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Optimizing artificial neural networks for mechanical problems by
physics-based Rao-Blackwellization: Example of a hyperelastic
microsphere model
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The Rao-Blackwell scheme provides an algorithm on how to implement sufficient information into statistical models and is
adopted here to deterministic material modeling. Even crude initial predictions are improved significantly by Rao-Black-
wellization, which is proven by an error inequality. This is first illustrated by an analytical example of hyperelasticity utilizing
knowledge on principal stretches. Rao-Blackwellization improves a 1-d uniaxial strain-energy relation into a 3-d relation that
resembles the classical micro-sphere approach. The presented scheme is moreover ideal for data-based approaches, because it
supplements existing predictions with additional physical information. A second example hence illustrates the application of
Rao-Blackwellization to an artificial neural network to improve its prediction on load paths, which were absent in the original
training process.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Incorporation of physical knowledge into data-driven methods emerged as a promising and yet challenging goal for the de-
scription of physical systems. The following references cannot provide a complete overview and must focus on single ex-
amples to at least indicate the various research areas involved in this task with a focus on artificial neural networks (ANNs)
in material modelling. Elastomeric foams have been investigated by neural networks in [1] and by data-driven constitutive
modeling with continuum-mechanics knowledge in a unified network approach in [2]. Information about the physical system
can then help to reduce the required data set [3]. The idea of exploiting physical information to reduce the complexity of the
problem at hand also relates to ideas from model order reduction, e.g., by training of scale separation [4] or reduced homog-
enization, e.g., for transient diffusion problems [5]. A hybrid multi-scale approach is used for yield-functions and evolution
equations in [6]. [7] and [8] provide a view towards experimental material data with pertinent constraints or parameter iden-
tification. Uncertain data and reliability constitute yet another critical aspect, e.g., for the design of artificial neural networks
and real-time predictions in tunnel construction [9].

Despite substantial recent developments in employing physical knowledge into ANNs, an improvement of the ANN is
usually not granted. For this reason, the present study aims at introducing the concept of Rao-Blackwellization. The so-called
Rao-Blackwell(-Kolmogorov) theorem is a statistical tool [10–13]. It nevertheless shares striking methodological similarities
with the improvement of ANNs used for deterministic problems. Firstly, Rao-Blackwellization starts from an initial estimator.
Secondly, it calls for determination of sufficient information. Thirdly, an algorithm is provided that determines an improved
estimator using knowledge about the sufficient information. This task is similar to improving an ANN with sufficient physical
information or data. The Rao-Blackwell theorem moreover introduces an error measure by which the improved estimator will
be never worse. We will hence adopt the statistical Rao-Blackwell strategy to ANN descriptions of deterministic physical
systems. More precisely, the statistical model will be replaced by a physical model. The sufficient statistical information will
be replaced by sufficient physical information on the problem at hand. The following analytical and numerical ANN examples
aim at providing a simple system to illustrate the strategy, its benefits and open questions. A more detailed background can be
found in [14] for application to deterministic multiscale problems.

2 Methodology

Having in mind an ANN for material modeling, we start from an initial prediction θ0 of an unknown quantity θ (e.g. elastic
energy) that depends on physical state ω ∈ Ω (e.g. the strain state). Moreover, we assume from a physical constraint that there
is sufficient information S for the prediction of the unknown. Note that we do not need to know how the exact relationship
θ(ω) looks like. It is just important to know sufficient information, a small information set is even welcome (e.g. assuming a
symmetric strain tensor or rotational invariants for the energy of an isotropic material).
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The aim is to find a better estimator θ1 compared to θ0. Indeed, even crude estimators may lead to a significantly improved
one. This is achieved in three steps:

1. Let θ0(ω) be any starting estimator.

2. Let S be sufficient information to determine θ.

3. Then, the new estimator is

θ1(s) = A (θ0 | S = s) =
1

|Ωs|

∫

Ωs

θ0 dω, Ωs := {ω ∈ Ω | S(ω) = s}, |Ωs| :=
∫

Ωs

1 dω. (1)

Ωs plays a key role. It is the subdomain, where S(ω) takes the constant value s. The prediction of θ shall be constant within
this subdomain, because its sufficient information is also constant. Rao-Blackwellization enforces this (physically meaningful)
behaviour by averaging over this subdomain.

Even more so, the new estimator can be proven to be never worse [10–13] in the sense of the averaged mean squared error
between the estimators and the real value of θ

1

|Ω|

∫

Ω

(θ1 − θ)2 dω ≤ 1

|Ω|

∫

Ω

(θ0 − θ)2 dω, |Ω| :=
∫

Ω

1 dω. (2)

As a first result, the concept of Rao-Blackwellization provides a strategy to incorporate physical knowledge and guarantees
to improve our initial prediction in the sense of the averaged error in Eq. (2). The following examples will illustrate these
capabilities by means of strain-dependent hyperelastic energies.

3 Analytical Example

This theoretical analysis of a hyperelastic material will show how Rao-Blackwellization can naturally motivate the concept
of micro-sphere modeling [15]. The prediction of interest is the elastic energy θ. The impact on ANNs is analyzed later.
Statistical considerations of micro-sphere modeling (such as Langevin statistics and random-walk of chain segments) are
also omitted for better distinction of physics-based Rao-Blackwellization from statistics-based Rao-Blackwellization. The
examples remain purely deterministic.

The initial estimator shall use the stretch of positive-integer powers of the right stretch tensor U in only one direction e1 as

θ0 = c0 + c1 e1 ·U · e1 + c2 e1 ·U2 · e1 + . . . =
N∑

n=0

cn e1 ·Un · e1. (3)

Using only a single stretch direction clearly constitutes a crude initial estimator, despite the approach of involving multiple
powers of U (the right Cauchy-Green tensor would be, for instance, C = U ·U =: U2). This situation may be understood
as a measurement of stretch in a predefined direction, for example, obtained from limited DIC data.

For an isotropic material, we may now assume that sufficient information is provided by knowledge of the principal
stretches

S = {λI , λII , λIII}. (4)

Note that they may belong to other directions than e1 of the initial estimator.
With the first two steps of Rao-Blackwellization available (initial estimator and sufficient information), the improved esti-

mator reads

θ1(λI , λII , λIII) = A (θ0 | S = λI , λII , λIII) =

∫
Ωs(λI ,λII ,λIII)

θ0 dω

∫
Ωs(λI ,λII ,λIII)

1 dω
=

2π∫
0

π∫
0

θ0 sinϑdϑ dφ

2π∫
0

π∫
0

1 sinϑ dϑdφ

(5)

=

N∑
n=0

cn
2π∫
0

π∫
0

[
e1 ·QT (ϑ, φ) ·Un ·Q(ϑ, φ) · e1

]
sinϑ dϑdφ

4π

=c0
1 + 1 + 1

3
+ c1

λI + λII + λIII
3

+ c2
λ2I + λ2II + λ2III

3
+ . . .

=
N∑

n=0

cn
λnI + λnII + λnIII

3
=

N∑

n=0

cn IUn . (6)

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com

 16177061, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pam

m
.202200325 by T

echnische U
niversitaet D

ortm
und, W

iley O
nline L

ibrary on [15/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



PAMM · Proc. Appl. Math. Mech. 22:1 (2022) 3 of 6

It has been used that the states, where the sufficient information of principal stretches S = λI , λII , λIII remains constant,
are just all rotations of the strain state. The hyperelastic energy must not change if the strain state is rotated. We may thus
parametrize this set of strain states by rotations Q of Un and further note that (QT ·U ·Q)n = QT ·Un ·Q.

Incorporating the principal stretches as sufficient information directly dictates an averaging over all strain directions and
Eq. (5) resembles the general microsphere averaging concept [15]. Rao-Blackwellization accordingly transforms the specific,
crude estimator θ0 into an average over all principal stretches (cf. Eq. (53) in [15] for the transformation between the second
and third line in the above equations). The new estimator in Eq. (6) hence only depends on the principal stretches or on the
first invariants IUn , respectively, see Fig. 1 for an illustration.

This example shows that Rao-Blackwellization, when applied to a physical model, has the capability to transform a crude
estimator into a physically sound improvement. A discussion on the role of different sufficient statistics or different initial
estimators unfortunately exceeds the scope of this treatise. It shall be emphasized that the presented strategy does not always
allow to interprete the new estimator on the basis of familiar physical concepts such as the microsphere model. The error
inequality in Eq. (2), however, is always guaranteed. The intention of Rao-Blackwellization is also different from proposing
classic model descriptions. Instead of developing an entire framework, it just employs an initial estimator (even an improper
one is possible) and knowledge about sufficient information on the unknowns (which is the point where the additional physics
enter the prediction). This makes it a suitable tool for situations where a complete physical framework is not provided
— especially neural networks. The following example will thus demonstrate how neural networks may benefit from Rao-
Blackwellization of physical information.

initial estimator

employs one direction

principal stretches

sufficient

improved estimator

employs average over principal directions

Fig. 1: Illustation of Rao-Blackwellization for a hyperelastic energy based on a single stretch direction. Improvement is due to sufficient
information under the assumption of rotational invariance.

4 ANN Example

Elastic energy θ of a hyperelastic material is again considered. In contrast to the previous example, the initial estimator θ0 is
now the prediction made by an ANN. To stay in line with the motivation of the analytical example, this ANN is limited on
purpose by considering deformations of the right Cauchy-Green tensor C only in one direction

θ0 = ANN (e1 ·C · e1) = ANN (C11) . (7)

Note for comparison with literature that a formulation via the left Cauchy-Green tensor b instead of C does not change the
following results, because both tensors share the same invariants and principal stretches.

The training and validation data was generated from a compressible Arruda-Boyce model [16] for the sake of illustration

ψ = D1

(
J2 − 1

2
− ln(J)

)
+ C1

5∑

i=1

αi β
i−1
(

Īi1 − 3i
)

(8)

with deformation gradient F , C = F T · F , J = det(F ), I1 = tr(C) and Ī1 = I1 J−
2
3 . The consistency condition of this

material model is fulfilled by resembling the elastic moduli in the linear case. These are based on experimental data for
silicone in [17] with a Young’s modulus of 1.5 MPa and a Poisson’s ratio of 0.49. The obtained material as well as the model
parameters are given in Table 1.
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4 of 6 Section 25: Computational and mathematical methods in data science

Parameter C1 D1 α1 α2 α3 α4 α5 β

0.4938MPa 12.5MPa 1
2

1
20

11
1050

19
7000

519
673750

1
49

Table 1: Material and model parameters of the Arruda-Boyce model.

To account for the ANN limitation to only one direction, it was trained for data pairs as a parametrization of stretches
λ11 = 0, 0.1, 0.2, . . . , 5 (λ22 = λ33 = 0) as

C11 = (1 + λ11)
2 (9)

ψ = D1

(
λ211
2

+ λ11 − ln(1 + λ11)

)
+ C1

5∑

i=1

αi β
i−1

((
λ211 + 2λ11 + 3)

(1 + λ11)
2
3

)i

− 3i

)
. (10)

Also note that the above energy is not of a simple polynomial format in terms of stretch tensors like in the analytical example
above. Neither its ANN approximation nor the subsequent Rao-Blackwellization may thus yield a concise or distinctive series
in terms of principal stretches. They will likely result in analytically cumbersome relationships. This situation is nevertheless
just beneficial for Rao-Blackwellization. It will guarantee an improved version in the sense of the error inequality, independent
of the format of the initial or the improved prediction.

We employ a simple, fully-connected feedforward neural network with three hidden layers each consisting of ten neurons
to predict the scalar energy output. The rectified linear unit is used as an activation function for every neuron. The training
process is performed via the stochastic gradient descent method with varying batch size and learning rate. The mean absolute
percentage error is applied to the loss function and input and output data is preprocessed to avoid singularities from division
by zero as well as exploding gradients.

Starting from the crude ANN, we can now set up the improved estimator as follows. Again, we assume an isotropic material
such that sufficient information is provided by knowing the eigenvalues or principal stretches, respectively,

S = {λI , λII , λIII}. (11)

Following the Rao-Blackwell procedure, the improved estimator reads

θ1(λI , λII , λIII) =

∫
Ωs(λI ,λII ,λIII)

θ0 = ANN(e1 ·C · e1) dω
∫

Ωs(λI ,λII ,λIII)

1 dω

=

2π∫
0

π∫
0

ANN
(
e1 ·QT (ϑ, φ) ·C ·Q(ϑ, φ) · e1

)
sinϑ dϑdφ

2π∫
0

π∫
0

1 sinϑ dϑdφ

. (12)

≈ 1

288

∑

ϑ∈[0, π/12, ..., π]
×φ∈[0, π/12, ..., 2π]

ANN
(
e1 ·QT (ϑ, φ) ·C ·Q(ϑ, φ) · e1

)
. (13)

Since an analytical integration of the ANN is not possible, the improved estimator is approximated by averaging representative
directions. In order to obtain these directions both angles are discretized in steps of ∆ϑ = ∆φ = π/12. This might seem
quite coarse at first sight but a convergence study showed that it is accurate enough while keeping the computational costs
reasonable. Note that the averaging has to be done for every strain state. The computational bottleneck is hence not the
evaluation of the ANN but rather rotating the deformation state in the different directions, which still remains an inexpensive
operation compared to measurements or simulations of these deformation states.

With the improved estimator θ1 at hand, four different virtual experiments shall be discussed:

a) uniaxial stretch λ11 = 0, 0.1, 0.2, . . . , 5 (λ22 = λ33 = 0)

b) uniaxial stretch λ22 = 0, 0.1, 0.2, . . . , 5 (λ11 = λ33 = 0)

c) hydrostatic expansion λ11 = λ22 = λ33 = 0, 0.1, 0.2, . . . , 5

d) simple shear F23 = 0, 0.1, 0.2, . . . , 5

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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Load case a) resembles the data the ANN was trained on. The Rao-Blackwellized ANN output, θ1, predicts smaller energies
than the initial ANN (see Fig. 2 top left). This can be explained by the fact that the initial prediction assumes all stiffness
to be oriented in e1-direction, while the improved prediction is a projection onto the microsphere of an isotropic material.
Weighting of the other directions is considered evenly for the latter. The improved ANN output accordingly yields better
predictions in other directions. Load case b), for instance, is quite similar to load case a). The only difference is that the
loading direction is e2 instead of e1. The initial ANN θ0, however, completely fails to predict a physically meaningful energy
and produces a constant zero output. In contrast, the improved version θ1 fulfills the assumption of an isotropic material and
reproduces the same energy as in load case a) (see Fig. 2 top right).

Load case c) is already invariant with respect to rotations. Therefore the initial as well as the improved estimator predict
the same energy as has been trained (see Fig. 2 bottom left and compare to θ0 top left). Load case d) represents a simple shear
test in the e2⊗e3 -plane indicated by the component F23 of the deformation gradient. Once again, the mere ANN θ0 fails to
predict a physical meaningful energy and produces a constant zero output. And again, the Rao-Blackwellized improvement
performs significantly better (see Fig. 2 bottom right).

Finally, the error inequality in Eq. (2) is guaranteed in the sense of an error average over all deformation states. The in-
terpretation of a micro-sphere approach furthermore is also still viable, even though Rao-Blackwellization of the ANN does
not allow an insight into the analytical solution. The example clearly demonstrates how neural networks benefit from Rao-
Blackwellization of physical information.
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Fig. 2: Comparison of the predicted energy ψ by the initial estimator θ0 and the improved estimator θ1 for the four different load cases. The
different deformation states are represented on the horizontal axis.
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6 of 6 Section 25: Computational and mathematical methods in data science

5 Conclusion

The presented analysis showed how the concept of Rao-Blackwellization can be adopted to deterministic physical models
and how to utilize it for ANNs. The error inequality and the requirement of sufficient information makes this approach ideal
for data-based approaches. Physical knowledge on the system allows to improve even crude initial ANNs. The analytical
example demonstrated how Rao-Blackwellization motivated the microsphere concept. The ANN example showed how a
physical meaningful prediction for new load paths can be obtained via Rao-Blackwellization, even if the load paths were not
part of the training data and also not included in the ANN structure.

Future research will continue with implications for non-academic examples and a mathematical background of the scheme.
This will allow a more detailed discussion of the role of parametrizations, the size of sufficient information sets and improve-
ment opportunities for the design of ANNs. It shall be emphasized that there are several other options to adapt neural networks
according to the Rao-Blackwell theorem, from mere averaging to generation of artificial training data or improvements of the
ANN structure. Inelastic processes such as damage will be studied in particular, utilizing sufficient material and geometric
information.
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