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A B S T R A C T

Real-time systems are most prevalent in cyber-physical systems (CPS), which refer
to cyber subsystems which are integrated into a physical system such as automotive,
avionic, or robotic systems. In these systems, relevant aspects of the physical
environment are measured and discretized by sensors, which must subsequently
be processed by the cyber subsystem during the physical system’s state evolution.
To assure quality-of-service requirements of the cyber-physical system, temporal
constraints – among other reliability requirements – are imposed on the execution
behaviour of the cyber subsystem. Environmental and thus sensory inputs to the
system as well as the execution environment are categorically non-deterministic,
which renders exhaustive testing to validate the temporal behaviour unattainable.
As a consequence, a hard real-time system must be provisioned under worst-case
assumptions. Modern cyber subsystems, i.e., multicore architectures and parallel
applications pose a significant challenge to the worst-case centric real-time system
verification and design efforts. The involved model and parameter uncertainty
contest the fidelity of formal real-time analyses, which are mostly based on exact
model assumptions. Motivated by that observation, the abbreviated research
hypothesis of this dissertation is that; either the increased parameter and model
uncertainty must be accepted and considered in the scheduling algorithm design
and schedulability analyses or the predictability must be increased by means of
hardware or algorithmic restrictions.

The dissertation is structured into four parts as follows. In an attempt to
improve predictability in worst-case centric analyses, the exploration of timing
predictable protocols are examined for parallel task scheduling on multiproces-
sors and network-on-chip arbitration. Roughly speaking, the research approach
is to impose additional constraints to the problem, which are theoretically and
practically beneficial for worst-case centric analyses, conceding to potentially
degraded average case performance. A novel scheduling algorithm, called sta-
tionary rigid gang scheduling, for gang tasks on multiprocessors is proposed. In
so-called stationary rigid gang scheduling, all threads of a task are grouped
into a gang, which are co-scheduled simultaneously on a set of predetermined
processors. The stationary rigid gang schedulability test problem is formally
reduced to the dynamic self-suspension schedulability problem for uniprocessor
systems. Numerical evaluations are presented, showing improvements over the
state-of-the-art in terms of schedulable task sets compared to the state-of-the-art
non-stationary gang scheduling algorithms. Moreover, worst-case performance
bounds with respect to an optimal scheduling algorithm are proven.

With regards to fixed-priority wormhole-switched network-on-chips, many
documented flaws and counter-examples have been reported, disproving many
proposed response-time analyses. The proposed analyses are based on the as-
sumption of an equivalence of the uniprocessor execution model and the pipelined
transmission model in network-on-chips, which was never formally proven. Staring
from a discussion and illustration of the mismatch of both execution models, a



more restrictive family of transmission protocols called simultaneous progression
switching protocols is proposed, which are provably compatible with the unipro-
cessor execution model. Above that, further predictability enhancing properties
such as simpler router design, and arbitrary non-minimal routing capabilities
come along with this protocol. An implementation, response-time analysis, and a
numerical evaluation of the protocol overheads is provided.

In the second part, hierarchical scheduling for parallel Directed Acyclic Graph
(DAG) tasks under parameter uncertainty is studied. The hierarchical scheduling
approach achieves temporal- and spatial isolation, which allows to prevent un-
certainty induced timing violations from cascading into the whole system. We
firstly study control flow uncertainty using probabilistic branching decisions,
under the probabilistic conditional DAG task model. Under this model, we study
k-consecutive deadline miss constraints and bounded tardiness. That is, if a job
can not finish within its allocated execution time budget, it is allowed to consume
the budget of the subsequent job (up to a bounded threshold), or is aborted oth-
erwise. Furthermore, we improve the resource utilization of the hierarchical DAG
scheduling, proposing and analyzing a subtask-level prioritization policy, which
allows to substantially improve Graham’s makespan bound and the resource
utilization. Both approaches are extensively compared against the state of the art.

In the third part, fault-tolerance as a supplementary reliability aspect of real-
time systems is examined, in spite of dynamic external causes of fault. To assure
that an acceptable quality-of-service (QoS), i.e., fault-tolerance can be achieved,
upper-bounds on consecutive erroneous job executions, and guaranteed m error-
free executions out of k consecutive job executions are studied. Using various
job variants, which trade off increased execution time demand with increased
error protection, a state-based policy selection strategy is proposed. The derived
policy minimizes the expected system utilization and guarantees that all reachable
states comply with the QoS- and hard real-time constraints of the task system.
The proposed approaches demonstrate significantly decreased system utilization
compared to the state of the art in the evaluations.

In the fourth part, the temporal misalignment of sensor data in sensor fusion
applications in cyber-physical systems is examined. Starting from a formal defini-
tion of the problem as a DAG, we propose a modular analysis based on minimal
properties to obtain an upper-bound for the maximal sensor data time-stamp
difference. That is, the maximal time-stamp difference of any two sensor data (of
different sensors), which are used in a common sensor fusion task is bounded
from above.
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1
I N T R O D U C T I O N

In generic terms, real-time systems are defined as computing systems, in which
the functional correctness does not only depend on the correctness of the com-
puted results, but also on the time at which the results are produced [BLA+05].
This means, that a late result may be useless or even cause catastrophic system
malfunction. Based on the severity of the consequence, caused by the late re-
sults, real-time systems are broadly classified into hard, firm, and soft real-time
systems [But11]. A hard real-time system is one, such that any timing violation hard real-time system

causes catastrophic consequences for the system. In firm real-time systems, timing firm real-time systems
constraints may be violated, resulting in useless results but non-hazardous conse-
quences for the system and environment. Lastly, in soft real-time systems, results soft real-time systems

which are produced late with respect to the timing constraints, still provide some
utility for the system at the cost of degraded performance. In this dissertation, all
three classes of real-time systems are subject to study.

The remainder of this introductory chapter is organized into the following sec-
tions. An overview and motivation for the relevance and application of real-time
systems theory, is given in Section 1.1 Cyber-Physical Real-Time Systems. Subse-
quently, in Section 1.2 Contribution of this Dissertation, the research hypothesis and
the scientific contributions of this dissertation are stated and elaborated. Lastly,
the author’s contributions to the presented research in this dissertation, are listed
in Section 1.3 Author’s Contribution to this Dissertation.

1.1 cyber-physical real-time systems

Real-time systems are
most commonly found
in the context of
cyber-physical systems
(CPS), which refer to
cyber subsystems that
are integrated into a
physical system

Real-time systems are most commonly found in the context of cyber-physical
systems (CPS), which refer to cyber subsystems that are integrated into a physical
system, such as automotive systems, avionic systems, chemical plants, medical
systems, robotic systems and many others. The overall cyber-physical system is
modeled with a specific model of time in mind, e.g., the newtonian continuous
time domain may be assumed when the physical system’s behaviour and dy-
namics are described and designed with differential equations; or the uniform
discrete-time domain is assumed when using difference equations to describe a
discretized system.

At the interface of the physical system and the cyber subsystem, relevant
aspects of the physical environment are measured and discretized by sensors.
The resulting data stream is relayed to the cyber subsystem for processing. After
the processing in the computing subsystem has finished, the produced results are
relayed to the physical subsystems, such as for instance actuators. In consequence,
the response of the cyber subsystem to external sensor data must occur during the response of the

cyber subsystem to
external sensor data
must occur during the
physical system’s state
evolution

the physical system’s state evolution. Therefore, the response-time of the cyber

1
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Figure 1.1: An exemplary realistic real-time system architecture, which is proposed by
the company Perceptin in the RTSS 2021 Industry challenge, to implement
an autonomous driving system. The vertices in the processing graph denote
functional modules such as sensor data preprocessing, perception, tracking,
trajectory planning, and control. The directed edges in the processing graph
denote the data dependencies between the modules, e.g., the data produced
by the localization module is used by the planning module in its computation.

subsystem, from sensing to actuation, must firstly be matched with the dynamics
of the underlying physical system. Secondly, the timing of sensing, computation,
and actuation must be matched with the timing model, which is used for the
design and verification of the physical system’s behaviour.

For instance, in the most simplistic setting, a quasi-continuous single-inputsingle-input
single-output (SISO)

system
single-output (SISO) system computes an output based on a sensor sample,
arriving at time a, and writing the computed output at time f . The quasi-continuous

quasi-continuous assumption, which was used to specify the algorithms to eventually actuate the
physical system, requires that the response-time f − a is a lot smaller than
the fastest system mode. In that timing model, the timing jitter of sensing andsystem modes

actuation is negligible for the fidelity of the presumed continuous timing model,
which is presumed in the control- or filter algorithm design. More realistic
multiple-input multiple-output (MIMO) systems, consist of multiple sensorsmultiple-input

multiple-output
(MIMO) systems

and multiple actuators, which operate at different rates, and are composed of
multiple precedence constrained and communicating tasks. Those tasks, are to be
mapped and executed on heterogeneous architectures as illustrated in Figure 1.1.
To add to that complexity, multiple timing constraints are imposed by the overall
system design. For instance, the maximal time-stamp difference of the Camera
and LiDAR sensor samples – that are propagated through the 2D-perception, 3D-
perception vertex, and joined at the fusion vertex – are constrained by the system
design specifications to guarantee sufficient quality-of-service (QoS). Other timing
constraints are end-to-end response-time bounds, e.g., the maximal time taken
to compute a trajectory in the planning vertex, once a pedestrian was detected
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Models

Models

Things

Abstraction

Science

Refinement

Engineering

Figure 1.2: Model hierarchy redrawn from Edward Lee: Plato and the Nerd [Lee17]. The
emphasized arrows denote the focus of the modeling used in this dissertation.

in the the perception vertex, must be upper-bounded according to the system
specifications.

It is not possible to evaluate all imposed timing constraints experimentally
for achieving predictability in hard real-time systems. This is due to the non-
deterministic sensory and environmental input to the system, as well as the non-
deterministic execution environment, which can not all be tested exhaustively.
Consequently, a hard real-time system must be provisioned under worst-case as-
sumptions, which requires design methodologies, analyses, and operating system
mechanisms, to allow for safe and efficient real-time system design and operation.
In firm or soft real-time systems however, experimental evaluations and measure-
ments of, e.g., computation times and estimation of timing characteristics of the
hardware architecture are possible and commonly used in industry [ANN+22;
DC19]. In that case, rare events must be taken into consideration and handled by
additional monitoring and provisioning efforts to limit system-wide malfunction.

1.1.1 timing constraints & model-building

”A model is any description of a system that is not the thing-in-itself”
Edward Lee on the basis of Immanuel Kant

In order to formally describe and verify the timing behaviour of computing
cyber subsystems as described in the previous Section 1.1, a formal model which
is amenable to rigorous analysis must be devised. The problem of model building
and interpretation in the context of cyber-physical systems is extensively studied
by Lee, such as in [Lee19b; Lee19a; Lee18; LS18]. An illustration of his proposed
model hierarchy is shown in Figure 1.2. Lee emphasizes a distinction between
different notions of models used in science and engineering. That is, a model scientific model

in science primarily aims at explaining and analyzing observations made of the
thing as precisely as possible. In engineering, the objective is the synthesis of engineering model

systems and thus an engineering model also specifies the intended behaviour of
the thing to be synthesized. This necessitates the system to conform to the model
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used for the synthesis, as otherwise, the specified and intended behaviour of the
system can not be presumed and ascertained.

In this dissertation, we emphasize the engineering model and the related
abstraction and refinement cycles, illustrated by the three emphasized arrows in
Figure 1.2. Hence, the focus is firstly on the abstraction and refinement cycle, to find
models, which are amenable to rigorous analysis, and secondly can be monitored
and enforced in the system to ensure model fidelity. The model refinement effort
should result in an abstraction, which is specific enough to precisely describe a
system, such that an analysis is not over-pessimistic. On the other hand, a certain
genericness of the model allows to model and analyze systems with similar
characteristics, and thus allows modularity.

Sensor
HW

Control
CPU

Actuation
HW

Figure 1.3: An exemplary periodically activated single-input single-output real-time
system architecture. The periodically generated sensor sample is processed by
the control vertex, which is activated upon new sensor data, and writes the
result to the actuator when the execution is finished.

In the beginning of cyber-physical system designs, a recurrent execution model,
which was motivated by the simple example shown in Figure 1.3, was assumed.
In the example, a sensor value is read repeatedly with a certain delay between
two readings. The determined value is processed and the result may lead to
an actuation, which changes the system’s current state. In pursuit of the corre-
sponding formal response-time analyses, the sequential periodic task model andperiodic task model

the sporadic task model, where each task τi = (Ci, Di, Ti) is characterized by its min-sporadic task model
imum inter-arrival time (or period, respectively) Ti, its relative deadline Di, and its
worst-case execution time Ci, were proposed in [LL73], and [Mok83], respectively.
Each task releases an infinite number of task instances, called jobs, according to itsEach task releases an

infinite number of task
instances, called jobs,

according to its
minimum inter-arrival

time constraint

minimum inter-arrival time constraint. A task is called periodic, if two subsequent
job releases are always separated by exactly the task’s minimum inter-arrival, and
sporadic if two subsequent job releases are separated by at least the minimum
inter-arrival time. A job, which is released at time ai, must be able to be executed
for up to Ci time units before its absolute deadline at time ai + Di, to meet its
deadline. Tasks and therefore the resulting task systems are often distinguished
based on the relation between the inter-arrival times and relative deadlines of
the tasks. A task is called an implicit-deadline task if its relative deadline is equal
to its period, and a constrained-deadline task if its relative deadline is not larger
than its period. Accordingly, a task set is an implicit-deadline task set if all tasks
have implicit deadlines, a constrained-deadline task set if all tasks have constrained
deadlines, and an arbitrary-deadline task set if tasks are allowed to have a relative
deadline larger than their period. Implicit-deadline task sets are a subset of the
constrained-deadline task sets, which are in turn a subset of the arbitrary-deadline
task sets. Despite the variety of different task models, the activation and deadline
constraints are universal to most of them.
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Those early task models, invented for uniprocessor systems, are well researched
with respect to response-time analyses, sound task parameter estimations, and
efficient implementations in real-time operating systems. More recent use cases More recent use cases

and applications, as
illustrated in
Figure 1.1, demand
multicore systems,
which are less timing
predictable

and applications, as illustrated in Figure 1.1, demand multicore systems, which
are less timing predictable. Moreover, tasks may be composed of multiple sub-
tasks, which can execute in parallel and are subjected to precedence- or other
constraints. Consequently, more complex modeling, abstraction and engineering
efforts are mandatory to provide comprehensive real-time system design and
verification methodology; starting from task parameter estimation down to analy-
sis, and real-time operating system implementations. For instance, sound static
worst-case execution time estimates are to date unavailable for modern multicore
systems [DC19]. Moreover, the applications often use fine-grained parallelism to
implement the functionality, and the imposed temporal constraints of the applica-
tions are becoming more manifold than just a single relative deadline [ANN+22].
End-to-end latencies, temporal misalignment of sensor data in sensor fusion
applications, and data-age constraints, are of particular interest.

1.1.2 real-time scheduling & schedulability

Roughly speaking, the objective of real-time scheduling algorithms is to opti-
mize the system’s resource utilization under the imposed timing constraints. A
scheduling algorithm describes, which executable entity is executed on which
processing unit at each point in time. For instance, a job is scheduled to be exe-
cuted on processing units, such as processors, digital signal processors (DSPs), or
communication links, depending on the system platform under analysis.

Then, for a given formal model of the task set and execution model, a schedu-
lability analysis and schedulability test has to be devised, which formally verifies
the imposed temporal constraints for that model. A system of a given task set
and execution model is said to be feasible with respect to the imposed timing
constraints, if there exists at least one scheduling algorithm such that all im-
posed timing constraints are met. Those timing constraints can be response-time
upper-bounds, namely deadlines, end-to-end latencies, or others. Moreover, a
scheduling algorithm is said to be optimal if all generated schedules meet the
imposed timing constraints, in case that the system is feasible. With respect to a
specific scheduling algorithm, we say that a scheduling algorithm is feasible if any
generated schedule by that algorithm meets the imposed timing constraints.

On the basis of a schedulability analysis, a corresponding schedulability test
is constructed, which verifies if the underlying scheduling algorithm is feasible
with respect to the imposed timing constraints. Schedulability tests are classified Schedulability tests are

classified into
sufficient, necessary,
and exact
schedulability tests

into sufficient, necessary, and exact schedulability tests. A sufficient test guarantees
that any problem instance, which is deemed feasible by the schedulability test, is
guaranteed to be feasible. In contrast, a necessary schedulability test guarantees
that any feasible problem instance is verified by the schedulability test. If a
schedulability test is both sufficient and necessary, the test is called an exact
schedulability test. From the perspective of analytic accuracy it is preferential to
derive exact schedulability tests; however depending on the timing constraints,
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execution model and task model, this incurs too high computational complexity.
This is especially of concern, if decisions of whether or not a task can be accepted
into the system without violating the timing constraints must be made online.
As a consequence, many research efforts have been spent on deriving sufficient
schedulability tests with polynomial-time complexity, which approximate an
exact tests as good as possible. In contrast, necessary conditions for schedulability
are most commonly used in mathematical arguments to prove approximation
quality in terms of speedup factors or capacity augmentation bounds.

1.2 contribution of this dissertation

In safety critical cyber-physical systems, all timing and reliability requirements
have to be guaranteed and verified off-line, and the system must be analyzable
to predict the consequences of any scheduling decision with regards to those
requirements. Philosophically, this dissertation is grounded in the following
beliefs, that make up the dissertation hypothesis.

Robustness. In particular, if some tasks can not be verified to comply with its im-
posed timing constraints, the possible violations must be observed and notified in
advance to the system, such that compensating or redundant actions can be taken.
Thus, the system behaviour is predictable and failures do not immediately leadsystem behaviour is

predictable and failures
do not immediately

lead to system
malfunction

to system malfunction. To allow for such assurances, the operating system must
provide specific kernel mechanisms for time management, monitoring of imposed
timing constraints, and for handling tasks with explicit timing constraints.

Uncertainty. Parameter uncertainty can be detrimental to model fidelity andParameter uncertainty
can be detrimental to

model fidelity
can lead to grossly over-estimated worst-case parameter bounds. This leads to
pessimistic schedulability analyses and schedulability tests, which in turn reduce
the system’s resource utilization. Recurring back to Figure 1.2, refinement of the
abstractions of task, execution model, and the model enforcement engineering,
may be beneficial in terms of resource utilization if the refined model improves
analysis accuracy, even at the cost of decreased average case performance.

Modularity. Existing analyses and optimizations for scheduling algorithms and
resource management policies in complex cyber-physical real-time systems are
usually ad-hoc solutions for a specific studied problem. Formal properties, whichFormal properties,

which can be used
modularly to compose

safe and tight analyses

can be used modularly to compose safe and tight analyses, as well as optimization
for the scheduler design, and schedulability test problems need to be achieved by
predictable interplay of computation, communication, and synchronization for
soft (weakly hard) and hard real-time systems.

Property-Based. In particular, this dissertation focuses on property-based decom-
position, i.e., the decomposition of systems into models, which are founded onmodels, which are

founded on formal
properties and exposed
to the system as formal

contracts

formal properties and exposed to the system as formal contracts. The imposed
timing constraints are then verified on the basis of those formal contracts.

Research Overview. The contributions cover many different aspects of real-time
systems. Therefore a short very high-level presentation of the studied problems
and aspects is given, before summarizing the contributions in detail.
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An abbreviated description of the objective is to research formal models and
analyses to validate real-time, and other reliability constraints for cyber-physical
systems on multicore platforms. In particular, parallel task real-time scheduling
algorithms on multiprocessor systems, real-time arbitration protocols for network-
on-chips, and the scheduling of cyber-physical system applications, with respect
to sensor temporal alignment problems, are studied. Importantly, the formal
models are devised such that compliance can be monitored and enforced in a real
system, and that they are robust against uncertainty of various kinds.

To improve predictability in worst-case centric analyses, the exploration of
timing predictable protocols, i.e., task models and scheduling algorithms are
examined in Chapter 3 for parallel task multiprocessor scheduling and network-
on-chips. Roughly speaking, the research approach is to impose additional con-
straints to the problem, which are theoretically and practically beneficial for
worst-case centric analyses. The contributions of Chapter 4 are hierarchical, i.e.,
reservation-based parallel DAG task scheduling algorithms, which decompose the
scheduling problem into two modular scheduling problems, providing temporal
and spatial isolation. The hierarchical scheduling algorithms, allow execution
time- and structural uncertainty, and reduce the DAG scheduling problem to a
scheduling problem of standard task models. In Chapter 5, fault-tolerance as a
supplementary reliability aspect of real- time systems is examined in spite of
dynamic and stochastic external causes of fault. An approach is proposed, which
allows optimizations to improve average case performance and non-explainable
machine learning techniques to be used, while still providing hard QoS guaran-
tees. Lastly, in Chapter 6, the temporal misalignment of sensor data in sensor
fusion applications in cyber-physical system is analyzed, assuming a heteroge-
neous platform with globally asynchronous processing units.

Organization of the Dissertation. This dissertation is structured as follows. In
Chapter 2, the general concepts regarding real-time systems architecture, schedul-
ing and analysis, as are relevant to understand the motivation and technical
contribution of this dissertation, are introduced. For improved contextual cohe-
sion of the thematically different topics presented in this dissertation, the detailed
related work is attributed to the respective chapters, but the more general related
work is incorporated into Chapter 2. Afterwards, from Chapter 3 to Chapter 6,
the scientific contributions of this dissertation are presented, which are elabo-
rated in more detail hereinafter. At last, Chapter 7 provides a summary of the
contributions and results of this dissertation, and discusses the results against the
backdrop of the dissertation hypothesis.

Contributions. The contributions and outline of the remainder of this disserta-
tion are summarized as follows:

Chapter 3 In the first contribution, a novel rigid gang scheduling algorithm, called sta-
tionary rigid gang scheduling is proposed, for a task set of sporadic rigid gang
real-time tasks with constrained deadlines. Several sufficient schedulability
analyses for task-level fixed-priority scheduling algorithms are proposed. A
special assignment algorithm, called consecutive stationary gang assignment,
allows to prove resource augmentation bounds for the provided scheduling
algorithm and schedulability analysis. It is shown that consecutive station-
ary gang assignment provides beneficial theoretical properties, which can
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be used to upper-bound the worst-case interference suffered by any task
according to the ratio of gang sizes of two tasks. The algorithm is compared
to the state-of-the-art schedulability analysis for global EDF by Dong and
Liu [DL17] using synthetically generated sporadic real-time task systems
with implicit deadlines. The evaluation results show that our algorithm out-
performs the algorithm by Dong and Liu [DL17]. Furthermore, evaluations
for constrained-deadline task systems are conducted, which demonstrate
reasonable levels of schedulable task sets. In the second contribution, the
fundamental difficulty of worst-case timing analysis, using scheduling the-
ory when flit-based transmissions are handled by switch-based (link-based)
scheduling, is formally discussed. Hereinafter, a novel timing predictable
architecture and design of a two-dimensional NoC system, which is suit-
able for real-time multicore systems, is presented. By construction, any
non-minimal route is deadlock-free, and therefore, the path diversity can
be better utilized to distribute the traffic over the network. An implemen-
tation, including router design, and arbitration algorithm is provided and
evaluated with synthetically generated data.

Chapter 4 In the first contribution, the probabilistic conditional parallel (Directed
Acyclic Graph) DAG task model is proposed to express structural uncer-
tainty during execution. A hierarchical scheduling algorithm for the analysis
of the probabilistic conditional parallel DAG task model is proposed, and
design rules are devised, which provide probabilistic characteristics such as
bounded tardiness and probabilistic upper-bounds for k-consecutive dead-
line misses. In the second contribution, the parallel path progression concept
is proposed, allowing to consider the parallel execution of multiple paths in
the DAG. This property is implemented using a DAG subtask-level fixed-
priority policy and a preemptive fixed-priority list-scheduling algorithm. A
polynomial-time parametric approximation algorithm is provided for the
algorithmic problem to find the optimal makespan, i.e., worst-case response-
time. The parallel path progression concept is extended to two hierarchical
scheduling algorithms, namely a sporadic arbitrary-deadline gang reserva-
tion system and a sporadic arbitrary-deadline ordinary reservation system.
For both reservation systems, worst-case response time analyses, and algo-
rithms to generate and provision feasible reservation systems are provided.
The approach is evaluated using synthetically generated DAG task sets. The
evaluations demonstrate that the approach advances the state of the art in
high-parallelism scenarios, and show that the performance of the approach
is between the start of the art and federated scheduling in more sequential
scenarios. Above that, a more strict and related path-monotonic progression
concept is proposed, which admits to design suspension-aware reservation
systems, in order to reduce resource usage.

Chapter 5 In Chapter 5, fault-tolerance as a supplementary reliability aspect of real-
time systems is examined in spite of dynamic external causes of fault. To
assure that an acceptable quality-of-service (QoS), i.e., fault-tolerance, can
be achieved, an upper bound on consecutive erroneous job executions, and
guaranteed m error- free executions out of any k consecutive job executions,
are studied. Using various job variants, which trade off increased execution
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time demand with increased error protection, a state-based policy selection
strategy is proposed. The policy guarantees that all reachable states comply
with the QoS constraints, whilst minimizing the expected system utilization
and assuring hard real-time compliance of the task system. The state-based
policy further allows for the usage of machine learning techniques, which
are then able to provide hard guarantees. The proposed approaches demon-
strate significant decreased system utilization, compared to the state of the
art in the evaluations. Extensive numerical evaluations showed that the
proposed approaches outperform the state of the art in most of the evalu-
ated cases, with respect to the average system utilization. Evaluations of the
learning and runtime overheads suggest that the proposed approaches can
be reasonably applied in real-time systems.

Chapter 6 In Chapter 6, analyses for the maximal sensor data time-stamp difference are
presented. The results show that in spite of the complex heterogeneous
architecture and globally asynchronous processing units, the maximal time
difference of any two sensor data samples – that refer to the system state at
a specific point in time – when being used for sensor fusion, can be upper
bounded in a modular manner. Under the assumption that each task is
verified to be schedulable on its respective processing unit according to any
readily available task-level fixed-priority worst-case response-time analysis
for non-preemptive or preemptive scheduling algorithms, an algorithm is
proposed to calculate the maximal sensor data time-stamp difference. Based
on an abstract precedence property, which depends on the task model and
scheduling algorithm, the presented analyses can be refined to improve
accuracy. Task precedence properties are presented for non-preemptive rigid
gang scheduling and preemptive stationary rigid gang scheduling.

1.3 author’s contribution to this dissertation

According to §10(2) of the “Promotionsordung der Fakultät für Informatik der
Technischen Universität Dortmund vom 29. August 2011”, a dissertation must
include a list that highlights the author’s contribution to research results that
were obtained in cooperation with other researchers.

In all the contributions, Jian-Jia Chen and Georg von der Brüggen, provided
regular discussion, supervision, and contributions to the writing of the papers.
The following overview lists the contribution on the results presented in the
individual chapters:

• Chapter 3 focuses on arbitration and scheduling algorithms that improve
timing predictability by construction. The first contribution is based on the
work published at ECRTS 2021 in [UGB+21]. I was the principal author and
provided the idea, theorem and proofs of stationary rigid gang scheduling,
the reduction to suspension-aware task-level fixed-priority scheduling, and
the consecutive stationary gang assignment with the parametric speed-up
factor. Mario Günzel and Jian-Jia Chen contributed suggestions for im-
provement in Theorem 3.3. I was the principal author of the experimental
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evaluation including, experiment design, implementation, and interpreta-
tion of the results. Mario Günzel, Jian-Jia Chen, and Georg von der Brüggen
provided general discussion, which improved the work.

The second contribution is based on the work [UCB+20] published at
RTCSA 2020, where I was the principal author contributing the concepts,
theorems and proofs. Tulika Mitra, and Jian-Jia Chen discussed and settled
the collaboration, and Tulika Mitra supervised Vanchinathan Venkataramani.
Jian-Jia Chen provided the formalization of a progression in Definition 3.14.
In a close collaboration with Jian-Jia Chen, the concept to use a separate ar-
bitration net and data net to implement the proposed simultaneous progression
switching protocol was developed. I was the principal author of the evalua-
tion except for the data provided for the arbitration overhead measurements
in Table 3.1 that was provided by Vanchinathan Venkataramani. The contri-
butions are extended beyond the publication by a possible implementation
for arbitration and transmission in Section 3.4.4, which I contributed.

• Chapter 4 examines hierarchical scheduling of parallel DAG tasks. The
first contribution is based on the work [UGC21] published in RTSS 2021. I
was the principal author providing concepts, theorems, and proofs. Mario
Günzel improved the presentation of the prior proof of Theorem 4.3 and
corresponding Lemmas. An anonymous reviewer of RTSS 2021 provided
valuable comments regarding the semantics of the probabilistic conditional
DAG task model. I was the principal author of the evaluations, providing
implementation, experimental design, and interpretation of the results. The
second contribution is based on the work [UGB+23] published in IEEE
transactions on computers in 2023. The initial idea of parallel path progression
property was proposed by me to Mario Günzel, which was then developed
during a discussion and collaboration together with him. He also provided
a more rigorous proof strategy (in comparison to my original version)
of Theorem 4.9, and many discussion and feedback that helped with the
proofs. I was the principal author of the theorems and proofs concerning
the reservation system design, and all theorems and proofs regarding the
approximation algorithm and analyses. I was the principal author of the
evaluations, providing implementations, experiment design, and interpreta-
tion of the results. Beyond the contributions found in the paper [UGB+23], I
provided the concept, theorems and proofs for the path monotonic progression
property and the suspension-aware reservation design.

• Chapter 5 considers fault-tolerance in spite of dynamic external causes
of fault in real-time systems are considered an is mostly based on the
work published in RTAS 2023 [SUC+23] with additional considerations
of k-consecutive error constraints, considerations of the error model, and
corresponding analyses in this dissertation and removal of machine learning
parts that are irrelevant to understand the evaluation. The regulator-based
idea is based on initial research concepts by me, which have been discussed
with Junjie Shi and Kuan-Hsun Chen for possible use in fault-tolerance
that culminated in the joint published work. I contributed to the concept,
and provided the formal definition and apparatus of the problem and
terminology, proof of theorems, and text regarding the first part. Kuan-Hsun
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Chen provided his expertise on fault-tolerance in the context of real-time
systems. The machine learning formulation was proposed, researched, and
elaborated by Junjie Shi. The evaluations are designed, conducted, and
implemented by Junjie Shi.

• Chapter 6 considers the analysis of maximal sensor data time-stamp differ-
ence in processing graphs. I was the co-author of the work published in
RTSS 2021 in the industry challenge program [GUC+21]. I proposed the
general analysis framework to infer best and worst-case sensor propagation
latencies and provided the theorems and proofs. Mario Günzel helped to
correct a mistake in the drafted statement of Theorem 6.2. I was the author
of the precedence property and the extensions to gang task scheduling.
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Figure 2.1: A taxonomy of real-time systems as considered relevant to this dissertation,
where the bold vertices accent the relevance to the contributions in this
dissertation.

A variety of interdependent domains, such as hardware architecture, timing
characteristics of the hardware (and in particular timing predictability), real-
time scheduling algorithm design and analysis, implementation of schedulers,

13
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consideration of overheads in real-time operating systems, and lastly applications,
constitute the domain of real-time systems.

The real-time system design for uniprocessor systems is rather complete in
terms of appropriate task models, uniprocessor timing analysis, optimal real-
time scheduling algorithms, and existing implementations in real-time operating
systems. In contrast, the real-time systems design for multicore systems is still anreal-time systems

design for multicore
systems is still an open

problem, which is
founded in the

decreased predictability
of the hardware

platform

open problem, which is founded in the decreased predictability of the hardware
platform, challenging the assumption that a reliable worst-case execution time
estimate can be inferred. Secondly, the complex interference patterns on the shared
resources, such as memory and cache, have been shown to have a significant
impact on the efficiency and execution time of parallel tasks [ZCC+22; CBN+20;
CBN+18a; Yun15; AY19]. Due to the sheer size of the domain of real-time systems,
an exhaustive presentation is out of scope in this dissertation.

In this chapter, the most relevant background is provided to elaborate the
necessary technical background, context, and jargon, required to understand
the motivation and technical contributions in this dissertation. Due to improved
contextual cohesion, the related work is placed in the respective chapters later in
this dissertation. To bridge this gap, this background chapter includes a depictionthis background

chapter includes a
depiction of the general

related work with
regards to the

presented topics,
whereas the individual
chapters contain more

specialized related
work

of the general related work with regards to the presented topics, whereas the
individual chapters contain more specialized related work.

The remainder of this chapter is structured according to the illustration in
Figure 2.1, with a focus on the most relevant topics, which are emphasized in
bold font. In Section 2.1 Multicore & Real-Time Systems, an introduction to multi-
core systems and their classifications as well as the most important components,
impacting real-time scheduling are discussed. Following, in Section 2.2 Timing
Analysis, the problem of inferring the worst-case execution time of a program on
a given hardware platform is introduced. In that section, the state of the art in tim-
ing analyses are summarized and discussed. In Section 2.3 Real-Time Scheduling,
the most important background on real-time scheduling theory and implementa-
tion considerations are introduced. Starting from fundamental implementation
considerations, fundamental task models, real-time scheduling algorithm designs
and analyses are categorized and contextualized by algorithmic and practical
constraints.

2.1 multicore & real-time systems

The focus of this dissertation is on cyber-physical systems and real-time system
design for multicore systems. Therefore, a brief summary of multicore architec-
tures and its relevance to real-time system design is given. Real-time system
designs evolved from unicore, single memory designs to complex multicore
system-on-chip architectures as used in, e.g., autonomous driving, robotics, or de-
fense applications to match the computational demands of workloads, durability
requirements, tight deadline constraints, and thermal as well as power system
design constraints. Multicore chips consist of several smaller cores, running at
a lower frequency, which can ideally perform the same amount of work as a
single core with a higher frequency without consuming as much energy and
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Figure 2.2: Architectural view of an exemplary multicore system-on-chip, which is re-
drawn from [Abd17].

power [Abd17]. An important distinction in multicore systems is between homo-
geneous and heterogeneous cores. That is, a set of cores is called homogeneous (or
identical) if all cores in the set have the same cache hierarchy, cache sizes, core homogeneous cores

frequencies, and the same functions [Abd17]. Conversely, a set of cores is called
heterogeneous if some cores have different functions, core frequencies, cache sizes, heterogeneous cores

cache hierarchy, and memory models. Heterogeneous multiprocessor systems are
further classified into uniform and unrelated heterogeneous systems. In uniform
heterogeneous multiprocessors, the processors only differ in the processor frequen- uniform heterogeneous

multiprocessorscies, whereas everything else is identical. In unrelated heterogeneous multiprocessors,
unrelated
heterogeneous
multiprocessors

each processor may have completely different capabilities. As a consequence for
real-time scheduling theory of heterogeneous systems, the execution times of
each job depends on which processor they are executed on, which complicates
the analyses. When we consider heterogeneous multiprocessor systems in the
scope of this dissertation, we assume an off-line task to processor mapping and
disallow migration such that the varying processing times do not need to be
considered during analysis.

In this dissertation, most of the presented theory is aimed at homogeneous
multiprocessors with uniform memory access, in which the memory and cache
contention problem is not explicitly considered such as in memory or cache-aware
scheduling approaches, e.g., in [GYY+20; JNS+12; CA08; XCW+20]. Instead, we we implicitly consider

the efficiency problem
and contention
problem on all shared
resources by recurring
back on practically
proven efficient
scheduling paradigms

implicitly consider the efficiency problem and contention problem on all shared
resources by recurring back on practically proven efficient scheduling paradigms,
such as federated scheduling [LCA+14], or gang scheduling [Jet97; FR92; AY19] when

federated scheduling

gang scheduling

designing our scheduling algorithms. Similarly, partitioned scheduling is more
favorable than global scheduling, due to the lack of process migrations and
improved cache affinity.

On a more general note, there is a trade-off between, theoretic analyzability, real
system performance, model robustness and fidelity, and ease of use constraints
in the real-time operating system. All of these trade-offs must be purposefully
balanced when designing scheduling algorithms and abstractions.

In the remainder of this section, the most determining components in a mul-
tiprocessor system – with respect to real-time systems – are explained and im-
portant practical considerations for the scheduler design in a real-time operating
system are summarized. In Section 2.1.1, the most common cache architectures



16 real-time system concepts

CPU 1 CPU 2 CPU 3 CPU 4

L1 L1 L1 L1

Last-Level Cache

Memory

1

2

3

4

Figure 2.3: Architectural view of an exemplary memory and cache hierarchy.

and modes of operation are explained. Afterwards, in Section 2.1.2, the intercon-
nection system in multiprocessor systems is presented and the problems with
regards to real-time systems are discussed.

2.1.1 memory & cache

The following section is based on the explanations in [Bra11a] and is enriched
with additional information.

The memory architecture can be classified into uniform memory access (UMA)uniform memory access

architectures and non-uniform memory access (NUMA) architectures, which differnon-uniform memory
access in the maximum memory access latency from a processor to a specific memory

word. In UMA architectures, the maximum memory access latency of each
memory word is the same for all processors, whereas the maximum access
latency differs for each processor in NUMA architectures.

The memory architecture impacts the scheduling design considerations andmemory architecture
impacts the scheduling

design considerations
and in particular the

efficient
implementation of

scheduling algorithms
in real-time operating

systems

in particular the efficient implementation of scheduling algorithms in real-time
operating systems. For instance, in a completely centralized shared memory
system with uniform memory access, the shared memory bus and shared caches
limit the processor utilization, due to waiting cycles to fetch the memory. In
contrast, in NUMA systems, each task should be scheduled and executed on a
processor, which has a small maximum memory access latency, to the off-chip
modules holding the task’s data. In consequence, global scheduling, in which
each processor can schedule and execute a job of a task, is not efficient on NUMA
systems.

Based on the fact, that the maximum access latencies for the main memory
are magnitudes larger than the computation times on modern processors, the
memory system is constructed as a hierarchy of memory layers. The top layers,
which are closer to the processor have smaller memory access latency, but also
smaller storage capacity. An exemplary uniform memory architecture is shown
in Figure 2.3. The closest memory to the processor is called registers, which is
internal to the processors 1 containing a partial set of variables, and process
context such as the processor status, program counter, and stack pointer. Notably,
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there is almost no delay in accessing them by the processor in terms of additional
processor cycles. In contrast, accessing the main memory can result into hundreds
of processor cycles in which the processor is stalled, waiting to fetch the data
or instructions from main memory [Bae09]. To that end, caches are used with caches are used with

the intent that most
accesses to data and
instructions go
through the fast cache,
instead of, to the slow
off-chip memory

the intent that most accesses to data and instructions go through the fast cache,
instead of, to the slow off-chip memory. Cache replacement policies, prefetching,
and the temporal and spatial locality in the accessed instructions and data
addresses are facilitated to minimize cache misses. In the presented example,
each processor is assumed to have a unified private level-1 cache 2 , but dedicated
instruction and data caches are also commonly used. On the next level, a shared
last-level cache 3 is used as a backup cache, if the memory word could not be
found in the private level-1 cache. The last level cache 4 refers to the last level
of cache memory, which is accessed by the cores, prior to fetching from main
memory.

As a consequence for real-time system design, and in particular from the
scheduling point of view, the main difference between shared- and distributed- main difference

between shared- and
distributed-memory
architectures is how
process migration is
implemented

memory architectures is how process migration is implemented. In addition,
cache misses should be avoided to reduce the execution time variability, and
execution time penalty and in turn achieve high resource efficiency and improved
predictability.

A comprehensive description of caches is given, for instance, in [Bae09; Tan09]
and only the most important fundamentals and real-time systems related cache
developments are summarized hereinafter. Caches are organized into cache lines,
which consist of blocks of consecutive memory addresses, denoting a range
of contiguous memory words that are stored in the cache line. Whenever the
processor reads or writes to a memory address, the complete cache line – which
encompasses the referenced address – is read from or written to. The mapping
strategy of a cache is distinguished into direct mapped caches, fully associative
caches, and set associative caches, which differ in the restrictiveness of mapping
constraints of the cache lines. In a direct mapped cache, each cache line may only direct mapped cache

reside in one specific location in the cache, whereas in a fully associative cache, fully associative cache
each cache line may reside in any location in the cache. The direct mapped cache
has low hardware complexity, however the restrictive policy leads to more cache
line evictions and thus higher miss rates. In contrast, fully associative caches have
very high hardware complexity, due to the large amount of cache lines which
need arbitration logic, but lead to lower miss rates. Set associative caches are a
hybrid approach, where each cache line may reside in any location of a set of
fixed locations. A set associative cache is said to be an n-way associative cache if n-way associative

cacheeach cache line may be mapped to any of the n cache locations.

When memory is addressed by the processor, which is found in the cache,
namely a cache hit, then that data is directly read from the cache without any cache hit

access to main memory. If however the addressed memory is not in the cache,
namely a cache miss, then the respective cache line is brought into the cache and cache miss

if necessary another cache line is evicted. Cache line replacement strategies are
for instance random replacement, first-in first-out (FIFO), least-recently used (LRU), random replacement

least-recently usedor least-frequently used (LFU), some of which have been analyzed for their perfor-
least-frequently usedmance in, e.g., [MT19]. In the context of real-time systems, the LRU strategy is of
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particular importance, due to the efficiently computable abstract cache seman-
tic [AFM+96], which allows for over- and under-approximations of cache contents;
e.g., may- and must analysis of cache contents can be derived. An abstract cachemay- and must

analysis semantic is a collection of equivalence classes of cache states at each program
point, which any execution may encounter at that point.There are four primary

causes for cache misses
There are four primary causes for cache misses, which are shortly listed. Com-

pulsory cache misses are unavoidable and occur whenever a cache line is referencedcompulsory cache miss

for the first time and must be loaded into the cache. A capacity cache miss occurscapacity cache miss
when the working set size of the process exceeds the cache size, i.e., some cache
lines from the working set must be temporarily evicted in favor of other data.
In the case of direct mapped and set associative caches, conflict misses occur if –
due to the mapping constraints of the caches – some cache line must be evicted.
Lastly, coherency misses occur when another processor evicted a referenced cachecoherency cache miss

line, due to consistency issues, as managed by some coherency protocol. Cache
coherency refers to the problem, that in a multiprocessor, caches on different
levels in the hierarchy might become inconsistent if one processor updates a
memory location, which is currently cached by other processors. Cache consis-
tency can also become a major source of overhead and timing unpredictability if
processors frequently read and write memory locations, which reside in the same
cache line. Cache coherent processors employ a cache-consistency protocol to
transparently evict outdated cache entries from the caches of other processors to
provide a coherent state. A detailed introduction to cache-consistency is provided
by, e.g., Hennessy and Patterson [HP12]. A comprehensive survey on the impacts
of resource sharing and performance prediction of shared bus, and shared caches
with respect to real-time systems is given in [ABD+13].Another approach to

improve predictability
and to reduce

interference of
co-running tasks is

that of cache
partitioning

Another approach to improve predictability and to reduce interference of co-
running tasks is that of cache partitioning. In cache partitioning, all cache lines are

cache partitioning

partitioned among the competing tasks. Several cache partitioning strategies have
been investigated, e.g., in [Mue95; LHH97; KS90]. In particular, set based parti-
tioning in [ZDS09; SM08] or way-based partitioning techniques in, e.g., [QP06]
have been proposed. The authors of [ABD+13] state that the size of the cache
partitions have a strong impact on the performance of the co-running tasks and
in consequence on the system performance. Even more so, way-based partition-
ing only allows for coarse-grained allocation of cache space in low-associativity
caches. In contrast, set-based partitioning allows for more fine-grained allocation
of the available cache memory, since the number of ways is usually larger than
the cache’s associativity. Another proposed approach to improve predictability
on shared resources is predictable memory controllers [PQC+09; RLP+11]. Rado-
jkovic et al. [RGG+12] evaluated the impact of shared resources in multi-threaded
commercial-off-the shelf (COTS) processors in time-critical environments. Despite
measures to improve predictability, recent results by Yun et al. [Yun15] suggest
that on COTS multicore platforms, a process can suffer a slowdown by up to 14×,
even when using cache partitioning techniques. In a subsequent work [AY19] Ali
and Yun have shown that the suffered slowdown is even larger for highly parallel
workloads, when co-run with other memory intensive applications. The authors
attribute this findings to not partitionable resources, such as the miss-status hold-
ing register, which leads to blocking whenever all available miss-status holdings
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registers are used up. Since the extent of cache interference depends on the set of
jobs, which execute on the processors and share a cache and memory, interference
can also be reduced using cache-aware scheduling approaches such as in [CA08;
JNS+12; XCW+20] or memory-aware scheduling as, e.g., in [HCR16].

2.1.2 interconnects

By nature of the memory interconnect, multiprocessors can be classified into
shared-memory multiprocessors and distributed-memory multiprocessors. In
the former, a central memory is accessible to all connected processors by a
shared memory bus. In the latter, there are multiple local memories, which
are accessible only to a subset of the multiple processors. Processors are still
connected to each other in a distributed-memory system, but only via a message
bus which does not allow direct access to non-local memory. With increasing
cores in a single multicore system-on-chip (MCSoC), the communication latencies communication

latencies are becoming
a bottleneck for the
overall system’s
performance and thus
more scalable
interconnects than a
shared bus are required

are becoming a bottleneck for the overall system’s performance and thus more
scalable interconnects than a shared bus are required.

Starting from the initial work of Dally et al. [DT01], a packet-switched on-chip
network was proposed in contrast to the prior predominant approach to place
dedicated transmission lines between processing elements. The authors identified
structural, performance, and modularity advantages compared to global wires
connecting processing elements individually, which are summarized as follows:

• Due to the regularization in wire length and the routing geometry of
the wires in the on-chip network, the electrical properties are optimized;
resulting in predictable cross-talk and noise characteristics. Therefore, highly
optimized signaling circuits can be designed, which reduce power dissipation
and decrease propagation delay and thus increase bandwidth.

• By sharing of the network-on-chip with all participants, the transmission
lines can be used by any client with transmission requests, thus reducing
the idling of resources.

• Lastly, an on-chip interconnection network facilitates modularity by defining
a standard interface.

Still many on-chip interconnection networks are implemented using buses in
form of bidirectional links, e.g., SPI, I2C, CAN, or AXI, where several masters
and slaves can be connected to a shared bus. The bus topology has the benefit The bus topology has

the benefit of
simplicity, i.e., simple
addition of new devices,
simple broadcasting,
low area usage, simple
arbitration, and good
timing predictability

of simplicity, i.e., simple addition of new devices, simple broadcasting, low area
usage, simple arbitration, and good timing predictability. From a formal real-
time analysis perspective, a shared bus – which corresponds to the uniprocessor
model in real-time scheduling theory – is a well understood model, for which
practically efficient and theoretically optimal scheduling solutions exist. In the
bus topology, a centralized arbiter is required to schedule the bus requests. The
arbiter periodically examines all accumulated requests from the multiple master
interfaces, and grants access to a master, using arbitration mechanisms specified
by the bus protocol.

The communication fabric of a multi- or many-core platform must scale with
the number of cores, since otherwise the computation capacity of the cores may be
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wasted if they are waiting for communication, synchronization, or memory access.
In that regard the bus topology does not scale, which is due to electrical issues
such as increased reflections, electrical loading, clock skew, propagation delay and
the time-multiplexing of the shared bus reducing the bandwidth for each client.
A theoretically optimal switching network is the n× n crossbar, which connectscrossbar

n sources to n sinks in a non-blocking manner. That is, any distinct source-to-sink
pair can transmit simultaneously without contention. However, the hardware com-
plexity of a crossbar is infeasible for larger systems. Instead, various multistage
switching networks with less hardware complexity and reasonably low blocking
properties have been proposed. These multistage switching networks consist of
smaller 2× 2 crossbars arranged in stages such as the omega-network [Law75],omega network

Banyan network, Benes network, or the Butterfly network [KBD07].banyan network

benes network
butterfly network

Another approach to achieve good scalability of communications, is the Network-
on-Chip (NoC) architecture, in which a packet-switched network is used to pro-
vide the interconnection of the processing elements (including physical cores)
on a chip. The NoC architecture allows parallel inter-core communication withNoC architecture

allows parallel
inter-core

communication with
moderate hardware

costs and allows for
asynchronous transfer

of information

moderate hardware costs and allows for asynchronous transfer of information.
Consequently, NoCs are the prevalent choice of interconnection, due to their
overall good performance and scalability potential as reported by Kavaldjiev
et al. [KS03]. To this end, redesigning the interconnection network between cores
has been a major focus of chip manufacturers resulting in network-on-chip (NoC)
designs, e.g., a ring in the Intel Xeon Phi 3120A, a 2-D torus in MPPA Manycores
by Kalray, and a 2-D mesh in Tilera TILE-Gx8036.NoC research and

design issues include
many trade-offs NoC research and design issues include many trade-offs such as, e.g., topology,

routing, switching, scheduling, flow control, buffer size, network interface, and
packet size; many of which have been proposed and evaluated in the literature.
Due to the many different approaches to NoC design and performance analyses,
we refer to the literature, e.g., [DT04; DPS14] for a more comprehensive presenta-
tion. A summary of the technical specifications such as, throughput, area, flit size,
and others, of the state-of-the-art NoC architectures can be found in [MCM+04].

The core elements of a network-on-chip, are the network interface, routers, and
links, which are briefly presented. The network interface decouples the intellectualnetwork interface

property (IP) cores, e.g., processors, memories or caches, from the communicationintellectual property
cores protocols and message formats within the network. The network interface is most

commonly separated into a front-end and a back-end. The front-end interfaces
the IP core with socket standard implementations, such as Open Core Protocol or
AXI; the back-end is responsible to packetize and de-packetize the messages and
to control the end-to-end flow.

Routers consist of buffers, arbitration logic, and several input and output
ports, which can be arbitrated, i.e., switched by the arbitration logic. Routers are
connected by links, providing the channels over which the packets are transmitted
from the source router to the destination router. The width of a link denotes thelink width

number of bits, which can be transmitted during one cycle over the link. The
width is in the range of 16 to 512 bit in typical network-on-chips [LNP+13]. In
general, a link may provide either a full-duplex, or a simplex connection between anfull-duplex

simplex upstream and a downstream router. In the course of this dissertation, we assume
that each component in the network is connected by two opposite directed simplex
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Figure 2.4: Packetization of a message into packets; each of which consist of a head flit,
body flits, and a tail flit.

links, which may be separated into multiple virtual channels. A virtual channel, virtual channel

denotes a subset of the port buffers, which can be arbitrated independently. The
arbitration of links, and the routing algorithms are discussed later in this section.

2.1.2.1 Messages, Packets and Flits

As previously mentioned, packets are generated by the network interface from the packets

messages, which refer to the various heterogeneous data formats injected by the messages

IP cores. These are for instance, memory request in the order of tens of bytes, or
reply messages in the order of hundreds of bytes [DPS14]. Packets usually have a
static and restricted length and thus a variable length message is divided into a
sequence of one or more packets by the packetizer. A header is attached to each packetizer

packet, containing routing, and sequencing information, which are required for
channel allocation and de-packetization.

The packets themselves – depending on the switching technique – consist of
integral units of transmission and arbitration called flits, which originates from flits

the term flow-control digits. On the physical layer, flits can be further decomposed
into phits, which describe the number of bits that can be transmitted during a phits

single cycle over a link. The phit size typically coincides with the flit size.

A message frame is illustrated in Figure 2.4, which consists of a sequence of
packets. Each packet itself consists of a unique header flit, a sequence of possibly header flit

many body flits, and a unique tail flit. The header flit denotes the beginning of a body flits

tail flitpacket and contains all addressing, sequencing and identification information,
required for routing and de-serialization at the destination. The body flits contain
the payload of the packet, and the tail flit denotes the ending of a packet. The
tail flit is used for signaling in the network, e.g., to de-allocate virtual channels in
the router. Throughout this dissertation, two adjacent routers in a path are called
upstream router and downstream router, i.e., the upstream router transmits data to upstream router

downstream routerthe downstream router.

2.1.2.2 Topology

Network topology defines the way that routers and links are interconnected and
are an important design choice, due to its affect on routing, reliability, throughput,
latency, and design complexity. More formally, a topology can be defined as a
graph, where the edges represent the network’s links and the vertices represent
the network’s routers. Networks can be differentiated into direct and indirect
networks. In the former, each router has a terminal vertex and all routers are direct & indirect

networks



22 real-time system concepts

V1 V2 V3

V4 V5 V6

V7 V8 V9

A1 A2 A3

A4 A5 A6

A7 A8 A9

V1 V2 V3

V4 V5 V6

V7 V8 V9

A1 A2 A3

A4 A5 A6

A7 A8 A9

Figure 2.5: Two exemplary direct regular topologies, namely a 2D-mesh on the left, and
a 2D-Torus on the right.

sources and destinations of traffic, whereas in the latter routers and terminal
vertices are distinct. That is, terminal vertices can be either source of traffic or
a sink thereof, whereas the intermediates routers switch the traffic between the
terminal vertices. A network topology is associated with metrics such as degree,
diameter, hop count, and bisection bandwidth, which characterize a specific topology.
In the following, these terms are explained with reference to the 2D-Mesh and
2D-Torus topology with network size N × N, shown in Figure 2.5.

Number of links. The number of links is given as a function of the number of
routers in the network. A large number of links can increase the throughput at
the cost of increased chip complexity and area.

Degree. The degree of a network topology denotes the maximal number of linksdegree

at any router in the network and is an estimate of the router design cost in terms
of required ports per router.

Diameter. The diameter of a network topology denotes the maximal routingdiameter

distance within the network in terms of crossed links, which is N in the case of a
2D-Mesh and 2D-Torus.

Hop Count. The hop count denotes the number of hops, which a message takeshop count

from source to destination, in terms of links, and is related to the transmission
latency.

Bisection Bandwidth. Given a bisection that partitions the network into twobisection bandwidth

(nearly) equally sized halves then the bisection bandwidth of that partition is
given by the cumulative link bandwidth connecting both partitions. The bisection
bandwidth of a network denotes the minimal bisection bandwidth of any possible
bipartition of the network. A higher bisection bandwidth suggests a lower network
contention probability. In the 2D-Mesh, the bisection bandwidth is given by

√
N

and by
√

N + 2 for the Torus.
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Source Sink

Stalled TransmissionTransmission

Figure 2.6: Exemplary transmission of flits in a wormhole switched network-on-chip
from a source core to a destination core over 3 links, which is redrawn
from [Abd17]. The routers are partially represented by the input and output
buffers of a single virtual channel. When the buffers are fully exhausted at
the downstream router, the upstream router is stalled on transmission.

2.1.2.3 Switching & Flow Control

According to Dally [DT04], flow control deals with resource allocation and
contention resolution, where the subjected resources are channel bandwidth,
buffer slots, and control state. The switching technique determines how network
resources are allocated to a flit (or packet), on a route between a source and
destination router. Flow control schemes

can be classified into
bufferless and
non-bufferless schemes

Flow control schemes can be classified into bufferless and non-bufferless
schemes. In bufferless flow control, only the channel bandwidth must be allocated

bufferless flow controlto a flit (or packet). Consequently, waiting, i.e., being queued for an allocation
can not be implemented and is usually resolved with flit (or packet) dropping, or
deflection routing.

A prominent switching technique for bufferless routing is circuit switching, in circuit switching

which a packet (transmission unit) is forwarded by the routers through dedi-
cated links, which are reserved and allocated until the transmission is finished.
Therefore, each transmission can only be preempted during the establishing of
a route from source to destination. An advantage of this approach is that no
buffering is required and therefore any optimized and adaptive routing scheme
is deadlock-free. However, the overhead to establish the routes may render this
approach infeasible, when small packets are injected frequently.

Prominent non-bufferless switching techniques are store-and-forward switching non-bufferless
switchingand wormhole switching. In store-and-forward switching, switches can only forward
store-and-forward
switching

a packet once it is completely received and stored, which implies that the switches
must provide sufficient buffer capacity to store a complete packet. Fortunately, the
arbitration protocol is suitable for real-time analysis, since a packet may compete
for at most one link at each point in time. It is, however, not useful in practice
because of the large buffer requirement. In wormhole-switching

– which is illustrated in
Figure 2.6 – each
packet is divided into
smaller transmission
units, called flits

In wormhole-switching – which is illustrated in Figure 2.6 – each packet is
divided into smaller transmission units, called flits, always including a designated
header and a designated tail flit, which are used for control and routing. That
is, each payload flit follows the output port of the header flit. In fixed-priority
wormhole switched NoCs, each router contains virtual channels, i.e., separated
buffers which contain flits of a single packet. Once the tail flit is transmitted
and removed from the buffer, the virtual channel can be used for flits of another
packet. Furthermore, the highest-priority flit is scheduled to transmit over the



24 real-time system concepts

link at each router. In this approach, complete packets do not have to be buffered,
which allows smaller buffers in the hardware design. On the downside, each
packet may be distributed over multiple routers and subsequently compete for
multiple links at the same time making the timing analysis complex. Additionally,
the limited number of virtual channels and full buffers on the downstream router
add additional interference, which complicates the analysis. That is, in buffered
switching, an upstream router can only successfully transmit a flit (or packet) if a
buffer slot is available at the receiving downstream router, which must hence be
coordinated.

Credit based flow control is the most prominent technique, in which the upstreamcredit based flow
control router maintains the status of available buffer slots at all downstream routers.

Whenever the upstream router transmits a flit (or packet), the counter is decre-
mented to account for the buffer slot being occupied by the transmitted flit.
Conversely, when the downstream router forwards a flit to the next router, it
sends a credit back to the upstream router, to signal that the buffer is available
again. The most simplistic approach to implement credit based flow control
is on-off flow control. In this protocol, the downstream router deactivates anyon-off flow control

incoming transmissions from an upstream router by signaling an off signal, if all
buffer slots in the downstream router are fully occupied. Conversely, whenever
buffer slots are free, the downstream router exerts an on signal to the respective
upstream routers. Another approach is the ACK-NACK flow control, in which theack-nack flow control

flit is sent from the upstream router to the downstream router without knowledge
of the available buffer space. In case that no buffer slots are available, the flit
is dropped and a NACK is sent to the upstream router, indicating that the flit
has been dropped. Conversely, if a slot was available upon reception, an ACK is
sent to indicate a successful transmission. Irrespective of the specific flow control
approach, the flow control needs to be implemented within the router and thusflow control needs to be

implemented within
the router and thus

influences the
hardware complexity of

the router

influences the hardware complexity of the router.

Closely connected to flow control is arbitration, i.e., the policy-based allocation
of channel bandwidth, virtual channel, and buffer space to flits (or packets).
That is, from among several flits or packets, which are concurrently waiting
to be transmitted, the arbitration policy decides which flit (or packet) is to be
transmitted in each cycle. Several different policies can be used for arbitration,
e.g., round-robin or priority-driven policies. In this dissertation, we focus only
on fixed-priority arbitration, that is, each flit of a message is attributed with a
message-level fixed-priority. In each arbitration round, the flit (or packet) with
higher-priority, precedes the flit with lower-priority in transmission.

2.1.2.4 Routing

Most NoC topologies, such as for instance the 2D-Mesh or 2D-Torus illustrated
in Figure 2.5, allow for multiple distinct paths, i.e., an ordered sequence of
links, from a source router to a destination router, which is referred to as path
diversity. In this dissertation, we call a router that is connected to the source sourcepath diversity

router and the router that is connected to the destination core destination routersource router
destination router analogously.

The purpose of routing,
and the routing
algorithm, is to

determine the ordered
sequence of links,

which are to be
traversed from a source
router to a destination

router
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The purpose of routing, and the routing algorithm, is to determine the ordered
sequence of links, which are to be traversed from a source router to a destination
router. Routing algorithms determine the NoCs performance, fault-tolerance (due
to loss or impairment of certain links), or deadline avoidance by, e.g., turn-based
routing as will be explained later in this section.

A routing algorithm is considered deterministic if the algorithm always gen- deterministic routing

erates the same path, for any given source to destination router pair, and non-
deterministic otherwise. While deterministic routing algorithms are simple to non-deterministic

routingimplement, they can not exploit path diversity, which may be exploited to reduce
contention and distribute the injected traffic over all links in the NoC.

A comprehensive study of routing algorithms can be found, e.g., in [KI21]
and only a brief description is given hereinafter. Fundamentally, routing algo-
rithms can be categorized based on their means of implementation, i.e., source,
distributed, and algorithmic routing. In source routing, the complete path of a packet source routing

is stored in the respective packet’s header. Consequently, router implementation
is simpler, since the routing overhead is offloaded to the packet itself. In turn, the
effective bandwidth, which can be used to transmit payload, is decreased accord-
ingly. In the distributed routing, all routing related information is stored inside distributed routing

a look-up table at each router. The look-up tables contain routing information,
as to which packet – at which input port – is to be forwarded to what output
port for transmission. The effective bandwidth of the transmission links is not
impaired, however at the cost of increased memory requirements within each
router. Lastly, in algorithmic routing, the routing information is stored implicitly algorithmic routing

in the algorithm, which is common for regular NoC topologies. One of the most
prominent arithmetic routing algorithms is dimension order routing, in which each dimension order

routingpacket is routed to their destination router along one dimension before being
routed along another dimension.

Another important distinction is between minimal path and non-minimal path
routing algorithms. A path is called minimal, if the number of links in the path minimal and

non-minimal path
routing algorithms

equals the minimal hop count from the path’s source router to the destination
router in the given topology, and non-minimal otherwise. For instance in the
illustrated 2D-Mesh in Figure 2.5, the minimal distance of any source and des-
tination router is given by the accumulated hop difference in x direction and y
direction. Non-minimal paths increase the latency, due to additional routers being
traversed. However, the path diversity can be exploited and crossing of paths
can be circumvented, which in turn can reduce contention and thus transmission
times. Similarly, if the algorithm adapts to the state of the network, it is referred to
as an adaptive routing algorithm, which however necessitates precautions against adaptive routing

algorithmlive-locks to assure that the destination router is reachable.

In wormhole switched networks, deadlocks may occur if every transmission
unit waits for a buffer or a link, which is already occupied by another transmission
unit. One solution to avoid circular dependencies is to restrict the turns a transmis-
sion unit can take as proposed by Glass et al. [GN92]. Alternatively, Duato [Dua93;
Dua94] proposed to use virtual channels to design adaptive deadlock-free routing,
which allows to select any flit in the virtual channels to be transmitted. Routing
algorithms have also been proposed for fault-tolerance such as, e.g., in [DA93;
BC94; CB94].
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2.1.2.5 Analyzability

Real-time system design is concerned with the construction of systems, which can
be formally verified to satisfy timeliness constraints, which requires analyses to
verify if each hard real-time message (defined as an instance of a sporadic/peri-
odic flow) can be successfully transmitted from its source to its destination before
its deadline. Centralized arbitration is often used in predictable protocols suchCentralized arbitration

is often used in
predictable protocols
such as CAN-Bus or

Flexray

as CAN-Bus or Flexray, for which response-time analyses have been proposed,
e.g., in [DKP+13; DN12; ASE12; TBE+16; TBE+13]. Approaches for real-time
communication on a NoC apply one of the following general strategies. One is to
utilize time-division-multiplexing (TDM) to ensure that the timing constraints
are satisfied by constructing the transmission schedule statically with a repetitive
table, e.g., in [GDR05; PK08; SMA+12; KSS+16; Sch; MNT+04; SAA+15; HFB+18].
An approach that is just recently considered for real-time NoC is deflection
routing, which is an adaptive bufferless routing algorithm and has been pro-
posed for real-time systems and analyzed by, e.g., [GN20; GNT21; GNT22]. In
deflection based routing, a flit or packet is routed to non-productive directions atdeflection based

routing an upstream router and implicitly uses the network links as a buffer. Another
approach is to apply a priority-based dynamic scheduling strategy in the routers
to arbitrate the flits in the network, e.g., in [Mut94; HO97; KKH+98; LJS05; SB08;
KGP14; KP16; XLW+16; NIP16; IBN16; XWL+17; IBN18; NHE19]. The difficulty
of the TDM strategy is to construct a feasible TDM schedule and the global clock
synchronization, whilst the difficulty of the priority-based scheduling strategy is
to validate the schedulability, i.e., whether all messages can meet their deadlines.

With respect to fixed-priority based scheduling strategies, Table VII in [IBN16]
summarizes the recent results for fixed-priority wormhole switched NoCs up
to 2017. Eight of the ten results (namely, [Mut94; HO97; KKH+98; LJS05; SB08;
KGP14; NIP16; KP16; XLW+16; IBN16]) were already disproved by counter exam-
ples. These flaws in the literature potentially suggest that the scheduling algorithm
and network architecture may be too complex to be correctly analyzed when
adopting uniprocessor real-time scheduling theory.

For dynamic scheduling strategies, the wormhole switched fixed-priority NoC
with preemptive virtual channels has been considered. The first attempts to tackle
the schedulability analysis were in 1994 in [Mut94] and 1997 in [HO97]. Both of
them were found to be flawed in 1998 by Kim et al. [KKH+98], whose analysis was
later found to be erroneous in 2005 by Lu et al. [LJS05]. The series of erroneous
analyses continued in [Mut94; HO97; KKH+98; LJS05]. Shi and Burns [SB08]
published an analysis in 2008. Eight years later, Xiong et al. [XLW+16] pointed out
that the analyses in [SB08] are unsafe in the sense that they do not consider limited
buffer space and virtual channels. The proposed analysis by Xiong et al. [XLW+16]
was later disproved by counter examples and fixed by the authors in their journal
revision in [XWL+17] in 2017. In addition, Kashif et al. [KGP14] proposed stage-
level analysis (SLA) to improve the analysis by Shi and Burns in [SB08]. The SLA
in [KGP14] assumes an infinite buffer size. Kashif and Patel [KP16] extended the
SLA analysis to cope with limited buffer size, which was disproved by Xiong et
al. [XLW+16]. Indrusiak et al. [IBN16; IBN18] presented new analyses, but they
“chose to provide intuitions, insight and experimental evidence on the proposed analysis
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Figure 2.7: Symbolic representation of all execution times in a system and the correspond-
ing terminology with regard to worst-case execution time analysis adapted
and redrawn from [WEE+08].

and its improvements, rather than theorems or proofs.” They supported their analyses
by evaluating concrete cases, i.e., whether there was any observed case which
was claimed to meet the deadlines but in fact missed the deadlines. However,
such case studies cannot validate the correctness of their analyses, as also stated
by Indrusiak et al. [IBN16; IBN18]. Addressing the problem of complex buffering
effects at the upstream router with regards to the worst-case transmission latency
analysis, Burns et al. [BIS+20] recently proposed a flow control mechanism that
avoids such multi-point progressive blocking by construction.

2.2 timing analysis

In this section, the most fundamental concepts of worst-case execution time anal-
ysis are introduced. In order to be able to assert timing correctness from formal
schedulability analyses in real-time systems, the task models, which all consist of
at least the inter-arrival time, worst-case execution time, and deadline, need to be
parameterized. The subsequent schedulability analyses must verify if the given
parameterized task set can be feasibly scheduled on the given platform [Wil20].
It is evident that the asserted timing correctness depends on the fidelity of the
parameters. While robust parameter estimations for inter-arrival times and dead-
lines can be easily determined by only accounting for clock jitter; determining
the amount of execution time of a task remains a very challenging problem.
With respect to industry grade systems on modern architectures, Davis et al.,
even assert that ”comprehensive solutions [for sound timing analyses] are currently
tantalizingly out-of-reach” [DC19].

The term timing analysis refers to the problem of characterizing the amount of timing analysis

time that each task (program) can take to execute on a given hardware platform,
and is usually obtained as an upper-bound, or estimate, of the actual worst-case
execution time, which can occur in the real system. The most relevant terms
in timing analysis are illustrated in Figure 2.7, in which all possible execution
times of a single task are summarized in a histogram. The actual WCET refers
to the worst-case execution time, which can actually occur in the real system,
whereas an upper timing bound (WCET estimate) must not refer to a possible
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execution time. The same holds for the best-case execution time (BCET) and the
lower timing bound (BCET estimate). Additional terms are minimal- and maximal
observed execution times that refer to a set of (non-exhaustive) measured traces ofminimal- & maximal

observed execution
times

the real system. A worst-case execution time estimation is called sound if no

worst-case execution
time estimation is
called sound if no

execution in the real
system will ever exceed

the estimated
worst-case execution

time

execution in the real system will ever exceed the estimated worst-case execution
time (upper timing bound) and the term precision refers to the ratio of an actual
WCET and the estimated worst-case execution time.

Timing analysis is applied to time-critical and safety-critical embedded-system
software in problem aware parts of the embedded-systems industry that are sub-
jected by prescription to comply with international safety norms, e.g., DO-178B/C,
DO-254, IEC 61508, and ISO 26262. In academia and industry, two approaches are
used to estimate the worst-case execution time of a task, namely either as a single
deterministic worst-case execution time (WCET) value or a probability distributiondeterministic

worst-case execution
time

of the probabilistic worst-case execution time (pWCET). Based on the complementary

probabilistic worst-case
execution time

cumulative distribution function (CCDF) of the pWCET distribution, a worst-case
execution time estimate – that is exceeded only by probability in the range of
e.g., 10−9 to 10−12 – can be obtained, which is in the same order of magnitude as
other dependability estimates. In the context of timing analysis, static analysis
techniques, measurement-based or hybrid techniques are used in academia and
industry [DC19]. It was reported by Akesson et al. [ANN+22] that automotive
(40.57%), avionics (28.3%), industrial automation and manufacturing (13.21%),
and defense (13.21%) industry predominantly use measurement-based timingindustry

predominantly use
measurement-based

timing analyses

analyses as reported by 76% of the participating respondents. In contrast 38% of
the participants use static analysis to obtain a worst-case execution time and 26%
of the respondents use both techniques.

In the subsequent Section 2.2.1, the fundamentals of the state of the art in deter-
ministic timing analysis are presented, and the challenges with respect to modern
multicore computer architectures are discussed. Thereafter, in Section 2.2.2, some
selected fundamental results in the more recent research in probabilistic timing
analysis are presented.

2.2.1 deterministic timing analysis

The first sound worst-case execution time estimation for select industry grade
systems has been achieved by the static analysis (STA) approach developed by the
research group of Wilhelm, e.g., [WLP+12; WW08; RGB+07; FHW04]. Static analy-
ses ”[...] search for a longest path in the state space spanned by the program under anal-
ysis and by the architectural platform” [WPG+21] and consequently relies on timing
models obtained from micro-architectural analysis of the platform and analysis
of the platform’s state space evolution. The research group around Wilhelm
developed powerful abstractions of the system states especially for least-recently
used (LRU) caches with the introduction of may- and must analyses [AFM+96],
allowing to reduce the state space significantly. In the spanned state space, tree-
based approaches as in [CB02; BB06a], or path based approaches [TFW00; SEE01]
have been proposed to calculate the longest path in the state space according
to [BCP03]. This approach forms the de-facto standard approach for any staticThis approach forms

the de-facto standard
approach for any static

analysis tool to date,
which is exemplified in

Figure 2.8
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Figure 2.8: Flow chart of the standard approach to static timing analysis as used for
instance by the tool AbsInt.

analysis tool to date, which is exemplified in Figure 2.8. According to [RS09],
control-flow reconstruction and static analyses for control- and data flow, micro-
architectural analysis, which computes upper- and lower-bounds on execution
times of basic blocks, and global bound analysis, which computes upper- and
lower-bounds for the whole program, are the basics steps in static worst-case
execution time analysis.

The stages of an exemplary static timing analysis workflow are shown in
Figure 2.8, and each of the stages is briefly elaborated in the following paragraphs.
A comprehensive survey of worst-case execution time analysis and in particular
static cache analysis can be found in [WEE+08] and [LGR+16] respectively, which
also serve as the foundation of content of the following paragraphs – with
enrichments as necessary.

1) Control-Flow Graph Reconstruction. In the first stage, an input binary code of the
program is analyzed to retrieve a high-level description of the program in form
of an inter-procedural control-flow graph. In the input binary code, the memory
locations of instructions and program variables are already determined, which
is essential for cache analysis. A control-flow graph is a directed graph, where control-flow graph

each vertex represents a basic block, which is a sequence of instructions with no basic block
branching instructions along the path, and edges representing the control-flow
in between basic blocks [LGR+16]. The control-flow graph is then used in the
subsequent stages of value and cache analysis.

2) Value Analysis. Value analysis is a static analysis with the objective to infer the value analysis

contents of a processor’s register contents, and the contents of main memory, for
every instruction and execution context. The memory contents are not always
attributed with exact values, but intervals that represent a set of concrete values.
Each instruction in the program is modeled by an appropriate transfer function, transfer function

which maps abstract input states to abstract output states. At control-flow joins,
the incoming abstract states are combined into a single outgoing state, using a
combination function. Due to loops in the program, and thus in the control-flow
graph, respectively, the transfer and combination functions are applied repeatedly
until the abstract states converge to a fix-point.

3) Cache Analysis. Caches are small on-chip memory, which are smaller in size cache analysis
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compared to main memory, but provide significantly faster access latency. Caches
contain a small subset of the main memory contents, which are likely to be refer-
enced in a sequence of subsequent executed instructions by exploiting temporal
and spatial locality of memory references. If during an instruction, memory is
referenced that resides in the cache then this is called a cache hit and the data
is fetched from the cache with low latency. On the contrary, if the referenced
memory does not reside in the cache then this is called a cache miss and the data
must be loaded into the cache from main memory and fetched from the cache
thereafter. The latency in case of a cache miss are reported to be magnitudes
larger than in case of a cache hit. It is evident, that a worst-case execution time
analysis, which has to assume that every memory reference results in a cache
miss, is too pessimistic, resulting in low estimation precision. With regards to
computational complexity, it is infeasible to collect the set of all possible concrete
cache states, i.e., cache contents, at every basic block in the control-flow graph,
depending on the visited basic blocks before. To that end, abstract must and may
cache states have been proposed, which represent a set of concrete cache states,must & may cache

states which must (or may) contain certain memory blocks. Abstract must cache states
compactly represent the respective sets of concrete cache states, in which specific
memory blocks will surely be in. Consequently it is possible to determine, if a
request to a memory block will result in a cache hit, given an abstract must cache
state at a basic block in the control-flow graph. Analogously, abstract may cache
states represent the respective sets of concrete cache states, in which specific
memory block may be in, and consequently a cache miss can be asserted if a
memory block is not present in a may cache state. At control-flow joins, abstractcontrol-flow joins

must cache states can be combined by sort of an abstract intersection and abstract
may cache states can be combined by sort of an abstract union operator. In the
baseline cache analysis, it is assumed that the program executes in isolation with-
out interruptions and thus in the context of preemptive scheduling, cache-related
preemption delay (CRPD) must be taken into account as reported in e.g., [AM11].cache-related

preemption delay
4) Path Analysis. According to [WEE+08] there are three main classes for comput-
ing a worst-case execution time estimate, namely structure-based (tree-based) [CP00;
CB02], path-based [HAM+99; SA00; SEE01], and implicit path enumeration tech-implicit path

enumeration niques, which was originally proposed in [LM95] and further refined to account
for more complex control flows by others. After the micro-architectural anal-
ysis – which determines the worst-case execution times of each basic block –
is completed, the program’s worst-case execution time estimate is obtained by
finding the longest path in the control-flow graph. During value analysis, loop
and recursion bounds, are obtained or instrumented by the expert, allowing
for a finite state space and thus program termination. In the most prevalent
path enumeration technique, flow constraints are formulated, which associate
the internal structure of the control-flow graph with the execution count of the
basic blocks. That is, each basic block vi is associated with a counting variable
xi ∈N∪ {0}, denoting that vi is executed xi times, and hence the ILP is given by
WCET ≤ max ∑vi∈V xi · ci subject to the loop, flow, and recursion bounds.

While deterministic static analyses are the only known approach to obtain
sound estimates, the predictability of modern architectural platforms poses a
significant challenge to the precision of the estimated WCET compared to an
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actual WCET. This problem is further exacerbated by multiprocessor architectures
and advanced processor features.

2.2.2 probabilistic timing analysis

Modern architectures are designed to improve the average case performance,
which is achieved by advanced processor features such as cache hierarchies,
branch prediction, out-of-order pipelines, and communication such as network-
on-chip. The drawback of these advanced features, with respect to worst-case
execution time analysis, are the high execution time variability which are due
to the huge possible hardware state space, and the required model complexity
for a deterministic static analysis. For instance, in view of timing anomalies, no in view of timing

anomalies, no efficient
abstractions for
pipeline states could
have been found,
resulting in the need to
maintain large sets of
pipeline states

efficient abstractions for pipeline states could have been found, resulting in the
need to maintain large sets of pipeline states to follow all possible cases, whenever
several successor states are possible. While this approach could be achieved for
single-core processors at an acceptable level, this is not possible anymore for
multi-core systems [WR12].

According to [DC19], probabilistic timing analyses can be broadly classified
into static probabilistic timing analyses, which are similar to static analyses of de-
terministic timing analysis with the difference that parts of the micro-architecture,
program or input states are modeled by probability distributions; Measurement-
based probabilistic timing analyses, which use representative measurements of
program execution times, to estimate a probabilistic worst-case execution time
(pWCET) distribution; and hybrid approaches. A comprehensive survey of prob- probabilistic worst-case

execution timeabilistic timing analyses is provided by Davis et al. in [DC19] and only focus
this section on measurement-based probabilistic timing analyses. Measurement-
based probabilistic timing analyses (MBPTA) approaches aim to make a statistical measurement-based

probabilistic timing
analyses

estimate of the pWCET distribution of a program based on execution time (ET)
measurements, obtained by executing the program either on hardware, or a cycle
accurate simulator, according to a measurement protocol.

Definition 2.1 (Operation Context adapted from [DC19]). An operation context
is defined as an infinitely repeating sequence of input states and initial hardware states,
characterizing a feasible way, in which recurrent execution of the program may occur.

For a concrete operation context, a probabilistic execution time distribution can
be obtained. Consequently, the pWCET is given by the envelope of all probabilistic
execution time distributions for any valid operation context. More commonly,
the complementary cumulative distribution is used to bound the probability that
the worst-case execution time exceeds a threshold value. Most proposed research
uses Extreme Value Theory (EVT) to make a statistical pWCET estimate to
calculate tail probabilities e.g., [EB01; BE00; CSH+12; HHM09; SMD+14]. The EVT-
based pWCET research is based on the Fisher-Tippett-Gnedenko and Pickands-
Balkema-de Haan theorem with the associated block-maxima and peaks-over-
threshold statistical estimators. As reported in [DC19], mainly two approaches of
EVT analysis to program execution times exist, namely per-path and per-program
analysis. Per-Path analysis is applied at the level of program paths, i.e., all feasible per-path &

per-program analysis
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program paths are executed and the observed execution times are associated
with the executed path. The EVT analysis is conducted for each program path to
estimate a path specific pWCET distribution. Subsequently, the program pWCET
distribution is estimated by taking a point-wise upper bound of all path specific
pWCET distributions. Secondly, the per-program analysis executes all program
paths but estimates the pWCET distribution irrespective of the specific paths.

Recently, Vilardell et al. [VSM+22] proposed to use the markov inequality withmarkov inequality with
power-of-k functions to

estimate the pWCET
based on the k-th

moment statistical
estimators

power-of-k functions to estimate the pWCET based on the k-th moment statistical
estimators. The main improvement of this new approach is that – unlike EVT – no
specific type of tail distribution must be selected and tested for quality [APC+17;
ASO+20; RSF20]. In consequence, the markov inequality based approach does
not suffer from model uncertainty. However, the approach may require a lot of
drawn samples in order to produce safe and precise estimates of the k-th order
moments of the underlying distribution for larger values of k [VSM+22].

As a fact, extreme value theory analysis presumes a continuous distribution,
which assumption was shown to be false by Lima et al. [LDB16] and Griffin
et al. [GB10b] for some execution time distributions of programs. The authors
provided concrete programs, which showed discrete execution time distributions
and discussed that the continuity assumption of EVT can not be presumed a priori.
Even more so, early results of EVT made strong assumptions that the executionEVT made strong

assumptions that the
execution times are

independent and
identical distributed

times are independent and identical distributed, which is not the case [GB10b].
Later results showed that EVT can also be used for execution time data, which are
stationary and preserve extremal independence [SMD+14]. In pursuit to comply
with the assumption of independent and identical data, which is required for
trustworthy EVT analysis, Lima et al. [LB17] proposed a randomized sampling
method.The main challenge for

either
measurement-base

methods is the
measurement protocol
and in particular the

representativity

The main challenge for either measurement-base methods is the measurement
protocol and in particular the representativity of the evaluated time-limited opera-
tion contexts (cf. Definition 2.1) for the operation contexts, which can occur during
operation. The problem of representativity can be eased by identifying equivalent
input states and hardware sates with respect to execution time characteristics. A
general solution for the representativity issue is however still an open problem.

2.3 real-time scheduling

A scheduling algorithm and the eventual implemented scheduler in a real-time
operating system decides, which job is to be scheduled, and executed on the
processors, respectively. Whereas real-time scheduling theory is concerned with
the design and analysis of scheduling algorithms, which facilitate the formal
verification of the temporal behaviour of the system, the scheduler implementation
is concerned with overhead considerations.

In this section, the most important aspects of real-time scheduling theory, with
respect to this dissertation, are presented. To address practical concerns, the first
Section 2.3.1 gives a brief introduction into scheduler implementation and sources
of overheads. Other practical concerns and implications of different scheduling
paradigms are described alongside the theory presentation. In Section 2.3.2, the
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Figure 2.9: Symbolic example task states combined from RTEMS and FreeRTOS specifica-
tions.

task models, and system models, as used in the analyses are presented. In Sec-
tion 2.3.3, scheduling algorithms are explained and classified. Afterwards, in
Section 2.3.4, the fundamental techniques and challenges in schedulability analy-
sis are explained. Lastly, the empirical and theoretical performance evaluation of
scheduling algorithms and schedulability tests is elaborated in Section 2.3.5.

2.3.1 scheduler in the rtos

From here, a brief introduction of scheduling algorithm implementations and re-
lated overheads are discussed, to motivate certain classes of scheduling algorithms
for practical use.

Essentially, a scheduler is an operating system level program, which is respon-
sible to schedule, that is, to determine which process is to be executed on which
processor, and to dispatch the currently running process and prepare the system
to execute the scheduled process. The dispatcher is responsible to dispatch the dispatcher

currently attached job (attached because the job is preempted and not executing
anymore) and to prepare the next to be scheduled job to commence execution.
The dispatcher is preceded by a context switch, in which the execution context of context switch

the attached job is saved to be resumed at a later point in time; and to initialize
the context of the scheduled job. The granularity of a scheduling algorithm is an
integral system tick (or tick for short), which represents the time resolution of the system tick

system and is determined by programmable hardware timers in the system, which
periodically generate so called interrupts. Interrupts notify the processors of asyn- interrupts

Interrupts notify the
processors of
asynchronous events
and may occur between
(almost) any two
instructions

chronous events and may occur between (almost) any two instructions [Tan09].
Whenever an interrupt is triggered, the processor halts the normal thread of
execution, switches into an architecture dependent privileged mode, and a desig-
nated interrupt service routine (ISR) is executed. The ISR, responsible to handle the

interrupt service
routine

timer interrupt, calls the sys tick handler, which invokes the scheduler. According
to [Bra11b], some interrupts in multiprocessor systems are local to a specific



34 real-time system concepts

processor, whereas others may be serviced by multiple or all processors. Specific
to multiprocessor systems, software generated inter-processor interrupts (IPIs) areinter-processor

interrupts used by the real-time operating systems in order to synchronize state changes
across processors, e.g., to cause a remote processor to reschedule.

In scheduling theory, the subjected entity is called tasks and instances thereof
are called jobs. In contrast, in the operating system context, a process correspondsin the operating system

context, a process
corresponds with a job

with a job, whereas the program corresponds with a task. A process is defined

the program
corresponds with a task

as an instance of an executing program [Tan09] and includes the context, e.g., the
program counter, register values, access rights, page tables, meta data, such as
cpu time consumption, or locked resources, and others.

All software on the computer, is organized into a number of processes, which
groups related resources together; the address space consists of a program, text,
and data sections [Tan09]. Central to the concept of processes is, that two processes
can be switched by the operating system. Particularly, a process context can be
stored when the process execution is preempted and resumed at a later point
in time, in the prior state. Related to the concept of processes are threads, whichthreads

exist within a process, and thus can be managed more easily. The context of a
thread consists of a program counter, registers (which hold the current working
variables), and stack (which contains the stack frames of procedure calls). Despite
threads being grouped into a process, the threads can be scheduled largelythreads can be

scheduled largely
independent of one

another, with the
benefit that they share
the same address space

and can share data
very efficiently

independent of one another, with the benefit that they share the same address
space and can share data very efficiently [Tan09].

The real-time operating system maintains a table, which has an entry for each
process – sometimes called the process control block (PCB). Each entry in the
PCB contains information about the state, context, and scheduling information
such as, e.g., the time executed, absolute deadline, or the priority.

With respect to a processes’ state in a real-time operating system, Figure 2.9
shows an exemplary symbolic state space, which is combined from the open
source real-time operating systems RTEMS and FreeRTOS. If a process is in
the ready state, then it is queued into the ready queue and can be selected toready queue

be executed by the scheduler; leading the task into the executing state. When
a process is blocked or suspended, the process is not yet finished but can not
be scheduled temporarily. The difference between both states is; a process is
blocked if there is some external reason for it not to be restarted, such as a lockedblocked

semaphore; whereas suspension means that the operating system has suspendedsuspension

the process, but it could be resumed at any point in time.

A key term in preemptive scheduling is preemption, which refers to the tem-preemption

porarily and non-voluntarily interruption of a not yet finished job execution,
initiated by the scheduler. Preemption is one of the primary causes of overhead,Preemption is one of

the primary causes of
overhead, due to the

context switch-,
dispatch-, and access

times to the scheduler’s
data structures

due to the context switch-, dispatch-, and access times to the scheduler’s data
structures. Moreover, in shared memory multiprocessor systems, a process can
migrate from one processor to another. The overhead of migration is architecture
dependent, namely in shared memory systems only the processor and hardware
state such as register contents must be migrated, since the data is still accessible
from all processors. In contrast, in distributed memory systems, all data must be
migrated along with the hardware state to the memory of the other processor,
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which creates load on the communication bus. As a conclusion, global scheduling global scheduling
algorithms are only
feasible for shared
memory systems

algorithms are only feasible for shared memory systems. Another consideration is,
that if a thread is able to execute on the same processor for an extended amount
of time, then the cache is filled with memory blocks of that thread (called cache
affinity), leading to shorter execution times and thus lesser overheads. For that cache affinity

reason, real-time operating systems often employ partitioned scheduling to retain
cache affinity and achieve reduced overheads.

2.3.2 task & system models

In order to facility the analysis of timing constraints, a formal model must be
constructed, which abstracts the relevant system characteristics at a sufficient
degree of fidelity.

Starting from the Liu and Layland task model [LL73], many new task models new task models and
extensions have been
proposed to
characterize more
flexible job release and
execution time patterns

and extensions have been proposed to characterize more flexible job release and
execution time patterns. These, for example, include the sporadic real-time task
model [Mok83], the self-suspending task model [Raj91], the multiframe model
[MC97], the generalized multiframe (GMF) model [BCG+99], the digraph model
[SEG+11], elastic task model [BLA98], and the variable rate-dependent behaviour
(VRB) model [DFP+14]. With the use of multiprocessor systems, new task models,
allowing to express inherent parallelism, such as the bundled task model [WP19],
gang task model [GR16], the parallel synchronous task model [LKR10], or the
sporadic directed-acyclic graph (DAG) [BBM+12], and conditional DAG task
model [BBM15], have been proposed or extended to the particular requirements
of real-time systems. The relevant DAG, conditional DAG task, and gang task
model are presented in detail in Chapter 3 and Chapter 4. We hence only focus
on the commonalities and foundations in the remainder of this section.

2.3.2.1 General Task Models

Common to all task models, is a description (or classification) of feasible job
activation sequences, the workload they incur, and deadlines. If not stated other-
wise, we assume that all task parameters considered in the underlying model are
predetermined, i.e., they are known both at design time and at runtime, and that
tasks will always respect their parameters.

A task model consists of an activation model and a model of the generated
workload. Activation of a task means the times at which instances of a task, so
called jobs, are released to the system.

These activations can be either time-triggered or event-triggered, which refer to time-triggered

event-triggeredeither; an activation by a timer in regular time intervals, or an activation by an
event, e.g., the arrival of a new sensor sample. Depending on the regularity of
either triggers, the activations are called periodic ⊆ sporadic ⊆ aperiodic. periodic activation

sporadic activation

aperiodic activation
To exemplify, let a`i denote the `-th activation of a task τi, then if the activation

is periodic with period Ti then a`+1
i = a`i + Ti, i.e., the next activation is exactly Ti

time units apart. In the sporadic activation model, the time interval in between
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two activations is lower bounded by Ti, i.e., a`+1
i ≥ a`i + Ti. This model is suitable

for event-triggered tasks, for which it is uncertain when events will occur, but
the activation frequency is limited. The sporadic model can be enhanced by an
upper-bound, i.e., a`i + Tmax

i ≥ a`+1
i ≥ a`i + Tmin

i , which is necessary for end-to-end
response-time analyses. If a task has no regularity with respect to its activation,
it is called aperiodic. A special case of event-triggered activations are precedence
constraints, in which jobs have dependencies. That is, a job of a task is released,
only if all preceding jobs have finished.

In general, a real-time task τ is associated with a per-task relative-deadline
Dτ such that each job J of that task has to finish execution before the absolute
deadline, i.e., f J ≤ aJ + Dτ. Depending on the relation of the relative deadline
to the period, the deadline models are classified into implicit ⊆ constrained ⊆implicit deadline

constrained deadline arbitrary deadline tasks. In the implicit model, the relative deadline coincides with
arbitrary deadline the period, specifying that the only constraint is that a job J needs to be finished

before the next one is released; whereas in constrained deadlines, the deadline is
less than the period Dτ ≤ Tτ. The most general case is arbitrary deadlines, which
imposes no restrictions on the relationship of deadline and period of a task. Most
notably, in the arbitrary-deadline case there may be multiple unfinished jobs of
the same task waiting at the same time without deadline violation.

2.3.2.2 Self-Suspending Task Models

With regards to Figure 2.9, self-suspension refers to the behaviour of an active job
to suspend itself, i.e., to be voluntarily excempted from the scheduling process for
the duration of suspension. Self-suspension is motivated by the problem of active
idling or polling as e.g., in offloading scenarios, jobs that perform IO operations
incur a lot of waiting. Suspension allows to lessen resource contention and wastedSuspension allows to

lessen resource
contention and wasted

cycles

cycles, since the waiting time can be consumed by other jobs to process actual
workload.

In the self-suspension survey literature [CNH+19], two fundamental task mod-
els have been identified, namely the dynamic self-suspension task model and thedynamic

self-suspension segmented self-suspension task model. The former dynamic self-suspension model
segmented

self-suspension
refines the underlying task model of τi by an additional parameter Si ∈ R≥0,
which describes the maximal cumulative amount of time that any job of task τi can
spend in the suspended state, during that job’s active interval. This task model is
challenging for real-time analyses, in the sense that arbitrary different, suspension
and resumption patterns can be generated under the parameter constraint; all of
which must be considered in an exact schedulability test. In turn, this suspension
model is robust, since no information about suspension patterns is required and
any reduction in suspension time can only improve the worst-case response time
(as the number of suspension and resumption patterns is only decreased).

The other fundamental model is the segmented self-suspension model, in which
an underlying task model τi is refined by a tuple (Ci1 , Si1 , . . . , Sin , Cin ), where
∑n

j=1 Cij = Ci and ∑n
j=1 Sij = Si. This refinement, constraints the suspension and

resumption patterns, which can be generated by any job of that task. That is, after
the execution of the first segment, which can execute for at most Ci1 time units, the
job suspends for at most Si1 amount of time; the procedure is perpetuated until
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the last segment finished execution. As has been shown in, e.g., [CHH+19] the
more restrictive suspension and resumption pattern can improve the worst-case
response time analysis precision. In turn, the model requires more information
about the control-flow of the job, which makes it less general. In this dissertation,
only the dynamic self-suspension model is considered.

2.3.2.3 System Model

In this section, a formal description and the interrelation of all the mentioned
models are presented in the unified notation proposed in [Che].

Jobs. A feasible job collection FJ of a task set T denotes the universe of all feasible job collection

possible job collections, which can be generated under the restrictions of the
task model, and the parameters described in the concrete task set. Hence, a
job collection J ∈ FJ denotes a concrete set of jobs generated from tasks in T. job collection

For a specific task τi ∈ T, the feasible job collection FJi denotes the universe
of all possible job collections that can be generated under the restrictions of
the task model and the parameters of τi. For instance, if the task set consists
only of a single synchronous periodic task with period T then there is only a
single job collection J ∈ FJi, which consists of an infinite sequence of jobs which
are released at time 0, T, 2T, . . . with absolute deadlines at time d, d + T, . . . . In
contrast, there are infinitely many different job collections for a single sporadic
task.

Schedule. In multiprocessor platforms, a schedule is a time and processor mul-
tiplex to the given jobs, such that each job is executed until completion. More
formally, a schedule for a set of jobs J is a mapping S : R, N 7→ J∪ {⊥}

S(t, m) =

{
J if job J ∈ J is executed on processor Pm at time t

⊥ if processor Pm is idle

Together with a schedule S for a job collection J, the jobs J ∈ J are refined with
their respective starting time sJ (which is the first time that this job is executed), starting time

finishing time f J , and execution time CJ , in that concrete schedule. Hence, for a
concrete schedule S, the response-time of a job J is defined as f J − aJ , the lateness at response-time

latenesstime t is defined as t− dJ , and the tardiness at time t is defined as max {0, t− dJ}.
tardiness

Execution Model. The response-time of a job is determined by the processing
and execution of that job on the computing system, which implicitly assumes a
model of how the workload is executed. To that end, the execution model formally execution model

describes how the workload of each job is executed during any interval of
length t. To clarify, in the context of processor scheduling, e.g. uniprocessor and
homogeneous multiprocessor systems, it is presumed that if a job J is executed
in a schedule S during an interval [t, t + ∆] then the workload is reduced by ∆
amount of time. Clearly, if the processor speeds were to be increased or to be
decreased, the workload reduction would change accordingly.
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With reference to the formal description, we have that for each processor Pi for
i ∈ {1, . . . , m}, with relative processor speed s ∈ R>0, the following constraint
holds for each job collection J ∈ FJ

∑
J∈J

(∫
v∈[t,t+∆]

1S(v,m)=J dv
)
≤ ∆ · s (2.1)

where 1S(v,m)=J denotes the indicator function that evaluates to 1 whenever the
predicate S(v, m) = J is true for some time v ∈ [t, t + ∆].

The specification of an execution model is of particular importance in more
distributed systems such as for the interleaved and pipelined transmission in
network-on-chips. In a network-on-chip, a single message may be distributed
over multiple links in the network, each of which can transmit simultaneously.
This execution model is orthogonal to the uniprocessor execution model and
must be considered in the formal analysis as is considered, e.g., in network
calculus [Bou98].

Using the introduced formalism, we can describe the cumulative execution
time of a job J in a schedule S during some time interval, that is;

exe(S, J, a, b) :=
M

∑
m=1

∫
v∈[a,b]

1S(v,m)=J dv (2.2)

Considering parallel execution of a job, e.g., a DAG job, or gang job; a job can
execute on more than one processor simultaneously. However, usually a DAGa DAG job is formally

decomposed into a set
of subjobs which are
bound to sequential

execution

job is formally decomposed into a set of subjobs which are bound to sequential
execution. For instance, in rigid gang scheduling, a job J is composed of subjobs
J1, . . . , JEi and each subjob is subjected to the constraint that all of the subjobs
have to execute simultaneously, i.e.,

∃m1 S(m1, t) = J1 ⇐⇒ ∃m2 S(m2, t) = J2 . . . ⇐⇒ ∃mEi S(mEi , t) = JEi (2.3)

Depending on the scheduling paradigm and the task model, the scheduling
function and job collection is imposed with further constraints. Overheads can be
integrated with the schedule function, but are neglected in this presentation, since
overheads, and context-switch related delays are not considered in the analyses
in this dissertation on the formal level.

Schedulability. Based on the presented formalism, the schedulability problem
can be stated as follows. The job collection J is said to be feasibly schedulable byfeasibly schedulable

a scheduling algorithm A if the (for J) generated schedule S using scheduling
algorithm A is always feasible under the task model constraints, e.g., that the
execution time of a job is never more than the respective task’s worst-case execu-
tion time or others such as precedence constraints. Consequently, a task set T is
feasibly schedulable by a scheduling algorithm A if each job collection J ∈ FJ is
feasibly schedulable according to the above description.

The feasibility of a schedule depends on the evaluated metric, e.g., recurring
back to lateness, and tardiness; a schedule is feasible with respect to deadline
constraints if f J ≤ dJ (or the tardiness is 0, equivalently). The meaning of feasibility
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is explicitly stated in the respective chapters in this dissertation. Based on the per-
job perspective, the following metrics of a generated schedule S for a job collection
J can be stated as maximum lateness as maxJ∈J { f J − dJ}, and the makespan as maximum lateness

makespanfollows maxJ∈J f J −minJ∈J aJ .

2.3.3 scheduling algorithms

In this section, we discuss uniprocessor and multiprocessor scheduling algo-
rithms with an emphasis on multiprocessor scheduling, due to the focus of this
dissertation.

Scheduling Algorithms

Hierarchical Scheduling Flat Scheduling

Static Scheduling Dynamic Scheduling

Task-Level
Fixed-Priority

...

Job-Level
Fixed-Priority

Segment-Level
Fixed-Priority

...

Single-Level
Fixed-Priority

Preemptive Non-Preemptive

Figure 2.10: Taxonomy of scheduling algorithms as relevant to this dissertation.

2.3.3.1 General Classification

Scheduling algorithms can be distinguished on the basis of the taxonomy illus-
trated in Figure 2.10. Scheduling algorithms can be classified into hierarchical
scheduling algorithms and flat scheduling algorithms.

In hierarchical scheduling, the scheduling problem is separated into typically hierarchical scheduling

(but not limited to) two different hierarchy levels of scheduling. On the lowest
level, a reservation system, which can for instance be implemented as a group
of threads, are scheduled on the physical processors by some scheduling algo-
rithm. On the higher level, another scheduling algorithm is used to schedule
the workload, which is attached to the reservation system, onto the provided
service. Hierarchical scheduling provides temporal and spatial isolation, since the temporal and spatial

isolationexecution behaviour of the attached workload only affects the schedule within
the reservation system, but not the overall schedule.

Motivated by this isolation property, a plethora of hierarchical scheduling algo-
rithms have been proposed for sequential tasks, e.g., the polling server, deferrable polling server
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server [SLS95] [ZGD11; CGJ+22], total bandwidth server [WWL00] with extensionsdeferrable server
to multiprocessor systems in [BL04; KY08], and constant bandwidth server, e.g.,
in [BB06b; CAB+17]. In contrast, the hierarchical scheduling approach for parallel
DAG tasks is comparatively understudied [BBW10; UBC+18; UGC21].

In contrast, in a flat scheduling algorithm, the workload is directly scheduled onflat scheduling
algorithm the physical processors. Owing to the fact, that hierarchical and flat scheduling

are based on similar scheduling algorithms, the presentation in the remainder of
this section is only concerned with flat scheduling algorithms.

The first scheduling algorithms in real-time systems have been static table-
driven algorithms, in which an offline computed table was used to generate
cyclically repeating schedules. In contrast, dynamic scheduling algorithms gener-
ate the schedule dynamically on the basis of work-conserving and priority-drivenwork-conserving

priority-driven decision making.

The scheduling algorithm can be work-conserving or non-work-conserving. Anon-work-conserving

schedule is work-conserving, if no processor is idle, given the condition that there
are at least as many jobs in the ready queue as there are processors. Oppositely, a
schedule is non-work-conserving if it does not satisfy the work-conserving property.
Despite the fact, that work-conserving scheduling algorithms are not always
optimal, as is the case, for instance, in non-preemptive scheduling [NF16], most
scheduling algorithms found in modern real-time operating systems, are work-
conserving. Moreover, work-conserving is a greedy strategy, which is very suitable
for online scheduling.

In preemptive priority-driven scheduling algorithms, the available processors
are dedicated to the highest-priority active jobs at any time, i.e., a higher-priority
job can preempt a lower-priority job. In contrast, in non-preemptive priority
driven scheduling, a job runs to completion once it started execution and hence
re-scheduling only occurs when some processor idles. Depending on the level on
which the priority is determined, the scheduling algorithms can be categorized
into task-level-, job-level-, and segment-level fixed-priority policies. In task-level fixedtask-level fixed-priority

job-level fixed-priority

segment-level
fixed-priority

priority, each job which is released by the same task, is assigned the same fixed-
priority. Prominent examples are deadline-monotonic (DM), or rate-monotonic (RM)

deadline-monotonic
rate-monotonic

priority assignment, in which tasks with smaller deadline (period, respectively)
have a higher priority. In job-level fixed priority scheduling algorithms, each job
is assigned a fixed-priority, which is often related to the state of that job, e.g., the
absolute deadline in earliest-deadline first (EDF) or the rank-order first-in first-out
(FIFO) scheduling. A further refinement of job-level fixed-priority scheduling
is segment-level fixed-priority scheduling, in which each job Ji of some task τi can
be segmented into Ji1 , Ji2 , . . . Jin , such that Ji2 is released when Ji1 is finished. In
segment-level fixed-priority, each segment is assigned a fixed-priority, which has
application in segmentation of jobs into memory and computation phases [SP19]
or segmented self-suspension scheduling [KAN+13]. In the most extreme case,
each segment is infinitely small, which hence results in fluid scheduling algorithmsfluid scheduling

algorithm such as proportionate-fair (P-FAIR) [MR99; AS00].
proportionate-fair

scheduling
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2.3.3.2 Uniprocessor Scheduling

To date, the most prominent real-time scheduling algorithms are uniprocessor
task-level fixed-priority scheduling algorithms, which are implemented in most
real-time operating systems and standards such as RTEMS, QNX, FreeRTOS,
OSEK, AUTOSAR, Linux-RT. From a practical perspective, task-level fixed-priority
scheduling provides an intuitive parameterization in the sense that a job is only
preempted by higher-priority jobs and thus the response-time of a job (of a task)
is only impacted by the interference caused by higher-priority jobs. Moreover,
very efficient so called O(1) scheduler implementations have been developed
to select the next to schedule job, even though the claim about efficiency has
been challenged by, e.g., [Bra11b]. However, task-level fixed priority scheduling task-level fixed priority

scheduling algorithms
are shown not to be
optimal for preemptive
scheduling

algorithms are shown not to be optimal for preemptive scheduling with respect
to hard deadline constraints. In that regard, the job-level fixed-priority scheduling
algorithm EDF has been shown to be optimal with respect to hard real-time
constraints, that is, each job finishes before its absolute deadline. Above that, EDF
provides the property to minimize the maximum tardiness of a task set in the
overloaded case, i.e., UT > 1 [Uth04], which provides robustness in the presence
of worst-case execution time uncertainties.

It was a long assumed that preemptive EDF incurs too much overheads in a
real-time operating system implementation, due to more context switches, and
more complex data structures to maintain the job-level fixed-priority order, com-
pensating the theoretical benefits with overhead induced capacity loss. Buttazzo
in [But05; BG06] proved that EDF causes in fact less preemptions than fixed- EDF causes in fact less

preemptions than
fixed-priority
scheduling

priority scheduling. On the other issue, data structures and algorithms, which
are used to maintain the job’s priority order are more complex than in task-level
fixed-priority scheduling, as evident in the predominant black-red tree implemen-
tation, e.g., found in RTEMS 1. However, approaches to lessen the overhead are
proposed in e.g., [BG06; Pat16; Sho10].

Most prominent task-level fixed-priority scheduling algorithms such as deadline-
monotonic (DM) or rate-monotonic (RM), and job-level fixed-priority scheduling
algorithms such as EDF have extensions to the multiprocessor scheduling prob-
lem.

2.3.3.3 Multiprocessor Scheduling

In multiprocessor scheduling, the set of jobs that is generated by a taskset T, is to
be scheduled on M processors. A multiprocessor scheduling algorithm is hence
responsible to decide which job is to be executed on which processor at any time.

In the context of multiprocessor scheduling, there are fundamentally two
different approaches to priority-driven scheduling algorithms. That is, either all
processors are scheduled using one scheduler with a single shared ready queue, or
the set of processors is subdivided into partitions, each of which maintains a per-
partition ready queue. If the partition is a single processor then the scheduling
is called partitioned scheduling; global scheduling if the partition is the set of all partitioned scheduling

global schedulingprocessors; and clustered scheduling otherwise, which are explained in more detail
clustered scheduling

1 https://www.rtems.org/
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from here.

2.3.3.4 Partitioned Scheduling

In partitioned scheduling, the taskset is partitioned to the set of processors, i.e.,
each task is assigned to a processor and no two tasks are eligible to execute
on more than one processor. From a practical and theoretical point of view, the
multiprocessor scheduling problem is reduced into M uniprocessor scheduling
problems, i.e., each processor maintains a per-core ready queue and each proces-
sor executes a uniprocessor scheduling algorithm. As a result, each scheduler only
accesses the per-core ready queue, which improves cache locality [Bra11b], and
thus reduces execution time overhead of the scheduler. Additionally, partitioned
scheduling forbids task migration, i.e., all task state is local to the core, which
further reduces overhead. Alas, optimal partitioning algorithms are NP-hard inoptimal partitioning

algorithms are
NP-hard in the strong

sense

the strong sense, as in order to generate an optimal partition of the tasks, the
underlying bin-packing problem must be solved, which is shown to be NP-hard
in the strong sense. Conclusively, only efficient heuristics and approximation
algorithms form the basis of partitioning algorithms [JC07].

Partitioning Algorithms. Several partitioning algorithms have been proposed in
the context of partitioned scheduling algorithms, which fundamentally consist of
two subsequent stages, namely;

1. The task set, subject to partitioning, is pre-sorted based on some task
related parameters, e.g., the periods (RM), deadlines (DM), or utilization
(largest-utilization first (LUF)). The choice of the task parameter may be
motivated by some intuitive insight for empirically good partitions, or
be motivated by induced formal properties allowing for approximation
analyses of schedulability tests; using those pre-ordering strategies.

2. Each task is partitioned to the available processors iteratively in the pre-
order, which was generated in the first stage. Then the assignment of the
task to a processor is evaluated for schedulability – under the condition that
all prior tasks are already partitioned – using some schedulability test, such
as utilization bounds, demand-bound functions, or time-demand analysis.
Eventually, the processor that satisfies the schedulability test, first, best, worst,
or arbitrary, is chosen in the respective strategies First-Fit (FF), Best-Fit (BF),
Worst-Fit (WF), and Arbitrary Fit (AF).

The task partitioning algorithms are often strongly related with the schedula-partitioning algorithms
are often strongly

related with the
schedulability tests and

analyses

bility tests and analyses. Based on the deadline-monotonic partitioning strategy
it has been shown by Chen [Che16] that such a strategy has a speedup factor of
2.84306 (respectively, 3) against the optimal schedule for ordinary constrained-
deadline (respectively, arbitrary-deadline) task systems when the fixed-priority
deadline-monotonic scheduling algorithm is used, and a speedup factor of 2.6322
(respectively, 3) against the optimal schedule for ordinary constrained-deadline
(respectively, arbitrary-deadline) task systems when the dynamic-priority earliest-
deadline-first (EDF) scheduling algorithm is used [CC11; CC13].
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A further refinement of partitioned scheduling, is clustered scheduling, in
which only a subset of processors, i.e., clusters, are eligible for tasks to be parti-
tioned to. Clustered scheduling can help to reduce the overheads, if for instance,
processor clusters with improved connectivity are chosen.

2.3.3.5 Global Scheduling

In global scheduling, each job can execute on any of the M processors, i.e., there
is a single queue from which the jobs are selected for execution on any of the
M processors. In priority-driven scheduling algorithms, the M highest-priority
jobs are executed on the M processors at any time. Additionally, in preemptive
global scheduling, a job is allowed to migrate from one processor to another. A
benefit of work-conserving global scheduling is automatic load balancing, that is,
there is never a processor idle while another is overloaded. On the downside, a a global scheduler is a

complex distributed
program

global scheduler is a complex distributed program, where each processor has its
own per-core scheduler, which accesses the shared data structures, which in turn,
must be synchronized, introducing significant overhead. In addition, increasing
the number of processors, further increase the likelihood of contention.

2.3.3.6 Semi-Partitioned Scheduling

Semi-Partitioned scheduling can be interpreted as hybrid between partitioned
scheduling and global scheduling. Semi-partitioned scheduling extends parti-
tioned scheduling by allowing a subset of so called migratory tasks to migrate, i.e., migratory tasks

to be scheduled on any processor, whereas the remaining fixed tasks are disallowed fixed tasks
to migrate [Bra11b]. Migratory task may be further restricted to, e.g., only migrate
in predefined time slots or only depending on specific constraints. The intention
of semi-partitioned scheduling is to avoid the algorithmic capacity loss due to
non-optimal partitioning and to avoid the implementation induced overheads
of global scheduling. In the beginning it was even debated if semi-partitioned
scheduling provides any real benefit by, e.g., Bastoni et al. [BBA11], which was
later answered positively in, e.g., [BG16].

2.3.3.7 Gang scheduling

Another scheduling paradigm is gang scheduling, which was originally developed gang scheduling

for high performance parallel computing. It was observed that most parallel
processes consist of frequently communicating and cooperating threads. The
thread execution in multiprocessor systems is fundamentally different from
the execution in uniprocessor systems, due to the parallel execution potential
of threads. Therefore, more complex synchronization efforts are required to
implement inter-dependencies and precedence constraints among the related
threads. This includes barriers, mutual exclusion, and implicit synchronization barrier

mutual exclusionsuch as precedence constraints due to, e.g., data producer and data consumer
relation.

Subsequent observations supported the benefit of having all cooperating
threads to execute simultaneously, such that a message sending and a message
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receiving thread can respond to a request almost immediately [Tan09]. Hence, the
idea of so called gang scheduling is to have all threads of a process run together.
More precisely, a gang is a group of related threads, which are co-scheduleda gang is a group of

related threads, which
are co-scheduled

simultaneously on the
available processors

simultaneously on the available processors, and start and finish their execution
times simultaneously. An additional benefit of gang scheduling, according to Fei-
telson et al. [FR92], is that gang scheduling allows the threads to use busy waiting

busy waiting instead of blocking without the risk of waiting for a thread that is currently not
running. In contrast, without gang scheduling, threads have to block in order to
synchronize, thus suffering from blocking and subsequent context-switch costs.

A review and introduction of definitions for recurrent gang scheduling in the
context of real-time systems is provided by Goossens et al. [GB10a; GR16]. In
rigid gang scheduling, the number of processors, i.e., size of the gang, is specifiedrigid gang scheduling

externally to the scheduler and is static throughout the execution. In moldable
gang scheduling, the gang size of each job is determined by the scheduler and doesmodable gang

scheduling not change throughout its execution. In malleable gang scheduling, the gang size
malleable gang

scheduling
can be changed by the scheduler during the job’s execution.

The approach by Goossens et al. [GR16], schedules the gang tasks in a fine-
grained manner, coming back to proportional fairness policy, which incurs high
runtime overhead. More recent results regarding real-time gang scheduling,
have been proposed for non-preemptive rigid gang scheduling, e.g., in [LGL22;
DL22], malleable gang scheduling [NIN22], and stationary rigid gang schedulingstationary rigid gang

scheduling in [UGB+21].

2.3.4 schedulability analysis

Schedulability analyses and schedulability tests are usually related to a specific
scheduling algorithm or a specific class of scheduling algorithms. A schedula-
bility test for a scheduling algorithm, indicates whether a task set T is feasibly
schedulable with respect to a metric of interest, e.g., no deadline misses. Such a
test should not only be as precise as possible, but must also be computationally
affordable. Unfortunately, it has been shown by Ekberg and Yi that, even for
uniprocessor systems, an exact schedulability test for dynamic-priority schedul-
ing of constrained-deadline task sets is strongly coNP-complete and that an exact
schedulability test for sporadic tasks under static-priority scheduling is NP-hard.
The complexity of uniprocessor scheduling analysis is thoroughly presented in
the book by Ekberg and Yi [EY22].

In consequence, exact schedulability tests are not always computationally
affordable and thus a lot of research is concerned with the construction of
sufficient and computationally affordable schedulability tests and schedulability
analyses, which are almost as precise as an exact test. A schedulability test can
be either sufficient, necessary, or exact if it is sufficient and necessary. That is, with
reference to the formalism of the previous section, the exact schedulability test is
given by

T is schedulable according to test B ⇐⇒ ∀J ∈ FJ : ∀J ∈ J : f J ≤ dJ (2.4)

An important property of a scheduling algorithm or schedulability test is that
of sustainability, which denotes a monotone behaviour with respect to the rigor ofsustainability
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the parameters, which confine the respective problems. For instance, if for a task
set a scheduling algorithm always derives a feasibly schedule then a sustainable
scheduling algorithm is guaranteed to generate a feasible schedule if for instance,
the number of tasks in the task set is reduced, the period is increased, or the
system is provided with more processors. Sustainability is an important property Sustainability is an

important property as
non-sustainable
scheduling algorithms
and tests are sensitive
to parameter
uncertainty

as non-sustainable scheduling algorithms and tests are sensitive to parameter
uncertainty, which may invalidate their correctness in real systems.

The specific analysis techniques in scheduling theory are too vast to be exhaus-
tively presented here, but instead only two fundamental analysis approaches are
presented hereinafter; that is, critical instant based analyses, and window of interest
based analyses.

2.3.4.1 Critical Instant Based Analyses

For some scheduling algorithms, a critical instant can be proved, which is, that for critical instant

each task τ ∈ T there exists a single job J, for which a single specific job collection
J ∈ J ∈ FJ exists (and can be reconstructed), such that f J − aJ is maximal (among
all jobs of that task). It is evident that if the critical instant is verified then Eq. (2.4)
is satisfied.

For periodic and sporadic tasks with constrained- and implicit deadlines, a
critical instant was proposed by Liu et al. [LL73] for task-level fixed-priority
scheduling algorithms. Such a job collection that represent the critical instant is
defined as follows; All jobs of higher-priority tasks are released synchronously
with the job under analysis J, and all jobs release their workload as rapidly as
possible. It was proven that J suffers the largest interference and thus has the
maximal response time.

Alas, the construction of a critical instant for task sets with other characteristics the construction of a
critical instant for task
sets with other
characteristics is not
trivial

is not trivial as evident in the incorrect critical instant constructions for self-
suspending task systems in several works as explained in Chen et al. [CNH+19].
Moreover, there is no critical instant known for gang scheduling or multiprocessor
scheduling. However, some extensions such as the level-i busy window concept for level-i busy window
sporadic task systems with arbitrary deadlines have been found [Leh90].

As a consequence of the existence of a critical instant, it is sufficient to simulate
the concrete schedule for that specific job collection and to infer the worst-case
response time RJ := f J − aj of that specific job J with the largest response time.
On the basis of a worst-case response time analysis, a schedulability test can be
immediately concluded by verification that Ri ≤ Di for all τi ∈ T. The simulation
of the concrete schedule for the critical instant uses time-demand analysis (TDA) time-demand analysis

and computes the maximal time required from the initial idle state at system
start to the first time that the considered job J is finished, i.e., the busy window. busy window

The computation is realized by a fix-point iteration as exemplified as follows
for a task set T = {τ1, . . . , τn}, which is scheduled by a task-level fixed-priority
scheduling algorithm. Then in the worst-case response time analysis, it is verified
for each task τk ∈ T, whether there ∃0 < t ≤ Dk such that

Ck + ∑
⌈

t
Ti

⌉
· Ci ≤ t (2.5)
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J`i J`i

t′ a`i d`i

Figure 2.11: An exemplary window of interest for a job J`i , released at time a`i , and missing
its deadline at time d`i . Time t′ denotes the earliest time before d`i such
that during [t′, d`i ] the processor is continuously busy executing jobs with
deadline no later than d`i .

holds.

For many time-demand analyses based schedulability tests, polynomial timepolynomial time tests
can be derived

semi-automatically
tests can be derived semi-automatically using the k2U [CHL15b] or k2Q [CHL15a]
analysis framework. These frameworks, derive an extreme point solution for an
integer-linear program (ILP), which is based on the explicit evaluation of specific
k test points, which result in a TDA formulation with integer variables. These
extreme points then serve as upper-bounds for the worst-case response time.

2.3.4.2 Window of Interest Based Analyses

In the case that a critical instant can not be identified for the task model and
scheduling algorithm under analysis, a more abstract window of interest basedwindow of interest

analysis must be used. Here, the term abstract refers to the fact that not a single
concrete job collection J can be constructed, but that there are multiple job
collections in J that must be evaluated and that J is constructed purely based on
properties, which will be further explained by example later in this section.

To derive a sufficient schedulability analysis, in the window of interest based
analyses, the sufficient implication in Eq. (2.4) is proved by contrapositive. That
is, if there exists at least one job collection J and at least one job J ∈ J that
misses the deadline, i.e., the job has not been executed to completion then the
to be constructed schedulability test does not hold. This situation is illustrated in
Figure 2.11 for sporadic constrained-deadline EDF scheduling on a uniprocessor
system.

For the remainder of this section, we assume that the `-th job of task τi, namely
J`i , is the first job to miss the deadline. Then starting from the baseline window
of interest (a`i , d`i ], we know by the assumption of a deadline miss and the work-
conserving property of preemptive earliest-deadline first scheduling for sequential
tasks on uniprocessor systems, the processor must be busy. That is, the processor
is continuously executing workload other than J`i for at least d`i − a`i − C`

i amount
of time. Therefore, the following Eq. (2.6) is well-defined

exe(S, J`i , a`i , d`i ) + exe(S, J 6= J`i , a`i , d`i ) = d`i − a`i (2.6)

Notably this equation, and window respectively, can be extended to

exe(S, J`i , t′, d`i ) + exe(S, J 6= J`i , t′, d`i ) = d`i − t′ (2.7)
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for t′ ≤ a`i as long as Eq. (2.6) implies Eq. (2.7). Most proposed window based
schedulability tests have been concerned with extensions to conclude more pref-
erential job collections J to be considered in the analysis, e.g., in [BF07; BF08;
GYG+08; GUC21; CBU18].

With regards to the example, t′ is constructed as the smallest point in time in
the interval t′ ∈ [0, a`i ] such that during [t′, d`i ] only jobs with absolute deadline
no later than d`i are executed. By construction of this definition, we know that the
processor is continuously executing jobs J that have arrival aJ ≥ t′ and deadlines
no later than dJ ≤ d`i , and thus we know that t′ is the arrival time of at least one
of those jobs.

Hence, starting from Eq. (2.7), we can derive the following

∑
τj

db f j(d− t′) ≥ Ci + ∑
τj 6=τi

db f j(d− t′) ≥ C`
i + ∑

τj 6=τi

db f j(d− t′) > d− t′ (2.8)

Letting t := d− t′, the contrapositive of Eq. (2.8) yields a sufficient schedulability
test, namely if

∀t > 0 ∑
τj∈T

db f j(t) ≤ t (2.9)

then T is feasibly schedulable.

Unfortunately, extensions of the window based analysis technique for EDF
to multiprocessor systems leads to so-called 1/M schedulability tests in G-EDF,
which been shown to be dominated by partitioned scheduling [BS18].

However, window extensions for multiprocessor systems have been proposed window extensions for
multiprocessor systems
have been proposed

by Fisher and Baruah [BF07; BF08]. The authors define t′ < a`i such that at
least one processor in the multiprocessor system of M processors is idle right
before t′. This construction together with the work-conserving property, leads to
the conclusion that at most M− 1 job could have been eligible for scheduling
right before t′. Therefore, at most M− 1 jobs can carry-in workload – that was
generated before time t′ – into the window of interest. This approach reduces the
number of carry-in jobs to consider from |T| jobs to only M− 1 jobs with the
largest demands.

Chen et al. [CBU18] have provided a task-parametric window extension for
global task-level fixed-priority scheduling algorithms for sporadic arbitrary-
deadline task systems, which has later been further extended to self-suspending
task systems by Günzel et al. in [GUC21].

2.3.4.3 Analyses for Self-Suspending Task Systems

A comprehensive survey for self-suspension aware analyses is given in [CNH+19]
and only a brief motivation to the challenges in self-suspension analysis is given
here. Initial works [Raj91], attempted to extend existing analyses, wrongly assum-
ing that the critical instant for sporadic task systems holds in self-suspending
task systems. This misconception invalidated many results that built upon the
flawed established theory [BAH+15].
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In general the analysis techniques for self-suspending task sets in task-level
fixed-priority and job-level fixed-priority scheduling algorithms are founded
on window of interest based analyses, which is further complicated by the fact
that every job may have infinitely many suspension and resumption sequences.
state-of-the-art schedulability analyses for self-suspending task systems can be
found in, e.g., [GUC21; GBC+22; CNH16; ABN22].

2.3.4.4 Analyses for DAG Tasks

A detailed discussion of analysis techniques for DAG tasks is omitted, since the
relevant techniques are explained in Chapter 4.

In general however, DAG response time analysis usually considers the two
analyses problems of inter- and intra task analysis. The former analysis examinesinter- and intra task

analysis the interference caused by jobs of other tasks than the DAG job under analysis,
whereas the latter considers the interference of subjobs – which are subjected
to precedence constraints – within the same DAG job. Most analyses concerned
with DAG task scheduling, focus on the improvements of intra-task interference
and the resulting makespan problem.

2.3.5 performance of scheduling algorithms

A review on the evaluation of scheduling algorithms can be found in [Dav16],
in which the methods used for schedulability tests for real-time systems are
categorized into:

• Theoretical methods, which describe a worst-case comparison against a specific
competitor, namely dominance relationships, utilisation bounds, and resource
augmentation bounds.

• Empirical methods, which evaluate the performance of a schedulability test
and scheduling algorithms considering simulation of the scheduling algorithm,
evaluation based on synthetic task sets, case studies, and experiments on real hard-
ware. Empirical methods typically facilitate an average-case comparison
against various competitors.

Both methods are relevant to this dissertation, and are elaborated hereinafter.

2.3.5.1 Theoretical Methods

Dominance Relation. A dominance relation is a theoretical measure to directly re-dominance relation

late the performance of two schedulability tests (and thus scheduling algorithms).
That is, a schedulability test A is said to dominate a schedulability test B, if every
task set that is schedulable according to B is guaranteed to be schedulable accord-
ing to A. That is, more formally, for each task set T the following implication
B(T) =⇒ A(T) holds true. The dominance relation of scheduling algorithms candominance relation of

scheduling algorithms
can be formulated by
exact schedulability

tests

be formulated by exact schedulability tests for those algorithms, i.e., an equivalent
description. Based on the dominance relation, it is possible to define optimality
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among a given class of scheduling algorithms. For instance, if B is an optimal
scheduling algorithm for some class of scheduling algorithms then A is as well.

Speed-up Factor. A comprehensive survey and discussion of speed-up factors speed-up factors

is given in [CBH+17a] and is only briefly presented. Closely related to the
dominance relation is the speed-up factor [PST+02]. A speed-up factor s ∈ R>0

is a scalar value, which describes a scaling operation γ : T 7→ T′ of all task
model parameters, which are sensitive to processor speed increases, e.g., the
worst-case execution time γ(τi) = (Ci/s, . . . ). Then in analogy to the dominance
relation, a schedulability test A is said to have a speed-up factor s with respect
to a schedulability test B if the following implication holds B(T) =⇒ A(γ(T)).
That is, a task set T, which is verified to be feasibly schedulable according to
B, is guaranteed to be feasibly schedulable by A, if the task set is subjected
to a speed-up of s. Speed-up factor analysis is most widely used to describe
the approximation quality of a schedulability test with respect to an optimal
scheduling algorithm of some class. For instance, the sufficient schedulability test
for preemptive rate-monotonic scheduling of implicit-deadline tasks by Liu and
Layland [LL73]

UT := ∑
τi∈T

Ci

Ti
≤ n · (2 1

n − 1) ≤ ln(2) (2.10)

has a speed-up factor of 1/ln(2) with respect to preemptive EDF, which is an
optimal scheduling algorithm for the problem with the exact schedulability test
UT ≤ 1. A sufficient schedulability test (usually for implicit-deadline task sets),
which determines the schedulability of a task set based on the task set utilization
is called a utilization bound. Notably, the optimal scheduling algorithm, used
for comparison, may not exist or be known for a class of scheduling problems.
Hence, it is often not possible to know whether the ideal scheduler can schedule
a given task set on unit-speed processors and thus a speed-up factor bound may
not provide a schedulability test.

Capacity Augmentation Bound. In the context of parallel DAG tasks, Li et al.
proposed capacity augmentation bounds to theoretically assess the performance capacity augmentation

boundof DAG task scheduling algorithms in [LAL+13]. Loosely speaking, capacity
augmentation bounds are in the middle of utilization bounds, adapted for the
DAG task model , and speed up factors. Most notably, capacity augmentation
bounds immediately yield schedulability tests, in contrast to speed-up factors. A
scheduling algorithm A is said to have a capacity augmentation bound s ∈ R>0

if under the condition stated in

∑
τi∈T

Ci

Ti
≤ M (2.11)

∀τi ∈ T Li ≤ Di (2.12)

Eq. (2.11) and Eq. (2.12), the DAG task set T is guaranteed to be feasibly schedu-
lable on M processors with processor speed s. Since the conditions in Eq. (2.11)
and Eq. (2.12) are necessary conditions for an optimal scheduling algorithm, the
capacity augmentation bound is a (not necessarily tight) speed-up factor.
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2.3.5.2 Empirical methods

Brandenburg [Bra11b] states that, in a real system it is impossible to provide
all hypothetical capacity to the real-time task set, which is due to scheduling
overheads, preemptions, and memory access times, and migrations. More pre-
cisely, overhead-related capacity loss is due to processor time, which is consumed
by hardware inefficiencies, such as cache misses, or computing a scheduling
decision, and queue management. Such runtime overheads are unavoidable to
some degree, but can differ significantly among schedulers and implementations.
Capacity, which is consumed by the overheads, must realistically be accounted for
in the schedulability test. On the downside, evaluations based on real hardware
requires a real-time operating system implementation and measurements on a
real platform.

With regards to empirical methods, evaluations based on synthetic task setsevaluations based on
synthetic task sets are

most common in the
literature

are most common in the literature. Emberson et al. [ESD10] provide a review
on task set generation methodology; stating that a task set generation algorithm
must be efficient to achieve significant large sample sizes; parameter independent to
be able to vary each parameter of the task set independently, and unbiased in the
sense that the distribution of task sets generated should be equivalent to selecting
task sets uniformly from the set of all possible task sets (under the parameter
constraints). To that end, the UUnifast algorithm [BB05] has been proposed forUUnifast

uniprocessor systems. For multiprocessor systems with utilizations up to the
number of processors, the UUnifast Discard [BB05], RandFixedSum [Dav16], andUUnifast Discard

Rand Fixed Sum more recently the dirichlet-rescale algorithm (DRS) [GBD20] have been proposed
dirichlet-rescale to generate task sets with unbiased targeted utilization values. The requirement

of unbiased data generation is sometimes challenged by researchers arguing that
some parameter vectors represent unrealistic tasks, resulting in evaluations thatparameter vectors

do not evaluate the performance in the relevant domain. In that regard, von der
Brüggen et al. [BUC+17] have shown that the specialization of the task parameter
space to an application specific domain, as described in Automotive Benchmarks
for Free [KZH15], improves the acceptance ratio.In parallel DAG and

conditional DAG tasks
there is no de-facto

standard task
generation method

In parallel DAG and conditional DAG tasks there is no de-facto standard task
generation method as parameter independence is in general not achievable. Hence,
most generation methods are biased in the kind of generated tasks. In cases
that the schedulability test only depends on parameters, which are derived from
the DAG, e.g., the longest path or the total workload, then the DRS algorithm
can be used to generate tasks for every utilization level and the longest path
can be drawn independently. If however the complete DAG is required to be
generated, e.g., when the schedulability test and analyses consider the sub tasks,
then parameter independence is not achievable. As a consequence there are various
commonly used techniques such as the Erdős–Rényi, Layer-by-Layer, Fork-Join, orErdős–Rényi

Layer-by-Layer

Fork-Join

domain specific benchmarks, e.g., [WGS+17; SJX+22; DRW98; RP17].

benchmarks
Acceptance Ratio. Among the empirical methods in this dissertation, we primarily
consider the acceptance ratio of synthetic task sets and relative comparisons with

acceptance ratio
respect to resource requirements. Acceptance ratio tests evaluate the percentage
of subjected task sets for schedulability testing, which are verified to be feasibly
schedulable by the algorithm under evaluation, compared to the total number of
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subjected task sets. The subjected task sets are generated with a given utilization
value, e.g., task sets with a UT from 1% to 100% ·M in a fixed increment of , e.g.,
5%, where M denotes the number of processors. For each schedulability test, the
acceptance ratio, i.e., the percentage of accepted task sets, is plotted against the
utilization value. It is evident that a schedulability test, which yields a higher
acceptance ratio for each utilization value than another schedulability test, is supe-
rior in the evaluated experiment. Acceptance ratio tests are the de-facto standard Acceptance ratio tests

are the de-facto
standard evaluation
method for
uniprocessor and
multiprocessor
scheduling algorithms
for the sequential task
model

evaluation method for uniprocessor and multiprocessor scheduling algorithms
for the sequential task model. This is due to the fact that any generated task set
with UT ≤ 1 is feasibly schedulable by an optimal scheduling algorithm, and
an increase in task set utilization makes the schedulability problem monotoni-
cally harder, and hence the acceptance ratio value is easy to interpret. For more
complex task models such as the DAG task model, special attention must be
paid to the task set generation and interpretation, or a necessary condition for
schedulability must be plotted against the utilization to improve interpretability
of the acceptance ratios.





3
T I M I N G P R E D I C TA B L E P R O T O C O L S

In the position papers concerning the design of predictable systems by Wilhelm et
al. [WGR+09] and Axer et al. [AEF+14], the authors state that system properties,
which are subject to predictability constraints, should already be considered and
guaranteed from the design. Furthermore, the authors note that since the overall
timing requirements of the system are propagated down in the system hierarchy,
all parts of the system must be designed with respect to predictability. These all parts of the system

must be designed with
respect to predictability

predictability concerns are exacerbated and relevant for multicore systems and
parallel task scheduling, due to complex resource contention, and varying delays
in the communication fabrics.

Following the position of predictable system design, the focus in this chapter is
on the design of protocols (and scheduling algorithms), which increase predictabil-
ity, and allow for safe worst-case response time analyses. At first, we propose a
novel gang scheduling algorithm called stationary rigid gang scheduling, in which
gangs are statically assigned to a specific sub set of processors, avoiding task and
thread migration. Above that, we examine the communication predictability of
network-on-chip (NoC), which are increasingly used in multiprocessor systems.
We propose a family of simultaneous progression switching protocols for real-time simultaneous

progression switching
protocols

NoC arbitration, which is described by the all-or-nothing property, and provides

all-or-nothing property
increased predictability at the cost of decreased average case performance. Both
approaches share a common underlying analysis concept and framework, which
is based on a formal reduction from the all-or-nothing property to suspension-aware
uniprocessor scheduling theory. suspension-aware

uniprocessor
schedulingThe remainder of this chapter is organized into the following sections. In

Section 3.1 Motivation, the gang scheduling paradigm is motivated as an option
for timing predictable system design; the fundamental challenges in distributed
and link-based network-on-chip scheduling, and response-time analyses, are
examined. Afterwards in Section 3.2 Related Work, the related work for real-
time network-on-chip arbitration and gang scheduling for real-time systems is
presented. We first propose a rigid gang scheduling algorithm for multiprocessor
systems in Section 3.3 Stationary Rigid Gang Scheduling, and establish the analysis
ideas and framework, which is used for the worst-case response time analysis
in the the network-on-chip, and the gang scheduling problem. In Section 3.4
Simultaneous Progression Switching Protocols, we present the worst-case response
time analysis with respect to the peculiarities inherent to NoC arbitration, and
propose a protocol implementation. At last, in Section 3.5 Conclusion, the results
proposed in this chapter are summarized, and concluded.

53



54 timing predictable protocols

3.1 motivation

To increase the performance and predictability of the execution of parallel tasks on
multiprocessor platforms, the global gang scheduling problem [RGK17; DL17; KI09],
in which the set of machines used by a gang task is not fixed, has been proposed.
In the gang task model, a set of threads is grouped together into a so called gang,
with the additional constraint that all threads of a gang must be co-scheduled atall threads of a gang

must be co-scheduled
at the same time on the

available processors

the same time on the available processors. It has been demonstrated that gang-
based parallel computing can improve the performance in many cases [Jet97;
FR92]. Even more, Wasly et al. [WP19] provided experimental evidence of negative
effects of non-gang scheduling with respect to the number of context-switches
and increased thread execution time, due to blocking when threads are not
executed together. Wasly et al. [WP19] argue that by scheduling all threads
of a task simultaneously, the communication time can be easily accounted for,
given that the inter-processor interconnect provides real-time bounds. The rigid
gang task model is the simplest and most widely studied gang task model inrigid gang task model

the real-time systems research literature, which is characterized by a task-level
fixed gang size. One particular advantage of the rigid gang model is that the
interference caused, by shared resource contention, and intra-task parallelism,
can potentially be quantified more precisely, due to more constraints, and thus
increased certainty about the execution. Consequently, the worst-case execution
time of the gang can be reduced. Within a gang, co-scheduling of memory accesses
and computation is possible, which can also potentially reduce the worst-case
execution time of the gang. Specifically, one strict view of this is the RT-Gang
model by Ali and Yun [AY19], in which all processors are allocated to a gang atrt-gang model

the same time. Unfortunately, even finding an optimal schedule for the rigid gangfinding an optimal
schedule for the rigid

gang scheduling
problem has been

shown NP-hard in the
strong sense

scheduling problem has been shown NP-hard in the strong sense even when
all the tasks have the same period and the same deadline [Kub87]. Moreover,
even special cases, like three machines [BDOD+94] or unit execution time per
task [HVV94], are also NP-hard in the strong sense. The rigid gang scheduling
problem for implicit-deadline periodic real-time task systems (i.e., Di = Ti for
every task τi) has been recently studied by Goossens and Richard [GR16] for
which the authors presented one algorithm based on linear programming and
another algorithm based on a heuristic.

To address the issue in the predictability of inter-processor communication
in multiprocessor scheduling of parallel task scheduling, timing predictable
network-on-chip interconnects for which safe worst-case response time analyses
can be devised are required. Common approaches for real-time communication
on a NoC apply one of two general strategies. One is to utilize time-division-
multiplexing (TDM) to ensure that the timing constraints are satisfied, i.e., by
constructing the transmission schedule statically with a repetitive table, e.g., in
[GDR05; PK08; SMA+12; KSS+16; Sch; MNT+04; SAA+15; HFB+18]. Another
common approach is to apply a priority-based dynamic scheduling strategy in
the routers to arbitrate the flits in the network, e.g., in [Mut94; HO97; KKH+98;
LJS05; SB08; KGP14; KP16; XLW+16; NIP16; IBN16; XWL+17; IBN18; NHE19].
The difficulty of the TDM strategy is to construct a feasible TDM schedule
and the global clock synchronization, whilst the difficulty of the priority-based
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scheduling strategy is to validate the schedulability, i.e., whether all messages can
meet their deadlines. With respect to fixed-priority based scheduling strategies,
Table VII in [IBN16] summarizes the recent results for fixed-priority wormhole
switched NoCs up to 2017. Eight of the ten results (namely, [Mut94; HO97;
KKH+98; LJS05; SB08; KGP14; NIP16; KP16; XLW+16; IBN16]) were already
disproved by counter examples. These series of flaws in the literature suggests series of flaws in the

literature suggests that
the scheduling
algorithm and network
architecture may be too
complex to be correctly
analyzed adopting
uniprocessor real-time
scheduling theory and
its assumptions

that the scheduling algorithm and network architecture may be too complex to
be correctly analyzed adopting uniprocessor real-time scheduling theory and its
assumptions. Informally speaking, the researchers in [Mut94; HO97; KKH+98;
LJS05; SB08; KGP14; NIP16; KP16; XLW+16; IBN16; XWL+17; IBN18; NTI+19]
have tried to construct their worst-case response time analyses by linking the
problem to a corresponding uniprocessor scheduling problem instance. Most
of them were later found to be flawed, e.g., [Mut94; HO97; KKH+98; LJS05;
SB08; NIP16; KP16; XLW+16], or without a formal proof, e.g., [IBN16; IBN18;
NTI+19; NHE19]. The proofs in [NTI+19] did not consider the equivalence of
the worst-case response time analysis adopted in uniprocessor systems and the
analysis of a NoC. Instead, they emphasized the quantification of different types
of interferences. However, in many places in the proofs, e.g., the building blocks
from Lemmas 3, 4, and 6 in [NTI+19], the derivation is based on examples.

Motivated by the two described problems, either the parameter uncertainty and
hardware peculiarities must be considered in the scheduling algorithm design and
associated formal schedulability analyses, or the predictability of the hardware
must be increased. In this chapter, we propose the following contributions to
address the motivated problems of predictability to allow for safe worst-case
response time analyses.

At first, a stationary rigid gang scheduling algorithm for hard real-time systems stationary rigid gang
schedulingis proposed, in which each rigid gang task is restricted to execute on an as-

signed subset of processors. We provide formal proof, how the corresponding
schedulability test problem can be reduced to a uniprocessor suspension-aware
schedulability test. Furthermore, we propose so called consecutive stationary rigid
gang assigments for preemptive deadline-monotonic gang scheduling and provide
several sufficient schedulability analyses. The proposed scheduling algorithm is
shown to admit a parametric speed-up factor with respect to an optimal rigid gang parametric speed-up

factorscheduling algorithm, and to bound the worst-case performance with regards to
the task set’s gang size ratio of any two tasks.

Secondly, we propose a family of simultaneous progression switching protocols simultaneous
progression switching
protocols

for real-time NoC arbitration, which is described by the all-or-nothing property,
and provides increased predictability at the cost of decreased average case per-
formance. A possible implementation, including router design, and arbitration
algorithm is proposed. Notably, any non-minimal route in simultaneous pro-
gression switching protocols is deadlock-free, since the simultaneous progression
property prevents circular waiting at the buffers. Therefore, the path diversity can path diversity

be better utilized in order to distribute the load over the links, such that network
contention is reduced.
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3.2 related work

In parallel task scheduling, inter- and intra-task parallelism has to be considered
in the timing analysis, where inter-task parallelism refers to the co-scheduling
of different tasks and intra-task parallelism refers to parallel execution of a
single task. In the context of task models for parallel computing, fork/join
models [LKR10], synchronous parallel task models, and DAG (directed-acyclic
graph) based task models [FNN17; BMSS+13; Bar15b; Bar15a; BMS+13; MBB+15;
CBN+18b] have been proposed and analyzed with respect to real-time constraints.

To schedule a set of ordinary periodic [LL73] or sporadic [Mok83] real-time
tasks on a multiprocessor platform, three paradigms have been widely adopted,
namely, partitioned, global, and semi-partitioned multiprocessor scheduling. A
comprehensive survey can be found in [DB11]. For the rigid gang scheduling
problem, the three scheduling paradigms are slightly modified and called station-
ary, global, and semi-stationary gang scheduling. The stationary gang schedulingstationary rigid gang

scheduling paradigm statically assigns a gang task to a set of processors, in which the car-
dinality of the set is equal to the gang size of the task. After this assignment is
done, a gang task is only eligible to be executed on stationary processors assigned
to it. The semi-stationary scheduling paradigm allows a gang task to execute onsemi-stationary rigid

gang scheduling any subset of processors within a given set of processors that is larger than the
gang size itself. That is, it allows a job of the gang task to migrate from one
subset of processors to another sub set of the given processors at any time. The
global rigid gang scheduler allows a gang task to migrate to any available setglobal rigid gang

scheduling of processors as long as the gang size constraints are met. Note that when the
gang size is 1 for each task (i.e., tasks are not executed in parallel and are ordi-
nary periodic or sporadic tasks), the stationary, global, and semi-stationary gang
scheduling paradigms correspond to the partitioned, global, and semi-partitioned
multiprocessor scheduling paradigms, respectively.

The computational complexity of the rigid gang scheduling problem was
studied back in 1980s. Specifically, it has been shown that finding the optimal
schedule for the rigid gang scheduling problem is NP-hard in the strong sense
even when all the tasks have the same period and the same deadline [Kub87].
Even simpler cases, like three machines [BDOD+94] or unit execution time per
task [HVV94] are also shown to be NP-hard in the strong sense.

In real-time systems, rigid gang scheduling has been mostly studied under
global earliest-deadline-first (EDF) scheduling, in which the set of processors
used by a gang task is not fixed and can be dynamically relocated at run-
time, e.g., [RGK17; DL17; KI09]. Specifically, in [KI09], the authors extended
Baruah’s [Bar07] multiprocessor global EDF analysis for ordinary sporadic real-
time tasks to deal with global EDF gang scheduling, which has been disproved by
Richard et al. [RGK17]. The only valid analysis for global EDF gang scheduling
is from Dong and Liu [DL17] and restricted to implicit-deadline sporadic real-
time rigid gang task systems. They provide two utilization-based analyses, one
optimized and one approximated.

Goossens and Richard [GR16] studied fixed-priority scheduling for the rigid
gang scheduling problem for implicit-deadline periodic real-time task systems.
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They presented two algorithms, one based on linear programming and another
based on a heuristic algorithm, providing exact and sufficient schedulability tests.
Moreover algorithms based on deadline partitioning (DP-Fair) for periodic gang DP-Fair

systems have been proposed. However the many preemptions of DP-Fair make
this algorithm impractical and the complexity of the proposed algorithms is high
especially for a large number of processors. The authors themselves discuss the
problems to extend their algorithms to sporadic job arrival sequences due to its
non-determinism.

For classical multiprocessor scheduling, it has been recently shown that global
static-priority scheduling [SN18] and global EDF as well as global FIFO schedul-
ing [BS18] are dominated by partitioned scheduling under state-of-the-art efficient
sufficient schedulability tests, e.g., [BC07; GSY+09]. The main reason is due to the
inherited pessimism in those tests, which all stem from the work by Baker [Bak03].
Hence, they all use carry-in interference to compensate the lack of a critical instant
theorem and divide the higher-priority interference by the number of processors,
i.e., they have a multiplicative factor of 1/M in the corresponding analyses. We
note that the factor 1/M also appears in the schedulability tests in [DL17].

Recently, the wormhole switched fixed-priority NoC with preemptive virtual
channels has been considered for the use in real-time system. The first attempts
to tackle the schedulability analysis were in 1994 in [Mut94] and 1997 in [HO97].
Both of them were found to be flawed in 1998 by Kim et al. [KKH+98], whose
analysis was later found to be erroneous in 2005 by Lu et al. [LJS05]. The se-
ries of erroneous analyses continued in [Mut94; HO97; KKH+98; LJS05]. Shi
and Burns [SB08] published an analysis in 2008. Eight years later, Xiong et
al. [XLW+16] pointed out that the analyses in [SB08] are unsafe in the sense that
they do not consider limited buffer space and virtual channels. The proposed
analysis by Xiong et al. [XLW+16] was later disproved by counter examples and
fixed by the authors in their journal revision in [XWL+17] in 2017. In addition,
Kashif et al. [KGP14] proposed stage-level analysis (SLA) to improve the analysis
by Shi and Burns in [SB08]. The SLA in [KGP14] assumes an infinite buffer size.
Kashif and Patel [KP16] extended the SLA analysis to cope with limited buffer
size, which was disproved by Xiong et al. [XLW+16]. Indrusiak et al. [IBN16;
IBN18] presented new analyses, but without formal proof. Nikolíc et al. [NHE19]
proposed a slot-based transmission protocol, which applies two parallel domains,
one for arbitration and one for data transmission. The worst-case response time
of wormhole switched fixed-priority NoCs with preemptive virtual channels
can also be determined by applying Network Calculus and Compositional Per-
formance Analysis (CPA), or their extensions, to analyze the transmission on
the links in a compositional manner, e.g., [QLD09; BDG+18; AES+16; AJE+15;
TE17; RE15]. Giroudot and Mifdaoui [GM18] use network-calculus to derive
worst-case end-to-end response times for wormhole switched fixed-priority NoCs
with limited virtual channels and limited buffer space.

3.3 stationary rigid gang scheduling

In the gang task model, a set of threads is grouped together into a so called gang
with the additional constraint that all threads of a gang must be co-scheduled at
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the same time on the available processors. The scheduling algorithms for parallel
gang tasks can be classified into three models: rigid, moldable, and malleable tasks.

A parallel gang task is called rigid if the number of processors assigned to it isrigid

specified externally to the scheduler a priori and does not change throughout its
execution; moldable if the number of processors assigned to it is determined bymoldable

the scheduler and does not change throughout its execution; and malleable if themalleable

number of processors assigned to it can be changed by the scheduler during its
execution. Such classifications can be found in the literature of multiprocessor
scheduling and real-time systems such as [GR16].

It has been demonstrated that gang-based parallel computing can improve the
performance in many cases [Jet97; FR92]. An advantage of the rigid gang model
in particular, is that the interference caused by shared resource and intra-task
parallelism can potentially be quantified better, thus reducing the worst-case
execution time of the gang. Within a gang, co-scheduling of memory accesses
and computation is possible, which can also potentially reduce the worst-case
execution time of the gang.

In this section, a novel gang scheduling algorithm, called stationary rigid gang
scheduling is proposed, and the properties and analyses are examined. The
remainder of this section is structured as follows. In Section 3.3.1, the studied
problem is formalized and the rigid gang task model and stationary gang system
model is explained. Based on the system and scheduling model, a schedulability
analysis and corresponding test is proposed. Based on a formal reduction to the
uniprocessor self-suspension schedulability problem, the schedulability analysis is
described in Section 3.3.3. In Section 3.3.4, a stationary gang assignment algorithm
for the rigid gang task set, with provable worst-case performance guarantees,
is proposed. Lastly, the developed analyses are evaluated, which is detailed in
Section 3.3.5.

3.3.1 system model & problem description

We consider a task set T = {τ1, τ2, ..., τn} of sporadic constrained-deadline rigid
gang tasks, which is scheduled on a system of M homogeneous processors
with symmetric shared memory, denoted as P = {P0, P1, . . . , PM−1}, using our
proposed stationary gang scheduling algorithm.

Definition 3.1. A sporadic constrained-deadline rigid gang task τi is defined by the
tuple (Ci, Ei, Di, Ti) where Ci denotes the worst-case execution time, Ei ∈ N denotes
the rigid gang size, i.e., the static number of subtasks, which are to be co-scheduled
simultaneously. The relative deadline Di ≤ Ti, is no more than the minimal inter-arrival
time Ti, i.e., constrained-deadline.

Each rigid gang task τi releases an infinite number of task instances called
jobs where we use J`i to refer to the `-th job and a`i , f `i , and d`i to denote that
job’s arrival time, finishing time and absolute deadline respectively. During the
interval [a`i , f `i ) each of the Ei subtask instances called subjobs have to be executed
in parallel. That is, each subjob of J`i arrives at time a`i and finishes at time f `i
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such that either all subjobs are scheduled simultaneously, or none is. Each subjob
executes for the same amount of time, which is no more than the worst-case
execution time, i.e., no subjob is allowed to yield the processor before all subjobs
have finished. The period Ti denotes the minimal inter-arrival time of any two
consecutive jobs of a task τi, i.e., a`+1

i ≥ a`i + Ti ≥ a`i + Di. Hence, a total workload
of at most Ei · Ci has to be executed in the time interval [a`i , d`i ). Moreover, the
utilization of a gang task τi is given by Ui = Ei · Ci/Ti.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a`i f `i d`i

Ci

Ci

Figure 3.1: A symbolic job J`i of a rigid gang task τi with gang size Ei = 2. Each thread
(subjob) in the gang is subject to the co-scheduling constraint.

Similar to non-gang tasks, the response time of a job J`i of τi is its finishing time
minus its arrival time, i.e., R`

i = f `i − a`i . Hence, the worst-case response time Ri of
task τi under a given scheduling policy is the maximum response time R`

i of any
job J`i for any job arrival sequence possible according to the parameters of tasks
in T. A job J`i is said to meet its deadline if f `i ≤ d`i and the corresponding task τi
is said to meet its deadline if all jobs meet their deadlines, which is guaranteed
if the worst-case response time Ri ≤ Di, since Ri ≤ Di = a`i + Ri ≤ a`i + Di which
implies that a`i + R`

i ≤ d`i or f `i ≤ d`i equivalently.

3.3.2 stationary rigid gang scheduling algorithm

In order to describe and specify the properties of that scheduling algorithm, we
first formalize the definition of an arbitrary schedule.

Definition 3.2 (Schedule). A schedule SPq : R 7→ T ∪ {⊥} for a processor Pq with
q ∈ {0, . . . , M− 1} is a mapping from the continuous time domain to the task that is
executed at time t or to ⊥ if processor Pq idles, i.e.,

SPq (t) =

{
τi if task τi is executed on Pq at time t

⊥ if Pq is idle at time t
(3.1)

Stationary Gang Assignment. Each task is assigned and restricted to a subset
of processors to execute on, which do not change in time, and is thus called
stationary gang assignment. While conceptually related to partitioned scheduling, stationary gang

assignmentthe term stationary is used to emphasize that the assigned processors of any two
rigid gang tasks may have non-empty intersection, i.e., the assignment is not a
partition.

Definition 3.3 (Stationary Gang Assignment). A stationary gang assignment A∗i ⊆
{P0, P1, . . . , PM−1} of a rigid gang task τi is a subset of processors of size |A∗i |= Ei ≤ M,
which are assigned to execute jobs of task τi.
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At first we will assume that a stationary gang assignment is given for each
task in the task set, and revisit the problem of stationary gang assignment
construction with performance guarantees in the later Section 3.3.4. Given the
formal definitions of stationary gang assignments and schedules, the properties
of a stationary gang schedule can be formalized as follows.

Definition 3.4 (Gang Schedule). A schedule for a multiprocessor system satisfies the
stationary gang property if for each task τi and its stationary gang assignment A∗i , the
following property holds:∧

Pq∈A∗i

[SPq (t) = τi] if and only if τi is scheduled at time t (3.2)

where [·] denotes the iverson bracket, which evalutes to true if the inner predicate is met
and false otherwise.

Whenever we argue about schedules, which satisfy the stationary gang property,
we write SA∗i (t) = τi, if task τi is scheduled on all the processors in Pq ∈ A∗i at
time t.

Prioritization. Each task τi ∈ T is assigned a task-level fixed-priority and we use
the mapping Π : T 7→ N to denote the priority of task τi and say τj has higher
priority than τi if and only if Π(τj) > Π(τi). We assume that no two tasks have
the same priority, i.e., there are sufficient priority levels and Π is injective. A
gang task τi is called active at time t if a job of τi is released and not yet finished.gang task τi is called

active at time t if a job
of τi is released and not

yet finished

On each processor, the stationary gang scheduler schedules the highest-priority
job, subject to the stationary gang assignment and co-scheduling constraint, and
preempts a lower-priority job if necessary.

Exemplary Schedule. An exemplary preemptive task-level fixed-priority stationary
rigid gang schedule is shown in Figure 3.2 with two tasks τk and τi. The tasks, have
the respective stationary gang assignments A∗k = {P2, P3} and A∗i = {P1, P2, P3},
and priorities Π(τk) < Π(τi). The job of τi, which is released at time 1.5, preempts
the job of task τk. Whenever the job of τi is preempted on A∗i , the job of τk is
the highest-priority job among all jobs requesting processors P2 and P3. In conse-
quence, the job of τk is scheduled by the scheduling algorithm. The preemption
of τi’s job on the processor P1 /∈ A∗k is transparent to τk’s job, which is similar to
self-suspension shown in Figure 3.3.

3.3.3 stationary rigid gang scheduling analysis

This section presents the schedulability analyses for preemptive fixed-priority
stationary gang scheduling for a task set T of sporadic constrained-deadline rigid
gang tasks, provided that each task τi has a given stationary gang assignment A∗i
and a unique priority.

Our schedulability analyses in this section are inductive in the sense that we
validate whether a task τk can meet its deadline constraint, provided that all
the tasks with higher priorities than τk are validated to meet their deadlines
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beforehand. Hence, the validation of schedulability iterates from the highest-
priority task to the lowest-priority task in T. Towards this, we present methods to
analyze the interference exerted by a higher-priority task τi onto the task τk under
analysis in Section 3.3.3.1. Specifically, our result shows that τi can be considered our result shows that

τi can be considered as
a self-suspending task
under certain
circumstances

as a self-suspending task under certain circumstances. Due to this observation
that some higher-priority tasks can be transformed into self-suspending tasks,
we employ existing suspension-aware schedulability analysis and present our
schedulability test for stationary gang scheduling in Section 3.3.3.3.

3.3.3.1 Interference Analysis

By construction of the preemptive task-level fixed-priority stationary gang schedul-
ing algorithm; considering the execution of the active job of task τk ∈ T, the
stationary rigid gang scheduling algorithm always schedules the jobs, which have
the highest priority (with respect to all other active jobs), assigned to at least one
processor in the assignment A∗k . Hence, to account for all causes of interference,
we define an interference domain for any subset of processors as follows, and
identify the subset of tasks contributing to the interference.

Definition 3.5. Let Ω ⊆ {P0, . . . , Pm−1} then the interference domain I(Ω) of the
processors specified in Ω is given by I(Ω) := {τi ∈ T |Ω∩ A∗i 6= ∅}.

Based on this definition, we can prove a necessary condition for a job of task
τi 6= τk to be able to preempt a job of task τk, which is summarized in the following
lemma.

Lemma 3.1. Let jobs J`i and Jh
k of tasks τi and τk be active at time t and SP denote a

feasible generated task-level fixed-priority stationary rigid gang schedule, i.e., satisfies
Definition 3.2, then

J`i preempts Jh
k at time t in schedule SP =⇒ τi ∈ I(A∗k ) and Π(τi) > Π(τk) (3.3)

summarized as ψk =
{

τi ∈ I(A∗k ) | Π(τi) > Π(τk)
}

.

Proof. We prove the contrapositive, i.e., if τi /∈ I(A∗k ) or Π(τi) ≤ Π(τj) then there
exists no job of task τi, which preempts a job of τk at any time. In the first case, let
τi /∈ I(A∗k ) then there is no job J`i which requests to be scheduled on processors in
A∗k and thus clearly can not preempt any job Jh

k executing on processors A∗k . In
the second case, let Π(τi) ≤ Π(τk) and τi ∈ I(A∗k ) then no job J`i can preempt any
job Jh

k , due to the not strictly greater priority.

As a consequence of Lemma 3.1, only jobs generated by tasks from ψk can
cause interference to the execution of a job of task τk under analysis. Moreover,
by the definition of an interference domain, the response-time analysis problem
for the task τk (under analysis) can be reduced to the response-time analysis of τk
in an equivalent uniprocessor system.

That is, the schedulability of a gang task τk can be reduced to the schedulability
of a sequential, i.e., non-gang, task with worst-case execution time Ck, which is
subjected to the maximum interference by jobs of tasks in ψk. In the remainder of
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P2 τk τi τk τi τk τi τk τi
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Figure 3.2: A cut-out of an exemplary task-level fixed-priority stationary rigid gang
schedule with respect to the processors’ local schedules of the three processors
P1, P2, and P3. In the shown example, the two tasks τk and τi are analyzed
where τi has a higher priority than τk. Task τk is assigned to processors P2
and P3, and τi is assigned to P1, P2, P3.

τk

0 1 2 3 4 5 6 7 8 9 10 11 12 13

τi

Figure 3.3: An illustration of the suspension induced behavior of task τi from the per-
spective of task τk under analysis as derived from Figure 3.2. The cause of the
interference of the higher-priority task τi in the schedule is transparent to the
local schedule of τk. This transparent behaviour is modeled as self-suspension.

this subsection, we show that the interfering behavior of task τi in ψk can be over
approximated by the interference behaviour of a corresponding sequential task
with dynamic self-suspension behavior, where the suspension-time depends on
the stationary gang assignments of the interfering tasks.

3.3.3.2 Induced Self-Suspension Behaviour

The link between preemptive stationary rigid gang schedules and the dynamic
self-suspension behavior is illustrated in the schedule shown in Figure 3.2 and
a corresponding local schedule with induced self-suspension behaviour is shownlocal schedule

in Figure 3.3. Let T denote a set of rigid gang tasks, which is scheduled on the
available processors by any preemptive task-level fixed-priority stationary rigid gang
scheduling algorithm according to Definition 3.4.

We want to analyze the schedule for a job of task τk, i.e., the local schedule on
τk’s assigned processors P2 and P3. The job is released at time t = 0 and finishes at
time t = 10.5, as shown in Figure 3.3. In this here discussed example, we assume
that only tasks τi and τk use processors P2, P3 where τi has higher priority than
τk. The respective stationary gang assignments are given by A∗i = {P1, P2, P3}
and A∗k = {P2, P3}, and the remaining processors can be used by any other task
in the set T. Due to the arrival of a job of the higher-priority task τi at time
t = 1.5, the job of τk is preempted as denoted by the small downwards-pointedjob of τk is preempted

as denoted by the small
downwards-pointed

arrow

arrow. During time t = 1.5 to time t = 3, the job of τi is the highest-priority job
on all processors P1, P2, P3 and is thus scheduled and executed. At time t = 3,
the executed job of τi is preempted due to interference by some higher-priority
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jobs (denoted by the line), which are transparent to the local schedules of the
processors P2, P3. During the times, in which the job of τi is preempted on P1, that
job is not eligible to be scheduled on any of the remaining assigned processors
P2, P3, and thus the job of τk is executed. Hence, if we only analyze the execution
of τk with respect to its assigned processors, then transparent preemption of τi transparent preemption

of τi is similar to
self-suspension
behavior

is similar to self-suspension behavior, which needs to be accounted for in the
response-time analysis of τk.

Definition 3.6 (Dynamic Self-Suspension [CBH+17b]). A task is said to have dy-
namic self-suspension behavior if an active task can transition from a ready state into a
suspended state, in which the task is exempted from the scheduling decisions, and resume
into a ready state at any time. The cumulative amount of time that an active task τi can
spend in a suspended state is upper-bounded by a parameter Si.

In the following, we formalize and explain how these task model substitutions
can be safely obtained. Before moving into the formal proof, we present the
conditions, which hold for our scheduling policy.

Definition 3.7. In any preemptive task-level fixed-priority stationary rigid gang sched-
ule, a job J`i of a task τi ∈ T is executed at time t, if and only if the following conditions
are satisfied:

1. Job J`i is released and not yet finished (active) at time t

2. There is no active job of a task τj ∈ ψi executed at time t

Based on Definition 3.7, the induced self-suspension behaviour with respect to a induced
self-suspension
behaviour

specific job under analysis, can be defined as follows.

Definition 3.8. In any task-level preemptive fixed-priority stationary rigid gang sched-
ule, a job J`i of task τi ∈ ψk is in an induced suspension state at time t with respect to a
job of task τk under analysis if and only if the following conditions are satisfied:

1. Job J`i is active at time t

2. Job J`i is not executed at time t

3. Job J`i has the highest priority among all active jobs on the processors in the as-
signment A∗k , i.e., Π(τi) ≥ max

{
Π(τj)

∣∣ All jobs J`i o f task τj ∈ ψk active at t
}

In the following, we seek to partition the set of tasks that can generate jobs that
interfere with a job of task τk under analysis, namely ψk, into those that can be
in an induced suspension state at some time t, and into those that can not. To that
end, for a task τk under analysis, we identify the subset of suspension inducing we identify the subset

of suspension inducing
tasks in T

tasks in T, which can cause the conditions stated in Definition 3.8 for a task in ψk.
In consequence, we consider those tasks in ψk for which no suspension inducing
tasks exist, to be not self-suspending with respect to τk.

Definition 3.9 (Self-Suspension Inducing Tasks). The set of tasks (that release jobs)
which can induce self-suspension behavior of jobs of task τi when analyzing task τk is
denoted by

Vi,k =
{

τj ∈ ψi | τj /∈ ψk
}

(3.4)
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We now prove that the set of self-suspension inducing tasks according to Defini-
tion 3.9 is a subset of Vi,k as stated in Eq. (3.4) in the following Lemma 3.2.

Lemma 3.2. Suppose that task τi is in a suspension induced state at time t with respect
to a task τk under analysis, then at least one job of a task in Vi,k is executed at time t.

Proof. By assumption, a job J`i of task τi is in a suspension induced state at time t
with respect to the job under analysis of task τk according to Definition 3.8.

By the properties stated in Item 1 and Item 2 in Definition 3.8, there exists a job
J`i of task τi which is active and is not executing at time t. In conjunction with
the properties of any preemptive fixed-priority stationary gang schedule from
Definition 3.7, we conclude that since J`i is not executing, there exists an active
job Jh

j of a task τj ∈ ψi which is executed at time t. Note that since Jh
j is executed

it must also be active, i.e., more formally, we have shown that if

∃J`i in suspension induced state at t =⇒ ∃τj ∈ ψi with active job Jk
j (3.5)

=⇒ ∃τj ∈ ψi (3.6)

It remains to show that τj /∈ ψk, which we prove by contradiction. Assume that
τj ∈ ψk, then from Item 3 in Definition 3.8 it follows that Π(τj) > Π(τi), which
would contradict the assumption that a job J`i is in a suspension induced state. In
conclusion we have that if

τi can be in an suspension induced state =⇒ ∃τj ∈ Vi,k (3.7)

Now, we can provide a safe upper bound of the self-suspension time if Vi,k is
not empty.

Theorem 3.3. Suppose that Π(τi) > Π(τk) and Ri ≤ Di ≤ Ti, where Ri is an upper
bound on the worst-case response time of task τi, which was already verified beforehand.
The amount of time Si,k that any job of an active task τi self-suspends with respect to a
job of τk under analysis is bounded from above by

Si,k ≤ min

Ri − Ci, ∑
τj∈Vi,k

(
1 +
⌈

Ri

Tj

⌉)
· Cj

 (3.8)

Proof. By Definition 3.8, all times t during the active interval starting from the
release time and ending with the finishing at time of a job J`i of a task τi is well
defined. Moreover, by the assumption of schedulability of τi it is guaranteed that
f `i ≤ a`i + Ri ≤ a`i + Di. We prove both parts of the minimum in Eq. (3.8) to be
upper-bounds individually.

First Case. Suppose that the cumulative amount of time, that a job J`i of τi is
in a suspension induced state during the interval [a`i , f `i ], is strictly more than
Ri −Ci for contradiction. This implies that J`i has only completed f `i − a`i − Ri + Ci
amount of computation. This however violates the assumption that Ri is the
worst-case response time of τi.
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Second Case. By Lemma 3.2, we know that with respect to the analysis of a job
of task τk, the suspension induced behaviour of jobs of τi (which interfere with
τk) is caused by preemption due to jobs of tasks in the set Vi,k. Since Rj ≤ Tj and
Π(τj) > Π(τk) for every task τj ∈ Vi,k, we know that the amount of time that jobs
of task τj are executed during the active interval of J`i is at most

(
1 +
⌈
∆i/Tj

⌉)
· Cj

where ∆i := f `i − a`i . This can be proved by showing that the jobs of τj, which are
executed in the interval [a`i , a`i + ∆) are (i) at most only one job released prior to ai,
and (ii) the amount of jobs that we get by releasing jobs with minimal inter-arrival
time. This is typically done with the concept of carry-in jobs. Since Ri ≤ Ti, there
is at most one carry-in job of τj released before a`i . Summing up all tasks in Vi,k,
we have

Si,k = ∑
τj∈Vi,k

(
1 +
⌈

∆i

Tj

⌉)
· Cj ≤ ∑

τj∈Vi,k

(
1 +
⌈

Ri

Tj

⌉)
· Cj (3.9)

where the inequality is due to the assumption that ∆i ≤ Ri.

The upper-bound in Theorem 3.3 is not tight as Vi,k is a superset of tasks, which
induce suspension behaviour of task τi with respect to τk. For completeness, we
state the following corollary as a direct implication of Theorem 3.3.

Corollary 3.4. If Vi,k is empty, then task τi does not have any self-suspension behavior,
i.e., Si,k = 0 when analyzing task τk.

Proof. This is because the right-hand side of Eq. (3.8) is 0 under this condition.

3.3.3.3 Schedulability Analysis

After analyzing the link between the stationary rigid gang scheduling prob-
lem and the dynamic self-suspension problem, we now construct a worst-case
response time analysis and schedulability analysis for each task τk ∈ T. More pre-
cisely, we provide a response-time bound based on suspension-aware worst-case
response-time analyses on uniprocessor systems.

On the basis of Theorem 3.3 and Corollary 3.4, we can safely upper bound
the interference of task τk. Given the collection ψk of higher-priority tasks, which
interfere with τk, we substitute the task model of τi ∈ ψk with a dynamic self-
suspension task model as follows:

Definition 3.10. Let a sporadic rigid gang task τi ∈ ψk be transformed to the corre-
sponding self-suspending task τi = (Ci, Di, Ti, Si,k) with the same Ci, Di, and Ti as τi,
whereSi,k = min

{
Ri − Ci, ∑τj∈Vi,k

(
1 +
⌈

Ri
Tj

⌉)
· Cj

}
if Vi,k 6= ∅

Si,k = 0 otherwise
(3.10)

and Vi,k is defined as in Definition 3.9. Moreover, let ψsus
k denote the set of all transformed

tasks in ψk.
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Please note that self-suspension aware worst-case response-time analyses areself-suspension aware
worst-case

response-time analyses
are sustainable with

respect to reducing the
self-suspension time

sustainable with respect to reducing the self-suspension time. That is, if a job
suspends for less amount of time than specified as an upper-bound, the schedula-
bility analysis remains valid. This is explainable by the fact that the collection of
schedules, which can be generated for a task with suspension time S− ε for ε > 0
is a subset of schedules, which can be generated for a task with suspension time
S. The worst-case response-time, which is the supremum of all response-times of
any job, in any legally possible schedule, can in consequence only increase for a
super set.

Corollary 3.5. Suppose that all higher-priority tasks τ1, . . . , τk−1 (with respect to task
τk under analysis) are already verified to be schedulable given their respective stationary
gang assignments A∗1 , . . . , A∗k−1 by a preemptive task-level fixed-priority stationary rigid
gang scheduling algorithm. A sporadic constrained-deadline rigid gang task τk with
stationary gang assignment A∗k is schedulable by the preemptive task-level fixed-priority
stationary rigid gang scheduling algorithm if the worst-case response time Rk of task
τk is at most Dk ≤ Tk, given the interference of ψsus

k on one processor under the same
priority assignment.

We adopt the current sound state-of-the-art task-level fixed-priority self-suspension
aware uniprocessor schedulability analyses by Chen et al. [CNH16] for the pro-
posed stationary gang scheduling schedulability analyses. Based on the results of
Corollary 3.5, the correctness of the following corollaries follows directly from
the related proofs in [CNH16].

Corollary 3.6. A sporadic constrained-deadline rigid gang task τk ∈ T is schedulable
by a preemptive task-level fixed-priority stationary rigid gang scheduling algorithm if

∃0 < t ≤ Dk, Ck + ∑
τi∈ψsus

k

min{Ci, Si,k} + ∑
τi∈ψsus

k

⌈
t
Ti

⌉
· Ci ≤ t (3.11)

under the assumption that τ1, . . . , τk−1 ∈ T are already verified to be schedulable.

Corollary 3.7. A sporadic constrained-deadline rigid gang task τk ∈ T is schedulable
by a preemptive task-level fixed-priority stationary rigid gang scheduling algorithm if

∃0 < t ≤ Dk, Ck + ∑
τi∈ψsus

k

⌈
t + Ri − Ci

Ti

⌉
· Ci ≤ t (3.12)

under the assumption that τ1, . . . , τk−1 ∈ T are already verified to be schedulable.

Corollary 3.8. Suppose that there are z tasks in ψsus
k that are indexed from the high-

est priority to the lowest priority. A sporadic constrained-deadline rigid gang task τk is
schedulable by a preemptive task-level fixed-priority stationary rigid gang scheduling al-
gorithm if there is a vector ~x = [x0, x1, . . . , xz−1] with xi ∈ {0, 1} for i ∈ {0, . . . , z− 1}
such that

∃0 < t ≤ Dk, Ck + ∑
τi∈ψsus

k

⌈
t + ∑z−1

j=i−1 Sj,k · xj + (1− xi−1)(Ri − Ci)

Ti

⌉
≤ t

(3.13)
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The provided schedulability analyses in Corollary 3.6, Corollary 3.7, and Corol- Corollary 3.6,
Corollary 3.7, and
Corollary 3.8 can be
solved via fix-point
iteration techniques

lary 3.8 can be solved via fix-point iteration techniques.

More precisely, let Wk(t) denote the left-hand sides of the inequalities in the
above corollaries and let ε > 0, we then verify all test-points t0 = Wk(ε), t1 =
Wk(t0), . . . , tn = Wk(tn−1) until convergence is reached or tn > Dk.

Due to the fact that the above equations are step-functions and can thus only
change at discontinuity points of Wk(t), the amount of test-points is at most k ·
Dk/mini<k{Ti} resulting in pseudo-polynomial time-complexity. In the remainder
of this paper, we only use the landau notation O(kDk) for time-complexity, since
the scaling of the deadline does not change the asymptotic complexity.

As discussed in [CNH16], neither of the schedulability analyses in Corollary 3.6
and Corollary 3.7 dominate each other analytically and are incomparable. The
authors also showed that the test in Corollary 3.8 dominates those in Corollary 3.6
(i.e., Lemma 17 in [CNH16]) and Corollary 3.7 (i.e., Lemma 16 in [CNH16]). To
find a vector ~x for the worst-case response time analysis in Corollary 3.8 in a
computationally efficient manner, the authors suggest to use three distinct vectors.
One is based on a linear approximation, one sets all elements of ~x to 0, and
one sets the entry xi−1 in ~x to 1 if Si,k ≤ Ci, and 0 otherwise for i ∈ {1, . . . , z}.
Specifically, in the case when the entries in ~x are all 0, Eq. (3.13) is the same as
Eq. (3.12). In our evaluations we use the analysis from Corollary 3.8 with the
above distinct three vectors and choose the best one. That is, a task is deemed to
be schedulable if it is schedulable for at least one of the three vectors.

3.3.4 stationary rigid gang assignment algorithm

As described in Section 3.1, finding optimal schedules for the general rigid gang
scheduling problem has been shown to be NP-hard in the strong sense – even
in the case in which all tasks have the same period and the same deadline. Even
the additional enforcement of stationarity, i.e., to assign a gang onto a fixed set enforcement of

stationarity, i.e., to
assign a gang onto a
fixed set of processors
does not reduce the
computational
complexity

of processors does not reduce the computational complexity. Moreover, by the
trivial reduction of the special case of a task set with gang tasks of size one, an
optimal algorithm for our sporadic stationary rigid gang scheduling algorithm
could solve the partitioned scheduling problem of sporadic tasks onto multiple
identical processors, which was shown however to be NP-hard in the strong
sense by Baruah et al. [BF05]. Due to the issue of computational complexity of an
optimal algorithm, our objective is to find approximation algorithms to solve the
stationary rigid gang assignment problem for sporadic task sets with provable
performance bounds, which is described in the remainder of this section.

3.3.4.1 Processor Assignment Problem & Complexity

It is evident that in our proposed preemptive task-level fixed-priority stationary
rigid gang scheduling algorithm, both the concrete priorities, and the concrete
gang assignments to processors, determine the schedulability of a task set T.

At first glance, the partitioning problem of a set of sporadic rigid gang tasks
onto multiple identical processors under fixed-priority scheduling seems similar
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Figure 3.4: Consecutive stationary gang assignments A0
k , A1

k , A2
k , A3

k of a gang task τk with
Ek = 3 on a system using 4 identical processors Pi for i ∈ {0, . . . , 3}. The four
distinct assignments are generated by a sliding window of size 3.

to the problem of partitioning normal sporadic tasks onto multiple identical
processors under fixed-priority scheduling. However, there are two distinct differ-
ences, namely;

1. Each task τk ∈ T under consideration can have M choose Ek many distinct
gang assignments in terms of gang to processor mappings, instead of just M
partitions in case of normal sporadic tasks;

2. And the complex dependency of gang assignments and the resulting inter-
ference behaviour of higher-priority tasks.

To that end, one may try to identify equivalence classes of all possible stationary
rigid gang assignments, where two assignments are equivalent if and only if
the resulting interference caused by all higher-priority tasks of τk is identical.
If an equivalence class is found that satisfies the schedulability conditions then
any representative of that class can be chosen for the gang assignment. A trivial
example for such an equivalence class is the gang assignment of the highest-
priority task, in which case all possible gang assignments are equivalent, since
there are no interfering tasks. However, finding all equivalence classes results
in an exhaustive exploration of all possible solutions, which is computationally
expensive especially for larger task sets and thus infeasible. Please recall that
our intention is to identify a class of computationally feasible gang assignment
algorithms, which allow to formulate provable worst-case performance guarantees
with respect to any optimal rigid gang scheduling algorithm.

In order to obtain analytical worst-case performance guarantees, it is mandatory
to find (preferably small) upper bounds of interference caused by higher-priority
tasks. An interesting question in that regard is whether there may exist a class of
more specialized gang assignment policies for which such worst-case performance
guarantees can be proven.

We answer this question positively by proposing the class of consecutive sta-
tionary gang assigments, which is formalized in the following definition and sub-consecutive stationary

gang assigments sequently show the beneficial theoretical properties of this class of assigments
for our analyses. We note however that other gang assignment policies can be
explored starting from the consecutive stationary gang assignments and thus the
approximation properties can be kept whilst improving the schedulability using
any heuristic.

Definition 3.11. A consecutive stationary gang assignment A`
k for ` ∈ {0, 1, . . . , M−

1} of a gang task τk in a system of M processors is a set of consecutive processor indices

A`
k := {` mod M, (` + 1) mod M, . . . , (` + Ek − 1) mod M} (3.14)

where |A`
k|= Ek ≤ M. Moreover, we use Ak to refer to the set

{
A0

k , . . . , AM−1
k

}
.
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Figure 3.5: Enumeration of all consecutive stationary gang assignments of a task τk
(black window) under the condition of a given consecutive stationary gang
assignment of a higher-priority task (light gray window).

To clarify the above definition, an exemplary consecutive stationary gang
assignments of a task τk with Ek = 3 on a platform of 4 processors is illus-
trated in Figure 3.4. Intuitively, the consecutive stationary gang assignments
are generated by a sliding window of length 3. Using Eq. (3.14) yields that
A0

k = {0, 1, 2}, A1
k = {1, 2, 3}, A2

k = {0, 2, 3}, and A3
k = {0, 1, 3}. In consequence

Ak = {{0, 1, 2} , {1, 2, 3} , {0, 2, 3} , {0, 1, 3}}. An important implication of this
consecutive stationary gang assignment class is that each task τk has exactly
M distinct assignments, irrespective of its gang size Ek, in contrast to the gang
size dependent M choose Ek in the general case, summarized in the following
observation.

Observation 3.9. The number of distinct consecutive stationary gang assignments of
a rigid gang task τk with gang size Ek ≤ M is exactly the number of processors M
irrespective of its gang size Ek.

Another dimension in the consecutive stationary gang assignment algorithm is
the order in which the different tasks in T are assigned to the processors. In our
algorithm, we devise gang assignments in priority-order under the premise that
all higher-priority tasks have already been verified to be fixed-priority schedulable
using the determined consecutive stationary gang assignment. By this restriction, By this restriction, in

the assignment
iteration of the k-th
task in T, we only
have to determine the
assignment dependent
interference behaviour
of all higher-priority
tasks with respect to
the candidate
consecutive stationary
gang assignment A`

k

in the assignment iteration of the k-th task in T, we only have to determine
the assignment dependent interference behaviour of all higher-priority tasks
with respect to the candidate consecutive stationary gang assignment A`

k for
` ∈ {0, . . . , M− 1}. By virtue of these restrictions, we are able to find upper-
bounds for the number of consecutive stationary gang assignments of τk, in which
higher-priority tasks have self-suspension behaviour and non self-suspension
behaviour, respectively. That means, we are able to argue that in at most x out
of the M consecutive stationary gang assignments, a higher-priority task τi has
self-suspension behaviour, irrespective of the actual consecutive assignment of τi.

A motivating example is illustrated in Figure 3.5, where each column shows
a single (out of M) consecutive stationary gang assignments of a task τk that
is subject to assignment and schedulability analysis, with respect to a given
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consecutive stationary gang assignment of some higher-priority rigid gang task
τi. Each row shows a different (out of M) consecutive stationary assignment of
said higher-priority task τi as indicated by the light gray window. According
to previous results in Section 3.3.3, task τk suffers interference from task τi if
and only if A∗k ∩ A∗i 6= ∅ where A∗k ∈ Ak and A∗i ∈ Ai denote the chosen
consecutive stationary gang assignment of the respective tasks. Intuitively, any
column and row entry in Figure 3.5 in which the two colored windows intersect
represents an interference configuration. If for a column (consecutive assignment
of τk) there exists at least one row (consecutive assignment of τi) in which both
windows intersect then τi interferes with τk for the consecutive assignment under
consideration in at least one possible configuration.

Intuitively, our objective is to classify the worst-case interference behaviourour objective is to
classify the worst-case
interference behaviour

of task τi on τk
irrespective of the

concrete assignments
of A`

i and A`
k

of task τi on τk irrespective of the concrete assignments of A`
i and A`

k. In the
provided example, it can be observed that all consecutive assignments of τk suffer
interference from τi and thus irrespective of the concrete gang assignment A`

i .

In the following Lemma 3.10 we prove that in general there are at most Ek + Ei−
1 out of the M consecutive stationary gang assignments of τk, in which τi interferes
with τk. To determine whether τi exhibits self-suspension behaviour with respect
to the interference on τk or not additionally depends on the assignments of all
of τi’s higher-priority tasks. In the subsequent Lemma 3.12, we then bound the
number of consecutive stationary gang assignments of τk in which τi can not
exhibit self-suspension behaviour from below and use this lower-bound to derive
an upper-bound.

Lemma 3.10. Given a rigid gang task τk under analysis, each higher-priority rigid gang
task τi is in the interference domain of the processors in A∗k , i.e., τi ∈ I(A∗k ), in at most
Ei + Ek − 1 of the M-many consecutive stationary gang assignments.

Proof. Let the tasks in T be indexed according to their priorities in increasing
order and let the consecutive stationary gang assignments for some higher-priority
tasks i < k be given by the following processor indices:

A∗i = {j mod M, (j + 1) mod M, . . . , (j + Ei − 1) mod M} (3.15)

where j ∈ {0, 1, . . . , M− 1} is already given (fixed). Furthermore, let

{` + h mod M, (` + h + 1) mod M, . . . , (` + h + Ek − 1) mod M} (3.16)

denote the processor indices of a consecutive stationary gang assignment of task
τk after the h-iteration for some arbitrary initial ` ∈ {0, 1, . . . , M− 1} (we only
need this to show that this works for an arbitrary initial position and can be
set to 0 for sake of comprehension). Then let h′ denote the first iteration such
that (` + h′ + Ek − 1) mod M ≡ j− 1 mod M (we shift the window of consecutive
stationary gang assignments of task τk to the border of the window of A∗i , i.e.,
the two consecutive stationary gang assignments intersect in the next iteration
for the first time. By the above condition it follows that

(` + h′) mod M ≡ (j− Ek) mod M. (3.17)
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We have to iterate further z assignments unil the index of the first processor in
the allocation of τk, i.e., (` + h′ + z) mod M ≡ (j + Ei − 1) mod M coincides with
the index of the last processor in the assignment of task τi. More formally, we
seek to find the smallest z > 0 such that:

(` + h′ + z) mod M ≡ (j + Ei − 1) mod M (3.18)(
(` + h′) mod M

)
+ (z mod M) ≡ (j + Ei − 1) mod M (3.19)

(j− Ek + z) mod M ≡ (j + Ei − 1) mod M by Eq. (3.17) (3.20)

which implies that z = Ei + Ek − 1, i.e., z many consecutive stationary gang
assignments yield an intersection of both tasks.

It is complex to determine whether or not τi exhibits self-suspension behaviour
with respect to the interference on τk, since this depends on the assignments of
all of τi’s higher-priority tasks. However, we can prove a lower-bound for the
number of assignments, which can have self-suspension behaviour and derive an
upper-bound by substracting that lower-bound from the number of all consecutive
assignments M, in the following Lemma 3.11 and Lemma 3.12.

Lemma 3.11. Let A∗k and A∗i be two consecutive stationary gang assigments of task τk
under analysis and a higher-priority task τi. If A∗k ⊆ A∗i then τi has no self-suspension
inducing behaviour with respect to τk according to Definition 3.9.

Proof. We prove this lemma by contradiction. Let τi have self-suspension inducing
behavior with respect to τk by assumption then according to Definition 3.9 there
exists a task τ` with higher priority than τi (and subsequently higher priority than
τk) such that A∗` ∩ A∗i 6= ∅ and A∗` ∩ A∗k = ∅. This implies that A∗k 6⊆ A∗i , which
contradicts the assumption A∗k ⊆ A∗i .

In the next lemma, we formally prove an upper-bound of the number con-
secutive stationary gang assignments of a task τk under analysis, in which a
higher-priority task τi has self-suspension inducing behavior with respect to task
τk.

Lemma 3.12. For a rigid gang task τk under analysis, there are at most
min {2Ek − 1, Ei + Ek − 1} many consecutive stationary gang assignments, in which
a higher-priority task τi has self-suspension behavior with respect to task τk.

Proof. For the requirement of the condition A∗k ⊆ A∗i to hold, it must be that
Ei ≥ Ek. Then it is evident that Ei − Ek many of the M consecutive stationary
assignments A∗k satisfy this necessary containment property.

Moreover from Lemma 3.10, we know that at most Ek + Ei− 1 many consecutive
stationary gang assignments cause an intersection of consecutive stationary
gang assignments of task τi and task τk, and can thus potentially have self-
suspension inducing behaviour. We hence substract max{Ei − Ek, 0}, namely the
number of consecutive stationary gang assignments in which self-suspension
behavior of τi is impossible, from the above. In the case that Ek ≤ Ei we have
(Ek + Ei − 1)− Ei + Ek = 2Ek − 1. Since 2Ek − 1 ≤ Ei + Ek − 1 implies that Ek ≤ Ei,
we can write min{2Ek − 1, Ei + Ek − 1}.
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The results from Lemma 3.10 and Lemma 3.12 will be used for the approxima-
tion, namely speedup factor analysis of Algorithm 1 and is described in-depth in
Section 3.3.4.2 and the following Section 3.3.4.3.

3.3.4.2 Consecutive Stationary Gang Assignment

In this section, we present an assignment algorithm, which is capable of pro-
viding provable performance guarantees with respect to an optimal rigid gang
scheduling algorithm by using the previously derived worst-case interference
analyses.

Partitioning Strategy. In the partitioning algorithm of normal tasks, several
approaches, namely first-fit, best-fit, or worst-fit are used to assign an element,
subject to partition, to a bin. All of these strategies are dependent on an order
of the elements that are subject to partitioning, i.e., each different ordering of
elements results in a different partitioning. In the context of scheduling algorithms
many strategies are common to obtain an ordering such as Largest-Utilization First
(LUF) or deadline-monotonic (DM) orderings.

Deadline Monotonic. We use deadline-monotonic priority assignment and index
the tasks in increasing deadline order. That is, task τi has a higher priority than
task τk if index i < k. Due to the additional restrictions described above, it is pos-
sible to prove interference bounds and in consequence approximation guarantees
in terms of schedulability for any stationary gang assignment algorithm, which
uses the following algorithm as a basis.

Algorithm 1 DM Stationary Rigid Gang Schedulability Analysis and Assignment.

1: Sort task set T such that Di ≤ Dj for i < j (ties are broken arbitrarily);
2: for k in {1, 2, . . . , n} do
3: for ` in {0, 1, . . . , M− 1} do
4: ψk(A`

k) := generate ψk given the candidate A`
k from Definition 3.11;

5: ψsus
k (A`

k) := transform from ψk(A`
k) using Definition 3.10;

6: if τk ∪ ψsus
k is schedulable according to any self-suspension aware

uniprocessor schedulability test (from Corollary 3.6, 3.7 and 3.8) then
7: assign A∗k ← A`

k;
8: break;
9: return no feasible consecutive stationary gang assignments can be found;

10: return feasible consecutive stationary gang assignment for each task;

Algorithm Design. We first sort the tasks according to the relative deadlines
to have a deadline-monotonic partitioning strategy. Starting from the highest-
priority task, i.e., shortest relative deadline, we iteratively consider the consecutive
stationary gang assignment candidates A0

k , A1
k , . . . , AM−1

k and check whether task
τk is schedulable for the considered consecutive stationary gang assignment.
If for some ` ∈ {0, 1, . . . , M− 1}, the candidate A`

k is feasible, the consecutive
gang assignment is determined for that task τk; otherwise, we move to the next
candidate. If none of the M possible consecutive gang assignments is feasible,
this assignment step fails and the algorithm returns failure.
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In Corollary 3.5, we assume that all stationary gang assignments A∗i are already
chosen for all tasks τi with higher priority than task τk. To apply Corollary 3.5 for
a worst-case response time analysis, the self-suspension induced interfering tasks
from Definition 3.9 and non self-suspending interfering tasks from Definition 3.5
must be obtained.

To facilitate an efficient implementation, we use a matrix representation to
indicate whether a task τi is assigned on processor Pj. Let ρ denote an |T|×|P|
binary stationary gang assignment matrix in which

ρ(i, j) :=

{
True Pj ∈ A∗i
False Pj /∈ A∗i

(3.21)

Given the matrix ρ, the algorithm constructs the interference matrix

Γ(i, j) :=

{
True Ai ∩ Aj 6= ∅

False otherwise
(3.22)

by the boolean matrix multiplication ρ · ρT, where ρT is the transpose matrix
of ρ. That is, the multiplication operation of two elements is replaced with the
logical and operation and the addition operation of two elements is replaced with
a logical or operation. More precisely, each entry in the interference matrix is
computed as follows:

Γ(i, j) =
M−1∨
m=0

ρ(i, m)∧ ρ(j, m)

where an entry Γ(i, j) is true only if task τi and task τj share at least one processor
in their stationary gang assignments. The asymptotic time-complexity for the
matrix multiplication is given by O(n2M) and the space complexity is given
by O(nM). The complexity can be improved by using a state-of-the art binary
matrix multiplication algorithm to sub-cubic complexity. The transformation of
the higher-priority tasks τi with respect to the task under analysis τk into ψk,
which is later needed to construct ψsus

k , can be done by the following operation:{
τi ∈ ψk if

∨i−1
`=0 Γ(`, i)∧ Γ(`, k)

τi /∈ ψk otherwise
(3.23)

Time Complexity. Hereinafter, the asymptotic time complexity of Algorithm 1

is elaborated on. The interfering task set generation in Line 4 requires O(i)
operations for each task τi for i ∈ {1, . . . , k− 1} and therefore O(k2) in total for
one invocation. In the subsequent transformation step in Line 5, it is required
to calculate the right-hand side of Eq. (3.8), which can either be done in O(1) if
only Ri − Ci is taken or O(i) if both terms are evaluated in Eq. (3.8) for each task
τi in the interfering task set ψk. In Line 6, the utilized schedulability test from
Corollary 3.6, Corollary 3.7, and Corollary 3.8 have O(kDk) complexity. After
considering the outer and inner loop in Line 2 and Line 3 and the deadline-
monotonic ordering, the overall time complexity is given by O(n3M + n2MDn).
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In this section, we derive firstly a pseudo-polynomial time sufficient schedulabil-
ity test in Theorem 3.13 and secondly a polynomial-time sufficient schedulability
test for Algorithm 1 in Theorem 3.14. Afterwards, we analyze the approximation
factor of Algorithm 1, namely the speed up factor with respect to any optimal rigid
gang scheduling algorithm in Theorem 3.16.

Theorem 3.13. A constrained-deadline rigid gang task τk := (Ck, Ek, Dk, Tk) ∈ T

is guaranteed to be feasibly schedulable by deadline-monotonic stationary rigid gang
scheduling according to Algorithm 1 on M identical processors if ∃t : 0 < t ≤ Dk such
that

Ck +
k−1

∑
i=1

min{2Ek − 1, Ek + Ei − 1} · Ci

M
+

k−1

∑
i=1

(Ek + Ei − 1) ·
⌈

t
Ti

⌉
Ci

M
≤ t. (3.24)

holds and the schedulability of the tasks τ1, . . . , τk−1 has already been verified, where the
tasks are indexed in priority order.

Proof. Let T := 〈τ1, . . . , τn〉 denote the priority ordered constrained-deadline rigid
gang task set and let the consecutive stationary gang assignments A∗1 , . . . , A∗k−1
of the higher-priority tasks τ1, . . . , τk−1 be determined, and let all task be verified
to be feasibly schedulable according to Algorithm 1.

Suppose that task τk is the first task such that Algorithm 1 can not find any fea-
sible consecutive stationary gang assignment A∗k for τk to be deemed schedulable.
Then it must be that all self-suspension aware uniprocessor schedulability test
from Corollary 3.6, 3.7 and 3.8 failed for all of the M possible consecutive station-
ary gang assignments A`

k ∈ Ak. Since any feasible suspension-aware uniprocessor
analysis can be used, we here choose the suspension as blocking based analysis from
Corollary 3.6, due to its simplicity. More formally, for each possible consecutive
stationary gang assignments A`

k for ` ∈ {0, . . . , M− 1}, the condition

Ck + ∑
τi∈ψsus

k (A`
k)

min{Ci, Si,k} +
⌈

t
Ti

⌉
Ci > t (3.25)

holds for all 0 < t ≤ Dk, where the transformed self-suspension aware task set
ψsus

k (A`
k) depends on the concrete consecutive stationary gang assignment A`

k as
is explained in detail in the previous Section 3.3.4.1.

Based on the failure assumption in Eq. (3.25) that no consecutive stationary
gang assignment A`

k for ` ∈ {0, 1, . . . , M− 1} suffices the schedulability condition,
a superimposed necessary condition is derived by summing up the terms in thea superimposed

necessary condition is
derived by summing

up the terms in the
left-hand side and the

right-hand side,
accordingly

left-hand side and the right-hand side, accordingly. This yields that for all times
0 < t ≤ Dk the following inequality holds.

MCk +
M−1

∑
`=0

∑
τi∈ψsus

k (A`
k)

min{Ci, Si,k} +
⌈

t
Ti

⌉
· Ci > Mt. (3.26)

Since only the first summand in Eq. (3.26) depends on self-suspension induced
behaviour, we split the inequality into two summands as follows

MCk +
M−1

∑
`=0

∑
τi∈ψsus

k (A`
k)

min{Ci, Si,k} +
M−1

∑
`=0

∑
τi∈ψsus

k (A`
k)

⌈
t
Ti

⌉
· Ci > Mt. (3.27)
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For the first summand in Eq. (3.27), we use the upper-bound for the number of
consecutive stationary gang assignments of τk with respect to any assignments
of higher-priority tasks τi in which at most min{2Ek − 1, Ek + Ei − 1} tasks have
self-suspension induced behaviour as stated in Lemma 3.12. In consequence, we
have that

M−1

∑
`=0

∑
τi∈ψsus

k (A`
k)

min{Ci, Si,k} ≤ ∑
τi∈ψk

min{2Ek − 1, Ek + Ei − 1} · Ci (3.28)

where in Eq. (3.28) we use the inclusion ψsus
k (A`

k) ⊆ ψk.

With respect to the second summand in Eq. (3.27), the upper bound for the
number of consecutive stationary gang assignments of A`

k that result in interfer-
ence from a higher-priority task τi ∈ ψsus

k (A`
k), irrespective of the already fixed

concrete assignment A∗i , from Lemma 3.10, we have that

M−1

∑
`=0

∑
τi∈ψsus

k (A`
k)

⌈
t
Ti

⌉
Ci ≤ ∑

τi∈ψk

(Ek + Ei − 1) ·
⌈

t
Ti

⌉
Ci (3.29)

where in Eq. (3.29) we use the inclusion property ψsus
k (A`

k) ⊆ ψk.

By injecting the results from Eq. (3.29) and Eq. (3.28) into Eq. (3.27), we have
the following necessary condition

Ck +
k−1

∑
i=1

min{2Ek − 1, Ek + Ei − 1} · Ci

M
+

k−1

∑
i=1

(Ek + Ei − 1) ·
⌈

t
Ti

⌉
Ci

M
> t. (3.30)

for the non-schedulability of task τk according to Algorithm 1. Conversely, the
negation of Eq. (3.30) yields a sufficient schedulability test for task τk when using
Algorithm 1, which concludes the proof.

The sufficient schedulability analysis in Eq. (3.24) has pseudo-polynomial
time complexity. In the following theorem, we show how to derive a sufficient
polynomial time test by reduction of Eq. (3.24) to an integer-linear program and integer-linear program

deriving a hyperbolic bound using the k2U-Framework by Chen et al. [CHL15b]. k2U framework
While such constructed sufficient polynomial time tests are more pessimistic, the
complexity reduction can be beneficial in contexts of online admission tests and
is thus conducted in the following.

Theorem 3.14. A constrained-deadline rigid gang task τk := (Ck, Ek, Dk, Tk) ∈ T

is guaranteed to be feasibly schedulable by deadline-monotonic stationary rigid gang
scheduling according to Algorithm 1 on M identical processors if the following condi-
tion holds(

C′k
Dk

+ 1
)
·

k−1

∏
j=1

(
Ek + M− 1

M
·

Cj

Tj
+ 1
)
≤ 2 (3.31)

and tasks τ1, . . . , τk−1 are already verified to be feasibly schedulable.

Proof. Let the priority-ordered partial task set 〈τ1, . . . , τk−1〉 ⊆ T be partitioned
into T1 := {τi ∈ 〈τ1, . . . , τk−1〉 | Ti ≥ Dk} and T2 := {τi ∈ 〈τ1, . . . , τk−1〉 | Ti < Dk}.
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Starting from the sufficient condition in Eq. (3.24) from Theorem 3.13 and the
task set partitioning yields

C′k := Ck + ∑
τi∈T1∪T2

min{2Ek − 1, Ek + Ei − 1} · Ci

M
+ ∑

τi∈T1

(Ek + Ei − 1) · Ci

M

+ ∑
τi∈T2

(Ek + Ei − 1)
⌈

t
Ti

⌉
Ci

M
≤ t.

(3.32)

Clearly any arbitrary number of evaluated test points in the range (0, Dk]
that suffice Eq. (3.32) imply schedulability. For sake of simpler notation, assume
that |T2|= k − 1 and 〈τ1, τ2, . . . , τk〉 is indexed such that τi ≺ τj if the task’s
last release times (no later than Dk) satisfy ti ≤ tj, where ti := bDk/Tic · Ti for
i ∈ {1, . . . , k− 1} and tk = Dk. Then τk is schedulable if

∃tj ∈ {t1, t2, . . . , tk} C′k +
k−1

∑
i=1

Ek + Ei − 1
M

·
⌈

tj

Ti

⌉
Ci ≤ tj (3.33)

holds. Since each ti denotes the last release time at or before Dk, we know that
the next release ti + Ti > Dk must be strictly more than the deadline. Moreover
since tk = Dk ≥ tj we have that ti + Ti > Dk ≥ tj or ti

Ti
+ 1 ≥ tj

Ti
equivalently. Since

the left-hand side is an integer due to the definition of ti and the fact that the
ceiling function is a monotone, we have that ti

Ti
+ 1 ≥

⌈
tj
Ti

⌉
.

The ordered set 〈t1, . . . , tk〉 is split at tj into 〈t1, . . . , tj−1〉 and 〈tj, . . . , tk〉 such
that tj > ti for ti ∈ 〈t1, . . . , tj−1〉 and tj ≤ ti for ti ∈ 〈tj, . . . , tk〉. This together with
the before observation yields

C′k +
j−1

∑
i=1

Ek + Ei − 1
M

·
⌈

tj

Ti

⌉
Ci +

k−1

∑
i=j

Ek + Ei − 1
M

·
⌈

tj

Ti

⌉
Ci (3.34)

≤C′k +
j−1

∑
i=1

Ek + Ei − 1
M

·
(

1 +
ti

Ti

)
· Ci +

k−1

∑
i=j

Ek + Ei − 1
M

· ti

Ti
· Ci (3.35)

=C′k +
k−1

∑
i=1

Ek + Ei − 1
M

· ti

Ti
· Ci +

j−1

∑
i=1

Ek + Ei − 1
M

· Ci (3.36)

≤C′k +
k−1

∑
i=1

Ek + Ei − 1
M

· ti · ui +
j−1

∑
i=1

Ek + Ei − 1
M

· ti · ui (3.37)

Since Ei ≤ max{E1, . . . , Ek−1}, we have that τk is schedulable if ∃tj ∈ {t1, t2, . . . , tk}
such that

C′k +
k−1

∑
i=1

Ek + max{E1, . . . , Ek−1} − 1
M

tiui +
j−1

∑
i=1

Ek + max{E1, . . . , Ek−1} − 1
M

tiui ≤ tj

(3.38)
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holds. By construction, we know that ti ∈N and the idea of the k2U framework
is to solve the following optimization problem

min C∗k (3.39)

C∗k +
k−1

∑
i=1

α · t∗i · ui +
j−1

∑
i=1

β · t∗i · ui ≥ t∗j ∀j ∈ {1, . . . , k} (3.40)

t∗j ≥ 0 ∀j ∈ {1, . . . , k} (3.41)

by using α = β = Ek+max{E1,...,Ek−1}−1
M . Intuitively, the least upper-bound for an

admissible C∗k is searched for such that any C∗k less than that value implies the
existence of some tj ∈ {t1, . . . , tk}, which satisfies Eq. (3.32) that is a sufficient
schedulability test. The optimization problem can be further conditioned, since
t∗k = Dk is fixed, we can evaluate j = k and directly write

C∗k = Dk −
k−1

∑
i=1

(α + β) · t∗i · ui (3.42)

and the integer-linear program (ILP) is henceforth posed as

max
k−1

∑
i=1

(α + β) · t∗i · ui (3.43)

tk −
k−1

∑
i=j

β · t∗i · ui ≥ t∗j ∀j ∈ {1, . . . , k− 1} (3.44)

t∗j ≥ 0 ∀j ∈ {1, . . . , k− 1} (3.45)

For j = k− 1 Eq. (3.44) yields

t∗k − t∗k−1 = β · t∗k−1 · uk−1 =⇒
t∗k

t∗k−1
= 1 + βuk−1 (3.46)

and injecting this result into Eq. (3.42) yields

C∗k = t∗k −
α + β

β
·

k−1

∑
i=1

t∗i+1 − t∗i = t∗k −
α + β

β
· (t∗k − t∗1) (3.47)

C∗k
t∗k

= 1− (
α

β
+ 1) · (1− t∗1

t∗k
) = 1− (

α

β
+ 1) ·

1− 1

∏k−1
j=1 β

Cj
Tj

+ 1

 (3.48)

=
(

α

β
+ 1
)
· 1

∏k−1
j=1 β

Cj
Tj

+ 1
− α

β
(3.49)

In consequence, we conclude that if

C′k
Dk
≤
(

α

β
+ 1
)
· 1

∏k−1
j=1 β

Cj
Tj

+ 1
− α

β
(3.50)

then the existence of a tj ∈ {t1, . . . , tk} in Eq. (3.32) is guaranteed and thus the
schedulability.
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After substitution, we reach(
C′k
Dk

+ 1
)
· ∏

τi∈T2

(
Ek + max{E1, . . . , Ek−1} − 1

M
·

Cj

Tj
+ 1
)
≤ 2 (3.51)

where

C′k := Ck + ∑
τi∈T

min{2Ek − 1, Ek + Ei − 1} · Ci

M
+ ∑

τi∈T1

(Ek + Ei − 1) · Ci

M
(3.52)

which proves the theorem.

3.3.4.3 Approximation Analysis

In this section, we seek to evaluate the approximation quality of our proposed
sporadic fixed-priority constrained-deadline stationary gang task scheduling algo-
rithm with the consecutive stationary gang assignment algorithm in Section 3.3.4.

Definition 3.12. A schedulability test A for a scheduling algorithm is a mapping from
the task set to the binary decision of whether the task set is guaranteed to be feasibly
schedulable by the scheduling algorithm, i.e.,

A : T 7→ {feasible, infeasible} (3.53)

In contrast to classic approximation algorithm analyses that quantify the ap-
proximation quality in terms of the output of the algorithms, we here quantify the
approximation quality in terms of inputs to the schedulability tests, i.e., resource
augmentation factors such as processor speeds, which are referred to as speed-up
factors in the research literature. This difference is due to the fact that the outputspeed-up factors

the output of a
schedulability test is a

binary yes or no
answer, which is not

sensible to approximate

of a schedulability test is a binary yes or no answer, which is not sensible to
approximate.

Definition 3.13 (Speed-Up Function). A speed-up function γ : T 7→ T′ is a scaling
that is applied task-wise to all parameters sensitive to speed, e.g., γ(τi = (Ci, . . . )) =
(Ci/s, . . . ) where s ∈ R>0 is a constant. The speed is referred to as the unit speed if
s = 1.

Speed-up factors relate the performance of two schedulability tests to another,
i.e., let A 6= B denote two sufficient schedulability tests, which are suitable for
the task set T then B is said to have a speed-up factor s with respect to A if for
any legal task set T – under the task model – the following implication holds.

A(T) = feasible =⇒ B(γ(T)) = feasible (3.54)

By application of the inverse speed function γ−1(·) to the argument, the direc-
tion of implication changes to

A(γ−1(T)) = feasible =⇒ B(T) = feasible (3.55)

Often times, the speed-up factor is stated with respect to a hypothetical exact
optimal schedulability test A∗ for a class of scheduling algorithms. In our case,
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we are interested in an optimal schedulability test for rigid gang scheduling
algorithms of sporadic constrained-deadline task sets upon M identical proces-
sors. Let A∗gang(T) denote the exact schedulability test of an optimal rigid gang
scheduling algorithm, and let A∗ord(T) denote the exact optimal schedulability
test of an optimal scheduling algorithm if the gang constraint is lifted, i.e., each
thread in a gang can execute as an individual ordinary task. Our proof strategy is
to first show that for any sporadic constrained-deadline rigid gang task set T, the
following implications hold

A∗gang(T) = f easible =⇒ A∗ord(T) = f easible =⇒ Lemma 3.15 applied to T (3.56)

Secondly, we show by contrapositive in Theorem 3.16 that if there exists a
task set T such that Theorem 3.13 is infeasible then Lemma 3.15 applied to
γ−1(T) is also infeasible. With reference to Eq. (3.56), we have then proved that
A∗gang(γ−1(T)) is also infeasible, which then yields the speed-up factor. To use
the necessary condition of A∗ord is unfortunately pessimistic, however a necessary
condition for A∗gang is not known.

Lemma 3.15. A sporadic constrained-deadline rigid gang taskset T is not schedulable by
any multiprocessor scheduling algorithm by running the M processors at any processing
speed s > 0 if the following condition holds:

max

{
max
τi∈T

Ci

Di
, ∑

τi∈T

Ei · Ci

M · Ti
, max

t>0
∑

τi∈T

max
{

0,
⌊

t− Di

Ti

⌋
+ 1
}
· Ci · Ei

M · t

}
> s (3.57)

Proof. We prove each of the condition in the above max operator individually.

Since the Ei-many sub-jobs of each rigid gang task must execute simultaneously
and each sub job has to execute for at most Ci time units, we know that a rigid
gang task τi is unschedulable at processor speed s if Ci > s · Di or Ci/Di > s
respectively. Clearly if at least one task is not schedulable then the complete task
set is unschedulable.

The second condition is straightforward since the total utilization is clearly a
lower-bound for schedulability.

A necessary condition for the schedulability of the task set is to ensure that
in any interval [t0, t0 + t) for t > 0, the total execution time demand of all jobs
that arrived before t0 but have deadlines at or before time t0 + t does not exceed
the maximal theoretical execution capacity in the interval [t0, t0 + t). As we focus
on constrained-deadline sporadic rigid gang task systems, we can quantify the
necessary condition by the maximal demand that each gang task can demand
in any time interval of length t > 0. Due to the co-scheduling constraint to
execute all sub jobs simultaneously, this is identical to Ei-many superimposed
demand-bound functions described by Baruah et al. in [BMR90], i.e.,

db fi(t) := Ei ·max
{

0,
(⌊

t− Di

Ti

⌋
+ 1
)
· Ci

}
(3.58)

The exact maximal theoretical execution capacity for rigid gang tasks may be less
than s · t ·M due to the co-scheduling constraint. The former however provides
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a safe bound in the sense that if the total execution time demand is larger than
s · t ·M then it is also larger than an exact maximal theoretical execution capacity
for rigid gang tasks. In conclusion, we have that if there exists t > 0 such that
∑τi∈T db fi(t) > s · t ·M then at least one job of at least one task misses its deadline,
i.e., the task set is unschedulable.

Note that the necessary condition in Eq. (3.57) is identical to the necessary
condition for schedulability of classical multiprocessor scheduling for ordinary
constrained-deadline task systems [Che16; CBU18]. That is, as if each sporadic
rigid gang task τi is decomposed into Ei ordinary sporadic real-time tasks, each
with WCET equal to Ci, relative deadline equal to Di, and minimum inter-arrival
time equal to Ti.

Theorem 3.16. Let αi = min{2Ek − 1, Ek + Ei − 1}/Ei and βi = (Ek + Ei − 1)/Ei.
If Algorithm 1 does not return a feasible stationary gang assignment for some task set
T, then no multiprocessor scheduler can find a feasible rigid gang schedule when all
M processors are slowed down by 1/(1 + α + 2 · β) where α ≥ αi and β ≥ βi for
i ∈ {1, . . . , k− 1}.

Proof. By the contrapositive of the sufficient condition Eq. (3.24) in Theorem 3.13

for the schedulability of task τk using Algorithm 1, we have that for all times
t ∈ (0, Dk] and thus for t = Dk in particular

Ck +
k−1

∑
i=1

min{2Ek − 1, Ek + Ei − 1} · Ci

M
+

k−1

∑
i=1

(Ek + Ei − 1) ·
⌈

Dk

Ti

⌉
Ci

M
> Dk (3.59)

holds. By definition of the ceiling function, we have
⌈

Dk
Ti

⌉
≤ 1 + Dk

Ti
, which yields

Ck +
k−1

∑
i=1

αi ·
Ei · Ci

M
+

k−1

∑
i=1

βi ·
(

Dk

Ti
+ 1
)

Ci · Ei

M
> Dk

=Ck +
k−1

∑
i=1

(αi + βi) ·
Ei · Ci

M
+

k−1

∑
i=1

βi ·
Dk

Ti

Ci · Ei

M
> Dk (3.60)

for αi := min{2Ek − 1, Ek + Ei − 1}/Ei and βi := (Ek + Ei − 1)/Ei respectively.
Dividing both sides of Eq. (3.60) by the relative deadline Dk, yields

Ck

Dk
+

k−1

∑
i=1

(αi + βi) ·
Ei · Ci

M · Dk
+

k−1

∑
i=1

βi ·
Ci · Ei

M · Ti
> 1 (3.61)

Let 0 < αi ≤ α and 0 < βi ≤ β then we have that

Ck

Dk
+ (α + β) ·

k−1

∑
i=1

Ei · Ci

M · Dk
+ β ·

k−1

∑
i=1

Ci · Ei

M · Ti
> 1. (3.62)

By replacing Ck
Dk

, ∑k−1
i=1

Ei ·Ci
M·Di

and ∑k−1
i=1

Ci ·Ei
M·Ti

in Equation (3.62) with the maximum
of these three values, we obtain

max

{
Ck

Dk
,

k−1

∑
i=1

Ei · Ci

MDi
,

k−1

∑
i=1

Ci · Ei

M · Ti

}
>

1
(1 + α + 2 · β)

. (3.63)
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Further, since Di ≤ Dk due to deadline-monotonic scheduling policy for i =
1, 2, . . . , k− 1, we know that

max
t>0

{
k−1

∑
i=1

max
{

0,
⌊

t− Di

Ti

⌋
+ 1
}
· Ci · Ei

Mt

}
(3.64)

≥
k−1

∑
i=1

max
{

0,
⌊

Dk − Di

Ti

⌋
+ 1
}
· Ci · Ei

MDk
≥

k−1

∑
i=1

Ci · Ei

MDk
. (3.65)

Therefore, by the above discussions and the necessary condition in 3.15, we know
that

max

{
Ck

Dk
, max

t>0

{
∑

τi∈T

max
{

0,
⌊

t− Di

Ti

⌋
+ 1
}

Ci · Ei

M · t

}
, ∑

τi∈T

Ci · Ei

M · Ti

}
(3.66)

>
1

(1 + α + 2β)
= γ(·) =

1
s

. (3.67)

As a result the speed-up factor s is given by 1 + α + 2β.

An immediate observation is if the gang sizes Ei for i ∈ {1, . . . , k− 1} satisfy
the inequality Ek ≤ η · Ei. In that case, we have

αi := min{2Ek − 1
Ei

,
Ek + Ei − 1

Ei
} ≤ min{2η − 1

M
, η + 1− 1

M
} (3.68)

βi :=
Ek + Ei − 1

Ei
≤ η + 1− 1

M
(3.69)

and therefore

s ≤ 1 + 2 min{2η − 1
M

, η + 1− 1
M
} + η + 1− 1

M
(3.70)

= min{4 + 3η, 3 + 4η} − 2
M

(3.71)

An observation from the above parametric speedup factor is that the best case best case in terms of
the speed-up factor is if
the gang sizes of
lower-priority tasks are
a lot smaller than the
gang sizes of the
higher-priority tasks

in terms of the speed-up factor is if the gang sizes of lower-priority tasks are a
lot smaller than the gang sizes of the higher-priority tasks. However even in the
extreme case Ek = 1 and Ei = M we have

s ≤ 3 < 3 +
2
M
≤ min{4 + 3η, 3 + 4η} − 2

M
(3.72)

Please note that the provided speedup factor is not tight and only provides
an upper-bound. However, it can be observed that the approach works provably it can be observed that

the approach works
provably better for
smaller gang sizes

better for smaller gang sizes.

A number of potential pitfalls that can occur when the speedup factor metric
is used to describe the performance of an algorithm has been detailed by Chen
et al. [CBH+17a], most notably for our situation that a good speedup factor
does not necessarily imply a good overall performance but a good worst-case
performance. This becomes problematic, when the algorithm is designed with
a speedup factor in mind, e.g., by introducing restrictions that decrease average
performance but ensure a certain level of performance in an artificial worst-case
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setting. We note that our provided algorithm in Section 3.3.4 does not have
any of the potential pitfalls regarding the analysis of speedup factors discussed
in [CBH+17a]. However, our heuristic restriction which assigns the gang to a
consecutive group of processors can be a source of pessimism. Whether the
optimal solution under this restriction has good speedup factors or not is an open
problem. Note that the provided speedup factor is parametric with respect to the
size of the gangs (see [CBH+17a] for further explanation and motivation for the
concept of parametric speedup factors).

3.3.5 evaluation

In this section, we present evaluations with synthetically generated gang task
sets to evaluate our proposed algorithm (denoted as DM-OUR here) against the
current state-of-the art by Dong and Liu [DL17] for sporadic implicit-deadline
gang task systems under global EDF. Specifically, we compare to the optimized
schedulability test in [DL17], denoted as DONG-OPT, based on the acceptance
ratio, i.e., the number of schedulable task sets compared to the number of tested
task sets.

We also evaluate our algorithm for sporadic constrained-deadline gang task
systems under different settings of gang sizes, but without comparison due to
the absence of research results for constrained-deadline gang tasks. In these
experiments, we seek to explore how much the imposed constraints in terms of
stationary gang assignments and fixed-priority scheduling algorithms impact the
schedulability of the tested task sets.

3.3.5.1 Experimental Setup

We generate synthetic task sets of sporadic gang tasks with implicit- and constrained-
deadlines in the following way. To generate the task sets, we use the UUniFast
algorithm [BB05] to draw n samples of xi = Ei · Ci/MTi uniform at random
where xi ∈ (0, 1] such that ∑n

i=1 xi = x for x ∈ {0.05, 0.1, 0.15, . . . , 1}. Moreover,
the periods Ti are drawn from a log-uniform distribution in the range of [10, 100]
ms.

The generated task sets are classified by the range of admissible gang sizes into
light, moderate, and heavy. We differentiate two different settings for these gang
sizes:

1. Setting I - with variable gang sizes: In the first setting, each light gang task
can have a gang size in [1, M/8], a moderate task can gang size in [1, M/4],
and a heavy task can have gang size in [M/8, M/2].

2. Setting II - with fixed gang sizes: In this setting, a fixed gang size number
is assigned to each task of a category. Namely, each light task has gang size
M/8, each moderate task has gang size M/4 and each heavy task has a gang
size 3M/8.
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We avoid the generation of too heavy tasks, since in these cases the scheduling
problem is degraded to uniprocessor scheduling.1 With respect to constrained-
deadlines, we only demonstrate our proposed algorithm by a case of variable
gang sizes (Setting I) in Figure 3.9 and a case of fixed gang sizes (Setting II) in
Figure 3.10.

3.3.5.2 Evaluation Results
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Figure 3.6: Acceptance ratio for light sporadic implicit-deadline gang task sets where the
gang size of each task is chosen according Setting II.
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Figure 3.7: Acceptance ratio for moderate sporadic implicit-deadline gang task sets where
the gang size of each task is chosen according to Setting I.

1 Dong and Liu [DL17] also performed their evaluations for gang size in [5M/8, M] for all tasks. This
configuration is not considered here as this setup implies that there is no possibility to concurrently
execute two gang tasks in parallel due to the imposed gang size. The problem becomes equivalent
to uniprocessor scheduling by viewing all processors as one virtual group. In this case, preemptive
EDF is the optimal solution and the classical timing analysis for uniprocessor EDF scheduling can
be applied.
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Figure 3.8: Acceptance ratio for heavy sporadic implicit-deadline gang task sets where
the gang size of each task is chosen according to Setting I.

3.3.5.3 Evaluation results for implicit-deadline task sets

For sporadic implicit-deadline gang task systems, we compare our algorithm
(DM-OUR) with the approach by Dong and Liu [DL17] (DONG-OPT) under the
setting with variable gang sizes, in which each configuration is evaluated with
100 task sets and 20 tasks for each task set. In all conducted experiments shown
in Figures 3.6, 3.7, and 3.8, our algorithm DM-OUR outperforms DONG-OPT for
all evaluated scenarios under the setting with variable gang sizes. The most sig-
nificant improvement of DM-OUR compared with DONG-OPT is demonstrated
for the moderate task set in Figure 3.7 where up to 40% can be achieved for 50%
normalized utilization. The smallest improvement can be observed for heavy gang
task sets, where DM-OUR slightly outperforms DONG-OPT. This is due to the
fact that the heavier the task sets are, the more similar the schedulability is to
the uniprocessor schedulability problem. This also implies that the stationary
gang scheduling has less choices for gang assignments. Since EDF is an optimal
uniprocessor schedulability, the trouble to deal with the heavy gang task sets
comes from the adopted schedulability tests. For DM-OUR, we have to consider
more tasks in Ψk and for DONG-OPT their analysis becomes less pessimistic as
the multiplicative of 1/M in their analysis decreases.

3.3.5.4 Evaluation results for constrained-deadline task sets

For constrained-deadlines, we show our schedulability test for light, moderate,
and heavy task sets for gang sizes compliant to Setting I in Figure 3.9 and
gang sizes compliant to the Setting II described in Figure 3.10, in which each
configuration is tested with 100 task sets and 20 tasks per task set. The behavior
of Setting I is almost similar to the results in Figures 3.6, 3.7, and 3.8 but with
lower acceptance ratios.

For constrained-deadlines with fixed numbers of gang sizes as explained
in Setting II, a similar trend can be observed. However, moderate as well as
heavy task sets almost show the same acceptance ratio and the acceptance ratio
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Figure 3.9: Acceptance ratio for light sporadic constrained-deadline gang task sets accord-
ing to Setting I. The deadline is chosen randomly between 70%− 100% of the
minimum inter-arrival time.
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Figure 3.10: Acceptance ratio for light, moderate, heavy sporadic constrained-deadline gang
task sets according to Setting II. The deadline is chosen randomly between
70%− 100% of the minimum inter-arrival time.

of light tasks also increases. This further supports the assumption, that the
increased number of tasks with self-suspension behaviour decreases the overall
schedulability. This is explained by the fact that it is less likely to have self-
suspension behaviour of interfering tasks if all tasks have the same gang size.

3.3.5.5 Summary of Evaluation Results

In summary, the evaluations demonstrate, that the restriction of fixed-priority
stationary gang scheduling does not significantly sacrifice the schedulability of
sporadic implicit-deadline rigid gang task systems, in comparison to the state-
of-the-art. In contrast, the schedulability could be improved slightly without
even considering performance benefits of implementations in real systems, e.g.,
reduced context switches and migrations.
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3.4 simultaneous progression switching proto-
cols

Inter-core communication is a central challenge in many-core systems for which
Network-on-chips (NoCs) have been demonstrated to scale well and to provide
good overall performance. However, not only the distributed structure, but alsonot only the

distributed structure,
but also the link

switching of NoCs
have imposed a great

challenge in the design
and analysis for

real-time systems

the link switching of NoCs have imposed a great challenge in the design and
analysis for real-time systems, where timing verification is mandatory. NoC
protocols like wormhole switching are designed with scalability and flexibility
in mind, thus the existing link switching protocols usually consider each single
link to be scheduled independently. The flexibility of such link-based arbitration
allows each packet to be distributed over multiple routers but also increases the
number of possible link states, i.e., the number of flits in a buffer, which have to be
considered in the worst-case timing analysis for real-time systems. In contrast, a
shared bus is very simple and precisely analyzable with respect to the worst-case
response time of each injected message; however, a bus does not scale well.

In this section, we present a novel timing predictable architecture and designnovel timing
predictable architecture

and design of a
two-dimensional NoC

of a two-dimensional NoC system, which is suitable for real-time multicore
systems. More precisely, to achieve timing predictability by design, we propose a
family of less flexible switching protocols, called simultaneous progression switching
protocols (SP2), in which the links used by a flow either all simultaneously transmit
one flit (if it exists) of this flow or none of them transmits any flit of this flow.
Conceptually, our proposed design can be interpreted as a time-multiplex of
shared bus systems, where the bus consists of a subset of links of the network-on-
chip that may change over time. Based on this simultaneous progression property,
we reduce the schedulability of the NoC to the discrete time uniprocessor self-
suspension scheduling problem, using the same insight presented for stationary
rigid gang scheduling presented the previous Section 3.3. By implementation
of the protocol and the routers, any non-minimal route is deadlock-free, which
helps to make use of the path diversity.

The remainder of this section is organized as follows. In Section 3.4.1, the for-
mal model and problem statement of our studied network-on-chip is presented.
In Section 3.4.2, we formally elaborate the mismatch of the uniprocessor execu-
tion model with the pipelined transmission model of flits in network-on-chips
and motivate and explain the simultaneous progression property of SP2 hereinafter.
Following, in Section 3.4.3, a conceptual implementation for the SP2 protocol is
constructed and described. In Section 3.4.5 a worst-case traversal time for each
flow under analysis is presented. Lastly, in Section 3.4.6, the conceptual imple-
mentation of the SP2 protocol is evaluated by means of numerical experiments
and theoretical considerations.
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3.4.1 system model & problem definition

Network-on-Chips (NoCs) are characterized by the topology, routing protocol,
arbitration, buffering, flow control mechanism, and switching protocol.2 In this
dissertation, we consider a NoC as a collection of cores A, routers V, and links L.
Each router is connected to at least one other router by two physically separate
simplex links, i.e., up-link and down-link. We assume that all the routers, and
links are homogeneous, i.e., the transmission rate and processing capability are
identical, except for the position dependent number of ports of the routers.

Throughout our analyses, we assume that the cores and switches are synchro-
nized perfectly with respect to time, which means that there is no clock drift in the
NoC. We will explain later how the global synchronization can be achieved in our
protocol implementation. Otherwise, the clock drift must be considered carefully.
One solution is to introduce additional delays and interferences to pessimistically
bound the impact due to clock drifts. Moreover, we assume that the NoC is a
discrete time system, i.e., the NoC operates in the granularity of a fixed time unit NoC operates in the

granularity of a fixed
time unit that is
referred to as cycle

that is referred to as cycle. Strongly related is the term phit and flit, which denote
the integral transmission unit in the network and corresponds to the number of
bits that can be transferred in a single cycle.

3.4.1.1 Messages and Periodic/Sporadic Flows

A periodic (sporadic) flow τi ∈ T generates an infinite sequence of flow instances,
called messages, with the following parameters:

• Ti is the minimum inter-arrival time or period of the flow τi, i.e., for a
periodic flow one message is released exactly every Ti time units and for a
sporadic flow two subsequent messages are separated by at least Ti.

• Li is an arbitrary static routing path of the flow τi, i.e., li1 , li2 , . . . , liηi
is the arbitrary static routing

pathordered sequence of the ηi links, which a message of τi has to be transmitted
on. We assume that a physical link cannot be used more than once in the
static routing path. Ci ∈N is the largest

(worst-case) number of
phits of any message

• Ci ∈N is the largest (worst-case) number of phits of any message generated
by flow τi. Please recall that phit-many bits are transmitted over each link in
the network in a cycle. Therefore all temporal analyses and considerations
are conducted with respect to cycles.

• Di ∈ N is the relative deadline of the flow τi in cycles. That is, when a
message is injected at time ai, its absolute deadline is ai + Di, at which the absolute deadline is

ai + Di, at which the
last phit of the message
has to reach the
destination

last phit of the message has to reach the destination. Our protocols are not
restricted to any specific relation of the minimum inter-arrival time and the
relative deadline Di, but our timing analysis focuses on constrained-deadline
flows, where for each flow Di ≤ Ti is satisfied.

2 Our notation of flows is equivalent to tasks and our notation of messages is equivalent to jobs in the
classical notation of the real-time systems community.
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3.4.1.2 Problem Definition

A first analytical approach to determine the worst-case response time of spo-
radic traffic flows in wormhole switched fixed-priority network-on-chips was
given by Mutka [Mut94] and Hary and Ozguner [HO97]. Both of them are based
on the schedulability analysis for uniprocessor sporadic real-time tasks under
fixed-priority scheduling developed in [LSD89; JP86]. To analyze the worst-case re-
sponse time of the flow τi, they considered the complete path Li as a single shared
resource, i.e., a uniprocessor. This shared resource may not always be available
for τi, and they modeled the unavailability by only considering the higher-priority
flows that use any link in Li, called direct interference. They concluded that thedirect interference

problem is equivalent to the fixed-priority uniprocessor scheduling, which was
disproved by Kim et al. [KKH+98], who showed that the flow τi can suffer from
the interference due to flow τj even if Li and Lj have no intersection, called
indirect interference. By extending the notion of interference sets developed by Kimindirect interference

et al. [KKH+98], Lu et al. [LJS05] proposed to discriminate between flows that
could not interfere with each other to reduce the pessimism of the analysis.

However, both of the approaches in [KKH+98; LJS05] assume that the syn-
chronous release of the first messages of the sporadic real-time flows is the
worst-case, i.e., similar to the critical instant theorem in classical uniprocessor
fixed-priority scheduling proposed. This statement was later disproved in 2008 by
Shi and Burns [SB08], where jitter terms were added to model the asynchronous
release of the first messages of the sporadic real-time flows. Based on the results
of this work, Kashif and Patel proposed a link-based analysis called stage-level
analysis [KGP14; KP16] to achieve a tighter analysis. Both analyses were proved
to be unsafe by Xiong et al. [XLW+16] using simulations. It was discovered that a
flit of a higher-priority flow may induce interference more than once, i.e., on mul-
tiple switches, thus rendering the conjectures made by Shi and Burns [SB08] and
Kashif and Patel [KGP14; KP16] false. This behavior is referred to as multi-point
progressive blocking by Indrusiak et al. [IBN18]. The state of the art with respectmulti-point progressive

blocking to fixed-priority wormhole switched networks-on-chips with infinite buffers is
represented by [IBN16; XWL+17]. Unfortunately, the infinite buffer assumptioninfinite buffer

assumption is
infeasible in real

systems, thus
back-pressure effects

that occur due to
limited buffer sizes in

the switches have to be
considered

is infeasible in real systems, thus back-pressure effects that occur due to limited
buffer sizes in the switches have to be considered. In the work of Indrusiak et
al. [IBN18], the authors incorporate buffer sizes into the worst-case response time
analysis. They “chose to provide intuitions, insight and experimental evidence on the
proposed analysis and its improvements, rather than theorems or proofs.” Thus, further
counterexamples may be found. Nikolíc et al. [NTI+19] presented an improved
analysis over the results in[IBN18; XWL+17].

Problem Definition. The fact that almost all proposed analyses have been found
to be flawed, suggests that the scheduling algorithm and architecture are toothe scheduling

algorithm and
architecture are too

complex to be
reasonably analyzed

complex to be reasonably analyzed. Further evidence for this claim is that in
the analyses provided by Indrusiak et al. [IBN18], increased buffer sizes lead to
increased worst-case response times. We consider the interrelated problem of
the scheduler design and the corresponding scheduling analysis with respect to
real-time constraints.
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Scheduler Design. The fundamental algorithmic complexity of the NoC schedul-
ing problem results from the underlying job shop scheduling problem with fixed
machines, which was shown to be NP-hard for three or more jobs by Sotskov job shop scheduling

problem with fixed
machines

et al. [SS95]. The classical job shop scheduling problem is defined by a set of
machines M, a set of Jobs J, and a set of operations O. Each job J consists of a
sequence of nj operations Oj1, Oj2, . . . Onj, which need to be scheduled in that
order. For each operation Ojk, Pjk units of time are required for the processing on
a dedicated machine Mkj with Mjk 6= Mjk′ for k 6= k′. Given a problem instance
and a constructed schedule, the makespan of that schedule refers to the latest
finishing time of all operations O. In this job shop scheduling variant, each job
J is given a set of machines Mj ⊆ M, which the job needs to be processed on
simultaneously.

The connection between the NoC scheduling problem and the above makespan
job shop scheduling problem with fixed machines is as follows. Each hard real-
time message (defined as an instance of a flow) in the NoC has to be successfully
transmitted from its source to its destination before its deadline. Consider the
special case of a flow set T such that all periodic flows have the same period.
Further, let the message of a flow τj be given by a sequence of nj flits that
correspond with the operations Oj1, Oj2, . . . Onj and the processing times Pjk
respectively. Moreover, we associate the machines Mj with the links used in the
route for each flow. Then, the flow set T is schedulable if a schedule with a
makespan, which is no more than the flows’ periods is found.

The rigid gang scheduling problem and the NoC, i.e., job shop, scheduling rigid gang scheduling
problem and the NoC,
i.e., job shop,
scheduling problem are
related

problem are related, they differ however in the sense that in a NoC the links used
by a flow have to be defined from the source node to the destination node, i.e.,
a specific subset of machines must be used where as in gang scheduling any
subset of machines can be used. The studied scheduler design problem attempts scheduler design

problemto answer the question of how the switching mechanism (scheduling algorithm)
should be designed such that:

• The progression model provably matches with the execution model of
uniprocessors;

• real-time guarantees can be formally verified;

• routing does not have to obey minimal-path routing, or specific deadlock
avoidance schemes, and can thus be optimized with respect to real-time
constraints.

Schedulability Test. Analogously, the schedulability test problem studied in this
paper is defined as follows: We are given a NoC, defined as a collection of cores
A, routers V, and links L. For a given set T of sporadic or periodic flows on
the NoC and a switching mechanism, the objective is to validate whether the
messages (instances of the flows) can meet their deadlines.

3.4.2 simultaneous progression property

In this section, we formally show why the link-based arbitration problem in
wormhole switched network-on-chip does not match the uniprocessor execution
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Figure 3.11: Progressions of a message which involves 2 cores and 2 routers, i.e., 3 links,
when Ci = 10. The numbers associated with an edge indicate the number
of buffered phits at the respective routers or cores. The red dashed path
illustrates the beginning of the fastest progression and the blue dashed path
illustrates the beginning of a slowest progression.

model and illustrate the subsequent problems in response-time analyses using
uniprocessor scheduling theory.

In order to explain the mismatch, we focus on the possible buffer states of
one instance (i.e., message) of a flow τi under analysis at each core. Let ~Bi
denote the state vector of the number of flits that are buffered in the cores and
routers involved in Li. Suppose that there are ηi links involved in the path
Li := 〈l1, . . . , lηi〉. Note that the first element in ~Bi denotes the number of flits of τi

in the source core, left to be sent, and the last element in ~Bi denotes the number
of flits that have been received at the destination core. In the following analysis,
we assume that the NoC is fully synchronized in time. Therefore, in each time
unit, a buffered flit can be forwarded to the next node (a core or a router). Since
the NoC works in discrete time, we can observe the changing of the vector ~Bi over
time when considering only the time units at which the message is sent. When
a flit is sent in a time unit at the j-th link lj ∈ Li, then the number of flits of the
j-th entry in ~Bi is reduced by 1 and the number of flits of the (j + 1)-th entry is
incremented by 1. For notational brevity, let ~yj be a vector of ηi + 1 elements in
which all the elements are 0 except the j-th element that is −1 and the (j + 1)-th
element that is 1, e.g., ~y1 +~y3 implies that the first and the third link transmit one
flit in this time unit and the number of flits buffered at the interconnected nodes
are incremented and decremented respectively.

Definition 3.14 (Progression). Consider a buffer state ~Bi at time t, in which all el-
ements in ~Bi are non-negative integers. Suppose element zj is either 0 or 1 for j =
1, 2, . . . , ηi and at least one of them is 1. Specifically, when zj is 1, the j-th link sends
one phit forward. Let ~Y be ∑

ηi
j=1 zj~yj.

For a buffer state ~Bi, zj for j = 1, 2, . . . , ηj, and a vector ~Y, the change of the buffer
state is valid if

• all elements in ~Bi +~Y are non-negative integers that do not exceed the buffer capac-
ities ~B, and

• the j-th element in ~Bi is ≥ zj+1 for j = 1, 2, . . . , ηi − 1.
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If the change of the buffer state is valid, we say that the flow makes a progression in this
time unit.

In each time unit, a link may or may not be utilized to send a flit of fi in the
switching mechanism. Therefore, there are 2ηi − 1 combinations of the vectors
of ~y. Note that progressions do not have to take place in two consecutive time
units. If the message is not sent in the next time unit, there is no progression of
the message. As an illustrative example, consider Ci = 10 and that the message
is sent from a core A1 via two routers V1 and V2 to core A2. If one flit is sent in
a time unit, we get ~Bi = (Ci − 1, 1, 0, 0). Now, there are three possibilities for the
next time unit when the NoC transmits a flit or multiple flits of the message:

• ~Bi = (Ci − 1, 0, 1, 0): In this case, A1 does not send any flit but R1 sends a flit
to V2. The progression is due to ~Y = (0,−1, 1, 0).

• ~Bi = (Ci − 2, 2, 0, 0): That is, A1 sends one flit to V1 but V1 does not send a
flit to V2, i.e., ~Y = (−1, 1, 0, 0).

• ~Bi = (Ci − 2, 1, 1, 0): That is, A1 sends one flit to V1 and V1 sends a flit to V2,
which means that the progression is due to ~Y = (−1, 1, 0, 0) + (0,−1, 1, 0) =
(−1, 0, 1, 0).

This particular example is illustrated in the first three levels of the tree in
Figure 3.11. In each of the above states, the next progression has to be considered.
We only illustrate the progressions that are possible when ~Bi is (9, 0, 1, 0).

Definition 3.15 (A Complete Series of Progressions). A complete series of progres-
sions is a sequence of progressions defined in Definition 3.14, one after another, starting
from ~Bi = (Ci, 0, 0, . . . , 0) and finishing with ~Bi = (0, 0, . . . , Ci).

A safe analysis of the worst-case response time or the schedulability for sending
the message should consider all possible complete series of progressions of τi. If we complete series of

progressionsonly account for the number of time units when the message of τi is transmitted,
it is not difficult to see that the slowest one only sends one phit forward per slowest progression

progression, in which the switching mechanism results in Ci · ηi iterations of
progressions. Moreover, the fastest one sends one phit (if available) forward for fastest progression

all cores and routers involved in the path Li per progression, which results in
Ci + ηi − 1 iterations of progressions. Due to the simultaneous forwarding of phits Due to the

simultaneous
forwarding of phits at
all cores and routers
involved, we call that
progression sequence a
simultaneous
progression

at all cores and routers involved, we call that progression sequence a simultaneous
progression.

The correspondence of the scheduling problem for wormhole switched fixed-
priority network-on-chip to the uniprocessor fixed-priority scheduling problem
has not been proven and is conjectured by us to not hold in general, based on the
following reasoning. In a uniprocessor system, if a job is executed for x time units,
the execution time of the job is reduced by x time units. However, sending x flits sending x flits can

result in different
series of progressions
in the NoC, with
varying number of flits
transmitted, violating
that execution
assumption

can result in different series of progressions in the NoC, with varying number of
flits transmitted, violating that execution assumption.

Despite that mismatch, the results in [Mut94; HO97; KKH+98; LJS05; SB08;
KGP14; KP16; XLW+16; IBN16; XWL+17; IBN18; NTI+19; NHE19] assumed that
the corresponding uniprocessor scheduling problem can use Ci + ηi − 1 as the
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worst-case execution time of the corresponding sporadic task to represent a
flow. This implicitly assumes that the flow takes the fastest complete series of
progressions. Such uniprocessor analyses are only valid when the other iterations
of progressions are accounted for correctly. However, the fastest complete series
of progressions may not always be possible.

To ensure the correctness of the analysis, some additional time units should be
included. Many patches have been provided to account for such additional time
units after the series of flaws found in [Mut94; HO97; KKH+98; LJS05; SB08; NIP16;
KP16; XLW+16]. The recent counter examples provided by Xiong et al. [XLW+16]
are due to backpressures when the buffer space is limited. However, we conjecture
that the existing analyses that assume uniprocessor equivalence are not rigorous
even when the buffer space is unlimited due to the mismatch explained above
and non-systematic means to account for the model differences.

These series of flaws in the literature suggests that the scheduling algorithm
and network architecture may be too complex to be correctly analyzed adopting
uniprocessor real-time scheduling theory and its assumptions. However, such a
correspondence to uniprocessor scheduling theory is potentially very difficult to
achieve due to the large space of progression. Furthermore, safe approximations
and upper bounds are also missing in the literature. In both cases, a correcta correct proof should

explain how to safely
account for the number

of iterations in the
progressions of the

flows

proof should explain how to safely account for the number of iterations in the
progressions of the flows and map them to the corresponding execution time
in the constructed instance of the uniprocessor scheduling problem. Since the
wormhole switching protocol was not designed with predictability constraints
in mind, designing new protocols that can be safely analyzed without losing
too much flexibility or efficiency can be an alternative. Therefore, we choose to
provide a scheduling algorithm based on the simultaneous progression property.

3.4.3 protocol implementation

Instead of proving the complex scenarios in the standard wormhole switching, we
propose another protocol which has only one complete series of progressions. These
less flexible switching protocols, called SP2, achieves timing predictability by
enforcing that a flow τi is eligible to transmit on its route if and only if it can be
allocated all the links in Li in-parallel. In other words, the links used by a flow τi
either all simultaneously transmit one flit of this flow (if it exists) or none of them
transmits any flit of this flow. As a result, for a progression of τi in a time unit,
some links in Li may be reserved even though there is no flit to be transmittedsome links in Li may

be reserved even
though there is no flit

to be transmitted

over this link in this time unit (a behaviour similar to processor spinning). In order
to meet the deadline of a message of a flow τi, that arrives at time ai, the concept
of simultaneous progression requires to have Ci + ηi − 1 time units to use all the
links in Li simultaneously before the absolute deadline at ai + Di. Notably, such
a simultaneous progression has similarities to the rigid gang scheduling problem,
which is explained and analyzed in detail in Section 3.3.

In this section, we presume those provided analytical results and focus this
section on the conceptualization of a network-on-chip implementation, which
satisfies the SP2 properties and derive how the response-time analyses must be
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Figure 3.12: The arbitration and data message transmission can be done sequentially
within a single data net, or interleaved using a separate arbitration net. Each
cluster can transmit a flit in each cycle to the centralized arbiter core.

Algorithm 2 Behavioural description of the arbitration routine in SP2

1: allocated← 00 . . . 0;
2: for each flow with id i (in priority order) in Table 3.1 as table do
3: if table[i].epochs > 0 then
4: if allocated ∧ table[i].path == 0 then
5: table[i].epochs← table[i].epochs− 1;
6: allocated← allocated ∨ table[i].path;

adapted accordingly. The connection of simultaneous progression arbitration and
the rigid gang scheduling problem, which is analyzed in Section 3.3, is formally
given as follows; we can consider that each of the links in L is a processor, each
flow is a task, the links Li form a gang for flow τi, and the execution time is
Ci + ηi − 1.

In general, SP2 can be implemented with any strategy, which ensures the
simultaneous progression property, but we will focus on work-conserving fixed-
priority priority-based SP2 scheduling with message-level-fixed priorities, i.e.,
all messages of a flow τi have the same priority. Thus, whenever two messages
intend to use one link at the same time, the higher-priority message is scheduled
and the lower-priority message is suspended. Whenever a message is suspended
in one of its links, it is suspended on all of its links.

Due to the fact that in SP2 this reservation scheme eliminates circular waiting circular waiting

it is thus deadlock-free. Therefore, in SP2 scheduling for network-on-chips, the
path diversity is not constrained to deadlock-free minimal routing schemes like
X-Y Routing but can utilize any arbitrary routing scheme.

3.4.4 arbitration implementation

The architectural implementation of the priority-based SP2 providing the all-or-
nothing property requires to rethink previous router designs. In state-of-the-art
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Figure 3.13: The arbitration and communication is pipelined using two distinct nets, i.e.,
the arbitration and the data net.

wormhole switching protocols, the decision at each router is local, whereas
the all-or-nothing property requires global decision making. The simultaneous
progression switching protocols are a general description of a family of concrete
protocols for which there could be different possible implementations.

In this section, we provide a centralized arbitration implementation, which is
achieved by using two dedicated networks, namely, one for arbitration (called the
arbitration net) and one for data transmission (called the data net).

The arbitration net and data net both operate in the discrete time domain, withdiscrete time domain

a fixed epoch, denoted as ∆. In general, the separation of the network into ded-epoch

icated arbitration and data nets, can be accomplished using only one physical
net by time-multiplexing and the interleaved sending of arbitration and data
messages or by separating the network using space multiplexing or frequency
multiplex, which allows for parallel sending of arbitration and data messages.
An exemplary implementation of the data net and arbitration net, using two
physically separated parallel nets, is illustrated in Figure 3.13. Note that the
arbitration (in the arbitration net) of the k-th epoch is responsible for ensuring the
all-or-nothing property of the messages to be sent in the data net of the (k + 1)-th
epoch. Specifically, we consider the control state of both nets to be stable and
available at epoch boundaries, i.e., 0, ∆, 2∆, . . ., etc.

In this section, we describe the conceptual design of the centralized-priority
arbitration implementation of the proposed SP2 protocol. We discuss our designcentralized-priority

arbitration on the presumption that a regular topology such as a 2D-Mesh in Figure 3.12 or
a 2D-Torus is used. In order to implement centralized arbitration, we dedicatewe dedicate one core in

the network-on-chip to
the arbitration

one core in the network-on-chip to the arbitration, that is, the arbitration logic
is either implemented in software, which is run on that core, or implemented in
hardware logic. With reference to Figure 3.12, the core A5 would be the dedicated
arbiter core.

X
-BA

R

X
-BA

R

SP2-Arbiter
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out north
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out south
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τ1

Figure 3.14: A possible implementation of the SP2 arbitration using phit-sized virtual
channels, and crossbars.
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3.4.4.1 Router Design

The number of buffers and virtual channels within a NoC router impact the
hardware complexity, energy consumption and switching speeds and must thus
be considered. By the SP2 property, each flow requires a single phit-sized virtual
channel in each router along its static path. From the hardware perspective, this
comes at a cost, since each virtual channel must be arbitrated separately, which
requires additional multiplexers and de-multiplexers in the router. An exemplary multiplexer

de-multiplexerarbiter design within an SP2 router is shown in Figure 3.14, where the arbiter logic
within the router controls the two crossbar switches to switch input ports to the
respective virtual channels, and the virtual channels to the output ports. This
implements the SP2 logic, due to the reason that the incoming link of a switch
(on a flow’s path) is only granted to that flow, if and only if the outgoing link is
granted to that flow as well, as is illustrated in the fastest progression in Fig 3.11.

In the initial design, a router requires at most as many virtual channels (of
phit-sized buffers) as the number of flows, which cross that router, such that each
flow can transmit without additional blocking. The reduction of limited virtual reduction of limited

virtual channels can be
traded off with
additional latency in
SP2

channels can be traded off with additional latency in SP2 by implicitly requesting
a buffer slot along a link for transmission in the arbitration message. A flow is
only eligible to send if the channel and a buffer on all links is granted on each
router, which can be achieved since SP2 is a global scheduling scheme. To that
end, the central arbiter core must maintain the state of all available buffer slots
at each router. On the downside, this approach leads to priority-inversion, since
lower-priority flows from the direct contention domain – flows, which share at
least one link with a flow under consideration – cause interference.

3.4.4.2 Arbiter Design

Table 3.1: An exemplary arbitration table at the core A5 of the network in Figure 3.12. The
additional color annotation is used to visually identify the three exemplary
flows.

Flow (id) Epochs Path

1 (red) . . . 001000010000000000001010

2 (blue) . . . 010000000000100000010000

3 (green) . . . 000000000000000000010010

...
n . . . . . .

Every flow, which is admitted to the system, is stored in the centralized arbiter
in a look-up table with a unique flow id, which encodes the flow’s priority, number look-up table

flow idof remaining epochs, required by each flow to be fully transmitted without any
interference, and a bit vector path, which encodes the flow’s static routing path. path vector
An exemplary arbitration table at the core A5 of the network in Figure 3.12 is arbitration table
shown in Table 3.1, with an additional color annotation to visually identify the
three exemplary flows. The path field consists of 24 bits, where each index in the
bit string – starting from index 0 – corresponds to the respective link identifier in
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the network, e.g., the red highest-priority flow τ1 uses link l2, l22, l7, l20. A flow is
considered ready if the epoch field is non-zero.flow ready

3.4.4.3 Arbitration Phase

The set of all flows, which can communicate in a given epoch, is determined
by the centralized arbiter in the following way. The arbitration phase recursarbitration phase

recurs periodically
every epoch

periodically every epoch and is structured by the sequence of request, arbitration,

request state

arbitration state

and response states, as illustrated in Figure 3.13, and explained hereinafter. During

response state

the arbitration phase, each router in the network is configured to be in the
so called arbitration state, which configures the routers to switch according to
arbitration state specific routing paths, detailed later in this section.

Request (Arbitration State). In the arbitration state, each router is configured to
route any received phit according to the static arbitration route described later in
Section 3.4.4.4. At the router we require an additional 2× 4-bit register direction
(corresponding to north, south, west, east) for each flow, crossing that router,north port

south port

west port

east port

to memorize the ingress and egress direction of the arbitration request. The
directions from core, do not need to be additionally stored, since the uniquely

from core port

connected processing element of a switch is responded to by default except for the
arbiter core. All source cores that need to communicate – at the time of arbitration

source core – send the flow id’s of the flows, which are ready-to-transmit, to the arbiter core
ready-to-transmit using the previously mentioned static routing.

Arbitration (Arbitration State). The arbiter core waits until all requests are
received, which time defines the duration of the request stage and is analyzed
later in this section. At the beginning of the arbitration stage, all flows that are
admitted to transmit in the subsequent transmission state, are determined by
following the procedure described in Algorithm 2. The SP2 property is ensured,
since the look-up table in the router as illustrated in Table 3.1 is processed in
priority order and subsequently the links in the network are allocated in priority
order. The allocation is premised under the additional constraint that all required
links are only granted if they can be granted all at once – as ensured by the and
operation in Line 4 in Algorithm 2. The available remaining links for lower-priority
flows is then updated in Line 6 in the bit-wise or operation.

Response (Arbitration State). In the response phase, the arbiter core sends backresponse phase

the flow id of the flows that can communicate in the next epoch to the source
cores in an arbitration response message. The arbitration response message is
routed in the opposite direction with respect to the request message. As an
additional advantage of the static and contention-less routes arbitration specific
routing paths, the arbiter core is able to send a synchronization message along thesynchronization

message arbitration response to minimize the clock skew for all cores in the network.
clock skew

Send (Transmission State). In the transmission state, the routing tables in the
routers are re-enabled. Then at the router, all phits from the buffer on the granted
links are switched. For instance, the red flow τ1 is granted links l2, l22, l7, l20 and
the blue flow τ3 is granted the links l1, l12, l19. Then exemplary, at the router V5,
the phit at the buffer for flow τ3 at in west is switched to the buffer at out north.
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Figure 3.15: Clustering and routing for each router in the arbitration state for the N × N
2D-Mesh topology for even and odd dimensions. Even dimensions lead to
irregular clusters, whereas odd dimensions lead to regular clusters.

Analogously, the phit at the buffer for flow τ1 at in south is switched to the buffer
out east.

3.4.4.4 Arbitration State Routing

The time duration of an epoch is given by the time duration of the arbitration
phase, which consists of the request, arbitration, and response phase. Since the
epoch duration is also the unit of arbitration, i.e., preemptions can only occur at preemptions can only

occur at integral epoch
boundaries

integral epoch boundaries, the epoch duration should be as small as possible. The
time duration of the request and response phase is determined by the longest
possible transmission latency of the respective request and response messages, which request message

response messageare sent from each core to the central arbiter core. Consequently, the maximum
transmission latency of those messages should be minimized, which entails i) the
routing paths and ii) the message’s bit encoding.

For our proposed centralized arbiter, we assume that all the cores are connected
in a N×N 2D-Mesh, whilst the arbitration logic is implemented in software in
the center core, as illustrated in Figure 3.15. We emphasize that the routing in routing in the

arbitration net (and the
clusters) is done
statically

the arbitration net (and the clusters) is done statically. Especially, we note that
the all-or-nothing property does not have to hold for the arbitration net. The key
concept for the routing paths is to partition the 2D-Mesh or 2D-Torus into 4
clusters of routers such that each cluster sends exactly one phit per cycle without
contention to the router of the arbiter core simultaneously. That is, the north,
west, east, and south ingress ports of the arbiter core router, e.g., V5, are connected
to exactly one cluster by the cluster heads. The cluster head is the router that
connects to the ingress ports of the arbiter router directly, e.g., V2, V6, V8, V4.

Cluster Construction. Starting from the router of the arbiter core, the routers
in north, west, east, and south direction belong to the respective clusters Kn, Kw,
Ke, and Ks. Every router that is to the right – relative to the outward pointing
direction vectors – of the routers of the clusters is added to the cluster, which
is illustrated in Figure 3.15 by the red arrows. The clustering depends on the
dimension of the N × N 2D-Mesh (or Torus), i.e., odd dimensions yield 4 evenly
sized partitions and even dimensions result in 4 distinct cluster sizes.

Routing Paths. For each of the 4 clusters, a zig-zag path is constructed, which is zig zag path
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a path that contains all routers in the cluster. By this construction, each router
has an in-degree of at most 1, i.e., there is no contention at any router, due
to multiple phits waiting to be transmitted sequentially. The number of cycles
that are required to transport a single phit from the last router on the zig zag
path to the arbiter router in a cluster is given by the number of routers on the
path, which is given by the cluster sizes. A zig zag path is constructed for a
rectangular west cluster Kw by following the west direction of the cluster head
until a boundary is reached (skip if no hop in west direction is possible), one hop
north, following the east direction until a boundary is reached (skip if no hop
in west direction is possible), one hop north, and so on until all routers in the
partition are reached. Paths for the other clusters are constructed analogously by
rotation of the operation, e.g., for Kn, the respective directions are replaced by the
follows substitutions; north→ east, east→ south, south→ west, west→ north.

In the case of even dimensions, there are four distinct cluster sizes, which are
given as follows:

Kw =
N2

4
+

N
2

Kn =
N2

4
(3.73)

Ks =
N2

4
− 1 Ke =

N2

4
− N

2
(3.74)

Since the latency is determined by the largest cluster size, i.e.,

max {Kw, Kn, Ks, Ke} =
N2

4
+

N
2

(3.75)

Corollary 3.17. If N is even then after N2

4 + N
2 + 1 cycles, each router in the system has

transmitted a phit to the central arbiter core.

In the case of odd dimensions, the cluster sizes are identical and given by

Kw = Kn = Ks = Ke =
⌈

N
2

⌉
·
⌊

N
2

⌋
(3.76)

Corollary 3.18. If N is odd then after
⌈N

2

⌉
·
⌊N

2

⌋
+ 1 cycles, each router in the system

has transmitted a phit to the central arbiter core.

One additional cycle is due to the fact that even the closest non-arbiter core
requires at least one hop to reach the central arbiter core.

Message Encoding. Each router is in exactly one cluster and each core is con-
nected to exactly one router, which injects flows per core (FPC) many flows intoflows per core

the network. Each core injects the id’s of the flows waiting to be transmitted such
that

mreq := FPCmax · log2(|T|) [bit] (3.77)

denotes the longest request message injected in any cluster.

After the arbitration is finished, an arbitration response message is sent to eacharbitration response
message cluster, containing the clusters’ router ids and the flow ids, which are clear to

send. Notably, each router can be admitted and thus notified to switch through atclear to send
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most 4 flow ids simultaneously (under the SP2 property), since only the in west
to out north, or in south to out east, and the opposite directions can be switched
simultaneously. Thus, in the worst-case each router in the cluster receives 4 flow
ids resulting in

mresp := 4 · log2(|T|) · |Kmax| [bit] (3.78)

Given the sizes in bit of the response and request message we can compute the
duration in terms of clock cycles as follows:

∆resp :=
mresp

phit
·
{⌈N

2

⌉
·
⌊N

2

⌋
+ 2 [cycles] if N ∈N is odd

( N
2 + 1) · N

2 + 2 [cycles] otherwise
(3.79)

Similarly,

∆req :=
mreq

phit
·
{⌈N

2

⌉
·
⌊N

2

⌋
+ 2 [cycles] if N ∈N is odd

( N
2 + 1) · N

2 + 2 [cycles] otherwise
(3.80)

The remaining ∆arb depends on the arbitration routine, which is executed on the
arbiter core. The runtime must be obtained from worst-case execution time and
worst-case response-time analysis on the core. In the remainder of the analysis
we presume a determined ∆arb such that ∆ = ∆req + ∆arb + ∆resp.

3.4.5 response-time & schedulability analysis

In this section, we elaborate on the response-time analyses for a determined
epoch, denoted as ∆, and the restriction that all arbitration events such as flow
arrival times, transmission grants, and preemptions are only granted at epoch
intervals. In order to analyze the discrete-time response-time of a flow, the worst-
case traversal time (WCTT), i.e., the transmission time of each flow without any
interference must be computed.

Definition 3.16 (Worst-Case Traversal Time). Let Ci ∈ N denote the length of a
message as an integer multiple of a phit, that is, the number of cycles required to fully
transmit a message over a single link. Then, the worst-case traversal time of a message
Ci is

WCTTi =


(⌈

Ci
∆

⌉
+ (ηi − 1)

)
· ∆ if Ci + ηi > ∆ + 1

∆ otherwise
(3.81)

number of cycles to progress through the static path Li from the source core to the
destination core (without any interference).

We need to make a distinction of the worst-case traversal time dependent on
the message sizes and path length, because if a message can be transmitted in
one epoch then this results in a WCTTi of ∆.

The network interfaces at the cores decouple the computation and commu-
nication. Hence, if a message of flow τi is released at time ai, the arbitration
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phase starts at the next epoch boundary. The waiting time until the message is
eligible to compete for arbitration is given by

⌈ ai
∆

⌉
· ∆− ai which is no more than

∆. Recurring on these results, we can state the worst-case response time analysis
for each flow τi in analogy to the analysis presented in Section 3.3.3.3 as follows.

Corollary 3.19. A sporadic constrained-deadline flow set T is fixed-priority schedulable
using SP2 – with an implementation given epoch duration ∆ and a given priority order
– if for each flow τi ∈ T the following two conditions are satisfied:

1. All higher-priority flows of τi have already been validated to be schedulable, which
can be achieved by the iterative application of this rule in decreasing priority order.

2. The flow τi is schedulable according to any fixed-priority self-suspension aware
uniprocessor schedulability analysis, where the higher-priority task set of τi is
transformed according to the following equation: For each τj ∈ hp(τi)

τ′j =

{
(WCTTj, Tj − ∆, Dj − 2∆, Rj −WCTTj) i f τj has self-suspension behaviour

(WCTTj, Tj − ∆, Dj − 2∆) otherwise

(3.82)

The release-jitter of higher-priority flows which is due to the delayed arbitration,
is accounted for by the adjusted period. Moreover, one epoch of interference,
which is due to the delay in the arbitration net, must be accounted for, which
yields an adjusted deadline of Dj − 2∆.

3.4.6 evaluation
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Figure 3.16: Overhead for the arbitration algorithm in µs for varying number of flows
per core (FPC), 2D-Mesh dimensions, and core frequencies from 800 MHz to
3000 MHz.

In our experiments, the number of flows with a unique priority on each source
core is varied with the total number of cores in the network. Specifically, we
assume that each core sends up to a fixed number (denoted as flows per core
(FPC), e.g., 1, 2, or 4) of flow ids in one arbitration epoch. Then, we asses the
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Figure 3.17: Overhead for the arbitration communication in µs for varying number of
flows per core (FPC), 2D-Mesh dimensions, and link bandwidths. Note that
the communication overhead is independent from the arbiter core frequency.

Table 3.2: Number of arbiter core cycles required for the arbitration algorithm in a N×N
2D-Mesh network-on-chip with 1,2,4, and 8 flows per core.

n / #cycles 1-FPC 2-FPC 4-FPC 8-FPC
4 300 552 1064 2092

8 2465 4920 10269 20672

12 9618 20204 40549 80960

16 27643 55389 110748 224600

arbitration overhead as well as the communication overhead for different core
frequencies and link bandwidths. In these experiments, we implemented the SP2
arbitration algorithm in software and measured the required time for varying
core frequencies. We emphasize that in a real realization the arbitration may also
be done in hardware.

Arbitration Overhead Measurements. The arbitration overhead is calculated
by measuring the execution time of the arbitration algorithm explained in Al-
gorithm 2. This arbitration algorithm was prototyped in C++ and run on an
Intel Xenon Gold 6126 CPU core at 2.6 GHz. Based on these measured execu-
tion times and the known core frequency of the measuring system, we normal-
ized and estimated the overhead for different core frequencies in the range of
800, 900, . . . , 3000 MHz as shown in Figure 3.16.

Communication Overhead Measurements. The communication overhead is de-
termined by calculating the required number of cycles such that all arbitration
requests (from all source cores) are transmitted to the arbiter and the responses
are received at the source cores. Using the results from Eq. (3.80) and Eq. (3.79),
the cumulative time that is required for the arbitration communication is given
by the sum of the equations divided by the link bandwidth in 106bps. The results
are presented in Figure 3.17 for different link bandwidths accordingly.

Overhead Results. As shown in Figure 3.16, the overheads for the communica-
tion and arbitration increase with the number of flows per core as well as with
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the dimension of the 2D-Mesh. For 256 flows (4 FPC) in a 8× 8 mesh, the commu-
nication overhead is 64 µs for 10Mbps, which suggests that the communication
overhead for 4× 4 and 8× 8 2D-Meshes is low enough such that an arbitration
within the data plane could be a feasible alternative. The communication overhead
for 1024 flows (4 FPC) in a 16× 16 mesh and 10 Mbps links is 320 µs but can
be reduced to 16 µs for 200 Mbps links. The data suggest that the overhead can
become too large for higher dimensions and large number of flows. In these cases,
other approaches for the arbitration net are required.

Concluding Remark. As an assessment of this proposed initial conceptual imple-
mentation, one can observe that the reduction of all possible series of progressions
to only allow the fastest progression – and thus an uniprocessor equivalent exe-
cution model – yields good analyzability, since uniprocessor scheduling theory
is well understood and very precise analyses exist. Additionally, complex buffer
contention scenarios do not need to be considered.

Another advantage is that only a phit-sized buffer is required at each router
for each flow that is crossing it. However, at the cost that each phit-sized buffer
implements a virtual channel in order to implement the preemption of SP2. Likely,
our protocol can be augmented on top of existing wormhole-switched networks
in case that real-time verification is mandatory and the network dimension and
traffic load is small enough. From the negative perspective, the scaling issue
is the most predominant one, i.e., in our suggested implementation, the epoch
duration is in the order of O(n2), which suggests that for larger network sizes,
larger number of flows, and longer arbitration messages, the schedulability may
be too degraded.

3.5 conclusion

With reference to the hypothesis of this dissertation that either the parameter
uncertainty and hardware peculiarities must be considered in the scheduling algo-
rithm design and associated formal schedulability analyses, or the predictability
of the hardware must be increased, the focus in this chapter is on the design of
arbitration protocols and scheduling algorithms that increase predictability to
allow for safe worst-case response time analyses.

• At first, a specialization of the rigid gang scheduling problem for hard
real-time systems is proposed, in which each gang task is restricted to
execute on a assigned subset of processors. We presented how the corre-
sponding schedulability test problem can be reduced to a uniprocessor
suspension-aware schedulability test. Furthermore, we showed how to de-
rive specific consecutive stationary rigid gang assigments for preemptive
deadline-monotonic gang scheduling that admits a parametric speed-up
factor with respect to an optimal rigid gang scheduling algorithm. While
the presented scheduling algorithm is task-level fixed-priority, extensions
to job-level fixed-priority scheduling algorithms such as EDF are possible
by adopting the proper suspension-aware schedulability tests and suspen-
sion inducing behaviour analysis. As future work, we plan to implement
a fixed-priority stationary gang scheduler in a real-time operating systems
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and evaluate the scheduling overheads and investigate potential benefits
with respect to improved worst-case execution time and resource contention
patterns.

• Secondly, we propose a family of simultaneous progression switching pro-
tocols for real-time NoC arbitration that is described by the all-or-nothing
property and provides increased predictability at the cost of decreased aver-
age case performance. A possible implementation, including router design,
and arbitration algorithm is given. While the evaluations hint to scalability
issues in our proposed implementation for larger networks, for smaller
to medium sized NoCs, our proposal suggests to be a beneficial first step
towards the design and analysis of timing-predictable switching protocols of
NoCs that allow for safe response-time analyses. Notably, any non-minimal
route in simultaneous progression switching protocols is deadlock-free, since
the simultaneous progression property prevents circular waiting at the buffers.
Therefore, the path diversity can be better utilized in order to distribute the
load over the links such that contention is reduced.





4
H I E R A R C H I C A L PA R A L L E L D A G
S C H E D U L I N G

Cyber-physical systems have shifted from uniprocessor to multiprocessor system
designs, resulting in multiple challenges for the design and verification method-
ology of parallel real-time applications. In particular, fine-grained parallel task
models, and appropriate scheduling algorithms, which are amenable to formal
response-time analyses, and robust with respect to parameter uncertainty, are
mandatory.

Hierarchical scheduling provides temporal and spatial isolation, which is bene-
ficial for the robustness of the real-time system design, with respect to parameter
uncertainty in the control flow, and worst-case execution times. Decomposing
the scheduling problem into an inter-task and intra-task scheduling problem, the
response-time behaviour of each DAG job can be formally verified, on the basis
of a precisely specified promised service contract, which is guaranteed to be
honored. Consequently, possible worst-case execution time underestimations, worst-case execution

time underestimations,
resulting from
unsound pWCET
techniques, can be
observed, and limited
to the failure of a single
reservation system

resulting from unsound pWCET techniques, can be observed, and limited to the
failure of a single reservation system. Henceforth, appropriate counter-measures
can be initiated in the real-time system to handle the failure gracefully.

In this chapter, we propose two hierarchical scheduling-based solutions to,
firstly address uncertainty in the control flow, and thus precedence constraints of
parallel DAG tasks. This uncertainty, is modeled with probabilistic precedence
constraints, formalized in the proposed probabilistic conditional DAG task model. A probabilistic

conditional DAG taskbounded tardiness constraint, for the execution of a probabilistic conditional DAG
task, is considered under k-consecutive deadline miss constraints in Section 4.4
Probabilistic Conditional-DAG Scheduling. Secondly, we present the parallel-path
progression concept in Section 4.5 Parallel Path Progression Scheduling. This concept
allows to schedule highly parallel DAG structures provably efficient, and in
some cases even optimally, on gang, and ordinary reservation systems. Starting
from Section 4.1 Motivation, in which hierarchical scheduling approaches are
motivated for parallel task and parallel DAG task scheduling in particular, the
related work regarding parallel real-time scheduling is given in Section 4.2
Related Work. The common task models, definitions, and the general hierarchical
scheduling approach is explained in Section 4.3 Hierarchical DAG Scheduling &
DAG Task Model. Lastly, the chapter is concluded with a summary of the results
in Section 4.6 Conclusion.

4.1 motivation

The overarching objective in real-time scheduling of parallel DAG tasks, is to effi-
ciently utilize the parallelism, provided by multiprocessors, for task set execution
with inter- and intra-task parallelism, and to verify temporal constraints.

105
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Based on the dissertation hypothesis, we believe that the decoupling of parallel
application design and scheduling on the one hand, and real-time operating
system scheduling and service contracts on the other hand, is the most promising
approach to implement real-time aware parallel applications. This is, due to
the temporal, and spatial isolation, as well as the easy integration with any
readily available scheduling algorithm, provided by the real-time operating
system. For instance, partitioned or global scheduling algorithm variants of
task-level fixed-priority, or earliest-deadline first (EDF) scheduling algorithms
can be used. Above the modular decomposition, of the scheduling problem, a
key property of using hierarchical scheduling is that the problem of task model
parameter uncertainty, such as worst-case execution time underestimations by
using e.g., pWCET techniques, can be observed and limited to the failure of a
single reservation system.

Beyond, the property of robustness, and modularity, the hierarchical schedulinghierarchical scheduling
approach for parallel

applications is also
very suitable for

implementation and
usability

approach for parallel applications is also very suitable for implementation and
usability. This is evident by the fact that the de-facto standard programming and
scheduling model for parallel computing, namely OpenMP, and the real-time
extension OmpSs [DAB+11] are using hierarchical scheduling. On the higher-
level, the worker threads, which implement the reservations, are scheduled by
the real-time operating system; on a lower-level, the subjobs are managed by the
respective runtime environment, which is responsible to implement the internal
DAG scheduling algorithm. The concrete implementation, of the hierarchical
scheduling algorithm, is not standardized. E.g., the approaches of OpenMP and
OmpSs differ in that, OpenMP implements fork-join parallelism with a master
thread, which creates a so called team of parallel threads on encountering a
parallel region; In contrast, OmpSs uses a pool of worker threads to serve the
subjobs as soon as they become ready, which is similar to list-scheduling. In bothlist scheduling

frameworks, the application source code is written in a high-level programming
language, which is instrumented with a set of directives, which together with
library routines, and a provided runtime environment, are used to describe and
execute the parallel application.

In the context of cyber-physical systems, the hierarchical scheduling of parallel
DAG tasks, is further complicated by the following problems:

• Beyond the hardware induced parameter uncertainties in terms of the worst-
case execution time, many relevant cyber-physical systems, such as au-
tonomous driving systems, are composed of applications, in which the
control flow and execution times of the application depend on the capturedcontrol flow and

execution times of the
application depend on

the captured sensory
information

sensory information. For instance, the number of objects, which must be
tracked with the radar, or the number of objects, which must be identified
and processed within an image for trajectory planning, result in different pro-
gram executions and subsequently, highly variable execution times. These
applications are reported to be subject to multiple conditional branches
and control flow instructions, which change the structure of a DAG task
during runtime as stated by Melani et al. [MBB+15]. However, for many
applications in those systems, e.g., closed-loop feedback controllers, worst-
case centric provisioning with a safe but very pessimistic upper bound
is not required, due to the inherent controller robustness towards timing
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non-idealities like bounded tardiness, and deadline misses. To that end, the
uncertain execution behaviour and response-time of conditional control flow conditional control

flow can be accepted
and analyzed in a
probabilistic sense

can be accepted and analyzed in a probabilistic sense. Many research efforts
have been focused on formalizing and analyzing relaxations of deadline
constraints [PMM+19], e.g., weakly hard systems where m out of k task
instances must meet the deadlines. Moreover, Maggio et al. [MHM+20] and
Vreman et al. [VCM21] investigate the closed-loop control system stability
under consecutive deadline-miss constraints, which further motivates the
need for scheduling algorithms, which can guarantee probabilistic bounds
on consecutive deadline misses.

• With regards to hard real-time hierarchical parallel DAG task scheduling,
another challenge is the resource efficiency of the hierarchical scheduling
algorithms. Paradoxically, the large number of processors of modern multi-
processor architectures, e.g., the Kalray MPPA architecture with 256 cores, is
detrimental to the resource efficiency if the increased number of processors
does not benefit the worst-case response-time analysis.

In this chapter, we propose the following contributions to address the motivated
problems. In order to formally describe and verify quantitive guarantees of
deadline misses, some quantifications are of importance for soft real-time systems,
namely the probability of a deadline miss, probability for k consecutive deadlines
misses, and the maximum tardiness of a job. Despite the fact that these guarantees
are soft, the precise quantification thereof are hard and challenging, even for
the ordinary sequential real-time task models, which are scheduled upon a
uniprocessor system. We analyze, optimize and verify the schedulability of
probabilistic conditional parallel DAG tasks on identical multiprocessors with
respect to quantities such as deadline-miss probabilities, consecutive deadline-
miss probabilities and tardiness constraints. When considering the scheduling
and analysis of probabilistic conditional parallel DAG tasks, not only inter-task,
but also intra-task interference, and multiprocessor scheduling anomaly effects, scheduling anomaly

i.e. the early completion of subjobs may lead to longer response-times, must be
considered; complicating the analyses for the above mentioned quantities. In the
state-of-the-art analyses, the above quantities can only be derived under strict
model assumptions, e.g., that a job is aborted whenever a job exceeds its deadline.
The reason for this complexity is partly due to inter-task interference, i.e., the
preemption and interference patterns of the task system, due to higher-priority
jobs, which results in a large number of system states, which must be considered
in a response-time analysis.

With regards to the second problem, we propose a subtask-level fixed-priority
policy, which allows to account for the fact that multiple paths within a DAG are
executed simultaneously, which can thus be removed from the self-interference
analysis. This parallel path progression property improves Graham’s bound sub- parallel path

progressionstantially, and improves the resource efficiency of the proposed (independent)
ordinary-, and gang reservation systems in the hierarchical scheduling. Moreover,
a stricter path monotonic prioritization, which induces the path monotonic progression path monotonic

prioritization

path monotonic
progression

property, is presented. On the basis, of the path monotonic progression property, a
self-suspension aware reservation system can be devised.
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4.2 related work

The scheduling of parallel real-time tasks with worst-case parameters, e.g., worst-
case execution times, upon multiprocessor systems has been extensively studied
for different parallel task models. An early classification of parallel tasks with
real-time constraints into rigid, moldable or malleable has been described by
Goosens et al. [GB10a].

Parallelism can be categorized into inter-task parallelism, which refers to the
parallel execution of distinct tasks; each of which executes sequentially and intra-
task parallelism which refers to the parallel execution of a single task. Intra-task
parallelism requires task models with subtask-level granularity, which can be
scheduled in parallel, e.g., fork-join models [LKR10], synchronous parallel task
models, or DAG (directed-acyclic graph) based task models [FNN17; BMSS+13;
Bar15a; BMS+13; MBB+15]. Early work on parallel task models focused on syn-
chronous parallel task models, e.g., [MBN+14; SAL+11; CLP+13]. Synchronous
parallel task models extend the fork-join model [Con63] in such a way that they
allow different numbers of subtasks in each (synchronized) segment where the
number of subtasks can exceed the number of processors. More recently, the
directed-acyclic graph (DAG) task model has been proposed and been subject
to scheduling algorithm design and analysis. The DAG task is a more general
parallel structure where each task is described by a set of subtasks and their
precedence constraints that are represented by a directed-acyclic graph. The par-
allel DAG task model has been studied for global [BMS+13; NNB19; CA14] and
partitioned scheduling [BMSS+13; CBN+18b; BCM19; FNN17].

The formal parallel DAG task model has been shown to correspond to mod-
els in parallel computing APIs such as OpenMP by Sun et al. [SGW+17], or
Serrano et al. in [SMV+15]. The observation that the OpenMP tasking model
resembles the formal sporadic DAG task scheduling model when considering
a single real-time task was further reinforced in several other works [SRQ18;
MSB+17; VQM15; VRS+16]. However, OpenMP presents limitations with respect
to modeling sporadic real-time DAG tasks such as missing directives to specify
deadlines or sporadic job releases such that an extension for real-time systems is
not trivial. To that end, the OmpSs [DAB+11] programming model and its succes-
sor OmpSs-2 were proposed and developed in the context of the P-SOCRATES
project [PNY+15]. Similar to OpenMP, OmpSs and OmpSs-2 use a set of directives
to instrument an application source code written in a high-level programming
language.

The proposed scheduling algorithms and analyses in the literature can be
categorized into decompositional and non-decompositional. In the former, the
parallel task model is decomposed into a set of sequential task models, which
is scheduled and analyzed in their stead, e.g., [JGL+20; BMSS+13; CBN+18b;
BMS+13; NNB19]. Non-decompositional approaches consider the peculiarities of
the parallel task models, e.g., [LCA+14; UBC+18; Bar15b; NNB19; DL18; BMS+13].
For instance the non-decompositional federated scheduling as proposed by Li et
al. [LCA+14] avoids inter-task interference for parallel tasks by exclusive processor
allocation. The idea of federated scheduling has been extended in various forms,
e.g., in [JGL+17; JGL+21; DGA20; UBC+18; Bar15b; Bar15a]. In the context of
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parallel DAG tasks Ueter et al. proposed a reservation scheme to schedule
sporadic arbitrary-deadline DAG tasks [UBC+18] with real-time constraints and
Buttazzo et al. [BBW11] studied DAG task scheduling on partitioned reservation
systems.

For sequential stochastic tasks a plethora of prior work concerning probabilistic
analyses exists, e.g., [SYM+11; HTA19]. Recent work has focused on the improve-
ments of efficiency in convolution-based probabilistic deadline-miss analysis
approaches. Von der Brüggen et al. [BPC+18] propose efficient convolutions over Probabilistic analyses

for parallel DAG tasksmultinomial distributions by exploiting several state space reduction techniques,
approximations using Hoeffding’s and Bernstein’s inequality, and unifying equiv-
alence classes. Chen et al. [CBC18a] propose the efficient calculation of consecutive
deadline-misses using Chebyshev’s inequality and moment-generating functions
and optimizations thereof. More recent advances by Markovic et al. in [MNP22;
MPN21] further improve the computational complexity for the convolution-based
approaches. There have also been efforts to use reservation servers to schedule
probabilistic sequential tasks. For example, Palopoli et al. [PFA+16] have shown
how to calculate the probability of a deadline miss for periodic real-time tasks
scheduled using the constant bandwidth server (CBS). The authors have reduced
the computation to the computation of a steady state probability of an infinite
state discrete time markov chain with periodic structure. Other approaches to
tackle the probabilistic analysis of real-time tasks is real-time queuing theory
by Lehoczky et al. [Leh96], which is an extension of classical queuing theory to
systems with deadlines. An initial work that analyzed the probabilistic response-
times of parallel DAG tasks was proposed by Li [LAG+14]. Li extended prior Li extended prior work

on federated
scheduling [LCA+14]
by facilitating queuing
theory

work on federated scheduling [LCA+14] by facilitating queuing theory to de-
vise federated scheduling parameters such that each task’s tardiness is bounded
and soft real-time requirements are met. More recent work on the probabilistic
response-time analysis of parallel DAG tasks is by Ben-Amor et al. [BMC16;
BCM+20a; BCM+20b]. The authors have studied the probabilistic response-time
analysis of parallel DAG tasks upon multiprocessor systems using partitioned
fixed-priority scheduling at the subtask-level. In their model each subtask is
described by a probabilistic worst-case execution time and static precedence
constraints between them. Based on the above, the authors derive probabilities
for subtask response-times using convolution based approaches and compose convolution based

approachesan overall response-time. However the approaches by Ben-Amor et al. [BMC16;
BCM+20a; BCM+20b] are limited to the response-time analysis of a single proba-
bilistic DAG task and can not easily be extended to multiple tasks due to more
complex inter-task interference.

Motivated by the conditional execution behaviour of modern parallel applica-
tions, e.g., autonomous driving or robotics, where the branching decisions and
execution times are dependent on sensory information, e.g., in object detection,
and control applications, the conditional DAG task model has been proposed.
A plethora of research concerning the real-time schedulability of this model has
been conducted by e.g., [MBB+15; Bar15c; CLJ+19]. Most recently, the computa-
tional complexity of the scheduling of conditional DAG with real-time constraints
has been investigated by Marchetti et al. [MMS+20], and Baruah et al. in [Bar21;
BM21]. In light of the observations that many applications that motivate the
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conditional DAG task model, e.g., closed-loop feedback controllers hard real-
time system engineering (with a safe but very pessimistic upper bound) is not
required due to the inherent controller robustness towards timing non-idealities
like jitter and deadline misses. To that end, the uncertain execution behaviouruncertain execution

behaviour and
response-time of

conditional parallel
tasks can be accepted

and analyzed in a
probabilistic sense

and response-time of conditional parallel tasks can be accepted and analyzed in
a probabilistic sense. Many research efforts have been focused on formalizing
and analyzing relaxations of deadline constraints [PMM+19], e.g., weakly hard
systems where m out of k task instances must meet the deadlines. Moreover,
Maggio et al. [MHM+20] and Vreman et al. [VCM21; VPM+22] investigate the
closed-loop control system stability under consecutive deadline-miss constraints,
which motivates scheduling algorithms that can guarantee probabilistic bounds
on consecutive deadline misses to the application. To that end, soft real-time
applications that can tolerate bounded number of deadline-misses, probabilistic
task models and response-time analyses for these kind of parallel conditional
DAG tasks are of interest.Improvements in the

response-time analyses
can be categorized into

inter-task and
intra-task interference

improvement

Improvements in the response-time analyses can be categorized into inter-task
and intra-task interference improvement. A plethora of real-time scheduling algo-
rithms and response-time analyses thereof have been proposed in the literature,
e.g., for generalized parallel task models [SAL+11], and for DAG (directed-
acyclic graph) based task models [HJG+19; DL17; ZDB+20; FNN17; BMSS+13;
Bar15a; BMS+13; MBB+15]. For DAG-based task models, improvements in the
response-time analyses can be categorized into analyses that improve inter-task
interference, e.g., in [DL18; FNN17], or intra-task interference as e.g., in [LCA+14;
HJG+19; HLG21; ZDB+20]. In general, intra-task interference analyses build upon
the interference analysis along the execution of the envelope path. In federated
scheduling [LCA+14], the intra-task interference of the envelope execution is
upper-bounded by the workload of the non-envelope subjobs divided by the
number of processors. The corresponding response-time analysis requires no
information about the internal structure of the DAG except for the total volume
and the longest path. This analysis was improved by He et al. [HJG+19], who
proposed a specific intra-vertex priority assignment for list-scheduling that must
respect the topological ordering of the vertexs within the DAG. This priority
assignment and the inspection of the DAG structure results in a less pessimisticinspection of the DAG

structure results in a
less pessimistic

upper-bound for a
task’s self-interference

upper-bound for a task’s self-interference of the envelope path compared to
federated scheduling. These results are further improved and extended by Zhao
et al. [ZDB+20], where subjob dependencies are explicitly considered along the
execution of the envelope path to more accurately bound self-interference. Most
recently, He et al. [HLG21] improve their prior work by lifting the topological or-
der restrictions in their intra-vertex priority assignments, which further improved
the results by Zhao et al. [ZDB+20].

4.3 hierarchical dag scheduling & dag task model

In this section, the fundamental parallel DAG task model, used in this chap-
ter, is formally described. Subsequently, the most fundamental definitions, and
techniques for analysis are presented. Hereinafter, the hierarchical scheduling ap-
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Figure 4.1: An exemplary directed-acyclic graph (DAG) with subtasks v1, v2, . . . , v9. The
numbers within the vertices denote the subtasks’ worst-case execution time.
The arrows represent the precedence constraints indicating that the release of
a subjob depends on the finishing of all incident subjobs.

proach, and the properties which are inherent to the studied reservation systems
are examined.

A sporadic arbitrary-deadline (or constrained-deadline) directed-acyclic graph
(DAG) task τi := (Gi, Di, Ti) is defined by a DAG Gi, minimal inter-arrival time Ti, task τi := (Gi , Di , Ti)

is defined by a DAG
Gi, minimal
inter-arrival time Ti,
and relative deadline
Di

and relative deadline Di. Each task releases an infinite sequence of task instances,
called jobs. We use J`i to denote the `-th job of task τi, and a`i , f `i , and d`i = a`i + Di
to refer to the arrival time, finishing time, and (absolute) deadline of job J`i .

The task’s DAG Gi is defined by the tuple (Vi, Ei), where Vi denotes the finite
set of subtasks and the relation Ei ⊆ Vi × Vi denotes the precedence constraints precedence constraints

among them, such that there are no cyclic precedence constraints. To be mathe-
matically precise, each job J`i is associated with an instance of the DAG G`

i with
corresponding `-th subjobs v`j where vj is a subtask in Vi. A subjob of the `-th
job of task τi, namely v`j for vj ∈ Vi, is released when all `-th subjobs v`k for
(vk, vj) ∈ Vi have finished execution. To reduce this notation, we drop the index
of the task as well as of the job when analyzing one specific job. That is, we refer
to G = (V, E) and vj ∈ V to denote a subjob of a specific DAG job; an exemplary
DAG is illustrated in Figure 4.1.

In hard real-time systems, tasks must fulfill timing requirements, i.e., each job
J`i must finish its total volume between the arrival of a job at a`i and that job’s total volume

absolute deadline at a`i + Di. That is, a task τi is said to meet its deadline if each
job meets its deadline, i.e., f `i ≤ a`i + Di for all ` ∈N.

Definition 4.1 (Volume). The volume voli : Vi → R≥0 specifies the worst-case exe-
cution time of each subtask vj ∈ Vi, which means that no subjob (instance) v`j ever
executes for more than voli(vj) time-units on the execution platform, but may finish ear-
lier. Moreover, the volume of any subset of subtasks W ⊆ Vi is vol(W) := ∑vj∈W voli(vj).
In particular, the total volume of a task τi is given by Ci := voli(Vi).

On the basis of a volume function, the length of a DAG, i.e., the volume of the length

longest path in a DAG can be defined as follows.

Definition 4.2 (Length). The length Li of a DAG Gi is defined based on the volume as
Li := max {voli(π) | π is a complete path in Gi}, i.e., the longest path with respect to
the cumulative worst-case execution time.
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Recall, that in arbitrary-deadlines, we do not make any assumptions about the
relation of deadline and inter-arrival time, whereas constrained-deadlines implies
that the relative deadline is no more than the inter-arrival time.

Definition 4.3 (Complete Path). Let a DAG G = (V, E) then for each subtask vj ∈ V,
the set of predecessors of vj and the set of successor of vj is given by pred(vj) :={

vi ∈ V | (vi, vj) ∈ E
}

and succ(vj) :=
{

vi ∈ V | (vj, vi) ∈ E
}

, respectively. A com-
plete path is a strictly ordered set of subtasks π := 〈v1, . . . , vn〉 such that pred(v1) = ∅,
succ(vn) = ∅ and vk ∈ pred(vk+1) for all k ∈ {1, . . . , n− 1}.

In this chapter, we propose a specific two-layered hierarchical scheduling
approach for parallel DAG tasks. On the lower level, reservation systems (or
threads), which comply with the sporadic task model are scheduled on the
physical processors by any appropriate scheduling policy. On the higher level, the
attached DAG job and its subjobs are dispatched and serviced by the reservations
in a temporally and spatially isolated environment for the promised amount of
service. Notably, reservation systems can be co-scheduled with other task systems
on the same set of physical processors, using readily available response-time
analyses.

In the context of this chapter, a reservation system for a DAG task τi, is defined
by a set of mi reservations, namely (E1

i , Di, Ti), . . . , (Emi
i , Di, Ti); each of which has

a fixed promised budget of Ej
i ≤ Di amount of time for j ∈ {1, . . . , mi}. Each

of the mi reservations are released simultaneously, with the release of the to-be
served DAG job, such that each reservation offers Ej

i amount of service, for any
of the subjobs of the attached DAG job, during the interval [ai, di); consequently
the inter-arrival times of two subsequent instances of the reservation system is at
least Ti. Note, that each reservation system instance serves exactly one DAG task
instance, and that the service is only offered at a time t ∈ [ai, di), if the respective
reservation is scheduled at that time t.

Reservation Properties. The formal properties, and the internal dispatching
mechanism of the subjobs of the attached DAG job, are formally stated in the
following definitions.

Definition 4.4 (Parallel Service). A reservation system instance provides mi ∈ N

parallel reservations, such that at any time, at most mi reservations can provide service
to the attached DAG job, concurrently.

Definition 4.5 (Attached Service). An instance of the reservation system serves ex-
actly one DAG job of a DAG task. This means that an instance of the mi ∈ N parallel
reservations that serve the `-th job J`i of DAG task τi all arrive synchronous at time a`i
and the deadline is given by d`i . Note that if the next DAG job arrives before the previous
one is finished, a new instance of reservations is released and the accumulate DAG job is
attached to it.

Definition 4.6 (Sustained Service). The service of a reservation is provided whenever
the reservation system is eligible to execute, i.e., is scheduled, irrespective of the actual
service requests of the attached DAG job.
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A negative consequence of sustained service is that the reservation system may
block the processor without executing any workload. This issue is described in
Section 4.5.6, and some solutions are discussed to improve resource utilization.

Definition 4.7 (Internal Scheduling). In preemptive subtask-level fixed-priority
list scheduling (List-FP) of the provided service by a reservation system, a task instance
(job) of a DAG task G = (V, E) with a fixed-priority assignment of each subjob v ∈ V is
serviced according to the following rules:

• A subjob arrives to the reservation system’s internal ready list, if all preceding
subjobs have executed until completion, i.e., the subjob arrival time ai for each
subjob vi is given by max

{
f j | vj ∈ pred(vi)

}
. An arrived, but not yet finished

subjob, is considered pending. pending subjob

• At any time t, all reservations that can provide service at time t, are busy execut-
ing the highest-priority pending subjobs. A lower-priority subjob is preempted if
necessary, i.e., a higher-priority subjob is released.

Analysis Framework. All the forthcoming analyses, of the proposed hierarchical
scheduling approaches, consist of a two-stage analysis, namely:

1. Firstly, the schedulability analysis of the reservation systems upon M identi-
cal multiprocessors; hence it is guaranteed that the promised service can be
provided within the interval [ai, di).

2. And secondly – premised on provided service in the prior stage – the
response-time analysis of the attached DAG job.

With regards to the first analysis step, it is to emphasize that our individual
reservations are intentionally modeled as sequential sporadic arbitrary-deadline
tasks and thus any scheduling algorithm and any appropriate schedulability
analysis can be used, e.g., global fixed-priority scheduling, or partitioned earliest-
deadline first. Therefore, the research focus in this chapter is on the provision of research focus in this

chapter is on the
provision of the
reservation budgets

the reservation budgets, and the response-time analysis of a DAG job, given the
contracted service, provided by the reservations.

The response-time analyses of a specific DAG job of interest, are based on the
envelope concept (or critical path), which is formally introduced as follows.

Definition 4.8 (Envelope). Let S be any concrete schedule of the subjobs V = {v1, . . . , v`}
of a given DAG job of some DAG task G = (V, E). Let each subjob vk ∈ V have the
arrival time ak and finishing time fk in S. We define the envelope of G in S as the col-
lection of arrival and finishing time intervals [ak1 , fk1), [ak2 , fk2), . . . , [akp , fkp ) for some
p ∈ {1, . . . , `} backwards in an iterative manner as follows:

1. ki 6= k j ∈ {1, . . . , `} for all i 6= j.

2. vkp is the subjob in V with the maximal finishing time.

3. vki−1 is the subjob preceding vki with maximal finishing time, for all i ∈ {p, p− 1, . . . , 2}.
4. vk1 is a source vertex, i.e., has no predecessor.

Based on the envelope, we call the ordered set πe := 〈vk1 , vk2 , . . . , vkp〉 the envelope path
of G in S. We note that the definition of an envelope for a DAG job may not be unique if
there are subjobs with the same finishing times. In that case, ties can be broken arbitrarily.
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Figure 4.2: An exemplary probabilistic conditional DAG task in which each conditional
vertex (diamond) denotes that only one of its adjacent subjobs is released
(with the annotated probability) during runtime. In this specific example four
different DAG structures can be instanced during runtime.

The arrival times of each subjob depend on the finishing time of all preceding
subjobs, and therefore the arrival sequence for all subjobs is dependent on a
concrete schedule and thus may be different for different concrete schedules.
Consequently, any complete path in G can be the envelope path in a concrete
schedule, if no further properties such as subtask priorities and path volume are
considered. The key property of the envelope is that it contiguously partitions thekey property of the

envelope is that it
contiguously partitions

the execution interval

execution interval [ai, fi] of the DAG job, and in each sub interval [akp , fkp ), the
subjob vkp is pending and eligible to execute, since all its precedence constraints
are satisfied by the formal construction.

4.4 probabilistic conditional-dag scheduling

In this section, we analyze the probabilistic response-time of parallel conditional
DAG tasks, which are not forced to be immediately aborted, when the deadline
is missed. The hierarchical scheduling algorithm can be integrated with hard
real-time workloads, as well as any number of probabilistic parallel DAG tasks.
In order to formally describe and verify quantitive guarantees of deadline misses,
some quantifications are of importance for soft real-time systems, namely the
probability of a deadline miss, probability for k-consecutive deadlines misses and the
maximum tardiness of a job.

In this contribution, we aim to analyze, optimize, and verify the schedulability
of probabilistic conditional parallel DAG tasks on identical multiprocessors, with
respect to quantities such as deadline-miss probabilities, consecutive deadline-
miss probabilities and tardiness constraints. When considering the scheduling and
analysis of probabilistic conditional parallel DAG tasks, not only inter-task, but
also intra-task interference, and multiprocessor scheduling anomaly effects must
be considered, complicating the analyses for the above mentioned quantities.

4.4.1 task and problem model

A probabilistic conditional directed-acyclic graph (pC-DAG) is defined by the
tuple G = (V, E). The vertices V = V♦ ∪V◦ are comprised of finitely many regular
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Figure 4.3: An exemplary probabilistic conditional DAG task in which each conditional
vertex (diamond) denotes that only one of its adjacent subjobs is released
(with the annotated probability) during runtime. In this specific example four
different DAG structures can be instanced during runtime.

vertices V◦ and finitely many decision vertices V♦; an exemplary probabilistic
conditional DAG is illustrated in Figure 4.2. The edges E ⊆ V × V denote the
directed precedence constraints between two vertices such that there are no
directed cycles in the graph. The main difference to a regular DAG is given by
the partitioning of vertices into decision and regular vertices, which are defined
as follows.

Decision Vertex. Each decision vertex vj ∈ V♦ denotes a branching decision to decision vertex

exactly one (of possibly many) succeeding conditional branches and satisfies the conditional branch

following properties:

• To be well-defined, a decision vertex must have exactly one preceding regular
vertex and more than one succeeding regular vertex, since the branching
condition is determined by the preceding vertex during execution.

• A decision vertex is not executable, but rather represents a branching option
to one of the conditional paths, which is determined by the computation of
the preceding regular vertex.

• Each decision vertex vj ∈ V♦ is a random event with the sample space
Ωj =

{
(vj, vk) | (vj, vk) ∈ E

}
; that is determined by the set of all edges that

originate in decision vertex vj and end in a regular successor vertex vk, which
represents the source vertex of a conditional branch.

• At each decision vertex, exactly one conditional branch must be taken, i.e.,
for each vj ∈ V♦ : ∑ω∈Ωj

P(ω) = 1.

In the following, we assume that the probability for each outcome P(ω) for
ω ∈ Ωj is given by either application knowledge or measurements.

Regular Vertex. In contrast to a decision vertex, a regular vertex vi ∈ V◦ denotes regular vertex

an executable entity, namely a subtask, which is annotated with its worst-case
execution time vol(vi). That means, no subjob executes for more than vol(vi) time
units.

Source Vertex. All vertices in V of a pC-DAG G, which do not have any prede-
cessor, are marked as source vertices of that graph.

In order to assure a well-defined runtime behaviour of our pC-DAG model,
we first formalize a branching decision and then define how a branching decision branching decision
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determines the runtime behaviour.

Definition 4.9 (Branching Decisions). Let G = (V♦ ∪V◦, E) denote a pC-DAG then

Bj :=
{

(vi, vj, vk) | (vi, vj)∧ (vj, vk) ∈ E
}

(4.1)

denotes the set of all possible branching decisions at a decision vertex vj ∈ V♦. Further-
more, an element bj,k ∈ Bj denotes the branching decision to vertex vk at decision vertex
vj, i.e., bj,k = (vi, vj, vk) ∈ Bj, if the two edges (vi, vj) and (vj, vk) exist.

Each branching decision results in an altered residue pC-DAG, which is formal-residue pC-DAG

ized as follows.

Definition 4.10 (Substitution). A substitution of a concrete branching decision bj,k =
(vi, vj, vk) for bj,k ∈ Bj is a transformation of a pC-DAG G = (V, E) to another pC-DAG

G′ = (V ′, E′) denoted by G
bj,k−→ G′ where G′ is constructed by the application of the

following rules:

1. Determine source vertices of G.

2. Remove decision vertex vj from the graph G.

3. Remove all edges (∗, vj), (vj, ∗) from the graph G.

4. Add an edge (vi, vk) to the graph G.

5. Remove all vertices and edges that are not reachable from any source vertex in G.

A sequence of substitutions is considered complete if the final pC-DAG G′ does not
contain any decision vertices anymore, i.e., the result of a complete substitution is a
simple DAG.

An example of a substitution is given based on the illustrated pC-DAG in
Figure 4.2 at decision vertex v2 such that B2 = {b2,3 = (v1, v2, v3), b2,4 = (v1, v2, v4)};
without loss of generality, we choose b2,4 to be the taken branching decision.
By application of rule 1, we determine v1 as the only source vertex in G; By
application of rule 2-4, v2 is removed from V, edges (v1, v2), (v2, v3), and (v2, v4)
are removed from E and edge (v1, v4) is added to E; By application of rule 5, v3 is
removed from V, since v3 is not reachable by the source vertex v1. The resulting
pC-DAG G′; after the substitution; is shown in Figure 4.3.

We consider a set T of sporadic constrained-deadline (Di ≤ Ti) pC-DAG tasks
in a multiprocessor system of M identical (homogeneous) processors. Recall, that
a job is said to meet its deadline if it finishes at most Di time units after its release,
and said to miss its deadline otherwise.

Definition 4.11 (pC-DAG Job). The `-th job of a pC-DAG task τi = (Gi, Di, Ti) is
denoted by Ji,` = (Gi,`, di,`, ai,`) where Gi,` denotes a complete substitution of the pC-
DAG Gi, and ai,` and di,` = ai,` + Di denote the arrival time and absolute deadline of the
job Ji,`. The concrete complete substitution Gi,` of all possible complete substitutions, is
based on the taken branching decisions during the execution of the `-th job. We empha-
size, that the graph Gi,` of pC-DAG job is a simple DAG, since no decision vertices are
contained anymore in a complete substitution. For that reason we synonymously use the
term DAG job, to refer to the concrete complete substitution Gi,` of the `-th job.
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Table 4.1: Tabular representation of the probabilities of the parameters total volume and
length for the probabilistic conditional DAG task illustrated in Figure 4.2.

Probability Length Total Volume

0.42 13 14

0.18 7 8

0.28 14 15

0.12 8 9

The probability for a specific complete substitution during the runtime of a job
is described in the following definition.

Definition 4.12 (Valid complete Branching Sequence). A sequence of branching
decisions (bj1,k1 , . . . , bjn ,kn ) is a valid complete branching sequence of the pC-DAG G :=
G(0) if the following conditions are satisfied:

• vjz+1 ∈ V(z)
� of G(z), where G(z−1) bjz ,kz−−→ G(z) for z ∈ {1, . . . , n− 1}

• G(n) is a simple DAG, i.e., V(n)
� = ∅

This distinction between invalid and valid complete branching decisions is nec- invalid- & valid
complete branching
decisions

essary, since some decision vertices may be removed during a substitution of
another decision vertex, which implies a zero-probability for such a runtime
evolution. During the runtime of the `-th job, at most |Bj1 |·|Bj2 |· . . . · |Bjn | many
different complete substitutions (simple DAGs) can be instanced (if no decision
vertex is ruled out by another decision vertex).

Definition 4.13 (DAG Job Probability). Let bj1,k1 = (vi1 , vj1 , vk1), bj2,k2 , . . . , bjn ,kn

denote a valid complete branching sequence of a pC-DAG G such that G(n) is an ordinary
DAG. The probability that a DAG job evolves into G(n) during execution is given by
P(G(n)) = P((vj1 , vk1)) ·P((vj2 , vk2)) · . . . ·P((vjn , vkn )).

For each pC-DAG task, a joint cumulative distribution function for the DAG-
dependent parameters volume and length as defined in Definition 4.1 and Def-
inition 4.2 is inferred. This is done by the enumeration of all valid branching
decisions, which yield a complete substitution G(n) for some n ∈ {1, . . . , |V�|}.
The corresponding volume C and length L are then collected to derive the cu-
mulative distribution function. For instance, the joint distribution function of the
pC-DAG illustrated in Figure 4.2, is given by the calculation of the probability
for each of the valid complete branching decisions and its respective parameter
values as summarized in Table 4.1. More precisely, the instance illustrated in
Figure 4.4 represents the case where both upper edges are chosen for which
the probability is 0.7 · 0.6 = 0.42. The associated length is 13 and the associated
volume is 14. By similar reasoning, choosing the edges with probability 0.7 · 0.4,
0.3 · 0.6, and 0.3 · 0.4 yield 0.28, 0.18 or 0.12 realization probability of the associ-
ated DAGs. Consequently, we derive the joint cumulative distribution function
for the pC-DAG G, i.e., P(C ≤ u, L ≤ v) as follows:

1(u− 14) · 1(v− 13) · 0.42 + 1(u− 8) · 1(v− 7) · 0.18 (4.2)

+ 1(u− 15) · 1(v− 14) · 0.28 + 1(u− 9) · 1(v− 8) · 0.12
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where 1 is 1 if x ≥ 0 and 0 otherwise.

We note that the analyses in the forthcoming sections are not limited by
our model, and can be applied to (possibly) other pC-DAG task models or
probabilistic DAG models, as long as the joint distribution function of the pC-
DAG task regarding the volume and length can be derived.

4.4.2 probabilistic deadline miss description

In the instances that a
job misses its deadline,
a mechanism must be

devised, which decides
the actions taken upon

deadline-miss events

In the instances that a job misses its deadline, a mechanism must be devised,
which decides the actions taken upon deadline-miss events. A common mech-
anism is the immediate abortion of every job, which exceeds its deadline in
order to avoid any interference of subsequent jobs. From the practical side, this
approach is inefficient in the sense that all computation results and state changes
are discarded, and may even incur additional costs to revoke state changes for
consistency reasons. This approach is especially inefficient if the required amount
of execution time to finish the remaining workload is rather small and a late result
is still useful. For that reason, it is beneficial to let jobs execute, and potentiallyit is beneficial to let

jobs execute, and
potentially finish their

remaining workload
before a final abortion

finish their remaining workload before a final abortion. On the flip side, this
additional workload directly impacts the response-time of subsequent jobs and
thus increases the chance of subsequent deadline misses.

Formally, a job is tardy if it is not finished at, or before, its absolute deadline.tardy

To avoid unbounded interference of subsequent jobs, whilst allowing a tardy job
to likely finish, we aim to track and bound the amount of workload, which tardy
jobs can carry into the scheduling window of the next job.

Definition 4.14 (Tardy Workload). Let δi(`) denote the cumulative tardy workload
of the first ` instances (jobs) of a constrained-deadline pC-DAG task, sampled at the
absolute deadline of the `-th job. Let Gi,` denote the corresponding complete substitution
then the tardy workload of the first ` jobs can be stated as:

δi(`) = max {δi(`− 1) + vol(Gi,`)− worki(S, di,`−1, di,`), 0} for ` > 1 (4.3)

where worki(S, di,`−1, di,`) denotes the amount of executed workload of task τi during
the window from the absolute deadline of the (`− 1)-th job and the absolute deadline of
the `-th job in a given schedule S. The tardy workload of the first job is given by

δi(1) = max{vol(Gi,1)− worki(S, ti,1, di,1), 0}

since by definition the system starts with the release of the first job.

In summary, the `-th complete substitution, i.e., DAG Gi,` of pC-DAG task τi
meets its deadline if δi(`) = 0 and misses its deadline if δi(`) > 0. In pursuance
of improving the problem of unbounded interference, we introduce a threshold
value ρi > 0 for the admissible amount of tardy workload of each job of a task τi.
In the following we consider schedules S′ instead of S where the tardy workload
is aborted each time it exceeds the threshold value. This provides the property
that in S′ the upper bound δi(`) ≤ ρi is valid for all tasks τi and all ` ∈N.
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Figure 4.4: A complete substitution of the pC-DAG shown in Figure 4.2 where the valid
branching decisions b2,4 and b7,8 are chosen. The probability for this complete
substitution G′ is given by 0.4 · 0.7 = 0.282 with C = 15 and L = 14.

To clarify the definitions, consider two subsequent job releases with bound
ρi = 2 at time 0 and 10 with their respective absolute deadlines at 8 and 18 and
100% processor share. Further assume that the execution time demand of the first
job is 10 and 6 for the second. Assuming that at the time of the job’s deadline, 8
units of work are finished, 2 units of work are carried into the execution window
(10 to 18) of the second job. Since the bound allows 2 units of workload of a
prior job to be executed, the first job is not aborted and finishes at time 12. The
tardiness of that job is thus given by 12− 8 = 4. The second job then executes
from 12 to 18 and in this case meets its deadline.

Definition 4.15 (Consecutive Deadline Misses). Any sequence of k consecutive jobs
Ji,`, Ji,`+1, . . . , Ji,`+k−1 for ` > 0 is subject to k consecutive deadline misses if the follow-
ing conditions hold:

• All jobs in the sequence miss their deadline

• Either ` = 1 or the previous job Ji,`−1 does not miss its deadline.

For each task we define a function θi : N→ [0, 1] to specify that we tolerate k
consecutive deadline misses for a given probability of at most θi(k). Based on the
prior definitions, we formally state a probabilistic k consecutive deadline miss
constraint as follows.

Definition 4.16 (k Consecutive Deadline Miss Constraint). Let

φi(`, k) := P(δi(`) > 0, . . . , δi(` + k− 1) > 0 | ` = 1 or δi(`− 1) = 0) (4.4)

denote the probability that the sequence of k consecutive jobs Ji,`, Ji,`+1, . . . , Ji,`+k−1 suf-
fers from k consecutive deadline misses. Then a probabilistic conditional DAG task τi is
said to satisfy the constraint θi(k) if

sup
`≥1
{φi(`, k)} ≤ θi(k), (4.5)

i.e., for any initial ` the probability φi(`, k) does not exceed the threshold θi(k).
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Table 4.2: Summary of used notation in this section.

Symbol Meaning

V♦ Set of decision vertices in V
V◦ Set of regular vertices in V
Bj

{
(vi, vj, vk) | (vi, vj), (vj, vk) ∈ E, vj ∈ V♦, vi, vk ∈ V◦

}
bj,k Choosing decision (vi, vj, vk) ∈ Bj

P(ω) Probability of an event ω ∈ Ω
T Taskset of pC-DAGs
K Set of reservations
Ci Total volume of a DAG Gi

δi(`) Bounded tardy workload of the `-th job
Li Longest path of DAG Gi

κi Reservation system for task τi

Ωj Sample space of a decision node vj

vi ≺ vj vi precedes vj

vol(vi) Worst-case execution time of regular subjob vi

Ei Reservation budget
mi Number of in-parallel reservations
Φn

i R>0 → R>0, Ei 7→ P(R1
i > Di)|mi=n

4.4.3 objective , discussion of guarantees & limi-
tations

The objective of the forthcoming analyses is the design of a hierarchical scheduling
policy such that the probability of k consecutive deadline misses of a pC-DAG
is no more than a user specified upper bound given the requirements described
in Section 4.4.4 are satisfied. While the hierarchical scheduling approach allows
to detect and contain temporal violations such as consecutive deadline misses
and thus allows for the initiation of error handling, we do not devise any specific
error handling mechanisms in this contribution. Also we do not guarantee any
quality of service beyond the probability bound of occurrence given by θi(k) in
this work.

In our approach, the `-th job of a pC-DAG task τi is guaranteed to meet
its deadline if the bounded tardy workload δi(`) = 0 and misses its deadline
if δi(`) > 0. All tardy jobs are counted for the consecutive deadline misses,
irrespective of whether the tardy job can finish the execution within its tardy
workload bound or not. In the case that a deadline is missed, it is allowed to
continue the execution of the tardy workload until the tardy workload bound
ρi is exceeded, which then results in the abortion of the `-th job. Our approach
does not guarantee if a job, that is not finished at its deadline, can finish within
its tardy workload bound ρi or is aborted before completion.

The tardiness of aborted jobs is undefined since their executions are incomplete
and thus no tardiness bound can be stated for them. Nonetheless, in the case that
a tardy job can finish its workload within its tardy workload bound and is thus
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not aborted, a probabilistic description of the tardiness and a maximal tardiness
can be stated (Corollary 4.6), which is helpful in the assessment of resulting
performance degradation from the application perspective.

4.4.4 hierarchical scheduling analysis

In this section we propose a hierarchical scheduling policy to schedule the
instances of probabilistic pC-DAG tasks such that response-times can be analyzed
without considering inter-task interference and thus only the random process
of an individual pC-DAG task must be considered. In our parallel reservation
system, each pC-DAG task τi is serviced individually according to a reservation
system, which satisfies the properties stated in Section 4.3 with the following
refinements, which are required due to the fact that multiple DAG jobs can be
backlogged.

1. FIFO. The DAG jobs of a pC-DAG task are assigned to the provided services
in first-in-first-out (FIFO)-manner. Furthermore, we assume that at each time
all assigned reservations only serve the subjobs of a single DAG job by the
FIFO-policy. We emphasize that a subjob may migrate from one reservation
to another, i.e., the service provided by the reservation system is a global
scheduling scheme.

2. Activation of Service. The first release of the parallel reservation system
must be synchronous with the release of the first DAG job. All subsequent
reservation system releases are periodic in case of pending workload and
synchronous with the next DAG job otherwise.

With respect to the property of sustained service, in this section, we focus on
spinning parallel reservation systems defined as follows. spinning parallel

reservation systems
Definition 4.17 (Spinning Reservation System). A reservation system consists of
mi ∈ N reservation servers that provide Ei (equal) amount of service each and that is
replenished every Pi > 0 time units and provides it service. More specifically, to provide
the service, a multiset of mi ∈ N distinct reservations are activated, in which each
of them guarantees a service of Ei time units over an interval of length Pi. Whenever a
reservation is scheduled during an interval, the corresponding interval is either providing
service or is spinning if nothing is waiting to be serviced.

The execution time budget Ei of the reservation systems are determined off-line
and are static. Moreover, the deadline-compliant schedulability of the reservation
system must be verified beforehand such that service guarantees can be verified.
Thus for the remainder of this section, we assume the existence of a feasible
schedule S upon a set of identical multiprocessors, meaning that all reservations
satisfy the stated properties. Based on the promised service, we then build our
probabilistic analysis.

Definition 4.18 (Work). Let worki(S, t1, t2) denote the amount of workload generated
from DAG jobs of task τi that was executed (processed) during the time interval from
t1 to t2 in a given schedule S.
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P1 v3 v5 v8 v10

P2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

v1 v6 v8

No Service Service & Execution Service & No Execution

Figure 4.5: An exemplary schedule of the pC-DAG illustrated in Figure 4.2 where the
decisions are taken according to Figure 4.4. The resulting DAG job with its
subjobs (vertices) are executed on 2-in parallel spinning reservations with
budget Ei = 8 each. One spinning reservation is partitioned to processor
P1 and the other is partitioned to processor P2 where they are scheduled
according to some scheduling policy. The dashed areas represents that the
reservations are preempted by higher-priority reservations or are depleted
and therefore do not provide service. The unused time interval from 8 to
10 in the first reservation indicates that the reservation provides the service
but the DAG is not executed in the reservation due to either its precedence
constraints or lack of workload.

Based on this definition, the worst-case response-time of the `-th job Ji,` of a
pC-DAG task τi that arrives at ai,` is given by the smallest t′ ≥ ai,` such that

worki(S, ai,`, t′) ≥ vol(Gi,`) + backlogi(S, ai,`), (4.6)

where backlogi(S, ai,`) is the amount of unfinished workload at time ai,` of jobs
of τi released before ai,`. Note that backlogi(S, ai,`) = 0 if there are no previous
deadline misses since we assume constrained deadlines, i.e., Di ≤ Ti in our system
model. In the following we express the processed work in terms of provided
service and develop a response-time bound in Theorem 4.3.

Definition 4.19 (Service). Let servi(S, t1, t2) denote the amount of service that is
promised to the DAG jobs from τi during the time interval from t1 to t2 in the schedule
S.

Please note that worki(S, t1, t2) ≤ servi(S, t1, t2) since promised service of the
reservation system does not equate to consumed service for serving τi.

Based on the definition of an envelope (cf. Definition 4.8), we are able to
formally state the following lemma.

Lemma 4.1. Given a schedule S of the taskset T. We consider a task τi ∈ T with an mi-
in-parallel reservation system. Let a DAG job of τi with envelope [sk1 , fk1), . . . , [skp , fkp ).
Then the amount of work that is finished during the interval from fkq−1 to fkq for q ∈
{2, . . . , p} is lower bounded by

worki(S, fkq−1 , fkq ) ≥ servi(S, fkq−1 , skq ) + servi(S, skq , fkq )− (mi − 1) · ckq (4.7)

where vkq is the subjob from the envelope starting at time skq and finishing at fkq .

Proof. In the proof we split the work at time skq and upper-bound each partial
summand of worki(S, fkq−1 , fkq ), i.e.,

worki(S, fkq−1 , skq ) + worki(S, skq , fkq )
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individually. In the first step, we prove that between finish and start of two
consecutive subjobs in the envelope, the provided service is fully utilized by the
DAG instance, i.e.,

worki(S, fkq−1 , skq ) = servi(S, fkq−1 , skq )

holds for all q ∈ {2, . . . , p}. Given the work-conserving properties of the algorithm
used to dispatch subjobs to the provided service, we know that an eligible subjob
is scheduled whenever service is available. Since by definition skq is the earliest
time that vkq is able to execute and fkq−1 is the earliest time that vkq is eligible to
be executed, all services during fkq−1 to skq must have been used to execute other
(non-envelope path) subjobs.

Secondly, we show that worki(S, skq , fkq ), that is from start to finish of a subjob in
the envelope, can be upper-bounded by max{servi(S, skq , fkq )− (mi − 1) · ckq , ckq}.

Notice that due to the sequential execution of the subjob vkq , there can only be
unused service during the execution of vkq . Moreover, during the execution of
vkq , at most mi − 1 reservations may be unused. Since the maximal duration for
execution of vkq is ckq , we conclude

worki(S, skq , fkq ) ≥ servi(S, skq , fkq )− (mi − 1) · ckq

Based on the following extension of the above lemma, we can calculate the
response-time of a DAG job.

Lemma 4.2. Under the same conditions stated in Lemma 4.1, it follows that for all
0 ≤ t ≤ fkp the following property holds:

worki(S, tG, tG + t) ≥ servi(S, tG, tG + t)− (mi − 1) · Li (4.8)

where tG denotes the release time of a DAG job of τi with DAG structure G.

Proof. The main part to prove this lemma is already done in Lemma 4.1. It is
however left to consider the case that t is not a time instant of the envelope.

Similar to the proof of Lemma 4.1 we can show that worki(S, fkq−1 , t) = servi(S, fkq−1 , t)
for all t ∈ [ fkq−1 , skq ] and that worki(S, skq , t) ≥ servi(S, skq , t)− (mi − 1) · ckq for all
t ∈ [skq , fkq ]. Furthermore, by the same reasoning worki(S, tG, t) = servi(S, tG, t)
holds for all t ∈ [tG, sk1].

We obtain the desired result by splitting the interval [tG, t] into parts already
described above and estimating all of them at the same time. To formalize this,
we define µ := (tG, sk1 , fk1 , . . . , skp , fkp ). For q ∈ {1, . . . , 2p + 1} we denote by µ(q)
the q-th entry of µ and by µt(q). = min{µ(q), t} the q-th entry bounded by t. A
decomposition of worki(S, tG, tG + t) using the partition µ yields

p

∑
q=1

worki(S, µt(2q− 1), µt(2q)) +
p

∑
q=1

worki(S, µt(2q), µt(2q + 1)) (4.9)
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For the first summand, we know that the following inequality holds

p

∑
q=1

worki(S, µt(2q− 1), µt(2q)) ≥
p

∑
q=1

servi(S, µt(2q− 1), µt(2q)) (4.10)

by the fact that the work is lower bounded by the service. The second summand
from above is lower bounded by the following condition

p

∑
q=1

worki(S, µt(2q), µt(2q + 1)) ≥
p

∑
q=1

(
servi(S, µt(2q), µt(2q + 1))− (mi − 1) · ckq

)
(4.11)

Combining both of the inequalities yields the lower bound

2p

∑
q=1

servi(S, µt(q), µt(q + 1))− (mi − 1)
p

∑
q=1

ckq (4.12)

= servi(S, tG, tG + t)− (mi − 1)
p

∑
q=1

ckq ≥ servi(S, tG, tG + t)− (mi − 1) · Li

which concludes the proof.

Definition 4.20 (Supply Bound Function). For a task τi ∈ T the minimal service
that is provided by the associated parallel reservation system during an interval of length
t ≥ 0 is described by the supply bound function sb fi(t).

The supply bound function is a lower bound for the service provided to a DAG
task for all feasible schedules S, i.e., ∀S : servi(S, tG, tG + t) ≥ sb fi(t). This leads us
to the following theorem.

Theorem 4.3 (Response-Time Bound). Consider a task τi ∈ T and assume that the
reservation system of τi is mi-in-parallel and its minimal service is described by sb fi(t).
Let G be the DAG job of Ji,j of a pC-DAG task τi. Then the response-time of Ji,j is
upper-bounded by min{t > 0 | sb fi(t) ≥ WG

i } where WG
i := Ci + (mi − 1) · Li +

backlogi(S, tG) for notational brevity.

Proof. Let t′ := min{t > 0 | sb fi(t) ≥ WG
i }. We prove the theorem by contraposi-

tion. Assume that t′ does not bound the response-time then t′ < fkp , where fkp is
the last entry in the envelope of G in S. In this case (t′ < fkp ) Lemma 4.2 applies
and yields:

worki(S, tG, tG + t′) ≥ servi(S, tG, tG + t′)− (mi − 1) · Li (4.13)

≥ sb fi(t′)− (mi − 1) · Li (4.14)

By the definition of t′ we have sb fi(t′) ≥ Ci + (mi − 1) · Li + backlogi(S, tG). Hence,
worki(S, tG, tG + t′) ≥ Ci + backlogi(S, tG), which implies that the job is finished at
time t′, i.e., t′ ≥ fkp contradicting the assumption.
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Figure 4.6: Supply Bound Function sb f (t) of the a reservation system with mi in-parallel
service and Ei reservation budget each. The supply-bound function denotes
the minimal guaranteed service in any interval of length t for any feasible
schedule.

We emphasize that the reservations and respective supply-bound function
are not enforced to any specific function. The complexity of the calculation of
the response-time depends only on the supply bound function. For instance,
Figure 4.6 illustrates the supply bound function of our spinning reservation system
from Definition 4.17. As depicted, there may be no service provided to the task
for up to 2 · (Pi − Ei) time units in the worst case.

We note that the first activation of the reservation system serving task τi can the first activation of
the reservation system
serving task τi can
either occur
synchronous with the
release of the first job of
τi or periodically in an
asynchronous manner

either occur synchronous with the release of the first job of τi or periodically in an
asynchronous manner. In the first case, the reservation system can stop assigning
new reservation servers if there is no pending or unfinished job of τi, as long as it
starts assigning new reservations if new jobs arise in the ready queue.

If we assume a reservation server as in Definition 4.17 then the response-time
or service-time of a DAG job G is described by the following theorem. Before we
present the formal proof we give an intuition. The worst-case service provided by
the reservations is depicted in Figure 4.6. In the figure every time when service is
provided, it is done on mi resources simultaneously. Hence, the total time which

τi has to be served, until the pending workload WG
i is finished is given by WG

i
mi

.

This takes up to
⌈

WG
i

mi ·Ei

⌉
+ 1 service cycles. To account for the time that the service

cycles do not provide any service, we have to multiply the number of service
cycles with the maximal amount of time that τi is not served during a service
cycle, i.e., (Pi − Ei). In total, the response-time is upper bounded by Eq. (4.15).

Theorem 4.4 (Service Time). Let G denote the DAG job of a pC-DAG task τi under
analysis. We assume that for τi we have a reservation system as in Definition 4.17 with



126 hierarchical parallel dag scheduling

mi equal sized in-parallel services Ei ≤ Pi. We can give an upper bound RG on the
response-time of the job of τi by

RG =

(⌈
WG

i
mi · Ei

⌉
+ 1

)
(Pi − Ei) +

WG
i

mi
(4.15)

where WG
i := Ci + (mi − 1)Li + backlogi(S, tG) for notational brevity.

Proof. For the proof we deliberately assume that Ci > 0 since otherwise no work
has to be done and RG = 0 is already a trivial response-time bound. Using
Theorem 4.3, we have to find the minimal t > 0 such that sb fi(t) = WG

i . Let sb fi(t)
denote the worst-case service (supply bound function) as illustrated in Figure 4.6.
Let the function g : R>0 → R>0 with

g(t) :=
(⌈

t
miEi

⌉
+ 1
)

(Pi − Ei) +
t

mi
(4.16)

such that the composition sb f ◦ g is the identity and the function g yields the mini-
mal value of the inverse image of sb fi(t), i.e., g(t) = min{sb f−1

i (t)} holds for all t >
0. Hence if g(t) satisfies the properties, we obtain g(WG

i ) = min{t > 0 | sb fi(t) ≥WG
i }.

We can verify that g(t) satisfies the required properties by inspection of the supply
bound function.

In general, if we know an upper bound b on the backlog of the previous job, we
can state the response-time bound from Eq. (4.15) independent from the previous
schedule, by

R′G(b) =

(⌈
VG

i (b)
miEi

⌉
+ 1

)
(Pi − Ei) +

VG
i (b)
mi

(4.17)

where VG
i (b) := Ci + (mi − 1) · Li + b. Based on Eq. (4.17), we bound the response-

time for the case that the preceding job has a deadline miss and for the case that
the preceding job has no deadline miss.

Corollary 4.5. Under the assumptions of Theorem 4.4, R′G(ρi) is an upper bound on the
response-time of G if the preceding job has a deadline miss, and R′G(0) is an upper bound
if the preceding job has no deadline miss.

Proof. This follows directly from Theorem 4.4 by using either backlogi(S, tG) ≤ ρi
(in case of a deadline miss) or backlogi(S, tG) = 0 (in case of no deadline miss).

Based on these results, a bounded tardiness (upper bound on the finishing time
minus the absolute deadline of every job of a task) can be stated as follows:

Corollary 4.6 (Bounded Tardiness). The tardiness for jobs of pC-DAG task τi that are
not aborted, i.e., can finish all tardy workload before exceeding the tardy workload bound
ρi is at most max{R′G(ρi)− Di, 0} if

R′G(ρi)− Di ≤ Pi +
(⌊

ρi

Ei

⌋
+ 1
)
· (Pi − Ei) + ρi
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Proof. Since any finishing time of any job can be no more than an upper bound
for the response-time, by Corollary 4.5, we know that the tardiness is bounded by
max{R′G(ρi)− Di, 0}. We, however, have to validate the required assumptions for
the tardiness bound and to whether a job is aborted or not.

Since the amount of executed tardy workload is bounded by ρi before the
abortion of that job, the finishing time is bounded as follows: Let Di ≤ Ti and
ti denote the release of the job that has tardy workload at time ti + Di. By our
definition of reservations, the budget is replenished periodically for every Pi time
units if there is unfinished pending workload.

Although the tardy workload is agnostic of the internal structure of the work-
load, the reservation system guarantees to provide the minimum progress. Sup-
pose that ti + Di + λ is the time for the next replenishment of the reservation
system after ti + Di with 0 ≤ λ ≤ Pi. Starting from ti + Di + λ, at least Ei amount
of computation can be served for a period of Pi. In consequence, the servicing of
the tardy job is aborted no earlier than

ti + Di + λ +
⌊

ρi

Ei

⌋
· Pi +

(
Pi − Ei + ρi −

⌊
ρi

Ei

⌋
· Ei

)
≤ ti + Di + Pi +

(⌊
ρi

Ei

⌋
+ 1
)
· (Pi − Ei) + ρi

4.4.5 reservation analysis and optimization

In this section we devise the analysis and optimization algorithm to generate
reservation systems, which provably respect the upper bounds for k consecu-
tive deadlines misses in a probabilistic sense. We emphasize that, in order to
co-design the k consecutive deadline-miss constraints with the reservations con-
figurations, time-efficient algorithms are required to calculate the probabilities
for k consecutive deadline misses for any given reservation configuration.

4.4.5.1 Analysis of Reservation Systems

Based on the finite sample space of DAG jobs (complete substitutions) G of
the pC-DAG tasks τi we define the random variables R1

i := (G 7→ R′G(ρi)) and
R0

i := (G 7→ R′G(0)), which yield for each DAG job the response-time bounds
from Corollary 4.5 with and without a previous deadline miss. According to
Definition 4.16, the constraint for k consecutive deadline misses is fulfilled if
sup`≥1 φi(`, k) ≤ θi(k), is satisfied where φi(`, k) is given by

P(δi(`) > 0, . . . , δi(` + k− 1) > 0 | ` = 1 or δi(`− 1) = 0)

Using Bayes’ Theorem, we can formulate φi(`, k) as

P (δi(` + k− 1) > 0 | δi(` + k− 2) > 0, . . . , δi(`) > 0) · φi(`, k− 1) (4.18)

The probability that the (`+ k− 1)-th job does not meet its deadline, does not de-
crease if the amount of tardy workload of the preceding job is increased. Therefore,
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if δi(` + k− 2) = ρi, then the probability for a deadline miss of Ji,`+k−1 is maximal.
In this case, the amount of tardy workload of the other jobs δi(` + k− 3), . . . , δi(`)
is irrelevant for the amount of tardy workload of Ji,`+k−1. More specifically,

P (δi(` + k− 1) > 0 | δi(` + k− 2) > 0, . . . , δi(`) > 0)

≤ P (δi(` + k− 1) > 0 | δi(` + k− 2) = ρi)

holds and we can thus upper bound the probability for k consecutive deadline
misses φi(`, k) by

φi(`, k) ≤ P (δi(` + k− 1) > 0 | δi(` + k− 2) = ρi) · φi(`, k− 1). (4.19)

Then by Corollary 4.5 we know that

P (δi(` + k− 1) > 0 | δi(` + k− 2) = ρi) ≤ P
(

R1
i > Di

)
and for the probability of the first job (without previous deadline miss, i.e.,
δi(`− 1) = 0 or ` = 1)

φi(`, 1) = P (δi(`) > 0) ≤ P
(

R0
i > Di

)
.

Combining the above results yields a bound on the probability of k consecutive
deadline misses:

φi(`, k) ≤ P
(

R1
i > Di

)
· φi(`, k− 1)

≤ P
(

R1
i > Di

)2
· φi(`, k− 2)

. . .

≤ P
(

R1
i > Di

)k−1
· φi(`, 1)

≤ P
(

R1
i > Di

)k−1
·P
(

R0
i > Di

)
Since P

(
R0

i > Di
)
≤ P

(
R1

i > Di
)
, we also derive a simplified bound for the

probability of k consecutive deadline misses of task τi by

φi(`, k) ≤ P
(

R1
i > Di

)k
. (4.20)

Since the bound does not depend on a specific ` we know that

sup
`≥1

φi(`, k) ≤ P
(

R1
i > Di

)k−1
·P
(

R0
i > Di

)
.

As a prerequisite to derive upper bounds on response-times for queuingto derive upper bounds
on response-times for

queuing systems it
must be shown that the

system is stable

systems it must be shown that the system is stable. Informally speaking this
means that the maximal time between two met deadlines is finite. We first give a
formal definition of stability and then show that our devised reservation-based
queuing system is stable by construction.

Definition 4.21 (Stability). A spinning reservation system κi is considered stable if for
all ` ≥ 0 with δi(`) = 0 it is almost certain that there exists k > 0 such that δi(k + `) = 0.
More formally, the probability for k consecutive deadline misses approaches 0 for k→ ∞,
i.e.,

lim
k→∞

sup
`≥1

φ(`, k) = 0 (4.21)
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Theorem 4.7 (Stability). A reservation system κi is stable if P(R1
i > Di) < 1.

Proof. The probability for k consecutive deadline misses is bounded by

sup
`≥1

φi(`, k) ≤ P
(

R1
i > Di

)k

according to Eq. (4.20). If
(

R1
i > Di

)
< 1, then P

(
R1

i > Di
)k → 0 for k→ ∞. This

concludes the theorem.

In consequence we do not have to especially consider stability concerns in the
design of the reservation systems other than k consecutive deadline constraints.

4.4.5.2 Distribution Function Calculation

In this section, we show how to practically calculate the upper bounds on the
response-time.

First, we define the as per pC-DAG task τi ∈ T and the associated reservation
system κi ∈ K auxiliary random variable Xi as

Xi :=
Ci + (mi − 1) · Li + ρi

mi · Ei
=

VG
i

miEi
(4.22)

where Ci and Li are random variables for which the joint distribution function Ci and Li are random
variables for which the
joint distribution
function can be
computed from the
pC-DAG task model

can be computed from the pC-DAG task model, as previously described in
Section 4.4.1. As a consequence, the distribution function P(Xi ≤ u) can be
directly computed.

With reference to Corollary 4.5, the distribution function of R1
i can be written

as follows:

P(R1
i ≤ u) = P ((Pi − Ei) · (dXie + 1) + Ei · Xi ≤ u) (4.23)

Our objective is to compute the cumulative distribution function of R1
i based

on the cumulative distribution function of Xi. To that end, let dom(Xi) ∈ R denote
all values that Xi can take. Then, we define the set of constant values

Ii := {` ∈N | binf(dom(Xi))c ≤ ` ≤ dsup(dom(Xi))e} (4.24)

Moreover, for notational brevity let ψ(Xi) := (Pi − Ei) · (dXie + 1) + Ei · Xi then by
the fact that dXie 7→ ` + 1 for every Xi ∈ (`, ` + 1], the domain of ψ(Xi) can be
partitioned into sub-domains as follows:⋃

`∈Ii

{(Pi − Ei) · (` + 2) + Ei · Xi, ` < Xi ≤ ` + 1}

Therefore, for a given ` < Xi ≤ `+ 1, the condition (Pi−Ei) · (dXie+ 1) + Ei ·Xi ≤
u can be rearranged to (Pi − Ei) · (` + 2) + Ei · Xi ≤ u, which results in

Xi ≤
u− (Pi − Ei) · (` + 2)

Ei
(4.25)
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By the σ-additivity property of distribution functions, algebraic rearrangements
yield the following result:

P(R1
i ≤ u) = P ((Pi − Ei) · (dXie + 1) + Ei · Xi ≤ u) (4.26)

= ∑
`∈Ii

P

(
Xi ≤

u− (Pi − Ei) · (` + 2)
Ei

, ` < Xi ≤ ` + 1
)

(4.27)

4.4.5.3 Optimization of Reservation Systems

Algorithm 3 Calculation of Reservation Systems

Require: T := {τ1, . . . , τn} , θ1(k1), θ2(k2), . . . , θn(kn), m∗1 , m∗2 , . . . , m∗n;
Ensure: Reservation systems, K := {κ1, . . . , κn}, which satisfy θi(ki);

1: Initialize reservations K← ∅;
2: for each task τi for i in {1, . . . , n} do
3: for mi in {1, 2, . . . , m∗i } do
4: Ei ← min{Ei | (Φn

i )ki ≤ θi(ki)};
5: if Ei could not be found then
6: continue;
7: else
8: K← K∪ κi := (mi, Ei, Di, Ti);
9: break;

return K;

In this section, we present Algorithm 3 to calculate spinning reservation systems
for the scheduling of probabilistic constrained-deadline conditional DAG tasks.
Under the consideration of probabilities of, upper bounds for the maximal number
ki of tolerable consecutive deadline misses, and given tardy workload bounds; the
objective, is to find minimal numbers of in-parallel reservations mi and, associated
minimal amounts of service time Ei. For each probabilistic constrained-deadline
conditional DAG task the algorithm determines all feasible configurations (mi, Ei)
by iterating through the number of in-parallel reservations mi ∈ [1, m∗i ] and search
for the smallest required reservation service to still comply with the consecutive
deadline-miss constraints.

Theorem 4.8 (Monotonicity). The functions

Φn
i : R>0 → R>0, Ei 7→ P(R1

i > Di)|mi=n (4.28)

which yield the probabilities of an upper bound of a deadline-miss, for a fixed number
mi ∈N of reservations with respect to the service time Ei, are monotonically decreasing.

Proof. For easier readability let

Yi :=
Ci + (mi − 1) · Li + ρi

mi
= Xi · Ei (4.29)
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for which the distribution function is independent of Ei for every fixed mi. Note
that Xi is the auxiliary variable from Eq. (4.22). According to the definition of
P(R1

i > Di) in the beginning of this section, we have to prove that

P

(( ⌈Yi

Ei

⌉
+ 1
)
· (Pi − Ei) + Yi > Di

)
(4.30)

≥ P

(( ⌈ Yi

Ei + ε

⌉
+ 1
)

(Pi − (Ei + ε)) + Yi > Di

)
(4.31)

for any positive arbitrary increment ε ≥ 0 and any realizations of Yi ≥ 0. Let an
arbitrary realization Yi ≥ 0 satisfy(⌈

Yi

Ei + ε

⌉
+ 1
)
· (Pi − (Ei + ε)) + Yi > Di (4.32)

In this case Yi satisfies(⌈
Yi

Ei

⌉
+ 1
)
· (Pi − Ei) + Yi > Di (4.33)

as well which yields the assumption by the property of distribution functions.

Due to the monotonicity of the functions Φn
i as shown in Theorem 4.8, it is it is possible to find the

minimal amount of
reservation service to
guarantee compliance
with the consecutive
deadline-miss
constraints by using
binary search in the
interval (0, Di]

possible to find the minimal amount of reservation service to guarantee compli-
ance with the consecutive deadline-miss constraints by using binary search in the
interval (0, Di]. We emphasize that m∗i is an upper bound specified by the user,
which can be set to an arbitrary fixed number, or determined as the point where
an increase in the number of in-parallel reservations does not yield a significant
decrease in the amount of required service to satisfy the deadline-miss probability
constraints.

4.4.6 parameter space exploration

Owing to the absence of published research results, which we can directly com-
pare to, we instead opt to explore the design space with respect to the minimal
reservation service compared to the associated number of in-parallel reservations
for different bounds of deadline-miss probabilities, and tardy workload bounds,
as well as measures of the resource usage improvements, compared to hard
real-time reservation based DAG scheduling as proposed in [UBC+18].

In the first part of this section, we explore the configurations of reservation we explore the
configurations of
reservation systems

systems, i.e., the number of in-parallel reservations mi and the reservation budgets
Ei, which comply with:

• upper bounds for a single deadline miss probability θi(1)

• and given tardy workload bounds ρi

Note that we investigate single deadline miss probabilities, since consecutive
deadline misses follow immediately by exponentiation.

Choosing reservation budgets close to the replenish period may impair the
schedulability of the whole task set, since processors may not be shared by more
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than one task or scheduled with best-effort tasks. On the other hand, decreasing
the reservation budgets increases the amount tardy workload of jobs that could
not finish within their provisioned service.

Theorem 4.8 proves that there is a minimal reservation budget for a given
number of in-parallel reservations mi, which satisfies a given upper bound of
deadline-miss probabilities. A key practical design question is, whether thereA key practical design

question is, whether
there is a maximal

number of in-parallel
reservations such that
the minimal required

reservation budget does
not decrease anymore

is a maximal number of in-parallel reservations such that the minimal required
reservation budget does not decrease anymore. Since we are not able to provide
analytic solutions to the above question, we instead opt to design numerical
studies and showcase the behaviour for different scenarios.

4.4.6.1 Synthetic pC-DAG Distribution Function Generation

We generate discrete joint cumulative distribution functions, which are used to
represent the resulting pC-DAG jobs as described in Section 4.4.1 in a computa-
tionally efficient way. To do so, we generate a set of 100 simple DAGs, representing
DAG jobs (complete substitutions during runtime), and assign probabilities to
each of these 100 DAGs; using the UUniFast algorithm [BB05], such that the
probabilities add up to 100%. Each of the 100 DAGs is generated with 50 to
100 (drawn uniformly at random) regular vertices and each regular vertex is
assigned an integral worst-case execution time between 1 to 100 (drawn uni-
formly at random) time units. Despite not generating explicit decision vertices,
the 100 DAGs, used to represent the different complete substitutions, roughly
correspond to pC-DAGs with 4 decision vertices with 3 branching decisions each,
or 6 decision vertices with 2 branching decisions each. After the generation of
all regular vertices (subjobs) and their corresponding worst-case execution times,
the precedence constraints are generated. To that end, we generate an upper
tri-diagonal adjacency matrix, where a non-zero entry ei,j in the matrix, denotes
an edge from vi to vj. For each of the 100 DAGs, the entry is non-zero with a
probability from 30% to 70% (drawn uniformly at random) in the case of high
inherent parallelism pC-DAGs and 70% to 90% in the case of low inherent parallelism
pC-DAGs, to qualitatively influence the generation of DAGs with varying degrees
of length to volume ratios. Based on the 100 DAGs and the corresponding internal
structures, the volume and length parameters are computed. Based on these, the
joint cumulative density function Pi(u, v) is calculated.

We restrict ourselves to implicit-deadlines, i.e., Di = Ti where Ti is drawn
uniformly at random from the range of 105% to 120% of the longest critical path
of all 100 DAGs, such that each task is not unschedulable (in hard real-time sense)
by construction.

4.4.6.2 Discussions and Optimizations of Reservation Parameters

We constrain our parameter space to those tuples (Ei(mi), mi), which comply
with upper bounds for a single deadline miss probability θi(1) ≤ 5%, 10%, 20%.
Since θi(ki) decreases for ki > 1, we only search the parameter space for a single
deadline miss instead of consecutive deadline misses.
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Figure 4.7: Service density (Ei/Di) with respect to the associated number of in-parallel
reservations of equal probability upper bounds for a single deadline-miss
of 5%, 10%, 20%. Furthermore, the tardy workload bound ρi is set to 10%
and 20% of the task’s deadline. The expected contribution of the critical-path
length to the overall volume is 19%.

Moreover, we explore the tardy workload bounds ρi to 10% and 20% relative
to the task’s deadline, i.e., 0.1 · Di, 0.2 · Di, to investigate the influence of the
admissible tardy workload on the reservation system configurations. In our
numerical study, we define the minimal service density as follows:

Si(mi) :=
Ei(mi)

Di
· 100% (4.34)

In our showcased scenarios, we set the replenishment period of the reservation
servers Pi to the task’s period Ti to demonstrate a rather pessimistic case. For
instance, when we let Ei be equal to 0.5Pi then this yields a lower-bound of 50%
service density in our implicit-deadline case.

In our explorations, we only focus on two extreme cases of pC-DAG tasks, we only focus on two
extreme cases of
pC-DAG tasks, namely
a task with very high
and a task with very
low inherent
parallelism

namely a task with very high and a task with very low inherent parallelism. More
precisely, tasks where the expected volume is much larger than the expected
length of the critical path, i.e., E{Ci} � E{Li}, are considered highly parallel.
Conversely, tasks where the contribution of the expected length of the critical
path to the expected volume is large, i.e., E{Ci} ≈ E{Li} are considered highly
sequential. In both demonstrated extreme cases, we change the number of in-
parallel reservations mi in the range from 1 to 100 and plot the corresponding
service density Si(mi).
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High Parallelism. Figure 4.7 shows the results for the highly parallel task where
the critical path length constitutes 19% of the overall workload. In general it can
be seen that with increasing admissible deadline-miss probability, the resourcewith increasing

admissible
deadline-miss

probability, the
resource usage in terms

of service density and
number of in-parallel
reservations decreases

usage in terms of service density and number of in-parallel reservations decreases.
However, for all deadline-miss probability and tardy workload constraints the
resource usages converge. Additionally, it can be seen that with increasing tardy
workload bounds, the resource usages increase if the deadline-miss probabilities
are to be met.

Low Parallelism. In contrast, Figure 4.8 shows the results for the highly sequential
task where the critical path length constitutes 56% of the overall workload. It
can be seen that the decrease in resource usage is smaller than in the case of thethe decrease in resource

usage is smaller than
in the case of the

highly parallel task

highly parallel task, which is due to the fact that increasing parallel reservations
is less beneficial due to the dominant sequential execution requirement of the task.
Nonetheless, with increasing admissible deadline-miss probability, the resource
usage in terms of service density and number of in-parallel reservations decreases
as in the case of the highly parallel task.
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Figure 4.8: Service density (Ei/Di) with respect to the associated number of in-parallel
reservations of equal probability upper bounds for a single deadline-miss
of 5%, 10%, 20%. Furthermore, the tardy workload bound ρi is set to 10%
and 20% of the task’s deadline. The expected contribution of the critical-path
length to the overall volume is 56%.

4.4.6.3 Resource Savings

To assess the resource savings of our proposed approach, we generate 100 joint
cumulative distribution functions that represent the probabilistic characteristics
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Figure 4.9: Required reservation resources compared for synthetically generated pC-
DAGs for each deadline-miss probability 5%, 6%, · · · , 20% compared to a
hard real-time reservation system.

of all possible complete pC-DAG substitutions of each of the 100 generated
pC-DAGs. For each pC-DAG, 50 DAGs are generated each of which consists of
10− 100 (uniformly sampled) subjobs, which have an integer worst-case execution
time of 1− 100 (uniformly sampled). The edge probabilities are chosen between
0.3 to 0.9, resulting in DAGs with varying degrees of parallelism, i.e., length
to volume ratios, in the range of 40% to 70%. Additionally, the tardy workload
bound is set to 0. Please note that we are unable to report the number of decision
vertices in our experiments, since we generated a collection of 50 DAGs to
derive a joint cumulative distribution function. For each deadline-miss probability
5%, 6%, . . . , 20% the minimal required reservation resources mi · Ei are compared
to an equivalent hard-real time DAG reservation as proposed in [UBC+18]. We
report the required mi · Ei for the probabilistic case in this paper divided by the
required mi · Ei for the deterministic case in [UBC+18], denoted as Normalized
Utilization, using the box plot in Figure 4.9. It can be observed that the normalized
required resources, decrease with increasing deadline-miss probabilities.

All demonstrated cases show that by relaxing the strict deadline constraints to by relaxing the strict
deadline constraints to
probabilistic upper
bounds, it is possible to
substantially decrease
the required resource
usage

probabilistic upper bounds, it is possible to substantially decrease the required
resource usage compared to hard real-time equivalent solutions.
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4.5 parallel path progression scheduling

Paradoxically, the large number of processors of modern multiprocessor archi-
tectures is detrimental to the resource efficiency of hard real-time systems if the
increased number of processors does not benefit the worst-case response-time
analysis.

In this contribution, we consider the progress of multiple complete paths in
a DAG instead of only the envelope in the response-time analysis. In general,
intra-task interference analyses build upon the interference analysis along the
execution of the envelope (also known as critical path or key path). The number
of parallel paths, which we will analyze, can amount to the degree of maximum
parallelism, e.g., the processor or reservation count. More precisely, inversely
to prior approaches, we do not track the execution progress by the analysis
of envelope path interference, but track analyzable simultaneous progress of
a collection of many parallel complete paths alongside the envelope path using
intra-task prioritization. By virtue of this approach, we only have to account
for the interference of subjobs that do not belong to any of these parallel paths
for a response-time bound. We extend the parallel path progression concepts and
corresponding response-time analyses to hierarchical scheduling to significantly
improve the worst-case response-time for high-parallel DAG use cases. Moreover,
a stricter path monotonic progression property is proposed, which allows to con-
struct self-suspension aware reservation systems, which can improve resource
efficiency.

4.5.0.1 Parallel Path Progression Concepts

In this section, we examine the required properties to achieve parallel path
progression on M processors, dedicated to execute a single job of a DAG task.
By that, we avoid any inter-task interference and solely focus on intra-task
interference.

Definition 4.22 (n-Path Collection). Let a DAG G = (V, E) then the enumeration of
all possible complete paths is denoted as

Ψ(G) := {π | π is a complete path according to Definition 4.3 in G}

Any subset of paths ψ ∈ P(Ψ(G)) from the powerset of Ψ(G) is called a path collec-
tion. Further, a path collection ψ ∈ P(Ψ(G)) is called an n-path collection if |ψ|= n,
i.e., a collection of n-many complete paths.

For notational convenience, in the remainder of this chapter, we will use π∗ to
denote the longest path in G, i.e., vol(π∗) ≥ vol(π) for all π ∈ Ψ(G). It is a fact
that the maximal number of paths, which can be executed in parallel, is limitedmaximal number of

paths, which can be
executed in parallel, is
limited by the number

of processors M

by the number of processors M. Therefore, we constrain our solution space to
n-path collections, where n ∈ {1, . . . , M}. Based on a concrete n-path collection
ψ, the set of subtasks, which belong to at least one of the paths in ψ is defined
by Vs(ψ) := πψ1 ∪ . . . ∪ πψn for each πψ1 , . . . , πψn ∈ ψ. Please note that we use the
subscripts to index the paths belonging to the path collection. Conversely, the
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complement set of subtasks, which do not belong to any of the selected paths, is
denoted by Vc

s (ψ) := {v ∈ V | v /∈ Vs(ψ)}.

We propose a parallel path progression prioritization, which assigns each subtask parallel path
progression
prioritization

a priority based on the membership of the above sets, which is formalized in
the following definition. Later in this section, we explain how this prioritization
can be used to better analyze the self-interference by explicitly considering the
parallel execution of paths in ψ in the response-time analysis.

Definition 4.23 (Parallel Path Progression Prioritization). Let Vs(ψ) denote the set
of subtasks from an n-path collection ψ of a DAG G = (V, E). A fixed-priority policy
for all subtasks v ∈ V is a parallel path progression prioritization if and only
if Π(vi) < Π(vk) for any two vi ∈ Vs(ψ) and vk ∈ Vc

s (ψ), where Π(vi) denotes the
priority of subtask vi.

Note that in our notation for the priorities, a higher value implies a higher
priority, i.e., Π(vi) > Π(vk) implies that vi has a higher priority than vk. A sufficient
policy to satisfy the parallel path progression prioritization property is to only
use two distinct priority-levels.

We clarify the introduced notation and definitions collectively in the following
example. The path enumeration Ψ(G) of the DAG illustrated in Figure 4.1 consists
of six paths {π1, π2, . . . , π6}. The individual paths are: π1 := 〈v1, v2, v3〉, π2 :=
〈v1, v4, v5, v9〉, π3 := 〈v1, v4, v5, v6〉, π4 := 〈v1, v7, v5, v9〉, π5 := 〈v1, v7, v5, v6〉, and
π6 := 〈v1, v7, v8〉.

A 2-path collection ψ from the powerset P(Ψ(G)) is for instance given by
ψ := {π2, π3}. Subsequently, Vs(ψ) = π2 ∪ π3 = {v1, v4, v5, v6, v9} and Vc

s (ψ) :=
{v2, v3, v7, v8}. If for instance all subjobs vi ∈ Vs(ψ) are assigned priority Π(vi) = 1
and conversely all subjobs vi ∈ Vc

s (ψ) are assigned priority Π(vi) = 2, then this
prioritization is a valid parallel path progression prioritization.

4.5.0.2 Parallel Path Progression Scheduling

In this section, we look at a single DAG job that is scheduled on M dedicated
processors by a work-conserving preemptive subtask-level fixed-priority list
scheduling algorithm in conjunction with the parallel path progression priori-
tization. We elaborate how this prioritization aids the analysis of the parallel
progression of a path collection, and in consequence the response-time analysis
of the DAG job.

Definition 4.24 (List-FP). In a preemptive list-FP schedule on M dedicated proces-
sors, a task instance (job) of a DAG task G = (V, E) with a fixed-priority assignment of
each subjob v ∈ V is scheduled according to the following rules:

• A subjob arrives to the ready list if all preceding subjobs have executed until comple-
tion, i.e., the subjob arrival time ai for each subjob vi is given by max

{
f j | vj ∈ pred(vi)

}
.

An arrived but not yet finished subjob is considered pending.

• At any time t, the M highest-priority pending subjobs are executed on the M
processors and a lower-priority subjob is preempted if necessary.
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Please note that the only difference from Definition 4.7 is that M dedicated
processors are considered here. The extension to hierarchical scheduling is ex-
plained later on and for now we analyze the response-time of a single DAG job
using all the previously introduced properties. Let a subtask-level fixed-priority
list schedule S on M dedicated processors be generated for a single job J where
all subjobs are prioritized according to the rule described in Definition 4.23.

For the response-time analysis, we analyze the time interval [aJ , f J) between
the arrival time and finishing time of J, by interval partitioning into busy and
non-busy times. Any point in time t ∈ [aJ , f J) is called busy if an envelope subjobAny point in time

t ∈ [aJ , f J) is called
busy if an envelope

subjob is executed in S
at time t. Conversely,

any point in time
t ∈ [aJ , f J) is called

non-busy if the
envelope subjob is not

executed

is executed in S at time t. Conversely, any point in time t ∈ [aJ , f J) is called non-
busy if the envelope subjob is not executed. By the construction of the envelope
according to Definition 4.8, it must be that at any point in time t ∈ [aJ , f J) an
envelope subjob is pending, i.e., has arrived and not yet finished. In conjunction
with the simple fact that t can be exclusively either busy or non-busy we know
that the response-time of DAG job J is given by the cumulative amount of time
spent in either of these two states.

In contrast to prior work, we further partition the envelope intervals [aki , fki )
depending of whether the corresponding subjob vki belongs to the set of the
chosen n-path collection, i.e., vki ∈ Vs(ψ) or not, assuming an envelope path
πe := 〈vk1 , vk2 , . . . , vkp〉 in S. The intuition of this approach is to tie the executionThe intuition of this

approach is to tie the
execution of an

envelope subjob to the
execution of subjobs of

the path collection ψ

of an envelope subjob to the execution of subjobs of the path collection ψ, which
is used and explained in the forthcoming analyses.

Theorem 4.9 (Preemptive Response-Time Bound). The response-time of a DAG job
J with an arbitrary n-path collection ψ =

{
πψ1 , . . . , πψn

}
∈ P(Ψ(G)) (of n at most

M) that is scheduled on M dedicated homogeneous processors using preemptive List-FP
scheduling is bounded from above by

RJ ≤ vol(π∗) +
vol(Vc

s (ψ))
M− n + 1

(4.35)

Proof. By the definition of the envelope (cf. Definition 4.8), we know that the
interval [aJ , f J) in a concrete preemptive List-FP schedule S, can be partitioned into
contiguous intervals [ak1 , fk1 = ak2), . . . , [ fkn−1 = akn , fkn ), where [aki , fki ) denotes
the arrival and finishing time of subjob vki for all i ∈ {1, . . . , p} in the envelope
path πe := 〈vk1 , vk2 , . . . , vkp〉.

Busy Time. Considering each envelope subjob interval [aki , fki ) individually for
i ∈ {1, . . . , p}, the amount of busy time is given by the execution time of vki ,
which is by definition no more than vol(vki ). The cumulative amount of busy
time in [aJ , f J) can be obtained by adding up the interval’s individual busy times
resulting in vol(πe), which is no more than the longest path vol(π∗).

Non-Busy Time. Since our scheduling policy is work-conserving we have that
whenever an envelope subjob vki is not executing during [aki , fki ) then all M pro-
cessors must be busy executing non-envelope subjobs. Since vki can be exclusively
either in Vs(ψ) or Vc

s (ψ), we analyze the set

{t ∈ [aJ , f J) | envelope subjob is not executing} ∩ [aki , fki )

for both cases individually:
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• Let vki ∈ Vs(ψ) and by assumption not execute at time t then at most
n − 1 processors execute subjobs from Vs(ψ). That is because all subjobs
in Vs(ψ) stem from n different paths, which implies that there can never
be more than n-many subjobs from Vs(ψ) pending concurrently, in general.
Moreover, since by assumption vki ∈ Vs(ψ) and is not executing at t, at
most n− 1 subjobs from Vs(ψ) are pending. Conversely, we know that at
least M− (n− 1) processors execute subjobs from Vc

s (ψ), since otherwise vki

would be executed contradicting the case assumption.

• In the other case, let vki ∈ Vc
s (ψ) and by assumption not be executing at time

t then it must be that no processor is executing any subjob from Vs(ψ). That
is because if any of the lower-priority subjobs in Vs(ψ) would be executing,
then the higher-priority envelope subjob vki ∈ Vc

s (ψ) would be executing as
well, which contradicts the case assumption. Conversely, we know that all
M processors are exclusively used to execute subjobs from Vc

s (ψ).

In summary, we have that during all non-busy times t ∈ [aJ , f J), we have that
at least M− (n− 1) processors execute subjobs from Vc

s (ψ). The total volume of
subjobs from Vc

s (ψ) during [aJ , f J) is at most vol(Vc
s (ψ)). The maximal cumulative

amount of non-busy times is achieved by evenly distributing the workload and is
thus no more than vol(Vc

s (ψ))/(M− (n− 1)).

Sustainability of our response-time analysis. Many multiprocessor hard real-
time scheduling algorithms and schedulability analyses presented in the literature
are not sustainable, which means that they suffer from timing anomalies. These
anomalies describe the counter-intuitive phenomena that a job that was verified
to always meet its deadline can miss its deadline by augmenting resources,
e.g., to execute the job on more processors or to decrease the execution-time
(early completion). In Corollary 4.10, we show that our response-time bound is
sustainable with respect to the number of processors and the subjob execution-
time. This is a beneficial property in dynamic environments, where available
processors and execution times vary, and ultimately simplifies implementation
efforts and improves robustness in real systems.

Corollary 4.10 (Sustainability). The response-time bounds in Theorem 4.9 holds true
for a DAG job with G = (V, E) even if any subjob v ∈ V completes before its worst-case
execution time or if the number of processors is increased.

Proof. This comes directly from the observation that the volume of the envelope
path vol(πe) as well as the length of non-busy intervals can only decrease if the
worst-case execution time of any subjob decreases or the number of processors is
increased. Since the response-time is upper-bounded by the sum of times that an
envelope job is executed and the sum of times that no envelope job is executed,
the corollary is proved.

4.5.1 dag vertex coverage

The general problem to find the minimal number of vertex-disjoint paths – such
that all vertexes of a graph G are covered – is an NP-complete problem as can be
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Table 4.3: Summary of used Notation.

Symbol Meaning

vol(v) ∈ R Volume (worst-case execution time) of subtask v
Π(v) ∈N Fixed-priority value of subtask v
Ψ(G) All paths from source vertex to sink vertex in G
π ∈ Ψ(G) Path from source to sink vertex in G
πe ∈ Ψ(G) Envelope path of G in a schedule
π∗ ∈ Ψ(G) Longest path in G
P(Ψ(G)) Path collections of G, i.e., power-set of all paths
ψ ∈ P(Ψ(G)) A path collection
C ∈ R Total volume vol(V) of a DAG G
Vs(ψ) Set of vertexes (subtasks) in the path collection ψ

vol(π∗) ∈ R Volume of longest path π∗
Vc

s (ψ) Path-collection complement {v ∈ V | v /∈ Vs(ψ)}
Gi Gang reservation system for τi ∈ T

Oi Ordinary reservation system for τi ∈ T

w ∈N Upper-bound for the minimal size of a path cover
T DAG task set

shown by reduction to the HamiltonianCycle problem. For directed graphs G
however, it was shown by Gallai and Milgram in 1960 that the minimal number
of vertex-disjoint paths to cover all vertexes of a directed graph G is no more
than the size of the maximal independent set of G, generalizing the results from
Dilworth [Dil90] and König-Egevary [Dem79].

In the case that the directed graph is also acyclic, i.e., a DAG, then the largest
independent set of G can be computed in polynomial time by the known reduction
to the maximal matching problem in bipartite graphs by using, e.g., the Hopcroft-
Karp algorithm. For instance, the set of vertex-disjoint paths that cover the DAG
illustrated in Figure 4.1 is given by U = {〈v1, v2, v3〉, 〈v4, v5, v6〉, 〈v7, v8〉, 〈v9〉},
which is calculated as described above. In our proposed path collection algorithm,
we require a collection of paths from source to sink vertices of G, which fully cover
G, which are not necessarily vertex-disjoint. Hence, we here explain the explicit
algorithmic construction as required in Line 1 of our proposed Algorithm 4 to
obtain w ∈ N many paths that cover G. Please note that for our algorithm, the
knowledge of the numerical value w is sufficient without knowing the explicit
paths. To prove the existence however, we construct the w-many paths explicitly.

For each i ∈ {1, . . . , |U|}, we initialize the i-th path πi with the vertex-disjoint
path ui = 〈ui1 , . . . , uin〉 ∈ U and apply the following steps successively until all πi
are paths according to Definition 4.3:

• If the left-most vertex in πi is not a source vertex of G, then pick any
uh = 〈uh1 , . . . , uhm〉 ∈ U such that 〈vuhz

, vui1
〉 in E for some z ∈ {1, . . . , m}

and extend the path to πi = 〈uh1 , . . . , uhz〉 ◦ πi.

• If the right-most vertex in πi is not a sink vertex of G then pick any tuple
uh = 〈uh1 , . . . , uhm〉 ∈ U such that 〈vuin

, vuhz
〉 in E for some z ∈ {1, . . . , m}

and update the path to πi = πi ◦ 〈uhz , . . . , uhm〉
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For instance, with reference to the provided example, we start at u4 = 〈9〉
with π4 = 〈v9〉, which is a sink vertex in G and identify tuple u2 = 〈4, 5, 6〉
since (v5, v9) ∈ E and the path is updated to π4 = 〈v4, v5, v9〉. Since v4 is not a
source vertex in G, we continue and identify u1 = 〈1, 2, 3〉 due to (v1, v4) ∈ E and
update π4 = 〈v1, v4, v5, v9〉. Since v1 is a source vertex, the procedure is termi-
nated. Repeating the procedure yields the four final paths π1 = 〈v1, v2, v3〉, π2 =
〈v1, v7, v8〉, π3 = 〈v1, v4, v5, v6〉, and π4 = 〈v1, v4, v5, v9〉, which collectively cover
all vertexes v ∈ V. Please note that while in this example, w = 4 is the mini-
mal number of paths to cover G, the algorithm in general only provides a safe
upper-bound.

4.5.2 weighted maximum coverage

Another related algorithm is the Weighted Maximum Coverage [NWF78] prob-
lem. Hereinafter, we map the problem of finding an n-path collection ψ for a DAG
G that maximizes vol(Vs(ψ)) (minimizes vol(Vc

s (ψ))) to that problem as follows:

• Input: A problem instance I of the Weighted Maximum Coverage problem
is given by a collection of sets S := {S1, . . . , Sm}, a weight function ω, and
a natural number k. Each set Si ⊆ U is a subset from some universe U for
each i ∈ {1, . . . , m} and each element s ∈ Si is associated with a weight as
given by the function ω(s).

• Objective: For a given problem instance I, the objective is to find a subset
S′ ⊆ S such that |S′|≤ k and ∑s∈{∪{Si∈S′}} w(s) is maximized.

It was shown by Nemhauser et al. [NWF78] that any polynomial time ap-
proximation algorithm of the Weighted Maximum Coverage problem has an
asymptotic approximation ratio with respect to an optimal solution that is lower-
bounded by 1− 1/e unless P = NP, where e is Euler’s number. This approxi-
mation ratio can be achieved by a greedy strategy that always chooses the set
which contains the largest weights of not yet chosen elements. Despite Weighted

Maximum Coverage and our problem not being equivalent, we use the same
approximation strategy for the n-path Collection Approximation in Algorithm 4.

4.5.3 approximation algorithm

On the basis of the existence of a path collection of size w, it is possible to analyze
the approximation quality of Algorithm 4. We firstly present our proposed
algorithm and thereafter prove the approximation factor.

n-Path Collection Approximation Algorithm. From Line 1 to Line 3 in Algo-
rithm 4, the upper-bound w of the minimal number of paths to fully cover the
is computed. If the number of processors M is sufficient to allow the parallel
execution of all w paths, i.e., w ≤ M then those paths are chosen for the path
collection.

In the other case, from Line 4 to 17, in each iteration n ∈ {1, . . . , M}, the longest
path π∗n with respect to the current iteration’s volume function vol′ is chosen.
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Algorithm 4 n-Path Collection Approximation (nPCA)

Require: DAG G = (V, E), No. CPU M, WCET vol.
Ensure: An approximately optimal n-path collection ψ

1: ψ∗ ← PathCoverage(G) :=
{

πψ1 , . . . , πψw

}
2: if w ≤ M then
3: return (ψ∗, w);

4: create ψ0 ← ∅;
5: z← ∞;
6: vol′ ← vol;
7: for each n ∈ {1, . . . , M} do
8: create ψn ← ψn−1;
9: π∗n ← use DFS(G) to search the max. vol′ path;

10: ψn ← ψn ∪ π∗n;
11: for each v ∈ π∗n do
12: update vol′(v) to 0;

13: z′ ← (C− vol(Vs(ψn))) / M− (n− 1);
14: if z′ < z then
15: solution (ψ∗, n∗)← (ψn, n);
16: update z← z′;

17: return solution (ψ∗, n∗);

After the path is chosen, all volumes of that path’s subjobs are set to 0 to indicate
that the subjobs have already been covered. By this strategy, we always choose
the path, which contains the largest amount of volume of not yet chosen subjobs
in each iteration. Moreover, in each n-th iteration, it is probed in Line 14 if the
solution ψn strictly improves the prior solution ψn−1 with one path less. At the
end of the M-th iteration, an n∗-path collection ψ∗ is found that yields formal
guarantees as stated in Theorem 4.11. The maximal bipartite matching can be
obtained in O(|V|) using the Hopcroft-Karp algorithm. The time-complexity of
nPCA is dominated by the for-loop and the depth-first search (DFS) in Line 9 that
is invoked in each of the iterations, resulting in O(M · |V||E|) time complexity.

Theorem 4.11 (nPCA). The worst-case response-time of a DAG job J (makespan) on
M dedicated processors using parallel path progression scheduling and for which the
n∗-many paths are calculated according to Algorithm 4, is at most

Ropt ·
{

1 + M
M−n∗+1 ·

(
1− 1

w

)n∗ ≤ 2− 1
w w > M ≥ n∗

1 M ≥ w
(4.36)

where w refers to the solution of the algorithm described in Section 4.5.1.

Proof. We prove this theorem for the cases M ≥ w and M < w individually.

Case 1. In the first case, i.e., from Line 1 to Line 3, let M ≥ w. From the discussion
in Section 4.5.1, we know that each vertex v ∈ V of the DAG G = (V, E) is covered
by at least one of those w-many paths as computed by the algorithm described
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in Section 4.5.1, which are returned in Line 3. In consequence, the response-time
bound is given by

RJ ≤ vol(π∗) +
0

M− (w− 1)
≤ Ropt (4.37)

which is upper-bounded by an optimal response-time, since the longest path in
G is a lower-bound of any DAG job’s response-time.

Case 2. Please note that the obtained w is not a minimal solution, but an upper-
bound of it. That is, there may exist n-many paths under the constraints w >

M ≥ n ≥ 1 such that the DAG’s total volume C can be covered. However such
a minimal solution is not known to be computable in polynomial-time. We can
however prove the approximation ratio of an optimal response-time with respect
to that upper-bound.

Step 1. We prove by contradiction, that for each iteration n ∈ {1, . . . , M} the
following inequality holds

vol(n)(π∗n) ≥ C− vol(Vs(ψn−1))
w

(4.38)

where ψ0 := ∅ and vol(Vs(ψ0)) = 0. We use vol(n) to refer to vol′ in the n-th
iteration for better clarity in this proof. Assume for contradiction that there exists
an iteration n ∈ {1, . . . , M} such that

∀πn ∈ Ψ(G) w · vol(n)(πn) + vol(Vs(ψn−1)) < C (4.39)

holds. Then it must hold in particular that

w · vol(n)(π∗n) + vol(Vs(ψn−1)) < C (4.40)

where – by the algorithmic strategy – π∗n is chosen such that for all paths π ∈
Ψ(G), the inequality vol(n)(π∗n) ≥ vol(n)(π) is satisfied. Thus, w · vol(n)(π∗n) ≥
vol(n)(∪w

i=1πi) for any arbitrary collection of w-many paths. Consequently, we have
that if Eq. (4.40) holds then

vol(n)(
w⋃

i=1

πi) + vol(Vs(ψn−1)) < C (4.41)

holds as well. It is easy to see that based on the algorithm

vol(n)(
w⋃

i=1

πi) = vol(
w⋃

i=1

πi)− vol(Vs(ψn−1)) (4.42)

holds, since if the volume of a vertex in the n-th iteration differs from the initial
volume then that vertex must be covered by any of the collected paths during the
prior iterations, i.e., Vs(ψn−1). Then using the identity of Eq. (4.42) in Eq. (4.41)
yields that Eq. (4.39) leads to the condition vol(∪w

i=1πi) < C for any arbitrary
collection of w-many paths, which contradictions the existence of a solution of a
cover with w-many paths.

Step 2. In a second step, we now claim and prove by induction that

vol(Vc
s (ψn)) = C− vol(Vs(ψn)) ≤

(
1− 1

w

)n

· C (4.43)
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For n = 1, Eq. (4.43) reduces to w · vol(Vs(ψ1)) ≥ C, which holds true since
we know that there exists a finite w such that vol(πψ1 ∪ . . . ∪ πψw ) = C ≤
∑w

i=1 vol(πψi ) ≤ w · vol(Vs(ψ1)) = w · vol(π∗), since ψ1 only contains the longest
path in G. In the induction step n→ n + 1, we have

C− vol(Vs(ψn+1)) = C− (vol(Vs(ψn)) + vol′(π∗n+1)) (4.44)

Using Eq. (4.38), we conclude that

Eq. (4.44) ≤ C− vol(Vs(ψn))− C− vol(Vs(ψn))
w

(4.45)

≤ (C− vol(Vs(ψn))) ·
(

1− 1
w

)
(4.46)

≤
(

1− 1
w

)n

· C ·
(

1− 1
w

)
(4.47)

Conclusion. Using Eq. (4.43) yields that after the n-th iteration of nPCA, the
maximum response-time using the computed n-path collection ψn is at most

RJ ≤ vol(π∗) +
C
M
· M

M− n + 1
·
(

1− 1
w

)n

(4.48)

Due to the fact that Ropt ≥ max {vol(π∗), C/M} and the minimal response-time
solution (ψ∗, n∗) returned by nPCA in Line 17 using Eq. (4.48) we have that

RJ ≤ Ropt ·min
n≥1

{
1 +

M
M− n + 1

·
(

1− 1
w

)n}
≤ Ropt ·min

n≥1

{
1 + n ·

(
1− 1

w

)n}
(4.49)

≤ Ropt ·
(

2− 1
w

)
(4.50)

Please note that Eq. (4.49) is due to the fact that under the constraints (M ≥
n ≥ 1) the function M/(M− n + 1) is strictly decreasing with respect to M for
n ≥ 1. Due to the constraints, the minimal feasible M is bounded from below by
n and is thus no more than n/(n− n + 1) = n.

In addition, we have the parametric bound based on the results w and n∗

generated by the algorithm namely

RJ ≤ Ropt ·
(

1 +
M

M− n∗ + 1
·
(

1− 1
w

)n∗
)

(4.51)

Finally, we have RJ ≤ Eq. (4.51) ≤ Eq. (4.50) concluding the proof.

Discussion. For stated makespan problem, it is in fact irrelevant if there exists
an n < w ≤ M such that G can be covered with n-many paths, since only a single
DAG job is considered. That is, if sufficient processors are available then RJ is
optimal, otherwise the iteration is started. Then, if an optimal n is found, the
makespan is also optimal.
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P1 v1 v4 v2 v2 v3 v6

P2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

v7 v8 v8 v5 v9

No Service Service & Execution Service & No Execution

Figure 4.10: Exemplary schedule for a 2-gang reservation system with a 2-path collection
of the DAG illustrated in Figure 4.1 with a deadline of 16 time units.

In the scheduling problem with other DAG jobs however, the non minimal
solution does matter, since processor over-allocation should be avoided. Note
however that our solution is never worse than the greedy strategy, since in the our solution is never

worse than the greedy
strategy, since in the
hierarchical scheduling
allocations we consider
the full-cover solution
with w-many paths
separately

hierarchical scheduling allocations we consider the full-cover solution with w-
many paths separately. In the evaluation, we can also show that for many DAG
task sets, the provided bound can significantly reduce the allocation requirements
compared to only the greedy strategy.

4.5.4 hierarchical scheduling extension

We extend the properties of parallel path progression to a system with inter-task
interference using a hierarchical scheduling approach. We propose and discuss
two reservation schemes, namely a gang reservation system in Section 4.5.4.1 and
an ordinary reservation system in Section 4.5.4.2, and provide resource provisioning
rules and response-time analyses. The hierarchical scheduling problem consists
of two interconnected problems:

• Service provisioning of the respective gang-reservation or ordinary-reservation
systems such that a DAG job can finish within the provided service.

• Verification of the schedulability of the provisioned reservation systems by
any existing analyses, which support the respective task models, e.g., spo-
radic arbitrary-deadline gang tasks or sporadic arbitrary-deadline ordinary
sequential tasks.

For the remainder of this section, we assume the existence of a feasible schedule
upon M identical multiprocessors for the studied reservation system model and
focus on the service provisioning problem. We assume that a reservation system
satisfies the following four properties stated in Section 4.3 regardless of the
specific reservation model.

4.5.4.1 Gang Reservation System

In gang scheduling, a set of threads is grouped together into a so called gang
with the additional constraint that all threads of a gang must be co-scheduled at
the same time on available processors. It has been demonstrated that gang-based
parallel computing can often improve the performance [FR92; Jet97; WP19]. Due
to its performance benefits, the gang model is supported by many parallel com-
puting standards, e.g., MPI, OpenMP, Open ACC, or GPU computing. Motivated
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Algorithm 5 Approximate Minimal Waste Gang

Require: τi := (Gi, Di, Ti), No. CPU M, vol, width w.
1: G← ∅;
2: for each mi ∈ {1, . . . , min {w, M}} do
3: (ψ∗, n∗)← call Algorithm 4 with parameters Gi, mi, vol;
4: if Ei ← using Eq. (4.52) with (mi, ψ∗, n∗) ≤ Di then
5: G← G∪ (mi, Ei, ψ∗, n∗);

6: return Gi ∈ G such that Gi minimizes Eq. (4.54)

by the practical benefits and the conceptual fit of parallel path progressions in
our approach and the gang execution model, we propose an m-Gang reservation
system as follows.

Definition 4.25 (m-Gang Reservation System). A sporadic arbitrary-deadline mi-
gang reservation system Gi, which serves a sporadic arbitrary-deadline DAG task τi :=
(Gi, Di, Ti) is defined by the tuple Gi := (mi, Ei, Di, Ti) such that mi · Ei service is pro-
vided during the arrival- and deadline interval, with the gang scheduling constraint that
all reservations must be co-scheduled at the same time.

Hence, the provisioning problem of Gi for a DAG task τi is to find mi and Ei
such that, given the parallel path progression property, and the gang scheduling
constraint, each DAG job can complete within one of the mi reservations before
its absolute deadline.

Theorem 4.12 (Gang Reservation Provisioning). Each job J`i of a sporadic arbitrary-
deadline DAG task τi := (Gi, Di, Ti) can complete its total volume Ci within its respective
gang reservation instance of the mi parallel reservations of size Ei before its absolute
deadline if

vol(π∗) +
vol(Vc

s (ψ))
mi − n + 1

≤ Ei ≤ Di (4.52)

holds for any n- path collection ψ of at most mi and the gang reservation system Gi is
verified to be schedulable, i.e., able to provide all service before the absolute deadline.

Proof. Since in an mi-gang all reservations provide service simultaneously, the
arrival and finishing time window [aJ , f J] of any DAG job J of task τi can be
partitioned into busy, non-busy, and non-service intervals in which none of the
mi gang reservations are scheduled and thus provide no service. In analogy to
previous proofs, the response-time is no more than the cumulative length of
these sets, where the cumulative length of non-service times is upper-bounded
by Di − Ei given the assumption that the mi gang is schedulable. In consequence,
if Eq. (4.52) holds, then

RJ ≤ vol(π∗) +
vol(Vc

s (ψ))
mi − n + 1

+ Di − Ei ≤ Di (4.53)

which concludes the proof.
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Gang-Reservation Provisioning. Finding the best provisioning for specific gang
reservation systems depends on the concrete schedulability problem at hand
and the other tasks that are to be co-scheduled. Hence, it may be beneficial
to trade decreased budgets for increased gang size in some concrete scenarios.
Determining such specific provisions is however beyond the scope of this work.
Instead, in a more generic optimization attempt, we seek to find a provisioning we seek to find a

provisioning that
minimizes the unused
gang service (waste)

that minimizes the unused gang service (waste), which is described as mi · Ei −Ci.
Due to the gang restriction, increasing the number of reservations mi beyond the
number of processors M that the reservations are going to be executed upon is
not possible. Moreover, increasing the gang size beyond the width of the DAG
can only increase the waste, since the width describes the maximal inherent
parallelism. Due to the constrained search space of mi ∈ {1, . . . , min {w, M}} an
exhaustive search can be applied to find the values of mi, Ei with Ei ≤ Di and
ψ, n, which minimizes the waste objective

mi · vol(π∗) + mi ·
Ci − vol(Vs(ψ))

mi − n + 1
− Ci (4.54)

as shown in Algorithm 5. For illustration of the algorithm, an exemplary result
for the DAG in Figure 4.1 with longest path volume 10, total volume 18, relative
deadline 16 and M = 3 is calculated. Since, the width w of the DAG can be
observed to be 4, only gang sizes of mi ∈ {1, 2, 3} are viable candidates. The
algorithm returns a 2-gang with the 2-path collection Vs(ψ) = {v1, v7, v5, v6, v2, v3}
that yields a reservation budget of 10 + (18− 14)/(2− 2 + 1) = 14 ≤ 16 and waste
of 2 · 14− 18 = 10. Figure 4.10 shows an exemplary schedule of this provisioned
2-gang system and the internal DAG job scheduling, using the gang reservations.

4.5.4.2 Ordinary Reservation System

Despite the practical benefits of gang scheduling, the analytic schedulability due
to the co-scheduling constraint, is reduced compared to an equivalent ordinary
reservation system without such constraints, defined as follows. ordinary reservation

system
Definition 4.26 (m-Ordinary Reservation System). A sporadic arbitrary-deadline
mi-ordinary reservation system O, which serves a sporadic arbitrary-deadline DAG task
τi := (Gi, Di, Ti) is defined by the tuple Oi := (E1

i , . . . , Emi
i , Di, Ti) such that ∑mi

p=1 Ep
i

service is provided during the arrival- and deadline interval.

Notably, despite the tuple representation, an ordinary reservation system is
represented by unrelated sporadic arbitrary-deadline tasks, which can all execute
independently, e.g., using partitioned scheduling.

Theorem 4.13 (Ordinary Reservation Provisioning). Each job J`i of a sporadic arbitrary-
deadline DAG task τi := (Gi, Di, Ti) can complete its total volume Ci within its respective
ordinary reservation instance Oi before its absolute deadline if firstly

vol(π∗) +
vol(Vc

s (ψ)) + (n− 1) · Di

mi − n + 1
≤

∑mi
p=1 Ep

i

mi − n + 1
(4.55)

holds for any n-path collection ψ where n is at most mi and all; and secondly, the ordinary
reservation systemOi is verified to be schedulable, i.e., each individual reservation is able
to provide all service before the absolute deadline.
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Proof. Let S be a schedule of mi ordinary reservations, which are verified to
be feasibly schedulable. That is, each individual reservation is guaranteed to
provide Ep

i service to the DAG job J := J`i during the interval [aJ , aJ + Di) for p ∈
{1, . . . , mi}. Let ψ denote the n-path collection and Vs(ψ) denote the corresponding
set of subjobs. Let mi(t) ∈ {0, 1, . . . , mi} the number of reservations, which provide
service at time t and let h(t) ∈ {0, . . . , mi(t)} the number of reservations providing
service to subjobs in Vc

s (ψ) at time t.We prove this theorem
by contrapositive, i.e.,
we assume that DAG

job J misses its
deadline and prove that

this leads to the
violation of Eq. (4.55)

We prove this theorem by contrapositive, i.e., we assume that DAG job J misses
its deadline and prove that this leads to the violation of Eq. (4.55). Let J miss its
deadline at time dJ := aJ + Di in S and let vkp denote a subjob that is executing
at time dJ and is not yet finished. Please note that at least one such subjob
must exists, since otherwise the total volume is finished, which contradicts the
assumption of a deadline miss.

Using the envelope construction rules in Definition 4.8, an incomplete envelope
path πe := 〈vk1 , vk2 , . . . , vkp〉 is derived starting from subjob vkp . We partition the in-
terval [aJ , dJ) into contiguous sub intervals Iki namely [ak1 , fk1), [ak2 , fk2), . . . , [akp , dJ)
for each incomplete envelope subjob. Moreover, we partition each subjob interval
into busy times defined as αki :=

{
t ∈ Iki | vki is executed

}
and non-busy times de-

fined as βki :=
{

t ∈ Iki | vki is not executed
}

for each i ∈ {1, . . . , p}. Please note
that in our partitioning, the case of no service, i.e., mi(t) = 0 is considered a
non-busy time.

To measure the cumulative amount of time spent in either state, we define

|αki |=
∫

Iki

[t ∈ αki ] dt and |βki |=
∫

Iki

[t ∈ βki ] dt (4.56)

where [pred] denotes the iverson bracket, which evaluates to 1 if the predicate is
true and 0 otherwise. Each point in time t ∈ [aJ , dJ] is exclusively either a busy or
a non-busy time and since by assumption J misses its deadline, we have that

Di <
p

∑
i=1
|αki |+|βki | (4.57)

We analyze the amount of busy times and non-busy times separately as follows.

Busy Time. The cumulative amount of busy times in each interval Iki is given by
|αki |≤ vol(vki ) for i ∈ {1, . . . , p− 1} and |αkp |< vol(vkp ) since the subjob vkp has
not yet finished execution by definition. In summary, the cumulative amount of
busy times during Iki is given by

p

∑
i=1
|αki |<

p

∑
i=1

vol(vki ) = vol(πe) ≤ vol(π∗) (4.58)

Non-Busy Time. We further partition the non-busy interval into a parallel path
case if the incomplete envelope subjob vki ∈ Vs(ψ) and a non-parallel path case
if vki ∈ Vc

s (ψ). Since our scheduling policy is work-conserving we have that
whenever an envelope subjob vki is not serviced at time t ∈ Iki then all mi(t)
reservations must be servicing non-envelope jobs (or no service is available at all).
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Non-Parallel Path: Let by assumption vki ∈ Vc
s (ψ) then for any time t ∈ βki each

of the mi(t) reservations is either exclusively servicing subjobs from Vc
s (ψ) \ vki

(or no service is provided at all). This is due to the fact that Vs(ψ) subjobs have
lower-priority than Vc

s (ψ) subjobs and thus the servicing of a subjob from Vs(ψ)
would imply the servicing of all pending Vc

s (ψ) subjobs, which contradicts the
assumption that pending vki ∈ Vc

s (ψ) is not serviced. In consequence of this
implication we have that βki ⊆

{
t ∈ Iki | h(t) = mi(t)

}
and thus |βki | can be over-

approximated as

|βki |≤
∫

Iki

[h(t) = mi(t)] dt (4.59)

We introduce the auxiliary function m̄i(t) = mi−mi(t) to formalize the non-service
at time t, which yields

|βki |≤
∫

Iki

[h(t) + m̄i(t) = mi] dt (4.60)

Each t ∈ Iki , which satisfies the predicate also satisfies (h(t) + m̄i(t))/mi = 1.
Moreover, since by definition h(t) + m̄i(t) ≥ 0 for any t ∈ Iki (regardless of the
predicate being satisfied or not), we further approximate the length of βki to

|βki |≤
∫

Iki

h(t) + m̄i(t)
mi

dt (4.61)

Parallel Path: By assumption, let the incomplete envelope subjob vki ∈ Vs(ψ) not
being serviced by any mi(t) at time t ∈ Iki . We use n(t) ∈ {1, . . . , n} to denote
the number of pending subjobs from Vs(ψ) at time t. By case assumption, we
know that for each t ∈ βki at most n(t)− 1 subjobs from Vs(ψ) are serviced by
mi(t) reservations at time t. Additionally, we know that pending Vc

s (ψ) subjobs
are prioritized before Vs(ψ) subjobs, i.e.,

h(t) ≥ mi(t)−min {mi(t), n(t)− 1} (4.62)

≥ mi(t)− (n(t)− 1) ≥ mi(t)− (n− 1) (4.63)

In consequence of this implication we have that

βki ⊆
{

t ∈ Iki | h(t) ≥ mi(t)− (n− 1)
}

(4.64)

and thus

|βki |≤
∫

Iki

[h(t) ≥ mi(t)− (n− 1)] dt (4.65)

Using m̄i(t) = mi −mi(t) yields the inequality h(t) + m̄i(t) ≥ mi − (n− 1). With the
same reasoning as in the previous case, the length can be approximated by

|βki |≤
∫

Iki

h(t) + m̄(t)
mi − (n− 1)

dt (4.66)

In conclusion we have that

|βki |≤
{

Eq. (4.66) if vki ∈ Vs(ψ)

Eq. (4.61) if vki ∈ Vc
s (ψ)

(4.67)
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P1 v3 v9

P2 v1 v7 v5 v6

P3 v4 v8

P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

v2

No Service Service & Execution Service & No Execution

Figure 4.11: Exemplary schedule for an ordinary reservation system of the DAG illus-
trated in Figure 4.1 with a deadline of 16. A reservation system that consists
of 4 equally sized reservations of 13.5 time units using a 3-path collection
computed by nPCA.

and since Eq. (4.66) ≥ Eq. (4.61), we reach the conclusion that

p

∑
i=1
|βki |≤

∫ dJ

aJ

h(t) + m̄(t)
mi − (n− 1)

dt (4.68)

By definition,
∫ dJ

aJ
h(t) dt ≤ vol(Vc

s (ψ)) holds and thus

p

∑
i=1
|βki |≤

vol(Vc
s (ψ))

mi − n + 1
+
∫ dJ

aJ

m̄i(t)
mi − n + 1

dt (4.69)

The contract of the reservation system for a job of DAG task τi promises to provide
E1

i , . . . , Emi
i service during the arrival time of the DAG job J and its deadline

[aJ , dJ). Therefore, each of the mi individual reservations does not provide service
for at most Di − Ep

i for p ∈ {1, . . . , mi} amount of time, which implies that

p

∑
i=1
|βki |≤

vol(Vc
s (ψ))

mi − n + 1
+

∑mi
p=1 Di − Ep

i

mi − n + 1
(4.70)

In conclusion and with reference to Eq. (4.58), we have that a deadline miss of J
implies that

Di < vol(π∗) +
vol(Vc

s (ψ))
mi − n + 1

+
∑mi

p=1 Di − Ep
i

mi − n + 1
(4.71)

which proves the theorem.

Ordinary-Reservation Provisioning Algorithm. Similar to the problem of gang
reservation provisioning, trading the number of reservations with the individual
reservation sizes may be beneficial for the schedulability of concrete task sets.
Again, to provide a baseline solution that can be further refined for concrete
application scenarios, we search for reservation systems that minimize the cu-
mulative allocated service under the constraints of equal budgets Ep

i = Ep+1
i for

p ∈ {1, . . . , mi − 1} and E1
i ≤ Di, which is described in Algorithm 6. The key
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Algorithm 6 Minimal Service Ordinary Reservations

Require: Task τi := (Gi, Di, Ti), No. CPU M, voli.
Ensure: Minimal Service mi-ordinary Reservations Oi

1: ψ∗, w← PathCover(G) :=
{

πψ∗1
, . . . , πψ∗w

}
2: vol′ ← vol;
3: create ψ0 ← ∅;
4: for each n ∈ {1, . . . , min {w, M}} do
5: if n = w then
6: if vol(Vs(ψ∗))− vol(Vs(ψn−1)) > Di then
7: E∗i ← (vol(π∗) + (w− 1) · Di)/w;
8: return solution (E∗i , w, ψ∗);

9: else
10: create ψn ← ψn−1;
11: π∗n ← use DFS(G) to search the max. vol′ path;
12: ψn ← ψn ∪ π∗n;
13: for each v ∈ π∗n do
14: update vol′(v) to 0;

15: if vol(Vs(ψn))− vol(Vs(ψn−1)) > Di then
16: E∗i ← (vol(π∗) + vol(Vc

s (ψn)) + (n− 1)Di)/n;
17: n∗ ← n;
18: for each mi ∈ {n∗, . . . , M} do
19: E′i ← ((mi − n∗) · vol(π∗) + n∗ · E∗i )/mi;
20: if E′i ≤ Di then
21: return solution (E′i , mi, ψn);

22: return infeasible;

intuitions are; firstly the number of parallel reservations mi is bound by the
minimum of the number of available processors M and the width of the serviced
DAG w, and secondly that the cumulative allocated service can only increase
with increasing mi. Therefore in a first stage, we set mi to the minimal attainable
value, which is n under the constraints mi ≥ n, resulting in the inequality

vol(π∗) + Ci − vol(Vs(ψ)) + (n− 1) · Di ≤
n

∑
p=1

Ep
i

as subject to optimization. In Algorithm 6, we compute the path-cover and width
w and apply for each n ∈ {1, . . . , min {w, M}} the iterative nPCA principle to
search the configuration that minimizes the service by analyzing if in the n-th
iteration the following improvement condition

−vol(Vs(ψn)) + (n− 1) · Di < −vol(Vs(ψn−1)) + (n− 2) · Di

holds, which simplifies to vol(Vs(ψn)) − vol(Vs(ψn−1)) > Di. In case that the
calculated n∗ < w leads to a deadline constraint violation, i.e., E∗i > Di, we iterate
mi ∈ {n∗, . . . , M} until the deadline is met and return the respective solution. If
n∗ = w then the deadline constraint can only be violated if vol(π∗) > Di holds,
i.e., if the DAG is not schedulable by default.
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Discussion. In contrast to the gang reservation system, increasing the size of
the path collection in the ordinary reservation system may not be beneficial due
to the additional (n− 1) · Di term. In order for improvements over a single path
collection to be possible, the following condition must hold

(m− n + 1)vol(π∗) + Ci − vol(Vs(ψn)) + (n− 1) · Di

< (m− 1)vol(π∗) + Ci

which simplifies to

(n− 1) · (Di − vol(π∗)) + vol(π∗) < vol(Vs(ψn)) (4.72)

While the left-hand side’s increase is always Di − vol(π∗) the right-hand side’s
increase is diminishing (under nPCA). Therefore, if n = 2 does not yield an
improvement then neither does any w > n > 2. In general, for an n-path collection
to be an improvement over the single path collection and respective reservation
system, the following condition must be satisfied

(n− 1) · (Di − vol(π∗)) <
n

∑
k=2

vol′(π∗k ) (4.73)

where vol′ refers to the iteration based volume function in nPCA. It can be
observed that very tight deadlines, i.e., D ≈ vol(π∗) and DAG structures with
few overlapping paths benefit the most from this approach. In that regard the
DAG used in the following example does not benefit from the parallel path
concepts and only serves to illustrate the reservation principle. Note that sincesince in Algorithm 6,

the calculated
cumulative allocated
service no more than

the cumulative
allocated service of a

single path reservation
system, the speed up

factors of 3 + 2
√

2
under partitioned and

global EDF scheduling
of the

arbitrary-deadline
ordinary reservation

system with respect to
any optimal scheduler
as shown by Ueter et

al. [UBC+18] still
apply

in Algorithm 6, the calculated cumulative allocated service no more than the
cumulative allocated service of a single path reservation system, the speed up
factors of 3 + 2

√
2 under partitioned and global EDF scheduling of the arbitrary-

deadline ordinary reservation system with respect to any optimal scheduler as
shown by Ueter et al. [UBC+18] still apply.

Example. An exemplary 4-ordinary reservation system using a 3-path collection
for the DAG shown in Figure 4.1 with deadline 16 is illustrated in Figure 4.11. In
this example, each reservation is equal in size which results to Ep

i = 13.5 for p ∈
{1, . . . , 4} according to Eq. (4.55) with Di = 16, n = 3, mi = 4, and vol(Vc

s (ψ)) = 4.
Please notice that the service can be provided arbitrarily depending on a concrete
schedule as long as the promised service is provided within the arrival and
deadline interval.

4.5.5 evaluation

In the forthcoming evaluations, we assess the performance of our proposed
parallel path progression concepts using synthetically generated DAG task sets
to allow for a systematic and exhaustive exploration. Firstly, we evaluate the
makespan of our approach (OUR) compared to the state-of-the-art approach as
represented by He et al. [HLG21] (HE). We use federated scheduling [LCA+14]
(FED) to assess if OUR can leverage the the potential of parallel execution of
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parallel paths, since a similar performance of OUR and FED indicates that either
most of the workload is on the longest path or the number of processors is
insufficient, i.e., our bound degrades to Grahams bound.

Secondly, we evaluate our proposed gang and ordinary reservation systems
provisioning strategies from Algorithm 5 (GA) and Algorithm 6 (ORD) for relative
resource over-provisioning against the resource allocation of semi-federated
scheduling [JGL+17] (SEM) and reservation-based federated scheduling [UBC+18]
(UE) with respect to the DAG’s total volume, i.e., the lower-bound.

Thirdly, we evaluate if our path cover algorithm can outperform the iterative
path collection selection in the approximation algorithm and in what parametric
scenarios.

4.5.5.1 Experiment-Data Generation

In order to systematically evaluate the presented algorithms and to assess the per-
formance for different classes of DAG structures, we generated 300 DAGs using
the layer-by-layer and the Erdős–Rényi generation method for each configuration layer-by-layer

Erdős–Rényiof generation parameters.

Layer-by-Layer Generation. The internal structure of the DAG under evaluation
strongly impacts the performance of the evaluated analyses. The layer-by-layer
method offers a parameterized generation process to randomly generate DAGs
whose structure can be attributed to the generation parameters min parallelism,
max parallelism, min layer, max layers, and connection probability. In each DAG’s
generation, the number of layers is chosen uniformly from the range 5 − 10
and 10− 15 representing min layer to max layer. In each layer, the number of
subtasks referred to as parallelism is drawn uniformly from the ranges of 5− 10,
10− 15, 10− 25, and 10− 30 representing the range of min parallelism to max
parallelism. Please note that the minimal number of paths to fully cover a DAG is
never more than the maximum parallelism in any of the generated layers. The
connection of subtasks at a layer ` is only allowed by subtasks from layer `− 1.
Each newly generated subtask in a layer is connected with a subtask from the
previous layer with probability connection probability, which is drawn at random
from the ranges 5%− 10%, 10%− 20%, 20%− 30%, 40%− 50%, 50%− 60%, and
40%− 80% resulting in 48 different configurations for which we generated a set
of 300 DAGs each. Each subtask is assigned an integer worst-case execution time
drawn uniformly from the range 10 to 100.

Erdős–Rényi Generation. In addition, we generated DAG task sets using the
Erdős–Rényi method that is paremeterized with min vertex to max vertex and
connection probability. In the generation process, at first, a number of vertexes is
drawn uniformly in the ranges of 10− 100 and 100− 150. For each class of connec-
tion probabilities 5%− 10%, 15%− 20%, 25%− 30%, 35%− 40%, and 45%− 50%,
a connection probability is drawn uniformly that is used for the generation of a
single DAG belonging to that class. Secondly, an upper-triagonal adjacency matrix
is generated where each entry aij in the matrix, i.e., the directed edge (vi, vj), is
drawn uniformly with the probability connection probability. We generated 300

DAGs for each combination of configurations.
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Table 4.4: Difference of the path cover bound w compared to the minimal number of
paths calculated by the greedy approach for a full cover for the layer-by-layer
DAG sets.

Layers Paral. Prob. (%) max ∆ Improved (%)
5- 15 5-30 5-10 7 26

5-15 5-30 10-30 6 23

5-15 5-30 40-80 3 5

Table 4.5: Difference of the path cover bound w compared to the minimal number of
paths calculated by the greedy approach for a full cover for the Erdős–Rényi
DAG sets.

No. Vertex prob. (%) max ∆ Improved (%)
10-100 5-10 9 99%
10-100 15-20 5 96%
10-100 25-30 4 80%
10-100 35-40 2 63%
10-100 45-50 2 51%

100-150 5-10 6 75%
100-150 15-20 5 77%
100-150 25-30 3 66%
100-150 35-40 2 56%
100-150 45-50 2 38%

Deadline and Period Generation. For each of the generated DAG sets described
before, we generated easy, medium, and hard to schedule deadlines. That is, the
open interval of deadlines D := (vol(π∗), C) defines deadlines such that the DAG
is not infeasible by default or trivially schedulable. The interval is then partitioned
into three equi-sized intervals D1, D2 and D3 representing the first, second, and
third fraction of the interval. A deadline is considered hard if it is drawn uniform
at random from the interval D1, medium if it is drawn uniform at random from
D2, and easy if it is drawn uniform at random from D3 respectively. Since the
compared to methods only support constrained-deadlines except for reservation-
based federated scheduling, which is a special case of our ordinary reservation
system, we only evaluated constrained deadlines. We draw α ∈ [a, b] ⊂ [1, b] for
[a, b] in {[1, 1.2], [1.2, 1.5], [1, 2], [2, 3], [1, 1.8], [1, 3]} and set the period T = α · D.

4.5.5.2 Path Cover Experiments

In the path cover experiment, we compare the calculated bound by the path
cover algorithm that is described in Section 4.5.1 against the minimal number
of paths required by the greedy approach – described in Section 4.5.3 – to
completely cover the DAG. The motivation for this experiment is to show that
there are actually cases for the evaluated DAGs in which this bound is better
than the iterative solution and in consequence, the resource allocation can be
significantly improved. Both algorithms are evaluated on the DAGs sets described
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Figure 4.12: Relative makespan of DAGs generated by the Erdős–Rényi method with
100− 150 vertexes and a connection probability of 45− 50%.
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Figure 4.13: Relative makespan of DAGs generated by the layer-by-layer method with
10− 15 layers, parallelism of 10− 30, and a connection probability of 50−
60%.

in Section 4.5.5.1 for which the results are aggregated and shown in Table 4.4 and
in Table 4.5 respectively. The column improved shows the percentage of DAGs in
the evaluated set for which the path cover determines less paths that the iterative
solution. The column max shows the maximal absolute difference of the required
paths, i.e., how many paths, the path cover algorithm requires less.

It can be observed that for the Erdős–Rényi set all DAG sets can be significantly
improved and that sets in the range of 5− 40% connection probability have at
least 56% improvements. For the layer-by-layer DAG sets, the improvements are
still existent however only roughly a quarter of DAGs could benefit and higher
connection probabilities reduce the improvements.

4.5.5.3 Makespan Experiment

We evaluate the makespan, i.e., the worst-case response-time of a single DAG
job on 4, 8, 16, 32 processors exclusively for all configurations described in Sec-
tion 4.5.5.1 and present the makespan normalized to a theoretical lower-bound
of max {C/M, vol(π∗)}, i.e., 100% implies a tight result. Since the evaluations
showed similar results, only a few representative figures are shown in the box
plots in Figure 4.12, and Figure 4.13.
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Figure 4.14: Over-provisioning for Erdős–Rényi with 100− 150 vertexes, 35− 40% con-
nection probability and α = [1.2, 1.5].

Observations. From all recorded results, it can observed that our method does
not strictly dominate the approach by HE, but can improve the makespan in case
of high parallelism, i.e., large number of processors. Intuitively, the makespan
of our approach is better if the majority of the workload of the DAG task is dis-
tributed on at most M paths, which likely increases with the number of available
processors. Therefore, the improvements depend on the DAG parameters and
number of processors. Otherwise, the approach by HE is better in analyzing the
subtask interference more accurately and thus able to provide a better makespan.
Notably, our approach is however able to provide tight results for many of the
evaluated cases. A representative case is shown in Figure 4.12, where a DAG set
with 100-150 vertexes and 45− 50% connection probability is evaluated. It can
be observed that OUR provides a tight results when the number of provided
processors is 8, whereas HE provides slightly larger (non-optimal) makespan
values. Another representative case is shown in Figure 4.13 for a DAG set gener-
ated by the layer-by-layer method with 10− 15 layers, a parallelism of 10− 30,
and a connection probability of 50− 60%. Note that, federated scheduling (FED)
coincides with our analysis if only one path is considered. It can be seen that
OUR does not significantly improve FED up to 16 processors, which suggests
that the the majority of the workload of the DAG task is distributed on more
paths. However, when 32 processors are provided for the tasks with parallelism of
at most 30 then the makespan of OUR is tight in most cases.

4.5.5.4 Reservations Over-Provisioning Experiment

In our hierarchical scheduling approach, the schedulability depends on the
schedulability analysis used for the reservation systems. We are only interested
in the evaluation of the resource allocation of the reservations systems as the
schedulability depends on the performance of the schedulability analyses of the
scheduling algorithms used to schedule the reservation systems. We compare the
resource allocation of each approach per job activation (meaning over a period T)
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Figure 4.15: Over-provisioning for layer-by-layer 10− 15 layers, parallelism 10− 30%,
connection probability 50− 60% and α = [2, 3].

of our ordinary reservation (ORD), our gang (GA), semi-federated scheduling
(SEM), and reservation-based federated scheduling (UE) relative to the DAGs total
volume. That is, an over-provision value of 100% indicates a tight allocation. We
assume that a sufficient number of processors is available such that a reservation
system can be found for every generated deadline. A few representative results
are shown in the box plots in Figure 4.14 and Figure 4.15.

Observation. It can be seen that ORD and GA improve the resource allocation in
all scenarios and significantly for hard to scheduled DAG tasks. With increasing
period to deadline ratio, the larger the improvements of the reservation based
scheduling approaches to semi-federated scheduling are. Interestingly, ORD and
GA show similar resource allocation in all scenarios, which demonstrates that
the less restrictive reservation scheme of ORD does not incur larger resource
demands.

4.5.6 reclamation & suspension

In the preceding analyses and provisioning algorithms of the gang- and ordinary
reservation systems, the property of sustained service – that is, that the service of a
reservation is provided whenever the reservation system is scheduled, irrespective
of whether there are insufficient number of pending subjobs to be served at that
time – is required. The following question that is to be examined and discussed
in the remainder of this section is whether this pessimism can be reduced.

4.5.6.1 Reclamation

A possible and robust option to reclaim resources is to attach soft real-time or
best-effort workload to each hard real-time parallel DAG reservation system with
a lower priority than the to-be served DAG job. In the formal response-time and
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provisioning analyses, the only required property is that the to-be served DAG job
can claim the promised service whenever a subjob is pending and the reservation
is scheduled for execution. As can be seen, this property is not violated by the
background workload, due to the lower priority.

3
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Figure 4.16: An exemplary directed-acyclic graph (DAG) with subtasks v1, v2, . . . , v10.
The numbers within the vertices denote the subjob’s worst-case execution
time and the arrows represent the precedence constraints of the subjobs.
The path-monotonic decomposition is highlighted by the border around the
respective subtasks.

4.5.6.2 Suspension

Another possible solution is to use the concept of self-suspension within the
hierarchical scheduling policy, i.e., suspension-aware reservation systems. In aIn a suspension-aware

reservation system, a
reservation suspends

itself whenever there is
no pending subjobs

waiting to be served

suspension-aware reservation system, a reservation suspends itself whenever
there is no pending subjobs waiting to be served and thus resource utilization is
improved at the cost of increased response-time analysis complexity.

The formal construction and technical implementation of such a suspension-
aware reservation system is however non-trivial, due to the problems of

• determining a consistent rule to suspend and resume a reservation within
the reservation system;

• and to upper-bound the amount of time that a reservation may be in a
suspended state

This is due to the fact, that before runtime it is uncertain which subjobs are
executed upon which specific reservation.

Under some specific circumstances, that we call a path-monotonic decomposition,path-monotonic
decomposition it is possible to tie specific subtasks to a specific reservation within the reservation

system and achieve a similar but stricter path-monotonic progression property
than the parallel path progression property in the reservation systems. This path-
monotonic progression property allows to know at design time, which paths are
to be executed on which reservation during runtime.

Definition 4.27 (Path-monotonic Decomposition). A path-monotonic prioritization
and decomposition of a DAG G = (V, E) is defined by an algorithm in a two stage
procedure as follows:
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• Determine the volume of the longest path that each vertex v ∈ V lies on, which
is denoted as vol(π(v)). For algorithmic processing, a unique source vertex v0 and
a unique sink vertex v∞ is augmented to G. Then using the idea of the Floyd-
Warshall algorithm yields the largest volume path from each vertex u to any vertex
v for u, v ∈ V denoted as vol(u, v). Subsequently, it is possible to determine the
length of a longest path that goes through a vertex u ∈ V by

vol(π(v)) := vol(v0, u) + vol(u, v∞)− vol(u) (4.74)

Then, all vertexes v with the same vol(π(v)) are collected, e.g., with reference to the
DAG illustrated in Figure 4.16 and Table 4.6 the sets {v1, v4, v5, v6, v7, v8, v10}
and {v2, v3, v9} can be inferred with volume 9 and 7, respectively. While this par-
tition, is already sufficient to obtain a path-monotonic prioritization that satisfies
Eq. (4.75), further considerations are required for the subtask to reservation parti-
tion as some vertexes of the same partition lie on different paths, i.e., can execute in
parallel.

• In a second step, the partitions are further refined such that for any two ver-
tices u, v in a partition, the property v /∈ paral(u) and u /∈ paral(v) holds,
where paral(u) := {v ∈ V | @ path from u to v or from v to u in G}. Intuitively,
this property implies that all vertices in a partition lie on the same path, i.e., exe-
cute sequentially. Recurring back to the example, the procedure yields the partition
{v1, v4, v5, v6}∪ {v7, v8}∪ {v10} of the first set. We assign the priority in increas-
ing order i.e., Π(v) = 1 for v ∈ {v1, v4, v5, v6}, Π(v) = 2 for v ∈ {v7, v8}, and
Π(v) = 3 for v ∈ {v10}. Similarly for {v2, v3, v9}, we have {v2, v3} ∪ {v9} and
Π(v2) = Π(v3) = 4, and Π(v9) = 5. Note that the priorities are going to be used for
the suspension-aware reservations that are executing the specific tied subtasks.

The refined partitions, e.g., V1 := {v1, v4, v5, v6} ∪ V2 := {v7, v8} ∪ V3 := {v10} ∪
V4 := {v2, v3} ∪ V5 := {v9} obtained by the algorithm are called the path-monotonic
decomposition of G. After the procedure, each v ∈ V in the DAG G = (V, E) satisfies:

vol(π(vi)) > vol(π(vj)) =⇒ Π(vi) < Π(vj) (4.75)

Suspension Algorithm. To exemplify the proposed suspension-aware reserva-
tions, the example in Figure 4.17 is given. Each partition of the decomposition is
attached to exactly one suspension-aware reservation. In 1 , only the subjob v9 is
tied to the reservation and since v9 is not pending at time t = 0, the reservation
suspends itself. Similarly, the reservations in 2 , 3 , 4 suspend. At time t = 7,
the subjob v9 is released and the respective reservation resumes 5 . In the pro-
vided example, the reservation suffers from no external interference such that the
pending subjob is serviced immediately. When v9 is finished 6 , the reservation is
paused. By this algorithm, the sustained service requirement that each subjob can
claim the resources when necessary is still satisfied.

Suspension-Aware Reservation Provisioning. Unlike to the prior described or-
dinary reservation systems, in a path-monotonic decomposition, each partition
requires its own reservation that it is tied to. That is, the number of required
reservations is identical to the number of partitions in the decomposition imply-
ing n = m < M, where M is the number of available processors. Despite this
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Figure 4.17: Exemplary schedule for the DAG illustrated in Figure 4.16 on five
suspension-aware reservations for the path-monotonic decomposition
{v1, v4, v5, v6} , {v7, v8} , {v10} , {v2, v3} , {v9}. The reservation that services
the subjobs {v1, v4, v5, v6} is assigned the lowest priority 1 and {v9} is as-
signed the highest priority 5.

disadvantage, please note that since path-monotonic prioritization policy is a spe-
cialization of the proposed parallel-progress prioritization the prior response-time
analyses and reservation provisioning schemes (without suspension) are still
applicable. Hence, Eq. (4.77) is an immediate corollary for the path-monotonic
decomposition with m = n.

Definition 4.28 (Suspension-Aware Reservation System). A sporadic arbitrary-
deadline suspension-aware reservation system for a path-monotonic decomposition of a
DAG task τi, V1, . . . , Vm, is defined by

Os
i :=

{
(E1

i , S1
i , Di, Ti), . . . , (Em

i , Sm
i , Di, Ti)

}
(4.76)

where the j-th reservation serves subjobs from Vj for j ∈ {1, . . . , m}. Each reservation
system serves exactly one sporadic arbitrary-deadline DAG task τi. The reservation
budget Ej

i denotes the promised service during a release and deadline interval provided
by the j-th reservation and Sj

i denotes an upper-bound of cumulative self-suspension time
of that reservation. The relative deadline Di and minimal inter-arrival time Ti of each
reservation is inherited by the to be serviced task.

We devise the parameters of the suspension-aware reservation system Os
i of

a DAG task τi with path-monotonic decomposition V1, . . . , Vm, according to the
following rules:

1. Calculate the budgets E1
i , . . . , Em

i such that ∀j ∈ {1, . . . , m} vol(Vj) ≤ Ej
i and

vol(π∗) + (m− 1) · Dτ ≤
m

∑
j=1

Ej
i (4.77)
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Table 4.6: A possible path-monotonic prioritization of the DAG illustrated in Figure 4.1.

SubJob Paral Priority vol(π(vi))
v1 ∅ 1 9

v2 v4, v5, v6, v7, v8, v9, v10 4 7

v3 v4, v5, v6, v7, v8, v9, v10 4 7

v4 v2, v3, v7, v8, v10 1 9

v5 v2, v3, v7, v8, v10 1 9

v6 v2, v3, v9, v8, v10 1 9

v7 v2, v3, v4, v5, v9 2 9

v8 v2, v3, v4, v5, v9, v6, v10 2 9

v9 v2, v3, v6, v7, v8, v10 5 7

v10 v2, v3, v4, v5, v9, v6, v8 3 9

2. The budgets and suspension-times are calculated as Sj
i := Ej

i − vol(Vj) and

Ej
i := vol(Vj).

3. The j-th reservation is assigned a fixed-priority according to the priorities of
the subjobs in Vj as illustrated in the Table 4.6.

Scheduling Policy. We assume that the suspension-aware reservation system Os
i

is scheduled by global fixed-priority scheduling (G-FP) on M processors. The rea-
son is, that in G-FP, at any time the M highest-priority jobs are scheduled, which
implies that whenever a reservation, which services subjobs of a certain priority
level is scheduled, all other reservations with higher-priority are guaranteed to be
scheduled as well, if they have work pending and are thus not suspended. This
property is required to ensure that the parallel path progression and the path-
monotonic path progression property holds despite subjobs being tied to specific
reservations. In the prior analyses, it was assumed that the highest-priority subjob
can migrate to execute on any active reservation, which property is now equally
ensured by the G-FP scheduling algorithm.

In the remainder of this section, the theorems and formal proofs for the path-
monotonic progression is given.

Lemma 4.14. Let a DAG G be prioritized according to the path-monotonic prioritization
and decomposition policy then the decomposition with the lowest priority is the envelope
path in a List-FP schedule S on m ≥ 1 dedicated processors.

Proof. We prove this theorem by cases and show that under our path-monotonic
prioritization policy, it is not possible that the longest path does not compose the
envelope.

Let πz := {vz1 , vz2 , . . . , vzn} for some n ∈ {1, . . . , |V|} denote the subjobs
of the longest path. Given a feasible List-FP schedule S, we construct the en-
velope of G according to the rules described in Definition 4.8 and identify
that πe :=

{
ve1 , ve2 , . . . , vep

}
for some p in {1, . . . , |V|} composes the envelope.

Let [ae1 , fe1), [ae2 , fe2), . . . , [aep , fep ) and [az1 , fz1), [az2 , fz2), . . . , [azn , fzn ) denote the
arrival- and finishing time intervals of the respective subjobs in πe and πz

and by assumption πe 6= πz. Without loss of generality we will assume that
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the last subjobs are different, i.e., vep 6= vzn in the analysis. Otherwise, the
analysis considers the paths ve1 , . . . , vep−i and vz1 , . . . , vn−i for the smallest i ∈
{1, . . . , min{p− 1, n− 1}} such that vep−i 6= vzn−i . Please note that the relative
path-length differences are invariant to this truncation.

• For the first case, we assume that πe ∩ πz = ∅. In this case, it must be
that fep > fzn since otherwise vzn would be in the envelope due to the
envelope definition that in case of equality of finishing times, the subjob
with lower-priority is chosen. By the path-monotonic prioritization we know
that priority Π(vzn ) < Π(vep ). Moreover, it must be that the arrival times
az1 = ak1 , since otherwise at least one common predecessor must exist,
which violates the case assumption. Let exe(S, πi, x, y) denote the amount of
workload of subjobs in πi that are executed in S during [x, y). At any time t
during the interval [az1 , fzn ), subjobs of πz and πe are pending and ready for
execution. By the prioritization it must be that whenever subjobs of πz are
executing then subjobs of πe are executing as well, i.e.,

exe(S, πe, az1 , fzn ) ≥ exe(S, πz, az1 , fzn ) = vol(πz)

vol(πe) > vol(πz) (since fep > fzn )

which contradicts the assumption that πz is the longest path.

• In the second case, we assume that πe ∩ πz 6= ∅, i.e., there exists at least
one subjob that exists in both paths. Among all those subjobs that exist
in both paths, we will use the subjob that finishes latest in S denoted
by v∗. We split both paths at this subjob, i.e., πz = {vz1 , . . . , v∗, . . . , vzn}
and πe =

{
vk1 , . . . , v∗, . . . , vkp

}
. By the longest path property, it must be

that vol(π∗e ) ≤ vol(π∗z ) holds for the sub paths π∗e :=
{

v∗, . . . , vep

}
and

π∗z := {v∗, . . . , vzn}. If that was not the case then,
{

vz1 , . . . , v∗, . . . , vep

}
would

be a longer path than πz, which contradicts the assumption that πz is the
longest path.

By the same argument as in the prior case, we have that fep > fzn and analyze
the schedule S during the time interval that starts at a∗ and finishes at fzn . At
any time t during the interval [a∗, fzn ), subjobs of πz and πe are pending and
ready for execution. By the prioritization it must be that whenever subjobs
of πz are executing then subjobs of πe are executing as well, i.e.,

exe(S, π∗e , a∗, fzn ) ≥ exe(S, π∗z , a∗, fzn ) = vol(π∗z )

vol(π∗k ) > vol(π∗z )

which contradicts the assumption that πz is the longest path.

By this lemma, we know that if the longest path πz has the lowest priority
then the envelope path at runtime is identical to the longest path πz. This has the
advantage that this information is available before runtime. With reference to the
provided example in Figure 4.16, the path 〈v1, v4, v5, v6〉 is the envelope path in
any generated List-FP schedule. Interestingly, this principle can be extended as
follows.
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Definition 4.29 (Monotone Path Progression). We say that the progression of a
path πi in a schedule S is monotone with respect to another path πj if and only if
[aπi , fπi ) ⊆ [aπj , fπj ), where aπ∗ denotes the arrival time of the first job in the path π∗
in S and fπ∗ denotes the finishing time of the last job in that path.

Theorem 4.15 (Monotone Parallel Path Progression). Let ψ :=
{

πψ1 , . . . , πψm

}
denote the paths that are extended from the path-monotonic decomposition of a DAG G.
Then for any two paths πψi and πψj where i < j , a List-FP schedule S on m dedicated
processors satisfies [aπψ1

, fπψ1
) ⊇ [aπψ2

, fπψ2
) ⊇ . . . ⊇ [aπψn

, fπψn
).

Proof. We will prove that [aπψ1
, fπψ1

) ⊇ [aπψ2
, fπψ2

) ⊇ . . . ⊇ [aπψn
, fπψn

) iteratively.
Let S1 be a List-FP schedule of a given DAG job G = (V, E) with subjobs V =
{v1, . . . , v`}. Let each subjob vk ∈ V have the arrival time ak and finishing time fk
in the given initial schedule S1.

By Lemma 4.14, we know that the envelope path in S1 is given by the subjobs
of the longest path πψ1 , i.e., the envelope is given by [a11 , f11), . . . , [a1n , f1n ). We
reduce this initial schedule S1 in an iterative manner as follows:

• Calculate the envelope of Si as described in Definition 4.8 and collect all
subjobs that compose the envelope path denoted by πi

e.

• We construct the reduced schedule Si+1 by removing all intervals [ak, fk) from
the schedule Si that belong to subjobs vk ∈ πi

e and vk /∈
{

πψi+1

}
∪ . . .∪

{
πψn

}
for i ∈ {0, . . . , n− 1}.

Since only subjobs with the lowest-priority, under the condition that they are
not used in any other remaining higher-order path are removed in the reduction
procedure, the schedule for the remaining subjobs remains unaltered. In particular,
the only way that a lower-priority subjob can change the execution behaviour
of a higher-priority subjob is due to precedence constraints, which is however
inhibited by the reduction rule to retain all subjobs that are used by the remaining
higher-order paths. In the reduced schedule Si+1 only those subjobs that are in
either of the paths πψi+1 , . . . , πψn remain in the reduced schedule.

All properties required to apply Lemma 4.14 to the reduced schedule Si+1

are met and thus by the same arguments πψi+1 is the envelope path πi+1
e of Si+1.

Moreover, since in the reduction procedure subjobs are removed, we know that
the last finishing time in the envelope of Si+1 is no more than the last finishing
time of the envelope of Si, i.e., fπψi+1

≤ fπψi
. Also it must hold that aπψi+1

≥ aπψi
,

because if that was not the case, then vi+11 precedes vi1 . This would contradict the
assumption that πψi is the longest path in Si, since the path could be prolonged
by subjob vi+11 .

By repeating the argument for all i ∈ {1, . . . , n− 1}, the theorem is proved.

The advantage of this approach is that πi
e := πψi , i.e., the schedule dependent

envelope path πi
e of the reduced schedule Si is given by the schedule independent

path πψi which is known beforehand allowing to tie subtasks to reservations. On
the downside however, in order to maintain the monotone parallel path progression
property, early completions are forbidden, i.e., each subjob must execute for its
worst-case execution time.
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4.6 conclusion

With reference to the hypothesis of this dissertation, the focus in this chapter
is on the design and formal verification of real-time scheduling algorithms of
fine-grained parallel task models on multicore architectures for which the derived
theoretical guarantees are based on properties that are exposed as formal contracts
that are to be honored. Those properties can be monitored and enforced in the
systems in light of uncertainty, and can be used modularly to compose safe and
tight analyses, as well as for optimization of the scheduler design, schedulability
test problem, and other reliability characteristics of the real-time systems.

• Firstly, we studied the structural uncertainty of parallel applications that we
modeled as probabilistic conditional DAG task (pC-DAG) and proposed a
sustainable resource reservation system that allows to guarantee probabilistic
upper bounds of k consecutive deadline misses. In addition, we provided
an algorithm to optimize the reservations systems with respect to the above
quantities and showed that resource usage for scheduling pC-DAGs – under
k-consecutive deadline miss constraints – is significantly improved compared
to conservative reservation systems. In the future we intend to improve the
tightness of our proposed bounds and further evaluate the effectiveness of
the approach in a real system.

• Secondly, in this chapter, we propose and analyze an intra-task prioritization
that induces properties such as parallel path progression in any generated
schedule that allow to improve the resource efficiency significantly for gang
and ordinary reservation systems. On the basis of that property, we pro-
pose a sustainable scheduling algorithm and analysis that for hierarchical
scheduling for gang-based and ordinary reservation systems for sporadic
arbitrary-deadline DAG tasks. For these reservations, we provide algorithms
that approximately provision optimal reservation systems with respect to
the service they require. We evaluated our approach using synthetically
generated DAG task sets and demonstrated that our approach can improve
the state of the art in high-parallelism scenarios while demonstrating reason-
able performance for low-parallelism scenarios. Moreover, we hint at how to
improve the active idling issue of the proposed reservation systems with an
additional path-monotonic progression property which admits a suspension-
aware reservation design. In future work, we plan to improve and evaluate
the suspension-aware reservation design and reclamation mechanisms more
thoroughly.



5
R E G U L AT O R - B A S E D A D A P T I V I T Y

Apart from temporal constraints, safety-critical real-time systems are often sub-
jected to other constraints, such as robustness to soft errors, which are caused
by transient faults. Transient faults are caused by environmental factors such as
cosmic radiation and electromagnetic interference [Bau05]. The fault rates are
non-negligible due to the increased sensitivity by the high integration density
of modern system-on-a-chip. In consequence, safety-critical real-time systems
must be designed with error-handling techniques to detect errors and allow for
appropriate system recovery mechanisms if necessary.

Full error protection measures with hardware and software redundancy is often
too costly in terms of resource usage to be considered a viable design option. To
that end, software-based fault-tolerance techniques are a prominent choice, due to software-based

fault-tolerancethe ability to trade-off increased error protection with increased execution time.
trade-off increased
error protection with
increased execution
time

Then, by facilitating the different job variants, which provide different levels of
protection against errors, the inherent robustness towards limited numbers of
errors in many relevant safety-critical applications can be used to reduce resource
usage at the cost of temporarily degraded quality of service (QoS).

In this chapter, an adaptive state-based policy is presented. More precisely, an
error-history based job variant selection strategy, which explicitly considers the
error probability to choose an optimal job variant (to be released) with respect to
the long-term average system utilization is presented. Above that, each reach- each reachable state, is

verified to comply with
weakly-hard
error-constraints

able state, is verified to comply with weakly-hard error-constraints 1, and the
deadline compliance of each task is guaranteed. In Section 5.1 Motivation, the
objective, challenges, and application of our regulator-based adaptivity is thor-
oughly motivated, which is then formally introduced and explained in Section 5.4
Automata-based Regulator for the weakly-hard error constraints. In Section 5.2 Re-
lated Work, the relevant related work is presented. In Section 5.3 System Model, the
studied system model is elaborated. In Section 5.5 Reinforcement Learning Based
Approach, the reinforcement learning extension of our approach for unknown
fault and error probabilities is presented. Lastly, all proposed approaches are
evaluated in Section 5.6 Evaluation. In Section 5.7 Conclusion, the results of this
chapter are summarized.

5.1 motivation

Safety-critical real-time systems are often subjected to reliability constraints, such
as limited numbers of soft errors, which are caused by transient faults. For
instance, in a trajectory planning module, which is implemented by a collection

1 Weakly-hard refers to k-consecutive and (m, k) deadline miss constraints, but we use the term for
soft errors here deliberately.
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of tasks, using sensory data to produce trajectory data; transient faults may lead
to soft errors, which could cause catastrophic consequences such as missing or
faulty trajectories, leading to potentially catastrophic vehicle steering.

Many experimental research results have shown that errors in safety-critical real-
time systems do not necessarily cause catastrophic system malfunction under the
assumption of error-bound models such as either k-consecutive errors constraints orerror-bound models

(m, k)-constraints. The former models requires that never more than k-consecutivenever more than
k-consecutive jobs are

erroneous
jobs are erroneous, whereas the latter requires that at least m jobs out of any
k consecutive jobs finish without error. For instance, Vreman et al. [VCM21;
MHM+20] analyzed and showed control stability under k-consecutive deadline
miss constraints. With regards to (m, k) constraints, it was shown that robotic
applications can still successfully finish their tasks under a limited number of
errors [CBC+16; YCC18]. While the original concept of (m, k)-constraints [HR95]
was designed for allowing limited deadline misses [CKZ19; HQE20], the concept
of (m, k)-constraints is equally applicable in the context of soft errors.

Software-based fault-tolerance techniques such as explicit output comparisonexplicit output
comparison (EOC) [GGB13], control flow checking by using software signatures [OSM02], and

redundant multi-threading [CBC18b] provide good flexibility, due to the capabilityredundant
multi-threading to dynamically trade-off error protection with additional runtime. That is, dif-

ferent job modes for each task are constructed, each of which provides differentjob modes for each task
are constructed, each of

which provides
different levels of

assurance

levels of assurance. For instance, in the detected mode an error in the job can be

detected mode

detected, in the reliable mode an error can be detected and corrected, and in the

reliable mode

unreliable mode errors are not detectable and no correction is provided. In turn,

unreliable mode

the worst-case execution times of the respective modes increase with the level of
assurance, i.e., unreliable jobs have very short wort-case execution times, whereas
reliable jobs have significantly larger worst-case execution times, and detected jobs
have a larger worst-case execution time than reliable jobs.

Weakly-hard soft error constraints allow to formally specify the conditions of
robustness, i.e., the minimal required quality-of-service, which assures proper
system function. By choice of the different job modes, these weakly-hard soft error
constraints can be assured, e.g., to guarantee (m, k)-constraints. Most relevantweakly-hard soft error

constraints techniques rely on static patterns like the deeply red pattern [KS95] (known as the
deeply red pattern R-pattern) or the evenly distributed pattern [QH00] (known as the E-pattern) to
evenly distributed

pattern
enforce reliable, i.e., error-free, executions.

While weakly-hard constraints increase the number of admissible system states,
according to the specification, a consequential challenge for real-time systems is
to guarantee timeliness for an increasing number of states. Since in hard real-time
systems, each system state, i.e., the worst-case state, needs to be considered,
increasing the state space is challenging the analysis precision. This is also the
reason why static patterns such as the evenly distributed pattern – which evenly
spreads reliable executions across any k-consecutive job releases – are a good
choice with respect to worst-case response-time analyses of the task set. The job
modes are selected in a static manner, such that the weakly-hard error constraints
are satisfied for any possible sequence of actual errors observed in the system.
And due to the static pattern, the worst-case interference in the response-time
analysis can be precisely derived.



5.1 motivation 167

However, as errors are rare events, a strict worst-case provision of job variants to
guarantee the k-consecutive or (m, k)-constraints is wasteful on system utilization
as more reliable instances are instantiated than are actually necessary by observed
errors in the system. Chen et al. [CBC+16] proposed a more adaptive approach by
tracking the momentarily number of errors and to only choose a costly reliable
job when necessary. Despite that approach allowing for some adaptivity, it might
still lead to pessimistic resource usage, since the actual probability – that a job is
erroneous – is not accounted for.

In the literature of fault tolerant systems, e.g., [CBC+16; NQ06; NZ20], one
common objective is to minimize the system utilization in order to minimize
the energy consumption, thermal strain, and response-times. In terms of energy In terms of energy

consumption, the
processor can be
modeled by a busy (a
job is executed) and an
idle (nothing is
executed) state which
determines the energy
consumption

consumption, the processor can be modeled by a busy (a job is executed) and
an idle (nothing is executed) state which determines the energy consumption. In
the busy state, the consumed power can be decomposed into static and dynamic
power consumption. When the processor is idle, it (ideally) only consumes the
static power. In addition, keeping the processor in a busy state for a long contin-
uous interval can increase the processor’s temperature, which results in higher
energy consumption for cooling, and in turn, increases the static leakage power
consumption [SLD+03; LDS+07] – due to the super linear relationship between
temperature and static leakage power. Consequently, the power consumed in the
idle state is much lower than in the busy state.

In spite of the challenges with respect to hard real-time constraints, weakly-
hard error constraints, dynamic system evolution, and resource utilization, which
must all be satisfied simultaneously; we propose the following contributions to
address the motivated problems.

We propose a formalization of all compliant system states, and compliant system
evolutions, using a deterministic finite automata (DFA). For this automata, the transi- deterministic finite

automatation system depends on, the stochastic external cause for error, and the assurance
level of a selected job mode in that state. Hence, the class of state-based selection
policies, in which job modes with appropriate level of assurance are chosen, such
that any system evolution is enforced to be within a feasible region, is defined. In
consequence, any state in the feasible region complies with the weakly-hard error
constraints.

On the basis of this formalization, an optimization for resource utilization, is
devised among the class of compliant state-based selection policies. That is, the
objective is to choose job modes, such that any sequence of states remains within
the feasible region, and the job mode selection minimizes the long term average
worst-case execution time. This optimization is based on the current state and the
error probability, which we solve analytically (for a known error probability), and
by means of reinforcement learning if the error probability must be estimated
during operation. Moreover, we ensure that any sequence of job modes is not
worse than the static R-Pattern with respect to worst-case response-time analysis.
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5.2 related work

With regards to the design of automatic control systems, several controller design
techniques have been proposed, which are capable of tolerating delayed [Ram99;
KGC+12] or dropped signal samples [HSJ08; BS15; GDD19]. Hence, in the case of
an erroneous control signal, that respective sample can be dropped and the prior
sample is used for compensation [Ram99; HSJ08; BS15]. Another series of fault
tolerance techniques, rely on the so-called (m, k) models, which was originally
developed for guaranteeing limited deadline misses for firmed real-time systems,
or so-called weakly-hard real-time systems [BBL01]. Under this constraint, a
task has to meet at least m deadlines (or can miss at most m deadlines), in
any sequence of k consecutive jobs, which has henceforth been used in several
works, e.g., in [CKZ19; HQE20; SKT20; VPM+22]. Following, (m, k)-constraint
models have been applied to the domain of fault tolerance, as well to describe the
robustness of control systems, e.g., in [CBC+16; YCC18].

With regards to hard real-time schedulability for task sets with (m, k) deadline-
miss constraints, several static patterns are widely applied for different pur-
poses, i.e., the deep red pattern (R-pattern) [KS95], the evenly distributed pattern
(E-pattern) [Ram99], and the reverse E-pattern [QH00]. A non-adaptive approach
has been proposed by Von der Brüggen et al. in [BCH+16], in which work, it is
determined if the system with dynamic real-time guarantees can provide full
timing guarantees, or limited timing guarantees, without any online adaptation
after fault occurrence.

Regarding adaptive and optimization based approaches, several results have
been published. Chen et al. proposed an adaptive approach in [CBC+16], trying to
minimize the overall execution time of a task by postponing the execution of safe,
but time-consuming execution modes to the last possible point in time. Liang et al.
in [LWJ+20] developed new methods and an optimization algorithm to analyze,
and improve control stability and system schedulability, subjected to deadline
misses and faults. The method is based on the application of two different
fault-tolerance techniques, namely redundant execution, using EOC [GGB13]
techniques, and re-executions in case of a soft error. With regards to energy-aware
optimization, Al Enawy et al. proposed an on-line speed adjustment algorithm
in [AA05]; exploiting the slack-time of skipped and completed jobs, to minimize
the number of dynamic failures (in terms of (m, k)-firm deadline constraints),
while remaining within an energy budget. Wang et al. in [WHK+21] presented
a cross-layer approach to improve system adaptability by allowing proactive
skipping of task executions. Huang et al. developed an online intermittent-control
framework in [HXW+20], which combines formal verification with model-based
optimization and deep reinforcement learning. The objective of the proposed
framework is to opportunistically skip certain control computation and actuation
to save actuation energy and computational resources without compromising
system safety. Their focus is however the control safety rather than schedulability
and (m, k) robustness.
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5.3 system model

In this section, the studied system model is explained in detail and the model
assumptions are elaborated on. At first in Section 5.3.1, the studied task system
and task models are formally introduced and the respective job modes are defined.
In Section 5.3.2, the underlying stochastic fault model is introduced and a per-
job soft error probability is derived. Lastly, in Section 5.3.3, the hard real-time
schedulability problem is stated with respect to our job mode selection strategy.

5.3.1 task model

In this chapter, we consider a set of periodic constrained-deadline real-time
tasks, i.e., T = {τ1, . . . , τn}. Each task can release its jobs in the reliable, detected, task can release its jobs

in the reliable,
detected, unreliable,
or the composite mode
detected+reliable

unreliable, or the composite mode detected+reliable. The composite mode is the
sequential execution of the detected mode immediately followed by the reliable
mode, which completes early if no fault was detected. Each task is defined by a
tuple τi := (Ci, Di, Ti) where Ci ∈ {Cu

i , Cd
i , Cr

i , Cd+r
i } denotes the set of worst-case

execution times (WCETs) of the different job execution modes, i.e., the unreliable
mode, detected mode, reliable mode, and detected+reliable mode. Throughout this
chapter, we assume that for each task τi ∈ T the relation Cu

i < Cd
i < Cr

i < Cd+r

holds, which is due to the additional overheads for detected and reliable modes,
respectively. Moreover, we assume that the overhead for detection and recovery
is integrated into the WCETs of the corresponding jobs’ execution modes. With
regards to the different execution modes, we assume that software-based fault we assume that

software-based fault
tolerance techniques
are used to detect and
recover fault-induced
soft errors

tolerance techniques are used to detect and recover fault-induced soft errors.
Each task is allowed to instantiate jobs in the reliable, detected or unreliable mode,
with respective implications for soft-errors, and overheads, summarized in the
following definition.

Definition 5.1 (Job Mode). Each job J`i of each task τi ∈ T can be executed in the
following modes exclusively:

• Unreliable. In the unreliable mode, no additional code instrumentation or overhead
is required, but in turn soft-errors are not detectable, i.e., no guarantee can be given
at the end of that job’s execution whether or not it is error-free. Hence, that job’s
return values and side-effects are not trustworthy.

• Detected. In the detected mode, the code is instrumented with techniques to verify
the correctness of the executed job; e.g., error detection with special encoding of
the data, control flow, sanity, or consistency checks [Pra86]. In the detected mode,
errors can be detected, however that job’s return values and side-effects are not
trustworthy, regardless.

• Reliable. In the reliable mode, soft-errors must be detected – using techniques
presented in the detected mode – and subsequently recovered or corrected. That
is, in order to guarantee a correct result in the reliable mode, either a recovery
routine can be issued to guarantee the job’s correctness or task replication [HAZ17]
can be applied to achieve high reliability. For instance m successive executions
(replications) of a job yield a 1− (pe)m probability to produce a correct result under
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τi J`i (detected)

1E E E E2 E
J`+1
i (reliable)

3

τk Jq
k

4 5

Jq+1
k (detected)

Figure 5.1: An exemplary schedule for two tasks τi , τk ∈ T that are subjected to faults,
which result in soft-errors if at least one fault occurs during that jobs execution.
Job Jq

k is executed in the unreliable mode.

our assumption of an independent error probability for a job of pe. A probability of,
e.g., 1− (pe)m ≤ 10−9 is then considered reliable in spite of other system reliability
estimates such as mean-time to failure. In consequence, it is guaranteed that the
return values and side-effects are trustworthy.

• Detected + Reliable. In the composite detected+reliable mode, an immediate com-
pensation in the same instance – in case of a detected error after execution of the
detected mode – is issued. In contrast to instantiating a reliable instance right away,
conditionally executing a reliable instance only after an error was detected can re-
duce resource usage in very low error probability environments. In this mode, it is
guaranteed that the return values and side-effects are trustworthy.

For better illustration, consider the exemplary schedule for two tasks shown in
Figure 5.1. The red lightning symbols indicate faults induced by external cause,red lightning symbols

indicate faults induced
by external cause

e.g., cosmic radiation, that lead to soft errors if a job executes during the time of
fault if no reliable mode is executed. When the jobs of τi, namely J`i , J`+1

i and the
jobs of τk, namely, Jq

k , Jq+1
k arrive, one of the job modes in Definition 5.1 is selected

with the described effects and guarantees. Hence, the job modes are controllable
system inputs, which together with the stochastic cause of faults, determine the
manifestation of a soft-error in the respective job. In 1 , the finishing job J`i is
erroneous, since the detected mode provides no assurance beyond detection,
and is subjected to two faults during its execution. Similarly, job Jq+1

k in 5 , is
erroneous. In contrast in 4 , the job Jq

k executes in the reliable mode and is not
subjected to any faults, and thus error-free. The reliable job J`+1

i , which starts
execution in 2 and is error-free at the finishing time at 3 , despite being subjected
to two faults during its execution. We assume that errors may take place at any
time – under the poisson assumptions stated in the next section – during a job’s
execution without breaking the job’s control flow.

5.3.2 fault and error model

Transient faults can lead to soft errors, resulting in the incorrect results from the
affected jobs. In this chapter, we assume that a job is erroneous if it is subjected to
at least one fault during execution. Furthermore, we assume that the probability
for each job to suffer from at least one fault to be upper-bounded by a single
value

P(at least one fault occurred during execution of any job of task τi) ≤ pe < 1
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(5.1)

can be obtained. This fault model assumption is suitable for poison processes, i.e., fault model assumption
is suitable for poison
processes

stochastic processes which satisfy the following properties:

1. In an interval [t, t + ∆t], there is at most one fault event, where ∆t denotes a fault event
sufficiently small capture interval.

2. The probability that a fault event occurred during any interval of length ∆t
is proportional to ∆t.

3. The occurrence of a fault event in an interval of length ∆t does not depend
on events in the past.

In the poisson model, it does not matter, when exactly a job is scheduled, but
only the cumulative amount of time it is executed. Since, the execution time is
upper bounded by the worst-case execution time, an upper-bound for Eq. (5.1),
can be obtained. For such a fault process, the number of fault events, which can the number of fault

events, which can be
observed in any
interval of length t is
poisson distributed

be observed in any interval of length t is poisson distributed with probability
density function λke−λt

k! (for k-many faults). Consequently, the probability that at
least one fault event is observed in any interval of length t, is given by 1− e−λt.
Since it is safe and sufficient to estimate an upper-bound for pe, we can define pe

for each task τi as 1− e−λ·Cd
i , where λ is the estimated environmental fault rate,

and Cd
i is the worst-case execution time of a detected mode job. This is under the

premise that each job executes for at most its worst-case execution time Cu
i < Cd

i
in the unreliable or detected mode, and the replica model for the reliable mode, in
which each repeated detected mode instance, is also sensitive to faults for Cd

i time
units. Hence, the probability that at least one fault occurs during the execution
of the respective modes is given by 1− e−λ·Cu

i ≤ 1− e−λ·Cd
i = pe, respectively.

Henceforth, we assume that each job’s error probability is constant for each task
and upper-bounded by pe. We will also only use pe deliberately, without referring
to the specific task, since all analyses are task-wise.

5.3.3 schedulability and scheduling

In this work, we assume an arbitrary preemptive scheduling algorithm to schedule
the task set, which satisfies the application’s temporal requirements. That means,
if tasks are subject to real-time constraints then a real-time capable scheduling
algorithm such as rate-monotonic scheduling or EDF is used. If however soft
real-time or best-effort is required then a suitable algorithm, e.g., EDF may be
used. Please note, the objective of our work is the minimization of each task’s
average execution time under the corresponding k-consecutive errors and (m, k)-
constraints and is orthogonal to the scheduling problem, in the sense that the
scheduling decisions and the job mode selection are independent from one scheduling decisions

and the job mode
selection are
independent from one
another

another. However, if the task set is subjected to real-time constraints then the
approach to adopt the multi-frame task model to analyze the worst-case execution
pattern as suggested by Chen et al. [CBC+16] can be used.

Our proposed analytic solution, as well as the reinforcement learning (RL)
based solution, generate sequences of job modes, which are never worse than
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the job mode sequence as generated by the R-pattern [KS95] for the same (m, k)-
constraint as well as the k-consecutive error constraint. In the former, the first
k−m jobs are executed in the detected mode and the remaining m instances are
successively executed in the reliable mode, which is explained in more detail in
the respective coming sections.

5.4 automata-based regulator

The conceptual foundation of this chapter is the automata-based regulator, where
a deterministic finite automata (DFA) is used to formalize the state-space of
erroneous jobs and the transitions between error states. The transitions of the DFAtransitions of the DFA

are in general triggered
by events, which are
beyond the control of

the system

are in general triggered by events, which are beyond the control of the system
such as radiation, which causes faults, and in turn cause an error in the respective
job. We study the problem for a set T of periodic constrained-deadline tasks,
where each task needs to satisfy weakly-hard error-constraints. Each task in the
task set is considered individually, and each of the studied weakly-hard error-
constraints, namely the k-consecutive error constraint and the (m, k)-constraint,
are considered individually.

From here, common definitions and theoretic foundations, for both weakly-
hard error-constraints are presented. In the subsequent Section 5.4.0.1, the k-
error automata is formally introduced and examined as a common theoretical
framework for both weakly-hard error constraints. Following, in Section 5.4.1, the
analyses for k-consecutive error constraints are presented. In Section 5.4.2, the
analyses concerning the (m, k)-constraints are presented.

5.4.0.1 k-Error Automata Construction

We indicate the correctness of the `-th job J`i of task τi by the character c` ∈ Σ
and use a (possibly infinite) sequence of concatenated characters, i.e., a word
w = c1 ◦ c2 ◦ . . . ◦ cn to indicate the correctness of the job sequence J1

i to Jn
i for

n ∈N.

Definition 5.2 (Correctness Indication). We indicate the correctness of a job at the
end of its execution by an element of the set Σ = {0, 1}. That is, an error-free executed
job is indicated by a 1 and an erroneously executed job is denoted by a 0.

For convenience, we denote the sub-word of w which starts at index a and
ends at index b as w(a, b) = ca ◦ . . . ◦ cb for a < b. The w(a, :) and w(:, b) are used
to denote the sub-word starting at index a to the end or from the beginning to
the index b.

To verify the compliance of a task with respect to the weakly-hard error
constraints of k-consecutive faults or (m, k) constraints, an infinite sequence of
jobs, i.e., any sequence of k-consecutive jobs must be analyzed. While there are
infinitely many sub-words (since there may be infinite job releases), there are only
2k many different outcomes of interest Q := {00 . . . 0, . . . , 11 . . . 1} for which we
define a k-error-automata.
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Definition 5.3 (k-Error-Automata). A k-error-automata Ak := (qs, Q, Σ, δ) is defined
by a 4-tuple, where Q := {0, 1}k denotes the finite set of states of all possible outcomes
in any k consecutive job releases. The start qs := 11 . . . 1 ∈ Q denotes the unique
starting state, Σ := {0, 1} denotes the input alphabet, and δ defines the transition system
δ : (Q, Σ) 7→ Q such that for any state q ∈ Q := {00 . . . 0, . . . , 11 . . . 1}

δ(q, 0) = q(2, :) ◦ 0 ∈ Q (5.2)

δ(q, 1) = q(2, :) ◦ 1 ∈ Q (5.3)

An exemplary 3-error-automata A3 is illustrated in Figure 5.2. The connection
between the schedule and the k-error automata is constructed as follows.

Definition 5.4 (Job Sequence Induced State). Let any concrete word w = c1 ◦ . . . ◦ c`
for ` ≥ k, which indicates the outcomes of all finished jobs. A sub-word of length k
starting at the j-th job w(j, j + k − 1) for j ∈ {1, . . . , ` − k + 1} induces a state q ∈
Q in the k-error-automata Ak denoted as ψ(w(j, j + k − 1)) = q ∈ Q if q’s binary
representation is identical to w(j, j + k− 1).

As the word w – indicating the correctness of all finished jobs – evolves with
the finishing of each released job, the state of the k-error-automata transitions
accordingly. More precisely, let the (j + k)-th job finish at time f j+k and let the
sub-word w(j, j + k− 1) denote the latest k-consecutive job outcomes prior to time
f j+k. Based on the outcomes of the (j + k)-th job as indicated by cj+k, the evolved
job sequence induced state in Ak is given by δ(ψ(w(j, j + k− 1)), cj+k). The outcome
of the (j + k)-th job is determined by the occurrence of an error, which is assumed
to be stochastic in nature and beyond our control. That is, under the assumption
of a constant error probability pe we have that P(cj+k = 0) = pe and conversely
P(cj+k = 1) = 1− pe. We can however control the execution mode of the (j + k)-th
job release, i.e., unreliable, detected, reliable or detected followed by reliable.

As described in Section 5.3.1, in the unreliable mode, the correctness of (j + k)-th
job is given by cj+k = 0 with probability 1. In detected mode, if a error occurred
then cj+k = 0 with probability pe and cj+k = 1 with probability 1− pe otherwise.
In the reliable mode, the execution is guaranteed to be correct, i.e., cj+k = 1 with
probability 1. In the detected followed by an optional reliable mode, a reliable instance
is only released if an error was detected and the current instance has to be correct
in order to ensure the corresponding weakly-hard error constraint. In general, a
sub set of states Q∗ ⊂ Q is called compliant states if the bit representation of each
q ∈ Q∗ satisfies the respective weakly-hard error constraint, which is introduced
more formally in later sections.

Our objective is to devise a state-based execution mode selection such that
any infinite sequence of outcomes of jobs as indicated by an evolving word w is
firstly compliant with the respective weakly-hard error constraints and secondly
minimizes the expected execution time of each task. More precisely for any job
sequence induced compliant state ψ(w(j, j + k− 1)) ∈ Q∗ of Ak, we devise a mode
selection strategy

α : Q∗ 7→ {u, d, r, d + r} (5.4)
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Figure 5.2: An exemplary k-error-automata Ak and the (2, 3)-compliant automata A∗k is
highlighted in bold, where the darker states are critical states and the lighter
states are nominal states.

to choose either an unreliable, detected, reliable, or a detected job optionally followed
by a reliable instance for the (j + k)-th job release such that

P(ψ(w(j + 1, j + k)) /∈ Q∗ | ψ(w(j, j + k− 1) ∈ Q∗, α(ψ(w(j, j + k− 1))) = 0 (5.5)

for all j ∈N. For short, let xj := w(j, j + k− 1) for some j ∈N then

P(cj+k = 1 | α(xj)) =


0 if α(xj) = u

1− pe if α(xj) = d

1 if α(xj) = r ∨ (d + r)

Conversely, P(cj+1 = 0 | α(xj)) = 1−P(cj+1 = 1 | α(xj)). Please note that while the
job may actually execute correctly even in unreliable mode, we have to consider it
an error to guarantee compliance with the imposed weakly-hard error constraints,
since the outcome is not observable. From a design perspective, we have to design
the transition system of Ak such that only the compliant states Q∗ are reachable,
which is formally defined as follows.

Definition 5.5 (Compliant Transitions). A transition system δ of a k-error-automata
Ak is compliant if and only if for any given word w with j ≥ 1 the following implication
holds

ψ(w(j, j + k− 1)) ∈ Q∗ =⇒ δ(ψ(w(j, j + k− 1)), cj+k(α)) ∈ Q∗ (5.6)

where Q∗ denotes the compliant states.

The set of compliant states can be further partitioned into critical states andcritical state

nominal states. In a critical state, an error-free job execution is mandatory for thenominal state

task to be compliant to its respective weakly-hard error constraint. Conversely, in
the nominal state, any outcome is compliant with the constraint.

5.4.1 consecutive-error constraints

The automata-based regulator approach will be introduced in full detail for the
more complicated (m, k)-constraint in the following Section 5.4.2, but the results
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Figure 5.3: An exemplary k-error-automata Ak and the 3-consecutive error constraint
compliant automata A∗k is highlighted in bold, where the darker states are
critical states and the lighter states are nominal states.

are equally applicable for the simpler k-consecutive error constraints, which are
introduced hereinafter.

By construction of the k-error automata Ak, each state q ∈ Q∗ satisfies the
k-consecutive error constraint, however in the critical state a correct execution is in the critical state a

correct execution is
mandatory

mandatory for compliance, as illustrated in Figure 5.3. Moreover, it can be seen
that each state q ∈ Q∗ can be partitioned into a superordinate state which counts
the number of consecutive errors, i.e., 0, 1, 2, or 3 in the provided example.

Definition 5.6 (Critical State). A compliant state ψ(w(j, j + k− 1)) ∈ Q∗ is a critical
state with respect to k-consecutive error constraints if there are exactly k erroneously
executed jobs in the word w(j + 1, j + k− 1).

Definition 5.7 (Nominal State). A compliant state ψ(w(j, j + k− 1)) ∈ Q∗ is a nominal
state with respect to k-consecutive error constraints if there are at most k− 1 consecu-
tively erroneous jobs in w(j + 1, j + k− 1) ending in w(j + k− 1).

We will use the simpler problem structure of the k-consecutive error constraints
to derive and prove an analytic solution to the expected number of executed expected number of

executed jobs until the
critical state is reached

jobs until the critical state is reached. This metric allows to assess the average
quality-of-service which is attainable using our state-based approach for the
k-consecutive error constraint and provides an intuition for the optimization
potential. To that end, consider the simplified automata which consists of the
superordinate states q ∈ {0, 1, . . . , k} counting the number of consecutive errors
illustrated in Figure 5.4. The transitions are solely driven by the stochastic faults
and subsequent errors which are realized with probability pe.

Definition 5.8. Let Ω(q) denote the expected number of executed jobs until the critical
state, as defined in Definition 5.6, is reached – starting in the initial state q for any
q ∈ {0, 1, . . . , k}.
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Figure 5.4: 3-consecutive error constraint compliant automata A∗k .

Since the expected value for a stochastic process with independent random
variables, is the sum of each random variable’s individual expected value, the
following system of recurrence relations can be stated:

Ω(0) = pe · (1 + Ω(1)) + (1− pe) · (1 + Ω(0)) (5.7)

Ω(1) = pe · (1 + Ω(2)) + (1− pe) · (1 + Ω(0))
...

Ω(i) = pe · (1 + Ω(i + 1)) + (1− pe) · (1 + Ω(0))
...

Ω(k) = 0

where Ω(k) = 0, since the critical state for k-consecutive errors is reached.

Based on this system of recurrence relations, the system of linear equations
can be stated as Ω = A ·Ω + [1, 1, . . . , 0]T, which has a unique solution if I − A is
non-singular. In that case, the expected number of executed jobs – starting in the
initial state q = 0 – is given by

Ω(0) =
(

(I − A)−1 · [1, 1, . . . , 0]T
)
· [1, 0, . . . , 0]T (5.8)

It can be shown that I − A in non-singular, which is stated and proven in the
following theorem.

Theorem 5.1. The matrix S := I − A

1− pe −(1− pe) 0 0 . . . 0
−pe 1 −(1− pe) 0 0 0
−pe 0 1 −(1− pe) 0 0

... 0 0
. . . . . .

...
−pe 0 0 0 1 −(1− pe)

0 0 0 0 0 1


(5.9)

is non-singular under the premise that pe > 0.

Proof. We prove that the kernel of S is trivial, i.e., if α ∈ ker(S) =⇒ α = 0 directly
by solving S · [α1, . . . , αn]T on the basis of the special structure of S.

At first, we prove by induction over the row vectors (or more precisely the
recursive structure) in S that

αn−k = αn · (1− pe)k + α1 ·
k−1

∑
h=0

p(1− pe)h (5.10)
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holds for all k ∈ {1, . . . , n− 2}, i.e., except for the first and last row.

Induction Base. For k = 1, reading the second-to-last row vector of S yields that
−pe · α1 + αn−1 − (1− pe) · αn = 0 must hold, which in turn yields

αn−1 = (1− pe) · αn + α1 ·
1−1

∑
h=0

p(1− pe)h (5.11)

= (1− pe) · αn + α1 · pe (5.12)

Induction Step. In the induction step, we advance in the row from n − k to
(n− (k + 1)), i.e., k→ k + 1, and read from the structure of S that

αn−(k+1) = pe · α1 + (1− pe) · αn−k (5.13)

= pe · α1 + (1− pe) · (αn · (1− pe)k + α1 ·
k−1

∑
h=0

p(1− pe)h) (5.14)

= αn · (1− pe)k+1 + α1 · (pe(1− pe)0 + (1− pe) ·
k−1

∑
h=0

p(1− pe)h) (5.15)

= αn · (1− pe)k+1 + α1 ·
k

∑
h=0

pe(1− pe)h (5.16)

In the second step, we inspect the first and last row individually, and conclude
that αn = 0 and α1 = α2. Since from the previous step, we know that for k ∈
{1, . . . , n− 2} Eq. (5.10) holds, we know that in particular for k = 2,

α2 = α1 ·
(n−2)−1

∑
h=0

pe(1− pe)h (5.17)

holds. Since ∑n−3
h=0 pe(1− pe)h is non-zero by our assumption that pe > 0 it must

be that α1 = α2 = 0 and therefore αn−k = 0 for all n− k ∈ {3, . . . , n− 1}.

It can be shown that for the k-consecutive error constraints, the expected
number of executed jobs until the critical state is reached for the first time is given
by

Eq. (5.8) = Ω(0) =
k

∑
h=1

(
1
pe

)h

(5.18)

where pe > 0.

This metric is interesting, since it describes the system evolution if it is driven
only by the stochastic occurrence of faults and subsequent errors. Notably, Ω(0)
allows to assess the average quality-of-service which is attainable using our
state-based approach for the k-consecutive error constraint.

Additionally, Ω(0) hints at the possible improvements of our approach with
respect to the average worst-case execution time. For instance for an error prob- for an error probability

pe of 10%, the
expected number of
executed jobs to reach
2-consecutive errors is
110 and 1110 for
3-consecutive errors

ability pe of 10%, the expected number of executed jobs to reach 2-consecutive
errors is 110 and 1110 for 3-consecutive errors. From this, it is obvious that as-
suming worst-case scenarios and thus job mode selection strategies are highly
wasteful. However, for very high error probabilities, e.g., 90%, the expected num-
ber of job executions to reach 3-consecutive errors is only 4. In these cases, there
is less leeway to profit from the other job modes.
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5.4.2 (m ,k)-constraints

While a k-error-automata models all error sequences in k consecutive jobs, not
each sequence is (m, k) compliant. In order to verify if a task satisfies its (m, k)
constraint after the finishing of the `-th job given the indication c`, it must be
tested if every sub-word of length k in w = c1 ◦ . . . ◦ c` for ` ≥ k contains at least
m correct executions.

Definition 5.9 (Critical State). A compliant state ψ(w(j, j + k− 1)) ∈ Q∗ is a critical
state with respect to (m, k)-constraints if there are only (m− 1) correctly executed jobs
in the word w(j + 1, j + k− 1), i.e., the latest previous (k− 1) jobs.

Definition 5.10 (Nominal State). A compliant state ψ(w(j, j + k − 1)) ∈ Q∗ is a
nominal state with respect to (m, k) constraints if there are at least m correctly executed
jobs among the latest previous (k− 1) jobs, i.e., w(j + 1, j + k− 1).

Definition 5.11 ((m, k)-Compliant State). A state q ∈ Q of a k-error-automata Ak is
called (m, k)-compliant if 1[q] ≥ m is satisfied, where the operator 1 counts the number
of 1’s in q’s representation. The set of all (m, k)-compliant states is called the (m, k)-
compliant state-space denoted by Q∗ ⊆ Q.

It can be observed that in order for the transition system to be compliant, we
have to enforce an outcome cj+k based on whether ψ(w(j, j + k − 1) is a critical
or nominal state. That is, if ψ(w(j, j + k− 1)) ∈ Q∗ and critical then cj+k = 1 must
be enforced. In the case that ψ(w(j, j + k− 1)) ∈ Q∗ and nominal then any cj+k ∈
{0, 1} is a feasible outcome. These observations are formalized in the following
corollaries.

Corollary 5.2 (Critical State Transition). If a compliant state ψ(w(j, j + k− 1)) ∈ Q∗

is a critical state then only a correct execution of the (j + k)-th job leads to a transition
into a compliant state Q∗.

Proof. The updated word after concatenation of cj+1 is given by w(j + 1, j + k), i.e.,
w(j + 1, j + k − 1) ◦ cj+1. By definition, the number of correct instances is given
by 1[w(j + 1, j + k − 1)] = m − 1. Clearly |w(j + 1, j + k)|= k and if cj+1 = 0 then
1[w(j + 1, j + k)] = m− 1 and 1[w(j + 1, j + k)] = m if cj+1.

Corollary 5.3 (Nominal State Transition). If a compliant state ψ(w(j, j + k− 1)) ∈ Q∗

is a nominal state then either execution outcome of the (j + k)-th job leads to a transition
into a compliant state Q∗.

Proof. The updated word after concatenation of cj+k is given by w(j + 1, j + k),
i.e., w(j + 1, j + k − 1) ◦ cj+k. By definition, the number of correct instances is
given by 1[w(j + 1, j + k− 1)] = m. Clearly |w(j + 1, j + k)|= k and if cj+k = 0 then
1[w(j + 1, j + k)] = m and 1[w(j + 1, j + k)] = m + 1 if cj+k each of which complies
with the (m, k) constraints.

Based on these results, we can formulate properties which must be met by any
feasible strategy.
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Lemma 5.4 (Compliant Mapping Strategy). Any mapping strategy α for the k-error-
automata Ak which satisfies the constraints

α(ψ(xj)) =

{
r ∨ (d + r) if ψ(xj) is a critical state

u ∨ d ∨ r if ψ(xj) is a nominal state
(5.19)

leads almost certainly to a compliant transition system for xj := ψ(w(j, j + k− 1)) ∈ Q∗

for all j.

Proof. By the results of Corollary 5.2 and Corollary 5.3, we know that for any
induced state q := ψ(xj) ∈ Q∗, the strategy α(q) must almost certainly enforce a
correct outcome of cj+k if q is a critical state and any outcome if q is a critical state
to lead to a compliant transition. Clearly, a reliable instance or a detected instance
followed by an optional reliable instance in case of an error in case of q being a
critical state enforces that P(cj+k = 1 | α(q)) = 1. Conversely, if an unreliable or a
detected instance is chosen if q is a nominal state then P(cj+k = 0 | α(q)) + P(cj+k =
1 | α(q)) = 1 which thus almost certainly leads to a compliant state.

An α-induced (m, k)-compliant subset of a k-error-automata Ak is denoted by
A∗k (α) and only contains compliant states Q∗ ⊆ Q and a compliant transition
system δ∗ ⊆ δ such that for any q ∈ Q∗ the transition δ∗(q, c(α(q))) ∈ Q∗, which is
exemplified in Figure 5.2.

5.4.3 states reduction and minimal automata

In the remainder of this section, we propose an algorithm to generate a minimal
(m, k)-compliant automata A∗k (α), which is necessary to improve the computa-
tional complexity of our to be designed expected execution time minimization
algorithms. We note that the approach to generate minimal finite-state machines
as, e.g., used in Vreman et al. in [VPM22] is applicable for (m, k) constraints as well.
However, their generation algorithm is similar to Hopcroft’s algorithm [Hop71],
which generates all states and merges equivalent states, whilst our Algorithm 7 equivalent states

utilizes the specificity of the problem to only generate compliant states right away.

Definition 5.12. For given (m, k)-constraints, the set of n-step equivalent compliant
states of the compliant k-error-automata A∗k is given by

[q]n := {q, q′ ∈ Q∗ | (δ(q, w) = δ(q′, w)) ∀w ∈ {0, 1}n}

and we say q ∼n q′ if q and q′ are n-step equivalent. n-step equivalent

We use the don’t care notation to denote the representative state [q]n, e.g.,
∗ ◦ q(2, :) = ∗ ◦ q′(2, :) for 1-step equivalent states q ∼1 q′ and ∗ ∗ · · · ∗ ◦q(n + 1, :) =
∗ ∗ · · · ∗ ◦q′(n + 1, :) for q ∼n q′.

Lemma 5.5. If there exist q, q′ ∈ Q∗ such that q ∼n+1 q′ then there exist v, v′ ∈ Q∗

such that v ∼n v′ or conversely if there are no n-step equivalent states then there are no
(n + 1)-step equivalent states.
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Proof. We prove this lemma constructively, i.e., let q ∼n+1 q′ then δ(q, w) = δ(q′, w)
for all w ∈ {0, 1}n+1, which is equivalent to δ(q, w(1) ◦w(2, :)) = δ(δ(q, w(1)), w(2, :))
and thus δ(δ(q, w(1)), w(2, :)) = δ(δ(q′, w(1)), w(2, :)). Let v = δ(q, w(1)) ∈ Q∗ and
v′ = δ(q′, w(1)) ∈ Q∗ then due to the fact that |w(2, :)|= n it must be that v ∼n

v′.

From this lemma it follows that state equivalence must be constructed iteratively
until no further n-step equivalent states can be generated from the set of (n− 1)-
step equivalent states for n ≥ 1. We emphasize that we do not need to consider
special constraints on w as e.g., only critical transitions exist for critical states,
since only nominal states can be equivalent as shown in the following.

Lemma 5.6. Only nominal states can be equivalent states in a compliant non-minimized
automata A∗k .

Proof. We prove by contradiction that only nominal states can be n-step equivalent.
Assume that there exist any q ∼n q′ such that q is a critical state and q′ is a nominal
state, i.e., by definition 1[q(n + 1, :)] = m− 1 and 1[q(n + 1, :)] ≥ m. Since q′ is
equivalent by assumption we have that q′(n + 1, :) = q(n + 1, :) and thus 1[q′(n + 1, :
)] = m− 1, which implies however that q′ is not a nominal state and contradicts
the assumption.

Corollary 5.7. The initial set of nominal states can be minimized to a set of represen-
tatives of the form ∗ · · · ∗ ◦v where v is the shortest v such that 1[v] = m and the prior
k− |v| characters are don’t cares.

Proof. This follows from Lemma 5.5 and Lemma 5.6, since we know that states
q, q′ are merged up to n-step equivalence if 1[q(n + 1, :)] ≥ m and thus 1[∗ · · · ∗
◦q(n + 1, :)] ≥ m where n is the maximal equivalence found and thus v = q(n + 1, :)
|v|= k− (n + 1) + 1 = k− n, i.e., shortest |v|.

Theorem 5.8 (Minimal Automata). The minimal number of compliant states Q∗ of a
(m, k)-compliant A∗k is given by

|Q∗|= k!
m!×(k−m)!

(5.20)

Proof. The number of compliant states is composed of critical and nominal states,
where the number of critical states is given by ( k−1

m−1), since exactly the last k− 1
characters in a critical state q must contain exactly m− 1 ones.

From Lemma 5.6, we know that m ≤ |v|≤ k−m and thus states with |v|= ` and
1[v] = m are merged into one representative state for ` ∈ {m, m + 1, . . . , k−m}.
The number of combinations for each above class is given by the binomial ( `m).
However, for each ` the number of combinations for `− 1 must be substracted.
This is due to the fact that, by Lemma 5.5, we know that each state is represented
by the maximal equivalence representative and the combinations with m ones in
the last ` characters can be extended to combinations with m ones in the last ` + 1,
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Algorithm 7 Generation of minimal compliant A∗k
Require: Constraint (m, k);
Ensure: Minimal state automata A∗k ;

1: A∗k ← (qs, Q∗ := ∅, δ := ∅, Σ := {0, 1});
2: qs ← {∗ ∗ . . . 1 };
3: for each z ∈ {0, . . . , k−m− 1} do
4: add q := ∗k−m−z ◦ 1 ◦ b(m + z− 1, m− 1) to Q∗;
5: add transition δ(q, 1) = q(2, :) ◦ 1 to δ;
6: add transition δ(q, 0) = q(2, :) ◦ 0 to δ;

7: for each q ∈ {w ∈ b(k− 1, m− 1) | 1 ◦ w} do
8: add q to Q∗;
9: add transition δ(q, 1) = q(2, :) ◦ 1 to δ;

10: return A∗k ;

which should then be covered by the representative of `. In consequence, we have
that |Q∗| is given by(

k− 1
m− 1

)
+
(

m
m

)
+

k−m

∑
`=1

(
m + `

m

)
−
(

m + `− 1
m

)
=
(

k
m

)
(5.21)

which proves the theorem.

Let b(z, n) denote all bit strings of length z with exactly n ones, which can be
recursively defined and computed using dynamic programming. Using the above
observations and lemmas, we can generate all critical states by {w ∈ b(k− 1, m−
1) | 1 ◦w} and for each critical state q, we add a critical transition δ(q, 1) = q(2, :) ◦ 1.
To generate the minimal set of nominal states for (m, k)-constraints, we generate
the representatives iteratively using ∗` to denote a string of ` many ∗-characters
as follows:

k−m−1⋃
z=0

∗k−m−z ◦ 1 ◦ b(m + z− 1, m− 1) (5.22)

For instance, in the case of (2, 4) constraints, the minimal nominal states are
given by Eq. (5.22) as ∗ ∗ ◦1 ◦ b(1, 1) = ∗ ∗ 11, ∗ ◦ 1 ◦ b(2, 1) = {∗110, ∗101}. For
each merged critical state q, the transitions δ(q, 0) = q(2, :) ◦ 0 and δ(q, 1) = q(2, :) ◦ 1
are added to the transition system of the automata.

5.4.4 minimization of expected execution time

In this section, we explain our mapping strategy of execution modes to jobs by
considering different strategies for critical and nominal states in detail. Afterwards,
an optimization strategy based on the so-called induced markov chain is proposed. induced markov chain
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5.4.4.1 Mapping Strategy

Our mapping strategy utilizes the design freedom of the different state categories
to select the execution mode for next job as described in the following.

Critical State Action. If the current state q is a critical state then the next job has
to be executed correctly and therefore either of the following two actions must be
taken:

1. Release a reliable task instance, i.e., α(q) = r.

2. Release a detected task instance and only release an immediate follow-up
reliable task instance, in case of a detected error, i.e., α(q) = d + r.

By this mapping, we have enforced that c(α(q)) = 1 with probability 1. In the first
case, the expected WCET of a job released in state q is either Cr or (1− pe) · Cd +
pe · Cr. It can be seen that for very low error probabilities pe, it is better to first
run a detected instance followed-up by a reliable instance.

Nominal State Action. If the current state q is a nominal state then the next job
must not be enforced to be executed correctly. Thus, we have the following three
options to choose the next job’s mode:

1. Release a reliable mode instance, i.e., α(q) = r and c(α(q)) = 1 with probability
1.

2. Release a detected mode instance, i.e., α(q) = d and c(α(q)) = 1 with probability
1− pe and c(α(q)) = 0 with probability pe.

3. Release an unreliable mode instance, i.e., α(q) = u and c(α(q)) = 0 with
probability 1.

Due to the assumed high worst-case execution time of the reliable instances, we
opt to select either a detected or an unreliable mode instance in each nominal state
q at random. That is, we draw either a detected mode instance with probability
pd or an unreliable mode instance with probability pu such that pd + pu = 1,
and the expected average execution time is given by pd · Cd + pu · Cu. Based
on the randomized mode selection, the transitions are stochastic in nature, i.e.,
P(c(α(q)) = 1) = pd · (1− pe) and P(c(α(q)) = 0) = pd · pe + pu.

5.4.4.2 Induced Markov Chain

Using the mapping strategy α, we can derive an α-induced Markov Chain from
the automata A∗k .

Observation 5.9 (Induced Markov Chain). The α-induced (m, k)-compliant A∗k (α) is
a finite discrete-time Markov Chain with transition probability determined by the error
probability and the mapping strategy α.

Due to the state-based mode selection strategy, the probability of being in state
q′ at time k + 1, i.e., P(xk+1 = q′) only depends on the probability of being in
a state q at time k for which (q, q′) ∈ δ∗ holds and the probability of taking a
specific transition thereof. Therefore the markov property is trivially satisfied; the
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specific transition probabilities are derived based on the error probability pe and specific transition
probabilities are
derived based on the
error probability pe
and the stochastic
state-based mode
selection

the stochastic state-based mode selection. That is, if q is a nominal state then, by
our strategy α, the following state transitions are given:

P(xn+1 = δ(q, 0)|xn = q) = P(c(α(q)) = 0) = pd · pe + pu (5.23)

P(xn+1 = δ(q, 1)|xn = q) = P(c(α(q)) = 1) = pd · (1− pe) (5.24)

and for critical states

P(xn+1 = δ(q, 0)|xn = q) = P(c(α(q)) = 0) = 0 (5.25)

P(xn+1 = δ(q, 1)|xn = q) = P(c(α(q)) = 1) = 1 (5.26)

Definition 5.13 (Stationary Distribution). Let a finite, irreducible Markov Chain be
given by xn+1 = A · xn, where xn ∈ Q∗r, A ∈ Fr×r and ||xn||1= 1 for all n ∈ N and
|Q∗|< ∞. A probability distribution ξ is said to be a stationary distribution or invariant
distribution if

A · ξ = ξ (5.27)

We then obtain the corresponding stationary distribution ξ according to
Eq. (5.27) by treating ξ as an eigenvector of A with an eigenvalue 1 which
can be efficiently numerically solved by e.g., eigenvalue decomposition (spectral
theorem [PTV+07]). Let the stationary distribution ξT = [ξ1, . . . , ξr] where the ξi
correspond to the stationary probability to be in state qi ∈ Q∗. In consequence
the expected average execution time E(C) is:

r

∑
i=1

ξi · (pd ·Cd + pu ·Cu) · [qi is nominal] + ξi ·min{Cr, (1− pe) ·Cd + pe ·Cr} · [qi is critical]

(5.28)

Our formal objective is to minimize E(C) for each task individually with respect
to the parameters pd (pu = 1− pd). What is left to show is that each α-induced
(m, k)-compliant Markov Chain always has a stationary distribution.

Theorem 5.10 (Renewal Theorem [GS20]). A finite, irreducible Markov Chain has a
unique stationary distribution.

Definition 5.14 (Irreducibility). A Markov Chain is irreducible if for any two states,
i.e., q, q′ there exist n, n′ ∈N0 such that P(xi+n = q|xi = q′) > 0 and P(xi+n′ = q′|xi =
q) > 0 for some i ∈N.

Theorem 5.11. The α-induced (m, k)-compliantA∗k (α) is a finite and irreducible discrete-
time Markov Chain.

Proof. From Theorem 5.8, it immediately follows that A∗k (α) has finite states.
Moreover, since the α-induced (m, k)-compliant A∗k (α) has non-zero probability
for each transition by construction, we only have to prove that any two states q, q′

are reachable from one another. We prove this theorem for the non-minimized
automata, but since in the minimized automata only equivalent states are merged,
it is obvious that the reachability property remains.
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Figure 5.5: A minimal (2, 3)-compliant 3-error-automata A∗3 as generated by Algorithm 7.

Let q, q′ any two states in the non-minimized α-induced Markov Chain A∗k (α)
then there always exists a sequence of compliant transitions from q  q′ by
decomposition of the transitions into q 11 . . . 1 (k ones) and 11 . . . 1 q′. Since
for each feasible state q ∈ Q∗ the transition δ(q, 1) ∈ Q∗ is defined for critical-
and nominal states, the state 11 . . . 1 can be reached from any state q by successive
1-transitions. Secondly, for any given (m, k)-constraints, starting from state 11 . . . 1,
(by construction of the automata) we can use a 0-transition at most (k−m) times
and always be in a compliant state. This allows to reach any compliant state
q ∈ Q∗ with 1[q] ≥ m to be reachable from 11 . . . 1, since q = δ(11 . . . 1, q) and
1[q] + [q] = k and thus [q] = k− 1[q] ≤ k−m.

5.4.4.3 An Illustrative Example

To illustrate our approach, we here provide a full example of the previously
described task with (m = 2, k = 3)-constraints and assume that the execution times
of the different job modes are given by Cu = 1, Cd = 1.5, and Cr = 3 and the task
has an error probability of pe = 0.1. After minimization according to Algorithm 7,
the generated automata is shown in Figure 5.5 The ordered set of the states Q∗

is given by 〈Q∗〉 = 〈∗11, 110, 101〉 where ∗11 is a nominal state and 110, 101 are
critical states. By using the mapping strategy described in Section 5.4.4.1, we
derive the following non-zero transition probabilities:

P(xn+1 = ∗11|xn = ∗11) = pd · (1− pe) = 0.9 · pd

P(xn+1 = 110|xn = ∗11) = pe · pd + pu = 1− 0.9 · pd

P(xn+1 = 101|xn = 110) = 1

P(xn+1 = ∗11|xn = 101) = 1

The corresponding transition probability matrix A is:

A =

 0.9 · pd 0 1
1− 0.9 · pd 0 0

0 1 0

 (5.29)

where the row and column indexes are referring to the index of 〈Q∗〉. By solving
the equation ξ ∈ ker(A− I) such that ||ξ||1= 1, we obtain the values ξ1 = 1/(3−
1.8 · pd) and ξ2 = ξ3 = (1− 0.9 · pd)/(3− 1.8 · pd), which yields the following ex-
pected average execution time ξ1 · pu ·Cu + ξ1 · pd ·Cd + 2 · ξ2 ·min

{
Cr, Cd + pe · Cr}

and evaluates to
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pu · Cu + pd · Cd + (1− 0.9 · pd) ·min
{

Cr, Cd + 0.9 · Cr}
3− 1.8 · pd

=⇒ 230− 137 · pd

150− 90 · pd
for any pd ∈ [0, 1] (5.30)

The function in Eq. (5.30) is monotonically increasing on the interval [0, 1],
which implies that the minimum value of the expected average execution time is
attained for pd = 0. Therefore, in every nominal state q the mapping is given by
α(q) = u, i.e., to always instantiate an unreliable instance next. Moreover, for each
critical state q we always select α(q) = d + r, since Cr > Cd + pe · Cr in the provided
example. In summary, we obtain the following mapping strategy:

α(q) =

{
d + r if q ∈ {101, 110}
u if q ∈ {∗11}

(5.31)

which results in a minimal expected average execution time of 1.533. However,
if we decrease the error probability to 1%, i.e., pe = 0.01, the expected average
execution time becomes

1150− 766 · pd

750− 495 · pd
for any pd ∈ [0, 1] (5.32)

In contrast to Eq. (5.30), Eq. (5.32) is monotonically decreasing on the interval
[0, 1] and thus the minimum expected average execution time is attained when
pd = 1. This results in the altered strategy to select α(q) = d for any nominal state,
but remains the same for the critical state since Cr > Cd + pe · Cr.

5.5 reinforcement learning based approach

In the previous approach, it was assumed that the error probability for each task
is known, and does not change significantly over time. In cases that the error
probability for each task is unknown, the approach proposed in Section 5.4.4 is
inapplicable. To that end, we propose an adaptive regulator, which is based on
reinforcement learning (RL) to optimize the job mode selection adaptively during reinforcement learning

runtime.

At first in this section, a short overview of RL techniques is given. Afterwards,
it is examined and explained, how the optimal job mode selection policy subjected
to (m, k)-error constraints, is formulated as an RL-solvable problem. Moreover,
a barrier function, which assures the task’s compliance to its (m, k)-constraint is
discussed.
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at
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st+1 rt

Figure 5.6: A schematic of a Markov Decision Process (MDP) which consists of an agent
and the environment. The environment E denotes the state space st ∈ S, which
is a representation of the environment at time t. In a markov process, the next
state st+1 depends solely on the current state st. Reinforcement learning is a
framework to train an agent to interact with the environment by means of
actions, which influence the state transitions.

5.5.0.1 Overview of Reinforcement Learning

Reinforcement learning is a machine learning paradigm which can be reformu-
lated as a Markov Decision Process (MDP), which is illustrated in Figure 5.6. Themarkov decision

process environment E is defined as a state space wit an iteration-dependent state st ∈ S,
environment representing the environment in the t-th iteration. The agent implements the

agent learned policy, by selection of an action at ∈ A from a set of possible actions,
called the action space. Each action induced state transition is evaluated with aaction space

reward rt according to a reward function H. Therefore, the reinforcement learningreward function
problem is defined by P : S × A × S 7→ R which represents the probability
P(st+1|st, at), and H : S× A× S 7→ R denotes that the reward for the system state
st+1 given the prior state st and the action at. According to the markov property,
the next state st+1 only depends on the current state st and current action at, and
is conditionally independent to all previous states and actions.

The objective of the reinforcement learning procedure is to learn a policy π suchlearned policy

that an action is proposed given a current state, i.e., a state-based regulator. A
learned policy π can be deterministic or stochastic, i.e.;

• a deterministic policy π : S 7→ A is a unique mapping from state to action

• and a uniform stochastic policy π : S× A 7→ A defines the possible policy,
using a probability distribution of actions, i.e., π(at|st) = P(a = at | s = st),
subject to ∑at∈A π(at|st) = 1.

The learned policy is evaluated by the cumulative future reward, i.e., Wt = ∑∞
i=t ri.cumulative future

reward To consider that future states are less predictable and thus the future reward is
often less valuable in the learning process than the present reward, a discount ratediscount rate

γ ∈ (0, 1] is included, i.e., Wt = ∑∞
i=t γi−tri.

To estimate the expected future reward, a so-called state value function is
applied, which is defined as Vπ(st) = EA[Qπ(st, A)] and yields the expected
cumulative reward starting in state st and by application of policy π. Similarly,
an action value function for a policy π is defined as Qπ(st, at) = E[Wt|s = st, a = at],action value function
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which indicates the quality of the action at given the state st.

Value-based Reinforcement Learning. In value-based reinforcement learning, an value-based
reinforcement learningaction value function for a policy π is defined as Qπ(st, at) = E[Wt|s = st, a =

at]. The optimal action value function is defined as Q∗(st, at) = maxπ Qπ(st, at),
where Q∗(st, at) indicates the quality of the action at under state st, which is
independent from the policy π. The best action to select in state st is given by
a∗t = arg maxa Q∗(st, a), but Q∗(s, a) is unknown for the agent. Therefore, a deep
Q-Network (DQN) is trained to approximate Q∗(s, a), which is also known as value- deep Q-Network

based reinforcement learning. The DQN is denoted as Q(s, a, ω), where the s is
the input state, a is the given action and ω are the parameters of the DQN. At each
step t, all the possible actions are evaluated by the DQN, and the agent takes the
action with the highest expected cumulative reward, i.e., a∗t = arg maxa Q∗(st, a).
Afterwards, the state transitions from st to st+1 and the procedure is repeated
until the end of the process. The DQN can be trained using the temporal difference
(TD) learning [Tes95], which adjusts the prediction of the value function (model’s temporal difference

learningestimate) after each iteration, i.e., Q(st, at, ω) ≈ rt + γQ(st+1, at+1, ω). TD learning
is more efficient than traditional monte carlo methods, where the estimates are monte carlo methods

adjusted only when the final outcome is known.

Policy-based Reinforcement Learning. The state value function is defined as
Vπ(st) = EA[Qπ(st, A)], which equals to ∑a∈A π(a|st) ·Qπ(st, a) when actions are
finite and discrete. Vπ(s) defines the expected cumulative reward from state st by
applying policy π. To achieve a higher expected cumulative reward, the policy
network π(a|s; θ) is formulated for approximating π(a|s), where θ is a parameter
of the neural network. Hence, the state value function can be reformulated as
Vπ(st; θ) = ∑a∈A π(a|st; θ) · Qπ(st, a). The objective is to train the (deep) neural objective is to train the

(deep) neural network
to map the current
state to the best
probabilistic action to
take

network to map the current state to the best probabilistic action to take, i.e.,
the action which yields the the highest expected state value. The policy gradient
ascent approach [SKM00] can be applied to train the policy network by maximizing

policy gradient ascent
ES[V(S; θ)].

Actor-Critic Optimization. Besides the aforementioned value-based and policy-
based approach, the actor-critic method can also be applied to train a reinforce-
ment learning model. The actor-critic method uses the policy network (actor)
to approximate π(a|s), and the value network (critic) to approximate Qπ(s, a)
simultaneously. Therefore, Vπ(st) = ∑a∈A π(a|st) ·Qπ(st, a)
≈ ∑a∈A π(a|st; θ) ·Qπ(st, a; ω). The policy network π(a|st; θ) is trained to increase
the state value Vπ(st; θ, ω), and the value network Q(st, at, ω) is trained to estimate
the expected cumulative reward more precisely.

Monte Carlo Methods-based approaches. Monte Carlo (MC) methods are a
broad class of algorithms, which rely on repeated random sampling to obtain
an estimate. With regards to reinforcement learning, MC methods are applied
to estimate the real value of a state by averaging the obtained results from
sampling complete episodes for several times, where an episode denotes all states
in between the current state and some terminal state by following the current
policy. For a given initial state, the estimated state value is utilized to update the
action value function Qπ(st, at) and afterwards, an ε− greedy algorithm can be
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Figure 5.7: Exemplary environment state transition from st to st+1 for (3, 5) constraints,
where the j-th column vector refers to the status of the (5− (j− 1))-th latest
executed job for j ∈ {1, . . . , 5}.

applied to optimize the policy π(a|s). The above steps are repeat until Qπ(st, at)
converges.

5.5.0.2 Reinformcent Learning based Regulator Problem Formulation

For each task in the task set, an agent is trained, which acts independently from
the other agents, i.e., this approach is not to be mistaken with the multi-agents
reinforcement learning problem. More precisely, each agent learns a policy, based
on its own observations, i.e., the correctness of the job executions of that task,
only. In the following, we examine the job mode selection policy for a single task,
which can be similarly applied for the other tasks in the task set.

The action space A for each task is encoded as 0 for the unreliable job mode, 1 for
the detected job mode, and 2 for the reliable job mode. To state the reinforcement
learning based regulator problem, the environment’s state must be defined. The
environment state represents the execution status for a task’s jobs, e.g., the statusenvironment state

represents the
execution status for a

task’s jobs

history of the last ` jobs st = [s1
t , s2

t , . . . , s`t ], where the execution status sj
t for some

j ∈ {1, . . . , `} is a 4-ary vector with the following attributes:

• Correctness: A binary variable, which indicates the correctness of the corre-
sponding job. In accordance to Definition 5.2, an erroneous executed job is
indicated by a 0 and a correct execution is indicated by a 1.

• Execution Mode: The execution mode of a job, i.e., 0 denotes the unreliable
mode, 1 denotes the detected mode, and 2 denotes the reliable mode.

• Predicted Worst-Case Execution Time: The predicted worst-case execution time
of a job is given by the worst-case execution time of the predicted job
execution mode to satisfy the (m, k) constraint, i.e., either Cu, Cd, or Cr.

• Effective Worst-Case Execution time: In contrast, the effective worst-case execu-
tion time of a job denotes the cumulative required worst-case execution time
to finish a job – as required to satisfy the (m, k) constraint – in the schedule
during runtime. That is, the effective worst-case execution time of a job may
be Cd + Cr, in the case that a job is forced to be finish correctly according
to the (m, k) constraint, and the predicted detected job mode has detected
an error requiring to immediately execute a reliable job mode. Please note
that for both, the unreliable and reliable mode, the predicted and effective
worst-case execution time are identical.
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In order to be able to assure (m, k) constraints, at least k consecutive jobs must at least k consecutive
jobs must be collected
in the state vector

be collected in the state vector, but may contain more for additional information.

Example. An example is shown in Figure 5.7 for a task with (m = 3, k = 5)
constraint and the number of considered states is set to ` = 5. In the transition
from state st to st+1, the detected job mode is selected, i.e., the action at = 1 is
chosen for the next to be released job – which is the 6-th job J6 in this example.
Therefore, the execution mode and predicted worst-case execution time of job
J6 are determined as 1 and Cd, respectively. By inspection of the (m = 3, k = 5)
constraint in the first row vector, the job J6 has to be executed correctly in order
to satisfy the (3, 5) constraints, and is therefore indicated by a 1. However, during
the actual execution, J6 was detected to be erroneous and thus an additional
reliable job mode has to be executed immediately thereafter. In consequence, the
effective worst-case execution time of J6 in state st+1 is found to be Cd + Cr. In
the transition from state st to st+1, the oldest job is displaced. Please note that
different environment construction approaches can also be applied such as a different environment

construction
approaches can also be
applied such as a three
dimensional tensor

three dimensional tensor which records several latest two dimensional matrices
such that more information can be recorded without displacement.

5.5.0.3 Deep Q-Network Reinforcement Learning Policy

The presented reinforcement learning based approach to train a job mode selection
policy is in general not limited to any specific learning policy. That is, any learning
approach which supports discrete action spaces is applicable. Here, the deep
Q-network (DQN) agent is used, where the Boltzmann Q-Policy is applied to Boltzmann Q-Policy

estimate the Q value of each action. We constructed the DQN agent as a 10-layer
neural network, which contains 1 input layer, 1 activation layer, 1 flatten layer, 6

fully connected layers, and 1 output layer.

5.5.0.4 Barrier Function

To achieve the objective of minimizing the average execution time for each task in
spite of being subjected to the (m, k)-constraint, the reward function is inversely
proportional to a job’s execution time and must be checked by a barrier function barrier function

which ensures the compliant mapping strategy properties stated in Lemma 5.4.

Hence, the barrier function determines, whether the current state is a critical or
nominal state, to modify the reward function. That is, if the current state st ∈ Snom

then the reward function is evaluated without further considerations. If however
the current state st ∈ Scrt, then the next job execution must be error-free and the
barrier function only admits the detected+reliable mode to be chosen. In addition,
an extremely large negative reward value is fed back to the agent. In consequence,
the barrier function is able to guarantee the satisfaction of (m, k) constraints and
lets the agent learn not to select the unreliable mode, when being in a critical state.

Although the proposed agent is model free, the barrier function implicitly
enforces the generation of the R-pattern in the worst case. The worst-case exe-
cution pattern of the RL-based approach is the same as the R-pattern adopted
in [CBC+16; KS95], which consists of k − m jobs that are executed in detected
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mode, followed by m consecutive executions in the detected+reliable job mode –
irrespective of the actual observed errors.

By construction of the barrier function, it can be seen that the worst-case gener-
ated sequence of job modes of our RL-based approach occurs if the agent always
decides to execute a detected mode job and all jobs are erroneous. Due to the en-
forcement of the barrier function, this can happen for at most k−m jobs and must
be followed by k detected+reliable jobs. As an immediate consequence of the above
considerations, it follows that if the task set is feasibly schedulable according to
the schedulability test stated in Lemma 1 in [CBC+16] under the presumption
of the static R-Pattern then it remains feasible using the reinforcement learning
based job mode selection policies.

5.6 evaluation

To evaluate the effectiveness of our proposed approaches, we numerically sim-
ulate the task system and compare the performance of the proposed mapping
strategy when pe is known and the RL-based approach when pe is unknown with
the state of the art over a wide range of different configurations. The adopted
hardware platform was a cache-coherent SMP, consisting of one 64-bit Intel i7-
8700k processors running at 3.7 GHz, with 32 GB of main memory. Overall, the
following approaches are evaluated, namely:

• The optimal policy presented in Section 5.4.4 (OPT).

• The RL-based approach presented in Section 5.5 (RL) where the environment
is constructed with the help of OpenAI Gym [BCP+16] and the imple-
mentation of the RL agent is based on the Keras-rl package [Pla16] and
TensorFlow [Aba+15].

• The adaptive approach (ADP) [CBC+16] in which the reliable job mode
executions are postponed as much as possible.

• The static approach (STA) [NQ06], in which m jobs are executed in the reliable
mode and the consecutive (k−m) jobs in the unreliable mode.

Single-Task Evaluation. We conducted evaluations for one single task with
different experimental settings, e.g., (m, k) constraints and error probabilities.
With respect to the (m, k) constraint, the number of correct jobs m was selected
from the set m ∈ {2, 4, 6, 8} and the window length k was set to 10, and the
error probability was given as pe ∈ {0.05, 0.15, 0.3}. We set Cd = 1.5 · Cu and
Cr = 3.5 · Cu to emulate the software-based error detection and error recovery
induced overheads. Each task released 10.000 jobs for one iteration, and 100
iterations were performed.

In Figure 5.8, the results for one single tasks are illustrated for varying m and
error probabilities pe. The y-axis represents the normalized average execution
time for jobs of one task, with respect to the static approach STA, i.e., the lower
the better. In general, the OPT approach outperforms all the other approaches inIn general, the OPT

approach outperforms
all the other approaches

in all the evaluated
cases

all the evaluated cases.
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Figure 5.8: Normalized average execution time of each approach with respect to the
STA approach with m ∈ {2, 4, 6, 8} and k = 10, and pe ∈ {0.05, 0.15, 0.3} for
a single task. The worst-case execution times are set to Cd = 1.5× Cu and
Cr = 3.5× Cu.
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In particular, when the error probability pe or the ratio m/k is relatively low, e.g.,
in Figure 5.8 (a)-(h), (j), and (k), the OPT approach outperform other approaches
significantly. When both, error probability, and the ratio m/k increase, e.g., in
Figure 5.8 (i) and (l), the options to select the execution modes become more
limited, which result in negligible difference of the OPT approach, RL approach,
and ADP approach. The RL approach also dominates in most of the evaluated
cases of ADP and STA approaches, e.g., in Figure 5.8 (a)-(g) and (j), but it always
performs worse than the OPT approach (without knowing the error probability
in advance).

In the case that the error probability is relatively low, e.g., in Figure 5.8 (a), (d),
(g) and (j), or both error probability and the ratio m/k are relatively high, e.g., in
Figure 5.8 (i) and (l), the difference between OPT and RL is minor. For a given
(m, k) constraint, when the error probability increases, e.g., rows of Figure 5.8, or
for a given error probability, the number of tolerable error jobs becomes less (m
increases with a constant k), e.g., columns of Figure 5.8, we can observe that the
achievable benefit from the RL approach significantly decreases. This is because
the agent tends to execute the unreliable modes first to maximize the cumulative
reward. However, such an intention in fact also reduces the resilience, so that the
upcoming jobs executing in the detected modes often have to execute the reliable
mode immediately when a error is detected.

Multi-Task System Evaluation. We conducted experiments for multitask sys-
tems on a multiprocessor system using synthetically generated task sets and
simulated schedules. We considered 100 task sets, each of which contained 40
tasks, which were scheduled on 4 processors. The total utilization for each task
set is set to UT ∈ [20%, 200%] with 20% step increases, considering the reliable
mode worst-case execution time for each task. For each task, the utilization
was generated by applying the Dirichlet-Rescale (DRS) algorithm [GBD20] and
each task’s utilization was capped at 50%. The task periods Ti were uniformly
drawn from the set Ti ∈ {1, 2, 5, 10, 20, 50, 100, 200, 1000} used in automotive sys-
tems [KZH15]. Subsequently, the worst-case execution time of the reliable mode
for each task was calculated as Cr

i = Ui · Ti, and Cu
i and Cd

i are calculated as
Cd = 1.5 · Cu and Cr = 3.5 · Cu. Each task is subject to (m, k) constraints, where
m ∈ {2, 4, 6, 8} is uniformly chosen and k = 10 for each task. For each error
probability pe ∈ {0.05, 0.15, 0.3}, an experiment was conducted, and we assumed
that each task has the same error probability in an experiment.

We considered the largest-utilization-first worst-fit partitioning algorithm to
partition all tasks to the 4 processors. That is, the tasks are assigned on the
processor with the temporarily lowest utilization allocated to it. The schedule was
simulated for the duration of the hyper-period, which was 10.000 time units, and
obtain the average utilization of the system as the time average of the cumulative
execution times during the hyper-period.

Due to the similarity of the results, we opt to show only the task system with
total utilization of 50% per processor, i.e., 200% total system utilization, which
is shown in Figure 5.9. In general, the results show that, the OPT approach
and RL approach, both decrease the utilization for multitask systems in all the
evaluated cases. The proposed OPT approach can save 11.7%, 9.56%, and 6.31%
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Figure 5.9: Measured time-averaged utilization of 100 task sets (of 40 tasks each) on simu-
lated scheduled on 4 processors using partitioned scheduling. The parameters,
m ∈ {2, 4, 6, 8} and k = 10, and pe ∈ {0.05, 0.15, 0.3} and the worst-case
execution times are set to Cd = 1.5× Cu and Cr = 3.5× Cu.

in comparison to the state-of-the-art in [CBC+16], and save 54.1%, 49.42%, and
40.08% in comparison with the static approach in [NQ06] with different error
probabilities respectively. In particular, the OPT approach and RL approach
benefit from very low error probability, as evident in Figure 5.9 (a).

Overheads. The OPT approach only requires an offline-generated look-up table,
to select a job mode for the current system state. The computational overhead for
the look-up table generation, depends on the (m, k) constraints, e.g., (m = 2, k = 10)
takes 10 seconds, (m = 4, k = 10) takes 20.7 hours, (m = 6, k = 10) takes 7.8 hours,
and (m = 8, k = 10) takes 0.5 seconds on average. During runtime, the overhead
due to the look-up are negligible.

To evaluate the overhead of training and mode selection, we deployed our RL-
base approach on both Intel desktop and Nvidia Jetson AGX Xavier (32G) board.
On the Intel desktop, the training process for each task with one configuration
took 450 seconds on average. The training process is repeated for 20 times, and the
trained DQN with the highest reward is selected, and the overhead for each task to
select the execution mode for next job is 300 microseconds. On the Nvidia Jetson
AGX Xavier board, two power modes with different power budgets are evaluated,
i.e., a) default mode with 15W power budget with 4 processors running at 2188

MHz and b) MAXN mode without power budget limitation with 8 processors
running at 2265.6 MHz.

The overhead for training and online execution mode selection of RL-based
approach only depends on the structure of DQN, regardless of given (m, k)
constraints. In the default mode, the training process took 19.7 minutes, and
the execution mode selection took 1.06 milliseconds on average. In the MAXN
mode, the training process took 15 minutes, and execution mode selection took 1
milliseconds on average. We observed that, the number of processors increasing
from default to MAXN does not reduce the training time proportionally, and
none of the processor is full-loaded in our evaluation. In the inference phase,
i.e., selecting execution mode, the MAXN mode slightly outperforms the default
mode, due to the minor boost of single core frequency.

A look-up table implementation can also be utilized, because the state space
in our application, i.e., the minimal legal space S∗, is finite. That is, the trained
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DQN network can be converted to a table, which shows the mapping between
states and corresponding probabilities of different execution modes. In that case,
the runtime overhead for selecting execution modes of tasks is negligible.

For systems with unknown probabilities, as one safe policy, the ADP proposed
in [CBC+16] can be first applied to estimate a safe probability for the current
scenario. If the overhead is acceptable, the proposed automata-based approach
can derive the selection policy. However, to optimize the policy, recalculating for
each scenario is rather expensive. The RL approach could still be more effective
in this case.

5.7 conclusion

In this chapter, fault-tolerance as a supplementary reliability aspect of real-time
systems is examined in spite of dynamic external causes of fault. To assure
that an acceptable quality-of-service (QoS), i.e., fault-tolerance, can be achieved,
upper-bound on consecutive erroneous job executions and guaranteed m error-
free executions out of k consecutive job executions are studied. Using various
job variants which trade off increased execution time demand with increased
error protection, a state-based policy selection strategy is proposed. The policy
guarantees that all reachable states comply with the QoS constraints whilst mini-
mizing the expected system utilization and assuring hard real-time compliance
of the task system. The state-based policy further allows the usage of machine
learning techniques such as reinforcement learning which are able to provide
hard guarantees. The proposed approaches demonstrate significant decreased
system utilization compared to the state of the art in the evaluations and rea-
sonable system overhead for both the analytic and reinforcement learning based
approach.



6
M A X I M A L S E N S O R D ATA T I M E - S TA M P
D I F F E R E N C E

Cyber-physical systems can be described as complex multiple-input multiple-
output systems, which consist of multiple sensors, processing sub systems, and
actuators; all of which, conjointly implement the system function. Typically,
the system is decomposed into independent sensor-, actuator-, and processing
tasks. Each of these tasks, potentially operates at a different activation rate,
and each of the tasks can be mapped to, and be executed individually on a
heterogeneous system architecture. To add to that complexity, the respective tasks
have data precedence constraints, e.g., sensors produce data, which is then read
by processing tasks. To assure proper system function and quality-of-service, the To assure proper

system function and
quality-of-service, the
overall application
must comply with
several temporal
constraints

overall application must comply with several temporal constraints, which are
derived from the concrete cyber-physical system’s design specifications. These are
mapped into corresponding surrogate constraints, e.g., the maximal time-stamp
difference of sensor data as perceived at sensor fusion tasks, maximum reaction
time, or maximum data age.

In this chapter, we analyze the maximal time-stamp difference of multiple
sensor data flows, which are used for sensor fusion in a common task. Unbounded, Unbounded, and

uncertain maximal
time-stamp differences
of all sensor data flows,
which are used to
estimate a system state,
may lead to
completely-off state
predictions

and uncertain maximal time-stamp differences of all sensor data flows, which are
used to estimate a system state, may lead to completely-off state predictions. That
is, contrary to assumption, the sensor data – used for sensor fusion – represents
(parts of) the system state at different points in time. Despite the fact that the
imposed temporal constraints are more complex than a per-task relative deadline,
we will show in this chapter how these constraints can be modularly analyzed
on a heterogeneous execution architecture and non-global synchronization, only
presuming that each task complies with its relative deadline constraint.

The remainder of this chapter is organized as follows. In the following Sec-
tion 6.1 Motivation, a thorough motivation for the studied problem is given by
example. Then, in Section 6.2 Related Work, the related work is presented. In Sec-
tion 6.3 Application Model, the application and task model is formally defined and
explained. Based on that, the maximal time-stamp difference analysis for sensor
data flows in processing graphs is presented, in Section 6.4 Maximal Sensor Data
Time-Stamp Difference Analysis. In Section 6.5 Discussion & Extensions, the results
in this chapter and extensions are discussed, and lastly concluded in Section 6.6
Conclusion.

6.1 motivation

Cyber-physical systems, which are complex multiple-input multiple-output sys-
tems, are for instance robotics applications, and autonomous driving systems. The

195
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Figure 6.1: An exemplary realistic real-time system architecture used to implement au-
tonomous driving systems by the company Perceptin. The vertices in the pro-
cessing graph denote functional modules such as sensor data pre-processing,
perception, tracking, trajectory planning, and control. The directed edges in
the processing graph denote the data dependencies between the modules, e.g.,
the data produced by the localization module is used by the planning module
in its computation.

architecture of an exemplary autonomous driving system, is shown in Figure 6.1,
in a so called processing graph. The vertices in the processing graph describe a func-processing graph

tion, e.g., sensor data preprocessing, perception, object tracking, trajectory planning,
and control. The directed edges in the processing graph, denote the data depen-
dencies between vertices; the data, produced by the localization, and prediction
vertex, is used by the planning vertex in its computation.

The relevant parts of the physical environment are measured by various sensor
systems, which are for instance, a radar, a stereo camera, a LiDAR, and an inertia
measurement unit (IMU), in the provided example. The sensor data is processedsensor data is

processed through
various algorithms and

filters, and is used to
accurately estimate the

system state

through various algorithms and filters, and is used to accurately estimate the
system state. To reject perturbations, noise, and partial sensor failures; sensor
fusion algorithms are employed to combine information, and data, from multiple
information sources to obtain a more comprehensive and de-noised estimate of
the system state.

There are many different sources of noise and perturbations in sensory data
acquisition, such as inherent measurement noise or physical limitations of the
sensor system. However, we focus on the temporal misalignment of the sensorywe focus on the

temporal misalignment
of the sensory data,
which is due to the

independent
scheduling

data, which is due to the independent scheduling of the processing and filtering
algorithms. There are three temporal constraints, which are important for sensor
fusion algorithms, namely, the maximal sensor data propagation latency, minimal
sensor data propagation latency, and the deduced maximal sensor data time-stamp
difference. Maximal and minimal sensor data propagation latency, refers to the
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maximal (and minimal, respectively) time difference of the absolute sensor data
generation time, and the absolute time, when the data is read in the sensor
fusion vertex. The maximal sensor data time-stamp difference – at a sensor fusion
vertex – denotes the maximal difference of any two maximal-, and minimal
sensor data propagation latencies, for any two different sensors, leading to that
sensor fusion vertex. The maximal sensor data time-stamp difference, should be in
the magnitude of the sampling time, presumed in the sensor fusion algorithm.
That is because, these sensor fusion algorithms require that the used sensory data
refers to measurements of the physical environment at the same time or at least
with a bounded time difference.

Sensor fusion can be classified into early, intermediate, and late fusion, depending early sensor fusion

intermediate sensor
fusion

late sensor fusion

on the processing stage (after sample generation) in which the data is fused. That
is, in early fusion, all sensory data sources are fused immediately after sample
collection; In intermediate fusion only the calculated, i.e., preprocessed, features
of the data are fused during processing; and in late fusion, all sensory data is
fully preprocessed before being fused. An example of late fusion, with regards
to the example in Figure 6.1, is given by the camera and LiDAR sensor data,
which is processed in the 2D and 3D-perception vertices, and then fused in
the fusion vertex. The vertices are mapped to different processing units, on
a heterogeneous architecture, e.g, the 2D- and 3D-perception algorithms are
being executed on graphics-processing units (GPU), whereas, tracking, prediction,
and planning are executed on the central-processing units (CPUs). Interference
caused by co-executing workloads on the processing units, and communication
overheads all contribute to the high variability of maximal- and minimal sensor
data propagation latency, and thus non-trivial maximal sensor data time-stamp
differences.

In this chapter, we propose the following contributions to address the motivated
problems. We propose the processing graph as a problem formalization, and a
subsequent mapping of the vertices into loosely coupled semi-sporadic tasks with
data precedence constraints. The global scheduling problem of the heterogeneous
system, is analyzed on the basis of local per-processing unit, preemptive or non-
preemptive scheduling algorithms. Based on the formal description, and modular
problem decomposition, we provide analyses to calculate the maximal sensor data
time-stamp difference at all sensor fusion vertices. Moreover, we propose an abstract
precedence property, which allows to reduce the pessimism in our analyses, and
can be extended to other task models. This property is proven for non-preemptive
rigid gang, and stationary rigid gang scheduling.

6.2 related work

In the literature, the concepts of maximum reaction time and maximum data age maximum reaction
time
maximum data age

are used to address end-to-end latencies of processing chains in the automotive
domain. The maximum reaction time refers to the longest latency of the first
response (reaction) of a system to a corresponding stimulus (cause), e.g., the
latency from a camera sample to an object detection, or to the final actuation. The
maximum data age denotes the largest time interval between the sampling time
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Figure 6.2: A processing graph formally describes the data communication of the applica-
tion. The source vertex in a processing graph (i.e., vertices which do not have
any predecessors) represent sensor vertices which produce data either in a
time-triggered or event-triggered manner. All sensors produce time-stamped
data with respect to the sensor’s local clocks. The processing vertices in the
graph execute periodically on the latest available data and produce an out-
put when the execution is finished. Each processing vertex is assigned to a
processing unit, e.g., a CPU, GPU, or DSP on which it is executed.

of a data token by a task until the last point in time when the system produces an
output related to that data token. Such timing constraints have been researched in-
tensively in the context of cause-effect chains in AUTOSAR compliant automotive
systems, e.g., [DBC+19; WBP+13; FRN+09; RMD+10; GCU+21; BDM+16]. More
precisely, upper bounds for the maximum reaction time have been developed
by Davare et al. in [DZN+07] and Kloda et al. in [KBS18] which both focus their
work on periodic task sets with synchronous release patterns with preemptive
scheduling algorithms. Becker et al. in [BDM+16] provide schedule independent
lower and upper-bounds for end-to-end latencies on the job-level. Schliecker et
al. in [SE09] propose a recursive approach to calculate lower and upper-bounds
for reaction-time and data age. Dürr et al. in [DBC+19] consider sporadic task
systems on asynchronous distributed systems and provide upper-bounds for
maximum reaction time and maximum data age. The result was later improved
by Günzel et al. in [GCU+21] by simulating the schedule and obtaining exact
results. Whilst strongly related to data age, the problem and analysis of maximal
sensor data time-stamp difference has not yet been reported in the literature.
Moreover, most published results in this context only consider either preemptive
or non-preemptive scheduling policies in their end-to-end latency analyses, but
never a combination thereof in a heterogeneous architecture with independent
hardware units, and scheduling policies.

6.3 application model

To abstract from the concrete example provided in the motivation, we formalize
the problem as a processing graph 1, which is illustrated in Figure 6.2 and definedprocessing graph

hereinafter. A processing vertex in the processing graph is implemented as
an individual task, which is activated either periodically by a timer-trigger or
sporadically, i.e., event-triggered.

1 The term processing graph is originally proposed in the RTSS 2021 Industry Challenge.
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Definition 6.1 (Processing Graph). A processing graph G = (V, E) is a directed
acyclic graph (DAG) where V = {Z} ∪ {F} denotes the set of sensor vertices Z and
processing vertices F, and E denotes the path of data propagation (signal/data flow)
along the vertices. That is, if e = (vi, vj) ∈ E then data is propagated from vi to vj. While
processing vertices may produce and/or consume data, sensor vertices only produce data.

The sensor vertices in the processing graph produce sensory data according
to its internal clocks periodically, i.e., it is not synchronized with the processing
units. The processing vertices implement a certain function such as sensor data processing vertices

implement a certain
function

preprocessing, perception, tracking, trajectory planning, or control. The directed edges
represent the data flow between the vertices, that is, the data produced by a vertex
is used by adjacent vertices in its computation.

The tasks, which implement the processing vertices are executed on a heteroge-
neous system comprised of M processing units, which we refer to as P1, . . . , PM.
We assume that the graph representation of the application has the same granular-
ity as the tasks, which are actually executed on the platform. That is, each vertex
is implemented by exactly one task. Hence, we use those terms interchangeably
and write task τi ∈ V instead of vi for notational convenience.

Definition 6.2 (Task Model). An implicit-deadline semi-sporadic task τi ∈ V is defined
by the tuple (Cmin

i , Cmax
i , Tmin

i , Tmax
i ), where Cmax

i ≤ Tmin
i . Each task τi releases an

infinite sequence of task instances (called jobs) J`i with execution time Cmin
i ≤ C`

i ≤
Cmax

i , i.e., Cmin
i is the best-case and Cmax

i the worst-case execution time.

The arrival-time of the `-th job of τi is denoted as a`i and the minimal inter-
arrival time between two consecutive jobs of τi is constrained by minimal and
maximal inter-arrival times, i.e., a`i + Tmin

i ≤ a`+1
i ≤ a`i + Tmax

i . We assume implicit
deadlines, i.e., each job must be finished before the next job of the same task
could be released. That is, a job released at a`i must finish before a`i + Tmin

i .

The tasks τi ∈ V are mapped to appropriate processing units, due to the
different computational demands and characteristics of the tasks. Henceforth,
we assume that the tasks implementing processing vertices can be mapped to a
subset of the processing units, like CPUs, GPUs, and DSPs, while tasks related to
sensor vertices are mapped to dedicated sensor hardware.

Definition 6.3 (Mapping). Each task τi ∈ F is statically mapped to a processing unit
formally described by the mapping σ : F 7→ {P1, P2, . . . , PM},

σ(τi) = Pj if task τi is mapped to processing unit Pj (6.1)

We assume that all processing units support and use a task-level fixed priority
work-conserving scheduling algorithm. That is, every job J`i of a task τi has
the same priority and the priority is fixed throughout the system’s lifetime.
However, the scheduling algorithm may be preemptive or non-preemptive for the scheduling

algorithm may be
preemptive or
non-preemptive for
different processing
units

different processing units, which may be either by design choice or enforced
by the technical properties of the respective processing units. For example, non-
preemptive scheduling may be used for tasks assigned to GPUs and preemptive
scheduling may be used for tasks assigned to CPUs.



200 maximal sensor data time-stamp difference

Definition 6.4 (Sensor Task). The raw sensor data generation is modeled by a semi-
sporadic task τi with Cmin

i = Cmax
i → 0 which is exclusively allocated to be executed

on the sensor hardware, which implies that the response time Ri = Cmin
i = Cmax

i → 0.
We assume that the the time-stamp of the sensor data equals to the finishing time of the
modeled sensor data generation task.

The purpose of this definition is that sensor tasks can be considered in the
same manner as processing tasks in the analysis framework.

Schedule. The concrete schedule, which is generated for each of the processing
units Pj for j ∈ {1, . . . , M} is denoted as Sj and depends on;

1. The specific task-level fixed-priority scheduling policy used for processing
unit Pj;

2. And the concrete arrival sequence of jobs generated by the tasks assigned to
processing unit Pj.

Due to the fact, that we consider implicit-deadline task sets and a task-level
fixed-priority policy, there is always at most one job of each task active – assuming
no deadline miss. Therefore, we define a simplified schedule function Sj : R 7→
V ∪ {⊥} for j ∈ {1, . . . , M} which maps to the task instead of the job. Implicitly,
we refer to the currently active job of that task.

Definition 6.5 (Schedule). For a given processing unit Pj for j ∈ {1, . . . , M}, a
schedule Sj : R 7→ V ∪ {⊥} is defined as

Sj(t) =

{
τi if a job of task τi is executing on Pj at time t

⊥ if the processing unit Pj is idle at time t
(6.2)

For ease of notation, we refer to the times when jobs are released, starting
to execute, and finish to execute in relation to the concrete schedule Sj while
dropping the relation to the underlying arrival sequence. To be precise, we use
a(Sj, Ji,`) to denote the arrival-time of the `-th job of τi in the arrival sequence,
s(Sj, Ji,`) to denote the first time that job Ji,` starts execution in the schedule Sj,
and f (Sj, Ji,`) to denote the finishing time. A schedule Sj is feasible if all jobs meet
their deadline, that is f (Sj, Ji,`) ≤ a(Sj, Ji,`) + Tmin

i for all tasks τi ∈ V.

The temporal behaviour of the overall system is then defined by the set of
schedules of each of the processing units, which we refer to as system schedule
and is used in the forthcoming analyses.

Definition 6.6 (System Schedule). The system schedule S consists of the schedules of
all processing units Pj for j ∈ {1, . . . , M}, i.e. S(t) = (S1(t), S2(t), . . . , SM(t)).

The data dependencies, which is the data flow between tasks, is described by
the edges E in the processing graph G. For example, in Figure 6.2 the processing
vertex F2 needs data from the processing vertices F1 and F8 and from the sensor
vertex Z1. We say a vertex vi explicitly receives data from vj, if (vi, vj) ∈ E, andexplicit receiving

that vi implicitly receives data from vj if there is a path from vi to vj in E, butimplicit receiving
(vi, vj) /∈ E. For example, in Figure 6.2, the processing vertex F8 explicitly reads
from sensor Z3, since no intermediate processing is involved, while processing



6.4 maximal sensor data time-stamp difference analysis 201

τj1 Jj1 ,1 Jj1 ,2 Jj1 ,3

1

τj2

0 2 4 6 8 10 12

2

Jj2 ,1 Jj2 ,2 Jj2 ,3 Jj2 ,4 Jj2 ,5

Figure 6.3: Exemplary schedule for two tasks in a processing chain Ej = 〈τj1 , τj2〉. A
processing chain instance for the 4-th job of task τj2 is for example given by
〈Jj1 ,2, Jj2 ,4〉 and the propagation latency is 9− 6 = 3 time units.

vertex F2 implicitly reads from sensor Z2, since the data from Z2 is processed by
F1 before it can be read by F2.

Task Communication. The task communication is based on buffers, where each
task, which reads or writes data, is associated with input and output ports which
can buffer exactly one data token of a specified type at any time. Whenever a new
data token is written to a port, the old data token is replaced. A job reads the
current data token of each of its input ports when it starts execution and writes
the output data tokens to the buffers of its output ports at the end of its execution,
i.e., read-on-start and write-on-finish. We assume zero-time communication (i.e., read-on-start

write-on-finishwriting the data token into the buffer and reading from it happens immediately)
and that each buffer is written by exactly one task. If this assumption is too opti-
mistic, communication overheads can be either modeled by constant delays or by communication

overheads can be either
modeled by constant
delays or by
introducing additional
communication tasks

introducing additional communication tasks which represent the communication
using, for example, network-on-chips, CAN Bus, or others with the same theory
framework as presented in this chapter.

6.4 maximal sensor data time-stamp difference

analysis

To assure the functional correctness of the application, it is important to ensure
that the signals, which are used for state estimation, represent the physical system
state roughly at the same time. Therefore, the generation time (time-stamps)
of all explicit and implicit sensor samples which are processed by a common
vertex, namely a fusion vertex, must differ at most by a specified maximal time-
duration. Intuitively, the idea is to calculate upper- and lower bounds of the data
propagation latency – which starts at the time of sensor sample generation and
ends at the time of sensor data reading at the fusion vertex – for all possible
signal paths from sensor vertices to the fusion vertex of interest.

Definition 6.7 (Processing Chain). The ordered set Ej := 〈τj1 , τj2 , . . . , τjN 〉 denotes a
processing chain in the processing graph, such that τji+1 reads the data token produced by
τji for all i ∈ {1, . . . , N − 1} and N is the number of processing vertices in that chain.
This immediate data dependency is illustrated by the directed edges in the application’s
processing graph, as shown in Figure 6.2. The indexing jk denotes the task index of the
k-th task in the processing chain Ej, e.g., jk = z implies that τz ∈ V is the k-th task in
the processing chain Ej.
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The processing chains describe the data and signal flow from the chain’s
source, i.e., sensor vertex, to the final processing vertex in the processing chain.
The received data at the fusion vertex does not have to be the raw sensor data,
generated by the sensor vertex, but may represent a refined, filtered, or processed
artifact of the raw sensory data. That raw sensory data, and therefore the latency
between the start of processing of the last processing vertex in the processing
chain and the generation time of the raw sensor data is of interest in an analysis.
In order to analyze the data propagation latency, the reading and writing times
for each processing vertex must firstly be formalized, and secondly concreteconcrete instances of

processing chains must
be examined

instances of processing chains must be examined.

Definition 6.8 (Processing Chain Instance). Let Ej = 〈τj1 , τj2 , . . . , τjN 〉 denote a pro-
cessing chain and let S be a feasible system schedule for all the tasks in Ej. Furthermore
let i′N ∈N denote the job of the final task τjN of interest. That is job JjN ,i′N

reads the avail-
able data when it starts execution. A processing chain instance – with respect to the data
which is read by JjN ,i′N

– consists of an ordered set of job instances 〈Jj1,i′1
, Jj2 ,i′2

, . . . , JjN ,i′N
〉

such that for all ` ∈ {1, . . . , N − 1}

i′N−` := max{k ∈N | write(S, JjN−` ,k) ≤ read(S, JjN−`+1 ,i′N−`+1
)} (6.3)

holds where read denotes the times of the reading of the data and write in the schedule.

As an example, Figure 6.3 illustrates a schedule of two semi-sporadic processing
vertices τj1 and τj2 with progressing chain Ej = 〈τj1 , τj2〉, i.e., jobs of τj1 generate
data which is read by jobs of τj2 . For job Jj2,4, we identify Jj1,2 1 as the job
which wrote the data read by Jj2 ,4 2 , as it is the job of τj1 with the largest
index which has a writing time not later than Jj1,2’s reading time. Hence, the
processing chain instance based on the job Jj2 ,4 is 〈Jj1,2, Jj2,4〉. We emphasize that
a propagating processing chain instance is dependent on the observed job ofa propagating

processing chain
instance is dependent
on the observed job of

the last task (sink
processing vertex) in a

concrete global
schedule

the last task (sink processing vertex) in a concrete global schedule S. For a
specific propagation processing chain instance E′j = 〈Jj1 ,i′1

, Jj2 ,i′2
, . . . , JjN ,i′N

〉 based
on a specific job instance of the last task JjN ,i′N

, we formally define the sensor data
propagation latency, that is, the temporal latency from reading sensor data in Jj1,i′1
until JjN ,i′N

starts processing it, as follows.

Definition 6.9 (Sensor Data Propagation Latency). Given a processing chain instance
E′j := 〈Jj1,i′1

, Jj2 ,i′2
, . . . , JjN ,i′N

〉 on the basis of a concrete system schedule S. Then the sensor
data propagation latency of E′j is defined as

read(S, JjN ,i′N
)− write(S, Jj1 ,i′1

) (6.4)

where write(S, Jj1,i′1
) denotes the absolute time of the generated sensor data.

An example for the definition of sensor data propagation latency for a concrete
schedule S is shown in Figure 6.3, where each job reads data when it starts
execution and writes data when it finishes execution. In the processing chain
instances 〈Jj1,1, Jj2 ,2〉 the sensor data propagation latency is 3− 2 = 1 and 9− 7 = 2
for 〈Jj1 ,2, Jj2,4〉, respectively.

The remainder of the analysis is structured as follows. At first in Section 6.4.1
and Section 6.4.2, a minimal and maximal sensor data propagation latency for
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any processing chain, using preemptive and non-preemptive scheduling policies,
is derived. In Section 6.4.3, the minimal an maximal sensor data propagation
latencies for all processing chains which are joined in a common fusion vertex
are used to deduce the maximal sensor data time-stamp difference.

6.4.1 minimal sensor data propagation latency

Henceforth, we analyze the minimal sensor data propagation latency of any
possible processing chain instance E′j based on a feasible preemptive or non-
preemptive task-level fixed-priority system schedule S. We emphasize that the
schedule S allows for jobs of some tasks of a processing chain to be scheduled
preemptively and others to be scheduled non-preemptively on their respective
processing units, which is to be considered in the analysis.

In a first step, we establish the following lemma which helps to prove a lower-
bound for the sensor data propagation latency.

Lemma 6.1. Let a processing chain Ej = 〈τj1 , τj2 , . . . τjN 〉 and a mapping σ for all task
τi ∈ V. Then for any processing chain instance E′j = 〈Jj1 ,i′1

, Jj2,i′2
, . . . , JjN ,i′N

〉 in a concrete
feasible preemptive or non-preemptive schedule S

f (S, JjN−`+1 ,i′N−`+1
)− s(S, JjN−` ,i′N−`

) ≥ Cmin
jN−`

(6.5)

holds true for all ` in {1, . . . , N − 1}.

Proof. Each job’s finishing time is never earlier than its starting time plus its
minimal execution time, i.e., for all ` in {0, . . . , N − 1},

s(S, JjN−` ,i′N−`
) + Cmin

jN−`
≤ f (S, JjN−` ,i′N−`

) (6.6)

must hold in S. Secondly, by the construction property of processing chain
instances E′j and the communication policy to write on finish and to read at the start,
we know that

i′N−` := max{k ∈N | f (S, JjN−` ,k) ≤ s(S, JjN−`+1 ,i′N−`+1
)} (6.7)

Therefore, for all ` in {1, . . . , N − 1} – irrespective of a specific schedule S – it
follows that

f (S, JjN−` ,i′N−`
) ≤ s(S, JjN−`+1 ,i′N−`+1

) ≤ f (S, JjN−`+1 ,i′N−`+1
) (6.8)

By the combining Eq. (6.6) and Eq. (6.8) we get

Cmin
jN−`
≤ f (S, JjN−`+1 ,i′N−`+1

)− s(S, JjN−` ,i′N−`
) (6.9)

which concludes the lemma.

Based on Lemma 6.1, a lower-bound for any sensor data propagation latency
and thus minimal sensor data propagation latency of a given processing chain Ej
can be established.
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Theorem 6.2. The sensor data propagation latency of a processing chain Ej = 〈τj1 , τj2 , . . . , τjN 〉
is at least ∑N−2

`=2 Cmin
j`

.

Proof. Based on Eq. (6.7), we can lower-bound the sensor data propagation latency
of Ej by:

s(S, JjN ,i′N
)− f (S, Jj1 ,i′1

) ≥ f (S, JjN−1,i′N−1
)− s(S, Jj2,i′2

) (6.10)

=
N−2

∑
`=2

f (S, Jj`+1 ,i′`+1
)− s(S, Jj` ,i′`

) (6.11)

(by Lemma 6.1) ≥
N−2

∑
`=2

Cmin
j` (6.12)

for any processing chain instance irrespective of the concrete schedule S.

6.4.2 maximal sensor data propagation latency

Conversely, we also analyze the maximal sensor data propagation latency of a
given processing chain for any feasible preemptive or non-preemptive task-level
fixed-priority schedule S and a given mapping σ.

Lemma 6.3. If for a given chain instance E′j = 〈Jj1,i′1
, Jj2 ,i′2

, . . . , JjN ,i′N
〉 a job JjN−` ,i′N−`

for
some ` ∈ {0, . . . , N − 1} is scheduled non-preemptively in the schedule S, then

s(S, JjN−` ,i′N−`
)− a(S, JjN−` ,i′N−`

) ≤ RjN−` − Cmax
jN−`

(6.13)

Proof. In any feasible non-preemptive schedule S

f (S, JjN−` ,i′N−`
) ≤ a(S, JjN−` ,i′N−`

) + RjN−`

for all ` in {0, . . . , N − 1}. Moreover, in a non-preemptive schedule all jobs run to
completion once they started. Hence,

s(S, JjN−` ,i′N−`
) + C

i′N−`
jN−`

= f (S, JjN−` ,i′N−`
)

where C
i′N−`
jN−`

is the execution time of the job. We know S is feasible, therefore

s(S, JjKj−` ,i
′
Kj−`

) + C
i′N−`
jN−`
≤ a(S, JjKj−` ,i

′
Kj−`

) + RjKj−`
(6.14)

Since C
i′N−`
jN−`

= Cmax
jN−`

is a feasible execution-time, we conclude that

s(S, JjKj−` ,i
′
Kj−`

) + Cmax
jN−`
≤ a(S, JjKj−` ,i

′
Kj−`

) + RjKj−`
(6.15)

in any feasible non-preemptive schedule S.

In turn, if the analyzed job is scheduled preemptively in the schedule S, we
have to resort to the following larger upper-bound.
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Lemma 6.4. If for a given processing chain instance E′j = 〈Jj1,i′1
, Jj2 ,i′2

, . . . , JjN ,i′N
〉 a job

JjN−` ,i′N−`
for some ` ∈ {0, . . . , N − 1} is scheduled preemptively in the schedule S,

then

s(S, JjN−` ,i′N−`
)− a(S, JjN−` ,i′N−`

) ≤ RjN−` − Cmin
jN−`

(6.16)

Proof. In any feasible preemptive schedule S, for job JjN−` ,i′N−`
we have that

f (S, JjN−` ,i′N−`
) ≤ a(S, JjN−` ,i′N−`

) + RjN−` (6.17)

for each ` in {0, . . . , N − 1}. Moreover, we know that

f (S, JjN−` ,i′N−`
) ≥ s(S, JjN−` ,i′N−`

) + Cmin
jN−`

(6.18)

Hence, we have

s(S, JjN−` ,i′N−`
)− a(S, JjN−` ,i′N−`

) ≤ RjN−` − Cmin
jN−`

by combining Eq. (6.17) and (6.18).

For the final Theorem 6.8, we use a telescope sum construction on the basis
of the arrival time difference of any two subsequent jobs in a processing chain
instance. In the following, we prove an upper-bound for such an arrival time
difference for any feasible schedule S.

Lemma 6.5. For a given mapped processing chain Ej any two subsequent jobs JjN−` ,i′N−`
and JjN−`+1 ,i′N−`+1

for some ` ∈ {1, . . . , N − 1} in an instance E′j = 〈Jj1,i′1
, Jj2,i′2

, . . . , JjN ,i′N
〉

satisfy

a(S, JjN−`+1 ,i′N−`+1
)− a(S, JjN−` ,i′N−`

) ≤ Tmax
jN−`

+ RjN−` (6.19)

for any feasible schedule S

Proof. This lemma is based on [DBC+19] and is restated here for completeness.
By the construction principle of processing chain instances, we know that for all
processing chain jobs the following property

f (S, JjN−` ,i′N−`
) ≤ s(S, JjN−`+1 ,i′N−`+1

) < f (S, JjN−` ,i′N−`+1) (6.20)

is satisfied. Since, if that was not the case, i.e., s(S, JjN−`+1,i′N−`+1
) ≥ f (S, JjN−` ,i′N−`+1)

then the next job JjN−` ,i′N−`+1 would be in the processing chain instance instead of
JjN−` ,i′N−`

.

For the remainder of this proof, we distinguish two cases.

In the first case let a(S, JjN−`+1 ,i′N−`+1
) ≤ f (S, JjN−` ,i′N−`

), we then obtain

a(S, JjN−`+1 ,i′N−`+1
) ≤ f (S, JjN−` ,i′N−`

) ≤ a(S, JjN−` ,i′N−`
) + RjN−` (6.21)

In the second case, let in turn a(S, JjN−`+1 ,i′N−`+1
) > f (S, JjN−` ,i′N−`

). By the property
stated in Eq. (6.20), we have that

a(S, JjN−`+1 ,i′N−`+1
) ≤ s(S, JjN−`+1 ,i′N−`+1

) < f (S, JjN−` ,i′N−`+1) (6.22)
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Since the worst-case response time is bounded, we have that

f (S, JjN−` ,i′N−`+1) ≤ a(S, JjN−` ,i′N−`+1) + RjN−` ≤ a(S, JjN−` ,i′N−`
) + Tmax

jN−`
+ RjN−` (6.23)

and in consequence, we have that

a(S, JjN−`+1 ,i′N−`+1
)− a(S, JjN−` ,i′N−`

) ≤ Tmax
jN−`

+ RjN−` (6.24)

Putting both cases together, we have that

a(S, JjN−`+1 ,i′N−`+1
)− a(S, JjN−` ,i′N−`

) ≤ Tmax
jN−`

+ RjN−` (6.25)

which concludes the proof.

Lemma 6.5 can be further improved if the precedence behaviour of two subse-
quent tasks in a processing chain are considered, which depends on the concrete
task to processing unit mapping and task-level fixed-priorities.

Definition 6.10 (Precedence). Let τj, τk denote two tasks then we say τj precedes τk if
and only if for any task instances Jj and Jk in a given schedule S, the property

a(S, Jj) ≤ a(S, Jk) =⇒ f (S, Jj) ≤ s(S, Jk) (6.26)

holds.

As will be shown, this property is satisfied for tasks which are subjected to the
same processing unit and the same scheduler.

Corollary 6.6. Let τj and τk denote two semi-sporadic tasks then if σ(τj) = σ(τk) and
τj has a higher task-level fixed priority than task τk then τj precedes τk according to
Definition 6.10 in any preemptive or non-preemptive schedule S.

Proof. Let by assumption a(S, Jj) ≤ a(S, Jk), which implies that during [a(S, Jj), f (S, Jj))
Jj is pending, i.e., released but not yet finished, and during [a(S, Jk), f (S, Jk)) job
Jk is pending. For the proof, two cases are considered, namely;

• If the intervals do not intersect then f (S, Jj) < a(S, Jk) ≤ s(S, Jk) and nothing
is left to show.

• In the other case let both intervals intersect and we consider the inter-
val [a(S, Jk), a(S, Jk) + t) that both jobs are pending for all t > 0. If S is
a preemptive or non-preemptive schedule then if Jj has higher-priority
than Jk and σ(τj) = σ(τk) then either s(S, Jj) ∈ [a(S, Jj), a(S, Jk)) or s(S, Jj) ∈
[a(S, Jk), a(S, Jk) + t).

In either case s(S, Jj) < s(S, Jk) and due to the higher-priority and mutual
exclusive execution, we have that f (S, Jj) < s(S, Jk).

Using the above precedence property of jobs of two adjacent tasks in a process-
ing chain, the following lemma can be stated.
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Lemma 6.7. Let σ a mapping of V and Ej a processing chain then for any feasible sched-
ule S and any concrete instance E′j = 〈Jj1 ,i′1

, Jj2,i′2
, . . . , JjN ,i′N

〉 the following implication
holds for each ` ∈ {1, . . . , N − 1}:

JjN−` ,i′N−`
≺ JjN−`+1 ,i′N−`+1

=⇒ a(S, JjN−`+1 ,i′N−`+1
)− a(S, JjN−` ,i′N−`

) ≤ Tmax
jN−`

(6.27)

Proof. Let a processing chain instance E′j = 〈Jj1 ,i′1
, Jj2,i′2

, . . . , JjN ,i′N
〉 and only consider

the case that a(S, JjN−`+1 ,i′N−`+1
) > f (S, JjN−` ,i′N−`

), since the other case is already
proved in Theorem 6.5.

Step 1. Under the assumption that τjN−` precedes τjN−`+1 according to Defini-
tion 6.10 for some ` ∈ {0, . . . , N − 1}, it follows that

a(S, JjN−`+1 ,i′N−`+1
) ≤ a(S, JjN−` ,i′N−`+1) (6.28)

which we hereinafter prove by contradiction. Assume for contradiction that
Eq. (6.28) does not hold, i.e., a(S, JjN−`+1 ,i′N−`+1

) > a(S, JjN−` ,i′N−`+1). Then it must be
that s(S, JjN−`+1 ,i′N−`+1

) > f (S, JjN−` ,i′N−`+1), due to the precedence property, which in
turn contradicts the assumption that JjN−` ,i′N−`

is a job in the analyzed processing
chain instance.

Step 2. Given the prior Step 1, we have that a(S, JjN−`+1 ,i′N−`+1
) ≤ a(S, JjN−` ,i′N−`+1),

which implies a(S, JjN−`+1 ,i′N−`+1
) ≤ a(S, JjN−` ,i′N−`

) + Tmax
jN−`

, due to the maximal inter-
arrival time constraints in the semi-sporadic task model.

Based on these lemmas, the maximal sensor data propagation latency can be
bounded.

Theorem 6.8 (Maximal Sensor Data Propagation Latency). The maximal sensor
data propagation latency of a processing chain Ej is upper bounded by Eq. (6.29) if the
jobs of task τjN are scheduled non-preemptively and upper bounded by Eq. (6.30) if the
jobs of task τjN are scheduled preemptively.

RjN − (Cmax
jN
− Cmin

j1 ) +
N−1

∑
`=1

Tmax
j` +

{
Rj` if τj` 6≺ τj`+1

0 otherwise
(6.29)

RjN − (Cmin
jN
− Cmin

j1 ) +
N−1

∑
`=1

Tmax
j` +

{
Rj` if τj` 6≺ τj`+1

0 otherwise
(6.30)

Proof. The length of a processing chain instance is given by the absolute time
difference of the starting time of the job in the last task (sink processing vertex)
and the finishing time of the job of the first task (source processing vertex), i.e.,

s(S, JjN ,i′N
)− f (S, Jj1 ,i′1

) ≤ s(S, JjN ,i′N
)− (a(S, Jj1,i′1

) + Cmin
j1 ) (6.31)
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If τjN is scheduled non-preemptively then we know by Lemma 6.3 that

Eq. (6.31) ≤ a(S, JjN ,i′N
) + RjN − Cmax

jN
− (a(S, Jj1 ,i′1

) + Cmin
j1 ) (6.32)

= RjN − (Cmax
jN

+ Cmin
j1 ) +

N−1

∑
`=1

a(S, Jj`+1 ,i′`+1
)− a(S, Jj` ,i′`

) (6.33)

(By Lemma. 6.5) ≤ RjN − (Cmax
jN

+ Cmin
j1 ) +

N−1

∑
`=1

Tmax
j` +

{
Rj` if τj` 6≺ τj`+1

0 otherwise
(6.34)

If τjN is scheduled preemptively, applying Lemma 6.4 with similar arguments
yields

≤ RjN − (Cmin
jN

+ Cmin
j1 ) +

N−1

∑
`=1

Tj` +

{
Rj` if τj` 6≺ τj`+1

0 otherwise
(6.35)

which concludes the proof.

6.4.3 maximal sensor data time-stamp difference

In this section, we use the analyses for the minimal and maximal sensor data
propagation latency to devise an analysis for the maximal sensor data time-stamp
difference at each fusion vertex in the processing graph.

Definition 6.11 (Partial Processing Chain). A partial processing chain Ek
j of a pro-

cessing chain Ej = 〈τj1 , . . . , τjNj
〉 is the consecutive sub-sequence of processing vertices

in Ej, which starts in τj1 and ends in τjk if k ≤ Nj, and Ej otherwise.

Theorem 6.9 (Maximal Sensor Data Time-Stamp Difference). Let Ej and Ek denote
two processing chains in the processing graph G and let Eu

j , Ev
k denote two partial pro-

cessing chains such that τ′ := τju = τkv and τj1 6= τk1 , i.e., both partial processing chains
have different sensor processing vertices at the source and a common fusion vertex. Then
the maximal sensor data time-stamp difference, of two sensor data samples received by
any job of τ′, is at most

Tj1 + RjNj
− Cmax

jNj
+

Nj−1

∑
`=2

Tj` +

{
Rj` if τj` 6≺ τj`+1

0 otherwise
−

Nk−2

∑
`=2

Cmin
k` (6.36)

if τjNj
is scheduled non-preemptively and

Tj1 + RjNj
− Cmin

jNj
+

Nj−1

∑
`=2

Tj` +

{
Rj` if τj` 6≺ τj`+1

0 otherwise
−

Nk−2

∑
`=2

Cmin
k` (6.37)

if τjNj
is scheduled preemptively.

Proof. Let Ej = 〈τj1 , . . . , τjNj
〉 denote a processing chain and τj1 represents the

sensor such that a(S, Jj1,i′1
) = s(S, Jj1,i′1

) = f (S, Jj1,i′1
) holds. With reference to the



6.4 maximal sensor data time-stamp difference analysis 209

prior analyses, we can calculate the minimal sensor data propagation latency as
follows:

s(S, JjNj ,i
′
Nj

)− f (S, Jj1,i′1
) ≥ f (S, JjNj−1,i′Nj−1

)− s(S, Jj1,i′1
) =

Nj−2

∑
`=1

Cmin
j` (6.38)

and the maximal sensor data propagation latency is s(S, JjNj ,i
′
Nj

)− f (S, Jj1,i′1
) in the

case that τjNj
is scheduled non-preemptively as follows:

≤ a(S, JjNj ,i
′
Nj

) + RjNj
+ Cmax

jNj
− a(S, Jj1 ,i′1

) (6.39)

≤ RjNj
+ Cmax

jNj
+ Tmax

j1 +
Nj−1

∑
`=2

Tmax
j` +

{
Rj` if τj` 6≺ τj`+1

0 otherwise
(6.40)

The absolute difference of the maximal and minimal sensor data propagation
latency of two chains Ej and Ek is at most

RjNj
+ Cmax

jNj
+ Tj1 +

Nj−1

∑
`=2

Tj` +

{
Rj` if τj` 6≺ τj`+1

0 otherwise
−

Nk−2

∑
`=1

Cmin
k` (6.41)

Algorithm 8 Maximal Sensor Data Time-Stamp Difference

Require: Processing graph G, mapping σ, scheduling policy of processing units,
task-level fixed-priority for τi ∈ V

1: for each processing unit Pk ∈ {P1, . . . , Pm} do
2: for each τi which is assigned to processing unit Pk do
3: if Pk uses non-preemptive scheduling then
4: Ri ← time-demand analysis for non-preemptive task sets; .

Determine the worst-case response time Ri of τi on σ(τi).
5: else if Pk uses preemptive scheduling then
6: Ri ← time-demand analysis for preemptive task sets;

7: for each fusion task τi ∈ V do
8: Find the set of all partial processing chains according to Definition 6.11 in

G which end in fusion task τi;
9: Let ρ(τi)←

{
Ek

j ∈ G| k = i
}

denote the set of all partial processing chains
in which task τi ∈ V occurs and in which all other tasks after τi are removed
from the chains;

10: ∆i ← Calculate the maximal sensor data time-stamp difference at τi using
Theorem 6.9;
return ∆1, . . . , ∆n; . Maximal sensor data propagation latency jitter for all

sensor fusion tasks in G.

On the basis of Theorem 6.9, we propose the following Algorithm 8 to compute
the maximum sensor data time-stamp difference for each fusion task in a given
processing graph G, task to processing unit mapping σ, and task-level fixed-
priorities for all tasks. The algorithm consists of a worst-case response time
analysis stage for the given processing graph and the scheduling of the tasks on
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the processing units from Line 1 to Line 6 and a subsequent maximal sensor data
time-stamp difference analysis from line 7 to Line 10 on the basis of the results
of the first stage. To be more precise for each task τi, the sub task set

τi ∪ {τ ∈ V | σ(τ) = σ(τi) ∧Π(τ) ≥ Π(τi)} (6.42)

is subjected to a worst-case response-time analysis of task τi. The task-level fixed-task-level
fixed-priorities Π are

assumed to be
determined by the

system designer

priorities Π are assumed to be determined by the system designer before analysis.
If the processing unit σ(τi) is a processing unit which employs non-preemptive
scheduling such as for instance a GPU, then the respective non-preemptive
fixed-priority scheduling analysis for sporadic constrained-deadline tasks is used.
Conversely, if the processing unit σ(τi) uses preemptive scheduling then an
appropriate preemptive analysis variant is used. Let ρ(τi) :=

{
Ek

j ∈ G| k = i
}

denote the set of all partial processing chains in which task τi ∈ V occurs and in
which all other tasks after τi are removed from the chains, then the difference in
sensor data propagation latency ∆i as observed by a job of task τi is at most

∆i ≤ max
{

Eu
j 6= Ev

k ∈ ρ(τi) | Theorem 6.9
}

(6.43)

We recall, that the motivation of the proposed analysis – to determine the maxi-
mal sensor data time-stamp difference at any fusion task – was to be modular, and
to be robust, with respect to execution time uncertainty, globally asynchronous
processing units and sensors. The proposed analyses provide that; however at the
cost of analysis precision, i.e., the proposed analyses are not exact.

6.5 discussion & extensions

The modular design and abstract definition of precedence in Definition 6.10, allows
to extend the provided approach to other task models and scheduling algorithms,
such as the rigid gang task scheduling; if appropriate conditions to achieve task
precedence can be derived.

In the case of fixed-priority non-preemptive rigid gang scheduling, which may be afixed-priority
non-preemptive rigid

gang scheduling
suitable task model for the execution on GPUs, the following condition can be
derived, which implies the precedence property of two rigid gang tasks, required
to improve the analysis. In non-preemptive fixed-priority rigid gang scheduling,
a task τi is eligible to start execution at time t, if there are Ei processors idle at
time t, and τi is the highest-priority task competing for those Ei processors.

Lemma 6.10 (Non-Preemptive Rigid Gang Precedence). If for any two sporadic gang
tasks τi and τk all the following conditions hold under fixed-priority non-preemptive rigid
gang scheduling

• (Ei ≤ Ek)∧ (Ei + Ek > M)

• Π(τi) > Π(τk)

then task τi precedes τk.
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Proof. Let J∗i denote a job of τi and J∗k denote a job of task τk such that a(S, J∗i ) ≤
a(S, J∗k ). If the intervals [a(S, J∗i ), f (S, J∗i )) and [a(S, J∗k ), f (S, J∗k )) have no intersection
then clearly, f (S, J∗i ) ≤ s(S, J∗k ) holds and thus we only inspect the time interval
in which both jobs are pending and none has started execution. By the stated
assumptions, J∗i has higher priority than J∗k and Ei ≤ Ek, i.e., the non-execution of
J∗i implies the non-execution of J∗k . Moreover, by the assumption that Ei + Ek > M
the execution is mutually exclusive and in consequence f (S, J∗i ) ≤ s(S, J∗k ).

In the case of fixed-priority preemptive stationary rigid gang scheduling, which may fixed-priority
preemptive stationary
rigid gang scheduling

be used for parallel tasks on multiprocessors, the following condition implies the
precedence property of two rigid gang tasks.

Corollary 6.11 (Preemptive Stationary Rigid Gang Precedence). If for two gang
tasks τi and τk all of the following conditions hold under fixed-priority stationary gang
scheduling then τi precedes τk if:

• The stationary gang assignments satisfy Ai ⊆ Ak;

• And τi has a higher priority than τk,

where the stationary gang assignments Ai, Ak ∈ P({P1, . . . , PM}) are gang to processor
assignments as described in Chapter 3.

As proved in Chapter 3, when analyzing the response-time of task τk, the
higher-priority tasks may have self-suspension like behaviour. However if the
stationary gang assignments are such that Ai ⊆ Ak then τi has no self-suspension
behaviour with respect to task τk. Thus the precedence behaviour is proved similar
to Corollary 6.6.

6.6 conclusion

With regards to the dissertation hypothesis, in this chapter, we proposed analyses
to determine the maximal sensor data time-stamp difference at any fusion task in
a given processing graph. The analyses are modular and robust with respect to analyses are modular

and robust with respect
to parameter
uncertainty

parameter uncertainty. Starting from a formal definition of the studied systems a
processing graph which describes the data flow among independent tasks, we
propose a modular analysis, for any task which combines different sources of
sensory information to provide an enhanced system state. Most notably, we make
no assumptions on synchronous clocks on different processing units, and allow
different and independent scheduling algorithms, for each different processing
unit.
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C O N C L U S I O N S A N D O U T L O O K

The stated hypothesis of this dissertation is that either the parameter uncer-
tainty and hardware peculiarities of modern architectures must be considered in
the scheduling algorithm design and the formal schedulability analyses, or the
predictability of the hardware must be increased.

In addition, the system should be composed of modular components, which
are exposed to another and the real-time operating system by formal contracts.
More precisely, each component is designed such that the formal analyses only
depend on formal properties – promised by the formal contracts – which can be
observed and enforced in the system.

This chapter first recapitulates the contributions of this dissertation in Sec-
tion 7.1 Summary of the Contributions. In Section 7.2 Examination of the Dissertation
Hypothesis, it is examined whether these contributions support the dissertation
hypothesis. Afterwards, an outlook at possible future work is given in Section 7.3
Future Work. In Section 7.4 Final Remarks and Outlook, the dissertation is concluded
with some final remarks and an outlook is given.

7.1 summary of the contributions

The contributions of this dissertation are summarized according to the chapters
where they are detailed.

7.1.1 timing predictable protocols

In Chapter 3, we examine the design of protocols (and scheduling algorithms),
which increase predictability and allow for safe worst-case response-time analyses.
We propose a family of simultaneous progression switching protocols for real-time
NoC arbitration, which is described by the all-or-nothing property and provides
increased predictability at the cost of decreased average case performance. On the
basis of the all-or-nothing property, we created a novel gang scheduling algorithm
called stationary rigid gang scheduling, in which gangs are statically assigned to a
specific sub set of processors, thus eliminating task migration. Both approaches
share a common underlying modular analysis concept and framework, which is
based on a formal reduction to suspension-aware uniprocessor scheduling theory.

In the first contribution, a novel rigid gang scheduling algorithm called sta-
tionary rigid gang scheduling is proposed for sporadic real-time gang tasks with
constrained deadlines. Several sufficient schedulability analyses are proposed
for task-level fixed-priority scheduling algorithms. A special class of assignment
algorithms – based on the concept of consecutive stationary gang assignment – is
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shown to admit a parametric speed-up factor bound with respect to an opti-
mal scheduling algorithm. It is shown that consecutive stationary gang assignments
yield beneficial theoretical properties, which can be used to upper-bound the
worst-case interference suffered by any task according to the ratio of the gang
sizes of two tasks. The algorithm is compared to the state-of-the-art schedulability
analysis for global EDF by Dong and Liu [DL17] using synthetically generated
sporadic real-time task systems with implicit deadlines. The evaluation results
for implicit deadlines show that our algorithm outperforms the algorithm by
Dong and Liu [DL17] and the evaluations for constrained-deadline task systems
demonstrate reasonable levels of schedulable task sets.

In the second contribution, the fundamental difficulty of using scheduling
theory based analyses for pipelined flit-based transmissions is formally dis-
cussed. Hereinafter, a novel timing predictable architecture and design of a
two-dimensional NoC system, which is suitable for real-time multicore systems
is presented. To achieve timing predictability by design, a family of less flexible
switching protocols called simultaneous progression switching protocols is pro-
posed. In this protocol, all links that are used by a flow transmit one flit of this
flow (if it exists) simultaneously or none of them transmits any flit of this flow.
Based on this simultaneous progression property, we reduced the schedulability
of the NoC to the discrete time uniprocessor self-suspension scheduling problem.
By construction, any minimal and non-minimal route is deadlock-free and there-
fore the path diversity can be better utilized in order to distribute the load over the
links. An implementation, including router design, and arbitration algorithm is
provided and evaluated with synthetically generated data. The evaluations hint to
scalability issues in our proposed implementation for larger networks. However,
for smaller to medium sized NoCs, our proposal suggests to be a beneficial first
step towards the design and analysis of timing-predictable switching protocols of
NoCs, which allow for safe response-time analyses.

7.1.2 hierarchical parallel dag scheduling

In Chapter 4, hierarchical scheduling of parallel DAG tasks is studied. In the first
contribution, the probabilistic conditional parallel DAG task model is proposed to
express structural uncertainty during execution. A hierarchical scheduling algo-
rithm for the analysis of the probabilistic conditional parallel DAG task model is
proposed, and design rules are devised that provide guarantees such as bounded
tardiness and probabilistic upper bounds for k-consecutive deadline misses. The
approach is sustainable, because any early completions – due to scheduling or
dynamic conditional DAG structures – are handled by the reservation system
and the parametric abstraction of the workload model.

In the second contribution, the parallel path progression concept is proposed,
which allows to consider the parallel progression of multiple paths in the DAG
during execution. This property is implemented using a sub task level fixed-
priority policy and a preemptive fixed-priority list-scheduling algorithm. A
polynomial-time algorithm is provided, which finds a path collection that covers
all vertices in the DAG and hence either yields an optimal response-time or a
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parametric approximation algorithm for an optimal response-time (for a given
number of processors). The concept is extended to two hierarchical schedul-
ing algorithms, namely a sporadic arbitrary-deadline gang reservation system
and a sporadic arbitrary-deadline ordinary reservation system. The hierarchical
scheduling algorithm can be applied to sporadic arbitrary-deadline DAG tasks,
which may be executed concurrently with tasks described by a different task
model, e.g., ordinary sequential tasks. For both reservation systems, we provide
response-time analyses and algorithms to generate and provision feasible reserva-
tion systems. The approach is evaluated using synthetically generated DAG task
sets. The evaluations demonstrate that the approach advances the state of the
art in high-parallelism scenarios and show that the performance of the approach
is between the start-of-the-art and federated scheduling in more sequential sce-
narios. Moreover, a stricter path-monotonic progression concept is proposed, which
allows to design suspension-aware reservation systems mitigating active-idling
of the reservation systems.

7.1.3 regulator-based adaptivity

In Chapter 5, fault-tolerance as a supplementary reliability aspect of real-time
systems – in spite of dynamic external causes of fault – is examined. To assure
that an acceptable quality-of-service (QoS), i.e., fault-tolerance, can be achieved,
upper-bounds on consecutive erroneous job executions, and guaranteed m error-
free executions out of k consecutive job executions are studied. Using job variants,
which trade off increased execution time demand with increased error protection,
a state-based policy selection strategy is proposed. The policy guarantees that all
reachable states comply with the QoS constraints, whilst minimizing the expected
system utilization and assuring hard real-time compliance of the task system. The
state-based policy selection allows the usage of machine learning techniques –
which infer error information during operation – to provide hard guarantees. Ex-
tensive numerical evaluations have shown that the proposed approaches require
significantly decreased system utilization compared to the state of the art. The
learning- and runtime overheads of the proposed approaches, are shown to be
reasonably small in the evaluations.

7.1.4 maximal sensor data time-stamp difference

In Chapter 6, modular analyses for the maximal time-stamp differences of sensor
data are presented. The results show that in spite of the complex heterogeneous
architecture and globally asynchronous processing units, the maximal time-stamp
difference of any two sensor data samples can be upper bounded at the time of
sensor fusion. More precisely, given a multi-rate task set, and under the assump-
tion that each task is schedulable on its respective processing units according to
readily available task-level fixed-priority worst-case response-time analyses for
non-preemptive or preemptive scheduling algorithms, an algorithm is proposed
to calculate the maximal time-stamp differences for all signals that are merged at a
sensor fusion task. In addition, based on an abstract precedence property, which
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depends on the task model and scheduling algorithm, the presented analyses
can be further refined. In particular, task precedence properties are presented
for non-preemptive rigid gang scheduling and preemptive stationary rigid gang
scheduling.

7.2 examination of the dissertation hypothesis

The question remains whether the contributions support the hypothesis:

The exploration of timing predictable protocols, task models and scheduling
algorithms in Chapter 3 showed that, by imposing additional constraints, safe
worst-case response-time analyses can be provided even for challenging network-
on-chip arbitration problems. The additional imposed all-or-nothing property
also simplified router design, and routing protocol constraints, which improves
worst-case centric predictability.

Moreover, the stationary rigid gang scheduling algorithm was proposed, which
is more restrictive than traditional rigid gang scheduling by imposing execution
restrictions of gangs to only execute on assigned processors. It was shown that the
schedulability problem can be reduced to the uniprocessor suspension-aware task-
level fixed-priority scheduling problem by virtue of the properties of the novel
scheduling algorithm. The stationary rigid gang scheduling algorithm can also
be used in conjunction with the hierarchical parallel DAG scheduling approaches
presented in Chapter 4, which further attests to the modularity. Final evidence
of whether stationary rigid gang scheduling improves the predictability in a
real-time operating system implementation remains to be shown. It is however
evident that task contexts do not have to be migrated, and the certainty of
which processors are used for execution allows for more precise shared resource
contention coordination and analyses.

The contributions of Chapter 4 are hierarchical, i.e., reservation based schedul-
ing algorithms, which decompose the DAG scheduling problem into two modular
scheduling problems. Namely, the reservation system is exposed as a standard
task model, e.g., the (ordinary) sporadic arbitrary-deadline task, sporadic rigid
gang task, or sporadic suspension-aware task, for which any readily available
state-of-the art scheduling algorithm and analysis can be used. Secondly, the prob-
lem of reservation provisioning and scheduling of the DAG task on the premise
of the promised service, is analyzed and algorithms are provided. The presented
hierarchical scheduling algorithms, allow uncertainty, e.g., structural uncertainty
of a conditional DAG task. This model considers conditional branching decisions,
and supports some tardy jobs to finish without causing unpredictable cascading
effects into system. The provided hierarchical scheduling algorithms are sustain-
able with respect to early completion, and uncertain worst-case execution time
estimates can be contained within a reservation. By virtue of our parallel path
progression intra-task prioritization, massively parallel architectures can be almost
optimally exploited, using reservation systems.

In Chapter 5, fault-tolerance as a supplementary reliability aspect of real-time
systems is examined. The results show how optimization- and machine learning
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techniques can be used in spite of dynamic external causes of fault to adaptively
improve average case performance and still provide hard QoS guarantees.

Lastly, in Chapter 6, it was shown how a complex problem can be decomposed
into unrelated tasks using standard task models. On the basis of a mapping of
tasks to processing units – which can support preemptive or non-preemptive
scheduling, and do not have to be globally synchronized – analyses and algo-
rithms for the maximal sensor data time-stamp difference are provided. The analysis
is modular, since all formal presumptions, which must be met, are abstractly
stated, e.g., the precedence property. This property can be provided for many task
models and scheduling algorithms.

7.3 future work

Resulting from the observations and results in Chapter 3 regarding the rigid
stationary gang scheduling algorithm, it would be most interesting to come up
with an efficient implementation in a real-time operating system and to evaluate
the benefits or problems in the real system. From a theoretical perspective, other
stationary gang assignment algorithms, e.g., optimization-based approaches, may
be studied for improved schedulability. At last, an extension from task-level fixed-
priority to job-level fixed-priority is a direction for future work. With regards, to
the proposed simultaneous progression protocol and concept implementation,
further considerations and FPGA prototypes are required to fully examine the
limits and potentials for improvement.

Regarding, the hierarchical scheduling algorithms presented in Chapter 4,
the most interesting directions of future work are to examine if further and
other intra-task prioritization can provide more interesting properties. Another
interesting question is if any of the observations and techniques can be expanded
to heterogeneous systems with typed or grouped DAG tasks. That is, if sub tasks
are tied to specific processors. With respect to probabilistic DAG task scheduling,
further work is required to improve the response-time of a tardy job like is
possible in federated scheduling [LAG+14], but with less resource requirements.
Moreover, resource reclamation and suspension-aware reservation system design
is a interesting and challenging direction of future study.

The automata-based regulator approach in Chapter 5 allows adaptivity, and the
safe utilization of unpredictable and not explainable machine learning techniques
for optimization, while providing hard guarantees. The visionary goal is to
include the schedulability problem in the state space representation, which
however is computationally intractable in the general case. While the per-task
deterministic finite automata (DFA) can be easily composed using the potency
automata approach to a per-task-set DFA, the resulting connection to time and
the schedule is unclear. In future work, special cases, such as non-preemptive
scheduling for periodic task sets – for which a state space representation of the
scheduling problem has been proposed in [RNN22] – can be a starting point for
extension.

The maximal sensor data time-stamp difference analysis in Chapter 6, can po-
tentially be improved if an improved best-case response time analysis is devised,
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and incorporated. Further, it would be interesting to practically evaluate if an in-
creased analysis precision, by assuming more formal properties and requirements,
is worth the loss of model robustness and modularity.

7.4 final remarks and outlook

This dissertation examined the design and formal verification problem of modern
and complex real-time systems. In particular, modular scheduling algorithms
for fine-grained parallel task models on multicore architectures were studied,
which are robust towards parameter uncertainty. Moreover, external disturbances,
e.g., radiation induced errors, unsound worst-case execution time estimates, or
environmental dependent control flows are considered in this dissertation.

Most likely, future industry practice will be to use measurement based pWCET
estimates, even at the cost of soundness, and subsequently the need to react to this
uncertainty with adaptivity. The challenge is in providing hard guarantees and
allow for adaptivity at the same time. It should be noted that uncertainty poses a
significant challenge to worst-case state centric real-time system verification and
design with respect to model- and analysis fidelity, if not considered properly.
Most importantly, temporal and spatial isolation is a key requirement to prevent
uncertainty induced effects from cascading into the system.

While admittedly, the overall research problem of modular, safe, robust and
adaptive real-time systems remains challenging, with many open questions left,
the results in this dissertation provide promising results and directions to be
further pursued.
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