwischen Verteilungen 

definierter statischer Zustände und vollends dynamischer Ensembles. Die Position in diesem 

Spektrum wird auch durch die Bedingungen des gewählten Experiments und dessen 

zugänglichen Zeitskalen bestimmt. Dynamische Unordnung kann prinzipiell durch Einfrieren 

in statische umgewandelt und in der festen Phase untersucht werden. In der Festkörper-NMR 

äußert sich statische Unordnung durch das Auftreten zusätzlicher Peaks oder, im Falle einer 

kontinuierlichen Verteilung geometrischer Parameter, durch Linienverbreiterung. Die 

Rekonstruktion einer Verteilung von Resonanzfrequenzen in die zugrunde liegenden 

Konformationsensembles ist aufgrund der Vielzahl von Faktoren, die zu den 

Kernresonanzfrequenzen beitragen, nicht trivial. Bisher sind nur wenige Versuche einer 

solchen Analyse unternommen worden. Die einzigen Informationen, die routinemäßig aus den 

Signalen extrahiert werden, sind durchschnittliche Ensemble-Parameter wie die chemische 

Verschiebung an den Peakmaxima, durchschnittliche Relaxationsraten, Abstandsrestriktionen 

usw.  

In dieser Arbeit werden Ansätze zur Analyse von aminosäurespezifischer Heterogenität 

über Interpretation und Quantifizierung von heterogen verbreiterten Linien in Festkörper-

NMR-Spektren vorgeschlagen. Die Analyse basiert auf der zugrundeliegenden 

Arbeitshypothese, dass die Verbreiterung der Rückgratsignale aus der 

Konformationsverteilung des Rückgrats resultiert. Die analytischen Routinen 

rekonstruktuieren die Verteilung der Rückgratdihedralwinkel φ und ψ auf zwei Arten: auf der 
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Grundlage von Datenbankanalyse und unter Verwendung von Diederwinkelprädiktoren. Die 

Arbeitsabläufe werden an einem Modellsample und am heterogenen Sample eines 

funktionellen Amyloids (EAS∆15 “Stäbchen”) getestet, wo sie mit dem alternativen Ansatz der 

Heterogenitätsschätzung aus Linienbreiten verglichen werden. Die Analyse der EAS∆15-Probe 

zeigt die Leistungsfähigkeit der vorgeschlagenen Analyse für anspruchsvolle Systeme, bei 

denen die einzigen verfügbaren restaufgelösten Daten die Verteilungen der chemischen 

Verschiebungen aus den Festkörper-NMR-Spektren sind.   
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Abbreviations 

BMRB Biological Magnetic Resonance data Bank 

CP Cross-Polarization 

CSA Chemical Shift Anisotropy 

DANGLE Dihedral ANgles from Global Likelihood Estimates, a protein backbone dihedral 

angle prediction program 

DFT Density Functional Theory 

DSS 4,4-dimethyl-4-silapentane-1-sulfonic acid 

DSSP Define Secondary Structure of Proteins, an algorithm of secondary structure 

assignment 
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FWHH Full line Width at Half peak Height  
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MD  Molecular Dynamics 

NMR Nuclear Magnetic Resonance 

NUS Non-Uniform Sampling 

PACSY Protein structure And Chemical Shift NMR Spectroscopy, a database relating 
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TALOS Torsion Angle Likelihood Obtained from Shifts and sequence similarity,  

a protein backbone dihedral angle prediction program 
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1 | INTRODUCTION 

This chapter introduces the basic physical, mathematical, and chemical concepts underlying the 

methods used in the work.  The text focuses on methods of solid-state NMR for protein 

structural studies.  

 

The first part (Section 1.1) provides a brief overview of physical principles of nuclear magnetic 

resonance, interactions and parameters which can be observed or calculated, and, if necessary, 

suppressed.  

 

The second part (Section 1.2) describes methods of recording and processing of NMR data. In 

particular, it focuses on the techniques of non-uniform sampling, which come essential when 

dealing with high-dimensional experiments. Experiments of high dimensionality are 

extensively in this work. 

 

The third part (Section 1.3) gives an overview about protein structure and methods of studying 

thereof, as well as the relationships of protein structure and chemical shifts. First, it provides a 

basic overview of the spatial organization of polypeptide chains and discusses the occurrence 

and nature of protein disorder. Then, it briefly summarizes methodology of NMR spectroscopy 

for structural studies, focusing on chemical shift-based approaches and chemical shift-structure 

relationships. Finally, it provides an overview of methods to study protein disorder and the role 

of NMR-based approaches among them; it reviews the published strategies of elucidating 

protein disorder in various systems.  
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1.1. Physical basis of NMR spectroscopy 

Nuclear magnetic resonance (NMR) was first observed on molecular beams in 1930s in 

experiments of measuring nuclear magnetic moment by Rabi et al. in 1938. In the bulk matter, 

the first successful observations were conducted in late 1945 – early 1946 independently by 

two groups of physicists: in Stanford by Felix Bloch et al. in water (1946) and at the MIT by the 

group of Edward M. Purcell a on paraffin sample (Purcell et al., 1946).  

NMR spectroscopy exploits the ability of nuclei with non-zero spin angular momentum to 

interact with external magnetic fields and with each other. Nuclear magnetism stems from the 

innate properties of atomic nuclei such as spin and spin angular and magnetic momenta. The 

origins of nuclear spin are complex and, according to the current understanding, it arises from 

the spins of nucleons and subnucleon particles as well as the strong interactions between them 

(extensively discussed in, for example, Engelke, 2022). A spin is described by a spin quantum 

number I and takes integer or half-integer values, I = 0, 1 2⁄ , 1, 3 2⁄ , etc. The present text focuses 

only on the spin-½ nuclei since these include all the most important isotopes for biomolecular 

NMR. 

The spin quantum number defines the number of eigenstates of a nucleus as 2𝐼 + 1. The two 

eigenstates, for spin-½ nuclei commonly referred to as α and β, are associated with the 

particular orientations of the vector of spin magnetic momentum 𝝁 in the presence of an 

externally applied magnetic field B0, which in the case of I = +½ corresponds to the parallel and 

anti-parallel alignment. Thereby, the external B0 field vector is defined to be parallel to the z-

axis. Hence its z-component is the scalar B0. The magnetic momentum depends on the nucleus’ 

sensitivity to the magnetic field, characterized by the gyromagnetic ratio γ. The energies of the 

two spin states are given by: 

 𝐸𝛼 = −
1

2
𝝁𝑩0 = −

1

2
𝛾ℏ𝑩𝟎 (1.1)  𝐸𝛽 = −

1

2
𝝁𝑩0 = +

1

2
𝛾ℏ𝑩𝟎 (1.2) 

and the corresponding energy gap is 

 ∆𝐸 = 𝐸𝛼 − 𝐸𝛽 = −
1

2
𝛾ℏ𝑩𝟎 −

1

2
𝛾ℏ𝐵0 = 𝛾ℏ𝑩𝟎 (2) 

According to the relation (2), the energy gap between the eigenstates is directly proportional 

to the strength of the external magnetic field B0. The two states are populated according to 

Boltzmann distribution: 

 
𝑛𝛼

𝑛𝛽⁄ = 𝑒
−𝛥𝐸

𝑘𝐵𝑇  (3) 
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where 𝑛α and 𝑛β are the populations of the two energy levels and kB is the Boltzmann constant. 

It is the population difference that drives NMR spectroscopy, as it creates the macroscopic net 

polarization of the sample. According to the formula (3), at 298 K and a field strength of 16.5 T, 

typical for spectrometers used for structural biology, only one in 10 000 spins contributes to 

the bulk magnetic moment. This explains the low sensitivity of NMR spectroscopy and the 

incentive to build ever stronger magnets.  

The energy required to perform the transition between the states can be expressed in 

frequency units:  

 ∆𝐸
ℎ⁄ =

𝛾ℏ𝑩𝟎
ℎ
⁄ = 𝜐 (4) 

This frequency 𝜐 is referred to as Larmor frequency. The energy transitions can be probed with 

the magnetic field B1, oscillating at the Larmor frequency and applied perpendicularly to the 

flux of the constant field B0. In the early years of NMR spectroscopy, the B1 field was varied 

continuously (in so-called “continuous wave” experiments). Invention of pulsed NMR 

techniques with Fourier transform data processing enabled the access to a large variety of 

experiments. All modern NMR experiments are combinations of pulses, characterized by 

duration (pulse length), power and frequency, and delays that are needed to evolve a particular 

spin state or interaction. Unlike any other type of spectroscopy, for instance, IR or UV, NMR 

manipulates the mixed states of the nuclei, which have a much longer lifetime than those of 

electrons (as in UV or optical spectroscopy) or vibrational states of the molecule (in IR 

spectroscopy) (Keeler, 2010).  

1.1.1. Interactions in NMR spectroscopy 

The exact resonance frequency of an isolated spin depends on its local magnetic field defined 

by the net contributions of the shielding electrons and the neighboring nuclei. Besides B0, the 

magnetic field at the specific nucleus is defined by the collective effect of other minor magnetic 

fields created by electrons or the neighboring NMR active nuclei. The observed frequency also 

depends on the timescale of the motion of the moiety in question or its interaction partners 

(sometimes referred to as the interaction of spins with phonons  (McDermott and Polenova, 

2012). Even the strongest local effects are orders of magnitude smaller than the Zeeman 

interaction and they shift the absolute resonance frequency of the spin by 10-3 - 10-8 of its 

Larmor frequency. 
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Chemical shifts  

The nuclei in atoms are surrounded by electron clouds of different geometry. The electrons 

modulate the magnetic field at the nucleus due to the diamagnetic properties of molecular (or 

atomic) orbitals, thus providing the shift of the nuclear resonance frequency. In diamagnetic 

materials, such as most samples of biomolecules, this phenomenon is called chemical shift. The 

shielding effect scales linearly with the strength of the external magnetic field B0, which can be 

illustrated by an example of a closed coil in the magnetic field that creates an opposing magnetic 

field according to Lenz’s law. The differences in electron shielding provide frequency dispersion 

of the range of the order of 10-5 to 10-3 of the absolute resonance frequency, the range depends 

on the isotope. Therefore, the values of chemical shifts are conventionally expressed in parts 

per millions (ppm) of the difference between the absolute frequency of the nucleus in question 

from the absolute frequency of a reference nucleus. This allows to avoid both, the use of large 

numbers and dependence of the external magnetic field B0. As the reference for biomolecules, 

IUPAC recommends to use the methyl signal of 2,2-dimethylsilapentane-5-sulphonic acid 

(DSS), dissolved in low (typically, 1%) concentration, for direct chemical-shift referencing of 

protons as well as indirect referencing of other nuclei (Markley et al., 1998). Apart from being 

sensitive probes of the local environment, chemical shifts are easily measured and highly 

reproducible, which renders them a valuable parameter in identification of particular moieties 

and site-specific analysis of molecular structure and dynamics.  

In the general case, the electronic environment of the nucleus is not uniform, and the 

observed resonance frequency will depend on the orientation of the moiety in the magnetic 

field – this phenomenon is called Chemical Shift Anisotropy (CSA). The shielding can be 

represented with the tensor 𝜎: 

 𝜎 = (

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

) (5) 

This tensor can be decomposed into three terms: the isotropic, symmetric, and asymmetric 

contributions, 

 𝜎 = 𝜎iso + 𝜎sym + 𝜎anti (6) 

but the antisymmetric part does not contribute to the observable signal to any great extent. If 

the coordinate system is oriented along one of the three principal axes of the interaction tensor, 

the matrix is diagonal: 
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 𝜎 = (
𝜎11 0 0
0 𝜎22 0
0 0 𝜎33

) (7) 

 

Where 𝜎11, 𝜎22 and 𝜎33 are the principal components of the interaction tensor. By convention 

(“Mehring notation”, Mehring, 1983), 𝜎11 ≤ 𝜎22 ≤ 𝜎33, where the 𝜎11 shielding component 

corresponds to the highest resonance frequency of the given nucleus.  

 When the movement of the moiety is unrestricted, which is the case for solutions with low 

viscosity, the three spatial components are averaged and the observed frequency for all 

molecules converges to the single isotropic chemical shift 𝜎𝑖𝑠𝑜 , which equals to the trace of the 

matrix: 

 𝜎𝑖𝑠𝑜 =
𝜎11+𝜎22+𝜎33

3
 (8) 

According to a popular convention (Duer, 2002), the shielding tensor is described by two 

parameters: anisotropy ∆ 

  𝛥 = 𝜎11 − 𝜎𝑖𝑠𝑜 (9) 

and asymmetry 𝜂: 

 𝜂 =
𝜎33−𝜎22

𝜎11
 (10) 

These parameters are defined analogously for the chemical shift tensor; one should keep in 

mind that the strongest shielding corresponds to the lowest chemical shift value, so 𝛿11 ≥ 𝛿22 ≥

𝛿33. In solids and colloidal media, the motion is restricted and the resonance frequencies of the 

differently oriented components combine into the powder pattern (Fig. 1.1.1A). The observed 

chemical shift of the nucleus in this case will depend on the orientation of the interaction frame 

in the magnetic field (Duer, 2002):  

 𝛿 = δ𝑖𝑠𝑜 + δ𝑎𝑛𝑖𝑠𝑜  

 = δiso +
1

2
𝛥𝐶𝑆(3cos

2𝜃 − 1 + 𝜂𝐶𝑆 sin
2 𝜃 cos 2𝜙) (11) 

where 𝜃 and 𝜙 are the polar angles (defined on Fig. 1.1.1B), 𝛥𝐶𝑆 and 𝜂𝐶𝑆 are the anisotropy and 

asymmetry of the chemical shift tensor. 

Whereas in liquid phase only the isotropic chemical shift can be observed, chemical shift 

anisotropy contributes to relaxation processes by providing change in the local magnetic field 

for nuclei upon vibration of their moieties.  
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Figure 1.1.1. Illustration of chemical shift anisotropy. A: NMR Lineshape of the randomly distributed chemical 
shift tensors – the powder pattern. B: Definition of the polar angles θ and ϕ, which relate the principal components 
of the electron shielding tensor (σ11, σ22, σ33) in the magnetic field. In the symmetric case, σ11 = σ22.  

Scalar couplings 

The hyperfine interactions between the nuclei and the electrons in the covalent bonds between 

them induce splitting between energy levels of the states with different alignment of the 

electronic and nuclear magnetic momenta. The energy of the system is lower when the 

magnetic momenta of the electron and the nucleus are aligned antiparallelly. Given that the pair 

of bonding electrons can only have opposite spins (according to Pauli’s principle), the slightly 

lower energy state corresponds to the antiparallel alignment of nuclear spins (Levitt, 2008). 

This interaction is referred as indirect spin-spin coupling, J-coupling or scalar coupling, reflecting 

its (overwhelmingly) isotropic character. Observed values of J-couplings are called coupling 

constants since the interaction is independent of the external magnetic fields. The effect of 

indirect spin interactions is relatively weak compared to the effect of electron shielding. The 

strength of the one-bond 1J-couplings depends on the gyromagnetic ratios of the coupled nuclei 

and can reach up to a few hundred kHz.  

Multiple-bond couplings depend on the angle between the bonds, which renders them 

valuable observables for molecular structure determination. Both homo- and heteronuclear 

three-bond 3J-coupling constants can be quite accurately translated into structural information 

with Karplus relations (Karplus, 1959) that have been empirically parametrized for the most 

important dihedral angles in proteins (Li et al., 2015) and nucleic acids (Marino et al., 1999). 

Proton-proton couplings mediated by hydrogen bonds can be used to determine the H-bond 

length in solution (Cornilescu et al., 1999b) as well as in the solid state (although in solid state 

the technique is far from being trivial) (Schanda et al., 2009). 
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Indirect spin couplings enable one of the two essential mechanisms for magnetization 

transfer. The fundamental building block for solution-state multidimensional experiments – 

INEPT (Insensitive Nuclei Enhancement by Polarization Transfer) (Morris and Freeman, 1979) 

is used to increase polarization among the low-gamma nuclei (like 13C and 15N) and to conduct 

the magnetization along the desired pathway, for example, in a protein backbone.  

Dipole-dipole interactions 

The direct magnetic interaction between two nuclei is a purely anisotropic interaction, and is 

usually averaged out in liquid media as long as the molecular tumbling is not hampered. The 

mechanism of the spin-spin interactions is very similar to the classical interaction of two 

collinear bar magnets (Fig. 1.1.2A). The interaction strength between the magnetic dipoles 

depends on the distance between them and their mutual alignment. The lowest-energy 

configuration is achieved when both dipoles are oriented head-to-tail (opposite spin states), 

and positioned along the orientation of the two dipoles (and, correspondingly, the external 

magnetic field). If the dipoles are oriented side to side, the energy of the system is at maximum. 

If the spin states of the interaction partners are different, this effect is inverse – which is 

reflected in the splitting NMR signals of the interacting nuclei. In general, interaction between 

dipoles i and j can be expressed as  

 
Figure 1.1.2. Illustration of the dipole-dipole interaction at different orientations of the interaction axis (A) and 
its manifestation in static, single-crystal NMR spectra (B). The state of the central spin is highlighted by bold font. 
The figure demonstrates the three key scenarios. The minimum interaction energy is achieved between the couple 
of nuclei in opposite states oriented collinearly to the magnetic field (𝜃 = 0°), which corresponds to the lowest 
resonance frequency of the spin (the leftmost doublet component). Degeneracy is achieved at the point of energy 
equivalence at 𝜃 = 54.7° (the magic angle). Interaction energy at 𝜃 = 90° is half of the maximum (corresponding 
to half the distance between the doublet components). The spins in α and β states can be compared to bar magnets. 
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 𝑑𝑖𝑗 = −
𝜇0

4𝜋

𝛾𝑖𝛾𝑗ℏ

𝑟3
⋅
1

2
(3 cos2 𝜃𝑖𝑗 − 1) (12) 

where 𝜇0 is the magnetic permeability of vacuum (𝜇0 = 1.26  N ⋅ A−2), 𝛾 is the gyromagnetic 

ratio of nuclei 𝑖 and 𝑗, ℏ is the reduced Plank constant (ℏ = 1.05 𝐽 ⋅ 𝑠), 𝑟 the distance between 

the dipoles and 𝜃 is the angle between the internuclear vector and the orientation of the dipoles. 

The point of energy equivalence, which manifests in a singlet in the NMR spectrum (Fig. 1.1.2B), 

is achieved at 𝜃 ≈ 54.74°, which is known as the magic angle. 

Like CSA, dipole-dipole interactions are averaged out in isotropic media (non-viscous liquid 

solutions) but cause a very important relaxation mechanism. The Nuclear Overhauser Effect 

(NOE) is the direct consequence of the dipole-dipole interaction and is the basis of 

measurements of interatomic distances (with a NOESY building block) and atomic mobility (for 

example, by measuring 15N hetNOE). In the solid state, it is the dipole-dipole interaction that is 

exploited for magnetization transfer (for example, by the technique of cross-polarization, see 

below Section 1.2.1) as opposed to J-couplings for solution-state experiments.  

1.1.2. Relaxation  

Once the B1 pulse is switched off, the system starts to return to equilibrium. Relaxation of the 

bulk magnetization is split into two phenomena: recovery of the longitudinal component 𝑀𝑧 

along the direction of the magnetic field B0 and the loss of the transverse magnetization 𝑀𝑥𝑦. 

Both of them can be described with the exponential decay from the initial states 𝑀𝑧
0 and 𝑀𝑥𝑦

0  

over time t:  

 𝑀𝑧 = 𝑀𝑧
0 (1 − 𝑒

−
𝑡

𝑇1)  (13.1) 𝑀𝑥𝑦 = 𝑀𝑥𝑦
0  𝑒

−
𝑡

𝑇2 (13.2) 

where T1 and T2 are the characteristic relaxation times. The first phenomenon is simply a 

recovery of the Boltzmann distribution of the spin α and β states (Eq. 3). The second one arises 

due to the loss of coherence between the spins. Both relaxation types are driven by fluctuations 

of the local effective magnetic field at a given spin that are induced by local motions.  

The complex relationships between relaxation rates and the local dynamics of the spin – and 

hence the moiety – are the subject of thorough theoretical studies and are described elsewhere 

(Levitt, 2008; Kleckner and Foster, 2011; McDermott and Polenova, 2012).  

The major contributing mechanisms are the dipole-dipole interactions and CSA, and the 

microscopic inhomogeneities of the B0 field additionally enhance the coherence loss in the 

transverse plane. Both relaxation mechanisms depend on the Larmor frequencies of the spin in 

question as well as its interaction partners, which means the higher the magnetic field of the 
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spectrometer, the faster the relaxation. In the solid-state, relaxation rates are also a function of 

the sample spinning rate that averages anisotropic contributions (see below, Section 1.1.3). The 

longitudinal relaxation is more sensitive to the ns-µs motions, since it requires oscillations of 

the moieties (emissions of the radiofrequency photons) at the Larmor frequency to accomplish 

the spin flip. Loss of spin coherence however, occurs due to the random fluctuations, and 

therefore is sensitive to the broader range of timescales. As a consequence, in the systems with 

slow or absent molecular tumbling (the case of solid-state samples), T2 is much smaller than T1 

and therefore determines the signal decay rate, or, converted to the frequency domain, the 

homogeneous line width.  

1.1.3.  Solid-state NMR with magic angle spinning  

In the solid phase or in liquids with high viscosity, Brownian motion as well as molecular 

tumbling is hindered or absent, which leads to the anisotropic interactions to manifest 

themselves in the spectra as severely broadened signals. Whereas the angular-dependent 

parameters encoded in the observed patterns contain valuable information about molecular 

geometry, complex spectra of biological macromolecules become unintelligible. Since both CSA 

and DD-interaction depend on the term 3𝑐𝑜𝑠²𝜃 − 1 (Eq. 11, if the asymmetry 𝜂𝐶𝑆 is neglected, 

and 12), spinning the solid sample at the magic angle 𝜃 = arccos√
1

3
=  54.74° to the magnetic field 

of the spectrometer would average out both effects (Fig. 1.1.3). This idea was proposed 

independently by Andrew et al., (1958) and  Lowe (1959). The necessary interactions can be 

further reintroduced by recoupling techniques. 

Table 1.1 presents all types of interactions of spin-½ nuclei in solid state. Dipole-dipolar 

interaction is overwhelmingly dominant, especially between protons due to their anomalously 

 
Figure 1.1.3 Upon spinning, anisotropic interactions average about the rotor coordinate system. If the rotor is 
positioned at the magic angle (𝜃 ≈ 54.7°) to the B0 field, CSA and dipole-dipole couplings average around zero. 
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high gyromagnetic ratio. The effects of the anisotropic interactions of the spectral line widths 

are eliminated once the spinning rate achieves the interaction strength expressed in Hertz. 

Sufficient averaging of 1H-1H dipolar interactions the fastest probe heads available by now with 

spinning rates of 110 kHz or above, yet the complete eradication of the anisotropic effects 

would require MAS rates above 300 kHz (Xue et al., 2018). 

 

 

Table 1.1 Typical upper-border strength of anisotropic interactions in proteins given in frequency units 
(Bertini et al., 2012). Strengths of CSA depend on the B0 field and therefore are given in ppm.  
 

Interaction Typical strength 

1H-1H dipolar coupling, close contacts* up to 140 kHz 

1H-1H dipolar coupling (CH3 group) 60 kHz 

13C-1H dipolar coupling  23 kHz 

15N-1H dipolar coupling 11 kHz 

13C-13C dipolar coupling, directly bonded 3 kHz 

13C-15N dipolar coupling 1 kHz 

13C CSA (carbonyls) 150 ppm 

13C CSA (aliphatic) 20 ppm 

15N CSA (amide) 150 ppm 

* calculated with Eq. 12  



 

 

1.2 NMR data acquisition and processing 

1.2.1. Building blocks of NMR experiments 

The advent of pulsed NMR allowed for design of a huge variety of complex experiments. Each 

NMR experiment is the application of a pulse sequence on a sample in the B0 field of the 

spectrometer. A pulse sequence is a combination of RF pulses and delays which would lead the 

magnetization through a specific pathway, evolve the target interactions and suppress the 

others.  

A pulse sequence of a basic 2D hNH experiment, which combines all the principle building 

blocks of solid-state NMR pulse sequences, in shown in Fig. 1.2.1. A version of this pulse 

sequence is used in the present work.  

Excitation 

The absolute majority of experiments start with a 90° pulse that creates the spin coherence 

in the transverse plane (see Section 1.1) aside from specific applications like Inversion Recovery 

sequences. The amount of magnetization created – and hence the sensitivity of the experiment 

– directly depends on the difference between the populations of the two spin states. Therefore, 

it is always beneficial to excite nuclei with the highest gyromagnetic ratio (Eq. 3), which are 1H 

in most of the measurements on proteins.  

 
Figure 1.2.1. Building blocks of the solid-state NMR pulse sequence on example of a basic CP-hNH experiment. 
Solvent suppression block is omitted since in this work only solvent-free samples were studied.  
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Magnetization transfer  

As discussed in Section 1.1.3, solid-state experiments primarily utilize the dipolar interactions 

to transfer of magnetization, as opposed to J-couplings. (Solution state techniques will generally 

not be covered in this work.) A very popular technique referred to in the modern literature as 

cross-polarization (CP) was proposed by Pines et al. (1972). The transfer happens when the 

nuclei on the both, source (magnetization flipped into the transverse plane) and the target 

channels (nuclei in the thermal equilibrium) are hit by a long (order of ms) continuous wave. 

The CP pulse prevents any evolution of the magnetization, effectively refocusing all dephasing, 

and is called spin lock. The spin lock can be seen as the new external magnetic field B1, and, just 

like in the constant field of the spectrometer B0, it causes Zeeman splitting. It is possible to 

match the spin locks on the both channels I and S (in the example above, 1H and 15N) in such a 

way that the energy gaps for both groups of nuclei become equal. The matching condition was 

found “by the Wizard of Resonance Erwin Hahn and demonstrated by the Wizard and his 

Sorcerer’s Apprentice Sven Hartmann” (quoting Slichter, 1990): 

 𝛾𝐼𝐵1𝐼 = 𝛾𝑆𝐵1𝑆 (14) 

Upon sample spinning, however, the dipolar couplings become time-dependent. 

Thermodynamical (Slichter, 1990) or quantum mechanical derivations laid out in detail in 

other works (Wu and Zilm, 1993; Michel and Engelke, 1994) show that the polarization transfer 

can be achieved at the set of matching conditions: 

 𝜔𝐼±𝜔𝑆 =  𝑛𝜔𝑀𝐴𝑆 (15) 

where 𝜔𝐼 and  𝜔𝑆 are the spin lock strength, 𝑛 is an integer parameter; 𝑛 = −2,−1, 0, 1, 2, and 

𝜔𝑀𝐴𝑆 is the angular frequency of MAS spinning. Condition n = 0 is known as Second Order CP 

(SOCP, Lange et al., 2009) and comes into play at longer contact times (duration of the CP pulses, 

blue in Fig. 1.2.1). Sum or difference of the spin lock fields on both channels correspond to 

double-quantum (DQ, flip-flip) or zero-quantum (ZQ, flip-flop) interacting mechanisms. 

For targeting of specific pathways, a variety of selective CP-based schemes has been 

developed, including SPECIFIC-CP (Baldus et al., 1998), DREAM (Verel et al., 2001), as well as 

non-CP recoupling techniques, PDSD (Szeverenyi et al., 1982), DARR (Takegoshi et al., 2001), 

REDOR (Gullion, 2006) or symmetry-based sequences (Levitt, 2012). The choice of the specific 

recoupling technique for the desired pathway highly depends on the set of the experimental 

conditions: MAS rate, field strength and probe specifications (Nielsen et al., 2011). The most 

recent advancements in development of recoupling techniques for fast MAS are nicely reviewed 

by Ji et al. (2021).  
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The DREAM scheme that is used in the present work for the transfer between 13Cα-13Cβ 

atoms relies on the HORROR recoupling condition (Nielsen et al., 1994): 

 2 · 𝜔I = 𝜔MAS (16) 

Eq. 14 is the special case of Eq. 13 for a homonuclear (𝜔𝑆  =  𝜔𝐼) DQ transfer with 𝑛 = 1. The 

key feature of the DREAM scheme is the adiabatic magnetization transfer which can be achieved 

by modulation of the spin lock amplitude according to the 𝑡𝑎𝑛ℎ  function (the pulse shape is 

schematically depicted in Fig. 1.2.1 on the 1H channel).   

Indirect evolution  

Multidimensional NMR spectroscopy created a vast range of opportunities for tackling complex 

problems of structure determination and the importance of this concept for biomolecular NMR 

is hard to overestimate. The main information encoded in the added dimensions is the isotropic 

chemical shift, which allows for correlations between different nuclei belonging to the 

particular sites. Parameters of the mixed spin states, like the coupling constants or double-

quantum chemical shifts can also be recorded in the indirect dimensions. A remarkable feature 

of indirect evolution is that it makes it possible to observe and characterize states that are not 

detectable directly (as double-quantum coherences), which can be targeted by the specific 

research question or just serve as a convenient bypass for a more optimal pulse sequence (see 

HMQC experiment (Bax et al., 1983). The unnecessary interactions can be suppressed by 

decoupling schemes (gray blocks in Fig. 1.2.1).  

The conventional, uniform sampling of the chemical shift evolution curve is achieved by 

regular incrementation of the time delay (t is incremented with ∆t in Fig. 1.2.1).  

Detection  

The directly detected NMR signal appears as oscillating current induced in the detection coil. 

The current that decays over time due to relaxation (Section 1.1.2) is conventionally referred to 

as Free Induction Decay (FID). The amount of the induced current is directly proportional to 

the gyromagnetic ratio of the detected nucleus, therefore it is always preferable to detect on 

the high-gamma nuclei (as shown in Fig. 1.2.1). In the solid state, for a long time the detection 

was done on 13C channel, since proton detection suffered from severe broadening caused by 

anisotropic interactions (see Section 1.1.1). Owing to the recent advances in design of rotors 

and probeheads, which allowed to spin the MAS rotor at 40 kHz and higher, proton detection 

has become beneficial even though the complete averaging of proton-proton dipolar couplings 
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is not even possible at spinning rates as high as 130 kHz (see Section 1.1.3, Table 1.1 and 

research of Xue et al. (2018). 

The raw analog signal has a frequency on the order of hundreds of MHz. The sampling rate 

allowed by the modern hardware is on the order of hundreds kHz, and, as stated by the Nyquist-

Shannon theorem, the highest detectable frequencies are twice as low. Therefore, before 

digitalization, the signal is passed through a radiofrequency mixer (Fig. 1.2.2) which creates a 

signal oscillating at the difference between the observed and the reference frequencies (on the 

order of 1-104 Hz). The receiver frequency is typically set to be in the middle of the spectrum, 

so each component in the NMR signal is offset from it by a positive or negative frequency. 

Combining the both 𝑐𝑜𝑠 (real) and 𝑠𝑖𝑛 (imaginary) components into complex numbers allows 

determining the sign of the offset; recording both of these components is referred to as 

quadrature detection. In the indirect dimensions, quadrature detection is achieved by selecting 

the orthogonal components of the magnetization dimension with a phase shift of 90° for pulses 

involved in magnetization transfer. Thus, the pulse sequence has to be run twice for each point 

of the indirect FID; acquisition of a point of an (N+1)-dimensional requires 2N FIDs. This factor 

contributes to the large time cost of the high-dimensionality experiments, which is discussed in 

the following Section 1.2.2.  

 
 

Figure 1.2.2. Conversion of the raw NMR signal into a spectrum. ADC stands for Analog-to-Digital Converter and 
FT for digital fast Fourier Transform.  
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Processing 

Conversion from the time to frequency domain is most commonly done by Fast Fourier 

Transformation algorithms (FFT). Fourier transformation for discrete data is given by the 

formula: 

 𝑠(𝜔)  =  ∑ 𝑠(𝑡) ∗ 𝑒−𝑖𝜔𝑡Δ𝑡  (17.1)  𝑠(𝜈)  =  ∑ 𝑠(𝑡) ∗ 𝑒−𝑖2𝜋𝜐𝑡Δ𝑡  (17.2) 

From the mathematical properties of the transformation, important characteristics of the 

dataset can be derived. The resolution of the frequency-domain data depends on the number of 

acquired points N and the increment Δ𝑡 upon acquisition:  ∆𝜈 =
𝑆𝑊

𝑁
=

1

𝑁Δ𝑡
  with 𝑆𝑊 being the 

spectral width. It has been demonstrated by spectra modelling  (Rovnyak et al., 2004), that the 

optimal balance between resolution and signal-to-noise ratio can be achieved when the FID is 

sampled up to an acquisition time 𝑇𝑎𝑞 = 𝑁Δ𝑡 = 1.3 𝑇2. The problem of choosing the sampling 

length is acute in the indirect dimensions, where acquisition of each new point comes at a cost; 

however, processing of the direct dimension also benefits from omitting the points from the tail 

end of the FID.  

Often prior to conversion from the time to the frequency domain, the signal is processed with 

various techniques to optimize the appearance of the resulting spectrum (Keeler, 2010). It is 

possible to extrapolate the time-domain data with linear prediction to increase the effective 𝑇𝑎𝑞 

and thereby boost the resolution. Weighting (or window) functions are convoluted with the 

signal to improve signal-to-noise ratio (exponential or gaussian weighting) or resolution (most 

often squared cosine weighting). 

1.2.2. Acquisition and processing with non-uniform sampling 

Recording the indirect FID always requires a compromise between the experimental time and 

resolution. Given a linewidth of 0.5 ppm in 15N (Zhou et al., 2007, at 40 kHz MAS rate) and a 

range of 35 ppm for chemical shifts for the amide nitrogens in protein backbone, a total of 140 

real and imaginary points of the indirect FID are needed to keep the digital resolution beyond 

the natural limit. Given a short 0.5 s d1 relaxation delay and 8 scans per each FID, a 2D hNH 

correlation would take less than an hour to acquire (9 minutes in the assumed favorable 

conditions). Adding evolution in the 13C dimension to the pulse sequence, a 3D hCBcaNH 

experiment with spectral window of 60 ppm in 13C dimension would need about 14000x2² = 

56000 points to resolve the homogeneous 13C linewidth of 0.3 ppm (Zhou et al., 2007), which 

corresponds to more than two days of measurement time. Full - uniform - sampling of spectra 

of even higher dimensionality becomes unfeasible: a similar 4D spectrum would take weeks, 
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and the time required for a fully sampled 5D rises to the order of years. The use of linear 

prediction methods  to achieve better resolution as short acquisition times is limited (Stern et 

al., 2002). This posed the incentive to develop techniques of acquisition and, more importantly, 

processing of non-uniformly, under-sampled FIDs. 

A detailed overview of the immense literature body on non-uniform sampling (NUS) has 

been given by Mobli and Hoch (2014), Kazimierczuk and Orekhov (2015), Delaglio et al. (2017) 

and Robson et al. (2019). 

General concept 

As opposed to conventional acquisition of the indirect FID by uniform sampling of the Nyquist 

grid (Fig. 1.2.3, teal, dashed lines), non-uniform sampling (NUS) is a way to reduce the 

measurement time by acquiring only a fraction of points (Fig. 1.2.3, blue). The Fourier 

transform of the obtained NUS data will be a convolution of the NMR signal and the point spread 

function (PSF) of the sampling scheme (see examples in (Kazimierczuk and Orekhov, 2015) and 

in Fig. S1). Therefore, such datasets require special reconstruction techniques that extract the 

signals from the artefact noise produced by the sampling schedule. Analogously to the signal-

to-noise ratio, the signal-to-artifact ratio 𝑆/𝐴 scales with the number of sampled points 𝑁, 

 
 
Figure 1.2.3. The concept and application of non-uniform sampling (NUS). Conventional processing of NMR data 
requires Fourier transformation of the FID, sampled on the Nyquist grid (teal). However, obtaining the fully 
sampling data in the high-dimensional experiments is heavily time demanding. A spectrum can be obtained from 
an FID even when not every point on the Nyquist grid is sampled (blue). Processed in a conventional way, the NUS 
data is heavily crowded with artifacts, arising from convolution of the signals and the sampling schedule. Artefacts 
are removed or suppressed by various reconstruction algorithms. The saved measurement time can be invested 
into more scans for better SNR and/or into acquisition of farther time points, thereby increasing resolution of the 
resulting spectrum. FT denotes conversion into the frequency domain regardless of the particular implementation 
of the Fourier transform (Fast, Multidimensional, etc.). Note that not every reconstruction procedure processes 
the frequency domain data as shown in this scheme and obtains it with a version of FT algorithm; however, this is 
the case for the majority of methods including the ones considered in this work. 
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𝑆/𝐴 = √𝑁. There is no definitive general solution to the question how low N may be in a 

particular experiment; yet there are a few considerations to be made. According to the general 

theory of non-uniform sampling proposed by Landau in 1960s, the average sampling rate must 

be at least twice the occupied bandwidth of the signal (Landau, 1967). This means that the 

number of points to be sampled depends rather on the number of signals and the linewidths 

rather than on the spectral window or desired resolution. In the ideal case of a signal with no 

noise (𝑆𝑁𝑅 → ∞) and pure Lorentzian peak shape, the number of points needed to be sampled 

in the time domain is exactly equal to the number of expected signals. Without any assumptions 

of the peak shape, a very sparse NMR data of size 𝑁 with 𝐾 expected peaks can possibly be 

reconstructed from  

 𝑚 ≥  𝑐𝐾 log (
𝑁

𝐾
) (18) 

points, where 𝑐 is a small empirically determined constant (Sun et al., 2015). This formula is 

given by the theory of compressed sensing (Donoho, 2006) and a successful reconstruction of 

a dramatically undersampled (0.8% of the total number of points) data of high sparsity has 

been first demonstrated in the proof-of-concept work of Hyberts et al (2012). In practice, 

sufficient data sparsity for protein spectra is achieved only in high-dimensional, especially ≥ 4D 

experiments. A general rule of thumb is that good results could be achieved while sampling 

20 % of points per dimension (Hyberts et al., 2014). The optimal sampling density and 

schedule, however, have to be carefully considered for each individual case. 

Optimization of sampling patterns and development of faithful reconstruction algorithms 

are the two intertwined aspects of the development of NUS techniques.  

Sampling schedules 

The attempts to reduce the number of points sampled from the indirect FIDs can be traced back 

to the 1980s. Already in that decade, two classes of approaches emerged. The earliest 

ACCORDEON experiments (Bodenhausen and Ernst, 1981) were based on sampling projections 

of the multidimensional spectrum at different angles (radial sampling schemes); this technique 

inspired future development of Automated Projection SpectroscopY (APSY) (Hiller et al., 2005). 

Several other pattern-based sampling schemes like radial or spiral sampling (Kazimierczuk et 

al., 2007) were proposed in an attempt to improve performance of Fourier transform of NUS 

data. The other take on non-uniform sampling is recording randomly selected points both on 

and off-Nyquist grid (Robson et al., 2019). Performance of the uniformly random schedule 

ranges greatly from one set of sampled points to another (Robson et al., 2019), which makes it 
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rather improbable to find the optimal combination and provides an incentive to find optimal 

constrains. The obvious idea is that the contribution of noise can be reduced if sampling density 

is skewed towards the beginning of the FID where the signal intensity is at maximum. The first 

weighting scheme used an exponential distribution of the point density that followed the 

general exponential decay of the signal (Barna et al., 1987). It was shown later that some 

reconstruction schemes benefit from a more uniform distribution of gap lengths between the 

sampled points. This problem was solved by restricting the gap lengths to Poisson distribution 

(Hyberts et al., 2010).  

The choice of the sampling schedule depends on the reconstruction algorithm of choice as 

well as on the properties of the resulting data, such as peak density or dynamic range.  

Reconstruction algorithms 

Reconstruction of the full dataset on the basis of undersampled data is a task similar to finding 

the optimal solution to an underdetermined system of equations. Identification of the solution 

that is the most likely correct requires making some assumptions about the underlying data, 

for example, about the data sparsity or the line shapes. All reconstruction algorithms are 

typically iterative and terminate either upon reaching a specified stopping criterion, such as a 

maximum number of iterations or convergence based on accuracy or change in the objective 

function. 

The reconstruction algorithms used in this work are described in the following. 

  

Iterative Soft Thresholding implemented by Harvard Medical School (hmsIST) 

Iterative thresholding methods originate from the field of image processing (reviewed in (Mobli 

and Hoch, 2014)). The general approach is simple: the NUS FID, with the missing data points 

being set to zero, is converted to the frequency domain with discrete Fourier transform; all 

points that exceed the given threshold are recorded into memory and scaled down (Iterative 

Soft Thresholding, IST) or set to zero (hard thresholding). The remainder is then converted 

back to the time domain, the non-recorded data points are set to zero again, and the procedure 

is repeated.  

Application of IST to NMR data was first suggested by Drori (Drori, 2007). It used wavelet 

transform for obtaining frequency domain data. In 2012, Harvard Medical School 

reimplemented the algorithm (Hyberts et al., 2012) replacing the wavelet transform with the 

more time-efficient Fast Fourier Transform and its inverse. Thus, the time needed per iteration 
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of hmsIST is essentially determined by the time complexity of FFT and scales as Nn log𝑁 for 𝑁 

number of points in n dimensions. 

There are three parameters of the algorithm that may be potentially adjusted: the height of 

the threshold, termination condition (value of the l2 norm) or the number of iterations. 

However, the first value is defined by the developers (threshold of 98 %) and the necessary and 

sufficient number of iterations for reconstruction of weakest signals was shown to be 250 

(Hyberts et al., 2012). Termination of the program is then achieved by reaching the maximum 

number of iterations, and setting the value of l2 norm is not required.  

 

Signal Separating Algorithm - SSA 

The Signal Separating Algorithm was proposed by J. Stanek and W. Koźmiński, (2010, 2012) 

and is based on the CLEAN scheme initially used in radioastronomy (Högbom, 1974) and later 

reimplemented for NMR data (Kazimierczuk et al., 2007; Coggins and Zhou, 2008). SSA operates 

with the data being transformed into the frequency domain in all dimensions. Identification and 

separating the signals from the residual is performed iteratively by identifying the potential 

signals in the crude spectrum and subtracting them one by one to yield the residual time-

domain data. Since initial signal identification relies on statistical methods, it is crucial that the 

artifacts from the sampling would be distributed randomly, which can be provided only by a 

random schedule (with exponential or cosine weighting of sampling density, which does not 

create sampling artifacts and is simply equivalent to applying a window function). The 

identified peaks are considered one by one in the individual frames. The points in each frame 

that exceed the user-set threshold are then fitted with a Lorentzian, each point of which is then 

corrected to reflect the true peak shape (or shapes of overlapped peaks); the obtained function 

is then converted to the time-domain and subtracted from the residual. The use of the analytical 

model and its subsequent correction is the cornerstone of the SSA for the efficient extraction as 

well as artifacts removal. The algorithm terminates once no more peaks can be found. The 

performance of the algorithm depends on the number of peaks in the spectrum and on the 

parameters of peak identification.  

 

Sparse Multidimensional Iterative Lineshape Enhanced (SMILE) reconstruction  

Of the three algorithms considered here, SMILE (Ying et al., 2017) is the most recent one. The 

idea behind SMILE is very similar to SSA, however, the algorithms differ substantially in 

implementation. Like SSA, SMILE performs peak identification on the fully frequency-domain 
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dataset and fits peaks individually in their frames. However, it assumes the signals to be of 

Lorentzian shape in the frequency domain and works with the spectrum, fully converted into 

the frequency domain. SMILE assumes all peaks to be purely Lorentzian and have purely 

absorptive phase (i.e. all signals are cosine oscillation decaying exponentially). The purely 

random schedule was found to outperform exponentially-weighted random sampling as well 

as all types of Poisson-weighted schedules. 

Outline 

Non-uniform sampling can be used to save measurement time and invest it into a longer 

indirect acquisition for better spectral resolution or to increase number of scans thereby 

increasing signal-to-noise (Fig. 1.2.3).  It enables access to high-dimensional experiments, 

which would be either extremely time consuming (4D) or not possible at all (5Ds and higher).  

It is however, not trivial to choose the best sampling and reconstruction method without 

trial and errors, since their performance strongly depends on the characteristics of NMR data 

and correspondingly, the nature of the sample.  

To the author’s best knowledge, there is yet no formal theory describing and quantifying 

performance of various NUS experiments nor is there a comprehensive overview. A large step 

into this direction was taken by the recent community effort and release of the NUScon 

(Nonuniform Sampling Contest) platform (Pustovalova et al., 2021). This project provides tools 

for simulating solution-state-like NMR data sampled in a desired way and evaluates 

performance of reconstruction algorithms by several quantitative metrics.  

There is no overview concerning performance of applicability of NUS to the complex cases 

of solid-state NMR data such as spectra of samples with high heterogeneous broadening. Test 

of the three schemes outlined above on a model heterogeneous solid-state sample is a part of 

this work. This project is presented in Results, Section 2.1. 
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1.3. Protein structural biology 

Among all biological macromolecules, proteins perform by far the largest range of biological 

functions. Proteins constitute the intricate molecular machinery behind all processes in cells, 

allowing them to grow, reproduce and differentiate, forming tissues, organs, and organisms. 

Proteins perform the skeletal and motoric functions, maintain the pH balance, regulate energy 

metabolism, cell division, and enable synthesis of other proteins by executing the genetic and 

epigenetic code. The interplay of cellular processes is both amazing and overwhelming, and 

with all progress in medicine and biology, we are but scratching the surface of understanding 

the organization of life. The detailed knowledge of underlying molecular mechanisms is crucial 

for very practical applications, such as design of efficient and safe bioactive compounds, such 

as drugs or pesticides, and biotechnological processes. 

Proteins are biological polymers whose monomers (in the naturally occurring systems) are 

amino acids of twenty types (Supplement, Fig. S2). The function of a protein is the direct result 

of its spatial fold, the distribution of electrostatic charge, and site-specific dynamics. This makes 

protein structure and dynamics of particular interest for fundamental and applied science. 

1.3.1. Protein order and disorder 

Levels of organization of polypeptide chains 

Proteins adopt up to 4 levels of organization. 
 

Primary structure, or amino acid sequence is the order in which amino acid residues build the 

chain. Amino acid residues are connected with each other by a peptide bond. By convention, 

residue count starts from the residue with the free -NH2 group called the N-terminus and 

continues until a free carboxylic group – the C-terminus. The chain of the amide group, aliphatic 

carbon Cα and the carbonyl group constitute the protein backbone and the substituent at the α-

position is referred to as the side chain (Fig 1.3.1).  
 

Secondary structure is defined by the spatial arrangement of the protein backbone. The two 

major parameters of secondary structure are two backbone dihedral angles: 

φ: the twist around the N-CA bond, defined as COi-1-N-Cα-CO,  

and  

ψ: twist around the Cα -CO bond, defined N-CA-CO-Ni+1  
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illustrated in Fig. 1.3.1. Rotation around the peptide N-CO bond is restricted because of the 

resonance interaction of sp²-hybridized electrons of the carbon in the C=O group and the free 

electron pair on the nitrogen atom, therefore the third dihedral angle, ω is always close to 180°. 

Classification of the secondary structure elements is based on the combination of hydrogen 

bonding pattern and the combination of the φ and ψ angles. In 1963, G. N. Ramachandran 

suggested visualization of the energetically allowed (φ, ψ) combinations on a two-dimensional 

diagram (Ramachandran et al., 1963), and ever since, (φ, ψ) distributions of any kind (for 

residues of a particular protein or a statistical summary) bear his name. Due to the L-chirality 

of the nineteen natural proteinogenic amino acids, right-hand winding (negative φ values) is by 

far more preferential (Fig. 1.3.2). Glycines are unrestricted in rotations due to the absence of a 

 
Figure 1.3.1. Organization of the amino acid chain into various secondary structure motifs. Hydrogen bonds 
shown on the inserts as gray lines. Highlights in bold font are the commonly used one-letter codes of the secondary 
structure classes (for example, in DSSP (Kabsch and Sander, 1983) and STRIDE (Frishman and Argos, 1995) 
classification). The figure was prepared using UCSF Chimera (Pettersen et al., 2004) as a compilation of hand-
modeled fragments (helices) as well as fragments of real proteins (PDB IDs 2NUZ, 2FMC). 
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side chain. Local conformational preference can be influenced by the type of the neighboring 

residue, most prominently, prolines (Fig. S3A), which occupy a particularly restricted 

conformational space (Fig. S3B).  

There are two major categories of organized secondary structures: helices and extended 

strands (Figure 1.3.1, red and green). Among all studied proteins, helical structures are the 

most prevalent. The most abundant helical configuration is termed α-helix, first described by 

Linus Pauling et al. in (1951). Its key characteristic is hydrogen bonding between backbone N-

H groups and a C=O group four residues along the chain (𝑖 →  𝑖 + 4). One turn of α- helix takes 

on average 3.6 residues, i.e. each residue provides a 100° turn. The backbone typically adopts 

conformations around 𝜑 = −60° and 𝜓 = −45° (Fig. 1.3.2). Stretching and contraction of the 

helix varies the (φ, ψ) combination along the line with a slope=1 on the (φ, ψ) plot, leading to 

the formation of other, rare helical forms. The stretched form is referred to as 310 helix denoting 

3 residues per turn with 10 atoms being involved; this configuration creates 𝑖 →  𝑖 +

3 hydrogen bonding patterns. The contracted form, π-helix, is formed by 4.1 residues and is 

characterized by 𝑖 →  𝑖 + 5 H-bonding. Those rare structures are usually not longer than 7 

residues and therefore cannot be described by a single combination of dihedral angles. 

Extended conformations can form individual flat β-strands or combine into β-sheets 

distributed in the range of 𝜑 ∈ (−150°, −100°), 𝜓 ∈ (100°, 150°). Strands in β-sheets can 

orient in parallel or anti-parallel, which influences the preference of the (φ, ψ) combination: 

residues in the more common anti-parallel orientation are typically “flatter” with higher 

absolute angles. The individual strands in the sheets can sometimes be connected with very 

short fragments of the chain forming a turn and are often secluded into a separate class, when 

the two ends of the turn are bridged with an H-bond. Turns can be further subclassified with 

respect to the conformations of the involved residues. As turns are composite structures, no 

specific dihedral angle region can be attributed. Any structures that lack regularity and do not 

form regular patterns are referred to as loops or coil. A very flexible chain which randomly 

samples the entire thermodynamically allowed conformational space is called random coil 

(although a variety of definitions have been used in the literature depending on the context 

(Mielke and Krishnan, 2009). The Ramachandran map of random coils (Fig. S4) demonstrates 

the intrinsic tendency of polypeptide chains to adopt extended conformations. It has been 

shown, that in those unrestricted structures, residues of different types have different intrinsic 

preference for φ angle (Serrano, 1995). Conformations in the regions around φ = -75°, ψ = 150° 
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(the region of the major point density in Fig. S4) are often referred to as poly-proline II (PPII), 

named after the left-handed helices formed by poly-proline chains. 

Formal assignment of secondary structure elements is important in some bioinformatical 

applications and scientific communication. Classification algorithms, such as DSSP (Kabsch and 

Sander, 1983) or STRIDE (Frishman and Argos, 1995), were designed to formalize the intuition 

of X-ray crystallographers. The classification algorithm is based on the combination of the 

backbone dihedral angles, arrangement of hydrogen bonds as well as the context between the 

amide and carbonyl groups N-H⋯O=C.  

Tertiary structure is defined by the spatial arrangement of the secondary structure elements. 

It is usually stabilized by hydrophobic, staking and − interactions between the sidechains, as 

well as covalent disulphide bonds, ionic salt bridges, and hydrogen bonds (H-bonds).  

The term quaternary structure refers to the assembly of the individual folded protein units 

into a molecular complex, the full functioning units of the molecular machinery. Proteins and 

protein complexes with catalytic function (enzymes) often require prosthetic groups: non-

 
Figure 1.3.2. Ramachandran map of the amino acid residues of all proteinogenic types (except Gly). Data taken 
from the PACSY database (Lee et al., 2012) (accessed on Dec., 2022). The major secondary structure motifs – 
helices and sheets – are depicted next to the regions of typically occupied backbone dihedral angles.   
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protein elements like small organic molecule ligands (like flavin mononucleotide in 

oxidoreductases), metal ions (e. g., Zn2+ in carbonic anhydrases) or clusters (e. g., iron-sulfur 

clusters in oxidoreductases) or metalorganic ligands (e. g., chlorophyll in photosystems or 

heme in hemoglobins).  

One sequence – one structure? 

In the still-early stage of structural biology, it was widely assumed that the most, if not all, 

proteins possess well-defined structures (Epstein et al., 1963). This assumption was based 

primarily on the early successes of protein X-ray crystallography and the realization that all at 

that time discovered proteins had unique amino acid sequences. Successful refolding of 

proteins from denaturating conditions by Anfinsen and colleagues lead to the thermodynamic 

hypothesis stating that the fold, natively adopted by a protein in its native physiological 

environment (including the presence of prosthetic groups, correct temperature and pH, etc.) is 

the one at which the free Gibbs energy of the whole system is lowest. This hypothesis further 

converged to the statement expressed in Anfinsen’s Noble acceptance speech (Anfinsen, 1972): 

“The native conformation is determined by the totality of interatomic interactions and hence 

by the amino acid sequence, in a given environment”, which sparked the endeavors of purely 

sequence-based predictions of protein fold. Despite a long track of largely underwhelming 

performance of such methods, advancements in machine learning enabled the very recent 

breakthrough in protein folding: the neural networks-based systems like RoseTTAFold and 

AlphaFold succeeded in predicting the lowest-energy structures of globular folds of single-

domain proteins or even homo-multimers at an unprecedented accuracy (Baek et al., 2021; 

Jumper et al., 2021; Subramaniam and Kleywegt, 2022). The interactions between the domains, 

protein subunits and their ligands are only to be addressed in collaboration with experimental 

methods in the foreseeable future. 

An environment often defines not only if the given sequence adopts a defined special fold but 

also which fold is adopted. Deviations from the major folding pathway lead to formation of 

protein aggregates, where the individual molecules can be either totally disordered or adopt a 

β-strand or -sheet form in amyloids – stable, insoluble filaments or fibrils. The ability to form 

amyloids seems to be natural for polypeptide chains since any protein, peptide or even single 

amino acids can apparently be converted into the amyloid form in vitro. This is also supported 

by the Ramachandran plot of random coils: the disordered flexible chains tend to adopt 

extended conformations (see above). At the same time, helical structures are prevalent in the 
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known proteome, which can be attributed to the natural selection of proteins with higher 

helical content due to their lower amyloidogenic potential. Polymorphism (presence of fibrils of 

different architecture) and heterogeneity (disorder of the protein chain within a single fibril) of 

amyloids is the natural consequence of the physico-chemical properties of the protein chain 

and high energetic similarity between multiple arrangements. Amyloidogenesis in vivo is 

almost always associated with pathologies, but in some cases, it has been recruited by 

organisms, including bacteria, fungi and even humans, to produce functionally significant 

structures (Chiti and Dobson, 2006, 2017). 

Whereas the thermodynamic hypothesis probably generally holds true for a large number 

of proteins, it has been challenged by discovery of intrinsically disordered proteins (IDPs) – the 

chains whose native conformational space has several free energy minima and low energy 

barriers between them. IDPs together with intrinsically disordered protein regions (IDRs) are 

found to constitute as much as half of the entire eucaryotic and viral proteome (Perdigão et al., 

2015). Intrinsic disorder gives proteins the ability to form weak yet highly specific complexes, 

which is important for regulatory pathways, where turning a signal off is as important as 

turning it on (Habchi et al., 2014). Thus, IDPs and IDRs are essential elements of transcription 

factors (Sammak and Zinzalla, 2015), voltage-gated channels (Kjaergaard and Kragelund, 2017) 

or protein phase separation (Turoverov et al., 2019).  

It is yet unclear if the purely computational methods would be able to reliably predict the 

dynamic conformational ensembles and, furthermore, structures and order of aggregates. 

Further development of protein structural biology will rely profoundly on the synergy between 

experiment and prediction (Subramaniam and Kleywegt, 2022). 

Disorder of ordered chains 

Even within the well-defined highly ordered systems, like crystallized, well-folded globular 

proteins, the peptide chain is not static and exhibits constant switches between local energy 

minima on the ps-ns timescale.  In the side chains, three rotameric forms exist for every single 

C-C bond. The most known type of backbone motions is the peptide flips in the tight turns 

(where residues i-1 and i+2 are typically H-bonded), forcing interconversion between the βI/βII 

turn types. In more flexible regions not constricted by H-bonds, many other types of flips can 

occur, involving those perturbing and non-perturbing the neighboring peptide planes 

(Hayward, 2001). Collectively, peptide flips may synchronize into so-called crankshaft motions 

(Fadel et al., 1995) propagating along the polypeptide chain. The backbone flips are clustering 
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at four conformations, alternative to the ensemble-average structures solved from the electron 

density data (Fig. 1.3.3). According to Keedy et al., (2015), the states are formed by two variants 

of rotations: two types of 180° flips (Fig. 1.3.3A), typically occurring in turns, and rotations by 

±120° about the Cαi-Cαi+1 axis (Fig. 1.3.3B) occurring in ordered but irregular secondary 

structures. This analysis was on the electron densities from the Top8000 dataset, the collection 

of highest quality X-ray structures, performed with qFit 2.0. All four classes of flips often (>60 % 

of the cases) involve glycine as the second residue of the flipping peptide fragment. Other 

internal backbone motions include ‘backrub’ flips, typically around Cαi-1-Cαi+1 axis (Davis et al., 

2006), and shear motions in helices (Hallen et al., 2013). 

 

The fast internal peptide motions or peptide backbone flips are presumed to be the driving 

force of the motions on the larger (μs-ms) timescales, such as cross-correlated “flaps” in HIV-1 

protease (suggested from NMR relaxation data by Nicholson et al. (1995) and newly found by 

Keedy et al. (2015) in the electron density map), “breathing” or domain motions (Mariño Pérez 

et al., 2022) (note the profound example in (Mariño Pérez et al., 2022) of the breathing motion 

of a “rigid” SH3 domain, caused by a tyrosine ring flip).  

As will be discussed in the following Section 1.3.2, the conformational heterogeneity on 

either fast or slow timescales contributes to the NMR observables, such as relaxation rates or, 

most notably, chemical shifts. In the NMR experiments at cryogenic temperatures, slow motions 

are immobilized, chemical shifts of all conformers are observed at once, broadening the signals. 

Chemical shifts of the fast-exchanging conformers, however, still average out. These fast 

motions are likely one of the factors contributing to inaccuracy of structure-based chemical-

shift predictions and vice versa, structure predictions from isotropic shifts. On the contrary, 

 
Figure 1.3.3. Schematic representation of the four classes of backbone peptide flips identified by analysis of 
electron densities of high-quality, high-resolution (<2 Å) X-ray structures. The flips occur in ordered polypeptide 
regions with irregular secondary structure. The reference peptide conformation is shown in black. A: Two ~180° 
rotated clusters with different translations in the peptide plane (blue vs. red). B: Two other clusters rotated by 
+120° (green) and -120° (yellow). Thickness of the line schematically represents the proximity of the region. 
Dotted lines represent the average direction of the backbone outside the flipping fragment. Adapted from Fig. 2 
from (Keedy et al., 2015) under Creative Commons Attribution 4.0 International License.  
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hybrid quantum mechanics/molecular mechanics/molecular dynamics (MD-QM/MM) 

methods are shown to calculate chemical-shift tensors with high accuracy (Kraus et al., 2020). 

1.3.2. NMR in protein structure determination 

NMR enjoys wide recognition among other high-resolution techniques of structural biology. 

Although solving the protein structure solely by NMR takes much more human effort than 

calculating it from the X-ray diffraction or electron microscopy, NMR is indispensable in 

studying small proteins, protein-protein and protein-ligand interactions, site-specific dynamic 

information, and to approach significantly heterogeneous systems.  

NMR does not observe the structures directly – instead, experimental geometrical 

parameters of the molecules are obtained from NMR observables and then further submitted 

to the structure calculation protocols. Distance information is routinely obtained from the 

variety of experiments exploiting dipole-dipole interaction: NOESY in liquid samples and 

REDOR, RFDR or other recoupling experiments in solids (Nielsen et al., 2011), measurements 

of residual dipolar couplings (RDCs) in colloidal, partially aligned samples, among others. In 

addition, positions of specific atoms can be determined relative to a paramagnetic label 

introduced to the sample by the effect of paramagnetic relaxation enhancement (PRE). 

Dihedral-angle information can therefore be derived from the distances or obtained directly 

from the scalar couplings through Karplus equations (Karplus, 1959). The measurements of 

angles and distances are often limited to relatively small, homogeneous proteins since spectral 

crowding and peak broadening in more complex systems do not allow for sufficient spectral 

resolution and reduce signal-to-noise.  

Structural and fast-timescale dynamic information is reflected in the observed shielding 

tensors and this gets encoded into chemical shifts. Accurate deciphering of the chemical shifts 

is thus an immensely complex problem due to the multiple intertwined factors affecting the 

nuclear resonance frequency. However, many patterns and dependencies have been identified, 

which allowed to translate chemical shifts into structural restraints (Nerli et al., 2018) and even 

for obtaining high-resolution structures of small proteins based purely on chemical shift 

information (Robustelli et al., 2008; Wishart, 2011; Berjanskii and Wishart, 2017). 

Interpretation of chemical shifts has been approached using ab initio computational 

methodology, statistical analysis, and hybrid techniques.  
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Factors affecting backbone chemical shifts  

When molecules in liquid media are allowed to freely tumble in random directions, or when 

this tumbling is emulated for solid samples by fast spinning of the sample at the magic angle 

(see Sections 1.1.1 and 1.1.3), the anisotropic components of the chemical-shift tensor average 

into the isotropic value. Although anisotropic interactions bear useful information about local 

geometry, extracting isotropic chemical shifts is much more straightforward in solutions since 

it does not require additional sample preparations in anisotropic media. In solids, averaging of 

anisotropic observables is also the preferred condition in all residue-specific studies of the long 

polypeptide chains, since anisotropic peak broadening tremendously complicates the 

spectrum.  

The isotropic chemical shift of a nucleus is influenced by several factors, which can be 

classified into four categories (Williamson and Asakura, 1997): (i) the close-range modulation 

of shielding by the electrons within a few bonds away, which depends on the covalent structure 

and local dihedral angles; (ii) the long-distance effects arising from van-der-Waals interactions 

and bond polarization effects; (iii) ring current effects and anisotropies of the neighboring 

bonds, and (iv) paramagnetic effects in case any unpaired electrons are present. In terms of 

structural effects, it can be broadly summarized as (Han et al., 2011):  

 𝛿 =  𝛿𝑟𝑐 + 𝛿𝑆𝑆 + 𝛿𝜒 + 𝛿𝑒𝑙 + 𝛿𝐻𝐵 + 𝛿𝑠𝑜𝑙𝑣 + 𝛿𝑟𝑖𝑛𝑔  (19) 

Here, 𝛿𝑟𝑐 denotes the random coil chemical shift, the “baseline” determined by the types of the 

residue of interest 𝑖 and its direct neighbors 𝑖 + 1 and 𝑖 − 1. The term 𝛿𝑆𝑆, denoting the 

contributions of secondary structure, should be further broken down to dissern the influence 

of the conformation of the current, preceding, and succeeding residues as 

 𝛿𝑆𝑆 = 𝛿𝑆𝑆
𝑖 + 𝛿𝑆𝑆

− + 𝛿𝑆𝑆
+  (20) 

The term 𝛿𝜒 denotes contribution of the rotameric state of residue 𝑖. Terms 𝛿𝑒𝑙, 𝛿𝐻𝐵 and 

𝛿𝑠𝑜𝑙𝑣 describe the electrostatic effects, where the hydrogen bonding and solvent effects are 

special cases which are commonly secluded into the separate terms 𝛿𝐻𝐵 and 𝛿𝑠𝑜𝑙𝑣. Finally, 𝛿𝑟𝑖𝑛𝑔 

describes ring current effect in case any aromatic rings are present. All the terms of Eq. 16 are 

rather conceptual than physical and often overlap.  

Each of these effects contributes to chemical shifts of different nuclei with various weights, 

summarized in Table 1.2 according to the analysis presented in (Han et al., 2011), the core 

publication of the hybrid chemical shift prediction method SHIFTX2 (see below). As such, 

excluding the random-coil term, the proton shifts δ1HN and δ1Hα are influenced by a variety of 

factors, making them the most difficult to interpret and predict. On the contrary, δ13Cα and 
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δ13Cβ are predominantly affected by the conformation of the residue i, which makes them 

robust reporters on secondary-structure propensity. As such, Fig. S5 demonstrates this effect 

on statistical data for each residue type.  

 

Table 1.2. Relative structural contributions to the protein chemical shifts of the given nuclei. ‘+++’ denotes the 
key contribution (≥60%), ‘++’ - medium effects (≥10%), ‘+’ the minor effects (≥1%) and ‘-’ denotes contributions 
that are mainly negligible for this class of atoms (<1%). Data taken from (Han et al., 2011); contributions of 𝛿𝑟𝑐 
are excluded from the summary since they are relevant for peak assignments and not the structural analysis. 
 

Effect 1HN  15N 13Cα 13Cβ 13C’ 1Hα  

𝛿𝑆𝑆
𝑖  ++ ++ +++ +++ ++ ++ 

𝛿𝑆𝑆
−  ++ ++ + + + + 

𝛿𝑆𝑆
+  + + + + ++ + 
𝛿𝜒 - ++ ++ ++ ++ + 

𝛿𝑒𝑙  + - - - - ++ 
𝛿𝐻𝐵 ++ + + + + + 
𝛿𝑠𝑜𝑙𝑣 - + - + + - 
𝛿𝑟𝑖𝑛𝑔 ++ + + + - ++ 

 

The influence of hydrogen bonding parameters and patterns on chemical shifts has been 

extensively investigated by statistical and computational studies, yielding several empirical 

models (Fig. 1.3.4A). Generally, the shifts are negatively correlated with hydrogen bond lengths. 

The data collected on the crystalline amino acids (McDermott and Ridenour, 2002) formed a 

curve parametrized by Harris and Mildvan (1999) as a mixed logarithmic and linear 

dependance of proton chemical shift and the O--H-O distance (Fig. 1.3.4, gray line). Density 

functional theory (DFT) calculations of backbone amide proton shifts for spider silk (P. Holland 

et al., 2013) formed a clear inverse cubic dependence on the H--O distance where coefficients 

differ for extended and 310 helical structures (Fig. 1.3.4A, black solid and dashed lines). A 

thorough study conducted by Parker et al. (2006) used ab initio computations to explore 

behavior of proton chemical shifts for protons in different hydrogen bonding configuration, 

such as structures with and without secondary and tertiary hydrogen bond partners of various 

nature (water, amide or a charged side-chain group. The model was developed on the 

experimental chemical shift and geometrical data on two proteins (protein G, PDB ID: 1IGD, and 

human ubiquitin, PDB ID: 1UBQ) and demonstrated accuracy of 0.3 ppm, outperforming the 

tested prediction frameworks (SHIFTS (Xu and Case, 2001), SHIFTX (Neal et al., 2003) and 

PROSHIFT (Meiler, 2003)). The model (Fig. 1.3.4A, the blue curve) includes increments 

depending on the secondary and tertiary bonding partners ∆𝛿1𝐻(2°𝐻𝐵) and ∆𝛿1𝐻(3°𝐻𝐵), 

backbone dihedral angles (combined into distance 𝑟𝜔 and angle 𝜔 as defined in Fig. 1.3.4; 𝜔 is 

not to be confused with the backbone dihedral angle denoted with the same letter, Section 1.3.1) 



INTRODUCTION – 3. Protein structural biology 

39 
 

well as rotation 𝜌 of the acceptor and H-bond length 𝑟𝑂𝐻 and angle 𝜃 (definitions from (Parker 

et al., 2006) are reproduced in Fig. 1.3.4B):  

 𝛿1𝐻 = 𝛿1𝐻(𝑟𝜔 , 𝜔) + ∆𝛿1𝐻(𝑟𝑂𝐻, 𝜃, 𝜌) + ∆𝛿1𝐻(2°𝐻𝐵) + ∆𝛿1𝐻(3°𝐻𝐵) + ∆𝛿1𝐻𝑟𝑐 (21) 

As shown in Fig. 1.3.4A, C and D, the H-bond length 𝑟𝑂𝐻 and angle 𝜃 provide the greatest 

influence on the baseline shift defined by the first increment 𝛿1𝐻(𝑟𝜔, 𝜔). The authors 

emphasize the importance of energy minimization of the X-ray structures after protonation for 

the reliability on the chemical shift calculations. The model formed the basis of the program 

ProCS (Christensen et al., 2013). 

The available models of the effect of hydrogen bonding on the amide 15N chemical shifts 

primarily include only one parameter, the N--O interatomic distance, which estimates the 

length of the H-bond. The study of Kuroki et al. (1991) based on ab initio calculations of the 

backbone amide nitrogen shielding tensors in BocGly-containing dipeptides revealed the 

negative, non-linear relationship between the N--O distance and the absolute value of shielding 

with the strongest effect on 𝜎11 component (defined as the least shielded direction). In addition, 

Kuroki et al obtained curves representing the effect of the H-bond angle on the nitrogen shift. 

Empirical formulas for neither relationship were suggested. The recent measurement of the 

principal shielding components by Paramasivam et al. (2018) did not confirm the non-linearity 

of the relationship and resulted in linear empirical models for α-helical and β-sheet structures 

for each principal component (the isotropic average is presented in Fig. 1.3.4E, top panel). 

Factors affecting 15N shifts, including the N--O distance, were investigated by Xu and Case with 

DFT calculations. The contribution of the hydrogen bonding to the observed chemical shift was 

fitted using mixed exponential and hyperbolic curves (Fig. 1.3.4E, bottom panel), where 

coefficients depend on the role of the target residue (donor: ‘direct’ bond, black lines; acceptor 

‘indirect’ bond, grey lines) and secondary structure. A combined model including fitting of other 

factors could predict 15N shifts with root mean square difference of 2.27 ppm. 
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Figure 1.3.4. Empirical models of backbone amide chemical shifts δ1HN and δ15N. A: Comparison of the models for 
the amide proton shift as a function of H-bond length presented in the literature (Harris and Mildvan, 1999; Parker 
et al., 2006; P. Holland et al., 2013). In each source, the H-bond length r was defined based on the underlying data 
(see main text). B: Definition of the H-bond parameters of the model for δ1HN presented in Parker et al. (2006). 
The H and N in focus are highlighted in green. The angle H-N--C-O denoted with ω here and in the source is not to 
be confused with the third backbone dihedral angle Cα-C-N-Cαi+1. C and D: Influence of the H – O distance rω angles 
θ, ρ, ω on δHN according to the model of Parker et al. (2006). Note, that rω and ω are co-dependent and a large part 
of the (rω , ω)-space is energetically restricted. Color intensity corresponds to the chemical shift (in ppm). E: 
Influence of H-bonds on isotropic chemical shift δ15N in helices and β-sheets. The models of Paramasivam et al. 
(2018) are calculated as an average  of the models for the principle chemical shift components. Models of Xu & Case 
(2001) describe the difference between the shifts of the bonded and non-bonded nitrogen; the curves are 
calculated for the direct (O=C-N-H--O) and indirect (H--O=C-N-H) bonds in sheets (‘E’) and helices (‘H’). 
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Interpretations of chemical shifts  

Discovery of correlation between chemical shifts and protein structure inspired emergence of 

a multitude of methods for predicting secondary structure and its derivatives (like protein 

flexibility or accessible surface area) from chemical shifts and vice versa, comprehensively 

reviewed in (Mielke and Krishnan, 2009; Wishart, 2011; Nerli et al., 2018). 

 

One strategy to develop understanding of the chemical shift-structure relationships is to try to 

predict the shifts from structural models and compare them with the experiment. The accuracy 

of quantum mechanical (QM) methods is greatly dependent upon the method and the level of 

theory used; their advantage is a particular sensitivity to the relative variations in the nucleus’ 

environment, such as solvation and conformational changes (Sumowski et al., 2014). However, 

the direct QM computation of protein chemical shifts is heavily demanding to the hardware and 

computational time. It motivated development of numerous hybrid methods, which rely on pre-

computed libraries of chemical shifts that can be subsequently used to train the prediction 

models. Such approach is used by programs SHIFTS (Xu and Case, 2001), CheShift (Vila et al., 

2009) and ProCS (Christensen et al., 2013). Despite a good precision of QM methods, i.e. 

consistency of the trends for small structural variations, their accuracy, i.e. prediction of the 

absolute shifts, has long been lower than accuracy of empirical methods, especially for the 

nuclei affected by electrostatic and H-bonding effects (Table 1.2). The inclusion of the dynamic 

factor in the simulations has been demonstrated to greatly improve accuracy (Dračínský et al., 

2013; Kraus et al., 2020). With the advances in computational methodology and hardware, it 

can be foreseen that the QM methods will become more routinely used in many applications.  

The empirical approaches combining sequential and structural information historically have 

outperformed the QM methods by both accuracy and speed. A strategy of combining classical 

equations and structure homology search was found to be efficient and was implemented in the 

most resent chemical shift predictors, SPARTA+ (Shen and Bax, 2010), SHIFTX2 (Han et al., 

2011) and UCBShift (Li et al., 2020). SPARTA+ and UCBShift are powered by neural networks. 

Accuracy of the three methods was compared in Li et al. (2020) and found to be comparable 

with slight superiority of the newest UCBShift: RMSDs of the predicted shifts by UCBShift, i.e., 

H, N, C’ Cα, Cβ, and Hα shifts, are on the level of 0.31, 1.81, 0.84, 0.81, 1.00 and 0.19 ppm, 

respectively.  
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The first methods tackling the inverse task of chemical shift-based structure predictions 

emerged in the early 1990s, as soon as the community accumulated sufficient amounts of data 

(Berjanskii and Wishart, 2017). Empirical approaches have generally been more successful in 

predicting the backbone structure than ab initio computations (Wishart, 2011). The first 

methods focused on qualitative assignment of secondary structure from the set of backbone 

chemical shifts such as chemical shift indices CSI (Wishart et al., 1992; Wishart and Sykes, 1994) 

or Probability-based Secondary Structure Identification PSSI (Wang and Jardetzky, 2002) and 

others (reviewed in Mielke and Krishnan, 2009). Methods of prediction of protein flexibility, i.e. 

absence of defined secondary structure, consequently emerged on the basis of the 

aforementioned routines: as such, the chain flexibility can be estimated by the Random Coil 

Index RCI, (Berjanskii and Wishart, 2006). Machine learning opens the ways to find obscured 

patterns in the shift / structure relationships. A score calculated by the algorithm ShiftCrypt 

(Orlando et al., 2020) is not as easily interpretable as, for example, CSI, but allows aligning 

structures with seemingly different chemical shifts impressively well.  

The program TALOS (Torsion Angle Likelihood Obtained from Shift (Cornilescu et al., 1999a) 

pioneered in “quantitative” predictions by providing the values of dihedral angles and has been 

followed by a variety of other software. TALOS is based on comparison of tripeptide fragments 

with the database by sequence and all available chemical shifts. This statistical analysis in 

TALOS’ successors, TALOS+ (Shen et al., 2009) and TALOS-N (Shen and Bax, 2013) is performed 

by two-layer neural networks; in addition to this and other differences, TALOS-N uses larger 

segments of the sequence and a large database of predicted chemical shifts. While TALOS-N, 

released in 2013, is to-date the latest and arguably most popular dihedral angle predictor, other 

implementations offer unique features and advantages. As such, PREDITOR (Berjanskii et al., 

2006) is able to identify and correct misreferencing of the submitted set of shifts (this function 

was later included in TALOS-N). DANGLE (Dihedral ANgles from Global Likelihood Estimates), 

unlike other algorithms, uses Bayesian inference for each (φ, ψ) combination on a fine (φ, ψ) 

grid with 10° resolution; the procedure resolves clusters of (φ, ψ) combinations (‘islands’) and 

allows to identify residues with multiple possible conformations, in particular reflected in its 

ability to accurately predict the (φ, ψ) angles for glycine and pre-proline residues (Cheung et 

al., 2010; Wishart, 2011). TALOS-N and PREDITOR are able to predict side-chain angles χ1. 

Performance of DANGLE, TALOS, TALOS+, PREDITOR (and two other algorithms not relevant 

for this review) were compared in (Wishart, 2011) on a set of 33 proteins by scoring 

parameters A30(φ/ψ) and ∆(φ/ψ). Both scores reflect the accuracy of the predictions: A30(φ/ψ) 
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is defined as the percentage of residues where both predicted φ and ψ values fall within 30° of 

the observed values (in X-ray structures); ∆(φ/ψ) is the same for the sum of absolute 

differences between the predicted and observed values. PREDITOR showed the best results 

with A30(φ/ψ) = 94% and ∆(φ/ψ) = 85%. 

It is important to note that due to inherent degeneracy of the shift-structure relationships, it 

is fundamentally impossible to develop a chemical shift-based method with absolute accuracy. 

According to D. Wishart, “any method claiming to achieve a prediction accuracy of >90% is 

essentially over-trained and under-tested” (Wishart, 2011). 

1.3.3. Methods of studying protein disorder 

Systems with large degrees of disorder are inherently challenging for any method of structural 

analysis. The “dimension” of heterogeneity, static or dynamic, encodes itself into the measured 

parameters, thereby requiring development and adoption of new experimental techniques and 

novel methods of data analysis.  

Experimental toolbox of protein structural biology  

NMR is one of the three methods in the toolset of structural biology that provide high-resolution 

models. Unlike NMR, the two other methods X-ray crystallography and cryo-Electron 

Microscopy (cryo-EM) determine the atomic-resolution structures by fitting the atoms into the 

3D maps (electron density maps or the maps of electrostatic potential). The resulting models 

reflect the spatial and temporal average.  

X-ray crystallography was the first method that enabled a close look at the atomic-level 

features of molecules. It determines the electron density by analyzing the diffraction pattern of 

X-rays, scattered by the crystal. X-ray crystallography still remains the dominant method of 

protein structure elucidation. To date (April 2023), 85 % of all protein structures deposited 

into Protein Data Bank (RCSB.org, Berman, 2000) were determined by X-ray crystallography. 

Over the years, it has been proven to be a robust and fast structure elucidation technique for all 

molecules and molecular complexes that are able to form large, highly-ordered crystals. Finding 

crystallization conditions is not a trivial task which often requires approaches of trial and error. 

X-ray powder diffraction (XRPD, reviewed in Spiliopoulou et al. (2020)) can circumvent the 

requirement of large crystals to provide medium-resolution (3-10 Å) structures, but it demands 

large amounts of sample for the single measurement and raises the demand for sample 

homogeneity. XRPD is usually limited to simple, single-molecule systems. 

http://www.rcsb.org/
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Cryo-Electron Microscopy uses high-energy electrons as a source to illuminate specimens in 

a very thin layer of vitrified ice using a transmission electron microscope. Cryo-EM exploits the 

strong interactions of electrons with each atom's Coulomb potential to image the sample as well 

as to produce its diffraction pattern. Structure elucidation from the experimental cryo-EM data 

relies heavily on advanced methods of image processing. The 3D cryo-EM density is 

reconstructed from 2D images of randomly orientated single molecules. Thus, while it does not 

require the sample to be crystallized, faithful demands high consistency between the individual 

particles (i.e. sample homogeneity) (Wang and Wang, 2017). 

Several low-resolution techniques can provide a good initial estimate of the protein fold or 

the lack thereof. Scattering techniques such as dynamic or static light scattering (DLS and SLS), 

small angle X-ray scattering (SAXS, reviewed in Kikhney and Svergun (2015) as well as analytic 

chromatography techniques are useful to determine the particle mass, size, and shape, which 

can be further used to infer the protein’s aggregation state in native-like conditions. Circular 

dichroism (CD) reports on the secondary structural content and is widely used to characterize 

residual secondary structure in IDPs.  

Förster resonance energy transfer (FRET) and double electron-electron resonance (DEER) 

are particularly useful techniques to study the dynamic interactions between molecules in the 

complex or the different flexible sites within a single chain. Both techniques can not only 

provide the average property over the dynamic ensemble but deliver a distribution of the 

observable parameter, which facilitates reconstruction of conformational ensembles. Both 

methods require introduction of a pair of labels, attached typically to lysine or cysteine side 

chains. Additional medium-resolution insights regarding the protein fold and dynamics can be 

obtained with methods of hydrogen-deuterium exchange (HDX) mass spectrometry (James et 

al., 2022). 

Manifestation of protein disorder in NMR spectra 

Among the high-resolution methods of structural biology, NMR is by far the most tolerant to 

the static and dynamic sample heterogeneity. Existing NMR techniques cover almost the entire 

range of timescales (Fig. 1.3.5), allowing to approach any system, from the highly dynamic to 

highly rigid ones on multiple levels of organization.  

Manifestation of protein dynamics in the NMR spectroscopic data depends on the timescale 

of motion and experimental conditions, such as spectrometer base frequency and, in some 

solid-state applications, MAS rate (Sections 1.1.2 and 1.1.3). From the chemical-shift 
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perspective, the timescale of the exchange between the two electronic environments of the 

moiety is defined by the difference in the electron shielding at the two states. In other words, 

the definition of the timescale of the chemical exchange depends on the exchange rate and the 

differences of the chemical shifts of the two states (expressed in Hz).  

The ‘fast’ motions, where the difference in resonance frequencies is significantly lower than 

the exchange rate, lead to chemical-shift averaging. Changes in the buffer conditions or 

presence of an interaction partner affects the relative populations of the two states, thereby 

affecting the observed chemical shift. Titration methods can help identifying the residues 

involved in the exchange processes. Alternatively, purely NMR-based approaches can provide 

the details on the relative populations (DEST, dark state exchange saturation transfer (Fawzi et 

al., 2011), or CEST, chemical exchange saturation transfer, (Vallurupalli et al., 2012)) and the 

exchange rates (EXSY, Exchange Spectroscopy, reviewed in (Nikitin and O’Gara, 2019).  

Other NMR methods that provide structural restraints (Section 1.3.2) can be used to extract 

ensemble-average distance or angular information of proteins in solutions and solids. 

Dynamics on timescale faster than chemical exchange can be probed by examining moiety-

specific relaxation rates R1 and R2 and can additionally guide MD simulations (see below).  

 
Figure 1.3.5. Timescales of protein motions and NMR approaches to study them. 
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Static disorder is the other extreme on the timescale of chemical exchange. Sometimes 

several distinct forms are present (Fig. 1.3.6). As such, peak doubling was observed for 

microcrystalline formyl-Met-Leu-Phe-OH (fMLF) tripeptide upon glass transition at 175 K 

(Bajaj et al., 2009). Two forms were observed for microcrystalline arginine hydrochloride 

already upon slight cooling to 286 K (Su and Hong, 2011). A broadened but still distinct second 

peak was observed for the intermediate state of villin HP35 on the folding and denaturation 

pathways investigated by the group of Robert Tycko (Havlin and Tycko, 2005; Hu et al., 2009). 

In their studies, conformational exchange between the folded, intermediate, and denaturated 

states was quenched by rapid freezing of the sample. Another example is the study of freeze-

trapped photointermediates of proteorhodopsin (Becker-Baldus and Glaubitz, 2018). It should 

be noted that multiple resonances of the same site can appear not only due to quenched 

chemical exchange but also due to amyloid (Madine et al., 2008) or crystal polymorphism 

(Harris, 2007). 

The more common situation of trapped chemical exchange is characterized by simultaneous 

presence of an ensemble of structures, occupying a continuous conformational space 

(Fig. 1.3.6B), leading to severe line broadening. The inhomogeneous nature of line broadening 

can be tested by comparing the expected line width expected from the R2 relaxation rate or by 

selectively saturating the frequency of the peak maximum, which would burn a hole in the 

spectrum (as done, for example, for frozen crystals of SH3 domain in (Linden et al., 2011). The 

inhomogeneously broadened peaks are observed in the majority of experiments with dynamic 

nuclear polarization (DNP), which require presence of a paramagnetic agent as a source of 

polarization and a rigid homogeneous medium to achieve uniform polarization transfer. That 

 
Figure 1.3.6. Sketch of NMR peaks of disordered residues. A: distinct forms are present; B: a continuum of similar 
members within a conformational ensemble forms a complex pattern which cannot be resolved. Situation A is 
common for amyloid and crystal polymorphs, trapped folding intermediates (Hu and Tycko, 2010) or different 
rotameric states of immobilized side chains. Situation B is common for trapped dynamic disorder, most notably 
seen in DNP applications. The gray lines represent the observed peaks; the colored lines represent the peaks of 
individual states of the residue. 
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defines the typical sample preparation protocol for DNP experiments, where the protein is 

dissolved in a water-glycerol mixture with the agent and the obtained solution is then rapidly 

frozen, such that formation of water crystals is avoided. Outside frozen solutions, the 

inhomogeneous peak broadening was observed in a frozen microcrystalline sample of SH3 

domain, particularly below 253 K (Linden et al., 2011) and membrane proteins in vesicles 

cooled to 238 K (Su and Hong, 2011). A special case of inhomogeneous peaks are the peaks 

formed by multiple (sometimes also presumably heterogeneously broadened) overlapped 

peaks of the same residue type due to residue-type-specific labelling scheme. This is the case 

for studies on spider silks, rich in poly-Ala and poly(Ala-Gly) motives (Asakura et al., 2013a, 

2013b). Another example can be found in the recent study of α-synuclein disorder in lipid 

bilayers by Uluca et al. (2018), where the collective inhomogeneous peak originated from all 

valines in the chain.  

NMR-based approaches to studying protein disorder  

The inhomogeneous broadening poses a large obstacle for site-specific studies due to severe 

peak overlaps. On the other hand, the inhomogeneous peak broadening contains valuable 

information about the conformational distribution of the flexible sites in the static ensemble, 

and extracting this information is a very attractive goal.  

In the studies of HP35 folding pathways, Havlin et al. (2009) analyzed 2D 13C-13C spectra of 

partially folded HP35 by fitting them to linear combinations of 2D spectra of the folded state, 

the fully unfolded state, and partially denatured mixtures of HP35 fragments. Using this 

method, they were able to show that the unfolding of HP35 did not follow a simple two state 

model. Y. Su and M. Hong (2011) performed a qualitative analysis of relative secondary 

structure content in immobilized membrane proteins. They drew correspondence between 

single-quantum and double-quantum chemical shifts and chemical-shift regions typical for the 

different secondary-structure classes. A more sophisticated approach was taken by H. Heise 

and colleagues. In an early publication, Heise et al. (2005) used Monte-Carlo (MC) as well as 

molecular dynamics (MD) simulations to create a structural ensemble from which they 

predicted chemical shifts using SHIFTX (Neal et al., 2003). The ensemble of structures was then 

reduced by discarding structures whose predicted shifts did not fit into the experimental data. 

The ensembles obtained with MC and MD were evaluated using principal-component analysis. 

A similar strategy was used in a later work by Uluca et al (2018) to reconstruct the 
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conformational distribution of valines in the DNP spectra of α-synuclein with the help of MD 

and chemical-shift predictions by SPARTA+. 

Several strategies exploiting anisotropic interactions have been followed to determine 

conformational and orientational distributions. In the studies of dragline spider silk, the groups 

of T. Asakura and B. Meier used static (no spinning at the magic angle) experiments, originally 

developed for synthetic polymers. They used double-quantum/single quantum (DOQSY) 

experiments (Schmidt-Rohr, 1996) to calculate the relative orientation of 13CO carbon CSAs and 

obtain a probability density of dihedral angles P(φ, ψ) by comparison of the experimental data 

with the simulated DOQSY spectra for a range of backbone dihedral angle combinations (φ, ψ) 

(van Beek et al., 2000, 2002). In addition, they applied the static DECODER experiment, also 

adapted from polymer science (Schmidt‐Rohr et al., 1992), to selectively 13C-labeled silk, to 

determine the orientational distribution of the peptide chain within the fibril macrostructure 

(van Beek et al., 2002). Using a similar strategy for proton-driven spin diffusion experiments 

under MAS, Kümmerlen et al. (1996) determined secondary structures for residue-type-

labelled silk by matching simulated and experimental 2D correlated CSA patterns.  

CSA-based approaches were applied to investigation of the conformational space of folding 

intermediates in the flash-frozen solutions. In the experiments on site-specifically isotopically 

labelled HP35, Hu et al. (2009) also determined (φ, ψ) distributions by measuring the 

correlation of CSA tensors (2DEXMAS), CSA-dependent DQ dephasing (DQCSA) of adjacent 

carbonyls, and 13C-13C dipolar couplings (CTDQFD). Simultaneous fitting of these data to the 

models of the different folding pathways of (φ, ψ) distributions allowed them to determine the 

conformations of the intermediates with high precision.  

Integrative methods of ensemble reconstruction  

The importance of representing proteins as structural ensembles instead of the average 

structure gradually becomes acknowledged by communities of all methods of structural 

biology. New techniques for reconstruction of dynamic disorder have been arising from NMR 

data in solution (eNORA, (Strotz et al., 2017) and solid-state NMR (eRFDR, (Grohe et al., 2019) 

, from electron density (Keedy et al., 2015), and cryoEM maps (Kinman et al., 2023). Extensive 

research based on fusion of the data obtained with different methods has yielded a variety of 

methods of ensemble reconstruction (Bonomi et al., 2017). The methods typically take the 

ensemble-average restraints from liquid-state NMR methods (chemical shifts and, if available, 

RDCs), probability distributions from FRET and SAXS data, and electron densities from cryoEM 
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maps. Integrating the orthogonal restraints turns the otherwise often underdetermined (“ill-

posed”) problem of ensemble determination into a well-determined one. Along with solution 

NMR, solid-state NMR could contribute restraints on trapped dynamic disorder. However, such 

practices have not received wide adoption yet.   
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1.4. Aims of the work 

The present work aims to develop methodology to analyze conformational distributions in 

solid-state samples based on site-specific distributions of chemical shifts. Similar undertakings 

were pursued by Heise et al. (2005) and Uluca et al. (2018) with chemical-shift predictions for 

a set of structures obtained with MD simulations (see above). This work tries to establish a 

more direct translation between the chemical shift to the Ramachandran space using chemical-

shift-based dihedral-angle prediction systems. The resulting (φ, ψ) distributions are compared 

with statistics on chemical shift-structure relations taken from PACSY database. 

Other NMR-based methodology, such as CSA- and spin-diffusion based experiments, is 

severely hampered by low sensitivity and peak overlap. The very successful approach of the 

group of R. Tycko to investigate folding intermediates cannot be easily adapted for longer and 

more complex systems. Peptide synthesis, used to produce site-specifically labelled HP35, is 

not feasible for longer polypeptide chains and entails high costs of sample production. Also, 

site-specific labelling requires preparation of multiple samples with robust, highly 

reproducible sample preparation protocols, which are available for some of the existing 

research targets but would take long to develop for many newfound systems. In this work, 

individual sample sites are resolved in the chemical shift space by increasing spectrum 

dimensionality to 4D in an hCBCANH experiment. The dimensions of Cα and Cβ shifts are 

chosen as the ones most correlated with backbone geometry. Amide nitrogen and protons 

provide additional dimensions facilitating peak dispersion. Moreover, proton detection at high 

MAS rates, which is still a relatively rare technique in solid-state NMR, may boost experiment 

sensitivity, thus mediating the shortcoming of low signal-to-noise caused by heterogeneous 

broadening.  

The full uniform sampling is not feasible for the high-dimensional data due to the high costs 

in measurement time. Non-uniform sampling has been successfully applied to reconstruction 

of NOESY and relaxation series. As a basis for the above subject, suitable conditions for 

acquisition and reconstruction of complex peak shapes that resemble no analytical function 

(Lorentzian, Gaussian or Voigt) are hence identified at first using test data obtained for a 

dehomogenized tripeptide.  

The analysis presented here does not aim to provide a unique ensemble reconstruction. Any 

chemical shift-based approaches are intrinsically underdetermined due to complex structure-
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frequency relationships. Instead, the obtained dihedral angle probability maps distributions 

can be used as restraints on the way toward more comprehensive ensemble determination. 

Additionally, the work seeks to provide quantitative metrics for degrees of disorder before 

the ensemble RMSD is available. Several heterogeneity scores describing the φ, ψ maps of each 

individual residue are suggested and tested for different scenarios.  

The developed approaches to assess conformational distributions are applied to the 

functional amyloid of hydrophobin EAS∆15. The heterogeneity metrics obtained are then 

compared with the trends of the linewidths of heterogeneous peaks.  



 

 

2 | RESULTS AND DISCUSSION  

This chapter presents the author’s contribution to understanding and semi-quantitative 

evaluation of residue-specific static structural disorder in heterogeneous protein samples.  

 

The preparatory part (Section 2.1) evaluates feasibility of non-uniform sampling for spectra of 

heterogeneous samples. The investigation of possibilities of acquiring NMR spectra of 

heterogeneous samples with non-uniform sampling techniques and selection of reconstruction 

procedure are the research contribution of the author, which was published in  

E. Burakova, A. Klein, S. K. Vasa, and R. Linser. Non‑uniform sampling in quantitative 

assessment of heterogeneous solid‑state NMR line shapes. Journal of Biomolecular NMR 

(2020) 74: 71–82 

 

The main part (Section 2.2) investigates ways to analyze conformational distributions in the 

model solid-state sample of a pure u-(15N, 13C)-GGAGG pentapeptide comprising artificially 

introduced heterogeneity. Two approaches, one based on chemical shift predictions and one 

based on database search, are introduced and discussed. In addition, several numerical 

heterogeneity metrics derived from Ramachandran maps are suggested and discussed. This 

research was published in  

E. Burakova, S. K. Vasa, and R. Linser. Characterization of conformational heterogeneity 

via higher-dimensionality, proton-detected solid-state NMR. Journal of Biomolecular 

NMR (2022)  

and is presented in this thesis in revised, restructured and, the author hopes, improved form.  

 

The final part (Section 2.3) applies the developed methodology to residue-specific assessment 

of disorder of a functional amyloid formed by fungal hydrophobin EAS∆15.  The proposed φ, ψ -

based metrics of disorder are compared with the trends formed by 1D linewidths obtained in 

dimensions representing different nuclei. The sample was obtained from Dr. Ann Kwan (The 

University of Sydney), and the NMR data that the approach was subjected to (spectra and 

assignments) were obtained in internal collaboration with Dr. Suresh K. Vasa and 

Prof. Dr. Rasmus Linser.  

The manuscript including this work is in preparation.   
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2.1 Fidelity of reconstruction of non-uniformly sampled 
spectra of statically disordered samples 

Acquisition of high-dimensional data, namely 3D spectra and higher, becomes unfeasible for a 

general case of a protein target: crowded spectral regions on one hand and large spectral 

windows in heteronuclear dimensions on the other hand lead to the necessity to acquire a large 

number of points of the indirect FIDs. Static disorder further complicates the spectra by severe 

peak broadening. In order to achieve sufficient resolution within a reasonable measurement 

time, NMR on homogeneous samples tends to resort to non-uniform sampling (NUS). Extensive 

research of the optimal ways to acquire the data and reconstruct them into the uniform grid 

has been done in the last decades (see Introduction, Section 1.2.2). Whereas it is shown to 

reliably reconstruct complex quadrupolar lineshapes (Rovnyak et al., 2003) and sufficiently 

well preserve intensity ratios in  NOESY spectra (Wieske and Erdélyi, 2021), it has not been 

clear until publication of this work whether the existing algorithms are capable of faithfully 

reconstructing the features of peaks that have been heavily distorted due to sample 

heterogeneity. The following section validates the performance of three algorithms – hmsIST, 

SSA and SMILE – on specifically generated model datasets (see the details on the 

implementation in Section 1.2.2). The data were obtained on a model sample of u-(13C, 15N)-

fMLF powder, artificially heterogenized by freeze-drying from the dissolved state (Materials 

and Methods, Section M.1.1).  

2.1.1. Overall approach 

The reconstruction schemes were tested primarily on 3D datasets. Whereas the main strategy 

of the work (as outlined in Introduction, Section 1.3.4) involves acquisition of 4D spectra, 3D 

datasets are more practical in the sense of file size, while still providing good signal dispersion 

for the tripeptide sample; unlike 2Ds, 3D data are sufficiently robust to the variations in 

sampling density. Moreover, 3D is the most commonly used dimensionality in protein NMR, and 

the evaluation conducted here may best address the general interest for the community. Thus, 

the optimisation of sampling density and reconstruction parameters were done on 3D datasets, 

and 4D data were reconstructed by the three programs only once. 

Unlike in many previous works, where the experiments with different subsampling and 

reconstruction schemes were carried out using simulated datasets, this study is performed on 

the experimentally obtained data to avoid any assumptions about the sample and the peak 
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shapes required to produce simulated datasets. The powder of heterogenized fMLF gave rise to 

a reasonably representative yet not overly complicated set of distorted peaks in an hCONH 

spectrum (Fig. 2.1.1), which is used here as the reference dataset. The spectrum contains three 

groups of signals with a high dynamic range: the severely broadened and smeared out 

formyl/methionine crosspeak of the lowest overall height along with a small round signal at 

δ15N = 128 ppm; the leucine/methionine group of two or three broad, overlapped ellipsoidal 

signals with different skew in the three dimensions of high to medium intensity; lastly, the high-

intensity phenylalanine/leucine crosspeak of a standard ellipsoidal shape (Fig. 2.1.1A-D). The 

groups are labelled according to the assignments obtained for microcrystalline fMLF. From the 

study of Bajaj et al (2009), one can infer that the extra signal of the L/M group (centered at (8.0, 

170, 120) ppm) likely belongs to an additional conformation of methionine. Assignment of each 

group component (overlapping NMR peak) requires collecting additional data; however, the 

nature of the peak broadening and the exact composition of the sample are not relevant for this 

particular study. The range of peak inhomogeneity, in combination with overall sufficient 

resolution and signal-to-noise ratio makes this spectrum a well-suited test case. 
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Subsampling from uniformly sampled spectra 

The non-uniformly sampled datasets were created by subsampling the time-domain points 

from the uniformly sampled (US) dataset (Materials and Methods, Section M.3.1). This is a 

practical choice when working with the experimentally acquired data as opposed to the 

prevalent strategy of comparison between time-equivalent data, generated by reduced numbers 

of scans or addition of random noise to the more densely sampled datasets (as in (Hyberts et 

al., 2013). Comparison of uniformly sampled and reconstructed datasets requires raw data to 

be highly consistent. Recording an array of experiments with varying sampling density could 

potentially introduce inconsistencies due to drift in the magnetic field, changes in probe tuning, 

and varying thermal noise patterns for different datasets. Subsampling from the US datasets 

makes it possible to attribute any differences between the reconstructed spectra and the 

reference data directly to the reconstruction process. The artifacts introduced by the various 

reconstruction methods depend on the sampling schedule (namely, number and distribution of 

points), so emulation of time-equivalent datasets by addition of noise to the reference data 

would not be straightforward.  

 
Figure 2.1.1. The hCONH spectrum of the dehomogenized fMLF sample. A: 3D view of the spectrum and assigned 
2D projections onto B: the N/C, C: H/C, and D: H/N plane. The data were obtained at 55 kHz MAS in a 1.3 mm rotor 
at 700 MHz proton Larmor frequency. The two-letter labels reflect the assignments (first letter: residue i, H and N 
dimensions; second letter: residue i-1, CO dimension) of the main fMLF conformation as taken from the 
microcrystalline data and may or may not reflect the assignments of the newly emerged peaks. E: Cross sections 
through the peak maxima of the peaks  
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The subsampling was done with the home-made Python script (Materials and Methods, 

Section M.3.1), which extracts FIDs from the raw measurement file (ser for Bruker data) 

according to the defined schedule. Both hmsIST and SSA were run on the data subsampled by 

the Poisson-Gap sampling scheme (with sinusoidal weighting parameter SSW=2, explicitly 

recommended for hmsIST by its developers (Hyberts et al., 2012). Since for SMILE fully random 

schedules have been proven the best (Ying et al., 2017), it was run on randomly sampled FIDs). 

Reconstruction of alternatively sampled datasets (Poisson-gap for SMILE and random 

schedules with and without Gaussian weighting for SSA) yielded substantially worse outcomes 

(see examples for SMILE in Fig. S6). 

Quantification of similarity between the spectra  

In order to be able to compare the obtained spectra objectively, the simple measure of root 

mean square difference (RMSD) was applied to the pairs of spectra. The RMSD is a widely used 

score of similarity of multidimensional objects, applied, e.g., to series of structure obtained in 

MD simulations or NMR structure calculation. As a metrics of spectral similarity, the RMSD has 

been used by Wei Qiang et al. (2017) for quantification of variations between 2D spectra of Aβ 

fibrils. For the pair of spectra (frequency-domain data) the RMSD was calculated as: 

  𝑅𝑀𝑆𝐷 = √∑ (𝐼𝑖1 − 𝐼𝑖2)2
𝑁
𝑖=1 𝑁⁄  , (22) 

where 𝐼𝑖1 and 𝐼𝑖2 are the intensities of the 𝑖-th point (pixel) in the datasets 1 and 2, normalized 

by maximum intensity; N is the total number of points in the spectrum. The potential danger of 

using RMSD is that it could be strongly perturbed by artifacts at the border of the spectrum 

(upon States-TPPI acquisition mode) which would easily be recognizable by a spectroscopist 

and hence would not constitute a real problem. No such distinct artifacts far away from the 

obvious peak areas were observed (neither for US nor for NUS data), however. Conversely, if 

such artifacts were present, the spectra would need to be trimmed accordingly. The artifacts 

within and in proximity to the peaks, in particular within the reconstructed spectra, explicitly 

need to be taken into account: In applications focusing on sample conformational distributions, 

the exact features of the heterogeneously distorted peaks are of importance, and contributions 

like the chosen point-spread function will be inseparable from the conformationally defined 

peak features. Again, ridding the peaks from the artifacts by deconvolution is barely an option 

because features of the underlying chemical shift are unknown a priori. 

Since the intensity of the points (pixels) in the spectra range from 0 to 100 %, the RMSDs can 

be understood as the average of relative deviations for the individual spectral points. In the case 
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of the uniformly sampled 3D HNCO, the highest peak height has a signal-to-noise ratio (SNR) of 

204 (see processing details in Materials and Methods, Table M1.1). Accordingly, the lowest 

contour level depicted in the figures (drawn at 10% of the highest intensity in the spectrum) 

represents a SNR of 20. The noise level was estimated as the standard deviation of signal-free 

data points in 1D slices of the direct dimension (Fig. 2.1.1E). 

Important details of  reconstruction procedures  

Whereas some algorithms (within the selection tested here, this refers to hmsIST) have only 

few adjustable parameters that do not require optimization, some algorithms (here, SSA and 

SMILE) include parameters that can significantly influence the reconstruction quality. As such, 

in SSA there are two essential parameters: the Threshold T, the minimal SNR for a data point to 

be acknowledged as a peak maximum, and the Joint Threshold J, the SNR at the border of the 

peak frame. Analogously to J, SMILE parametrizes the data with nSigma, which defines the 

threshold above which all the points considered belong to a peak (SNR of the point must be ≥ 

nSigma). Optimization of those parameters (Materials and Methods, Section M.3.1) was done to 

minimize the RMSD between the reconstruction result and the US spectrum. As demonstrated 

in Figs. M2 and M3, the choice of parameters greatly impacts the quality of the reconstruction 

outcome. 

In hmsIST, the only parameter that affects the depth of the reconstruction is the number of 

iterations; it has been shown by Hyberts et al., (2012) that the necessary and sufficient number 

of iterations to recover a signal of SNR = 2 is 250 (where SNR is estimated as the standard 

deviation of noise).  

2.1.2 Results 

Reconstruction of the 3D data 

The datasets were subsampled with 2, 5, 10, 30, 50, and 90% density, corresponding to 21, 105, 

315, 525 and 945 points. According to the rule 𝑚 > 𝐾 log(𝑁/𝐾), where 𝑁 is the total number 

of points in the US spectrum and 𝐾 is the number of “significant points” (see Section 1.2.2), the 

theoretical minimal number of points 𝑚  required for faithful reconstruction for the hCONH of 

a homogeneous fMLF would be as little as 16, which corresponds to about 1.4% sampling 

density. This very rough estimation is done assuming 𝐾 = 7 (one ‘significant’ point per F/L 

peak, three points per M/L and three per f/M groups); however, such estimation is more 

complex to make for the “real” targets – biologically relevant, statically disordered samples. The 
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resulting 3D data are represented by 2D H/C ‘skyline’ projections in Fig. 2.1.2. Apart from 

(expectedly) correct reconstruction of peak positions, we also observe a remarkable similarity 

for the inhomogeneous features of the peaks between the uniformly sampled spectrum and the 

spectra reconstructed from the dense datasets. Generally, the artifact level increases for lower 

sampling density, which becomes obvious in particular for lower-intensity regions of the peaks. 

A numerical comparison of these spectra with the uniformly sampled source data set via RMSD 

is shown as heatmaps in Fig. 2.1.3. 

As has been noted (Hyberts et al. 2012), hmsIST can handle data sets recorded with 

relatively low density; this seems to holds true for the given 2 % dataset, which could be 

reconstructed to a spectrum of decent quality (RMSD of ca. 0.007, Figs. 2.1.2 and 2.1.3). By 

contrast, very poor reconstruction is obtained for the lowest density of 2% using the other two 

algorithms: at such a low density / number of points, SSA seems to misestimate the peak widths, 

and SMILE overestimates the number of signals while failing to recover the f/M peak. This 

results in particularly high RMSDs for the 2 and 5 % datasets. Data of good quality is generally 

obtained for 30 % and higher sampling density. Notably, unlike the cases of hmsIST and SMILE, 

in case of SSA increasing sampling density does not monotonously increase the quality of the 

spectrum. The 50 and 90 % density spectra, which are very close to the source data, seem to 

deviate more strongly from the reference than the 30 % sampled data set. Visually, this also 

becomes obvious due to the weak f/M peak disappearing (Fig. 2.1.2, panel SSA). 
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Figure 2.1.2. The effect of sampling density on the quality of reconstruction of the NUS datasets performed with 
the three algorithms: hmsIST, SSA and SMILE (see main text and Materials and Methods for details). The datasets 
were created by subsampling from the uniformly sampled 3D hCONH spectrum of dehomogenized fMLF powder 
(Fig. 1.2.1), the 3D spectra are visualized by H/CO projections. The lowest contour levels represent 10% of the 
highest signal intensity and succeed with a factor of 1.1. 
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Application to the 4D data 

For proof of principle, the performance of all the considered techniques is demonstrated on a 

4D hCOCANH spectrum (Fig. 2.1.3). Note, that in this particular case, owing to sensitivity 

considerations for this relatively insensitive experiment, US and NUS data sets were recorded 

as separate experiments, using generous 5 % sampling density for the NUS spectrum. Due to 

the time requirements of 4D US spectra, the US spectrum was recorded with half the number of 

scans and the T1 relaxation delay being reduced compared to the NUS data, leading to a slightly 

lower detection sensitivity for the individual scans. Thus, opposed to the arrays of the 

reconstructed 3D data, an absolute identity of the NUS and the reference US data set cannot be 

expected here. However, the absolute intensity of the whole spectrum is not in focus. The total 

experimental time for US and NUS data compares as 4.5 d and 18 h, respectively. The RMSD of 

the spectrum reconstructed with hmsIST and SSA is equal to 0.017 and 0.035 respectively; note, 

that the values cannot be directly compared to the numbers obtained for the 3D datasets due 

to lower sensitivity of the experiment and thus relatively high noise in both US and NUS data 

(compare 1D traces in Fig. S6A). The SSA and SMILE parameters for 4D spectra were not 

optimized in such a thorough and systematic fashion as it was done for the 3D data sets; instead, 

realistically representing the application of the methods, a parameter estimation was based on 

the previous experience with the 3D data. Since the choice of a Poisson-Gap schedule has been 

shown not be ideal for SMILE reconstruction previously (Ying et al. 2017), these data are not 

representative and thus only shown in the Supplement (Fig. S6B).  

 
Figure 2.1.3. RMSD between US and NUS (subsampled) 3D HNCO spectra of dehomogenized fMLF, reconstructed 
with hmsIST, SSA and SMILE (see labels); the annotated values on the map have been multiplied by a factor of 10 
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Unlike in the inter-residual hCONH correlation, in the hCOCANH correlation, the ‘M’ group 

has the highest intensity, while of the ‘L’ group (split into the two lowest-intensity peaks, with 

a δ1H of 9.0 and 8.7 ppm, respectively) barely reaches a signal-to-noise of 2 in the US spectrum. 

This low-intensity region is poorly reconstructed by both hmsIST and SSA. However, it is 

obvious that SSA has difficulties in artefact removal both, in the proximity of the peaks and in 

the “empty” spectral space, resulting in a heavily distorted dynamic range (the contours in 

Fig. 2.1.4 depict 10% of the projection’s maximum intensity). These data altogether clearly 

motivate the choice of hmsIST as the reconstruction algorithm for inhomogeneous peak shapes. 

2.1.3. Discussion 

Since the series of the 3D NUS datasets were subsampled from the uniformly sampled one, 

we consider the latter as an ideal case. Correspondingly, the quality of reconstruction is to be 

taken as better whenever the RMSD between US and NUS spectra decreases. For comparison of 

 
Figure 2.1.4. Projections of uniformly sampled and 5% sampled 4D hCOCANH of the dehomogenized fMLF powder 
reconstructed by hmsIST and SSA. The US spectrum was recorded with half as many scans per FID and a reduced 
recycle delay in 1/6th of the experimental time. See Materials and Methods, Table M1.2, for acquisition and 
processing details. In the plots, the first contour levels (10% of the maximum intensity within the 
spectrum) represent a SNR of 1.4 for the US spectrum, 3.19 for SSA, and 15.4 for hmsIST reconstructions. 
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individual peak shapes of nD objects sophisticated procedure have been described, e.g., in 

Chang and Kimia (2011). However, as a quantitative metrics of reconstruction quality, RMSD 

values are rather intuitively comprehensible, and the procedure allows a quick and 

straightforward numerical comparison. Alternatively, RMSD could be calculated separately for 

the individual peak boxes and the “empty space”, but ultimately, similar results are anticipated. 

Numerical comparison by RMSD helps grasping the overall level of remaining artifacts that can 

be otherwise missed in the visual assessment of the multidimensional space.  

For the series of the 3D data, an RMSD of 0.7% (Fig. 2.1.3) and lower is considered as 

corresponding to good quality of reconstruction; RMSD of 0.7–1% would reflect a decent 

reconstruction, RMSDs that exceed 1% correspond to spectra with a significant level of 

artifacts. The highest RMSDs (over 3%) reflect the strong deviations for the case of 2% sampled 

data processed by SSA and SMILE. Compared to the visual impression, the latter numbers still 

appear relatively low owing to the large “empty space”, in which both reference and 

reconstructed data have close-to-zero intensities, thus a low level of absolute deviation. 

The 3D spectrum of the test sample of the low molecular weight tripeptide provided much 

larger signal-to-noise of the individual FIDs then it would be expected in a regular experiment. 

The estimated measurement time needed to record the 2% subsampled dataset of ca. 11 min is 

equivalent to a few days of acquisition in case of a 60-residue protein, allowing the 3D US 

dataset to be subsampled. The poor site-specific sensitivity of the 4D experiment can be 

attributed to low CP transfer efficiency for the N-terminal residue, owing to remaining 

dynamics in the unfavorable intermediate timescale or other factors. In real-case studies, the 

general sensitivity of the experiment can be boosted by optimization of sample temperature, 

magnetization transfers (with, for example, optimal control strategies (Tošner et al., 2018), or 

simply recording more scans.  

Generally, the quality assessment conducted in the present work can neither be fully 

comprehensive nor representative for all possible NMR scenarios of possible future 

applications. Specifically, the reconstruction parameters used could potentially be optimized 

further. The study, however, conveys a positive message that the shapes of heterogeneously 

broadened peaks can be reconstructed given enough signal-to-noise (linked to the intrinsic 

sensitivity of the pulse sequence) and signal-to-artifact ratio (linked to the number of sampled 

points).  
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2.1.4. Conclusions 

Feasibility of non-uniform sampling of NMR data on samples with a high degree of static 

disorder has been tested on 3D datasets, subsampled randomly or using Poisson-gap sampling 

schemes at 2-90 % density. The full data were reconstructed using three conceptually different 

algorithms: hmsIST, SSA and SMILE. All three in fact prove to be capable of handling complex 

peak shapes in multidimensional NMR spectra when sufficient number of points are sampled. 

hmsIST, representing the methods which do not make assumptions about the Lorentzian shape 

of peaks, expectedly performs most robustly for reconstructing the complex peaks both in 3D 

and 4D data; however, also SMILE and SSA provide good results on the 3D datasets of 30 % 

density and higher. For very low sampling density/data quantity, all methods are pushed to 

their limits, where different advantages and disadvantages of any method can be observed. 

Overall, however, non-uniform acquisition for NMR experiments on heterogeneous samples 

can reliably reconstruct the inhomogeneous patterns in an undistorted fashion. Any 

information content lying in the inhomogeneous contribution can thus faithfully be obtained in 

future higher-dimensionality studies based on NUS, given that parameters are chosen 

appropriately. 

 



 

 

2.2 Development of analytical approaches on a model 
sample  

2.2.1 The overall strategy  

Heterogeneously broadened signals in NMR spectra require as much dispersion as possible. 

Without selective isotope labeling, which is often expensive and requires multiple consistent 

sample preparations, the only way to achieve this is introducing additional spectral dimensions. 

As discussed in Introduction, Section 1.3.2, the chemical shifts of 13Cα and 13Cβ carbons are the 

most sensitive to backbone dihedral angles. Although the relation between amide nitrogen 

chemical shifts and backbone conformations is more complex, they may serve as additional 

reporters and provide large chemical-shift dispersion. Proton detection is beneficial for 

experiment sensitivity, therefore the magnetization should ultimately land on protons 

(Introduction, Section 1.2.1). These considerations lead to the choices made here, in particular 

to employ a version of a 4D hCBCANH experiment, the magnetization transfer elements used 

here, as well as their particular arrangement (out-and-back vs. straight-through variants). This 

composition of the pulse sequence would need to be optimized for the individual sample. 

The reasonable strategy of acquisition of the 4D NMR data suggests non-uniform sampling. 

The choice of hmsIST as the reconstruction algorithm and Poisson-gap schedule is suggested 

on conclusions of the previous Section 2.1.  

Based on the statistics of chemical shifts and the examples from the literature (Uluca et al., 

2018), the general shape of heterogeneous peak is expected to be uneven and distorted. Hence, 

the problem of deconvolution is expected to be generally underdetermined. Introducing 

additional constraints requires assumptions about the number of components and their 

relative intensity (i.e., concentration of individual conformers in the sample), but the physical 

basis for them is unclear. Thus, a peak should be treated as the whole rather than a set of 

components.  

2.2.2 The model sample 

The test NMR spectrum for methods development was obtained from a sample of a u-(13C, 15N)-

GGAGG pentapeptide. The primary sequence was chosen such that no aromatic or hydrogen-

bonding moieties would complicate the analysis of the chemical-shift patterns by long-range 

modulations; absence of all but one sidechain group would ensure the highest possible 
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variability of backbone conformations. The snapshot of the conformational ensemble was made 

by flash-freezing and subsequent freeze-drying. High vacuum (10 mbar) upon freeze-drying 

allowed for the complete removal of water (no water peak is present in 1D proton MAS spectra, 

data not shown), thereby excluding all contributions to the NMR peaks from the potential 

differences in hydration shell. Intermolecular peptide-peptide contacts however, arise, but 

their manifestation is expected to be largely limited to the 15N and 1H dimensions rather than 

13Cα and 13Cβ shifts. For the purpose of the present study, it is reasonable albeit not entirely 

vigurous to ignore all contributions to the 4D hCBCANH peak other than conformational 

differences.  

Acquisition and processing parameters of the NMR spectra are listed in Materials and 

Methods, Tables M.2.1 and M2.2.  

The 13Cα/13Cβ crosspeak in a carbon-carbon correlation (Fig 2.2.1A) appears severely 

broadened, as expected: The linewidth in both dimensions is larger than 280 Hz, whereas the 

expected homogeneous linewidths at the given B0-field, MAS rate and digital resolution amount 

to about 80 Hz. Statistical data superimposed on the carefully referenced spectrum confirms 

the presence of multiple conformers: the peak shape resembles the bean-like shape of the 

chemical shift distribution from the database (Fig. 2.2.1B).  

 
Figure 2.2.1. 13C–13C 2D DREAM correlation of an inhomogeneous sample of a GGAGG pentapeptide after freeze 
drying. A: Full spectrum (line broadening coefficient LB = 20 Hz). B: Overlay of Cα/Cβ Ala cross-peak (black 
contours, with exponential line broadening of 150 Hz) with expected chemical-shift regions adopted by different 
kinds of secondary structure. These entries are color-coded by their secondary-structure class according to the 
STRIDE classification (Frishman and Argos, 1995) with simplification: class “helices” includes alpha-, 3–10 and π-
helices (H, G and I). The class “extended” includes entries classified as E; “other” structures include the remaining 
T, B and b classes. Contours start from 4% of absolute intensity and increase with a factor of 1.2. Random-coil 
chemical shifts result from fast averaging of different conformations in solution and have been omitted here 
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2.2.3 Predictions of collective (φ, ψ) distributions driven by 
prediction algorithms 

Existing dihedral-angle prediction software, although based on different implementations, 

generally use similar overall approaches (see Section 1.3.2). Here we involved two of the most 

recent programs as such engines, TALOS-N (Shen and Bax, 2013) and DANGLE (Cheung et al., 

2010) utilizing different principles.  

TALOS-N, a successor of the earlier programs TALOS and TALOS+, is the most popular 

program for the chemical-shift-based dihedral-angle predictions. The system predicts residue-

wise Ramachandran maps at 20° resolution with an artificial neural network ((φ,ψ)-ANN), 

which was trained on a relatively small curated dataset of 580 X-ray structures and their 

experimentally obtained chemical shifts. The subsequent steps of TALOS-N evaluate the quality 

of these predictions and derive the most likely combination of φ and ψ angles. The presented 

approach to the evaluation of heterogeneity takes only the φ / ψ probability distribution maps 

from TALOS-N obtained by (φ,ψ)-ANN. All further program output is discarded.  

DANGLE uses a different underlying mechanism of prediction. Like TALOS-N, it takes 

pentapeptide fragments of the chain and searches for similar fragments. For the likelihood 

estimate, instead of an ANN, it relies on Bayesian inference of the probable (φ, ψ) combinations 

from the data of pentapeptide fragments of 500 X-ray structures (Lovell et al., 2003). The 

Ramachandran space is sampled with a matrix as fine as 10° per bin (360 × 360 points 

combined into bins of 10 × 10 points each).  

The diagram of the workflow is presented in Fig. 2.2.2. The 4D hCBCANH peak assigned to 

the residue of interest (ROI) is subsampled into 4D grid coordinates with individual pixel 

intensities. Deconvolution of the hypervolume is specifically avoided, as in the general case this 

problem is underdetermined, so no unique solution would be found. All points of the resulting 

(4+1)D array that have an intensity below a given threshold (here: 20% of the peak maximum 

intensity, corresponding to the SNR = 15) are discarded. The grid must have sufficient 

resolution to retain the peak’s features, at the same time increasing the number of points per 

dimension makes processing much longer. We consider this condition to be fulfilled when the 

distance between the neighboring grid points in each dimension is no larger than half the 

distance between the modes of the chemical shift clusters which correspond to particular areas 

on the (φ, ψ) map. Thus, in general, the grid resolution depends on the residue type. (See shapes 

of residue-wise chemical shift distributions on Fig S4.) In this work, the resolution in 1H, 13Cα, 

13Cβ and 15N dimensions was set to 0.4, 1.0, 1.5 and 1.5 ppm, respectively, yielding a five-
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dimensional array of 1407 points. To determine the distributions, the curated PACSY database 

was used (state on Dec., 28th 2022). The choice of PACSY over the TALOS database was 

motivated by the larger number of 3D structures (7557 compared to 580), regular updates and 

the presence of not only crystal but also solution state NMR structures. The curation procedure 

and cluster analysis of PACSY was published in Fritzsching et al. (2016). Curation was 

performed by discarding proteins with presumably misreferenced NMR data; those entries are 

labeled as not passed by the Purging by Intrinsic Quality Criterion (PIQC = 0 in the table 

SEC_CS_DB.txt). The pivotal “ideal” chemical shifts are defined as modes of each secondary 

structure cluster and were taken from the table CS_STATS_DB.txt. 

 

The structural context of the ROI, i.e., the secondary-structure propensity of its direct 

neighbors, manifested in chemical shifts, influences the prediction of the φ / ψ distribution of 

the ROI itself. In both, TALOS-N and DANGLE, the pentapeptide fragments are compared based 

on sequence and similarity of the chemical shifts of all five residues. This is highly reasonable 

in case of analysis of solution state peaks of a single conformation or conformational average, 

where solely the position of the peak maximum is considered. In the case of heterogeneous 

fragments of a protein chain, the sequentially connected peaks represent distributions of 

chemical shifts rather than a defined chemical-shift combination. Ideally, the features of the 

 
Figure 2.2.2 The workflow of heterogeneity analysis based on dihedral angle prediction software: here, TALOS-N 
and DANGLE. A: Sampling of the 4D hCBCANH peak of the Residue-Of-Interest with the regularly spaced grid. B: 
Translating the grid over ROI peak onto chemical shift distribution of the ROI’s neighbors and preparing outputs; 
C: executing the dihedral angle prediction algorithm for every point; D: summarizing the predictions. 
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sequential peaks could be linked by interresidual experiments in the same manner as the peak 

maxima during a regular backbone walk. In practice, however, such experiments suffer from 

low sensitivity, and retrieving the interresidual correlation is almost always possible for the 

peak maximum only and not for the entire peak. Therefore, it seems the most reasonable to 

artificially generate those shifts for the neighboring residues that retain the secondary-

structure propensities of each ROI pixel. The latter is ensured by scaling and translating the 

grid of ROI chemical shift according to residue type-specific parameters, i.e. width and position 

of the chemical shift distribution applicable for the residue type of the neighbors (Fig. 2.2.2B). 

The distribution widths are represented by the distance between the modes (or “ideal” values, 

as named in Fritzsching et al., 2016) of the α -helical and β-sheet chemical-shift distributions, 

which are atom- and residue-specific.  

For the test of TALOS-N performance, we artificially extended the sequence of the model 

peptide by two virtual glycine residues such that the pentapeptide becomes a heptapeptide – a 

fragment of the same size as the fragments of the database. Although from the description of 

the algorithm, no differences in the resulting 18 × 18 (φ, ψ) maps are anticipated, because the 

predictions are supposed to be based on the pentapeptide fragments only, some minute 

differences were found (Fig. S8A). The workflow was carried out for the extended sequence. 

Obviously, no artificial adjustments of the sequence would be needed for the real sequences in 

future applications. DANGLE uses for analysis only the pentapeptide window, so no sequence 

adjustment is necessary for GGAGG. 

The grid that samples the 4D peak volume is shown in Fig. 2.2.3A (as two orthogonal 2D 

projections). To obtain a better feeling for the ensemble of points and predictions, five samples 

were taken from the array: one sample from the α-helical region (Point 1), two points from the 

sheet-like area (Points 2 and 4), one sample from the third corner of the triangular peak (Point 

3), and the peak maximum (Point 5). Their TALOS-N predictions are displayed in Fig. 2.2.3B. As 

expected from the shape and size of the alanine hCBCANH cross-peak, the individual 

predictions cover the entire allowed Ramachandran space. Both Point 2 and Point 4 represent 

the extended conformation, where Point 2 yields a larger width of the probability density 

function (PDF) along the φ dimension. Point 1 yields predictions of helical propensity of both 

types, right- and left-wound. Given the primary sequence and absence of neighboring side-

chains, the presence of such structures seems highly sensible; moreover, chemical shifts of the 

left- and right-handed helices are poorly distinguishable (Fig. S5).   
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Figure 2.2.3. Individual and collective predictions of (φ, ψ)-PDFs made by dihedral-angle prediction software. A: 
Grid points within the peak (black crosses) and a selection of five test cases (“Points 1-5”, bold black crosses) 
overlaid onto orthogonal projections of the 4D peak (Cα/Cβ and H/N projection, left and right respectively); B, C: 
Predicted PDF for the aforementioned grid points as well as the collective, weighted-average PDF obtained with 
TALOS-N (B) and DANGLE (C). The PDFs are normalized by their maximum, brightness reflects the relative bin 
hight: white for 1 and black for 0. 
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Indeed, the chemical shifts observed for the left-handed structures occur in the same regions 

as their “conventional” counterparts, which can be illustrated by the statistics for the helical 

regions from PACSY (Fig 2.2.3). It is important to note that left-handed conformations formed 

by some other residue types (D, N, K, R) cluster in the chemical shift space as seen in Fig. S5. 

This should be investigated more closely in future statistical studies: Such segregation can be 

caused by the influence of the context of the primary sequence (for example, the context of 

proline-rich chains). The influence of the primary sequence on TALOS-N predictions with 

regard to the direction of winding is illustrated by an experiment (Fig. S8) where the glycine 

chemical shifts are translated to those of leucines, preserving the secondary structure 

propensity (as described above and sketched in Fig. 2.2.2B). The predictions for the LLALL and 

LLLALLL chains indeed closely resemble those for the GGAGG and (G)GGAGG(G), with the 

difference that the probability density in the right-handed helical region is now totally absent. 

Point 5 – the peak maximum – is located in the central region of overlapping tails of 

distributions of the two major classes (H and E), and in the center of the “Other” structures, 

dominated by residues involved in turns T (Fig. 2.2.1B). This element is labeled as “dynamic” 

due to very high proximity of all the four chemical shifts to the tabular random coil values 

initially determined for highly flexible structures under denaturating conditions (table 

randcoil.tab from the TALOS database). This map, however, differs from the distribution of 

random coil structures (Fig. S4), which is likely influenced by neighboring glycines: the 

experimental evidence for π-helices formed by GGAGG in solution (Ding et al., 2003) supports 

this bias towards helical structures.  

The collective prediction for the entire chemical shift space occupied by the peak is obtained 

by summing up the 1407 individual TALOS-N outputs, weighted by the intensity of the NMR 

peak at the position of the grid point: 

 𝐷𝑘 = ∑ 𝐷𝑘𝑖𝐼𝑖
𝑁
𝑖=1 , (23) 

where 𝐷𝑘 is the probability density for each (φ, ψ) combination 𝑘 on the Ramachandran map, 

𝐼𝑖 is the NMR intensity at the position 𝑖 from the 4D peak volume (“grid point”), and 𝑁 is the 

number of grid points. The collective Ramachandran map covers almost the entire allowed 

Ramachandran space (the panel “Collective” in Fig. 2.2.3B), which matches well the expectation 

of a conformational snapshot of a flexible polypeptide chain. High probability density is 

observed for “turn-like” and helical regions each, whereas sheet-like grid points (like Points 2 

and 4) eventually contribute very little to the final picture.  
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The same evaluation of subsamples from the peak was performed with DANGLE as a 

dihedral-angle prediction engine. The 1407 assignment tables with glycine shifts being 

adjusted for equivalent propensity were rewritten in DANGLE input format and subjected to 

the algorithm; the results are shown in Fig 2.2.3. Noteworthily, the ROI neighbors’ chemical 

shifts were found to be a decisive factor: without adjustment of the 𝑖 ± (1,2) shifts for 

equivalent propensity (as discussed above and shown in Fig. 2.2.2), DANGLE, unlike TALOS-N, 

yields identical (φ, ψ)-maps for any chemical-shift combination of the central residue (data not 

shown). Since DANGLE does not apply any Gaussian smoothing to the predicted maps, they 

appear significantly different from the ones generated by TALOS-N – for the same reason, the 

two outcomes shall not be quantitatively compared (see below, Section 2.2.5). To make the 

qualitative comparison easier, the resolution of the original DANGLE maps was lowered to 20° 

per pixel as in the TALOS-N maps, keeping the raw high-resolution data (Fig S9). Apart from 

Point 2, results are quite similar if the direction of winding is neglected the maxima of the 

predicted PDFs differ only by a systematic shift of +20° along the ψ axis of DANGLE predictions 

 
Figure 2.2.4. Overlap of chemical shift distributions of A: left- and B: right-handed helical conformations of amino 
acid residues illustrated by alanine entries of PACSY database. Residues belonging to the proteins not passed PIQC 
as well as classified by STRIDE as random coil (“C”) are excluded.  
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(see the high-resolution maps Fig S9). The DANGLE PDF for Point 2 is concentrated in the 

helical zone (φ=-90°, ψ=-30°), creating the only major discrepancy among the test points. This 

might result from the upfield-shifted amide H and N chemical shifts, although such strong 

influence from these nuclei is unexpected. The predicted (φ, ψ) combination for Point 5 falls 

into the most intense region in the TALOS-N map, yet the DANGLE prediction is strikingly 

unambiguous despite the overlap of chemical-shift distributions of all secondary structure 

classes at Point 5 and despite the general tendency of DANGLE to yield multi-island diagrams 

for dynamic residues (Cheung et al., 2010). The collective maps obtained in both TALOS-N and 

DANGLE workflow are in good agreement. 

2.2.4 Evaluation of the predicted maps by database analysis 

The dihedral-angle prediction frameworks provide a thorough statistical analysis of each 

chemical-shift combination and sequential context and generally yield accurate and mutually 

consistent results. In the situation where the validation by a truly orthogonal physico-chemical 

method is close to impossible (see Introduction, Section 1.3.3 as well as Discussion below), it is 

helpful to have an overview of the data accumulated hitherto to be able to verify the prediction 

results at least generally or resolve discrepancies, if any.  

A plethora of relational tables can be obtained from the ReBoxitory at NMRbox (Maciejewski 

et al., 2017). The data base on ReBoxitory is crude and requires more efforts to process but 

preserves many more structural properties, such as residue numbers, and experimental 

parameters. 

PACSY (Lee et al., 2012) relates the lowest-energy protein tertiary structures from the 

Protein Data Bank (PDB) along with the residue-wise secondary structure assignments (by 

STRIDE, Frishman and Argos, 1995) and their chemical shifts from the Biological Magnetic 

Resonance Data Bank (BMRB) (Hoch et al., 2023). As of March 2023, PACSY contains 7557 

proteins (alanine data available for 5088 proteins), among which at least 4131 structures are 

obtained from solution NMR data. Discarding of proteins with presumably misreferenced 

chemical shifts (PIQC, Fritzsching et al., 2016) retains about 88 % of proteins as meeting both, 

the Intrinsic Quality Criterion and having the complete set of backbone assignments.  

From the cleansed database, all residues (here, alanines for the analysis of the Ala in GGAGG) 

classified as random coil (‘C’) were further excluded from the pool. Presumably, this class 

includes only residues visible in solution NMR: disordered chains are usually barely observable 

in solids by any physico-chemical technique. The dynamic averaging cannot occur in fully 

rigidified solids, therefore the group of residues with chemical shifts close to random coil values 
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will not necessarily occupy the same conformational space as the group unrestricted in motion. 

The conformational space of the central region of the chemical shift space and of the random-

coil (‘C’) entries on one hand and entries belonging to more rigid structures (class ‘Other’ as 

Fig. 2.2.1) on the other are indeed different: residues unrestricted in movement tend to occupy 

regions of ψ > 50° (Fig. S10). Therefore, the chemical shifts of the middle region should be 

interpreted differently for solid than for solution samples. Worth noting, the solid nature of the 

sample is not taken into account explicitly by any of the dihedral-angle prediction algorithms 

due to scarcity of the solid-state NMR data. 

The entire heterogeneous peak can be evaluated by looking at the collection of the same 

residue type entries that are weighted with coefficient 𝑤, which combines the intensity of the 

NMR peak 𝐼 at the given entry 𝑖 and a factor that accounts for the non-uniform distribution of 

the observed chemical shifts – the inverse of the density of the database entries 𝑃−1 at the given 

position in the 4D chemical shift space: 𝑤𝑖 = 𝐼𝑖 ∙ 𝑃𝑖
−1 (all points outside of the hyperspace 

occupied by the hCBCANH peak get a zero weight: 𝑤𝑖 =  0 ∙ 𝑃𝑖
−1 = 0, see Materials and Methods, 

Section M.3, for more details). This is essentially a very primitive dihedral-angle prediction 

method that does not (and, when the source database is PACSY, cannot) take into account the 

broad sequential and/or structural context, and it is not meant to compete with the 

sophisticated algorithms as TALOS-N and DANGLE in predicting single combinations for 

homogeneous residues. However, it is applicable in the context of this work, which is focused 

on the overall (φ, ψ) probability maps for the samples that exist in ensembles of conformations 

with presumably a number of higher-energy structures. Such unbiased overview gives a 

complementary perspective to the collective maps obtained from dihedral-angle prediction 

engines and can point out the presence of unusual conformations.  

The selection of PACSY entries for the alanine crosspeak is shown in Fig. 2.2.5, the 

components of the resulting weight are denoted by color (point density 𝑃𝑖) and dot size (signal 

intensity 𝐼𝑖). The same selection plotted in the Ramachandran space constitutes a collective, 

weighted density map that may be seen as the representation of the conformational ensemble 

manifested in the broadened hCBCANH peak. For comparison, the non-weighted map is shown 

in Fig. S12. The major point density is concentrated in the α-helical and turn-like regions. 

Alanines with chemical shifts from the region typical for β-sheets (green area in Fig. 2.2.4A, 

upfield-Cα / downfield-Cβ, -N and -H regions.) provide a minor – yet noticeable – contribution 

to the density function resulting from the presence of some spectral intensity in this region. 

Thus, the obtained (φ, ψ) map is consistent with the collective PDFs predicted by TALOS-N or 

DANGLE.  
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It is interesting to look at the dihedral-angle distributions of the PACSY entries whose 

chemical shifts are close to the individual test points. Here, the Subsets were selected by the 4D 

boxes centered at the Points 1-5 in chemical-shift space. The width of the boxes in each 

dimension corresponds to twice the grid resolution – as such, the space was sampled with boxes 

of 0.8 ppm along the H-axis, 2 ppm in Cα, and 3 ppm in both, Cβ and N dimensions. 

 
Figure 2.2.5. Statistical analysis of the conformational distribution of alanine in the static ensemble of GGAGG. A: 
PACSY entries belonging to the 4D hCBCANH alanine cross-peak. Color (see the bottom of the figure) denotes the 
density of the points in the 4D chemical-shift space, the point size representing the relative intensity of the peak. 
(The scale at the bottom of the figure serves illustrative purposes.) For the point density estimation see Materials 
and Methods. The contours show the two-dimensional projection of the cross-peak and start from 4% of the 
absolute intensity and succeed with the factor of 1.2. B: The selected points in the Ramachandran space and the 
bivariate weighted density estimate (gray contours). C: Ramachandran maps constructed from the above 
selections, along with the collective map for reference. 
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Ramachandran maps constructed from the selections are presented in Fig. 2.2.5C, along with 

the collective map for reference. TALOS-N and DANGLE predictions mismatch for two of the 

five points: Point 2 (a major conflict) and the peak maximum, Point 5. (For the latter, the 

DANGLE-predicted (φ, ψ) combination is strictly defined, in contrast to the mixed TALOS-N 

map). The Subset 2 (centered around Point 2) consists of 60 entries, all of which adopted 

extended conformations. This agrees well with the TALOS-N prediction and sharply conflicts 

with the result of DANGLE run for Point 2. Since DANGLE does not provide the details on the 

best-matching fragments used for the Global Likelihood Estimate, it is difficult to track the 

origin of this discrepancy.  

The Subset 5 includes the points from both, high- and low-ψ values. A more detailed view on 

this region can be provided by the inverse view on structure-chemical shift relations as shown 

in Fig. 2.2.6 (and Fig. S2 for other residues). The central chemical shift region – hence, the same 

electronic environment – is populated by residues adopting all conformations, including the 

shoulders of the distributions of right- and left-handed helical (red and orange, Fig. 2.2.6B and 

E) and extended conformations (green, Fig. 2.2.6D). This illustrates the well-known challenge 

and shortcoming of purely chemical-shift-based secondary-structure prediction methods. The 

map 5 predicted by TALOS-N resembles the Subset 5 quite closely.  

 

 
Figure 2.2.6. All alanine entries of PACSY, excluding those classified as random coil (“C”). The color highlights the 
dihedral-angle classes. Panel A shows all the entries; panels B-F show the five regions separately with all other 
points from the panel A being grayed out. 
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2.2.5 Quantification of heterogeneity 

Apart from qualitative assessment, some application of heterogeneity analysis, for example the 

comparison of two preparations of a sample at different preparation conditions, would benefit 

from a simplified numeric comparison of degree of heterogeneity. A “heterogeneity score” 

should in some way reflect the complexity of conformational ensemble – a notion with no single 

formal definition. The following section aims to explore different metrics of residue-specific 

heterogeneity based on the parameters of the obtained collective (φ, ψ) distributions.  

For such comparisons, the first question to answer is which maps to take into account for 

the quantification. The way the map is obtained matters, as it becomes obvious, for example, 

from comparison of TALOS-N and DANGLE outcomes (Fig. 2.2.3B and C). Such maps also cannot 

easily be simulated, because the allowed Ramachandran space is more complex than a linear 

combination of basic functions (Gaussian) at the local maxima of the PDF (Fig. 1.3.2). For these 

reasons, the approaches developed in the following are tested on the (φ, ψ) distributions 

obtained with TALOS-N, DANGLE, and PACSY for the GGAGG for the above Points 1-5 as well as 

the collective maps. A reference for purely homogeneous and well-defined cases of TALOS-N 

and DANGLE predictions for helical and extended conformation was obtained with a simulated 

sequence of (Leu)10 for which the full set of chemical shifts matched the expected values of the 

corresponding structures (taken from Fritzsching et al. (2016)). For simplicity of the 

quantification, the direction of winding is omitted (see Section 2.2.3), because not only is it more 

challenging to discriminate between left- and right-handed structures, but the left-handed 

winding is in general extremely rare. For the residues with the most distinct clusters of left-

handed entries in the chemical-shift space (D, N, Q, etc., Fig. S5) it may be a good direction of 

the future method development to include into consideration the “handness” of a residue, i.e. 

the sign of its φ angle. In this work, the reduction is performed by inverting the Ramachandran 

space of positive φ values through the central point (0, 0). The obtained eight test scenarios are 

shown in Fig. 2.2.7 ordered by intuition from the simplest to the most complex map, where the 

panels “Conf. H” and “Conf. E” correspond to the reference (“confined”) helical and extended 

structure cases. 

TALOS-N produces Gaussian-smoothened probability density functions that can be 

reasonably well described via the regular metrics for the spread of a circular distribution. Here, 

the spread is measured by the circular variance estimator for either of the two marginal 

distributions (projections onto φ or ψ axis): 
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𝑉𝜃 = 1 − |�⃗�|𝜃 = 1 − √𝑠𝑖𝑛2̅̅ ̅̅ ̅̅ θ𝑘 + 𝑐𝑜𝑠2̅̅ ̅̅ ̅̅ θ𝑘 = 

 1 − √(
∑ 𝑠𝑖𝑛𝜃𝑘
180
𝑘=1 ⋅𝐷𝑘

∑ 𝐷𝑘
180
𝑘=1

)
2

+ (
∑ 𝑐𝑜𝑠𝜃𝑘
180
𝑘=1 ⋅𝐷𝑘

∑ 𝐷𝑘
180
𝑘=1

)
2

, (24) 

where 𝜃 stands for either the  φ or ψ coordinate and Dk is the predicted probability of the k-th 

(φ, ψ) combination. The second term of Eq. 24 reflects the vector sum of all angles and ranges 

from 0 to 1 (the radius of the unit circle). Thus, 𝑉 ranges from 1 for confined distributions to 0 

for uniform distributions. The marginal distributions (obtained by summing up all Dk values of 

the same φ or ψ coordinate) and their variance 𝑉 are visualized in polar coordinates in 

Fig. 2.2.7B. In contrast to the reference cases and the clear shift combinations (Points 1 and 2), 

an increasingly large 𝑉 is found for Points 3–5, i.e., when shifts differ drastically from the 

standard values expected for helical or extended structures. This is consistent with the above 

observation that shifts in central regions are inherently associated with a broader predicted 

(φ, ψ) distribution on their own. 

Alternatively, the level of heterogeneity contained in broad (φ, ψ) angle distributions can be 

measured by Shannon‘s entropy. In statistics and information theory, the concept of entropy is 

widely used to quantify the amount of uncertainty in a given distribution of a random variable. 

Considering each (φ, ψ) bin 𝑘 of the Ramachandran map as an independent state of an amino 

acid residue, with its intensity Dk representing its likelihood to be adopted, the entropy of a 

prediction would be calculated as follows:  

 𝑆𝜙 = −∑ 𝐷𝑘 𝑙𝑛(𝐷𝑘)
10
𝑘=1  (25.1) 

 𝑆𝜓 = −∑ 𝐷𝑘𝑙𝑛(𝐷𝑘)
18
𝑘=1   (25.2) 

 𝑆𝑡𝑜𝑡𝑎𝑙 = −∑ 𝐷𝑘𝑙𝑛(𝐷𝑘) 
180
𝑘=1  (25.3) 

The entropy of a hypothetical case where only one state is populated equals zero; by contrast, 

it increases up to 𝑆 = ln(180) ≈ 5.19 for the hypothetical case of a uniform distribution. Just as 

the variance, the entropy can be calculated for the marginal φ and ψ distributions 

(Eq. 25.1/25.3): In this case, 0 ≤ 𝑘 ≤ 10 for φ, 𝑆𝜑
𝑚𝑎𝑥 = ln(10) ≈ 2.3; 0 ≤ 𝑘 ≤ 18 for ψ,  𝑆𝜓

𝑚𝑎𝑥 =

ln(18) ≈ 2.9, where the reduced numbers of bins result from projecting all values of one row 

or column before application of Eq. 25. Worth noting, that this discrete entropy should be seen 

as a way to estimate continuous entropy of the underlying continuous probability distribution. 

For the heterogeneous GGAGG sample of this study, the total entropy 𝑆𝑡𝑜𝑡𝑎𝑙 is 4.46, whereas 

entropy values of individual (one-dimensional) 𝜑 and 𝜓  distributions amount to 2.07 and 2.56, 

respectively. Note that in Eq. 3.3 Dk (the probability for the (φ, ψ) combination k in the 
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Ramachandran map) applies to the folded map with k ={1, …, 180}, and for single-angle 

entropies (Eq. 3.1 and 3.2, k bearing 10 or 18 values for φ and ψ, respectively), Dk can also refer 

to probabilities for individual φ or ψ distributions in one-dimensional Ramachandran maps. 

For better contrast, it may be useful to subtract the baseline of, e.g., the well-defined case of 

Confined Helix and thereby consider only excess entropy: Δ𝑆 = 𝑆 − 𝑆𝑐𝑜𝑛𝑓.  𝐻. For the collective 

map of the GGAGG sample, the overall Δ𝑆 amounts to 1.30, the highest-possible value would be 

2.02. 

A simple approach to probe the level of homogeneity found in a distribution is the measure 

of flatness, which gives the relative abundance of the highest-probability event (normalized by 

the sum of overall occurrence of all different events of the prediction):  

 
 
Figure 2.2.7. Exploration of various methods of quantification of heterogeneity in the solid-state NMR sample of 
this study, applied to the TALOS-N based reconstruction of conformational distributions. A: Folded Ramachandran 
maps of the test coordinates. Panel “Collective” corresponds to the weighted sum of predictions over the whole 
Ala peak of heterogeneous GGAGG. For generation of pure secondary structure (confined cases), predictions were 
made for the 5th Leu in a Leu10 chain with the corresponding expected chemical-shifts values (taken from 
Fritzsching et al., 2016). Grayscale is normalized from 0 (black) to 1 (white, maximum value). B:  Ramachandran 
maps from A in polar coordinates. In each pair, the left plot corresponds to the φ and the right one to the ψ 
distribution. The gray area denotes the non-valid φ region for the calculations irradicated upon folding (see main 
text for details). Black vectors point into the mean direction, their length is set here to represent the circular 
variance, not the length of the resulting vector for the distribution. C: Representation of different measures of 
heterogeneity (circular variance V, entropy S, flatness F, and secondary-structure ratio R) for the maps shown in 
A as bar plots. See text for details. 
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 𝐹 =
max(𝐷𝑘)

∑ (𝐷𝑘)
180
𝑘=0

⁄  (26) 

Like the entropy, by definition, F is insensitive to the number of modes and rather characterizes 

how confined the distribution is overall (Fig. 2.2.7C). In addition, it may be interesting to 

consider the ratio between the population of helical and extended regions (𝑅), which is 

indifferent to the prevalent propensity. Here, it is determined from the integral over relative 

densities in the typical areas of the Ramachandran plot (defined in Fig. M4).  

 𝑅 = {
𝐻/𝐸 𝑖𝑓 𝐻 > 𝐸;
𝐸/𝐻 𝑖𝑓 𝐻 ≤ 𝐸

, (27) 

where H and E are the integrals of the allowed regions in the folded (φ, ψ) maps. For the 

collective prediction, R amounts to ~1.53, with a slight excess of helical properties. 

 All measures described above and calculated for the eight test cases are summarized in 

Table 2.1 as well as in the plots in Fig. 2.2.7C. 

Scenario 
 

Sec. 
struct. 

Circular variance V Entropy S               
Flatness F R 

φ ψ φ ψ total 𝚫Stotal 

Conf. H H 0.07 0.13 1.54 1.68 3.17 0.00 0.886 25.89 

Conf. E E 0.1 0.14 1.68 1.76 3.35 0.18 0.894 27.38 

Point 1 H 0.15 0.32 1.82 2.10 3.68 0.51 0.904 7.53 

Point 2 E 0.18 0.40 2.04 2.17 4.08 0.91 0.943 7.31 

Point 3 H 0.26 0.41 2.04 2.33 3.99 0.82 0.923 5.80 

Point 4 E 0.16 0.5 1.88 2.37 3.99 0.82 0.935 3.55 

Point 5 H + E 0.18 0.68 1.96 2.47 4.24 1.07 0.949 1.99 

Collective H+ E 0.22 0.78 2.07 2.56 4.46 1.30 0.955 1.53 

 

The DANGLE maps (Fig. 2.2.8) are more defined than the ones produced by TALOS-N, and 

the metrics of spread as well as the secondary structure ratio R make less sense. The entropy 

and flatness 𝐹, which do not require large clusters of pixels, respond well to the apparent visual 

complexity of the maps and become preferable metrics.  

The circular variance of PACSY scatter patterns can be estimated with the formula in its more 

common notation:  

 𝑉𝜃 = 1 −√
1

𝑛2
(∑ 𝑤𝑖 cos

2𝑛
𝑖=1 θ𝑖  + ∑ 𝑤𝑖 sin

2𝑛
𝑖=1 θ𝑖),  (28) 

Table 2.1. Heterogeneity parameters obtained for the folded Ramachandran maps predicted by TALOS-N 
for the two reference cases (H and E) and local test scenarios (‘Points 1-5’, from the Ala cross-peak in the 
hCBCANH experiment, defined in Fig. 2.2.3), as well as for the broad heterogeneous peak. The underlining 
in the sec. structure column denotes the excess of helical content. 
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where 𝑛 is the number of points and  𝑤𝑖 = 𝐼𝑖 ∙ 𝑃𝑖
−1 is the weight of each point that includes point 

density in the chemical shift space 𝑃−1 and the NMR peak intensity 𝐼. The (φ, ψ) histograms and 

the parameter charts are shown in Fig. 2.2.9, and listed in Table 2.1. The Confined H and E 

Subsets were created with the boxes centered at the modes of chemical shifts for ‘H’ and ‘E’ 

STRIDE classes. Although the Subsets 3 and 4 do not comprise enough points for any statistical 

evaluations (N=4 and 17, Fig. 2.2.5C) and furthermore the Subset 3 is not representative for a 

typical heterogeneity map of “real” heterogeneous samples, they are still presented for 

reference – in those cases the heterogeneity metrics become inapplicable, just like in case of 

DANGLE maps. For the other six maps, all scores – apart from 𝑅, which suffers in situations of 

well-defined propensity – reflect the apparent heterogeneity well; the trends appear different 

because of a broader range of φ angles as compared to (arbitarily arranged) TALOS-N 

predictions.  

Interestingly, the secondary-structure ratios 𝑅 obtained for the collective maps are similar 

(1.53, 1.52, and 1.17 for TALOS-N, PACSY, and DANGLE maps, respectively, Tables 2.1-2.3). This 

may be merely a special case for the extremely heterogeneous test sample, which was 

purposely created to sample as much of the Ramachandran space as possible. The fact that all 

three approaches reconstructed the broad conformational space not only qualitatively similarly 

but also at quantitatively similar proportions is gratifying and can be interpreted as a sign of 

mutual validation. The same applies to the variance of ψ angles (𝑉𝜓 equals 0.8, 0.78, and 0.8 for 

TALOS-N, PACSY, and DANGLE maps, respectively). 𝑉𝜑 is comparable for TALOS-N and PACSY 

(0.22 and 0.17) but is substantially lower for DANGLE (𝑉𝜑 = 0.08). It should be noted that, the 

similarity between the relative entropies Δ𝑆𝑡𝑜𝑡𝑎𝑙 should be rather attributed to a coincidence, 

since in each case the floor value is different. Generally, the quantitative comparison of the 

results between the different frameworks is not intended, however, and only different sites of 

a sample, assessed in each case using the same framework, are the intended subject of study.  
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Figure 2.2.8. Tests and reconstruction of conformational distributions based on dihedral-angle predictions with 
DANGLE. The plots are analogous to those in Fig. 2.2.5. A: Folded Ramachandran maps of the eight test chemical-
shift combinations. B: Ramachandran maps from A in polar coordinates. In each pair, the left plot corresponds to 
the φ and the right one to the ψ distribution. The gray area denotes the non-valid φ region for the calculations due 
to folding (see main text for details). Black vectors point into the mean direction, their length is set here to 
represent the circular variance. C: Representation of different measures of heterogeneity (circular variance V, 
entropy S, flatness F, and secondary-structure ratio R) for the maps shown in A as bar plots.  

Table 2.2. Heterogeneity parameters obtained for the folded Ramachandran maps predicted by 
DANGLE for the two reference cases (H and E), local test scenarios (‘Points 1-5’, from the Ala cross-
peak in hCBCANH experiment, defined in Fig. 2.2.3), as well as for the broad heterogeneous peak. The 
underlining in the sec. structure column denotes the excess of helical content. 

Scenario 
Sec. 

struct. 

Circular variance V Entropy S Flatness 
F 

R 

φ ψ φ ψ total Stotal 

Conf. H H 0.01 0.00 0.52 0.11 0.62 0.00 0.24 inf. 

Conf. E E 0.00 0.00 0.04 0.19 0.23 -0.39 0.53 inf. 

Point 1 H 0.01 0.01 0.31 0.61 0.88 0.26 0.39 inf. 

Point 2 H 0.00 0.06 0.17 0.77 0.91 0.29 0.37 40.2 

Point 3 H 0.01 0.02 0.55 0.80 1.23 0.61 0.54 inf 

Point 4 E 0.09 0.03 1.50 0.99 2.39 1.77 0.79 inf 

Point 5 H 0.00 0.01 0.05 0.51 0.55 -0.07 0.21 364.5 

Collective H+ E 0.08 0.80 1.31 1.70 2.52 1.90 0.82 1.17 
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Figure 2.2.9. Exploration of various metrics of (φ, ψ) distributions applied to Ramachandran maps of test 
selections from the PACSY database (see main text and Fig. 2.2.4). A: Density histograms with dimensions of folded 
TALOS-N maps (18 × 10 bins). B: The same, represented by marginal distributions in polar coordinates. In each 
pair, the left plot represents the marginal φ and the right the marginal ψ distribution. Black bars represent circular 
variance and point to the mean direction. The plots of Subset 3 are grayed out because they comprise too few 
points (N=6). C: Representation of different measures of heterogeneity (circular variance V, entropy S, flatness F, 
and secondary-structure ratio R) for the maps shown in A as bar plots.  

Table 2.3. Quantitative analysis of Ramachandran maps obtained using the PACSY approach, focusing on 
chemical-shift combinations of confined helix and sheet, positions 1-5, and the full heterogeneous GGAGG peak. 
Since for the PACSY approach in clean cases no population of incorrect secondary structure is produced, the R 
values tend to be infinity (division by 0), which hence represents a clean prediction. N stands for the number of 
PACSY entries in the respective Subset. The underlining in the sec. structure column denotes the excess of helical 
content. 

Scenario 
Sec. 

struct. 
N 

Circular variance V Entropy S Flatness 
F 

R 

φ ψ φ ψ total Stotal 

Conf. H H 2030 0.04 0.06 0.96 1.16 2.02 0.00 0.666 115.9 

Conf. E E 105 0.12 0.08 1.70 1.55 3.04 1.02 0.911 inf. 

Point 1 H 1303 0.02 0.04 0.88 0.99 1.83 -0.19 0.645 419.6 

Point 2 E 60 0.09 0.09 1.51 1.45 2.61 0.59 0.786 inf. 

Point 3 H 6 0.28 0.22 1.36 1.09 1.36 -0.66 0.671 0.72 

Point 4 E 20 0.06 0.07 1.31 1..37 2.26 0.24 0.790 inf. 

Point 5 H + E 422 0.17 0.74 1.64 2.45 3.71 1.70 0.860 1.54 

Collective H+ E 13565 0.17 0.80 1.78 2.36 3.94 1.92 0.869 1.52 
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2.2.6 Discussion 

Using chemical shifts as a direct measure of dihedral-angle properties is a straightforward and 

sensitive approach that avoids the need for specialized pulse sequences to encode angular 

features. It allows to include multiple chemical-shift dimensions to increase peak dispersion, 

thereby minimizing peak overlap and allowing capturing the features of multidimensional 

chemical-shift distributions precisely. Using proton as the direct dimension increases the 

sensitivity of the experiment and additionally boosts the SNR of the fine peak features of low 

intensity.  

Translation of the chemical-shift space into the geometrical parameters is challenging due 

to the low correlation between the backbone chemical shifts and dihedral angles. However, it 

can be considered reliable enough to differentiate between the two extreme cases of secondary 

structure (extended and helical conformations). The “intermediate” chemical shifts translate 

into a mix of secondary structures, which comprises the “turn-like” conformations (Fig. 2.2.6C), 

naturally clustering in the center of chemical-shift distributions, as well as the traces of the 

extreme and “intermediate” structures (Fig. 2.2.6F), as demonstrated by the chemical-shift 

combination of the point of maximum intensity in the alanine crosspeak (Point 5, Figs. 2.2.7-9). 

Thus, purely chemical shift-based methods are not capable of yielding purely thermodynamic 

ensembles and rather provide uncertainty ensembles even for the solid conformational 

snapshots.  

Further complications arise when the backbone chemical shifts are influenced by factors 

other than geometry. The ring current effects from neighboring residues can shift the entire 

heterogeneous peak far from the region of major concentration of chemical shifts, which may 

confuse the prediction algorithms. Furthermore, insufficiently averaged direct spin-spin 

interactions broaden the proton linewidths of the underlying individual components of the 

heterogeneous peak. The potential impact of differential contacts with the lattice represents a 

source of additional peak broadening potentially involving all nuclei. However, this drawback 

is expected again more strongly for those nuclei involved in H-bonds (H/N), whose decreased 

correlation with the backbone conformation is already incorporated into the prediction models. 

The effect of differential dynamic properties on the measured chemical shifts can be neglected 

since backbone motion on the intermediate and fast time scales is extremely minimized in the 

statically disordered samples by definition.  

The predicted conformational distributions for the model sample of a disordered GGAGG 

pentapeptide obtained involving the dihedral-angle prediction software (TALOS-N and 
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DANGLE) are reasonably consistent and mutually validated by the database analysis approach. 

A truly orthogonal validation by another method of NMR spectroscopy or even other physico-

chemical technique, although desirable, is difficult to perform. Outside NMR, the existing high-

resolution methods of structural biology – cryo-electron microscopy and diffraction methods – 

perform poorly on heterogeneous samples (see Introduction, Section 1.3.1), and fluorescent or 

paramagnetic labelling required for FTIR or electron spin resonance methods can be too large 

to fit into the natively tight structures. Perhaps the best validation of the predictions can be 

performed by selective isotope labelling of several presumably heterogeneous residues and 

further ensemble reconstruction with computational methodology involving molecular 

dynamics (MD), Monte-Carlo simulations and statistical analysis (Bonomi et al., 2017; Bonomi 

and Vendruscolo, 2019). The test protein system for this experiment must be chosen carefully, 

such that the sample preparation procedure can be highly reproducible. Even in this case, 

however, NMR chemical-shift data likely remains the only experimental observable, which 

makes faithful ensemble reconstruction challenging.  

The initial choice of dihedral-angle prediction “engines”, TALOS-N and DANGLE, was 

arbitrary and motivated by their release dates (Among the backbone dihedral-angle prediction 

software, TALOS-N and DANGLE are the most recent) and convenience of usage, i.e. possibility 

of a local copy and a dihedral-angle distribution as the output. While within the TALOS family, 

TALOS-N has clearly been demonstrated to provide highest accuracy, other frameworks may 

show better performance in particular cases. As such, a comparison involving 33 test proteins 

performed in Wishart (2011) reported the absolute best accuracy of 94 % achieved by 

PREDITOR (Berjanskii et al., 2006) (measured by A30 score, see Cheung et al. (2010) or Wishart 

(2011) for a definition), as compared to TALOS, TALOS+, DANGLE and SHIFTOR (see 

Section 1.3.2). However, PREDITOR is only available as a server (which still could not be accessed 

by the author even by the time of writing the thesis), which prevents embedding it into 

customized pipelines. If its source code were available, the workflow presented in this section 

could be built around it, in a manner that the resulting probability distribution is constructed 

from the single combinations of (φ, ψ) values provided by PREDITOR as the output. Ultimately, 

the accuracy of the predicted collective maps depends on the accuracy of the underlying engine, 

including its robustness in interpretating “exotic” chemical-shift combinations.  

Nevertheless, the author believes that the current level of accuracy is sufficient to answer 

biological questions such as quantifying the ratio between the conformations adopted by 

disordered residues and obtaining ideas about the structural changes upon changes of physico-

chemical conditions (temperature, pH). Unlike the series of selectively labeled samples, this 
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approach does not require the preparations to be reproducible. The maximal length of the 

primary sequence that can be subjected to the approach depends on the degree of 

heterogeneity, as wider peak shapes increase the probability of overlap and decrease the signal-

to-noise ratio. Fortunately, in most current studies on biological samples by NMR, only part of 

the residues tends to be variable, reducing the probability of overlap even for longer primary 

sequences. For the semi-quantitative analysis of how defined conformational properties are 

within a given primary sequence, the described methodology should turn out helpful and — 

given the availability of all Python-based workflows as a download —easy to set up. 



 

 

2.3 Asssessment of residue-specific heterogeneity in the 
functional amyloid of hydrophobin EAS∆15 

2.3.1. Introduction 

Hydrophobins are a family of small fungal proteins with a high content of hydrophobic residues 

that often are able to polymerize into filamental structures. The filaments – or rodlets – self-

assemble at water-air interfaces, forming a hydrophobic monolayer, thereby altering the 

surface activity of conidia (asexual spores) or airborne hyphae (filaments that constitute the 

mycellium and fungal fruit bodies) (Ball et al., 2019). The rodlets are usually approx. 10 nm in 

diameter. The hydrophobin family includes about 1000 proteins, which are further subdivided 

into three classes based on their consensus primary sequences and chemical stability of the 

rodlets. Monomers of all classes are small, 70-150 residues long proteins (5-20 kDa) with long, 

disordered loops and small, ordered cores, typically rich in β-strands. The two best studied 

classes of hydrophobins include eight cysteins that form four disulphide bonds, which stabilise 

the monomeric structures. Class I hydrophobins form highly stable functional amyloids 

resistant to surfactants and boiling alchohols. Assemblies formed by class II hydrophobins are 

stabilized only by hydrophobic interactions, without formation of a stable amyloid (i.e. β-sheet 

rich) structre, and therefore these rodlets require milder conditions for depolymerisation. Class 

III hydrophobins are characterized by a consensus sequence containing nine cysteins and are 

not well studied yet. Fragments of the sequences of class I and class II hydrophobins between 

pairs of cysteins are referred to as loops. Thus, for class I, the segment between the third and 

forth cystein, Cys3-Cys4, is referred to as L1, segment Cys4-Cys5 as L2 and Cys7-Cys8 as L3. 

Hydrophobin EAS from Neurospora crassa, named after the “EASily wettable” phenotype of 

EAS-mutant spores, belongs to the class I with its ability to form chemically stable rodlets 

whose amyloidic nature was first revealed by FTIR spectroscopy, CD spectropolarimetry and 

X-ray fiber diffraction  (Kwan et al., 2006). Natural EAS rodlets involve four EAS isoforms with 

slightly different length of the C- or N-termini, which influences the rodlet length (Mackay et al., 

2001). Mutation studies revealed that deletion of up to 15 residues in the L1 loop does not 

impact the formation and any physico-chemical properties of the resulting amyloids (Kwan et 

al., 2008). The three-dimensional structures of both, full-length EAS and its truncated construct 

EAS∆15, have been characterised by solution NMR (PDB IDs 2FMC and 2K6A) and were found to 

have a small β-barrel core; the truncation does not affect the overall 3D fold (Fig. 2.3.1B). 
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Therefore all future structural investigations of the EAS amyloid were performed on the 

truncated EAS∆15 construct to simplify the spectra.  

The current hypothesis of rodlet formation by EAS or EAS∆15 suggests the detachment of the 

L3 loop from the core of the monomer and its exposure to the water-air interface (Kwan et al., 

2006; Macindoe et al., 2012; Morris et al., 2013). This proposed mechanism is based on the 

results of mutation studies, which revealed the critical role of L3 (Fig. 2.3.1C, purple) in rodlet 

formation. Given that the self-assembley is promoted by a rather oxidative environment, it is 

most reasonable to assume that no disulphide bridge breaks upon structural rearrangements. 

The most prominent model of the rodlet core is antiparralel zippers. All attempts of 

determining the rodlet structure on the basis of this assumption, via NMR and microscopy data, 

however, have not yield a converged model at the moment of writing (unpublished data, private 

 
 
Figure 2.3.1. A: Sketch of the process of rodlet formation. B: Superimposed 3D models of monomeric hydrophobin 
EAS (PDB ID 2FMC, light gray) and EAS∆15 (PDB ID 2K6A, dark gray) C: Orthogonal views on monomeric form of 
EAS∆15  stabilized by the disulphide bonds: Cys1-Cys6, Cys2-Cys5, Cys3-Cys4, and Cys7-Cys8. On B and C, loops L2 
and L3 are highlighted in teal and purple correspondingly.  
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discussions with S.K.V. and R.L.), which raises the demand for more insights based on 

experimental evidence. 

Severe broadening and a diagonal tilt of the hNH peaks  is typical to amyloids (Fig 2.3.2A, 

compare with spectra of nitrogen shifts of FOR005 (Pradhan et al., 2020) and proton-detected 

hNH spectra of fibrils formed by amyloid β (Linser et al., 2011) or Tau (Xiang et al., 2017) ) and 

is the case for EAS∆15 rodlet sample, too (Morris et al., 2012). The phenomenon could be 

attributed to a continuous distribution of the charachteristics of an H-bond network, e.g. H-

bond lengths or angles. As opposed to other well-studied amyloids, for example formed by α-

synuclein (Tuttle et al., 2016), Tau (Xiang et al., 2017) and Aβ (Niu et al., 2020), EAS∆15 rodlets, 

as well as those of another class I hydrophobin, DewA, show a significant degree of structural 

heterogeneity, manifested in severely broadened peaks in the carbon dimensions (Fig. 2.3.2B). 

The tunnel electron micrographs of EAS∆15 (Kwan et al., 2008), EAS as well as other class I fibrils 

(Pham et al., 2016) do not reveal any non-uniformity of the fibrils, suggesting that disorder 

manifests itself only on the atomic scale.  

The work presented in this chapter is a part of the collective effort of revealing the structure 

of EAS∆15 rodlets. Analysis by all high-resolution techniques of structural biology is hampered 

by the strong structural disorder at the atomic level. Full structure elucidation by solid-state 

NMR is challenging for the exact same reasons. However, even very basic NMR data – chemical 

shifts and peak shapes – are rich in information and can provide substantial insights into 

secondary structure as well as the degree of order and disorder along the amino acid sequence, 

which would contribute to an understanding of the amyloid core packing and organisation of 

side chains. The analysis presented below aims to evaluate the residue-specific structural 

disorder of EAS∆15 rodlets and generate hypotheses about its nature. The heterogeneity analysis 

routine presented in Section 2.2 is applied to a lengthy amyloid sequence for the first time and 

compared with the alternative approaches based purely on peak shape information. The author 

expresses hope that heterogeneity assesment can be implemented (here and for other targets 

of future research) into routines of protein structure calculation (e.g., as weights for other 

restraints). 

2.3.2. General initial assessment of the sample 

A sample of 100% back-exchanged u-(2H, 13C, 15N)-EAS∆15 rodlets was prepared by the group 

of Dr. Ann Kwan (The University of Sydney) as described in Kwan et al., (2006). The severely 

broadened hNH spectrum (Fig. 2.3.2A) is close-to-identical to the spectrum published earlier in 

Morris et al. (2012). A few peaks in the plane stand out from the subset of low-intensity 
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overlapping peaks, suggesting that some fragments are more ordered than others. For some 

residues, 1H and 15N chemical shifts are correlated, resulting in a visible tilt of the hNH peaks. 

Some peaks are broadened and tilted in 13C dimensions (Fig. 2.3.2B). 

Altogether, 44 peaks were found in the intraresidual 3D correlations hCANH and hCOcaNH, 

of which 40 were assigned (in collaboration with R.L. and S.K.V., TU Dortmund) (see Fig. 2.3.2A 

and B). Fewer (distinct) signals are present in the corresponding 13Cα-CO 4Ds (hCACONH, 

hCOCANH, Fig. 2.3.2C) and only 15 peaks were found in the 4D hCBCANH. These dramatic 

losses of magnetization are presumed to occur during the chemical-shift evolution periods, 

which is the only (major) difference between the 3D hcaCBcaNH and the 4D hCBCANH 

sequences. As a result, the backbone walk could not be done using the 4D data, and assignments 

were merely transferred from the 3D experiments, which reminds of the limitations of the high-

dimensional experiments. 

 
 
Figure 2.3.2. Solid-state NMR spectra of EAS∆15 rodlets. A: Fingerprint hNH correlation, conservatively apodized 
(see Materials and Methods, Table M3.1). Unassigned peaks are marked with asterisks (‘*’). B: A slice from a 3D 
hCONH spectrum, demonstrating notable peak broadening. C: Slices of the 4D hCBCANH, hCOCANH (blue) and 
hCACONH (black-red-yellow color scheme). For acquisition and processing details see Matherials and Methods. 
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Several methods of primary sequence analysis – TANGO (Fernandez-Escamilla et al., 2004), 

AGGRESCAN (Conchillo-Solé et al., 2007), WALTZ (Maurer-Stroh et al., 2010), PASTA (Walsh et 

al., 2014) and CordaX (Louros et al., 2020) – consistently predict aggregation propensity for the 

segments in the L1-L2 region – most notably, C31-I36 – and for the pentapeptide S57-I61 in the 

L3 region (Fig. 2.3.3). The predicted amyloidogenic potential of the L3 region is consistent with 

the findings from mutation analysis, which revealed its key role for rodlet formation (Macindoe 

et al., 2012). PASTA additionaly predicts disorder of the first ten residues and β-strand 

propensity for residues C19-Q21, S28-I36, S43-C47 and S57-A63. All of those residues were 

identified by the 3D assignment experiments. 

2.3.3. Analysis of residue-specific static disorder based on TALOS-N 
routine 

The regular TALOS-N analysis of EAS∆15 chemical shifts (i.e., prediction of each residue’s most 

likely (φ, ψ) combination from its chemical shift combination via database analysis) expectedly 

shows the prevalence of -sheet propensity (φ ~ -150°, ψ ~ 150°) in all of the identified 

sequence segments (Fig. 2.3.4A). Prediction of more extended conformations (i.e., towards φ = 

±180°, ψ = ±180°) occur exclusively for glycines (see G34, G41, G55). “More helical” propensity 

(a decrease of absolute φ and ψ values) is predicted for some residues in the L1-L2 segment and 

for two residues in L3, although in each such case, the result is marked as “Warn”, meaning there 

were not enough examples of similar sequences and (φ, ψ) distributions in the TALOS database. 

The six central residues in L1, the remnant of the long, disordered loop in EAS that has been 

shortened in the 15 mutant, escape assignment, which may point to their maintained 

flexibility in the rodlets. 

The heterogeneity scores (variances, entropy, flatness and R for the collective maps 

(Fig. S13), closed circles in Fig. 2.3.4B-E) imply an increasing order towards the N-end of the L3 

 
Figure 2.3.3. Amiloidogenic regions of EAS∆15 predicted by various algorithms (highlighted in red) on the sole 
basis of primary sequence. Positions of cysteins are highlighted by yellow shades. The bottom line provides 
comparison with those residues that could be identified in the sets of 3D assignment spectra. (hCANH contains the 
most assigned peaks.) Brackets at the connected cysteins form disulphide bridges. 
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segment. The fact that for residues C47-V51 the assignments are missing does not necessarily 

speak for flexibility of this segment since there are three unassigned peaks remaining in the 

hCANH that may belong there. However, given the flexibility of this loop in the monomer 

structure, a remnant degree of flexibility, deteriorating CP transfer efficiency is not unlikely. 

“Uncertainty scores” (open circles in Fig. 2.3.4B-E) – the same metrics as calculated for the 

collective TALOS-N maps but now applied to the predictions made for peak maximuma only 

(Fig. S14) – are provided in the figure for reference. Whereas the heterogeneity metrics 

implicitly include the linewidth information, the “uncertainty scores” for the position of the 

peak maximum are not influenced by the peak shape. The differences between the uncertainty 

and heterogeneity scores (bars in Fig. 2.3.4A-E) show the added effect from heterogeneous line 

broadening to the predicted probabilities / occupancies of backbone dihedral angles in the 

static ensemble. Interestingly, the trends formed by the uncertainty scores are overall in line 

with the heterogeneity trends.  

The heterogeneity measures fluctuate in both L1-L2 and L3 segments. Residues C40, G41, G55 

and A64 show the highest variance V of both, φ and ψ, angles in the collective predictions. C40 

and G41 lie in the middle of a short turn in the monomer structure (between strands 4 and 5), 

and it seems that they are converted into a poorly ordered fragment upon rodlet formation. The 

same applies for G55, which marks the center of the loop connecting strands 5 and 6. A64 lies 

in a turn just before strand 7, and the residues in between 55 and 64 – the residues with the 

highest amyloidogenic properties, which have been predicted to be responsible for rodlet 

formation (Fig. 2.3.3) – show remarkable low values of heterogeneity.  

Collective (φ, ψ) predictions are more defined than the predicted distribution based on peak 

maxima for G30, S57, A63 and C66 (Fig. 2.3.4, also compare the source maps in Figs. S13 

and S14). In particular, the central two flank the well-defined amyloidogenic region in between 

residues G55 and A64 with a high degree of static disorder. Larger variance of both angles is 

estimated for G34, as well as again for G55 and A64. Notable differences between the regular 

and collective maps occur in the L2, when the variance of one backbone angle increases and that 

of the other decreases (G37, C40, G41). Interestingly, when compared to the maps predicted 

from peak maximum information only (‘regular’ analysis), it is revealed that the variance both 

rises for some residues and decreases for others when the entire peak is taken into 

consideration. The differences in the scores effectively report on the effect of the peak 

broadening and partially discard the uncertainty resulting from the peak position, as in cases 

when the chemical shift does not belong to the expected ranges for either helices or extended 

structures (compare Sections 2.3-2.4, test Point 5). All in all, the changes in variance are 
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relatively large for the residues that are suspectedly close to the ends of the ordered strands.  

Another visible trend is the steady decline of disorder from residues 40/41 towards the 

unassigned (likely flexible) residues 48 – 51. The same applies for the residues flanking the 

flexible L1 loop. Complementing the first trend, no static disorder is possible for flexible 

residues, which sample the different conformations faster than manifested in differential 

chemical shifts. 

2.3.4. Peak shape analysis 

An alternative approach to estimate residue-specific heterogeneity may utilize the raw peak 

parameters such as line widths and intensity. The collective TALOS-N predictions implicitly 

 
Figure 2.3.4. Residue-specific heterogeneity assessment on the basis of TALOS-N individual and collective 
predictions for hydrophobin EAS∆15 rodlets. Positions of cysteins are highlighted with yellow shades. A: φ and ψ 
angles predicted by TALOS-N in the regular workflow. B-E: Heterogeneity metrics and “uncertanty scores” (see 
main text): B: circular variance, C: entropy, D: flatness, E: ratio between the helical an dextended structures. 
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include the linewidth information, and the differences between the regular and collective maps 

should theoretically yield the same patterns as the analysis of the raw linewidths but in the 

geometrical domain. Extracting the data from the more sensitive 3D experiments is beneficial 

for the present sample, whereas the 4D hCBCANH yielded only a small fraction of the expected 

signals. However, this approach has other fundamental advantages. Separate evaluation of the 

various peak dimensions for an atom allows to discern the types of disorder that drive the peak 

broadening. As such, carbon 13Cα and 13Cβ chemical shifts are more sensitive to the backbone 

conformational differences, whereas 13CO, 15N and 1H shifts are largely influenced by H-bonding 

(see Chapter 1, Section 1.3.2 for a detailed overview). The peak diagonal tilt in the 1H/15N plane 

– a peak shape parameter not appearing in the literature – encodes the distribution of the H-

bond parameters, such as length or angles. 

Although it is intuitive to expect the peak width and intensity to be anticorrelated (i.e., that 

the peak volume for all amide peaks is roughly constant), this is not always the case. For 

example, in the S38-C46 segment of L2, the intensity varies largely (from around 0.4 up to the 

absolute maximum of 1.0 in both spectra), building an uptrend towards the C-terminal end of 

the fragment (at C46), whereas the peak widths in all dimensions remain nearly constant 

(Fig. 2.3.5A-C). The spikes in signal intensity at S38, Q39 and V44 with the relative spike of V32 

imply high rigidity of those residues, as these notable differences can be explained with the 

differences in CP transfer intensities, which decrease with increasing dynamics. For S38, this 

coincides with the low heterogeneity scores derived from TALOS-N predictions (Fig. 2.3.4); for 

the other residues no data is available. Peaks of the three pre-glycine residues of L2 (V33, I36, 

and C40 or Cys5) are particularly weak and broadened, especially in the 15N dimension of the 

hcaCBcaNH spectrum. The combinations of narrow lines and low intensity can result from not 

a static but rather dynamic disorder. Most notably, this occurs for cysteins C31 (Cys4) and C40 

(Cys5), which form disulphide bridges with the presumably mobile C20 (Cys3) and C19 (Cys2) 

(see Fig. 2.3.3) from the N-terminus, which is entirely absent in all NMR spectra.  

In the L3 segment, the hcaCBcaNH peaks of the last four residues in a row – N62-N65 – are 

broadened (N65 – beyond detectability) in all dimensions. Peaks of the same four residues in 

the hCANH spectrum, on the contrary, sharpen. This peculiar divergence might be explained by 

the ring-current effect of the side chain of F58, which could be arranged in such a way that it 

affects specifically the sidechains of the two asparagine and the two alanine residues as well as 

both Cα and Cβ lines of the preceding I61. However, ring current effects usually entail 

anomalous chemical shift combinations (i.e., positions of the peak maximum), which is not the 

case for the fragment I61-N65. Another argument against the attribution to the ring influence, 
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is that theoretically (Section 1.3.2), the ring current effect on carbon shielding – hence 13Cβ and 

13Cα shifts – is extremely weak (Wishart and Case, 2002). 

The TALOS-N analysis (Fig. 2.3.4, Section 2.3.3) indeed suggests increasing disorder towards 

the C-end of the L3 fragment, but implies a high local order of A63, which contradicts the severe 

peak broadening. Disorder of the two subsequent residues, A64 and N65 is, however, suggested 

by all estimations. Consensus about aggregation propensity between the prediction methods is 

achieved for S57-N62 (Fig. 2.3.3). It is possible that N62 is indeed the edge residue of the 

amyloid core, which precedes the semi-flexible, disordered loop at the C-terminus. C66 may be 

partially conserved due to the C-C bridge with C47 (whose data is not available) as indicated by 

small peak widths and lower heterogeneity score.  

The last peak shape parameter was extracted from the fits of the two-dimensional peak 

projections (Figs. S21 and S22; the residuals are shown in Figs. S23 and S24) and presented as 

   
Figure 2.3.5. Charachteristics of 3D peaks in hCANH and hcaCBcaNH experiments (shortly aliased as HNCA and 
HNCB). A: 13C line widths (green ‘+’ for Cα, teal ‘x’ for Cβ); B: amide 1H and 15N linewidths; C: relative and average 
peak intensities; D: peak tilt in H/N plane ( ‘+’ for hCANH, teal ‘x’ for hcaCBcaNH spectra). Gray bars on the plots 
A-C represent the average values (in B – weighted average). For NMR data processing details and details on 
parameter calculations, see Materials and Methods, Section M.3.5; the raw peaks are shown in Figs S15 and S16; all 
fits are shown in Figs. S17-S22; the 2D fit residuals are shown in Fig. S23 and S24. 
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a function of residue in Fig. 2.3.5D. Comparatively high positive tilt in the HN-plane is observed 

for residues I36 (hcaCBcaNH) and V67 (both spectra). An interesting negative tilt is observed 

for V33 and C40 from the L2 region (both in HNCA spectrum only) and for S57, A64 and the 

most remarkably T52 from the L3 fragment (in each case in hcaCBcaNH only). The tilt of the L3 

residues may be caused by the ring-current effect of the F58.  

2.3.5. Discussion 

Residue-specific heterogeneity in EAS∆15  rodlets 

The large degree of structural disorder in surface-active amyloids may be attributed to the 

evolutionary advantages of optimized fibril packing at surfaces even with largely variable 

curvatures (Morris et al., 2012). Understanding of this packing on the molecular level can 

provide inspiration for designing novel surface-active materials or antimicotic agents.  

Despite the apparent visual homogeneity of the fibrils at the assembly level (Kwan et al., 

2008), the monomers of EAS∆15 rodlet assemblies show pronounced disorder at the atomic 

level. The N-terminus and the L1 segment are largely abscent in the CP-based experiments, 

suggesting either high mobility of those regions on the intermediate timescale or highly random 

static arrangments. The heterogeneity analysis based on the TALOS-N probability maps as well 

as the linewidth analysis suggest a gradually rising order at the N-end of the L2 segment. Among 

all considered indicators, only the peak intensities drop at the C-terminal end of the C40-C46 

fragment (Fig. 2.3.5C), keeping the linewidths constant and the heterogeneity scores dropping, 

suggesting increasing conformational order. The dropping intensity may result from the 

decreasing CP efficiency due to the increasing mobility in the segment towards C46. This is also 

in line with the hypothesis of a dynamic N-terminal end: C46 forms a disulphide bridge with 

C10 (see Fig. 2.3.3). Also, no aggregation potential is predicted from the primary sequence for 

the C40-C46 segment whereas four out of five algorithms suggest some aggregation within L2 

(Fig. 2.3.3).  

TALOS-N-based scores drop in the middle of L3, for the segment F58-N62, which agrees with 

the amyloidogenic potential predicted for these residues by all algorithms. The increasing 

linewidths imply some disorder of the segment N62-N65, manifesting in peak broadening in 

13Cβ and proton dimensions. Interestingly, in the hCANH spectrum 13Cα and nitrogen 

linewidths (Fig. 2.3.5A and B, ‘+’ markers) peak at N62 and steeply decrease towards N65 

whereas those dimensions in hcaCBcaNH continue growing. A64 shows exceptionally high 

heterogeneity scores. This information combined and given the direct proximity of this segment 
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to the C47-C66, one can infer structural distortions towards the two ends of the well-ordered 

amyloid core formed by the central residues of L3 loop. 

All information combined, the residue-specific analysis of the hydrophobin rodlets sheds 

further light on the previously proposed structural model of the fibrils (Kwan et al., 2006). All 

residues bear strand-like secondary-structure predictions, denoting a maintained extended 

character of those residues that are in strands in the monomer form and some rigidification of 

the loops in between. Only residues 22 to 28 and 47 to 51 maintain their flexibility known from 

the monomer structure. The putative fibril core, formed by several central residues of the L3 

segment, is a well-defined sheet, and a totally disordered outer coat is formed by the N-

terminus up to residue 19. Those segments that form strands in the monomer structure tend to 

be associated again with well-defined secondary-structural (sheet-like) predictions. For the 

residues that in the monomer structure belong to loops in between these strands (other than 

the above-mentioned two), in particular around 30, 40, 56, and 66, these scores are 

substantially ambiguous. Given the limitations of the TALOS-N-based engine discussed above, 

this may either denote disorder or reflect the unusual shift combinations of the distribution for 

these residues. This hints to the character of the individual residues from the monomer (loop 

character but now rigidified) to be largely maintained. The increased linewidths just after the 

putative amyloidic segment is an interesting observation, which hints to a genuine 

heterogeneity in the region flanking the amyloid core before the final, C-terminal -strand. 

Interpretation of the peak tilt  

Peak tilts in the H/N plane are common – and specific – for amyloid samples (see above, 

Section 2.3.1). Generally, proton and nitrogen chemical shifts are positively correlated (δ1H ≈ 

14 ∙ δ15N, see below), which is also reflected in the overall shape of a typical HSQC spectrum. 

The peaks of amyloids, including the EAS∆15  sample, are tilted with an individual slope each, 

including sporadic negative tilts (hCANH: V33, C40; hcaCBcaNH: A42, S57, A64, both: T52). 

Since chemical shifts of both, protons and nitrogens, are known to be affected by the H-bonds 

(see Introduction, Section 1.3.2), the slope of the heterogeneous H/N peaks may report on the 

distribution of the H-bond parameters. These parameters are barely getting attention in the 

literature due to multiple factors, including the scarcity of proton-detected experiments on 

amyloids hitherto. This subsection aimes to investigate the factors that may influence H/N peak 

slopes and evaluates their interpretability. 
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As follows from a review of the empirical models for the relationships of chemical shifts to 

the H-bond geometry presented in the Section 1.3.2, the major factors affecting the proton and 

nitrogen shifts are the H-bond angle and interatomic H--O and N--O distance. The 

heterogeneous peaks with positive and negative slopes can be modeled as an ensemble 

footprint of homogeneous components with a continuous variation of the H-bond parameters.  

For investigation of the influence of each H-bond parameter on the backbone amide chemical 

shifts, chemical shifts were calculated based on a realistic parameter space using the model of 

Parker et al (2006) for the proton shifts (this is the only model that includes bond angles) and 

either of the two models (Xu and Case, 2001; Paramasivam et al., 2018) for the nitrogen shifts. 

The realistic parameter ranges were estimated manually from a solid-state NMR structure of 

Aβ42 fibrils (Xiao et al., 2015, PDB ID: 2MXU); the inter-strand twist angle ρ was set within the 

range of (0°, ±20°) based on the data from Periole et al. (2018). Since the intra-strand twist 

parameters angle 𝜔 and 𝑟𝜔 vary in a narrow range and are related to the chemical shift via a 

step function (Fig. 1.3.4C), they were assigned to constants (𝜔 = 0, 𝑟𝜔 = 2.65 Å). The results for 

the range of ρ are presented in Fig. S25: its influence of the strand tilt angle ρ was found to be 

only minor, while other parameters were kept constant (also see Fig. 1.3.4D). Instead, high ρ (ρ 

= 20°) amplifiies the influence of the bond angle θ by increasing the chemical-shift span (Fig. 

S26). The dependance of the amide chemical shifts on the bond angle and lengths was 

investivated at a high ρ for better visibility (Fig. 2.3.6A).  

As demonstrated in Fig. 2.3.6B and C, neither positive nor negative peak slope contradicts the 

existing models. The linear dependance reported by Paramasivam et al. was used to calculate 

the nitrogen shifts; the mixed model of Xu and Case can be used to obtain similar trends. The 

slopes can be modeled assuming different scenarios of structural heterogeneity along the fibril 

length. As such, the heterogeneous peaks with positive slopes can be formed by the 

homogeneous components of the monomers with a distribution of intermonomeric distance 

and constant (or increasing) H-bond angle (Fig. 2.3.6B). A negative tilt was obtained for 

“flattening” H-bond angle (increasing θ) at fixed positions of the monomers, leading to the 

decrease of 𝑟𝑂𝐻 and increase of 𝑟𝑁𝑂. In both cases, a normal distribution of the conformation 

was assumed (i.e. intensities of the individual components follow a gaussian curve).  

It is worth emphasizing that the simulated peak shapes may not accurately resemble the 

observed peaks, their shape and scale and only serve as a first attempt to quantify amyloid peak 

slopes. Multiple other parameters of the fibril geometry influence proton as well as nitrogen 

chemical shifts: positions of other electron donors and acceptors, rotations of the charged or  
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Figure 2.3.6. Influence of the H-bond parameters on the backbone amide chemical shifts: interatomic distances 
O--H and N--O (𝑟𝑂𝐻  and 𝑟𝑁𝑂), the H-bond angle (∠H-O-C) θ, inter-strand tilt 𝜌 and the intra-strand tilt 𝜔. The 
parameters are defined in Fig. 1.3.4B (Section 1.3.2) and in the corresponding sources for the models: (Parker et 
al., 2006) for proton chemical shifts, (Xu and Case, 2001) and (Paramasivam et al., 2018) for nitrogen chemical 
shifts (in β-sheets). A: Chemical shifts calculated with either pair of models for the range of bond lengths and 

angles. The interatomic N--O distance was approximated as the sum of H--N and H--O bond lengths (𝑟𝑂𝐻 + 1 Å). B 
and C: Simulated heterogeneous peaks in the H/N plane and sketches of possible structural variations causing the 
shift differences among invidual ensemble members. B: The positive slope caused by the increased distance 
between the monomers in a fibril; C: the negative slope caused by rotation of the amide and carbonyl bonds. 
Intensities of the individual conformers are normally distributed; the linear model of Paramasivam et al. for 
nitrogen shifts was used to simulate the peaks in B and C.  
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aromatic sidechains (consider the proximity of F58 and its effect on the carbon linewidths 

discussed above), φ and ψ angles of the donor and acceptor residues.  

The same reasons make it is difficult to understand the effect of the H-bond configuration on 

the broad range of experimental chemical-shift data coming from different proteins. An attempt 

was made to investigate statistical data for the residues from the extended structures (class ‘E’) 

with respect to the residue type. The chemical shifts and the N-O interatomic distances 

collected from 2837 proteins (see Materials and Methods, Section M.3.5 for details on the data 

collection and distance estimation) show weak negative correlations (Figs. 2.3.7 and S26, the 

underlying data shown in Fig. S27). Stronger correlations are observed for the proton shifts, as 

expected from the empirical models. Chemical-shift correction for the sequential context (data 

for alanines shown in Fig. S28) did not lead to any significant changes. Althogh the sensitivity 

of both, δ1H and δ15N shifts of different residue types, may seem different at first, the data 

should be further denoised before making conclusions. As such, the patterns resulting from the 

variation of a small group of parameters (Fig. 2.3.6) can be obfuscated by the sequential context 

(Wishart et al., 1995). An additional crucial factor, as emphasized by Parker et al. (2006), is a 

non-optimized geometry of structures, which have been solved without protons (as it is the 

case for all X-ray structures). This may lead to worng estimates of interatomic distances. Thus, 

the author highly encourages continuation of this research which, due to the time restrictions, 

she could not complete herself.  

Linewidths and TALOS-N scores as heterogeneity metrics  

It was shown that sequential peak characteristics, such as linewidths and peak intensities, can 

be used as simple metrics for residue disorder that provide complementary information to the 

heterogeneity metrics obtained with TALOS-N. Most valuably, the linewidth approach allows to 

focus on different nuclei and their combinations, thereby allowing evaluating the 

linebroadening effects separately and making hypotheses about the nature of structural 

disorder. 

The trends formed by either set of indicators, the TALOS-N scores or peak characteristics, 

should be interpreted with caution due to the large variety of factors affecting the predictions 

as well as the chemical shifts and hence linewidths themselves. Rising TALOS-N heterogeneity 

scores for narrow linewidths can occur due to adoption of defined conformations that, however, 
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 Figure 2.3.7. Pearson correlation coefficients for amide protons and nitrogens belonging to extended-structure  
(‘E’) chemical shifts and the three lowest N--O interatomic distances Ni>O1, Ni->O2. Ni-->O3. The PDB and BMRB 
data of 2116 proteins are related by the tables from ReBoxitory (Maciejewski et al., 2017). Note, that N reflects 
only the number of the shortest N--O contacts (Ni>O1,), number of longer contacts (Ni->O2 and Ni-->O3) is 
substentially lower.  
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do not fall into the typical chemicals-hift regions (i. e. α-helical or β-sheet shifts). The peak tilts 

provide an additional perspective on the disorder within the assembley, differentiating 

between heterogeneous H-bond distances or rather heterogeneous angles. However, the slopes 

are not always reproducable from the transfer scheme to transfer scheme (hCANH vs. 

hcaCBcaNH), which points to the signal-to-noise shortcomings for heterogeneous samples. The 

behaviour of all proposed metrics should be further explored on a flash-frozen heterogeneous 

polipeptide with intrinsically disordered elements, whose conformational ensemble in solution 

has been reconstructed based on orthogonal high-resolution (NOESY) as well as medium 

resolution data (FRET or EPR). However, this would assume that the shock-freezing 

quantitatively retains all secondary-structural properties, which is unlikely to happen. All in all, 

even if not perfect, the proposed approaches to measure and evaluate the residue-specific 

disorder can provide valuable insights into the organisation of the polipeptide chain at the 

molecular level and come of use for the validation of propsed biological models when other 

physico-chemical data are limited.  

 

  



 

 

3 | OUTLINE AND 

PERSPECTIVES 

This thesis presents approaches for i) extracting conformational distributions from 

heterogeneously broadened peaks; ii) measuring static disorder based on the obtained (φ, ψ)-

domain data and linewidths parameters. Despite the apparent simplicity of the presented 

procedures, as it is common in science, the devil is always in the details. In case of a workflow 

involving the many-to-one parameter mappings, a part of the challenge is to properly apply the 

underlying methods and to define how to not over- and underinterpret the outcome. The 

heterogeneity trends (formed by either score) should be considered in the light of the residue 

type as well as keeping in mind the possible special arrangement of the chain. The obtained 

collective (φ, ψ) distributions can be passed downstream as restraints for MD-driven ensemble 

reconstruction either as maps or as, perhaps, pairs of circular variance (𝑉𝜑, 𝑉𝜓). 

The presented workflows of residue-specific heterogeneity assessment pursue the “top-

down” strategy of going from the observables (here, chemical shifts) into the underlying 

structural features. As opposed to the other “top-down” studies where interatomic 

distances/angles obtained with dipolar-recoupling techniques were average, the grid sampling 

of the peak allows preserving the distribution parameters.  

In the sight of improving QM chemical-shift prediction offered by hybrid MD-QM/MM 

techniques (Yi et al., 2023b), the “bottom-up” approaches for peak shape analysis akin to those 

by Heise et al (2005) and Uluca et al (2018) (Section 1.3.3) are more involved but may gain 

advantage over the dihedral-angle prediction methods.  

The combination of NUS and high dimensional experiments allows circumventing the 

expensive and time-consuming preparation of selectively labelled samples. While here the 

analysis was based on 4D spectra, the chemical-shift correlations might be further expanded 

into even higher dimensionality (5D+) by techniques of projection reconstruction developed 

for rendering spatial models from the images at different angles (Cremers et al., 2011). Applied 

to NMR, reconstruction of spectra was implemented as GAPRO algorithm and APSY (Automated 

Projection SpectroscopY) (Hiller et al., 2005) - however, as of now, these techniques recover 

only positions of peak maxima without the peak shape information. Projection spectroscopy of 
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statically disordered samples might allow resolving features of heterogeneous peaks in the 

dimensions of all backbone nuclei (plus 13Cβ) at once, providing better chemical-shift inputs. 

Sensitivity is expected to remain the major shortcoming – however, emerging methods of pulse 

optimization based on optimal control (Tošner et al., 2021) can be tested for heterogeneous 

samples and, if successful, would significantly improve signal-to-noise. Even more pronounced 

advantages are expected for the emerging cryo-MAS probes (Hassan et al., 2020). Application 

of projection spectroscopy or NUS may allow expanding dimensionality for the DNP approaches 

pursued hitherto, currently recorded at most as the 3Ds. This study shows (Section 2.1), that 

faithful reconstruction of the complex peak shapes is possible, so it is at least worth testing on 

the DNP data.  

Another fundamental question for future research is how directly the immobilized 

conformational ensembles represent the underlying dynamic ensembles? In the very recent 

study of Yi et al.(2023a), the authors make the following observation for Ile60 in selectively 

labeled DHFR. They report that at room temperature in solution, this residue is structured by 

all indicators, however, at cryogenic DNP conditions, at least three conformations and a lower 

order parameter were observed. As suggested by the authors, this may imply that the cryogenic 

linewidths also capture internal motions that happen in solution on fast timescales. Therefore, 

future studies should study the chemical-shift distributions in tandem with relaxation 

measurements. 

All in all, such holistic approach to protein structural biology, including investigation of 

structure, including the distribution of conformational parameters, in addition to dynamics 

within a large range of time scales, promises a greater understanding of the patterns in the 

organization of the polypeptide chain, opening additional ways to better target protein 

complexes using medical drugs, improve biotechnological processes and design protein 

machinery de novo. 

 

 



 

 

M | MATERIALS AND 

METHODS 

M.1. Sample preparation 

M.1.1. fMLF 

Micro-crystalline powder fMLF (Merck) was dehomogenized by dissolving it in 50% ethanol 

and freeze-drying at high vacuum. The powder was packed into a 1.3 mm ZrO2 MAS rotor with 

rubber plugs.  

M.1.2. GGAGG 

The dehomogenized sample of u-(13C, 15N)-GGAGG pentapeptide was purchased as a 

lyophilized powder from Thermo Fisher Scientific Inc. The provided HPLC profile and the mass-

spectrum confirmed >95% purity. To ensure a high degree of heterogeneity, the sample was 

redissolved in ddH2O and freeze-dried over 18 hours under absolute pressure of 10 mbar. The 

obtained slightly yellow, glassy material was centrifuged into a 1.3 mm ZrO2 MAS rotor 

overnight.  

M.2. Acquisition and processing of NMR data 

All NMR experiments were recorded on Bruker spectrometers with AVANCE NEO consoles. 

Spectra of GGAGG were recorded on a spectrometer with a proton Larmor frequency of 

700 MHz (magnetic field of 16.54 T) at an MAS rate of 40 kHz. Spectra of fMLF were recorded 

on a 800 MHz spectrometer with an MAS rate of 55.5 kHz. Target cooling temperature in all 

cases was set to -25 °C (248.15 K), which corresponded to effective sample temperatures of 

approx. 10 °C at a MAS rate of 40 kHz (for the GGAGG sample) and 15 °C at 55.5 kHz (for the 

fMLF sample). Shimming and adjustment of the rotor angle inside the probe were pursued 

using a separate KBr sample. The spectrometers were operated with TopSpin (v. 4.0.8). 

Poisson-gap sampling schedule for non-uniform sampling was generated via the web tool 

http://gwagner.med.harvard.edu/intranet/istHMS/gensched_new.html. 

http://gwagner.med.harvard.edu/intranet/istHMS/gensched_new.html
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The acquisition and processing parameters of uniformly sampled spectra of fMLF are listed 

in Tables M1.1 and M1.2. The parameters for experiments on the GGAGG sample are listed in 

Tables M2.1 and M2.2. The acquisition and processing parameters of the EAS∆15 data are listed 

in Tables M3.1-M3.4. 

M.2.1. External chemical-shift referencing  

Chemical-shift referencing was done externally on a sample of 1 % 4,4-dimehyl-4-silapentane-

1-sulfonic acid (DSS) solution in D2O using an MAS rotor without spinning. 

The direct dimension was calibrated by the command cal with option manual 

calibration and setting of the methyl signal to 0 ppm. As the result, TopSpin saves the 

absolute methyl resonance frequency into the parameter SF. In all the other experiment, the SF 

for heteronuclei was set as SF (1H) divided by the ratio of the relative proton Ξ1H and 

heteronucleus ΞX Larmor frequencies (Markley et al., 1998). For the carbon dimension, 
Ξ1H

Ξ13C
  = 

3.97, for nitrogen, 
Ξ1H

Ξ15N
  = 9,87. The nitrogen dimension can also be referenced with the default 

settings by simply dividing the automatically calculated SR (1H) value by the correction factor 

of 
Ξ1H

Ξ15N
. However, analogous calculation of the SR (13C) parameter would result in a 2.66 ppm 

offset. The reason for this is the default referencing of the Larmor frequency of 13C on Bruker 

spectrometers to TMS standard as opposed to DSS. Therefore, for the carbon dimension the 

author recommends the procedure described above.  

M.2.2. Data processing 

All lower-dimensional (1D and 2D) experiments were processed in TopSpin. Uniformly as well 

as non-uniformly sampled 3D and 4D spectra reconstructed by hmsIST and SMILE were 

processed in NMR Pipe (v. 10.9, rev. 2021.258.11.26 64-bit) (Delaglio et al., 1995), apart from 

the 3D hCANH, 3D hcaCBcaNH and other spectra of the EAS∆15 rodlets that were used for the 

assignments: those were recorded and processed with TopSpin (the data were obtained in the 

final form from R.L.). The 4D and 3D data that were subjected to reconstruction by SSA were 

processed by the in-built functions of the SSA package. Baseline correction was performed with 

in-built functions.  

Apodization of the data were done using the standard functions similarly implemented into 

every software: 

Exponential:  exp(−K𝜋𝑡/𝑤) denoted “Exp., K” in Tables M1.1-3.4; 
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Sine squared:  sin (
𝜋𝑡

2𝐾
)
2

 denoted “Sine sq., K” in Tables M1.2 and 3.1. 

where 𝑡 is the time-domain data point and 𝑤 is the spectral window of the direct dimension; 

𝑤 =  20833.334  z; K is the weighting coefficient. 

 

 

 

 

 

 

Table M1.1. Acquisition and processing parameters of the 3D hCONH spectrum of the u-(13C, 15N)-fMLF 
sample 

 13C (F1) 15N (F2) 1H (F4) 

Base frequency, MHz 176.11 70.97 700.17 

Number of points  35 x 2 30 x 2 2048 

Spectral width, ppm 10.16 29.8 29.75 

Offset, ppm 174.4 120.0 6.1 

Number of scans 24 

CP H → Cα  1H 15.1 kHz,  tang 3 m; 13C 7.93 kHz, rect.;  

CP Cα → N 13C 14.0 kHz; 15N 33.0; 8.2 m ramp 90100 

CP N → H 15N 35.2 kHz; 1H 2.83 kHz; 0.14 m ramp 70100  

Apodization - - Exp., 50 Hz 

Zero filling up to, points 512 512 2048 

Table M1.2. Acquisition and processing parameters of the 4D hCOCANH spectrum of the u-(13C, 15N)-fMLF 
sample 

 13CO (F1) 13Cα (F2) 15N (F3) 1H (F4) 

Base frequency, MHz 176.11 176.11 70.97 700.17 

Number of points  14 x 2 23 x 2 27 x 2 2048 

Spectral width, ppm 11.3 21.8 54.2 29.75 

Offset, ppm 172.0 52.55 123.0 6.1 

Number of scans US: 8; NUS: 16 

Points in NUS schedule 435 

CP H → CO  Pldb27 6.3 kHz spdb6 15.8 kHz tang 2 ms 

BSH-CP CO → Cα 19.9 kHz, ramp100->70, 5m  

CP Cα → N Pldb8 15.8 kHz Spdb5 29.4 kHz 9 m ramp90100 

CP N → H Pldb5 35.2 kHz spdb2 2.75 kHz ramp 70100 

Apodization US, IST, SMILE: Sine sq., 0.3; SSA: Exp., 50 Hz Exp., 50 Hz 

Zero filling up to, points 128 128 128 2048 
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Table M2.1. Acquisition and processing parameters of the 2D 13C/13C correlation on the u-(13C, 15N)-
GGAGG sample. CP power levels do not account for the shape effects. 

 13C (F1) 13C (F2) 

Base frequency, MHz 201.24 201.24 

Number of points  59 x 2 2856 

Spectral width, ppm 42 405 

Offset, ppm 35 35 

Number of scans 256 

CP H → Cα  1H: 8.16 kHz, ramp100->80; 13C: 14.9 kHz; 1.71 ms 

DREAM   Cα → Cβ  35.9 kHz, 5 m, tangential 75% 

Apodization Exp., 70 Hz Exp., 70 Hz 

Zero filling up to, points 1024 4096 

Table M2.2. Acquisition and processing parameters of the 4D hcaCBCANH spectrum on the u-(13C, 15N)-
GGAGG sample. CP power levels do not account for the shape effects. 

 13C (F1) 13C (F2) 15N (F3) 1H (F4) 

Base frequency, MHz 201.24 201.24 81.10 800.3 

Number of points  2 x 48 2 x 48 2 x 21 2048 

Spectral width, ppm 59.9 59.9 33.1 26 

Offset, ppm 14.1 29.0 112.5 4.40 

Number of scans 8 x 7 

Points in NUS schedule 2401 (≈ 5%) 

CP H → Cα  1H: 69.09 kHz, ramp100->80; 13C: 21.02 kHz, rect; 0.48 ms 

DREAM   Cα → Cβ  35.9 kHz, tangential, 75% 

CP Cα → N 13C: 19.3 kHz, rect.; 15N: 16.82 kHz, ramp90->100; 6 ms 

CP N → H 15N: 30 kHz, rect.; 1H: 7.9 kHz, tangential, 75%; 0.15 ms 

Apodization Exp, 200 Hz Exp, 200 Hz Exp, 400 Hz Exp, 500 Hz 

Zero filling up to, points 128 128 128 2048 
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Table M3.1. Acquisition and processing parameters of the 2D hNH spectrum of the u-(2H, 13C, 15N)-
EAS∆15 rodlet sample (100% back-exchanged) 

 15N (F1) 1H (F2) 

Base frequency, MHz 70.95 700.17 

Number of points  90 x 2 2048 

Spectral width, ppm 55.92 39.7 

Offset, ppm 120.0 6.7 

Number of scans 8 

CP H → N, N → H 15N: 30 kHz, rect.; 1H: 7.9 kHz, tangential, 75%; 0.15 ms 

Apodization Sine squared Exp. 30 Hz 

Zero filling up to, points 2048 4096 

Table M3.2. Acquisition and processing parameters of the 3D hCANH spectrum of the u-(2H, 13C, 15N)-
EAS∆15 rodlet sample (100% back-exchanged) 

 13C (F1) 15N (F2) 1H (F3) 

Base frequency, MHz 201.21 81.08 800.15 

Number of points  32 x 2 20 x 2 2048 

Spectral width, ppm 29.8 41.1 39.7 

Offset, ppm 54.27 119.6 5.2 

Number of scans 48 

Apodization Sine squared Sine squared Gauss. -10 

Zero filling up to, points 256 256 2048 
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Table M3.3. Acquisition and processing parameters of the 3D hcaCBcaNH spectrum of the u-(2H, 
13C, 15N)-EAS∆15 rodlet sample (100% back-exchanged) 

 13C (F1) 15N (F2) 1H (F3) 

Base frequency, MHz 201.21 81.08 800.15 

Number of points  80 x 2 20 x 2 2048 

Spectral width, ppm 79.99 41.1 39.7 

Offset, ppm 54.27 119.6 5.2 

Number of scans 32 

Apodization Sine squared Sine squared Gauss., -10 

Zero filling up to, points 512 256 2048 

Table M3.4. Acquisition and processing parameters of the 4D hcaCBCANH spectrum on the sample of u-
(2H, 13C, 15N)-EAS∆15 rodlets (100% back-exchanged) 

 13C (F1) 13C (F2) 15N (F3) 1H (F4) 

Base frequency, MHz 176.1 176.1 70.96 700.175 

Number of points  29 x 2 47 x 2 70 x 2 2048 

Spectral width, ppm 1388.9 9259.3 2525.3 20833.3 

Offset, ppm 45 45 120 6.70 

Number of scans 8 x 7 

Points in NUS schedule 1991 (≈ 2%) 

CP H → Cα  1H: 34.0 kHz, tangential, 75 %; 13C: 16.4 kHz, rect.; 1.71 ms 

DREAM   Cα → Cβ  32.5 kHz, tangential, 75 %; 4 ms 

CP Cα → N 13C: 18.2 kHz, rect.; 15N: 33.75 kHz, ramp90->100.; 11 ms 

CP N → H 15N: 37.8 kHz, rect.; 1H: 12.0 kHz, tangential 75 %; 0.45 ms  

Apodization Exp, 70 Hz Exp, 70 Hz Exp, 70 Hz Exp, 50 Hz 

Zero filling up to, points 128 128 128 1024 
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M.3. Data handling and analysis 

The NMR spectra were visualized and analyzed in NMRFAM Sparky (v. 1.414) (Lee et al., 2015) 

CCPNMR (v.2.4.5) (Skinner et al., 2016) 

All numerical operations, calculations, fitting and plotting were done in Jupyter Notebooks 

(v. 6.4.11), IPython v.8.4.6, using the Python 3.8-11 kernel. The following packages were used 

(versions as last tested): 

numpy v.1.22.4 (Harris et al., 2020) 

pandas v.1.4.2 (McKinney, 2010) 

scipy v.1.7.2 (Virtanen et al., 2020) 

nmrglue v.0.8 (Helmus and Jaroniec, 2013) 

matplotlib v.3.5.1 (Hunter, 2007) 

seaborn v.0.11.2 (Waskom et al., 2017) 

 

All procedures described in this work are available at the GitHub repository  

github.com/eburakova/protein_heterogeneity_ssnmr. In the following, code excerpts are 

provided for reference.  

M.3.1. Tests of the NUS reconstruction algorithms  

Main text: Section 2.1 

Subsampling from a uniformly sampled dataset  

NUS schedules with Poisson-gap weighting were generated at  

http://gwagner.med.harvard.edu/intranet/hmsIST/gensched_new.html. Random schedules 

with Gaussian weighting were generated at random schedule with the exponential weighting 

was generated with a home-made script. 

 The procedure was done with the following script: 

import sys, numpy, os 
try: 
 import pandas as pd 
except ModuleNotFoundError: 
 print("Error: Pandas library is required. Please, install it with \n pip install pandas \n") 
 sys.exit() 
  
inFilePath = "~/Spectra/fMLF_HNCO/6/ser" 
outFilePath = "~/NUS_3D/fMLF_HNCO/ser_90_r" 
SchedPath = "~/NUS_3D/fMLF_HNCO/fMLF_HNCO_random_90pc" 
  
try: 
    os.remove(outFilename) 

https://github.com/eburakova/protein_heterogeneity_ssnmr
http://gwagner.med.harvard.edu/intranet/hmsIST/gensched_new.html
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except OSError: 
    pass 
  
NUSlist = pd.read_csv(SchedPath, sep = "\s+", header=None, names = ["1nd_Indir", "2nd_Indir"]) 
  
td1 = 60 
td2 = 70 
  
TDindirect = td1*td2 
TDdirect=2048 
  
dt_in = numpy.dtype(("i4", (TDindirect,TDdirect))) 
inData = numpy.fromfile(inFilename, dtype=dt_in, count=1) 
  
dt_out = numpy.dtype(("i4", (len(NUSlist)*4, TDdirect))) 
outData = numpy.zeros(1, dtype=dt_out) 
  
for i in range(len(NUSlist)): 
    ln_US = NUSlist.iloc[i,:]["2nd_Indir"]*2*td1 + NUSlist.iloc[i,:]["1nd_Indir"]*2 
    outData[0,i*4,:] = inData[0,ln_US,:] 
    outData[0,i*4+1,:] = inData[0,ln_US+1,:] 
    outData[0,i*4+2,:] = inData[0,ln_US+td1,:] 
    outData[0,i*4+3,:] = inData[0,ln_US+td1+1,:] 
  
outData.tofile(outFilename) 
  

 

A schematic representation of the procedure is shown in Fig. M1. 

 

Figure M1. Illustration of rearranging FIDs according to the standard Bruker order when artificially sampled from 
a uniformly acquired, multidimensional dataset. NUS methods generally require all combinations of each complex 
time increment in one block, i. e. real/real, imaginary/real, real/imaginary, and imaginary/imaginary. 
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Parameter screening 

The key parameters of SMILE and SSA were optimized for each density by minimizing the RMSD 

to the US spectrum. The results for 2% and 30% are shown in Figs. M2 and M3. For SMILE, only 

the parameter nSigma was varied; for SSA, parameters T and J were optimized on a grid. 

 

 

 
Figure M2: Results of SMILE parameter optimization for the NUS hCONH spectrum, acquired on dehomogenized 
fMLF powder, represented by H/CO projections. Parameter optimization was pursued via screening through 
values of nSigma (shortened as “nSig”) for reconstruction of datasets. Depictions represent A) 2 % sampling 
density and B) 30 % sampling density. 
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Figure M3. Results of SSA parameter optimization for the NUS hCONH spectrum for dehomogenized fMLF powder, 
represented by H/CO projections. Screening was done in a grid fashion through T and J values for cleaning and 
reconstruction of datasets, shown in A: for 2 % sampling density and in B: for 30 % sampling density. Default 
values are T=10 and J=4. The green frames highlight the reconstruction with the lowest RMSD with respect to the 
uniformly sampled 3D spectrum. 
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M.3.2. Analysis of heterogeneous peaks with TALOS-N and 
DANGLE 

Main text: Section 2.2.3 

Generation of individual inputs  

Chemical shifts of the 𝑖 ± (1,2) neighbors (where 𝑖 is the Residue-Of-Interest) were replaced 

with combinations that matched the secondary structure propensity of the ROI. The procedure 

illustrated by Fig. 2.2.2B was implemented as:  

def transform(distrA, limitsA, limitsB):     
'''Transforms distribution of unevenly distributed points in a space A to space B" 
    Input: 
    distrA - numpy 2D array [[arrdim1 ...], [arrdim2 ...], [arrdim3 ...], [arrdim4 ...]] - distribution 
to be transformed. 
    limitsA and limitsB (list of tuples) - limits of space A and B, correspondingly, in the form (left, 
right) - mind the order! 
    Output: 
    distrB - transformed distribution''' 

    shape=distrA.shape 
    distrB = np.empty(shape=distrA.shape) 
    for i in range(shape[0]): 
        spanA = limitsA[i][1] - limitsA[i][0] 
        spanB = limitsB[i][1] - limitsB[i][0] 
        for j in range(shape[1]):   
            distrB[i, j] = spanB * (distrA[i, j]-limitsA[i][0]) / spanA + limitsB[i][0] 
    return distrB 
  

 

Batch execution 

TALOS-N was run with the following Bash script: 

#!/bin/sh 
  
for i in $(seq 0 1406) 
 do 
  echo "$i" 
  mkdir $i 
  cd $i 
  talosn -in ./../../TALOS_inputs_A4/$i.tab -noclip - np 4 
  cd .. 
 done 
  

 

DANGLE was run on Windows with PowerShell with the command 

for ($i=0; $i -le 1406; $i++) {C:/Python27/python.exe dangle.py               \ 
"C:/Users/Admin/Documents/DANGLE experimets GGAGG/DANGLE_Inputs/$i.tab"     \ 
-dir "C:/Users/Admin/Documents/PhD/DANGLE experimets GGAGG/DANGLE_Outputs/$i/"} 
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M.3.3. Assignment of weights to PACSY entries 

Main text: Section 2.2.4 

The NMR intensity 𝐼 at the each PACSY point in 4D chemical-shift space (Cα, Cβ, N and H 

dimensions of the hCBCANH spectrum) was determined by linear interpolation of the spectral 

intensity with scipy.ndimage.map_coordinates function. This function requires 

translation of the data coordinates (chemical shifts) into array index coordinates (i.e. point 

positions in the spectrum). This was done in the same manner as translation of chemical shifts 

from one residue type to the other as described directly above. Points with intensity lower than 

15% (SNR = 15) of the peak maximum were excluded.  

# Dimension order: HN, CA, N, CB 
# pacsy_purged – the table with chemical shift – φ and ψ angles relation, A_CS_DB2.txt 
# transform – function for coordinate transformation, see above 
 
from scipy.ndimage import map_coordinates 

  
limits_ppm = [(11.71, 5.995), (61.72, 1.79), (129.79, 96.79), (61.72, 1.79)] 
limits_points = [(0, spectrum_shape[i]) for i in range(4)] 

    
ala_ppm = pacsy_purged[['H', 'CA', 'N', 'CB']].values.T 
ala_points = transform(ala_ppm, limits_ppm, limits_points) 

  
purged['Weights'] = map_coordinates(the4D, ala_points, order=1) #intensity 

  
threshold = the4D[238, 19, 29, 94]*0.15 # Maximum of the peak of interest; the peak is positive. 

  
included_points=purged[['H','CA','N',CB']].where(purged['Weights']>threshold).dropna().values.T 
included_points 

  

OUT: array([[  7.91 ,   8.06 ,   7.88 , ...,   7.9  ,   7.9  ,   7.9  ], 
       [ 55.1  ,  54.1  ,  54.9  , ...,  54.671,  54.12 ,  54.12 ], 
       [122.3  , 122.9  , 122.8  , ..., 124.61 , 124.61 , 119.281], 
       [ 17.8  ,  18.1  ,  17.5  , ...,  17.562,  17.562,  17.562]]) 

 

Point density 𝑃 in 4D space was estimated using scipy.stats.gaussian_kde function on 

a 70707070 grid with the limits at the minimum and maximum chemical shift of every 

selected PACSY point in each of the 4 dimensions. This took about 40 minutes on AMD Ryzen 3 

1300X Quad-Core Processor (3500 Mhz, 4 Core(s) with 4 logical processors). 

# selected – the dataframe of ‘included points’ (see above) 
 
xmin, xmax = selected['CB'].min(), selected['CB'].max() 
ymin, ymax = selected['CA'].min(), selected['CA'].max() 
zmin, zmax = selected['N'].min(), selected['N'].max() 
amin, amax = selected['H'].min(), selected['H'].max() 
  
X, Y, Z, A = np.mgrid[xmin:xmax:70j, ymin:ymax:70j, zmin:zmax:70j, amin:amax:70j]  
positions = np.vstack([X.ravel(), Y.ravel(), Z.ravel(), A.ravel()]) 
values = np.vstack([selected['CB'].values, selected['CA'].values, selected['N'].values, 

selected['H'].values]) 
  
go = input('Type "go" for performing KDE').lower() == 'go' 
if go: 
    kernel = stats.gaussian_kde(values) 
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selected['Density'] = kernel(values) # Add a new column with the result 
  

M.3.4. Calculation of heterogeneity scores 

Main text: Section 2.2.5 

 

Figure M4. Regions used in calculation of the R score. The red region and tan regions, marked with E and H 
correspondingly, denote pixels of the 1810 φ/ψ plot that were integrated into E and H parameters 

 

M.3.5. Analysis of peak parameters  

Main text: Section 2.3.4. 

In order to cope with the un-evenness of the heterogeneous peak shapes, each individual peak 

was extracted from the 3D spectra in a “peak box” and projected one or two times on the target 

axis (axes) for the 1D or 2D fits (Fig. M5). An additional benefit of this approach is an increased 

signal-to-noise ratio as compared to fitting of a higher-dimensional shape or a peak slice. The 

3D boxes were adjusted for every peak manually. Before fitting of the 2D projections, each box 

was stripped from the remainders of other peaks and noise: all data points below a threshold 

(set at SNR=15) were replaced with zeros; then the target peak was identified as the cluster of 

the highest intensity points, and all other clusters were discarded: 

from scipy import ndimage 
s = ndimage.generate_binary_structure(3,2) 
  
for res_num in peak_list: 
    print(residue_number) 
  
    fname_peak = os.path.join(os.path.join(dataDir, str(roi)), str(roi)+"_Peak_0.15_int.npy") 
    peak = np.load(fname_peak) 
    labels, num_features = ndimage.label(peak, structure=s) 
    amount, _ = np.histogram(labels.ravel(), bins=num_features) 
    print("Number of clusters \t", num_features) 
    if num_features>1: 
        main_cluster_id = np.argmax(amount[1:])+1 #starting from one because zero is not a cluster, 

it is the floor 
    else:  
        main_cluster_id = 1 
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    print("Main cluster id \t", main_cluster_id)  
    print('\n') 
    peak_stripped = np.where(labels==main_cluster_id, peak, 0) 
    np.save(os.path.join(os.path.join(dataDir,str(res_num), str(res_num)+"_Peak_stripped.npy"), 

peak_stripped) ## writing the result into the file 
  

The Gaussian functions were implemented as: 

import numpy as np 
 
def gauss1d(x, I, x0, sigma): 
    return I * np.exp(-1/2*(x-x0)**2/(sigma**2)) 
 
def gauss2d(xdata_tuple, amplitude, x0, y0, sigma_x, sigma_y, theta, offset): 
    (x, y) = xdata_tuple                                                                  
    a = (np.cos(theta)**2)/(2*sigma_x**2) + (np.sin(theta)**2)/(2*sigma_y**2)    
    b = -(np.sin(2*theta))/(4*sigma_x**2) + (np.sin(2*theta))/(4*sigma_y**2)     
    c = (np.sin(theta)**2)/(2*sigma_x**2) + (np.cos(theta)**2)/(2*sigma_y**2)    
 
    g = offset + amplitude*np.exp( - (a*((x-x0)**2) + 2*b*(x-x0)*(y-y0)          
                                                    + c*((y-y0)**2)))  
    return g.ravel() 
  

To the author’s experience, no available NMR software could reliably fit all heterogeneously 

broadened peaks in a conventional way (i.e. without extraction and projection). The 1D and 2D 

fits were reviewed and corrected manually.  

 

Figure M5. Workflow of fitting the heterogeneous peaks. 

 

The linewidths were measured as full width at half height of the corresponing 1D or 2D gaussian 

fit, 𝐹𝑊𝐻𝐻𝐷𝐼𝑀  =  2.355 ∗ 𝜎𝐷𝐼𝑀 and then further normalized by the maximum. The peak slope 𝜗 

on the HN plane was obtained from the correlation coefficient theta: 

𝜗 = 𝜃 ⋅ 2 𝜋⁄ . See Fig. M5 and the code snippet below: 

res_num = 67 
atom = "HN" 
manual = True  
  
dataDir = "~\\workdir\\IndPeaks\\3D\\HNCA\\" 
  
path_proj = os.path.join(os.path.join(dataDir, str(res_num)), str(res_num) +atom+"_proj.npy") 
path_xdata = os.path.join(os.path.join(dataDir, str(res_num)), str(res_num)+atom+"_X.npy") 
  
xdata = np.load(path_xdata) 
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xdata_trunk = xdata[0 : xdata.shape[0] // 2+10] 
ydata = np.load(path_proj) 
ydata_trunk = ydata[0 : ydata.shape[0] // 2+10] 
  
p0 = (ydata.max(), xdata[np.argmax(ydata)], 0.5) #initial guess 
  
## p1 = (ydata.max(), 9.5, 0.5) #adjusted guess 
bounds = ([2e9, 7.5, -0.5], [1e11, 7.7, 0.99]) #fit boundaries 
  
if manual: 
    # Adjusted manually 
    popt, pcov = curve_fit(gauss1d, xdata_trunk, ydata_trunk,  
                           bounds=bounds) 
else: 
    # Automatic fit 
    popt, pcov = curve_fit(gauss1d, xdata, ydata,  
                           p0=p0) 
  
fit = gauss1d(xdata, *popt) 
  
#print("Linewidth by fit: ", 2.355*popt[2], " ppm") 
 
print("Linewidth by fit: ", 2.355*popt[2]*HNCA_dic["FDF1OBS"], " Hz") 
print(f"Int\t{popt[0]}\ncenter\t{popt[1]}\nsigma\t{popt[2]}") 
  

OUT Linewidth by fit:  86.89353968896644 Hz 
 Int 10059840686.369625 
 center 7.605180115303766 
 sigma 0.18338003066063832  

 

The weighted average of the amide linewidths (gray bars in Fig. 2.3.5B) was calculated as 

 𝐿𝑊̅̅̅̅̅  =
3

8
𝐿𝑊𝐻
̅̅ ̅̅ ̅̅ +

5

8
𝐿𝑊𝑁
̅̅ ̅̅ ̅̅   [ppm], where 𝐿𝑊𝐻

̅̅ ̅̅ ̅̅  and 𝐿𝑊𝑁
̅̅ ̅̅ ̅̅   are the average 1H and 15N linewidths in 

the two spectra (hCANH and hCBNH). The weights were derived from the ratio of expected 

homogeneous linewidths of 1H (0.5 ppm) and 15N (0.3 ppm). The ppm units were preferred by 

the author over the traditional Hz scale to a) be able to derive the average score between the 

two isotopes and b) to make the measure independent of the external magnetic field: The 

heterogeneous line broadening in either dimension scales with the differences (in Hz) between 

isotropic shifts of individual conformations proportionally to the strength of the B0 field 

(compare to chemical shift anisotropy). 

 

M.3.6. Amide chemical shifts and hydrogen bond lengths in β-sheets 

Main text: Section 2.3.4. 

The list of PDB structures was taken from a similar study (Baskaran et al., 2021) and parced for 

elements of extended structures (β-sheets or strands, ‘E’ or ‘B’) as classified by DSSP (original 

version published by Kabsch and Sander, 1983; Maarten L. Hekkelman’s version mkdssp, 

v. 3.0.1 used in this work). The relational tables of PDB IDs and BMRB data were taken from 

ReBoxitory on NMRBox (Maciejewski et al., 2017). The PDB structures and DSSP output were 
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analysed by a byopython.PDB module (Hamelryck and Manderick, 2003). Hydrogen bonds 

were identified by presence of an oxygen atom within a radius of ≤3.5 Å from the query 

backbone amide nitrogen. Correlations of the amide chemical shift and the interatomic N-O 

distances for 18 residue types are presented in Fig. S15. 

Implementation of the search for the N-O contacts is performed by the following code 

snippet: 

pdb_id='aaaa' 
H_bond_max_length = 3.5 # Angstrom 
#amide_N_H_bonds=pd.DataFrame() 
  
pdb_N_df = pd.DataFrame() 
problemsB=[] 
counter=0 
for problem in problems: # searching all problematic PDBs 
     
    pdb_id = problem 
    print(pdb_id) 
     
    # Retrieving DSSP data 
    dssp_df = pd.read_csv('D://dssp/sheet_csvs//'+pdb_id+'.tab', sep='\t', index_col=[0,1]) 
    if dssp_df.empty: 
        continue 
     
    chains = dssp_df.index.get_level_values(level=0).unique() 
    if chains[0] != 'B': 
        continue 
    else: 
        ## Which residues of the given pdb (only chain A by definition) have E or B conformation? 
        dssp_df = dssp_df.loc['B', :] 
        pdb_E_idx = dssp_df.index 
        bmrb_data = 

amide_N.where(amide_N['pdb_id']==pdb_id.upper()).dropna().set_index('Seq_ID').drop_duplicates() 
        ## Which entries in this huge table belong to our pdb and which residues have assignments? 
        pdb_res = bmrb_data.index 
  
        ## Which of them are in E or B conformation? 
        pdb_res_E_idx = pdb_res.intersection(pdb_E_idx) 
  
        ## Creating a table with the residues of interest 
        pdb_N_df = pd.DataFrame(index=pdb_res_E_idx) 
        try: 
            pdb_N_df['RES_type'] = bmrb_data.loc[pdb_res_E_idx, 'Comp_ID'] 
            pdb_N_df['R_type'] = dssp_df['0'] 
            pdb_N_df['Shift'] = bmrb_data.loc[pdb_res_E_idx, 'Val'] 
            pdb_N_df['Atom'] = 'N' 
            pdb_N_df['Phi'] = dssp_df['3'] 
            pdb_N_df['Psi'] = dssp_df['4'] 
            pdb_N_df['DSSP'] = dssp_df['1'] 
            pdb_N_df['PDB_ID'] = pdb_id.upper() 
            pdb_N_df['BMRB_ID'] = 

amide_N.where(amide_N['pdb_id']==pdb_id.upper()).dropna().index.unique()[0] 
        except ValueError: 
            continue 
             
        #pdb_N_df.loc[] 
  
        # Find potential H-bonds and measure their distance! 
        ## Get the 3D structure (always chain A!) 
        structure = parser.get_structure("_", pdbdir+pdb_id+".cif") 
        try: 
            chain = structure[0]["B"] 
        except KeyError: 
            problemsB.append(pdb_id) 
            continue 
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        O_atom_list=[] 
        for res in structure[0]["B"]: 
            if res.has_id("O"): 
                O_atom_list.append(res["O"]) # Gathering all oxygens in the structure 
            else: 
                continue 
  
        try: 
            for rnum in pdb_res_E_idx.values: # Check every E residue in our PDB! 
                search_set = O_atom_list 
                ## search for each Nitrogen individually 
  
                search_set.append(chain[int(rnum)]['N']) 
                H_bond_finder=NeighborSearch(search_set) 
                raw_out = H_bond_finder.search_all(radius=4.1, level='R') 
                i=0 
                for pair in raw_out: 
                    print(pair) 
                    for res in pair: 
                        if res.get_id()[1] == rnum: 
                            # Potential partners found 
                            ## Initialize atoms 
                            if pair[0].get_id()[1] == rnum: 
                                partner_id = pair[1].get_id()[1] 
                                n = pair[0]['N'] # our N 
                                o = pair[1]['O'] # other's O 
                            else: 
                                partner_id = pair[0].get_id()[1] 
                                n = pair[1]['N'] # our N 
                                o = pair[0]['O'] # other's O 
  
                            # Exclude direct sequential neighbors! 
                            print('Residue:', rnum, 'Partner', partner_id) 
                            if abs(partner_id-rnum) < 2: 
                                continue 
                            else: 
                                dist = n - o 
                                print(dist) 
                                if dist < H_bond_max_length: 
                                    # Found an H-bond! Now write it down 
                                    i+=1  
                                    pdb_N_df.at[rnum, f'H_bond_partner_{i}'] = partner_id 
                                    pdb_N_df.at[rnum, f'H_bond_{i}_len'] = dist 
                print(pdb_N_df.head(5)) 
  
            pdb_N_df.reset_index(inplace=True) 
            pdb_N_df.rename(columns={'index': 'Res_ID'}, inplace=True) 
            pdb_N_df.to_csv(f'D://H_bonds//{pdb_id}.csv') 
        except KeyError: 
            print('Problem with PDB ', pdb_id) 
            problemsB.append(pdb_id) 
            continue 
    counter+=1 
  
# amide_N_H_bonds.to_csv('D://amide_N_H_bonds.csv') # Writing the table to the disk if desired 
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Figures 

 

Figure S1. NUS schedules covering 5% points (top) and their Point Spread Functions (bottom). Schedules were 
generated using the nus-tool program at NMRbox (Maciejewski et al., 2017). Contours on the PSF plots are set 
to 0.05% of maximum intensity and increase linearly with an increment of 0.1 
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Figure S2. Chemical structures and letter codes of the 20 proteinogenic amino acids in zwitterionic form. 
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Figure S3. Backbone dihedral-angle distributions of A: pre-Pro residues (Gly excluded) and B: prolines. Data taken 
from PACSY (accessed in March 2023). The nature of the vertical artefacts (at φ≈75.5° and φ≈70°) in B is unclear.  

 

Figure S4. Backbone dihedral-angle distribution of residues identified as random coil (‘C’) by STRIDE. Data taken 
from PACSY (accessed in March 2023). 

 

 



SUPPLEMENT - Figures 

xxv 
 

 
Figure S5. (Continued on the next page) 
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Figure S5. Backbone dihedral angles adopted by amino acid residues in proteins and their Cα and Cβ chemical 
shifts. Proline and glycine are omitted. Data is taken from the relational database PACSY (Lee et al., 2012), which 
has been Purged through Intrinsic Quality Criterion (PICS) (Fritzsching et al., 2016). Colors correspond to the 
ranges of φ and ψ angles. Random-coil chemical shifts are marked with black ‘x’ (data taken from TALOS database). 
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Figure S6. Additional data to the 4D hCOCANH spectrum of dehomogenized fMLF. A: 1D slices of the uniformly 
sampled spectrum; B: H/CO (left), H/CA (middle), and H/N (right) projections of the 4D spectrum acquired with 
5% sampling density using the Poisson-Gap sampling scheme (default setting of sinusoidal weighting parameter, 
SSW=2) and reconstructed with SMILE.  

 

 

 

Figure S7. Optimization of SMILE reconstruction using data subsampled from a uniformly sampled hCONH 
spectrum of fMLF with the Poisson-gap sampling scheme. The figure demonstrates poorer quality of the 
reconstructed datasets as compared to the randomly sampled data.  
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Figure S8: TALOS-N predictions depend on the amino acid context. Every panel (A-D) comprises predictions of 
(φ, ψ) maps for Ala of the peak maximum / mixed propensity point (left), a helix-like point (middle) and a sheet-
like point (right). Chemical shifts for other residues were propensity- and residue-type corrected as described in 
the main text. In run B additional glycines were prepended and appended. In runs C and D, glycines were artificially 
replaced (for the TALOS input) with leucines. This experiment demonstrates that TALOS-N returns predictions 
without the right-handed helical component for a (normal) sequence with (bulkier) sidechains. In case of no 
sidechains (A and C), the right-handed helical component is lower in the case of a 7-mer, which is probably related 
to the overall confidence of TALOS-N prediction.  

 

 

Figure S9. Individual and collective (φ, ψ)-maps obtained with DANGLE (Global Likelihood Diagrams in original 
terminology of Cheung et al., (2010)) in original 10° resolution. Compare with Fig. 2.2.3. 
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Figure S10. Chemical shifts (left) and adopted backbone conformations (right) of alanines with chemical shifts 
close to the random-coil values. A: Alanines from random coils (class ‘C’, presumably dynamic fragments) and B: 
alanines of all other secondary-structure classes (presumably rigid fragments). Gray dots are all alanine entries of 
PACSY (accessed March, 2023) 

 

Fig. S11: PACSY entries, included in the volume of the 4D CACB crosspeak in GGAGG HNCACB spectrum. Sizes 
of the points represent the peak intensity (relative to peak maximum). Contours represent weighted density 
estimate (starting from 0.15 relative point density and succeeding with the factor of 1.1) 
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Figure S12. Pair-wise relations of the four chemical shifts and the two backbone dihedral angles (N=14137) for 
alanine. Points are colored according to the STRIDE classification of the residue: H – -helix, E – -sheet, T – turn, 
B – isolated -strand, G – 3-10 helix. Rare classes (“I”, “b”) as well as random coil (“C”) are omitted. 
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Figure S13. Folded collective TALOS-N (φ, ψ)-maps for EAS∆15 rodlets. Folding allows to merge the predictions for 
right- and left-wound structures. 
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Figure S14. Folded (φ, ψ) maps predicted by regular TALOS-N analysis (only considering peak maxima) of EAS∆15 

rodlets. 
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Figure S15. 15N/13Cα projections of the 3D hCANH peaks of the EAS∆15 rodlet sample. The peak boxes were 
extracted from the 3D spectrum as described in Section M.3.5. Contours start at 0.15 of the absolute intensity of 
each individual peak.  
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Figure S16. 15N/13Cβ projections of the 3D hcaCBcaNH peaks of the EAS∆15 rodlet sample. The peak boxes were 
extracted from the 3D spectrum as described in Section M.3.5. Contours start at 0.15 of the absolute intensity of 
each individual peak.  

 
  



SUPPLEMENT - Figures 

xxxv 
 

 
 

Figure S17.1D projections onto the 1H axis of the 3D hCANH peaks of the EAS∆15 rodlet sample. Blue lines: peaks; 
dashed orange lines: fits. Extracted linewidths are shown in Results, Section 2.3.4, Fig. 2.3.5B. The scale of the 
vertical axis is consistent throughout the whole set of fits. 
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Figure S18. 1D projections onto the 15N axis of the 3D hCANH peaks of the EAS∆15 rodlet sample. Blue lines: peaks; 
dashed orange lines: fits. Extracted linewidths are shown in Results, Section 2.3.4, Fig. 2.3.5B. The scale of the 
vertical axis is consistent throughout the whole set of fits. 

 

 

  



SUPPLEMENT - Figures 

xxxvii 
 

 

 

  

Figure S19. 1D projections onto the 13C axis of the 3D hCANH peaks of the EAS∆15 rodlet sample. Blue lines: peaks; 
dashed orange lines: fits. Extracted linewidths are shown in Results, Section 2.3.4, Fig. 2.3.5A. The scale of the 
vertical axis is consistent throughout the whole set of fits 
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Figure S20.1D projections onto the 13C axis of the 3D hCBNH peaks of the EAS∆15 rodlet sample. Blue lines: peaks; 
dashed orange lines: fits. Extracted linewidths are shown in Results, Section 2.3.4, Fig. 2.3.5A. The scale of the 
vertical axis is consistent throughout the whole set of fits. 
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Figure S21. 2D projections onto the 13C axis of the 3D hCANH peaks of the EAS∆15 rodlet sample. Blue shades: 
peaks; magenta contours: fits. The peaks were fitted as described in Section M.3.5. The projections demonstrate 
different H/N slopes of the individual peaks (note the different scales of the vertical axis). The slopes (cross-
correlation coefficients of the 2D Gaussian) are shown in Results, Section 2.3.4, Fig. 2.3.5D. 
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Figure S22. 2D projections onto the 13C axis of the 3D hCANH peaks of the EAS∆15 rodlet sample. Blue shades: 
peaks; magenta contours: fits. The peaks were fit as described in Section M.3.5. The projections demonstrate 
different H/N slopes of the individual peaks (note the different scales of the vertical axis). The slopes (cross-
correlation coefficients of the 2D Gaussian) are shown in Results, Section 2.3.4, Fig. 2.3.5D. 
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Figure S23. Residuals of the fits shown in Fig. S21. 
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Figure S24. Residuals of the fits shown in Fig. S22. 
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Figure S25. Proton and nitrogen chemical shifts as a function of H-bond length rOH and angle θ. Proton chemical 
shifts are calculated with the model of Parker et al. (2006). Nitrogen shifts are calculated with A: linear models of 
Paramasivam et al. (2018), B: hyperbolic-exponential model of Xu and Case (2002). See parameter definition in 
main text, Section 1.3.2, Fig, 1.3.4B.  
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Figure S26. Pearson correlation coefficients for chemical shifts of the backbone amide protons and nitrogens 
belonging to extended structures (‘E’) and the hydrogen bond parameters estimated by DSSP (Kabsch and Sander, 
1983): d, the lower (->) and the higher(-->) distances between the nitrogen of residue i and the oxygens of the 
bonding partners j; E, the lower (1) and the higher (2) H-bond energies where the residue i is a donor and an 
acceptor. N denotes the number of residues. The PDB and BMRB data of 3636 proteins are related by the tables 
from ReBoxitory (Maciejewski et al., 2017). Compare with Fig. 2.3.6, Section 2.3.4.  
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Figure S27. Correlations between the backbone amide chemical shifts and the minimal interatomic N-O distance 
(denoted by color) formed by a nitrogen of the donor residue i and an oxygen from the acceptor residue j, estimated 
by DSSP. N denotes the number of residues.  
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Figure S28. Backbone amide chemical shifts with (A) and without (B) correction for the neighbor influence and 
their relationship to the H-bond lengths. The correction increments were taken from Tamiola et al. (2010). The 
data for 838 alanines were taken from the 1707 pairs of PDB-NMRStar files, arbitrary selected from the entire set 
of all considered pairs (3636) to optimize the computational costs. Structural and NMR data from PDB and BMRB 
are related with the tables from ReBoxitory (Maciejewski et al., 2017). The H-bond length was estimated by the 
interatomic distances between nitrogen and most proximate oxygen, identified with Bio.PDB module (Hamelryck 
and Manderick, 2003) of BioPython package. 
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