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Abstract
Background: Dose calculations for novel radiotherapy cancer treatments such
as proton minibeam radiation therapy is often done using full Monte Carlo (MC)
simulations. As MC simulations can be very time consuming for this kind of
application, deep learning models have been considered to accelerate dose
estimation in cancer patients.
Purpose: This work systematically evaluates the dose prediction accuracy,
speed and generalization performance of three selected state-of -the-art deep
learning models for dose prediction applied to the proton minibeam therapy.The
strengths and weaknesses of those models are thoroughly investigated,helping
other researchers to decide on a viable algorithm for their own application.
Methods: The following recently published models are compared: first, a 3D
U-Net model trained as a regression network, second, a 3D U-Net trained as
a generator of a generative adversarial network (GAN) and third, a dose trans-
former model which interprets the dose prediction as a sequence translation
task. These models are trained to emulate the result of MC simulations. The
dose depositions of a proton minibeam with a diameter of 800𝜇m and an energy
of 20–100 MeV inside a simple head phantom calculated by full Geant4 MC
simulations are used as a case study for this comparison. The spatial resolu-
tion is 0.5 mm. Special attention is put on the evaluation of the generalization
performance of the investigated models.
Results: Dose predictions with all models are produced in the order of a sec-
ond on a GPU, the 3D U-Net models being fastest with an average of 130 ms.
An investigated 3D U-Net regression model is found to show the strongest
performance with overall 61.0%±0.5% of all voxels exhibiting a deviation in
energy deposition prediction of less than 3% compared to full MC simula-
tions with no spatial deviation allowed. The 3D U-Net models are observed to
show better generalization performance for target geometry variations, while
the transformer-based model shows better generalization with regard to the
proton energy.
Conclusions: This paper reveals that (1) all studied deep learning models are
significantly faster than non-machine learning approaches predicting the dose
in the order of seconds compared to hours for MC, (2) all models provide rea-
sonable accuracy, and (3) the regression-trained 3D U-Net provides the most
accurate predictions.
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1 INTRODUCTION

The relatively novel proton minibeam therapy1 utilizes
grids of sub-millimeter proton beams in order to achieve
increased tissue sparing while maintaining high tumor
control.2–6 Dose calculations for research on proton
minibeams are typically performed using Monte Carlo
(MC) simulations with Geant47 or software tools based
on it.8 While general purpose MC simulation codes such
as Geant4 are usually adopted as gold standard for
dosimetric calculations, they have long execution times.9

In particular, the combination of high dose gradients
caused by the Bragg peak and the high requirements
on the spatial resolutions make MC simulation for
accurate dose predictions of proton mini-beams very
time consuming.

In recent years, an increasing number of publica-
tions showcase successfully the application of deep
learning for dose prediction in radiotherapy.10–12 With
focus on novel and highly conformal treatments,a recent
publication13 focuses on fast and accurate dose pre-
dictions for synchrotron minibeams14 by training a 3D
U-Net-based model15 to mimic a full MC simulation.
This approach mitigates the need for approximate ana-
lytical algorithms and allows to include all relevant
physical effects directly into the training data of the
model, combining high dosimetric accuracy with fast
execution times.

This study presents the transferability of the recently
published approach13 to proton minibeam therapy and
compares it to two additional machine learning (ML)
models. First, the 3D U-Net architecture which is trained
as a generator as part of a generative adversar-
ial network (GAN),16 is also trained as a regression
model in this work. Second, a separate novel dose
prediction model, Dose Transformer (DoTA),17 which is
based on the attention mechanism in modern trans-
former models18 and which was presented to achieve
highly accurate predictions for the proton pencil beam
therapy,19 is compared to the two 3D U-Net-based mod-
els. Instead of predicting the dose deposition in the
whole target volume at once, as it is the case for the
3D U-Net models, the DoTA model predicts the dose
deposition slice by slice along the depth of the beam.
This approach may be more flexible than a volumetric
prediction as stacking of different tissue slices is a very
general and potentially easier transferable approach to
novel geometries than predicting the entire 3D phantom
geometry at once.19 This presents, however, a trade-off
between the complexity of the model, whose increase
usually requires more training data, and the ease with
which a volume is being rendered. In the case of the 3D
U-Net model, the structure is relatively simple, as it con-
tains a series of downsampling convolutions followed by

a number of upsampling convolutions, which are con-
nected at the same level with skip connections. This
allows to predict the entire dose volume with a model
of relatively few parameters than can be optimized
with relatively small training samples/datasets. This is
advantageous especially for novel and pre-clinical treat-
ments, for which it can be very difficult to acquire large
training datasets.

This paper is structured as follows. In Section 2, the
simulated data are described and the three ML mod-
els including different variations are explained.Section 3
presents the obtained dose predictions using the dif-
ferent models and compares them systematically. The
results and the limitations of the findings are discussed
in Section 4 before conclusions are drawn in Section 5.

2 METHODS

In this section, the digital phantom used for the MC sim-
ulation, the resulting simulated datasets, and finally the
three ML models are presented.

2.1 Monte Carlo data simulation

The interaction of the proton minibeam with the sim-
plified head phantom shown in Figure 1a is simu-
lated using Geant4, version 10.6.p02.7 The resulting
energy depositions are used to train and evalu-
ate the performance of the respective ML models.
The simplified head comprises multiple material lay-
ers: in its center, an ellipsoid of G4_BRAIN_ICRP20

material represents the brain, shown in Figure 1
as blue ellipse. The brain is covered with a layer
of skull (G4_BONE_COMPACT_ICRU)20 (black). The
bone layer is slightly thinner at the modeled forehead
(minimum thickness of 3 mm) and thicker at the back
of the head (minimum thickness of 5 mm). The skull
is covered with a 2.5 mm layer of G4_WATER20 mod-
eling the skin (red). The head model is surrounded by
G4_AIR20 material.

All energy depositions are scored using a 140 × 18 ×
18 voxel grid width an edge length of 1 mm.Tissue infor-
mation of realistic patient or phantom data for use in
pre-clinical or even clinical studies is usually obtained
using voxelized CT scans.In the case of the digital phan-
tom used in this work, a voxelized tissue density matrix
is obtained during the simulation instead which serves
as conditional information of the ML models.

The studied single proton minibeam is modeled as
a mono-energetic circular beam of radius r = 0.4,mm
without divergence. This beam size is well within the
suggested range for proton minibeams (r ≤ 1,mm)
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SMALL BEAMS - FAST PREDICTIONS 7793

F IGURE 1 (a) Simple head phantom used for data generation13 (reproduced figure). (b) Visualization of the distribution of the training
samples (dark grey), validation samples (medium grey), and test data (light grey) with respect to the beam energy and the phantom translation

F IGURE 2 Exemplary data samples showing the density matrix in grey-scale (white: air, grey: water, black: bone) and the energy deposition
normalized to its maximum for different phantom translations and proton energies

and is around the size of proton minibeams (r =
0.35,mm) used in an early proof-of -concept study.1

To generate varying prediction geometries, the digi-
tal phantom is translated between Δ = −70,mm and
Δ = +70,mm in front of a static beam. In addition, the
proton beam energy is varied in the range from E =

20,MeV to E = 100,MeV. The pre-built Geant4 physics
list QGSP_BIC_HP is used as it has been benchmarked
for proton therapy.21 Exemplary simulation results are
shown in Figure 2. The change in range of the pro-
ton beam, that is, location of the Bragg peak, in the
phantom with regard to the proton energy is clearly vis-
ible. Wherever the proton beam is incident on parts of
the skull which are not perpendicular to the beam, the
resulting asymmetry in the shape of the Bragg peak
is also observable. For high energies and large phan-
tom translations (e.g., 100 MeV at 70 mm), the proton
beam completely traverses the phantom and exists on
the distal side.

In total, n = 2911 dose predictions are simulated, split
into ntrain = 1450 training samples, nval = 720 validation
samples, and ntest = 741 test samples. The split into
training, validation, and test data is done by using pre-
determined cuts on the beam energy and the phantom

translation which are shown in Figure 1b: training data
shown in dark grey are used to adapt the weights of
the neural network (training), the validation data shown
in medium grey are used to find the best model con-
figurations (hyperparameter optimization), and the test
data in light grey are used to evaluate the performance
of the respective best models in a parameter space,
which was not previously used during the network opti-
mization (generalization). The exclusive use of certain
phantom translations and proton energy ranges for the
validation and test data ensures an unbiased estimate
of performance during hyperparameter optimization as
well as during the generalization assessment and final
performance evaluation.

2.2 Machine learning models

In the following, the different ML models used in this
study are presented. The first two models comprise
the same dose prediction network architecture pre-
sented previously13 which is based on the 3D U-Net
architecture.15 The two 3D U-Net models differ in the
way they are trained. The third model comprises a
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7794 SMALL BEAMS - FAST PREDICTIONS

F IGURE 3 Schematic of the 3D U-Net-based model including the model inputs on the left, the layer structure in the center and the model
output on the right. Adapted from a previous publication13

transformer architecture recently proposed for dose
deposition predictions in the proton therapy19 based on
the self-attention mechanism.18

2.2.1 3D U-Net-based model

The 3D U-Net architecture was introduced in 2016 for
the purpose of medical image segmentation.15 In recent
studies, it has been shown that 3D U-Nets are also
capable of accurate dose/energy deposition predictions
in radiotherapy.13 A schematic of the 3D U-Net-based
model developed in the given reference,referred to here-
after as dose generator network, is shown in Figure 3.
The model is conditioned on two inputs:a 3D tissue den-
sity matrix of the region of interest in the head phantom
and either the scalar energy of the proton beam or the
energy deposition matrix simulated in a homogeneous
water phantom. The latter introduces the beam char-
acteristics including energy spectrum and beam size
into the model, gives additional information on how the
beam would interact with water and does not depend
on the target geometry. Such a simulation is performed
for every proton energy used in the data set. In the cen-
tral convolutional block, the bottleneck,a Gaussian noise
vector of length 100 is concatenated with the data to
allow for statistical variations and more robustness. The
output of the model comprises the energy deposition
matrix in the respective target density matrix.

The use of the energy deposition in homogeneous
water as means of introducing the beam characteristics
into the phantom, in the following referred to as water-
only condition13 proved to be successful for the case of
a synchrotron X-ray radiation. This finding needs to be
re-evaluated for the application on proton beam dose
prediction. For X-ray radiation, phantom heterogeneities
mainly influence the magnitude of the energy deposi-
tion in the path of the beam as more dense materials
like bone receive more energy deposition compared to

less dense tissue. In the case of a proton or heavier
ion beam, the impact of heterogeneities on the result-
ing beam spread and attenuation due to the nature of
the densely ionizing interactions of protons and heavier
ions in a medium is a lot more prominent than in the case
of X-rays. The change in Bragg peak location is clearly
visible in the exemplary data shown in Figure 2.To inves-
tigate the potential benefits of the previously described
water-only condition for the proton therapy, it will be
compared to a scalar energy condition, in which the
proton energy Eproton will be passed to the model nor-
malized to the maximum used energy Emax = 100,MeV
(E′ = Eproton∕Emax). The resulting scalar value is used
to fill a matrix of the same shape as the density matrix
(140 × 18 × 18 voxels) which is then concatenated to the
density matrix along a new, fourth axis. This results in
the same input data format of 140 × 18 × 18 as in the
water-only condition case.

The 3D U-Net dose generator network is trained and
compared using two different modes, (1) as part of a
GAN model and (2) as a regression model, which are
explained in the following two subsections.

2.2.2 Generative Adversarial Network

It was shown that training the dose generator network
as part of a GAN yields high-accuracy energy depo-
sition predictions.13 The idea of a GAN is to train two
competing networks. The generator network predicts
the energy depositions given a beam characteristic
and a density matrix, while the critic network evaluates
how likely a given energy deposition matrix is origi-
nating from the generator of the MC simulation. The
critic receives as conditional information the respective
density matrix in addition to the water-only condition
matrix and an energy deposition matrix. The difference
in the critic responses to either MC or ML generated
samples is interpreted as Wasserstein distance.22 This
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SMALL BEAMS - FAST PREDICTIONS 7795

distance is used as loss function for the generator
network, it is effectively trained to produce energy
deposition predictions which are indistinguishable from
Geant4 simulations.

Two different versions of the GAN model are studied,
a default version using the water-only condition and one
with the scalar energy condition,which are referred to as
model GAN-W (water-only) and model GAN-S (scalar
energy).

2.2.3 Regression model

Interpreting the learning task as a regression problem is
a more conventional method of optimizing the weights of
a neural network toward a desired model output. In this
case, a loss function is computed from the comparison
of the predicted energy deposition matrix of the trained
neural network with the respective Geant4 simulation
result. In this study, two commonly used loss functions
for regression models, the mean squared error (MSE)
and the mean absolute error (MAE) are compared. The
network is trained using either of these loss functions
with a learning rate between 1 × 10−2 and 1 × 10−5 and
a batch size of 32,which is limited by the memory of the
used computing hardware (Nvidia GeForce 1080 Ti, 11
GB).

In the results section of this paper, the regression
models are named by the used loss function and the
exponent of the learning rate, for example, MAE-3 =

MAE with learning rate 1 × 10−3. A following W indi-
cates the use of the water-only condition, while models
without W were trained using the scalar energy con-
dition. One model, denoted with an additional D, is
trained with a higher dropout ratio23 than the originally
proposed model.

2.2.4 Transformer-based model

It was recently shown that the transformer architecture
is very suitable for dose deposition predictions in the
case of the proton beam therapy.17,19 Transformer mod-
els rely on the prediction of sequences to sequences
utilizing the so-called attention mechanism.18 In the case
of the model of interest, named DoTA,17,19 the source
sequence comprises density matrix tokens, which were
obtained from encoding the phantom tissue density
matrix slice by slice using a convolutional encoder. The
target sequence comprises energy deposition tokens
which are decoded via a convolutional decoder into
energy deposition slices. The translation of the tissue
slice sequence into the dose deposition slice sequence
is performed using a so-called transformer encoder.17,18

The slice-based approach of DoTA has been shown to
allow a flexible and accurate prediction in a variety of
phantoms. This may render this approach superior to a
volume-based one such as a 3D U-Net.A thorough intro-

duction of the DoTA model is available in the respective
published article.19

Two DoTA-based models are trained for comparison:
the original model as taken from a publicly available
online repository,25 and a second using the MAE as loss
together with the Adam optimizer24 instead, referred to
as DoTA-O (original) and DoTA-A (adapted), respec-
tively. The same model architecture as published19 is
used for both DoTA models, however, the weights are
optimized using the simulated data of this study as the
energy ranges and the scoring resolution differ.

2.2.5 Training stop criterion and
performance evaluation

For training and evaluation of the models, the energy
deposition is used instead of the dose. This was found
to produce more robust training data especially out-of -
field in air as the dose values in those areas are suspect
to large absolute variations due to the division by a very
low density.

All models are trained until the relative frequency
of voxels with a relative deviation ΔErel = (EML −

EGeant4)∕EGeant4 of less than 1% does not increase any-
more for 100 epochs. In this, EML and EGeant4 are the
respective energy deposition matrices obtained from the
ML model or the MC simulation, respectively. The fre-
quency of voxels exhibiting a lower deviation than 3% or
1% is being referred to as the respective passing rates.
The model with the highest passing rate on the valida-
tion data is chosen as the best model,which is evaluated
in more detail using the test data. In addition to the 1%
passing rate, the results are compared also with respect
to the passing rate based on a 3% deviation.

In order to get additional insight into the accuracy
of the energy predictions, 2D depth-dependent energy
deposition-plots are used to investigate the differences
between the applied models.

Both the 3D U-Net and the DoTA approach
have been demonstrated to allow for high-accuracy
predictions.13,19 The used metric in this study is cho-
sen to be more strict than for example the commonly
used gamma index passing rate,26 as it does not
allow for spatial deviations at all. While it may not be
directly comparable to measures for clinic applications,
it allows for better differentiation in the scope of this
study.

3 RESULTS

3.1 Hyperparameter optimization

Out of the investigated models, the 3D U-Net regression
model trained with MAE as loss and a learning rate of
1 × 10−3 (MAE-3) performs best. An overview of the
training and validation data performance for different
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7796 SMALL BEAMS - FAST PREDICTIONS

F IGURE 4 Rates of voxels with a relative deviations of less than 3% (a) and 1% (b), respectively for the generative adversarial network
(GAN)-based and regression-based 3D U-Net as well as for the Dose Transformer (DoTA)-based model. The areas denoted with mean absolute
error (MAE) and mean squared error (MSE) point at the respective loss functions used for training. The IDs shown on the x-axis indicate the
individual modifications to aspects such as the model input, learning rate and dropout rate and are explained in detail in the text of Section 2.2

tested model configurations, measured using the 1%
and 3% passing rates introduced in Section (2.2.5),
is shown in Figure 4. The performance of the GAN
model is below both the regression and the DoTA-
based models. The use of the scalar energy condition
(GAN-S) increases the performance relative to the use
of the water-only condition (GAN-W). In the case of
the regression models, using the water-only condition
(MAE-3W) degrades the validation performance and
increases the generalization gap, which indicates over-
training. Applying stronger dropout (MAE-3WD) could
only partially mitigate the overtraining, while resulting
also in a further loss in performance on the validation
data. As a consequence, the scalar proton energy is
used for the best model, which does not contain any
information about the beam shape.

The adapted DoTA-based model (DoTA-A) performs
better on this dataset than the original model (DoTA-O),
but worse than the best regression model.

3.2 Performance evaluation

For the final performance evaluation, the respective best
GAN, regression and DoTA model is used to predict the
energy depositions for the test data set. To inspect the
generalization ability of the models, the performance on
the test data is compared to the performance on a sub-
set of the training data set in Table 1. The reason for
using only a subset of the training dataset is explained
in the following.

The performances at the extremes of the phantom
translation are the lowest overall. This is a result of
the high amount of bone in the beam at the front and
the back of the head and also of the fact that high-
energy proton beams are not completely stopped inside

the phantom. Because most of these extreme cases
are assigned to be training data, the average perfor-
mance on the whole training data is reduced significantly.
Whenever the beam hits the phantom in the central part
(±50,mm), the performance is quite stable. Therefore, to
allow for a more fair comparison between training and
test performance in order to examine how well the mod-
els are able to generalize to unknown data, samples
with a phantom translation of more than ±50,mm are
not considered.

The MAE and passing rates confirm the regression-
trained 3D U-Net as the most accurate model. While all
three models exhibit similar performances on training
and test data, the agreement is best for the regres-
sion model, indicating that the model generalizes best
to unknown data.

The test data performance of the three models with
respect to the phantom translation is shown in Figure 5a.
For each shown phantom translation, the results are
averaged over all proton energies.The regression 3D U-
Net outperforms the other models throughout the whole
range of phantom translations. For all models, the per-
formance decreases toward larger absolute translations,
where the curvature of the head phantom increases
which leads to more skull material being located in
the path of the beam. The drop in performance toward
the maximum translations is not symmetrical. This is a
result of the asymmetric head phantom and the fact
that the performance is worse whenever more bone
material irradiated.

Figure 5b shows the performance in dependence of
the proton energies, averaged over all phantom trans-
lations. With respect to the energy dependence of the
predictions, shown in Figure 5b, the performance of
all models increases almost linearly up to approxi-
mately 50–60 MeV. This is directly caused by the fact
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SMALL BEAMS - FAST PREDICTIONS 7797

TABLE 1 MAE and relative deviation passing rates for voxels based on different criteria for the validation dataset

Model Dataset MAE (1 × 10−4) 𝚫Erel < 1% (%) 𝚫Erel < 3% (%)

3D U-Net Training 11.64 ± 0.19 10.50 ± 0.19 30.6 ± 0.5

(GAN) Test 12.98 ± 0.23 11.00 ± 0.18 33.1 ± 0.4

3D U-Net Training 4.38 ± 0.01 25.87 ± 0.28 61.2 ± 0.5

(Regression) Test 4.74 ± 0.03 25.62 ± 0.29 61.0 ± 0.5

DoTA Training 5.27 ± 0.02 21.99 ± 0.28 48.6 ± 0.5

Test 6.25 ± 0.06 20.45 ± 0.34 46.1 ± 0.6

Abbreviations: DoTA, Dose Transformer;
GAN, generative adversarial network;
MAE, mean absolute error.

F IGURE 5 Model performances with respect to the phantom translation, averaged over all proton energies (a) and with respect to the
proton energies, averaged over all phantom translations (b)

that the lower the beam energies, the higher the rel-
ative dose gradients are in very few voxels at the
entrance of the phantom. For energies higher than 50
MeV, the performances decrease by a varying degree.
While the regression 3D U-Net exhibits the best test
data performance, the DoTA model exhibits the lowest
variance in prediction performance with respect to the
proton energy.

3.3 Generalization assessment

While Figure 5 allowed for a first assessment of trends
in the test data performance,a more detailed analysis of
the network performance on all training, validation, and
test data reveals additional insight about the general-
ization, strengths, and weaknesses of the three trained
models. The mean value of the absolute errors for each
data sample predicted by the three models is shown
in Figure 6. The background colors indicate whether
samples belong to the training (white), validation (light
grey), or test data (dark grey). The data split is the
same as in Figure 1b and indicated here for easier
optical inspection.

The GAN model shows the overall lower performance
than the two other models. With regard to generaliza-

tion, especially the predictions for energies not part of
the training data seems to lead to lower performances,
indicating some overtraining. Although the performance
along the phantom translation axis is not as good as with
the other models, there are less signs of overtraining
along that parameter which is indicated by less impact
on the performance whether data samples are from the
training, the validation, or the test dataset.

The regression model shows an average deviation
of less than 5% for most of the parameter space, the
deviations for low energies, large phantom translations
(especially toward the negative direction) tend to exhibit
larger deviations, mostly up to 10%. While good agree-
ment overall between training and test performance is
described in Table 1, a lower performance is seen for
the validation and test energies around 60 and 80 MeV
around the center of the phantom.A similar trend can be
seen for the GAN model which suggests that the inter-
polation along the energy axis might be generally more
difficult to achieve with a 3D U-Net model. Especially for
negative translations of around −60 mm (part of val-
idation dataset) the deviations are slightly higher than
for the surrounding training data samples.This indicates
some overtraining in that parameter space.

The DoTA model predictions exhibit interesting fea-
tures as well. The performance on fringe parameter
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7798 SMALL BEAMS - FAST PREDICTIONS

F IGURE 6 Mean relative absolute error (AE) on training (white background), validation (light grey background), and test data (dark grey
background) of the three machine learning (ML) models in dependence of both proton energy and the phantom translation

configurations is significantly lower than those
surrounded by more training data samples. The per-
formance on validation or test data is generally worse
compared to the training data closest in the parameter
space, which indicates overtraining. This suggests that
while the model exhibits strong interpolation capabilities
especially along the energy axis, the model is limited by
the amount of training data that densely samples the
parameter space.

3.4 Analysis of exemplary prediction
results

In addition to the previously used performance mea-
sures and investigations, it is instructive to exemplary
inspect individual predicted energy depositions of the
ML models and their deviation from the MC simulation
and how they differ depending on the phantom config-
uration and the proton energy. The energy deposition
predictions and relative deviations for four exemplary
settings are shown in Figure 7. Only voxels with an
energy deposition of at least 1% of the maximum energy
deposition are shown on top of the visualization of
the density matrix to allow for a better visual differ-
entiation. The parameters for the shown examples are
chosen to provide a representative overview of the pre-
diction results of apparently challenging configurations:
(Δ = 0,mm | E = 42,MeV, left column) shows one of
the worst examples using the DoTA model, both (Δ =

60,mm|E = 42,MeV, second from left column), and (Δ =

0,mm | E = 62,MeV, second from right column), are
predicted with higher accuracy but appear to be still
challenging configurations to both the regression and
the DoTA model,while (Δ = −60,mm | E = 62 MeV, right
column), is among the worst examples for the regression
model. Examples with less than 30 MeV were not con-
sidered as the results are difficult to inspect visually due
to the very low penetration depth of the resulting proton
beam. The top row shows the deposited energies of the

Geant4 simulation for the given phantom translation and
proton energy configurations.Below that, the predictions
and their relative deviations from the Geant4 simulation
are shown for the GAN model, the regression model,and
the DoTA model, respectively.

Although performing worst among the tested models
in terms of the passing rates, the GAN model is able
to reproduce the overall shape of the energy deposition
distribution of the proton beam. However, the range of
the proton beam is slightly overestimated by around 1
mm for the first three shown examples, which is visible
by an overestimation of more than 10% of the deposited
energy toward the end of the range.For the high-energy
example in the right column of Figure 7, an underesti-
mation of the deposited energy at the right distal end
is observed. This indicates a mismodeling of the Bragg
peak shape. While the sloped phantom surface should
result in an asymmetric Bragg peak, the GAN model
predicts a rather flat distal edge not reproducing this
characteristic of the energy deposition pattern.

Although it is shown in Figure 5b that the low-energy
regime is the weakest range for dose prediction of the
models, the relative deviations of the regression model
is mostly smaller than 10% with respect to the Geant4
simulation. For the intermediate energies example, a
slight underestimation of about 1 mm of the proton
range is seen. For high energies and large negative
phantom translations, the lowest prediction performance
of the regression model is seen. In Figure 7, it can be
seen that this is caused by an underestimation in range
of the proton beam for this parameter configuration.The
shape of the Bragg peak is accurately predicted despite
that. Overall, the predictions are accurate enough to be
used in, for example, preliminary treatment plan opti-
mization tasks for which for which underestimations of
up to 10% are acceptable.

The DoTA-based model shows similar prediction
accuracy as the regression model. In this case though,
the model systematically underestimates the range of
the beam by about 1 mm. The lowest performance is
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F IGURE 7 2D energy deposition slices obtained from Geant4 simulations (top row) and the respective predictions and relative deviations as
achieved by the generative adversarial network (GAN)-trained 3D U-Net (rows 2 and 5), the regression-trained 3D U-Net (rows 3 and 6) and the
Dose Transformer (DoTA)-based model (rows 4 and 7) at the vertical center of the field of view for phantom translations and proton energies of
0 mm and 42 MeV (left), 60 mm and 42 MeV (second from left), 0 mm and 62 MeV (second from right), and −60 mm and 82 MeV (right)

achieved in the low-energy range as expected from the
results shown in Figure 5b. While the energy deposi-
tion in the skull is underestimated, the deposition inside
the brain tissue is overestimated. The shape of the dis-
tal edge is predicted very accurately which is seen by
only small left–right-asymmetry in the deviation from the
Geant4 simulations. The shape of the Bragg peak is
predicted relatively well even in the case of asymmetric
Bragg peaks.

4 DISCUSSION

While the GAN 3D U-Net model is outperformed by the
regression 3D U-Net and the DoTA-based model, the
latter both produce reasonably accurate energy depo-
sition predictions for the case of proton minibeams.
Overall, the 3D U-Net-based model is found to result
in slightly more accurate predictions compared to the
DoTA model in this study.

Using a common CPU workstation configuration (Intel
Xeon E5-2630 v4 @ 2.20GHz, 10 CPU cores, 20
threads), the Geant4 MC simulation takes approximately
1 h for each sample when being distributed over the
available 20 threads. While this time could be reduced
by using more CPUs, for example, by accessing a
computing cluster, all ML models allow for significantly
faster dose predictions, which are all in the order of
seconds (see Table 2). On the same CPU architec-
ture, the 3D U-Net takes about 0.65 s, while the DoTA
model takes about 2.2 s for a single prediction. Using a

consumer-level GPU (Nvidia GeForce 1080 Ti, 11 GB),
the 3D U-Net is found to be the fastest with around
0.13 s/prediction, while the DoTA model is found to take
around 1.1 s/prediction,which makes the 3D U-Net even
around 10 times faster than the DoTA model on a GPU.

Loading the density matrices into memory is part
of the assessed prediction time, generating the den-
sity matrices from the geometry data is performed in a
preprocessing step. The ML predictions are performed
using a batch size of 1, meaning that only one sample
is predicted at a time. While the sequential prediction
of dose distributions is an important use case for treat-
ment plan optimization, significantly higher prediction
throughput and thereby average time per prediction
can be achieved by predicting multiple samples in the
one step. The deviation from faster prediction times
reported for the DoTA model17 might be due to the use
of a standard-level GPU in this study in contrast to a

TABLE 2 Prediction times of the 3D U-Net and Dose
Transformer (DoTA) model on CPU (Intel Xeon E5-2630 v4 @
2.20GHz) and GPU (Nvidia GeForce 1080 Ti, 11GB) hardware,
compared to the Geant4 Monte Carlo (MC) simulation

CPU/GPU Prediction time (s) Rel. speed

Geant4 1 CPU ≈72 000 Reference

3D U-Net 1 CPU 0.65 ± 0.01 ≈ 1.1 × 106

1 GPU 0.13 ± 0.07 ≈ 5.5 × 106

DoTA 1 CPU 2.2 ± 0.1 ≈ 3.2 × 105

1 GPU 1.05 ± 0.04 ≈ 6.8 × 105
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high-end GPU used by the original authors. Depending
on the available hardware in future studies, the achieved
prediction times will therefore have to be re-evaluated.

An important limitation of this finding is that the
hyperparameters of the DoTA-based model were not
fine-tuned to the problem at hand but were taken
from the publication introducing the model,17 more
specifically the online available code.25 With further opti-
mization to the studied problem, the DoTA model may
improve in performance. While the 3D U-Net model was
not fine-tuned in terms of hyperparameters compared
to the publication presenting the model13 either, it was
previously optimized on the same phantom used in this
study although the previous study was performed using
photon beams.

Transformer-based models are known to rely on
larger training datasets than other algorithms.27 This
indicates that providing the dose transformer model with
a larger database might improve its performance further.
Especially for novel and pre-clinical treatments as the
proton minibeam therapy discussed in this work, cre-
ating vast datasets can be difficult or even prohibitive.
Models like the 3D U-Net which can be trained on fewer
datasets can be a strong alternative in these cases as
shown in this work and other published articles.13 Aside
from this, the observed overtraining in some parts of the
parameter space suggests the general need for a more
densely sampled parameter space for training data.

While globally no clear sign of overtraining is
observed, a closer investigation of the performance
in dependence of the proton energy and the phan-
tom translation reveals some local differences indicating
overtraining in some parts of the parameter space for
all models. By conducting a systematic investigation
of performance and differences among different ML
approaches, our study shows the merit in evaluating
different ML models in a simplified and reduced setup
such as the used simplified head phantom. Compara-
tive studies like this can help choosing the right model for
users trying to bring ML models to their own pre-clinical
and clinical scenarios. Future work should be directed
at investigating systematic ways to compare ML algo-
rithms on more complex models potentially suitable for
application in pre-clinical or even clinical settings.

5 CONCLUSION

In this study, three model architectures, two based on the
3D U-Net and one based on the novel DoTA model,were
compared in prediction accuracy and speed for dose
prediction in the proton minibeam therapy. While over-
all both the 3D U-Net regression and the DoTA-based
model produce accurate results and are promising can-
didates for fast dose prediction engines in the proton
minibeam therapy, the 3D U-Net was found to be more
accurate and faster in execution. Especially for applica-

tions with limited training data or a sparsely sampled
parameter space, the findings implicate that 3D U-Net-
based models are most suitable for dose prediction
learning tasks.
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