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A Simulation Study to Explore Inference about

Global Moran’s I with Random Spatial Indexes

René Westerholt
Department of Spatial Planning, TU Dortmund University, Dortmund, Germany

Inference procedures for spatial autocorrelation statistics assume that the underlying con-
figurations of spatial units are fixed. However, sometimes this assumption can be disad-
vantageous, for example, when analyzing social media posts or moving objects. This article
examines for the case of point geometries how a change from fixed to random spatial indexes
affects inferences about global Moran’s I, a popular spatial autocorrelation measure. Homo-
geneous and inhomogeneous Matérn and Thomas cluster processes are studied and for
each of these processes, 10,000 random point patterns are simulated for investigating three
aspects that are key in an inferential context: the null distributions of I when the underlying
geometries are varied; the effect of the latter on critical values used to reject null hypothe-
ses; and how the presence of point processes affects the statistical power of Moran’s I.
The results show that point processes affect all three characteristics. Inferences about spa-
tial structure in relevant application contexts may therefore be different from conventional
inferences when this additional source of randomness is taken into account.

Introduction

Spatial autocorrelation is a statistical property that operationalizes Tobler’s First Law of
Geography. The latter describes the idea that near things are more similar than distant
things (Tobler 1970), and the concept of spatial autocorrelation, rooted in the quantitative
revolution (Haining 2009), puts this commonly observed property of geographical data1 on
a formal, statistical footing: it refers to the property of spatially referenced random variables
to be correlated with each other when they are spatially close. Besides the possibility of
quantifying spatial dependencies, there are a variety of practical and scientific applications of
spatial autocorrelation statistics. These include identifying spatial outliers, testing assumptions
of spatial heterogeneity and stationarity, and assessing the role of space in stochastic processes
(Getis 2007). The concept of spatial autocorrelation has also influenced and stimulated spatial
empirical research outside geography. Spatial epidemiology (see Auchincloss et al. 2012; Kirby,
Delmelle, and Eberth 2017; Eberth et al. 2021), ecology (see Legendre 1993; Diniz-Filho,
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Geographical Analysis

Bini, and Hawkins 2003), the various quantitative social sciences (see Páez and Scott 2004;
Townsley 2009), and other cognate fields make extensive use of the concept in a number of
explicitly spatial research approaches. Yet, as with other statistical estimators, the mere calcula-
tion of spatial autocorrelation measures is not sufficient to assess the significance of observed
spatial dependencies. Drawing inference about respective statistics is needed, but corresponding
procedures are subject to assumptions and constraints.

One constraint in testing for spatial autocorrelation is that the spatial index set S ⊆ R
n,

on which spatially referenced random variables, Yi, are mapped, is held fixed geometrically in
inference procedures. An index set is a set that labels members of another set (see Munkres 2014,
p. 36 f.) and borrows them structure in the sense of a relative arrangement. Common examples
of index sets are the set of natural numbers for countable sets, or the timeline in the case of
temporal considerations. In the spatial case, random variables are usually assigned to geometric
entities such as points, lines, and polygons. In contrast to the conceptually simpler set of natural
numbers, such geometric collections represent real-world geographical features and therefore
offer qualities that should be taken into account in spatial analyses. Following the notation
of Cressie (1993), the set

{(
Yi, Si

)
∶ Yi ∈ R, Si ∈ S, i ∈ N

}
defines a general notion of spatial

process from which different types of more specialized spatial processes can be derived. The
latter depends on the nature of the spatial index set S. If the index set is considered nonrandom
(i.e., fixed) and discrete, the resulting process is of the type of a lattice and concerns spatial
structures such as census areas or administrative units. These types of units are usually not tied
to the stochastic processes responsible for the attribute values Yi. Census areas, for example,
are designed to reflect demographic features, while geographical characteristics may be ignored.
It is therefore reasonable to fix these types of spatial units in inference procedures for spatial
estimators (e.g., in spatially randomizing attribute values in Monte Carlo procedures), as they
provide an extrinsic spatial context but not an intrinsic property of the process under study.
Similar arguments apply to the geostatistical school of thought, which deals with continuous
spatial variation. Here, too, the set of coordinates possibly delimited by an observation area
constitutes an a priori given structure. In contrast, the spatial point process school of thought is
by definition concerned with random spatial index sets (see Cressie 1993). Analyzing attributes
(called marks) in this context is usually conducted with specializations of the so-called mark
correlation function (see Illian et al. 2008, p. 341 ff.). For example, Shimatani (2002) presents a
point-pattern version of Moran’s I and Shimatani and Takahashi (2003) discuss some properties,
respectively. Their main focus is on extending Moran’s I to continuous distance domains.
However, there is no detailed methodological investigation of how specific point processes affect
the properties of Moran’s I . In fact, even in the domain of point processes, “[m]arked point
patterns with quantitative marks are resampled by random reallocation, [… ], [that is], the points
are fixed but are allocated new marks” (Illian et al. 2008, p. 467, italic font in original).

The restriction to fixed spatial indexes is usually imposed for two reasons. First, fixing the
spatial index simplifies inference procedures and allows the construction of approximate (e.g.,
Cliff and Ord 1972; Cliff and Ord 1981; Tiefelsdorf 2002) or exact null distributions (Tiefelsdorf
and Boots 1995). Second, fewer assumptions need to be made regarding possibly complex
geographical concepts. For example, using the classic inference framework for Moran’s I
introduced by Cliff and Ord (1981)2, one only has to decide whether the mapped random
variables all come from the same normal distribution or whether the observed vector of variates
should instead be fixed and only randomized across all sites without resampling. The spatial
weights connecting the sites still need to be carefully chosen to avoid possible misspecification
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WESTERHOLT Exploring Inference about Global Moran’s I with Random Spatial Indexes

issues, but no additional assumptions need to be made about how to vary the underlying sites
in the inference procedure and in accordance with some presumed geographically meaningful
mechanism. That is, the spatial weights are also considered fixed (Ripley 1981, p. 98). If
instead the underlying spatial index would be considered random, this would also affect the
spatial weights that formalize the potential for spatial interaction (active) or connectedness
(passive) (Dray 2011) and represent the formal constructs through which properties of the
spatial index enter the equations of spatial statistical methods. Various types of weights exist,
including distance-based, hierarchical, and nearest-neighbor notions (Getis and Aldstadt 2004;
Getis 2009), but those are typically derived from the underlying index set formed by the
spatial units, and are thus functions of the latter. This relationship means that in the case of
random index sets, the spatial weights become random variables and can no longer be treated
as deterministic coefficients. This complicates drawing inferences about spatial autocorrelation
and other statistics, as knowledge about the distributional properties of the associated spatial
weights is required and existing inference frameworks can no longer be applied in the established
way. However, the assumption of a fixed spatial index still ought to be dropped for the sake
of meaningfulness of spatial estimators, especially in cases where the spatial units and their
associated attributes are co-constitutive.

Spatial autocorrelation scenarios exist in which considering spatial indexes random would be
helpful. Recent examples include the spatial analysis of human-generated information (especially
so-called ambient geospatial information; Stefanidis, Crooks, and Radzikowski 2013) like that
from social media and mobile-collected data such as nonstationary sensor measurements. Many
of these data sets are collected through smartphones that involve the use of Assisted GPS
(A-GPS) combining signals from built-in GPS receivers with those derived from the cellular
network (Vallina-Rodriguez et al. 2013). A-GPS sometimes reduces the positional accuracy of
retrieved coordinates, for example, when a location is acquired in an app such as Twitter only
shortly after the GPS function has been activated. Average horizontal accuracies ranging between
6.5 and 13 m have been reported for different devices and in different urban settings (Zandbergen
and Barbeau 2011; Garnett and Stewart 2015; Merry and Bettinger 2019). Randomness attached
to locations can also originate from complex psychological and social processes. The strong
embedding of social media in everyday practices has led to conflation of material and digital
spaces (Wagner et al. 2021), which affects social norms and behaviors (Quesnot and Roche 2015;
Kitchin, Lauriault, and Wilson 2017). For example, Saker (2017) found that many Foursquare
users check in to places in strategic ways in order to, among other things, express their identities
or to curate a particular digital alter ego. The geometries associated with social media data
are hence the results of (often little understood) complex stochastic processes. To avoid these
complexities, data from social media are often analyzed in aggregated form (e.g., van Zanten
et al. 2016; Resch, Usländer, and Havas 2018; de Andrade et al. 2022). Aggregating, however,
also means that a lot of potentially relevant microgeographic information is lost. At the same time,
the spatial analysis of social media data at the level of individual posts poses challenges regarding
scale, distributions of statistical measures, and in general the simultaneity of different phenomena
being reflected (Westerholt, Resch, and Zipf 2015; Westerholt 2019). A third example where
randomness in the spatial index plays a role is competition for land, resources, market areas,
or other geographically distributed commodities. Both, Griffith and Arbia (2010) as well as
Griffith (2006) show that corresponding situations can be represented with the help of random
geometries, in these cases with Thiessen polygons. The randomness in polygon sizes, shapes,
and locations (resulting from the randomness of the underlying point configurations) leads to
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Geographical Analysis

negative spatial autocorrelation, the characterization of which in turn allows conclusions to be
drawn about spatial competition scenarios. In line with these results, and also using Thiessen
polygons, Valcu and Kempenaers (2010) found that the degree of spatial autocorrelation in
territory sizes decreases when the latter result from interactions between underlying neighbors.
However, Valcu and Kempenaers (2010) only tested for positive spatial autocorrelation. In
all demonstrated cases, the site randomness may be considered in the inference about spatial
autocorrelation statistics, but it remains unclear how the additional variation contributed by
random spatial indexes changes the distributional properties of spatial autocorrelation statistics
like Moran’s I .

This article falls within the scope of location variability. According to Jacquez (1999),
the term variability should be distinguished from the more common term uncertainty. Both
refer to random locations, but uncertainty can be reduced by more precise measurements, while
variability refers to an inherent property of a system under study. Nevertheless, it is instructive
to situate this article in the literature of the intersection of the topics of spatial autocorrelation
and uncertainty, as these works share some commonalities with what is presented below.
Originally dubbed “error,” thinking in GIScience has shifted in recent years toward the notion
of “uncertainty” (Goodchild 2010), and with it the acceptance that representing geographies is
an inherently uncertain endeavor. In a series of early works, Geoffrey Jacquez explored the
impact of uncertain locations on exploratory spatial data analysis (Jacquez 1996; Jacquez 1999;
Jacquez and Jacquez 1999). These works address the effects of imprecise coordinates on spatial
statistics, focusing on the Mantel test but also briefly on Moran’s I . Building on so-called
location models that describe corrupted point locations, these papers find that inferences drawn
from established methods are inaccurate because they ignore an important additional source
of variation. However, the focus is mainly on finding more appropriate reference distributions
using Monte Carlo methods rather than understanding Morans I in detail. Burra et al. (2002)
investigate Moran’s I and the hotspot technique Getis-Ord G∗

i in the context of geocoding errors.
They conclude that global statistics are less prone to location uncertainty and that Moran’s I is
more affected than G∗

i . Focusing on the same local statistics, Griffith, Chun, and Lee (2016)
confirm the result that Moran’s I is more affected by location uncertainty. However, both studies
are mainly concerned with differences in significant outcomes and revealed clusters, rather than
more comprehensive aspects of the statistics studied. Jacquez and Rommel (2009), who also
focus on geocoding inaccuracies, develop a scatterplot that combines estimates of error sensitivity
and leverage, that is, the propensity of a point to spatial error propagation in spatial analyses.
However, their work is based on the corruption of point coordinates with unknown distributions,
which is different from the work presented in this article which deals with well-defined point
processes. There are also uncertainty-based results for the related but somewhat differing field
of spatial regression (e.g., Griffith et al. 2007; Lee, Chun, and Griffith 2018). The results
of these studies show that spatial uncertainties there also have a large impact on parameter
estimates. Also, there are approaches to quantify spatial variance, for example, the LOSH (Ord
and Getis 2012; Xu, Mei, and Yan 2014) and LSD (Westerholt et al. 2018) estimators. These
heterogeneity works are related but not directly comparable to the work presented below. In
summarizing a series of papers on uncertainty presented at the 2017 AAG meeting in Boston,
MA, including work on spatial autocorrelation, Griffith (2018, p. 1504) concludes that “[m]uch
remains unknown about uncertainty in spatial as well as space-time data, with respect to both
attribute and location error.” The present article contributes to a better understanding of the latter
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WESTERHOLT Exploring Inference about Global Moran’s I with Random Spatial Indexes

location-related aspect – not of uncertainty, but of variability – by examining the link between
Morans I and well-defined point processes.

The present article investigates how the consideration of stochastic spatial indexes affects
inferences drawn about global Moran’s I . Two avenues are pursued. In a first step, experiments
are conducted with synthetic data representing two types of homogeneous point processes: the
Thomas and Matérn cluster processes. For each of these, 10,000 point patterns are simulated and
populated with normal random variates, the latter drawn from spatial autoregressive models with
varying degrees of spatial autocorrelation. In a second step, another two sets of 10,000 simulated
point patterns each are generated, but this time based on a two-dimensional intensity map derived
from tweets collected in Canary Wharf, London, UK. These latter simulations do allow the study
of inhomogeneous point patterns corresponding to actual social media posts. Three aspects are
investigated for all types of simulated point patterns: the respective null distributions of Moran’s I
in contrast to the conventional case; deviations between conventional and simulated critical values
at different significance levels; and the statistical power of Moran’s I under the assumption of
stochastic spatial indexes. In general, the results obtained for the homogeneous case are more
generalizable than those for the inhomogeneous case. The reason for this is that the latter depend
on very specific real-world data, which is therefore both an advantage and a disadvantage. The
empirical investigation put forward sheds light on the behavior of global Moran’s I under the
circumstances outlined, and thus provides a point of reference for assessments of the validity of
identified spatial patterns in scenarios where the spatial index involves randomness.

Moran’s I and associated inference procedures

The method investigated in this article is global Moran’s I , a frequently used measure of spatial
autocorrelation. Moran’s I extends the non-spatial Pearson coefficient with spatial weights that
reflect pairwise interaction potentials between individual spatial units (Getis 2009; Dray 2011).
The global version of Moran’s I is given as (Getis 2010)

I = n
∑n

i=1

∑n
j=1 wij

∑n
i=1

∑n
j=1 wij(yi − y)(yj − y)
∑n

i=1 (yi − y)2
, (1)

where the yi denote n observations with mean y that are spatially connected via weights wij. The
expected value of the statistic is E[I] = −1∕(n − 1), but the variance depends on the hypoth-
esis tested and the corresponding modeling of the null distribution (see Experimental setup
Section). Hypothesis testing in a spatial autocorrelation context requires knowing (theoret-
ically) or approximating (empirically) the probability of an observed pattern under spatial
uncorrelatedness3. Various procedures for drawing inferences about Moran’s I exist.

The classical inference framework used in conjunction with global Moran’s I comprises a
so-called normal and a randomization hypothesis (Cliff and Ord 1981). The normal hypothesis
(referred to as hypothesis N hereafter) assumes that all variables have independently been drawn
from the same normal distribution. With repeated sampling and allocation to sites, the full range
of values drawn from the respective normal distribution could then hypothetically be realized
at equal chance in the limit and at any given site. Alternatively, and relaxing distributional
constraints, the randomization hypothesis (referred to as hypothesis R hereafter) holds the vector
of observed values fixed and redistributes them on the spatial index. The latter type of hypothesis
testing is useful when no values other than the ones observed could reasonably occur. Irrespective
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Geographical Analysis

of using assumption N or R, the focus of hypothesis testing is on testing for spatial associations in
the attribute values given a fixed arrangement of spatial units. Under both hypotheses, Moran’s I
is asymptotically normal and respective closed-form, analytic expressions exist for evaluating
the variance for the purpose of standardizing the I values. Further, for the case of hypothesis N,
Griffith (2010) has studied the behavior of Moran’s I under different distributional regimes and
has found that convergence of I to normality is still acceptable as long as the analyzed random
variables are drawn from approximately symmetric distributions. For nonsymmetrical cases that
exhibit pronounced skewness and kurtosis, Tiefelsdorf (2002) provides a saddlepoint approxima-
tion. However, the distribution of I depends not only on the statistical properties of the random
variables, but also on the spatial arrangement of the associated spatial units as it is manifested
by the weights. The normality property may no longer hold if the analyzed data set is small or if
very unfavorable spatial linkages are present. For the former, the exact distribution of Moran’s I
worked out by Tiefelsdorf and Boots (1995) can be used. Alternatively, Cliff and Ord (1972) have
suggested the use of Beta approximations. In the latter cases of unfavorable spatial linkages, the
shape of the null distribution of I is strongly influenced by the eigenvalue spectrum associated
with the spatial weights matrix (de Jong, Sprenger, and van Veen 1984; Tiefelsdorf, Griffith,
and Boots 1999). These eigenvalues reflect topology-induced variance, which can be interpreted
as the potential of individual spatial units to interact with the rest of the map.

Inferences about Moran’s I can be compromised by violations of the assumption of
second-order stationarity. For example, if the variance of random variables differs greatly
between different parts of a map, this compromises the assumptions for both hypotheses N and
R. While the former assumes a uniform normal distribution for the resampling, the latter is based
on redistribution across all sites and therefore expects similar conditions everywhere with respect
to the first two moments at least in the null hypothesis of no autocorrelation. These assumptions
are not met in case of heteroscedasticity. Furthermore, Moran’s I uses global estimators for both
the mean and the variance of the variables yi. These are also no longer reliable if the variance and
expected value are not uniform. A frequently studied case of unstable variance is the analysis of
rate variables where the underlying populations may exhibit strong spatial heterogeneity. It has
been shown that both Type-I and Type-II error inflation can result (Walter 1992a; Walter 1992b).
Techniques and modified estimators have been proposed to cover a range of scenarios, including
the rates mentioned but also those where uncertainty and nonstationarity come from other
sources (Oden 1995; Waldhör 1996; Assuncao and Reis 1999; Jackson et al. 2010; Zhang and
Lin 2016; Jung, Thill, and Issel 2019; Bucher et al. 2020). Sometimes nonstationarity-related
effects are further reinforced, for example, when a data set reflects not only multiple but even
spatially superimposed processes that are difficult to distinguish from each other. The resulting
topology reflected in the spatial weights can then be complex and may lead to individual
observations having an excessive influence on an analysis, which also affects the shape of the
null distribution and respective inferences drawn (Westerholt, Resch, and Zipf 2015; Westerholt
et al 2016a; Westerholt 2018). The latter is often the case with data from social media, for
example, as these are neither collected according to any sampling scheme nor for the purpose of
spatial analysis.

Inference with random spatial indexes

Accounting for randomness not only attribute-wise but also in the geographic sites (i.e., in
the underlying spatial index) changes the nature of null hypotheses when testing for spatial
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WESTERHOLT Exploring Inference about Global Moran’s I with Random Spatial Indexes

autocorrelation. In all cases outlined in Moran’s I and associated inference procedures Section,
the hypotheses being tested in the case of Moran’s I are about the extent to which spatial
structures in attributes are possible random outcomes conditional on given spatial linkages
between fixed geographical sites. In many cases, this restriction makes a lot of sense, such as in
the analysis of census tracts or municipal districts the geometries of which are neither the result of
random processes nor generated from the underlying observed spatial processes responsible for
the attributes. In other cases, however, it may be considered a restriction to consider the spatial
index as fixed given the genesis of certain data sets. For example, when analyzing social media
data like tweets or Flickr photos whose locations depend to some extent on individual choices,
or when considering mobile sensor measurements that are subject to GPS inaccuracies, it would
be reasonable to include the randomness of locations in the hypothesis testing framework of
Moran’s I . Instead of testing only for associations between attribute values and a particular spatial
index, including respective associated weights, the perspective changes to a joint assessment of
the probabilities of spatial configurations as the outcome of more than one random process.

Varying the locations of a spatial index set in addition to randomizing the attribute confronts
the analyst with a number of additional challenges. One challenge that arises is that meaningful
mechanisms for relocating sites to new locations must be identified. On the one hand, such
mechanisms should reflect meaningful realistic random properties of some spatial process under
study. On the other hand, comprehensible and tractable ways must be found to reallocate the
sites. If the attribute vector is to be held fixed too, as in the randomization hypothesis R, an
additional constraint is that the number of points should be constant at each randomization.
Otherwise, it would not be clear how to either generate additional attribute values or how to
thin out additionally drawn ones. In contrast, if there are good reasons to believe that some
more complex generation model is required, it would become difficult to keep the number of
locations generated per randomization constant (as these are subject to randomness) and thus
to preserve the observed attribute vector. The latter would require an additional commitment to
also the distribution of attribute values, as is the case with hypothesis N. Another challenge is
that the term random index here does not refer to mere uncertainty of coordinates as elaborated
in some of the GPS location examples further above. Instead, the main focus of this article is
on considering stochastic spatial processes, which represent real-world properties of geographic
processes and thus go beyond technically induced uncertainty. The latter may be seen as a special
case, but is not exhaustive in the sense of the discussion presented here.

Technically speaking, drawing inferences about Moran’s I with random spatial indexes
requires statistical knowledge about the spatial weights. The weights can no longer be considered
as deterministic coefficients, but must be treated as an additional source of variation in inference
procedures. Looking at the different types of spatial weights, most of them emerge as functions
of characteristics of the underlying spatial units. The commonly used inverse distance weighting
scheme, for example, is given as a function of the distance measures between members of the
index set. The latter distance measures are easy to calculate and use in the case of fixed index sets,
but are associated with randomness under the assumption of a random spatial index. Similarly,
binary contiguity weighting schemes of first or higher order can be interpreted as functions of the
nearest neighbor distribution under the assumption of a random spatial index set. Furthermore,
the number of spatial units n is also subject to randomness, which must be considered as well.
These aspects, together with the fact that they are of different nature under different assumed
underlying data generating processes, make it difficult to find an all-encompassing analytical
solution to the problem at hand using the Pitman–Koopman Theorem. The latter would require
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consideration of the specific combination of type of point process and chosen weighting scheme,
as these together determine the distribution of spatial weights. Yet, these distributions are further
complicated by merging, increasingly overlapping, growing clusters, as the latter introduces
another random process. Moreover, the spatial weights used in the following are rather complex
combinations of different schemes that are intended to mitigate certain possible confounding
factors in the interest of the interpretability of the results obtained. For the reasons outlined,
deriving analytical solutions to equations for the mean and variance of Morans I is beyond the
scope of this article, but it is hoped that the discussion offered in this paragraph will be beneficial
to respective future research.

It is instructive to shed more light on the problem at hand by comparing it with the
randomization hypothesis presented in Moran’s I and associated inference procedures Section.
When the randomization hypothesis is applied, the assignment to existing fixed localized spatial
units is considered random. Thus, the locations of random variables change and this happens
randomly, but with the restriction to a finite set of possible locations. The spatial index itself
including the number of spatial units and their pairwise links by means of spatial weights
therefore remain unchanged and are not subject to randomness. In comparison, in the present
case studied in this article, the restriction to a finite set of locations is abandoned. Instead,
new locations are drawn for each sampling, following the logic of well-defined point processes.
However, challenges arise in doing so. In point processes, by definition, the numbers of points
in the samples drawn are not constant. Moreover, in the cluster processes considered in this
article, overlaps of generated clusters occur frequently (see Point process models Section). The
latter means that the spatial weights are subject to complex dynamics with potentially unknown
distributions. As stated before, spatial weights are often functions of properties of the underlying
spatial index such as pairwise distances, the probability of having a certain number of nearest
neighbors on distance bands, and so on. However, if random point processes strongly complicate
these dynamics, analytical solutions may not be available for every type of spatial weights. This
complex case shall be considered in the following and approximated by means of simulations.

In this article, the influence of random spatial index sets on inferences about Moran’s I
is investigated. Since existing inference regimes assume fixed locations, no formal framework
exists for the present case of interest. Therefore, approximations are presented below that rely on
large numbers of simulations. The main interest of this study is to investigate the performance
of established inference techniques when the phenomenon under investigation is actually also
subject to randomness in terms of its locations. Three objectives are pursued: (i) the conventional
normal approximations under the assumptions N and R are contrasted with the approximated
distribution of I using random locations; (ii) deviations between the respective derived critical
values for rejecting the null hypothesis of no significant spatial autocorrelation are investigated;
and (iii) the statistical power of Moran’s I is discussed in the outlined context. The following
section outlines the methodology through which the subsequent experimental results are obtained.

Methodology

The experiments reported in this article are based on two types of point process models. The
following subsection introduces the Matérn and the Thomas cluster processes. Subsequently, the
approach for the simulation of a large number of point patterns including their parameterization
is outlined. In addition to homogeneous point processes, this article also studies the effects of
inhomogeneous point pattern configurations on inference about Moran’s I . For this reason, the
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WESTERHOLT Exploring Inference about Global Moran’s I with Random Spatial Indexes

generation of corresponding simulations based on a real Twitter data set is presented in a further
subsection. Finally, the analytical steps carried out are motivated and explained.

Point process models
Two different types of point process models are used to study the influence of random
locations on inferences drawn about Moran’s I: the Matérn and Thomas cluster processes.
This choice is guided by their usefulness in analyzing a range of different phenomena, such
as pine tree patterns in natural forests (Tanaka, Ogata, and Stoyan 2008), small cells as used
in telecommunications (Wang and Zhu 2016), and the dispersal of tree seedlings (Fedriani,
Wiegand, and Delibes 2010), among numerous other application scenarios. Both models are
specializations of the so-called Neyman–Scott process, which describes random locations
(daughter process) organized around cluster centers (parent process). Both the parent cluster
centers and the daughter offspring points are outcomes of Poisson point processes and the points
are thus generated independently of each other. The two processes considered in this article differ
in terms of the placement of the locations of the offspring points.

The offspring locations of Matérn cluster processes are uniformly and homogeneously
distributed around cluster centers (Matérn 1960). This process type is suitable for modeling the
assumption that there are local clusters of points, but the corresponding locations of the offspring
are scattered locally at random, without any further specified spatial structuring. An example
of this is the subjective and independent data collection via social media, for example through
tweets. The urban topography causes more tweets to be posted in some places, such as shopping
streets, nightlife areas, or major train stations, than elsewhere. However, since the tweets are
posted independently of each other and often without any obvious centrally localized trigger,
the result is a spatially random arrangement around an imagined, often not physically existing
cluster center. Let ci be cluster centers of a Matérn cluster process M . Also, let r = d(t, ci) be
the Euclidean distance of any point t ∈ R

2 from a cluster center ci and R be an upper distance
limit beyond which the daughter process is no longer defined. Since there is no local spatial
substructuring, the point intensity describing the expected number of daughter points on a disk
with radius r and center ci is constant for all r ≤ R and is given by (Lawson and Denison 2002,
p. 69) (the inhomogeneous case is outlined in Simulation of inhomogeneous point patterns
Section)

hM (r|ci) =

{
𝜇, if r ≤ R,

0, otherwise.

The offspring locations of Thomas cluster processes are scattered around cluster centers with
a Gaussian distance decay (Thomas 1949). In contrast to Matérn cluster processes, Thomas cluster
processes thus model different assumptions regarding the genesis of geometric arrangements
of a spatial index. Here, it is not assumed that the local behavior with regard to the realized
locations is detached from local events beyond environmental geographical conditions. Instead,
the Gaussian distance decay represents a centrally located origin triggering local clustering.
Linking to the social media example given in the previous paragraph, one such use case would be
the modeling of tweets about a car accident. The latter represents an incentive to post messages
that is located in the cluster center. The further away potential Twitter users are from the incident,
the less likely they are to post about it. Again, let ci be cluster centers, but this time of a Thomas
process T . Using an analogous notation as above and with 𝜎 as the standard deviation of the
random offspring point displacement, the respective point density on the discs around the cluster
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Geographical Analysis

centers is given as (Lawson and Denison 2002, p. 69) (again, the inhomogeneous case is found
in Simulation of inhomogeneous point patterns Section)

hT (r|ci) =
𝜇

2𝜋𝜎2
e−r2∕2𝜎2

.

The choice of the processes tested is not without limitations. One limitation is that both
processes are Neyman–Scott processes and thus based on the assumption of independence
of the parent as well as the offspring processes. The following results can therefore not be
transferred to more complex process models representing proactive point interaction. At the
same time, however, the assumption of independence is useful especially with regard to the
analysis of user-generated data such as that from social media (to which much reference is
made given the empirical data used in this article), to which users located near each other
usually contribute independently. Furthermore, independence in the parent processes for cluster
centers allows clusters to overlap, which, for example, occurs with social media data. This latter
gives rise to a further limitation when testing the two processes in isolation, as they can also
occur together under real-world conditions. However, thoroughly understanding the influence
of first these individual processes on Moran’s I reference distributions requires careful isolation
from confounders like complex mixtures, otherwise it would be difficult to draw meaningful
conclusions about the influence of either of the two tested processes on spatial autocorrelation
assessments. Nevertheless, the investigation of the complex interplay of different types of
random point processes in connection with Moran’s I is interesting and important and therefore
recommended as a useful follow-up research task. The next subsection will now present the
simulation of actual homogeneous point patterns using the two models presented above.

Simulation of homogeneous point patterns
The first investigation of Moran’s I’s inference behavior is conducted with synthetic data
reflecting homogeneous point processes. Two sets of estimated patterns are generated from the
homogeneous Thomas and Matérn cluster processes outlined above. Each of these sets contains
10,000 random patterns that reflect a wide range of possible realizations of the two processes.
For each pattern generated, the target average size is 400 points overall consisting of four clusters
of 100 points each. The exact numbers of points per cluster are not controlled, as, per definition
of the processes involved, these are random and will follow Poisson distributions. For both
types of processes, the parent processes generating the cluster centers are set as homogeneous
Poisson processes with intensity 𝜆 = 6.673692e − 07. This intensity is obtained by dividing
4 (the average number of desired clusters) by the area of the rectangular window used. The
radius r chosen for the Matérn process is set to 400 m. To harmonize the scales of both processes,
the standard deviation of the random point displacement for the Thomas process is set to 𝜎 = 150,
resulting in comparable cluster sizes. In both cases, the mean values of the respective Poisson
daughter processes are set to 100 points. The reasoning behind these parameterizations is to
quantitatively resemble the set of tweets introduced below in Simulation of inhomogeneous point
patterns Section. Fig. 1 illustrates two exemplary generated patterns.

Simulation of inhomogeneous point patterns
The second investigation conducted reflects the inhomogeneous case and comprises a tweet data
set extracted from a one-year Twitter corpus from London, UK. The data is available online
(see Westerholt et al. 2016b) and has been used in previous studies (e.g., Steiger et al. 2015;
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WESTERHOLT Exploring Inference about Global Moran’s I with Random Spatial Indexes

(a) (b)

Figure 1. Illustration of two homogeneous point processes. (a) One of the simulated Matérn
cluster processes. (b) One of the simulated Thomas cluster processes.

Steiger, Resch, and Zipf 2016; Westerholt 2021). The full preprocessing chain can be found in
Steiger et al. (2015) and includes stop word removal, tokenization, and stemming. A classification
of the tweet texts was performed using Latent Dirichlet Allocation (Blei, Ng, and Jordan 2003)
in combination with a Gibbs sampling strategy to preidentify the most appropriate number of
topics. This classification resulting in scores from zero to one and capturing work-related tweets,
forms the basis for selecting the subset of data used. The data used in this article come from the
Canary Wharf business district in London’s docklands and it is mapped in Fig. 2a.

The reason for using Twitter data in this article is to investigate inhomogeneous point
patterns and how these affect inferences about Moran’s I . Spatial urban processes are subject to
a commonly observed tendency to be nonuniform due to topographic characteristics, population
distributions, and other underlying spatially relevant processes (Páez and Scott 2004). For this
reason, inhomogeneous clusters are modeled to account for the resulting spatial heterogeneity.
The additional experiments conducted in this way therefore complement the results obtained using
the patterns presented in Simulation of homogeneous point patterns Section for the homogeneous
cases. In order to operationalize the tweets, the data set is transformed into an intensity grid
that reflects, at a fine-scale level, the probability that tweets are observed. This is achieved by
performing kernel density estimation based on a target grid cell size of 10 × 10 m. The resulting
grid is then converted into an ASCII grid, which has been loaded into the R statistical computing
ecosystem for the analysis. With regard to the simulation of point patterns, inhomogeneous
Matérn and Thomas processes are modeled. As with the homogeneous processes, the cluster
centers again follow homogeneous Poisson processes but with intensity 𝜆 = 0.00165. This is to
reflect the possibility that individual tweets can in principle occur anywhere in a city, and is not
problematic as the focus is exclusively on an urban area. In contrast to the homogeneous cases,
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Geographical Analysis

Figure 2. Tweet data set from Canary Wharf, London, UK. (a) Tweet locations. (b) Correspond-
ing tweet intensity used for simulating inhomogeneous point patterns.

the densities of both daughter processes follow the intensity grid outlined. Thereby, the daughter
process for the Matérn case is parameterized with a scale of 250 m, while the offspring points
of the Thomas process are based on a Gaussian distance decay for a random point displacement
of 𝜎 = 100. These parameters resemble the real-world tweets and ensure that 400 points are
generated on average, making the results obtained more or less comparable to those obtained for
the homogeneous patterns.

The tweets used to derive the intensity grid are tied to the urban topography and infras-
tructure of Canary Wharf. This means that the inhomogeneous patterns generated are not fully
representative of all possible kinds of scenarios. However, the tweets used to generate the inho-
mogeneous intensity grid represent typical clustering behavior commonly found in social media
data from large cities including other parts of the same data set from London. Clusters occurring
in comparable areas elsewhere show similar geometric scales in clustering, although certain
geometric structures are inherently local, such as those pertaining to the port landscape in Canary
Wharf. The use of real-world data is therefore both an advantage (because it allows the features
of interest to be tested in a real-world scenario) and a limitation (because it restricts the scope for
generalizability). Follow-up studies could focus specifically on the inhomogeneous case and use
a set of intensity maps that are independent of real observations and have different degrees of
clustering and scale (or other parameters). These could then be combined with different types of
inhomogeneous point processes to simulate various types of possible scenarios in a systematic
way. However, this is beyond the scope of the present article (and would narrow it thematically)
and is therefore deferred for future work.

Experimental setup
All experiments conducted require the generation of attribute values and the specification of
spatial weights. For each generated point pattern, a set of attribute vectors reflecting different
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WESTERHOLT Exploring Inference about Global Moran’s I with Random Spatial Indexes

Figure 3. Boxplots of simulated Moran’s I values for different spatial autoregressive parameters
𝜌. Homogeneous (a) Matérn and (b) Thomas processes. Inhomogeneous (c) Matérn and (d)
Thomas processes.

levels of spatial autocorrelation is generated. These vectors are based on standard normal random
variables, which are then left-multiplied by SAR generating operators associated with 𝜌 values in
the range [0, 0.9] (incremented in steps of 0.1). The seed of the pseudo random number generator
used is set to 1 for each vector in order to exclude possible numerical variations as an additional
factor and possible confounder. If instead the distributions of the attributes were also varied,
it would be more difficult to discern the effects of geometric randomness from other sources
of variation. The SAR generating operators turn the standard normal variates into spatially
autocorrelated random variables according to simultaneous spatially autoregressive modeling.
All SAR generating operators are given by (I − 𝜌W )−1 (Anselin 2001, p. 316), whereby I is the
identity matrix4 and W is the spatial weights matrix as introduced in Moran’s I and associated
inference procedures Section. The different autocorrelation levels are needed for the assessment
of statistical power outlined below, as this requires knowledge of the distribution of Moran’s I in
the alternative hypothesis of significant spatial associations. A summary of the Moran’s I values
generated is found in Fig. 3.

The spatial weights are determined in a two-step procedure: First, for each geometric point
xi, the 10 nearest neighbors are identified; second, these neighbors xj are assigned weights using
an inverse distance weighting with a distance decay of d(xi, xj)−2, where d(⋅, ⋅) again represents
the Euclidean distance function. This approach ensures that all points have comparable analytical
neighborhoods, which would not necessarily be the case with neighbors derived from distances
alone. In addition, edge effects are mitigated, since points at cluster boundaries are also
guaranteed to have 10 neighbors, most of which are from the same cluster. The latter means
that the generated distance weights are not extreme even in boundary cases. To further rule out
influences of possible topological imbalance, all weights have been row standardized using the
W coding scheme (see Bavaud 2014).

One analytical step concerns the comparison of the null distributions of Moran’s I for the
conventional case of a fixed spatial index with the distribution obtained taking into account
random spatial indexes. For this comparison, the null distributions of I under the assumption
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Geographical Analysis

of a fixed spatial index are constructed under both the N and R hypotheses and for all patterns
generated. Given the convergence behavior of Moran’s I , the respective asymptotic normal
distributions p0;k(I) for each point pattern k are constructed with the mean E[I] = −1∕(n − 1)
(which is the same under both hypotheses) and using the variance terms (Cliff and Ord 1981,
pp. 42 ff.)

VarN[I] =
1

(
n2 − 1

)
S2

0

(
n2S1 − nS2 + 3S2

0

)
− E[I]2, (2a)

VarR[I] =
n
(
S1

(
n2 − 3n + 3

)
− nS2 + 3S2

0

)
− m4

m2
2

((
n2 − n

)
S1 − 2nS2 + 6S2

0

)

(n − 1)(n − 2)(n − 3)S2
0

− E[I]2, (2b)

with n being the number of spatial units contained in a pattern and

S0 =
n∑

i,j

wij, S1 =
1
2

n∑

i,j

(
wij + wji

)2
, S2 =

n∑

i

(
n∑

j

wij +
n∑

j

wji

)2

,

m2 =
n∑

i

(
yi − y

)2
and m4 =

n∑

i

(
yi − y

)4
.

Additionally, the null distribution q0(I) for the case of random spatial index sets is estimated
from the simulations. Estimation is necessary because closed-form analytical expressions are
unknown for this case. The attributes generated with 𝜌 = 0 are used, as these represent the
case of no spatial autocorrelation. For both point processes and for each simulated pattern, the
resulting null distributions are compared pairwise. This is done using the Kullback–Leibler (KL)
divergence (Kullback and Leibler 1951) as a measure of the amount of information lost when
the observed null distribution q0(I) assuming randomness in the index is approximated by the
conventional null distributions p0;k(I) for each individual fixed pattern k. The KL divergence
associated with each simulated pattern k is given as

DKL(q0, p0;k) =
∫

∞

−∞
q0(u) ⋅ log2

(
q0(u)

p0;k(u)

)
du. (3)

Estimating the KL divergence of continuous distributions is more involved than for discrete
variables. In this article, we operationalize the solution proposed by Pérez-Cruz (2008). This
solution requires only that the samples used are independent and identically distributed. Both
presumptions are satisfied for the samples drawn in the null hypothesis. Technically, the
implemented estimation uses the empirical cumulative distribution functions of the variables
involved, instead of first estimating their densities as it occurs in many other solutions and which
introduces further uncertainties.

Utilizing all null distributions introduced, the critical values for rejecting the null hypothesis
of no significant spatial autocorrelation are then determined in a second analytical step.
The critical values are calculated in each case for the commonly used significance levels
𝛼 ∈ {0.1, 0.05, 0.01}. On this basis, the respective distributions of the deviations between the
critical values for the fixed and the random index cases are estimated from all simulated samples.
These distributions provide insight into how conservative or overly loose the commonly used
critical values are when the data at hand originate (knowingly or unknowingly) from a process
that is subject to randomness in the corresponding spatial index. The risk of possibly spurious
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WESTERHOLT Exploring Inference about Global Moran’s I with Random Spatial Indexes

assessments of significant spatial autocorrelation can be discerned this way for Thomas and
Matérn cluster processes.

The third analytical step carried out addresses the statistical power of the conventional
global Moran’s I estimators in the presence of random spatial indexes. Statistical power
means the probability of rejecting the null hypothesis when the alternative hypothesis is true
(Cohen 1992). Investigating power requires knowledge about the distribution of an estimator in
the alternative hypothesis. In the present case, the respective alternative hypothesis distributions
of Moran’s I under different levels of spatial autocorrelation are estimated from the spatially
autocorrelated random variables whose generation is described above in the first paragraph of
this section. For each 𝜌 value, a vector of Moran’s I estimates is calculated over all simulated
patterns and for both types of processes. The actual calculation of statistical power is then
performed by first estimating the empirical cumulative distribution function Q1 from these
I values and for each 𝜌 greater than zero. In a second step, the powers are determined by
calculating 1 − Q1

(
C𝛼; 𝜌

)
, where C𝛼 is the critical value for the significance level 𝛼 that

would conventionally be used to evaluate the theoretically constructed distributions. What is
tested here, therefore, is the statistical power of the usual global Moran’s I when inadequately
applied to a data set originating from a process that is subject to randomness in the spatial
index.

Results and discussion

The following subsections start out discussing the comparisons between the null distributions
obtained under the assumptions of fixed and random spatial indexes. Subsequently, the related
topic of critical values is addressed, which is of great importance for the application of Moran’s I .
In the last subsection, the statistical power of Moran’s I is discussed when a fixed spatial index is
spuriously assumed even though the actual process under investigation is tied to a random index
set.

Null distributions
The first investigation concerns possible differences between the null distributions of I with and
without random spatial indexes. All histograms shown in green in Fig. 4 depict the KL divergences
between the theoretical null distributions under hypothesis N5 and the respective empirically
determined null distribution estimated from the simulated point patterns with randomness in
the spatial index. Shown in gray for comparison are histograms of the divergences based on
the same theoretical distributions but compared with the empirical distributions obtained for
each simulation step using only one respective arrangement of spatial units through repeated
redrawing (hypothesis N) or randomization (hypothesis R) of the attributes. The gray histograms
thus represent the performance of the estimator for I as is conventionally used.

The normal approximations of the null distributions of Moran’s I are affected by the presence
of stochastic spatial index sets. The green and the gray histograms in Fig. 4a and b reveal that
the theoretically and empirically determined distributions can differ considerably in case of
homogeneous point processes. A large number of KL divergences accumulate near the respective
mean values. However, in both green histograms there is a strong positive skewness of about
g ≈ 6. One consequence of this is that in the simulations the left-hand side of the symmetrical
gray reference histograms remains unreached. At the same time, extreme values occur that lead
to a heavy right tail. For inhomogeneous point patterns, the behavior is slightly different. The
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Geographical Analysis

Figure 4. Histograms of Kullback–Leibler divergences. Homogeneous (a) Matérn and (b)
Thomas processes. Inhomogeneous (c) Matérn and (d) Thomas processes. Green histograms
depict divergences between empirical null distributions with random spatial indexes and corre-
sponding normal approximations (hypothesis N); gray histograms depict divergences between
conventional empirical null distributions without assuming random spatial indexes and corre-
sponding normal approximations (hypothesis N).

gray reference histograms behave similarly to the homogeneous cases, but the green histograms
appear more concentrated and symmetrical, as can be seen in Fig. 4c and d. The concentration
around the means suggests that the use of the normal approximations does not lead to strong
deviations from corresponding empirical distributions in case of inhomogeneous Matérn and
Thomas processes. However, the narrow ranges around the mean values also imply that very
small divergences are not achieved either. Another notable difference to the homogeneous cases
is that the null approximation performs less optimally under the Thomas process than under
Matérn-based patterns. While the estimator under hypothesis N performs slightly above average
for Matérn processes, the mean value of the green histogram in the case of Thomas processes
is on the right side of the symmetrical gray reference histogram. Overall, the KL divergences
explained suggest that the conventional estimators for I often perform better in the case of
inhomogeneous point patterns than in the homogeneous cases.

The point processes used lead to variable point pattern sizes. It is therefore interesting to
consider the above findings in the light of the sample sizes in the respective simulations. Fig. 5
illustrates this comparison for the case of Matérn processes (Thomas processes behave very
similarly). It can be seen that only for the homogeneous case and in the presence of stochastic
geometries is there a clear connection between KL divergence and n. As the pattern size increases,
the KL divergence decreases, since the desired clusters are fully formed up to about the mean
value. In the higher n ranges, the KL divergence then increases again, which probably has to do
with partly overlapping clusters and increasing point density (see Statistical power Section for
further comments on point density). In the inhomogeneous case (Fig. 5b), the same trend can
be seen in principle, although it is much less pronounced. The results shown in Fig. 5c and d
are instead based on simulations under hypothesis N for each simulated pattern, performed in
the conventional way, that is, on the repeated drawing of normal random variates, neglecting the
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WESTERHOLT Exploring Inference about Global Moran’s I with Random Spatial Indexes

Figure 5. Kullback–Leibler divergences plotted against point pattern sizes n. (a) Homogeneous
and (b) inhomogeneous Matérn processes with random spatial indexes. (c) Homogeneous and
(d) inhomogeneous Matérn processes without assuming random spatial indexes. All divergences
shown are calculated against corresponding normal approximations (hypothesis N). The green
trend lines depict LOESS regressions.

existence of all other simulated patterns. We can see that in these cases without the presence
of random sites, there is no discernable correlation with n. Overall, the picture is similar under
both the conditions of homogeneous and inhomogeneous point processes, but the estimators of I
perform different in terms of tail behaviors.

Possible explanations for the divergences in the performances of the I estimators tested
are explored in more detail. Knowledge about the distribution of KL divergence is limited, but
Belov and Armstrong (2011) provide some interesting results that bear relevance to the insights
outlined above. Among other configurations, they report that KL divergence (i) is 𝜒2-distributed
when the mean differences between the studied distributions are normal and when the variability
in the variance terms of the (in the present case) null approximations is 0. Furthermore, Belov
and Armstrong (2011) prove that (ii) the KL divergence is non-centrally F-distributed if the
variability of the addressed variance follows a noncentral 𝜒2 distribution. There are indications
that case (i) may apply to the gray histograms in Fig. 4 describing the performance of the
conventional null approximations with fixed geometries. These histograms appear to resemble
the normal distribution6. However, the variability of the empirically estimated variances among
all drawings is indeed close to 0, and the central limit theorem suggests that the mean differences
are normal since the analyzed attributes are all drawn from normal distributions (the latter follows
from the Normal Sum Theorem, see Lemons (2003, p. 34 f.)). It is therefore not implausible
to assume that the values follow a 𝜒2 distribution with the mean being far away enough from
zero to resemble normality. In contrast, visual inspection of the green histograms reflecting the
performance of the estimators under random point processes shows a close resemblance to the
F-distribution, that is, to case (ii). Moreover, the dispersion of the variance of the empirical
estimator is larger, since different point patterns were used for estimation in each comparison.
The difference between the green and gray histograms could therefore be due to the greater
variability caused by the variation in the points in each drawing, which means that the mean
deviations may not be normal and the variances may not be near 0. Deductive research beyond
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Geographical Analysis

the scope of this simulation study is needed to confirm these conjectures, but the present study
supplies indicative evidence.

The results presented above are of importance for empirical statistical research on spatial
structures. In many cases, the conventional null approximations for Moran’s I come close to
the observed null distributions even when the underlying geometries are outcomes of point
processes. However, the observed deviations between the approximation and the empirical
distribution are seldom better than the average performances that would be observed in fixed
geometry cases when comparing those respective theoretical and empirical null distributions. In
both homogeneous cases, values above 1.6 are observed in about 10% of KL divergences when
point processes are involved, while this number drops to below 0.1% in the fixed geometry
cases. At the same time, the minimum values obtained with random geometries are close to 1.4,
while 14.5% (Thomas) and 22.2% (Matérn) of all cases perform better with the conventional
variants. Overall, there is thus often an increased risk of drawing erroneous conclusions about
spatial autocorrelation when the null approximations for I are used in cases where the analyzed
data come from point processes. The differences in the tails of the distributions discussed above
motivate investigating the impact of stochastic spatial indexes on critical values for assessing the
significance of Moran’s I . This is done in the following subsection.

Critical values
Critical values delineate the bounds of certain (1 − 𝛼) percentiles of the distribution of a test
statistic. They thus limit the range of values above (or below) which observed values are
considered significant. It is therefore important to understand how reliable the critical values
obtained from the normal approximations for Moran’s I are in the light of empirical evidence
with random index sets. Two types of critical values are considered and are reflected in Fig. 6:
critical values Cq;𝛼 based on sample percentile estimates from I values obtained in the simulations
and for 𝜌 = 0, hence reflecting empirical evidence taking into account geometric randomness;
and critical values Cp;𝛼 , which are based on theoretical percentiles of normal distributions with
𝜇 = E[I] and 𝜎2 being either equation (2a) or (2b). Most of the point patterns considered are
large enough to assure that E[I] is close to zero (more than 96% of all simulated point patterns
have n > 100). Therefore, it is not necessary to subtract the mean and we can consider the values
obtained directly. However, the positions of the critical values are case dependent and therefore
difficult to interpret. Fig. 6 therefore shows the differences between the respective Cp;𝛼 and
Cq;𝛼 expressed as multiples of the conventionally used critical values Cp;𝛼 . This enhances the
interpretability of the critical value deviations calculated due to a more relative character. Based
on these considerations, the determined critical values show interesting behaviors with relevance
for statistical inference about I .

The critical values resulting from the null approximations of I and the empirical distribution
with geometric randomness in the index differ markedly. Considering the case of homogeneous
point patterns shown in Fig. 6a and b, a general negative trend in the differences of the critical
values over sample size is noticed. This trend is observed independently of the significance
levels 𝛼. All observed differences start from a common origin area for small sample sizes and
show a strong negative slope, which changes quite rapidly to a more uniform rate of change
from medium sized point patterns near n = 400. This observation is stronger for the critical
values associated with 𝛼 = 0.01. The distance between this type of critical values and other less
stringent values attached with higher 𝛼 increases with the sample size, indicating a stronger
downward trend, especially since the other two types of critical values studied for 𝛼 = 0.05 and
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WESTERHOLT Exploring Inference about Global Moran’s I with Random Spatial Indexes

Figure 6. Differences between critical values C for different significance levels 𝛼 determined
using conventional null approximations p (hypothesis N) and based on empirical null distribu-
tions q accounting for stochastic geometries. All differences are given relative to the critical
values of the null approximations p. Homogeneous point patterns: (a) Matérn and (b) Thomas
processes. Inhomogeneous point patterns: (c) Matérn and (d) Thomas processes. The data for the
inhomogeneous cases are only shown for 𝛼 = 0.05. The point pattern sizes n are standardized to
allow for better comparability within the rows of the figure. Please note that the z-scores are not
comparable one-by-one between homogeneous and inhomogeneous point patterns. The mean
sizes (z = 0) are identical for all point patterns (at n = 400). The step sizes on the x-axes are
equivalent to 181 (Matérn) and 187 (Thomas) for the homogeneous processes and to 21 (Matérn
and Thomas) for the inhomogeneous processes. Please refer to the x-axes of other figures like
Fig. 5 for the absolute point pattern sizes.

𝛼 = 0.1 behave more similarly to each other. A closer look at the two sub-figures reveals that
the outlined trends continue in a very similar way even for the few very large outlier point
patterns. All the observations described are comparable for both Thomas and Matérn processes.
The picture that emerges for the inhomogeneous cases, however, seems to be different. The
Fig. 6c and d shows only the cases of 𝛼 = 0.05 for both types of processes. The reason that the
other two cases are not shown is that the points are so close together that it would be impossible
to discern any patterns if all the points were shown. In both cases we see a negative slope as
in the homogeneous case. However, if we look at the value ranges, we see that the differences
between the compared critical values are not as large as for homogeneous point patterns. These
observations are interesting, but require further interpretation.

The critical values applied using the traditional inference framework for Moran’s I in many
cases both overestimate and underestimate the effective bounds of the relevant percentiles for
significance. Negative values in Fig. 6 represent Type-I errors, since in these cases the critical
values assessed using the empirical distribution from the point patterns suggest a stricter limit
for rejecting the null hypothesis. Analogously, positive values represent a higher risk of Type-II
errors, that is, being too conservative and possibly missing spatial effects. The positive values
observed in Fig. 6a and b are associated with point patterns of up to 500 points. Especially
in combination with the commonly used significance level of 𝛼 = 0.05, this is a very relevant
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Geographical Analysis

result for a number of application scenarios, as many point patterns will be smaller than n = 500
in practice. The risk of rejecting the null hypothesis too conservatively is therefore a serious
concern when analyzing point patterns without accounting for the additional variation contributed
by geometric randomness in the inference procedure. If the point patterns are large, the risk of
detecting a large number of possibly uninteresting spatial effects is also considerable. In both
cases, overestimation and underestimation of critical values, the figures suggest that the extent
to which the critical values are misspecified is in many cases up to almost 100% of the value
suggested by the conventional null approximations. While these extreme results only occur for
very small (n < 50) or very large patterns (n > 900), the still noteworthy discrepancy of about
50% of the conventional critical value is not uncommon according to Fig. 6. The values obtained
for inhomogeneous point patterns are more difficult to interpret since these may be influenced
by slightly different characteristics including sample sizes. More patterns there are near the
mean size of n = 400, which is an effect of the intensity map used that is difficult to control.
It is tempting to think that the results obtained for these cases may correspond to the zoomed
region near the intersections of the x and y-axes in Fig. 6a and b. However, closer inspection
(not visualized) reveals that this is not the case and that the values given for 𝛼 = 0.05 are higher
than for homogeneous point patterns in the same value range and that the order (i.e., from top to
bottom) for the different 𝛼 values is not the same. Next, we should take a look at the statistical
power of Moran’s I in the context of random geometries, since the locations of the discussed
critical values directly influence the degree of separability between the distributions in the null
and the alternative hypothesis, which is relevant for concluding significance about Moran’s I .

Statistical power
The statistical power of Moran’s I is affected by the presence of underlying point processes. As
described in Experimental setup Section, the power of I is not examined in this article in terms of
the alternative hypothesis that would normally complement the null hypothesis in the context of
conventional inference. Instead, alternative distributions simulated on the basis of point processes
and representing several effect sizes 𝜌 are used. In this way, it is possible to see to what extent the
conventional test statistic for I is able to detect spatial effects when the normal approximation
is mistakenly expected to be true in the null hypothesis, but the data actually come from spatial
point processes. Fig. 7 provides four series of boxplots showing the distributional characteristics
of all calculated power estimates both over the values of the spatial autoregressive parameters 𝜌
and for three significance levels 𝛼. In Fig. 7a and b, it can be seen for the homogeneous cases that
regardless of the type of point process, the power estimates calculated for each simulated point
pattern are mostly acceptable after 𝜌 exceeds the 0.4 mark. Below 𝜌 = 0.4, there are quite a few
outliers and the whiskers also extend considerably downwards. For example, looking at 𝜌 = 0.3
in Fig. 7a, about 50% of all estimates of power are arranged in a wide interval that extends
downwards to 0 for both 𝛼 = 0.01 and 𝛼 = 0.05. These are relevant results, as Moran’s I is often
used to detect spatial autocorrelation of the order of 𝜌 = 0.3, for instance in regression scenarios.
It is thus important that the estimator offers acceptable power, which is only true to a limited
extent given the results obtained. Inhomogeneous processes generally show similar trends, but
not the same outlier behavior. The latter could be due to the smaller range of sample sizes in
these cases, as already mentioned above.

Looking more closely at the boxplots in Fig. 7 including the underlying power estimates,
additional features of inference about Moran’s I in the presence of point processes become
apparent. One such aspect is the finding that the average statistical power with Thomas processes
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WESTERHOLT Exploring Inference about Global Moran’s I with Random Spatial Indexes

Figure 7. Boxplots of statistical powers for different spatial autoregressive parameters 𝜌.
Homogeneous (a) Matérn and (b) Thomas processes. Inhomogeneous (c) Matérn and (d)
Thomas processes.

is lower across all autocorrelation levels 𝜌 for the homogeneous point patterns studied. These
differences are not very large (the largest difference is found for 𝜌 = 0.1 and 𝛼 = 0.05), but are
consistent. Considering the geometric properties of point dispersal expressed in both processes,
one likely reason could be that the Matérn processes allow for a larger geometric variability.
The latter are not locally constrained by an additional geometric point dispersal mechanism in
the daughter processes. This is in contrast to the Thomas processes, which are locally governed
by Gaussian distance decay and are based on the same parameters in each draw. This difference
suggests that, especially for alternative hypotheses associated with low 𝜌 values, the distributions
of I may not be so different from the null hypothesis restricted to a particular Thomas outcome
derived from the same geometric principle as is the case for Matérn processes. This difference
between the two process types is not observed in the inhomogeneous point patterns. A possible
reason for this could be the faster filling up with points in rather restricted spaces imposed by the
intensity grid. Another feature of statistical power in the given context is the consideration of the
dispersion behavior of the estimates. Using 𝛼 = 0.1, the variance is greatest when 𝜌 = 0.1. The
statistical power in this case is in the middle range, but there are many outliers, most of which
range downwards. On the other hand, if we consider the stricter inference criteria at 𝛼 = 0.01,
the highest uncertainty is associated with the powers estimated for 𝜌 = 0.2, which corresponds
to a deviation from the mean variance of 2.4 times the standard deviation of all the variances
determined. For weaker spatial structuring with 𝛼 = 0.1, the statistical power is so low that not
many downward outliers are possible. For 𝜌 = 0.3, the variance is still strongly above average,
but then moves slowly toward the mean. These results are again of importance for applications,
since quite high uncertainties are attached to practically relevant ranges of autocorrelation
values.

Statistical power is closely related to sample size. Fig. 8 shows a series of power estimates
plotted against the sizes n of the corresponding point patterns. Only plots for Matérn processes
are shown, as the Thomas-based point patterns show similar behavior as a function of sample
size. Fig. 8a–d show the relationships between statistical power and n for 𝜌 = 0.1, 0.2, 0.3, and
0.4. Beyond 𝜌 = 0.4, the plots would not be very informative, as can also be inferred from the
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Geographical Analysis

Figure 8. Statistical power of Moran’s I under different alternative hypotheses and plotted
against point pattern sizes n. Homogeneous Matérn cluster processes with (a) 𝜌 = 0.1, (b)
𝜌 = 0.2, (c) 𝜌 = 0.3, and (d) 𝜌 = 0.4; and for inhomogeneous Matérn processes with (e) 𝜌 = 0.1,
and (f) 𝜌 = 0.2. The points in the background represent statistical power for each simulated point
pattern and three significance levels (separated in three tones of green). The green trend lines
represent LOESS regressions.

boxplots in Fig. 7. Looking at Fig. 8a for 𝜌 = 0.1, it is noticeable that the trend line for the
strictest significance level 𝛼 = 0.01 deviates from the other trend lines shown. While the trends
for 𝛼 = 0.05 and 0.1 initially rise rapidly before flattening out to a progressively lower slope
rate, the trend for 𝛼 = 0.01 takes on a sigmoidal shape. As a result, the curve remains close to 0
almost until n = 200. Thus, it can be said with some confidence that the detection of weak spatial
patterns, assuming a low error rate, is very difficult when the data generating process induces
geometric randomness. In all cases, the trend lines tend toward plateaus of statistical power.
These plateaus are quite high, reaching maximum values of 0.57 (𝛼 = 0.01), 0.69 (𝛼 = 0.05),
and 0.76 (𝛼 = 0.1), but these values are only reached when n is very large. The inflection points
after which the curves flatten out are in the range between 200 and 400 points. As the degree
of spatial autocorrelation increases (Fig. 8b–d), these inflection points shift to the left, that is,
toward smaller point pattern sizes. But even in these cases they are still between n = 100 and
200, which, as has been pointed out several times, can sometimes be high hurdles for lots of
applications.

To better understand the outlined relationship between sample size and power, it is necessary
to relate it to the experimental setup of this study. As described in Simulation of homogeneous
point patterns Section, the simulated point patterns in this article are generated using a finite
window of fixed size. This arrangement results in the growth of the point pattern realizations
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WESTERHOLT Exploring Inference about Global Moran’s I with Random Spatial Indexes

following an infill pattern resulting in increasing point density as n grows with this effect being
stronger for the inhomogeneous patterns due to the additional spatial constraints added by the
intensity map. This type of strategy is representative of certain real-world processes including
the arrangement of trees in forests, scenarios related to crowding, and also the analysis of tweets
in different urban environments. Instead of the infill strategy, however, an increasing-domain
strategy would also have been possible, in which the density of the points is controlled and only
the mere number of points increases by expanding the boundary of the analysis window (cf.
Cressie 1993, p. 350 ff.). This is important for the results obtained in that the inflection points
reported in the previous paragraph, which are quite distinct, may be characterized by a complex
interplay of degree of spatial autocorrelation, point pattern size n, and point density. This
should be investigated in more detail in follow-up studies, but should be taken into account
when interpreting the results described in this subsection and beyond. Another matter is the
interpretation of the results for the inhomogeneous cases shown in Fig. 8e and f for 𝜌 = 0.1 and
0.2. Given the limited range of point pattern sizes obtained from the intensity grid, it is only
possible to describe the middle range of n. Zooming into the same range of n for the homogeneous
cases7 shows that the inhomogeneous cases behave very similarly to the homogeneous point
processes. However, it remains unclear whether and how the tails of the statistical power would
behave with respect to n, which is again left to future research at this point.

Conclusions and future research

This article investigates the performance of the established and widely applied inference
framework of Cliff and Ord (1981) for global Moran’s I in cases where the analyzed data are
drawn from point processes, that is, whose spatial index is subject to geometric randomness.
Two types of Poisson cluster processes, namely Matérn and Thomas processes, were investigated
for both homogeneous and inhomogeneous scenarios. For each of these cases, 10,000 random
point patterns were generated and assigned normally distributed random values. The patterns
thus generated were then used to analyze three important characteristics using Monte Carlo
simulation. One analyzed property is the deviation of parametric normal approximations of
the null distribution of I from the empirically generated null distributions taking into account
point process induced randomness. Furthermore, the differences between conventional (with
fixed spatial index) and empirically estimated critical values (with stochastic spatial index) as
used for rejecting the null hypothesis of no spatial autocorrelation were determined. The third
investigation concerns the statistical power of Moran’s I when the actual distribution in the
alternative hypothesis is expected to contain geometric randomness due to point processes. From
the results, it can be concluded that point processes affect the performance of the estimator
for I . The empirical null distributions with stochastic spatial indexes deviate more from the
theoretical null approximation than those obtained under conventional conditions. The critical
values assessed indicate that the traditional inference framework may be too rigid or too liberal,
depending on the sample size. Also, the statistical power is often quite low (for small sample
sizes and weak spatial processes), but can reach acceptable values as the sample size increases.
A number of conclusions can be drawn from the study conducted.

One conclusion that can be drawn from the present simulation study is that the geometric
constraints added by point processes have an impact on inferences about global Moran’s I .
Geometric constraints is thereby not to be understood in absolute terms. Compared to the
traditional assumptions for estimators of spatial autocorrelation, both point processes studied
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Geographical Analysis

allow for more rather than less variation in the spatial weights. What is meant here is that
the Thomas process is more geometrically constraining with respect to small distances than its
Matérn process counterpart. This difference seems to lead to consistent differences in terms of
global Moran’s I . This conclusion is supported by a number of results: The statistical power is
consistently lower under the influence of Thomas processes than for their Matérn counterparts.
Analogously, the deviations of the empirical null distributions from the null approximation are
also larger for geometric configurations derived from Thomas processes. The main difference
between Thomas and Matérn processes is the geometric point dispersal mechanism in the
daughter processes. Matérn processes do not geometrically constrain the local offspring points,
apart from an upper distance limit. In contrast, the Thomas process adds a geometric constraint
that translates into a Gaussian distance decay. The local random placement associated with the
Matérn process thus allows for a wider range of possible point configurations, resulting in a
wider span of spatial weights than the more constrained bell-shaped clusters that form under
the Thomas process. Translating the notion of a stochastic spatial index to the idea of nonfixed,
stochastic spatial weights, and considering the close relationship between these with the shape
and possible range of the distribution of Moran’s I (de Jong, Sprenger, and van Veen 1984),
the results obtained support the conclusion that it is probably the geometric random mechanism
that determines the differences between the two types of processes studied. Influences on the
estimation of spatial autocorrelation by variation of characteristics of underlying geometries have
also been found in previous studies. For example, Griffith and Arbia (2010) and Griffith (2006)
found a tendency toward negative spatial autocorrelation in the case of geographic competition
for resources, whereas negative spatial autocorrelation is otherwise rare and often indicative of
measurement error or other technical problems. The results obtained here extend these findings
to the cases of the two point processes considered. The differences obtained are not very large,
as the simulations are designed to obtain similar cluster characteristics in terms of size and scale.
However, future studies may investigate the differences while varying these characteristics as
well, in order to determine their role in the inference about Moran’s I .

A second conclusion concerns the statistical power of Moran’s I . In a study of different types
of spatial structures, Bivand, Müller, and Reder (2009) explored the power properties of global
and local Moran’s I , including hypothesis N, which is also considered in the present article. The
types of spatial structures examined in that earlier study differ, but considering them all together
allows comparison with the results obtained here. Global Moran’s I is studied only for small
spatial configurations. For a regular 5 × 5 lattice, Bivand, Müller, and Reder (2009) find that the
power increases rapidly with the spatial autoregressive coefficients 𝜌. In contrast, for an irregular
structure consisting of eight points, it is observed that the statistical power of I remains low. The
cases presented in this article are larger in size but have the same irregular character as the latter
case studied by Bivand, Müller, and Reder (2009). Considering only the subset of very small
simulated point patterns with n ≤ 20, one also finds that the statistical power for small values of
𝜌 is low, even lower than the values given in the article by Bivand, Müller, and Reder (2009). The
difference, however, is that the statistical power increases to high values close to 1 even for small
point patterns when 𝜌 is large. What is different between the present study and the one referred
to is that here the distributions generated under the alternative hypotheses allow for a greater
degree of variability due to the point processes. The range of possible spatial weights increases
and so does the range of I . Both the regular grid (which could occur as a result of the Matérn
process, albeit with very low probability) and the irregular lattice studied by Bivand, Müller, and
Reder (2009) are possible special cases of the simulations studied here, analogous to perhaps
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WESTERHOLT Exploring Inference about Global Moran’s I with Random Spatial Indexes

picking two extreme cases out of all the simulations and fixing on their geometries. In a recent
study, Luo, Griffith, and Wu (2019) examined the statistical power of Morans I not only in the
context of small samples, but also when applied to large data sets such as tweets, which are often
referred to in this article (the authors use a remotely sensed image). While their results for small
samples and using different distributional and spatial connectivity regimes confirm previous
findings, the authors show that the statistical power for very large data sets approaches one.
In the study presented here, these previous results are complemented by a stochastic geometry
perspective. The results obtained here thus extend the findings of the previous study by showing
that the statistical power of I for weak spatial processes seems generally low for small to medium
sized samples, even if the range of considered possible random geometries is extended.

The results obtained and the conclusions drawn are subject to a number of limitations
that give rise to possible follow-up investigations. Matérn and Thomas processes are only two
possible types of cluster processes. There are other, more complex processes such as Gibbs
processes that model proactive point interaction (Illian et al. 2008, p. 137 ff.). It would be
interesting to see how the results obtained in this article would differ systematically under
different types of point processes. This should also include possible combinations of them, as
well as “dilutions” of “pure” model results, for example by using thinning techniques or random
infusions of points. Both can occur in practical applications, as point process models often do
not occur in their pristine form. A systematic understanding of these scenarios would be helpful
in assessing the quality of the corresponding spatial autocorrelation evaluations. Furthermore,
the Matérn and Thomas point processes tested in this article are relatively similar in design in
terms of scale, number of points, and the attribute values assigned to them. This choice was
made for reasons of comparability, but it also means that some of the effects reported in this
article might be more pronounced if the parameters mentioned are varied. In follow-up studies,
the characteristics mentioned should be examined individually and the respective interactions
worked out.

Finally, the vigilant reader will have noticed that local Moran’s I (Anselin 1995) has been
omitted from this article for reasons of space. Indeed, the local counterpart of I implies a
number of additional inference systems attached to various kinds of null hypotheses (for an
overview, see Sauer et al. 2021). Certainly, the investigation of these null hypotheses would also
be relevant and interesting, but it should be carried out in a separate investigation in order to
give it due prominence. Similar arguments can be made for the case of inhomogeneous point
processes. The results obtained here show that the case of inhomogeneous point patterns deserves
a separate investigation in order to give full attention to the specific properties of the associated
process types and their interaction with Moran’s I . Overall, there is scope for much follow-up
research, and this article is hopefully informative both for empirical interpretations of spatial
autocorrelation and for methodological follow-up work.
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Note

1 See Sui (2004), Miller (2004), and Tobler (2004) for a debate on the degree of universality and the
scientific-theoretical status of Tobler’s First Law of Geography.

2 This monograph continues a previous version of their book: Cliff and Ord (1973). See Griffith (2009)
and the corresponding special issue for an overview of the influence that Andrew Cliff’s and Keith
Ord’s books have had (and continue to have) on the field of spatial analysis.

3 I intentionally avoid the stronger notion of “independence.” The latter has wider implications and
cannot always be guaranteed.

4 The notation I is used for the identity matrix instead of the usual notation I to avoid confusion with the
symbol used for Moran’s I .

5 Both hypotheses N and R have been tested but only the results for hypothesis N are reported in the
figures. The reason is that the results are very similar for both assumptions.

6 Normality was investigated with Shapiro–Wilk tests. For both types of point processes and for
hypotheses N and R, the respective 10,000 KL divergences were each randomly divided 1,000 times
into subsets of 250 to avoid the Shapiro–Wilk test being too sensitive due to large n. The normality
hypothesis could not be rejected in well over 90% of all cases.

7 These zoomed-in sections are not graphically illustrated in this article.
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