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Zusammenfassung
Die Wissensrevision ist ein Teilbereich der Wissensrepräsentation und Wissensver-

arbeitung, in dem untersucht wird, wie die Überzeugungen eines intelligenten Agen-
ten in Reaktion auf neue Informationen rational revidiert werden können. Es gibt
verschiedene Ansätze zur Wissensrevision, aber ein bekannter Ansatz ist das AGM-
Modell, das auf die Arbeit von Alchourrón, Gärdenfors und Makinson zurückgeht.
Dieses Modell bietet Axiome, die wünschenswerte Eigenschaften von Wissensrevi-
sionsoperatoren definieren, die die Wissensmenge des Agenten, d.h. eine Menge von
propositionalen Formeln, manipulieren. Eine berühmte Erweiterung des klassis-
chen AGM-Rahmens der Wissensrevision ist der Ansatz von Darwiche und Pearl
zur iterierten Wissensrevision. Sie entdeckten, dass der Schlüssel zu rationalem
Verhalten unter Iteration in der adäquaten Erhaltung von konditionalem Wissen
liegt, d.h. von Überzeugungen, die der Akteur bereit ist, im Lichte (hypothetischer)
neuer Informationen zu akzeptieren. Daher führten sie Operatoren zur Wissensrevi-
sion ein, die auf den Wissenszustand des Agenten einwirken und aus konditionalem
Wissen aufgebaut sind. Kern-Isberner axiomatisierte ein Prinzip der konditionalen
Erhaltung für die Wissensrevision, das den Kern der angemessenen Behandlung von
konditionalem Wissen während der Revision erfasst. Dieses mächtige Axiom bietet
den notwendigen konzeptionellen Rahmen für die Revision von Wissenszuständen
mit Mengen von Konditionalen als Input und zeigt, dass konditionales Wissen subtil,
aber wesentlich für die Untersuchung der Prozesse bei der Wissensrevision ist.

Diese Arbeit zeigt eine konditionale Perspektive der Wissensrevision für ver-
schiedene Szenarien der Wissensrevision auf. Im ersten Teil führen wir einen Begriff
der Lokalität für Wissensrevisionsoperatoren auf semantischer Ebene ein und un-
tersuchen ihn. Damit nutzen wir die Eigenschaften von Konditionalen, die es uns
erlauben, lokale Fälle aufzustellen und entsprechend dieser Fälle zu revidieren, d.h.
die Komplexität der Revisionsaufgabe erheblich zu reduzieren. Im zweiten Teil be-
trachten wir Wissensrevision im Hinblick auf zusätzliche Metainformationen, welche
die Eingabedaten begleiten. Wir demonstrieren die Vielseitigkeit und Flexibilität
von Konditionalen für Wissensrevision, indem wir die parametrisierte Eingabe für
zwei bekannte parametrisierte Revisionsoperatoren auf eine konditionale reduzieren.
Unsere Ergebnisse zeigen, dass die Berücksichtigung von konditionalem Wissen bei
der Revision neue Einsichten in die Dynamik von Wissensrevisionsprozessen bietet.



Abstract
Belief Revision is a subarea of Knowledge Representation and Reasoning (KRR)

that investigates how to rationally revise an intelligent agent’s beliefs in response to
new information. There are several approaches to belief revision, but one well-known
approach is the AGM model, which is rooted in work by Alchourrón, Gärdenfors,
and Makinson. This model provides a set of axioms defining desirable properties of
belief revision operators, which manipulate the agent’s belief set represented as a
set of propositional formulas.

A famous extension to the classical AGM framework of Belief Revision is Dar-
wiche and Pearl’s approach to iterated belief revision. They uncovered that the key
to rational behavior under iteration is adequate preservation of conditional beliefs,
i.e., beliefs the agent is willing to accept in light of (hypothetical) new information.
Therefore, they introduced belief revision operators modifying the agent’s belief
state, built from conditional beliefs. Kern-Isberner fully axiomatized a principle
of conditional preservation for belief revision, which captures the core of adequate
treatment of conditional beliefs during the revision. This powerful axiom provides
the necessary conceptual framework for revising belief states with sets of conditionals
as input, and it shows that conditional beliefs are subtle but essential for studying
the process of belief revision.

This thesis provides a conditional perspective of Belief Revision for different
belief revision scenarios. In the first part, we introduce and investigate a notion
of locality for belief revision operators on the semantic level. Hence, we exploit
the unique features of conditionals, which allow us to set up local cases and revise
according to these cases, s.t., the complexity of the revision task is reduced signif-
icantly. In the second part, we consider the general setting of belief revision with
respect to additional meta-information accompanying the input information. We
demonstrate the versatility and flexibility of conditionals as input for belief revision
operators by reducing the parameterized input to a conditional one for two well-
known parameterized belief revision operators who are similarly motivated but very
different in their technical execution.

Our results show that considering conditional beliefs as input for belief revision
operators provides a gateway to new insights into the dynamics of belief revision.
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Chapter 1

Introduction

The first chapter of this thesis provides an introduction to the results presented in the
course of the following investigations. The first section is dedicated to the broader
research context and the general motivation of this thesis. In Section 1.2, we outline
this work’s goals by addressing research questions that provide deeper insights into
the main contributions presented in this thesis. Also, we give an overview of the
organization and overall structure of the following text. The last section presents
publications related to this thesis authored or co-authored by the author.

1.1 Research Context and Motivation

This thesis is located in the area of Knowledge Representation and Reasoning
(KRR), a major subfield of Artificial Intelligence (AI) that is concerned with the
fundamental issues of representing knowledge in a way that a computer system can
use it to reason about the world [101]. This involves creating models of the world
that can be manipulated and queried to derive new information or make decisions.
Some common approaches to KRR include logic-based approaches, such as propo-
sitional and first-order logic, rule-based systems, and semantic networks. KRR has
applications in various fields, including natural language processing, robotics, and
expert systems [19]. It is also used in several practical applications, such as in
medical diagnosis and treatment or automated planning and scheduling [8].

Reasoning, i.e., the process of drawing conclusions from existing knowledge, plays

1



2 1.1 Research Context and Motivation

a significant role in today’s research about AI [19]. Non-monotonic Reasoning is a
subfield of Knowledge Representation and Reasoning that enables intelligent sys-
tems to adapt their beliefs and conclusions in response to new information. Unlike
classical reasoning, it allows for modifying or retracting previously made inferences
based on new or conflicting evidence [21]. This is crucial for applications such as
expert systems, decision support systems, and automated reasoning.

In this thesis, we examine essential aspects of how an intelligent agent should
change her beliefs in light of new information. The branch of research that answers
this question is Belief Revision, a subfield of Non-monotonic Reasoning. Note that,
in the context of this thesis, an intelligent agent is an AI system capable of perceiving
its environment, processing information, and taking actions to achieve specific goals.
One of the key features of intelligent agents is their ability to reason about the
information they receive and make decisions based on that reasoning. Dealing with
change in the world is an essential aspect of these agents, so understanding the
phenomenon of change is a concern for designing intelligent systems in AI [20].

Theory of Belief Revision. Belief revision is the process of revising one’s be-
liefs in response to new information [33]. In a typical belief revision scenario, an
agent receives new information that makes her change her beliefs. In the principal
case, where the new information contradicts her initial beliefs, the agent must with-
draw some of the old beliefs to accommodate the new information and maintain a
consistent worldview. This might lead to interactions between old beliefs and new
information, which have to be monitored [90]. The study of the process of belief
revision gave rise to the exciting research area Belief Revision, which can be traced
back to the early 1980s. However, the article widely considered to mark the birth
of the field is the seminal work [2] of Alchourrón, Gärdenfors, and Makinson, where
rationality postulates that constrain the outcome of belief change operations are
introduced. These postulates lay the AGM framework’s foundation, named after its
three founders’ initials. The rationality postulates for belief revision that are crucial
for AGM revision operators have proven to provide valuable guidelines for the belief
revision of intelligent agents in many cases, and the AGM framework is to this date
the dominant framework in Belief Revision [96]. Formally, the AGM approach em-
ploys representations of knowledge in so-called belief sets that are affected by belief
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change operators [33]. A set of prior beliefs of an agent is changed in the light of a
new belief via a belief revision operator, and we receive a posterior belief set. One of
the key findings in Belief Revision was presented by Katsuno and Mendelzon in [60],
who showed that total preorders (TPOs) over possible worlds with specific features
are essential for AGM revision operators, i.e., the representation of beliefs via TPOs
is a necessary and sufficient condition for the definition of AGM revision operators.

Even though the AGM framework has often provided valuable guidelines to
define a theory of belief change, there are a few shortcomings. One of the main
problems is that the AGM paradigm lacks guidelines for handling repeated, so-
called iterated belief revision. There were several approaches to address the problem
[117, 79], one of the most influential proposals is the work of Darwiche and Pearl
(DP for short) in [29], who proposed, in extending the original AGM framework, to
consider not only certain beliefs in the revision process but also underlying preferen-
tial information, i.e., enrich the former belief sets and consider the whole belief state,
also called epistemic states [48], as complex representations of an agent’s cognitive
state. Building upon the central result on AGM revision operators from Katsuno
and Mendelzon [60], Darwiche and Pearl showed that TPOs are the essential meta-
structure for representations of belief states which provide the necessary means to
define rational belief revision on epistemic states. Before we discuss the crucial role
of conditionals in Belief Revision, we shortly give an overview of representations of
belief states that are important within the scope of this thesis.

There are several ways to represent the TPOs defining an agent’s belief state
[117, 45, 42]; we focus in this thesis on qualitative frameworks that encode rela-
tive plausibility via total preorders on possible worlds [60, 29] and on the semi-
quantitative framework of ranking functions or ordinal conditionals functions (OCFs)
firstly introduced by Spohn [117, 119] which enrich the qualitative TPOs by assign-
ing numbers to plausibility levels. The employment of numbers makes it easier to
compare different plausibility levels within the belief representation framework and
equips the corresponding belief revision operators with a powerful arithmetic1.

1Note that various works recognized the expressiveness and benefits of representing belief states
by ranking functions in the context of belief revision [119, 64, 106].
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Conditionals in Belief Revision. One of the main observations that led to the
now famous DP framework for iterated Belief Revision [29] was that the reasonable
minimization of changes in conditional beliefs, i.e., beliefs an agent is prepared to
adopt conditioned on any hypothetical evidence [15, 50], is a crucial feature when
it comes to designing rules for rational (iterable) changes of beliefs. Conditionals
(B|A), to be read as “if A, the premise, is true, then we can conclude the consequent
B (plausibly)”, extend the narrow framework of propositional logic and can be seen
as a gateway to the revision of belief states as they provide the necessary means
to observe the very process of belief revision by making it possible to compare
worlds outside an agent’s belief set according to her preference. More precisely,
the relation between belief revision and conditionals is expressed by the so-called
Ramsey Test, which states that the acceptance of a conditional is equivalent to the
acceptance of its consequent after a revision with the conditional’s premise. Note
here that the agent’s belief state is taken explicitly into account as it is necessary to
define the acceptance of a conditional belief [48]. The necessity to employ TPOs as
belief representation frameworks, which arises from the characterizations of AGM
revision operators in [60, 29], corresponds naturally to the fundamental challenge to
preserve conditional beliefs rationally during the revision process posed by Darwiche
and Pearl because both frameworks rely on the notion of comparison according
to preference. Thus, conditional beliefs are not merely logical artifacts but play
an essential role by guiding the belief revision process naturally by considering an
agent’s cognitive state at a given time, which places them at the core of Belief
Revision. Moreover, conditionals are defeasible, i.e., the consequent of a conditional
may be overruled in the light of new information. This makes them fundamentally
different from material implications A⇒ B from classical logic [76, 84, 44].

Darwiche and Pearl acknowledged the relevance of conditional beliefs and their
preservation. In [29], they proposed additional postulates that regulate changes in
conditional beliefs to provide coherence under successive belief changes. The need
for preserving conditional beliefs was widely recognized in the field of Belief Revision
(for example, in [17, 79, 121]). Here the work [63] from Kern-Isberner stands out
since it goes beyond the DP postulates for preserving conditional beliefs by providing
a complete formalization of a rational principle of conditional preservation (PCP)
[63, 65] which implies the DP postulates and extends them for conditional revision,
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i.e., the process of revising one’s beliefs not only in the light of new propositional but
also conditional information. While Darwiche and Pearl explicitly took conditional
beliefs into account, their approach lacks guidelines for changing beliefs if the new
information itself is conditional. The (PCP) here provides the whole picture and
constitutes an essential paradigm for guiding (iterated) revision of an agent’s belief
state. The (PCP) leads to the definition of so-called c-revisions, conditional revision
operators capable of revising ranking functions with sets of conditionals rationally
by obeying the (PCP). To the best of our knowledge, c-revisions are the only revision
operator capable of revising with sets of conditional simultaneously while respecting
the guidelines for iterated Belief Revision.

Before presenting the aim and structure of this thesis in the next section, we
motivate and explain the conditional perspective of Belief Revision, which drives our
research. Note that, for the remainder of this Chapter, we consider belief revision
on belief states in the sense of Darwiche and Pearl.

Conditional Perspective of Belief Revision. In everyday life, we often en-
counter situations where the outcome depends on certain conditions, and we need
to make decisions or draw conclusions based on the information available to us [58].
Conditionals allow us to represent and reason about these situations in a logical
and structured way by specifying the conditions under which a specific outcome or
event is likely to occur [31]. Their vital role in reasoning about uncertainty has
been acknowledged many times [87, 23, 102] Thus, they can be seen as one of the
hallmarks of human reasoning because they enable us to reason about uncertain
or hypothetical situations. Moreover, understanding conditionals is also essential
for effective communication, as they are a common feature of natural language and
play a significant role in conveying meaning and expressing uncertainty [22, 104].
Overall, looking at the general significance of conditional beliefs, it is not surprising
how essential conditionals are also for the area of Belief Revision.

Belief revision operators, broken down quite simply, are functions that take as
input two kinds of objects, a representation of an agent’s initial belief state and
a piece of new input information. Thus, the central objects of interest within the
area of (iterated) Belief Revision are epistemic states on the one hand and input
information on the other. It holds that conditionals play a subtle but crucial role
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for both. Darwiche and Pearl [29] pointed out their importance by connecting them
to belief states, which encode an agent’s conditional beliefs, and providing hints on
the importance of preserving them. Then, Kern-Isberner completed the picture by
axiomatizing a principle of conditional preservation that leads to a versatile revision
mechanism, the c-revision mentioned above, which takes sets of conditionals as input
and treats them appropriately, i.e., in such a way that conditional structures and
interactions within the initial belief state and also, within the input are respected
and preserved as far as possible by obeying the (PCP). In this thesis, taking on
a conditional perspective in the context of Belief Revision means paying close at-
tention to and exploiting the expressiveness and internal strengths of conditionals.
Thus, revealing the underlying interplay of conditional beliefs in the process of be-
lief revision and profiting from their powerful semantics is a promising path that
motivates the results presented in this thesis.

In the following chapter, we discuss the aim and structure of this work and
allocate our results based on research questions.

1.2 Aim and Structure

In this section, we present the general aim of this thesis and phrase major research
questions that lead to the investigations and results presented in the following parts.
We conclude this section by giving an overview of the thesis structure.

Research Questions and Contributions. This thesis aims to illustrate how
conditional information as input for revision operators advances the fundamental
understanding of belief revision processes in various scenarios. Thus, our investiga-
tions are guided by what we call a conditional perspective of Belief Revision, i.e.,
a perspective where we use conditionals as logical entities that allow us to directly
influence changes in the agent’s belief state during the belief revision process with-
out taking the usual detour via propositional input information, that is typical for
most operators. This leads to insightful investigations presented in the course of
this thesis.

Note that while the importance of conditional information in the representation
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of an agent’s belief state is beyond doubt and has been widely recognized in the Belief
Revision community [1, 81, 63] leading to many propositional revision operators
[15, 82, 13], there has been surprisingly little research on operators that are capable
of revising with conditional information2. Here, c-revisions by Kern-Isberner stand
out since they are capable of revising with sets of conditionals while respecting a
fundamental principle of conditional preservation. Most of the results in this thesis
can be realized via c-revisions. Thus, they display a fundamental cornerstone of
this work and are helpful in many different ways to illustrate our investigations and
provide deeper insights into the interplay of conditional beliefs.

In the context of our research, we advocate the employment of conditionals as
input for belief revision operators, and we believe the advantages are manifold. In
this thesis, we focus on two different scenarios of belief revision and thus discuss
them in two separate parts. In the first part, we focus on specific dynamics when
revising with a set of conditionals and investigate a Kinematics principle for Belief
Revision. In the second part, we take propositional revision with some additional
input and transfer it to the framework of conditional revision investigating so-called
a Parameterized Belief Revision. We begin each part by presenting the specific
research setting and introducing an (advanced) belief revision problem for which this
thesis provides novel contributions. Moreover, we pose specific research questions,
which guide the thorough investigations presented in the corresponding part. In
the following, we give an overview of our main contributions and address general
research questions that lead to our diverse lines of research.

Part I: Revising w.r.t. Local Cases – A Kinematics Principle for Belief Revision

One of the characteristic properties of conditionals, which distinguishes them
fundamentally from propositional sentences, is that they are able to deal with infor-
mation that is linked to a specific context. In the general setting of belief revision,
a conditional translates to statements of the form “if A is true, then we can con-
clude B (plausibly)”, i.e., we can plausibly assume that B holds in the context A, a
notion of conditionals that is already present in the famous Ramsey Test [95, 120].
It is evident that including the specific context given by conditional information

2Some notable extensions that investigate revision with a single conditional can be found in
[18, 27].
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simplifies the revision process since it enables us to exclude parts of our previous
beliefs unrelated to the new input. Especially in cases where we have to process
information from different mutually exclusive contexts at the same time, this leads
to a reduction in the complexity of the revision task, which is typical for human
reasoners [88]. This gives rise to the following research questions:

How does the specific context of information affect the revision task, and
how can we benefit from the inclusion of exclusive contexts in the revision
process?

In probability theory, the concept of conditionalization to a specific context is well-
established. There have been several approaches in probabilistic Belief Revision to
connect the revision of beliefs with conditionalization [88, 57]. In this part of the
thesis, we present and investigate a Kinematics principle for Belief Revision in the
context of qualitative and semi-quantitative frameworks, which states an invariance
property connecting belief revision and conditionalization. We show that in the con-
text of ranking functions, under particular prerequisites, c-revisions are capable of
dealing with information from exclusive contexts independently and investigate the
advantages of our previously proposed Kinematics principle in the context of propo-
sitional revision. In the qualitative context, the Kinematics principle represents a
target for qualitative revision operators, which provides ground for our investigation
of a qualitative conditionalization operator and a suitable transformation schema be-
tween ranking functions and purely qualitative representations of epistemic states,
leading to a novel conditional revision operator taking sets of conditionals as input
in the qualitative framework which is driven by c-revisions. We conclude our in-
vestigations of the Kinematics principle by drawing connections between our results
and the conditional revision operator provided by Chandler and Booth [27].

Part II: Revising w.r.t. Meta-Information – Parameterized Belief Revision
In most real-life settings, meta-information accompanying new information im-

pacts how we change our beliefs [125, 116, 93]. The reliability of the source and our
prior beliefs can affect how we revise our beliefs based on new information. Addition-
ally, if the new information appears highly implausible in light of our prior beliefs,
accepting it without reservation may be difficult. To deal with such additional in-
formation, we need to enrich the standard framework of belief revision operators so
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that they can take parameterized information into account. The parameterized be-
lief revision operators we focus on in this thesis, Revision by Comparision by Fermé
and Rott [34] and Bounded Revision by Rott [100], are able to revise with propo-
sitional inputs that are accompanied by meta-information in the general form of a
propositional reference sentence. Although their corresponding mechanisms differ
at a crucial point, both revision operators are motivated by employing a reference
sentence as a parameter that impacts the change between the prior and posterior
belief state. Yet, the parameter remains on a vague meta-level, and it is difficult to
see how it affects the revision mechanism. This gives rise to the following research
question:

How can we incorporate the parameterized information into the frame-
work of (conditional) Belief Revision so that the relation between input
and reference information during the change process is evident?

In Part II, we identify elegant reformulations of Revision by Comparison and Bounded
Revision as conditional c-revisions and discuss their advantages, thereby illustrating
the versatility and expressiveness of conditionals as input information, which trans-
fer the parameterized input information to the directly usable object level, at least
for c-revisions. On our way to achieving this goal, we thoroughly investigate both
belief revision mechanisms, Revision by Comparison, and Bounded Revision, clar-
ify their corresponding change mechanism, and provide new elegant representation
theorems. In particular, we demonstrate how the use of ranking functions can fully
accommodate each of the distinct features of the operations. We conclude this part
by comparing both mechanisms, where we investigate similarities and differences
based on the insights we gained during our thorough investigations.

Overview. This work is divided into two parts in 11 chapters, where some chapters
depend on others. The overall outline of the thesis is illustrated in Figure 1.1, where
the arrows represent dependencies among the consecutive chapters. We start with
a chapter that recalls the basics for both parts:

Formal Preliminaries of This Thesis. We start with stating essential formal pre-
liminaries that introduce epistemic states, the area of Belief Revision, and in partic-
ular, conditionals in Belief Revision in Chapter 2. Basic definitions and notations
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Figure 1.1: Organization of the thesis.

from propositional and conditional logic are presented in Section 2.1. Moreover,
we present an extension to conditional logic, so-called weak conditionals, which are
similar to conditionals to a certain extent. Section 2.2 recalls the basics of one-step
belief revision. The extension of one-step belief revision to the framework of iterated
belief revision in the style of Darwiche and Pearl [29] is presented in Section 2.3. In
Section 2.4, we discuss conditionals in the context of epistemic states and present
the two main frameworks used in this thesis to represent an agent’s belief state. Sec-
tion 2.5 concludes this chapter and presents the fundamental principle of conditional
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preservation, which guides the revision with sets of conditionals and eventually leads
to the definition of c-revisions. We also examine the connection between c-revision
with sets of weak conditionals and iterated contraction operators.

Main Body of This Thesis. The main body of this thesis is organized into two
parts. Every part starts with an introduction and an overview of the part’s contents.
Moreover, we summarize formal preliminaries solely relevant to the corresponding
part and embed our results in a broader research context by presenting related work.
We conclude each part with an intermediate summary.

The first part presents and investigates the Kinematics principle for belief revi-
sion in qualitative and semi-quantitative frameworks of belief representation. We
start with thoroughly investigating case splittings, a crucial prerequisite of the Kine-
matics principle in Chapter 4. Then we show in Chapter 5 that c-revisions satisfy
this advanced principle of belief revision and discuss its impacts for the case of
propositional belief revision and the corresponding c-revision with the complete set
of conditionals. Transferring the Kinematics principle to the qualitative framework
leaves us with the need for a concept of qualitative conditionalization and qualitative
revision mechanisms for sets of conditionals. In Chapter 6, we define and investi-
gate both concepts mentioned above, eventually leading to qualitative c-revisions,
which rely crucially on a suitable transformation scheme between the different frame-
works of belief representation. We conclude this chapter by comparing qualitative
c-revisions with another conditional revision operator from [27] and show that this
operator is also compatible with the Kinematics principle.

In the second part, we investigate parameterized revision operators. In Chapter
8, we investigate the mechanism and relevant properties of Revision by Comparison
[34] in the context of plausibilistic TPOs and provide an elegant reformulation via a
representation theorem. This provides the ground for the subsequent investigations
of Revision by Comparison in the context of ranking functions. This leads us to
the characterization of Revision by Comparison as a c-revision with a set of weak
conditionals. The following Chapter 9 deals with Bounded Revision [100], which
represents another parameterized belief revision mechanism that shares some sim-
ilarities with the previously presented Revision by Comparison but also crucially
differs from it in its characteristics. The investigations of Bounded Revision lead to
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a characterization of its change mechanism as a c-revision with a designated condi-
tional. We close this part with a thorough comparison between parameterized belief
revision mechanisms in the qualitative and semi-quantitative frameworks in Chapter
10, where we provide new insights about similarities and differences.

The thesis closes with a summary and discussion of future work.

1.3 Publications Containing Results of the Thesis

During the last four years when this thesis was written, I was involved in multiple
research activities and worked jointly with various colleagues. I authored multiple
publications jointly with these colleagues in the context of these research activities.
In the following, I give an overview of those previous publications that contain results
also presented in this thesis and point out my contributions to these publications.

Part I: The Kinematics Principle in Belief Revision.
When I first started my Ph.D. position, me and Gabriele Kern-Isberner had many

fruitful discussions about quantitative approaches to reasoning, like the principle of
maximum entropy3, during which Gabriele Kern-Isberner gave the initial impetus to
examine a (qualitative) Kinematics principle in the context of belief revision. The
study of this principle proved to be highly insightful. It resulted in one conference
and two journal papers in high-ranked and well-reputed journals in the field of
Artificial Intelligence. These journal papers were joint work with Gabriele Kern-
Isberner and Christoph Beierle, and I list them here chronologically.

[107] M. Sezgin, G. Kern-Isberner, Generalized ranking Kinematics for
iterated belief revision, in: R. Barták, E. Bell (Eds.), Proceedings of
the Thirty-Third International Florida Artificial Intelligence Research
Society Conference, Originally to be held in North Miami Beach, Florida,
USA, May 17-20, 2020, AAAI Press, 2020, pp. 587–592.

A largely extended version of this conference paper was published in 2021 in the
journal Annals of Mathematics and Artificial Intelligence as

3I investigated numerical solution processes for the principle of maximum entropy in the context
of my master thesis, which Gabriele Kern-Isberner supervised.
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[111] M. Sezgin, G. Kern-Isberner, C. Beierle, Ranking Kinematics for
revising by contextual information, Ann. Math. Artif. Intell. 89 (10-11)
(2021) 1101–1131.

The initial idea and conceptual outline for Generalized Ranking Kinematics came
from Gabriele Kern-Isberner; this encompasses the draft and design of the central
postulate in [107]. I developed the technical elaborations, especially the definitions,
the algorithm, and proofs of the theorems and propositions in the conference paper
[107] and its journal version [111]. Moreover, [111] provides meaningful extensions
of the Kinematics principle, which I designed and elaborated. These results are pre-
sented in Chapter 5. In particular, the thorough investigation of the case splittings,
one of the prerequisites of the Kinematics principle, and the algorithm in [107] are
my contributions. They are presented in Chapter 4.

Most of the proofs in [111] use strategies for c-revisions which were first intro-
duced in [111]. The draft, design, and conceptual outline for these strategies came
from Christoph Beierle and are presented in the preliminaries of Part I in Section
3.1.2.

After our first publications [107, 111] about the Kinematics principle in the
context of ranking functions, the transfer into entirely qualitative frameworks lay
close. Here, Gabriele Kern-Isberner was the driving force and gave the initial spark
for further investigations. However, elaborating on the technical details in full depth
proved to be more tedious and complicated than expected. Therefore, we decided
to opt for a publication in the leading journal in the area of AI, the prestigious
Artificial Intelligence Journal (AIJ). Together with my colleagues Gabriele Kern-
Isberner and Christoph Beierle, we presented and investigated a qualitative version
of the Kinematics principle in the following publication:

[70] G. Kern-Isberner, M. Sezgin, C. Beierle, A kinematics principle
for iterated revision, Artif. Intell. 314 (2023) 103827.

Gabriele Kern-Isberner designed and drafted the Kinematics postulate in Section
6.1 and the concept of qualitative conditionalization presented in Section 6.2. The
qualitative Kinematics principle represents a target, and my specific contribution
was the technical elaboration of the concepts needed for the Kinematics principle.
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My idea was to take c-revisions as a blueprint for a qualitative revision operator.
This led to the central transformations between the qualitative and the quantitative
framework and the corresponding results concerning qualitative conditionalization
resp. c-revisions presented in Section 6.3 and in Section 6.4. Also, I contributed
to investigating the Kinematics principle for the conditional revision operator from
[27] and the comparison to qualitative c-revisions presented in Chapter 6.5.

As in [111], the concept of strategies for c-revisions provides the technical basis
for significant results presented in [70]. Christoph Beierle once again provided us
with his expertise and designed the conceptual outline of strategies presented in
Section 3.1.2.
Part II: Parameterized Belief Change.

In the early stages of my Ph.D., I was lucky to be part of a scientific exchange
program funded by the German Academic Exchange Service (DAAD) with the title
“Advanced belief change operations based on comparisons and conditionals: To-
wards a general framework” which was granted to Hans Rott (University of Re-
gensburg, Germany), Gabriele Kern-Isberner and Eduardo Fermé (University of
Madeira). I had the chance to meet them and have inspiring conversations and
discussions about advanced belief change operations in Regensburg and Madeira.
Unfortunately, the COVID-19 pandemic has prevented the possibility of further
meetings, but my interest in parameterized belief change operations roots in the
context of this inspiring environment of researchers. Together with Gabriele Kern-
Isberner, I investigated two parameterized belief change mechanisms in qualitative
and quantitative frameworks of belief representation. These research activities lead
to the following publications in the two main conferences in the world of AI, the
IJCAI – International Joint Conferences on Artificial Intelligence and the AAAI
Conference on Artificial Intelligence:

[109] M. Sezgin, G. Kern-Isberner, Revision by Comparison for Rank-
ing Functions, in: L. D. Raedt (Ed.), Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI 2022,
Vienna, Austria, 23-29 July 2022, ijcai.org, 2022, pp. 2734–2740.

[110] M. Sezgin, G. Kern-Isberner, Implementing Bounded Revision
via Lexicographic Revision and c-Revision, Proceedings of the Thirty-
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Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Wash-
ington, D.C., USA, 7-12 February 2023, aaai.org, 2023.

I designed and developed the concept and the technical elaboration of the papers
[109] and [110]. This includes drafting and proving the results, theorems, and result-
ing applications. The (extended) results of these papers are presented in Chapter
8 and Chapter 9. Chapter 10 combines and compares the work presented in both
papers [109] and [110] and presents novel and unpublished results. Gabriele Kern-
Isberner’s contribution to both of the aforementioned publications was to provide
expertise in the field of Belief Revision, propose enhancements, and provide support
throughout the whole process, and of course, she introduced me to Eduardo Fermé
and Hans Rott in the course of the fruitful project meetings.





Chapter 2

Belief Revision, Epistemic States
and Conditionals

In this chapter, we introduce the basic notions used in this thesis. We generally aim
to introduce formal preliminaries and notation on a need-to-know basis throughout
the thesis. However, some notions permeate this work, and thus we state them at
this stage of the thesis.

2.1 Basic Definitions and Notations

This section presents basic definitions and notations from propositional and condi-
tional logic.

Propositional Logic. Throughout this thesis, we assume that LΣ denotes a
finitely generated propositional language built over a non-empty set of propositional
atoms or variables, which we call signature Σ = {a, b, c, . . .}. We write L instead
of LΣ when Σ is clear from context or consideration of a particular Σ is not of any
importance. We consider the standard logical connectives and ∧, or ∨ and not ¬,
as well as the constants > denoting logical truths or tautologies and ⊥ for logical
fallacies or contradictions. In general, the set LΣ of propositional formulas over Σ

is generated as the smallest set obeying the following rules:

• Every atom in Σ is an (atomic) formula, i.e., a, b, . . . ∈ Σ are formulas of LΣ.

17
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• If A,B ∈ L, then A ∧ B, A ∨ B and ¬A are formulas of LΣ.

A literal ȧ is either an atom a, in which case ȧ is a positive literal, or its negation
¬a, in which case ȧ is a negative literal. Note that, by lower case letters a, b, c, . . . we
denote propositional variables, intended to represent issues that can be subject of
reasoning, thought or deliberation. And most of the time, we denote formulas using
capital letters A,B,C, . . ., or if we want to emphasize the special role of designated
formulas small greek letters α, β, . . .. Furthermore, we often omit the logical and-
connector, writing AB instead of A∧B. Also, overlining formulas indicates negation,
i.e., A means ¬A. We use A⇒ B as shorthand for ¬A∨B and A⇔ B as shorthand
for (A⇒ B) ∧ (B ⇒ A).

We apply a model-theoretic approach to propositional logic. A possible word
(alternatively interpretation) is a valuation function ω : Σ → {0, 1} mapping every
atom in Σ to either true, denoted as 1 or false, denoted as 0. By Ω we denote the set
of all possible worlds, i.e., Ω is a complete set of interpretations of L and it holds that
|Ω| = 2|Σ|. And, sometimes worlds are identified simply with their corresponding
complete conjunction, s.t.

ω =
∧
v∈Σ
ω|=v̇

v̇. (2.1)

We define an evaluation function J·K· : LΣ × Ω → {0, 1} of Σ for all formulas
A,A1, A2 ∈ LΣ and ω ∈ Ω as follows:

• For each a ∈ Σ it holds that JaKω = ω(a)

• JAKω = 1, if and only if JAKω = 0

• JA1 ∧ A2Kω = 1, if and only if JA1Kω = 1 an JA2Kω = 1

• JA1 ∨ A2Kω = 1, if and only if JA1Kω = 1 or JA2Kω = 1

We write ω |= A if JAKω = 1 and call ω a model of A. By Mod(A), we notate the
set of all A-worlds, s.t.

Mod(A) = {ω ∈ Ω |ω |= A}.
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A formula A is called consistent iff Mod(A) 6= ∅. For logical truths >, Mod(>) = Ω

and for fallacies ⊥, Mod(⊥) = ∅ holds. Each symbol is a synonym for an arbitrary
(unique) formula.

Given two formulas A,B, we say that B is a logical consequence of A, A |= B

if it holds that Mod(A) ⊆ Mod(B). And formulas A and B are equivalent, A ≡ B

iff A |= B and B |= A, i.e., Mod(A) = Mod(B). The classical logical consequence
operator Cn(A) = {B ∈ L |A |= B} subsumes the set of all logical consequences of
A. These notions can be naturally lifted to sets of formulas B ⊆ L, s.t. Cn(B) =
{B ∈ L |B |= B} and Mod(B) = {ω ∈ Ω |ω |= B, for all B ∈ B}. We call sets B
that are closed under logical consequences, i.e., Cn(B) = B, deductively closed. The
deductively closed set Th(W ) = {A ∈ L |ω |= A for all ω ∈ W} which has exactly
a subset W ⊆ Ω as models is called a formal theory of W. We call a set of formulas
{Ai}i=1,...,n exclusive if

∧
i=1,...,nAi ≡ ⊥ and exhaustive if

∨
i=1,...,nAi ≡ >.

Conditional Logic. The conditional operator | extends the propositional lan-
guage L to a conditional language (L|L), s.t.

(L|L) = {(B|A) |A,B ∈ L}.

In this thesis, we consider (L|L) to be a flat conditional language, so no nesting of
conditionals is allowed. We call A the antecedent or premise of (B|A), and B is its
consequent.

Weak Conditionals. In the following, conditionals (B|A) ∈ (L|L) are referred
to as standard conditionals or, if there is no danger of confusion, simply condi-
tionals. We further extend our framework of conditionals to a language with weak
conditionals by introducing a weak conditional operator (| · | · |), s.t.

(|L|L|) = {(|D|C|) |C,D ∈ L}.

Again, we consider (|L|L|) to be a flat conditional language, i.e., no nesting of weak
conditionals is allowed. As for standard conditionals, we call C the antecedent or
premise and D the consequent of (|D|C|).
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2.2 Belief Revision

In this section, we discuss the basics of one-shot belief change, i.e., scenarios that
deal with the change of beliefs on one specific (but generic) belief set.

In the account of belief change originally developed by Alchourrón, Gärdenfors,
and Makinson [45, 2] there are three principal types of change for (propositional)
beliefs: expansion, revision, and contraction. Each type of belief change can be
axiomatized by a set of postulates, the so-called AGM postulates, which define ra-
tional and desirable changes of beliefs. These basic postulates lay the foundation
of the well-known and fruitful AGM theory, named after its founders Alchourrón,
Gärdenfors, and Makinson. In the AGM theory, an agent’s beliefs are represented
by a belief sets, i.e., a deductively closed set of formulas, s.t. K = Cn(K). And AGM
belief change operators take as input a belief set K and a piece of new information
in the form of a propositional formula A and map them onto a new belief set. In
the following, we consider the three change operators named above and explain and
distinguish them from each other. Since, in the context of this thesis, revision is the
most important one, we investigate this operation more thoroughly.

AGM Expansion. The simplest type of belief revision is expansion, which occurs
when the new information is consistent with an agent’s current beliefs in K. This
type of belief change is characterized by a unique function + [45], given by

K+A = Cn(K ∪ {A}).

This characterization of expansion satisfies an axiomatic approach via six postulates
[45]. To shorten the matter, we do not consider them here because the definition
is handy for belief sets, and we consider belief expansion solely in that context.
Note that, if K |= A then K+A = L, i.e., if the new information is inconsistent
with K expansion does not lead to rational behavior in the change of beliefs. In
the following, we deal with the more general case of belief revision, where we do
not presuppose consistency of A with the agent’s prior belief set K. Note that if,
however, consistency holds, AGM revision reduces to AGM expansion.
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AGM Revision. In their seminal paper [2], Alchourrón, Gärdenfors, and Makin-
son proposed six basic and two additional postulates that guide the belief change
process when incorporating new information A which might contradict an agent’s
former belief set K. The goal is to obtain a consistent posterior belief set whenever
possible while avoiding unnecessary changes. Note that, unlike for expansion, these
postulates are insufficient to describe a unique optimal revision operator.

Definition 2.2.1 (AGM Revision [2]). A change operator ? is called an AGM revi-
sion operator for a belief set K and a formula A ∈ L if the following postulates are
satisfied

(AGM?1) K ?A is a belief set (Closure)

(AGM?2) A ∈ K ?A (Success)

(AGM?3) K ?A ⊆ K +A (Inclusion)

(AGM?4) If K +A is consistent, then K ?A =

K +A

(Vacuity)

(AGM?5) If A is consistent, then K ?A is consistent (Consistency)

(AGM?6) If A ≡ B, then K ?A = K?B (Syntax Independence)

(AGM?7) K? (A ∧ B) ⊆ (K ?A)+B (Superexpansion)

(AGM?8) If B 6∈ K ?A then (K ?A)+B ⊆ K ? (A∧
B)

(Subexpansion)

The first postulate (AGM?1) ensures that each AGM revision results in a belief
set. The second postulate (AGM?2) demands that revision always successfully in-
corporates the new belief A. Due to inclusion (AGM?3), an AGM revision operator
never yields more beliefs than an expansion of the corresponding belief set would do.
Due to vacuity (AGM?4), it holds that if the initial beliefs K are consistent with A,
then the revision by A of K is nothing more than an expansion of K+A. The result
of a revision with consistent new information is always consistent due to the consis-
tency postulate (AGM?5). On the other hand, due to (AGM?2), the revision of K by
an inconsistent belief A always yields an inconsistent belief set. From (AGM?6), we
can conclude that syntactic differences in the representation of beliefs do not impact
the revision process. The remaining postulates (AGM?7) and (AGM?8) are consid-
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ered additional postulates for revising with conjunctive beliefs. Thus, (AGM?7)
displays an extension of the inclusion postulate (AGM?3) when adding a conjunc-
tive belief A ∧ B, demanding that we should obtain K?(A ∧ B) ⊆ (K ?A)+B in
addition to K?(A∧B) ⊆ K+(A∧B) [52]. In the same way, (AGM?8) corresponds
to the vacuity postulate (AGM?4) for conjunctive beliefs. Note that, w.l.o.g., we
exclude revisions with logical fallacies since revisions with ⊥ often lead to unintu-
itive results. This view is also discussed in [45] by Gärdenfors and in [75] by Levi.
Also, the special case of revising one’s beliefs with ⊥ is not relevant in the context
of this thesis.

In their seminal paper [60], Katsuno and Mendelzon distinguished between two
fundamentally different types of modifications of an agent’s belief set; besides re-
vision, they introduced the notion of update. Katsuno and Mendelzon considered
belief revision to be an operation concerned with a static world, whereas update
deals with updating an agent’s beliefs in an evolving environment. We focus on
their notion of revision. They rephrased the AGM postulates for revision in [60],
presupposing that instead of a (possibly infinite) set of formulas K, an agent’s be-
liefs can be represented by a single formula ψ which describes the entirety of an
agents belief set. Note that the revision operator ? takes as input a belief set K
and a proposition A, whereas revision operators in the framework of Katsuno and
Mendelzon perform revision on propositional formulas ψ. To not overload the nota-
tion, we use the same symbol ? for both cases; due to the strict delimitation of belief
sets represented as deductively closed sets K resp. as formulas φ, no confusion arises.

(KM?1) ψ ?A |= A

(KM?2) If ψ ∧ A is consistent, then ψ ?A ≡ ψ ∧ A

(KM?3) If A is consistent, then ψ ?A is consistent

(KM?4) If A ≡ B, then ψ ?A = ψ ?B

(KM?5) (ψ ?A) ∧ B |= ψ ? (A ∧ B)

(KM?6) If (ψ ?A) ∧ B is consistent, then ψ ? (A ∧ B) |= (ψ ?A) ∧ B

The relation between the KM postulates and the above-stated AGM postulates is
evident, and, we can recover the AGM belief set K from ψ via K = Cn(ψ) [60].
Also, it holds that (AGM?3) and (AGM?4) are merged into (KM?3). It holds that
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the postulates (KM?5) and (KM?6) represent the condition that revision should be
accomplished with minimal change [59]. This principle of minimal change is not ex-
plicitly mentioned by the AGM postulates, but still, they were designed in its spirit
[2, 39]. The postulates above provide ground for a model-theoretic characterization
of belief revision in the spirit of minimal change [59], leading to a simple yet elegant
condition that each KM style revision operator must satisfy.

Katsuno and Mendelzons’ representation theorem relies on faithful assignments
�ψ, i.e., total preorders over interpretations ω ∈ Ω assigned to each propositional
formula ψ. Note that a preorder � (PO) over Ω is a reflexive and transitive relation
over the set of possible worlds. For two worlds ω, ω′ it holds that ω ≺ ω′ iff ω � ω′

and not ω′ � ω. A preorder is called total (TPO) if for every ω, ω′, ω � ω′ or ω′ � ω

holds.

Definition 2.2.2 (Faithful assignments for propositional formulas [60]). Consider
a function that assigns to each propositional formula ψ a preorder �ψ over Ω. This
assignment is faithful if the following conditions hold:

1. If ω, ω′ ∈ Mod(ψ) then ω ≺ψ ω′ does not hold

2. If ω ∈ Mod(ψ) and ω′ 6∈ Mod(ψ) then ω ≺ψ ω′

3 If ψ ≡ ψ′ then �ψ=�ψ′

An interpretation ω is called minimal in a subset Ω′ ⊆ Ω w.r.t. � if ω ∈ Ω′ and
there is no ω′ ∈ Ω′, s.t. ω′ ≺ ω. We use min(Ω′,�) as shorthand for all minimal
models in Ω′ w.r.t. � and by slight abuse of notation sometimes write min(A,�)
instead of min(Mod(A),�) for a formula A. Sometimes, it is useful to consider a
designated representative of the set of minimal worlds for a formula A; then we write
ωA ∈ min(A,�Ψ), where the index indicates the corresponding formula.

For a faithful assignment �ψ, it holds that the minimal models of �ψ display
exactly all worlds that satisfy ψ, i.e., min(Ω,�ψ) = Mod(ψ), without making any
difference in between these worlds. The following representation theorem presented
in [60] characterizes all revision operators that satisfy the KM postulates for revision.

Theorem 2.2.1 (Representation Theorem [60]). The revision operator ? satisfies
(KM1) – (KM6) if and only if there exists a faithful assignment that map each belief
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set represented as a propositional formula ψ to a TPO �ψ such that

Mod(ψ ?A) = min(A,�ψ).

This theorem proves that TPOs provide the essential meta-structure to rationally
revise belief sets in the sense of the AGM framework.

AGM Contraction. The third important belief change operator ÷, the AGM
contraction K ÷A in the AGM framework deals with the case when an agent wants
to delete a piece of information A from her former belief set K. We state the six
basic AGM postulates for contraction.

Definition 2.2.3 (AGM Contraction [2]). A change operator ÷ is called an AGM
contraction operator for a belief set K and a formula A ∈ L if the following postu-
lates are satisfied

(AGM÷1) K ÷A is a belief set (Closure)

(AGM÷2) K ÷A ⊆ K (Inclusion)

(AGM÷3) If A 6∈ K, then K ÷A = K (Vacuity)

(AGM÷4) If A 6≡ >, then A 6∈ K ÷A (Success)

(AGM÷5) If A ∈ K, then K ⊆ (K ÷A)+A (Recovery)

(AGM÷6) If A ≡ B, then K ÷A = K ÷B (Syntax Independence)

In [71], Konieczny and Pino Pérez showed a similar rephrasement of propositional
AGM contraction as for AGM revision in the style of Katsuno and Mendelzon, s.t.
AGM contractions can be characterized via a representation theorem in terms of
faithful assignments.

2.3 Iterated Belief Revision

In this section, we extend the previously discussed framework of one-shot belief
revision to revision scenarios where change can happen iteratively, i.e., the result of
a belief revision can be used as input for a subsequent revision operation.
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Classical belief revision in the AGM framework is concerned with situations in
which the belief set of an agent changes due to new incoming information. While
features and strengths of this approach have been acknowledged quite early [45],
also its flaws have not passed unnoticed [29, 15, 17]. In their seminal paper [29],
Darwiche and Pearl addressed the issue of iteration, which is not treated adequately
by classical AGM operators. The following example from [29] demonstrates the
objections of Darwiche and Pearl1.

Example 2.3.1 ([29, 40]). We consider a murder trial with two jurors, Juror 1 and
Juror 2, who believe different candidates to be the possible murderer:

Juror 1:“A is the murderer, B is a remote but unbelievable possibility while C
is definitely innocent.”

Juror 2:“A is the murderer, C is a remote but unbelievable possibility while B
is definitely innocent”

The two jurors share the same belief ψ1 = ψ2 ≡ A =“A is the only murderer”. Now,
surprising evidence, e.g., A has produced a reliable alibi, obtains A′ =“A is not the
murderer”. The revision by A′ should lead to different belief sets for Jurors 1 and 2.
Juror 1 should now believe that B is the murderer, whereas Juror 2 should now be
convinced that C is guilty. Yet, this does not align with the AGM framework since
(KM?4) demands equal belief sets in this case. Different results are only possible if
the revision does not solely depend on the corresponding belief set.

Darwiche and Pearl identified the restriction to belief sets in the AGM framework
as the leading cause for the problem of iteration. Epistemic states, Ψ, often referred
to as belief states, cover the entirety of information an agent needs (at a given time)
to think and reason, in particular when beliefs are applied or modified. We assume
that Ψ contains meta-information about the relevance, preferences, and plausibility
of beliefs. We take belief sets as the foundation of a belief state Ψ and assume that
each epistemic state Ψ is implicitly equipped with a function Bel(·) that yields a
belief set Bel(Ψ), s.t. Bel(Ψ) ⊂ L contains all propositions and logical sentences
the agent deems maximally plausible, i.e., truly beliefs at a given time. In the

1Darwiche and Pearl adapted the Example from [40].
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following Section 2.4, we discuss different formal representations of belief states
more thoroughly.

Viewing belief revision as an operation on belief states allows us to consider
not only an agent’s most plausible beliefs but also underlying revision policies or
inference rules that guide the process of incorporating new information [15]. This
allows us to conclude which propositional beliefs B an agent will hold in the light
of new evidence A, i.e., plausible conclusions of the form ‘If A then B’. Such rules
of inference are best represented by conditional (B|A) and we can say that an agent
accepts the conditional (B|A), if the revision with A yields belief in B, which is
exactly what happens in the so-called Ramsey Test [95, 120]:

Ψ |= (B|A) iff Bel(Ψ • A) |= B, (2.2)

where • displays a revision operator which maps an epistemic state Ψ and a propo-
sitional sentence A onto a revised belief state Ψ • A. The Ramsey Test reveals
that belief revision and conditional beliefs are intimately related. And it holds that
belief states can be expressed as the entirety of an agent’s conditional beliefs [29].
In their seminal paper [29], Darwiche and Pearl strongly linked the revision with
propositional information to the preservation of conditional beliefs already present
in an agent’s epistemic state. They extended classical AGM revision to an opera-
tion on epistemic states and, thus, paved the way to investigate iterations of revision
operations [29].

The Darwiche and Pearl Framework. In the following, we state the modified
KM postulates for iterated Belief Revision proposed in [29]. In this thesis, we use
the term iterated belief revision as a synonym for belief revision on epistemic states
in the sense of Darwiche and Pearl, i.e., we focus on the preservation of conditional
beliefs. Of course, other notions of iteration are conceivable (cf. [79, 121]). Yet, for
clarity, we sometimes refer to the framework of iterated belief revision presented in
this chapter as the DP framework as an abbreviation of its founders, Darwiche and
Pearl.

We presuppose for each epistemic state Ψ that we can define an associated be-
lief set Bel(Ψ), which is either a deductively closed set of formulas, like in the
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AGM framework or embedded in a propositional formula, as for KM style revision
operators. As before, we denote by Ψ • A the revised epistemic state, not the cor-
responding belief set. This is the first of the two main modifications to the KM
postulates.

(KM•1) Bel(Ψ • A) |= A

(KM•2) If Bel(Ψ) ∧ A is consistent, then Bel(Ψ • A) ≡ Bel(Ψ) ∧ A

(KM•3) If A is consistent, then Bel(Ψ • A) is consistent

(KM•4) If Ψ1 = Ψ2 and A ≡ B, then Bel(Ψ1 • A) = Bel(Ψ2 • B)

(KM•5) Bel(Ψ • A) ∧ B |= Bel(Ψ ? (A ∧ B))

(KM•6) If Bel(Ψ • A)∧B is consistent, then Bel(Ψ ? (A∧B)) |= Bel(Ψ •
A) ∧ B

Although the postulates (KM?1) – (KM?6) and (KM•1) – (KM•6) may seem pretty
similar at first sight, the latter are capable of regulating changes in conditional be-
liefs adequately, whereas the former is not. Apart from considering epistemic states,
the main modification is the weakening of postulate (KM?4). Instead of states Ψ1

and Ψ2 with the same belief set, we demand equality concerning the whole state.
This is because belief sets Bel(Ψ) do not characterize a belief state uniquely. For a
more in-depth discussion as to why the less restrictive formulation of (KM?4) leads
to unintuitive results in terms of iteration, see [29] and [36] and Example 2.3.1.

The modified postulates (KM•1) – (KM•6) lead to a parallel characterization
of belief revision as the one presented in [60] by Katsuno and Mendelzon. First, we
generalize the notion of faithful assignments to belief states Ψ using TPOs.

Definition 2.3.1 (Faithful assignments for epistemic states [29]). Let Ψ be an epis-
temic state. A faithful assignment is a function that maps Ψ to a total preorder �Ψ

on possible worlds Ω, Ψ 7→�Ψ, s.t.
1. If ω, ω′ |= Bel(Ψ) then ω ≈Ψ ω

′

2. If ω |= Bel(Ψ) and ω′ 6|= Bel(Ψ) then ω ≺Ψ ω
′

3 If Ψ = Ψ′ then �Ψ=�Ψ′

Note that, in contrast to faithful assignments for formulas �ψ, Bel(Ψ) = Bel(Ψ′)

is not enough to yield equal TPOs �Ψ=�Ψ′ .
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The following notion of compatibility links faithful assignments with belief re-
vision operators and parallels the KM style Representation Theorem 2.2.1. Note
that Mod(Ψ) is an abbreviation of Mod(Bel(Ψ)) and therefore, models of Ψ • A are
precisely all minimal A-worlds in �Ψ.

Theorem 2.3.1 ([29]). The revision operator • satisifies (KM•1) – (KM•6) if and
only if there exists a faithful assignment that maps each epistemic state Ψ to a TPO
�Ψ such that

Mod(Ψ • A) = min(A,�Ψ).

In general, �Ψ is a plausibility (pre)ordering of possible worlds in Ω, which
represents the belief state Ψ as a TPO on Ω. So, ω �Ψ ω′ means that the agent
with belief state Ψ deems the world ω at least as plausible as ω′. It holds that �Ψ

satisfies the conditions 1 and 2 from Definition 2.3.1 and Mod(Ψ) = min(Ω,�Ψ)

[15]. For a propositional formula A and Ψ equipped with �Ψ, it holds that

Ψ |= A iff A ∈ Bel(Ψ) iff ω |= A for all ω ∈ min(Ω,�Ψ)

holds. Hence, each plausibility ordering on possible worlds �Ψ, representing a belief
state Ψ, induces a plausibility relation on formulas via:

A �Ψ B iff ωA �Ψ ωB for all ωA ∈ min(A,�Ψ) and ωB ∈ min(B,�Ψ) (2.3)

and therefore, displays a plausibility relation in the sense of Grove [42, 16]. Note
that, since Mod(⊥) = ∅, we get that

ω ≺Ψ ⊥ for all ω ∈ Ω, (2.4)

since the minimum of the empty set corresponds to the supremum within the re-
spective ordering. Note that, in this case, we refer to the representation of possible
worlds as full conjunctions over all variables in the corresponding signature, i.e., ω
is represented as the corresponding formula.

In this thesis, we call epistemic states that can be identified via plausibility
orderings �Ψ plausibilistic TPOs2 and refer to them either via Ψ or, exploiting the

2Such epistemic states are called revision models in [15].
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direct correspondence between Ψ and the underlying plausibilistic TPO, just use
�Ψ as identification of epistemic states. In cases where the corresponding epistemic
state Ψ for a plausibilistic TPO �Ψ is clear from the context or the specific epistemic
state Ψ is irrelevant we omit the index Ψ and write � instead of �Ψ. Note that
this direct correspondence between belief states Ψ and the corresponding TPOs �Ψ

is established by Theorem 2.3.1, which lays the foundation of all iterated belief
revision operators considered in this thesis. Thus, we assume that iterated belief
revision operators in the sense of Darwiche and Pearl map plausibilistic TPOs and
propositional sentences onto (revised) plausibilistic TPOs.

We now state some basic observations which connect plausibilistic TPOs and
conditional beliefs.

Lemma 2.3.2. A conditional (B|A) is accepted in an epistemic state Ψ represented
as a plausibilistic TPO �Ψ iff all minimal models of A satisfy B,

Ψ |= (B|A) iff for each ωA ∈ min(A,�Ψ) it holds that ωA |= B

This follows immediately from the Ramsey Test (2.2) and Theorem 2.3.1:

Ψ |= (B|A) iff Bel(Ψ • A) |= B,

i.e., Mod(Ψ • A) = min(A,�Ψ) ⊆ Mod(B).

The investigation of iterated revision led Darwiche and Pearl to conclude that
iteration is inherently linked to preserving conditional beliefs. They proposed four
additional postulates that rationally ensure conditional preservation and, thus, de-
fine iterated belief revision operator.

(C1) If C |= B then Ψ |= (D|C) iff Ψ •B |= (D|C)

(C2) If C |= B then Ψ |= (D|C) iff Ψ •B |= (D|C)

(C3) If Ψ |= (B|A) then Ψ •B |= (B|A)

(C4) If Ψ 6|= (B|A) then Ψ •B 6|= (B|A)

These postulates highlight the claim in minimization of changes in conditional be-
liefs for iterated revision operators within the framework proposed in [29]3. Also, it

3For a discussion of different notions of conditional preservation, see the original paper [29].
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holds that none of (C1) – (C4) are derivable from the AGM postulates [29]. (C1)
and (C2) state that no accommodating information B, independent of whether it
specifies or contradicts C, should destroy any conditional belief with C as a premise.
Postulate (C3) states that conditional beliefs, which lead to the conclusion that B
is plausible, should not be given up after revising with B. On the other hand, (C4)
states that revision with B should not lead to the acceptance of (B|A).

Via the regulation of conditional beliefs in postulates (C1) – (C4), it is possi-
ble to constrain the relationship between the TPOs �Ψ and �Ψ•A. Darwiche and
Pearl state the following representation theorem, which characterizes iterated belief
revision operators for faithful assignments.

Theorem 2.3.3 ([29]). Let Ψ be an epistemic state and �Ψ its corresponding faithful
assignment. Suppose that a revision operator satisfies (KM•1) – (KM•6). The
operator under a faithful assignment satisfies postulates (C1) – (C4) iff Ψ • A and
its corresponding faithful assignment �Ψ •A satisfy:

(DP1) If ω1, ω2 ∈ Mod(A), then ω1 �Ψ ω2 iff ω1 �Ψ•A ω2

(DP2) If ω1, ω2 6∈ Mod(A), then ω1 �Ψ ω2 iff ω1 �Ψ•A ω2

(DP3) If ω1 ∈ Mod(A) and ω2 6∈ Mod(A), then ω1 ≺Ψ ω2 if ω1 ≺Ψ•A ω2

(DP4) If ω1 ∈ Mod(A) and ω2 6∈ Mod(A), then ω1 �Ψ ω2 if ω1 �Ψ•A ω2

Each postulate (DP1) – (DP4) leads to the preservation of some part of the
prior ordering of worlds in the posterior ordering. Yet, some crucial parts are not
preserved. For ω1 |= A and ω2 |= A, if ω1 �Ψ ω2 (or ω1 ≺Ψ ω2) then the postulates
do not insist on ω1 �Ψ•A ω2 (or ω1 ≺Ψ•A ω2). An in-depth discussion of the rationale
behind this is discussed in [29]. In general, the addition of postulates that lead to
the complete minimization of changes in conditional beliefs is not desirable. In [29],
the authors provide examples showing that some changes are legitimate.

Furthermore, we state a common principle for propositional belief revision [63],
expressing that revisions with tautologies should not change the prior belief state.

Tautological Vacuity (TV) A revision operator • satisfies (TV) if it holds for
any epistemic state Ψ that

(TV) Ψ • > = Ψ. (2.5)
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This principle can be seen as a reasonable additional property to all aforementioned
revision operators4.

Iterated Belief Revision Operators for Propositions. The DP postulates for
conditional preservation (C1) – (C4) and the resulting characterization for TPOs �Ψ

in Theorem 2.3.3 were widely endorsed in the Belief Revision community [17, 13, 82].
Yet, they do not fully characterize iterated belief revision operators, and there have
been several approaches to strengthen the spirit of conditional preservation by pro-
viding concrete belief revision operators that obey the DP postulates, among them
operators presented in the original paper on iterated belief revision by Darwiche and
Pearl [29].

In [26], Chandler and Booth argue in favor of three well-known iterated belief re-
vision operators natural revision •n [15], restrained revision •r [13] and lexicographic
revision •` [82]. The authors show in [26] that these operators fit within the DP
framework but also satisfy some other desirable properties of iterated revision. They
call these operators elementary revision operators. For a more detailed discussion of
the additional postulates, see [26]. The following definition subsumes the semantic
definitions of each elementary operator.

Definition 2.3.2 (Elementary Revision Operators [26, 17, 13, 82]). Let Ψ be an
epistemic state associated with the plausibilistic TPO �Ψ and A ∈ L. The operators
natural revision •n [17], restrained revision •r [13] and lexicographic revision •`

[82] map �Ψ onto the corresponding revised TPO �Ψ•n A for natural revision, �Ψ•r A

for restrained revision and �Ψ•` A for lexicographic revision are defined as follows:

• x �Ψ•n A y iff (1) x ∈ min(A,�Ψ), or (2) x, y /∈ min(A,�Ψ) and x �Ψ y

• x �Ψ•r A y iff (1) x ∈ min(A,�Ψ), or (2) x, y /∈ min(A,�Ψ) and either (a)
x ≺Ψ y or (b) x ∼Ψ y and (x ∈ Mod(A) or y ∈ Mod(A))

• x �Ψ•` A y iff (1) x ∈ Mod(A) and y ∈ Mod(A), or (2) (x ∈ Mod(A) iff
y ∈ Mod(A)) and x �Ψ y.

4Note that, for the classical AGM resp. KM revision operators, (TV) applies solely to the
underlying belief sets.



32 2.3 Iterated Belief Revision

ab ab

ab

ab

ab ab

ab

ab

ab

ab

ab

ab

ab

ab

ab

ab

•n a •r a •` a

�Ψ

�Ψ•n a �Ψ•r a

�Ψ•` a

Figure 2.1: Revision of Ψ by A via elementary revision operators •n , •r and •` from
Definition 2.3.2.

The natural revision operator •n by Boutilier shifts the minimal A-worlds to
the lowermost level of plausibility while the relations between the remaining worlds
are kept. This is the most conservative change that still obeys the DP postulates
[13, 29]. Lexicographic Revision •` [82] on the other hand, makes all A-worlds more
plausible than the A-worlds while keeping the corresponding plausibility relations
between worlds in Mod(A) and Mod(A), i.e., the change is quite rigorous, and it is
the least conservative of the DP operators [13]. The restrained revision operator •` ,
introduced by Booth and Meyer [13], shifts all minimal A-worlds to the lowermost
layer of the revised TPO. The relative ordering is kept for the remaining worlds,
except for equally plausible A-worlds and A-worlds; those are split, s.t. the A-
worlds become strictly more plausible. The following example illustrates the revision
mechanism of the elementary revision operators from Definition 2.3.2.

Example 2.3.2. The boxes in Figure 2.1 represent epistemic states and the asso-
ciated TPOs over the signature Σ = {a, b}. It holds that the lower the world is
arranged within the box, the more plausible it is. We revise the TPO �Ψ by a via
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natural, restrained, and lexicographic revision. The posterior TPOs are depicted in
Figure 2.1. The natural revised TPO �Ψ•n a is similar to the prior plausibilistic TPO
�Ψ, except that the minimal a-world ab is shifted to the lowermost level. Among the
three posterior TPOs, the lexicographic revised TPO �Ψ•` a displays the most rigor-
ous change; here, all a-worlds are less plausible than all a-worlds. For the restrained
revised TPO �Ψ•r a, it holds that the minimal a-world is shifted to the lowermost
level and for ab and ab, which are equally plausible in the prior TPO, it holds that
ab is now strictly more plausible than ab. The example illustrates (some) gradations
in the change mechanism possible within the DP framework.

2.4 Conditionals and Epistemic States

In the previous section, we have seen that conditional beliefs, their modification,
their preservation, and the general task of belief revision are closely related to each
other. Now, we want to investigate the vital role of conditionals in the broader
context of different representations of epistemic states.

Conditionals. There have been several approaches to explain the notion of con-
ditionals (cf. [1, 120, 77, 84]) trying to define reasonable ways to connect antecedent
and consequent of a conditional (B|A). Probably the most famous account leads to
the conclusion that conditionals (B|A) express the notion that ‘If A holds, then it
follows plausibly that B holds’ [83]. Thus, they describe plausible relationships be-
tween antecedents and consequents. The Ramsey Test illustrates how conditionals
can be seen as inference rules which guide the process of belief revision; that is why
we sometimes refer to conditionals as conditional rules.

Most of the approaches, like e.g., [77, 83, 41], to defining a logic of conditionals
were driven by the paradox of material implication, which was firstly described by
C.I. Lewis in [76]. It concerns the fact that for any sentences A and B, the material
implication ‘If A, then B’ follows from ‘not A’ but also from ‘B’, and therefore we
can create true conditionals via true or false sentences irrespective of the content.
Thus, identifying conditionals with the corresponding material implication leads
to unintuitive results; for more, see Ramsey’s argumentation in [95]. Therefore,
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we consider them no longer classical valued for classical input, i.e., non-boolean
objects. In [30], de Finetti put forward the idea that conditionals are three-valued
logical entities which can be defined w.r.t. to an interpretation ω as follows:

J(B|A)Kω =


1 ω |= AB

0 ω |= AB

u ω |= A

, (2.6)

where u stands for undefined. Thus, conditionals can be seen as generalized indicator
functions (·|·) : Ω → {0, 1, u} on worlds. We call the formula AB the verification
and AB the falsification of the conditional (B|A). According to [30, 63], we say that
two conditionals (B|A) and (B′|A′) are conditionally equivalent, denoted by (B|A) ≡
(B′|A′), if they have the same verification and the same falsification behavior, i.e.,

AB ≡ A′B′ and AB ≡ A′B′.

Note that the conditional language is taken to include the propositional language
L by identifying a proposition A with the conditional (A|>) with a tautological
premise5.

Furthermore, it holds that for a conditional (B|A), the conditional (B|A) is
considered to be the strict negation of it since verification and negation are swapped.
At the same time, both remain undefined for precisely the same worlds.

Epistemic States. Via the generalized indicator function J·Kω, we are able to
evaluate conditionals with respect to possible worlds. However, we have seen in
Lemma 2.3.2 that to decide whether a conditional, as an entity, is accepted, we need
richer semantic structures like epistemic states. Epistemic states Ψ in the sense of
Halpern [48] enable us to give appropriate semantics to conditionals.

In [72], Kraus, Lehmann and Magidor used preferential relations to perform
non-monotonic reasoning. To model plausibility relations over possible worlds, pref-
erential relations have proven useful [35, 37]. However, in [72], the authors use a

5This identification is sufficient in the context of this thesis and widely accepted in the research
area [63, 119].
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broad definition of preferential relations, e.g., they do not exclude cyclic relations. In
this thesis, we focus on faithful total preorders �Ψ from Definition 2.3.1 to represent
Ψ semantically, and assume that each Ψ is equipped with such faithful assignments
�Ψ according to Definition 2.3.1. We have seen in Theorem 2.3.3 that such assign-
ments �Ψ are necessary and sufficient to guarantee the postulates (KM?1) – (KM?6)
in the context of belief revision, i.e., they display the fundamental meta-structures
for belief revision, which places them at the core of Belief Revision. For evaluating
conditionals and (iterated) belief revision operators in the context of this thesis, we
focus on qualitative and semi-quantitative preferential relations, which we describe
in the following.

Plausibilistic TPOs. Plausibilistic TPOs �Ψ are a common qualitative representa-
tion for iterated belief revision and have already been discussed in the context of
the DP framework in Section 2.3. They order worlds according to their plausibility,
where ω �Ψ ω′ means that the agent with belief state Ψ deems ω to be at least as
plausible as ω′, and as usual ω ≺Ψ ω′ holds if ω �Ψ ω′ but not ω′ �Ψ ω, and by
ω ≈Ψ ω′, we abbreviate that ω �Ψ ω′ and ω′ �Ψ ω holds. Each plausibilistic TPO
�Ψ on possible worlds induces a preference ordering on formulas as follows

A �Ψ B iff for all ωA ∈ min(A,�Ψ) and ωB ∈ min(B,�Ψ) ωA � ωB.

TPOs over possible worlds display a qualitative approach to belief representation,
as they do not use numbers to indicate plausibility or preference.

Technically, �Ψ is a binary relation on Ω and the belief set Bel(�Ψ) is defined
via the set of minimal worlds in �Ψ, s.t.

Bel(�Ψ) = Th({ω |ω �Ψ ω
′ for all ω ∈ Ω}).

The belief set of a plausibilistic TPO is defined by the minimal worlds in �Ψ. Thus,
the plausibility of a world ω is expressed as closeness to the belief set Bel(�Ψ). We
define the set of models Mod(�Ψ) = Bel(�Ψ), s.t. �Ψ|= A iff A ∈ Bel(�Ψ) which
is coherent with the definition of Ψ |= A on page 28.

Ranking Functions. Spohn introduced in [117, 119] ordinal conditional functions
(OCFs), also called ranking functions, which substantiate preference orderings on
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worlds with numerical ranks.

Definition 2.4.1 ([119]). Ordinal conditional functions (OCFs) or ranking func-
tions are functions κ that maps each possible world ω a plausibility rank, s.t.
κ : Ω→ N0 with κ−1({0}) 6= ∅.

It holds that κ assigns to each world ω and (im)plausibility rank κ(ω) ≥ 0, s.t.
the higher ω is ranked by κ, the less plausible it is. The normalization constraint
κ−1({0}) stipulates that there exist worlds with maximal plausibility, i.e., with rank
zero. For a propositional formula A ∈ L, the OCF ranking κ(A) is defined as

κ(A) = min{κ(ω) |ω |= A}, (2.7)

i.e., the plausibility of A is defined via minimal worlds satisfying A. Together with
the normalization constraint, this implies that for each A ∈ L, it holds that κ(A) = 0

or κ(A) = 0. For the contradiction ⊥, it holds that κ(⊥) = min{κ(ω) |ω |= ⊥} =∞,
since the minimum over the empty set equals ∞ in N. Furthermore, it holds that

κ(A ∨ B) = min{κ(ω) |ω |= A or ω |= B} = min{κ(A), κ(B)}. (2.8)

OCFs κ display a TPO on possible worlds, i.e., the notion of minimal worlds can
also be applied to OCFs. We notate sets of minimal worlds for Ω′ ⊆ Ω as follows:

min(Ω′, κ) = {ω ∈ Ω′ |κ(ω) 6 κ(ω′) for all ω′ ∈ Ω′}.

OCFs κ are suitable representations of an agent’s belief state, and the numerical
ranks correspond to degrees of disbelief [119]. Worlds an agent deems most plausible,
i.e., that are ranked zero, constitute κ’s belief set

Bel(κ) = Th(κ−1({0})) = {A ∈ L |ω |= A for all ω with κ(ω) = 0}.

An OCF κ accepts a formula A, κ |= A, iff κ(A) > 0 which is equivalent A ∈ Bel(κ).
Hence, A is believed iff A is disbelieved to some positive degree [119]. We define
Mod(κ) = Bel(κ), and it holds that κ |= A iff A ∈ Bel(κ).

Moreover, ranking functions are suitable representations of epistemic states [119]
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and each OCF κ induces a plausibilistic TPO �κ on Ω via

ω �κ ω′ iff κ(ω) 6 κ(ω′). (2.9)

Note, that �κ is a faithful assignment in sense of Darwiche and Pearl, i.e., satisfies
Definition 2.3.1 on page 27.

In [119], Spohn defined a conditionalization for OCFs analog to the classic condi-
tionalization of probability distributions. For A ∈ L, the conditionalized OCF κ|A
displays a ranking function on all models of A, s.t.

κ|A : Mod(A)→ N0 with κ|A (ω) = κ(ω)− κ(A). (2.10)

Note that, for a minimal A-model ωA ∈ min(A, κ), it holds that κ|A (ωA) = κ(ωA)−
κ(A) = κ(A)− κ(A) = 0 due to the minimality of ranks. Hence, each κ|A satisfies
Definition 2.4.1, i.e., displays an OCF. Ranking functions display a more concrete
approach to belief representation than abstract orderings of worlds like plausibilistic
TPOs. Yet, they are less burdened with many numbers than the most famous
fully quantitative approach to representing an agent’s epistemic state, probability
distributions, which are considered the most adequate representations of belief states
[45, 117]. Ranking functions provide a qualitative abstraction of probabilities and,
therefore, can be seen as semi-quantitative representations of epistemic states.

Moreover, OCFs provide us with the powerful arithmetic of natural numbers to
express plausibility or beliefs. Thus, they not only allow us to compare worlds resp.
formulas according to their plausibility but also investigate their relative distances.
Note that OCFs can have empty layers, i.e., κ(ω1) < r < κ(ω2), s.t. there exists no
world ω′ with κ(ω′) = r. Empty layers are a distinguishing feature between OCFs
and plausibilistic TPOs and contribute to the flexibility of their semi-quantitative
approach to belief representation. Although it is useful to introduce empty layers
within the plausibility ordering of ranking functions, it can sometimes be useful to
exclude them6.

Definition 2.4.2. We call an OCF κ convex if it has no empty layers, i.e., if for
6Some of the results in Part I rely on convex OCFs. Also, in [69] and [55], it is useful to consider

ranking functions that do not allow for empty layers.
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each rank r with 0 6 r 6 maxω∈Ω κ(ω), there exists a world ω with κ(ω) = r.

If two OCFs differ only concerning the position of their empty layers, we call
them equivalent. Formally, two OCFs κ1, κ2 are equivalent if for all ω1, ω2 ∈ Ω, it
holds that κ1(ω1) 6 κ1(ω2) iff κ2(ω1) 6 κ2(ω2).

Conditionals and Epistemic States Conditional beliefs and TPOs as represen-
tations of epistemic states for belief revision operators are closely connected since
both provide the necessary means to compare beliefs on a semantic level according
to their plausibility. Lemma 2.3.2 states that a plausibilistic TPO accepts or sat-
isfis a conditional (B|A), �Ψ|= (B|A), iff all minimal models of A satisfy B. This
provides us with the following equivalent acceptance condition for conditionals in
�Ψ

�Ψ|= (B|A) iff ωA |= B for ωA ∈ min(A,�Ψ) iff AB ≺Ψ AB.

Thus, �Ψ|= (B|A) holds if the verification of (B|A) is strictly more plausible than
the falsification. This translates directly to the OCF framework and it holds that

κ |= (B|A) iff ωA |= B for ωA ∈ min(A, κ) iff κ(AB) < κ(AB). (2.11)

We call a finite set of conditionals ∆ = {(Bi|Ai)}i=1,...,n a conditional belief base. The
study of conditional belief bases has been a fruitful field of research in the past (e.g.,
in [1, 89, 73, 63, 55]). It holds that a plausibilistic TPO satisfies or accepts ∆, i.e.,
�Ψ|= ∆, iff �Ψ|= (B|A) for all i = 1, . . . , n. And this notion of acceptance can be
easily applied to OCFs, s.t. κ |= ∆ iff κ |= (Bi|Ai) for all i = 1, . . . , n. We have seen
before that the acceptance of a conditional imposes restrictions on the underlying
epistemic state, and therefore, it is not trivial to check whether a set of conditionals
is consistent, i.e., whether there exists an epistemic state Ψ, s.t. Ψ |= ∆. Adams
defined in [1] a notion of tolerance for conditionals and sets ∆, and Goldszmidt and
Pearl presented a tolerance test in [40] based on this notion, which ultimately leads
to a consistency-test algorithm. In this thesis, we investigate conditional belief bases
in light of epistemic states and belief revision and rely on a handy (model-based)
definition of consistency for conditional belief bases. We say that ∆ is consistent iff
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there exists an epistemic state Ψ, s.t. Ψ is a model of ∆, i.e., Ψ |= ∆. This definition
is equivalent to the one presented in [1] resp. [40] according to Pearl [89]. Also, it
corresponds to the consistency of formulas in classical logic.

Throughout this thesis, we stick to the following common assumptions about
conditional belief bases ∆ = {(B1|A1), . . . , (Bn|An)} to avoid easy, but possibly
lengthy, case distinctions.

Uniqueness We assume that ∆ does not contain conditionally equivalent condi-
tionals, i.e., for all i, j ∈ {1, . . . , n}, (Bi|Ai) ≡ (Bj|Aj) implies i = j.

Global Consistency Each ∆ is consistent unless stated explicitly otherwise.

Next, we further investigate weak conditionals in the context of epistemic states.

Weak Conditionals. In Part II of this thesis, we make use of weak conditionals,
which have been considered a valuable extension to the framework of conditional
logic [32, 112, 109].

In general, (|D|C|) expresses the notion ‘If C, then D might be the case but D is
not plausible’, i.e., the acceptance of D is not guaranteed if C is accepted but might
be possible. So, it holds that weak conditionals implement negative conditional
information, expressing that the corresponding negated standard conditional (D|C)
does not hold [77]. This notion of negative information has been investigated in
[14] in the light of rational consequence relations defined by Gabbay and Makinson
[38, 78]. Note that declaring that (D|C) does not hold is certainly not the same as
declaring that the (contrary) conditional (D|C) holds. The acceptance of a weak
conditional expresses the notion that an agent does not believe in a conditional.
Weak conditionals as negative information are crucial in [32, 103]. And in [112],
we investigate a notion of relevance inherent to conditionals which can be expressed
using a set of standard and weak conditionals.

The evaluation of a weak conditional (|D|C|) corresponds to the three-valued
response behavior of interpretations ω in (2.6) of standard conditionals (D|C). We
distinguish between verification ω |= CD, falsification ω |= CD and neutrality
ω |= C. As for standard conditionals, to validate and further investigate (weak and
standard) conditionals, we need richer epistemic structures than plain propositional
interpretations [83, 16].
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A weak conditionals (|D|C|) is accepted in an epistemic state Ψ, represented by
�Ψ or an OCF κ, written as Ψ |= (|D|C|), if and only if Ψ 6|= (D|C), i.e.,

CD �Ψ CD resp. κ(CD) 6 κ(CD). (2.12)

For weak conditionals (|D|C|), the acceptance condition of standard conditionals
is weakened, and that is where the term actually comes from. The acceptance of
(|D|C|) allows for indifference between verification CD and falsification CD. In
this case both (D|C) and (D|C) fail to be accepted. As for standard conditional
belief bases, it holds that weak conditional belief bases ∆w = {(|Di|Ci|)}i=1,...,n are
consistent iff there exists a belief state Ψ which accepts it Ψ |= ∆w, i.e., Ψ |=
(|Di|Ci|) for i = 1, . . . , n. Due to the weakened acceptance condition that allows
for indifference between verification and falsification, it holds for a uniform OCF κu

with κu(ω) = 0 for all ω ∈ Ω, that κu |= ∆w, since κ(CiDi) = 0 = κ(CiDi) for all
i ∈ {1, . . . , n}. The OCF κu corresponds to a plausibilistic TPO �Ψ with just a
single layer.

Proposition 2.4.1. Each set ∆w = {(|Yi|Xi|)}i=1,...,n is consistent.

For mixed sets of conditionals, i.e., conditional belief bases consisting of both
standard and weak conditionals, we provided a consistency test algorithm in [107].
Weak conditionals introduce interesting dynamics to general conditional belief bases,
yet, the paper in [107] is somewhat technical, and we do not use mixed sets of
conditionals in this thesis. Therefore, we skip the in-depth discussion of [107].

2.5 Conditional Belief Revision

In this section, we motivate revision operators on epistemic states that take (sets of)
conditionals as input and discuss the fundamental principle of conditional preserva-
tion (PCP), which ensures that conditional beliefs are preserved in a rational way.
Then, we define c-revisions first for sets of (standard) conditionals and then for sets
of weak conditionals in the context of OCFs. C-revisions from [63] obey the (PCP)
and serve as a proof of concept in different ways in the course of this thesis.
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2.5.1 Motivation for Conditional Belief Revision

Starting from the classical propositional AGM revision, which takes deductively
closed belief sets K as a basis, Darwiche and Pearl recognized the need to broaden
the scope of Belief Revision to epistemic states Ψ to reflect an agent’s complex
attitudes, thoughts and preferences. Their account on iterated belief revision for
epistemic states has proven to align with not only the preservation of propositional
beliefs, as required by the principle of minimal change, but also with the preservation
of conditional beliefs to some extent [29, 15]. Conditional beliefs guide the revision
process implicitly, via the representation of epistemic states as preference relations
�Ψ, or explicitly, when given as a set of conditional beliefs, and strike down as a
paradigm of preserving conditional beliefs. In the DP framework, the preservation of
conditional beliefs for propositional revision is axiomatized via four postulates (C1)
– (C4) (cf. Section 2.3). This paradigm has been widely recognized as one of the key
features for designing rational revision operators (cf. [29, 13, 82, 15, 26]). However,
it is not particularly far to assume that new information might not only appear
in the form of a propositional sentence but also as a conditional belief itself, such
that the agent needs to revise with a new conditional belief, i.e., the investigation
of a rational revision operator for conditional revision displays a meaningful and
essential extension to the framework of Belief Revision.

Most approaches to conditional revision operators presented in the past (cf.
[81, 18, 27]) are somewhat based on propositional revision. An exception is the
highly general framework of c-revisions presented by Kern-Isberner in [63, 64]. C-
revisions provide a framework of belief revision on epistemic states represented as
ranking functions that enable us to incorporate new information in the form of (a
set of) conditionals, thus reflecting a newly acquired revision policy7. Note that, in
general, propositions A can be identified with conditionals (A|>) with tautological
antecedents (cf. Section 2.4). Thus conditional revision can be seen as a generaliza-
tion of revision with propositional beliefs.

7The notion of conditionals as revision policies are discussed in several works (cf. e.g., [15, 95])
and roots in philosophy, see [31] for an overview.
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2.5.2 The Principle of Conditional Preservation

To incorporate new conditional beliefs adequately Kern-Isberner proposed in [62]
several postulates for conditional revision, which subsume the DP postulates (C1)
– (C4) for the induced propositional operator. These postulates for conditional re-
vision axiomatize a fundamental principle of conditional preservation (PCP) which
was first uncovered by Kern-Isberner in [63] and fully axiomatized for Belief Revi-
sion in [64]. And in [65], a qualitative principle of conditional preservation (PCP)•

for iterated belief change was introduced. We recall the principle of conditional
preservation for OCFs (PCP)∗ [67] and (PCP)• from [65] via a less algebraic but
equivalent presentation from [70]. Note that the operator • refers to revision oper-
ators for qualitative epistemic states, like plausibilistic TPOs, whereas we use ∗ as
revision operators that can be applied to OCFs. Since the revision with (sets of)
conditionals can be seen as a generalization of propositional revision, we use the
same symbols to indicate belief revision with propositional resp. conditional input.

Let ∆ = {(B1|A1), . . . , (Bn|An)} be a set of conditionals, and let Ω̃1 = {ω1, . . . , ωk}
be a (multi)set of worlds, i.e., the worlds need not all be distinct. For each condi-
tional (Bj|Aj) ∈ ∆, we count the number of verifications and falsifications in the
multiset Ω̃1:

#Ver (Bj |Aj)(Ω̃1) = ||{ω ∈ Ω̃1 : ω |= AjBj}||

#Fals(Bj |Aj)(Ω̃1) = ||{ω ∈ Ω̃1 : ω |= AjBj}||,

where || · || counts the elements of multisets with multiplicity. With this notation,
the (PCP) for conditional OCF revision reads as follows [64, 67]:

(PCP)∗ Let ∗ be a revision operation for OCFs κ and ∆ = {(B1|A1), . . . , (Bn|An)}
a conditional belief set, s.t. κ∗ = κ ∗ ∆. If two multisets of possible worlds
Ω̃1 = {ω1, . . . , ωk} and Ω̃2 = {ω′

1, . . . , ω
′
k} with the same cardinality satisfy

#Ver (Bj |Aj)(Ω̃1) = #Ver (Bj |Aj)(Ω̃2) and #Fals(Bj |Aj)(Ω̃1) = #Fals(Bj |Aj)(Ω̃2)

for each conditional (Bj|Aj) ∈ ∆ then prior κ and posterior κ∗ = κ ∗ ∆ are
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related by

(κ(ω1)− κ(ω′
1)) + . . .+ (κ(ωk)− (κ(ω′

k))

= (κ∗(ω1)− κ∗(ω′
1)) + . . .+ (κ∗(ωk)− κ∗(ω′

k)).
(2.13)

The (PCP)∗ relies on the arithmetic OCFs are equipped with, but for qualitative
representations of epistemic states, like TPOs, we do not have addition and subtrac-
tion. Yet, to define a qualitative principle of conditional preservation, we can make
use of an immediate high-level consequence of (2.13): if the left-hand side of (2.13)
(corresponding to the prior differences) is negative/positive, then its right-hand side
(corresponding to posterior differences) must also be negative/positive. From this,
we can derive a qualitative PCP for conditional revision of TPOs [65]:

(PCP)• Let • be a revision operator for (qualitative) epistemic states Ψ = (Ω,

�Ψ) and conditional belief sets ∆ = {(B1|A1), . . . , (Bn|An)}. If two multisets
of possible worlds Ω̃1 = {ω1, . . . , ωk} and Ω̃2 = {ω′

1, . . . , ω
′
k} with the same

cardinality satisfy

#Ver (Bj |Aj)(Ω̃1) = #Ver (Bj |Aj)(Ω̃2) and #Fals(Bj |Aj)(Ω̃1) = #Fals(Bj |Aj)(Ω̃2)

for each conditional (Bj|Aj) ∈ ∆, then prior Ψ and posterior Ψ• = Ψ • ∆
satisfy the following two conditions:
(1) If for all i, 1 6 i 6 k, it holds that ωi �Ψ ω′

i, and there is at least one
i, 1 6 i 6 k such that ωi ≺Ψ ω′

i holds, then there is j, 1 6 j 6 k, such that
ωj ≺Ψ• ω′

j holds.
(2) If for all i, 1 6 i 6 k, it holds that ωi �Ψ• ω′

i, and there is at least one
i, 1 6 i 6 k such that ωi ≺Ψ• ω′

i holds, then there is j, 1 6 j 6 k, such that
ωj ≺Ψ ω

′
j holds.

The (PCP) is based solely on observing conditional structures like the number of
verifying resp. falsifying worlds without taking acceptance conditions of conditionals
into account. This focus on structural aspects of conditional preservation is the
reason for this principle’s broad applicability and flexibility within the context of
iterated belief revision.
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2.5.3 C-Revisions

C-revisions were introduced in [63] as a general class of revision operators for sets
of conditionals ∆ which obey the principle of conditional preservation while simul-
taneously satisfying the classical success condition for belief revision [64].

In this thesis, we develop a qualitative version of c-revisions capable of revising
plausibilistic TPOs with sets of conditional rules (cf. Section 6.4). But for now, we
focus on defining c-revisions for ranking functions and sets of conditionals, which
map a ranking function κ onto a c-revised ranking function κc = κ ∗c ∆, s.t. the
posterior OCF κ ∗c ∆ |= ∆. It holds that each c-revision is an iterated revision
operator for OCFs with sets of conditionals in the sense of Darwiche and Pearl, i.e.,
they satisfy the postulates (C1) – (C4) since (PCP)∗ implies the DP postulates [63].

Definition 2.5.1 (C-revisions for OCFs [63]). Let κ be a ranking function and
∆ = {(B1|A1), . . . , (Bn|An)} a set of conditionals. Then a c-revision of κ by ∆ is
an OCF κc = κ ∗c ∆ constructed from non-negative impact factors ηi assigned to
each (Bi|Ai) and an integer κ0 such that κc accepts ∆ and is given by:

κc(ω) = κ0 + κ(ω) +
∑

16i6m
ω�AiBi

ηi (2.14)

with κ0 = −min
ω∈Ω
{κ(ω) +

∑
16i6m,ω�AiBi

ηi}. (2.15)

It holds that κ0 given by (2.15) is a normalization factor ensuring that κc(ω) = 0

for at least one world ω, s.t. κc is a ranking function [64].
The definition of c-revisions in (2.14) displays a basic version of the one presented

in [64] since it solely punishes worlds falsifying conditionals in ∆ by adding an impact
factor ηi. The more sophisticated version from [64] also considers impact factors
rewarding worlds which verify conditionals in ∆. The full version of c-revisions
presented in [63], which considers not only impact factors for falsifying worlds but
also rewarding impact factors for verifying them, is fully characterized by (PCP)∗

and the success condition κc |= ∆. However, (2.14) from Definition 2.5.1 is enough
to provide a highly general framework for revising OCFs with sets of conditionals ∆
and thus is used more frequently in the context of conditional revision [70, 107, 112].
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It holds that the impact factors ηi, assigned to each (Bi|Ai), have to be chosen
so as to satisfy the following Success postulate for conditional revision:

(Success) κ ∗∆ |= ∆, i.e., κ ∗∆(AiBi) < κ ∗∆(AiBi) for all (Bi|Ai) ∈ ∆ (2.16)

Starting from the acceptance condition for conditionals in (Success), we get for the
c-revision κ ∗c ∆ = κc inequalities constraining the impact factors ηi ∈ N0 [64].
More precisely, via the definition of OCF-ranks for formulas via minimal worlds and
equation (2.14), the constraints κc(AiBi) < κc(AiBi) for 1 6 i 6 n expand to

min
ω|=AiBi

{κ0 + κ(ω) +
∑

ω|=AkBk

ηk}︸ ︷︷ ︸
(2.17a)

< min
ω|=AiBi

{κ0 + κ(ω) +
∑

ω|=AkBk

ηk}︸ ︷︷ ︸
(2.17b)

(2.17)

The left minimum ranges over models of AiBi, so the conditional (Bi|Ai) is not
falsified by any considered world. Thus ηi is no element of any sum (2.17a). As op-
posed to this, the right minimum ranges over the models of AiBi, so the conditional
(Bi|Ai) is falsified by every considered world. Thus ηi is an element of every sum in
(2.17b). With these deliberations, we can rewrite the inequalities to

min
ω|=AiBi

{κ0 + κ(ω) +
∑

ω|=AkBk
i 6=k

ηk} < ηi + min
ω|=AiBi

{κ0 + κ(ω) +
∑

ω|=AkBk
i 6=k

ηk} (2.18)

and therefore, we get

ηi > min
ω�AiBi

{
κ(ω) +

∑
j 6=i

ω�AjBj

ηj

}
− min

ω�AiBi

{
κ(ω) +

∑
j 6=i

ω�AjBj

ηj

}
. (2.19)

for all 1 6 i 6 n. These inequalities regulate conditional dependencies within ∆,
s.t. each conditional is treated adequately in the revision process. For the rest of
this thesis, we adopt the following convention about the impact factors ηi:

Nonnegativity We assume that for each c-revision the impact factors η take non-
negative values, i.e., η ≥ 0.

This convention expresses the notion that the falsification of a conditional should
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not increase the plausibility of the corresponding world. In general, c-revisions κ∗c∆

are not unique since the impact factors in (2.14) are defined via inequalities, thus,
cannot be chosen uniquely in general. Later, in Section 3.1.2, we deal with the
matter of choosing suitable impact factors more thoroughly, but for now, we keep
in mind that each c-revision κ ∗c ∆ refers to a family of suitable c-revisions, each of
which is uniquely defined by the corresponding vector of impact factors [9].

Furthermore, it holds that c-revisions satisfy (TV) from page 30 since > is not
falsified by any world ω, the sum in (2.14) is empty. We get that κ = κ ∗c > [64].

We illustrate c-revisions with sets of conditionals via the following example. This
example is an extended version from [64] of the famous penguin example, which is
well-known in the context of belief revision.

Example 2.5.1 (Adapted from [64]). We consider the ranking function κ from
Table 2.1 which represents an agents beliefs over the signature Σ = {b, f, k, p, w}
concerning the atoms b - birds, f - flying, k - kiwis, p - penguins, and w - winged
animals. Examining κ closely, we see that the agent accepts (among others) the
following inference rules concerning her knowledge of birds:

δ1 : (f |b) birds fly, δ2 : (w|b) birds have wings,

δ3 : (b|p) penguins are birds, δ4 : (b|k) kiwis are birds

We can conclude from κ that both representatives of birds – penguins and kiwis –
inherit properties from their superclass. Thus the agents believe that penguins fly
and kiwis have wings. Suppose now that she concludes that this false, i.e., penguins
do not fly and kiwis do not have wings. So, the agent revises her belief state κ by
these new information ∆ = {(f |p), (w|k)} and we compute the c-revision via (2.14)

κc(ω) = κ ∗c ∆(ω) = κ ∗c {(f |p), (w|k)}(ω)

= κ0 + κ(ω) +

ηp, ω |= pf

0, else
+

ηk, ω |= kw

0, else
.

Substantiating (2.19), we yield the following inequalities defining the impact factors



2 Belief Revision, Epistemic States and Conditionals 47

ηp for (f |p) and ηk for (w|k):

ηp > min
ω|=pf
{κ(ω) +

ηk, ω |= kw

0, else
} − min

ω|=pf
{κ(ω) +

ηk, ω |= kw

0, else
} = 1− 0 = 1

ηk > min
ω|=kw

{κ(ω) +

ηp, ω |= pf

0, else
} − min

ω|=kw
{κ(ω) +

ηp, ω |= pf

0, else
} = 1− 0 = 1

Note that any impact factor ηp resp. ηk which satisfies these inequalities, constitutes
a c-revision, but in order to keep numerical changes minimal, we choose η?p = 2

and η?k = 2. Note that the additional superscript indicates the specific choice of an
impact factor satisfying the inequality defining it. For the normalization constant
κ0, we yield via (2.15), since

κ0 = min
ω∈Ω
{κ0 + κ(ω) +

ηp, ω |= pf

0, else
+

ηk, ω |= kw

0, else
} = κ(pbfwk) = 0,

i.e., no further normalization is necessary. The schematic c-revised OCF κc = κ∗c∆

and the c-revision κ? employing η?p resp. η?k is shown in Table 2.1.
It holds that κc still accepts the conditionals (f |b), (w|b), (b|p) and (w|k). Note that
the new information that penguins do not fly resp. that kiwis do not have wings might
cast doubts on both penguins and kiwis, being birds. However, the conditionals (b|p)
and (w|k) are inscribed in κ with sufficient inferential strength, s.t. they do not get
lost during revision. This illustrates how c-revisions properly deal with conditional
interrelationships.

We consider the special case of c-revisions with a single conditional (B|A), which
is helpful in various occasions in this thesis. Compared to the general revision schema
of c-revisions, a c-revision with a single conditional is pretty simple, and from (2.14),
(2.15) and (2.19), we obtain

κ ∗c (B|A)(ω) = −κ(A ∨ B) + κ(ω) +

η, ω |= AB

0, ω |= A ∨ B
(2.20)
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ω ∈ Ω κ κc = κ ∗c ∆ κ? ω ∈ Ω κ κc = κ ∗c ∆ κ?

pbfwk 0 κ0 + κ(ω) + ηp + ηk = 4 pbfwk 0 κ0 + κ(ω) + ηp = 2
pbfwk 1 κ0 + κ(ω) + ηp = 3 pbfwk 1 κ0 + κ(ω) + ηp = 3
pbfwk 1 κ0 + κ(ω) + ηk = 3 pbfwk 1 κ0 + κ(ω) = 1
pbfwk 2 κ0 + κ(ω) = 2 pbfwk 2 κ0 + κ(ω) = 2
pbfwk 4 κ0 + κ(ω) + ηp + ηk = 8 pbfwk 2 κ0 + κ(ω) + ηp = 4
pbfwk 4 κ0 + κ(ω) + ηp = 6 pbfwk 2 κ0 + κ(ω) + ηp = 4
pb fwk 4 κ0 + κ(ω) + ηk = 6 pb fwk 2 κ0 + κ(ω) = 2
pb fwk 4 κ0 + κ(ω) = 4 pb fwk 2 κ0 + κ(ω) = 2
pbfwk 0 κ0 + κ(ω) + ηk = 2 pbfwk 0 κ0 + κ(ω) = 0
pbfwk 1 κ0 + κ(ω) = 1 pbfwk 1 κ0 + κ(ω) = 1
pbfwk 1 κ0 + κ(ω) + ηk = 3 pbfwk 1 κ0 + κ(ω) = 1
pbfwk 2 κ0 + κ(ω) = 2 pbfwk 2 κ0 + κ(ω) = 2
pbfwk 2 κ0 + κ(ω) + ηk = 4 pbfwk 0 κ0 + κ(ω) = 0
pbfwk 2 κ0 + κ(ω) = 2 pbfwk 0 κ0 + κ(ω) = 0
pb fwk 2 κ0 + κ(ω) + ηk = 4 pb fwk 0 κ0 + κ(ω) = 0
pb fwk 2 κ0 + κ(ω) = 2 pb fwk 0 κ0 + κ(ω) = 0

Table 2.1: Ranking function κ and c-revised ranking function κc resp. κ? from
Example 2.5.1.

with κ0 = −κ(A ∨ B) as normalization constant. As inequality constraining the
corresponding impact factor η we get

η > κ(AB)− κ(AB). (2.21)

This inequality displays a reduction of (2.19) for cases when we revise with just a
single conditional. Usually, for c-revisions with sets of conditionals, we must pay
close attention to interactions with other conditionals, expressed in the sums within
the minima defining general impact factors ηi in (2.19). For κ∗c (B|A) we can single
out a unique minimal (in terms of the impact factors) c-revision by choosing

ηm = κ(AB)− κ(AB) + 1. (2.22)
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The following proposition shows that the replacement of the general normalization
constant κ0 in (2.20) by −κ(A ∨ B) is correct.

Proposition 2.5.1. For the c-revision in (2.20), it holds that κ0 = −κ(A ∨B).

Proof. Via (2.15), it holds that κ0 = −min{κ(A ∨ B), κ(AB) + η} and we have to
show that κ(A ∨ B) < κ(AB) + η holds. Due to the properties of OCFs (2.7) and
(2.8), and the constraints defining η in (2.21) it holds that

κ(A ∨B) =min{κ(AB), κ(AB), κ(AB)} 6 κ(AB)

< κ(AB) + κ(AB)− κ(AB) + 1 6 κ(AB) + η

Thus, it holds that κ0 = −κ(A ∨ B).

We have already seen that c-revisions allow us to revise with sets of condition-
als. Now, we broaden the scope of the c-revision operator ∗c towards sets of weak
conditionals. In Section 2.1, we discussed the acceptance condition for weak con-
ditionals and standard conditionals for ranking functions κ and saw that both are
pretty similar, except for the fact that the first one allows for indifference towards
the plausibility of verification vs. falsification, while the latter does not.

In [63], the inequalities defining the impact factor ηi for a revision with a set of
standard conditionals are derived from the (Success)-condition via the considerations
we stated in (2.17) and (2.18), eventually leading to (2.19). For a set of weak
conditionals ∆w = {(|Di|Ci|)}, the (Success)-condition for conditional revision is
weakened in the same manner as the acceptance condition for conditionals in (2.11)
vs. the acceptance condition for weak conditionals (2.12) and we get:

(|Success|) κ ∗∆w |= ∆w, i.e.,

κ ∗∆w(CiDi) 6 κ ∗∆w(CiDi) for all (|Di|Ci|) ∈ ∆w
(2.23)

Instead of demanding for strict inequalities, we allow for equality between verifi-
cation and falsification. The weakened condition (|Success|) leads to the following
definition of c-revision for sets of weak conditionals.

Definition 2.5.2 (C-revisions with weak conditionals for OCFs). Let κ be a ranking
function and ∆w = {(|D1|C1|), . . . , (|Dn|Cn|)} a set of weak conditionals. Then a
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c-revision of κ by ∆w is an OCF κc
∆w = κ ∗c ∆w constructed from non-negative

integers ηi assigned to each (|Di|Ci|) and an normalization constant κ0 such that the
OCF κc

∆w accepts ∆w and is given by

κc
∆w(ω) = κ0 + κ(ω) +

∑
16i6m
ω�CiDi

ηi (2.24)

with κ0 = −min
ω∈Ω
{κ(ω) +

∑
16i6m,ω�CiDi

ηi}. (2.25)

and the following inequalities constraining ηi for all 1 6 i 6 n:

ηi ≥ min
ω�CiDi

{
κ(ω) +

∑
j 6=i

ω�CjDj

ηj

}
− min

ω�CiDi

{
κ(ω) +

∑
j 6=i

ω�CjDj

ηj

}
. (2.26)

Note that the inequalities for ηi follow from (|Success|) in (2.23) in the same
manner as the inequalities for standard c-revisions follow from (Success) in (2.16).
Thus, c-revisions with weak conditionals correspond to standard c-revisions from
(2.14), except that the inequalities constraining the impact factors are not strict. We
continue the penguin Example 2.5.1 to illustrate c-revisions with weak conditionals.

Example 2.5.2 (Continue Example 2.5.1). We consider the c-revised OCF κc from
Example 2.5.1, where the agent now believes that penguins and kiwis are birds, but
penguins do not fly and kiwis do not have wings. Now, the agent learns something
about a small island where a small population of a special class of penguins, so-called
super-penguins (s), live. Since these birds are also penguins, the agent naturally
assumes that they cannot fly. A representation of the agent’s belief state via the
OCF κw over the signature Σw = {p, f, s} can be found in Table 2.2 and it holds
that κw |= {(f |p), (p|s), (f |s)}. To shorten the matter, we neglect the beliefs about
birds, kiwis, and wings.
Now, the agent learns that super-penguins are famous because some can fly. Thus,
she weakens her beliefs about the flight capability of super-penguins so that super-
penguins might fly, and she no longer accepts the rule (f |s). This corresponds to
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ω ∈ Ω κw κc
w κ?w ω ∈ Ω κw κc

w κ?w
pfs 1 κ0 + κ(ω) = 1 pfs 2 κ0 + κ(ω) = 2
pfs 1 κ0 + κ(ω) = 1 pfs 2 κ0 + κ(ω) = 2
pfs 0 κ0 + κ(ω) + ηs = 1 pfs 1 κ0 + κ(ω) + ηs = 2
pfs 0 κ0 + κ(ω) = 0 pfs 2 κ0 + κ(ω) = 2

Table 2.2: Ranking function κw and c-revised ranking function κc
w resp. κ?w from

Example 2.5.1.

the c-revision κ ∗c (|f |s|), which is given via (2.24) as follows

κc
w(ω) = κw ∗c (|f |p|) = κ0 + κ(ω) +

ηs, ω |= sf

0, else
.

Since we revise with only a single weak conditional, we do not have to consider
possible interactions between conditionals, when computing the impact factor ηs for
(|f |s|) and the inequality in (2.26) reduces to

ηs ≥ min
ω|=sf
{κ(ω)} − min

ω|=sf
{κ(ω)} = 1− 0 = 1.

For the normalization constant κ0, it holds that

κ0 = min
ω∈Ω
{κ(ω) +

ηs, ω |= sf

0, else
} = κ(pfs) = 0.

The schematic c-revised OCF κc
w can be found in Table 2.2 as well as the correspond-

ing c-revision κ?w with η?s = 1. It holds that κc
w still accepts that in general, penguins

do not fly, i.e., κc
w |= (f |p), and that super-penguins are penguins κc

w |= (p|s), but
is now indifferent towards whether super-penguins fly or not, i.e., κc

w 6|= (f |s) and
κc

w 6|= (f |s).

Note that the main difference between c-revisions with standard conditionals
and c-revision with weak conditionals is that standard c-revisions satisfy the KM
postulates for belief revision (KM•1) – (KM•6), i.e., display real revision operators
and together with (PCP)∗ this suffices to make them iterated belief revision opera-
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tors. For c-revision with weak conditionals, it holds that they display a revision with
weaker information and therefore do not ensure the acceptance of standard condi-
tionals, which is why the DP framework for Belief Revision is not the right choice
to characterize the change mechanism of c-revisions with weak conditionals. In the
following subsection, we demonstrate how c-revisions with weak conditionals can
still be incorporated into the iterative belief change framework for belief contraction
as opposed to belief revision.

2.5.4 C-Revisions and Iterated Contraction

In this subsection, we clarify the relation between c-revisions with (sets of) weak
conditionals and belief contraction operators that can be applied to total preorders,
which might be used again for contraction, so-called iterated contraction operators.

Compared to iterated belief revision, iterated contraction operators are less ex-
amined. Even though special aspects of iterated contraction were considered in the
past (cf. [118, 80, 53, 94]), Caridroit, Konieczny, and Marquis in [24] were first to
provide a set of propositional contraction postulates (KM−1) – (KM−7) for con-
traction operators − that assign posterior epistemic states Ψ−C to an initial state
Ψ and C ∈ L in the style of the KM postulates for belief revision (cf. Section 2.3):

(KM−1) Bel(Ψ) |= Bel(Ψ − C)

(KM−2) If Bel(Ψ) 6|= C, then Bel(Ψ − C) |= Bel(Ψ)

(KM−3) If Bel(Ψ − C) |= C, then C ≡ >

(KM−4) Bel(Ψ − C) ∧ C |= Bel(Ψ)

(KM−5) If C ≡ D, then Bel(Ψ − C) ≡ Bel(Ψ − D)

(KM−6) Bel(Ψ − (C ∧D)) |= Bel(Ψ − C) ∨ Bel(Ψ − D)

(KM−7) If Bel(Ψ − (C ∧D)) 6|= C, then Bel(Ψ − C) |= Bel(Ψ − (C ∧D))

For a detailed explanation of the corresponding meaning we refer to [24]. In [71]
Konieczny and Pino Pérez [71] stated the following KM style characterization of
contraction operators satsifying (KM−1) – (KM−7) in terms of faithful preorders:

Theorem 2.5.2 ([71]). A contraction operator − that assigns a posterior epistemic
state Ψ − C to a prior state Ψ and a proposition C fulfills (KM−1) – (KM−7) iff
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there exists a faithful assigment �Ψ for Ψ s.t. for C ∈ L it holds that

Bel(Ψ− C) = Bel(Ψ) ∪min(C,�Ψ). (2.27)

Similar to Theorem 2.2.1 for belief revision, the above characterization is in-
sufficient to ensure intuitive, iterative belief contraction. This problem has been
addressed in [71], and the authors proposed a set of (semantic) DP style postulates
for iterated contraction operators. However, in [67] Kern-Isberner, Bock, Sauerwald,
and Beierle showed that the DP style postulates for iterated contraction proposed
in [71] in the context of OCFs is implied by the principle of conditional preservation
(PCP)∗ together with (KM−1) – (KM−7) and the following natural constraint for
contraction

κ− C(ω) ≥ κ(ω) for all ω |= C,

i.e., the intuition that under contraction by C, models of C should not be made
more plausible (cf. Theorem 9 in [71]). Note that in [67], (PCP)∗ is formulated for a
general change operator on OCFs instead of a revision operator ∗ in order to make it
applicable to the case of belief contraction; apart from that, there are no differences
to the formulation of (PCP)∗ from page 43. Thus, in the presence of an additional
intuitive constraint and (KM−1) – (KM−7), a change operator satisfying (PCP)∗

displays an iterated contraction operator.
Now, we turn to c-revisions with sets of weak conditionals. In (2.12) on page 40,

we have seen that κ |= (|D|C|) is equivalent to κ 6|= (D|C), i.e., the acceptance of a
weak conditional (|D|C|) necessarily implies the non-acceptance of designated stan-
dard conditional (D|C)8. So, for a revision operator ∗ for weak conditionals, which
satisfies the weakened success (|Success|) on page 49, there exists a direct correspon-
dence between the revisions with the set of weak conditionals ∆w = {(|Di|Ci|)}i=1,...,n

and the contraction, in the sense of non-acceptance, of the corresponding set of
negated conditionals ∆ = {(Di|Ci)}i=1,...,n. C-revisions with weak conditionals sat-
isfy (PCP)∗ [112]. And it is even valid that revision with weak conditionals displays
iterated contraction operators. This follows immediately from a special iterated

8From this perspective weak conditionals can be seen as negative information, i.e., information
about conditionals that do not hold. This notion of weak conditionals as negated information is
more thoroughly discussed in [32, 108] and in a more general form in [14] for rational closure.
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contraction operator, called type β c-contraction proposed in [67], which matches
our definition of c-revisions with weak conditionals.

To summarize, while c-revisions with standard conditionals display iterated be-
lief revision operators in the sense of Darwiche and Pearl, c-revisions with weak
conditionals display iterated contraction operators. This versatility in the change
mechanism is possible due to the flexible approach of c-change via impact factors,
which depend on the type of conditionals and their respective interaction in the
input information.





Part I

The Kinematics Principle in Belief
Revision





Chapter 3

Introduction to Part I

One of the core strengths of how we revise our beliefs as human reasoners is that
we can distinguish between different contexts and, in the light of new information,
change our beliefs concerning this specific context. For example, suppose we receive
the following information about a party next weekend: if the weather is fine, a
barbecue can be expected; if it is raining, the host will serve a pasta buffet. The
weather serves as the context in which we process the new information. This kind of
contextual information can be modeled as conditionals, where the premise provides
the context for the consequent, in this case, the weather being good or bad. Now,
in the case of mutually exclusive resp. disjoint contexts, to which we refer from now
on as cases, it makes sense to assume that the revision with the new information
concerning one of these exclusive contexts should be independent of the revision of
the remaining state. If the new input naturally decomposes into cases, only parts of
the belief state concerning this case should be relevant for the revisions and revised
accordingly. We can take this a step further and suppose that we learn that some
of these disjoint scenarios are more plausible than others. The posterior plausibility
of the case should not affect the revision with the conditional information related to
it. More precisely, we investigate the following advanced belief revision problem1:

(CondCS) Let Ψ be an epistemic state represented as a total preorder �Ψ on
possible worlds Ω. Let A1, . . . , An be exhaustive and exclusive propositions,
i.e., cases, and let ∆ = ∆1 ∪ . . .∪∆n be a set of conditionals, with subsets ∆i

1The acronym CondCS abbreviates “Conditional Case Splitting”.

57



58

containing conditionals whose premises imply Ai, and let S =
∨
j∈J Aj with

∅ 6= J ⊆ {1, . . . , n}. How should Ψ be revised by ∆ and S in a rational way to
yield a posterior state Ψ•(∆∪{S}) (also represented by a total preorder) such
that conditional beliefs in Ψ and ∆ are treated adequately, and s.t. conditional
revised beliefs given Ai are unaffected by the information provided by S?

Different cases are represented by the (exclusive and exhaustive) propositions Ai’s,
which induce a partition of ∆, s.t. the ∆i’s provide new information referring (only)
to the individual cases. Moreover, S expresses some additional information present-
ing a selection of more plausible cases.

The problem (CondCS) is challenging for several reasons. First, we need to find
a way to focus on the specific case in which the new information comes into play,
and then, we need to revise with a set of conditionals and a propositional formula
simultaneously. The Kinematics principle we propose in this part of the thesis
employs the concept of conditionalization to focus on a specific part of the belief
state, i.e., models of a specific case. Note that via conditionalization, we introduce
a notion of locality for the epistemic state because it enables us to specify which
parts of the belief state we focus on during the revision2.

Our investigations and the results presented in the following chapters are mostly
driven by the following research questions:

• Is the set of exclusive and exhaustive formulas A1, . . . , An unique for each set
∆? If not, how can we compare them, and is there a best choice for these sets
which maximizes the benefits of the Kinematics principle?

• How do we define the Kinematics principle for OCFs, and does a revision
operator for OCFs exist that is capable of satisfying it? Are there possible
implications of the Kinematics principle for propositional revisions, at least in
special cases? And is there a way to reconstruct the revision with the whole
set ∆ just using the local revisions with subsets ∆i ⊆ ∆?

• To provide a rational solution to (CondCS), we crucially need a concept con-
ditionalization and a conditional revision mechanism. The semi-quantitative

2Note that this notion of locality we use in this thesis is based on the semantics of epistemic
states, and there are several other ways to define a concept of locality for Belief Revision (cf. e.g.
[28, 68])



3 Introduction to Part I 59

framework of OCFs provides both of these, yet in the qualitative framework,
we still need those. An intuitive idea would be to transfer those concepts from
the OCF framework to the framework of plausibilistic TPOs. So, how do we
define conditionalization for plausibilistic TPOs rationally? And how do proper
transformation operators from plausibilistic TPOs to OCFs and vice versa look
that fully comply with conditionalization and revision even to the smallest level
of detail? Can these transformation operators be used to transfer c-revisions
with sets of conditionals to qualitative frameworks of belief representation?

• After defining a concept of conditionalization for the qualitative framework
and proper transformation operators, we still need to transfer the Kinematics
principle from the OCF framework to qualitative TPOs. How does a Quali-
tative Kinematics principle (QK) look? Do qualitative c-revisions satisfy this
advanced principle?

• How is the Kinematics principle applicable for other conditional revision op-
erators, like e.g., the ones presented by Chandler and Booth in [27]?

In the following section, we present formal preliminaries for the results in this
part. We start with some general notions and definitions in Section 3.1.1 and then
present strategies for c-revision in Section 3.1.2, which play a significant role in the
methodological realization of our results. It holds that the Kinematics principle is
one solution to (CondCS) and there are several approaches to revising an agent’s
beliefs w.r.t. to specific contexts presented in the past; we present some of them in
Section 3.2, which summarizes some related work. The following chapters of this
part are structured in consecutive organized chapters:

Chapter 4 We investigate a crucial prerequisite forming the setting in which the
Kinematics principle comes into play. In Section 4.1, we define sets of exclusive
and exhaustive cases A1, . . . , An, which take on a unique role in our following
investigations and are useful to define cases for the conditional information
given in ∆. Furthermore, we introduce a refinement and specificity property
in Section 4.2, which enables us to compare different sets of exclusive and
exhaustive cases for a set ∆ and we present an algorithm that computes the
finest splitting of premises for an arbitrary set ∆.
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Chapter 5 In this chapter, we present the Kinematics principle in the context
of OCFs and show that c-revisions fully realize it in Section 5.1. Then, in
Section 5.2, we consider a special setting of the Kinematics principle where
the premises of the conditionals in ∆ are equivalent to one of the exclusive
and exhaustive cases A1, . . . , An, which enables us to redefine revisions with
conditionals as propositional revisions for conditionalized OCFs. Concluding
our investigations of the Kinematics principle for OCFs, we show in Section
5.3 that via the application of an intuitive merging operator, we can set up a
globally c-revised OCF from the corresponding conditionalized and c-revised
local OCFs.

Chapter 6 We present the Kinematics principle in the context of plausibilistic
TPOs. The following Sections 6.2 and 6.3 are dedicated to defining and inves-
tigating crucial new concepts and tools, such as a qualitative conditionalization
and a fully compatible transformation between plausibilistic TPOs and OCFs,
leading to qualitative c-revisions. In Section 6.4, we show that these, just like
their semi-quantitative counterparts, satisfy the Kinematics principle, at least
for special cases. In the last section of this part, we first analyze qualitative
c-revision with a single conditional resp. with the material implication and
relate both of them to each other. This provides ground for the following
investigation of the (QK) in the context of the conditional revision operator
defined by Chandler and Booth in [27].

Bibliographic Remark. The contents of this part are based on joint work with
Gabriele Kern-Isberner and Christoph Beierle [107, 111, 70] (see Section 1.3).

3.1 Formal Preliminaries for This Part

We introduce some notations and formal preliminaries that are relevant to this part
of the thesis.
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3.1.1 Definitions and Notations

Throughout the following investigations in this part, we consider plausibilistic TPOs
over Ω as qualitative representations of epistemic states. Especially in the light of
conditionalization, we consider plausibilistic TPOs over subsets Ω̃ of Ω. In these
cases, all definitions and notations we stated previously apply to subsets Ω̃ of Ω

accordingly. Moreover, to guarantee correspondence between conditionalization for
ranking functions and for TPOs to a certain degree, an additional convexity property
for TPOs and OCFs will prove useful.3 In contrast to TPOs, OCFs can have empty
layers. However, if they do not have empty layers, we call them convex (cf. Definition
2.4.2 on page 37). For TPOs, we define convexity as follows:

Definition 3.1.1 (�Ψ-convex). A subset Ω̃ ⊆ Ω is called �Ψ-convex if for all
ω1, ω2 ∈ Ω̃ with ω1 �Ψ ω2, the following holds: if ω1 ≺Ψ ω

′ ≺Ψ ω2 with ω′ 6∈ Ω̃, then
there is ω3 ∈ Ω̃ such that ω3 ≈Ψ ω

′. A TPO Ψ is convex with respect to A if Mod(A)
is �Ψ-convex.

Subsets of Ω which stretch over the layers of�Ψ “without gaps”, i.e., a world from
Ω̃ can be found in each layer, are called convex. Thus, the basic idea of convexity
for TPOs and OCFs is the same. We give an example to illustrate the convexity
property for TPOs resp. OCFs:

Example 3.1.1 (Convexity of TPOs and OCFs). The TPO Ψ : abc ≺ abc, abc, abc,

abc ≺ abc, abc, abc is convex with respect to formulas A = a and A = a, and also
with respect to Ω̃ = {abc, abc, abc}. Hence, Ω̃ is �-convex, whereas Ω′ = {abc, abc}
is not. The OCF κ with κ(abc) = 0, κ(abc) = κ(abc) = κ(abc) = κ(abc) = 1

and κ(abc) = κ(abc) = κ(abc) = 2 is also convex. Note that κ arises from Ψ by
numbering the layers in Ψ.

For the consecutive section on related work, we need some basic definitions from
probability theory. A probability distribution P is a full quantitative representation
of an epistemic state [48]. Then, probabilistic facts are propositional formulas A[x]
equipped with a probability x ∈ [0, 1]. A probability distribution P satisfies A[x],
denoted as P |= A[x], iff P (A) = x. Similarly, probabilistic conditionals (Y |X)[x]

3In [70], this property was defined under the name coherence property.
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are conditionals equipped with a probability x ∈ [0, 1] and P models (Y |X)[x],
P |= (Y |X)[x], iff P ((Y |X)) = P |X (Y ) = x.

To not trivialize the revision task, we presuppose that the conditional belief
sets ∆ considered in this part are always consistent. Also, we do not use weak
conditionals in this part and thus always refer to sets of standard conditionals ∆.
Furthermore, we consider different types of revision operators for different epistemic
states. For general epistemic states, in our framework represented by plausibilistic
TPOs, we use • to notate the conditional revision Ψ • ∆. For quantitative and
semi-quantitative belief representation frameworks, like probability distributions or
ranking functions, we use ∗ to notate the (conditional) revision operator.

3.1.2 Strategies for C-Revisions

We motivate and introduce strategies for c-revision, allowing us to adapt and select
specific c-revision according to the (disjoint) context of the revision4. A proof of
concept for the Kinematics principle requires a case-sensitive revision mechanism.
We show that strategies are crucial for ensuring coherence for c-revisions across
different revision scenarios.

C-revisions provide a highly general framework for revising ranking functions by
sets of conditionals while respecting the principle of conditional preservation (PCP)∗

(cf. Subsection 2.5.2) [64]. We recall the basic definition of c-revisions from (2.14)
on page 44

κ ∗c ∆(ω) = κc(ω) = κ0 + κ(ω) +
∑

16i6m
ω|=XiBi

ηi,

where κ0 is a normalization constant and ηi are impact factors for each conditional
(Bi|Xi) added to worlds falsifying the corresponding conditional in ∆ and they have
to satisfy (2.19) from page 45. We refer to Section 2.5.3 for a detailed discussion of
the inequalities and their derivation. The impact factors ηi display the characteris-
tic parameters of a c-revision. We present functions, called strategies for c-revision,

4Some concepts and results presented in this subsection are similar to those in [6] where c-
inferences were examined. However, here we focus on strategies in the context of c-revision that
were first introduced in [111] (cf. Section 1.3)
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that map each revision problem to a single vector of impact factors. These strate-
gies enable us to make the general concept of c-revision usable in an elegant and
axiomatic way. The possible values for the impact factors ηi can be specified by a
constraint satisfaction problem.

Definition 3.1.2 (CR(κ,∆), cr(κ,∆)i). Let κ be an OCF and ∆ = {(X1|B1), . . . ,

(Xm|Bm)} a set of conditionals. The constraint satisfaction problem for c-revisions
of κ by ∆, denoted by CR(κ,∆), is given by the set of constraints cr(κ,∆)i, for
i ∈ {1, . . . ,m}:

(cr(κ,∆)i) ηi > min
ω|=XiBi

{
κ(ω) +

∑
j 6=i

ω|=XjBj

ηj

}
− min

ω|=XiBi

{
κ(ω) +

∑
j 6=i

ω|=XjBj

ηj

}
(3.1)

where the ηi are constraint variables taking values in N.

For a constraint satisfaction problem CSP, the set of solutions is denoted by
Sol(CSP). A solution of CR(κ,∆) is an m-tuple #»η = (η1, . . . , ηm) ∈ Nm. Thus,
with Sol(CR(κ,∆)) we denote the set of all solutions of CR(κ,∆). For any #»η ∈ Nm,
the induced c-revision κc as defined in (2.14) is denoted by κc

#»η .

Proposition 3.1.1 (Soundness and completeness of CR(κ,∆)). Let κ be an OCF
and ∆ = {(X1|B1), . . . , (Xm|Bm)} be a set of conditionals.

• If #»η ∈ Sol(CR(κ,∆)) then κc
#»η is a c-revision of κ by ∆ with κc

#»η |= ∆.

• If κc is a c-revision of κ by ∆ then there is a vector #»η ∈ Sol(CR(κ,∆)) such
that κc = κc

#»η .

The proof of Proposition 3.1.1 is a direct consequence of the propositions pre-
sented in [63]. Since c-revision and the impact factors defined by (3.1) provide a
general schema for revision operators, many c-revisions are possible. Nevertheless,
it is useful to impose further constraints on the parameters ηi to further improve
the results of c-revisions. For instance, one option is to take Pareto-minimal ηi sat-
isfying (3.1) ensuring that the resulting OCF ranks worlds as plausible as possible,
cf. [7]. To impose further restrictions on the impacts ηi determining a c-revision, we
employ selection strategies similar to the ones presented in [66, 9].
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Definition 3.1.3 (Selection strategy σ, strategic c-revision ∗σ). A selection strategy
(for c-revisions) is a function

σ : (κ,∆) 7→ #»η

assigning to each pair of an OCF κ and a (consistent) set of conditionals ∆ an impact
vector #»η ∈ Sol(CR(κ,∆)). If σ(κ,∆) = #»η , the c-revision of κ by ∆ determined by
σ is κc

#»η , denoted by κ ∗σ ∆ = κσ, and ∗σ is a strategic c-revision.

Note that a strategic c-revision operator ∗σ selects a single c-revision for each
OCF κ and each ∆. We present two useful postulates for selection strategies. First,
we consider selection strategies σ that choose Pareto-minimal impact vectors in the
context of c-revisions.

(PMσ) A selection strategy σ is Pareto-minimal if the impact vector σ(κ,∆) = #»η

is Pareto-minimal among all impact vectors in Sol(CR(κ,∆)).

Furthermore, the following property expresses that including tautologies should not
change the result of c-revision with a belief base ∆.

Tautological Vacuity (cTV) A selection strategy σ satisfies (cTV) if for any
OCF κ and any conditional belief base ∆, the following holds:

(cTV) κ ∗σ (∆ ∪ {>}) = κ ∗σ ∆ (3.2)

It can easily be seen that for each c-revision we can select an impact vector s.t. (3.2)
holds since, tautologies can never be falsified in (2.14).

Now, we turn to selection strategies for c-revisions that is helpful to ensure
the coherency of impact factors across different revision scenarios, like the ones
presented in the general revision problem (CondCS). In [5], the notion of elementwise
equivalence for sets of conditionals ∆,∆′ is introduced, stating essentially that for
every conditional in ∆ there is a conditionally equivalent conditional in ∆′, and vice
versa. Using our general assumptions about sets of conditionals from page 39 in
Section 2.4, we employ the following slight modification of elementwise equivalence
to ensure a one-to-one correspondence between the conditionals in ∆ and ∆′.
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Definition 3.1.4 (≡e). Two consistent sets of conditionals ∆ = {(X1|B1), . . . ,

(Xm|Bm)} and ∆′ = {(X ′
1|B′

1), . . . , (X
′
m|B′

m)} are conditionally equivalent, denoted
by ∆ ≡e ∆′, if the conditionals in ∆ (resp. in ∆′) are pairwise not conditionally
equivalent and (Xi|Bi) ≡ (X ′

i|B′
i) for all i ∈ {1, . . . ,m}.

In the following, we state conditions for selection strategies that aim at ensuring
basic properties that we expect from belief revision implemented by c-revisions [9].
The first condition is a postulate requiring selection strategies to be dependent only
on the respective constraint satisfaction problem:

(IP-EPσ) A selection strategy σ is impact preserving with respect to equivalent
problems if for any two equivalent constraint satisfaction problems CR(κ,∆) =

CR(κ′,∆′), we have σ(κ,∆) = σ(κ′,∆′).

In particular, this also implies that the selection strategy σ and the resulting strate-
gic c-revision ∗σ are syntax independent [9]:

(SIσ) A selection strategy σ is syntax independent if for any ∆′ obtained from ∆ by
replacing a conditional (X|B) occurring in ∆ by a conditional (X ′|B′) with
(X|B) ≡ (X ′|B′), we have σ(κ,∆) = σ(κ,∆′).

The following observation is a direct consequence of syntax independence.

Proposition 3.1.2. Let ∗σ be a strategic c-revision satisfying (SIσ) and let ∆,∆′

be sets of conditionals. If ∆ ≡e ∆′ holds then σ(κ,∆) = σ(κ,∆′) and thus κ ∗σ ∆ =

κ ∗σ ∆′ for any ranking function κ.

If #»η is an impact vector with impacts corresponding to the conditionals in ∆,
then for ∆′ ⊆ ∆, the subvector of #»η containing only the impacts related to the
conditionals in ∆′ is called the projection of #»η to ∆′ and is denoted by #»η ∆′ . Hence,
if σ is a selection strategy, σ(κ,∆)∆′ is the projection of σ(κ,∆) to ∆′. The following
definition extends the notion of projection to CSPs for c-revisions [9].

Definition 3.1.5 (CSP projection CR(κ,∆)∆′). Let κ be an OCF, let ∆ = {(X1|B1),

. . . , (Xm|Bm)} be a set of conditionals, and let ∆′ ⊆ ∆. The projection of CR(κ,∆)

to ∆′, denoted by CR(κ,∆)∆′, is the constraint satisfaction problem given by the set
of constraints {cr(κ,∆)i | (Xi|Bi) ∈ ∆′}.
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W.l.o.g. let us assume that ∆ = {(B1|X1), . . . , (Bm|Xm)} and ∆′ = {(B1|X1),

. . . , (Bk|Xk)} where k 6 m. Note the difference between CR(κ,∆′) = {cr(κ,∆′)1,

. . . , cr(κ,∆′)k} on the one hand and CR(κ,∆)∆′ = {cr(κ,∆)1, . . . , cr(κ,∆)k} on
the other hand. While CR(κ,∆′) is a CSP over the constraint variables η1, . . . , ηk,
CR(κ,∆)∆′ is a CSP over the constraint variables η1, . . . , ηk, ηk+1, . . . , ηm. Both
CSP have |∆′|-many constraints, but in contrast to cr(κ,∆)i, any of the constraint
variables ηk+1, . . . , ηm in the sum in the minimizations terms given in Equation (3.1)
do not occur in cr(κ,∆′)i.

Using projections of constraint satisfaction problems for c-revisions, we can gen-
eralize the idea of preserving impacts, as expressed by (IP-EPσ) and (SIσ) to
equivalent subproblems. This is specified in the next axiom (cf. [111, 9]), which has
far-reaching consequences.

(IP-ESPσ) A selection strategy σ is impact preserving with respect to equiva-
lent subproblems if for any two revision problems (κ,∆), (κ′,∆′) with ∆1 ⊆
∆,∆′

1 ⊆ ∆′ and ∆1 ≡e ∆′
1 such that CR(κ,∆)∆1 = CR(κ′,∆′)∆′

1
, we have

σ(κ,∆)∆1 = σ(κ′,∆′)∆′
1
.

As a first immediate consequence, it holds that if σ satisfies (IP-ESPσ), then it is
syntax independent.

Proposition 3.1.3 ([9]). If a selection strategy σ satisfies (IP-ESPσ), then σ also
satisfies the axiom (SIσ).

It can easily be seen that (IP-ESPσ) ensures tautological vacuity (cTV), i.e., the
axiom for revision, which expresses that including tautologies should not change the
revision result because tautologies can never be falsified in (3.1).

Proposition 3.1.4. If a selection strategy σ satisfies (IP-ESPσ), then the strategic
c-revision ∗σ satisfies (cTV).

The strategical axiom (IP-ESPσ) will prove very helpful to substantiate the Kine-
matics principle with a proof of concept in the next section, and we later present an
example illustrating its application for c-revisions.
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3.2 Related Work

In this section, we place the Kinematics principle in a more extensive research con-
text and discuss related work.

Probabilistic reasoning, a research branch in KRR, deals with employing proba-
bility theory and statistical inference to make predictions or decisions in situations
involving uncertainty or (possibly incomplete) evidence [88]. To be emphasized in
this context are two main methods of probabilistic reasoning, namely Jeffrey’s rule
[57] and Pearl’s method of virtual evidence [88], which he proposed in the context
of Bayesian networks. In [25], the authors show that for both of these methods,
the axiom of Probability Kinematics, firstly introduced in [57], is crucial, which as-
sumes that if we revise a probability distribution P by some uncertain evidence
A = {A1[x1], . . . , An[xn]}, s.t. P ∗ = P ∗A, bearing on a set of exclusive and exhaus-
tive cases A1, . . . , An, then the conditional probabilities given these cases should not
change:

P ∗|Ai (ω) = P |Ai (ω) for all ω ∈ Ω, (3.3)

i.e., Probability Kinematics captures the notion that even though the probabilities
of the cases A1, . . . , An change, their corresponding conditional probabilities w.r.t.
the remaining worlds in Ω do not. This notion of invariance of probabilities under
conditionalization in the light of new evidence gave the Kinematics principle we
deal with in this part of the thesis its name. A more in-depth discussion about
its justification can be found in [122] and [114]. For a more thorough discussion
of Jeffrey’s rule and Pearl’s virtual evidence and how they relate to each other
in the context of probabilistic Belief Revision, i.e., Belief Revision in the context
of probability distributions, we refer to [25]. There have been several proposals
to generalize Jeffrey’s rule. For example, Wagner [123] uses an arbitrary set of
propositions Ai. Smets generalized Jeffrey’s rule to belief functions (see [115]),
and Benferhat et al. analyzed the expressive power of possibilistic counterparts to
Jeffrey’s rule for modeling belief revision [10].

In this thesis, one of the most important extensions of Probability Kinematics in
probabilistic Belief Revision was introduced by Shore and Johnson [113] as Subset
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Independence. We recapture the definition from [113].
Definition 3.2.1 ([113]). Let P be a probability distribution, A1, . . . , An be exhaus-
tive and exclusive formulas, P be a probability distribution and R = R1 ∪ . . . ∪ Rn

be a set of probabilistic conditionals, with subsets Ri containing conditionals whose
premises imply Ai, and S = {A1[x1], . . . , An[xn]} with

∑n
i=1 xi = 1. The revision

operator ∗ satisfies Subset Independence iff

(P ∗ (R∪ S))|Ai = P |Ai ∗ Ri. (3.4)

As Probability Kinematics, Subset Independence deals with conditional proba-
bilities in the light of exclusive cases induced by formulas A1, . . . , An. Note that
Probability Kinematics follows immediately from Subset Independence if we take
∆ to be the empty set [113]. Yet, Subset Independence broadens the scope of the
Kinematics principle and Jeffrey’s rule to revisions with a set of probabilistic facts
S, which represents new information about the probabilities of the exclusive cases,
and a set of probabilistic conditionals R, which decomposes naturally into disjoint
subsets Ri corresponding to the cases Ai. In this setting, Subset Independence
states that for the conditional probabilities in terms of each case Ai, it should not
matter whether we revise with the entirety of the new information, i.e., R ∪ S, or
whether we revise with the separate probabilistic conditionals concerning only this
case. Thus, introducing a notion of locality for revision, since only worlds talking
about the corresponding case are relevant for the revision with (conditional) infor-
mation that concerns precisely this case. Subset Independence is the blueprint for
our Kinematics principle in the following investigations.



Chapter 4

Case Splitting for the Kinematics
Principle

The advanced belief revision problem (CondCS) presented in the introduction of this
part takes place in a particular setting with a set of conditional ∆ = ∆1 ∪ . . . ∪∆n

where the partition ∆1 ∪ . . . ∪∆n is induced by exclusive and exhaustive formulas
A1, . . . , An, s.t. the premises of each conditional in ∆i imply the corresponding
formula Ai. The exclusivity and exhaustiveness of the cases Ai lay the foundation
for the advantages of the Kinematics principle by introducing distinguishable cases
for the revision. This chapter investigates those cases, and Section 4.1 introduces
the notion of a case splitting. Then, in Section 4.2, we introduce a refinement
and specificity property for sets of cases, enabling us to define a unique (up to
equivalences) finest splitting and an algorithm that computes it.

Bibliographic Remark. The contents of this part are based on joint work with
Gabriele Kern-Isberner and Christoph Beierle [107, 111] (see Section 1.3).

4.1 Case Splitting

We start our investigation with the following definition of case splittings, i.e., sets
of formulas that satisfy the prerequisites of (CondCS).

69
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Definition 4.1.1 (Case splitting). Let ∆ = {(B1|X1), . . . , (Bm|Xm)} be a set of
conditionals. A case splitting P∆ of ∆ is a set P∆ = {A1, . . . , An} of exclusive and
exhaustive formulas A1, . . . An, such that every premise Xk (k = 1, . . . ,m) implies
exactly one Ai, Xk |= Ai.

Each case splitting P∆ = {A1, . . . , An} induces a partitioning of ∆ = {(B1|X1), . . . ,

(Bm|Xm)} as follows:

(Bj|Xj) ∈ ∆i iff Xj |= Ai for j ∈ {1, . . . ,m} and i ∈ {1, . . . , n}.

The subsets ∆i are disjoint since the Ai’s are exclusive.
We illustrate case splittings and the corresponding partition of sets of condition-

als ∆ via the following example.

Example 4.1.1. Let the signature Σ = {a, b, c, d} and the set of conditionals ∆ =

{(c|ab), (d|abc), (d|ab), (b|a), (d|ac)} be given. For ∆, it holds that P∆ = {a, a} is a
case splitting. The formulas a and a are exclusive and exhaustive, and it holds that
for each conditional in ∆, its premise implies either a or a. the case splitting P∆

induces the following partition of ∆ = {(c|ab), (d|abc), (d|ab)} ∪ {(b|a), (d|ac)}.

Note that the premises in the conditional belief base ∆ have to imply one of the
cases Ai and not be equivalent to it. Also, the subsets ∆i ⊆ ∆ are not necessarily
non-empty. For the special case ∆ = {(B|A)}, P∆ = {A,A} is a case splitting, s.t.
the case A induces the empty subset as part of the partition of ∆.

It is clear that for each set ∆, a case splitting exists, at least the trivial one
P∆ = {>}, and thus, case splittings are not unique. In the following, we investigate
different case splittings via a relation that compares case splittings.

4.2 Algorithm for the Finest Case Splitting

This section defines a refinement relation to delimit different case splittings. Em-
ploying this relation, we present an algorithm that computes the finest case splitting
that is unique up to equivalences.

Example 4.1.1 from the previous section illustrates that various case splittings
P∆ for the same set of conditionals ∆ exist. However, it is evident that the more
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fine-grained P∆ is, the more fine-grained the partition of ∆ is, which maximizes
the effect of the conditionalization in our later presented Kinematics principle. We
introduce the following refinement-relation to compare different case splitting on ∆:

Definition 4.2.1 (Refinement and specificity). Let ∆ be a set of conditionals. For
two case splittings P1

∆ = {A1, . . . , An} and P2
∆ = {B1, . . . , Bn′} of ∆, we say that

P1
∆ is a refinement of P2

∆ iff every Bj is implied by some Ai:

P1
∆ 6 P2

∆ iff for all Bj ∈ P2
∆, there exists Ai ∈ P1

∆ s.t. Ai |= Bj.

We say that the Ai’s are more specific than the Bj’s. Two case splittings P1
∆ and

P2
∆ of ∆ are equivalent iff P1

∆ 6 P2
∆ and P2

∆ 6 P1
∆

For the Kinematics principle, the most interesting case splitting of ∆ is the one
that refines every other splitting. We call this splitting the finest case splitting. In
the following theorem, we show that for every set ∆, there exists the finest case
splitting, which is unique up to semantic equivalences.

Theorem 4.2.1. For each set of conditional beliefs ∆ there exists a unique finest
case splitting (up to semantic equivalences and permutations).

Proof. We start by defining a relation ∼ on Prem(∆) = {X ∈ L|(B|X) ∈ ∆} the
set of premises of ∆, s.t.

X ∼ Y iff XY 6≡ ⊥ for X,Y ∈ Prem(∆) (4.1)

The relation ∼ is reflexive and symmetric, thus the transitive closure ∼∗ of ∼ is
an equivalence relation on the elements of Prem(∆) and it holds that Prem(∆) =⋃
i=1,...,n[Xi], where [Xi] are the equivalence classes of ∼∗. Let Ai =

∨
[Xi] for

i = 1, . . . , n and A0 = ¬(A1 ∨ . . . ∨ An) ≡ A1 . . . An, then P∆ = {A0, A1, . . . , An}
defines a case splitting because for i 6= j it holds that:

AiAj ≡
( ∨
X̃∈[Xi],Ỹ ∈[Xj ]

(X̃Ỹ )
)
≡ ⊥,

and A0 ∨ A1 ∨ . . . ∨ An ≡ (A1 . . . An) ∨ A1 . . . ∨ An ≡ >. It is clear that for every
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Algorithm 1 Finest case splitting
Require: Finite set of conditionals ∆
Ensure: Unique finest case splitting of ∆

1: Prem← Prem(∆)
2: P∆ = ∅
3: while Prem 6= ∅ do
4: Choose X ∈ Prem
5: if there are Y ∈ Prem, Y 6= X, with XY 6≡ ⊥ then
6: build χ = {Y ∈ Prem|XY 6≡ ⊥}
7: A←

∨
χ

8: Prem← (Prem \ χ) ∪ {A}
9: else

10: A← X
11: P∆ ← P∆ ∪ {A}
12: Prem← Prem \ {A}
13: end if
14: end while
15: if

∨
P∆ 6≡ > then

16: A0 =
∧
Ai∈P∆

Ai
17: P∆ = P∆ ∪ {A0}
18: end if
19: return P∆

premise X ∈ Prem(∆) =
⋃
i=1,...,n[Xi], there is one Ai =

∨
[Xi] which is implied by

X, and that P∆ is unique up to permutation and semantic equivalences.
We still need to show that P∆ refines every other case splitting: Let P ′

∆ =

{B1, . . . , Bn′} be another case splitting of ∆. For X,Y ∈ Prem(∆) it holds that,
if X |= Bi and Y |= Bj with i 6= j, then XY ≡ ⊥. This means that for X,Y ∈
Prem(∆) with XY 6≡ ⊥, there is i ∈ {1, . . . , n′} with X |= Bi and Y |= Bi, which
means [X] |= Bi. Hence, there exists j ∈ 1, . . . , n with

∨
X̃∈[Xj ]

X̃ = Aj |= Bi and
P∆ refines P ′

∆.

The relation ∼ defined via (4.1) is used in the proof of Theorem 4.2.1 to define
exclusive cases for P∆. We use this relation and present an algorithm that computes
the finest case splitting for an arbitrary finite set of conditionals ∆: From the
constructive proof of Theorem 4.2.1, we can conclude the following theorem:
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Theorem 4.2.2. Algorithm 1 terminates and is correct in the sense that it computes
the unique finest case splitting for a finite set of conditionals ∆.

It holds that the transitive closure of the relation ∼ is obtained by considering
the disjunction over χ in line 7 and adding these to the set of premises Prem in
line 8. Then, for premises X1, X2, X3 with X1X2 6≡ ⊥ and X1X3 6≡ ⊥, it might
be the case that X2X3 ≡ ⊥, but (X1 ∨X2)X3 6≡ ⊥ and therefore it holds that the
Ai’s in P∆ are exclusive. In this way, we ensure that the entire equivalence class is
captured.

The running time of Algorithm 1 is determined by the SAT-Test in line 5 and
6. And in the worst case, it holds that the equivalence classes determined in the
while-loop are singletons, and we obtain O(s2), where s represents the runtime of
the SAT-Test.

We continue Example 4.1.1 and use Algorithm 1 to determine the finest premise
splitting for the conditional belief set ∆.

Example 4.2.1 (Continuing Example 4.1.1). We compute the finest premise split-
ting for ∆ = {(c|ab), (d|abc), (d|ab), (b|a), (d|ac)} from Example 4.1.1 using Algo-
rithm 1.
Initialize the set of premises Prem of ∆ and the case splitting P∆ as in line 1 and
2 from Algorithm 1

Prem = {ab, abc, ab, a, ac} and P∆ = ∅.

For the first iteration, we choose X = ab and line line 6 from Algorithm 1 yields
χ = {ab}. Thus, we add A1 = ab to P∆ = {ab}. This leaves us with Prem =

{abc, ab, a, ac} for the second iteration.
Now, we choose X = abc with the corresponding set χ = {abc, ab}. Hence A2 =

abc∨ab = ab and therefore, we remove abc from the set of premises and get Prem =

{ab, a, ae}.
In the next iteration, we take X = ab. It holds that XY ≡ ⊥ for all other Y ∈ Prem,
therefore we jump to line 9 in Algorithm 1 and the case splitting does not change,
s.t. P∆ = {ab, ab} holds.
We continue with X = a and yield χ = {a, ae}. So that, we add A3 = a to the
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case splitting and continue with Prem = {a}. For the last iteration, it holds that
X = a = A3. Thus, we get the following case splitting P∆ = {ab, ab, a} and the set
of premises Prem = ∅, i.e., we leave the while loop in Algorithm 1.

It holds that ab ∨ ab ∨ a ≡ >, thus the algorithm terminates and returns the
case splitting P∆ = {ab, ab, a} which determines a partitioning of ∆ = {(c|ab)} ∪
{(d|abc), (d|ab)}∪{(b|a), (d|ac)} = ∆1∪̇∆2∪̇∆3. This case splitting displays a unique
finest case splitting of ∆ according to Theorem 4.2.2. In particular, it holds that the
splitting P∆ = {ab, ab, a} refines the splitting given in Example 4.1.1.



Chapter 5

The Kinematics Principle for
Ranking Functions

In the introduction of this part, we discussed the advanced belief revision problem
(CondCS), which now leads us to the Kinematics principle that is our current pri-
mary subject of investigation. In this chapter, we present the Kinematics principle
for ranking functions, which transfers the ideas of revision w.r.t. (disjoint) contex-
tual information from probability theory to the framework of belief revision using
OCFs. Based on the notion of locality introduced by Subset Independence via exclu-
sive cases in [113], we define the Kinematics Principle for ranking functions, which
guides the revision with respect to a case splitting of ∆. Thus, the conditional
information decomposes naturally into disjoint contexts. We tackle the second set
of research questions in the introduction during our investigation and start by pre-
senting the Kinematics principle for OCFs, as a rational solution to the advanced
belief revision problem (CondCS) in Section 5.1, and show that c-revisions provide a
proof of concept for it. In the following Section 5.2, we investigate the implications
of the Kinematics principle for propositional revision in cases where the exclusive
cases Ai in the cases splitting of ∆ fully capture the context of conditionals in ∆i,
i.e., when the premises of the conditionals in ∆i are equivalent to Ai, instead of
solely implying it. This restriction enables an elegant implementation of conditional
revisions via conditionalization and propositional revision. In the last section 5.3,
we show that, in the context of ranking functions, the Kinematics principle unfolds
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its total capacity and enables us to compose the full c-revised OCF κ ∗∆ from the
local revisions κ|Ai ∗∆i reducing the complexity of the revision task dramatically
depending on the size of the case splitting.

Bibliographic Remark. The contents of this part are based on joint work with
Gabriele Kern-Isberner and Christoph Beierle [107, 111] (see Section 1.3).

5.1 Generalized Ranking Kinematics

In this section, we propose a definition of the Kinematics principle for OCFs and pro-
vide a proof of concept for this advanced belief revision axiom. Via the application
of strategies, we can provide coherence across different revision scenarios considered
in the Kinematics principle, thus leading to an elegant theorem that shows that
strategic c-revisions are capable of dealing with (disjoint) contextual information as
proposed by the Kinematics principle.

The Kinematics principle for ranking functions was initially introduced in [107]
as Generalized Ranking Kinematics (GRK), therefore we sometimes abbreviate the
Kinematics principle for OCFs with (GRK). The axiom (GRK) is defined for revi-
sion operators ∗ for OCFs taking conditional belief bases and additional sentences
as input and yielding a revised OCF as output. Note that (GRK) makes use of
conditionalization for OCFs as defined by Spohn in [119] (cf. (2.10) on page 37).

Definition 5.1.1 (Kinematics principle for OCFs, Generalized Ranking Kinematics
(GRK)). Let A1, . . . , An be exhaustive and exclusive formulas. Let κ be a ranking
function, and let ∆ = ∆1 ∪ . . . ∪∆n be a set of conditionals, with subsets ∆i whose
premises imply Ai, and S =

∨
j∈J Aj with ∅ 6= J ⊆ {1, . . . , n}. The revision operator

∗ satisfies Generalized Ranking Kinematics iff

(GRK) κ ∗ (∆ ∪ {S})|Ai = (κ|Ai ) ∗∆i

The Kinematics principle offers a rational strategy for revising OCFs w.r.t. to
information that is relevant solely in local (disjoint) contexts provided by cases Ai.
Based on Subset Independence (3.4) two strong irrelevance assertions are introduced
by (GRK): First, if the revised OCF κ∗(∆∪{S}) is conditionalized by a case Ai, then
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only the conditionals talking about this case, i.e., ∆i, are relevant. The advantage of
revision with respect to cases, i.e., local revision, is that it enables us to revise a more
specific part of the OCF, i.e., κ|Ai , with more specific information, i.e., ∆i, which
are determined by the case Ai. The revision task tends to be less complex because
we refrain from revising the full OCF with the full set ∆. Note that this notion of
locality via contextual information is much closer to how we process information as
humans, namely via concerning information w.r.t. to the relevant context [85, 58].
If we consider the particular case, where S ≡ > and presuppose that ∗ satisfies the
vacuity postulate (cTV)1, then it becomes apparent that the Kinematics principle
for OCFs implements the idea that conditionalization and revision with contextual
information, represented by subsets ∆i, are commutable:

κ ∗∆|Ai = κ|Ai ∗∆i. (5.1)

Thus, it does not matter whether the agent first focuses on a specific case, defined
by Ai, and then revises her beliefs or whether she first revises with the whole set of
conditional information and then focuses on the case. Note that, in [107], (GRK)
is introduced as strong Generalized Ranking Kinematics, which is accompanied by
a weaker version called weak Generalized Ranking Kinematics (GRKweak) that cor-
responds to the special case of S ≡ > stated above.

Second, in the context of revision, it is irrelevant for the local OCFs κ|Ai whether
a case Ai is more plausible than others. In the probabilistic case, we have S, which
represents the set of posterior probabilities for formulas Ai. Here, we consider a
disjunction of the cases Ai, which indicates that one might be more plausible than
the remaining cases. This second notion of irrelevance becomes evident for the
special case of (GRK) with ∆ = ∅:

κ ∗ {S}|Ai = κ|Ai .

As we can see, this corresponds to the notion of Probability Kinematics (3.3) in the
context of semi-quantitative belief revision.

1Note that, in (3.2) on page 64 is defined for strategic c-revisions, to shorten the matter we do
not rephrase it here with a general semi-quantitative revision operator ∗.
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The Kinematics principle for ranking functions (GRK) is satisfied by c-revisions
as the following theorem from [111] shows. Note that a similar theorem was pre-
sented in [107], but without employing strategies for c-revision, i.e., the theorem in
[107] is much less clear and easy to understand.

Theorem 5.1.1. Let ∆ = ∆1 ∪ . . . ∪ ∆n be a set of conditionals, with subsets
∆i = {(Bi,j|AiCi,j)}j=1,...,ni

with ni = |∆i| for i = 1, . . . , n and a case splitting P∆ =

{A1, . . . , An}. Let S =
∨
j∈J Aj and ∅ 6= J ⊆ {1, . . . , n}. If σ is a selection strategy

that satisfies (IP-ESPσ), then ∗σ is a strategic c-revision that satisfies (GRK).

Proof. We first investigate the constraint satisfaction problems given in (GRK) for
c-revisions, and then the general definition of the c-revision as in Definition 2.5.1.
For all ω ∈ Ω, ω |= Ai holds for exactly one i. If ω |= Ai then all conditionals from
∆k (k 6= i), are not applicable and hence irrelevant. It holds for ω |= Ai that:

κ ∗σ (∆ ∪ {S})(ω) = κ0,∆ + κ(ω) +
∑

16j6ni

ω|=AiCi,jBi,j

ηi,j +

ηS ω 6|= S

0 otherwise
(5.2)

with κ0,∆ the corresponding normalization constant according to (2.15). CR(κ,∆∪
{S}) is defined by the following set of constraints for ηi,j, i ∈ {1, . . . , n} and
j ∈ {1, . . . , ni} and ηS:

ηi,j > min
ω|=AiCi,jBi,j

{κ(ω) +
∑
16i6n

∑
l 6=j

ω|=AiCi,lBi,l

ηi,l +

ηS ω 6|= S

0 otherwise
}

− min
ω|=AiCi,jBi,j

{κ(ω) +
∑
16i6n

∑
l 6=j

ω|=AiCi,lBi,l

ηi,l +

ηS ω 6|= S

0 otherwise
}

= min
ω|=AiCi,jBi,j

{κ(ω) +
∑
l 6=j

ω|=AiCi,lBi,l

ηi,l} − min
ω|=AiCi,jBi,j

{κ(ω) +
∑
l 6=j

ω|=AiCi,lBi,l

ηi,l}. (5.3)

The impact factor for S ηS occurs only if i ∈ J and either is cancelled out, or does
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not appear at all. In general, it holds for the impact factor ηS that:

ηS >min
ω|=S
{κ(ω) +

∑
j∈J

∑
16l6nj

ω|=AjCj,lBj,l

ηj,l} −min
ω|=S
{κ(ω) +

∑
k 6∈J

∑
16l6nk

ω|=AkCk,lBk,l

ηk,l}.

Conditioning on Ai yields for worlds ω |= Ai

(κ ∗σ (∆ ∪ {S}))|Ai (ω) = κ ∗σ (∆ ∪ {S})(ω)− κ ∗σ (∆ ∪ {S})(Ai)

= κ0,∆ + κ(ω) +
∑

16j6ni

ω|=AiCi,jBi,j

ηi,j +

ηS ω 6|= S

0 otherwise

− min
ω̃|=Ai

{κ0,∆ + κ(ω̃) +
∑

16j6ni

ω̃|=AiCi,jBi,j

ηi,j +

ηS ω 6|= S

0 otherwise
} (5.4)

= κ(ω) +
∑

16j6ni

ω|=AiCi,jBi,j

ηi,j − min
ω̃|=Ai

{κ(ω̃) +
∑

16j6ni

ω̃|=AiCi,jBi,j

ηi,j

︸ ︷︷ ︸
(∗)

}. (5.5)

Now, we turn to the case when we first conditionalize κ and then c-revise the con-
ditionalized OCF by ∆i. For ω |= Ai, we obtain

κ|Ai ∗σ ∆i(ω) = κ0,i + κ|Ai (ω) +
∑

16j6ni

ω|=AiCi,jBi,j

µi,j

= κ0,i + κ(ω)− κ(Ai) +
∑

16j6ni

ω|=AiCi,jBi,j

µi,j

= κ(ω) +
∑

16j6ni

ω|=AiCi,jBi,j

µi,j + κ0,i − κ(Ai)︸ ︷︷ ︸
(∗∗)

(5.6)

with κ0,i the corresponding normalization constant for c-revisions of κ|Ai with ∆i.
The constraint satisfaction problem CR(κ|Ai ,∆i) is given by the following inequal-
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ities for j = {1, . . . , ni}:

µi,j > min
ω|=AiCi,jBi,j

{κ|Ai (ω) +
∑
l 6=j

ω|=AiCi,lBl,i

µi,l} − min
ω|=AiCi,jBi,j

{κ|Ai (ω) +
∑
l 6=j

ω|=AiCi,lBi,l

µi,l} (5.7)

= min
ω|=AiCi,jBi,j

{κ(ω) +
∑
l 6=j

ω|=AiCi,lBi,l

µi,l} − κ(Ai)− min
ω|=AiCi,jBi,j

{κ(ω) +
∑
l 6=j

ω|=AiCi,lBi,l

µi,l}+ κ(Ai)

= min
ω|=AiCi,jBi,j

{κ(ω) +
∑
l 6=j

ω|=AiCi,lBi,l

µl,i} − min
ω|=AiCi,jBi,j

{κ(ω) +
∑
l 6=j

ω|=AiCi,lBi,l

µi,l}. (5.8)

In order to separate the two revisions from each other prima facie, we used impact
factors µ for κ|Ai ∗σ ∆i instead of η as in κ ∗σ (∆ ∪ {S}).

As we can see, for a fixed i ∈ {1, . . . , n}, the projection of CR(κ,∆∪{S}) to ∆i,
i.e., (5.3), and CR(κ|Ai ,∆i), i.e., (5.8), are defined by the same inequalities. Thus,
it holds that CR(κ,∆ ∪ {S})∆i

= CR(κ|Ai ,∆i). Therefore by (IP-ESPσ), we get
that #»η i = σ(κ,∆ ∪ {S})∆i

= σ(κ|Ai ,∆i) = #»µ i. To complete the proof, we still
need to show that (∗) = (∗∗) holds, i.e.,

− min
ω|=Ai

{κ(ω) +
∑

16j6ni

ω|=AiCi,jBi,j

ηi,j}
!
= κ0,i − κ(Ai). (5.9)

We use (2.15) and #»η i =
#»µ i to compute κ0,i and get

κ0,i − κ(Ai) = − min
ω|=Ai

{κ(ω|Ai) +
∑

16j6ni

ω|=AiCi,jBi,j

µi,j} − κ(Ai)

= − min
ω|=Ai

{κ(ω)− κ(Ai) +
∑

16j6ni

ω|=AiCi,jBi,j

ηi,j} − κ(Ai) = − min
ω|=Ai

{κ(ω) +
∑

16j6ni

ω|=AiCi,jBi,j

ηi,j}. (5.10)

The proof of Theorem 5.1.1 provides some crucial insights about the CSP defin-
ing the corresponding c-revisions in (GRK) and also about the specific role of the
normalization constants, which we summarize in the following proposition:
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Proposition 5.1.2. Presuppose the same prerequisites as in Theorem 5.1.1. We
consider the strategic c-revisions (κ∗σ (∆∪{S}))|Ai and κ|Ai ∗σ∆i with a selection
strategy σ which satisfies (IP-ESPσ), that are crucial for GRK. Then the following
statements hold:

1. It holds that CR(κ,∆ ∪ {S})∆i
= CR(κ|Ai ,∆i) and thus, due to (IP-ESPσ)

we get that

σ(κ,∆ ∪ {S})∆i
= σ(κ|Ai ,∆i) (5.11)

2. It holds that

(κ ∗σ (∆ ∪ {S}))|Ai (ω)− κ|Ai ∗σ ∆i(ω) =

− min
ω|=Ai

{κ(ω) +
∑

16j6ni

ω|=AiCi,jBi,j

ηi,j} − (κ0,i − κ(Ai)) = 0, (5.12)

The first statement concerning the CSP follows immediately from the equality
between (5.3) and (5.8) in the proof of Theorem 5.1.1, i.e., the equality of the
inequalities defining the impact factors for the subsets ∆i. However, the equality of
the CSP is not enough to ensure the rank-wise equality of (κ ∗σ (∆∪ {S}))|Ai and
κ|Ai ∗σ ∆i, we also need a correspondence between the normalization constants as
displayed in the second statement of the proposition. This statement follows from
(5.5), (5.6) and the equality of (∗) from (5.5) and (∗∗) from (5.6) as was shown in
(5.10). In Section 5.3, we use these statements to define the global revision κ ∗σ ∆
using the local ones in κ|Ai ∗σ ∆i. We give an example of (GRK) with S ≡ > for
c-revisions.

Example 5.1.1. Let Σ = {a, b, c, d} and ∆1 = {(c|ab), (d|abc)}, ∆2 = {(d|ab)},
∆3 = {(d|a), (cd|a)} such that ∆ = ∆1 ∪∆2 ∪∆3 and P∆ = {ab, ab, a} as the finest
premise splitting and S = >. For the rest of the example i ∈ {1, 2, 3} holds. The
OCFs κ and κ|Ai are depicted in Table 5.1, along with schematic c-revised κ ∗c ∆

and the computed ranks for the special choice of impact factors. From Proposition
5.1.2, it follows that CR(κ,∆)∆i

= CR(κ|Ai ,∆i). Thus, applying (IP-ESPσ) we
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ω ∈ Ω κ κ|Ai κ ∗c ∆ κ?∆ κ?∆|Ai (κ|Ai )?∆i

abcd 5 3 -1 + 5 4 0 0
abcd 2 0 -1 + 2 + η1,2 5 1 1
abcd 3 1 -1 + 3 + η1,1 5 1 1
abcd 4 2 -1 + 4 + η1,1 6 2 2
abcd 3 3 -1 + 3 2 2 2
abcd 0 0 -1 + 0 + η2,1 1 1 1
abcd 1 1 -1 + 1 0 0 0
abcd 2 2 -1+ 2 + η2,1 3 3 3
abcd 4 3 -1 + 4 3 0 0
abcd 1 0 -1 + 1 + η3,1 + η3,2 4 1 1
abcd 2 1 -1 + 2 + η3,2 5 2 2
abcd 3 2 -1 + 3 +η3,1 + η3,2 6 3 3
abcd 6 5 -1 + 6 5 2 2
abcd 3 2 -1 + 3 + η3,1 + η3,2 6 3 3
abcd 4 3 -1 + 4 + η3,2 7 4 4
abcd 5 4 -1 + 5 + η3,1 + η3,2 8 5 5

κ0,∆ = −1 κ0,1 = −3, κ0,2 = −1,
κ0,3 = −3

Table 5.1: OCF κ, κ|Ai and c-revisions from Example 5.1.1. Worlds in Mod(Ai)
(i = 1, 2, 3) are separated using different gray tones.

can choose the following Pareto-minimal impact factors

σ(κ,∆)∆1
= (η1,1, η1,2) = (3, 4) = σ(κ|A1 ,∆1)

σ(κ,∆)∆2
= (η2,1) = (2) = σ(κ|A2 ,∆2)

σ(κ,∆)∆3
= (η3,1, η3,2) = (0, 4) = σ(κ|A3 ,∆3).

In Table 5.1, we indicate the special choice of impact factors from above with an
additional superscript and apply the following abbreviations for the corresponding
c-revisions κ ∗σ ∆ = κ?∆, (κ ∗σ ∆)|Ai = κ?∆|Ai and κ|Ai ∗σ ∆i = (κ|Ai )?∆i

. From
Table 5.1, it is clear that κ|Ai ∗σ ∆i(ω) = (κ ∗σ ∆)|Ai (ω), i.e., (GRK) is satisfied.
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5.2 Reduction to Local Propositional Revision

In this section, we consider special cases in which for each subset ∆i the case Ai is
equivalent to all premises of conditionals in ∆i, i.e., the case splitting fully captures
the context of the corresponding new information. For these special cases, we show
that conditional revision and propositional with solely the conclusions of the cor-
responding conditionals coincide, thus making the revision task in the Kinematics
principle less complex. Also, we discuss the relationship between conditionalization
and propositional revision in a broader context, leading to a conditionalized version
of the well-known Ramsey Test.

In a broad sense, the Kinematics principle makes revision and conditionalization
interchangeable in cases where the new information can be split into different cases.
Local cases are set up via conditionalization, and the new information concerning
only these cases can be processed independently of the remaining input. Thus,
conditionalization is a powerful tool to introduce locality in the revision process
and enables us to simplify it. The Kinematics principle uses general local cases
introduced by case splittings P∆ = {A1, . . . , An} as defined in Definition 4.1.1, which
can be further specified by the premises of the conditionals in the corresponding
subsets ∆i, which have to imply Ai. Hence, the conditionals in ∆i might concern
more specific situations within the case of Ai. Now, we focus on the special case,
where the local cases from the case splitting A1, . . . , An are not further refined by
the conditionals’ premises and fully represent the local contexts the Kinematics
principle operates on. Thus, we assume that for each subset ∆i, it holds that
∆i = {(Ai|Bi,j)}nj=1, i.e., all conditionals in ∆i have the same premise. In general,
for a revision operator ∗ that satisfies (GRK), it holds that

κ ∗∆|Ai = κ|Ai ∗∆i.

In the special case of subsets ∆i = {(Ai|Bj)}nj=1, where the OCFs κ|Ai already
condition on Ai and therefore set up the specific local cases, the premises in ∆i seem
superfluous, and the question arises whether revision by ∆i can be implemented by
multiple propositional revision. These cases are subsumed by the principle of Local
Propositional Revision.
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Definition 5.2.1. Let A1, . . . , An be a case splitting, κ be a ranking function, and
let ∆ = ∆1 ∪ . . . ∪ ∆n be a set of conditionals with subsets ∆i = {(Bj|Ai)}16j6ni

and Bi = {Bj}16j6ni
be the set of consequents of the conditionals in ∆i. A revision

operator ∗ for κ satisfies Local Propositional Revision iff

(LPR) κ|Ai ∗∆i = κ|Ai ∗ Bi.

Note that, in this section we focus on the OCF version of (LPR) since we em-
ploy c-revision as a proof of concept. In Section 6.1, we also discuss (LPR) in the
qualitative context.

The (LPR) principle connects conditional and propositional revision via condi-
tionalization and, thus, brings the notion of locality introduced by conditionalization
to light. It states that if the agent focuses on the specific case a conditional informa-
tion is coming from, then it can be reduced to a piece of propositional information,
namely just the consequent of (Bj|Ai). Note that methods of conditional revision
can be used for propositional revision by representing propositions as conditionals
with tautological premises. Because conditional information differs fundamentally
from propositional information (cf. Section 2.4), it holds that in general, methods
of propositional revision cannot easily be adapted to conditional information, and
the (LPR) principle is a simple yet elegant approach to fill this gap for sets of
conditionals with identical premises.

Note that, in the special case of ∆ = {(B|A)}, i.e., if we revise with just a single
conditional, we obtain a case splitting with A1 = A and A2 = A and ∆1 = ∆ and
∆2 = ∅.2 Thus, (LPR) reduces to

κ|A ∗ (B|A) = κ|A ∗B. (5.13)

Conditionalization with A reduces the set of possible worlds to Mod(A) ⊆ Ω and,
thus, eliminates neutrality in the evaluation of (B|A) w.r.t. a possible world ω (cf.
formula (2.6) on page 34), s.t. each world either verifies or falsifies (B|A). Therefore
κ|A shows the same response behavior for ω ∈ Mod(A) w.r.t. a conditional (B|A) or

2In Section 4.1, we already discussed that the subsets ∆i ⊆ ∆ induced by a case splitting are
not necessarily non-empty.
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a proposition B. It holds that, in the context of conditionalized OCFs, the revision
with a single conditional boils down to a propositional revision with the conclusion
for revision operators satisfying (LPR).

Before we take a closer look on the relations between propositional and condi-
tional revision introduced by (LPR) and provide a proof of concept, we show that B,
i.e., the set of all consequents for ∆i, in (LPR) inherits consistency from the subsets
∆i and therefore, all revisions in (LPR) are well-defined:

Lemma 5.2.1. If ∆i = {(Bj|Ai)}16j6ni
is consistent, then B = {Bj}16j6ni

is a
consistent set of propositions.

Proof. The following proof uses the notion of tolerance for sets of conditionals pre-
sented in [1]. According to [1],if ∆ is consistent, then at least one conditional
(Bj|Ai) ∈ ∆ is tolerated by all remaining conditionals in ∆. Thus, there exists
ω ∈ Ω with

ω |= AiBj ∧
∧

16`6ni
`6=i

(Ai ⇒ B`)⇔ ω |= AiBj ∧
∧

16`6ni
`6=i

(Ai ∨ B`)⇔ ω |= AiB1 · · ·Bni
.

So, Mod(B1 ∧ . . .∧Bni
) 6= ∅ and therefore B = {B1, . . . , Bni

} = B is consistent.

As a proof of concept, we show that impact-preserving strategic c-revisions satisfy
the (LPR) axiom.

Theorem 5.2.2. Let κ be a ranking function. Let ∆ = ∆1 ∪ . . .∆n with ∆i =

{(Bj|Ai)}16j6ni
be a set of conditionals and Bi = {Bj}16j6ni

as specified in Definition
5.2.1. If σ satisfies (IP-ESPσ) then ∗σ is a strategic c-revision operator that satisfies
(LPR).

Proof. The constraint satisfaction problem CR(κ|Ai ,Bi) is given by the following
set of the constraints for all j = 1, . . . , ni:

ηj > min
ω|=Bj

{κ|Ai (ω) +
∑
j 6=k
ω|=Bk

ηk} − min
ω|=Bj

{κ|Ai (ω) +
∑
j 6=k
ω|=Bk

ηk}

= min
ω|=AiBj

{κ(ω)− κ(Ai) +
∑
j 6=k

ω|=ABk

ηk} − min
ω|=AiBj

{κ(ω)− κ(Ai) +
∑
j 6=k

ω|=ABk

ηk} (5.14)
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Equation (5.14) holds since we revise the conditionalized OCF κ|Ai which is defined
only on worlds in Mod(Ai). So, in this case, for all worlds ω |= Bj it holds ω |= AiBj.
The set of the constraints in (5.14) for all j = 1, . . . , ni is the same as CR(κ|Ai ,∆)

(compare (5.7) in the proof of Theorem 5.1.1). Thus, CR(κ|Ai ,Bi) = CR(κ|Ai ,∆i)

and therefore σ(κ|Ai ,Bi) = σ(κ|Ai ,∆i) by (IP-ESPσ).
We still need to show that κ∗σ1 (ω) = κ|Ai ∗σ Bi(ω) = κ|Ai ∗σ ∆i(ω) = κ∗σ2 (ω)

for all ω |= Ai. For ω |= Ai, it holds that

κ∗σ1 (ω) = κ0,∆ + κ|Ai (ω) +
∑

j=1,...,ni

ω|=Bj

ηj

= κ0,∆ + κ|Ai (ω) +
∑

j=1,...,ni

ω|=AiBj

ηj (5.15)

and κ∗σ2 (ω) = κ0,i + κ|Ai (ω) +
∑

j=1,...,ni

ω|=AiBj

ηj. (5.16)

Note that, due to σ(κ|Ai ,Bi) = σ(κ|Ai ,∆i), the c-revisions use the same impact
vector #»η . Since κ0,∆, κ0,i display normalization constants defined by (2.15), and
both c-revisions in (5.15) and (5.16) use the same values, also the normalization
constants must be the same, and we are done.

Note that, it holds that CR(κ|Ai ,Bi) = CR(κ|Ai ,∆i) and thus, (IP-ESPσ) is
crucial for the proof of the theorem above.

We illustrate (LPR) for strategic c-revisions in the following example.

Example 5.2.1. In Table 5.2 a ranking function κ is given. Let ∆ = ∆1 ∪ ∆2 =

{(b|a), (c|a)} ∪ {(b|a)} with the finest case splitting P∆ = {A1, A2} with A1 = a and
A2 = a according to Algorithm 1, s.t. ∆ = ∆1 ∪ ∆2 = {(b|a), (c|a)} ∪ {(b|a)} and
therefore B1 = {c, b} and B2 = {b}.

We revise κ|Ai with ∆i resp. with Bi to illustrate the benefits of (LPR). We
employ strategic c-revisions ∗σ with a strategy σ that satisfies (IP-ESPσ).

We start with i = 1, i.e., A1 = a, ∆1 = {(b|a), (c|a)}, and B1 = {b, c} and
investigate

κ|a ∗σ ∆1 vs. κ|a ∗σ B1.



5 The Kinematics Principle for Ranking Functions 87

ω ∈ Ω κ κ|Ai κ|Ai ∗σ ∆i (κ|Ai )?∆i
κ|Ai ∗σ Bi (κ|Ai )?Bi

abc 1 1 κ0,1 + 1 + η1,2 = 1 κ0,1 + 1 + η2 = 1

abc 0 0 κ0,1 + 0 = 0 κ0,1 + 0 = 0

abc 2 2 κ0,1 + 2 + η1,1 + η1,2 = 3 κ0,1 + 2 + η1 + η2 = 3

abc 0 0 κ0,1 + 0 + η1,1 = 1 κ0,1 + 0 + η1 = 1

abc 1 0 κ0,2 + 0 + η2,1 = 1 κ0,2 + 0 + η1 = 1

abc 1 0 κ0,2 + 0 + η2,1 = 1 κ0,2 + 0 + η1 = 1

abc 2 1 κ0,2 + 1 = 0 κ0,2 + 1 = 0

abc 2 1 κ0,2 + 1 = 0 κ0,2 + 1 = 0

κ(a) = 0 κ0,1 = 0 κ0,1 = 0

κ(a) = 0 κ0,2 = −1 κ0,2 = −1

Table 5.2: OCF κ, κ|Ai and c-revisions from Example 5.2.1. Worlds in Mod(Ai)
(i = 1, 2) are separated using different gray tones.

Via (3.1), we get the following inequalities defining impact factors for conditionals
in ∆1.

(b|a) η1,1 > min
{
κ|a (abc) + η1,2, κ|a (abc)

}
−min

{
κ|a (abc) + η1,2, κ|a (abc)

}
= 0− 0 = 0

(c|a) η1,2 > min
{
κ|a (abc), κ|a (abc) + η1,1

}
−min

{
κ|a (abc), κ|a (abc) + η1,1

}
= 0− 1 = −1

Because σ satisfies (IP-ESPσ), we can choose η?1,1 = η?1 = 1 and η?1,2 = η?2 = 0

for η?i the corresponding impact factor for the propositional revision with B1. The
superscript indicates the special choice of the impact factor. Table 5.2 shows the
results of the revision as a schema as well as with the specific choice of impact
factors indicated by a superscript. It holds that κ|a ∗σ∆1(ω) = ( κ|a )σ∆1

= (κ|a )σB1
=

κ|a ∗σ B1(ω) since σ satisfies (IP-ESPσ), and therefore (κ|a )?∆i
= (κ|a )?Bi

.
Now, we turn to i = 2, i.e., A2 = a, ∆2 = {(b|a)}, and B2 = {b}. As before, we
investigate the conditional vs. the propositional revision

κ|a ∗σ ∆2 vs. κ|a ∗σ B2.
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Via (3.1), we get the following inequality defining the impact factor for (b|a) in ∆2.

(b|a) η2,1 > min
{
κ|a (abc), κ|a (abc)

}
−min

{
κ|a (abc), κ|a (abc)

}
= 1− 0 = 1

Following the same argumentation as for i = 1, we can choose η?2,1 = η?1 = 2 for
the corresponding impact factor η1 for the propositional revision with B2 = {b}.
The results of the revision can be found in Table 5.2 and it holds that κ|a ∗σ
∆2(ω) = ( κ|a )σ∆2

(κ|a )σB2
= κ|a ∗σ B2(ω) since σ satisfies (IP-ESPσ) and therefore

(κ|a )?∆2
(κ|a )?B2

=. All in all, it holds that strategic c-revisions ∗σ satisfy (LPR).

The following proposition summarizes essential statements about the compati-
bility of conditionalization for OCFs [119] and revision operators ∗ for OCFs which
satisfy the well-known Ramsey Test (cf. (2.2) on page 26).

Proposition 5.2.3. Let κ be an OCF and ∗ a revision operator which satisfies the
Ramsey Test, i.e., κ |= (B|A) iff κ ∗ A |= B. Then the following statements hold:

• Compatibility of conditionalization with conditionals:

κ|A |= B iff κ |= (B|A)

• Conditional Ramsey Test:

(CRT) κ|A |= B iff κ ∗ A |= B (5.17)

Proof. We start by showing that OCF-conditionalization is compatible with con-
ditional information. It holds that κ|A |= B iff κ|A (B) > 0 which is equivalent
to κ|A (B) < κ|A (B) due to the properties of OCFs (cf. page 36 in Section 2.4).
Since κ|A is defined on Mod(A), we can conclude that κ|A (AB) < κ|A (AB) and
therefore, also κ(AB) < κ(AB), i.e., κ |= (B|A).

Now, we show that (CRT) holds. From the first statement, we can conclude
that κ|A |= B iff κ |= (B|A), which is equivalent to κ ∗ A |= B due to the classical
Ramsey Test.

The first statement compares the acceptance of a proposition in a specific con-
text provided by conditionalization to the acceptance of a conditional. As we can
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see, conditionalization for OCFs and conditional information are compatible in a
rational way, i.e., if we consider only worlds in which the premise of a conditional
is true and therefore focus on a specific context provided by the premise, then we
also must accept the consequents of the conditionals that deal with this case. The
Conditional Ramsey Test builds up on this compatibility and connects the accep-
tance of propositional information in a conditionalized state with the acceptance of
the same information for revised states. This corresponds to the notion that con-
ditionalization operators implement special propositional revision operators, which
was already discussed for probabilistic revision operators [88, 87].

5.3 Building a Global Revision From the Local
Revision

The Kinematics principle for OCFs displays a powerful concept that deals with
case-related information that allows us to reduce the computational complexity of
the revision with a set of conditionals by employing the idea that only conditionals
talking about a specific case are relevant in the corresponding case. Note that
especially for c-revisions, the computational complexity is directly linked to the
size of ∆ resp. ∆i, since for each conditional, a new constraint variable defined
by (3.1) is added to the constraint satisfaction problem. Also, the size of Ω, i.e.,
the number of possible worlds, is relevant for the computational complexity. Here,
the Kinematics principle for ranking functions offers a logically sound strategy how
to reduce the complexity of the revision task by focusing on the particular case
via conditionalization, i.e., reducing the number of possible worlds Mod(Ai) ⊆ Ω

and also the size of the input set ∆i ⊆ ∆. Unfortunately, it is unclear how the
plausibility ranks from different cases can be reassembled to recreate the globally
revised OCF κ∗∆ = κ∗∆. This is because conditionalization naturally leads to a loss
of information on the relations between sub-OCFs from different cases, and the full
global belief state κ∗∆ is not uniquely determined by the local revisions from (GRK)
(κ ∗∆)|Ai = (κ∗∆)|Ai resp. κ|Ai ∗∆i = (κ|Ai )∗∆i

.
So, in general, creating a globally revised OCF from the locally revised sub-OCFs

is an open research question in general, which was tackled in [111] by employing c-
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revisions. In the following sections, we discuss a simplified form of ranking functions
and a concatenation operator and show that with these technical tools at hand,
we can define c-revision operators that recreate globally c-revised ranking functions
from local ones in a straightforward way and thus providing the right-to-left direction
of the following revision scenarios:

κ∗∆ = κ ∗∆←→ κ|Ai ∗∆i = (κ|Ai )∗∆i

(GRK)
= (κ ∗∆)|Ai = κ∗∆|Ai

Note that the left-to-right connection is provided by (GRK) with S = > via condi-
tionalization with the corresponding case Ai. Before we define the tools mentioned
above, it is essential to acknowledge that the concepts presented in this section pro-
vide a way to reconstruct information that is usually lost during conditionalization
and can only be applied to ranking functions. This is due to the arithmetic provided
by OCFs, which is not provided in the qualitative framework. The numerical rep-
resentation of plausibility ranks makes the mechanisms that come into play when
conditionalizing a ranking function clearer and thus can be traced back. Qualitative
representations of belief states as plausibilistic TPOs only provide relative informa-
tion, i.e., the plausibility of a world can only be defined via its positioning to others,
and therefore, they are less absolute.

5.3.1 Pre-OCFs and Concatenation of Ranking Functions

In Theorem 5.1.1, we have shown that c-revisions satisfy (GRK). To reconstruct
the global c-revision κc

∆ = κ ∗c ∆ from the local c-revisions (κ|Ai )c
∆i

= κ|Ai ∗c ∆i,
we still need some technical tools, which we define in this section. From (5.11) in
Proposition 5.1.2, it follows that the inequalities defining each impact factor ηi for
conditionals in ∆ are not affected by the switch from the local to the global scenarios,
i.e., whether we consider subsets ∆i or the global set of conditionals ∆. Yet, (5.12)
from Proposition 5.1.2 shows that also the calculation of the normalization constants
κ0,i for each local revision is crucial to ensure (GRK) for c-revisions since they play
a distinctive role for κc

∆ versus (κ|Ai )c
∆i

. We illustrate the role of normalization
constants in the following example.

Example 5.3.1. Let Σ = {a, b, c} and ∆ = {(b|a), (c|a), (b|a), (c|a)} with subsets
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∆1 = {(b|a), (c|a)} and ∆2 = {(b|a), (c|a)} and P∆ = {a, a} as finest case splitting.
The prior ranking function κ as well as the conditionalized sub-OCFs κ|Ai (with
A1 = a and A2 = a) can be found in Table 5.3. For a better overview, we place
the conditionalized OCFs beneath each other in one column. In Theorem 5.1.1, we
showed that CR(κ,∆)∆i

= CR(κ|Ai ,∆i) holds, so using the ranking function κ from
Table 5.3 we get the following system of inequalities:

(b|a) η1,1 > min{3, 2 + η1,2} −min{2, 1 + η1,2}

(c|a) η1,2 > min{3, 2 + η1,1} −min{2, 1 + η1,1}

(b|a) η2,1 > 4−min{2, η2,2}

(c|a) η2,2 > min{4, 2 + η2,1} −min{4, η2,1}

Employing (IP-ESPσ), we choose a selection strategy σ, such that

σ(κ,∆)∆1
= (η1,1, η1,2) = (2, 2) = σ(κ|A1 ,∆1),

σ(κ,∆)∆2
= (η2,1η2,2) = (2, 3) = σ(κ|A2 ,∆2)

holds with Pareto-minimal impact factors. We indicate the special choice of im-
pact factors and the corresponding strategic c-revisions with a superscript ?. The
schematic revision results κ∗σ∆ resp. κ|Ai ∗σ∆i (i = 1, 2) as well as their calculated
ranks using the specific impact factors and the normalization constant κ0 resp. κi,0
for κ|Ai ∗σ ∆i (i = 1, 2) are displayed in Table 5.3.

Example 5.3.1 shows, that for the local c-revision κ|a ∗σ ∆2, it holds that the
global c-revision κ∗σ∆ uses the same plausibility ranks (since κ(a) = 0) and the same
impact factors η2,j (j = 1, 2). Only, the normalization constant for the global revision
κ0,∆ differs from the constants κ0,1 and κ0,2 for the local revisions in Table 5.3. This
example, therefore, illustrates the crucial role of the normalization constants for our
goal of expressing the global c-revision κc

∆ by the local (κ|Ai )c
∆i

. Note that this
vital role was already apparent in (5.12) from Proposition 5.1.2.

To exclude the effect of normalization, we need more general ranking functions,
which we call pre-ranking functions or pre-OCFs that are not necessarily normalized.
Note that normalization is an artifact that turns general rankings in terms of natural
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ω ∈ Ω κ κ|Ai κ ∗σ ∆ κ?∆ κ|Ai ∗σ ∆i κ?|Ai ∆i

abc 3 2 κ0 + 3 = 0 κ0,1 + 2 = 0

abc 2 1 κ0 + 2 + η1,2 = 1 κ0,1 + 1 + η1,2 = 1

abc 2 1 κ0 + 2 + η1,1 = 1 κ0,1 + 1 + η1,1 = 1

abc 1 0 κ0 + 1 + η1,1 + η1,2 = 2 κ0,1 + 0 + η1,1 + η1,2 = 2

abc 4 4 κ0 + 4 + η2,2 = 4 κ0,2 + 4 + η2,2 = 3

abc 4 4 κ0 + 4 = 1 κ0,2 + 4 = 0

abc 0 0 κ0 + 0 + η2,1 + η2,2 = 2 κ0,2 + 0 + η2,1 + η2,2 = 1

abc 2 2 κ0 + 2 + η2,1 = 1 κ0,2 + 2 + η2,1 = 0

κ(a) = 0 κ0 = −3 κ0,1 = −2
κ(a) = 1 κ0 = −3 κ0,2 = −4

Table 5.3: OCF κ, κ|Ai and c-revisions from Example 5.3.1. Worlds in Mod(Ai)
(i = 1, 2) are separated using different gray tones. The κ-ranks of a and a and the
values of the normalization constants can be found in the last row.

numbers into OCFs. For c-revisions (2.14), normalization is used as a meta-concept
that is applied to a structural schema, and normalization is not relevant for the
constraint satisfaction problems 3.1.2.

Definition 5.3.1. A pre-OCF or pre-ranking function is a function κpre : Ω →
N ∪ {∞}.

Every pre-OCF κpre can be transformed to a classic ranking function via the
OCF-operator ocf : κpre 7→ κ with

κ(ω) = ocf (κpre) = κpre(ω)−min
ω∈Ω
{κpre(ω)}. (5.18)

It holds that every standard OCF is also a pre-OCF, and the two concepts can
be transferred into each other respectively in a straightforward way. However, the
operator ocf is not injective since different pre-OCFs can yield the same ranking
function applying the operator ocf . For a conditionalized ranking function κ|Ai a
natural candidate for an associated pre-OCF is the prior ranking function defined
on the corresponding set of worlds Mod(Ai) only:

(κ|Ai )pre(ω) = κ(ω) for ω |= Ai.
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The idea of neglecting normalization for ranking functions can also be utilized for
(strategic) c-revisions. Thus, we define pre-c-revisions in full compliance with the
standard strategic c-revisions by just leaving out the normalization constant:

Definition 5.3.2 (Strategic pre-c-revision). Let κ be a ranking function and let
∆ = {(B1|X1), . . . , (Bm|Xm)} be a set of conditionals. For a selection strategy σ for
c-revisions, we define a strategic pre-c-revision of κ by ∆ as a pre-OCF (κ∗σ)pre s.t.
(κ∗σ)pre accepts ∆ and is given by the impact vector #»η = σ(κ,∆):

(κ∗σ)pre(ω) = κ ∗pre
σ ∆ = κ(ω) +

∑
16i6m
ω|=XiBi

ηi. (5.19)

It is straightforward yet essential to acknowledge that the constraint satisfaction
problem specifying ηi is not affected by the normalization constant and, thus, does
not differ from the standard one for pre-c-revisions. As for standard c-revisions, the
impact values ηi correspond to a single conditional (Bi|Xi) ∈ ∆i each.

Another challenge we have to meet when setting up κc
∆ from (κ|Ai )c

∆i
is the

reconstruction of the global OCF κ from conditionalized sub-OCFs κ|Ai . Condi-
tionalization can be seen as a mapping from ranking functions defined on the whole
set of worlds Ω to ranking functions defined on a subset Mod(Ai). Hence, condi-
tionalization leads to irreversible loss of information concerning the ranks of worlds
in Ω \ Mod(Ai). In this general scenario, the advantages of employing numerical
ranks to express the plausibility of worlds become particularly clear because num-
bers and the underlying arithmetic allow us to understand exactly to which extent
the case implied by a world influences its global ranking in the OCF. The unique
structure given by the case splitting in our Kinematics principle for OCFs is crucial
for the following concatenation operator, which reconstructs a global pre-OCF from
the local ones:

Definition 5.3.3 (Concatenation Operator). Let {A1, . . . , An} be a case splitting
and let (κ|Ai )pre be the corresponding pre-OCF defined on Mod(Ai). The concate-
nation operator ⊕ maps a set of conditional pre-OCFs {(κ|Ai )pre}ni=1 to a single
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pre-OCF ⊕({(κ|Ai )pre}ni=1) defined on the whole set Ω as follows:

⊕({(κ|Ai )pre}ni=1) : Ω→ N ∪ {∞},

s.t., ⊕ ({(κ|Ai )pre}ni=1)(ω) = ( κ|Ai )pre(ω) for ω |= Ai.
(5.20)

Note that, Definition 5.3.3 is defined for pre-OCFs, but since every standard
OCF matches the definition of a pre-OCF, the concatenation operator is not solely
restricted to pre-OCFs but is also defined for ranking functions. It holds that if one
of the (κ|Ai )pre is a ranking function, i.e., there exists at least one world with rank
zero, then ⊕({(κ|Ai )pre}ni=1) is a ranking function, too, because concatenation does
not change the ranks of (κ|Ai )pre. Furthermore, for the operator ⊕, the guiding
principle for combining the ranks from local cases to a global ranking function is
simply to connect the ranks from disjoint local cases to a full pre-OCF on Ω. Thus,
the operator ⊕ does not really combine information but rather glues different sub-
OCFs together. This is possible due to the special structure of the local cases in the
case splitting {A1, . . . , An}. Exclusivity guarantees that the plausibility rankings do
not interfere. Thus, we can simply string them together, and exhaustiveness ensures
that ⊕({(κ|Ai )pre}ni=1) ranks each world in Ω. Concatenation, even in the case of
exclusive cases, is not defined for more general epistemic states like TPOs. The
plausibility of a world in a TPO depends on its relative positioning towards other
worlds; this information is irretrievably lost during conditionalization as it displays
a mapping from Ω to Mod(Ai).

5.3.2 From Global to Local C-Revisions

Now, we have the toolbox to define the global c-revision κ ∗c ∆ with a set of condi-
tionals ∆ which satisfies the preamble of (GRK) from the local c-revisions κ|Ai ∗c∆i.
By employing pre-OCFs from Definition 5.3.1 and the corresponding pre-c-revisions
from Definition 5.3.2 together with the concatenation operation defined in (5.20) we
get the following theorem:

Theorem 5.3.1. Let ∆ = ∆1 ∪ . . . ∪ ∆n be a set of conditionals and P∆ =

{A1, . . . , An} be a case splitting of ∆ specified as in the preamble of (GRK). Let
κ be an OCF and let σ be a selection strategy that satisfies (IP-ESPσ). It holds
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for strategic pre-c-revisions ∗pre
σ resp. strategic c-revisions ∗σ induced by the same

strategy σ and the concatenation operator ⊕(·) that

κ ∗σ ∆(ω) = ocf (⊕({κ|Ai ∗pre
σ ∆i + κ(Ai)}ni=1))(ω) (5.21)

for all ω ∈ Ω.

Proof. The theorem follows directly from (GRK) for ranking functions and the def-
inition of strategic pre-c-revisions resp. c-revisions and the concatenation operator
⊕(·). For ω ∈ Mod(Ai), it holds that

κ|Ai ∗pre
σ ∆i(ω) + κ(Ai) = κ|Ai (ω) +

∑
16j6ni

ω|=AiCi,jBi,j

ηi,j + κ(Ai) = κ ∗pre
σ ∆(ω) (5.22)

Note that since, the Ai’s are exclusive the (pre-)c-revision with ∆ yields the same
results on Mod(Ai) as the revisions with ∆i (cf. Proposition 5.1.2). Since (5.22)
holds for all 1 6 i 6 n, we get

κ ∗pre
σ ∆(ω) = ⊕({κ|Ai ∗pre

σ ∆i + κ(Ai)}ni=1) (5.23)

for all ω ∈ Ω via employing the concatenation operator ⊕. Thus, (5.21) follows from
(5.18) via normalization for all ω ∈ Ω.

Theorem 5.3.1 shows that for sets of conditionals ∆, satisfying the prerequisites
of (GRK), instead of revising the prior κ with the whole set ∆, we can revise with
subsets ∆i of ∆ concerning just the local cases in κ|Ai and then concatenate the re-
sults and normalize. The local revision κ|Ai is sufficient to c-revise the prior ranking
function κ with the set of conditionals ∆, i.e., we can reconstruct κc

∆ from (κ|Ai )c
∆i

for strategic c-revision satisfying (IP-ESPσ) via normalizing the concatenated and
revised pre-OCFs κ|Ai ∗pre

σ ∆i after adding κ(Ai) which is given by the prior κ. This
way, we can compute the global c-revision κ∗c∆ more efficiently since concatenation
and normalization come at linear cost. Thus, splitting into local subcases reduces
the exponential effort of the revision significantly.

We illustrate our results with an example.
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ω ∈ Ω κ κ|Ai κ ∗pre
σ ∆ ⊕((κ|Ai )pre

∆i
(ω) + κ(Ai))

abcd 2 2 2 = 2 2 + κ(ab) = 2

abcd 2 2 2 + η1,2 = 3 2 + η1,2 + κ(ab) = 3

abcd 1 1 1 + η1,1 = 3 1 + η1,1 + κ(ab) = 3

abcd 0 0 0 + η1,1 + η1,2 = 3 0 + η1,1 + η1,2 + κ(ab) = 3

abcd 1 0 1 + η2,1 = 2 1 + η2,1 + κ(ab) = 2

abcd 3 2 3 + η2,1 + η2,2 = 4 3 + η2,1 + η2,2 + κ(ab) = 4

abcd 1 0 1 = 1 1 + κ(ab) = 1

abcd 2 1 2 + η2,2 = 2 2 + η2,2 + κ(ab) = 2

abcd 4 3 4 + η3,2 = 5 4 + η3,2 + κ(a) = 5

abcd 3 2 3 = 3 3 + κ(a) = 3

abcd 1 0 1 + η3,1 + η3,2 = 4 1 + η3,1 + η3,2 + κ(a) = 4

abcd 4 3 4 + η3,1 = 6 4 + η3,1 + κ(a) = 6

abcd 4 3 4 + η3,2 = 5 4 + η3,2 + κ(a) = 5

abcd 3 2 3 = 3 3 + κ(a) = 3

abcd 2 1 2 + η3,1 + η3,2 = 5 2 + η3,1 + η3,2 + κ(a) = 5

abcd 4 3 4 + η3,1 = 6 4 + η3,1 + κ(a) = 6

Table 5.4: OCF κ and κ|Ai with κ(ab) = 0, κ(ab) = 1 and κ(a) = 1 and the
strategic pre-c-revisions from Example 5.3.2 as schemas and with the corresponding
calculated ranks κ?∆ resp. ⊕((κ|Ai )?∆i

) + κ(Ai). For better readability, we employ
different gray tones to distinguish models Mod(Ai).

Example 5.3.2. Let Σ = {a, b, c, d} and ∆ = {(c|ab), (d|ab), (c|ab), (d|ab), (c|a), (d|a)}
a set of conditionals. It holds that P∆ = {ab, ab, a} displays the finest case split-
ting, which induces the following partition of ∆ = ∆1 ∪ ∆2 ∪ ∆3 with subsets
∆1 = {(c|ab), (d|ab)}, ∆2 = {(c|ab), (d|ab)} and ∆3 = {(c|a), (d|a)}. The prior rank-
ing function κ and the corresponding conditionalized sub-OCFs κ|Ai for i = 1, 2, 3

can be found in Table 5.4. To compact the table, we place the conditionalized OCFs
beneath each other in one column.

Furthermore, we display the schematic pre-c-revised ranking functions κ∗pre
σ ∆ and

the concatenation ⊕({κ|Ai ∗pre
σ ∆i+κ(Ai)}ni=1) in Table 5.4 with a selection strategy σ

for c-revision which satisfies (IP-ESPσ). From Theorem 5.3.1, we can conclude that
the constraint satisfaction problem CR(κ|Ai ,∆i) defining the c-revision κ|Ai ∗pre

σ ∆i
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ω ∈ Ω κ ∗σ ∆ κ0 +⊕((κ|Ai )pre
∆i

(ω) + κ(Ai))

abcd κ0 + 2 = 1 κ0 + 2 + κ(ab) = 1

abcd κ0 + 2 + η1,2 = 2 κ0 + 2 + η1,2 + κ(ab) = 2

abcd κ0 + 1 + η1,1 = 2 κ0 + 1 + η1,1 + κ(ab) = 2

abcd κ0 + 0 + η1,1 + η1,2 = 2 κ0 + 0 + η1,1 + η1,2 + κ(ab) = 2

abcd κ0 + 1 + η2,1 = 1 κ0 + 1 + η2,1 + κ(ab) = 1

abcd κ0 + 3 + η2,1 + η2,2 = 3 κ0 + 3 + η2,1 + η2,2 + κ(ab) = 3

abcd κ0 + 1 = 0 κ0 + 1 + κ(ab) = 0

abcd κ0 + 2 + η2,2 = 1 κ0 + 2 + η2,2 + κ(ab) = 1

abcd κ0 + 4 + η3,2 = 4 κ0 + 4 + η3,2 + κ(a) = 4

abcd κ0 + 3 = 2 κ0 + 3 + κ(a) = 2

abcd κ0 + 1 + η3,1 + η3,2 = 3 κ0 + 1 + η3,1 + η3,2 + κ(a) = 3

abcd κ0 + 4 + η3,1 = 5 κ0 + 4 + η3,1 + κ(a) = 5

abcd κ0 + 4 + η3,2 = 4 κ0 + 4 + η3,2 + κ(a) = 4

abcd κ0 + 3 = 2 κ0 + 3 + κ(a) = 2

abcd κ0 + 2 + η3,1 + η3,2 + κ(a) = 4 κ0 + 2 + η3,1 + η3,2 = 4

abcd 4 + η3,1 = 5 κ0 + 4 + η3,1 + κ(a) = 5

κ0,∆ =-1 κ0 = -1

Table 5.5: The c-revised OCF κ ∗σ ∆ and the pre-c-revised, concatenated and then
normalized OCF κ0+⊕((κ|Ai )pre

∆i
(ω)+κ(Ai)) as schemas and with the corresponding

calculated ranks κ?∆ resp. κ0 +⊕((κ|Ai )?∆i
) + κ(Ai).

and the projection of the constraint satisfaction problem CR(κ,∆)∆i
for κ ∗pre

σ ∆ are
the same. For the impact factors defining κ ∗σ ∆ we get the following inequalities.

(c|ab) η1,1 > min{2, η1,2} −min{1, η1,2}

(d|ab) η1,2 > min{2, 1 + η1,1} −min{2, η1,1}

(c|ab) η2,1 > min{1, 2 + η2,2} −min{1, 3 + η2,2}

(d|ab) η2,2 > min{1 + η2,1, 1} −min{3 + η2,1, 2}

(c|a) η3,1 > min{4 + η3,2, 3} −min{1 + η3,2, 4}

(d|a) η3,2 > min{3, 4 + η3,1} −min{4, 1 + η3,1}
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Since σ satisfies (IP-ESPσ), we can choose the same impact factors for both revision
scenarios CR(κ,∆)∆i

and CR(κ|Ai ,∆i).

σ(κ,∆)∆1
= (η1,1, η1,2) = (2, 1) = σ(κ|A1 ,∆1)

σ(κ,∆)∆2
= (η2,1, η2,2) = (1, 0) = σ(κ|A2 ,∆2)

σ(κ,∆)∆3
= (η3,1, η3,2) = (2, 1) = σ(κ|A3 ,∆3)

The results of the revisions are displayed in Table 5.4. Note that we present the
schematic revision as well as the calculated ranks corresponding to the special choice
of impact factors, indicated by an additional superscript. It holds that κ ∗pre

σ ∆(ω) =

⊕({κ|Ai ∗pre
σ ∆i(ω) + κ(Ai)}ni=1) for all ω ∈ Ω.

Moreover, Table 5.5 depicts the schematic c-revision κ ∗σ ∆ and ocf (⊕({κ|Ai ∗pre
σ

∆i + κ(Ai)}ni=1)) employing the same selection strategy σ as above and following
the same steps for computing the corresponding c-revision. Again, we indicate the
special choice of impact factors by an additional superscript. It holds κ ∗σ ∆(ω) =

ocf (⊕({κ|Ai ∗pre
σ ∆i + κ(Ai)}ni=1)) for all ω ∈ Ω.

To sum up, we have shown that (GRK) offers a divide-and-conquer strategy for
c-revisions since it is sufficient to reassemble the local revisions κ|Ai ∗∆i, given by
the case Ai. This yields the same result as revising with the complete set ∆. A
concatenation operator executes the assembly of local revisions. Thus, c-revisions
solve a merging problem in the context of local vs. global revisions, at least in the
special case of (disjoint) cases.



Chapter 6

The Kinematics Principle in the
Qualitative Framework

In this chapter, we investigate the qualitative Kinematics principle, which directly
corresponds to the Kinematics principle for OCFs from Section 5.1. Note that, for
the Kinematics principle for OCFs, the basic concepts needed were already present,
i.e., there exists a concept of conditionalization for OCFs by Spohn [119], and c-
revisions [63] provide a suitable revision operator for sets of conditionals. Hence,
the main challenge in Section 5.1 was to prove that these concepts satisfy the Kine-
matics principle. Then, we continued with more high-level investigations, such as
the relation to propositional revision (cf. Section 5.2) and how to build up the global
c-revision via the local revisions (cf. Section 5.3).

However, we have much fewer technical resources in the qualitative framework
since we lack a proper conditionalization mechanism and a suitable revision operator
for sets of conditionals. Thus, the formulation of the qualitative Kinematics princi-
ple in the first section of this chapter represents a target and poses challenges, which
we tackle in the following sections. First, we present a concept of qualitative condi-
tionalization in Section 6.2. The second task, defining a suitable revision operator
for sets of conditionals, is quite challenging because it goes far beyond established
revision theories [2, 29]. However, we have seen that c-revisions comply with the
Kinematics principle in the context of OCFs. In Section 6.4, we show that, via in-
duction by c-revisions, we can revise plausibilistic TPOs by sets of conditionals. To
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define this qualitative version of c-revisions and show that it satisfies the Kinematics
principle, an adequate transformation scheme between ranking functions and plau-
sibilistic TPOs is crucial. This transformation scheme must meet high standards.
It must adequately transfer the technique of c-revisions to total preorders while
respecting crucial characteristics of conditionalization. Thus, the transformation
scheme must comply with both mechanisms, c-revisions, and conditionalization, to
the full extent. We present a transformation scheme between plausibilistic TPOs
and OCFs in Section 6.3, which is intuitive and meets our requirements simultane-
ously. In Section 6.4, all our previously defined concepts and revision methods come
together and enable us to present a proof of concept for the Kinematics principle at
least for special cases.

The last section of this chapter is dedicated to investigating the Kinematics
principle in the context of another conditional revision operator, namely the one
presented by Chandler and Booth in [27]. Chandler and Booth’s operator revises
with only a single conditional. Thus, we can fall back on some of the results pre-
sented in Section 5.2 in the context of OCFs to compare their qualitative conditional
operator with qualitative c-revisions, also w.r.t. the Kinematics principle.

Bibliographic Remark. The contents of this part are based on joint work with
Gabriele Kern-Isberner and Christoph Beierle [70] (see Section 1.3).

6.1 The Qualitative Kinematics Principle

In this section, we define the qualitative Kinematics principle as a target that serves
as guidance and sets the requirements for the investigations in the following sections
of this chapter.

For the qualitative Kinematics principle Ψ, we assume that each epistemic state
Ψ is equipped with a plausibilistic TPO �Ψ as defined in Section 2.4. Using the
direct correspondence between Ψ and �Ψ we sometimes replace the abstract term
Ψ for epistemic states by �Ψ. The revision operator • takes Ψ and a conditional
belief base ∆ resp. a set of propositional formulas S as input and delivers a revised
epistemic state Ψ• = Ψ • (∆ ∪ S), i.e., a revised TPO �Ψ•=�Ψ•(∆∪S) as output.



6 The Kinematics Principle in the Qualitative Framework 101

Definition 6.1.1 (Qualitative Kinematics (QK)). Let A1, . . . , An be exhaustive and
exclusive formulas. Let Ψ = (Ω,�Ψ) be an epistemic state, and let ∆ = ∆1∪ . . .∪∆n

be a set of conditionals, with subsets ∆i whose premises imply Ai, and S =
∨
j∈J Aj

with ∅ 6= J ⊆ {1, . . . , n}. A revision operator • satisfies Qualitative Kinematics iff

(QK) Ψ • (∆ ∪ {S})|Ai = (Ψ|Ai ) •∆i

Actually, (QK) looks very similar to (GRK), except for replacing the OCF κ with
a more general epistemic state Ψ. And the basic idea and the irrelevance assertions
of (QK) and (GRK) are the same (cf. the explanation for Definition 5.1.1). It
holds that (QK), like (GRK), has two crucial implications concerning the relevance
of conditional information under revision. First, the information expressed in S,
i.e., that one of the cases Aj (j ∈ J) might be more plausible does not affect the
conditional beliefs for each case Ai. Second, for the posterior conditional beliefs
given Ai only the respective new information ∆i is relevant, i.e. conditionalization
and revision are interchangeable.

Note that the subsets ∆i can be empty in the partitioning of ∆. Also, we
acknowledge that for the cases represented by the Ai’s exclusivity is the crucial
property since exhaustiveness can always be obtained by taking the negation of∨
Ai as “the remaining case” and choosing the corresponding subset as ∆i = ∅ (cf.

Algorithm 1 on page 72).
As for (GRK), it holds that if the plausibility of the cases is neglected, i.e., S = >,

a weaker version of (QK) follows for revision operators • that satisfy conditional
Tautological Vacuity (cTV) from equation 3.2 on page 641. Then (QK) together
with (cTV) implies

Ψ •∆|Ai = (Ψ|Ai ) •∆i, (6.1)

i.e., the revision w.r.t. to the specific case Ai, i.e., we conditionalize the agent’s
belief state and then revise with the corresponding set ∆i, yields the same result as
revising with the whole set of conditional information ∆ and then focussing on the
case Ai. We illustrate how (QK) can help us to significantly reduce the complexity
of belief revision operators by an example.

1We obtain the qualitative version of (3.2) from page 64 by replacing κ by a more general
epistemic state Ψ and strategic c-revisions ∗σ by the more general revision operator •.
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�Ψ:

abcd abcd

abcd abcd

≺Ψ

abcd abcd

abcd abcd

≺Ψ

abcd

abcd

implausibility

Figure 6.1: Belief state Ψ given as TPO �Ψ.

Example 6.1.1. An agent with the current epistemic state Ψ over the signature
Σ = {a, b, c, d} depicted in Figure 6.1, given as the TPO �Ψ, receives new con-
ditional information concerning two disjoint scenarios A1 = a and A2 = a, s.t.
∆ = ∆1 ∪ ∆2 with ∆1 = {(b|a), (c|a)} and ∆2 = {(d|a)}. We can derive from the
minimal worlds of the TPO in Figure 6.1 that the agent is ignorant about the two
cases a and a and that she deems b ∨ c ∨ d plausible. Note that in Figure 6.1, some
worlds are excluded since these are considered to be impossible by the agent.
This displays a situation where we can (hypothetically) apply the qualitative kine-
matics principle when incorporating the new conditional beliefs ∆ given A1 resp. A2

and some additional propositional information about the plausibility of the cases A1

resp. A2 (e.g. that A1 = a is less plausible than A2 = a). Then (QK) would guide
the revision process by ensuring that the conditional beliefs given A1 resp. A2 are
influenced only by the respective new conditional information. We would get that

(Ψ • (∆ ∪ {a}))|a = Ψ|a • {(b|a), (c|a)}

(Ψ • (∆ ∪ {a}))|a = Ψ|a • {(d|a)}

Note that, new information S on A1 vs. A2 should be irrelevant for the condi-
tional beliefs given Ai because these conditional beliefs always assume that Ai holds,
independent of its plausibility in the revised state.

In Section 5.2, we introduced the postulate (LPR) in the context of OCFs, which
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relates conditional revision with sets ∆ = {(Bi|Ai)} (i = 1, . . . , n) to propositional
revision with the set of consequents B = {Bi}. The following postulate displays a
reformulation of (LPR) in the qualitative framework

(LPR) Ψ|Ai ∗∆i = Ψ|Ai ∗ Bi (6.2)

If we neglect S and consider the special case of a single conditional ∆ = {(B|A)},
(LPR) reduces to

Ψ|A • (B|A) = Ψ|A •B. (6.3)

Thus, making the conditional revision with (B|A) superfluous in the context of
conditionalization. Together with (QK) for a single conditional, we get

Ψ • (B|A)|A = Ψ|A • (B|A) = Ψ|A •B, (6.4)

i.e., we can express the conditional revision of Ψ with (B|A) as a propositional
revision with B, and it does not matter whether we first focus on the specific context
provided by A and then revise accordingly or vice versa.

6.2 Qualitative Conditionalization

The qualitative Kinematics principle (QK) is a sophisticated axiom of conditional
belief revision, which requires a concept of conditionalization for epistemic states.
In general, conditionalization can be seen as a method to update an agent’s condi-
tional beliefs concerning specific evidence given as a propositional formula A ∈ L.
This concept is well-known in probability theory as conditional probabilities and has
been transferred to ranking functions in [117] by Spohn. In this section, we define
a qualitative conditionalization operator for epistemic states, represented as plau-
sibilistic TPOs, and propositional formulas, which share important characteristics
with Spohn’s conditionalization for ranking functions.

There are several well-justified requirements that a conditionalization operation
should meet. We illustrate them using ranking functions. First, conditionalization
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by A should not change the type of an epistemic state, and A should be believed after
conditionalization. For any OCF κ, these properties hold for each conditionalized
ranking functions κ|A , since κ|A (A) = κ(A) − κ(A) = 0, so κ|A is an OCF on
Mod(A). Moreover κ|A |= A because ω |= A for all ω ∈ Mod(A). And hence,
trivially also for all ω such that κ|A (ω) = 0. Furthermore, relations among the
models of A are preserved: For ω1, ω2 ∈ Mod(A) it holds that

κ(ω1) 6 κ(ω2) iff κ|A (ω1) 6 κ|A (ω2). (6.5)

Finally, conditionalization is compatible with the acceptance of conditional beliefs,
meaning that κ |= (B|A) iff κ|A |= B as was shown in Proposition 5.2.3. Summa-
rizing, what we expect from a qualitative conditionalization Ψ|A are the following
properties:

(1) Ψ|A |= A;

(2) ω1 �Ψ|A ω2 iff ω1 �Ψ ω2 for all ω1, ω2 |= A;

(3) Ψ|A |= B iff Ψ |= (B|A).

We now turn to the definition of conditionalization of TPOs.

Definition 6.2.1 (Conditionalization of TPOs). Let �Ψ be a TPO on Ω, let A be a
propositional formula. The conditionalization of Ψ on A, denoted by Ψ|A , is defined
as Ψ|A = (Mod(A),�Ψ|A ) such that

ω1 �Ψ|A ω2 iff ω1 �Ψ ω2 for ω1, ω2 ∈ Mod(A).

First, it is easy to see that conditionalization for TPOs yields a TPO �Ψ|A on
Mod(A). Moreover, this definition complies with all requirements (1) – (3) listed
above. Indeed, we have

ω1 �Ψ ω2 iff ω1 �Ψ|A ω2 (6.6)

for ω1, ω2 ∈ Mod(A) by definition. Moreover, Ψ|A |= A for trivial reasons. Last
but not least, we compare the acceptance of conditionals with conditionalization for
total preorders.
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Proposition 6.2.1 (Compatibility with conditionals). For an epistemic state Ψ =

(Ω,�Ψ) and a conditional (B|A) it holds that:

Ψ |= (B|A) iff Ψ|A |= B. (6.7)

Proof. Ψ|A |= B iff min(Mod(A),�Ψ|A ) |= B. Since Ψ|A is defined on Mod(A),
this is equivalent to AB ≺Ψ AB, i.e., to Ψ |= (B|A).

We continue with Example 3.1.1 to illustrate conditionalization for TPOs.

Example 6.2.1 (Continuing Example 3.1.1). Let Ψ be the TPO defined in Example
3.1.1. If we conditionalize Ψ by A = a we get the TPO Ψ|A : abc ≺ abc ≺ abc, abc.
We illsustrate the compatibility with conditionals for the conditional (a|b), it holds
that Ψ |= (a|b) because ab ≺ ab and Ψ|a |= b.

To further elaborate on the relations between conditionalization for TPOs and
conditionalization for OCFs, we first need to define operators that define transfor-
mations from ranking functions to TPOs and vice versa.

6.3 Transformation Operators for Epistemic States

The qualitative Kinematics principle (QK) makes conditionalization and revision
interchangeable, i.e., a revision operator which satisfies this powerful axiom must
provide coherence across revision scenarios with prior conditionalized states and the
conditionalization of posterior revised state. In the framework of OCFs, c-revisions
satisfy this powerful principle, thus, can serve as a blueprint for a qualitative revi-
sion operator. If one takes this idea seriously, the requirement for a transformation
scheme between plausibilistic TPOs and OCFs arises, which is largely compatible
with the conditionalization for ranking functions and TPOs. In this section, we
introduce two intuitive and, at the same time, fully compliant transformation op-
erators, at least for special cases. We illustrate their strengths by presenting a
commutative diagram in Figure 6.2, which adequately connects the transformation
and conditionalization.



106 6.3 Transformation Operators for Epistemic States

Plausibilistic TPOs and OCFs are representations of epistemic states as total
preorders indicating plausibility. Thus, both can be seen as qualitative representa-
tions of an agent’s belief state. TPOs display plausibility relations between worlds
by simply preordering them according to their plausibility. Ranking functions also
display a preorder of worlds, but they associate worlds with a numerical rank of
plausibility, making it easier to distinguish how much more (or less) plausible worlds
are. In both formalisms, the most plausible worlds are in the lowest layer. In this
section, we introduce two transformation operators between OCFs and TPOs that
play a mediating role between the two frameworks and respect the given relations
on worlds in each framework. These transformations are shown to respect condi-
tionalization for both representations of epistemic states as far as possible and are
useful to define a revision operator for TPOs. We start with the transformation
from ranking functions to TPOs.

Definition 6.3.1. Let κ be a ranking function on Ω. The transformation operator
τ maps κ to a total preorder Ψκ = (Ω,�Ψκ), τ : κ 7→ Ψκ, such that for all ω1, ω2 ∈ Ω

ω1 �Ψκ ω2 iff κ(ω1) 6 κ(ω2) (6.8)

holds.

τ is a well-defined operator, since we can define a TPO for every ranking function
κ by simply transferring the ranking of worlds to a total preorder. Clearly, τ is
surjective but not injective, as we see in the following example:

Example 6.3.1. The ranking functions κ1, κ2 : {a, a} → N ∪ {∞} with κ1(a) =

κ2(a) = 0 and κ1(a) = 1, κ2(a) = 2 are mapped to the same TPO by τ , namely
a ≺Ψκi

a for i = 1, 2.

In general, two OCFs κ1, κ2 ∈ τ−1(Ψ) are equivalent with respect to the TPO
on Ω that they induce which can be seen immediately from equation (6.8).2

Because τ is not injective, we cannot simply define a transformation from TPOs
to ranking functions as the inverse function of τ . We introduce a new operator ρ
that maps TPOs to selected ranking functions. Because of the empty layers, it is

2Equivalence for OCFs is defined on page 37
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possible to match a TPO with an infinite number of ranking functions. We choose
a minimal OCF in the sense that we do not allow empty layers.

Definition 6.3.2. Let Ψ = (Ω,�Ψ) be an epistemic state. The transformation
operator ρ maps Ψ to an OCF κΨ by taking the minimal ranks of the inverse image
of τ for Ψ, i.e., ρ is defined by ρ : Ψ 7→ κΨ with

κΨ(ω) = min
κ∈τ−1(Ψ)

{κ(ω)}. (6.9)

To show that ρ is a well-defined operator, we need to prove that κΨ is an OCF.
Moreover, we show that

κΨ(ω1) 6 κΨ(ω2) iff ω1 �Ψ ω2 (6.10)

holds, i.e. κΨ ∈ τ−1(Ψ) and the relations between worlds are maintained.

Proposition 6.3.1. For all Ψ = (Ω,�Ψ) there is a unique minimal OCF κΨ ∈
τ−1(Ψ) as defined in (6.9); furthermore, κΨ satisfies (6.10).

Proof. First, we have to show that κΨ is an OCF. Since τ is surjective, the set
τ−1(Ψ) is non-empty, so κΨ is well-defined by (6.9). For ω ∈ min(Ω,�Ψ), it holds
that κ(ω) = 0 for all κ ∈ τ−1(Ψ), thus κΨ(ω) = 0 and κΨ displays an OCF.

Now, we turn to (6.10): For all κ ∈ τ−1(Ψ) it holds that κ(ω1) 6 κ(ω2) iff ω1 �Ψ

ω2. This applies particularly if we take the minimal ranks on both sides, i.e.,

min
κ∈τ−1(Ψ)

{κ(ω1)} 6 min
κ∈τ−1(Ψ)

{κ(ω2)} iff ω1 �Ψ ω2,

and therefore κΨ satisfies (6.10) resp. (6.8), hence κΨ ∈ τ−1(Ψ).

The following lemma collects useful statements about the transformation oper-
ators τ and ρ.

Lemma 6.3.2. Let τ and ρ be as defined in Definitions 6.3.1 and 6.3.2. Then the
following statements hold:

1. τ is surjective but not injective.
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2. ρ is injective but not surjective.

3. ρ(Ψ) = κΨ is convex.

4. τ ◦ ρ = id, but ρ ◦ τ 6= id in general. However, κ and ρ ◦ τ(κ) are equivalent.

Proof. (1) is clear from the above. Regarding (3), if κΨ was not convex, it would
have empty layers, which contradicts the minimum in (6.9). Due to κΨ ∈ τ−1(Ψ),
we have τ ◦ ρ(Ψ) = τ(ρ(Ψ)) = τ(κΨ) = Ψ. However, κ2 from Example 6.3.1 shows
that the converse does not hold because of ρ◦ τ(κ2) = ρ(τ(κ2)) = ρ(Ψκ2) = κ1 6= κ2.
This proves (4). Nevertheless, for any two worlds ω1, ω2, we have κ(ω1) 6 κ(ω2) iff
ω1 �Ψκ ω2 (by (6.8)) iff κΨκ(ω1) 6 κΨκ(ω2) (by (6.10)), and κΨκ = ρ ◦ τ(κ). This
shows that κ and ρ ◦ τ(κ) are equivalent. (2) is an easy consequence of (4).

Since ρ maps each TPO to the unique minimal relation-preserving OCF, it is
an injective function. It is clear that κΨ as defined in (6.9) is convex because we
choose minimal ranks for κΨ ∈ τ−1(�Ψ). While for the composition of our two
transformation operators, we generally have ρ◦ τ 6= id because τ is not injective, for
convex ranking functions, ρ ◦ τ = id holds, as the next proposition shows.

Proposition 6.3.3. Let κ be an OCF, and let ρ and τ be as defined in Definitions
6.3.1 and 6.3.2. If κ is convex, then ρ ◦ τ(κ) = ρ(τ(κ)) = κ holds.

Proof. We set τ(κ) = Ψκ and ρ(Ψκ) = κΨκ = κ′. We have to show that κ′ = κ. By
definition, κ′(ω) = ρ(Ψκ)(ω) = minκ′′∈τ−1(Ψκ){κ′′(ω)}, and κ ∈ τ−1(Ψκ) according
to (6.8). Hence κ′(ω) 6 κ(ω) for all ω ∈ Ω.

Assume there is ω0 such that κ′(ω0) < κ(ω0), and choose ω0 with minimal
κ′(ω0) = r0, i.e. κ′(ω′) = κ(ω′) for all ω′ such that κ′(ω′) < κ′(ω0). Since r0 6

maxω∈Ω κ′(ω) 6 maxω∈Ω κ(ω) and κ is presupposed to be convex, it follows that there
is ω1 such that κ(ω1) = r0 < κ(ω0), and therefore ω1 ≺Ψκ ω0. Because κ′ ∈ τ−1(Ψκ)

holds via Proposition 6.3.1, we also have κ′(ω1) < κ′(ω0). But on the other hand,
since κ′(ω0) was chosen minimally, we obtain κ′(ω1) = κ(ω1) = r0 = κ′(ω0), which
yields a contradiction.

Furthermore, if Ψ is convex with respect to a formula A, the transformation
operator ρ preserves the property of convexity for the conditionalized OCF ρ(Ψ)|A :
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κ κ|A

Ψ Ψ|A

·|A

·|A

ρ τ ρ τ

Figure 6.2: Relations between the ranking functions κ resp. (A|κ) and the TPOs Ψ
resp. (A|Ψ) using the transformation operators τ and ρ.

Proposition 6.3.4. Let Ψ = (Ω,�Ψ) be an epistemic state that is convex with
respect to A. Then ρ(Ψ)|A = κΨ|A is convex.

Proof. We have to show that for all r, 0 6 r 6 maxω|=A{κΨ|A (ω)}, there is ω0 |=
A such that κΨ|A (ω0) = r. For r ≥ 0, we have r 6 maxω|=A{κΨ|A (ω)} =

maxω|=A{κΨ(ω)} − κΨ(A) iff r + κΨ(A) 6 maxω|=A{κΨ(ω)}, which means that
r+ κΨ(A) 6 maxω∈Ω{κΨ(ω)}. By Lemma 6.3.2, we can conclude that κΨ is convex,
so there is ω′

0 ∈ Ω such that κΨ(ω′
0) = r + κΨ(A), i.e., κΨ(ω′

0)− κΨ(A) = r.
Choose ω1, ω2 |= A such that κΨ|A (ω1) = 0, and κΨ|A (ω2) = maxω|=A{κΨ|A (ω)}

holds, resp., if r = 0 or r = maxω|=A{κΨ|A (ω)}, then one of ω1, ω2 can be cho-
sen as ω0 |= A with κΨ|A (ω0) = r. So let 0 < r < maxω|=A{κΨ|A (ω)}. Then
we have κΨ(ω1) − κΨ(A) < κΨ(ω

′
0) − κΨ(A) < κΨ(ω2) − κΨ(A), and therefore

κΨ(ω1) < κΨ(ω
′
0) < κΨ(ω2). Due to (6.10), this implies ω1 ≺ ω′

0 ≺ ω2, and because
ω1, ω2 |= A and Mod(A) is �-convex, there is ω0 |= A such that ω0 ≈ ω′

0. Again due
to (6.10), we obtain κΨ(ω0) = κΨ(ω

′
0), and hence κΨ|A (ω0) = κΨ(ω0) − κΨ(A) =

κΨ(ω
′
0)− κΨ(A) = r.

Propositions 6.3.3 and 6.3.4 allow us to study bidirectional translations, at least
in special cases. We use this to prove the tight bounds between conditionalization
for TPOs vs. conditionalization for OCFs by investigating the commutativity of the
diagram displayed in Figure 6.2. We show that conditionalization for TPOs and
conditionalization for OCFs can be mapped onto each other by using the transfor-
mation operators τ resp. ρ. First, we show that for ranking functions, the diagram
commutes in general, i.e., that τ(κ)|A = τ(κ|A ) holds.
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Theorem 6.3.5. Let κ be an OCF, A ∈ L be a consistent formula, and τ the
transformation operator as defined in Definition 6.3.1. Then the following holds:

τ(κ)|A = Ψκ|A = Ψ(κ|A ) = τ(κ|A ). (6.11)

Proof. All Ψκ|A ,Ψ(κ|A ), κ|A are defined on Mod(A). We need to show: For
ω1, ω2 ∈ Mod(A), it holds that ω1 � (Ψκ)|A ω2 iff ω1 �Ψ(κ|A )

ω2.

Let ω1, ω2 ∈ Mod(A), then we obtain ω1 � (Ψκ)|A ω2 ⇔ ω1 �Ψκ ω2
(6.8)⇔ κ(ω1) 6

κ(ω2)⇔ κ|A (ω1) 6 κ|A (ω2)
(6.8)⇔ ω1 �Ψ(κ|A )

ω2.

Theorem 6.3.5 shows that when starting with a ranking function κ, it does not
change the result of the respective qualitative conditionalization whether we first
transform κ to a TPO Ψκ and then conditionalize, or if we first conditionalize κ and
then transform κ|A to a TPO Ψκ|A . This is because τ and the conditionalization
operation preserve relations among possible worlds. Therefore, our Definition 6.2.1
perfectly fits the requirements of OCF conditionalization.

Now, we turn to the transformation operator ρ. Here, however, ρ and condi-
tionalization do not commute in general, i.e., we have ρ(Ψ)|A = κΨ|A 6= κΨ|A =

ρ(Ψ|A ) generally. This is due to the fact that κΨ|A can have empty layers, whereas
κΨ|A is always convex, cf. Lemma 6.3.2. We illustrate this with an example.

Example 6.3.2. For Ψ : ab ≺ ab ≺ ab ≺ ab, we have ρ(Ψ) = κΨ = κ with
κ(ab) = 0, κ(ab) = 1, κ(ab) = 2 and κ(ab) = 3. Hence, κ|a (ab) = 0, and
κ|a (ab) = 2. As we can see κ|a has an empty layer, i.e., there is no possible world
with rank 1. If we first conditionalize Ψ by a, we obtain Ψ|a : ab ≺ ab. It holds that
ρ(Ψ|a ) = κΨ|a with κΨ|a (ab) = 0, κΨ|a (ab) = 1 is convex, therefore κΨ|a 6= κΨ|a .

Nevertheless, κΨ|A and κΨ|A yield the same result after application of τ :

Theorem 6.3.6. Let Ψ be a total preorder, A ∈ L be a consistent formula, and ρ,
τ the transformation operators as defined in Definitions 6.3.1 and 6.3.2. Then the
following holds:

τ(κΨ|A ) = τ(κΨ|A ),

i.e., τ( ρ(Ψ)|A ) = τ(ρ(Ψ|A )) = Ψ|A .
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Proof. All involved TPOs and OCFs are defined on Mod(A). We have to show
that for all ω1, ω2 ∈ Mod(A), it holds that ω1 �Ψ(κΨ|A )

ω2 iff ω1 �Ψκ(Ψ|A )
ω2. Let

ω1, ω2 ∈ Mod(A). Then we obtain ω1 �Ψ(κΨ|A )
ω2

(6.8)⇔ κΨ|A (ω1) 6 κΨ|A (ω2)
(6.5)⇔

κΨ(ω1) 6 κΨ(ω2)
(6.10)⇔ ω1 �Ψ ω2

(6.6)⇔ ω1 �Ψ|A ω2
(6.10)⇔ κΨ|A (ω1) 6 κΨ|A (ω2)

(6.8)⇔
ω1 �Ψκ(Ψ|A )

ω2. Hence, we can conclude τ(ρ(Ψ|A )) = Ψ|A by Lemma 6.3.2.

Theorem 6.3.6 shows that we get the same preorder Ψ|A , whether we first
conditionalize the original TPO Ψ, then transform it to a ranking function κΨ|A

and then use τ , or if we start with the transformation ρ, then conditionalize and
then transform κΨ|A to a TPO ΨκΨ|A . Although Example 6.3.2 shows that the
diagram in Figure 6.2 does not commute with respect to ρ in general, we can heal
this flaw by applying τ .

For total preorders which are convex with respect to the proposition A by which
they are conditionalized, the diagram in Figure 6.2 commutes also in the ρ-direction:

Theorem 6.3.7. Let Ψ be a total preorder which is convex with respect to A. Then
it holds that

ρ(Ψ)|A = κΨ|A = κΨ|A = ρ(Ψ|A ).

Proof. Let Ψ be convex with respect to A. All involved TPOs and OCFs are defined
on Mod(A). From Proposition 6.3.4, it follows that κΨ|A is convex. With Proposi-
tion 6.3.3, we obtain ρ(τ(κΨ|A )) = κΨ|A . Therefore, κΨ|A = ρ(τ(κΨ|A ))

Th.6.3.5
=

ρ( τ(κΨ)|A ) = ρ( τ(ρ(Ψ))|A )
Lem.6.3.2

= ρ(Ψ|A ) = κΨ|A .

In the following, we continue with Example 6.1.1 and illustrate the connections
which we have worked out in Theorem 6.3.7.

Example 6.3.3 (Continuing Example 6.1.1). It holds that Ψ given by �Ψ in Figure
6.1 on page 102 is convex w.r.t. the cases A1 = a and A2 = a (cf. Definition 3.1.1
on page 61). Also, the agent is agnostic about the cases A1 = a and A2 = a since she
neither believes nor disapproves of one of them. So, to get to know more about what
will plausibly happen in the two cases, she considers the conditionalized epistemic
states Ψ|a and Ψ|a substantiated by the TPOs in Figure 6.3. Both conditionalized
epistemic states are derived by Ψ according to Definition 6.2.1.
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�Ψ |a :

�Ψ |a :

abcd abcd

abcd abcd

≺Ψ|a

≺Ψ|a

abcd abcd

abcd abcd

≺Ψ|a

≺Ψ|a

abcd

abcd

implausibility

Figure 6.3: Conditionalized belief states Ψ|a resp. Ψ|a given as TPOs �Ψ |a resp.
�Ψ |a .

Via the transformation operator ρ from Definition 6.3.2, we get the ranking function
κΨ which is depicted in the first column of Table 6.1 by assigning (minimal) ranks to
the layers of �Ψ. The OCF κΨ can be conditionalized via (2.10) and we get κΨ|Ai
(i = 1, 2) from Table 6.1. It holds that, if we transform the conditionalized states
Ψ|a and Ψ|a to OCFs κΨ|a and κΨ|a via the operator ρ, we get exactly the same
ranking function as κΨ|Ai for i = 1, 2, i.e.,

κΨ|a (ω) = κΨ|a (ω) and κΨ|a (ω) = κΨ|a (ω) for all ω ∈ Ω.

Thus, as stated in Theorem 6.3.7 for convex TPOs conditionalization and the trans-
formation with operator ρ are interchangeable.

To sum up, in this section, we have shown that conditionalization for TPOs from
Definition 6.2.1 is compatible with the conditionalization for ranking functions to a
large extent. Of course, we lose information and structure when we move from an
OCF to a TPO. In particular, TPOs do not allow for the concept of difference, which
is crucial for OCF conditionalization. Nevertheless, Theorems 6.3.5 – 6.3.7 show that
we are able to maintain all relevant information for conditionalization at least for
worlds in Mod(A). More precisely, we establish a one-to-one correspondence between
TPOs and OCFs (normally, it is one-to-many) that is tight enough to transfer the
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ω ∈ Ω κΨ κΨ|Ai
abcd 0 0
abcd 0 0
abcd 1 1
abcd 1 1
abcd 2 2
abcd 0 0
abcd 0 0
abcd 1 1
abcd 1 1
abcd 2 2

Table 6.1: Transformed OCF κΨ and conditionalized OCFs κΨ|Ai with A1 = a and
A2 = a. To separate worlds from Mod(Ai) we employ different gray tones.

concept of difference from OCFs to TPOs by making the transfer commutable with
conditionalization, at least for special cases. This commutativity is an essential
prerequisite for transferring formal revision approaches and properties from OCFs
to TPOs, in particular concerning our qualitative Kinematics property.

6.4 Qualitative C-Revisions and the Kinematics
Principle

In this section, we combine the results of our previous investigations and define a
qualitative revision operator that uses (strategic) c-revisions for OCFs as a blueprint
and is compatible with both concepts of conditionalization, i.e., the one presented
in Section 6.2 and OCF conditionalization from Spohn [117]. After discussing some
basic properties of qualitative c-revisions, we state the main result in this section,
which shows that qualitative c-revisions which rely on an impact-preserving selection
strategy satisfy (QK) for the case of convex TPOs.

With the help of the transformation operators τ and ρ and their special properties
with respect to conditionalization proved in the previous section and illustrated via
Figure 6.2, we can now easily transfer conditional revision operators for OCFs to
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TPOs.

Definition 6.4.1 (Qualitative c-revision •c, qualitative strategic c-revision •σ for
TPOs). Let Ψ = (Ω,�) be an epistemic state with ρ(Ψ) = κΨ as the corresponding
OCF, and let ∆ be a set of conditionals. Let ∗c be a c-revision operator according to
Definition 2.5.1, and let σ be a selection strategy for c-revisions, inducing a strategic
c-revision operator ∗σ. A qualitative c-revision •c for Ψ is defined via κΨ as follows:

Ψ •c ∆ = τ(κΨ ∗c ∆). (6.12)

Analogously, a qualitative strategic c-revision •σ based on strategy σ is defined by

Ψ •σ ∆ = τ(κΨ ∗σ ∆). (6.13)

Note that c-revisions fully comply with the AGM framework [2] and the Darwiche-
Pearl postulates for iterated Belief Revision [29]. More precisely, they satisfy the
principle of conditional preservation (PCP)∗ (cf. Subsection 2.5.2) as was shown in
[63]. From this, we can derive that qualitative c-revisions satisfy the qualitative
version of the (PCP)∗, namely the Qualitative Principle of Conditional Preservation
(PCP)• from [65] (cf. Subsection 2.5.2). This was shown in [70] via the following
theorem.

Theorem 6.4.1. Any qualitative c-revision •c of a TPO Ψ = (Ω,�Ψ) by sets of
conditionals ∆, i.e., Ψ •c ∆ = τ(κΨ ∗c ∆), satisfies (PCP)•.

Proof. Let Ψ •c ∆ = τ(κΨ ∗c ∆) be a qualitative c-revision operation for TPOs
and conditional belief sets ∆ = {(B1|A1), . . . , (Bn|An)} as defined by (6.12) with
a qualitative c-revision operator •c. Let two multisets of possible worlds Ω̃1 =

{ω1, . . . , ωk} and Ω̃2 = {ω′
1, . . . , ω

′
k} with the same cardinality be given such that

#Ver (Bj |Aj)(Ω̃1) = #Ver (Bj |Aj)(Ω̃2) and #Fals(Bj |Aj)(Ω̃1) = #Fals(Bj |Aj)(Ω̃2) for
conditionals (Bj|Aj) ∈ ∆.

We prove (PCP)• (1), (PCP)• (2) is analogous. Presuppose that for all i, 1 6 i 6

k, it holds that ωi �Ψ ω′
i, and there is at least one i, 1 6 i 6 k such that ωi ≺Ψ ω′

i

holds. Then also for κΨ, we have κΨ(ωi) 6 κΨ(ω
′
i) for all i, 1 6 i 6 k, and there

is at least one i, 1 6 i 6 k such that κΨ(ωi) < κΨ(ω
′
i) holds. This means, that for



6 The Kinematics Principle in the Qualitative Framework 115

ω ∈ Ω κ κΨ ∗σ ∆ κ?∆
abcd 0 κ0 + 0 + η1,1 + η1,2 = 3
abcd 0 κ0 + 0 + η1,2 = 2
abcd 1 κ0 + 1 = 1
abcd 1 κ0 + 1 = 1
abcd 2 κ0 + 2 + η1,1 + η1,2 = 5
abcd 0 κ0 + 0 + η2,1 = 1
abcd 0 κ0 + 0 = 0
abcd 1 κ0 + 1 = 1
abcd 1 κ0 + 1 = 1
abcd 2 κ0 + 2 + η2,1 = 3

κ0 = 0

Table 6.2: C-Revision κΨ ∗σ ∆ with ∆ of the transformed OCF κΨ. We depict
the schematic c-revision and κ?∆ with the calculated ranks which corresponds to
Example 6.1.1.

κΨ, the left hand side of (6.12) is negative. Since κΨ ∗c ∆ = κc
Ψ is a c-revision and

satisfies (PCP)∗, also the right hand side of (6.12) referring to κc
Ψ must be negative,

i.e., there must be at least one j, 1 6 j 6 k, such that κc
Ψ(ωj) < κc

Ψ(ω
′
j) holds.

Now we have to relate this to Ψc = Ψ •c ∆ = τ(κΨ ∗c ∆). Note that ρ ◦ τ(κc
Ψ) =

ρ◦τ(κΨ∗c∆) = ρ(Ψ•c∆) = ρ(Ψc) = κΨc , hence κΨc and κc
Ψ are equivalent according

to Lemma 6.3.2. This means that κc
Ψ(ωj) < κc

Ψ(ω
′
j) iff κΨc(ωj) < κΨc(ω′

j), which is
equivalent to ωj ≺Ψc ω′

j, which was to be shown.

The Darwiche-Pearl postulates can be derived from (PCP)•, thus, are satisfied
by qualitative c-revisions of TPOs.

Note that for this result, we do not have to use strategies because (PCP)• deals
with exactly one revision scenario Ψ • ∆. For (QK), however, results of different
revision scenarios have to be compared, so strategies come into play to guide a
coherent revision behavior across different scenarios. We apply qualitative strategic
c-revisions to our running example 6.1.1.

Example 6.4.1 (Continuing Example 6.1.1). We qualitatively c-revise the agent’s
beliefs Ψ represented as a TPO �Ψ in Figure 6.1 with the conditional beliefs ∆ =



116 6.4 Qualitative C-Revisions and the Kinematics Principle

�Ψ•c :

abcd ≺Ψ•c

abcd

abcd abcd

abcd abcd
≺Ψ•c abcd ≺Ψ•c

abcd

abcd
≺Ψ•c abcd

implausibility

Figure 6.4: Qualitative c-revision Ψ•c
= Ψ•c ∆ with ∆ of belief state Ψ on the basis

of the strategic c-revision κΨ ∗σ ∆.

∆1 ∪∆2 with ∆1 = {(b|a), (c|a)} and ∆2 = {(d|a)}. Therefore, we make use of κΨ
from Table 6.1. The constraint satisfaction problem CR(κΨ,∆) yields the following
inequalities defining the impact factors for the c-revision:

(b|a) η1,1 > 0− 0 = 0,

(c|a) η1,2 > 1− 0 = 1,

(d|a) η2,1 > 0− 0 = 0.

A Pareto-minimal selection strategy σ chooses the impact vector σ(κΨ,∆) = (1, 2, 1).
The result of the strategic c-revision κΨ ∗σ∆ is depicted in Table 6.2. Thus, we yield
the qualitative strategic c-revised TPO Ψ•c

= Ψ •c ∆ = τ(κΨ ∗σ ∆) from Figure 6.4
via the transformation operator τ and the strategic c-revision operator ∗σ.

We show that qualitative c-revision from Definition 6.4.1 that employ a strategy
satisfying (IP-ESPσ) satisfy (QK) at least for special prior epistemic states Ψ.

Theorem 6.4.2. Let Ψ = (Ω,�Ψ) be an epistemic state, and let σ be a selection
strategy for c-revisions that satisfies (IP-ESPσ). If Ψ is convex with respect to the
cases A1, . . . , An then Ψ •σ (∆ ∪ {S}) as defined in (6.4.1) satisfies Qualitative
Kinematics (QK), i.e.,

(Ψ •σ (∆ ∪ {S}))|Ai = (Ψ|Ai ) •σ ∆i,

where ∆ = ∆1 ∪ . . . ∪∆n, the case splitting P∆ = {A1, . . . , An}, and S are specified
as in the preamble of (QK).
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Proof. The proof is a straightforward consequence of what we have shown before:

(Ψ •σ (∆ ∪ {S}))|Ai = τ(κΨ ∗σ (∆ ∪ {S}))|Ai
Th. 6.3.5
= τ(κΨ ∗σ (∆ ∪ {S})|Ai )

Th. 5.1.1
= τ(κΨ|Ai ∗σ ∆i)

Th. 6.3.7
= τ(κΨ|Ai

∗σ ∆i) = Ψ|Ai •σ ∆i.

In this section, all the definitions and results we presented in this chapter come
into play. The transformation operator τ defined in Section 6.3 enables us to define
qualitative strategic c-revisions from c-revisions for OCFs. Moreover, we have shown
in Theorem 6.3.5 that the transformation with τ and conditionalization commute,
thus we can employ the Kinematics principle for OCFS. Here, the impact-preserving
strategy σ ensures that c-revisions and conditionalization are commutable. Since Ψ

is convex w.r.t. to each case Ai, the transformation with ρ and the conditionalization
with the corresponding case are compatible, i.e., κΨ|Ai = κΨ|Ai

holds and we can
conclude that (QK) is satisfied. Note that the usage of strategies, i.e., the qualitative
c-revision operator •σ is crucial for (QK) since it is crucial for Theorem 5.1.1 which
proves that c-revisions that employ a selection strategy which satisfies (IP-ESPσ)
satisfy (GRK), i.e., (QK) for OCFs.

Furthermore, note that the OCF-variant of the postulate for Local Propositional
Revision (LPR) is satisfied by strategic c-revision ∗σ if σ satisfies (IP-ESPσ). Using
the transformation schemata (cf. Definition 6.3.2 on page 107 and Definition 6.3.1 on
page 106), we can conclude that impact-preserving strategic c-revisions •σ σ satisfy
the qualitative version of (LPR) from (6.2) from page 103 at least in the special case
of a convex TPO. We state a corollary from Theorem 5.2.2 and Theorem 6.4.2.

Corollary 6.4.3. Let Ψ = (Ω,�Ψ) be an epistemic state and let ∆ = ∆1 ∪ . . .∆n

with ∆i = {(Bj|Ai)}16j6ni
be a set of conditionals and Bi = {Bj}16j6ni

as specified in
Definition 5.2.1 on page 83. If σ satisfies (IP-ESPσ) then •σ is a strategic c-revision
operator that satisfies (LPR).

The Kinematics principle is also beneficial for the scenario in Example 6.1.1.
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ω ∈ Ω κΨ|a κΨ|a ∗σ ∆2 κ?∆
abcd 0 κ0 + 0 + η2,1 = 1
abcd 0 κ0 + 0 = 0
abcd 1 κ0 + 1 = 1
abcd 1 κ0 + 1 = 1
abcd 2 κ0 + 2 + η2,1 = 3

κ0 = 0

Table 6.3: C-Revision κΨ|a ∗σ ∆2 of the transformed OCF κΨ|a with ∆2. κ?∆ corre-
sponds to the c-revision with η2,1 = 1 of impact factors from Example 6.4.2.

�Ψ|a •σ∆2 :

abcd ≺Ψ|a •σ∆2

abcd

abcd abcd
≺Ψ|a •σ∆2

abcd

implausibility

Figure 6.5: Qualitative c-revision Ψ|a •σ∆2 with ∆2 of belief state Ψ|a on the basis
of the strategic c-revision κΨ|a ∗σ ∆2.

Example 6.4.2. The conditional information in ∆ concerns two disjoint scenarios,
either A1 = a or A2 = a holds. Now, the agent receives the new information
that a, i.e., the second case, is more plausible than the first one. Here, (QK)
allows us to focus on the case of A2 = a by revising solely Ψ|a with the new
information concerning this case, i.e., ∆2. For the qualitative strategic c-revision
Ψ|a •σ ∆2 = τ(κΨ|a ∗σ ∆2), we employ Ψ|a from Figure 6.3 and the corresponding
ranking function κΨ|a = κΨ|a from Table 6.1. Let the selection strategy σ from the
c-revision in Table 6.2 be impact preserving, i.e., it satisfies (IP-ESPσ). Then, it
holds for the projection of the constraint satisfaction problem CR(κΨ,∆)∆2 and the
constraint satisfaction problem CR(κΨ|a ,∆2) that

CR(κΨ,∆)∆2 = η2,1 = 1 = CR(κΨ|a ,∆2).

We yield the schematics strategic c-revisions κΨ|A2 ∗σ∆2 resp. κ?∆ with the calculated
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rank from Table 6.3 via the conditionalized belief state Ψ|A2 in 6.3. The revised
TPO Ψ|a •σ ∆2 is depicted in Figure 6.5. Thus, in case A2 = a holds, the agent
would expect d to hold. Also, for Ψ • ∆ in Figure 6.4, the conditionalization with
the specific case A2 = a leads the agent to expect d to be true.
Note that the same holds for CR(κΨ,∆)∆1 and CR(κΨ|a ,∆1) and it holds for the
qualitative c-revision strategic c-revisions that (Ψ •σ ∆|A1 = (Ψ|A1 ) •σ ∆1.

6.5 Qualitative C-Revision in Comparison

In the previous section, we have seen that qualitative c-revisions provide a proof of
concept for (QK). Now, we relate them to other revision scenarios resp. operators.
First, in Subsection 6.5.1, we analyze c-revisions with a single conditional versus
c-revisions with the material implication in the qualitative framework. Then, in
Subsection 6.5.2, we investigate qualitative c-revision w.r.t. properties of the condi-
tional revision provided by Chandler and Booth in [27]. And conversely, we verify
the Kinematics principle for the revision operator from [27].

6.5.1 C-Revision With the Material Implication

In this subsection, we analyze qualitative c-revisions by a single conditional resp.
by the material implication. We derive the c-revision with the material implication
from our general schema of conditional revision by representing the propositional in-
formation A→ B as a conditional with tautological premise (A→ B|>). Therefore,
applying a top-down method for deriving c-revisions with the material implication,
starting from the more sophisticated account of c-revision with a single conditional.

Compared to the general revision schema of c-revisions, a c-revision with a single
conditional is pretty simple (cf. Section 2.5.3, page 47). From the c-revision with a
single conditional in (2.20) and the minimal impact factor ηm from (2.22), we obtain
the following minimal c-revision:

κ ∗c
min (B|A)(ω) =

− κ(A ∨ B) + κ(ω) +

κ(AB)− κ(AB) + 1, ω |= AB

0, ω |= A ∨ B
,

(6.14)
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s.t., it holds that
ηm = κ(AB)− κ(AB) + 1. (6.15)

From Proposition 2.5.1, it follows that κ0 = κ(A ∨B).
In Section 2.4, we noted that plausible formulas A could be embedded into

conditionals via (A|>). This embedding enables us to identify the c-revision κ ∗c

(A → B) as κ ∗c (A → B|>), and we yield the following minimal c-revision κ ∗c
min

(A→ B) via the same argumentation as for (6.14)

κ ∗c
min (A→ B)(ω) =

− κ(A ∨ B) + κ(ω) +

κ(A ∨ B)− κ(AB) + 1 ω |= AB

0 ω |= A ∨ B
,

(6.16)

s.t., it holds for the minimal impact factor η′m that

η′m = κ(A ∨ B)− κ(AB) + 1. (6.17)

It holds that κ(AB) ≥ κ(A ∨ B) and therefore ηm ≥ η′m, thus every c-revision by
(B|A) is also a c-revision by A → B, but not the other way round. If κ(AB) =

κ(A ∨ B) holds, then the families of c-revisions by (B|A) resp. (A→ B) coincide.
We have seen that for c-revisions with a single conditional, like (6.14) or (6.16), it

is straightforward to choose minimal impact factors according to (2.22). To maintain
coherence with our previous results, we introduce a postulate from [70] for selection
strategies σ, which chooses the impact factor η according to (2.22).

(Singleσmin) A selection strategy σ is single-minimal if for any revision scenario
with a single conditional (B|A), we have σ(κ, {(B|A)}) = κ(AB)−κ(AB)+1.

Note that single-minimal c-revisions, i.e., κ ∗σ (B|A) resp. κ ∗σ (A → B) with a σ
that satisfies (Singleσmin) correspond to the minimal c-revisions in (6.14) resp. (6.16).

Now, we transfer c-revision with a single conditional resp. the material impli-
cation to the qualitative framework employing the transformation schema between
OCFs and TPOs defined in Section 6.3.
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Definition 6.5.1. Let Ψ = (Ω,�) be an epistemic state with ρ(Ψ) = κΨ as the
corresponding OCF. Let ∗c be a c-revision operator for OCFs according to Definition
2.5.1, and let σ be a selection strategy for c-revisions, inducing a strategic c-revision
operator ∗σ. A qualitative c-revision •c by a single conditional (B|A) resp. by the
material implication (A→ B) for Ψ is defined via κΨ and (6.14) resp. by (6.16) as
follows:

Ψ •c (B|A) = τ(κΨ ∗c (B|A)), (6.18)

Ψ •c (A→ B) = τ(κΨ ∗c (A→ B)). (6.19)

Analogously, a qualitative strategic c-revision •σ by (B|A) resp. (A→ B) based on
strategy σ is defined by

Ψ •σ (B|A) = τ(κΨ ∗σ (B|A)), (6.20)

Ψ •σ (A→ B) = τ(κΨ ∗σ (A→ B)). (6.21)

Via the transformation operators τ and ρ, this follows immediately for qualitative
c-revisions as defined above.

Example 6.5.1. In Table 6.4 the single-minimal c-revision of a ranking function κ

with the material implication (a→ b), κm
A→B, resp. with conditional (b|a), κm

(B|A), is
depicted. For the c-revision with a → b, we get the impact factor η′m = 2, and for
the conditional c-revision with (b|a), it holds that ηm = 4. Note that, the different
impact factors ηm 6= η′m are because while for κ ∗c (a→ b) the acceptance of a in the
posterior OCF suffices, the c-revision κ ∗c (b|a) makes sure that the ab-worlds are
strictly more plausible than the ab-worlds. The normalization constant is κ0 = −1
for both operations. As we can see, both c-revisions do not impact the ordering of
worlds in Mod(a), and the distances between the worlds in Mod(ab) stay the same.

6.5.2 Conditional Revision by Chandler and Booth

In this section, we investigate the conditional revision operator by Chandler and
Booth [27] in terms of the Kinematics principle and qualitative c-revision in terms
of properties of the conditional revision operator from [27].
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ω ∈ Ω κ κ ∗c (a→ b) κm
A→B κ ∗c (b|a) κm

(B|A)

abc 4 κ0 + 4 =3 κ0 + 4 =3
abc 3 κ0 + 3 =2 κ0 + 3 =2
abc 4 κ0 + 4 + η′ =5 κ0 + 4 + η =7
abc 0 κ0 + 0 + η′ =1 κ0 + 0 + η =3
abc 4 κ0 + 4 =3 κ0 + 4 =3
abc 3 κ0 + 3 =2 κ0 + 3 =2
abc 2 κ0 + 2 =1 κ0 + 2 =1
abc 1 κ0 + 1 =0 κ0 + 1 =0

Table 6.4: Single-minimal c-revision with the material implication (a → b), κm
A→B,

resp. with the conditional (b|a), κm
(B|A).

It holds that the conditional revision operator from [27] relies heavily on the
revision with the material implication. However, identifying conditionals with the
material implication leads to paradox and undesirable behavior [77], which is one
of the main reasons why the account of conditionals as three-valued logical entities
[30, 1] has become the main framework of conditional logic. However, the revision
with the material implication provides some valuable insights about the revision
with conditionals. Chandler and Booth’s approach relies on fine-tuning the revision
with the material implication to receive a conditional revision. Thus, they apply a
bottom-up method for defining conditional revision.

To provide ground for our following investigations, we briefly recapitulate the
main definitions and postulates from Chandler and Booth’s work [27].

The authors in [27] start their investigation of a conditional revision operator by
stating the following Success-condition for conditional revision:

(S•) min(�Ψ•(B|A),Mod(A)) ⊆ Mod(B).

In general, revision by a material implication is insufficient to accept the correspond-
ing conditional in the resulting belief set. However, there are special cases where this
relation between conditional revision and the revision with the material implication
holds. In [27], these cases are subsumed via a Vacuity postulate.

(V•) If Ψ • (A→ B) |= (B|A), then Ψ • (B|A) = Ψ • (A→ B)
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Revision with the material implication (A → B) displays the starting point of
conditional revision defined by Chandler and Booth in [27]. The main idea is to
modify this revised state (minimally) such that (S•) hold and some relevant features
are retained. The retainment of relevant features of Ψ • (A → B) is implemented
by the following retainment postulate:

(Ret1•) If ω1, ω2 ∈ Mod(A ∨ B), then ω1 �Ψ•(A→B) ω2 iff ω1 �Ψ•(B|A) ω2

The goal is to perform minimal modifications of Ψ • (A→ B), s.t. (S•) and (Ret1•)
hold. This is called distance-minimization under constraints in [27]. The retainment
principle in (Ret1•) claims that the internal ordering in Mod(A∨B) should be left
untouched during the minimization process. Three additional retainment principles
complement this principle:

(Ret2•) If ω1, ω2 ∈ Mod(AB), then ω1 �Ψ•
(B|A)

ω2 iff ω1 �Ψ•
(A→B)

ω2

(Ret3•) If ω1 ∈ Mod(A∨B), ω2 ∈ Mod(AB), and ω1 ≺Ψ•
(B|A)

ω2 then ω1 ≺Ψ•
(A→B)

ω2

(Ret4•) If ω1 ∈ Mod(A∨B), ω2 ∈ Mod(AB), and ω1 �Ψ•
(B|A)

ω2 then ω1 �Ψ•
(A→B)

ω2

The retainment principles imply that the demotion of the plausibility of worlds in
Mod(AB) in relation to worlds in Mod(A ∨ B) are the single admissible transfor-
mation when moving from Ψ • (A→ B) to Ψ • (B|A). Note that (Ret1•)– (Ret4•)
compare the conditional revision �Ψ•

(B|A)
to the revision �Ψ•

(A→B)
,w.r.t. to worlds

that satisfy A→ B, i.e., ω ∈ Mod(A ∨ B) and worlds that not satisfy A→ B, i.e.,
ω ∈ Mod(AB). The first two principles, (Ret1•) resp. (Ret2•) ensure that the prior
ordering of worlds in the set Mod(A ∨ B) resp. Mod(AB) are kept. The third and
fourth postulates, (Ret3•) and (Ret4•), add the requirement that the upgrade in the
plausibility of worlds in Mod(A ∨ B) in relation to worlds in Mod(AB) is retained
when moving from Ψ • (A→ B) to Ψ • (B|A).

The revision by (A→ B) is crucial for the conditional revision operator proposed
by Chandler and Booth and is executed by one of the elementary revision operators
• from Definition 2.3.2 on page 31). Taking the revision Ψ • (A→ B) as a basis the
conditional revision operator •C from [27] uses lexicographic revision •` [81], as in
Definition 2.3.2, to define a conditional revision as follows:
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Definition 6.5.2 (Conditional revision operator •C, [27]). Let • be an elementary
revision operator and let •` be the lexicographic revision operator as in Definition
2.3.2. The conditional revision operator •C maps an epistemic state Ψ = (�Ψ,Ω)

and a conditional (B|A) to an epistemic state Ψ •C (B|A) = (�Ψ•C(B|A),Ω) via the
lexicographic revision of Ψ • (A → B) with a proposition corresponding to a set of
worlds D(�Ψ•(A→B), AB) ∩Mod(A ∨ B):

Ψ •C (B|A) = (Ψ • (A→ B)) •` (D(�Ψ•(A→B), AB) ∩Mod(A ∨ B)). (6.22)

where D(�Ψ•(A→B), AB) is called the down-set of all models min(�Ψ, AB) and is
defined by

D(�Ψ•(A→B), AB) = {ω ∈ Ω |ω � ω′, for some ω′ ∈ min(�Ψ, AB)}. (6.23)

Note that, according to [27], the revision operator •C returns the minimal TPO
that minimizes the distance dK (Kemeny-distance [61]) to Ψ•(A→ B) given the con-
straints (S•) and (Ret1•), while satisfying the DP postulates and (Ret2•) – (Ret4•).
The minimization is realized via the lexicographic revision of Ψ•(A→ B) by a propo-
sition that corresponds to all models of (A→ B) that are more or equally plausible
as the minimal models of AB, i.e., all worlds in Mod(AB) are shifted upwards. Still,
the relations among the worlds in the down set D(�Ψ•(A→B), AB) ∩ Mod(A ∨ B)

stay the same. In [27], the authors claim for elementary revision operators • from
Definition 2.3.2 on page 31, that the conditional revision operator •C satisfies the
following proposition.

Proposition 6.5.1 ([27]). For Ψ = (�Ψ,Ω) an epistemic state and • an elementary
revision operator from Definition 2.3.2, it holds that • and •C satisfy

(Ψ •C (B|A))|A = (Ψ|A ) •B. (6.24)

The proposition states that if one excludes worlds where the antecedent of (B|A)
is false, the conditional revision results in a propositional revision with the conse-
quent. This result is similar to the special case of (LPR) for revision with a single
conditional in (6.4) we discussed on page 103. Note that the original proposition
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from [27] lacks a conditionalization operator, and the authors employed the inter-
section with Mod(A) to define a restriction of the TPO to Mod(A). Therefore, the
postulate (LPR) for a general conditional revision operator, we discussed in Section
6.1 resp. in Section 5.2 for OCFs, provides a more high-level result on the relation
between conditional revision and propositional revision going beyond the relation for
conditional revision in the sense of [27] in the above-stated proposition. However,
Proposition 6.5.1 is useful for investigating (QK) in the context of the conditional
revision operator from Definition 6.5.2.

Now, we show that qualitative single-minimal c-revision satisfies the character-
istic postulates for the conditional revision operator presented in Definition 6.5.2.

The following proposition shows that qualitative single-minimal c-revisions sat-
isfy (V•), i.e., if the revision with the material implication leads to the acceptance
of the corresponding conditional, then both strategic c-revisions κ •σ (B|A) and
κ •σ (A→ B) coincide.

Proposition 6.5.2. Let Ψ = (Ω,�) with ρ(Ψ) = κΨ from Definition 6.3.2. The
postulate (V•) holds for the qualitative strategic c-revision operator •σ with a single-
minimal strategy σ that satisfies (Singleσmin).

Proof. Presuppose that Ψ•σ
(A→B) = Ψ •σ (A → B) |= (B|A), i.e., Ψ•σ

(A→B)(AB) <

Ψ•σ
(A→B)(AB). Then, from (6.21), we can conclude for κΨ ∗σ (A→ B) that

(∗) κΨ ∗σ (A→ B)(AB) < κΨ ∗σ (A→ B)(AB).

Since σ is single-minimal, it holds that κΨ ∗σ (A → B) is defined as in (6.16) and
we abbreviate κΨ ∗σ (A→ B) = κm

A→B.
Now, we have to show that κm

A→B(ω) = κm
(B|A)(ω), where κm

(B|A) = κΨ ∗σ (B|A)
with single-minimal selection strategy σ is defined as in (6.14).

We distinguish the following cases:
1. For ω |= A ∨ B, κm

A→B(ω) = κm
(B|A)(ω) follows from (6.14) and (6.16).

2.For ω |= AB, κm
A→B(ω)− κm

(B|A)(ω) = κΨ(A ∨B)− κΨ(AB), i.e., in order to show
κm
A→B(ω) = κm

(B|A)(ω), we have to show that κΨ(A ∨ B) = κΨ(AB) holds.
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“6”: Due to (2.8) from page 36, it holds that

κΨ(A ∨B) = min{κ(AB), κ(AB), κ(AB)} 6 κΨ(AB).

“≥”: Since (∗) holds for κm
A→B and κm

A→B(AB) = −κΨ(A ∨ B) + κΨ(AB) resp.
κm
A→B(AB) = −κΨ(A ∨ B) + κΨ(AB) + κΨ(A ∨ B)− κΨ(AB) + 1 = 1, we get that

κm
A→B(AB) < κm

A→B(AB) ⇔ κΨ(AB) < κΨ(A ∨B) + 1 ⇒ κΨ(AB) 6 κΨ(A ∨B),

since OCF-ranks κΨ(AB), κΨ(A ∨ B) ∈ N.

The following proposition shows qualitative c-revisions with (A→ B) resp. with
(B|A) satisfy the retainment principles and therefore connect revision with the ma-
terial implication and the corresponding conditional in a rational manner according
to the authors of [27].

Proposition 6.5.3. Let Ψ = (Ω,�) with ρ(Ψ) = κΨ as defined in (6.10). (Ret1•),
(Ret2•), (Ret3•) and (Ret4•) hold for the qualitative strategic c-revision operator •σ
with σ that satisfies (Singleσmin).

Proof. Since σ is single-minimal, it holds that κΨ ∗σ (A → B) = κm
A→B as in (6.16)

and κm
(B|A) = κΨ ∗σ (B|A) as in (6.14).

(Ret1•): Let ω1, ω2 ∈ Mod(A ∨B). It holds that

ω1 �Ψ•σ(A→B) ω2
(6.8)⇔ κm

A→B(A→ B)(ω1) 6 κm
A→B(ω2)

(6.16)⇔ −κΨ(A ∨ B) + κΨ(ω1) 6 −κΨ(A ∨ B) + κΨ(ω2)

(6.14)⇔ κm
(B|A)(ω1) 6 κm

(B|A)(ω2)
(6.8)⇔ ω1 �Ψ•σ(B|A) ω2.

(Ret2•): Let ω1, ω2 ∈ Mod(AB). It holds that

ω1 �Ψ•σ(A→B) ω2
(6.8)⇔ κm

A→B(ω1) 6 κm
A→B(ω2)

(6.16)⇔ −κΨ(A ∨ B) + κΨ(ω1) + η′m 6 −κΨ(A ∨ B) + κΨ(ω2) + η′m

⇔ −κΨ(A ∨ B) + κΨ(ω1) + ηm 6 −κΨ(A ∨ B) + κΨ(ω2) + ηm

(6.14)⇔ κΨ ∗σ (B|A)(ω1) 6 κΨ ∗σ (B|A)(ω2)
(6.8)⇔ ω1 �Ψ•σ(B|A) ω2.
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Note that, to shorten the notation we used ηm as an abbreviation for the equation
in (6.15) and η′m as an abbreviation for (6.17).
(Ret3•): Let ω1 ∈ Mod(A ∨ B) and ω2 ∈ Mod(AB). It holds that

ω1 ≺Ψ•σ(A→B) ω2
(6.8)⇔ κΨ ∗σ (A→ B)(ω1) < κΨ ∗σ (A→ B)(ω2)

(6.16)⇔ −κΨ(A ∨ B) + κΨ(ω1) < −κΨ(A ∨ B) + κΨ(ω2) + η′m

with single-minimal impact factor η′m from (6.17), it holds that ηm ≥ η′m for ηm from
(6.15), since κ(AB) ≥ κ(A ∨ B) and we get that

− κΨ(A ∨ B) + κΨ(ω1) < −κΨ(A ∨ B) + κΨ(ω2) + η′m

⇒ −κΨ(A ∨ B) + κΨ(ω1) < −κΨ(A ∨ B) + κΨ(ω2) + ηm

(6.14)⇔ κΨ ∗σ (B|A)(ω1) < κΨ ∗σ (B|A)(ω2)
(6.8)⇔ ω1 ≺Ψ•σ(B|A) ω2.

(Ret4•) follows analogously to (Ret3•).

The following example illustrates qualitative c-revision and conditional revision
in the sense of [27].

Example 6.5.2. In Figure 6.6 on page 129 a conditional revision of an epistemic
state Ψ is depicted, this example was taken from [27]. On the right-hand side, the
qualitative c-revision of Ψ with (a → b) and (b|a) can be found, which is derived
from the c-revision in Table 6.4. The numbers correspond to possible worlds; these
are ordered from bottom to top, with the minimal worlds on the lowest level. As we
can see, we get different results from Ψ •C (b|a) and Ψ • (b|a), because the abc-world
is inserted differently. But the relations among the worlds in Mod(a→ b) are kept.

Using Proposition (6.5.1), we can show that •C satisfies (QK).

Theorem 6.5.4. Let Ψ = (�Ψ,Ω) be an epistemic state and •C be the conditional
revision operator as defined in Definition 6.5.2. Then Ψ •C (B|A) satisfies (QK),
i.e.

(Ψ •C (B|A))|A = (Ψ|A ) •C (B|A) (6.25)

Proof. It is sufficient to show that (Ψ|A ) •C (B|A) = (Ψ|A ) •B, (QK) then follows
immediately from (6.24). That (Ψ|A ) •C (B|A) = (Ψ|A ) •B is shown in the proof
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of Proposition 10 in [27] via using (Ret1•), the DP postulates and the concept of
state restriction that states that: If ω ∈ min(�Ψ|A ,Mod(B)) and ω′ ∈ Mod(B),
then ω �(Ψ|A )•B ω

′, otherwise ω �(Ψ|A )•B ω
′ iff ω �Ψ•B ω

′.

Note that in (6.25), we omitted the term S in the Qualitative Kinematics prin-
ciple, since for the revision with a single conditional, it holds that S = A, S = A

or S = >. In each of these cases, the revision with S is obsolete either due to the
vacuity postulate (S = >) or due to conditionalization with A resp. A for S = A

resp. S = A. Note that, in Theorem 6.5.4, we neglected the prerequisite in (QK)
concerning the convexity of Ψ w.r.t. the cases. This advantage arises from the fact
that •C focuses on the revision with a single conditional in the qualitative context.
However, this restriction to the special case of ∆ = {(B|A)} in (QK) ultimately
leads to the loss of one of the main strengths of (QK), namely, that (QK) enables
us to revise with information from disjoint contexts simultaneously with maximal
efficiency exploiting the disjoint cases A1, . . . , An.

The following example illustrates the result from Theorem 6.5.4, i.e., that the
conditional revision operator from [27] satisfies (QK).

Example 6.5.3. In Figure 6.7, the conditional revisions (Ψ•C (b|a))|a and (Ψ|a )•C
(b|a) are depicted. For both operations we yield the same results and therefore (QK)
holds. This example illustrates that for conditional revision with a single conditional,
conditionalization with the premise and revision are interchangeable.
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Figure 6.6: On the left side, we depict the conditional revision Ψ •C (b|a) with the
restrained revision operator •r as elementary operator for the revision Ψ•r (a→ b).
On the right side, we depict the qualitative c-revisions of Ψ•c (a→ b) and Ψ•c (b|a).
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Figure 6.7: (QK) for conditional Revision Operator •C from [27]. It holds that
(Ψ •C (b|a))|a = (Ψ|a ) •C (b|a).



Intermediate Summary for Part I

In this part, we thoroughly investigated a Kinematics principle for Belief Revision
inspired by the locality notions implemented in Bayesian networks [88] and proba-
bilistic reasoning [57, 113]. At the beginning of this part, we were confronted with
the advanced belief revision problem (CondCS), which raises the question of how to
revise an agent’s epistemic state in the light of new information which decomposes
naturally into disjoint contexts, called cases. Our Kinematics principle provides an
answer to this question, which fits naturally into how human reasoners revise their
beliefs and states that, when confronted with information from different cases, the
new information should be relevant solely in parts of the belief state that correspond
to the specific case. Conditionals provide us with the meta-structure needed to ex-
press this notion of locality in Belief Revision. They allow us to set up local context
by connecting the information from the consequent to a premise, introducing a spe-
cific context in a natural way. On the other hand, conditionalization is crucial since
it allows us to focus on specific parts of the belief state. Consequently, our Kinemat-
ics principle takes full advantage of conditionals in Belief Revision, and the thorough
investigations in this part lead to meaningful insights, which we summarize in the
following.

The Kinematics Principle for Ranking Functions. We started with a thorough
investigation of the cases employed in (CondCS) and presented an algorithm that
enables us to exploit the notion of locality on which our Kinematics principle is
based to the full extent. Then we presented and analyzed the Kinematics principle
in the context of OCFs in Section 5.1. We showed that c-revisions satisfy it. On
the technical side, the Kinematics principle states that conditionalization and revi-
sion are interchangeable; this holds for c-revisions and the OCF-conditionalization
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presented by Spohn [119].
We elaborated the Kinematics principle and derived the principle of Local Propo-

sitional Revision (LPR), which rationally connects propositional and conditional re-
vision via considering a particular case of the prerequisites of the Kinematics prin-
ciple in Section 5.2. Ultimately, this led to a conditional variant of the well-known
Ramsey Test. In Section 5.3, we solved the merging problem for c-revisions, at least
in the unique setting of the Kinematics principle, via providing a concatenation op-
erator that allows us to set up a global c-revision using local c-revision w.r.t. the
specific cases.

The Kinematics Principle in the Qualitative Framework. While in the context of
OCFs, sophisticated tools such as c-revisions and a conditionalization operator are
available, the Kinematics principle in the qualitative framework remains a target.
However, it provides a strong motivation for defining these concepts. We presented
a qualitative conditionalization operator in Section 6.2, which is compatible with
OCF-conditionalization. However, a qualitative revision operator for sets of condi-
tionals goes far beyond the current state of the art in Belief Revision. Via powerful
yet natural transformation operators for OCFs resp. TPOs presented in Section
6.3, we were able to transfer c-revisions to the qualitative framework in Section 6.4,
which required a high level of compatibility down to the smallest level of detail.
Lastly, in Section 6.5, we analyze qualitative c-revision with a single conditional
resp. with the material implication, and confront them with the conditional revi-
sion operator of Chandler and Booth [27]. This leads to the insight that Chandler
and Booth employ a bottom-up strategy for conditional revision starting from the
revision of Ψ by the corresponding material implication A → B and subsequently
fine-adjusting. In contrast, qualitative c-revisions follow a top-down approach that
is self-contained.







Part II

Parameterized Belief Change





Chapter 7

Introduction to Part II

The vivid research area of Belief Revision [2, 29] investigates how an agent incorpo-
rates new information that may be inconsistent with their current epistemic state.
During the revision, inconsistencies are cleared out, yet meta-information accompa-
nying the new input, e.g., regarding reliability, is not considered. Extensive studies
in psychology (see, e.g., [125, 116, 93]) have shown that the somewhat naive accep-
tance of any input information does not correspond to how individuals revise their
beliefs in real-life settings. In fact, expertise, reliability, and other factors impact
how we incorporate new information (or even if we incorporate it). Realistic revision
models should provide the necessary means to process this meta-information. The
idea of parameterized belief revision presented in this part is to take another (po-
tential) belief as a point of reference that influences whether resp. to which extent
the new belief should be incorporated into the agent’s posterior belief state. We
investigate the following parameterized belief revision problem:

(ParameterRev) Let Ψ be an epistemic state and β be new input information.
We presuppose that β does not come isolated but is accompanied by some
meta-information which can be expressed by a so-called reference sentence α.
How should Ψ be rationally revised by β such that the parameter α is taken
into account to yield a posterior state Ψ •α β, and how is the belief change
mechanism affected by the plausibility relations between α and β?

Our aim in this section is to exploit the internal strengths of conditionals to ex-
press the parameterized information in the setting of (ParamRev) as input for a
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conditional revision operator. Thereby, illustrating how conditionals enable us to
implement meta-information accompanying propositional input as specific context.

Several approaches to belief revision incorporate parameters indicating trust or
reliance towards the input information, see e.g., [56, 3]. The work in this part relies
mainly on Revision by Comparison (RbC) [34] and Bounded Revision (BR) [100],
firstly introduced by Eduardo Fermé and Hans Rott. Both mechanisms implement
the idea that the input β comes together with a reference sentence α which guides the
revision process. Despite its strengths, the formal implementation of both revision
mechanisms is hard to understand, and the change mechanisms are not intuitively
apparent. Together with the revision problem (ParameterRev), this leads to the
following research questions that we aim to answer for both parameterized revision
operators, Revision by Comparison, and Bounded Revision in the course of this
part:

• How can we (elegantly) reformulate each parameterized belief revision oper-
ator’s change mechanism to clarify which worlds are affected by the change
mechanism?

• Is it possible to simplify the parameterized revision rule while maintaining
significant features and, therefore, the distinct character of Revision by Com-
parison resp. Bounded Revision?

• Can we define each revision mechanism as a revision with a (set of) condition-
als so that the formerly parameterized information in the reference sentence
and its corresponding role in the revision process is fully captured by a (directly
accessible) input information?

• What are the similarities and differences between Revision by Comparison and
Bounded Revision? How do these show in their corresponding conditional
revision?

In the following section, we present formal preliminaries for the results in this
part. In Section 7.2, we summarize relevant related work, starting with a general
overview of parameterized belief revision without claim to completeness. Then in
Subsection 7.2.2, we recall basic definitions and notions of Revision by Comparison
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from [34], and in Subsection 7.2.3, we do the same for Bounded Revision from [100].
Our research and the results presented in this part are structured in consecutive
organized chapters:

Chapter 8 We investigate the non-prioritized belief change mechanism of Revision
by Comparison (RbC) in the framework of plausibilistic TPOs and make its
underlying strategy more explicit in Section 8.1. Here, we introduce three
simple yet elegant postulates which fully capture the change mechanism un-
derlying RbC. Then we investigate the hybrid belief change character of RbC
as an operation between revision with the input sentence and the contraction
of the reference sentence in Section 8.2. In Section 8.3, we provide a realization
of RbC in the ranking function framework and show that RbC corresponds to
a special c-revision with a set of weak conditionals.

Chapter 9 In Section 9.1, we recapture the basics of Bounded Revision, firstly
introduced by Rott in [100] as an iterated parameterized belief change mech-
anism, and present an elegant reformulation using TPOs and a representation
theorem, therefore clarifying the strategy underlying BR. Following the line of
Rott [100], we show that BR can be expressed as a lexicographic revision with
a designated formula in Section 9.2 and investigate essential limiting cases.
Then, in Section 9.3, we present a methodological implementation of BR in
the framework of OCFs via c-revisions, i.e. implementing the parameterized
change mechanism of BR as a conditional revision.

Chapter 10 After an intermediate summary of the previously presented results on
RbC resp. BR, we compare the parameterized belief change mechanism RbC
and BR for plausibilistic TPOs and OCFs. We closely examine similarities and
differences concerning the change mechanism, the postulates satisfied by each
revision operator, and the corresponding operators for OCFs. An example
illustrates the main results of this comparison.

Bibliographic Remark. The contents of this part are based on joint work with
Gabriele Kern-Isberner [109, 110] (see Section 1.3).
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7.1 Formal Preliminaries For This Part

We introduce some notations and formal preliminaries relevant solely to this part of
the thesis.

First, we briefly overview the well-known belief representation via a system of
spheres in the style of Grove [42].

Definition 7.1.1 (System of spheres (SOS), [42]). Let $ be a finite, non-empty set
of subsets S ⊆ Ω, centered on some

⋂
$. We call $ a system of spheres (SOS) if it

satisfies the following conditions:

(S1) $ is totally ordered by set-inclusion ⊆, i.e., S, S ′ ∈ $, then S ⊆ S ′ or S ′ ⊆ S

(S2)
⋂

$ is the ⊆-minimum if $, i.e.,
⋂
$ ∈ $ and if S ∈ $ then

⋂
$ ⊆ S

(S3) Ω ∈ $, i.e., Ω is the largest element in $

(S4) If A ∈ L and there is a sphere in $ intersecting Mod(A), then there is a smallest
sphere in $ intersecting Mod(A), i.e., there is a sphere S, s.t. S ∩Mod(A) 6= ∅
and S ′ ∩Mod(A) 6= ∅ implies S ⊆ S ′ for all S ′ ∈ $

Grove’s SOS model an agent’s belief state via nested spheres (in terms of set
inclusion) representing the intuition that the smallest sphere contains the most
plausible worlds, the second innermost sphere (without the innermost one) con-
tains the second most plausible worlds, and so on1. Thus, the belief set of an SOS
Bel($) =

⋂
$ is defined as the center of $. Then an SOS is equivalent to a plau-

sibilistic TPO [42, 91, 34] when we identify the layers of � with the newly added
worlds compared to the previous spheres S ∈ $, starting with the innermost one as
the �-minimal worlds.

Epistemic entrenchment (EE) was introduced by Gärdenfors in [43, 39] as binary
relation 6E ordering formulas in an agent’s belief set. It holds that degrees of
entrenchments are measured qualitatively, i.e., for two sentences A,B ∈ L, the
notation A 6E B stands for “B is at least as epistemically entrenched as A” and
A <E B is defined as A 6E B but not B 6E A. In [39], Gärdenfors stated that

1Note that, Lewis [77] also defined an SOS to provide semantics for counterfactual logics. His
definition differs from Grove’s, e.g.; he defined an individual sphere for each world in Ω.
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“the degree of epistemic entrenchment has a bearing on what is abandoned from a
knowledge set and what is retained when a contraction or revision is carried out.”
So, in general, standard EE relations in the sense of [39] mirror an agent’s attitude
towards her current beliefs, i.e. represent an inner ordering of formulas in the belief
set. They were used in many formal developments for belief change [39, 79, 97, 34].
Standard Epistemic Entrenchment plays a crucial role in AGM contractions, and
Gärdenfors and Makinson proved in [39] a representation theorem that states that
every AGM contraction can be generated from a standard EE relation and vice
versa. The Levi-Identity [74, 2]

K?A = (K÷A)+A

which defines AGM revision with A in terms of an AGM contraction with the con-
trary information A, followed by an AGM expansion with A. Thus, EE relation
can also be used for AGM revision, and in [39], it is proved that for standard EE
relations generating an AGM contraction, we get an AGM revision operator via the
Levi-Identity. Now that we clarified the role of EE relations in the sense of Gärden-
fors and Makinson [39], we turn to a slightly generalized version firstly defined by
Nayak in [79], which we call EE relations from here onwards.

Definition 7.1.2 ([79]). A total preorder 6E over L is called a relation of epistemic
entrenchment, if it satisfies the following conditions:

(E1) If A 6E B and B 6E C, then A 6E C (Transitivity)

(E2) If A |= B, then A 6E B (Dominance)

(E3) A 6E A ∧ B or B 6E A ∧ B (Conjunctiveness)

(E4) If A 6E B for all A ∈ L, then B ≡ > (Maximality)

The original definition of Gärdenfors and Makinson in [39] consists of conditions
(E1) – (E4) plus an additional minimality constraint that states that all non-beliefs
are minimally entrenched. This definition is too restrictive, especially in the light
of iterated belief change [79, 97, 49], and for our purposes, the Nayak version of
EE relations is more useful2. Standard entrenchment relations from [39] are given

2In [46] Gärdenfors and Makinson themselves supported the idea of generalized EE relations
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relative to a belief set. However, belief sets can be extracted from each epistemic
entrenchment as they contain enough information by themselves (as noted in [79])
via

Bel(6E) =

{A ∈ L |⊥ <E A}, if ⊥ <E A for some A

L otherwise
.

Note that this belief set it deductively closed, and Bel(6E) collapses to L for absurd
EE relations [79]. Also, EE relations 6E from [79] unlike standard EE relations, do
not assume maximally entrenched beliefs to be immutable logical truths3.

So far, we have seen that EE-relations are TPOs that display a preference or-
dering of formulas in an agent’s belief set. When changing an agent’s beliefs, they
take on the perspective of belief contraction since they guide which beliefs an agent
should give up more easily than others. The qualitative framework most promi-
nent in this thesis, the plausibilistic TPOs, on the other hand, are more focused on
belief revision because they do not specify the preference relation of worlds within
their corresponding belief set; the worlds constituting the belief set all are maxi-
mally plausible, but rather order worlds outside of the belief set. In this way, a
plausibilistic TPO is more focused on guiding which worlds should become part of
the posterior belief set during the revision process. Plausibilistic TPOs and epis-
temic entrenchment relations are dual approaches to belief representation and (via
the Levi-Identity) both formalisms are fundamental to AGM Belief Revision. In
the following, we present a proposition that summarizes the relationship between
entrenchment relations and plausibility orderings, which was already discussed in
[91, 42] and will prove to be helpful in the context of this paper:

Proposition 7.1.1 ([91]). For each epistemic entrenchment relation 6E with belief
set Bel(6E) over L,

A 6E B iff A � B (7.1)

defines a faithful TPO � with Bel(�) over L s.t. Bel(6E) = Bel(�) and vice versa.

Intuitively, this means that if A is more entrenched than B, then the minimal
models of A are more plausible than the minimal models of B. Via Proposition
called expectation orderings, which are more valuable than the classical EE relations in the light
of Belief Revision.

3For an intuitive explanation as to why this makes sense, see [79].
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(7.1.1), we can lift the EE-relation on formulas to a plausibilistic TPO � over Ω.
Therefore, we first have to note that, in general, each EE-relation is uniquely defined
via the entrenchment classification of maximal disjunctions over the signature Σ,
which constitutes L. This holds because each formula in A ∈ L can be represented
via a canonical conjunctive normal form

A ≡ A1 ∧ . . . ∧ An

with maximal disjunctions Ai, and from the properties defining an EE relation, it
follows that

A ≡ A1 ∧ . . . ∧ An =E min
i=1,...,n

Ai, (7.2)

for each EE relation 6E (cf. [39, 79]), i.e., A is equally entrenched as the least
entrenched maximal disjunction Ai. Applying (7.1) to the EE-relation over the
maximal disjunctions leads to a plausibilistic TPO over complete conjunctions of all
variables in the underlying signature. By a slight abuse of notation, we identify these
complete conjunctions as possible worlds (cf. (2.1) on page 18). Since this applies
especially to minimal worlds, we can conclude that Bel(6E) = Bel(�) also holds
for plausibilistic TPOs. This way, Proposition 7.1.1 allows us to lift the EE-relation
over L to a plausibilistic TPO over Ω.

7.2 Related Work

In this section, we discuss the issue of parameterized belief revision in a more exten-
sive research context and discuss related work. Since, in the context of this thesis,
Revision by Comparison resp. Bounded Revision displays the most important works
on parameterized belief revision; we discuss the original works [34] from Fermé and
Rott for RbC resp. [100] from Rott for BR more thoroughly in Subsection 7.2.2
resp. Subsection 7.2.3.
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7.2.1 Supplementary Information for Belief Change Opera-
tors

The basic idea of parameterized belief revision operators is to consider additional
information when it comes to the revision of an input sentence. This rather general
idea has already been discussed in various facets in the past. There have been
several approaches to belief revision, with input information accompanied by some
supplementary information.

For example, Spohn defines in [117] a revision operator on ranking functions
where the input information β is accompanied by a degree of plausibility k with
which β is to be accepted in the posterior state. Recently, there has been much
research on revision operators that rely on some notion of trust as additional in-
formation [56, 3, 12, 124]. Booth and Hunter discuss in [12] how trust, represented
as a collection of sets of possible worlds, in an agent’s (domain-specific) expertise
should influence the revision process. They handle this additional information as a
precursor to belief revision, which relativizes the input formula. In [56], an approach
of trust-influenced revision is presented for OCFs, where trust is defined in terms of
a distance function between states.

The two main frameworks of parameterized revision we consider in this thesis,
Revision by Comparison [34] and Bounded Revision [100], employ other beliefs as
points of reference in order to compare the relative plausibility of the new infor-
mation toward the existing belief state. Fermé and Rott motivated the usage of
parameterized information consisting of an input and a reference sentence via the
following example:

Example 7.2.1 ([34]). Suppose a colleague tells us ´Lisa is negotiating with Candy
company’. Should we accept this piece of information? Most belief revision mecha-
nisms tell us yes, but also ask us to fix to which extent this new information should
be accepted. What we can do now is ask our friend how sure she is of this piece of
information. She might say that it is at least as well-confirmed as the claim that
Lisa has got an offer from Healthy Company. Another way of obtaining the same
sort of comparative information is by juxtaposing our assessments of the reliability
of sources. If our colleague is at least as trustworthy and well-informed as another
person who has testified to the truth about the offer from Healthy Company the other
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day, we will wish to accept the information about Lisa’s negotiation at a level of
certainty that is at least as high as our degree of belief in the offer from Healthy
Company. If the latter belief, however, is not firm enough to overcome our doubts
about Lisa’s negotiations with Candy Company, we are likely to end up doubting
both pieces of information.

All in all, the choice of the reference might be determined by the input informa-
tion’s context (e.g., reliability or preferences) or, in a more technical or application-
oriented environment, by the user’s choice.

Before we present an overview of the results presented in [34] for Revision by
Comparison in Subsection 7.2.2, we want to point briefly to some related work
specific to Revision by Comparison. Furthermore, Revision by Comparison displays
a non-prioritized revision mechanism, i.e., the acceptance of the input information
is not guaranteed, and the kind of change depends on the interplay between input
and reference sentence. This dynamic moves it in the vicinity of credibility-limited
revision operators (CL revision operators) [54, 11] where a revision on a belief state is
solely performed if the input is part of some set of credible formulas C otherwise the
original belief state is kept. RbC is appealing as the basis for CL revision operators
since it allows for a flexible and reasonable determination of C via choosing a suitable
reference sentence.

7.2.2 Revision by Comparison by Fermé and Rott

In the following, we outline the fundamental approach and characteristics of Revision
by Comparison (RbC), as described in [34]. Initially, we examine RbC as a revision
method for Grovean SOS [42], and subsequently for EE-relations, as defined in [79].
We aim to review the key features and findings of RbC from [34], which serve as the
foundation for our research in the subsequent chapter.

In [34], Fermé and Rott proposed a Revision by Comparison operator }α β as
a new model for reasoning without numbers which takes as input two propositional
sentences. The input sentence β displays the new information, and α represents
additional meta-information. Fermé and Rott summarize the goal of RbC as follows:

“Accept β with a degree of plausibility that at least equals that of α”
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In [34], each belief set is expected to be equipped with a representation of the
corresponding belief state. Note that, in [34], the term plausibility is generally used
to express rather a preference than a plausibility ordering over worlds.

In [34], the authors formally define Revision by Comparison in two qualitative
frameworks of belief representation. To define the semantics of RbC in Section 2 of
[34], the authors refer to a system of spheres in the style of Grove [42] (cf. Definition
7.1.1 on page 138).

Definition 7.2.1 (RbC for SOS, [34]). Let $ be an SOS, and $}α,β be the posterior
SOS after RbC with α as a reference and β as the input sentence. Then $}α β = $}α,β
is an SOS is defined by

$}α,β = {S ∪Mod(β) : S ∈ $ and S ⊆ Mod(α)} ∪ {S : S ∈ $ and S 6⊆ Mod(α)}

Via this definition, the posterior SOS $}α,β, generated by the RbC operator }α β,
is obtained by shifting the β worlds closer to the prior belief set than the closest α
worlds outwards up to the ring where the closest α-worlds reside. As we can see,
this semantic recipe is not easily visible from the definition of $}α,β. Therefore, the
above-stated definition is accompanied by some observations for the possible worlds
reading of SOS, which remain without proof and are solely stated as observations.
Later, we clarify the semantics of RbC using plausibilistic TPOs in Section 8.1.

In [34], the authors consider special cases of SOS that do not contain the set
of all possible worlds Ω and define RbC of those SOS as special cases. We exclude
these particular class of SOSs and follow Grove’s definition of SOS [42, 33].

While the authors used possible world representations of belief states, such as
SOS, as motivation for RbC, they turned to epistemic entrenchment relations in the
following investigations. The entrenchment relations in [34] satisfy Definition 7.1.2
[79], except that they omit the Maximality-condition (E4). This is because, in [34]
revisions with irrevocable sentences, i.e., sentences that are no less entrenched than
> are considered. We exclude such sentences, following Gärdenfors’ intuition that
no sentence A ∈ L shall be more entrenched than logical truths and assume that
each entrenchment relation 6E we consider satisfies Definition 7.1.2.4 We extract

4Note that this does not affect the following results, since we exclude special cases that corre-



7 Introduction to Part II 145

belief states from belief sets represented as epistemic entrenchment relations in the
usual way and recall the definition of RbC of β w.r.t. α on epistemic entrenchment
relations from [34]. Note that this definition is equivalent to the definition of RbC
for SOS as was shown in [34] via a straightforward translation between EE-relations
and SOSs presented in [34].

Definition 7.2.2 (Revision by Comparison for 6E, [34]). Let 6E be an epistemic
entrenchment relation and 6

}α,β

E be the posterior entrenchment relation after RbC
with α as a reference and β as the input sentence. Then 6E }α β =6

}α,β

E is defined
by

γ 6
}α,β

E δ iff

α ∧ (β ⇒ γ) 6E (β ⇒ δ), if γ 6E α

γ 6E δ, otherwise
(7.3)

for any arbitrary sentences γ, δ ∈ L.

Definition 7.2.2 is the “official definition” on which Revision by Comparison is
based [34]. Fermé and Rott formulated in [34] properties that hold for 6

}α,β

E to
clarify what the operation changes in the prior epistemic entrenchment. For the
posterior entrenchment relation after RbC of β w.r.t. α, 6}α,β

E , it holds that 6
}α,β

E

satisfies the following properties

(RbC)E Input β is at least as entrenched as α, i.e., α 6
}α,β

E β

(MinRbC)E Input β is not additionally lifted, i.e., α <E β iff α <
}α,β

E β

(α-level)E For any γ ∈ L, it holds that α <E γ iff α <
}α,β

E γ

(α-relation)E For any γ, δ ∈ L, if α 6E γ and α 6E δ, then γ 6E δ iff γ 6
}α,β

E δ

holds

(β-level)E For any γ ∈ L, it holds that (γ 6E α or γ 6E β) iff γ 6
}α,β

E β

The property (RbC)E corresponds to the main idea of Revision by Comparison. And
together with (MinRbC)E, it states that β shall be at least as deeply entrenched

spond to the RbC operation where either the input α or the reference β is irrevocable. For more
information on RbC with irrevocable inputs, see [34].
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as α, but not further, except it was already more deeply entrenched in the prior
relation 6E. Because of (α-level)E, it holds for each sentence γ that is more deeply
entrenched than α, that RbC does not change the prior EE-relation. From (α-
relation)E, it follows that RbC of β w.r.t. α does not change the entrenchment
relations among worlds more or equally deep entrenched than α. Thus, properties
(α-level)E and (α-relation)E state that for all worlds more or equally entrenched
than α, RbC of β w.r.t. α does not change the prior ordering. From (β-level)E,
we can conclude that γ ∈ L is less or equally entrenched than the input β in the
posterior ordering if and only if it was already less or equally entrenched than α or
β in the prior ordering.

In [34], Fermé and Rott noted that the posterior entrenchment ordering 6
}α,β

E

crucially depends on the prior relation between input sentence β and reference sen-
tence α. They distinguished four (exhaustive but not exclusive) cases that lead to
different kinds of changes. We briefly summarize their results, which were formu-
lated using epistemic entrenchment relations.

The intended case. If β <E α and β <E α, then (7.3) cannot be simplified,
and Bel(6E }α β) = Bel(6E) ? β, i.e., in this cases RbC coincides with an
AGM revision with β [34]. Later, we call this case the β-revision.

The vacuous case. If α 6E β holds, i.e., (RbC)E is already satisfied in the
prior EE-relation, then nothing changes, and it holds for the belief sets that
Bel(6E }α β) = Bel(6E).

The unsuccessful case. If α 6E β, then (7.3) can be simplified to (γ 6
}α,β

E

δ iff γ 6E α or γ 6E δ) and, we obtain Bel(6E }α β) = {γ ∈ L |α <E γ}.
This does not correspond to an AGM contraction of α.

The epistemic collapse. This case occurs if α and β are irrevocable, i.e.,
> 6E α, β and leads to an inconsistent belief set. This case is not relevant in
the context of this thesis since we excluded sentences that are more or equally
entrenched than >.

We discuss the mechanism behind the first three cases and the resulting properties
more thoroughly in the context of plausibilistic TPOs in Section 8.2.
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7.2.3 Bounded Revision by Rott

Now, we state the basic methodology and properties of Bounded Revision (BR) as
it was presented in [100]. First, as an operation on Grovean SOS [42] and then via
EE-relations in the sense of [79]. We recapture properties of BR and relevant results
from [100] on which we base our investigations in Chapter 9.

In [100], Rott started the formal investigation of BR in the framework of system
of spheres $ in the style of Grove [42] (cf. Definition 7.1.1 on page 138) by stating a
definition of the posterior SOS $ ◦α β = $◦α,β resulting from a BR of β w.r.t. α.

Definition 7.2.3 (BR for SOS, [34]). Let $ be an SOS and $◦α,β be the posterior
SOS after BR with α as reference and β as input sentence. Then $ ◦α β = $◦α,β is
an SOS is defined by

$◦α,β ={S ∩Mod(β) : S ∈ $, S ∩Mod(β) 6= ∅ and S ⊆ Sα,β}

∪ {S ∪ (Sα,β ∩Mod(α)) : S ∈ $}

with Sα,β the smallest sphere S in $, s.t. S ∩Mod(β) 6⊆ Mod(α); if there is no such
sphere, take Sα,β to be the largest sphere.

Rott explains the intuition behind $◦α,β that the best β-worlds are moved to the
center, as long as α holds and even a little longer. The main idea is expressed in
[100] as follows:

“Accept β as long as α holds along with β, and just a little further.”

Even though the possible worlds semantic in SOS is appealing, the recipe for BR
in Defintion 7.2.3 is fairly complicated and most of the formal developments of BR
in [100] are based on the following definition of RbC for epistemic entrenchement
relations in the style of [79].

Definition 7.2.4 ([100]). Let 6E be an entrenchment relation and α, β ∈ L. The
Bounded Revision by β w.r.t. α of 6E is an entrenchment relation 6E ◦α β =6

◦α,β

E

defined as follows for any arbitrary sentences γ, δ ∈ L:

γ 6
◦α,β

E δ iff

(β ⇒ γ) 6E (β ⇒ δ), if β ⇒ (γ ∧ δ) 6E (β ⇒ α)

γ 6E δ, otherwise
(7.4)
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It holds that 6
◦α,β

E is a well-defined entrenchment relation and ◦α β satisfies the
DP postulates [100]5. Rott already mentioned in [100] that the meaning of this
recipe for BR is not easy to understand. In general, it holds that BR is motivated
by the same concerns as Revision by Comparison from [34], combined with the desire
to preserve conditional beliefs in a DP manner presented in Section 2.3. Accordingly,
the reference sentence α functions for BR as a measure of how firmly entrenched
β should be in the agent’s posterior belief state. Yet, it is not clear what “just a
little further” means. In a way, α serves as a bound for the acceptance of β. But
how exactly does the entrenchment of β depend on the entrenchment of α? And
how are the posterior belief set and the reference sentence related to each other?
These intuitions do not become clear from Definitions 7.2.3 and 7.2.4. In the course
of the following sections, we present more simple yet elegant postulates defining
BR in analogy to (7.4) in the context of TPOs, which provide grounds for further
investigations.

We continue with general results about BR stated in [100] that are relevant in
the context of this thesis. From Definition 7.2.4 Rott observed that for the reference
sentence α ≡ ⊥, we get the same result as for the natural revision [15] with input
β and for α ≡ >, we get a lexicographic revision [79] with β. Thus, for the limiting
cases in which α is either never or always true, we can reconstruct two well-known
iterated belief revision operators. A definition of these operators for plausibilistic
TPOs is given in Definition 2.3.2 on page 31. In Section 9.2, following the line of
Rott [100], we discuss these limiting cases more thoroughly and prove that it is also
possible to reconstruct natural resp. lexicographic revision from our definition of
BR for plausibilistic TPO. For now, we continue by stating two properties that are
crucial for BR, which we recapture from [100] employing entrenchment relations.

The informal goal of BR is partly formalized by the success condition for BR:

(BR)E β is strictly more entrenched than α: α <◦α,β

E β

Note that, from Definition 7.2.4 and (BR)E it remains unclear how much more
plausible the input β shall be in the posterior ordering, i.e., the question of how the
entrenchment of α and β are related to one another is not fully answered.

5In [100] a reformulation of the DP postulates for parameterized revision is given. More on this
in Chapter 10.
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We have already mentioned that the BR operator ◦α β satisfies the DP postu-
lates for iterated Belief Revision with β. This holds regardless of the choice of α
[100]. Furthermore, it holds that the resulting belief set Bel(6◦α,β

E ) is insensitive to
the choice of the reference sentence α. Rott calls this property the Same Beliefs
Condition (SBC)E.

(SBC)E Bel(6E ◦α β) = Bel(6E ◦γ β) for any α, γ ∈ L

Note that, since BR displays above all an iterated belief revision with β, the standard
success condition for belief revision operators β ∈ Bel(6◦α,β

E ) holds. BR implements
the idea that β is accepted in the revised state independent from α. The role of
the reference sentence is limited to determining how firmly β is entrenched in the
posterior state. Clarifying the role of α and the interplay between reference and
input sentence in BR for TPOs on possible worlds is the goal of the investigations
in Chapter 9.





Chapter 8

Revision by Comparison

Revision by Comparison (RbC), firstly presented in [34] by Fermé and Rott, is
motivated by the idea to take propositional sentences α as points of references when
revising with β which influence the acceptance of β in the posterior state. So, RbC
}α β displays a belief revision mechanism for epistemic states Ψ that takes as input
two propositional pieces of information, a reference sentence α and an input sentence
β, and maps them onto a revised epistemic state Ψ}α β. The intuitive idea behind
RbC now suggests that the level of preference of input sentence β in the posterior
belief state is constrained via a designated reference sentence α.

Even though the basic idea might sound simple, it is not a priori clear how α

influences the acceptance of β. RbC, as presented in [34], actually heavily depends
on the interplay between α and β in the initial belief state. So much that not even
the acceptance of the input is guaranteed in general, and there frequently occur
cases where instead of revising with β the agent ends up giving up his former belief
in α. RbC is a non-prioritized belief change mechanism with a versatile character
and interesting dynamics. This chapter aims to transfer the parameterized input
of RbC to the object level employing conditionals and combine this reformulation
with c-revisions, leading to a simple yet elegant realization of parameterized belief
change that fully captures the mechanism of RbC. Realizing RbC as a c-revision
with weak conditionals provides us with new insights into the change mechanism and
demonstrate the underlying characterization via an iterated contraction operator.
On the way to achieving this goal, among other things, we transfer RbC to the

151
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framework of plausibilistic TPOs via a representation theorem, clarify the role of α,
and further investigate the hybrid belief change character of RbC.

The following sections of this chapter are organized as follows: In Section 8.1,
we make the strategy underlying RbC more explicit using plausibilistic TPOs and
present a representation theorem that elegantly captures the change mechanism of
RbC via three postulates. The hybrid belief change character implemented by RbC,
illustrating the operations versatility, is discussed in the context of plausibilistic
TPOs in Section 8.2. The mechanism and its intuitive strengths are transferred to
the semi-quantitative framework of ranking functions in Section 8.3, leading to an
elegant (methodological) implementation. Finally, we present an implementation of
RbC as a c-revision with weak conditionals, allowing us to transfer the parameterized
input information from the meta-level to the directly usable object level.

Bibliographic Remark. The contents of this part are based on joint work with
Gabriele Kern-Isberner [109] (see Section 1.3).

8.1 Mechanism of Revision by Comparison for TPOs

In this section, we investigate of the methodology of Revision by Comparison }α β

as a parameterized revision method, using plausibilistic TPOs over possible worlds
� as representation of belief states. Via more comprehensible constraints for TPOs,
we are able to specify which worlds are affected by the revision via a single formula,
thus leading to clarification of the role of α. Also, we provide semantic postulates
and a representation theorem for RbC in the context of TPOs.

In Section 7.1, we have investigated the relationship between plausibility order-
ings on possible worlds and epistemic entrenchment relations. Via equation (7.1)
from Proposition 7.1.1 on page 140, we transfer the constraints from Definition
7.2.2 to qualitative constraints in the framework of plausibilistic TPOs � resp.
� }α β =�}

α,β, which correspond to the entrenchment relations 6E resp. 6
}α,β

E .

Definition 8.1.1 (Revision by Comparison for � [109]). Let � be a plausibilistic
TPO. The posterior plausibilistic TPO after RbC with α as reference and β as input



8 Revision by Comparison 153

sentence � }α β =�}
α,β is defined as

ω �}
α,β ω

′ iff

{
α⇒ (βω) � βω′, if ω � α (I)

ω � ω′, otherwise (II)
(8.1)

for any arbitrary sentences γ, δ ∈ L.

These constraints follow immediately from (7.3) via (7.1) for γ, δ as maximal
disjunctions. It holds that the negation of γ, δ then display maximal conjunctions,
which correspond to possible worlds (cf. (2.1) on page 18), yielding (8.1) for possible
worlds ω and ω′ (cf. Section 7.1). Employing (7.1) again, we transfer the properties
of Revision by Comparison to the framework of plausibilistic TPOs.

(RbC)� β is at least as plausible as β, i.e., α �}
α,β β

(MinRbC)� α is not additionally lifted, i.e., α ≺ β iff α ≺}
α,β β

(α-level)� For any γ ∈ L, it holds that α ≺ γ iff α ≺}
α,β γ

(α-relation)� For any γ, δ ∈ L, if α � γ and α � δ, then γ � δ iff γ �}
α,β δ holds

(β-level)� For any γ ∈ L, it holds that (γ � α or γ � β) iff γ �}
α,β β

From (7.3) and thus, also from (8.1), it remains unclear prima facie which worlds
exactly are affected by the change mechanism implemented by RbC of β w.r.t. α,
also the crucial role of the relative positioning of the input β to the reference α is not
clearly recognizable. The following proposition states an equivalent reformulation
of (8.1), which fully integrates RbC of β w.r.t. α in the possible worlds reading via
exclusive and exhaustive cases.

Proposition 8.1.1 ([109]). For RbC of β w.r.t. α on TPOs, it holds that (8.1) is
equivalent to the following constraints:

ω �}
α,β ω

′ iff


ω � ω′, if (ω, ω′ |= β and ω � α) (I)

or α ≺ ω (II)
>, if (ω′ |= β and ω � α) (III)

or (ω |= β, ω′ |= β, and ω � α � ω′) (IV)

(8.2)
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Proof. To prove the equivalence between (8.1) and (8.2), we expand and equivalently
reorder the constraints in (8.1) until we receive (8.2).

Before we turn to the case α ≺ ω, we start with (I) on the right hand side of
(8.1) and presuppose that ω � α holds throughout the following case distinctions.
Via the first case distinction, we consider either ω |= β or ω |= β. For each of these
cases, we open two more cases concerning scenarios in which ω′ |= β or ω′ |= β.
Thus, we get four disjunct cases, leading to different constraints defining the RbC
change mechanism.

1. Case ω |= β: If ω |= β, we get for (I) in (8.1) that α ⇒ (βω) ≡ α ∨ ⊥ ≡ α �
βω′.

Presuppose that ω′ |= β, then it holds that

α � βω′ ≡ ⊥, (8.3)

which is always satisfied.
Presuppose that ω′ |= β, then we get for (I) in (8.1) the following constraint

α � βω′ ≡ ω′. (8.4)

2. Case ω |= β: For ω |= β we can conclude that α⇒ (βω) ≡ α ∨ ω � βω′

Presuppose that ω′ |= β, then it holds that

α ∨ ω � βω′ ≡ ⊥, (8.5)

which is always satisfied.
Presuppose that ω′ |= β. It holds that α ∨ ω � ω, since ω � α holds in (I)
from (8.1). We get the following constraint

α ∨ ω ≈ ω � βω′ ≡ ω′. (8.6)

For the cases (ω |= β and ω′ |= β) and (ω |= β and ω′ |= β) the constraint in
(I) from (8.1) is satisfied trivially. Hence, we can summarize these cases via a
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single constraint. Together with (II) from (8.1), we get the following equivalent
reformulation for (8.1) via (8.3), (8.4), (8.5) and (8.6).

ω �}
α,β ω

′ iff



ω � ω′ if (ω � α, ω, ω′ |= β)︸ ︷︷ ︸
(8.6)

or α ≺ ω︸ ︷︷ ︸
(II) in (8.1)

> if (ω � α, ω′ |= β)︸ ︷︷ ︸
(8.3) + (8.5)

or

(ω � α, ω |= β and ω′ |= β, α � ω′)︸ ︷︷ ︸
(8.4)

The constraints given in (8.2) implement RbC of β w.r.t. α via exclusive and
exhaustive cases. The following proposition summarizes the characteristics of the
change induced by RbC.

Proposition 8.1.2. Let ω, ω′ ∈ Ω be possible worlds. For a plausibilistic TPO �
and an RbC of β w.r.t. α, � }α β =�}

α,β, which satisfies the constraints in (8.2),
the following statements are true

1. If α � ω, ω′, then it holds that ω � ω′ iff ω �}
α,β ω

′

2. If ω, ω′ |= β, then it holds that ω � ω′ iff ω �}
α,β ω

′

3. If ω |= β and ω ≺ α, then it holds that ω ≈}
α,β α

Proof. We prove the constraints.

1. Let α � ω, ω′.
Case 1: For α ≺ ω, ω � ω′ iff ω �}

α,β ω
′ follows from case (II) in (8.2).

Case 2: Let α ≈ ω. Due to α � ω, ω′, it holds that ω ≈ α � ω′ and we need
to show that ω �}

α,β ω
′ holds.

We consider the following (exclusive and exhaustive) subcases:

(a) ω, ω′ |= β: ω � ω′ iff ω �}
α,β ω

′ follows from case (I) in (8.2).

(b) ω |= β and ω′ |= β: ω �}
α,β ω

′ follows from case (III) in (8.2).
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(c) ω |= β and ω′ |= β: ω �}
α,β ω

′ follows from case (IV) in (8.2) and ω ≈
α � ω′.

(d) ω, ω′ |= β: ω � ω′ iff ω �}
α,β ω

′ follows from case (III) in (8.2).

2. Let ω, ω′ |= β.
Case 1: Let ω � α. ω � ω′ iff ω �}

α,β ω
′ follows from case (I) in (8.2).

Case 2: Let α ≺ ω. ω � ω′ iff ω �}
α,β ω

′ follows from case (II) in (8.2).

3. Let ω |= β and ω ≺ α.
Let ωα ∈ min(α,�) s.t. ωα ≈ α and thus, in particular ωα � α and α � ωα.

(a) We show α �}
α,β ω.

It holds that ω |= β, thus ωα �}
α,β ω follows from (III) in (8.2). And we

get that α �}
α,β ω holds.

(b) We show ω �}
α,β α.

Case 1: Let ωα |= β, then ω �}
α,β ωα follows from (IV) in (8.2).

Case 2: Let ωα |= β, then ω �}
α,β ωα follows from (III) in (8.2).

Thus, it holds that ω �}
α,β α. All in all, we get that ω ≈}

α,β α holds.

The first two statements from Proposition 8.1.2 deal with cases where the plau-
sibility relations are not affected by RbC. All worlds less or equally plausible than α
and all β-worlds keep their relative positioning towards each other in �. Note here
that the β-worlds at most as plausible as α are included in the first and the second
statement to avoid lengthy case distinctions. The third statement of Proposition
8.1.2 is of particular importance. While the first two statements refer to cases in
which the plausibility relations do not change, i.e., ω � ω′ iff ω �}

α,β ω
′, the third

one deals with the actual plausibility shift implemented by the RbC-operator. Thus
it summarizes that which worlds affected by RbC, namely all β-worlds that are more
or equally plausible than α which follows from (III) and (IV) in (8.2). These worlds
are shifted up to the level of plausibility where the α-worlds reside. This displays the
main shift implemented by RbC, and hence, these worlds are crucial for RbC }α β.
Note that only the β-worlds strictly more plausible than α are actually shifted, i.e.,
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their plausibility in fact decreases, since the β-worlds as plausible as α in the prior
ordering remain on the same level after RbC. Moreover, the shift of β-worlds strictly
more plausible than α has an indirect effect on β-worlds strictly more plausible than
α. Because these worlds remain on their plausibility level, they get promoted de
facto compared to β-worlds strictly more plausible than α. We summarize these
important previous sets of worlds via the following formulas in order to ease the
notation for the following results.

Definition 8.1.2 (Penalty and indirect reward formula of RbC). Let � be a plau-
sibilistic TPO and }α β be an RbC operator of β w.r.t. α.

• The penalty formula of RbC of β w.r.t. α is defined as

ψ}
α,β = β ∧ (

∨
ω≺α

ω).

We call the set of possible worlds Ψ}
α,β = Mod(ψ}

α,β) = {ω ∈ Ω | ω ∈
Mod(β), ω ≺ α} the penalty set of RbC.

• The indirect reward formula of RbC of β w.r.t. α is defined as

θ}α,β = β ∧ (
∨
ω≺α

ω).

We call the set of possible worlds Θ}
α,β = Mod(θ}α,β) = {ω ∈ Ω | ω ∈

Mod(β), ω ≺ α} the reward set of RbC.

It holds that ψ}
α,β and θ}α,β are exclusive formulas, i.e., ψ}

α,β ∧ θ}α,β ≡ ⊥ holds.
Hence, they implement a (disjoint) partition of all worlds strictly more plausible
than α and it holds that ψ}

α,β ∨ θ}α,β ≡
∨
ω≺α ω.

We illustrate the mechanism of RbC via the following example.

Example 8.1.1. In Figure 8.1a a plausibilistic TPO � over the signature Σ =

{a, b, c, d} is given. Note that, Ω̄ subsumes all worlds, whose plausibility ranking is
not explicitly given and which reside on the same plausibility level above the given,
more plausible, worlds. We perform an RbC of b w.r.t. a following the constraints
given in Proposition 8.1.1 and get the TPO � }a b =�}

a,b. From (I) and (II) in (8.2),
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�:

abcd

abcd abcd

abcd abcd

abcd

abcd abcd

abcd

Ω̄

im
plausibility

a) Plausibilistic TPO �.

� }a b:

abcd

abcd

abcd

abcd, abcd, abcd

abcd abcd

abcd

Ω̄

im
plausibility

b) RbC-revised TPO � }a b.

Figure 8.1: Revision by Comparison by a w.r.t. b.

we can conclude that the relations among the worlds abcd, abcd, abcd, abcd, abcd, abcd
and abcd do not change, this corresponds to statements 1 and 2 in Proposition 8.1.2,
since abcd, abcd, abcd |= θ}a,b.
For �, it holds that abcd, abcd |= ψ}

a,b and min(a,�) = {abcd}, which we notate
in the following as ωa, since it determines the plausibility rank of a in �. For all
ω′ |= ψ}

a,b, we get from (III) in (8.2), that ωa �}
a,b ω

′ holds and from (IV) in (8.2)
that ω′ �}

a,b ωa holds. Thus, abcd, abcd ≈}
a,b abcd ≈}

a,b a holds.

The following lemma summarizes useful statements about ψ}
α,β and θ}α,β and is

useful for the proofs of following theorems.

Lemma 8.1.3. For ψ}
α,β and θ}α,β be as defined in Definition 8.1.2, the following

statements are true:

• For α � ω, it holds that ω 6|= ψ}
α,β ∨ θ}α,β

• For ω ≺ α, it holds that ω |= ψ}
α,β ∨ θ}α,β and ω |= α

The statements from Lemma 8.1.3 follow directly from the disjunction of worlds
used to define ψ}

α,β resp. θ}α,β in Definition 8.1.2 and the minimality of ranks (cf.
(2.7) on page 36).

We use the penalty resp. indirect reward formula of RbC to present a repre-
sentation theorem for Revision by Comparison. In contrast to the constraints from
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(8.2), we focus on worlds strictly less plausible than α, since only these β-worlds are
shifted and pressed onto the plausibility level where the α-worlds reside. The repre-
sentation theorem provides semantic constraints that make the revision mechanism
of RbC of β w.r.t. α more explicit via three simple yet elegant postulates.

Theorem 8.1.4 (Representation Theorem for RbC). Let }α β be an RbC operator
of β w.r.t. α. Let � be a plausibilistic TPO and � }α β =�}

α,β be the corresponding
RbC-revised plausibilistic TPO. Then � and �}

α,β satisfy (8.2) iff � and �}
α,β satisfy:

(RbC1) If ω, ω′ 6|= ψ}
α,β, then ω � ω′ iff ω �}

α,β ω
′

(RbC2) If ωα ∈ min(α,�) and ω′ |= ψ}
α,β, then ω′ ≈}

α,β ωα ≈}
α,β α

(RbC3) If ω |= θ}α,β and ω′ |= ψ}
α,β then ω ≺}

α,β ω
′

Proof. “⇐”
Presuppose that �,�}

α,β satisfy (RbC1) – (RbC3). We show that �,�}
α,β satisfy

(8.2).

(I) in (8.2). Let ω � α and ω, ω′ |= β. Then it holds that ω, ω′ 6|= ψ}
α,β (cf.

Lemma 8.1.3) and we can conclude from (RbC1) that ω � ω′ iff ω �}
α,β ω

′

holds.

(II) in (8.2). Let α ≺ ω.
Case 1: Let ω′ 6|= ψ}

α,β. Due to α ≺ ω, it holds that ω 6|= ψ}
α,β (cf. Lemma

8.1.3) and thus we conclude that ω � ω′ iff ω �}
α,β ω

′ holds via (RbC1).
Case 2: For ω′ |= ψ}

α,β, it holds that ω′ ≺ α ≺ ω. Thus, ω � ω′ does not hold
and therefore the equivalence (II) in (8.2) is satisfied trivially.

(III) in (8.2). Let ω � α and ω′ |= β. We need to show that ω �}
α,β ω

′ holds.
We distinguish four exclusive cases for ω, on the top level, we need to dis-
tinguish whether ω |= β or ω |= β. From there, we take a closer look on
the plausibility relation towards α, if ω ≺ α then it holds that ω |= θ}α,β or
ω |= ψ}

α,β (cf. Lemma 8.1.3). Otherwise it holds that ω ∈ min(α,�).
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◦

ω |= ψ}
α,β

ω′ ≈ α

(RbC2)

ω′ |= θ}α,β

(RbC3)

ω′ |= ψ}
α,β

(RbC2)

α ≺ ω′

(RbC1+2)
ω 6|= ψ}

α,β

ω ≈ α

ω′ |= ψ}
α,β

(RbC2)

ω′ 6|= ψ}
α,β

(RbC1) ω |= θ}α,β

ω′ |= ψ}
α,β

(RbC3)

ω′ 6|= ψ}
α,β

(RbC1)

α ≺ ω

ω′ |= ψ}
α,β

(RbC1+2)

ω′ 6|= ψ}
α,β

(RbC1)

Figure 8.2: Schematic sketch of all use cases of the postulates (RbC1) – (RbC3)
from Theorem 8.1.4 for Revision by Comparison of β w.r.t. α for a plausibilistic
TPO �. The case (RbC1+2) follows immediately from Corollary 8.1.5.

(a) Let ω |= β and ω ≺ α, i.e., ω |= θ}α,β.
We presuppose that ω′ |= β and make the following case distinction:
For ω′ |= ψ}

α,β, ω �}
α,β ω

′ follows from (RbC3).
For ω′ 6|= ψ}

α,β, ω �}
α,β ω

′ follows from (RbC1), since ω ≺ α � ω′ (cf.
Lemma 8.1.3).

(b) Let ω |= β and ω ∈ min(α,�) , i.e., ω 6|= θ}α,β.
For ω′ |= ψ}

α,β, ω �}
α,β ω

′ follows from (RbC2).
For ω′ 6|= ψ}

α,β, ω �}
α,β ω

′ follows from (RbC1), since ω � α � ω′ (cf.
Lemma 8.1.3).

(c) Let ω |= β and ω ≺ α, i.e., ω |= ψ}
α,β.

From (RbC2), we can conclude that ω ≈}
α,β α.

Case 1: For ω′ |= ψ}
α,β, we can conclude from (RbC2) that ω′ ≈}

α,β α.
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Thus, ω ≈}
α,β ω

′, i.e., especially ω �}
α,β ω

′.
Case 2: For ω′ 6|= ψ}

α,β, it holds that α � ω′ (cf. Lemma 8.1.3). Since
for all ωα ∈ min(α,�), ωα 6|= ψ}

α,β holds, we can conclude from α � ω′

that α �}
α,β ω

′ holds via (RbC1). Together with ω ≈}
α,β α via (RbC2),

we conclude that ω �}
α,β α �}

α,β ω
′.

(d) Let ω |= β and ω ∈ min(α,�), i.e., ω 6|= ψ}
α,β.

First, we show that ω ≈}
α,β α holds.

From ω ∈ min(α,�), it follows that ω |= α. Presuppose for contradiction
that ω 6≈}

α,β α, i.e., there exists ω′ |= α, s.t. ω′ ≺}
α,β ω. Since ω′ |= α,

it holds that α � ω′ and therefore ω′ 6|= ψ}
α,β (cf. Lemma 8.1.3). From

(RbC1), it follows from ω′ ≺}
α,β ω that ω′ ≺ ω holds, which contradicts

ω ∈ min(α,�). Thus, for all worlds ω′ |= α, it holds that ω �}
α,β ω

′ and
therefore ω ∈ min(α,�}

α,β), s.t. ω ≈}
α,β α holds.

Case 1: For ω′ |= ψ}
α,β, we can conclude from (RbC2) that ω′ ≈}

α,β α,
i.e., ω ≈}

α,β ω
′ holds.

Case 2: For ω′ 6|= ψ}
α,β, it holds that α � ω′ (cf. Lemma 8.1.3). There-

fore, it holds that ω ≈ α � ω′ and thus we can conclude ω �}
α,β ω

′ from
(RbC1).

1. (IV) in (8.2). Let ω � α, ω |= β and ω′ |= β, α � ω′. It holds that ω′ 6|= ψ}
α,β.

We need to show that ω �}
α,β ω

′ holds.

(a) For ω 6|= ψ}
α,β, we can conclude that ω ≈ α holds and thus ω �}

α,β ω′

follows from ω ≈ α � ω′ via (RbC1).

(b) For ω |= ψ}
α,β, we can conclude from (RbC2) that ω ≈}

α,β α holds.
Since ω′ 6|= ψ}

α,β and for all ωα ∈ min(α,�), it holds that ωα 6|= ψ}
α,β (cf.

Lemma 8.1.3), we can conclude from α � ω′ that α �}
α,β ω

′ via (RbC1).
Thus, we get that ω ≈}

α,β α �}
α,β ω

′.

“⇒”
Presuppose that �,�}

α,β satisfy (8.2). We show that �,�}
α,β satisfy (RbC1) –

(RbC3).

(RbC1): Let ω, ω′ 6|= ψ}
α,β.
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Thus, for ω̃ ∈ {ω, ω′}, it holds that

ω̃ |= ψ}
α,β ≡ β ∨

∨
α�ω

ω.

We employ the following case distinction to show that ω � ω′ iff ω �}
α,β ω

′

holds.

(a) Let α � ω, ω′. Then ω � ω′ iff ω �}
α,β ω

′ follows immediately from the
first statement in Proposition 8.1.2.

(b) Let ω, ω′ |= β. Then ω � ω′ iff ω �}
α,β ω

′ follows immediately from the
second statement in Proposition 8.1.2.

(c) Let α � ω and ω′ |= β.
For α ≺ ω, the statement ω � ω′ iff ω �}

α,β ω
′ follows from (II) in (8.2).

Let α ≈ ω.
Case 1: Let ω |= β. Then, ω � ω′ iff ω �}

α,β ω
′ follows from (b).

Case 2: Let ω |= β.
For α � ω′, ω � ω′ iff ω �}

α,β ω
′ follows from (a).

For ω′ ≺ α, it holds that ω′ ≺ α ≈ ω. Thus, ω � ω′ does not hold and
therefore the equivalence ω � ω′ iff ω �}

α,β ω
′ is satisfied trivially.

Note that, if we swap ω and ω′, (c) also covers the case α � ω′ and ω |= β.

(RbC2): Let ωα ∈ min(α,�) and ω′ |= ψ}
α,β. Since ω′ |= ψ}

α,β, it holds that ω′ |= β and
ω′ ≺ α, thus (RbC2) follows immediately from statement 3 in Proposition
8.1.2.

(RbC3): Let ω |= θ}α,β and ω′ |= ψ}
α,β. It holds that ω, ω′ ≺ α.

The inequality ω �}
α,β ω

′ follows from (III) in (8.2).
We show that ω′ �}

α,β ω does not follow from the constraints in (8.2). Due
to the equivalence in (8.2), we can then conclude that the strict inequality
ω ≺}

α,β ω
′ holds.

Since ω′ |= ψ}
α,β, it holds that ω′ 6|= β, i.e., (I) from (8.2) does not apply, and

due to ω, ω′ ≺ α part (II) from (8.2) does not apply.
Since ω |= θ}α,β, it holds that ω 6|= β, i.e., (III) in (8.2) does not apply, and due
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�:

ωα

Mod(β) Mod(β)

θ}α,β ψ}
α,β

}α β

�}
α,β:

ωα

Mod(β) Mod(β)

θ}α,β

ψ}
α,β

Figure 8.3: Schematic representation of Revision by Comparison of β w.r.t. α for a
plausibilistic TPO �.

to ω ≺ α (IV) does not apply. Hence, we can conclude that ω′ �}
α,β ω does

not hold otherwise it would contradict the equivalency in (8.2).

The following Corollary is a direct consequence of the (RbC1) – (RbC3).

Corollary 8.1.5. Let }α β be an RbC operator of β w.r.t. α. Let � be a plausibilistic
TPO and � }α β =�}

α,β be the corresponding RbC-revised plausibilistic TPO. For
ω1, ω2 |= ψ}

α,β and ω′ with α ≺ ω′ it holds that

ω1 ≈}
α,β ω2 ≈}

α,β α ≺}
α,β ω

′ (8.7)

For ω1, ω2 |= ψ}
α,β in (8.7), we can follow from (RbC2) that ω2 ≈}

α,β α holds.
Then ω1 ≈}

α,β ω2 ≈}
α,β α is a direct consequence of (RbC2) since ω1 ≈}

α,β α and
ω2 ≈}

α,β α. The second part α ≺}
α,β ω

′ follows from (RbC1), since ωα, ω′ 6|= ψ}
α,β

holds for all minimal worlds ωα in �. Moreover, it holds that the postulates (RbC1)
– (RbC3) are exclusive and exhaustive. The exclusivity follows immediately from
the exclusivity of ψ}

α,β and θ}α,β. For exhaustiveness, it is crucial that the roles of ω
and ω′ in (RbC1) – (RbC3) can be swapped. A schematic sketch of all use cases
of ω and ω′ when determining the posterior RbC-revised TPO �}

α,β is presented in
Figure 8.2.

The core shift of worlds performed by RbC is depicted in the schematic represen-
tation of RbC in Figure 8.3. Also, in Figure 8.3, the (indirect) plausibility increase
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(RbC1) – (RbC3)

Constraints (8.2) from Proposition 8.1.1

RbC for TPOs � via (8.1)

RbC for EEs 6E via (7.3) EE-Properties of RbC

TPO-Properties of RbC

(7.1) (7.1)

satisfies

satisfies

Figure 8.4: Overview of constraints and postulates defining RbC.

for worlds satisfying θ}α,β towards worlds in Ψ}
α,β becomes apparent, which is sub-

stantiated in (RbC3). We state a corollary following from Theorem 8.1.4 concerning
the properties of RbC.

Corollary 8.1.6. Let � be a plausibilistic TPO and }α β be an RbC operator of
β w.r.t. α, s.t. � and �}

α,β satisfy (RbC1) – (RbC3). Then the properties (RbC)�,
(MinRbC)�, (α-level)�, (α-relation)� and (β-level)� hold for � and �}

α,β.

The proof of the corollary summarizes the results of this section and a schematic
sketch of it is given in Figure 8.4. From Theorem 8.1.4, we have seen that (RbC1)
– (RbC3) are equivalent to (8.2), which is an equivalent reformulation from (8.1)
which defines RbC for TPOs �. (8.1) can be transformed into RbC for epistemic
entrenchment relations 6E in (7.3) from Definition 7.2.2. RbC for 6E satisfies the
epistemic entrenchment version of the RbC properties, which correspond to the
TPO-version (RbC)�, (MinRbC)�, (α-level)�, (α-relation)� and (β-level)�. Due to
the direct correspondence between all of the above mentioned definitions of RbC,
we can conclude that Corollary 8.1.6 holds and �}

α,β satisfies all properties of RbC.



8 Revision by Comparison 165

8.2 Hybrid Belief Change Character of Revision
by Comparison

In this section, we discuss the hybrid belief change character of Revision by Com-
parison in the framework of plausibilistic TPOs employing our previous definitions
and results.

Following the line of Fermé and Rott [34], we show that RbC results in a hybrid
belief change operator for plausibilistic TPOs between revision with the input infor-
mation and contraction of the reference sentence. In order to investigate the flexible
approach of RbC, we make use of the penalty formula ψ}

α,β and the indirect reward
formula θ}α,β of RbC for input β and reference α defined in the previous section.
The compact formulation of ψ}

α,β resp. θ}α,β allows us to easily verify which case of
RbC applies and makes the resulting change more comprehensible. In the follow-
ing, we distinguish and discuss three basic cases which exhaust the space of logical
possibilities. Note that they are not disjoint, but they yield identical results where
more than one applies. To investigate and explain each case, we make use of the
semantic constraints from (8.2) on page 153 and the subsequent postulates (RbC1)
– (RbC3), because they break down the link between the penalty resp. indirect
reward formula and the mechanism of RbC. The type of change, then depends on
whether the corresponding sets of models for ψ}

α,β resp. θ}α,β are empty or not.

The β-Revision. As a starting point of the first basic case, we consider plausi-
bilistic TPOs in which the plausibility of the reference sentence α is sufficiently high,
where ’sufficiently‘ means that α is strictly less plausible than α, also w.r.t. to the
input sentence β and its negation β. In terms of formulas and a prior TPO �, this
means that

αβ ≺ α and αβ ≺ α (8.8)

holds. Thus, ωαβ ∈ min(αβ,�) is a β-world strictly less plausible than α, and
ωαβ |= ψ}

α,β. Analog, ωαβ |= θ}α,β and we can conclude that Ψ}
α,β 6= ∅ and Θ}

α,β 6= ∅.
Fermé and Rott call this case the intended case, since it is the generic case for
Revision by Comparison where the operation yields a revision with β, s.t. β is
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believed in the posterior belief state.

Theorem 8.2.1. Let � be a plausibilistic TPO and }α β be an RbC operator of β
w.r.t. α, s.t. � and �}

α,β satisfy (RbC1) – (RbC3). It holds that ψ}
α,β 6≡ ⊥ if and

only if αβ ≺ α, and, θ}α,β 6≡ ⊥ if and only if αβ ≺ α. If ψ}
α,β 6≡ ⊥ and θ}α,β 6≡ ⊥,

then �}
α,β|= β.

Proof. We show that ψ}
α,β 6≡ ⊥ iff αβ ≺ α holds.

“⇒”: Let ψ}
α,β 6≡ ⊥, then there exists a minimal model ωψ}

α,β
of ψ}

α,β, s.t. ωψ}
α,β
≺ α

and ωψ}
α,β
|= β minimally. From Lemma 8.1.3, we can conclude that ωψ}

α,β
|= α, i.e.,

ωψ}
α,β

is also a minimal model of αβ and therefore αβ ≈ ωψ}
α,β
≺ α.

“⇐”: Let αβ ≺ α, then there exists a αβ-world ωαβ, s.t. ωαβ ≺ α and ωαβ |= β.
Thus, ωαβ |= ψ}

α,β and ψ}
α,β 6≡ ⊥ holds.

The analog argumentation applies for θ}α,β 6≡ ⊥ iff αβ ≺ α if we replace β by β.
Since ψ}

α,β 6≡ ⊥, it holds that there exists ωψ}
α,β

, s.t. ωψ}
α,β
∈ min(ψ}

α,β,�). Thus,
ωψ}

α,β
satisfies ωψ}

α,β
|= β and ωψ}

α,β
≺ α minimally, which means that there exists no

ω′ |= β with ω′ ≺ ω and we can conclude that ωψ}
α,β
∈ min(β,�).

For the RbC-revised TPO �}
α,β, due to (RbC2), it holds that ωψ}

α,β
≈}
α,β ω

′ ≈}
α,β α

for all ω′ |= ψ}
α,β. And for β-worlds which do not satisfy ψ}

α,β, i.e., ω̃ 6|= ψ}
α,β, it holds

that α � ω̃. From (RbC1), we can conclude that their plausibility relations do not
change and α �}

α,β ω̃ holds. So, all in all, we get ωψ}
α,β
�}
α,β ω for all ω |= β, s.t.,

ωψ}
α,β
∈ min(β,�}

α,β) holds.
Following the same argumentation, as above we get that ωθ}α,β

∈ min(θ}α,β,�) satis-
fies β minimally, i.e., ωθ}α,β

∈ min(β,�) holds.
For the RbC-revised TPO �}

α,β, it holds for all ω′ |= β that they do not satisfy ψ}
α,β

and therefore, we can conclude from (RbC1) that the relations among all β-worlds
are kept and that ωθ}α,β

∈ min(β,�}
α,β) holds.

To sum up, a world ωψ}
α,β

resp. ωθ}α,β
that satisfies ψ}

α,β resp. θ}α,β minimally, also
satisfies β resp. β minimally for the prior � and the posterior �}

α,β TPO. We get

ωψ}
α,β
≈ β resp. ωθ}α,β

≈ β and ωψ}
α,β
≈}
α,β β resp. ωθ}α,β

≈}
α,β β (8.9)

Hence, via (RbC3) it follows that ωθ}α,β
≺}
α,β ωψ}

α,β
, i.e. β ≈}

α,β ωθ}α,β
≺}
α,β ωψ}

α,β
≈}
α,β β
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holds due to (8.9) and therefore �}
α,β|= β.

In the intended case, where the reference α is selected as a comparatively plau-
sible belief, s.t. α is less plausible than both β and β, the resulting belief set of
RbC Bel(� }α β) coincides with an AGM revision on Bel(�) with β as far as one-
step revision is considered [34], i.e., Bel(� }α β) satisfies the postulates (AGM?1)
–(AGM?8) from page 21. Here, the worlds satisfying θ}α,β get promoted indirectly
since their relative positioning towards worlds satisfying ψ}

α,β is promoted without
actually lifting their plausibility level but rather by decreasing the plausibility of
worlds satisfying ψ}

α,β.
We present a schematic representation of the β-revision case in Figure 8.5a. In

the following Example 8.1.1 is recaptured, which illustrates the β-revision case.

Example 8.2.1 (Continuing Example 8.1.1). In Figure 8.1a a plausibilistic TPO �
over the signature Σ = {a, b, c, d} is given. Note that, Ω̄ subsumes all worlds, whose
plausibility ranking is not explicitly given and which reside on the same plausibility
level above the given, more plausible, worlds. We perform an RbC of b w.r.t. a,
� }a b =�}

a,b, with Ψ}
a,b = {abcd, abcd} and Θ}

a,b = {abcd, abcd, abcd}. The posterior
TPO �}

a,b is depicted in Figure 8.1b and it holds that �}
a,b|= b.

The Vacuous Case. This case applies for plausibilistic TPOs in which (RbC)�

holds in the prior epistemic state, i.e., α is more or equally plausible as β. So,
there are no worlds that satisfy the penalty formula ψ}

α,β, and thus RbC does not
change anything, and the prior ordering is preserved. Figure 8.5b shows a schematic
representation of the vacuous case.

Theorem 8.2.2. Let � be a plausibilistic TPO and }α β be an RbC operator of β
w.r.t. α, s.t. � and �}

α,β satisfy (RbC1) – (RbC3). It holds that ψ}
α,β ≡ ⊥ if and

only if α � β. Hence, if ψ}
α,β ≡ ⊥, then �=�}

α,β.

Proof. We show that ψ}
α,β ≡ ⊥ iff α � β holds.

“⇒”: Let ψ}
α,β ≡ ⊥, then it holds for all β-worlds ω that α � ω. This applies in

particular for minimal β-worlds in �, i.e., α � β holds.
“⇐”: Let α � β, then it holds for a minimal β-world ωβ in � that α � ωβ � ω′ for
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�}
α,β:

ωα

Mod(β) Mod(β)

θ}α,β

ψ}
α,β

a) The β-revision.

�}
α,β:

ωα

Mod(β) Mod(β)

θ}α,β ψ}
α,β ≡ ⊥

b) The vacuous case.

�}
α,β:

ωα

Mod(β) Mod(β)

θ}α,β ≡ ⊥

ψ}
α,β

c) The α-contraction.

Figure 8.5: Schematic illustration of the hybrid belief change character implemented
by Revision by Comparison of β w.r.t. α for a plausibilistic TPO �.

all ω′ |= β. Thus, there exists no ω′ |= β s.t. ω′ ≺ α and therefore ψ}
α,β ≡ ⊥.

Because ψ}
α,β ≡ ⊥, it holds for all worlds in Ω that ω 6|= ψ}

α,β, and we can conclude
that �=�}

α,β holds via (RbC1).

The vacuous case also applies for the special case of tautological revision, i.e., if
β ≡ >, s.t. RbC satisfies the tautological vacuity principle (TV) (3.2) from page 64
regardless of the choice of the reference sentence α. This follows immediately from
the form of ψ}

α,β for β ≡ >, which is

ψ}
α,> = ⊥ ∧

∨
ω≺α

≡ ⊥, (8.10)
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and via Theorem 8.2.2, it holds that RbC for β ≡ > does not change the ordering.

Example 8.2.2. We consider the plausibilistic TPO � from Figure 8.1a and perform
an RbC of c w.r.t. b, � }b c =�}

b,c. It holds that Ψ}
b,c = ∅ and Θ}

b,c = {abcd}, i.e.,
the vacuous case of RbC applies. The posterior TPO �}

b,c is depicted in Figure 8.6a
and it holds that �}

b,c=�.

The α-Contraction. Revision by Comparison does not prioritize the new input
information β for general prior plausibilistic TPO. In fact, if the negation of the
reference sentence α is more plausible than the input β, then the shifting of worlds
satisfying ψ}

α,β up to the plausibility level of α results in a contraction of the former
belief α, s.t.�}

α,β 6|= α and the acceptance of the new input β is not guaranteed. Thus,
RbC displays a non-prioritized belief revision mechanism. This case is called the
unsuccessful case in [34], and it corresponds to the idea that the reference sentence
displays the source β is coming from so that the plausibility of α can be interpreted
as the reliability of this source, which decreases for a sufficiently implausible input.

Theorem 8.2.3. Let � be a plausibilistic TPO and }α β be an RbC operator of β
w.r.t. α, s.t. � and �}

α,β satisfy (RbC1) – (RbC3). It holds that θ}α,β ≡ ⊥ if and
only if α � β. If θ}α,β ≡ ⊥, then �}

α,β 6|= α.

Proof. We show that θ}α,β ≡ ⊥ iff α � β holds.
“⇒”: Let θ}α,β ≡ ⊥, then it holds for all β-worlds ω that α � ω. This applies in
particular for minimal β-worlds in �, i.e., α � β holds.
“⇐”: Let α � β, then it holds for a minimal β-world ωβ in � that α � ωβ � ω′ for
all ω′ |= β. Thus, there exists no ω′ |= β s.t. ω′ ≺ α and therefore θ}α,β ≡ ⊥.
1. case: Presuppose that Ψ}

α,β 6= ∅.
From Ψ}

α,β 6= ∅, we can conclude that there exists a minimal world ωψ}
α,β
∈ min(ψ}

α,β,�
) s.t. ωψ}

α,β
≺ α and therefore ωψ}

α,β
|= α. Due to ωψ}

α,β
≺ α, we can conclude that

ωψ}
α,β
∈ min(α,�). And via (RbC2), we get that ωψ}

α,β
≈}
α,β α, s.t. there is no

α-world in �}
α,β that is more plausible than α. Hence, �}

α,β 6|= α.
2. case: Presuppose that Ψ}

α,β = ∅.
Since Ψ}

α,β,Θ
}
α,β = ∅ and the second statement in Lemma 8.1.3 hold, there does not

exist a world ω which is strictly more plausible than α, Thus, α � α and due to
Theorem 8.2.2, we can conclude that α �}

α,β α holds.
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Note that, if ψ}
α,β, θ

}
α,β ≡ ⊥ then the vacuous case and α-contraction coincide.

In this case RbC does not change the prior ordering � and α 6∈ Bel(�}
α,β) follows

from α 6∈ Bel(�).
Moreover, we show that in the α-contraction case the RbC does not satisfy the

KM style contraction postulates (KM−1) – (KM−7) for a contraction of � by α.
Therefore, we employ Theorem 2.5.2 on page 52 from [71] and show that

Bel(� −α) = Bel(�) ∪min(α,�) (8.11)

does not hold for the α-contraction case of RbC via the following counterexample:

Example 8.2.3. We consider the following TPO over the signature Σ = {a, b, c}

abc ≺ abc ≺ abc, abc, abc ≺ Ω̄.

Note that, Ω̄ denotes all remaining worlds which are not shown explicitly, on the same
level of plausibility. We consider the RbC with input sentence α = a and reference
sentence β = b. For this TPO, it holds that Θ}

α,β = ∅ and Ψ}
α,β = {abc, abc} with

the belief set Bel(�) = {abc}. RbC � }a b yields the following posterior TPO:

abc, abc, abc, abc, abc ≺}α,β

a,b Ω̄.

with the belief set Bel(� }a b) = {abc, abc, abc, abc, abc}. It holds that

Bel(�) ∪min(α,�) = {abc} ∪ {abc, abc}

= {abc, abc, abc} ⊂ Bel(� }a b).

Thus, RbC does not satisfy (8.11), i.e. the unsuccessful case does not correspond to
a contraction of the reference sentence satisfying (KM−1) – (KM−7).

The example illustrates that for RbC, all worlds in Ψ}
α,β are shifted up to the

level of plausibility where α resides, unlike, for KM style contractions, where only
minimal α-worlds are relevant for the contraction. Due to Θ}

α,β = ∅, this leads to a
posterior belief set which consists of all worlds on the same plausibility level as α
together with worlds in Ψ}

α,β. Thus, the belief set of �}
α,β is, in general, larger than
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� }b c:

abcd

abcd abcd

abcd abcd

abcd

abcd abcd

abcd

Ω̄

im
plausibility

a) RbC-revised TPO � }b c.

� }c a:

abcd, abcd, abcd, abcd, abcd

abcd

abcd abcd

abcd

Ω̄im
plausibility

b) RbC-revised TPO � }c a.

Figure 8.6: Vacuous and α-contraction case of Revision by Comparison.

Bel(�)∪min(α,�) in terms of set-inclusion. We present a schematic representation
of the α-contraction case in Figure 8.5c and illustrate the α-contraction case via the
following example.

Example 8.2.4. We consider the plausibilistic TPO � from Figure 8.1a and perform
an RbC of a w.r.t. c, � }c a =�}

c,a. It holds that Ψ}
c,a = {abcd, abcd, abcd} and

Θ}
c,a = ∅, i.e., the α-contraction case of RbC applies. The posterior TPO �}

c,a is
depicted in Figure 8.6b and it holds that �}

c,a 6|= c.

RbC adapts its belief change to the prior belief state of an agent, more explicitly
to the plausibility of the reference sentence α, which in the paradigm case should be
believed with sufficiently high plausibility – where ‘sufficiently high’ means that α
itself should be continued to be believed after RbC – and thus links reliability resp.
priority of the new information to a reference sentence which is either specified via
the input or can be selected freely by an agent. Except for a weaker form of belief
change operators recently proposed in [105], this dynamic form of belief change is
unique to the methodology of RbC.

To sum up, the three cases of RbC show that for RbC, the reference sentence can
act as a marker of reliability and allows us to revise with a seemingly implausible
new information only to a certain degree or even the devaluation of the reference.
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8.3 Revision by Comparison for Ranking Func-
tions

In this section, we turn to the semi-quantitative framework of ranking functions
and present two types of methodological implementations for RbC, starting with a
straightforward one presented in Subsection 8.3.1. Taking this formulation of RbC
for OCFs as a basis, we define and investigate a set of weak conditionals which
characterizes the change mechanism of RbC in Subsection 8.3.2. This set of weak
conditionals finally characterizes the meta-information from the parameterized revi-
sion mechanism in RbC on the object level so that it can be used as input for revision
operators capable of revising with sets of weak conditionals. Thus, the results from
Subsection 8.3.2 enable us to define a c-revision with weak conditionals that imple-
ments RbC for OCFs and fully captures its versatile belief change character as a
parameterized belief change operator.

Throughout this section, we use the penalty formula ψ}
α,β and the indirect reward

formula θ}α,β for RbC, as defined in the previous section. Originally, these two for-
mulas were defined for TPOs employing the condition ω ≺ α to define a disjunction
of possible worlds in ψ}

α,β resp. θ}α,β. This condition can be easily transferred to the
framework of OCFs via the translation (2.9), and we get for an OCF κ the following
corresponding penalty resp. indirect reward formulas:

ψ}
α,β = β ∧ (

∨
κ(ω)<κ(α)

ω) and θ}α,β = β ∧ (
∨

κ(ω)<κ(α)

ω)

We stick to the previous notation to avoid re-definition of these formulas.

8.3.1 Realization of Revision by Comparison for Ranking
Functions

In the following, we present a realization of Revision by Comparison in the frame-
work of ranking functions via a straightforward implementation of the postulates
(RbC1) – (RbC3) from Theorem 8.1.4.
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Definition 8.3.1 (RbC for OCFs, [109]). Let κ be a ranking function. The Revision
by Comparison }α β with input sentence β and reference sentence α for OCFs is
defined as follows

κ}α β(ω) = κ}α,β(ω) = κ0 +

κ(α), ω |= ψ}
α,β

κ(ω), otherwise
(8.12)

where κ0 = −min{κ(α), κ(β)} is a normalization constant.

From (2.15), it follows for κ0 that κ0 = −minω 6|=ψ}
α,β
{κ(α), κ(ω)} holds. For

ω 6∈ Ψ}
α,β, it holds that ω |= β or κ(ω) ≥ κ(α). Hence, only ω |= β are relevant for

the minimum defining κ0. Thus, we can conclude κ0 = −min{κ(α), κ(β)} due to
the minimality of ranks.

The definition of κ}α,β in (8.12) displays a semi-quantitative version of RbC that
implements the semantical recipe of RbC given in (8.2) for ranking functions κ in
a simple, yet elegant way. The use of ranking functions makes the change in the
prior belief state and the dependence on the relation between input and reference
information in RbC more explicit and presents a direct translation of the change
mechanism depicted in Figure 8.3. Thus, the methodology of RbC can be seen
directly from Definition 8.3.1. Now, it is easy to see that the worlds satisfying ψ}

α,β,
among them the minimal β-worlds, are shifted to the plausibility level of the minimal
α-worlds, s.t. the following proposition holds.

Proposition 8.3.1. Let κ}α,β = κ}α β(ω) be the RbC-revised OCF from Definition
8.3.1. It holds that κ}α,β(α) 6 κ}α,β(β).

Proof. It holds that κ}α,β(α) = minω|=α{κ0 + κ(ω)} = κ0 + κ(α). For κ}α,β(β) we
distinguish the following cases:
Case 1: Let ψ}

α,β ≡ ⊥. From Theorem 8.2.2, we can conclude that κ(ω) = κ}α,β(ω)

for all ω ∈ Ω and κ(α) 6 κ(β). Thus, κ}α,β(β) = κ0 + κ(β) ≥ κ0 + κ(α) = κ}α,β(α).
Case 2: Let ψ}

α,β 6≡ ⊥. Then there exists a minimal ψ}
α,β-world ωψ}

α,β
, s.t. ωψ}

α,β
|= β

minimally and we can conclude that κ(ωψ}
α,β

) = κ(β) and therefore κ}α,β(β) = κ0 +

κ(α) = κ}α,β(α).

For worlds ω′ |= θ}α,β, it holds in the RbC-revised OCF that they are strictly
more plausible than worlds ω |= ψ}

α,β, i.e., they are indirectly rewarded by RbC.
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Furthermore, it is clear that the plausibility relations among worlds not satisfying
ψ}
α,β are kept. The corresponding ranks only change according to the normalization

of the posterior ranking function. Whereas worlds in Ψ}
α,β are compressed onto a

single plausibility level, s.t. their plausibility relations are lost. Via the following
theorem, we show that (8.12) displays a proper translation of the change mechanism
in (RbC1) – (RbC3) to the framework of OCFs via using the direct correspondence
between OCFs and plausibilistic TPOS presented in (2.9) on page 37.

Theorem 8.3.2. Let κ be a ranking function and κ}α,β = κ}α β be the RbC-revised
ranking function from (8.12). Then the associated TPO �κ}α,β

via (2.9) satisfies
(RbC1) – (RbC3).

Proof. Via (2.9), we get the TPO � for the prior ranking function κ and the TPO
�κ}α,β

from the RbC-revised OCF κ}α,β.
(RbC1): Let ω, ω′ 6|= ψ}

α,β, then it holds that κ}α,β(ω) = −min{κ(α), κ(β)} +
κ(ω) 6 −min{κ(α), κ(β)}+κ(ω′) = κ}α,β(ω

′) holds if, and only if κ(ω) 6 κ(ω′), since
−min{κ(α), κ(β)} is a constant factor. And therefore, via (2.9), we can conclude
that (RbC1) is satisfied for � and �κ}α,β

.
(RbC2): Let ωα ∈ min(α, κ) and ω′ |= ψ}

α,β. For ωα, it holds that ωα 6|= ψ}
α,β and

κ(ωα) = κ(α), thus κ}α,β(ωα) = −min{κ(α), κ(β)} + κ(ωα) = −min{κ(α), κ(β)} +
κ(α) = κ(ω′). Therefore, we can conclude via (2.9) that (RbC2) is satisfied and it
holds that ωα ≈κ}α,β

ω′.
(RbC3): Let ω |= θ}α,β and let ω′ |= ψ}

α,β. Since ω |= θ}α,β, it holds that κ(ω) <
κ(α). Thus, it holds that κ}α,β(ω) = −min{κ(α), κ(β)}+κ(ω) < −min{κ(α), κ(β)}+
κ(α) = κ}α,β(ω

′). And via (2.9), we can conclude that (RbC3) holds for �κ}α,β
.

As a corollary of Theorem 8.3.2, it follows that RbC for OCFs satisfies the
properties of RbC via the transformation from equation (2.9).

Theorem 8.3.3 ([109]). Let κ be a ranking function and κ}α,β = κ }α β. The
associated TPO �κ}α,β

satisfies (RbC)�, (MinRbC)�, (α-level)�, (α-relation)� and
(β-level)�.

Theorem 8.3.2 and 8.3.3 together show that Definition 8.3.1 is a suitable defini-
tion of RbC for ranking functions.
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8.3.2 Revision by Comparison as Conditional Revision

We present and investigate a designated set of weak conditionals that characterizes
Revision by Comparison’s change mechanism, making the ensuing application of
RbC more explicit. We show that via this set of weak conditionals, we can transfer
the parameterized input for RbC to the directly usable object level and, therefore,
illustrate the versatility and expressiveness of conditionals.

Consider the following set of weak conditionals.

Definition 8.3.2 ([109]). Let κ be an OCF and ψ}
α,β as defined in Definition 8.1.2.

We call the following set of weak conditionals RbC base and each weak conditional
it contains an RbC base conditional

∆}
α,β = {(|α|α ∨ ω|) |ω |= ψ}

α,β}.

It holds that ∆}
α,β is consistent since, each set of weak conditionals is consistent

(cf. Proposition 2.4.1). In order to clarify the connection between ∆}
α,β and RbC by

an OCF κ, we examine the verification resp. falsification of each base conditional
(|α|α ∨ ω|). For the verification we get

(α ∨ ω) ∧ α ≡ α (8.13)

and for the falsification

(α ∨ ω) ∧ α ≡ ω ∧ α ≡ ω, (8.14)

since ω |= ψ}
α,β, i.e., κ(ω) < κ(α), and therefore ω |= α due to the minimaliy of

ranks (cf. equation (2.7)).
Now, we investigate the usage of ∆}

α,β for revisions of OCFs. Presuppose that ∗
displays a conditional revision operator for OCFs, which guarantees the acceptance
of the input information, s.t. κ ∗ ∆}

α,β = κ∗
∆}

α,β

|= ∆}
α,β as the only condition for a

successful revision.
The acceptance condition defined by each weak conditional in ∆}

α,β provides
guidance towards the necessary transformations of the prior OCF in order to achieve
the success condition (RbC)� of Revision by Comparison. Each conditional (|α|α∨
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ω|) ∈ ∆}
α,β encodes a loss in plausibility for worlds falsifying the conditional. Due to

the usage of numerical ranks, OCFs specify this loss in plausibility as the distance
between verification and falsification. Here, the minimal loss in plausibility for
each ω ∈ Ψ}

α,β, i.e., the distance between the prior and posterior ranks, is given
as the absolute value norm between the corresponding verification and falsification
of (|α|α ∨ ω|), i.e. |κ(α) − κ(ω)|. Note that this notion of distance is applicable
due to the usage of integers to express plausibility, and it holds that the result of
κ(α)− κ(ω) is always positive since κ(ω) < κ(α) for ω |= ψ}

α,β.
It is clear from the definition of the weak conditionals in ∆}

α,β that the loss
in plausibility may differ for each world in the penalty set. Furthermore, it holds
that |κ(α) − κ(ω)| displays only the minimal loss that must be covered to accept
∆}
α,β since each impact factor is defined by an inequality, rather than an exact

distance. Revision operators for OCFs can generally introduce empty layers or
specify the distance between verification and falsification by adding a constant rank
to falsifying worlds. We deal with the impact of empty layers in a later section of
the following chapter. For now, we state that, generally, the acceptance of ∆}

α,β

is not enough to display the RbC mechanism fully. From (RbC2), we know that
after an RbC of β w.r.t. α, all worlds ω ∈ Ψ}

α,β are on the same plausibility level as
minimal worlds satisfying α. Expressed via OCFs, this implies that they share the
same rank, κ∗

∆}
α,β

(α) = κ∗
∆}

α,β

(ω) for each ω |= ψ}
α,β, as it is the case for κ}α,β from

Definition 8.3.1. The acceptance of ∆}
α,β guarantees only one part of this equality,

namely κ∗
∆}

α,β

(α) 6 κ∗
∆}

α,β

(ω). For the other direction of the inequality, we need a
different set of weak conditionals which has a similar structure as ∆}

α,β, however, all
conditionals (|α|α ∨ ω|) are negated.

Definition 8.3.3. Let κ be an OCF and ψ}
α,β as defined in Definition 8.1.2. We call

the following set of weak conditionals inverse RbC base and each weak conditional
it contains an inverse RbC base conditional

(∆}
α,β)

−1 = {(|α|α ∨ ω|) |ω |= ψ}
α,β}.

Each conditional (|α|α ∨ ω|) in (∆}
α,β)

−1 displays the negated version of the
corresponding conditional (|α|α ∨ ω|) ∈ ∆}

α,β. Thus, verification and falsification of
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(|α|α ∨ ω|) are interchanged, s.t. (8.14) displays the verification of (|α|α ∨ ω|) and
(8.13) its falsification. We can conclude for each OCF κ which accepts (∆}

α,β)
−1

that κ(ω) 6 κ(α) for all ω |= ψ}
α,β. So, for each OCF that satisfies ∆}

α,β and
(∆}

α,β)
−1, i.e., κ |= ∆}

α,β ∪ (∆}
α,β)

−1, it holds that κ(α) = κ(ω) for all ω |= ψ}
α,β.

Note that, as for ∆}
α,β, it holds that (∆}

α,β)
−1 is consistent, and also, their union is

consistent since all these sets solely consist of weak conditionals. Regarding RbC
and its success condition, the inverse RbC base seems superfluous at first since for
each ω |= ψ}

α,β, it holds that κ(ω) < κ(α) and therefore either (∆}
α,β)

−1 = ∅ because
Ψ}
α,β is empty or κ already accepts (∆}

α,β)
−1. Yet, it adds to the understanding

of the mechanism of RbC since the two sets ∆}
α,β and (∆}

α,β)
−1 together fixate the

exact transformation for all worlds ω |= ψ}
α,β. So, again, if we consider a general

revision operator for OCFs ∗ which satisfies the (|Success|) condition from page 49,
s.t. κ ∗∆}

α,β ∪ (∆}
α,β)

−1 = κ∗
∆}

α,β∪(∆
}
α,β)

−1 |= ∆}
α,β ∪ (∆}

α,β)
−1, then it holds that

κ∗
∆}

α,β∪(∆
}
α,β)

−1(ω) = κ(ω) + |κ(α)− κ(ω)| = κ(α)

for ω |= ψ}
α,β, where |κ(α) − κ(ω)| displays the change of ranks which we need to

implement to achieve κ∗
∆}

α,β∪(∆
}
α,β)

−1 |= (|α|α ∨ ω|) and κ∗
∆}

α,β∪(∆
}
α,β)

−1 |= (|α|α ∨ ω|)
at the same time. As we can see here, this corresponds to the definition of ranks
for worlds ω |= ψ}

α,β from (8.12), i.e., RbC for OCFs. So, for κ∗
∆}

α,β∪(∆
}
α,β)

−1 , we can
conclude for each conditional revision operator, which ensures the acceptance of the
input information, that the postulate (RbC2) is satisfied. We sum this up in the
following theorem.

Theorem 8.3.4. For an OCF κ and a conditional revision operator ∗ which takes
a weak conditional belief base ∆w as input, s.t. κ∗∆w |= ∆w, it holds that κ∗∆}

α,β ∪
(∆}

α,β)
−1 satisfies (RbC2), i.e., the acceptance of ∆}

α,β ∪ (∆}
α,β)

−1 corresponds to the
constraint in (RbC2).

Note that, in this section, the quantitative revision operator ∗ remains vague
apart from some success condition that allows us to accept the new input. This is
because, in this section, we focused on the core aspect of the RbC mechanism also
depicted in our schematic illustration in Figure 8.3; namely, that worlds satisfying
the penalty formula are shifted up to the level of plausibility where the α-worlds
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remain. To show the remaining postulates (RbC1) and (RbC3) and thus capture
the full RbC mechanism, we need some additional minimal change paradigm imple-
mented in the revision.

The advantage of capturing RbC as a revision with sets of weak conditionals
lies in transforming the operation from the meta-level to the object level. The sets
∆}
α,β and (∆}

α,β)
−1 substantiate the supplementary information given in the reference

sentence α. And hence, provide a more clearly defined and directly usable tool for
Revsion by Comparison. Yet, the revision task is quite a challenging one. We
need a revision operator that is capable of dealing with sets of weak conditionals
simultaneously. In the next section, we show that c-revisions with sets of weak
conditionals serve as a proof of concept for RbC of β w.r.t. α.

8.3.3 Realization of Revision by Comparison as C-Revision

Previously, we discussed how the change mechanism underlying RbC can be realized
via a set of weak conditionals. Now, taking these conceptual results, we realize RbC
for OCFs from Definition 8.3.1 as a c-revision with sets of weak conditionals. This
reveals the real character of RbC as an iterated contraction operation and makes
RbC directly usable for existing frameworks of belief revision which are capable of
revising with conditional information, such as the one presented in [47].

So far, we have seen that RbC of β w.r.t. α yields a posterior ordering of worlds by
shifting worlds from the penalty set Ψ}

α,β up to the level of plausibility where α-worlds
reside. This core shift of RbC is subsumed by the second postulate for Revision by
Comparison (RbC2) from the Theorem 8.1.4. In the previous section, we have shown
that we can capture this shift via a revision with sets of weak conditionals ∆}

α,β and
(∆}

α,β)
−1. Now, we focus on the revision with ∆}

α,β and show that it is sufficient to
c-revise solely with this set of weak conditionals to capture the mechanism of RbC.

C-Revisions provide a highly general framework for revising OCFs with sets of
standard and weak conditionals. They, therefore can be used as a proof of concept
for RbC as a conditional revision for OCFs. In Definition 2.5.2 from page 49 we
presented c-revisions with sets of weak conditionals. Consider the set of weak con-
ditionals ∆}

α,β from Definition 8.3.2. For the c-revision κ ∗c ∆}
α,β, we get via (2.24)
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from page 50

κ ∗c ∆}
α,β(ω) = κc

α,β(ω) = κ0 + κ(ω) +
∑

ω|=((α∨ω′)∧α),
ω′|=ψ}

α,β

ηω′ (8.15)

= κ0 + κ(ω) +
∑
ω|=ω′,
ω′|=ψ}

α,β

ηω′ . (8.16)

Note that, (8.16) follows from (8.15) due to the equivalence given in (8.14) for
ω′ |= ψ}

α,β. It holds that each ω |= ψ}
α,β falsifies its corresponding condition (|α|α∨ω|)

from ∆}
α,β. Thus, for each conditional (|α|α ∨ ω|) ∈ ∆}

α,β only a single conditional
is falsified and therefore the definition of c-revision with weak conditionals in (2.24)
reduces to the following:

κc
α,β(ω) = κ0 + κ(ω) +

ηω, ω |= ψ}
α,β

0, othw.
(8.17)

The normalization constant κ0, can be further substantiated via (2.25) from Defini-
tion 2.5.2

κ0 = −min
ω∈Ω

κ(ω) +
ηω, ω |= ψ}

α,β

0, othw.

 . (8.18)

So, via the inequalities in (2.26), which constrain the impact factors for a general
c-revision with weak conditionals, and the verification (8.13) resp. falsification (8.14)
of (|α|α ∨ ω|) ∈ ∆}

α,β, we get the following inequality defining the impact factor for
the corresponding conditional from (|α|α ∨ ω|) ∈ ∆}

α,β:

ηω ≥min
ω′|=α
{κ(ω′) +

∑
ω′|=ω̃,

ω̃|=ψ}
α,β , ω̃ 6=ω

ηω̃} − min
ω′|=ω
{κ(ω′) +

∑
ω′|=ω̃,

ω̃|=ψ}
α,β , ω̃ 6=ω

ηω̃} = κ(α)− κ(ω).

(8.19)

Note that, in both minima the sums equal zero, since for possible worlds ω̃ 6= ω
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ω′ |= ω̃ is never satisfied. Then, via employing the definition of OCF ranks, we
obtain this compact inequality. In general, the impact factors defining the c-revisions
are not uniquely defined since the solution of the system of inequalities defining each
c-revision is not unique. This is because verification and falsification from different
conditionals may interact with each other, introducing dependencies among the
choices of impact factors for c-revisions. For the c-revision with ∆}

α,β, it holds that
each world from Ψ}

α,β falsifies a single conditional, and thus these conditionals do
not interact. This enables us to define ηω unambiguously by integers that satisfy the
inequality in (8.19). A straightforward choice for ηω is to choose minimal impact
factors, s.t.

ηmin
ω =κ(α)− κ(ω) (8.20)

holds. Note that, ηmin
ω is always non-negative since κ(ω) < κ(α) for all ω |= ψ}

α,β.
So that, we obtain the following minimal c-revision w.r.t. the impact factors.

κc,min
α,β (ω) = κ0 + κ(ω) +

κ(α)− κ(ω), ω |= ψ}
α,β

0, othw.
(8.21)

= κ0 +

κ(α), ω |= ψ}
α,β

κ(ω), othw.
(8.22)

We can further substantiate the normalization constant κ0 from (8.22) for the min-
imal c-revision via (8.18) as follows

κ0 = −min{κ(α), min
ω 6|=ψ}

α,β

κ(ω)} = −min{κ(α), κ(ψ}
α,β)}

= −min{κ(α), κ(β ∨
∨

κ(α)6κ(ω)

ω)} = −min{κ(α),min{κ(β), κ(α)}}

= −min{κ(α), κ(β)} (8.23)

The normalization constant from (8.23) is the same as the normalization constant
for RbC for OCFs from (8.12). Now, it is easy to see that the minimal c-revision in
(8.22) is the same as RbC for OCFs in (8.12) from Definition 8.3.1. We can state
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the following theorem:

Theorem 8.3.5. Let κ be a ranking function. For the minimal c-revision κc,min
α,β

from (8.22) and κ}α,β = κ}α β from (8.12), it holds that

κc,min
α,β (ω) = κ}α,β(ω)

for all ω ∈ Ω.

Proof. From (8.12) and (8.22), it is immediately apparent that, for all ω ∈ Ω it
holds that κc,min

α,β (ω) = κ}α,β(ω).

Choosing the minimal impact factor ηmin
ω in (8.22) is crucial to obtain the equal-

ity κc,min
α,β = κ}α,β. Theorem 8.3.5 reveals a significant new insight into the change

mechanism behind RbC. Since we can characterize it as a c-revision with weak con-
ditionals, it holds that RbC corresponds to an iterated contraction operator with
a designated set of conditionals in the context of OCFs as discussed in Section
2.5.4. For each world ω |= ψ}

α,β, we can define a weak conditional corresponding to
the negated information we want to revise with resp. the corresponding standard
conditional we want to contract. Then it holds that RbC satisfies the principle of
conditional preservation, at least concerning this special set of conditionals. Since
c-revisions are capable of revising with sets of weak conditionals simultaneously, we
can take the whole set ∆}

α,β as input leading to an RbC-revised OCF in a single
revision step.

The following corollary follows directly from the transformation (2.9).

Corollary 8.3.6 ([109]). Let κ be a ranking function. For the minimal c-revision
κc,min
α,β with ∆}

α,β from (8.22) and κ}α,β = κ }α β from (8.12), it holds that the
corresponding plausibilistic TPOs �κc

α,β
and �κ}α,β

are the same, i.e.,

ω �κc,min
α,β

ω′ iff ω �κ}α,β
ω′.

Proof. From (8.12) and (8.22), it is immediately apparent that, for all ω ∈ Ω it
holds that κc,min

α,β (ω) = κ}α,β(ω). And therefore, we can conclude via (2.9) that
�κc,min

α,β
=�κ}α,β

holds.
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ω ∈ Ω κ κ}a,b κc,min
a,b κ}c,a κc,min

c,a

abcd 0 0 0 0 0
abcd 1 1 1 0 0
abcd 1 3 3 0 0
abcd 2 2 2 0 0
abcd 2 3 3 0 0
abcd 3 3 3 1 1
abcd 4 4 4 2 2
abcd 4 4 4 2 2
abcd 5 5 5 3 3
Ω̄ 6 6 6 4 4

Table 8.1: Prior κ and the RbC-revised κ◦α,β resp. c-revised κc
α,β.

Since �κ}α,β
satisfies (RbC1) – (RbC3), it follows immediately from Theorem

8.3.5 that �κc,min
α,β

also satisfies (RbC1) – (RbC3). Note that, for �κc,min
α,β

to satisfy
(RbC2), i.e., ω ≈κc,min

α,β
α for ω |= ψ}

α,β, it is crucial to choose the minimal impact
factor ηmin

ω in (8.22).
In general, because we chose minimal impact factors that satisfy (8.19), it suffices

to revise with ∆}
α,β to obtain (RbC2) and we can omit the revision with the additional

set (∆}
α,β)

−1, leading to a leaner revision mechanism than in Theorem 8.3.4.
We illustrate Theorem 8.3.5 via the following example.

Example 8.3.1. In Table 8.1 the convex prior ranking function κ which corresponds
to �κ from Example 8.1.1 is depicted, alongside with the two ranking functions
κ}α,β = κ}α β resp. κc,min

α,β = κ ◦ δα,β for each corresponding RbC.
For the first RbC by β = b w.r.t. α = a, we get the following penalty set

Φ}
a,b = Mod(b ∧ (

∨
κ(ω)<a ω)) = {abcd, abcd}. RbC for OCFs κ}a,b(ω) as defined

in Definition 8.3.1 lifts these worlds onto the plausibility level of minimal worlds
satisfying a, here κ(abcd) = 3 = κ(a). For the set of weak conditionals ∆}

a,b = {(|a∨
abcd|a|), (|a∨abcd|a|)}, we get the minimal c-revision κc,min

a,b from (8.22). It holds that
κ}a,b(ω) = κc,min

a,b (ω) yield the same posterior OCF. Note that, for both mechanisms
κ}a,b and κc,min

a,b we get the same normalization constant κ0 = −min{κ(a), κ(b)} = 0.
Both ranking functions are depicted in Table 8.1.
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For the next RbC with reference α = a and input sentence β = c, it holds
that Ψ}

c,a = {abcd, abcd, abcd} and Θ}
c,a = ∅, i.e., the α-contraction case of RbC

applies and it holds that κ}c,a, κ
c,min
c,a 6|= c. For the normalization constants of κ}c,a,

we get κ0 = −min{κ(c), κ(a)} = −2. For κc,min
c,a , we c-revise κ with the RbC base

∆}
c,a = {(|a ∨ abcd|c|), (|a ∨ abcd|c|), (|a ∨ abcd|c|)}. The normalization constant of

κ}c,a and κc,min
c,a are the same, i.e., κ0 = min{κ(c), κ(a)} = −2 also for the c-revision.

The posterior OCFs κ}c,a and κc,min
c,a are equal, both are depicted in Table 8.1.

Note that, it holds for all RbC-revised and c-revised ranking functions in the
above stated example, that their corresponding plausibilistic TPOs coincide with
the RbC-revised TPOs from Figures 8.1b and 8.5c.





Chapter 9

Bounded Revision

Bounded Revision (BR) was firstly defined by Rott in [100] and takes as input a
piece of new information β ∈ L which is accompanied by a designated reference
sentence α ∈ L, representing some kind of meta-information about the input. Thus,
it displays a belief revision operator that offers a strategy for solving the advanced
belief revision problem (ParameterRev) stated in the introduction of this part.

Similar to RbC, the general idea of BR is that α acts as a guiding parameter for
the depth with which β shall be accepted in the posterior state. In this respect, it
shares the same underlying motivation with Revision by Comparison, the parame-
terized belief change operator we discussed in the previous chapter. While RbC and
BR may appear similar on a basic level, essential divergences distinguish these two
operations from one another. To elucidate these distinctions, we briefly examine the
fundamental differences between RbC and BR, which helps to motivate our forth-
coming investigations on BR. First, RbC tends to coarsen the agent’s belief state
by lifting worlds from different plausibility levels onto the same level. This makes
it less suitable for iteration since the number of levels within the plausibilistic TPO
shrinks. RbC does not satisfy the DP postulates for iterated belief revision (C1) –
(C4). On the other hand, Bounded Revision is an iterated revision operator in the
sense of Darwiche and Pearl [100], which leads us to the next fundamental difference
between RbC and BR. While RbC implements a hybrid belief change operator be-
tween revision with the input and contraction of the reference sentence (cf. Section
8.2), BR displays a “real” revision operator, in the sense that the input is always
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accepted independent from the reference sentence, this provides coherence across re-
vision scenarios with different reference sentences. The distinctive character of BR
as an operator for iterated revision of beliefs makes it an attractive parameterized
revision operator that we consider and study independently from RbC. And it holds
that, in contrast to RbC, for BR, the influence of the parameter α is less apparent
on the belief set because α is always accepted. Note that a thorough comparison
of RbC vs. BR concludes this part. For now, our investigation of BR is mainly
motivated by the fact that, to the best of our knowledge, it displays the only it-
erated parameterized revision operator in the sense of the belief revision problem
(ParameterRev).

Rott investigated BR in [100] in terms of qualitative approaches and showed that
BR satisfies the DP postulates for iterated revision and established connections with
two well-known iterated revision operators. Starting from the investigations in [100],
our primary goal is to incorporate the parameterized information in a single, more
easily accessible input information while keeping relevant features of BR. Ultimately
we present a conditional that subsumes the iterated change of BR providing grounds
for (at least prototypical) applications in the framework of c-revisions (or other
conditional revision operators). This implementation of BR underpins the diversity
and flexibility that conditionals offer us as input for belief revision operators.

The following sections of this chapter are organized as follows: In Section 9.1,
we investigate BR in the framework of plausibilistic TPOs, making its underlying
change strategy more explicit via a unique formula and a representation theorem.
After considering some limiting special cases in Section 9.2, we turn to the framework
of OCFs in Section 9.3, where we first present a straightforward implementation of
BR in Subsection 9.3.1. Eventually, by employing our previous results, we are able
to present a designated conditional that elegantly subsumes the mechanism of BR
and allows us to (methodologically) implement BR as a conditional c-revision.

Bibliographic Remark. The contents of this part are based on joint work with
Gabriele Kern-Isberner [110] (see Section 1.3).
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9.1 Mechanism of Bounded Revision for TPOs

In this section, we investigate the mechanism of BR as a parameterized iterated
belief revision with an input sentence β and a reference sentence α for plausibilistic
TPOs � as a representation of belief states. Via more comprehensible constraints
for TPOs, we can specify crucial worlds characterizing the change mechanism of BR,
leading to a representation theorem characterizing BR and, thus, clarifying the role
of parameter α.

The constraints in (7.4) on page 147, defining BR for epistemic entrenchment
relations, can be transferred to constraints for plausibilistic TPOs via (7.1) on page
140. Thus, the constraints from Definition 7.2.4 for 6E resp. 6

◦α,β

E yield the follow-
ing qualitative constraints for TPOs � resp. �◦

α,β

Definition 9.1.1 ([110]). Let � be a plausibilistic TPO and α, β ∈ L. The Bounded
Revision by β w.r.t. α of the plausibilistic TPO �, �◦

α,β=� ◦α β, is defined as follows

ω �◦
α,β ω

′ iff

{
βω � βω′, if β ∧ (ω ∨ ω′) � αβ (I)
ω � ω′, otherwise (II)

(9.1)

As for RbC, these constraints follow immediately from (7.4) via (2.9) from page
37 if we take maximal disjunctions for γ and δ. Then their negations γ and δ are
maximal conjunctions, which correspond to possible worlds ω and ω′ in the set Ω.

Again, via applying (7.1), we transfer the success condition for BR (BR)E and
the Same Beliefs Condition (SBC)E to the framework of plausibilistic TPOs.

(BR)� α is strictly more plausible than β: α ≺◦
α,β β

(SBC)� Bel(� ◦α β) = Bel(� ◦γ β) for any α, γ ∈ L

Since (9.1) is an equivalent reformulation of Definition 7.2.4 in the context of TPOs,
it is obvious that (BR)� and (SBC)� hold for each BR revised TPO �◦

α,β defined
by (9.1), and BR for plausibilistic TPOs satisfies the DP postulates since BR for
entrenchment relations does [100]. Also, �◦

α,β|= β holds, i.e., �◦
α,β displays a revision

with β.
From (7.4) and thus, also from (9.1), it remains unclear prima facie which worlds

exactly are affected by the change mechanism implemented by BR of β w.r.t. α. Also
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◦

β ∧ (ω ∨ ω′) � αβ

ω |= β

ω′ |= β ω′ 6|= β

ω 6|= β

ω′ |= β ω′ 6|= β

αβ ≺ β ∧ (ω ∨ ω′)

ω |= β

ω′ |= β ω′ 6|= β

ω 6|= β

ω′ |= β ω′ 6|= β

Figure 9.1: Overview of the case distinction from the proof of Proposition 9.1.1.

the crucial role of the relative positioning of the input β to the reference α is not
clearly recognizable. The following proposition fully integrates BR by β w.r.t. α in
the possible worlds reading via constraints. These constraints are helpful to clarify
the semantical recipe behind BR.

Proposition 9.1.1. For BR �◦
α,β by β w.r.t. α, it holds that (9.1) is equivalent to

the following constraints:

ω �◦
α,β ω

′ iff



ω � ω′, if
(
ω, ω′ |= β and (ω, ω′ � αβ or αβ ≺ ω, ω′)

)
(I) or (II)

or
(
ω, ω′ |= β

)
(III)

or
(
ω |= β, ω′ |= β and αβ ≺ ω

)
(IV)

or
(
ω′ |= β, ω |= β and αβ ≺ ω′) (V)

>, if
(
ω |= β, ω � αβ and

(ω′ |= β or ω′ |= β, αβ ≺ ω′)
)

(VI) or (VII)

(9.2)

Proof. In order to prove equivalence between (9.1) and (9.2), we expand and equiv-
alently reorder the constraints in (9.1) until we receive (9.2).
We start with (I) from (9.1) and presuppose that β ∧ (ω ∨ ω′) � αβ holds. Then,
we distinguish four exclusive and exhaustive cases with regard to whether ω, ω′ |= β

or not and investigate the effects on βω � βω′. Afterwards, we continue with (II)
from (9.1) and presuppose that αβ ≺ β ∧ (ω ∨ ω′) holds and split up four cases
again, with regard to whether ω, ω′ |= β or not. An overview of the exhaustive and
exclusive case distinction considered in this proof can be found in Figure 9.1.
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Presuppose that β ∧ (ω ∨ ω′) � αβ.

1. ω |= β:

(a) Presuppose that ω′ |= β. It holds that

β ∧ (ω ∨ ω′) ≡ (ω ∨ ω′) � αβ and βω � βω′ iff ω � ω′.

From the first condition, (ω ∨ ω′) � αβ, we get another case distinction:

i. If ω, ω′ � αβ, then (I) from (9.1) is equivalent to ω �◦
α,β ω

′ iff ω � ω′.

ii. If ω � αβ and αβ ≺ ω′, then ω � ω′ holds trivially and we get that
(I) from (9.1) is equivalent to ω �◦

α,β ω
′ iff >.

iii. If ω′ � αβ and αβ ≺ ω, then ω � ω′ is never satisfied and (9.1) is
not applicable.

(b) Presuppose that ω′ 6|= β. It holds that

β ∧ (ω ∨ ω′) ≡ ω � αβ and βω � βω′ iff ω � ⊥ iff >.

s.t. (I) from (9.1) is equivalent to (>, if ω |= β and ω′ 6|= β and ω � αβ)

2. ω 6|= β:

(a) Presuppose that ω′ |= β. It holds that β∧(ω∨ω′) ≡ ω′ � αβ and βω �
βω′ iff ⊥ � ω′. s.t. (I) from (9.1) is not applicable.

(b) Presuppose that ω′ 6|= β. It holds that β ∧ (ω ∨ ω′) ≡ ⊥ � αβ s.t. (I)
from (9.1) is not applicable.

From these case distinctions, we get that (9.1) is equivalent to

ω �◦
α,β ω

′ iff


ω � ω′, if ω, ω′ |= β and ω, ω′ � αβ via case 1.a.i)

>, if ω |= β, ω � αβ and(
ω′ |= β or ω′ |= β, αβ ≺ ω′) via case 1.b) or 1.a.ii)

ω � ω′, otherwise via (II) from (9.1)

(9.3)
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Note that, since case 1.a.iii) and case 2 are not applicable, they are not included in
(9.3). The constraint from case 1.a.i) resp. case 1.b) resp. case 1.a.ii) corresponds
to (I) resp. (VI) resp. (VII) from (9.2).

The last case in (9.3) corresponds to the case, when β ∧ (ω ∨ ω′) � αβ does not
hold. Presuppose that αβ ≺ β ∧ (ω ∨ ω′).

1. ω |= β.

(a) Presuppose that ω′ |= β. It holds that αβ ≺ β ∧ (ω ∨ ω′) ≡ (ω ∨
ω′). s.t. (II) from (9.2) is equivalent to ω �◦

α,β ω
′ iff ω � ω′, if ω, ω′ |=

β and αβ ≺ ω, ω′.

Note that, we do not need any more fine-grained case distinction for
αβ ≺ (ω∨ω′), since the plausibility of (ω∨ω′) is determined by minimal
worlds satisfying the formula.

(b) Presuppose that ω′ 6|= β. It holds that αβ ≺ β ∧ (ω ∨ ω′) ≡ ω. s.t.
(IV) from (9.2) is equivalent to ω �◦

α,β ω
′ iff

(
ω � ω′, if ω |= β, αβ ≺

ω and ω′ 6|= β
)
.

2. ω 6|= β:

(a) Presuppose that ω′ |= β. It holds that αβ ≺ β ∧ (ω ∨ ω′) ≡ ω′. s.t.
(V) from (9.2) is equivalent to ω �◦

α,β ω′ iff ω � ω′, if ω 6|= β, ω′ |=
β and αβ ≺ ω′.

(b) Presuppose that ω′ 6|= β. It holds that αβ ≺ β ∧ (ω ∨ ω′) ≡ ⊥, s.t.
we are always in case (II) from (9.1), i.e., ω �◦

α,β ω
′ iff ω � ω′, and (III)

from (9.2) holds.
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From these case distinctions, we get that (9.3) is equivalent to

ω �◦
α,β ω

′ iff



ω � ω′, if ω, ω′ |= β and ω, ω′ � αβ

>, if ω |= β, ω � αβ and(
ω′ |= β or ω′ |= β, αβ ≺ ω′)

ω � ω′, if ω, ω′ |= β and αβ ≺ ω, ω′ via case 1.a)
ω � ω′, if ω |= β, ω′ |= β and αβ ≺ ω via case 1.b)
ω � ω′, if ω |= β, ω′ |= β and αβ ≺ ω′ via case 2.a)
ω � ω′, if ω, ω′ |= β via case 2.b)

(9.4)

Equation (9.4) displays all constraints defining (9.1) resulting from the previous case
distinctions and equivalent reformulations. The constraint from case 1.a) resp. case
1.b) resp. case 2.a) resp. case 2.b) corresponds to (II) resp. (IV) resp. (V) resp.
(III) from (9.2). Eventually, we get the constraints from (9.2):

ω �◦
α,β ω

′ iff



ω � ω′, if
(
ω, ω′ |= β and (ω, ω′ � αβ or αβ ≺ ω, ω′)

)
(I) or (II)

or
(
ω, ω′ |= β

)
(III)

or
(
ω |= β, ω′ |= β and αβ ≺ ω

)
(IV)

or
(
ω′ |= β, ω |= β and αβ ≺ ω′) (V)

>, if
(
ω |= β, ω � αβ and
(ω′ |= β or ω′ |= β, αβ ≺ ω′)

)
(VI) or (VII)

In (9.2), we employ exclusive cases leading to more comprehensible constraints
for BR. In Figure 9.2, we present an overview of the exclusive and exhaustive use
cases of the constraints in (9.2). Note that, exhaustiveness of the cases follows
immediately from the equivalence between 9.1 and (9.2).

First, we explain all cases in which BR does not change the prior plausibilistic
relation: Case (I) and (II) deal with β-worlds and imply that either if both worlds
are more or equally plausible than αβ or if both worlds are less plausible than
αβ their relations are kept, i.e., these cases clearly discriminate β-worlds along the
plausibility limit specified by αβ while keeping the prior plausibility relation between
worlds either more or equally resp. less plausible than αβ. Case (III) deals with
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◦

ω, ω′ |= β

ω, ω′ � αβ

(I)
ω � αβ, αβ ≺ ω′

(VII)

αβ ≺ ω, ω′

(II) ω |= β, ω′ |= β

ω, ω′ � αβ

(VI)

ω � αβ, αβ ≺ ω′

(VI)

ω′ � αβ, αβ ≺ ω

(IV) or (V)

αβ ≺ ω, ω′

(IV) or (V)

ω, ω′ |= β

(III)

Figure 9.2: Schematic sketch of all use cases of the constraints (I) – (VII) in (9.2)
defining BR from Proposition 9.1.1. Note that, for (IV) and (V) the roles of ω and
ω′ can be swapped.

all β-worlds, implying conservation of the corresponding plausibility relations. Case
(IV) and (V) from (9.2) together close the gap to the β-worlds less plausible than
αβ and show that also here the prior plausibility relations between those worlds and
β-worlds are not affected by BR. BR promotes β-worlds that are at least as plausible
as αβ, s.t. they are strictly more plausible than the rest of Ω in the posterior state.
The strictness of the inequality follows from the fact that we cannot swap the roles
of ω and ω′ in the cases (VI) and (VII) in (9.2). All in all, we can derive from
(9.2) that worlds ω |= β, s.t. ω � αβ are at the center of the iterated belief change
implemented by BR by β w.r.t. α. We summarize them by a unique formula.

Definition 9.1.2 (Core of Bounded Revision, [110]). For a plausibilistic TPO �
and a BR operator ◦α β, we define the core of Bounded Revision by β w.r.t. α as
the formula

ϕ◦
α,β = β ∧ (

∨
ω�αβ

ω).
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We call the set of possible worlds satisfying ϕ◦
α,β the core set of Bounded Revision

and notate Φ◦
α,β = Mod(ϕ◦

α,β) = {ω ∈ Ω |ω ∈ Mod(β), ω � αβ} .

The formula ϕ◦
α,β specifies via the reference sentence α, which β-worlds are suf-

ficiently plausible to be promoted by BR by β w.r.t. α, i.e., to which extent the
plausibility of β shall be increased relative to the remaining worlds depending on
the plausibility of α. Thus, the disjunction in the core formula ϕ◦

α,β substantiates
the idea to “accept the input sentence as far as the reference sentence and just a
little further” from [100] by linking the choice of β-worlds that BR promotes to the
plausibility of α. This places ϕ◦

α,β at the core of BR. If we look at the final posterior
belief state, we cannot distinguish whether a BR decreases the plausibility of worlds
outside the core or increases the plausibility of worlds within the core set. Because
plausibilities are given only qualitatively, we cannot determine the shift’s direction
from the final result. Before we illustrate BR implemented via the constraints in
(9.2) in an example, we reformulate and compress the constraints using the formula
ϕ◦
α,β. This leads to an equivalent formulation of (9.2) which we state in the following

proposition. We employ a proposition for the reformulation, which is useful in the
proof of our following representation theorem for BR.

Proposition 9.1.2. Let ϕ◦
α,β be the core formula of BR by β w.r.t. α as in Definition

9.1.2. It holds that the constraints defining BR �◦
α,β=� ◦α β from Proposition 9.1.1

are equivalent to the following reformulation of (9.2)

ω �◦
α,β ω

′ iff


ω � ω′, if ω, ω′ |= ϕ◦

α,β (i)
or ω, ω′ 6|= ϕ◦

α,β (ii)
>, if ω |= ϕ◦

α,β and ω′ 6|= ϕ◦
α,β (iii)

(9.5)

Proof. For each case in (9.2), we check whether ω resp. ω′ is a model of ϕ◦
α,β.

(I) For each ω, ω′ it holds that ω, ω |= β and ω, ω′ � αβ, thus ω, ω′ |= ϕ◦
α,β. And

for each ω, ω′ that satisfies ϕ◦
α,β, it holds that case (i) applies.

(II) For each ω, ω′ it holds that αβ ≺ ω, ω′, thus ω, ω′ 6|= ϕ◦
α,β.

(III) For each ω, ω′ it holds that ω, ω 6|= β, thus ω, ω′ 6|= ϕ◦
α,β.
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�:

abcd

abcd abcd

abcd abcd

abcd abcd

abcd

Ω̄

im
plausibility

a) Plausibilistic TPO �.

� ◦a b:

abcd

abcd

abcd abcd

abcd

abcd abcd

abcd

Ω̄

im
plausibility

b) BR revised TPO � ◦a b.

Figure 9.3: BR of the TPO � by a w.r.t. b.

(IV) For each ω it holds that αβ ≺ ω, thus ω 6|= ϕ◦
α,β. And for each ω′ it holds that

ω′ 6|= β, thus ω′ 6|= ϕ◦
α,β.

(V) For each ω′ it holds that αβ ≺ ω′, thus ω′ 6|= ϕ◦
α,β. And for each ω it holds

that ω 6|= β, thus ω 6|= ϕ◦
α,β.

(VI) For each ω it holds that ω |= β and ω � αβ, thus ω |= ϕ◦
α,β. And for each ω′

it holds that ω′ 6|= β, thus ω′ 6|= ϕ◦
α,β.

(VII) For each ω it holds that ω |= β and ω � αβ, thus ω |= ϕ◦
α,β. And for each ω′

it holds that ω′ |= β and αβ ≺ ω′, thus ω′ 6|= ϕ◦
α,β

Due to the exhaustiveness of the cases (I) – (VII) of (9.2), we can subsume the
cases (II) to (V) and get case (ii) of (9.5). And it holds that if ω satisfies ϕ◦

α,β and
ω′ 6|= ϕ◦

α,β, i.e., ω′ |= β or ω′ |= β, αβ ≺ ω′, then case (VI) resp. (VII) apply and we
get case (iii) of (9.5).

We present the following example for BR to illustrate the mechanism of BR via
our constraints (9.2) resp. (9.5):

Example 9.1.1. In Figure 9.3a a plausibilistic TPO � with signature Σ = {a, b, c, d}
is given, where Ω̄ denotes all remaining worlds on the same level of plausibility, which
are not shown explicitly. In Figure 9.3b the BR � ◦a b with input β = b and reference
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sentence α = a is depicted. It holds that Φa,b = {abcd} and thus, it follows from
constraint (iii) in (9.5), that abcd ≺ ◦a b ω′ for all ω′ ∈ (Ω \ Φa,b), i.e., ω′ 6|= ϕ◦

α,β.
And from (ii) in (9.5), it follows that the plausibility relations among all worlds
outside of Φa,b remain the same.

We state the following representation theorem, which proves that ϕ◦
α,β displays

the right choice to characterize the change mechanism of BR by β w.r.t. α and
provides us with simple yet elegant postulates axiomatizing the change mechanism
of BR.

Theorem 9.1.3 (Representation Theorem for BR, [110]). Let ◦α β be a BR operator
by β w.r.t. α. Let � be a plausibilistic TPO and � ◦α β =�◦

α,β be the corresponding
BR revised plausibilistic TPO. Then � and �◦

α,β satisfy (9.5) iff � and �◦
α,β satisfy:

(BR1) If ω, ω′ |= ϕ◦
α,β, then ω � ω′ iff ω �◦

α,β ω
′

(BR2) If ω, ω′ 6|= ϕ◦
α,β, then ω � ω′ iff ω �◦

α,β ω
′

(BR3) If ω |= ϕ◦
α,β and ω′ 6|= ϕ◦

α,β then ω ≺◦
α,β ω

′

Proof. ⇒: Presuppose that � and �◦
α,β satisfy (9.5).

(BR1): For ω, ω′ |= ϕ◦
α,β, (BR1), i.e., ω � ω′ iff ω �◦

α,β ω
′ follows from case (i) in

(9.5).

(BR2): For ω, ω′ 6|= ϕ◦
α,β, (BR2), i.e., ω � ω′ iff ω �◦

α,β ω
′ follows from case (ii) in

(9.5).

(BR3): If ω |= ϕ◦
α,β and ω′ 6|= ϕ◦

α,β, then case (iii) in (9.5) applies and therefore
ω �◦

α,β ω
′ and (BR3) holds.

In general, it holds that if ω |= ϕ◦
α,β then ω |= β and ω � αβ, and for ω′, it

holds that either ω′ |= β or αβ ≺ ω′. We exclude the doubly named worlds
in Mod(β) and presuppose that ω′ |= β or (ω′ |= β and αβ ≺ ω′). Then the
conditions of case (VI) or (VII) in (9.2) are satisfied and, we can conclude that
ω �◦

α,β ω
′ but not ω′ �◦

α,β ω, i.e. (BR3) holds.

⇐: Presuppose that � and �◦
α,β satisfy (BR1) – (BR3).



196 9.1 Mechanism of Bounded Revision for TPOs

�:

ωαβ

Mod(β) Mod(β)

ϕ◦
α,β

◦α β

�◦
α,β:

ωαβ

Mod(β) Mod(β)

ϕ◦
α,β

Figure 9.4: Schematic representation of BR of β w.r.t. α for a TPO �.

(i) For ω, ω′ |= ϕ◦
α,β, we can conclude from (BR1) that ω � ω′ iff ω �◦

α,β ω
′ holds,

i.e., case (i) in (9.5) is satisfied.

(ii) For ω, ω′ 6|= ϕ◦
α,β, we can conclude from (BR2) that ω � ω′ iff ω �◦

α,β ω
′ holds,

i.e., case (ii) in (9.5) is satisfied.

(iii) For ω |= ϕ◦
α,β and ω′ 6|= ϕ◦

α,β, we can conclude from (BR3) that ω ≺◦
α,β ω

′, i.e.,
case (iii) in (9.5) is satisfied.

For each case (i) – (iii), (9.5) holds if � and �◦
α,β satisfy (BR1) – (BR3).

The shift of worlds that BR performs is depicted in the schematic representation
of BR in Figure 9.4. Note that, for plausibilistic TPOs, we cannot specify whether
BR increases the plausibility of worlds in the core set Φ◦

α,β by shifting them down-
wards to lower implausibility levels than worlds outside the core set or whether the
posterior BR-revised TPO is yielded by shifting worlds outside the core set upwards
to levels with higher implausibility. That means we cannot specify the direction of
the shift for TPOs illustrated in Figure 9.4.

Next, we present a proposition which summarizes the characteristics and prop-
erties of BR defined via (BR1) – (BR3).

Proposition 9.1.4 ([110]). For a plausibilistic TPO � and BR operator ◦α β by β
w.r.t. α, s.t. (BR1) – (BR3) hold for � ◦α β =�◦

α,β, the following statements hold:
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1. β ∈ Bel(�◦
α,β) = Th(min(Mod(β),�))

2. α ≺◦
α,β β, i.e., (BR)� holds

3. Bel(� ◦α β) = Bel(� ◦γ β) for γ ∈ L, so, (SBC)� holds

Proof. We show the statements employing (BR1) – (BR3) for BR of β w.r.t. α.

1. It holds that

Bel(� ◦α β) = Th({ω ∈ Ω| ω �◦
α,β ω

′ for all ω′ ∈ Ω})
(BR3)
= Th({ω ∈ Φ◦

α,β| ω �◦
α,β ω

′ for all ω′ ∈ Ω})
(BR1)
= Th({ω ∈ Φ◦

α,β| ω ∈ min(Φ◦
α,β,�)})

= Th(min(Mod(β),�))

The last equation holds, since for ω ∈ min(Φ◦
α,β,�), it holds that ω |= β

and the restriction ω � αβ is obsolete. We can conclude that β holds in
Bel(� ◦α β).

2. It follows from (BR3), that αβ �◦
α,β αβ, because for each minimal αβ-world,

represented by ωαβ, it holds that ωαβ |= ϕ◦
α,β and for each minimal αβ-world,

represented by ωαβ, it holds that ωαβ 6|= ϕ◦
α,β. Since this holds for all minimal

αβ-worlds resp. αβ-worlds, we can conclude that α ≈◦
α,β ωαβ.

Moreover, it holds for each minimal β-world, represented by ωβ, that ωβ 6|=
ϕ◦
α,β. Now, via (BR3), we can conclude that α ≈◦

α,β ωαβ ≺◦
α,β ωβ ≈◦

α,β β holds,
thus �◦

α,β satisfies (BR)�.

3. (SBC)� follows directly from the first statement, since the belief set of the
BR revised plausibilistic TPO does not depend on the reference sentence, but
solely on the input. Thus, Bel(� ◦α β) = Bel(� ◦γ β) holds for each α, γ ∈ L.

A schematic sketch of the results in this section is given in Figure 9.5 In the
following example, we illustrate the versatile character of BR which depends on the
interplay of input and reference sentence.
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(BR1) – (BR3)

Constraints (9.2) from Proposition 9.1.1

BR for TPOs � via (9.1)

BR for EEs 6E via (7.4) (BR)E and (SBC)E

(BR)� and (SBC)�

Lemma 8.1.3

(7.1) (7.1)

Proposition 9.1.4

Proposition 9.1.4

Figure 9.5: Overview of constraints and postulates defining BR.

Example 9.1.2. In Figure 9.3a a plausibilistic TPO � with signature Σ = {a, b, c, d}
is given, where Ω̄ denotes all remaining worlds on the same level of plausibility, which
are not shown explicitly. We perform three different BR operations in Figures 9.3b,
9.6a and 9.6b to illustrate the strength and special features of BR. In Figure 9.3b the
BR � ◦a b with input β = b and reference sentence α = a is depicted. The BR � ◦a b
was already discussed in the context of our constraints from (9.2) in Example 9.1.1.
As we can see, it holds that Φa,b = {abcd} and obviously �∗

a,b|= b and (BR)� hold.
Note that BR yields the same belief set of the posterior TPO for a different reference
sentence, like, e.g., α = a due to (SBC)�. In Figure 9.6a, the outcome of � ◦b c
with reference sentence α = b and input β = c is illustrated. BR does not change
the prior ordering since (BR1) – (BR3) are already satisfied. This example shows
that the change implemented by BR is vacuous under the condition that all worlds
in Φ◦

α,β are already more plausible than worlds outside of it in the prior ordering.
Otherwise, (BR1) – (BR3) imply the strengthening of the β-belief as can be seen in
Figure 9.6b, where BR is performed with input β = d and reference sentence α = a.
Here, the input sentence d gets promoted via BR, even though it is already believed
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� ◦b c:

abcd

abcd abcd

abcd abcd

abcd abcd

abcd

Ω̄

im
plausibility

a) BR revised TPO � ◦b c.

� ◦a d:

abcd

abcd

abcd

abcd abcd

abcd abcd

abcd

Ω̄

im
plausibility

b) BR revised TPO � ◦a d.

Figure 9.6: BR by c resp. d w.r.t. b resp. a.

in the prior ordering. Note that this promotion of the input belief depends on the
choice of the reference sentence because the reference sentence specifies how much
more plausible the input shall be in the posterior ordering.

Note that for BR by β w.r.t. α, the reference sentence α is used to specify
the distance between β- and β-worlds in the posterior state. This is because the
reference sentence determines to which extent β-worlds are part of the core set Φ◦

α,β.
In general, they have to be more or equally plausible than αβ. Also, it holds that
ω |= β for each ω ∈ Φ◦

α,β and if ω′ |= β it holds that ω′ 6∈ Φ◦
α,β. Thus, we get from

(BR3) that each world satisfying ϕ◦
α,β is strictly more plausible than worlds that do

not satisfy ϕ◦
α,β and αβ marks the plausibility level to which worlds are part of the

core set.
Apart from cases where α ≺ β is already present in the prior ordering, the

shift implemented by BR satisfies a minimal change principle. We summarize some
characteristics of the BR shift via the following proposition, which summarize the
idea of minimality implemented in BR.

Proposition 9.1.5. For a plausibilistic TPO � and BR operator ◦α β by β w.r.t.
α, s.t. (BR1) – (BR3) hold for � ◦α β =�◦

α,β, the following statements hold:

1. αβ ≈◦
α,β α

2. If {ω ∈ Mod(β) |ω � αβ} = ∅, then �=�◦
α,β
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3. If {ω ∈ Mod(β) |ω � αβ} 6= ∅, then there exists no ω ∈ Ω, s.t. α ≺◦
α,β ω ≺◦

α,β

β, i.e., (BR)� is satisfied in the slightest possible way

Proof. 1. For all minimal worlds ωαβ |= αβ, it holds that ωαβ |= ϕ◦
α,β, and, for

all minimal worlds ωαβ |= αβ holds that ωαβ 6|= ϕ◦
α,β. Thus, we can conclude

from (BR3) that ωαβ ≺◦
α,β ωαβ and therefore α ≈◦

α,β min{αβ, αβ} ≈◦
α,β αβ.

2. Since {ω ∈ Mod(β) |ω � αβ} = ∅, it holds for all worlds ω ∈ Ω that either
ω |= ϕ◦

α,β or αβ ≺ ω.

Hence, for all worlds ω 6|= ϕ◦
α,β, it holds that αβ ≺ ω. (?)

We distinguish the following three cases, which correspond to (BR1) – (BR3)
and show that in each case the previous ordering does not change after BR.
1. case: If ω1, ω2 |= ϕ◦

α,β, then ω1 �◦
α,β ω2 iff ω1,� ω2 follows from (BR1).

2. case: If ω1, ω2 6|= ϕ◦
α,β, then ω1 �◦

α,β ω2 iff ω1,� ω2 follows from (BR1).
3. case: Let ω1 |= ϕ◦

α,β and ω2 6|= ϕ◦
α,β. We can conclude from (?) that

αβ ≺ ω2 and therefore it holds that ω1 ≺ ω2. And ω1 ≺◦
α,β ω2 follows from

(BR3).

3. For all ω |= ϕ◦
α,β, it holds that ω �◦

α,β αβ ≈◦
α,β α.

Since {ω ∈ Mod(β) |ω � αβ} 6= ∅ there exists a minimal model ωβ, s.t.
ωβ |= β and ωβ � αβ. So, ωβ minimally satisfies β in �.
Moreover, we can conclude that ωβ also minimally satisfies ϕ◦

α,β, since for all β-
worlds ω′ in Mod(ϕ◦

α,β), it holds that αβ ≺ ω̃. Thus, it holds that ωβ ≈ β � ω′

for all ω′ |= ϕ◦
α,β. From (BR2), we can conclude that ωβ ≈◦

α,β β �◦
α,β ω

′ holds
since all worlds involved in this inequality are not models of ϕ◦

α,β.
All in all, we get for ω |= ϕ◦

α,β and ω′ 6|= ϕ◦
α,β that

ω
(BR1)

�◦
α,β αβ

1.

�◦
α,β α

(BR3)

≺◦
α,β β ≈◦

α,β ωβ

(BR2)

�◦
α,β ω

′,

i.e., there exists no world in between α and β.

From the Proposition above, we can conclude that αβ ≈◦
α,β α ≺◦

α,β β holds due
to the definition of ϕ◦

α,β and (BR)�. Yet, in general, BR does not guarantee that
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(BR)� is satisfied in the slightest possible way, i.e., it is possible that there exists a
world ω s.t. α ≺◦

α,β ω ≺◦
α,β β. In the special case, if αβ ≈ α ≺ ω ≺ β holds, the

precondition of the first statement in Proposition 9.1.5 is satisfied, thus, �=�◦
α,β

holds and BR with β w.r.t. α does not change the prior ordering, so that the world
ω remains on a plausibility level in between α and β. We illustrate this special case
via the following example.

Example 9.1.3. Let ab ≺ ab ≺ ab ≺ ab be a plausibilistic TPO over Σ = {a, b}.
For BR with reference α = a and input sentence β = b, it holds that Φa,b = {ab}
and thus, the constraints (BR1) – (BR3) hold and BR does not change the prior
ordering. Note that, (BR)� is satisfied, but for the posterior ordering it holds that
a ≺◦

α,β ab ≺◦
α,β b

In [100], Rott described the goal of BR to “accept β as long as α holds along with
β, and just a little further.” The third statement in Proposition 9.1.5 substantiates
what is meant by “just a little further”, namely that in terms of plausibility, α is
strictly more plausible than β, but there exists no level of plausibility in between
these two formulas, at least in cases where BR performs a real change.

9.2 Lexicographic and Natural Revision via Boun-
ded Revision

This section shows that limiting cases of BR w.r.t. the reference sentence α corre-
spond to lexicographic [82] resp. natural revision [17].

Rott observed this unique feature of BR in [100] and stated that BR is a pa-
rameterized belief change operation in between these two well-known revision mech-
anisms1. We make this connection more clear by applying the postulates (BR1)
– (BR3) from our Representation Theorem 9.1.3. But first, we show that BR, in
general, corresponds to a particular lexicographic revision and thus implements a
more fine-grained revision mechanism via supplementary information in the form of
a reference sentence α.

1In [100], natural revision is called conservative revision and lexicographic revision is used under
the name moderate revision. These names can be traced back to the paper [98] by Rott.
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Lexicographic revision displays an iterated belief revision operator that takes as
input a sentence γ and is semantically defined on plausibilistic TPOs (cf. Definition
2.3.2 on page 31). We expand the constraints defining the lexicographic revision
operator •` [82] from Definition 2.3.2 a bit in order to compare them to (BR1)
– (BR3) more easily, which characterize BR by β w.r.t. α, and get the following
proposition:

Proposition 9.2.1. Let � be a plausibilistic TPO and γ ∈ L. The lexicographic
revision � •` γ =�`γ of � by γ is characterized by the following constraints

(L1) If ω, ω′ |= γ, then ω �`γ ω′ iff ω � ω′

(L2) If ω, ω′ 6|= γ, then ω �`γ ω′ iff ω � ω′

(L3) If ω |= γ and ω′ 6|= γ, then ω ≺`γ ω′

We notice that lexicographic revision and Bounded Revision are related to each
other. (BR1) – (BR3) correspond to (L1) – (L3), if we replace γ with the core
formula ϕ◦

α,β for BR. The following theorem proves that BR by β w.r.t. α displays
a lexicographic revision with the corresponding core of BR.

Theorem 9.2.2. Let � be a plausibilistic TPO, ◦α β be the BR operator by β w.r.t.
α and •` be the lexicographic revision operator. For � ◦α β and � •` ϕ◦

α,β with ϕ◦
α,β

being the core of BR by β w.r.t. α, it holds that

� ◦α β =� •` ϕ◦
α,β

s.t. ω (� ◦α β) ω′ iff ω (� •` ϕ◦
α,β) ω

′ holds for all ω, ω′ ∈ Ω.

Proof. We compare the lexicographic revision operator •` defined by (L1) – (L3)
and the BR operator ◦α β defined by (BR1) – (BR3).

It holds that that (L1) corresponds to (BR1) with γ = ϕ◦
α,β, (L2) corresponds

to (BR2) with γ = ϕ◦
α,β and (L3) corresponds to (BR3) with γ = ϕ◦

α,β.
The postulates (L1) – (L3) and (BR1) – (BR3) are analog if we choose γ = ϕ◦

α,β

as input for the lexicographic revision operator and both yield unique plausibilistic
TPOs �`α,β resp. �◦

α,β. Thus, we can conclude that ω �◦
α,β ω

′ iff ω �`α,β ω′ holds for
all ω, ω′ and therefore, the plausibilistic TPOs �`α,β and �◦

α,β are the same.
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Theorem 9.2.2 states that BR by β w.r.t. α corresponds to a lexicographic re-
vision by ϕ◦

α,β. Thus, we encode the supplementary information in the reference
sentence α from the meta-level to the more clearly defined and directly usable ob-
ject level via ϕ◦

α,β. Hence, lexicographic revision with ϕ◦
α,β can be seen as a reduc-

tion of BR by β w.r.t. α to the framework of lexicographic revisions, which makes
it directly usable for lexicographic revision solvers (see for e.g., [4]). Moreover, in
contrast to a standard lexicographic revision with β, where (L3) forces quite rough
changes on the prior ordering by making all β-worlds more plausible than β-worlds,
BR implements a more fine-grained revision with input β. The incorporation of α
leads to the corresponding revision with ϕ◦

α,β, where α marks to which plausibility
level worlds in Mod(β) are promoted in the posterior TPO. This supports the idea
that α serves as an indicator for the reliability of β and provides ground for further
applications of supplementary information.

Now, we consider the limiting cases for BR of β w.r.t. α. That means cases
where the reference sentence represents a logical truth α ≡ > or a fallacy α ≡ ⊥.
Later, we also deal with tautologies as input information.

For the limiting cases concerning the reference sentence, we suppose that either
α never or always holds along with input sentence β. For the first case, we consider
α ≡ > and investigate the corresponding core formula. It holds that

α ∧ β ≡ ⊥ ∧ β ≡ ⊥ (9.6)

and thus, we get for ϕ>,β

ϕ>,β ≡ β ∧
∨
ω�⊥

ω ≡ β ∧ > ≡ β (9.7)

since ω ≺ ⊥ holds for all worlds ω in � (cf. (2.4) on page 28), s.t.
∨
ω�⊥ ω exhausts

the space of logical possibilities. We can conclude from (9.7) that Φ>,β = Mod(β).
Applying this, we get the following reformulation of our postulates (BR1) – (BR3)
for α ≡ >:

(BR1) If ω, ω′ |= β, then ω � ω′ iff ω �◦
>,β ω

′

(BR2) If ω, ω′ 6|= β, then ω � ω′ iff ω �◦
>,β ω

′
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(BR3) If ω |= β and ω′ 6|= β then ω ≺◦
>,β ω

′

Now, if we compare these postulates to (L1) – (L3), it is clear to see that (BR1)
– (BR3) for α ≡ > corresponds to a lexicographic revision with input β. We
summarize this via the following theorem.

Theorem 9.2.3. Let � be a plausibilistic TPO, ◦α β be the BR operator by β w.r.t. α
and •` be the lexicographic revision operator. For � ◦> β with tautological reference
sentence α, it holds that

� ◦> β =� •` β

s.t. ω (� ◦> β) ω′ iff ω (� •` β) ω′ holds for all ω, ω′ ∈ Ω.

Proof. We compare the lexicographic revision operator •` defined by (L1) – (L3) and
the BR operator ◦> β defined by (BR1) – (BR3), which follow immediately from (9.7)
and (9.6). The postulates (L1) – (L3) and (BR1) – (BR3) are analog if we choose γ =

β as input for the lexicographic revision operator and both yield unique plausibilistic
TPOs � •` β resp. � ◦> β. Thus, we can conclude that ω(◦> β)ω′ iff ω(� •` β)ω′

holds for all ω, ω′ and therefore, the plausibilistic TPOs are the same.

So far, we have shown that lexicographic revision can be seen as a limiting case
of BR with a tautological reference sentence. In the following, we investigate the
relation between natural revision and Bounded Revision and consider the opposite
limiting case where the reference sentence is represented by a logical contradiction.

We suppose that α ≡ ⊥. It holds that

α ∧ β ≡ > ∧ β ≡ β (9.8)

and thus, we get for ϕ⊥,β

ϕ⊥,β ≡ β ∧
∨
ω�β

ω ≡
∨

ω∈min(β,�)

ω (9.9)

Because the plausibility of β in � is defined via minimal worlds satisfying β, it
holds that only minimal β-worlds satisfy ω � β and β at the same time. Hence, we
can conclude from (9.9) that Φ⊥,β = min(β,�). We adjust the postulates (BR1) –
(BR3) accordingly:
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(BR1) If ω, ω′ ∈ min(β,�), then ω � ω′ iff ω �◦
⊥,β ω

′

(BR2) If ω, ω′ 6∈ min(β,�), then ω � ω′ iff ω �◦
⊥,β ω

′

(BR3) If ω ∈ min(β,�) and ω′ 6∈ min(β,�) then ω ≺◦
⊥,β ω

′

For α ≡ ⊥, BR of β solely affects the most plausible worlds satisfying the input
sentence and pushes them to the lowermost level of the posterior TPO, thus sat-
isfying the success condition for the revision with β in the slightest possible way.
This rather conservative approach to belief revision corresponds to natural revision
•n as defined in Definition 2.3.2 on page 31. We expand the constraints defining
the natural revision operator •n [17] from Definition 2.3.2 a bit in order to compare
them to (BR1) – (BR3) more easily in the case of ⊥ as reference sentence.

Proposition 9.2.4. Let � be a plausibilistic TPO and γ ∈ L. The natural revision
� •n γ =�n

γ of � by γ is characterized by the following constraints

(N1) If ω, ω′ ∈ min(γ,�), then ω �n
γ ω

′ iff ω � ω′

(N2) If ω, ω′ 6∈ min(γ,�), then ω �n
γ ω

′ iff ω � ω′

(N3) If ω ∈ min(γ,�) and ω′ 6∈ min(β,�), then ω ≺n
γ ω

′

Now, it is clear to see, that BR with reference sentence α ≡ ⊥ implemented via
(BR1) – (BR3) corresponds to a natural revision with input sentence β and we get
the following theorem:

Theorem 9.2.5. Let � be a plausibilistic TPO, ◦α β be a BR operator by β w.r.t.
α and •n be a natural revision operator. For � ◦⊥ β with contradictory reference
sentence α, it holds that

� ◦⊥ β =� •n β

s.t. ω (� ◦⊥ β) ω′ iff ω (� •n β) ω′ holds for all ω, ω′ ∈ Ω.

Proof. We compare the natural revision operator •` defined by (N1) – (N3) and the
BR operator ◦⊥ β defined by (BR1) – (BR3), which follow immediately from (9.9)
and (9.8). The postulates (N1) – (N3) and (BR1) – (BR3) are analog if we choose
γ = β as input for the natural revision operator and both yield unique plausibilistic
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TPOs � •n β resp. � ◦⊥ β. Thus, we can conclude that ω(◦⊥ β)ω′ iff ω(� •n β)ω′

holds for all ω, ω′ and therefore, the plausibilistic TPOs are the same.

For the limiting cases α ≡ > resp. α ≡ ⊥, it holds that BR displays a non-
parameterized belief revision mechanism essentially because it either corresponds to
natural resp. to lexicographic revision, as was already stated in [100]. This shows
that Bounded Revision naturally fills the space between these two revision operators.
This is also reflected in the corresponding core sets of BR w.r.t. a standard reference
sentences α resp. with α ≡ ⊥ or α ≡ > as the following proposition shows.

Proposition 9.2.6. Let � be a plausibilistic TPO, ◦α β be the BR operator by β

w.r.t. α and Φ◦
α,β be the corresponding core set. It holds that Φ◦

⊥,β ⊆ Φ◦
α,β ⊆ Φ◦

>,β.

Proof. In general, it holds for the core set of BR of β w.r.t. α that Φ◦
α,β = {ω ∈

Ω |ω ∈ Mod(β), ω � αβ} = Mod(β ∧ (
∨
ω�αβ ω)) according to Definition 9.1.2.

Via (9.8), we get for α ≡ ⊥ the following core set

Φ◦
⊥,β = {ω ∈ Ω |ω ∈ Mod(β), ω � β} = min(β,�) (9.10)

and via (9.6), we get for α ≡ > the core set

Φ◦
>,β = {ω ∈ Ω |ω ∈ Mod(β)} = Mod(β) (9.11)

Thus, we can conclude that

min(β,�)︸ ︷︷ ︸
Φ◦

⊥,β

⊆ Mod(β) ∩Mod(
∨
ω�αβ

ω)︸ ︷︷ ︸
Φ◦

α,β

⊆ Mod(β)︸ ︷︷ ︸
Φ◦

>,β

holds.

We illustrate the relation between natural and lexicographic revision versus
Bounded Revision via the following example.

Example 9.2.1. In Figure 9.3a a plausibilistic TPO � with signature Σ = {a, b, c, d}
is given, where Ω̄ denotes all remaining worlds on the same level of plausibility, which
are not shown explicitly. We compare three revision operators via the revision with
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c) Posterior TPO � •` a.

Figure 9.7: Natural and lexicographic revision as limiting cases of BR.

a. The natural revision � •n a is depicted in Figure 9.7a. The BR with a w.r.t.
c, � ◦c a is depicted in Figure 9.7b. In Figure 9.7c, we illustrate the lexicographic
revision � •` a.

It holds for the natural revision � •n a in Figure 9.7a that solely the world
min(a,�) = {abcd} is shifted to the lowermost levels. This shift corresponds to the
shift implemented by BR of a w.r.t. to the contradictory reference sentence β ≡ ⊥.
Here it holds for the core set that Φ◦

⊥,a = min(a,�).
BR with a w.r.t. c, depicted in Figure 9.7b, implements a less conservative

change, here the worlds in Φ◦
c,a = {abcd, abcd, abcd} are shifted to the lowermost

levels while maintaining their inner plausibility orderings.
Figure 9.7c illustrates the lexicographic revision � •` a, and therefore, the most

rigorous change on the prior TPO �. Here, all worlds in Mod(a) = {abcd, abcd, abcd, abcd}
are made more plausible than the remaining a-worlds. For a BR of a w.r.t. to a
tautological reference sentence, s.t. Φ◦

>,a = Mod(a) we get the same posterior TPO
as for the lexicographic revision.

As we can see, it holds that Φ◦
⊥,a ⊆ Φ◦

c,a ⊆ Φ◦
>,a. Thus, BR with a w.r.t. c fills

the space between natural resp. lexicographic revision with a.

We have recovered the two well-known belief revision mechanisms, natural and
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lexicographic revision, as limiting cases of BR. However, both natural and lexico-
graphic revision seem to be defective. Natural revision accepts the new piece of
evidence, but it accords it only to the lowest possible degree so that new evidence
gets immediately lost if any contradiction with the next piece of evidence arises. On
the other hand, lexicographic revision suffers from the opposite defect by accepting
the input information very firmly and arguably too firmly. For a lexicographically
TPO, it holds that all β-worlds are more plausible than all β-worlds. So, while natu-
ral revision is too conservative, lexicographic revision seems too radical. BR has the
advantage of systematically covering the whole range between these two extremes.

In the following, we deal with the special case of tautological revision, i.e., cases
when the input β ≡ >.

Proposition 9.2.7. Let � be a plausibilistic TPO, ◦α β be a BR operator by β w.r.t.
α. For � ◦α> with tautological input sentence β, it holds that � ◦α> =�.

Proof. For β ≡ >, it holds that β ≡ ⊥, i.e.,

{ω ∈ Mod(β) |ω � αβ} = ∅

and hence, � ◦α> =� follows from the second statement in Proposition 9.1.5.

The proposition shows that BR satisfies a tautological vacuity principle for plau-
sibilistic TPOs since the revision with > does not change the prior ordering regard-
less of the choice of the reference sentence α.

9.3 Bounded Revision for Ranking Functions

Now, we investigate Bounded Revision in the semi-quantitative framework of ranking
functions and present two types of methodological implementations of BR. We start
with a straightforward realization of the BR mechanism for OCFs in Subsection 9.3.1.
This realization for ranking functions provides the foundation for the subsequent
investigation of BR as a conditional c-revision in Subsection 9.3.2. We show that
the change mechanism implemented in BR is fully captured by a single conditional,
which relies on the interplay between the input sentence β and the reference sentence
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α. Via this conditional, the parameterized belief revision via BR can be reduced to
pleasantly easy c-revision by a single conditional.

Throughout this section, we use the core formula ϕ◦
α,β for BR as defined in

Definition 9.1.2. The original definition uses TPOs to define the disjunction over all
worlds more or equally plausible than αβ. This condition can be easily transferred
to the framework of OCFs via translation (2.9). Hence, we get for a ranking function
κ the following corresponding core formula for BR:

ϕ◦
α,β = β ∧ (

∨
κ(ω)6κ(αβ)

ω)

We stick to the previous notation to avoid a lengthy but uninformative re-definition
of ϕ◦

α,β.

9.3.1 Realization of Bounded Revision for Ranking Func-
tions

In the following, we present a straightforward realization of BR for ranking functions,
making the BR mechanism more explicit. In this subsection, we show that it satisfies
the postulates (BR1) – (BR3).

Definition 9.3.1 ([110]). Let κ be a ranking function. Bounded Revision κ ◦α β =

κ◦α,β with input β and reference α for OCFs is defined as follows:

κ◦α,β(ω) = κ0 + κ(ω) +

κ(αβ) + 1, ω 6|= ϕ◦
α,β

0, otherwise
(9.12)

with κ0 = −κ(β) as a normalization constant.

In general, for the normalization constant κ0 in (9.12) it holds that

κ0 = −min{ min
ω|=ϕ◦

α,β

{κ(ω)}, min
ω′ 6|=ϕ◦

α,β

{κ(ω′) + κ(αβ) + 1}} = −min{κ(ϕ◦
α,β)} = −κ(β),

(9.13)

because for worlds ω |= ϕ◦
α,β it holds that ω |= β and κ(ω) 6 κ(αβ). Thus,
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κ(ω) < κ(αβ)+1 and therefore all worlds ω′ 6|= ϕ◦
α,β are irrelevant for the minimum.

Employing the condition κ(ω) 6 κ(αβ) from ϕ◦
α,β again, we conclude that each

minimal β world satisfies ϕ◦
α,β minimally and we get that κ(ϕ◦

α,β) = κ(β). Hence
κ0 = −κ(β) is the right choice for the normalization constant.

The semi-quantitative recipe for BR displayed in (9.12) reveals the basic mech-
anism of BR in a simple yet elegant way, and it displays a direct translation of the
schematic BR operation from Figure 9.4. The plausibility of all worlds outside Φ◦

α,β

is reduced by increasing their implausibility ranks, leaving worlds satisfying ϕ◦
α,β

among the most plausible ones. Thus, equation (9.12) implements BR by shifting
worlds outside the core set in Figure 9.4 upwards. Relations within and outside
the set Φ◦

α,β are kept, because we add a constant factor, namely κ(αβ) + 1, to each
world outside Φ◦

α,β. However, (9.12) is not minimal, in the sense that it does not
change the prior ranking function when it is not necessary, i.e., when (BR1) – (BR3)
already hold. In these cases, BR for OCFs strengthens the (already accepted) input
information, which can also be advantageous, at least in special cases. In the follow-
ing section, we discuss a minimal implementation of (BR1) – (BR3) for c-revisions
more thoroughly and illustrate the different approaches via an example.

Note that BR by β w.r.t. α for ranking functions as defined in (9.12) is a variant
of a realization of BR for OCFs. Due to the use of numerical ranks, other realizations
are possible. For example, variants that implement a greater stretch between worlds
ω |= ϕ◦

α,β and ω′ 6|= ϕ◦
α,β by adding a constant number higher than 1 to worlds

ω 6|= ϕ◦
α,β in (9.12). Yet, all variants correspond to the same TPO since adding a

constant number greater than one solely adds empty layers to κ◦α,β. The following
theorem shows that BR for OCFs κ◦α,β satisfies (BR1) – (BR3).

Theorem 9.3.1 ([110]). Let κ be a ranking function and κ ◦α β = κ◦α,β be the BR-
revised OCF as defined in (9.12). Then (BR1) – (BR3) hold for the corresponding
plausibilistic TPOs �κ and �κ◦α,β

.

Proof. Via (2.9), we get the TPO �κ for the prior ranking function κ and the TPO
�κ◦α,β

from the BR-revised OCF κ◦α,β.

(BR1): Let ω, ω′ ∈ Φ◦
α,β, then κ◦α,β(ω) = −κ(β)+κ(ω) 6 −κ(β)+κ(ω′) = κ◦α,β(ω

′)

follows immediately from κ(ω) 6 κ(ω′) and vice versa, since κ0 = −κ(β) is
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a constant factor. And therefore, via (2.9), we can conclude that (BR1) is
satisfied for �κ and �κ◦α,β

.

(BR2): Let ω, ω′ 6∈ Φ◦
α,β, then κ◦α,β(ω) = −κ(β) + κ(ω) + κ(αβ) + 1 6 −κ(β) +

κ(ω′) + κ(αβ) + 1 = κ◦α,β(ω
′) follows immediately from κ(ω) 6 κ(ω′) and vice

versa, since κ0 = −κ(β) and κ(αβ) are constant factors. Therefore, we can
conclude via (2.9) that (BR2) is satisfied.

(BR3): Let ω ∈ Φ◦
α,β and ω′ 6∈ Φ◦

α,β. For ω it holds that ω |= β and κ(ω) 6 κ(αβ).
Now, we consider the BR revised OCF with κ◦α,β(ω) and κ◦α,β(ω

′). It holds
that

κ◦α,β(ω) =− κ(β) + κ(ω) < −κ(β) + κ(αβ) + 1

6 −κ(β) + κ(ω′) + κ(αβ) + 1 = κ◦α,β(ω
′)

since ω |= ϕ◦
α,β and κ(ω′) ≥ 0. Thus, via (2.9), we can conclude that (BR3) is

satisfied for �κ.

From Proposition 9.1.4 and Theorem 9.3.1 it follows that, κ◦α,β(α) < κ◦α,β(β) and
Bel(κ ◦α β) = Bel(κ ◦γ β) for α, γ ∈ L hold, i.e., (BR)� and (SBC)� reformulated
via (2.9) for ranking functions are satisfied.

9.3.2 Realization of Bounded Revision as C-Revision

In this section, we realize BR for OCFs from (9.12) via a conditional revision of
ranking functions with a single conditional. This makes the ensuing application
of BR more explicit, and it makes BR directly usable for existing frameworks of
belief revision, such as the one presented in [47], which are capable of revising
with conditional information. Defining BR as a conditional revision illustrates the
versatility of conditionals in Belief Revision, since conditionals enable us to express
information from a meta-level, i.e., the reference sentence α, via a single logical
entity. The revision with the conditional presented in this section manipulates the
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agent’s belief state according to the rationale behind the parameterized revision
operation BR.

We have seen, so far, that BR yields a posterior ordering by making worlds
outside the core set of BR strictly less plausible than worlds from the core set. Now,
we show that this shift can be characterized by a designated conditional which uses
the core formula ϕ◦

α,β corresponding to a BR by β w.r.t. α:

δα,β = (ϕ◦
α,β|ϕ◦

α,β ∨ (αβ))

We call δα,β the core conditional of BR by β w.r.t. α and yield the corresponding
verification resp. falsification formulas as follows

(ϕ◦
α,β ∨ (αβ)) ∧ (ϕ◦

α,β) ≡ ϕ◦
α,β ∧ αβ ≡ αβ ∧ (

∨
ω�αβ

ω) (9.14)

(ϕ◦
α,β ∨ (αβ)) ∧ (ϕ◦

α,β) ≡ ϕ◦
α,β (9.15)

Equation (9.14) corresponds to the verification of δα,β and (9.15) to its falsification.
For the c-revision with our designated core conditional, we consider the definition
of c-revisions with a single conditional from (2.20) on page 47 and get the following
c-revision κ ∗c δα,β = κc

α,β via the falsification of δα,β in (9.15), s.t.

κ ∗c δα,β(ω) = κc
α,β(ω) = κ0 + κ(ω) +

ηδ, for ω |= ϕ◦
α,β

0, otherwise
, (9.16)

holds. For c-revisions with a single conditional, the normalization constant κ0 is
defined in (2.15) on page 44. Hence, for the c-revision κc

α,β we get for κ0 that

κ0 = −κ((ϕ◦
α,β ∧ (β ⇒ α)) ∨ ϕ◦

α,β) = −κ(ϕ◦
α,β) = −κ(β) (9.17)

holds, because (ϕ◦
α,β ∧ (β ⇒ α)) ∨ ϕ◦

α,β ≡ ϕ◦
α,β. And, as before for (9.12), we can

conclude for all minimal worlds satisfying ϕ◦
α,β that they also satisfy β minimally.

Thus, we get that −κ(ϕ◦
α,β) = −κ(β) for the normalization constant in (9.16) and

κ ∗c δα,β is well-defined. For the non-negative impact factor ηδ, we get via (2.21)
on page 48 and the corresponding verification (9.14) resp. falsification (9.15) of δα,β
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the following inequality

ηδ > κ(αβ ∧ (
∨
ω�αβ

ω))− κ(ϕ◦
α,β)

= κ(αβ)− κ(ϕ◦
α,β) (9.18)

which ensures that κc
α,β |= δα,β. In (9.18), κ(αβ ∧ (

∨
ω�αβ ω)) = κ(αβ) follows

immediately from the fact that only minimal models of αβ satisfy αβ and ω � αβ

at the same time. In general, the plausibility of formulas in OCFs is defined via
minimal models and thus, the OCF ranking of (9.14) equals κ(αβ).

The impact factor ηδ specifies the plausibility stretch between the input and
the reference sentence in the revised state. This is crucial to reduce the meta-level
revision with supplementary information in (9.12) to the object level encoded as the
c-revision with a single conditional, which captures all relevant features of BR, as
the following theorem shows.

Theorem 9.3.2 ([110]). Let κ be a ranking function. For the c-revision κ ∗c δα,β =

κc
α,β as defined in (9.22) and κ◦α β = κ◦α,β from (9.12), it holds that the corresponding

plausibilistic TPOs �κc
α,β

and �κ◦α,β
are the same, i.e.,

ω �κc
α,β

ω′ iff ω �κ◦α,β
ω′.

Proof. We show that TPO �κc
α,β

corresponding to the c-revision κc
α,β satisfies (BR1)

– (BR3) from Theorem 9.1.3. Since (BR1) – (BR3) defines a unique TPO and �κ◦α,β
,

i.e., the TPO corresponding to κ◦α,β, also satisfies (BR1) – (BR3) as we have shown
in Theorem 9.3.1, we can immediately conclude that �κc

α,β
=�κ◦α,β

holds.

(BR1): Let ω, ω′ |= ϕ◦
α,β. Then both worlds do not falsify δα,β, i.e., the second case

in (9.16) applies. We get that κc
α,β(ω) = −κ(β) + κ(ω) 6 −κ(β) + κ(ω′) =

κc
α,β(ω

′) iff κ(ω) 6 κ(ω′) and therefore, (BR1) follows for �κ resp. �κ◦α,β
via

(2.9).

(BR2): Let ω, ω′ 6|= ϕ◦
α,β. Then ω, ω′ |= ϕ◦

α,β holds and both worlds falsify δα,β. For
the c-revision with δα,β and the corresponding non-negative impact factor ηδ
(cf. (9.18)), we get that κc

α,β(ω) = −κ(β)+κ(ω)+max{0, κ(αβ)−κ(ϕ◦
α,β)+1} 6
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−κ(β)+κ(ω′)+max{0, κ(αβ)−κ(ϕ◦
α,β)+1} = κc

α,β(ω
′) iff κ(ω) 6 κ(ω′), since

ηδ is a constant. Thus, (BR2) follows for �κ resp. �κ◦α,β
via (2.9).

(BR3): Let ω |= ϕ◦
α,β and ω′ 6|= ϕ◦

α,β, then it holds that κc
α,β(ω) = −κ(β) + κ(ω)

and κc
α,β(ω

′) = −κ(β) + κ(ω′) + ηδ holds, where is the non-negative impact
factor from (9.16) with ηδ > κ(αβ)− κ(ϕ◦

α,β). The following statements hold
for each ranking function κ and will be useful in the course of this proof.

κ(ϕ◦
α,β) = κ(

∨
ω̃ 6|=ϕ◦

α,β

ω̃) = min
ω̃ 6|=ϕ◦

α,β

{κ(ω̃)}. (9.19)

For ω |= ϕ◦
α,β, it holds that κ(ω) 6 κ(αβ). (9.20)

The first statement follows from ϕ◦
α,β ≡

∨
ω̃ 6|=ϕ◦

α,β
ω̃ and the properties of rank-

ing functions. The second one holds since ω ∈ Φ◦
α,β.

In order to show (BR3), we distinguish between cases where (i) κ(αβ) <
κ(ϕ◦

α,β) and ηδ = 0 due to non-negativity and (ii) ηδ > κ(αβ)− κ(ϕ◦
α,β) ≥ 0.

(i) Presuppose that (∗) κ(αβ) < κ(ϕ◦
α,β) and ηδ = 0. Together with (9.20),

(∗) and (9.19), we get that

κ(ω) 6 κ(αβ) < κ(ϕ◦
α,β) 6 κ(ω′)

holds. Thus,

κc
α,β(ω) = −κ(β) + κ(ω) < −κ(β) + κ(ω′) = κc

α,β(ω
′)

holds.

(ii) Presuppose that ηδ > κ(αβ)− κ(ϕ◦
α,β) ≥ 0. Then, it follows from (9.19)

that
(∗∗) 0 6 κ(ω′)− κ(ϕ◦

α,β) < κ(ω′)− κ(ϕ◦
α,β) + 1
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holds. Together with (9.20) and (∗∗), it holds that

κc
α,β(ω) =− κ(β) + κ(ω) 6 −κ(β) + κ(αβ)

< −κ(β) + κ(αβ) + κ(ω′)− κ(ϕ◦
α,β) + 1 = κc

α,β(ω
′).

All in all, (BR3) follows for �κ resp. �κ◦α,β
via (2.9).

The theorem shows that the core conditional encodes the specific decrease of
plausibility for all worlds ω 6|= ϕ◦

α,β in a single, easily accessible logical entity, rather
than introducing a meta-level to the revision operator itself as it is the case for
standard BR operators. Thus, we have shown that the supplementary information
provided by the reference sentence in BR can be incorporated naturally into the
object level of an existing revision operator. Since �κ◦α,β

satisfies (BR1) – (BR3), it
follows immediately from Theorem 9.3.2 that �κc

α,β
also satisfies (BR1) – (BR3).

The following theorem shows that κ◦α,β corresponds to a special c-revision.

Theorem 9.3.3. Let κ be a ranking function. It holds that BR for OCFs κ◦α,β =

κ ◦α β as defined in (9.12) displays a c-revision with the core conditional δα,β and
impact factor η◦δ = κ(αβ) + 1

Proof. In general, c-revision κ ∗c δα,β are defined via (9.16) with an impact factor
ηδ with ηδ > κ(αβ)− κ(ϕ◦

α,β) (cf. (9.18)). We choose η◦δ = κ(αβ) + 1. It holds that
η◦δ satisfies (9.18), because η◦δ = κ(αβ) + 1 > κ(αβ) − κ(ϕ◦

α,β), since κ(ϕ◦
α,β) ≥ 0.

Together with (9.12) and (9.13) and (9.17), it holds that

κ◦α,β(ω) =− κ(β) + κ(ω) +

κ(αβ) + 1, for ω 6|= ϕ◦
α,β

0, else

= −κ(β) + κ(ω) +

η◦δ , for ω 6|= ϕ◦
α,β

0, else

is a c-revision of δα,β.
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General c-revisions are capable of revising with sets of conditionals. This is pri-
marily due to their ability to choose flexible impact factors defined by inequalities.
However, the solution to this set of inequalities is not unique, and the interactions in
between those inequalities make it impossible to define even a unique (Pareto-)min-
imal solution2. In the case of BR, we need to c-revise with only a single conditional
δα,β and therefore do not have interactions with other conditionals to be adopted.
Thus, it is straightforward to single out a unique, minimal non-negative impact
factor from (9.18) defined as follows

ηmin
δ = max{0, κ(αβ)− κ(ϕ◦

α,β) + 1}. (9.21)

The maximum ensures that ηmin
δ is always non-negative. Note that, in the special

case of a convex ranking function κ, we can omit the maximum since κ(αβ) −
κ(ϕ◦

α,β) + 1 is always non-negative.

Proposition 9.3.4. For a convex OCF κ, it holds that κ(αβ)− κ(ϕ◦
α,β) + 1 ≥ 0.

Proof. Let ωϕ be a minimal model of ϕ◦
α,β and κ be a convex κ.

It holds that either (i) (ωϕ |= β and κ(ωϕ) 6 κ(αβ)) or (ii) κ(ωϕ) < κ(αβ). We
show that due to the convexity of κ, we get for case (ii) that κ(ωϕ) = κ(αβ) + 1

holds. If case (i) does not apply, we can conclude for all worlds ω less plausible than
αβ, i.e., κ(αβ) < κ(ω), that ω |= ϕ◦

α,β. Thus, due to the convexity of κ and the
minimality of ranks, we get for case (ii) that κ(ωϕ) = κ(αβ) + 1. And therefore, it
holds in general that κ(ϕ◦

α,β) 6 κ(αβ) + 1. Thus,

κ(αβ)− κ(ϕ◦
α,β) + 1 ≥ κ(αβ)− (κ(αβ) + 1) + 1 = 0.

We substantiate the c-revision κ∗cδα,β from (9.16) via the normalization constant
κ0 = −κ(β) in (9.17) and the minimal impact factor ηmin

δ in (9.21) and get the
following minimal c-revision κc,min

α,β (in terms of the impact factor) with δα,β.

2This is why we employ strategies in Section 6.4 in order to achieve coherence across different
revision scenarios.
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Definition 9.3.2. Let κ be an OCF and δα,β the core conditional of BR by β w.r.t.
α. We define the minimal c-revision κc,min

α,β = κ∗cδα,β via (9.17) and (9.21) as follows

κc,min
α,β (ω) =− κ(β) + κ(ω) +

max{0, κ(αβ)− κ(ϕ◦
α,β) + 1}, for ω 6|= ϕ◦

α,β

0, else
(9.22)

Having a unique minimal c-revision is useful when we want to compare different
Bounded Revision scenarios, especially in the following examples, we use minimal
c-revisions κc,min

α,β .
The following Proposition compares BR for OCFs κ◦α,β from (9.12) with κc,min

α,β .

Proposition 9.3.5. Let κ be a ranking function. Then it holds for κ◦α,β = κ ◦α β
as defined in (9.12) and the minimal c-revision κc,min

α,β from (9.22) that

κc,min
α,β (ω) 6 κ◦α,β(ω) for all ω ∈ Ω.

And κ◦α,β(ω) = κc
α,β(ω) holds if and only if κ(ϕ◦

α,β) = κ(β) = 0

Proof. For the minimal impact factor ηmin
δ = max{0, κ(αβ)− κ(ϕ◦

α,β) + 1} in (9.21)
defining the minimal c-revision κc,min

α,β and the impact factor η◦δ defining the c-revision
that leads to κ◦α,β according to Theorem 9.3.3, it holds that

ηmin
δ = max{0, κ(αβ)− κ(ϕ◦

α,β) + 1} 6 κ(αβ) + 1 = η◦δ

since κ(ϕ◦
α,β) ≥ 0 and thus, we can conclude that κc,min

α,β (ω) 6 κ◦α,β(ω) for all ω ∈ Ω.
And therefore, κ◦α,β(ω) = κc,min

α,β (ω) holds iff η◦δ = ηmin
δ , i.e., for κ(ϕ◦

α,β) = 0.

Note that, Proposition 9.3.5 follows immediately from Theorem 9.3.3 and the
(impact-factor wise) minimality of κc,min

α,β . As we can see, κ◦α,β from (9.12) may
implement a non-minimal c-revision which may introduce empty layers in the pos-
terior OCF. We illustrate our results via the following example employing minimal
c-revisions from (9.22). But first, we transfer the prior TPO �κ from Example 9.1.1
in Figure 9.3a to a ranking function by assigning each layer of �κ a plausibility rank
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ω ∈ Ω κ κ◦a,b κc,min
a,b κ◦b,c κc,min

b,c κ◦
a,d

κc,min
a,d

abcd 0 1 1 0 0 0 0
abcd 1 2 2 2 1 3 2
abcd 1 2 2 2 1 1 1
abcd 2 0 0 3 2 4 3
abcd 2 3 3 3 2 4 3
abcd 3 4 4 4 3 5 4
abcd 3 4 4 4 3 5 4
abcd 4 5 5 5 4 6 5
Ω̄ 5 6 6 6 5 7 6

Table 9.1: Prior κ and the BR revised κ◦α,β resp. c-revised κc,min
α,β .

starting with zero for the lowermost layer. This straightforward transformation
towards a convex ranking function enables us to compare our results.

Example 9.3.1. In Table 9.1 the prior convex ranking function κ which corresponds
to �κ from Example 9.1.1 is depicted, alongside, the two ranking functions κ◦α,β =

κ ◦α β resp. κc,min
α,β = κ ◦ δα,β for each of the BR operations.

For the first BR by β = b w.r.t. α = a, it holds that κ◦a,b(ω) = κc,min
a,b (ω), i.e., BR

for OCFs as defined in Definition 9.3.1 and the c-revision with the corresponding
conditional yield the same result. This is due to the fact that κ(ϕa,b) = κ(abcd) = 0

and therefore ηδ = κ(ab) + 1 = 3 for κc,min
a,b , i.e., the increase of ranks implemented

by κ◦a,b and κc,min
a,b is the same.

For the next BR with reference α = b and input sentence β = c, it holds that
c ∈ Bel(κ) and Φb,c = {abcd}. So, the input is already accepted in the prior
ranking function, and (BR3) is satisfied. Here, BR for OCFs κ◦b,c strengthens the
input c via introducing an empty layer, s.t., κ◦b,c(c) = 0 < 2 = κ◦b,c(c), instead of
κ(c) = 0 < 1 = κ(c) as before. In contrast, c-revisions as in κc,min

b,c employ minimal
change since (BR3) is already satisfied, and therefore the prior OCF is kept.

For the next BR with α = a and β = d, κ accepts the input d, but (BR3) is not
satisfied, since Φa,d = {abcd, abcd} and κ(abcd) = κ(abcd) holds. Again, the change
implemented by κc,min

a,d
is minimal, in the sense that the ranks of all worlds outside

the core set are increased by exactly the stretch needed to satisfy (BR3), namely
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κ(ad)− κ(ϕa,d) + 1 = 1. BR for OCFs κ◦
a,d

leads to a strengthening of the input d,
while satisfying (BR1) – (BR3).

Note that it holds for all BR revised and c-revised ranking functions that their
corresponding plausibilistic TPOs coincide with the BR revised TPOs from Figures
9.3b, 9.6a and 9.6b.

The example shows that minimal c-revisions do not change the prior ordering
when it is not necessary. This corresponds to a minimal implementation of (BR1)
and (BR2), in the sense that the specific ranks of worlds in and outside the core set
of BR are kept as long as δα,β holds. On the other hand, the non-minimal change
in BR for OCFs κ◦α,β is useful in cases where one wants to strengthen the input
belief β by decreasing the plausibility level of worlds outside the core, even though
β is already accepted. Note that BR generally increases the number of layers in the
posterior ordering, making the belief state more fine-grained.





Intermediate Summary for Part II

We investigated two frameworks for parameterized belief revision, Revision by Com-
parison and Bounded Revision. These operators take as input not only input in-
formation β ∈ L but also a reference sentence α ∈ L. Starting from the original
works [34] for RbC and [100] for BR, we clarified the role of the parameter α in the
framework of plausibilistic TPOs and provided (methodological) implementations
for both mechanisms in the framework of conditional revision via c-revisions. Thus,
we fully captured the parameterized belief change character of both operations by
relying on the internal strengths of conditionals in Belief Revision.

Revision by Comparison. The main goal of Revision by Comparison is to make
the input sentence β at least as plausible as the reference sentence α. In Chapter
8, we provided an elegant semantic characterization of RbC for plausibilistic TPOs
via three postulates in Theorem 8.1.4, which fully captures the mechanism of RbC.
A unique feature of RbC is its hybrid belief change character. It depends on the
prior relative positioning of β versus α, whether RbC revises the initial belief state
with β or whether RbC leads to the contraction of the former belief α.

The characterization of RbC via two designated formulas, the penalty formula
ψ}
α,β and the indirect reward formula θ}α,β, and the postulates (RbC1) – (RbC3)

provided grounds for the investigation of RbC in the framework of OCFs, which
lead to the implementation of RbC as a c-revision with a set of weak conditionals
∆}
α,β. Thus, revealing the direct correspondence between RbC and a special iterated

contraction operator for conditionals.

Bounded Revision. The main goal of Bounded Revision is to accept the input
sentence β as long as the reference sentence α holds and just a little further. In
Chapter 9, we presented a Representation Theorem 9.1.3 for Bounded Revision

221



222 9.3 Bounded Revision for Ranking Functions

which provides us with three postulates (BR1) – (BR3) that fully characterize the
change mechanism of BR via a core formula ϕ◦

α,β. It holds that BR uniformly
shifts all worlds that do not satisfy ϕ◦

α,β to plausibility levels strictly higher than
one of the least plausible models of ϕ◦

α,β. Thus, BR tends to increase the number
of plausibility levels. Also, it displays an iterated belief revision operator, s.t. β
is always accepted independent from the choice of α. Following the line of Rott
from [100], we characterized BR as a lexicographic revision with a designated core
formula in Theorem 9.2.2 and showed that for special choices of α BR performs a
lexicographic resp. natural revision by β.

In Section 9.3, we transferred our results to the framework of ranking functions
and showed that BR can be realized as a c-revision with a single core conditional,
which fully captures the underlying change mechanism. Implementing the formerly
parameterized revision mechanism via a conditional revision operator with a single
(non-parameterized) input makes the ensuing application of BR easily accessible.



Chapter 10

Revision by Comparison Versus
Bounded Revision

In this chapter, we comprehensively compare two parameterized belief change mech-
anisms: Revision by Comparison (RbC) and Bounded Revision (BR), both of which
we have individually and thoroughly investigated in the preceding chapters. We
aim to contrast these mechanisms on the qualitative and semi-quantitative levels
and identify their strengths and weaknesses.

In Section 10.1, we initiate our comparison by presenting an illustrative example
that serves as a guide for the subsequent analysis. We examine the commonalities
and differences in the respective change mechanisms and highlight the characteristic
properties that justify these differences. Furthermore, in Section 10.2, we examine
the realizations of RbC and BR in the framework of ranking functions. We transfer
our illustrative example to the OCF framework and also illustrate the corresponding
conditional revisions for RbC and BR. In particular, we focus on the implementation
via c-revisions, which provide us with valuable insights into the change mechanisms.
We discuss these insights at the end of the section, highlighting the implications of
these findings for our analysis.

Moreover, in this context, we also clarify the impact of empty layers in the prior
ranking functions, shedding light on how these affect the behavior of the two mech-
anisms. This comparative analysis provides meaningful insights into the differences
between RbC and BR and their respective strengths and limitations.
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Figure 10.1: Revision by Comparison versus Bounded Revision (cf. Example 10.1.1).

Bibliographic Remark. This chapter presents a comparison between Revision
by Comparison and Bounded Revision, based on the thorough investigations of
both revision formalisms presented in the joint work with Gabriele Kern-Isberner
[109, 110]. However, the results and conclusions of this comparison are relatively
new, although some ideas and approaches are inspired by Rott’s work [100].

10.1 Qualitative Approaches

This section compares the mechanisms of RbC and BR in the qualitative framework.
First, we present an example of RbC resp. BR of a plausibilistic TPO side by

side. This is helpful to illustrate the main commonalities and differences, which we
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discuss in the following paragraphs more thoroughly.

Example 10.1.1. In Figure 10.1a a plausibilistic TPO � with signature Σ =

{a, b, c} is given. We perform a Revision by Comparison � }a b in Figure 10.1b and
a Bounded Revision � ◦a b in Figure 10.1c with input β = b and reference sentence
α = a.

For Revision by Comparison we get the following crucial formulas and sets, the
penalty formula and set resp. the reward formula resp. set from Definition (8.1.2)
on page 157, defining the change mechanism.

• Penalty formula ψ}
a,β = b∧ (

∨
ω≺a ω) with the corresponding penalty set Ψ}

a,b =

{abc, abc}

• Indirect reward formula θ}a,b = b ∧ (
∨
ω≺a ω) with the corresponding reward set

Θ}
a,b = {abc, abc}

And for the core formula resp. the core set from Definition 9.1.2 on page 192 defining
the change mechanism Bounded Revision the following holds:

• Core formula ϕ◦
a,b = b ∧ (

∨
ω�ab ω) with the corresponding core set Φ◦

a,b =

{abc, abc, abc}

Revision by Comparison and Bounded Revision both implement parameterized
belief change mechanisms where the input information β is accompanied by addi-
tional information in the form of a reference sentence α. The reference serves as
an anchor point, which specifies to what extent β is to be accepted in the posterior
belief state.

The main idea behind Revision by Comparison is that β shall be at most as
plausible as α in the posterior ordering. This goal is expressed in the property
(RbC)� from page 153.

(RbC)� α is at least as plausible as β, i.e., α �}
α,β β

For Bounded Revision ◦α β on epistemic entrenchment relations, it holds that β
shall be just a little more entrenched than α. In terms of plausibility orderings of
worlds, we get for the success condition of BR, (BR)� from page 187, in the BR
revised state � ◦α β =�◦

α,β, a strict inequality expressing that α shall be strictly
more plausible than β.
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(BR)� α is strictly more plausible than β, i.e., α ≺◦
α,β β

Thus, while Revision by Comparison follows an at-least-as strategy (‘accept β at
least as strongly as α’), Bounded Revision opts for an as-long-as strategy (‘accept
β as long as α holds along with β, and just a little further’). These differences in
the reference sentence’s role lead to non-strict resp. strict inequalities concerning
the relative positioning of α versus β in the success condition of the corresponding
change mechanism.

The posterior TPOs �}
a,b and �◦

a,b from Example 10.1.1 satisfy (RbC)� resp.
(BR)�, i.e., it holds that a �}

a,b b and a ≺◦
a,b b. The at-least-as strategy for RbC is

implemented by the penalty formula ψ}
a,β = b ∧ (

∨
ω≺a ω). Via the penalty formula

ψ}
a,β and due to (RbC3), it holds that all b-worlds that are strictly more plausible

than a are punished, s.t. a is at least as plausible as b. This means, in our example,
the worlds abc, abc are lifted to the plausibility level of the minimal a-worlds abc, abc.
This property is reflected in the general success condition of RbC, (RbC)�, and it
leaves worlds satisfying the (indirect) reward formula θ}a,b = b ∧ (

∨
ω≺a ω), i.e., b-

worlds strictly less plausible than a, among the most plausible ones.
Formula θ}a,b resembles the core formula ϕ◦

a,b = b ∧ (
∨
ω�ab ω) defining BR �◦

a,b.
Yet, the core formula ϕ◦

a,b includes minimal worlds satisfying a along with the input
formula b, i.e., b-worlds more or equally plausible than ab. This is in line with the
as-long-as strategy implemented by BR, which is reflected in (BR)�. Because in the
BR revised TPO, it holds that worlds satisfying the core formula ϕ◦

a,b are strictly
more plausible than the remaining worlds, s.t. b is accepted as long as a holds, and
just a little further, namely as far as a minimal ab-world is accepted in the prior
ordering.

Moreover, we observe in Example 10.1.1 that while BR tends to refine plausi-
bilistic TPOs, i.e., the number of layers in the plausibility ordering increase, RbC
has the opposite effect and tends to coarsen the belief state, i.e., the number of
layers decrease.

In contrast to BR, RbC embodies not exclusively an operation of belief revision
but sometimes also a contraction of beliefs. We discussed this hybrid belief change
character in-depth in Section 8.2. This fundamental difference leads to differences in
the level of postulates satisfied by RbC resp. BR. So, it holds that due to the same
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beliefs condition (SBC)� from page 187, BR is invariably successful, i.e., the input
sentence is always accepted independently of the choice of the reference sentence. In
Figure 8.6b, the α-contraction case of RbC is depicted, i.e., the case where RbC of
β w.r.t. α leads to a posterior state where α 6∈ Bel(� }α β), while the acceptance
of the input β is not guaranteed. This example shows that RbC, in contrast to BR,
does not incorporate the input sentence β into the agent’s belief set successfully
in general, but only in cases where α is strictly less plausible than β. RbC is a
non-prioritized belief change mechanism since it does not prioritize new input over
previous beliefs. However, the same-beliefs condition (SBC)� is satisfied by RbC,
at least in special cases, as was shown in [99]. The special cases are summarized by
the following postulates, which we state using plausibilistic TPOs:

(SBC)1� If β ∈ Bel(� }α β) and β ∈ Bel(� }γ β), then
Bel(� }α β) = Bel(� }γ β)

(SBC)2� If α ≈ γ, then Bel(� }α β) = Bel(� }γ β)

Postulate (SBC)1E deals with the case when β is part of the posterior belief set
for both reference sentences α, γ, i.e., it compares the belief set of different success-
ful revisions in terms of incorporating the input sentence β. (SBC)2E claims that
the resulting belief set of RbC is the same for reference sentences from the same
plausibility level, i.e., if α ≈ γ [99].

Bounded Revision was motivated in [100] by the same concerns as Revision by
Comparison, combined with the demand to satisfy the DP postulates. It holds
that Revision by Comparison fails to satisfy the DP postulates for iterated revision
functions [34]. On the other hand, BR was designed to satisfy the DP postulates
and, thus, does so naturally. Note that, in the presence of the (SBC)� axiom and
if we are ready to tolerate a little sloppiness in the notation, we can simply use the
original formulation of the DP postulates from Section 2.3 even though BR displays
a parameterized belief revision1. In contrast to BR, RbC fails to satisfy the second
DP postulate (DP2) because, in the posterior RbC-revised state, the plausibility
distinctions between β worlds satisfying the penalty formula ψ}

α,β are lost. This can
1Rott adapted the DP postulates to the general case of parameterized belief revision. However,

he already mentioned that due to (SBC)E , the differences between the original formulation and
his parameterized version vanish.
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also be observed in our Example 10.1.1, where all worlds in Ψ}
a,b end up on the same

plausibility level, whereas for the BR �◦
a,b, the internal plausibility ordering of worlds

within and outside of the core set Φ◦
a,b are kept. Fermé and Rott showed in [34] that

iterations of RbC are fairly well-behaved in some special cases, but in general, it is
not possible to relate a number of finite applications of }α β for arbitrary input and
reference sentences to a single one in a rational way. Note that this makes sense if
we take into account that RbC tends to decrease the number of plausibility levels.
Thus, it is possible that with a repeated application with the right choice of input
and reference sentences for the RbC-operation, the prior state finally collapses to a
plausibilistic TPO, which consists only of a single layer.

However, the idea of iterated change in the sense of Darwiche and Pearl should
not be given up at this point, and we provided new insights in Section 8.3 where
we characterized RbC as a c-revisions with a set of weak conditionals in (8.17) on
page 179. Since weak conditionals implement negative information, i.e., correspond
to the notion that the respective negated standard conditional does not hold (cf.
paragraph on weak conditionals in Section 2.1 on page 19), the revision with ∆w

from Definition 8.3.2 on page 175 can be seen as c-contraction of the corresponding
negated standard conditionals. Taking this perspective into account leads to the
conclusion that RbC actually displays an iterated contraction operator as discussed
in Section 2.5.4 and thus is not only applicable to belief states but also respects
the principle of conditional preservation at least w.r.t. ∆}

α,β and the corresponding
negated standard conditionals.

10.2 Realization via Ranking Functions

This section investigates and compares the OCF realizations of RbC and BR for in-
put β and reference sentence α. We start with the comparison of the straightforward
implementation of RbC for OCFs (cf. (8.12) on page 173) versus BR for OCFs (cf.
(9.12) on page 209) before we turn to the comparison of the corresponding imple-
mentations via c-revisions. We conclude by investigating the issue of empty layers
in the context of OCFs.

Note that the OCF versions of RbC versus BR reveal a main difference between



10 Revision by Comparison Versus Bounded Revision 229

the change mechanisms due to the employment of the arithmetic inherent to OCFs.
While RbC tends to punish worlds within the penalty set by making them less
plausible, BR promotes worlds within the core set by making them more plausible.
For BR, the implausibility ranks of all worlds outside the core set are increased,
while worlds in the core set remain on their previous level (modulo normalization).
This is not clearly seen when considering the TPO versions of these operations solely.

Furthermore, it is obvious that for the OCF versions given in Definition 8.3.1 for
κ}α,β on page 173 and in Definition 9.3.1 for κ◦α,β on page 209 the calculation comes
at linear costs since we add a constant factor to worlds within a certain set, namely
the penalty set Ψ}

α,β for RbC, resp. outside a certain set, namely the core set Φ◦
α,β

for BR. Yet, the calculation of these sets is of the same order as the SAT test since
we have to check whether ψ}

α,β resp. ϕ◦
α,β holds for each world ω ∈ Ω.

We transfer Example 10.1.1 to the framework of ranking functions by assigning
ranks to each layer of � from Figure 10.1a. Here, we first give a straightforward
translation of � to a convex ranking function κ. And then, we consider a ranking
function κ̃, which leads to the same TPO as � via the translation (2.9) but has
some empty layers. Taking these two OCFs as a basis, we perform an RbC resp.
BR of b w.r.t. a, first via RbC for OCFs from (8.12) resp. BR for OCFs from (9.12)
and then via the corresponding c-revisions.

Example 10.2.1. In Table 10.1 two OCFs κ and κ̃ are given which correspond to
� from Figure 10.1a via (2.9). Note that, while κ is a convex OCF κ̃ has some
empty layers.

We perform an RbC of b w.r.t. a for both κ and κ̃. It holds that Ψ}
a,b = {abc, abc}.

For the normalization constants we get κ0 = −min{κ(a), κ(b)} = 0 for κ and
κ0 = −min{κ(a), κ(b)} = 0 for κ̃. So, we get for RbC for OCFs from Definition
8.3.1

κ}a,b(ω) = 0 +

3, ω ∈ Ψ}
a,b

κ(ω) othw.
and κ̃}a,b(ω) = 0 +

5, ω ∈ Ψ}
a,b

κ(ω) othw.
,

because κ(a) = 3 resp. κ̃(a) = 5 holds. Both OCFs κ}a,b and κ̃}a,b are depicted in
Table 10.1 in the column for Revision by Comparison. For RbC as a c-revision,
we get the following RbC base ∆}

a,b = {(|a ∨ abc|a|), (|a ∨ abc|a|)} with the following
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minimal impact factors

ηmin
abc

= κ(a)− κ(abc) = 3− 2 = 1 and η̃min
abc

= κ̃(a)− κ̃(abc) = 5− 2 = 3

ηmin
abc

= κ(a)− κ(abc) = 3− 0 = 3 and η̃min
abc

= κ̃(a)− κ̃(abc) = 5− 0 = 5.

Via ηabc resp. ηabc and (8.22), we get for κc,min
a,b resp. κ̃c,min

a,b

κc,min
a,b (ω) = 0 +

3, ω ∈ Ψ}
a,b

κ(ω) othw.
and κ̃c,min

a,b (ω) = 0 +

5, ω ∈ Ψ}
a,b

κ(ω) othw.
,

Both c-revised OCFs κc,min
a,b and κ̃c,min

a,b are depicted in Table 10.1 in the column for
Revision by Comparison. Note that, as in RbC for OCFs, the normalization constant
vanishes.

In Table 10.1, we can see that both κ}a,b and κc,min are not convex, even though the
prior OCF κ was. This is because if we conditionalize with ψ}

α,β we get κ|ψ}
α,β (abc) =

0, κ|ψ}
α,β (abc) = 1, κ|ψ}

α,β (abc) = κ|ψ}
α,β (abc) = 3, κ|ψ}

α,β (abc) = 4, and κ|ψ}
α,β (abc) =

5 which is not convex. Both κ}a,b and κc,min keep the distance relations for all worlds
satisfying ψ}

α,β, i.e., the empty layers between worlds in Mod(θ}a,b ∨ (
∨

min(a,κ)) are
preserved.

For BR of b w.r.t. to a for κ resp. κ̃, it holds that Φ◦
a,b = {abc, abc, abc} and

the normalization constants equal κ0 = −κ(b) = 0 for κ and κ0 = −κ(b) = 0 for κ̃.
Hence, we get for BR for OCFs from Definition 9.3.1

κ◦a,b(ω) = 0 +

κ(ω) + 3, ω ∈ Φ◦
a,b

κ(ω), othw.
and κ̃◦a,b(ω) = 0 +

κ(ω) + 5, ω ∈ Φ◦
a,b

κ(ω), othw.
,

because κ(ab) = 3 resp. κ̃(ab) = 5. Both OCFs κ◦a,b and κ̃◦a,b are depicted in Table
10.1 in the column for Bounded Revision.

For BR as a c-revision, we get the core conditional δ◦a,b = (ϕ◦
a,b|ϕ◦

a,b ∨ (ab)) with
the corresponding minimal impact factors

ηmin
δ = max{0, κ(ab)− κ(ϕ◦

a,b) + 1} = max{0, 3− 0 + 1} = 4

and η̃δmin = max{0, κ̃(ab)− κ̃(ϕ◦
a,b) + 1} = max{0, 5− 0 + 1} = 6
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Revision by Comparison Bounded Revision
ω ∈ Ω κ κ̃ κ}a,b κc,min

a,b κ̃}a,b κ̃c,min
a,b κ◦a,b κc,min

a,b κ̃◦a,b κ̃c,min
a,b

abc 1 1 1 1 1 1 1 1 1 1
abc 0 0 0 0 0 0 0 0 0 0
abc 2 2 3 3 5 5 6 6 8 8
abc 0 0 3 3 5 5 4 4 6 6
abc 3 5 3 3 5 5 3 3 5 5
abc 5 7 5 5 7 7 9 9 13 13
abc 3 5 3 3 5 5 7 7 11 11
abc 4 6 4 4 6 6 8 8 12 12

Table 10.1: RbC vs. BR for OCFs resp. as c-revisions (cf. Example 10.2.1).

Via ηmin
δ resp. η̃δmin and (9.22), we get for κc,min

a,b resp. κ̃c,min
a,b

κc,min
a,b (ω) = 0 + κ(ω) +

4, ω ∈ Φ◦
a,b

0, othw.
and κ̃c,min(ω) = 0 +

6, ω ∈ Φ◦
a,b

0, othw.

Both c-revised OCFs κc,min
a,b and κ̃c,min

a,b are depicted in Table 10.1 in the column for
Bounded Revision.

As for RbC, the convexity of κ is not preserved by BR. Even though κ is convex
the conditionalized OCF κ|ϕ◦

α,β : Φ◦
α,β → N is not. It holds that κ|ϕ◦

α,β (abc) = 0,
κ|ϕ◦

α,β (abc) = 1 and κ|ϕ◦
α,β (abc) = 3. Both BR for OCFs κ◦a,b and the (minimally)

c-revised κc,min
a,b preserve these empty layers because the relative distances between

worlds within the core set are kept, and we get an empty layer for rank 2 in κ◦a,b
resp. κc,min

a,b . Note that the same holds for the counterpart κ|ϕ◦
α,β , also here empty

layers are preserved, which is why we have an empty layer for rank 5 for κc,min
a,b resp.

rank 7 for κ◦a,b.

The difference between RbC and BR becomes most apparent when looking at
the c-revision for RbC versus the c-revision defining BR. RbC lifts worlds within
the penalty set Ψ}

α,β on the α-level of plausibility. Thus, the shift of worlds in the
penalty set ω ∈ Ψ}

α,β, and therefore the corresponding impact factor ηω, depends
on the rank-wise plausibility of ω and the distance between κ(ω) and κ(α). In BR,
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all worlds outside the core set are incremented by the same value, i.e., the value of
the impact factor is the same for each shifted world. So, we can define a single core
conditional where the corresponding impact factor adds the same value to all worlds
falsifying it. Example 10.2.1 illustrates these different c-revisions for RbC resp. BR.
Also, we see from Example 10.2.1 that for ranking functions with empty layers, like
κ̃, RbC and BR for OCFs and also the corresponding c-revisions preserve the prior
empty layers.

In general, it is possible that the realizations of RbC κ}a,b resp. BR κ◦a,b for OCFs
introduce additional empty layers since the plausibility distances within and outside
the penalty set resp. the core set are kept. This effect occurs for both convex OCFs,
like κ in Example 10.2.1, and OCFs with empty layers, like κ̃ in Example 10.2.1,
and is due to the distribution of worlds within the indirect reward set for RbC resp.
within and outside the core set for BR. For RbC, it holds that if there are empty
layers in the conditionalized OCF κ|(ψ}

α,β) : Ω\ψ}
α,β → N with κ|ψ}

α,β (ω) = κ(ω)−
κ(ψ}

α,β) these empty layers are preserved during RbC, which follows immediately
from (RbC1) because RbC does not change the relative distances between worlds
outside Ψ}

α,β. For BR, we can observe the same effect for both worlds within and
outside the core set, i.e., for κ|ϕ◦

α,β : Φ◦
α,β → N with κ|ϕ◦

α,β (ω) = κ(ω) − κ(ϕ◦
α,β)

resp. the counterpart κ|ϕ◦
α,β : Φ◦

α,β → N with κ|ϕ◦
α,β (ω) = κ(ω) − κ(ϕ◦

α,β) empty
layers are preserved during BR, which follows from (BR1) resp. (BR2).

10.3 Conclusion

We conclude this section with a brief summary of our comparison results. RbC
and BR are both parameterized belief change operators motivated by similar con-
cerns, and both provide a solution for the parameterized Belief Revision problem
(ParamRev) posed in the introduction of this part. However, their corresponding
change mechanisms differ fundamentally, which is reflected in their qualitative as
well as their semi-quantitative implementations. In the qualitative framework, our
thorough investigations have shown that a significant part of these differences is
because RbC displays a non-prioritized revision operator, which does not satisfy
the DP postulates, while BR is an iterated belief revision operator in the sense of
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Darwiche and Pearl. Taking on a conditional perspective and implementing RbC
resp. BR as a conditional revision with a set of weak conditionals resp. a standard
conditional revealed deeper insights and further clarified our previous findings. The
non-prioritized change mechanism of RbC corresponds to an iterated contraction
operator, which is implemented via the revision with a set of weak conditionals. For
BR, on the other hand, it is enough to c-revise with a single conditional which relies
on the relative positioning of the reference versus the input sentence in the prior
ordering, i.e., BR is directly related to changing conditional beliefs in such a way
that not only the DP postulates but also the more general principle of conditional
preservation (cf. Section 2.5.2) is satisfied.





Chapter 11

Conclusion and Future Work

In this final chapter, we recapitulate the essential role of conditionals in Belief Re-
vision and evaluate the results of our research with regard to the conditional per-
spective we discussed so far. This chapter serves as a reflection of our findings and
a pointer for future research questions and further investigations.

One of the most influential extensions to the approach to belief change by Al-
chourrón, Gärdenfors, and Makinson (AGM) is the well-known theory by Darwiche
and Pearl (DP) on iterated belief change [29]. One distinctive feature in the DP
framework is the employment of belief states that do not only consist of plain beliefs.
Belief states, in the sense of Halpern [48], encode not only what the agent deems to
be certain but also provide the necessary, richer structure to implement an agent’s
conditional beliefs, i.e., the beliefs an agent is ready to accept in the light of new
information. The essential meta-structure which enables us to provide coherence
over iterated applications of belief revision operators are total preorders related to
an agent’s preferences [60, 29]. Thus, conditional beliefs and iterated Belief Revi-
sion in the sense of Darwiche and Pearl are inherently linked to one another, and
one cannot talk about one without meaning the other. Therefore, the adequate
treatment of conditional beliefs resides at the core of Belief Revision.

Darwiche and Pearl recognized that the key to rationally revising belief states lies
in the competent preservation of conditional beliefs. They provided vague guidelines
on how this goal can be achieved. In [63, 64], Kern-Isberner provided a complete ax-
iomatization of a principle of conditional preservation (PCP), which subsumes all of
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the postulates proposed in the DP framework for minimizing changes in conditional
beliefs rationally. This fundamental principle directs us to a powerful generalization
of the classical AGM framework by providing a method for handling revision by sets
of conditionals simultaneously, called c-revisions [64]. C-revisions are a gateway for
a holistic view of conditionals in Belief Revision since they provide the necessary
means to monitor and preserve conditional beliefs by obeying the (PCP) on the one
hand and, on the other hand, open up the classical Belief Revision framework to op-
erators that can revise with conditional information directly. Conditional revision
operators allow us to monitor and manipulate conditional beliefs as a crucial yet
subtle basis of the epistemic state. Thus provide an integral part of the conditional
perspective of Belief Revision discussed in this thesis.

Our results decompose naturally into two parts concerned with different aspects
of conditionals in Belief Revision. In the first part, the revision with sets of condi-
tionals constitutes the general framework for our investigations. Here, we focus on
a specific dynamic that introduces a locality notion via exploiting conditional revi-
sion’s special features. In the second part, propositional revision with respect to an
additional meta-information provides ground for our research. Here, we showed that
the richer structure of conditionals enables us to reduce the parameterized operators
presented in this part to conditional c-revisions. In the following, we recapitulate
and answer the general research questions posed in the introduction of this thesis.

We started our investigations by considering the following research question con-
cerning the special features provided by conditionals as input for a belief revision:

How does the specific context of information affect the revision task, and
how can we benefit from the inclusion of exclusive contexts in the revision
process?

We precisely answered this question by providing and subsequently thoroughly in-
vestigating a Kinematics principle for belief revision w.r.t. to conditional informa-
tion coming from exclusive contexts. In the case of c-revisions for OCFs and the
unique setting of the Kinematics principle, our investigations lead to an intuitive
solution for the merging problem that concerns rational ways to set up a globally
revised state employing the locally revised substates. This problem is known pri-
marily in the context of Bayesian networks [88]. For the qualitative framework, our
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main achievements lie in defining a well-behaved conditionalization operator w.r.t.
to OCF conditionalization, transforming c-revisions from ranking functions, and
therefore providing a qualitative revision operator for sets of conditionals. These
concepts are meaningful extensions to the current state of the art in Belief Revision.

Second, we considered belief revision operators that take into account proposi-
tional input information that is accompanied by a reference sentence which gave rise
to the following research question:

How can we incorporate the parameterized information into the frame-
work of (conditional) belief revision so that the relation between input
and reference information during the change process is evident?

The solution presented in this thesis was to incorporate the parameterized reference
sentence into conditional information in a way that the relation between the input
and reference sentence crucially affects the revision. We showed that the parameter-
ized information is treated adequately by exploiting the expressiveness of conditional
beliefs. As a foundation for our investigation, we used two parameterized belief revi-
sion operators, whose underlying change mechanisms we clarified, leading to simple
yet elegant representation theorems. Ultimately, we extended the research question
to a comparison illustrating the versatility of conditional Belief Revision, which can
express different notions of parameterized belief revision operators.

Although we answered many questions from different angles about the role of
conditionals in Belief Revision and provided a detailed look at the specific aspects we
studied, some open questions and possible connections to other research activities
remain. We highlight some of them briefly.

Conditionals as Input for Different Belief Revision Operators. Through-
out this thesis, we have employed conditionals as input for belief revision and illus-
trated their expressiveness and adaptability in situations that exceed the classical
AGM frameworks. Investigations in that direction can be extended to other gener-
alizations of the classical AGM framework, such as non-prioritized Belief Revision
[51, 33], i.e., revision operators that do not guarantee the acceptance of the in-
put information. In particular, our work on parameterized Belief Revision provides
ground for further investigations in this direction. Revision by Comparison (RbC)
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presented in Chapter 8 displays a non-prioritized belief revision operator, and its
distinctive features put it in the vicinity of credibility-limited belief revision opera-
tors presented in [54, 11]. We believe that it is a fruitful path of research to discuss
how conditionals as input information could be used to decide which information
should be accepted in the posterior state and which should instead be discarded.

Notions of Locality in Belief Revision. The Kinematics principle allows us to
focus on local cases when revising a belief state with sets of conditionals. Thus the
Kinematics principle introduces a semantic-based notion of locality which employs
conditionalization of epistemic states. In Belief Revision, a similar notion of local-
ity based on syntax exists, called Syntax Splitting. Starting from Parikh’s Axiom
(P) [86] and the works of Peppas et al. [92] on relevance in belief revision, Kern-
Isberner and Brewka transferred in [68] the notion of Syntax Splitting to revising
TPOs. Briefly, Syntax Splitting aims to capture the intuition that whenever beliefs
are revised with a new piece of information A, only those beliefs should be affected
that are (syntactically) relevant to A, i.e., definable over the same sub-signature. If
we compare this to our Kinematics principle, which implements a “revision by (ex-
haustive and exclusive) cases” it becomes clear that the Kinematics principle and
Syntax Splitting are orthogonal. They both express relevance and independency
assertions for belief revision but with different perspectives: Syntax splitting splits
the set of worlds vertically according to sub-signatures, while the Kinematics princi-
ple splits the worlds horizontally according to cases. Marginalization is the primary
tool for syntax splitting, causing vertical splitting, while the Kinematics principle
uses conditionalization which causes horizontal splitting according to cases. As we
can see, both Syntax Splitting and the Kinematics principles allow for reducing the
semantic space of models to relevant parts of syntax and semantics. It is an open
yet promising task to develop an approach for combining these notions of locality.

Synergies Between Strengths of Conditionals. While this thesis’s first part
was dedicated to investigating a powerful axiom for conditional revision, the second
part deals with the advantages of employing conditionals in non-classical revision
scenarios. Now that we have characterized different notions of parameterized belief
revision as conditional revision, the question arises of whether we can employ the
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Kinematics principle in this setting.
It holds that the conditional revision for RbC, presented in Chapter 8.3 employs

a set of weak conditionals, i.e., we need to define an extension of the Kinematics
principle for weak conditionals. Luckily, this is straightforward, and due to the
flexibility of c-revision, this Kinematics principle for weak conditionals is likely to
be also satisfied by weak c-revisions. Next, we need to define a case splitting for
the weak conditionals in the corresponding RbC base ∆}

α,β. Here, a skillful re-
definition of the premises of conditionals in ∆}

α,β w.r.t. to conditional dependencies or
a generalization of the Kinematics principle with weakened prerequisites is necessary.
Both of these approaches are promising lines of research. For Bounded Revision,
c-revision with a single conditional is sufficient to characterize the operation. Thus,
we can employ our results on c-revisions with a single conditional from Section
6.5.1 to simplify the revision task. Generally, i.e., apart from the parameterized
revision operator presented in this thesis, linking belief revision w.r.t. to additional
information to conditional revision is promising because conditionals (naturally)
provide a specific context in which the new input information comes into play.

We close with a final remark on a conditional perspective for Belief Revision.
Conditionals and the adequate treatment of conditional beliefs are an integral part
of most belief change processes due to their fundamental role as subtle yet power-
ful guidelines for the cognitive state of an agent in the light of new information.
The propositions and theorems in this thesis as well as the discussed further re-
search questions, endorse that the close examination and rigorous employment of
conditionals is and will be a relevant instrument for the theory of Belief Revision.
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