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Data-driven schemes introduced a new perspective in elasticity: While certain
physical principles are regarded as invariable, material models for the relation
between strain and stress are replaced by data clouds of admissible pairs of these
variables. A data-driven approach is of particular interest for plasticity problems,
since the material modeling is even more unclear in this field. Unfortunately,
so far, data-driven approaches to evolutionary problems are much less under-
stood. We try to contribute in this area and propose an evolutionary data-driven
scheme. We present a first analysis of the scheme regarding existence and data
convergence. Encouraging numerical tests are also included.

1 INTRODUCTION

Solid mechanics describes deformations of extended bodies. A large variety of models exists to describe small, large, or
plastic deformations. The common basis was laid by Euler and Cauchy and can be described as follows: Let Ω ⊂ ℝ𝑛 be
the volume at rest and let 𝑢 ∶ Ω → ℝ𝑛 describe the deformed state due to applied loads 𝑓 ∶ Ω → ℝ𝑛. Then there is a
symmetric stress tensor field 𝜎 ∶ Ω → ℝ𝑛×𝑛 such that −∇ ⋅ 𝜎 = 𝑓 (balance of forces). The system is closed by a material
law that relates the strain tensor 𝜖 = ∇𝑢 ∶ Ω → ℝ𝑛×𝑛 and the stress tensor, we write 𝜎 = (𝜖) for the material law. Both,
Piola-Kirchhoff finite elasticity and linearized elasticity are of this form. In order to treat a plastic evolution problem,
we may interpret the material law as a map  that maps an evolution of strains, 𝜖 ∶ [0, 𝑇] → ℝ𝑛×𝑛, to an evolution of
stresses, 𝜎 = (𝜖) ∶ [0, 𝑇] → ℝ𝑛×𝑛. When we interpret the material law  in this form, most plasticity models also have
the above form.
In the data-driven approach to solid mechanics, initiated in Refs. [1, 2], one distinguishes sharply the two types of

laws. The fundamental laws are accepted as invariable: The set (𝜖, 𝜎) ∈  ⊂ 𝐿2(Ω,ℝ𝑛×𝑛 × ℝ𝑛×𝑛) comprises functions that
satisfy balance of forces and the constitutive relation 𝜖 = ∇𝑢 for some admissible 𝑢. On the other hand, the material law
𝜎 = (𝜖) comes with uncertainties and is, therefore, replaced by a cloud of data points. The data points ideally come from
measurements; they define a second set (𝜖, 𝜎) ∈  ⊂ 𝐿2(Ω,ℝ𝑛×𝑛 × ℝ𝑛×𝑛). In a static problem, the data-driven approach
is to seek a pair (�̄�, �̄�) ∈  that (approximately) minimizes the distance dist((�̄�, �̄�),) to the data set.
The data-driven approach was outlined and illustrated with numerical tests in Refs. [1, 2]. The mathematical founda-

tion in the setting of linear elasticity was laid in Conti et al. [3], finite elasticity was treated in Conti et al. [4]. Besides
relaxation results for nonmonotone laws and data convergence results, Conti et al. [3] establish the topologies that are
appropriate in data-driven elasticity. Loosely speaking, the right notion of convergence is one in which strains and stresses
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converge weakly in 𝐿2-spaces and, at the same time, differences of (𝜖, 𝜎) ∈  and (𝜖′, 𝜎′) ∈  converge strongly in 𝐿2. The
corresponding Kuratowski-limits are explained and analyzed in Conti et al. [3].
In Conti et al. [4], the authors establish an existence and consistency result for finite plasticity. Let us mention the

notational differences in the two settings: In finite plasticity, one often writes Φ, 𝐹 = ∇Φ, and 𝑃, for the deformation
mapping, the deformation gradient, and the stress; the relations to the quantities 𝑢, 𝜖, and 𝜎 of linearized elasticity are
given by 𝑢 = Φ − id, 𝜖 = 1

2
(𝐹 + 𝐹𝑇) − id, 𝜎 = 𝑃. The geometrical background is that the manifold of rotations 𝑆𝑂(𝑛) is

replaced by its tangent space in the identity, which is the space ℝ𝑛×𝑛𝑠 of symmetric 𝑛 × 𝑛-matrices. Accordingly, in lin-
earized elasticity (and in plasticity), one typically uses ℝ𝑛×𝑛𝑠 instead of ℝ𝑛×𝑛 as a target space for both 𝜖 and 𝜎, and one
sets 𝜖 = ∇𝑠𝑢 ∶= 1

2
(∇𝑢 + (∇𝑢)𝑇). Mathematically, the main difference between linearized and finite elasticity is that the

monotonicity of the map  ∶ ℝ𝑛×𝑛𝑠 → ℝ𝑛×𝑛𝑠 can reasonably be assumed in linear elasticity (positivity of Lamé constants),
while the frame indifference of makes every monotone law  unphysical in finite elasticity.
The aim of this article is to discuss a data-driven framework for evolutionary problems, in particular, for the description

of plastic deformations. As noted above, a history-dependent map  can be used to describe plastic deformations. We
discuss the question of how to adapt the data-driven ideas to the evolutionary setting. One of the crucial mathematical
observations is that strong 𝐿2-convergence must be used at most places where weak 𝐿2-convergence was the right tool
in the stationary problem. The reason is that we need a good control of the convergence of histories in order to find
convergence of actual states.
Very few notation is needed for ourmathematical analysis. Regarding function spaces, we only need the Lebesgue space

𝐿2(Ω), the Sobolev space 𝐻1(Ω) (functions 𝑢 ∈ 𝐿2(Ω) such that the distributional gradient is also in 𝐿2(Ω)), and its dual
space (𝐻1(Ω))′, not to be confounded with 𝐻−1 = (𝐻1

0
(Ω))′. When a target space 𝑌 is needed, we write, for example,

𝐿2(Ω;𝑌); we use only finite dimensional target spaces 𝑌. To be precise, the elements in the above spaces are equivalence
classes of functions; two functions 𝑢 and 𝑣 are regarded as equivalent when they coincide outside a set of vanishing
Lebesgue measure, we write 𝑢 = 𝑣 almost everywhere or “a.e.” for short. Finally, for countable index sets 𝐼 and a Banach
space𝑌 as target, the Banach space 𝓁2(𝐼; 𝑌) is the space of square summablemaps 𝐼 → 𝑌. We oftentimes use, for a natural
number 𝐾, the finite index set with 𝐾 + 1 entries ℕ𝐾 ∶= {0, … , 𝐾}.
We are interested in time-dependent problems, but will restrict ourself to a time discrete setting. From now on, 0 <

𝑇 ∈ ℝ, a number 𝐾 ∈ ℕ, and a family of time instances 0 = 𝑡0 < 𝑡1 < … < 𝑡𝐾 = 𝑇 are fixed. We use ℕ𝐾 = {0, … , 𝐾} as
an index set and seek solution vectors 𝑞 = (𝑞0, … , 𝑞𝐾), where 𝑞𝑘 = (𝜖𝑘, 𝜎𝑘) for every 𝑘 ∈ ℕ𝐾 . Let Ω ⊂ ℝ𝑛 for 𝑛 ∈ ℕ be a
bounded Lipschitz domain, and let Γ ⊂ 𝜕Ω a nonempty and (relative) open subset of the boundary. We assume that, for
every 𝑘 ∈ ℕ𝐾 , Dirichlet boundary data on Γ are prescribed by a function𝑈𝑘 ∈ 𝐻1(Ω,ℝ𝑛). On deformations (𝑢𝑘)𝑘∈ℕ𝐾 , we
impose, for every 𝑘 ∈ ℕ𝐾 , that

𝑢𝑘 − 𝑈𝑘 ∈ 𝐻
1
Γ
(Ω) ∶=

{
𝑣 ∈ 𝐻1(Ω)

||| 𝑣|Γ = 0
}
, (1.1)

where the boundary condition 𝑣|Γ = 0 is understoodmathematically in the sense that the traces: The trace 𝑣|𝜕Ω ∈ 𝐿2(𝜕Ω),
which well-defined for Lipschitz domains Ω and for 𝑣 ∈ 𝐻1(Ω), has a representative that is vanishing on Γ.
Loads are given by a family (𝑓𝑘)𝑘∈ℕ𝐾 such that 𝑓𝑘 ∈ (𝐻

1
Γ
(Ω))′ for every 𝑘 ∈ ℕ𝐾 . On solutions (𝑞𝑘)𝑘∈ℕ𝐾 , we demand

𝑞𝑘 = (𝜖𝑘, 𝜎𝑘) ∈ 𝑘∗ for every 𝑘, where
𝑘∗ ∶=

{
(𝜖, 𝜎) ∈ 𝐿2(Ω;ℝ𝑛×𝑛𝑠 × ℝ𝑛×𝑛𝑠 )

||| − ∇ ⋅ 𝜎 = 𝑓𝑘, ∃𝑢𝑘 ∶ 𝜖 = ∇𝑠𝑢𝑘
}
, (1.2)

and it is understood that the function 𝑢𝑘 satisfies 𝑢𝑘 − 𝑈𝑘 ∈ 𝐻1Γ(Ω).
The data set  has a quite different nature than 𝑘∗ . The set 𝑘∗ describes physically admissible states at a single time

instance. The subscript star is used here to indicate that functions in this space have no time dependence. By contrast, in
the material law, the stress 𝜎𝑘 at time instance 𝑘 depends on the whole history of strains, that is, on 𝜖0, … , 𝜖𝑘. The data set
is, therefore, a subset of the space of evolutions,

 ⊂ 𝑍 ∶= 𝓁2(ℕ𝐾; 𝐿
2(Ω;ℝ𝑛×𝑛𝑠 × ℝ𝑛×𝑛𝑠 )) . (1.3)

Usually, the material law is local in nature. If the law is, additionally, independent of the position 𝑥 (homogeneous
material), then the data set is given by a subset

loc ⊂ 𝑍loc ∶= 𝓁
2(ℕ𝐾;ℝ

𝑛×𝑛
𝑠 × ℝ𝑛×𝑛𝑠 ) . (1.4)
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Even in this simplest case, the data set is contained in the space of evolutions. The local material laws may also depend
on 𝑥, in which case, we writeloc(𝑥). The relation between local and global space is given by

 =
{
(𝜖, 𝜎) ∈ 𝑍

|||(𝜖, 𝜎)(𝑥) ∈ loc(𝑥) for a.e. 𝑥 ∈ Ω
}
. (1.5)

Our aim is to define a data-driven scheme corresponding to spaces 𝑘∗ and  as above. The scheme should provide
solutions (𝑞𝑘)𝑘∈ℕ𝐾 with 𝑞𝑘 ∈ 𝑘∗ for all 𝑘, such that somekind of distance to isminimized (or: approximatelyminimized)
in the space of evolutions. We demand that the new scheme is local in time. By that we mean that 𝑞𝑘 = (𝜖𝑘, 𝜎𝑘) can be
calculated from some information on the history 𝜖0, … , 𝜖𝑘−1, and with two spaces 𝑘∗ and ∗ in the spirit of a stationary
data-driven scheme. An appropriate space ∗ for a single time step needs to be constructed. We will perform such a
construction by compressing the information contained in an evolution 𝜖0, … , 𝜖𝑘−1 into a new variable 𝜂𝑘−1. We refer to 𝜂
as the history surrogate. The construction uses a new function, which updates the history surrogate in each time step; the
function is called the propagator and we use the letter𝐻 for this function.

Literature
We have already described the fundamental articles [1–4]. Regarding further theoretical analysis in terms of relaxation of
data sets, we mention [5]. Regarding the practical use of data-driven algorithms, many recent contributions are available,
as we will see in the following.
An article that is closely related to the research presented here is Eggersmann et al. [6]. It also treats time-dependent

problems in a data-driven perspective. The authors describe the fundamental problems of this setting, we refer here to
their Equation (16): The data set in time instance 𝑘 is constrained to the past local history. Later on, in Equation (26),
an internal variable 𝑞 is used; it corresponds to our 𝜂. Furthermore, a propagator 𝑃𝑒 is used in their equation (28); it
corresponds to our propagator𝐻loc of Equation (1.11). Beginning with Section 3.4 of Eggersmann et al. [6], the perspective
becomes different to ours. The aim in Eggersmann et al. [6] is to develop a differential formalism. That formalism is used
to find relations to calculate solution updates for the variables 𝜖, 𝜎, and 𝑞. Our approach somehow remains in the spirit of
global minimization: We still want to find the variables in the new time instance by solving a minimization problem. We,
therefore, focus, in contrast to Eggersmann et al. [6], on the following two aspects in the general description: (i) Creating
a single data set that can be used for all time instances. (ii) Using a distance functional in a space that incorporates also
the history variable.
Time-dependent problems are also considered in Refs. [7, 8], but not in the sense of history-dependent material laws. A

classical finite element scheme is used in Stainier et al. [9] to calculate the deformation of a plate with a hole. The results
are used to extract data points at the different points of the geometry. Adaptations to nonlinear elasticity models are the
interest in Nguyen and Keip [10]. Improvements of the minimization scheme are reported in Ayensa-Jiménez et al. [11]
using theMahalanobis distance and in Nguyen et al. [12] using adaptive hyperparameters. We also mention the treatment
of brittle fracture mechanics in Carrara et al. [13].
In Eggersmann et al. [14], the authors develop a technique to improve data-driven schemes in the case of sparse data

sets. The approach is based on the construction of local tangent spaces in the data set, obtained through the machine
learning tool of tensor voting. Since this technique applies to the original data-driven scheme, but also to the maximum
entropy scheme, it is an interesting question whether or not the technique can be applied also in the evolutionary setting.
Related ideas are developed further in Ciftci and Hackl [15] to incorporate internal variables. The contribution [16] points
in a somewhat similar direction. The aim there is to improve data sets with amodel-free procedure and withmethods that
are related to data-driven solvers.
Fundamental observations are contained in the short paper [17]. The essential solution step in the data-driven approach

is to minimize a distance functional. This is usually done with iterated projections: An approximate solution 𝑞 ∈  is
projected onto the set  , the result is then projected onto . This is repeated until a fixed point of this iteration is found.
If  and  were two orthogonal affine subspaces with nonempty intersection, then this iteration would converge and
provide a minimizer of the distance functional (actually: the iteration would find the minimizer in one step and the fixed
point would not only be a minimizer of the distance, but a point in the intersection of the two spaces). Since is not even
a manifold, it is by no means clear why the iteration process should provide a solution. Kanno describes in Ref. [17] with
intuitive simple examples that, in general, the iteration process indeed does not provide aminimum.Another contribution
of Kanno [17] is the description of the minimization problem as a mixed-integer programming task. In that form, global
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minimizers can be found with branch-and-bound algorithms. We emphasize that this approach allows only a very limited
numbers of unknowns.
Also, Nguyen et al. [8] deal with a reformulation of the minimization task as a constrained optimization problem.

Two naive data-driven evolution schemes
The problems in the construction of an evolutionary scheme can be conceived best when we investigate a naive extension
of the static approach. Given a history �̂�𝑘−1 ∶= (𝑞0, … , 𝑞𝑘−1) in a point 𝑥, let us consider the time independent data set
that consists of those elements 𝑞𝑘 that possess a data-wise permitted extension: For every 𝑥,

loc,𝑘(�̂�𝑘−1) ∶=
{
𝑞𝑘

|||∃𝑞𝑘+1, … , 𝑞𝐾 such that (𝑞0, … , 𝑞𝑘−1, 𝑞𝑘, 𝑞𝑘+1, … , 𝑞𝐾) ∈ loc

}
. (1.6)

Just as in the construction of the global space  in Equation (1.5), one defines the global space 𝑘(�̂�𝑘−1) as the space of
those functions that have values inloc,𝑘(�̂�𝑘−1(𝑥)) for almost every 𝑥 ∈ Ω. For a given history �̂�𝑘−1 and the corresponding
data set𝑘(�̂�𝑘−1), we can then consider the task

inf
�̄�∈𝑘∗

dist
2
(�̄�,𝑘(�̂�𝑘−1)) . (1.7)

We claim that Scheme (1.7) is not useful in a practical application: Let us assume that the data set consists of discrete
points, which means that its elements are of the form ((𝜖𝑖

0
, 𝜎𝑖
0
), … , (𝜖𝑖

𝐾
, 𝜎𝑖
𝐾
)) with 𝑖 running in a finite index set. When a

specific pair (𝜖𝑖
𝑘
, 𝜎𝑖
𝑘
) is chosen at level 𝑘, there is typically only one index 𝑖 that has exactly this pair at entry 𝑘. The above

construction then demands the scheme to follow the data pair with index 𝑖 for the rest of the process, no matter what the
process demands in terms of loads or boundary conditions.
The above scheme can easily be improved in the spirit of the data-driven approach. To be less rigid in the choice of 𝑞𝑘,

we need not demand that the history, as chosen up to this point, is continued. Instead, we allow to switch to other histories
as long as the distance is not too large. With

̃loc,𝑘 ∶= {(𝑞0, … , 𝑞𝑘) |∃𝑞𝑘+1, … , 𝑞𝐾 such that (𝑞0, … , 𝑞𝐾) ∈ loc} , (1.8)

we may solve, in each time step,

inf
�̄�∈∗ dist

2
((𝑞0, … , 𝑞𝑘−1, �̄�), ̃𝑘) . (1.9)

The idea of this scheme is that we search a pair �̄� = (�̄�𝑘, �̄�𝑘), which is close to a pair of time level 𝑘 in the data set, but we
only consider those pairs in the data set that have a history that is similar to (𝑞0, … , 𝑞𝑘−1).
This scheme certainly improves Equation (1.7), since now a new data index 𝑖 can be chosen at time instance 𝑘. Never-

theless, the scheme still does not seem to be practical: One has to choose a distance functional in the high-dimensional
space of evolutions. How important is a difference in the history? If the distance punishes deviations in the history too
much, then the scheme will try to follow a single data entry, just as scheme (1.7) did. It is not clear how to adjust the
scheme such that only relevant information on the histories are used.

1.1 The new scheme with history surrogates

We start from a data set of evolutions  ⊂ 𝑍. Our aim is to compress the relevant information about a history �̂�𝑘−1 =
(𝑞0, … , 𝑞𝑘−1) in a new variable 𝜂𝑘−1. In every spatial point 𝑥 ∈ Ω, the variable 𝜂𝑘−1 should be an element ofℝ𝑚, for some
fixed 𝑚 ∈ ℕ. Accordingly, the global variable is 𝜂 ∈ 𝐿2(Ω,ℝ𝑚). A notable compression is achieved when the dimension
𝑚 is much smaller than the dimension of the space for �̂�𝑘−1, which is 2 ⋅ 𝑘 ⋅ 𝑛(𝑛 + 1)∕2.
Our assumption is that the history surrogate 𝜂 can be computed recursively with a propagator 𝐻:

𝐻 ∶ 𝐿2(Ω;ℝ𝑛×𝑛𝑠 ) × 𝐿2(Ω;ℝ𝑚) → 𝐿2(Ω;ℝ𝑚) ,

(𝜖𝑘, 𝜂𝑘−1) ↦ 𝜂𝑘 .
(1.10)
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Usually, the function𝐻 will be given again by local functions,

𝐻loc( . ; 𝑥) ∶ ℝ
𝑛×𝑛
𝑠 × ℝ𝑚 → ℝ𝑚 ,

(𝜖𝑘(𝑥), 𝜂𝑘−1(𝑥)) ↦ 𝜂𝑘(𝑥) ,
(1.11)

and𝐻 is defined by the pointwise application of𝐻loc. We always assume that𝐻 is a continuous function.
At least two motivations can be given to use a function𝐻 of the recursive form as above. One motivation is the form of

classical plasticity models. These use a plastic strain 𝑝 as an additional variable, possibly also other hidden variables, for
example, to model isotropic hardening. The relevant information on the history is stored in these variables. The models
have the property that the updates are given by the old values and the new strain, for example: 𝑝𝑘 can be calculated from
𝑝𝑘−1 and 𝜖𝑘. When 𝑝𝑘 contains all relevant information on the history, then 𝜂𝑘 ∶= 𝑝𝑘 can be used as a history surrogate
and a propagator function𝐻 as above is defined.
Another motivation has to do with the structure of recurrent neural networks. With our assumption on 𝐻, the system

can be regarded as a recurrent neural network which can be trained with a data setloc to learn a useful map𝐻.
We note that the map 𝐻 allows to calculate the evolution (𝜂𝑗)𝑗≤𝑘 for every strain history (𝜖𝑗)𝑗≤𝑘. More precisely, for a

strain history �̂�𝑘−1 = (𝜖0, … , 𝜖𝑘−1), we obtain 𝜂𝑘 with the memory function

𝜂𝑘 = 𝑀(𝜖0, … , 𝜖𝑘−1) ∶= 𝐻(𝜖𝑘−1,𝐻(𝜖𝑘−2,𝐻(…𝐻(𝜖0, 0)…) . (1.12)

We assumed here that we always start with trivial initial data for the surrogate function: 𝜂−1 ∶= 0. Note that we leave the
number of arguments of𝑀 free; in that sense the mathematical terminology𝑀𝑘 would be more appropriate, but we do
not see the danger of misunderstandings.
With the memory map 𝑀, we now define the reduced data set. We use the collection of all triples (𝜖, 𝜎, 𝜂) such that

(𝜖, 𝜎) occurs in the data set for some time instance 𝑘 and 𝜂 is the corresponding history surrogate,

𝑀
∗,loc

(𝑥) ∶=
{
(𝜖𝑘, 𝜎𝑘,𝑀(�̂�𝑘−1; 𝑥))

||| (𝜖, 𝜎) ∈ loc(𝑥), 𝑘 ≤ 𝐾} ⊂ ℝ𝑛×𝑛𝑠 × ℝ𝑛×𝑛𝑠 × ℝ𝑚 . (1.13)

We emphasize that the space 𝑀
∗,loc

uses the information of all data points and of all time instances 𝑘. At this point, we
exploit that the system is time invariant.
The local spaces may also depend explicitly on the spatial position 𝑥. In any case, the global space consists of functions,

𝑀
∗ ∶=

{
(𝜖, 𝜎, 𝜂) ∈ 𝐿2(Ω)

||| (𝜖(𝑥), 𝜎(𝑥), 𝜂(𝑥)) ∈ 𝑀
∗,loc

(𝑥) ∀𝑥 ∈ Ω
}
. (1.14)

Our scheme will be based on the spaces 𝑘∗ and𝑀
∗ .

Scheme for data-driven evolutionary problems
We can now formulate the scheme that is proposed and analyzed in this paper. In time step 𝑘, we seek for �̄� = (�̄�, �̄�) ∈ 𝑘∗
that is close to some pair (𝜖𝑙, 𝜎𝑙) in the data set. Additionally, we want to make sure that the history surrogate 𝜂𝑘−1 of the
calculated evolution is close to the history surrogate that corresponds to the pair (𝜖𝑙, 𝜎𝑙). In order to achieve both aims, we
consider the minimization problem

inf
�̄�∈𝑘∗

dist
2(
(�̄�, 𝜂𝑘−1),𝑀

∗

)
. (1.15)

An adequate distance functionmust be chosen. Here, we use the 𝐿2(Ω)-norm in space and an 𝓁2-type distance in the finite
dimensional target space ℝ𝑛×𝑛𝑠 × ℝ𝑛×𝑛𝑠 × ℝ𝑚. Our analysis of scheme (1.15) for data-driven evolution problems embraces
an existence result and a data convergence result in the context of plasticity.
We will use also the following notation that highlights the analogy to the stationary data-driven framework:

(𝜖, 𝜎) ∈ 𝑀
∗,loc

(𝜂; 𝑥) ∶⟺ (𝜖, 𝜎, 𝜂) ∈ 𝑀
∗,loc

(𝑥) . (1.16)

The corresponding (global) set𝑀
∗ (𝜂) (of functions) is defined as in Equation (1.14).
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6 of 20 POELSTRA et al.

2 ADMISSIBLE DATA SETS AND PROPAGATORS𝑯

Let us start by rephrasing the key idea of our approach. The evolutionary problem is given in the form of two sets of data.
On the one hand, we have data in a classical form, namely a domain Ω, loads 𝑓, boundary data 𝑈. On the other hand,
we have a material law, which is given by a (hopefully very large) data set  of evolutions that are compliant with the
material properties. With these two sets of data, we want to solve the evolutionary problem with successive minimization
problems. One of our key suggestions is to compress the data set with a propagator function𝐻; a fixed propagator𝐻 allows
to compress the data set into a set𝑀

∗ .
In an application, the data set is given, but not the propagator𝐻. Accordingly, when our scheme is applied, we have to

come upwith a useful map𝐻. The aim is that𝐻 (or, better, the derivedmemory function𝑀) stores important information
about the strain history; an ad hoc choice in a one-dimensional problemmight be to store the maxima and minima of the
strain history. We will work below with three different choices of 𝐻 to perform our tests. As a somewhat academic test,
we can generate the data set from a plasticity law, which has a propagator 𝐻, and use that map 𝐻 also in the data-driven
scheme. As a more severe test of our scheme, we can use the map𝐻 from a plasticity model, but we use wrong parameters
in the plasticity model (parameters that are different to those that were used in the generation of the data set). The idea
is that the history surrogate (which is a plastic deformation that is calculated with wrong parameters) might still record
well the important facts about the history of the process. The third possibility is refrain from material modeling and let a
neural network choose a map 𝐻. Our results show similar errors for all three choices of 𝐻, see, in particular, Tables 3–5.
This section has the goal to provide an example of a set  and a propagator 𝐻 such that the resulting set𝑀

∗ has good
properties.Of course, before giving an example,wehave to definewhatwemeanby “goodproperties.” They are formulated
in Assumption 2.1; the properties are chosen in such a way that, for example, an existence result can be formulated, see
Lemma 3.1.
In our definition of “good properties” in Assumption 2.1, we formulate the properties for general (compressed) sets𝑀

∗ .
Our positive example will be constructed as follows:

1. We consider a set of equations that provides, for every strain history 𝜖1, … , 𝜖𝑘, a corresponding stress evolution𝜎1, … , 𝜎𝑘.
The equations use some internal variables 𝑝1, … , 𝑝𝑘 .

2. The data set is the family of all paths (𝜖1, 𝜎1), … , (𝜖𝐾, 𝜎𝐾) that are consistentwith the equations. The equations provide
also the history surrogate 𝜂𝑘 = 𝑝𝑘 and thus a propagator𝐻.

3. Compressingwith𝐻 provides𝑀
∗ , see the definition in Equation (1.13). The evolutionary system is entirely described

by the two objects𝑀
∗ and𝐻, and the original set is no longer required.

Let us emphasize that the data-driven scheme should not be applied to a data set that is generated as above: When the
underlying model is known, it is much more efficient to solve a set of partial differential equations. The example above is
provided in order to demonstrate that our assumptions on the limit set𝑀

∗ are not unrealistic.
The subsequent assumption collects the fundamental assumptions on the limit problem, described by 𝑀

∗ . We essen-
tially demand a graph property and some kind of monotonicity. Later on, we will also derive data convergence results.
There, we will demand that the limit model is approximated in a fine and uniform way when more and better data points
are collected. We emphasize that each approximate model (discrete data set) is also described by some set 𝑀

∗ and some
propagator𝐻, but a discrete set𝑀

∗ will not satisfy the assumptions below.

Assumption 2.1 (Properties of a limiting data set𝑀
∗ ). We consider the following properties of the limiting material data

set𝑀
∗ , defined by a family of local sets𝑀

∗,loc
.

1. Monotonicity. There exists a constant 𝛾 ≥ 0 such that the following holds: For every 𝜂 ∈ ℝ𝑚 and every 𝑥 ∈ Ω,

𝑀
∗,loc

(𝜂; 𝑥) ⊂ ℝ𝑛×𝑛𝑠 × ℝ𝑛×𝑛𝑠 (2.1)

is the graph of a 𝛾-monotone map. More precisely: For every 𝜖 ∈ ℝ𝑛×𝑛𝑠 , there exists a uniquely determined 𝜎 ∈ ℝ𝑛×𝑛𝑠

such that (𝜖, 𝜎) ∈ 𝑀
∗,loc

(𝜂; 𝑥). The graph is monotone with constant 𝛾 in the sense that

(𝜎 − 𝜎′) ⋅ (𝜖 − 𝜖′) ≥ 𝛾|𝜖 − 𝜖′|2 (2.2)

for all (𝜖, 𝜎), (𝜖′, 𝜎′) ∈ 𝑀
∗,loc

(𝜂; 𝑥).
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POELSTRA et al. 7 of 20

2. Growth. For some constant 𝛾0 > 0, independent of 𝜂 and 𝑥, and a constant 𝐶𝑔 = 𝐶𝑔(𝜂) ≥ 0, independent of 𝑥, the data
set𝑀

∗,loc
(𝜂, 𝑥) satisfies the growth assumptions

𝛾0|𝜎|2 ≤ |𝜖|2 + 𝐶𝑔(𝜂) and 𝜖 ⋅ 𝜎 ≥ 𝛾0|𝜖|2 − 𝐶𝑔(𝜂) ∀(𝜖, 𝜎) ∈ 𝑀
∗,loc

(𝜂; 𝑥) . (2.3)

We assume that the map 𝜂 ↦ 𝐶𝑔(𝜂) has at most quadratic growth.
3. Continuity. For every 𝑥 and every sequence (𝑞ℎ, 𝜂ℎ) ∈ 𝑀

∗,loc
(𝑥) with (𝑞ℎ, 𝜂ℎ) → (𝑞, 𝜂) as ℎ → 0, there holds (𝑞, 𝜂) ∈

𝑀
∗,loc

(𝑥).

In the remainder of this section, we describe one set of equations such that the corresponding set𝑀
∗,loc

satisfies all the
above properties: Plasticity with kinematic hardening. A familiar setting is obtained by considering a closed convex subset
 ⊂ ℝ𝑛×𝑛𝑠 with 0 ∈  such that 𝜕 is a flow surface; the functionΨ is then chosen as the characteristic function (or support
function) of in the sense thatΨ(𝜎) ∶= 0 for 𝜎 ∈  andΨ(𝜎) ∶= +∞ for 𝜎 ∉ . The convex dual (or Fenchel conjugate)
is, in this case, a 1-homogeneous function Ψ∗, which can be interpreted as a nonisotropic distance, the inclusion (2.5) is
the standard flow rule. This system of the subsequent definition is one of the standard models for which the numerical
analysis is studied in Bartels [18].

Definition 2.2 (Plasticity with kinematic hardening). We consider the local data setloc for a specific continuous model,
plasticity with kinematic hardening. The model relies on two positive symmetric linear maps𝐴, 𝐵 ∶ ℝ𝑛×𝑛𝑠 → ℝ𝑛×𝑛𝑠 , and a
convex function Ψ ∶ ℝ𝑛×𝑛𝑠 → ℝ̄ with conjugate convex function Ψ∗. We assume continuity of Ψ∗ and Ψ∗ ≥ 0, Ψ∗(0) = 0.
The plastic deformation is measured with a plastic strain 𝑝 ∈ ℝ𝑛×𝑛𝑠 . Given 𝑝𝑘−1 and the new strain 𝜖𝑘, the other two
variables in times instance 𝑘 are defined with the two equations

𝜎𝑘 = 𝐴(𝜖𝑘 − 𝑝𝑘) , (2.4)

𝐴(𝜖𝑘 − 𝑝𝑘) ∈ 𝜕Ψ
∗(𝑝𝑘 − 𝑝𝑘−1) + 𝐵𝑝𝑘 . (2.5)

The first equation is a Hooke’s law between stress and elastic strain. The second equation can equivalently be written as
𝑝𝑘 − 𝑝𝑘−1 ∈ 𝜕Ψ(𝐴(𝜖𝑘 − 𝑝𝑘) − 𝐵𝑝𝑘) and expresses the flow rule for the plastic strain.
The data setloc is the set of all families (𝜖𝑘, 𝜎𝑘)𝑘∈ℕ𝐾 where the matrices 𝜖𝑘 ∈ ℝ

𝑛×𝑛
𝑠 are arbitrary and all 𝜎𝑘, 𝑝𝑘 ∈ ℝ𝑛×𝑛𝑠

are determined by Equations (2.4) and (2.5). The corresponding propagator is 𝐻 ∶ (𝜖𝑘, 𝑝𝑘−1) ↦ 𝑝𝑘.

The plasticity system (2.4)–(2.5) can be solved with variational methods, for notational simplicity, we use here 𝑓𝑘 = 0.
With norms defined by |𝜖|2

𝐴
∶= 𝜖 ⋅ 𝐴𝜖 and |𝑝|2

𝐵
∶= 𝑝 ⋅ 𝐵𝑝, one considers

𝐸𝑝𝑘−1(𝜖𝑘, 𝑝𝑘) ∶=
1

2
|𝜖𝑘 − 𝑝𝑘|2𝐴 + Ψ∗(𝑝𝑘 − 𝑝𝑘−1) + 12 |𝑝𝑘|2𝐵 (2.6)

and the reduced functional

𝐼𝑘(𝜖𝑘) ∶= inf
𝑝𝑘
𝐸𝑝𝑘−1(𝜖𝑘, 𝑝𝑘) . (2.7)

The system (2.4)–(2.5) is obtained from the partial derivatives 𝜕𝜖𝑘𝐸𝑝𝑘−1(𝜖𝑘, 𝑝𝑘) = 𝐴(𝜖𝑘 − 𝑝𝑘) and 𝜕𝑝𝑘𝐸𝑝𝑘−1(𝜖𝑘, 𝑝𝑘) =
−𝐴(𝜖𝑘 − 𝑝𝑘) + 𝜕Ψ

∗(𝑝𝑘 − 𝑝𝑘−1) + 𝐵𝑝𝑘.

Lemma2.3 (Properties of the plasticity data set). Letloc be given by plasticitywith kinematic hardening as inDefinition 2.2,
let 𝐻 be the corresponding map 𝐻(𝜖𝑘, 𝑝𝑘−1) = 𝑝𝑘 . Then 𝑀

∗,loc
satisfies the properties of Assumption 2.1 with 𝛾 > 0. The

propagator𝐻 satisfies a linear growth condition.

Proof. Since the propagator 𝐻 produces, in every time instance, the correct 𝑝𝑘 of the plasticity equations, we have to
analyze the set

𝑀
∗,loc

(𝑝𝑘−1) =
{
(𝜖𝑘, 𝜎𝑘)

|||∃𝑝𝑘 ∶ (𝜎𝑘, 𝑝𝑘) solves Equations (2.4) and (2.5) for 𝜖𝑘
}
⊂ ℝ𝑛×𝑛𝑠 × ℝ𝑛×𝑛𝑠 . (2.8)
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8 of 20 POELSTRA et al.

This set is defined by a map in the sense that all 𝜖𝑘 ∈ ℝ𝑛×𝑛𝑠 are admitted and a solution 𝜎𝑘 ∈ ℝ𝑛×𝑛𝑠 exists for all 𝜖𝑘 ∈ ℝ𝑛×𝑛𝑠 .
Regarding monotonicity, we calculate with the inverse map 𝐶 = 𝐴−1. We write |.|𝐶 and |.|𝐵 for the norms that are

induced by 𝐶 and 𝐵. We consider two solutions (𝜖𝑘, 𝜎𝑘, 𝑝𝑘) and (𝜖′𝑘, 𝜎
′
𝑘
, 𝑝′
𝑘
) to the same 𝑝𝑘−1 and calculate

(𝜎𝑘 − 𝜎
′
𝑘
) ⋅ (𝜖𝑘 − 𝜖

′
𝑘
) = (𝜎𝑘 − 𝜎

′
𝑘
) ⋅ 𝐶(𝜎𝑘 − 𝜎

′
𝑘
) + (𝜎𝑘 − 𝜎

′
𝑘
) ⋅ (𝑝𝑘 − 𝑝

′
𝑘
)

= |𝜎𝑘 − 𝜎′𝑘|2𝐶 + (𝜎𝑘 − 𝐵𝑝𝑘 − 𝜎′𝑘 + 𝐵𝑝′𝑘) ⋅ (𝑝𝑘 − 𝑝′𝑘) + |𝑝𝑘 − 𝑝′𝑘|2𝐵
∈ |𝜎𝑘 − 𝜎′𝑘|2𝐶 + |𝑝𝑘 − 𝑝′𝑘|2𝐵 + [

𝜕Ψ∗(𝑝𝑘 − 𝑝𝑘−1) − 𝜕Ψ
∗(𝑝′

𝑘
− 𝑝𝑘−1)

]
⋅ (𝑝𝑘 − 𝑝

′
𝑘
)

≥ |𝜎𝑘 − 𝜎′𝑘|2𝐶 + |𝑝𝑘 − 𝑝′𝑘|2𝐵 , (2.9)

where we usedmonotonicity of the subdifferential 𝜕Ψ∗ in the last inequality. This showsmonotonicity for some 𝛾 > 0 and
item 1.
We turn to the growth properties of item 2. We set 𝜂 ∶= 𝑝𝑘−1 and consider a special solution of Equations (2.4) and

(2.5), namely 𝑝′ = 𝜂, 𝜎′ = 𝐵𝜂, 𝜖′ = 𝜂 + 𝐴−1𝐵𝜂. One readily verifies that this yields a solution, since 𝐴(𝜖′ − 𝑝′) = 𝐵𝜂 = 𝜎′
and 𝜎′ − 𝐵𝑝′ = 0 ∈ 𝜕Ψ∗(0) = 𝜕Ψ∗(𝑝′ − 𝜂). Using this special solution in the monotonicity formula (𝜎 − 𝜎′) ⋅ (𝜖 − 𝜖′) ≥|𝜎 − 𝜎′|2

𝐶
+ |𝑝 − 𝑝′|2

𝐵
we find, with 𝐷 = id + 𝐴−1𝐵

(𝜎 − 𝐵𝜂) ⋅ (𝜖 − 𝐷𝜂) ≥ |𝜎 − 𝐵𝜂|2
𝐶
+ |𝑝 − 𝜂|2

𝐵
. (2.10)

Upon rearrangement, using 𝜎 = 𝐴(𝜖 − 𝑝) and Young’s inequality, we find the condition 𝜖 ⋅ 𝜎 ≥ 𝛾(|𝜎|2 + |𝑝|2) − 𝐶𝑔(𝜂) for
some 𝛾 > 0 and with 𝐶𝑔 of quadratic growth. This, in turn, implies also the growth condition 𝜖 ⋅ 𝜎 ≥ 𝛾0|𝜖|2 − 𝐶𝑔(𝜂).
Relation (2.10) yields also the first growth condition, 𝛾0|𝜎|2 ≤ |𝜖|2 + 𝐶𝑔(𝜂), and the linear growth condition for the

propagator𝐻 ∶ (𝜖, 𝜂) ↦ 𝑝.
The continuity of item 3 follows from the continuous dependence of solutions.We consider sequences 𝜂ℎ → 𝜂 and 𝜖ℎ →

𝜖 and solutions (𝜖ℎ, 𝜎ℎ, 𝑝ℎ) of system (2.4)–(2.5), where 𝑝𝑘−1 is replaced by 𝜂ℎ. The solutions are bounded by the above
growth estimates. Upon choosing a subsequence, we may, therefore, also assume the convergences 𝑝ℎ → 𝑝 and 𝜎ℎ → 𝜎.
The limits are again a solution of the time step plasticity system: In order to verify this fact, wewrite relation (2.5),𝜎 − 𝐵𝑝 ∈
𝜕Ψ∗(𝑝 − 𝜂), in an equivalent variational form:Ψ∗(𝑦) ≤ Ψ∗(𝑝 − 𝜂) + (𝑦 − (𝑝 − 𝜂)) ⋅ (𝜎 − 𝐵𝑝)∀𝑦. Continuity ofΨ∗ provides
that limits can be taken in this relation.We recall that, here, we are analyzing the local situation (no dependence of a spatial
variable) such that all convergences are strong convergences in finite dimensional vector spaces. □

3 EXISTENCE RESULTS

In this section, we analyze scheme (1.15) for general data sets. We recall that the domain Ω is bounded.

3.1 Existence for the limiting data set

Lemma 3.1 (Existence of time-discrete solutions for limit data sets). Let 𝑀
∗ be a (limiting) data set that satisfies

Assumption 2.1 and let𝐻 be a propagator. Then, for every 𝑘 ≤ 𝐾 and every 𝜂𝑘−1, the scheme (1.15),

inf
�̄�∈𝑘∗

dist
2(
(�̄�, 𝜂𝑘−1),𝑀

∗

)
, (3.1)

possesses a solution �̄� = (𝜖𝑘, 𝜎𝑘). Upon setting 𝜂−1 = 0 and 𝜂𝑘 = 𝐻(𝜖𝑘, 𝜂𝑘−1) for every 𝑘 ∈ ℕ𝐾 , the scheme defines a solution
sequence (𝜖𝑘, 𝜎𝑘)𝑘∈ℕ𝐾 . The sequence satisfies, for every 𝑘 ∈ ℕ𝐾 ,

(𝜖𝑘, 𝜎𝑘)(., 𝑡) ∈ 𝑘∗ , and (𝜖𝑘, 𝜎𝑘, 𝜂𝑘−1) ∈ 𝑀
∗ . (3.2)

We note that Equation (3.2) implies that the infimum in Equation (3.1) is actually a minimum and that the minimal
distance vanishes.
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POELSTRA et al. 9 of 20

Proof. ByAssumption 2.1, item 1, the set𝑀
∗,loc

(𝜂𝑘−1(𝑥); 𝑥) is the graph of amonotonemap 𝑆𝑘,𝑥 ∶ ℝ𝑛×𝑛𝑠 → ℝ𝑛×𝑛𝑠 . Our aim is
to conclude with the Theorem of Browder andMinty the existence of a function �̄� ∈ 𝑘∗ ∩𝑀

∗ . We recall that the Theorem
of Browder and Minty (formulated as in Schweizer [19]) provides the following: Given a reflexive separable Banach space
𝑋 and a (possibly nonlinear) monotone coercive finite-dimensional continuous function 𝐹 ∶ 𝑋 → 𝑋′, for every 𝑏 ∈ 𝑋′,
there exists an element 𝑢 ∈ 𝑋 with 𝐹(𝑢) = 𝑏.
The maps 𝑆𝑘,𝑥 allow to consider also the corresponding map on function spaces. We recall that 𝑈𝑘 ∈ 𝐻1(Ω,ℝ𝑛) pre-

scribes boundary values on Γ ⊂ 𝜕Ω in time step 𝑘. With the homogeneous space𝐻1
Γ
(Ω), we, therefore, consider functions

𝑢 = 𝑢𝑘 such that 𝑣 = 𝑢 − 𝑈𝑘 ∈ 𝐻1Γ(Ω). A nonlinear map 𝐹 = 𝐹𝑘 can be defined by

𝐹 ∶ 𝐻1
Γ
(Ω) → (𝐻1

Γ
(Ω))′ , 𝐹(𝑣)(𝜑) ∶= ∫

Ω

𝑆𝑘(∇
𝑠(𝑈𝑘 + 𝑣)) ⋅ ∇

𝑠𝜑 , (3.3)

where we use the natural notation (𝑆𝑘(𝑤))(𝑥) = 𝑆𝑘,𝑥(𝑤(𝑥)). By the first growth assumption on 𝑀
∗ (., 𝜂𝑘−1), the map 𝑆𝑘

has at most linear growth. More precisely, we find the estimate

𝛾0 ∫
Ω

|𝑆𝑘(∇𝑠(𝑈𝑘 + 𝑣))|2 ≤ ∫
Ω

|∇𝑠(𝑈𝑘 + 𝑣)(𝑥)|2 + 𝐶𝑔(𝜂𝑘−1(𝑥)) 𝑑𝑥 , (3.4)

and the quadratic growth of 𝐶𝑔 provides that 𝐹 of Equation (3.3) is well-defined. The monotonicity of the set𝑀
∗ (., 𝜂𝑘−1)

yields the monotonicity of the maps 𝑆𝑘,𝑥 ∶ ℝ𝑛×𝑛𝑠 → ℝ𝑛×𝑛𝑠 and, in turn, the monotonicity of 𝐹, which reads ⟨𝐹(𝑤) −
𝐹(𝑣), 𝑤 − 𝑣⟩ ≥ 0.
The second growth assumption on𝑀

∗ (., 𝜂𝑘−1) provides

⟨𝐹(𝑣), 𝑣⟩ = ∫
Ω

𝑆𝑘(∇
𝑠(𝑈𝑘 + 𝑣)) ⋅ ∇

𝑠(𝑈𝑘 + 𝑣) − ∫
Ω

𝑆𝑘(∇
𝑠(𝑈𝑘 + 𝑣)) ⋅ ∇

𝑠𝑈𝑘

≥ 𝛾0 ∫
Ω

|∇𝑠(𝑈𝑘 + 𝑣))|2 − ∫
Ω

𝐶𝑔(𝜂𝑘−1) − ∫
Ω

𝑆𝑘(∇
𝑠(𝑈𝑘 + 𝑣)) ⋅ ∇

𝑠𝑈𝑘

≥ 𝛾0
2 ∫

Ω

|∇𝑠(𝑈𝑘 + 𝑣))|2 − 𝐶(𝜂𝑘−1) ≥ 𝛾0
4 ∫

Ω

|∇𝑠𝑣|2 − 𝐶′(𝜂𝑘−1) . (3.5)

Together with Korn’s inequality for given boundary data, we obtain the coercivity of the map 𝐹, which requires that‖𝑣𝑗‖𝐻1
Γ
(Ω) → ∞ implies ⟨𝐹(𝑣𝑗), 𝑣𝑗⟩→∞.

We finally have to check that𝐹 is continuous on finite-dimensional subspaces of𝐻1
Γ
(Ω). Assumption 2.1, item3, provides

the continuity of almost every map 𝑆𝑘,𝑥 (those 𝑥 are permitted where |𝜂𝑘−1(𝑥)| < ∞ is satisfied). As a consequence, 𝐹 is
continuous on finite-dimensional subspaces.
The existence theorem of Browder and Minty on monotone maps can now be applied. It yields, for 𝑓𝑘 ∈ (𝐻1Γ(Ω))

′, the
existence of a solution 𝑣 of the equation 𝐹(𝑣) = 𝑓𝑘.
From the solution 𝑣, we construct 𝑢𝑘 = 𝑈𝑘 + 𝑣 and, furthermore, 𝜖𝑘 ∶= ∇𝑠𝑢𝑘 ∈ 𝐿2(Ω) and 𝜎𝑘 ∶= 𝑆𝑘(∇𝑠𝑢𝑘) ∈ 𝐿2(Ω).

By choice of 𝑆𝑘, the solution 𝑞𝑘 = (𝜖𝑘, 𝜎𝑘) is in the surrogate data set𝑀
∗ (., 𝜂𝑘−1). The definition of 𝐹 and the set-up of the

minimization problem provides (𝜖𝑘, 𝜎𝑘) ∈ 𝑘∗ . In particular, it realizes the distance 0 in the infimum problem (3.1). This
yields the existence result for each time step.
With a finite number of iterations, we obtain the desired solution sequence: Given (𝜖0, 𝜎0, 𝜂0), … , (𝜖𝑘−1, 𝜎𝑘−1, 𝜂𝑘−1), we

solve the infimum problem (3.1) for 𝑘 to obtain (𝜖𝑘, 𝜎𝑘) and set 𝜂𝑘 = 𝐻(𝜖𝑘, 𝜂𝑘−1). □

3.2 Existence and boundedness of approximate solutions

We next study scheme (3.1) for data sets that need not satisfy Assumption 2.1. For finite data sets, we cannot expect that
the scheme can be solved with the distance 0. The situation is even worse: It is not even clear whether or not the infimum
is attained (typically, for space continuous problems, there is no minimizer, for spatially discrete problems, there is a
minimizer).We, therefore, investigate for general data sets (not necessarily amap, not necessarilymonotone) approximate
solutions to scheme (3.1).
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10 of 20 POELSTRA et al.

An existence result for approximate solutions can be obtained for general sets 𝑀
∗ ⊂ ℝ𝑛×𝑛𝑠 × ℝ𝑛×𝑛𝑠 × ℝ𝑚 and general

propagators𝐻 ∶ ℝ𝑛×𝑛𝑠 × ℝ𝑚 → ℝ𝑚. In order to study sequences, let (ℎ𝑙)𝑙∈ℕ, ℎ = ℎ𝑙 ↘ 0. We study reduced data sets𝑀
∗,ℎ

and propagators𝐻ℎ.
We recall that, in an application, we are given data as a subset of evolutions,

ℎ,loc =
{
(�̃�𝑗,ℎ, �̃�𝑗,ℎ)

||| 𝑗 ≤ 𝐽(ℎ)
}
⊂ 𝑍loc . (3.6)

With a propagator𝐻ℎ, this data set is preprocessed to obtain𝑀
∗,ℎ
. For a finite number of measurements 𝐽(ℎ), the set𝑀

∗,ℎ
contains at most 𝐾 ⋅ 𝐽(ℎ) triples, one triple for each time-instance and for each measured evolution.
The definition of an approximate solution requires some care since we have to distinguish between the elements (�̄�𝑘, �̄�𝑘)

of 𝑘∗ , the elements (𝜖𝑘, 𝜎𝑘) related to the data set, the elements 𝜂𝑘 = 𝐻ℎ(�̄�𝑘, 𝜂𝑘−1) that are calculated in the iteration, and
the elements 𝜂𝑘 which are such that (𝜖𝑘, 𝜎𝑘, 𝜂𝑘−1) is indeed in the reduced data set.

Lemma 3.2 (Existence of time-discrete quasi-minimizers of (3.1)). Let ℎ ↘ 0 be a sequence of real numbers, let a reduced
data set𝑀

∗,ℎ
∈ 𝐿2(Ω;ℝ𝑛×𝑛𝑠 × ℝ𝑛×𝑛𝑠 × ℝ𝑚) and a propagator𝐻ℎ ∶ 𝐿2(Ω;ℝ𝑚) → 𝐿2(Ω;ℝ𝑚) be given for every ℎ. Then there

exist sequences 𝑞ℎ = (𝜖ℎ, 𝜎ℎ), �̄�ℎ = (�̄�ℎ, �̄�ℎ) ∈ 𝑍 together with 𝜂ℎ
𝑘
, 𝜂ℎ
𝑘
∈ 𝐿2(Ω,ℝ𝑚) for every 𝑘 such that

�̄�ℎ
𝑘
= (�̄�ℎ

𝑘
, �̄�ℎ
𝑘
) ∈ 𝑘∗ , 𝑞ℎ

𝑘
= (𝜖ℎ

𝑘
, 𝜎ℎ
𝑘
) , 𝜂ℎ

𝑘−1
with (𝑞ℎ

𝑘
, 𝜂ℎ
𝑘−1
) ∈ 𝑀

∗,ℎ
∀𝑘 . (3.7)

Setting 𝜂ℎ
𝑘
∶= 𝐻ℎ(�̄�

ℎ
𝑘
, 𝜂ℎ
𝑘−1
) for every 𝑘 ∈ ℕ𝐾 and 𝜂ℎ−1 ∶= 0, for every 𝑘 holds

dist
2
((�̄�ℎ

𝑘
, 𝜂ℎ
𝑘−1
), (𝑞ℎ

𝑘
, 𝜂ℎ
𝑘−1
)) ≤ ℎ + inf

�̄�∈𝑘∗
dist

2
((�̄�, 𝜂ℎ

𝑘−1
),𝑀

∗,ℎ
) . (3.8)

Let the sets 𝑀
∗,ℎ

satisfy the growth conditions (2.3) of Assumption 2.1 with a single value 𝛾0 > 0 and a single function 𝐶𝑔.
Let, furthermore, the family 𝐻ℎ satisfy a uniform linear growth condition. Then the solution sequence is 𝐿2(Ω)-bounded,
independent of ℎ.

Proof. Step 1: Existence. For the existence result, we only have to use 𝐾 times the definition of the infimum.
Let 𝜂𝑘−1 be given. The infimum on the right-hand side of Equation (3.8) defines some non-negative real number 𝐴𝑘 =

inf �̄�∈𝑘∗ dist
2
((�̄�, 𝜂𝑘−1),𝑀

∗,ℎ
) ≥ 0. By definition of the infimum, there exists �̄�ℎ

𝑘
= (�̄�ℎ

𝑘
, �̄�ℎ
𝑘
) ∈ 𝑘∗ such that the infimum is

realized up to a small error, dist2((�̄�ℎ
𝑘
, 𝜂ℎ
𝑘−1
),𝑀

∗,ℎ
) < 𝐴𝑘 + ℎ∕2.

The distance to a set is defined as the infimum over all distances; this implies that, given the tupel (�̄�ℎ
𝑘
, 𝜂ℎ
𝑘−1
), there

exists (𝑞ℎ
𝑘
, 𝜂ℎ
𝑘−1
) ∈ 𝑀

∗,ℎ
such that the distance is realized up to another small error, dist2((�̄�ℎ

𝑘
, 𝜂ℎ
𝑘−1
), (𝑞ℎ

𝑘
, 𝜂ℎ
𝑘−1
)) < 𝐴𝑘 + ℎ.

Together with 𝜂ℎ
𝑘
∶= 𝐻ℎ(�̄�

ℎ
𝑘
, 𝜂ℎ
𝑘−1
), this provides the desired sequence.

Step 2: Boundedness. Since (�̄�ℎ
𝑘
, �̄�ℎ
𝑘
) is in ∗, there exists a potential �̄�ℎ𝑘 with �̄�ℎ𝑘 = ∇𝑠�̄�ℎ𝑘 and there holds −∇ ⋅ �̄�ℎ𝑘 = 𝑓𝑘.

Multiplication of this equation with 𝑢𝑘 − 𝑈𝑘 provides

∫
Ω

�̄�ℎ
𝑘
⋅ �̄�ℎ
𝑘
= ∫

Ω

𝑓𝑘 (𝑢𝑘 − 𝑈𝑘) + ∫
Ω

�̄�ℎ
𝑘
⋅ ∇𝑈𝑘 . (3.9)

The pair (�̄�ℎ
𝑘
, �̄�ℎ
𝑘
) is not in 𝑀

∗,ℎ
, we, therefore, have to transform the above relation into a relation containing (𝜖ℎ

𝑘
, 𝜎ℎ
𝑘
).

We rewrite the left-hand side as

∫
Ω

�̄�ℎ
𝑘
⋅ �̄�ℎ
𝑘
= ∫

Ω

[𝜎ℎ
𝑘
+ (�̄�ℎ

𝑘
− 𝜎ℎ

𝑘
)] ⋅ [𝜖ℎ

𝑘
+ (�̄�ℎ

𝑘
− 𝜖ℎ

𝑘
)] . (3.10)

We find

∫
Ω

𝜎ℎ
𝑘
⋅ 𝜖ℎ
𝑘
≤ ‖𝑓𝑘‖(𝐻1

Γ
)′‖𝑢𝑘 − 𝑈𝑘‖𝐻1

Γ
+ ‖�̄�ℎ

𝑘
‖‖𝑈𝑘‖𝐻1

Γ

+ 𝐶(‖𝜎ℎ
𝑘
‖ + ‖𝜖ℎ

𝑘
‖) (‖�̄�ℎ

𝑘
− 𝜎ℎ

𝑘
‖ + ‖�̄�ℎ

𝑘
− 𝜖ℎ

𝑘
‖) + ‖�̄�ℎ

𝑘
− 𝜎ℎ

𝑘
‖ ‖�̄�ℎ

𝑘
− 𝜖ℎ

𝑘
‖ . (3.11)
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POELSTRA et al. 11 of 20

We can now exploit the pointwise estimate |𝜎|2 + |𝜖|2 ≤ 𝐶(𝜖 ⋅ 𝜎 + 𝐶𝑔(𝜂)) for (𝜖, 𝜎) ∈ 𝑀
∗,loc

(𝜂; 𝑥). Together with the
boundedness of differences ‖�̄�ℎ

𝑘
− 𝜎ℎ

𝑘
‖ and ‖�̄�ℎ

𝑘
− 𝜖ℎ

𝑘
‖, which follows from (3.8), we obtain

∫
Ω

|𝜎ℎ
𝑘
|2 + |𝜖ℎ

𝑘
|2 ≤ 𝐶(𝐶 + ∫

Ω

𝐶𝑔(𝜂
ℎ
𝑘−1
) + ‖𝑢𝑘‖𝐻1

Γ
+ ‖𝜎ℎ

𝑘
‖ + ‖𝜖ℎ

𝑘
‖) . (3.12)

Upon an application of the Cauchy–Schwarz inequality, this provides the uniform boundedness of the solution sequence.
We note that the uniform linear growth condition on 𝐻ℎ yields the bound for 𝜂ℎ𝑘 in 𝐿

2(Ω). This also provides, by the
quadratic growth of 𝐶𝑔, the boundedness of ∫Ω 𝐶𝑔(𝜂ℎ𝑘−1). □

4 DATA CONVERGENCE

The next aim is to analyze data convergence. We think of a situation where a limiting data set is approximated by data
sets ℎ. Following the above reasoning, the limit analysis is performed with reduced data sets 𝑀

∗,ℎ
. Our aim is to show

that the approximate solutions of scheme (3.1), introduced in Lemma 3.2, converge to a solution of the scheme for the
limiting data set.

Assumption 4.1. We assume that the sequence𝑀
∗,ℎ

of reduced data sets approximates the limiting reduced data set𝑀
∗

finely and uniformly. Here, fine approximation is defined by

∀(𝑞, 𝜂) ∈ 𝑀
∗ ∃ sequence (𝑞ℎ, 𝜂ℎ) ∈ 𝑀

∗,ℎ
∶ (𝑞ℎ, 𝜂ℎ) → (𝑞, 𝜂) . (4.1)

Uniform approximation is defined by

∀ sequence (𝑞ℎ, 𝜂ℎ) ∈ 𝑀
∗,ℎ
∶ dist((𝑞ℎ, 𝜂ℎ),𝑀

∗ ) → 0 . (4.2)

We recall that the distances are 𝐿2(Ω)-distances.
We can expect that the following holds: Let ℎ,loc be a sequence of evolution subsets as in Equation (3.6) and assume

that this sequence approximates finely and uniformly the limit setloc. Let𝐻 be a fixed propagator. Then Assumption 4.1
is satisfied for the reduced data sets as defined by Equation (1.13). A further analysis of such implications is part of another
project.

Theorem 4.2 (Data convergence of solutions). Let Assumption 2.1 hold for the limit data set 𝑀
∗ with a monotonicity

coefficient 𝛾 > 0. Let the sets𝑀
∗,ℎ

converge to the limit data set as in Assumption 4.1. We assume a uniform growth condition
on the sets 𝑀

∗,ℎ
. Finally, let the propagator 𝐻 and the family of propagators 𝐻ℎ be continuous with uniform linear growth

and with uniform convergence𝐻ℎ → 𝐻.
Let (𝜖, 𝜎)(.) ∈ 𝑍 be the solution to the limit problem as found in Lemma 3.1. Let (�̄�ℎ, �̄�ℎ), (𝜖ℎ, 𝜎ℎ) ∈ 𝑍 be sequences of quasi-

minimizers as in Lemma 3.2. Then there holds

�̄�ℎ → 𝜖 and 𝜖ℎ → 𝜖 in 𝓁2(ℕ𝐾, 𝐿
2(Ω)) . (4.3)

Proof. Step 0. Since we are treating only finitely many time instances 𝑘 ≤ 𝐾, it is sufficient to show the following: The
convergences �̄�ℎ

𝑙
→ 𝜖𝑙 and 𝜖ℎ𝑙 → 𝜖𝑙 for every 𝑙 ≤ 𝑘 − 1 imply �̄�ℎ𝑘 → 𝜖𝑘 and 𝜖ℎ𝑘 → 𝜖𝑘.

We note that our convergence assumption for the previous time steps togetherwith our assumptions on𝐻ℎ → 𝐻 implies
also 𝜂ℎ

𝑘−1
→ 𝜂𝑘−1. Indeed, a simple induction argument shows that 𝜂ℎ𝑙 = 𝐻ℎ(�̄�

ℎ
𝑙
, 𝜂ℎ
𝑙−1
) → 𝐻(𝜖𝑙, 𝜂𝑙−1) as ℎ → 0 for every

𝑙 ≤ 𝑘 − 1.
Let us conclude our preparations of the proof with the observation that the growth assumptions on𝑀

∗,ℎ
together with

the linear growth assumption on𝐻ℎ imply the boundedness of the approximate solution sequence by Lemma 3.2.
Step 1. By construction, �̄�ℎ

𝑘
∈ 𝑘∗ and (𝑞ℎ𝑘 , 𝜂ℎ𝑘−1) ∈ 𝑀

∗,ℎ
satisfy Equation (3.8). We claim that, as ℎ → 0, the right-hand

side of Equation (3.8) actually converges to 0 and, hence,

dist
2
(�̄�ℎ
𝑘
, 𝑞ℎ
𝑘
) → 0 and dist

2
(𝜂ℎ
𝑘−1
, 𝜂ℎ
𝑘−1
) → 0 . (4.4)

A consequence of Equation (4.4) is 𝜂ℎ
𝑘−1

→ 𝜂𝑘−1.
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12 of 20 POELSTRA et al.

In order to prove our claimabout the right-hand side of Equation (3.8), weuse the solution of the limit problem.We recall
that (𝑞𝑘, 𝜂𝑘−1) ∈ 𝑀

∗ with 𝑞𝑘 ∈ ∗ is constructed by solving the monotone problem 𝐹(𝑣𝑘) = 𝑓𝑘 and setting 𝑢𝑘 = 𝑈𝑘 + 𝑣𝑘,
𝜖𝑘 = ∇

𝑠𝑢𝑘 and 𝜎𝑘 = 𝑆𝑘(𝜖𝑘), where the map 𝑆𝑘 is determined by 𝜂𝑘−1. Because of the fine convergence of the data set𝑀
∗,ℎ

to𝑀
∗ according to Assumption 4.1, there exists (�̌�ℎ

𝑘
, 𝜂ℎ
𝑘−1
) ∈ 𝑀

∗,ℎ
with dist((𝑞𝑘, 𝜂𝑘−1), (�̌�ℎ𝑘 , 𝜂

ℎ
𝑘−1
)) → 0. Since the infimum

is not larger than one of the values, there holds

inf
�̄�∈∗ dist

2
((�̄�𝑘, 𝜂𝑘−1),𝑀

∗,ℎ
) ≤ dist2((𝑞𝑘, 𝜂𝑘−1), (�̌�ℎ𝑘 , 𝜂ℎ𝑘−1)) → 0 . (4.5)

Because of 𝜂ℎ
𝑘−1

→ 𝜂𝑘−1, the claim follows.
Since we obtain relation (4.4), it is now sufficient to show only the first convergence in Equation (4.3).
Step 2. Since both (𝜖𝑘, 𝜎𝑘) and (�̄�ℎ𝑘 , �̄�

ℎ
𝑘
) are in ∗, there exist potentials 𝑢𝑘 and �̄�ℎ𝑘 and there holds 0 = −∇ ⋅ 𝜎𝑘 + ∇ ⋅ �̄�ℎ𝑘 .

Multiplication of the latter equation with 𝑢𝑘 − �̄�ℎ𝑘 provides

0 = ∫
Ω

(𝜎𝑘 − �̄�
ℎ
𝑘
) ⋅ (𝜖𝑘 − �̄�

ℎ
𝑘
) . (4.6)

We now exploit the fact that (𝑞ℎ
𝑘
, 𝜂ℎ
𝑘−1
) ∈ 𝑀

∗,ℎ
. The data sets𝑀

∗,ℎ
converge uniformly to 𝑀

∗ . This implies that we can
find (�̂�ℎ

𝑘
, 𝜂ℎ
𝑘−1
) ∈ 𝑀

∗ such that the distance satisfies dist((𝑞ℎ
𝑘
, 𝜂ℎ
𝑘−1
), (�̂�ℎ

𝑘
, 𝜂ℎ
𝑘−1
)) → 0.

We have already obtained 𝜂ℎ
𝑘−1

→ 𝜂𝑘−1 and hence also 𝜂ℎ𝑘−1 → 𝜂𝑘−1. We now define �̌�ℎ
𝑘
∶= �̂�ℎ

𝑘
and define �̌�ℎ

𝑘
as the

corresponding stress, more precisely: �̌�ℎ
𝑘
= (�̌�ℎ

𝑘
, �̌�ℎ
𝑘
) satisfies (�̌�ℎ

𝑘
, 𝜂𝑘−1) ∈ 𝑀

∗ . The continuity assumption on the limiting
data set, item 3 in Assumption 2.1, allows to conclude dist(�̌�ℎ

𝑘
, �̂�ℎ
𝑘
) → 0. This allows to calculate, for each 𝑘,

0 = ∫
Ω

(𝜎𝑘 − �̄�
ℎ
𝑘
) ⋅ (𝜖𝑘 − �̄�

ℎ
𝑘
)

= ∫
Ω

(𝜎𝑘 − �̌�
ℎ
𝑘
) ⋅ (𝜖𝑘 − �̄�

ℎ
𝑘
) + (�̌�ℎ

𝑘
− �̄�ℎ

𝑘
) ⋅ (𝜖𝑘 − �̄�

ℎ
𝑘
)

= ∫
Ω

(𝜎𝑘 − �̌�
ℎ
𝑘
) ⋅ (𝜖𝑘 − �̌�

ℎ
𝑘
) + (𝜎𝑘 − �̌�

ℎ
𝑘
) ⋅ (�̌�ℎ

𝑘
− �̄�ℎ

𝑘
) + (�̌�ℎ

𝑘
− �̄�ℎ

𝑘
) ⋅ (𝜖𝑘 − �̄�

ℎ
𝑘
)

= ∫
Ω

(𝜎𝑘 − �̌�
ℎ
𝑘
) ⋅ (𝜖𝑘 − �̌�

ℎ
𝑘
) + 𝑜(1)

(‖𝜖𝑘 − �̄�ℎ𝑘‖ + ‖𝜎𝑘 − �̌�ℎ𝑘‖) , (4.7)

where, in the last step, we exploited Equation (4.4) and the constructions of �̂�ℎ
𝑘
, and �̌�ℎ

𝑘
: All the pairs 𝑞ℎ

𝑘
, �̄�ℎ
𝑘
, �̂�ℎ
𝑘
, and �̌�ℎ

𝑘
are close to each other.
We now exploit that (𝜖𝑘, 𝜎𝑘) and (�̌�ℎ𝑘 , �̌�

ℎ
𝑘
) satisfy the same strictly monotone relation, namely

(𝜖𝑘, 𝜎𝑘), (�̌�
ℎ
𝑘
, �̌�ℎ
𝑘
) ∈ 𝑀

∗ (𝜂𝑘−1) . (4.8)

The uniform monotonicity of𝑀
∗ (𝜂𝑘−1) provides

𝛾‖𝜖𝑘 − �̌�ℎ𝑘‖2 ≤ ∫
Ω

(𝜎𝑘 − �̌�
ℎ
𝑘
) ⋅ (𝜖𝑘 − �̌�

ℎ
𝑘
) ≤ 𝑜(1)(‖𝜖𝑘 − �̄�ℎ𝑘‖ + ‖𝜎𝑘 − �̌�ℎ𝑘‖) . (4.9)

Boundedness of all solution sequences provides

𝛾‖𝜖𝑘 − �̌�ℎ𝑘‖2 ≤ 𝑜(1) . (4.10)

By construction of �̌�ℎ
𝑘
we also have ‖𝜖𝑘 − �̄�ℎ𝑘‖→ 0 and thus the result. □

5 NUMERICAL EXPERIMENTS

Our numerical experiments have the aim of investigating the potential of data-driven schemes for time-dependent prob-
lems. We use the setting as described above. This means, in particular, that, given a data set of evolutions of (𝜖, 𝜎)-pairs,
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POELSTRA et al. 13 of 20

TABLE 1 Units for the different quantities

Quantity Unit
Length mm
Force N = (103kg mm)/s2

Mass 103kg
Time s
Stress MPa (N/mm2)

we enrich the data set with an 𝜂-variable and determine the values of this variable with a propagator 𝐻 that is chosen
by the solver; we recall that the model is unknown to us, hence the “correct” propagator is unknown. The choice of the
propagator𝐻 in the solver will be one of the most important parameters in our experiments.
In all data-driven experiments, we generate the data set with one of the standard pde-models, using either elasticity

or plasticity. The plasticity model defines the “correct” propagator 𝐻model. The process of generating data leaves us some
freedom. On the one hand, we are free how to choose 𝜖-matrices (in elasticity) or time-dependent 𝜖-paths (in plasticity).
With the choice of the 𝜖-entries, themodel yields 𝜎-values, but we are free to add some stochastic perturbation to the latter.
In all cases, we use the standard data-driven solver technique of Refs. [1, 2], namely an iterated projection (once or in

each time step): Loosely speaking, an approximate solution in  is projected onto  , the result is projected back onto
; a fixed point of this iteration is used as an approximate solution. We note that, by the analysis in Kanno [17], this
approximate solution does typically not coincide with the correct solution, defined as the (𝜖, 𝜎)-pair that minimizes a
distance functional.

5.1 Reference solution

We consider the isothermal, isotropic, quasi-static elastoplastic model problem with Prandtl–Reuss flow rule and von
Mises yield criterion and both kinematic and isotropic hardening. For positive 𝜆, 𝜇, we use the isotropic stiffness ten-
sor ℂ𝑒 ∶= 2𝜇𝑒 + 𝜆(tr 𝑒)𝐼. The map ℂ is linear, symmetric, and defines the positive bilinear form ⟨ℂ𝑒, 𝑒′⟩ = 2𝜇𝑒 ∶ 𝑒′ +
𝜆(tr 𝑒)(tr 𝑒′). The flow rule reads

(�̇�, �̇�, �̇�) ∈ 𝜕𝐼𝑆(𝜎, 𝛼, 𝛽) (5.1)

where 𝐼𝑆 is the characteristic function (or support function) of the elastic domain

𝑆 ∶= {(𝜎, 𝛼, 𝛽) ∶ | dev(𝜎 + 𝛽)| < 𝜎𝑦(1 + 𝛼+)} (5.2)

and 𝛼 = −ℎ𝑖𝑠𝑜𝑎, 𝛽 = −ℎ𝑘𝑖𝑛𝑏. We recall that the characteristic function vanishes in the set and equals infinity outside the
set. The stress–strain relation is 𝜎(𝜖) = ℂ(𝜖 − 𝑝).
Given a sequence length 𝑇 ∈ ℕ and a path 𝜖𝑡 ∈ ℝ𝑛×𝑛s , 1 ≤ 𝑡 ≤ 𝑇, we can calculate the corresponding stress path with a

discretization of the flow rule (5.1). We set 𝑝0 = 𝑎0 = 𝑏0 = 0 and iteratively compute (𝑝𝑡, 𝑎𝑡, 𝑏𝑡) such that(
𝑝𝑡 − 𝑝𝑡−1

Δ𝑡
,
𝑎𝑡 − 𝑎𝑡−1
Δ𝑡

,
𝑏𝑡 − 𝑏𝑡−1
Δ𝑡

)
∈ 𝜕𝐼𝑆(ℂ(𝜖𝑡 − 𝑝𝑡), −ℎiso𝑎𝑡, −ℎkin𝑏𝑡) . (5.3)

Note that this relation does not depend on the value of Δ𝑡 > 0 and we might as well choose Δ𝑡 = 1.
In our experiments, we use the following material parameters:

𝜆 =
𝐸𝜈

(1 − 2𝜈)(1 + 𝜈)
, 𝜇 =

𝐸

2(1 + 𝜈)
, 𝐸 = 210000 , 𝜈 = 0.3 ,

𝜎𝑦 = 500 , ℎkin = 20000 , ℎiso = 0.2 . (5.4)

Here and in the following, we omit physical units, all numbers are in the S.I. system: length in mm (millimeter), time
in s (second), mass in t= 103 kg (ton), force in N= t mm/s2 (Newton), stress in MPa=N/mm2 (mega-pascal), see Table 1.

 15214001, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202100538 by T

echnische U
niversitaet D

ortm
und, W

iley O
nline L

ibrary on [15/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 20 POELSTRA et al.

F IGURE 1 The finite element reference solution at time 𝑡 = 6. We use the norms ‖𝜖(𝑥)‖2
ℂ
= 𝜖(𝑥) ∶ ℂ𝜖(𝑥) and‖𝜎(𝑥)‖2

ℂ−1
= 𝜎(𝑥) ∶ ℂ−1𝜎(𝑥) in order to have the two quantities of the same order. The color/gray level at point 𝑥 indicates the norm of the

solution components 𝜖(𝑥, 𝑡), 𝜎(𝑥, 𝑡), and 𝑝(𝑥, 𝑡) for 𝑡 = 6.

TABLE 2 Norms of the reference solution. For the domain Ω, table shows (|Ω|−1 ∫
Ω
‖𝜖(𝑥)‖2

ℂ
𝑑𝑥)1∕2 and (|Ω|−1 ∫

Ω
‖𝜎(𝑥)‖2

ℂ−1
𝑑𝑥)1∕2, such

that the entries are typical values of normalized strain and normalized stress. When we calculate errors in data-driven experiments, we
calculate with the same norm. When we report relative errors, we divide norms of differences by the corresponding values in this table.

f 𝐦𝐚𝐱 |𝒖| ‖𝒖‖ ‖𝝐‖ ‖𝝈‖

1 250 0.43 0.27 0.93 0.89
2 500 1.06 0.68 2.30 1.79
3 750 1.91 1.23 4.16 2.68
4 1000 2.87 1.85 6.33 3.57
5 750 2.46 1.60 5.48 2.69
6 500 2.05 1.34 4.64 1.81

5.2 Geometry

Our calculations are performed in space dimension 𝑛 = 2. We consider an experiment in which a plate with a hole in
the center is pulled on two opposite sides. The plate is quadratic with side length 200 (we recall that the unit is mm), the
hole is a circle with radius 50. Using the symmetries of the domain, we can restrict the computation on one quadrant,
(𝑥1, 𝑥2) ∈ (0, 100) × (0, 100). The circle 𝐵 = 𝐵50((100, 0)) is removed from the domain. We prescribe the force with a force
density parameter 𝑓 ∈ ℝ. With the unit vectors 𝑒1 = (1, 0) and 𝑒2 = (0, 1) and the outer normal vector 𝜈, the boundary
conditions are

𝜎𝑒1 = 𝑓𝑒1 on {𝑥1 = 0}

𝑢1 = 0 and 𝑒2 ⋅ 𝜎𝑒1 = 0 on {𝑥1 = 100} ,

𝑢2 = 0 and 𝑒1 ⋅ 𝜎𝑒2 = 0 on {𝑥2 = 0} ,

𝜎𝑒2 = 0 on {𝑥2 = 100} ,

𝜎𝜈 = 0 on 𝜕Ω ∩ 𝜕𝐵 . (5.5)

The finite element discretization uses 206 nodes and 348 triangular elements. For a given material model and a given
geometry, a reference solution can be calculated in a finite element framework. Figure 1 indicates how reference solutions
behave and, in particular, where plastic deformation takes place. Table 2 shows norms of the reference solution. Figure 2
shows the deformation 𝑢 of the solution at time instance 𝑡 = 4.
We fix a loading path for all our experiments: The force 𝑓 is increased in four steps from 0 to 1000, then we unload the

specimen and decrease the load in two steps to 500. This loading path is chosen in order to generate plastic deformations
and in order to see memory effects. Given the plasticity material model and the geometry, a reference solution can be
calculated in a finite element framework. Results are shown in Figure 1 and Table 2.
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POELSTRA et al. 15 of 20

F IGURE 2 Left: Plot of the finite element grid.
Right: All grid-points are moved according to the
solution 𝑢 at time 𝑡 = 4; we multiplied all
deformations with the scale factor 5 in order to have
a clearly visible deformation.

F IGURE 3 A data-driven solution when the propagator of the data generating model is used in the data preprocessing. The experiment
is run with 𝑁 = 106 data points, no stochastic perturbation, and 𝑐𝜂 = 1. The figure shows the solution components at 𝑡 = 6. We see the
qualitative agreement with the reference solution of Figure 1. Regarding the history surrogate, we emphasize that 𝜂 has now more
components and no canonical norm; we use some 𝓁2-norm to show concentrations in this figure.

5.3 Data generation

Loosely speaking,we generate paths (𝜖𝑡)𝑡≤𝑇 by setting 𝜖0 = 0 and choosing random increments 𝜖𝑡 − 𝜖𝑡−1. Themore detailed
description is as follows: We first generate the reference solution from the model and evaluate the statistics of the strain
entries.We then generate strain paths, whichmatch these statistics. In this step, we evaluate the (matrix component-wise)
mean values and standard deviations of the strain increments across the elements of the finite element discretization. We
then generate 𝑁 strain paths (typically 𝑁 = 106) by sampling strain increments from normal distributions with these
statistics. This guarantees that the generated dataset covers the relevant portions of phase space. Results for the most
elementary data-driven scheme are shown in Figure 3, where the data generating propagator is used to compress the data.
In some experiments, we enrich the dataset with the data from the reference solution, that is, for each element of the

finite element discretization, we add the strain path of that element in the reference solution to the set of sampled paths.
Once a strain path is chosen, we generate the corresponding stress path according to the reference plasticity model.
Whenwe include stochastic perturbations, we add Gaussian noise to the sigma values, the amount is regulated with the

parameter 𝑐noise > 0. More precisely, we generate symmetric matrices 𝐸 with entries from independent standard normal
distributions. We then add 𝑐noiseℂ1∕2𝐸 to the stress matrix (note thatℂ defines a positive symmetric bilinear form and can
thus be interpreted as a symmetric positive definite matrix; it, therefore, possesses a unique square root). We choose the
above scaling in order to have a meaningful parameter 𝑐noise. The effect of 𝑐noise is shown in Figure 4.
Once that a path is generated, we “forget” the model variables 𝑝, 𝑎, 𝑏 and only store the evolutions of (𝜖, 𝜎). The idea is

that only evolutions of (𝜖, 𝜎) are measurable, no internal variables are accessible in experiments. The size of the dataset
depends on the number 𝑁 of sampled paths and the length 𝑇 of the individual paths. Regarding the dependence of
solutions on 𝑁, we refer to Figure 5.

5.4 Data-driven solver and propagator functions

The data consists of strain–stress paths. The underlying idea of our approach is to enrich the data set with a history
surrogate 𝜂 in which the relevant history is stored. In a preprocessing step, we, therefore, enrich the data set with some
propagator𝐻 to generate triples {(𝜖𝑡, 𝜎𝑡, 𝜂𝑡−1)|𝑡 ≤ 𝑇}. In this data set, we apply a minimization scheme in each time step.
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16 of 20 POELSTRA et al.

F IGURE 4 Dependence on the noise factor 𝑐noise. We use 𝑁 = 100, 000 paths and the propagator of the data generating model, 𝑐𝜂 = 1,
and no perfect initialization. Plotted is the relative error of strains and stresses in the last time step (in the usual norms) against the noise
factor 𝑐noise

F IGURE 5 Dependence on the number 𝑁 of paths
in the data set. We use here the propagator of the data
generating model and the parameter 𝑐𝜂 = 1. No
stochastic perturbation is included and we use an
initialization with the reference solution in each time
step.

For the minimization, we must fix a norm in ℝ𝑛×𝑛s × ℝ𝑛×𝑛s × ℝ𝑝 for triples (𝜖, 𝜎, 𝜂). As noted above, this norm should
induce an 𝓁2-type distance. We fix a stiffness tensor ℂ and a constant vector 𝐴 ∈ ℝ𝑚

>0
and define

‖(𝜖, 𝜎, 𝜂)‖2 ∶= ℂ𝜖 ∶ 𝜖 + 𝜎 ∶ ℂ−1𝜎 + 𝑐𝜂|𝜂|2𝐴 . (5.6)

The last norm is defined by |𝜂|2
𝐴
∶=

∑𝑚

𝑖=1
𝐴𝑖|𝜂𝑖|2. The weight vector 𝐴 is important, since, in general, the order of mag-

nitude of 𝜂 is arbitrary. We, therefore, evaluate the statistics of the 𝜂-variable in our data set and then choose 𝐴 such that√
𝐴𝑖 𝜂𝑖 has a unit standard deviation for each component 𝑖 ≤ 𝑚. We introduced, additionally, a relative weight 𝑐𝜂 > 0,

which implements a tradeoff: A large value of 𝑐𝜂 puts a large penalty on any mismatch of the history variable 𝜂 so that
only data points with an almost-correct value of 𝜂 are used. These, however, will be scarce which may necessitate large
errors in the 𝜖 − 𝜎 space. We investigated how the method depends on 𝑐𝜂, see Figure 6 for results. Loosely speaking, the
choice 𝑐𝜂 = 1 (equal weight for 𝜂-differences and stress–strain differences after normalization) is indeed a good choice.
In the preprocessing step, the data set is enriched with 𝜂-entries; this requires some propagator function 𝐻. Since the

“true” propagator of the model is not known for real-life data, we perform experiments for various choices of the prop-
agator function 𝐻. Since our data are artificially generated, we can use the propagator function 𝐻 of the model. We do
this in most of our experiments to investigate the sources of errors. We investigate two other choices of propagators. One
possibility is to use the propagator 𝐻 of the model where the model parameters are altered. Another possibility is to use
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POELSTRA et al. 17 of 20

F IGURE 6 Many solutions of the data-driven
time-dependent scheme, each solution is calculated on the
basis of the same data set, which is generated with
𝑁 = 100, 000 paths. We do not include stochastic
perturbation and use the propagator of the data generating
model. Plotted is the relative error of strains and stresses in
the last time step in the usual norm. We vary the 𝜂 weighting
factor 𝑐𝜂 from 10−1 to 103. The least errors are obtained for 𝑐𝜂
between 1 and 3.

TABLE 3 Data-driven scheme with a data set that is preprocessed with the propagator of the data generating model. The numbers
measure the errors that are shown in Figure 7. We use𝑁 = 106 paths to generate the data, no stochastic perturbation, an optimal initialization
in each time step, and 𝑐𝜂 = 1. The loading path is as in the reference solution. The absolute errors are norms of the differences to the reference
solution, we use the natural norms that are imposed by ℂ. The relative errors are computed by dividing the absolute errors by the norm of the
reference solution.

𝒖 error 𝒖 error (%) 𝝐 error 𝝐 error (%) 𝝈 error 𝝈 error (%)
1 0.00 0.1% 0.01 0.9% 0.01 1.1%
2 0.01 0.0% 0.02 1.0% 0.02 1.3%
3 0.03 0.2% 0.06 1.6% 0.06 2.2%
4 0.04 0.2% 0.13 2.0% 0.12 3.3%
5 0.08 0.3% 0.16 3.0% 0.19 7.0%
6 0.26 1.3% 0.22 4.6% 0.23 12.8%

TABLE 4 Same calculations as in Table 3, but here the data are pre-processed with an altered model. We use the propagator𝐻 that is
implied by the plasticity model with the parameters 𝜎𝑦 = 200, ℎkin = 5000, and ℎiso = 0. We observe that, choosing wrong material
parameters in the data processing, we do not increase errors significantly.

𝒖 error 𝒖 error (%) 𝝐 error 𝝐 error (%) 𝝈 error 𝝈 error (%)
1 0.01 0.1% 0.01 1.0% 0.01 1.1%
2 0.01 0.1% 0.03 1.3% 0.03 1.5%
3 0.05 0.3% 0.07 1.7% 0.07 2.5%
4 0.08 0.3% 0.13 2.1% 0.12 3.5%
5 0.23 1.0% 0.16 2.9% 0.19 7.2%
6 0.36 1.8% 0.22 4.7% 0.24 13.3%

a neural network propagator 𝐻. Details on the latter are described in the next subsection. For results regarding the three
different choices of the propagator see: Table 3 (propagator from the data generating model), Table 4 (propagator from a
model with altered material parameters), and Table 5 (neural network propagator).

5.5 The neural network propagator

We use basic methods from deep learning to generate a propagator function𝐻 purely from data. In addition to𝐻, which
computes 𝜂𝑡 ∶= 𝐻(𝜖𝑡, 𝜂𝑡−1) = 𝜂𝑡−1 + �̂�(𝜖𝑡, 𝜂𝑡−1), we also learn a stress function 𝑆 with �̂�𝑡 ∶= 𝑆(𝜖𝑡, 𝜂𝑡) ≈ 𝜎𝑡. We optimize
�̂� and 𝑆 by stochastic gradient descent with the objective to minimize the 𝓁2-loss ‖�̂�𝑡 − 𝜎𝑡‖. We optimize 𝑆 in the space of
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TABLE 5 Same calculations as in Tables 3 and 4, but here the data are preprocessed with a neural network. We observe comparable
orders of the error.

𝒖 error 𝒖 error (%) 𝝐 error 𝝐 error (%) 𝝈 error 𝝈 error (%)
1 0.01 0.3% 0.02 1.9% 0.01 1.5%
2 0.03 0.3% 0.04 1.7% 0.04 2.3%
3 0.10 0.5% 0.08 1.9% 0.08 2.9%
4 0.08 0.3% 0.14 2.2% 0.13 3.7%
5 0.26 1.1% 0.19 3.4% 0.21 7.8%
6 0.31 1.6% 0.23 5.0% 0.27 14.9%

F IGURE 7 Differences of reference solution and data-driven solution as shown and described in Figures 1 and 3. We see that the error in
strain is concentrated in a corner where strains are large. Slightly different is the distribution of the stress error, which is more scattered. The
corresponding norms of the error are reported in Table 3.

F IGURE 8 The data-driven solution for a neural network propagator that was trained with the data

linear functions and �̂� in a space of feedforward neural networks. In our experiments, we use three affine transformations
for �̂� with rectified linear units in between. The dimension of the two hidden layers is 64. The learned parameters are the
matrices and vectors of the affine transformations (known as weights and biases in deep learning lingo).
The kind of neural network we implement is known as a recurrent neural network since the function 𝐻 is repeatedly

applied to its own output. In our experiments, we use𝑚 = 8 as the dimension of the 𝜂-space. The solution that is calculated
with the neural network propagator is shown in Figure 8, differences to the reference solution are shown in Figure 9.
It isworthwhile to ponder the relationship of 𝑆 and𝐻. In the end,we are only interested in𝐻. But the quality of𝐻 cannot

be evaluated in and of itself: It is of good quality when the hidden variables 𝜂 which it produces are predictive of the 𝜖–𝜎
relationship. We thus learn𝐻 and 𝑆 simultaneously and evaluate the 𝜎-predictions. With 𝑆 and𝐻 we have a full material
model which could be used directly in computations without making any further use of the material data. However, in
order to remain in the framework proposed by Kirchdörfer and Ortiz, we discard 𝑆 and only use𝐻. The advantage of this
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F IGURE 9 Differences of reference solution and data-driven solution generated with a neural network, as shown and described in
Figures 1 and 8. The corresponding norms of the error are reported in Table 5.

TABLE 6 Performance of the minimization scheme. Entries of the table are of the form: relative
𝜖-error/relative 𝜎-error. We measure the quality of solutions when we switch on methods to facilitate
the minimization scheme. Two methods are investigated: (i) include the data of the reference
solution into the set of raw data, generated from random entries. (ii) Initialize the minimization
search with the reference solution. Values in the right bottom are 0.0%; the true values are of the
order 10−14 and 10−7. The errors in the bottom left are those of the last line in Table 3.

Without reference data With reference data
Without perfect initialization 14.1%/16.2% 12.9%/15.7%
With perfect initialization 4.6%/12.8% 0.0%/0.0%

method is that it evades the danger of wrong extrapolations in the learned function 𝑆 by always referencing back to the
actual material data.

5.6 Discussion of the numerical results

Let us summarize our findings. In an idealistic data-driven solver (initialization of the solver with the reference solution,
using the correct model for preprocessing the data, no stochastic perturbation), typical errors of 𝑢 are about 1%, errors of
𝜖 are about 5%, and errors of 𝜎 are about 13%. These errors are not very small.
A positive observation is that the errors are not very sensitive to the choice of the model for the data preprocessing:

With the wrong model and with the neural network, the errors are of similar order, see Tables 3–5.
Also stochastic perturbations do not have a dramatic impact. Let us recall what a factor 𝑐noise = 0.2means: In the data

set generation, we choose 𝜖 randomly, calculate the corresponding value of 𝜎, and perturb the latter by 20%. We, therefore,
consider 𝑐noise = 0.2 as a quite large perturbation. Nevertheless, the errors are still of the same order, see Figure 4.
The dependence on the size of the data set is shown in Figure 5.We observe a logarithmic dependence.We also observed

that the errors are not due to a nonoptimal coefficient 𝑐𝜂, see Figure 6.
The above observations do not clarify the source of the error, since it does neither seem to be the model, nor the noise,

nor the amount of data. To investigate the source of the error, we generated Table 6. Oneway of “helping” theminimization
algorithm is to initialize the iteration with the reference solution. We emphasize that if the algorithmwas finding optimal
solutions, this initialization would not change anything in the results. We observe that the error in 𝜖 is about a third when
a good initialization is performed. This means that, indeed, the algorithm by itself does not find good solutions.
Another test of the quality of the solver is to include the data of the reference solution in the data set. Of course, when

this is done and the iteration is initialized with the reference data, then the reference solution is found—this explains the
vanishing errors in the right bottom. Interesting is the top row: When only the reference data are included in the data
set, then errors produced by the minimization algorithm are not decreased. This is another hint that the minimization
algorithm of iterated projections is indeed performing quite poorly.
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Our conclusion is that the overall method is very promising. Storing a history surrogate and thus compressing the data
set seems to be an adequate idea in the data driven analysis of evolutionary systems. Currently, theweakness of themethod
seems to be the solver of the minimization problem.
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