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Regression models are commonly applied in the analysis of transportation data. This
research aims at broadening the range of methods used for this task by modeling the
spatial distribution of bike-sharing trips in Cologne, Germany, applying both paramet-
ric regression models and a modified machine learning approach while incorporating
measures to account for spatial autocorrelation. Independent variables included in the
models consist of land use types, elements of the transport system and sociodemographic
characteristics. Out of several regression models with different underlying distributions, a
Tweedie generalized additive model is chosen by its values for AIC, RMSE, and sMAPE to
be compared to an XGBoost model. To consider spatial relationships, spatial splines are
included in the Tweedie model, while the estimations of the XGBoost model are modified
using a geographically weighted regression. Both methods entail certain advantages:
while XGBoost leads to far better values regarding RMSE and sMAPE and therefore to a
better model fit, the Tweedie model allows an easier interpretation of the influence of the
independent variables including spatial effects.

Introduction

Analysis of transportation data gives insight into the functioning of urban transport systems.
A large number of emerging shared mobility options including car-, bike-, scooter- and
e-scooter-sharing, taxis and ride-hailing services such as Uber generate usage data including
origin and destination of trips. In this research, we focus on shared micromobility services.
Analyzing starting and ending points of such trips allows to efficiently plan and manage sharing
systems (Zhao et al. 2019; Reck et al. 2021). In urban planning, origin-destination data can
be used to evaluate the usage of sharing systems in order to learn about their functionality or
to create regulations and measures that ensure an efficient integration into the urban transport
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system (Sun, Li, and Zuo 2019; Caspi, Smart, and Noland 2020; Cheng et al. 2020). The analysis
of existing bike-sharing systems can also help cities to estimate usage and locate stations or
usage areas before implementing a new system, based on the spatial features of a city (Lee and
Sener 2020).

Different statistical methods can be employed for this task. While traditionally, parametric
methods such as linear or negative binomial (NB) regression are used to model this kind of data,
machine learning methods have emerged that could potentially outperform regression models in
terms of predictive accuracy (Ramesh et al. 2021). Accuracy benefits also because of a decrease
in biases occurring when neglecting spatial structure (Dormann et al. 2007; Meyer et al. 2019),
potentially improving planning decisions. Models dealing with the spatial distribution of trip
data face three main challenges: they have to account for spatial autocorrelation and be able to
handle count data as well as overdispersion. So far, there is little research comparing parametric
and machine learning methods for the analysis and prediction of spatial bike-sharing data that
are able to meet these three requirements. Our study is novel in doing exactly this.

This article aims at comparing the predictive abilities of a parametric regression model
to those of a machine learning approach using a geographically weighted eXtreme Gradient
Boosting (XGBoost) algorithm. While a parametric regression model offers the advantage of
easier interpretability, a machine learning model may generate better predictions provided that
appropriate features are used for fitting (Sathishkumar, Park, and Cho 2020; Ramesh et al. 2021).
Therefore, the objective of this research is to compare both methods in the context of modeling
spatial count data. Among other characteristics, such as computation time and complexity of
model definition, especially the accuracy of predictions and ease of interpretation are to be
evaluated for both approaches.

In this article, the bike-sharing system of nextbike in Cologne, Germany, is examined as
a case study. The bikes are organized free-floating, allowing for flexible rental and drop-off
throughout the operation area. Usage data is freely available and was collected over a period of
five weeks in 2019. The number of bike-sharing trips that started within 100 × 100 m grid cells
is modeled as a function of various spatial factors.

While most studies applying machine learning methods on bike-sharing data deal with
the temporal modeling and forecasting of usage demand, the focus of this research lies on
spatial factors. Temporal influence factors on bike-sharing such as weekday, time of day or
weather-related factors have been extensively analyzed in other studies applying both parametric
and machine learning methods (see e.g., Gebhart and Noland 2014; Kaviti et al. 2018; Gong and
Yamamoto 2019; Sathishkumar, Park, and Cho 2020; Hu et al. 2021), while the spatial influence
factors are of interest from a geographical perspective. This is why spatial models and their
characteristics are examined in this article.

Literature review

The spatial data generated by car-/bike-/scooter-sharing systems or ride-hailing systems has
been analyzed through the application of various statistical methods that are presented in the
following. Liao and Correia (2020) present a literature review of papers that deal with electric
carsharing, e-bike- and e-scooter-sharing including a few that analyze spatial data sets.

Parametric models
Linear regression is used to investigate spatial influence factors on bike-sharing by Wang
et al. (2015) and Tran and Ovtracht (2018). Due to the distribution of the dependent variable, the
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number of trips per station or area, usually Poisson or NB regression has been found to be a more
adequate model for this task (Gong and Yamamoto 2019; Huo et al. 2021). Poisson regression
is also used to model other crowd-sourced bicycling data (Sanders et al. 2017; Roy et al. 2019).
Bai and Jiao (2020) analyze the influence of various spatial factors on scooter-sharing using NB
regression models. To account for an excess number of zeros, zero-inflated regression is used to
examine the influence of various spatial factors on car sharing in Berlin (Wagner, Brandt, and
Neumann 2016), zero-inflated NB regression is used in the analysis of bike-sharing reallocation
(Zhao et al. 2019) or other transport-related questions as well (Liu et al. 2018a).

To deal with the issue of overdispersion in the modeling of spatial count data, advanced
models have been developed, for example by Mardalena et al. (2022) and Cepeda-Cuervo,
Córdoba, and Núñez-Antón (2018). Nevertheless, the choice of distribution a model is based on
makes a difference as well. Da Silva and Rodrigues (2013) develop a geographically weighted
NB regression model and compare it to a NB and a geographically weighted Poisson regression,
proving its advantage in reducing overdispersion. Chen et al. (2020) confirm that a geographically
weighted NB model can account for overdispersion and outperforms a model based on a Poisson
distribution as well.

A large number of studies meets the issue of spatial autocorrelation through the estimation
of a Geographically Weighted Regression (GWR): Gong and Yamamoto (2019) apply a spatially
filtered NB regression model in the analysis of bike-sharing. Bao, Shi, and Zhang (2018) apply
k-means clustering on bike-sharing stations and then analyze the impact of spatial influence factors
using a GWR. Ji et al. (2018) fit a Poisson GWR to examine the influence of various spatial factors
on bike-sharing. Caspi, Smart, and Noland (2020) apply a GWR to analyze the influence of spatial
factors on e-scooter trip destinations. Perlman and Roy (2021) analyze spatial influence factors
on trips taken by Uber using a GWR. Wang et al. (2020b) apply a GWR on bike-sharing data .

Other methods to account for spatial autocorrelation include the estimation of spatial error
and spatial lag models as applied by Correa, Xie, and Ozbay (2017) to compare taxi and
Uber demand. Furthermore, Wang et al. (2021b) estimate a linear regression model with graph
regularization. Hu et al. (2021) account for spatial autocorrelation in the analysis of bike-sharing
data through the inclusion of an additive term in the Generalized Additive Model (GAM)
expressing the spatial coordinate interaction.

Several papers compare the qualities of regression methods. Sawalha and Sayed (2006) com-
pare Poisson and NB regression. Wang et al. (2015) affirm the advantages of NB regression over
log-linear ordinary least squares (OLS) regression regarding bike-sharing data. Zhang, Cheng,
and Jin (2019) compare geographically weighted OLS regression to geographically weighted
NB regression in the analysis of an origin-destination data set of traffic flows and conclude that
the NB regression performs better. Hosseinzadeh et al. (2021) compare an OLS regression to
a GWR in modeling e-scooter trips in relation to spatial influence factors. Yang et al. (2020a)
compare an OLS, a GWR and a semi-parametric GWR model to analyze spatial influence factors
on bike-sharing. Here, the semi-parametric GWR outperforms the other two models.

Machine learning approaches
Machine learning approaches are increasingly applied to model and predict usage of sharing
systems, even though most studies model the temporal distribution to predict demand over
time. Zhang et al. (2021) analyze the specific routes that are undertaken by e-scooter using a
recursive logit route choice model. Cheng et al. (2021) analyze spatial factors on car sharing
demand combining machine learning and generalized linear models and explanations based on
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SHAP values. Wang et al. (2020a) apply a long short-term memory (LSTM) recurrent neural
network in the temporal modeling of car sharing demand of different stations. Wang, Hu, and
Jiang (2021a) apply gradient boosting regression trees for the prediction of car sharing usage.
XGBoost has already been applied in the context of sharing systems as well (Sathishkumar,
Park, and Cho 2020; Yang et al. 2020b; Ramesh et al. 2021). A Kaggle competition dealt with
the modeling of daily usage in the bike-sharing system of Washington D.C., with 3,242 teams
entering the competition (Kaggle 2015). Here, the winning entry applies XGBoost to model the
bike-sharing demand (Yang et al. 2020b).

Many studies do not only implement a model using XGBoost but compare the performance
of several methods regarding computation time and modeling outcomes. Sometimes, XGBoost
is also used as a competitive reference approach when new methods are developed (Liu, Shen,
and Zhu 2018b). Ramesh et al. (2021) model bike-sharing demand at stations comparing random
forest, extreme gradient boosting, and linear regression. Here, XGBoost performs best regarding
goodness of fit which was measured using R2. Sathishkumar, Park, and Cho (2020) compare
linear regression, a gradient boosting machine, a support vector machine, boosted trees, and
XGBoost to model the temporal distribution of bike-share rentals. In this analysis, the gradient
boosting machine leads to the best results considering R2, root mean square error (RMSE), Mean
Absolute Error (MAE) and the Coefficient of Variation (CV), closely followed by XGBoost.
Yang et al. (2020b) apply a graph-based approach while also incorporating XGBoost in their
study on bike-sharing. Li and Axhausen (2019) compare a whole range of different models
including time-series models, machine learning approaches such as random forest or XGBoost,
and deep learning approaches such as LSTM recurrent neural network to model taxi demand for
two different data sets. The authors cannot determine one single best model. Instead, different
models perform best according to different evaluation metrics. XGBoost ranks among the best
models regarding computation time and symmetric mean absolute percentage error (sMAPE),
while an LSTM leads to slightly better RMSE values. Alencar et al. (2021) evaluate the qualities
of LSTM for temporal modeling of car sharing demand to several other modeling approaches
including XGBoost. Again, different methods perform best for different tasks and regarding
different performance measures (MAE and RMSE).

In sum, a vast range of methods has already been applied in the spatial modeling of different
sharing systems and there is no standard method. The choice of the best method depends on
the specific research interest and data set. Temporal and spatiotemporal models have been the
focus of recent work, but purely spatial methodology is most relevant for geographic analyses.
This article aims at comparing two methods that meet the requirements of count data, an excess
number of zeros and spatial autocorrelation simultaneously. Generalization and interpretation is
often easier based on parametric regression models, but predictive performance might be lower
compared to current machine learning methods. Based on the literature review, NB regression
and GWRs stand out among the parametric regression models. XGBoost could prove to be a
fast and accurate approach. Still, so far this method has been rarely applied in the modeling of
spatial data. The following comparison will shed light on the trade-off between computational
cost, predictive accuracy, and interpretability.

Data and methods

In the following, the generation and preprocessing of the data set used in this analysis
are presented. For preprocessing, the geographic information system ArcGIS Pro is used in
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combination with R, version 4.0.5 (R Core Team 2021), the analysis is executed in R. For data
management, the packages dplyr, lubridate, for the preparation of figures and maps,
additionally RColorBrewer, lattice, sf, and cartography are used.

Data
The study area for this research is the operating area of the nextbike bike-sharing system
in Cologne, also called flexzone. Cologne is located in the West of Germany and inhabited
by about 1.1 million residents, thus being the most populous city in the federal state North
Rhine-Westphalia (Stadt Köln 2019, p. 11). The city covers an area of about 405 km2 and
is located on both sides of the river Rhine. The nextbike flexzone covers an area of about
84 km2 in the central districts of Cologne on both sides of the Rhine. Bikes can be rented
and returned flexibly throughout this area, but cannot be dropped off in parks nor on private
property.

The data set to be modeled consists of the locations of all bikes in the nextbike system in
Cologne during the observation period from September 30, 2019, 10:46 am until November 4,
2019, 10:49 am. The data were scraped from the website https://offenedaten-koeln.de using an
excel VBA script that saved the locations every 15 min in a csv-table. All tables are combined
in R and all changes in location indicating the completion of a trip are extracted. Using ArcGIS
Pro, all spatial outliers, meaning trips that started or ended outside of Cologne, are removed.
Additionally, trips shorter than 100 m are removed to exclude especially small position changes
of parked bikes. The final data set contains 2,528,567 locations of bikes and 76,859 trips. The
operating area of nextbike is divided into 8,955 grid cells of 100 × 100 m size. Based on this,
the number of bike-sharing trips is aggregated spatially on the grid cell level and temporally
over the whole length of the observation period. The dependent variable to be modeled is the
total number of trips that started within each grid cell. Here, we find areas with low expected
counts and even potential zero inflation, because there is little demand in the outer parts of the
study area and it is not allowed to drop off bicycles within certain (parts of) grid cells due to the
coverage by buildings, water or parks. In a small number of grid cells, there is a high demand
and subsequently, there are very high trip numbers. This combination leads to overdispersion
relative to the Poisson distribution.

In the resulting data set it is not possible to detect repositioning trips made by nextbike staff.
As the share of repositioning trips among all trips in the system was found to range between 10%
and 19% in several German station-based bike-sharing systems (Rabenstein 2015, p. 138), this
should be kept in mind in the analysis of bike-sharing usage. Still, it should not have a strong
influence on the results of the subsequent analysis evaluating different modeling approaches, as
no grid cell should be disproportionally affected by this issue.

Additionally, it is possible that some trips could not be captured in our data set if a bike was
dropped off and picked up again within less than 15 min. The duration between drop off and the
next pick up of a shared bike has been defined as time to booking (ToB) (Guidon, Becker, and
Axhausen 2019). This value strongly varies between bike-sharing systems, depending on the
usage rate. In a free-floating e-bike-sharing system in Zürich, the average ToB amounts to 10.6
h, while in a bike-sharing system in Shanghai, ToB lies at 175.1 mins and in 35% of all times,
bikes are rented again less than 10 min after drop off (Guidon, Becker, and Axhausen 2019;
Li et al. 2020). Here, each bike is used 3.98 times a day on average, compared to 1.98 times
in Cologne. The ToB lies at approximately 8.6 h. Therefore, we can expect only a small
rate of missed trips. Since the proportion of missed trips can be assumed to grow with the
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demand in a grid cell, especially in grid cells with a high demand individual trips might have
been missed. Nevertheless, it should not strongly distort the measured trip numbers for certain
grid cells.

For evaluation purposes, the data is split into a training and a test data set that contain
approximately the same number of trips using the 3,263 different times of observation. All
trips that started during the first time of observation are assigned to the training data set,
trips that started during the second period 15 mins later are assigned to the test data set.
Subsequently, all trips are assigned alternating with every time of observation, until the second
last time, as it is not possible to observe new (completed) trips starting in the last time of
observation. Therefore, each data frame contains the trips starting in 1,631 different times of
observation. There are 38,875 trips included in the training data set and 37,965 trips included
in the test data set. For both data sets, the number of trips that started through the whole
observation period are summarized per grid cell. The training data set is used to train the models,
while the test data set is used to generate predictions that can be compared to the observed
values.

A range of possible spatial influence factors on bike-sharing is selected based on previous
research (Tran and Ovtracht 2018; Yang et al. 2021). A complete list and data sources are
included in Appendix S1. Different land uses might support bike-share usage or prevent to drop
off bikes altogether (Hu et al. 2021). Therefore, the shares of different types of land use of each
grid cell as defined in the Flächennutzungsplan = land use plan (FNP) of Cologne are included
in the analysis. The share of green spaces and buildings is included as it is not allowed to drop
off bikes in parks or on private property. Previous studies registered a higher usage in or near the
central business district or in the vicinity of certain Points of Interest (POI) (Wang et al. 2015).
Therefore, the number of shops, food outlets and bars is included as an indicator of centrality.
All three types of POI are combined to avoid high multicollinearity of the original variables.
Additionally, various other types of POI are considered, each variable representing the number
of POI within 3 × 3 grid cells to include a larger radius, similar to Tran and Ovtracht (2018);
Zhao et al. (2019).

Due to benefits for university students, bike-sharing can be observed to be frequently used
by students (Tran and Ovtracht 2018). To incorporate this effect, the distance to universities is
included. A similar effect can be expected for light rail stations, as there are tariff benefits for
long-term ticket holders and in general, a connection between public transit and bike-sharing
could be found in previous research (Tran and Ovtracht 2018; Zhao et al. 2019). Closeness to
water bodies is assumed to enhance bike-share usage as well (Wang et al. 2015). As a higher
population density implies a higher number of potential users, it is also included (Tran and
Ovtracht 2018). Other sociodemographic variables are the number of shared flats that might
serve as a proxy for the number of students living within grid cells and the age distribution
as bike-share usage was found to vary over age (Wang et al. 2015). Here, the age group of
people older than 64 years is excluded as it can be deduced from the shares of the other age
groups.

The majority of variables is defined as shares (land uses, age groups), ranging from 0 to 1.
Distances (in metres) were divided by 1,000 and set to 1 if the closest object of the corresponding
category lies farther away than 1,000 m as we assume that higher distances do not make a
further difference and this allows us to avoid outliers. Only the numbers of POI, population and
shared flats are retained as counts as there is no natural limit. The coordinates are defined in the
coordinate system ETRS89/UTM zone 32N.
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Methods
In the following, an overview of parametric regression models and their modifications in the
modeling of spatial data is given. Then, the general functioning of the XGBoost algorithm is
outlined and methods for parameter tuning, model validation, and interpretation are presented.

Parametric regression methods
The relationship between a response variable Y with mean 𝜇 and p explanatory variables
X1, ...,Xp is to be modeled. For each observation i, i = 1, ..., n, corresponding values of Y and
the covariables xi = (xi1, ..., xip) ∈ R

p are in the data set.
Out of several different parametric regression models that were fit to the data set, a Tweedie

model with spatial splines generated the best results. Therefore, the methods applied in the
estimation of this model are presented in detail. The characteristics of the other two approaches
used in the regression analyses are displayed in Table 1. For the estimation of Generalized
Linear Models (GLMs), the packages MASS and glmmTMB (in combination with buildmer
for variable selection) are used.

Tweedie distribution
Let be Y a variable following a Tweedie distribution with Tweedie index parameter
𝜉 ∈ R, 𝜉 ∉ (0, 1), scale parameter 𝜙, E(Y ) = 𝜇 and variance Var(𝜇) = 𝜇𝜉 (Wood 2017, p. 115).
If 𝜉 > 1, then 𝜇 > 0. If 1 < 𝜉 < 2, the variable Y can also be described as a sum of N ∼ Poi(𝜆)
gamma random variables with closed form expressions for 𝜆 and the two parameters of the
gamma random variables in terms of the Tweedie distribution parameters. If 𝜉 ≤ 1 or 𝜉 ≥ 2, let
be 𝛼 = 2−𝜉

1−𝜉 and a(y, 𝜙, 𝜉) = 1
y

∑∞
j=1 Wj where

log(Wj) = j

(

𝛼 log(𝜉 − 1) −
log(𝜙)
𝜉 − 1

− log(2 − 𝜉)
)

−log(Γ(j + 1)) −log(Γ(−j𝛼)) − j𝛼 log(y).

Then, in all other cases, the density of Y can be described as follows (Dunn and Smyth 2005;
Wood 2017):

f (y) = a(y, 𝜙, 𝜉) exp

[
𝜇

1−𝜉

𝜙

(
y

1 − 𝜉
− 𝜇

2 − 𝜉

)]

.

Table 1. Characteristics of parametric regression methods

Poisson NB

PMFa f (y) = 𝜆
y

y! e
−𝜆 f (y) =

Γ
(

y+ 1
𝛼

)

Γ(y+1)Γ
(

1
𝛼

)
(

1
1+𝛼𝜆

) 1
𝛼

(
1 − 1

1+𝛼𝜆

)y

Parameters 𝜆 > 0 𝜆 > 0, 𝛼 > 0
Parameter space Y ∈ N Y ∈ N

E(Y ) 𝜆 𝜆

Var(Y ) 𝜆 𝜆 + 𝜆
2

𝜃
, 𝜃 = 1

𝛼

Link function log log
Estimation method Maximum likelihood Maximum likelihood
Reference Hilbe (2011, p. 30f.) Hilbe (2011, p. 189f.) and

Wollschläger (2014, p. 313)

a Probability mass function.
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Additive models
A GAM is a semi-parametric model that allows to integrate smooth functions of variables as
part of the predictor variables (Wood 2017, p. 161). For Y , an exponential family distribution
and a smooth monotonic link function g is specified. GAMs are estimated using the package
mgcv.

Following the notation in Wood (2017, p. 249) we let Ai denote the ith row of a parametric
model matrix, with corresponding parameters 𝜸, fj a smooth function of a covariate xj, and
EF(𝜇i, 𝜙) an exponential family distribution with mean 𝜇i and scale parameter 𝜙. Then, a GAM
can be described by the following model structure:

g(𝜇i) = Ai𝜸 +
p∑

j=1

fj(xji), yi ∼ EF(𝜇i, 𝜙).

A smooth function f ∈ S, with S being the space of smooth functions, can be defined
as follows. Let be {b1(x), … , bk(x)} a basis of S and 𝛽1, … , 𝛽k the unknown parameters
(Wood 2017, p. 162). Then

f (x) =
k∑

j=1

bj(x)𝛽j.

Smooth functions allow to examine variables that have a nonlinear effect on the data. A
higher k allows higher wiggliness. In this analysis, penalized thin plate regression splines are
applied that are based on thin plate splines. To ensure that the model is identifiable, each function
sums to zero over the observed variable values.

GAMs are usually fit by penalized iteratively re-weighted least squares (PIRLS) including
a penalty for the wiggliness of each smooth function (Wood 2017, p. 249). For smooth-
ing parameter estimation, restricted maximum likelihood (REML) is applied as it allows to
estimate all models using the same method in mgcv. It is estimated using a Laplace approx-
imation for REML. This method is chosen because of its ability to reduce bias (Wood 2017,
p. 83).

For variables that enter a model as a smooth term, multiple coefficients are estimated, one
for each basis function. To enable an easier interpretation, the estimated effect of the component
smooth functions is plotted on the scale of the corresponding predictor (Wood 2017, p. 183f.).
Additionally, confidence intervals as Bayesian credible intervals for the standard errors and the
partial residuals are plotted (Wood 2017, p. 293). Partial residuals are defined as the residuals
that are produced by the model without the variable under consideration, while keeping all other
estimates fixed (Wood 2017, p. 183f.).

Spatial autocorrelation
The nature of the data set as a spatial grid poses the problem of spatial autocorrelation. Due to
the first law of geography “everything is related to everything else, but near things are more
related than distant things” (Tobler 1970), it can be assumed that there are interdependencies
between grid cells in spatial vicinity. This means that the observations are not fully independent.
Therefore, models should control for spatial autocorrelation.

In the case of GAM, a two-dimensional smooth term f (x, y) based on the x- and y-coordinates
of each grid cell’s centroid can be integrated in the model to account for spatial interdependencies
(Wood 2017, p. 175). This procedure implies the generalization of x- and y-coordinates as an
isotropic coordinate system (Wood 2017, p. 359).
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Schimohr et al. Prediction of Bike-Sharing Trip Counts

XGBoost algorithm
XGBoost is designed as a scalable machine learning system for gradient boosting that is based
on the idea of decision trees. A tree ensemble model is trained applying boosting. Among a range
of modeling options, XGBoost can be applied for Poisson regression and Tweedie regression
(Chen et al. 2021). It is executed in R using the xgboost package.

A decision tree consists of nodes each leading to two different branches, ending in terminal
nodes/leaves. Formally, the feature space is subsequently split into disjoint regions R1, ...,Rm,
m ∈ N. For the evaluation of splits, the residual sum of squares (RSS) is used. Starting with the
complete data set, in each step, the binary split is chosen that brings the greatest improvement to
the RSS of the model (Lesmeister 2017, p. 146). The prediction for a new observation can be
calculated as the mean over all yi in the same terminal node j, j = 1, ...,m, with Nj = |Rj| (e.g.
Huang et al. 2020):

ŷj =
1
Nj

∑

xi∈Rj

yi.

In a tree ensemble model, predictions are estimated based on the explanatory variables
using K ∈ N additive functions in the following manner (Chen and Guestrin 2016). Let be
 = {f (x) = wq(x)}(q ∶ R

p → T ,w ∈ R
T ) the space of regression trees, q the structure of each

tree, T the number of leaves in the tree and w the leaf weights, where wi stands for the score on
the ith leaf. Then:

ŷi = 𝜙(xi) =
K∑

k=1

fk(xi), fk ∈  .

As a decision tree on its own can suffer from overfitting, measures to lower the variance
are taken (Lesmeister 2017, p. 148). In XGBoost, instead of the RSS the following regularized
objective is minimized, where l stands for a differentiable convex loss function to measure
the difference between observed yi and predicted values ŷi, i = 1, ..., n. Ω(f ) = 𝛾T + 1

2
𝜆||𝜔||2

is added as a regularization term that penalizes complex models to prevent overfitting, where
𝛾 ∈ [0,∞) and 𝜆 ∈ [0,∞) can be adapted (Chen and Guestrin 2016):

(𝜙) =
n∑

i=1

l(yi, ŷi) +
K∑

k=1

Ω(fk).

This tree ensemble model is trained in an additive procedure (Chen and Guestrin 2016).
Formally, in the tth step, ft is added to minimize, where ŷ(t)i represents the prediction determined
in the tth iteration.


(t) =

n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft).

In addition to regularization, shrinkage and column subsampling are applied to avoid overfitting
(Chen and Guestrin 2016). In shrinkage, the weights added to the model are scaled by a factor
𝜂 ∈ [0, 1], the shrinkage parameter, after each step of tree boosting, thus reducing the influence
of individual trees. Column subsampling describes the process of building each tree on a subset
of all features. Additionally to prevent overfitting, this also enhances computation speed. Next
to these critical tuning parameters, further parameters governing the trees’ construction can be
tuned in the XGBoost implementation (Chen et al. 2021), and we discuss the tuning process in
the results section.
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Geographical Analysis

Importance plots
Importance plots offer the best visual option to interpret the result of an XGBoost model. It can
be distinguished between gain (relative contribution of a model parameter), cover (the relative
number of observations that are related to this feature) and frequency (the relative number of
how many times a parameter is included in splits of trees). All three measures assume values
between 0 and 1, the values for all features sum up to 1. Parameters with higher values are more
important for the model (Chen et al. 2021).

Geographically weighted XGBoost
XGBoost does not account for spatial interdependence. Therefore, a GWR is calculated using
the geo-referenced predictions made by an XGBoost model as input data, following the approach
of Li (2019). The predictions ŷi, i = 1, ..., n are of interest, they are the final predictions of the
model. This method is used to include spatial variation and to create smoother predictions. The
package spgwr is applied for this task.

GWR is implemented using a function K (Kernel function) that describes the spatial
relationship of observations and meets the following criteria (Brunsdon, Fotheringham, and
Charlton 1998):

• K(0) = 1
• limd→∞K(d) = 0
• K(d1) > K(d2), ∀ d1 < d2, d1, d2 ∈ R

+

K is used to calculate the weight 𝛼ij of each observation i to another observation j based on
the distance metric dij between these two observations: 𝛼ij = K(dij). In this case, a Gaussian
distance-decay based weighting is chosen using the following function, where h ∈ (0,∞) stands
for the bandwidth (Bivand and Yu 2020):

K(dij) = e−(dij∕h)2∕2 = 𝛼ij.

For each observation i, i = 1, ..., n, a weight matrix Wi is calculated whose main diagonal
contains the weights that are applied to estimate a weighted regression for this observation.
This is used for the estimation of the 𝛽-matrix, created column by column from (Brunsdon,
Fotheringham, and Charlton 1998):

�̂� i = (X′WiX)−1X′Wiy.

For the selection of an adequate bandwidth h, least squares cross-validation can be applied.
The cross-validated sum of squared errors can be defined as a function of h considering the
predictions ŷi(h) determined using this bandwidth: CVSS(h) =

∑n
i=1 (yi − ŷi(h))2. Here, the ith

observation is excluded from the model to prevent that the minimal value lies at h = 0. CVSS(h)
should be minimized (Brunsdon, Fotheringham, and Charlton 1998).

Error measures
There are several measures that can be applied to compare the quality of two different models.
The Akaike Information Criterion (AIC) is used for feature selection in parametric regression
models, while the sMAPE and RMSE are calculated to compare the predictions of the parametric
regression and the XGBoost model. As the literature does not agree on a single best performance
metric, two regularly applied metrics are selected for this task (Botchkarev 2018).
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Schimohr et al. Prediction of Bike-Sharing Trip Counts

Symmetric mean absolute percentage error
The sMAPE can be calculated as follows for a data set including n observations yi and predictions
ŷi, i = 1, ..., n. c is a small positive constant (Li and Axhausen 2019), and we use c = 1 here:

sMAPE = 1
n

n∑

i=1

|
|yi − ŷi

|
|

yi + ŷi + c
.

This definition slightly differs from the original definition of this measure by Arm-
strong (1985). First, the denominator is not divided by 2 to allow for an easier interpretation.
Second, following Li and Axhausen (2019), the constant c is included to prevent division by
zero that could otherwise occur if both observed and predicted value equal zero. The sMAPE is
a dimensionless, percentage-error metric (Botchkarev 2018). Smaller values indicate a better fit.

Results

In the following, the results of the analysis are presented, starting with a descriptive analysis
of the data set. Then, the chosen parametric regression model and the XGBoost model are
characterized, including residuals and predictions. Finally, both models are compared.

Descriptive analysis
The mean number of trips per grid cell is 8.52. For 3,218 of 8,955 grid cells, 0 trips were observed,
the maximum number is 329. There are several upper extreme values and the distribution of
observed values is right-skewed.

The spatial distribution of the observed trip counts for each grid cell is depicted in Figure 1.
It becomes apparent that many grid cells with zero trips appear clustered in the outer areas of
the study area, especially in the northern part. In the central areas, trip numbers are rather high
on average. Apart from that, several large clusters of grid cells with higher values are visible
that are dispersed throughout the study area or lie along certain lines. Single cells where higher
numbers of trips could be observed appear infrequently also in the outer areas.

The spatial distribution of all measured values per grid cell in the training data is presented in
Figure 2 and the one of the test data in Figure 3. These figures indicate that the spatial distribution
of trip counts in the total data could be preserved in both data sets. The mean number of trips per
grid cell is 4.31 in the training data set and 4.21 in the test data set, the maximum counts lie at
167 and 168, the number of grid cells where 0 trips started are 3,878 and 3,954, respectively.

Independent variables
The main metrics of the independent variables used in the modeling of the trip numbers per grid
cell are presented in the following Table 2. All variables assume nonnegative values, most of
them are continuous. The variables representing the number of different POI nearby are count
variables and therefore discrete. Still, most POI occur rather infrequently causing all mean values
to lie below 1. Only shops, food outlets, bars amounts to a much higher mean of 5.55. The
variables population and shared flats are discrete as well. x- and y-coordinate are measured as
UTM coordinates and can be treated as continuous in the analysis.

Independent variables that exhibit the strongest correlations with the trip count regarding the
Bravais-Pearson correlation coefficient are shops, food outlets, bars (0.40), university (−0.32),
shared flats (0.31), buildings (0.30), population (0.28), light rail (−0.26), FNP 1 (0.23), hotels
(0.22), and 18–29 years (0.21).
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Figure 1. Spatial distribution of the number of trips per grid cell.

High correlations between independent variables can be avoided to a large part. The
strongest correlations occur especially between shops, food outlets, bars and a small number of
other variables. The two highest correlations lie at 0.61 and 0.57, the correlations of 12 other
variable combinations lie between 0.4 and 0.5. But all in all, correlations between the independent
variables are rather low, most of them lie between −0.2 and 0.2, a majority even between −0.1
and 0.1.

Parametric regression model
In the following, the different metrics resulting from the various parametric regression models
that were considered in the process are presented. Based on this, the model producing the most
adequate predictions of the test data set is chosen and presented in further detail.

For the selection of parameters to be included in the models, two different approaches are
used. As 41 possible parameters (plus in some cases x- and y-coordinate) were assessed in the
different models, parameters are selected through stepwise forward selection minimizing the
AIC for the models estimated in MASS and glmmTMB.

When estimating a model with smooth parameters in mgcv, it is possible to add an extra
penalty that penalizes functions in the smoothing penalty null space (Wood 2017, p. 214).
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Figure 2. Spatial distribution of the number of trips per grid cell in the training data set.

This allows to completely exclude single parameters. Therefore, the models estimated using the
package mgcv use smooth terms for all variables to enable variable selection. To choose an
adequate value for the number of basis dimensions k for each variable, multiple models including
all possible variables are estimated starting with k = 3 for all. Then, k is successively increased
until sufficient. In the final models, k = 400 is defined as the upper limit for the interaction of
both coordinates, k = 15 for the variables shops, food outlets, bars, and light rail, k = 10 for
most other variables and k = 3 for variables that assume 20 or less unique values. Then, the
influence of all variables on the model is evaluated as a combination of significance in the model
summary, effective degrees of freedom (edf) and the structure of the partial residual plot. Those
variables that are insignificant, have low edf values < 1 and/or where the partial influence plot
shows a straight line at 0, are removed from the full model. This allows to improve the AIC even
more. The resulting AIC, RMSE and sMAPE of all six parametric regression models considered
are presented in the following Table 3.

The comparison of the three different measures does not lead to a clear decision: The NB
models with zero inflation or spatial splines and the Tweedie model with spatial splines result
in the lowest AIC values, while the Poisson model with zero-inflation and spatial splines leads
to a far higher AIC in comparison to all other models. Nevertheless, the latter model is rather
successful at predicting the values of the test data set regarding the RMSE, which is the lowest
of all models. The second best RMSE is generated by the Tweedie model with spatial splines,
while the NB model with spatial splines produces the third best. The RMSE of the NB model in
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Figure 3. Spatial distribution of the number of trips per grid cell in the test data set.

MASS that performs well considering AIC lies much higher than those of all other models. Also
regarding sMAPE, the three models estimated in mgcv perform best, all leading to sMAPE =
0.33. The three other models generate similar values as well, but considerably higher (sMAPE
= 0.39/0.40). The different ratings indicate the importance of using more than one performance
measure.

All three measures combined, the three models estimated in mgcv outperform the models
estimated in MASS and glmmTMB. Both the zero-inflated Poisson model and the NB model with
spatial splines lead to an especially high value for one measure (AIC and RMSE, respectively),
while the Tweedie model performs consistently well considering all three measures. Therefore,
this model is chosen to be compared to the XGBoost model and will be presented in further
detail in the following section.

Model results
The parameters estimated for the selected variables in the Tweedie model with spatial splines
in mgcv are specified in Table 4. As this research focuses on the comparison between this
model and the XGBoost model, the interpretation of model parameters focuses mainly on the
plausibility of the selected parameters’ influences on bike-sharing usage.

For the intercept, the usual regression output is displayed, while the output differs for smooth
terms. For these variables, edf and test statistics used in an Analysis of Variance (ANOVA) test
to test the significance of the smooth are displayed. The edf indicate the complexity of a smooth.
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Schimohr et al. Prediction of Bike-Sharing Trip Counts

Table 2. Minimum, Mean x, Maximum and SD s for the Independent Variables Used in the
Analysis, for All n = 8,955 Grid Cells

Variable Min. Mean Max. SD

Trip count 0.00 8.52 329.00 18.01
Train trip count 0.00 4.31 167.00 9.19
Test trip count 0.00 4.21 168.00 9.06
FNP 0 0.00 0.29 1.00 0.40
FNP 1 0.00 0.09 1.00 0.26
FNP 2 0.00 0.05 1.00 0.18
FNP 3 0.00 0.09 1.00 0.25
FNP 4 0.00 0.02 1.00 0.14
FNP 8 0.00 0.01 1.00 0.07
FNP 9 0.00 0.00 1.00 0.03
FNP 11 0.00 0.03 1.00 0.12
FNP 12 0.00 0.05 1.00 0.18
FNP 13 0.00 0.05 0.99 0.12
FNP 15 0.00 0.01 1.00 0.06
FNP 16 0.00 0.01 1.00 0.08
FNP 17 0.00 0.04 1.00 0.17
FNP 18 0.00 0.00 0.60 0.01
FNP 21 0.00 0.00 0.97 0.02
Green spaces 0.00 0.16 1.00 0.30
Buildings 0.00 0.20 1.00 0.18
Shops, food outlets, bars 0.00 5.55 204.00 15.14
Health care facilities 0.00 0.17 14.00 0.67
Schools 0.00 0.17 5.00 0.49
Kindergartens 0.00 0.38 5.00 0.68
Museums 0.00 0.04 5.00 0.27
Event venues 0.00 0.08 5.00 0.36
Libraries 0.00 0.03 4.00 0.23
Public institutions 0.00 0.02 4.00 0.16
Sports facilities 0.00 0.11 7.00 0.40
Tourist attractions 0.00 0.21 10.00 0.77
Hotels 0.00 0.06 4.00 0.30
Places of worship 0.00 0.04 3.00 0.22
Playgrounds 0.00 0.15 4.00 0.44
University 0.00 0.78 1.00 0.32
Bus 0.00 0.24 1.00 0.20
Light rail 0.00 0.38 1.00 0.28
Arterial road 0.00 0.14 1.00 0.19
Water 0.00 0.68 1.00 0.33
Population 0.00 61.22 581.00 84.29
Shared flats 0.00 14.38 147.00 18.70
0–17 years 0.00 0.10 1.00 0.09
18–29 years 0.00 0.13 1.00 0.12
30–49 years 0.00 0.26 1.00 0.19
50–64 years 0.00 0.12 1.00 0.10
x-coordinate 350,164.68 355,322.69 361,764.68 2,659.74
y-coordinate 5,639,809.24 5,645,988.98 5,652,009.24 2,992.29
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Geographical Analysis

Table 3. AIC, RMSE und sMAPE of the Parametric Regression Models

Model (package) AIC RMSE sMAPE

NB model (MASS) 37454.08 9.17 0.39
Tweedie model (glmmTMB) 38473.29 7.82 0.40
NB model with zero-inflation (glmmTMB) 37086.04 8.36 0.39
Poisson model with zero-inflation and spatial splines (mgcv) 46736.67 6.05 0.33
NB model with spatial splines (mgcv) 35768.09 7.63 0.33
Tweedie model with spatial splines (mgcv) 36401.62 6.58 0.33

Table 4. Estimate, SE, t value and P-Value for the Intercept and edf, ref.df, F and P-value for
All Variables Included in the Model as Smooth Terms

Variable Estimate SE t value P-value
Intercept 0.53 0.02 27.85 <0.01
Variable edf ref.df. F P-value

FNP 0 3.21 9.00 4.56 <0.01
FNP 2 5.43 9.00 5.05 <0.01
FNP 3 1.45 9.00 1.36 <0.01
FNP 8 2.00 9.00 0.98 <0.01
FNP 12 6.56 9.00 8.03 <0.01
FNP 13 4.13 9.00 4.27 <0.01
FNP 15 1.76 9.00 3.39 <0.01
FNP 17 3.92 9.00 6.48 <0.01
Buildings 6.52 9.00 10.32 <0.01
Tourist attractions 0.95 2.00 9.10 <0.01
Shops, food outlets, bars 8.54 14.00 10.45 <0.01
University 7.48 9.00 8.46 <0.01
Arterial road 5.85 9.00 2.99 <0.01
Bus 7.07 9.00 21.94 <0.01
Light rail 12.01 14.00 22.24 <0.01
Water 5.63 9.00 3.40 <0.01
Green spaces 5.89 9.00 9.45 <0.01
Population 2.40 9.00 14.59 <0.01
18–29 years 2.91 9.00 4.06 <0.01
x- and y-coordinate 215.10 399.00 3.65 <0.01

If edf = 1, the smooth can be represented as a straight line, modeling a linear term, while higher
values indicate a higher wiggliness. The reference degrees of freedom (ref.df) used in computing
test statistics represents k − 1, k being the number of basis dimensions specified in the model. F
and the corresponding P-value represent the results of the ANOVA test.

In the variable selection process, the following were excluded from the model: FNP 1,
FNP 4, FNP 9, FNP 11, FNP 16, FNP 18, FNP 21, health care facilities, schools, kindergartens,
museums, event venues, libraries, public institutions, sports facilities, hotels, places of worship,
playgrounds, shared flats, 0–17 years, 30–49 years, and 50–64 years. All smooth terms are
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Schimohr et al. Prediction of Bike-Sharing Trip Counts

individually significant at a 95% confidence level, which underlines the value of the selected
variables. The edf vary strongly between variables, ranging from 0.95 (tourist attractions) to
215.10 (coordinates). The high edf estimated for the coordinates indicate the presence of an
influence factor that has been left out of the model so far or alternatively that there are strong
spatial correlations between the observations. Other variables with high values for edf are FNP
2 (5.43), FNP 12 (6.56), buildings (6.52), shops, food outlets, bars (8.54), university (7.48),
arterial road (5.85), bus (7.07), light rail (12.01), water (5.63) and green spaces (5.89). In
combination with the significant P-values, these indicate a nonlinear influence of the variables
on bike-sharing.

The direction of these relationships can be further interpreted visually through plots that
display the partial effects for a smoothed variable. 95% pointwise confidence intervals and
partial residuals are included as well. The partial effect plots of all variables are included in
Appendix S1.

To assess whether k is chosen adequately for each variable, the k are compared to the edf
as the edf values should be considerably lower. Here, Table 4 can be consulted again. None of
the estimates for edf comes close to the value of the corresponding k suggesting that all k are
sufficiently high. A visual interpretation of the partial effect plots underlines the adequacy of the
selected k, as no partial residuals indicate that a higher wiggliness ist needed.
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Figure 4. Residuals in the Tweedie GAM with spatial splines.
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Geographical Analysis

In Figure 4, the residuals of the fitted values for the number of bike-sharing trips per grid
cell in the training data set are displayed spatially, each grid cell representing the residual value
calculated for this observation. As all residuals lie between −1.49 and 2.82, the observations of
the training data set can be modeled quite well. In total, the conditional distribution of the model
is still overdispersed, even though variables for points of interest are included. But in comparison
to an intercept only model, a high share of the variance and overdispersion can be captured
by the covariates. Especially in the central parts, high numbers are successfully estimated. The
residuals appear in a mixed structure and the absolute value of most residuals is less than 1. In
the outer areas, where 0 trips occur in most grid cells, the number of trips is often overestimated.

Predictions
The predicted number of bike-sharing trips per grid cell based on the data set is shown in Figure 5.
Here, it becomes apparent that visually, there are strong similarities between the predictions and
the observed values depicted in Figure 3. Especially in the central areas, high numbers of trips
(maximum: 92) are predicted, while zero trips are predicted in the outer areas, especially in the
northern part.
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Figure 5. Predictions of bike-sharing trip counts determined by the Tweedie GAM with spatial
splines.
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Schimohr et al. Prediction of Bike-Sharing Trip Counts

All in all, the chosen GAM, a Tweedie regression with spatial splines estimated in mgcv,
performs well at modeling the test data set and offers informative means of interpretation.

XGBoost model
One of the major advantages of XGBoost, its flexibility to be applied on a wide range of data
sets, leads to the necessity of hyperparameter tuning to adjust the model to the specific data set. It
is possible to estimate XGBoost models without hyperparameter tuning using the default values
instead, but the adjustment leads to much more appropriate models (Ryu, Shin, and Chung 2020).
While there are over 30 hyperparameters in XGBoost, it is sufficient to tune a much smaller
number, outlined in the following. Further descriptions of the parameters that are tuned are
included in Appendix S1.

As general model settings, booster = "gbtree", eta = 0.3, eval_metric =
"rmse" in combination with maximize = FALSE and early_stopping_rounds = 10
are chosen.

Both objectives count:poisson and reg:tweedie are included in the analysis to
determine whether a Poisson or Tweedie model generates more accurate results. For each
objective the same two-step process is applied: first, the optimal number for nrounds is
determined through cross-validation using the default values for the XGBoost model. The data
is randomly split into five equal-sized subsamples and the RMSE is aimed to be lowered as
much as possible. This leads to nrounds= 57 for the Poisson model and nrounds= 36 for
the Tweedie model. Using these values in combination with the default parameters, two models
are fit leading to an RMSE of 3.63 (training data), 3.99 (test data) for the Poisson model and
4.28 (training data), 4.46 (test data) for the Tweedie model.

The parameters max_depth, gamma, subsample, colsample_bytree, and
min_child_weight are optimized in a second step applying a grid search approach. Besides
random search this method is frequently used for hyperparameter optimization (Putatunda and
Rama 2018). While random search estimates a large number of models using randomly chosen
parameters, in grid search a grid of all combinations of defined values for the parameters is
created and for each combination a model is estimated. This allows to select the hyperparameters
of the best model. For the parameters to be optimized, the following values are considered,
mostly based on Huang et al. (2020):

• max_depth ∈ {3, 8, 13, 18, 23, 28, 33, 38}
• gamma ∈ {0, 0.05, 0.1, 0.15, 0.2}
• subsample ∈ {0.5, 0.6, 0.7, 0.8, 0.9}
• colsample_bytree ∈ {0.5, 0.6, 0.7, 0.8, 0.9}
• min_child_weight ∈ {0, 10, 20, 30, 40, 50, 60, 70, 80, 90,100}

This combination of parameter values requires the estimation of 11,000 models. Additional
parameters could be tuned as well, but as the tuning of the chosen set of hyperparameters
already leads to sufficiently small RMSE values, tuning is limited to these. As the RMSE
values produced in the grid search for the Poisson models are much smaller on average than
those of the Tweedie models, the Poisson model is chosen. This process leads to the following
parameters for the Poisson model minimizing the training data RMSE that reach the values
RMSE= 2.97 (and an extremely low RMSE= 0.10 for the training data) and sMAPE= 0.19 for
the test data: max_depth= 33, gamma= 0, subsample= 0.9, colsample_bytree= 0.5,
min_child_weight= 0, nrounds= 57. Additionally, in xgb.train(), the parameter
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Geographical Analysis

early_stopping_rounds is set to 10, causing the model training to stop if the RMSE has
not improved in the last 10 rounds. This measure will potentially speed up the fitting process.

One reason for the extremely low RMSE that can be reached by the model may lie in the
spatial structure of the data, where each grid cell can be identified by its unique combination
of x- and y-coordinate. A machine learning model could theoretically achieve a perfect fit
if it links these combinations to the values of the dependent variable. Several measures are
taken to prevent this. First, XGBoost includes different types of subsetting (subsample = 0.9,
colsample_bytree= 0.5), and single trees are limited in depth (max_depth= 33).

Model results
In the following, the importance plots of the features included in the model are illustrated to
allow an interpretation regarding the impact of each variable. First Figure 6 represents the gain
scores of each variable. Here, it is visible that the variables shops, food outlets, bars, and light
rail contribute most to the model accuracy, followed by university and buildings. Regarding the
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Figure 6. Importance plot of the features in the XGBoost model – gain.
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Figure 7. Importance plot of the features in the XGBoost model – frequency.

frequency of each variable to be used in trees shown in Figure 7, the plot exhibits a slightly
different structure: the variable FNP 0 representing the share of residential building land is used
most often, followed by buildings, light rail and bus. All other variables contribute considerably
less to the model. Figure 8 presents the number of observations that are related to the variable
considered. According to this measure, light rail is the variable with the highest score, followed
by x-coordinate, 30–49 years, 50–64 years, bus and buildings. Several other variables exhibit
only slightly lower scores.

Although the most important variable is a different one for each plot, it becomes apparent
that some variables reach high scores in all three methods to assess importance. All three plots
combined, especially the variables light rail, buildings and bus rank among the highest ones,
arterial road and green spaces rank consistently high as well. Some other variables, such as
shops, food outlets, bars, university, y-coordinate, population reach extremely high values in one
category and rank in the middle for the other two. Especially regarding the variable FNP 0 it
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Figure 8. Importance plot of the features in the XGBoost model – cover.

becomes apparent that the evaluation of importance is not consistent through all three plots:
While it ranks as the variable with the highest importance by far regarding frequency (Figure 7),
it reaches only much lower ranks considering the other two measures.

In all three plots, the variable that is of smallest importance for the model is FNP 18, the
share of a certain type of special building land, contributing close to nothing to the model. Other
variables that rank very low are FNP 21, FNP 9, museums, places of worship, sports facilities
and public institutions. This finding matches to the result of the Tweedie GAM, where FNP
18 is the first variable to be excluded from the model and all other variables mentioned are
removed as well. Most other variables that are excluded in the GAM reach values in the bottom
and middle ranges in the importance plots. But also differences become apparent that illustrate
the differences between both methods: The variables shared flats and 0–17 years, 30–49 years,
50–64 years that are excluded in the GAM reach high importance values in XGBoost.
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Schimohr et al. Prediction of Bike-Sharing Trip Counts

Similar to the results of the parametric model and in line with the previous research (Tran
and Ovtracht 2018; Zhao et al. 2019), especially those variables that describe the transport
related infrastructure of Cologne seem to have a strong influence on the model construction
in XGBoost (light rail, bus, arterial road). The most important other influence factors are the
distance to universities (university), the number of certain POI (shops, food outlets, bars), the
population density (population), the share of built-up space (buildings) and green spaces (green
spaces) per grid cell. These relationships could also be found in other studies, such as Tran and
Ovtracht (2018). The coordinate values (x-coordinate, y-coordinate) highly add to the model as
well, especially regarding gain and cover. Still, in all three importance plots there are variables
ranking higher than the coordinates, meaning the model does not simply rely on the spatial
positions to model the data but actually takes into account a wide range of different features.

Predictions
The structure of the predictions of bike-sharing trips per grid cell determined by the XGBoost
model appears to be similar to those generated by the Tweedie GAM and the observations
themselves (figure included in Appendix S1). Still, the predictions reach much higher values
than in the GAM (maximum: 166). In the outer parts of the study area, zero trips are predicted
for most grid cells. The variance of predictions for grid cells close to each other in the central
parts seems to be rather high as frequently grid cells with very high predictions lie next to those
with very low ones. This is the most noticeable difference to the predictions of the GAM, where
usually similar values are generated for grid cells neighboring each other.

Geographically weighted XGBoost
Using the predictions generated in XGBoost as input values, a GWR is performed. Here, an
optimal bandwidth of 51.45 (m) can be determined. In comparison to the RMSE= 2.97 and
sMAPE= 0.19 that can be achieved with XGBoost, the predictions generated by geographically
weighted XGBoost lead to RMSE= 3.72 and sMAPE= 0.24. This indicates that the general
accuracy of predictions cannot be further increased through the estimation of GWR.

The final predictions of the geographically weighted XGBoost model are displayed in
Figure 9. The structure of these predictions is naturally very similar to those of the previous
XGBoost, as they are directly based on them. It is visible that the GWR could create smoother
predictions, that, visually, appear even more comparable to the predictions generated by the
Tweedie regression. GWR is successful at lowering the variance of predictions of neighboring
grid cells.

In conclusion, geographically weighted XGBoost decreases the predictive accuracy of the
already extremely well fit XGBoost model. Still, it succeeds at creating more realistic predictions
and lowers variance of predictions in close vicinity.

Comparison
In the following, the outcomes and the estimation process of both modeling approaches are
compared regarding predictive accuracy, time efficiency and ease of interpretation.

In Figure 10, we compare all models estimated in this research. Here, the high accuracy
of XGBoost as well as the advantage of models including spatial splines in contrast to other
parametric regression models become apparent. For both models examined in detail, RMSE
and sMAPE combined with time needed for computation, in the case of XGBoost split into
parameter tuning and computation of the model itself, are contrasted in Table 5. While the value
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Figure 9. Predictions of bike-sharing trip counts determined by geographically weighted
XGBoost.
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Table 5. RMSE, sMAPE and Computation Time for Both Models

Tweedie
GAM XGBoost

Geographically
weighted XGBoost

RMSE 6.58 2.97 3.72
sMAPE 0.33 0.19 0.24
Computation time 1:50:46.44 h 0:00:02.40 h 0:03:55.77 h
Computation

time – hyperparameter tuning
- 3:23:32.56 h -

for the Tweedie GAM lies at 6.58 and the lowest value among all parametric regression models
at 6.05, even an XGBoost model estimated using the default parameter settings reaches a lower
RMSE of 3.99. After hyperparameter tuning, it is even possible to lower the RMSE to 2.97.
Considering computation time, the estimation of a single XGBoost model takes far less time
(model with selected parameters: 2.40 s, with default parameters: 0.33 s) than the estimation of
a GAM with the selected data set and settings (1:50:46.44 h). In contrast, the hyperparameter
tuning includes the estimation of many more models, in this case 11,000 and therefore requires
a much higher time (3:23:32.56 h). The estimation of a GWR based on the model predictions
of XGBoost only requires an additional time of 3:55.77 min including the search for an optimal
bandwidth and estimation of the model. Keeping the lower RMSE of XGBoost in the model
with default parameters in mind, (geographically weighted) XGBoost is the superior model
in terms of computation time only when parameter tuning is omitted, say by defaulting to
parameters from an older version of the same data set, or a less elaborate tuning rationale is used
than here.

Predictions
In Figure 11, the differences between the predicted values by the Tweedie GAM and the
observed values in the test data set are shown. The greatest overestimation of trips by the model
is 63.61, the greatest underestimation 146.59. Especially the high accuracy in the outer areas is
visible, where the predictions of very small numbers of trips are mostly correct. In general, the
spatial distribution of overestimations shows large similarities to the distribution of predictions
themselves. This means that especially in the central parts of the study area, there is a visible
clustering of grid cells where higher numbers of trips are predicted but the number of trips is
overestimated by the model. In contrast, grid cells where the number of trips is underestimated
are spread out more evenly throughout the research area.

In comparison to the results of the Tweedie GAM, a different structure becomes apparent
regarding the differences between the predictions of XGBoost and the observed numbers of trips
in Figure 12. Differences are much smaller ranging only from −41.20 to 38.59 and the areas
where predictions are correct are larger. Still, the largest areas where the predictions are correct
lie in the outer areas, especially in the northern part of the research area. Here, 0 trips were
observed in most grid cells.

The differences between the predictions of the geographically weighted XGBoost model and
the observations visible in Figure 13 illustrate why both measures RMSE and sMAPE assume
higher values for this method in comparison to XGBoost. Differences generally appear to be
higher and the areas where estimations are correct seem to be slightly smaller. The minimum
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Figure 11. Difference between predicted and observed values of the test data set, predictions
determined by the Tweedie GAM with spatial splines.

value lies far lower than the one of XGBoost, at −79.99, while the maximum value is even much
smaller and only reaches 17.89.

Spatial autocorrelation
As this analysis deals with a spatial data set, the abilities of each model to handle the specific
requirements connected to the issue of spatial autocorrelation can be evaluated. In GAM, the
interaction between the x- and y-coordinates can be included through a spline modeling an
interaction term. This also allows to interpret the relation of the dependent variable to the
locations in space. XGBoost allows to include x- and y-coordinates as variables but does not
include a method to explicitly deal with spatial locations. Therefore, an additional GWR is
performed in this analysis that increases the RMSE and sMAPE reached by the model, lowering
the predictive accuracy but creating smoother predictions. In conclusion, GAM offers a method
to include spatial information directly in the estimation of the model while XGBoost fails to
do so. Additionally, in XGBoost the inclusion of coordinates in the model involves the risk of
XGBoost fitting the model only to the coordinates if the settings allow.
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Figure 12. Difference between predicted and observed values of the test data set, predictions
determined using XGBoost.

Flexibility
In comparison to linear regression or GLMs such as applied by (Tran and Ovtracht 2018; Gong
and Yamamoto 2019; Bai and Jiao 2020; Huo et al. 2021), both methods allow to model the
data much more flexibly, either using splines or regression trees. This allows to incorporate
nonlinear relationships or interactions in a rather uncomplicated manner. But this advantage also
leads to a higher complexity when defining a model to be estimated. In GAM, a model can be
adapted through the selection of smoothing terms. Here, decisions have to be made regarding
the variables to be smoothed, the type of smoothing spline and the dimension of the basis k
for each smooth as well as the interactions between variables. In an XGBoost model, decisions
have to be made for example regarding the hyperparameter optimization method, the parameters
to be optimized and the ranges of values that are examined for these parameters. Regarding
flexibility and ease of setting up a model, not one model can be clearly preferred over the
other.

An advantage of XGBoost is its scalability allowing the flexible usage for different data
and scenarios. While a different regression model structure has to be selected depending on the
data set and distribution of the response variable, XGBoost allows to apply the same method
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Figure 13. Difference between predicted and observed values of the test data set, predictions
determined using geographically weighted XGBoost.

on a wide range of different data sets. Again, the tuning of hyperparameters allows to improve
the model, but even without tuning, good predictions can be made. Of course, it has to be kept
in mind that both methods are only applied on one data set in this analysis and the conclusions
cannot be directly transferred on other data sets. But in general, XGBoost proved to generate
good results also in previous studies working with various data sets.

Interpretation
A major disadvantage of machine learning methods in comparison to parametric regression
methods is that the result cannot be interpreted in an equal way. Nevertheless, XGBoost offers
a relatively straightforward interpretation method through importance plots. This allows to
evaluate the importance of each variable in the decision-making process of the final model (Yang
et al. 2020b). Still, the direction of the influence of a variable on the response variable is not
directly accessible, thus hindering interpretation. In contrast to a parametric regression model,
it is not possible to test hypotheses regarding the influence of variables. Therefore, the usage of
XGBoost is somewhat limited when it comes to interpreting single variables.
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Still, also a GAM cannot be interpreted as easily as a GLM as an effect of its flexibility in
including smooth terms. Instead of a single estimation for each parameter, partial effect plots
have to be evaluated that allow a deeper insight into the relationship of the variable’s influence
but complicate the interpretation. GAMs are an extension of GLMs that allow some of the
flexibility of machine learning models while still being easier interpretable than such models,
but more complicated than GLMs (Molnar 2019). Overall, regarding the possibilities of model
interpretation, GAMs can be rated higher than XGBoost.

All in all, for both methods specific advantages and shortcomings can be found. While
for a fixed set of tuning parameters the performance of XGBoost is superior in terms of
computation time, a GAM allows to account for spatial interdependence and a more detailed
interpretation. Regarding the focus of this analysis, the prediction of the response variable
number of bike-sharing trips per grid cell, the performance of XGBoost can be rated higher. For
both RMSE and sMAPE, XGBoost reaches lower values than all parametric regression models.

Discussion and conclusions

The preceding analysis dealt with the evaluation of parametric regression models in comparison
to XGBoost for modeling a spatial data set consisting of the numbers of observed bike-sharing
trips on the level of 100 × 100 m grid cells. For this purpose, several parametric regression models
were implemented to model the influence of various spatial variables on the bike-sharing usage.
Models considered were NB, Tweedie, zero-inflated NB regression and three GAM models with
spatial splines: zero-inflated Poisson, NB and Tweedie. Among them, the Tweedie model with
spatial splines led to the most consistent fit and predictions considering the AIC, sMAPE, and
RMSE and was chosen for further interpretation and comparison to the XGBoost model. Both
models were used to estimate predictions that were compared to the test data set through plots,
RMSE and sMAPE.

The outcomes lead to the conclusion that XGBoost performs better regarding predictive
accuracy. This result is in line with previous research comparing XGBoost to parametric
approaches (Sathishkumar, Park, and Cho 2020; Ramesh et al. 2021). The predictions generated
by the geographically weighted XGBoost model lead to RMSE= 3.72 and sMAPE= 0.24 in
comparison to RMSE= 6.58 and sMAPE= 0.33 for the Tweedie GAM. Nevertheless, parametric
regression models return additional information that help to interpret the results of the analysis
and determine spatial influence factors on bike-sharing (Wang et al. 2015; Bao, Shi, and
Zhang 2018; Ji et al. 2018).

Both models allow to handle spatial data and meet the requirements of spatial autocorrelation.
In GAM, spatial coordinates can be directly included in the model estimation, whereas XGBoost
does not offer this option. It has been applied to model temporal sharing data numerous times
(Sathishkumar, Park, and Cho 2020; Yang et al. 2020b; Alencar et al. 2021), but in this study
could be adapted to spatial data through the additional estimation of a GWR to account for spatial
effects. The estimation of a GWR is a common technique to deal with spatial autocorrelation,
but usually not in combination with XGBoost (Bao, Shi, and Zhang 2018; Ji et al. 2018; Wang
et al. 2020b). This process also helped to smooth out the predictions, lowering variance between
grid cells in spatial vicinity. The issue of overdispersion can be met by both models through the
selection of adequate underlying distributions for the response variable. Geographically weighted
NB models could be applied as well to deal with overdispersion (Da Silva and Rodrigues 2013;
Chen et al. 2020).

679

 15384632, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gean.12354 by T

echnische U
niversitaet D

ortm
und, W

iley O
nline L

ibrary on [15/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geographical Analysis

In conclusion, the choice of modeling methods largely depends on the objective of the
analysis: If it aims at the estimation of a model with high predictive power, XGBoost offers a
fast and accurate approach. If the interpretation of influence factors is the focus of the research,
GAMs include better options to assess the relationship of the dependent variable to various
covariables while still offering flexible modeling methods and especially the option to include
spatial data, and sufficiently high predictive power.

The models developed in the study can be applied to gain further insight into an existing
bike-sharing system. As only publicly available data is used, the models can also be adopted
to create estimates of bike-sharing usage in relation to spatial influence factors before the
implementation of a bike-sharing system (Lee and Sener 2020).

A shortcoming of this analysis lies in the structure of the used data set that is not ideal
as training and test data are not completely independent but the explanatory variables assume
identical values for the corresponding observation in the training and test data set. Therefore,
an optimal model regarding the training data set would perfectly predict the observations in the
training data set which means the RMSE would effectively measure the difference between the
observations in the training and test data. Still, this method of splitting the data in a training
and test data set was chosen as a spatial split involves different problems. Therefore, RMSE and
sMAPE have to be interpreted with caution as this method can lead to artificially low values. But
as these measures are only used to compare models validated on the same data set, this should
not influence the results in a manner that makes them invalid.

An option to increase interpretability of the XGBoost model would be to perform variable
selection. Even though variables for each tree are selected automatically, the removal of those
that are of very little importance for the modeling would lead to less complex models and
importance plots. In GAM, several variables could already be removed from the models without
compromising their predictive abilities, as certain variables assume only few different values or
follow an extremely skewed distribution.

The implemented analysis could be extended to include additional modeling approaches such
as Lasso-regularization, other tree-based methods such as random forest, or different algorithms
or deep learning approaches. While this analysis was carried out on a case study of bike-sharing
data, the findings of this study have the potential to be transferred to the modeling of other
spatial distributions considering count data sets, such as the demand of different micromobility
services.

Additionally, a spatiotemporal analysis could be performed using the underlying data set.
This would allow to analyze temporal influence factors on bike-sharing usage and their possible
interactions with the spatial ones considered in this analysis. Both methods, GAM and XGBoost,
could generally be applied in such cases as well.
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