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Abstract

Nowadays, embedded systems have become ubiquitous, powering a vast array of
applications from consumer electronics to industrial automation. Concurrently,
statistical and machine learning algorithms are being increasingly adopted across
various application domains, such as medical diagnosis, autonomous driving, and
environmental analysis, offering sophisticated data analysis and decision-making
capabilities. As the demand for intelligent and time-sensitive applications continues
to surge, accompanied by growing concerns regarding data privacy, the deployment
of machine learning models on embedded devices has emerged as an indispensable
requirement. However, this integration introduces both significant opportunities for
performance enhancement and complex challenges in deployment optimization.

On the one hand, deploying machine learning models on embedded systems with
limited computational capacity, power budgets, and stringent timing requirements
necessitates additional adjustments to ensure optimal performance and meet the
imposed timing constraints. On the other hand, the inherent capabilities of machine
learning, such as self-adaptation during runtime, prove invaluable in addressing
challenges encountered in embedded systems, aiding in optimization and decision-
making processes.

This dissertation introduces two primary modifications for the analyses and
optimizations of timing-constrained embedded systems. For one thing, it addresses
the relatively long access times required for shared resources of machine learning
tasks. For another, it considers the limited communication resources and data
privacy concerns in distributed embedded systems when deploying machine learning
models. Additionally, this work provides a use case that employs a machine learning
method to tackle challenges specific to embedded systems.

Firstly, to meet timing requirements, we design a resource synchronization
protocol that bounds the worst-case response time of tasks, addressing the long
access times for shared resources, such as GPUs used in machine learning tasks. We
also support the designed protocol on two real-time operating systems (RTOSes),
namely LITMUSRT and RTEMS. Additionally, we propose a formal verification
framework to ensure the correctness of implementations under the assumption that
all implemented protocols are based on a correct RTOS.

Secondly, considering the resource-constrained distributed embedded systems
that prohibit raw data sharing due to privacy concerns, we optimize the deployment
of a machine learning model, specifically employing model-based optimization. We
propose two distinct strategies: a) treating the entire system as a black box, with all
end nodes collaborating to enhance prediction accuracy and statistical stability, and
b) enabling parallel processing by having all end nodes work collectively to improve
timing efficiency.
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Thirdly, we provide a use case that employs reinforcement learning to minimize
the average execution time of an embedded system under (m,k) soft error constraints.
Here, each task can operate in one of three distinct modes, each with specific
correctness assumptions and execution times. An RL-agent is trained to dynamically
select the optimal execution mode for the next job of a task, aiming to minimize
its average execution time, particularly in scenarios with variable or unpredictable
error rates.

By addressing these key aspects, this dissertation contributes to the analysis
and optimization of timing-constrained embedded systems, considering resource
synchronization and machine learning models to enable improved performance and
efficiency in real-time applications with stringent constraints.
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Introduction

Contents
1.1 Overview of Explored Domains . . . . . . . . . . . . . . . . 2

1.1.1 Multiprocessor Resource Synchronization . . . . . . . . . . . 2
1.1.2 Implementation and Verification . . . . . . . . . . . . . . . . 5
1.1.3 Machine Learning on Distributed Embedded Systems . . . 6
1.1.4 Machine Learning for Error-Tolerant Embedded Systems . 8

1.2 Contribution of this Dissertation . . . . . . . . . . . . . . . 9
1.2.1 Multiprocessor Resource Synchronization . . . . . . . . . . . 10
1.2.2 Implementation and Verification of Protocols . . . . . . . . 11
1.2.3 Machine Learning on Distributed Embedded Systems . . . 12
1.2.4 RL for Average Task Execution Time Minimization . . . . . 14

1.3 Organization of the Dissertation . . . . . . . . . . . . . . . 15
1.4 Author’s Contribution to this Dissertation . . . . . . . . . 16

Embedded systems have progressively emerged as a pivotal component in contem-
porary technological paradigms, underpinning an extensive spectrum of applications,
extending from consumer electronics to industrial automation. Their ubiquity and
evolving capabilities have revolutionized how we interact with technology in daily
life. Concurrently, there has been a significant surge in the adoption of statistical
and machine learning algorithms across various fields, including autonomous driving,
industrial automation, and environmental analysis. This convergence of advanced
algorithms with embedded systems not only offers sophisticated data analysis and
decision-making capabilities but also highlights a critical shift towards deploying
machine learning models on embedded edge devices. However, while this integration
promises substantial performance enhancements, it also brings to the fore challenges
in terms of data privacy and latency, necessitating the optimization of machine
learning deployments on these platforms.

Optimizing these deployments, in turn, introduces a set of new challenges.
Embedded systems, characterized by their limited computational resources, stringent
power constraints, and rigorous timing requirements, require robust and innovative
solutions to ensure optimal performance for the deployment of machine learning
models. These requirements call for the development of novel methodologies and
protocols to effectively manage and balance these constraints. Concurrently, the

1
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inherent capabilities of machine learning, such as dealing with complex and non-
linear systems, continuous learning, handling uncertainty, and self-adaptation during
runtime, prove invaluable in addressing challenges encountered in embedded systems,
such as enhancing optimization and decision-making in industrial automation.

1.1 Overview of Explored Domains

In the subsequent sections, several critical aspects related to the analysis and
optimization of timing-constrained embedded systems are presented. The focus
is on resource synchronization and the deployment of machine learning models.
Additionally, the potential applications of machine learning techniques in overcoming
challenges specific to embedded systems are investigated.

1.1.1 Multiprocessor Resource Synchronization

In time critical embedded systems, also known as hard real-time systems, the
correctness depends not only on the logical result of computation, but also on the
time at which the results are produced. For such systems, a deadline miss can result
in catastrophic consequences. Hard real-time systems can, for instance, be found in
aviation control systems, medical equipment like pacemakers, nuclear power plant,
and some automotive safety systems. To ensure safe operations of such embedded
systems, the satisfaction of real-time requirements must be verified, for instance, by
determining worst-case response time.

In concurrent multi-task systems, tasks may request the same shared resources,
e.g., files, memory cells, buses, or external accelerators like graphical processing
units (GPUs). In order to prevent race condition or data corruptions, the accesses
to shared resources are mutually exclusive. The piece of code that accesses to shared
resources is typically called critical section, which can be protected by using binary
semaphores or mutex locks. Therefore, at any point in time no two task instances
are in their critical sections that access the same shared recourse. If aborting or
restarting a critical section is not allowed, due to mutual exclusion, a higher-priority
job may have to be blocked until a lower-priority job unlocks the requested shared
resource that was already locked earlier, a so-called priority inversion. Additionally,
in nested resource sharing, where tasks can request multiple resources simultaneously,
a deadlock can occur due to the hold-and-wait mechanism. For example, task τ1
locks resource 1 and waits for resource 2, while τ2 locks resource 2 and waits for
resource 1. This circular wait causes the deadlock.

Resource synchronization protocols have been developed to ensure the timeliness
while accessing shared resources, by preventing deadlocks and bounding the priority
inversion. The study of such protocols for uni-processor systems can be traced back
to the priority inheritance protocol (PIP) and priority ceiling protocol (PCP) by
Sha et al. [SRL90] in 1990 and the stack resource policy (SRP) by Baker [Bak91] in
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1991. The Immediate PCP (ICPP), a variant of PCP, has been implemented in Ada
(called Ceiling locking) and POSIX (called Priority Protect Protocol).

Given the increasing demand for computational capacity and challenges associ-
ated with heat dissipation, multicore and multiprocessor systems are widely adopted
as standard commercial embedded platforms. Towards this, several multiprocessor
resource synchronization protocols also have been proposed, such as the Distributed
PCP (DPCP) [RSL88], the Multiprocessor PCP (MPCP) [Raj90], the Multipro-
cessor SRP (MSRP) [GLN01], and the Multiprocessor resource sharing Protocol
(MrsP) [BW13].

The performance of these protocols highly depends on several aspects:

1. the partitioning and prioritization strategy for tasks;
2. the methodologies employed for sharing resources, i.e., locally or globally; and
3. the decision as to whether a blocked job/task should spin or suspend itself.

Although multiprocessor resource synchronizations have attracted extensive
research in the past decades, and an array of protocols have been proffered in the
literature, certain fundamental queries pertaining to the sharing of resources via
locking mechanisms in multiprocessor systems remain unanswered:

• What is the fundamental difficulty?
• What is the performance gap of partitioned, semi-partitioned, and global

scheduling?
• Is it always beneficial to prioritize critical sections?

Additionally, the protocols that currently exist are predominantly designed for
traditional embedded systems where critical sections for resource occupancy are
relatively short, such as for memory cell usage or shared bus access. However, in
the context of machine learning tasks, these critical sections may be substantially
elongated, such as instances where GPUs are utilized for computation. Although
concurrent accesses to a GPU are permitted by default and can produce logically
correct results, the internal scheduling within the GPU is unpredictable. Given that
the worst-case response time for each task executed on a shared GPU is not bounded,
in certain real-time applications, access to the GPU must be mutually exclusive.
In the current landscape, the suite of multiprocessor resource synchronization
protocols adhere to a work-conserving paradigm for critical sections. That is, an
available processor will immediately execute any ready critical section from its
corresponding ready queue. While this paradigm is generally efficient, it does not
always guarantee optimal performance due to the mutually exclusive nature of
critical section executions, especially when the lengths of critical sections exceed
the periods of another task in the system that requires access to the same shared
resource. A counter example of this can be found in Figure 1.1. We consider
three tasks that request the same shared resource, i.e., z1, in their critical sections,
and two processors are available for execution of tasks. Figure 1.1 presents two
multiprocessor partitioned schedules, which execute task τ1 and τ2 on processor 1,
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and task τ3 on processor 2. The schedule in Figure 1.1a is work-conserving with
respect to the critical sections, i.e., the critical section of τ3 is executed immediately
once it is ready, which leads to a deadline miss. However, the schedule in Figure 1.1b
is non- work-conserving with respect to the critical sections, where all tasks meet
their deadlines. That is, postponing the execution of critical section from τ3 until τ1
has finished the execution of its critical section.

processor 1 processor 2

non-critical section critical sections z1

τ3

τ2

τ1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Deadline miss

(a) A work-conserving schedule.

processor 1 processor 2

non-critical section critical sections z1

τ3

τ2

τ1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(b) A non-work-conserving schedule.

Figure 1.1: Work-conserving multiprocessor synchronization versus non-work- con-
serving multiprocessor synchronization when the length of a critical
section is longer than the period of another task.

Therefore, this paradigm shift presents new challenges in resource synchronization
protocol design, necessitating a comprehensive reassessment and refinement of
existing methodologies.
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1.1.2 Implementation and Verification on Real-Time Systems

While the aforementioned protocols offer timing guarantees by bounding the worst-
case response time of tasks, most of them operate on the assumption that the
overheads invoked by their implementation are negligible. This assumption, however,
necessitates critical examination. The performance of different protocols is highly
contingent on their settings, such as the local or remote execution of critical sections,
multiprocessor scheduling paradigm, and tasks’ waiting semantics. For instance,
under a suspension-based synchronization protocol, tasks waiting to access a shared
resource are suspended, if the requested resource is not available, i.e., locked by
another task. Although this strategy frees the processor for other ready tasks,
thereby optimizing processor utilization, it simultaneously inflates context switch
overhead due to additional enqueue and dequeue operations required with each
suspension. Conversely, under a spin-based synchronization protocol, the task
retains its privilege on the processor and waits by spinning until it can access the
requested resource and execute its critical section, which is more efficient in real
implementations when the critical sections are relatively short [BA07].

In contrast, only a few of protocols have been officially supported in real-time op-
erating systems (RTOSes), such as the Linux Testbed for Multiprocessor Scheduling
in Real-Time Systems (LITMUSRT) [CLB+06; Bra11], and Real-Time Executive for
Multiprocessor Systems (RTEMS) [The21]. LITMUSRTis an experimental platform
based on the Linux kernel, primarily for academic purposes, e.g., validation of new
proposed scheduling or synchronization algorithms, but not for practical applica-
tions. Brandenburg et al. [BA08] implemented DPCP, MPCP, and FMLP, Catellani
et al. [CBH+15] implemented MrsP, and Shi et al. [SCZ+17] solidate the imple-
mentation of MrsP. Alternatively, RTEMS is an open-source real-time operating
system which is popular for industrial applications. RTEMS has been widely used in
many fields, e.g., space flight, medical, and networking. However, in RTEMS, only
a few of resource synchronization protocols have been officially supported in the
upstream repository, i.e., ICPP for uni-processor systems, and MrsP implemented
by Catellani et al. [CBH+15] for multiprocessor systems. Therefore, we believe
there is significant benefit in offering comprehensive support for LITMUSRT and
RTEMS with resource synchronization protocols for related research. Subsequently,
system designers can better understand the performance of resource synchronization
protocols, leading to discussions on implementation optimizations.

During the design phase, a protocol is formally delineated as a set of rules,
built upon abstracted system models and operating under specific assumptions
within the operating system (OS). However, when transitioning from design to
actual implementation, these abstractions and assumptions may not always be
applicable. For instance, some OSes might not allow tasks with identical priorities.
In such cases, the inherited ceiling priority, like that in ICPP, must be adjusted by
setting diverse ceiling priorities and excluding these from the standard priorities
designated for other tasks. Furthermore, components like the helper mechanism in
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MrsP or the busy waiting in a FIFO-queue require appropriate data structures and
operations to be integrated within the target OS. Any adaptations, driven by the
OS’s practical constraints, can deviate from the original specifications, potentially
leading to unforeseen consequences.

Therefore, in addition to the exploration and design of resource synchronization
protocols, careful implementation in real-time operating systems, coupled with a
formal verification process, is pivotal. Implementing and verifying the protocol in
tandem ensures that it operates as intended under real-world conditions. This method
provides robust, reliable timing guarantees and minimizes the risk of unexpected
outcomes due to deviations from the original specifications.

1.1.3 Deployment of Machine Learning Models on Distributed Em-
bedded Systems

Besides the consideration of timeliness, the performance of machine learning models
is of great importance. Recognizing that a singular, resource-constrained embedded
device may not achieve optimal results, many applications now leverage the collective
capabilities of multiple devices. As the focus shifts from individual devices to
a more expansive view encompassing networked systems, distributed embedded
systems and edge computing systems have gained prominence. These systems
are increasingly utilized to execute various machine learning tasks to enhance the
functionalities of embedded systems. Their advantages include high flexibility,
scalability, and low energy consumption in real-world applications. These systems
prove particularly useful in applications such as modern intelligent transportation
systems. Traditional road condition monitoring relied on cloud computing networks
to analyze data gathered from vehicles and infrastructure. This approach often
resulted in significant computational overhead and marked network latency. To
address these challenges, Rasheed et al. [RZH20] introduced the edge computing
framework based on the vehicle-to-everything (V2X) concept, bringing about a
notable enhancement in the efficacy of road monitoring systems. Nodes within this
framework, including vehicles, surpass the capabilities of conventional sensors that
were solely designed for data collection. These advanced nodes come equipped not
just with a sensor module for environmental monitoring and data acquisition but
also with a processing module, where all the data processing is performed at edge
nodes. More advanced implementations in intelligent transportation now efficiently
conduct lightweight machine learning operations using locally-sourced data, further
enriched by information from neighboring nodes. This approach enables real-time
predictions about road conditions and optimizes path planning. Such advancements
represent significant progress in the realms of distributed and edge computing.

Machine learning algorithms are typically characterized by a high degree of
parameterizability, with their performance being sensitive to hyper-parameter config-
urations. For instance, the well-established Multi-Layer Perceptron (MLP) [GD98]
displays significant variance in prediction accuracy with different hyper-parameter
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settings for the same task. These hyper-parameters, e.g., the number of layers, the
number of neurons per layer, the type of activation functions, and the learning
strategies, all require precise configuration before deploying a machine learning
model in a real-world platform.

Hyper-parameter tuning is essential for optimal predictive performance. However,
it can be resource-intensive, especially as data size or search space grows. Over
recent decades, numerous hyper-parameter tuning algorithms have been developed
and scrutinized. Modern techniques such as Model-Based Optimization (MBO)
employ a cycle of model fitting and utilization to determine promising configurations
to explore. A specific strategy within this realm is Bayesian optimization [JSW98],
which addresses the challenge of expensive optimization by fitting a Gaussian process
regression to approximate predictive performance relative to the hyper-parameters.

Typically, such hyper-parameter tuning necessitates a dedicated machine learning
model to be trained and evaluated on centralized data to yield a performance estimate.
However, the traditional centralized design for this process becomes less efficient
and sub-optimal in cases where centralized data is not accessible, for instance, due
to privacy concerns or in distributed settings.

In distributed setups, transferring data through low bandwidth connections and
merging all sub-datasets to one central node can lead to significant communication
resource consumption, large overheads, and reduced time for tuning. The central
node may also be burdened by redundant data from overlapping sensing areas.
Furthermore, data collection and storage may be hindered by privacy concerns
or limited storage capacity at the central node. Additionally, the performance of
machine learning algorithms is usually sensitive to the adopted hardware platforms.
One study [KSZ17] showed that implementation details, frameworks, and program-
ming languages as well as the related software libraries have a high impact on the
run-time performance of unsupervised learning methods. Particularly, for run-time
considerations, it has been shown that caching behavior impacts the performance
of implemented algorithms even more than algorithmic differences [NK06]. For
example, the run-time of a random forest in [BCC+18] is optimized for different
platforms using different settings due to the different hardware designs, e.g., cache
size. Consequently, if tuning aims at algorithm acceleration, a setting optimized for
a central node may not be optimal for the dedicated distributed embedded systems
with distinct hardware architectures.

An alternate solution is individual hyper-parameter tuning at each node using
its local data. However, this approach brings its own set of challenges. Due to
each node’s limited storage and sensing area, only a limited size of data can be
collected and stored. One main challenge of hyper-parameter tuning on distributed
embedded systems is leveraging the decentralized sub-datasets to derive a unified
hyper-parameter setting that is universally applicable across all nodes within the
system. This necessitates a novel method targeting three key objectives: improving
prediction accuracy, enhancing statistical stability, and boosting runtime efficiency.
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1.1.4 Machine Learning for Error-Tolerant Embedded Systems

In addition to optimizing the deployment of machine learning models on embedded
systems, machine learning algorithms are increasingly seen as a viable solution
to challenges specific to embedded systems. For example, industrial automation
often faces transient states due to ever-changing environments. In such situations,
traditional static solutions may falter.

To illustrate, certain safety-critical embedded systems for industrial applications,
are regularly subjected to transient faults due to environmental influences such as
cosmic radiation and electromagnetic interference [Bau05]. The susceptibility to
these factors is accentuated by the densely integrated modern systems-on-chips,
resulting in non-negligible transient fault-rates. These transient faults might lead to
soft errors with potential catastrophic outcomes, error-handling strategies must be
incorporated during the design phase. Various software-based techniques, such as
explicit output comparison (EOC) [GGB13], control flow checking using software
signatures [OSM02], and redundant multithreading [CBC18], have been widely
accepted due to their flexibility in balancing error protection with additional runtime.

In practical scenarios, certain safety-critical applications have been observed to
tolerate a limited number of errors by temporarily downgrading the quality of service
(QoS), without catastrophic consequences, as long as error tolerance constraints are
satisfied. For instance, robotic applications can still successfully finish their tasks
under a limited number of errors [CBC+16; YCC18] This observation has led to
the notion of (m,k) robustness constraints, where a task must complete at least
m correct jobs out of any k consecutive jobs. While the original concept of (m,k)
constraints was formulated for limited deadline misses, it is equally applicable to
define acceptable levels of soft errors.

The predominant methods employed to enforce (m,k) constraints, highly rely on
static decisions. These decisions involve using appropriate fault-tolerance techniques,
such as the deeply red pattern (R-pattern) [KS95] or the evenly distributed pattern
(E-pattern) [QH00], to ensure reliable job execution. To improve the adaptivity of
static pattern based techniques, Chen et al. [CBC+16] proposed to track the current
resilience during runtime and to adapt the patterns accordingly. This pattern-based
scheduler delays the resource-intensive and time-costly reliable executions until the
last moment by monitoring the number of future jobs that can be faulty without
violating constraints. While this method introduces some adaptivity, it can result in
pessimistic resource usage as it does not consider the actual error probability.

In the literature of fault-tolerant systems, a common objective is to minimize
overall system utilization and, consequently, energy consumption [CBC+16; NQ06;
NZ20]. This is due to the significant difference in power consumption between busy
and idle processor states [CK07]. In the busy state, the consumed power can be
divided into static and dynamic power consumption in contrast to the idle state, in
which (ideally) only static power is consumed. Moreover, keeping the processor in a
busy state for a sustained amount of time leads to a temperature increase, which in
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turn results in higher energy consumption for cooling and increases the static leakage
power consumption, due to the super linear relationship between temperature and
static leakage power [SLD+03; LDS+07]. Reducing the average energy consumption
can directly be linked to reducing the average utilization.

However, in practical applications, the environment of computational environ-
ments constantly shifts due to factors like hardware conditions and environmental
temperature. Current solutions that rely on static patterns [CBC+16; NQ06; NZ20]
may find it difficult to adapt to such scenarios, as they lack the adaptability needed
to optimize performance in the face of these unpredictable changes.

Although static execution patterns remain prevalent for ensuring (m,k) con-
straints, the need for adaptivity has become more evident. This is especially pertinent
when accounting for the dynamic nature of soft error probability during system
execution. The overarching objective remains the minimization of system utilization,
leading to optimal energy consumption. To navigate these challenges, it is necessary
for a novel approach based on probabilistic state transitions, specifically for known
error probabilities. Such a solution would utilize the deliberate deployment of
reliable executions, which are often resource-intensive. Additionally, the potential
integration of machine-learning methodologies, especially in the context of error
probabilities that shift dynamically, has the makings of an advanced, adaptive, and
streamlined solution. Ideally, this approach would have the essential capacity to
discern and dynamically adjust to evolving environmental nuances.

1.2 Contribution of this Dissertation

This dissertation primarily focuses on analyzing and optimizing the timing-constrained
embedded systems by considering resource synchronization and machine learning
approaches. It also introduces an application of a machine learning approach, i.e.,
based on reinforcement learning, to tackle the challenges encountered in embedded
systems. The primary domains investigated and contributed to in this dissertation
include: a) the design, implementation, and formal verification of resource syn-
chronization protocols intended to bound the worst-case response time of a set of
tasks with relatively long critical sections in a non-work conserving manner, e.g.,
machine learning tasks with requests of GPUs; b) the enhancement of deploying
machine learning models on resource-constrained distributed embedded systems by
utilizing model-based optimization for hyper-parameter tuning; c) a novel application
that employs reinforcement learning to minimize the average execution time of an
embedded system while operating under (m,k) soft error constraints. This section
provides an overview of the challenges being addressed and the novel approaches
proposed to tackle them. Furthermore, the contributions of this dissertation are
explicitly delineated.
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1.2.1 Multiprocessor Resource Synchronization

To address the challenges of the traditional work-conserving schedule for short
critical sections and the unanswered questions associated with it, we begin with the
fundamental setting of frame-based real-time task systems. In these systems, all
tasks share identical periods and release their jobs simultaneously. These tasks are
scheduled on M homogeneous processors. Our model assumes that each critical
section is non-nested and is protected by either a binary semaphore or a single
mutex lock. In our work, Dependency Graph Approach for Multiprocessor Real-Time
Synchronization [CBS+18], we propose a dependency graph approach (DGA) for
multiprocessor synchronization. This approach consists of two steps:

• First, construct a dependency graph as a Directed Acyclic Graph (DAG) that
determines the execution order of the critical sections guarded by a single
binary semaphore.

• Next, apply multiprocessor partitioned, semi-partitioned, or global scheduling
algorithms, ensuring they follow the execution order defined by the constructed
dependency graph.

Because of the initial step, the resulting schedule may not always be work-conserving.
This situation arises when a critical section is ready to be executed but one of its
predecessors in the dependency graph is not finished yet. Building on this, we
further refine our approach to accommodate more complex scenarios. In our work
Scheduling of Real-Time Tasks With Multiple Critical Sections in Multiprocessor
Systems [CSB+22], we extend DGA by allowing for tasks with several critical
sections. In Graph-Based Optimizations for Multiprocessor Nested Resource Shar-
ing [SUB+21], nested resource accesses are handled. Additionally, we extend our
method beyond frame-based task systems to include standard periodic task sys-
tems with list scheduling in Multiprocessor Synchronization of Periodic Real-Time
Tasks Using Dependency Graphs [SUB+19a], incorporating both partitioned schedul-
ing paradigms in Partitioned Scheduling for Dependency Graphs in Multiprocessor
Real-Time Systems [SUB+19b].

Contribution 1: Dependency Graph Approach for Multiprocessor Re-
source Synchronization

• For frame-based task systems with non-nested resource accesses:
– We show that finding a schedule of the tasks to meet the given common

deadline is NP-hard in the strong sense regardless of the number of
processorsM in the system. TheNP-hardness holds under any scheduling
paradigm, showing that preemption or migration does not reduce the
complexity.

– When each task only contains one critical section, we prove a lower bound
on the approximation ratio for minimizing makespan under different
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scheduling paradigms, i.e., at least 2 − 2
M + 1

M2 under any scheduling
paradigm and 2 − 1

M under partitioned or semi-partitioned scheduling.
– We demonstrate the adaptation of uni-processor non-preemptive schedul-

ing to construct DAGs for tasks with only one critical section, resulting
in polynomial-time algorithms with different approximation bounds, e.g.,
with an approximation ratio of 2 + ε − 1+ε

M for any ε > 0 under semi-
partitioned scheduling strategies.

– When each task contains multiple critical sections, we find a correlation
between the dependency graph in the DGA and the classical job shop
scheduling problem. We present a polynomial-time reduction from the
classical job shop scheduling problem, which is NP -hard in the strong
sense [LR79]. We establish approximation bounds for minimizing the
makespan based on the approximation bounds of job-shop algorithms.

• We extend DGA to synchronize (multiple) nested resource accesses per task
for frame-based real-time task systems by reducing the dependency graph
construction to constraint programming, where the two fundamental problems,
namely deadlocks and transitive blocking chains, are solved.

• We extend the DGA from frame-based task systems to periodic task systems
by unrolling the jobs of each task and creating dependency graphs at the
job level for periodic tasks. Consequently, jobs that access the same shared
resource over a single hyper-period must follow the generated accessing order.

• To schedule a set of dependency graphs for the given task set on M processors,
we proposed two scheduling algorithms: a) LIST-EDF: which combines list
scheduling with an earliest-deadline-first (EDF) heuristic; and b) Partitioned-
EDF: this incorporates two partitioning algorithms based on federated schedul-
ing and a worst-fit heuristic.

1.2.2 Implementation and Formal Verification of Resource Syn-
chronization Protocols

While state-of-the-art resource synchronization protocols, like ROP and the newly
proposed DGA, demonstrate advantages in timing guarantees by bounding tasks’
worst-case response time, they often assume that implementation overheads are
negligible. This assumption can be misleading, as the real-world performance of
a protocol within an RTOS depends heavily on various settings such as the local
or remote execution of critical sections, multiprocessor scheduling paradigms, and
tasks’ waiting semantics. This means that the performance of different protocols is
closely tied to their implementation.

Furthermore, protocol design typically relies on operating system-level assump-
tions, such as abstracted notations of tasks, scheduling policies, and queues. Addi-
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tionally, specific details of the operating system or hardware are often disregarded.
These abstractions and assumptions may not always be valid when implementing a
protocol, and any necessary adaptations due to constraints imposed by the OS may
lead to discrepancies from the original specifications. Such discrepancies can result
in unexpected consequences.

To address these complexities, we validate our implementation of the newly
proposed DGA for multiprocessor resource synchronization on two RTOSes, namely
LITMUSRT and RTEMS. Moreover, in our work Formal Verification of Resource
Synchronization Protocol Implementations: A Case Study in RTEMS [SEC+22], we
introduce a formal verification framework for synchronization protocols implemented
in an RTOS, working under the assumption that the underlying functionalities from
the RTOS, e.g., interrupt management and scheduling infrastructure, are correct.

Contribution 2: Implementation and Formal Verification of Resource
Synchronization Protocols

• We enhance open-source development by scrutinizing the SMP support in
LITMUSRT and RTEMS, identifying potential pitfalls in their implementation.
Moreover, our detailed prototype implementation of the dependency graph ap-
proach in these RTOSes offers overheads comparable to existing multiprocessor
synchronization protocols.

• For the verification of a protocol’s implementation in targeted OSes, we
define the responsibilities of involved primitives and operations, advocating
for deductive verification to ensure the approach’s consistency and integrity.

• We introduce a framework for formally verifying properties intrinsic to synchro-
nization protocol implementations within an OS, bolstering system reliability
and robustness.

• We present two case studies that verify ICPP and MrsP in official RTEMS,
uncovering long-stayed mismatches and suggesting potential remedies. Addi-
tionally, we validate the DGA implementation in RTEMS to demonstrate its
broad applicability.

1.2.3 Optimizing the Deployment of Machine Learning on Dis-
tributed Embedded Systems

Distributed embedded systems, encompassing edge computing, have become promi-
nent platforms for running machine learning algorithms due to their high flexibility,
mobility, scalability, and energy efficiency in real-world scenarios [BXF+18; GDO+12;
LAB+11]. However, within such distributed contexts, the local tuning of hyper-
parameters of deployed machine learning models presents significant challenges.

One common challenge is that merging data from all nodes is often impractical
and inefficient due to constraints such as low bandwidth connections or limited
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central node storage. Privacy concerns can further complicate or even render this
approach impossible. Additionally, the presence of overlapping sensing areas among
distributed nodes can result in redundant data, which adds further complexity on
the central node.

A potential solution lies in allowing each node to independently conduct hyper-
parameter tuning based on local data. However, due to the limited storage and
detection area of each node, the tuning process in each node can be operated on
only a fraction of the entire dataset collected in the area. Independent tuning of
hyper-parameters using these local sub-datasets leads to inconsistent performance
of machine learning algorithms due to the restricted size of the training data.

To tackle these prevalent issues of hyper-parameter tuning in distributed embed-
ded systems, we present MODES in our work MODES: model-based optimization on
distributed embedded systems [SBR+21]. This strategy emphasizes the utilization of
decentralized sub-datasets to derive a cohesive hyper-parameter configuration for
the whole system. With MODES, hyper-parameters are tuned both locally and
efficiently. Each node is viewed as a distinct black box, running an individual
model based on its data. Meanwhile, the entire distributed system is envisioned as
a more extensive black box, with the objective to enhance its overall performance,
considering aspects like prediction accuracy, stability, and operational efficiency.

Contribution 3: Model-based Optimization on Distributed Embedded
Systems

• We introduce the MODES framework, designed to apply Model-Based Opti-
mization (MBO) to resource-constrained distributed embedded systems. The
frame work not only enhances the tuning process by identifying optimal hyper-
parameters efficiently, but also bolsters the generalizability of the resulting
hyper-parameter configuration. In addition, MODES significantly mitigates
data communication costs by transmitting only hyper-parameter settings and
performance values such as prediction accuracy.

• Further, we delineate MODES into two distinct optimization modes: a) In the
Black-box mode (MODES-B), the entire system is treated as a single black
box. It jointly optimizes the hyper-parameters of individual models, taking
into account the specific weights assigned to different nodes. b) Conversely,
the Individual mode (MODES-I) considers all models as copies of the same
black box, allowing for efficient parallel optimization in a distributed setting.
As a flexible framework, MODES can be tailored to a broad spectrum of
applications with minimal adjustments and switches between modes.
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1.2.4 Reinforcement Learning for Average Task Execution Time
Minimization under (m,k) Soft Error Constraint

In safety-critical systems, a prevalent strategy to moderate resource demands and
mitigate the impact of errors is the implementation of (m,k)-constraints. These
constraints stipulate that at least m out of any k consecutive jobs must be error-free.
Given the (m,k) soft error constraint and the inherent uncertainty of soft error
probabilities, the development of an error-tolerant scheduler becomes essential. This
scheduler should regard each sequence of k consecutive jobs for a task as a state.
State transitions occur by incorporating the correctness of a new job while displacing
the oldest one in the sequence. As execution errors occur probabilistically, the state
transitions from any given state are inherently stochastic. To effectively manage
these transitions, the scheduler should be modeled on a Markov Chain, incorporating
state transition probabilities that reflect the error rates. Utilizing either explicit
knowledge or estimates of these soft error probabilities, the scheduler aims to
ensure (m,k)-compliance for each task, while adhering to real-time constraints. By
focusing on minimizing the expected average execution time for tasks, the scheduler
indirectly contributes to reducing the overall expected system utilization and energy
consumption.

When each task’s error probability remains constant at runtime, we propose
an optimal method based on Markov Chain optimization. However, in scenarios
with dynamic or unknown error probabilities, traditional static methods may be
inefficient or inadequate. In contrast, reinforcement learning (RL) provides an
adaptive solution. The inherent strength of RL lies in its capacity to iteratively
learn and update strategies during runtime, which makes it especially suitable for
managing dynamic error probabilities and variable system conditions. Therefore,
where conventional static approaches might exhibit limitations, RL offers a responsive
and robust alternative by continuously adapting to the prevailing environment.

In our work Average Task Execution Time Minimization under (m,k) Soft Error
Constraint [SUC+23], we assume that each task has three distinct execution modes:
reliable, detected, and unreliable, each with varying execution times and correctness
assumptions. We introduce a reinforcement-based approach, an adaptive algorithm
that leverages either explicit knowledge or estimations of soft error probabilities
to assure (m,k)-compliance for each task under real-time constraints. By actively
selecting the execution mode for the next job, considering the current state with
respect to the corresponding (m,k) constraint and estimated error rate, this approach
aims to minimize the expected execution time for each task. This minimization
leads to a reduction in the anticipated overall system utilization and, consequently,
the energy consumption of the system.

Contribution 4: Reinforcement Learning for Average Task Execution
Time Minimization under (m,k) Soft Error Constraint
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• Our primary contribution lies in the utilization of finite automata for the
enforcement of (m,k) constraints. By formulating all (m,k) compliant states
of a task as a minimal automaton, we ensure transitions occur only between
compliant states. In conjunction with the soft error probability and a stochastic
transition system, we derive a Markov chain model.

• Assuming that a stationary error-probability can be precisely estimated, we
develop an optimization algorithm using the Markov chain model mentioned
above. This algorithm determines the stochastic parameters for the job
selection strategy, aiming to minimize the expected execution time, enhancing
efficiency.

• Additionally, we introduce a reinforcement learning (RL)-based strategy for
job mode selection when soft error probabilities are not known. The RL
method involves the formulation of a task’s execution information into an
RL-recognizable environment, and we explore the intricacies of the barrier
function and learning policy to ensure effectiveness and practicality.

1.3 Organization of the Dissertation

This dissertation is structured as follows:

• Chapter 2 introduces the system model and experimental platforms utilized
throughout the study.

• Chapter 3 explores the background and related work, illuminating the current
state-of-the-art of the topics under investigation.

• Chapter 4 details our first contribution, the design of the dependency graph ap-
proach for multiprocessor real-time synchronization. It commences with basic
scenarios, such as frame-based task systems with singular, non-nested resource
requests. The chapter then explores multiple critical sections per task and
nested resource accesses. Furthermore, extensions for standard periodic task
systems are also elucidated. The chapter also discusses several algorithms to
schedule the generated dependency graphs, augmented by illustrative examples.

• Chapter 5 details our second contribution: the implementation and formal
verification of resource synchronization protocols on RTOSes. It begins with a
deep dive into the DGA’s implementation on both LITMUSRT and RTEMS.
This is followed by the introduction of a formal verification framework for
implemented protocols on RTOSes, accompanied by three case studies for the
implemented ICPP, MrsP, and DGA on RTEMS.

• Chapter 6 unveils our third contribution: optimizing the deployment of machine
learning models on distributed embedded systems. We introduce MODES,
a novel technique employing MBO to refine the hyper-parameter settings of
such models. This chapter presents the two modes of MODES: MODES-B
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optimizes prediction accuracy and statistical stability, and MODES-I focuses
on hyper-parameter tuning efficiency.

• Chapter 7 demonstrates our fourth contribution, applying machine learning to
address embedded system challenges. We transform the task execution time
minimization problem under the (m,k) constraints into a Markov chain opti-
mization problem. A reinforcement learning-based approach is then presented,
offering an adaptive method for selecting task execution modes based on error
rate estimations.

• Lastly, Chapter 8 summarizes key results and current limitations in this
dissertation, and discusses opportunities for potential future research.

1.4 Author’s Contribution to this Dissertation

According to §10 ( 2 ) of the “Promotionsordung der Fakultät für Informatik der
Technischen Universität Dortmund vom 29. August 2011”, a dissertation must
include a list that highlights the author’s contribution to research results that were
obtained in cooperation with other researchers. The following overview lists the
contribution on the results presented in the individual chapters:

• Chapter 4 explores the dependency graph approach for multiprocessor resource
synchronization.

– In the foundational work on resource synchronization for frame-based
task systems with a single critical section per task, presented at RTSS
2018 [CBS+18], Prof. Dr. Jian-Jia Chen contributed the initial design,
formulation of theorems, and proofs. As a co-author, I contributed to
refining the design and conducted the implementation and evaluation.

– The extended study, which addresses tasks with multiple critical sections,
was published in the IEEE Transactions on Computers 2022 [CSB+22].
I collaborated with my supervisor, Prof. Dr. Jian-Jia Chen. While he
conceptualized the main idea and provided guidance on the formulation
of theorems and proofs, I was deeply involved in the protocol design and
managed both the implementation and evaluation.

– The further extension, focusing on nested resource accesses, was published
at RTCSA 2021 [SUB+21]. I was the principal author, leading the
development of concepts, theorems, and evaluations.

– The work that introduced extensions for periodic task systems, comple-
mented by the LIST-EDF scheduling algorithm, was published at RTAS
2019 [SUB+19a]. I was the principal author, contributing to the design,
theorems, and evaluations.

– The investigation into partitioned scheduling algorithms was published at
RTCSA 2019 [SUB+19b]. I was the principal author, leading the design
of concepts, algorithms, and evaluations.
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• Chapter 5 details the DGA implementation on LITMUSRT and RTEMS, and
presents the formal verification framework. Various DGA implementations on
LITMUSRT were published in RTSS 2018, RTAS 2019, and IEEE Transactions
on Computers 2022 [CBS+18; SUB+19a; CSB+22]. In these publications, I
was either co-author or principal author, being responsible for all aspects of
implementation. The initial DGA implementation on RTEMS originated from
a student thesis by Jan Duy Thien Pham, based on a preceding version of
RTEMS. I updated and adapted it to be compatible with the latest RTEMS
5.1 release with my student Surya Subramanian. The formal verification
framework was published in IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 2022 [SEC+22]. This framework began as a
Master’s thesis under my guidance by Christoph-Cordt von Egidy. We later
refined and expanded this work into a comprehensive publication. Together
with my student, I laid out the foundation for the verification framework’s
design. Christoph-Cordt von Egidy handled the case studies for ICPP and
MrsP. Subsequently, I conducted the formal verification for DGA on RTEMS
with my student Surya Subramanian.

• Chapter 6 presents MODES, a framework developed for hyper-parameter
tuning in distributed embedded systems. This framework was published at
ECML 2021 [SBR+21]. As the principal author, I was responsible for the
design, implementation, and evaluation of the framework. My collaborator,
Jiang Bian, assisted with the conceptual design and supplied the machine
learning models and datasets for our evaluations.

• Chapter 7 addresses the challenge of minimizing average execution time while
satisfying the (m,k) soft error constraints. This work was published at RTAS
2023 [SUC+23]. As the principal author, I developed both the optimal strategy
for fixed and static error probabilities and a reinforcement learning-based
method for addressing unknown or unstable error probabilities. Furthermore, I
conducted the complete implementation and evaluation of both methodologies.
Niklas Ueter was primarily responsible for formalizing the studied problem,
establishing the terminology, and delivering proofs for all theorems. These
components are included in this dissertation to ensure its completeness.
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This chapter delineates the foundational concepts and practical tools pivotal
to this dissertation, encompassing the system model, task models, notations, and
experimental platforms. First, we introduce the system model that forms the basis of
the research conducted in this dissertation. We present the task models, highlighting
time-critical tasks pertinent to resource synchronization scenarios, directed acyclic
graph (DAG) task models, and safety-critical tasks governed by the constraints of
the (m,k) soft error paradigm. Subsequently, we explore the foundational theories
of scheduling, review the common algorithms that are frequently applied in both
real-time and embedded systems, and introduce two salient performance metrics
for the scheduling algorithms under consideration. Moreover, we discuss the fault
and error model for safety critical systems, which is crucial for understanding
the mechanisms of fault tolerance in the studied systems. Finally, we detail the
experimental platforms and tools that have been adopted for the evaluation of the
concepts and methods presented throughout the dissertation. These platforms and
tools facilitate both the empirical validation of our methodologies and the formal
verification of the system implementations.
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2.1 System Model

In this dissertation, we start by considering the system model of single-device
embedded systems with timing requirements. The single device embedded system
may consist of either a uni-processor or homogeneous multiprocessors, along with
additional shared resources, such as Graphics Processing Units (GPUs). We assume
that each device has limited storage and can only store a certain amount of data.

Several identical single device embedded systems can also be connected, either
through wired or wireless network connections. These connected devices contribute
to a distributed embedded system, also referred to as a cluster. This broader
structure emphasizes a distributed environment suitable for deploying machine
learning models.

In the distributed scenario, each device is treated as a node. We assume that
data collected by different nodes are (at least partially) distinct and can be viewed as
subsets of a complete dataset. Additionally, connections among nodes are constrained
by low bandwidth, permitting only the transfer of a tiny amount of data such as
hyper-parameter settings and performance results (e.g., accuracy of prediction).

It is important to note that each task can only be deployed on one of the devices,
and migrations among devices are not allowed. This constraint shapes the scheduling
and coordination strategies explored within the context of the dissertation.

In each device, we consider a set T of N recurrent tasks, i.e., T = {τ1, . . . , τN},
to be scheduled on M homogeneous, i.e., identical, processors from one physical
embedded device, where M,N ≥ 1. Due to the different studied scenarios, tasks
inside T are defined separately in the following subsections.

2.1.1 Tasks with Resource Synchronization

Under the von-Neumann programming model, shared resources, e.g., shared files,
data structures, and memory cells, require mutually exclusive accesses to prevent
race conditions. A protected code segment that has to access a shared resource is
called a critical section. The mutually exclusive executions of critical sections have
to be protected by applying synchronization (binary semaphores) or locking (mutex
locks) mechanisms. In the resource synchronization scenario, we assume all tasks
can have multiple critical sections and may access several of the Z shared resources,
i.e., Z = {z1, z2, . . . , zZ}. For brevity in notation, the resource id can sometimes be
represented by z directly. For example, resource z1 can also be denoted as resource
1. Each task τi has ηi computation segments, in which each computational segment
can be either a critical section or a non-critical section. Each task is described by
τi = (Θi, Ci, Ti, Di), where:

• Θi is the set of all the computation segments in task τi.
• Ci is the total worst-case execution time (WCET) of task τi, i.e., including all

the computation segments in the task.
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• Ti is the period of τi. That is, if an instance of τi is released at time t, the
subsequent instance is released exactly at time t + Ti.

• Di is the relative deadline of τi, i.e., a job of τi released at time t must
finish its execution no later than its absolute deadline t +Di. We consider
constrained-deadline task systems, i.e., ∀τi ∈ T, Di ≤ Ti.

The number of computation segments in a task is denoted by ηi, where ηi = ∣Θi∣.
For the j-th segment of task τi, denoted by θi,j = (Ci,j , λi,j , σi,j):

• Ci,j > 0 is the WCET of computation segment θi,j with Ci = ∑ηij=1Ci,j .
• λi,j indicates whether the corresponding segment is either a non-critical section

or a critical section. If θi,j is a critical section, λi,j is 1; otherwise, λi,j is 0.
• If θi,j is a non-critical section, then both θi,j−1 and θi,j+1 must be critical

sections (if they exist). In other words, θi,j and θi,j+1 cannot be both non-
critical sections.

• If θi,j is a critical section, it starts with the lock of a mutex lock (or wait for
a binary semaphore), denoted by σi,j , and ends with the unlock of the same
mutex lock (or signal to the same binary semaphore). If a critical section
requests nested shared resources, σi,j represents the set of requested resources.

Furthermore, we make the following assumptions:

• A periodic task periodically releases an infinite number of instances (also called
jobs). Each task τi releases its first job at time φi and releases the subsequent
jobs strictly periodically with a given period Ti. We assume that φi = 0 for
every τi ∈ T, i.e., all the tasks in T release their first jobs at time 0. We denote
the `-th job of τi as J `i , and the `-th sub-job of θi,j as J `i,j .

• A job cannot be executed in parallel, i.e., the sub-jobs in a job must be
sequentially executed.

• The execution of the critical sections guarded by a mutex lock (or one binary
semaphore) must be sequentially executed. Thus, if two computation segments
share the same mutex lock, they must be executed one after another.

• There are a total of Z shared resources protected by mutex locks or binary
semaphores.

Utilization is commonly used to analyze the workload and computational demand
of both individual tasks and the entire system. The utilization of a task τi is defined
as Ui = Ci

Ti
. Similarly, the utilization of a specific computational segment θi,j within

task τi is defined as Ui,j =
Ci,j
Ti

. The total utilization of the entire task set is
represented by ∑Ni=1Ui.

In this dissertation, we explore three primary scenarios related to the resource
access pattern within each task. Specifically, we consider:

1. The OCS task model, where each task has exactly one critical section with
non-nested resource access.
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2. The MCS task model, where each task can have multiple critical sections
with non-nested resource accesses.

3. The Nested-MCS task model, where each task can have multiple critical
sections with nested resource accesses.

In the following, we discuss each of these task models in detail. When each task
contains only one non-nested critical section, we define the OCS task model:

Definition 1. The OCS task model: Each task comprises three computational
segments. The middle segment represents a non-nested critical section and is
safeguarded by a binary semaphore.

Figure 2.1a depicts an example of the OCS task, where θi,2 represents the critical
section that accesses the shared resource z1.

For tasks that might have multiple non-nested critical sections, we define the
MCS task model:

Definition 2. The MCS task model: Each task consists of several computational
segments, with at least one being a non-nested critical section. Each of these critical
sections is individually protected by a binary semaphore.

Figure 2.1b illustrates an example of the MCS task with five computational
segments. Of these segments, two are critical sections that independently access
shared resources z1 and z2.

We extend the MCS task to the nested version, i.e., Nested-MCS task. This
model permits nested resource sharing within each critical section, thereby facilitat-
ing the representation of more complex synchronization patterns within the task
structure.

Definition 3. The Nested-MCS task model: Each task comprises multiple
computational segments, with at least one being a nested critical section requesting
multiple shared resources. Every such nested critical section is simultaneously
protected by all its associated binary semaphores.

In this dissertation, we mainly consider the all-at-once nested locking pattern:

Definition 4. All-at-once Locking: A critical section is described as being locked
all-at-once if it can only be accessed after all its requested mutex locks are successfully
granted simultaneously. If not, a job remains blocked until granted access to all the
requested resources. Upon completion of a critical section, all its associated mutex
locks are released.

Please note that any nested locking can be transferred to a all-at-once locking by
granting all the requested shared resources simultaneously before the execution of
the critical section. An example is shown in Figure 2.1c, where each critical section
concurrently lock shared resources z1 and z2.
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non-critical section critical sections z1/z2

τi θi,1 θi,2 θi,3

Ci,1 Ci,2 Ci,3

Ci

Ti

Di

(a) An example for OCS task model.

τi θi,1 θi,2 θi,3 θi,4 θi,5

(b) An example for MCS task model.

τi θi,1 θi,2 θi,3 θi,4 θi,5

(c) An example for Nested MCS task model with all-at-once locking.

Figure 2.1: Examples for different task models.

For all task models illustrated in Figure 2.1, two consecutive non-critical sections
are not allowed, but two consecutive critical sections are permitted. Therefore, the
WCET for any non-critical section may be 0.

We consider two types of task systems, namely:

• Frame-based task systems: All tasks release their jobs at the same time
and have the same period and relative deadline, i.e., ∀i, j; Ti = Tj ∧Di =Dj .
Hence, the analysis can be restricted to one job of each task.

• Periodic task systems (with synchronous release): All tasks release their first
job at time 0. While subsequent jobs are released periodically, different tasks
may have different periods and relative deadlines. The hyper-period of the
task set T is defined as the least common multiple (LCM) of the periods of
the tasks in T.
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2.1.2 Directed Acyclic Graph Task Model

Due to the dependencies and execution order for some computational segments, their
corresponding jobs can be formulated as directed acyclic graphs (DAGs). In this
section, we introduce the definition of DAG tasks, explore some of their essential
properties, and explain how they are utilized within the context of this dissertation.

A DAG is represented by G = (V,E), where:

• V is the set of vertices or nodes in the graph. Each vertex represents a distinct
task or job within the system.

• E is the set of directed edges that connect the vertices. Each edge (u, v)

represents a dependency, meaning that the task corresponding to vertex u
must be finished before the task corresponding to vertex v can start.

The vertices and edges together define the structure of the DAG, capturing the
dependencies and execution order of tasks or jobs within the system.

When integrated with the task model in Section 2.1.1, a sub-job, i.e., a critical
or a non-critical section, is a vertex in V . The edges in E describe the precedents
constraints and execution sequence of these jobs.

The resulting DAG task has the period that equals to the hyper-period of all the
involved (sub-)jobs. Each node(sub-job) can have its own deadline according to the
corresponding task and DAG structure. Further details can be found in Section 4.7.

Each DAG task has the following properties:

Definition 5. Volume: The volume of the DAG G represents the graph’s total
execution time, defined as vol(G) = ∑vi∈V len(vi).

Definition 6. Path: In a directed-acyclic graph G, a path ∆ is a sequence of
sub-jobs vi1 ≺ vi2 ≺ . . . ≺ vik for vij ∈ V such that each sub-job in the sequence is an
immediate successor of the previous sub-job based on precedence constraints, where
pre(vi1) = ∅ and suc(vik) = ∅.

Definition 7. Length: The length of a path is determined by len(∆) = ∑vi∈∆ len(vi)

with the length of a sub-job representing its execution time.

Based on the definition of a path,we can more formally define the critical path
as the longest path in a DAG, as presented in the following definition:

Definition 8. In a task dependency graph G, the critical path represents one
of its longest paths. The critical path length of G is denoted by len(G∗) =

max{len(∆) ∣ ∆ is a path in G}. The length of critical path remains independent
of the number of utilized processors, i.e., M .

2.1.3 Tasks with (m,k) Robustness Constraints
In fault-tolerant systems, applications can be functionally correct as long as tasks
follow the specified (m,k) robustness constraints.Specifically, a task must ensure that
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at least m jobs out of any k consecutive jobs are executed correctly. To minimize the
average system utilization, each task can operate in one of three execution modes,
each characterized by distinct WCETs and expected levels of correctness. We model
each task τi as a tuple (Ci,Di, Ti,mi, ki) where:

• Ci = {Cui ,C
d
i ,C

r
i } is a set of WCETs representing the different WCET demands

corresponding to the task’s execution modes: unreliable mode, detected mode,
and reliable mode. Throughout this work, we assume that Cui < Cdi < C

r
i holds

due to the additional overheads for the detected and reliable modes.
• Di is the relative deadline of τi.
• Ti is the period of τi.
• Each task is subject to an (mi, ki) soft error constraint, i.e., a task τi is required

to have at least mi jobs out of any ki consecutive jobs to be correctly executed,
where 0 <mi ≤ ki.

For this scenario, we assume sporadic task systems, where the release interval
between two jobs from task τi is at least Ti. At each release, task can decide
the execution mode of the next job. With regard to the varied execution modes,
we assume that software-based fault tolerance techniques are employed to detect
and recover fault-induced soft errors. Within this system, tasks are permitted to
instantiate jobs in one of three primary modes: reliable, detected, or unreliable.
Additionally, a composite mode, termed detected + reliable, acts as an immediate
compensation within the same release window. For instance, a detected mode
instance can be promptly followed by a reliable execution mode instance. This
approach allows for immediate reaction to potential errors, ensuring a higher degree
of reliability and responsiveness in the system with respect to the given (m,k)

constraint. The distinctive execution modes in our system have specific implications
in addressing soft errors and their associated overheads:

• Unreliable Mode: In this mode, no additional implementation effort is required,
keeping overheads low. However, the task is not able to determine whether an
error has occurred during the execution of the job. To maintain compliance
with the (m,k) constraints, the system must, by default, assume that a soft
error has occurred, even though it may not actually have.

• Detected Mode: This mode involves applying specific techniques to verify the
correctness of the executed job. Examples of such techniques include error
detection through special encoding of data or control flow checking. Unlike
the unreliable mode, the detected mode allows the system to observe whether
an error has occurred during execution. However, no further action is applied
if an error is detected.

• Reliable Mode: Within this mode, the system must ensure that no soft error
manifests, necessitating both the detection of errors and subsequent recovery.
Several redundant copies of the job may be executed in parallel to ensure
high reliability of the final result. This process adds complexity and leads
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to a longer execution time compared to the other modes, but ensures the
correctness of the output.

Furthermore, it is important to note that the system under consideration does
not allow job skipping as a method to potentially enhance the Quality of Service
(QoS). This restriction further emphasizes the need for careful consideration of
the selected execution mode, balancing reliability and execution times to meet the
specific demands of the application and operating environment.

We assume the use of an arbitrary preemptive scheduling algorithm, which
schedules the task set T and guarantees the temporal requirements such as strict
deadline compliance in case of hard real-time systems. The worst-case job mode
sequence that can be generated by our approach is identical to the R-Pattern in
which the first k −m instances are executed in detected mode and the remaining
m instances are successively executed in the reliable mode. Therefore, any hard
real-time schedulability analyses adopting the R-Pattern can be used. Please note,
the fault-tolerant systems with (m,k) robustness constraints are not strictly limited
to hard real-time task systems. Our primary focus is generating guaranteed (m,k)-
compliant schedules for each task, aiming to reduce the expected execution time.

2.2 Real-Time Scheduling

In this section, we begin by introducing the foundational principles of scheduling
theory, offering a structured classification of various scheduling challenges. Sub-
sequently, we detail several scheduling algorithms that are widely applied in the
domain of real-time systems. To conclude, we introduce two prevalent metrics used
to evaluate the performance of these scheduling algorithms.

Please note that the scheduling theories discussed in this section are only applied
to the resource synchronization scenario, as discussed in Chapter 4 and Chapter 5.
The detailed scheduling algorithms for fault-tolerant systems with (m,k) robustness
constraints are out of the scope of this dissertation.

2.2.1 Classifications of Scheduling Problems

In scheduling theory, a scheduling problem is described by a triplet Field1∣Field2∣Field3.

• Field1: describes the machine environment and contains exactly one entry.
The commonly considered machine environments are as follows:

– 1: uni-processor system
– P : homogeneous multiprocessor system, where each job can be executed

on any of the available processors.
– F : flow shop, where each job has to be executed on each one of the

available processors and all jobs have to follow the same route.
– J : job shop, where each job has its own predetermined route to follow.
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• Field2: specifies the processing characteristics and constraints, that may include
multiple entries. In this dissertation, we consider the following characteristics
and constraints:

– rj : release time constraint, indicating that the job cannot starts its
execution before its release time r.

– qj : delivery time constraint, indicating that a job requires an amount of
time qj to deliver the result (final product) to the customer after finishing
its execution on a machine.

– prmp: preemptive execution, which implies that the scheduler is allowed
to interrupt the execution of a job at any point in time and put a different
job on the machine instead.

– prec: precedence constraints, which require that one or more (sub-)jobs
may have to be completed before another (sub-)job is allowed to start.

• Field3: presents the objective to be optimized. Examples of possible objective
functions to be minimized are as follows:

– Cmax: the makespan, defined as the total length of time required to
complete a set of jobs from the start of the first job to the completion of
the last one. A minimum makespan usually indicates efficient scheduling
and effective resource utilization.

– Lmax: the maximum lateness measures the worst violation of the deadlines.
This measure provides insight into the worst-case performance regarding
deadline adherence.

For example, the scheduling problem 1∣rj ∣Lmax deals with a uni-processor system,
in which the input is a set of jobs with different release times and different absolute
deadlines, and the objective is to derive a non-preemptive schedule that minimizes
the maximum lateness. As another example, the scheduling problem P ∣∣Cmax deals
with a homogeneous multiprocessor system, where the input consists of a set of
jobs with identical release times. The objective here is to derive a partitioned
schedule that minimizes the makespan. The scheduling problem P ∣prec∣Cmax is an
extension of P ∣∣Cmax by further considering the precedence constraints of the jobs.
The scheduling problem P ∣prec, prmp∣Cmax further allows preemption.

Note that in classical scheduling theory, preemption in parallel machines implies
the possibility of job migration from one machine to another. However, this is
not necessarily the case in real-time systems. For instance, under preemptive
partitioned scheduling, a job can be preempted and resumed later on the same
processor without migration. Therefore, the scheduling problem P ∣prec, prmp∣Cmax
allows job preemption and migration, i.e., preemptive global scheduling.

Please note that the machine environments, processing characteristics, con-
straints, and objectives in these three fields are not exhaustively listed in the above
examples. We only present those scenarios that are studied in this dissertation.
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2.2.2 Scheduling Algorithms

To schedule real-time tasks on multiprocessor platforms, there have been three
widely adopted paradigms:

• The partitioned scheduling approach statically assigns tasks to specific pro-
cessors. In this paradigm, each task is bound to a specific processor and
consistently executes on it. This can lead to optimized processor-specific
execution but might suffer from potential imbalance across processors.

• The global scheduling approach allows a task to migrate from one processor
to another at any time. While this offers greater flexibility and potential for
improved load balancing across processors, it may introduce overhead from
task migration and complicate task synchronization.

• The semi-partitioned scheduling approach is a hybrid, drawing elements
from both the partitioned and global strategies. It determines whether to
statically divide a task into sub-tasks and how to assign each task or sub-task to
processors. This approach can adapt to varying system conditions, potentially
offering a balance between the predictability of partitioned scheduling and the
flexibility of global scheduling.

A more comprehensive survey of multiprocessor scheduling in real-time systems can
be found in [DB11].

Schedule in the Sub-job’s Perspective

As defined in Section 2.1.1, the set of computational segments is defined as Θ =

{θi,j ∣ τi ∈ T, j = 1,2, . . . , ηi}. A schedule for T is a function ρ ∶ R ×M → Θ ∪ {�},
where ρ(t,m) = θi,j denotes that the sub-job of θi,j is executed at time t on processor
m, and ρ(t,m) = � denotes that processor m is idle at time t. Since a job has to be
sequentially executed, at any time point t ≥ 0, only a sub-job of τi can be executed
on one of the M processors, i.e., if ρ(t,m) is θi,j , then ρ(t,m′) ≠ θi,k for any j, k ≤ ηi
and m′ ≠m. Moreover, since the sub-jobs of a job must be executed sequentially,
θi,k cannot be executed before θi,j finishes for any j < k ≤ ηi, i.e., if ρ(t,m) is θi,j
for some t,m, i, j, then ρ(t′,m) ≠ θi,k for any t′ ≤ t and any k > j. Critical sections
under the protection of a singular mutex lock must be sequentially executed. That
is, if λi,j is 1, λk,` is 1, and σi,j = σk,` then a schedule must guarantee ρ(t,m′) ≠ θk,`
for any t ≥ 0 and m ≠m′ when ρ(t,m) is θi,j .

In the resource synchronization scenario under consideration, we primarily focus
on either frame-based task systems or periodic task systems. The schedule established
in one hyper-period is consistently replicated in subsequent hyper-periods. For clarity
and succinctness in our exposition, we initiate the discussion with frame-based task
systems. Within a single frame, we only consider schedules that can meet the
execution demand of all the computation segments. Let R be the finishing time of
the schedule. In this case, ∑Mm=1 ∫

R
0 [ρ(t,m) = θi,j]dt must be equal to Ci,j , where

[P ] is the Iverson bracket, i.e., [P ] is 1 when the condition P holds, otherwise [P ] is
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0. Note that the integration is used in this dissertation only as a symbolic notation
to represent the summation over time. The earliest moment when all sub-jobs finish
their computation segments in the schedule (under all the constraints defined above)
is called the makespan of the schedule, commonly denoted as Cmax in scheduling
theory, i.e., Cmax of schedule ρ is:

min. R s. t.
M

∑
m=1

∫

R

0
[ρ(t,m) = θi,j]dt = Ci,j ,∀θi,j ∈ Θ

From the sub-job’s perspective, a schedule is non-preemptive if a sub-job cannot
be preempted. That is, there is only one interval where ρ(t,m) = θi,j occurs on a
single processor m for every sub-job θi,j in Θ. From the sub-job’s perspective, a
schedule is preemptive if a sub-job can be preempted, i.e., multiple intervals with
ρ(t,m) = θi,j for any task θi,j in Θ on processor m are permissible. A critical section
θi,j in a preemptive schedule can be preempted by non-critical sections or other
critical sections that are not protected by mutex lock σi,j .

In a partitioned schedule, every sub-job of a given job is executed on a single
processor, meaning there exists a processor m where ρ(t,m) = θi,j for t ≥ 0 and
j = 1,2, . . . , ηi for every task τi in T. Under a global schedule, the execution of a
sub-job on any of the M processors can occur at an arbitrary time. That is, it
is possible that ρ(t,m) = θi,j and ρ(t′,m′) = θi,j for m ≠ m′ and t ≠ t′. In a
semi-partitioned schedule, a sub-job has to be executed only on one processor.

Both partitioned and semi-partitioned schedules can be preemptive or non-
preemptive from the sub-job’s perspective. By the aforementioned definition, a
global schedule is always a preemptive schedule from the sub-job’s perspective.

For a given schedule, we define:

Definition 9. Feasible Schedule: A schedule is considered feasible if it meets all
previously specified non-overlapping constraints and ensures that no task misses its
provided deadline (when a deadline is specified).

We assume that each computation segment or sub-task executes for its exact
WCET during all releases, where early completion is prohibited. As a result, the
generated schedule for one hyper-period remains static and is repeated periodically
To this end, an exact schedulability test involves evaluating a specific schedule using
the algorithms detailed in Section 4.7, spanning one hyper-period, to ascertain if
any deadlines are missed. Since the schedule is static and repeated periodically,
there is no dynamics that can lead to the multiprocessor anomalies pointed out by
Graham [Gra69].

Please note that the schedule definition presented in this section pertains ex-
clusively to Chapters 4, 5, and 6. Chapter 7, which explores the application of
machine learning to tackle challenges in embedded systems, operates under different
scheduling assumptions that are detailed in Section 2.1.3.
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2.2.3 Performance Metrics for Scheduling Algorithms

In scheduling algorithms, the efficacy of an algorithm is determined both by its
ability to produce a feasible schedule and by how closely this schedule approaches
the theoretical optimal solution. Since many scheduling problems are NP-hard in
the strong sense, polynomial-time approximation algorithms are often used. Two
primary metrics used in this context are the approximation ratio and speedup factor.
Both measures provide insights into the performance of heuristic algorithms relative
to optimal ones, the approximation ratio focuses on solution quality, whereas the
speedup factor emphasizes computational speed and resource requirements. Please
note, while both speedup factors and approximation ratios offer theoretical bounds
on the worst-case performance of heuristic scheduling algorithms, they may not
always reflect real-world performance benchmarks. Specifically, certain heuristic
scheduling algorithms, in practical scenarios, may outperform others that ostensibly
have superior approximation ratios and/or speed factors.

In this subsection, we discuss the definitions, implications, and significance of
these two metrics in evaluating scheduling algorithms.

Approximation Ratio

The approximation ratio serves as a metric in evaluating the relative performance of
heuristic algorithms against optimal solutions, particularly when achieving optimality
is computationally challenging or unattainable. It measures how closely a heuristic
solution approaches the optimal outcome. Formally, for an algorithm A addressing
the makespan minimization problem, its approximation ratio α ≥ 1 implies that for
any task set T scheduled on M processors, the makespan produced by the algorithm
will never be worse than α ⋅C∗

max, where C∗
max is the optimal makespan. The closer

the approximation ratio is to 1, the closer the studied algorithm is to the optimal
solution, indicating higher efficiency. This ratio offers a worst-case bound on the
algorithm’s deviation from the optimal solution. Please note, the approximation
ratio does not specify the proximity of a heuristic algorithm to the optimal outcome
for a particular task set.

Speedup Factor

The Speedup Factor [KP00; PST+97] of a scheduling algorithm is widely applied
to describe the approximation quality of a schedulability test with respect to an
optimal scheduling algorithms. Specifically, it determines the multiplicative factor,
i.e., α ≥ 1, by which the system’s speed must be elevated, to ensure that the
scheduling algorithm A always produces a feasible schedule that meets deadlines,
by assuming a feasible schedule is attainable by the optimal scheduling algorithm at
the original speed.

Please note that the speedup factor predominantly provides insights into the
worst-case scenarios and does not necessarily encapsulate the overall performance
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nuances. In practical applications, two algorithms with similar speedup factors
could perform significantly differently. Such intricacies, especially how speedup
factors influence algorithm design and might inadvertently lead to compromised
performance, have been studied and discussed by Chen et al. [CBH+17].

2.3 Fault and Error Model

Safety-critical embedded systems are often subjected to transient faults due to the
harsh environment and/or high density of logic circuits or computing components.
Transient faults can lead to soft errors that cause incorrect results calculated by the
affected executed jobs. For instance, soft errors can result in incorrect reading of a
bit value in a digital memory or signal line without causing permanent damage or
defect to the underlying hardware. Such a soft error can be corrected by rewriting
the correct data to the affected memory location or by refreshing the signal.

In this dissertation, we assume that the probability that an executed job is
affected by transient faults, which then results in at least one soft error, is given by
a stationary probability pe. Subsequently, the soft error probabilities for a sequence
of jobs of the same task is an independent stochastic process. We assume that soft
errors can occur at any time during a job’s execution, but such an error-affected
job is assumed to halt after executing for at most its worst-case execution time
even in the unreliable mode by means of, e.g., watchdog timers. Moreover, the
error detection in both the reliable and detected mode is certain in the sense that
an incurred soft error is detected with the same (very high) probability as other
system reliability dependent parameter guarantees. In either the detected mode
or the reliable mode, errors are detected at the end of a job’s execution by using
sanity or consistency checks [Pra86]. To guarantee a correct result in the reliable
mode, either a recovery routine can be issued to guarantee the job’s correctness or
task replication [HAZ17] can be applied to achieve high reliability. For instance, in
the simultaneously and redundantly threaded processors with recovery approach
(SRTR) [VPC02], the register values of all redundant threads are compared and are
only committed if the register values of all threads agree. Otherwise, the threads
are re-executed for at most a specified number times, i.e., rep times, until either
the register values of all threads agree or the maximum number of re-executions is
reached. Hence, the probability that a correct result is produced in the reliable mode
by the SRTR approach after at most rep re-executions is given by 1 − (pe)

rep under
the assumption that soft error probabilities of the re-executions are independent and
that each soft error results in a disagreement of the compared to register values. The
maximum number of replications rep must be determined by the system designer
depending on the required confidence and how hardened the considered system
must be. The overhead for detection and recovery is henceforth integrated into the
WCETs of the corresponding jobs’ execution modes.
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2.4 Experimental Platforms

This section details the experimental platforms that underpin the validation and anal-
ysis presented in this dissertation. The platforms comprise specialized components
tailored to meet the research requirements, including an event-driven multiprocessor
schedule simulator for resource synchronization, various real-time operating systems,
specific hardware platforms, and the applied tool for formal verification. Collec-
tively, these components establish a comprehensive environment suitable for both
simulations and empirical evaluations. Subsequent subsections provide a detailed
description of each component.

2.4.1 Event-Driven Multiprocessor Schedule Simulator for Resource
Synchronization

Task
Generator

Job Decomposition

Job Set

Dependencies
Construction

Dependency
Graphs

Dependency
Graphs

Dependency
Graphs

SchedulerSchedulerScheduler(s)

Release Event

1) Check the precedence dependencies

2) Find the subjob with the latest deadline without precedence constraint

Deadline and Finish Event

1) Check if the subjob is missing its deadline

2) Update the finished subjob’s successor’s precedence constraint

Figure 2.2: Overview of the Event-Driven Simulator: Using Dependency Graph
Approach for Multiprocessor Resource Synchronization.

We developed an event-driven multiprocessor scheduling simulator that leverages
a dependency graph approach for resource synchronization, implemented in Python
3.8. Figure 2.2 provides an overview of the simulator. The simulator is designed
to generate customized task sets and to simulate detailed scheduling by applying
the dependency graph approach for resource synchronization within a hyper-period.
The working flow of the simulator is delineated below:

1. Task Generation: In the Task Generator module, we employ the Dirichlet-
Rescale (DRS)[GBD20; GBD] method to determine the utilization for each
task set based on the overall system utilization and the specified number of
tasks. The Worst-Case Execution Time (WCET) of each segment is then
computed as Ci,j = Ui,j × Ti, where Ui,j is the utilization allocated across all
computational segments using DRS.
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2. Job Unrolling: This stage involves the unrolling of jobs and sub-jobs for each
task within the corresponding hyper-period, followed by their aggregation into
the Job Set.

3. Dependencies Construction: Using the dependency graph approach, we define
the execution order of critical sections protected by the same mutex lock. This
ordered structure, combined with the inner execution order of sub-jobs within
a job, forms the Dependency Graphs. Within the simulator, each sub-job
instance has two attributes: predecessors and successors. These attributes
are utilized to register the sub-job ID(s) of their respective predecessors and
successors.

4. Event-driven Scheduling: The scheduler operates on the constructed dependen-
cies, release time, execution time, and deadline of jobs as input. The simulator
supports both (semi-)partitioned and global scheduling. In (semi-)partitioned
scenarios, it can deploy multiple schedulers. Two types of events are triggered
for each (sub-)job under scheduling: release event and deadline/finish event.

• In the release event, precedence constraints of the released sub-job are
assessed. If none are found, i.e., predecessors=Null, it is added to
the ready queue, with the sub-job having the earliest deadline selected
for execution on the available processor. Preemptive scheduling allows
sub-jobs with earlier deadlines to preempt currently executing sub-jobs.

• In the deadline/finish event, the current sub-job’s adherence to its deadline
is assessed. When a sub-job completes successfully without violating its
deadline, the precedence constraints for any of its successors are updated.
Specifically, it removes its own ID from the predecessors array of all
its successors.

As we use the simulator to evaluate the performance of the dependency graph
approach with time-critical tasks, the simulation for a particular task set will halt
immediately if a sub-job misses its deadline, rendering the task set infeasible.

2.4.2 Real-Time Operating Systems

To study the applicability of our newly proposed approaches, we examine two widely
used operating systems in real-time research domain: LITMUSRT and RTEMS.
Each system offers a comprehensive feature set, facilitating exploration of multiple
aspects of real-time scheduling and synchronization.

LITMUSRT

The Linux Testbed for Multiprocessor Scheduling in Real-Time Systems (LITMUSRT)
is a specialized real-time extension of the Linux kernel. It focuses on multiproces-
sor real-time scheduling and synchronization and provides essential abstractions
and interfaces within the kernel to simplify the development and prototyping of
multiprocessor real-time scheduling algorithms and synchronization protocols.
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Key features of LITMUSRT include:

• Support for both the periodic and sporadic task model, enabling a flexible
scheduling paradigm.

• Modular scheduler plugins and reservation-based scheduling for various schedul-
ing requirements.

• Support for clustered, (semi-)partitioned, and global schedulers to accommo-
date different system architectures.

• Integration of feather tracing tools to streamline the assessment of overheads
in the deployed scheduling algorithms and resource synchronization protocols.

LITMUSRT often serves as a proof-of-concept platform rather than a real RTOS,
demonstrating the practicality of implementing multiprocessor schedulers and syn-
chronization protocols on modern hardware. For this dissertation, we employ the
most recent release, version 2017.1, derived from the Linux kernel 4.9.30.

RTEMS

The Real-Time Executive for Multiprocessor Systems (RTEMS) is an adaptable
open-source RTOS, aligning with open standard application programming interfaces
(APIs). It supports various processor architectures, including ARM, PowerPC, x86,
SPARC, RISC-V, and MIPS. Moreover, RTEMS offers an extensive array of board
support packages (BSPs), enhancing its versatility.

RTEMS is renowned for its extensive adoption in real-world applications across
varied domains, ranging from space flight and medical devices to networking and
diverse embedded systems. RTEMS stands out for its adaptability, robustness, and
wide compatibility with numerous hardware platforms.

In this dissertation, we employ the most recent release of RTEMS, version 5.1,
to investigate its aptitude in the implementation of our proposed methodologies.

2.4.3 Hardware Platforms

In this dissertation, we study various scenarios, necessitating the consideration of
diverse hardware platforms. We employ varied devices to investigate multiprocessor
systems, distributed embedded systems, and GPU-equipped embedded systems.

Multiprocessor Systems

To deploy LITMUSRT and RTEMS on multiprocessor systems, we utilize two specific
devices:

• x86 Architecture (LITMUSRT): A cache-coherent Symmetric Multi-
Processing (SMP) system consisting of two 64-bit Intel Xeon Processor E5-
2650Lv4 running at 1.7 GHz, with 35 MB cache and 64 GB of main memory.
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• PowerPC Architecture (RTEMS): An NXP QorIQ T4240 reference design
board, the same as used in [CBH+15]. It features 6 GB DDR3 memory with
a 1866 MT/s data rate, 128 MB NOR flash (16-bit), 2 GB SLC NAND flash,
and a T4240 processor with 24 virtual cores (12 physical cores) running at
1.67 GHz.

Distributed Embedded Systems

To examine the applicability in distributed embedded systems, we consider:

• Emulation Platform: Constructed from a computing server to emulate sev-
eral embedded nodes and a GPU server for deploying optimization algorithms.
The computing server comprises two AMD 3990X processors and 256 GB
main memory. The GPU server consists of an Intel i7-8700K processor, two
Nvidia GTX1080 GPUs, and 32 GB main memory, exclusively running the
optimization algorithm, i.e., the MBO.

• Physical Platform: A distributed embedded system made of four ODROID-
N2 boards [Har19]. Each board integrates a quad-core ARM Cortex-A73 CPU,
a dual-core Cortex-A53 CPU, and 32GB storage, with DDR4 RAM running
at 1320Mhz at 1.2 volts for low power consumption. Four nodes are connected
via wired local network.

Embedded Systems with GPU

Finally, for deploying relatively complex machine learning models, we consider:

• Nvidia Jetson AGX Xavier (32G) Board: This board houses an octa-
core ARMv8.2 64-bit CPU, 32 GB LPDDR4 main memory, and 32 GB eMMC
for storage. It includes a 512-core NVIDIA Volta GPU with tensor cores,
delivering up to 32 TOPS of accelerated computing capability. Various power
modes provide different computational capabilities to meet specific application
requirements. In this dissertation, two power modes are evaluated: a) default
mode with a 15W power budget using 4 processors at 2188 MHz, and b)
MAXN mode without power budget limitation using 8 processors at 2265.6
MHz. Detailed configurations are documented in [NVI21].

These multifaceted hardware platforms provide a rich and flexible environment
to explore the performance, efficiency and applicability of our proposed approaches
with different scenarios.

2.4.4 Formal Verification Tool

Formal verification uses mathematical concepts and rigorous techniques to validate
the correctness of underlying algorithms. Considering the intricate constraints that
an RTOS must adhere to and the ensuing complexity of its source code, we employ
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Frama-C [KKP+15; FRA23] version 22.0. to verify the protocols implemented in an
RTOS, specifically focusing on RTEMS in this dissertation.

Frama-C, an open-source suite designed specifically for C and C++ code analysis,
functions as a framework, utilizing a variety of plugins for detailed evaluation of C
programs. Central to Frama-C is its kernel, which provides essential services. These
include converting the analyzed program into a standardized format known as the
Abstract Syntax Tree (AST) and offering tools for AST navigation [BBB+21]. The
tool’s parsing structure is anchored in the C Intermediate Language (CIL)[NMR+02],
with Frama-C extending CIL’s features by endorsing annotations based on ACSL
contracts[KKP+15]. These contracts will be further detailed in Chapter 5. Frama-C
transforms C source code into a particular subset defined by CIL. Throughout this
transformation phase, the tool introduces localized code modifications to stream-
line the analysis, all the while preserving the original semantics of the source
program [CCK+21]. Due to our distinct requirements, we employed the weakest pre-
condition plugin [BBC+21] within Frama-C to authenticate specific code properties.
An extensive Frama-C tutorial in [BKL18] demonstrated numerous plugins.
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This dissertation focuses on the challenges of optimizing the deployment of
machine learning models on embedded systems that have specific timing requirements
as well as the applications of machine learning to address challenges in embedded
systems. To provide a comprehensive scope of our investigation, we explore the broad
range of interconnected disciplines that encompass real-time systems, embedded
systems, machine learning, and their intersecting domains. The goals of this chapter
are: a) to present the foundational theories and outcomes, b) to demonstrate state-
of-the-art researches, and c) to identify areas with potential for further research.

Section 3.1 sets the stage by introducing resource synchronization protocols
across various scenarios, such as uni-processor systems, multiprocessor systems, and
nested resource accesses. Following this, Section 3.2 focuses on the practicality of
these protocols, providing an in-depth examination of their implementations and
associated formal verification methodologies. Considering the context of distributed
embedded systems, Section 3.3 provides an explanation of distributed machine
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learning. Alongside this, we present an overview of control robustness and soft-error
compensation in embedded systems in Section 3.4. Finally, Section 3.5 gathers
several illustrative use cases where machine learning is applied to schedule real-time
tasks. By exploring these various aspects, this chapter aims to build a comprehensive
understanding of the current landscape and potential future directions.

3.1 Resource Synchronization on Real-Time Systems

To ensure data consistency and prevent race conditions, tasks are mandated to
execute mutually exclusively when accessing a shared resource. That is, once a
task obtains a shared resource, other tasks are forbidden from accessing the same
resource simultaneously.

Several mechanisms have been developed to enforce this mutual exclusion. Tra-
ditional mechanisms, such as binary semaphores or mutex locks, protect segments
known as critical sections. Conversely, contemporary methods such as transactional
memory (TM) or lock-free/wait-free algorithms leverage retry loops for accessing
shared resources. Whereas the former guarantees execution correctness once inside
a critical section, the latter promises correctness upon successful object updates
or transaction commitments. This dissertation predominantly addresses methods
based on critical sections. However, executing critical sections mutually exclusively
introduces potential issues, including:

• Unbounded priority inversion: a scenario where a high-priority task is blocked
by lower-priority tasks.

• Deadlock: a situation that arises when nested shared resources are requested.

Over the years, in efforts to bound blocking times arising from priority inver-
sion and to avert deadlocks, numerous resource synchronization protocols have
been devised and rigorously analyzed. In this section, we delineate the most
widely-recognized of these protocols, with a special focus on both uni-processor
and multiprocessor configurations. We also explore tailored adaptations specifically
crafted for multiprocessor systems, notably partitioning approaches. Furthermore,
we highlight research that studies nested resource synchronization challenges. To
conclude this section, we present investigations into the complexity of navigating
resource synchronization issues within varied system environments.

3.1.1 Uni-processor Resource Synchronization

In the realm of uni-processor real-time systems, several seminal protocols have been
proposed to handle resource synchronization. The Priority Inheritance Protocol
(PIP), introduced by Sha et al. [SRL90], allows a task to temporarily inherit a higher
priority from another task awaiting access to the same shared resource. Extending
upon this concept, the Priority Ceiling Protocol (PCP) [SRL90] was proposed to
prevent deadlocks. Under PCP, every binary semaphore or mutex lock in the system
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is assigned a priority ceiling, which is the highest priority among all the tasks that
may access this shared resource. A task can only acquire a binary semaphore or
mutex lock if its priority is higher than the priority ceilings of all binary semaphores
or mutex locks presently engaged by other tasks. In instances where a task is unable
to seize the shared resource, it opts for self-suspension, and its priority is temporarily
raised to the priority ceiling of the desired binary semaphore or mutex lock. While
waiting, the task is added into the corresponding wait queue for the desired shared
resource. When the shared resource is released by another task, the highest-priority
task in the wait queue becomes eligible to acquire the binary semaphore or mutex
lock and start its execution.

Emerging as a variant of PCP is the Immediate Ceiling Priority Protocol
(ICPP) [BW09]. In ICPP, a task acquiring a binary semaphore or mutex lock
instantaneously elevates its priority to the priority ceiling of the accessed semaphore
or lock. Notably, the ICPP, has been implemented in Ada (called Ceiling locking)
and POSIX (called Priority Protect Protocol). Furthermore, Baker et al. intro-
duced the Stack Resource Policy (SRP) [Bak91], designed specifically for the EDF
scheduling policy.

3.1.2 Multi-processor Resource Synchronization

In multiprocessor real-time systems, many resource synchronization protocols extend
well-known uni-processor protocols such as the PIP, PCP, and SRP. Rajkummar et
al. [RSL88] proposed Distributed-PCP (DPCP), where each resource is assigned on
a processor statically, called the resources synchronization processor. To execute
a critical section, a task is migrated to a dedicated synchronization processor.
There, it follows the uni-processor PCP for executing critical sections. DPCP
applies semi-partitioned scheduling. Extending this concept, the Multiprocessor
PCP (MPCP) [Raj90] permits tasks to run their critical sections locally. In order
to minimize the usage of stack memory in real-time systems, Gai et al. [GLN01]
proposed Multiprocessor SRP. Both MPCP and MSRP apply partitioned scheduling.
The Flexible Multiprocessor Locking Protocol (FMLP), introduced by Block et
al. [BLB+07], classifies resources into two categories: long and short. For short
resources, critical sections are executed in a non-preemptable manner and tasks
are spinning on their processors while waiting for resources. For long resources,
tasks suspend themselves into a FIFO queue while waiting. FMLP is also the
first protocol that supports both global and partitioned scheduling. Easwaran and
Brandenburg [EA09] introduced Parallel PCP (P-PCP), considering global fixed
priority preemptive multiprocessor systems. The O(m) Locking Protocol (OMLP),
proposed by Brandenburg and Anderson [BA10], guarantees a maximum of O(m)

pi-blocking for any task set while supporting both global and partitioned scheduling.
Burns et al. [BW13] proposed the Multiprocessor resource sharing Protocol (MrsP),
that allows tasks help other tasks during spinning cycles, and (semi-)partitioned
scheduling is applied.



40 Chapter 3. Background and Related Work

Since the performance of these protocols highly depends on how the tasks
are partitioned, several partitioning algorithms were developed, e.g., by Laksh-
manan et al. [LNR09] and Nemati et al. [NNB10] for MPCP, by Wieder and Bran-
denburg [WB13a] for MSRP, by Hsiu et al. [HLK11], Huang et. al [HYC16], and
von der Brüggen et al. [BCH+17] for DPCP.

3.1.3 Nested Resource Synchronization

All these protocols can support nested resource sharing by employing a coarse-grained
group lock. However, only a few of these protocols support nested resource sharing
in a fine-grained manner. The first protocol that supports nested resource sharing
is DPCP, since uni-processor PCP is applied on synchronization processors. Once
nested resources are assigned on the same processor, the nested resource sharing is
supported by uni-processor PCP by default. Chen et al. [CTB94] developed MDPCP
for periodic task systems by carefully defining the inter-processor ceilings. Besides,
the Multiprocessor BandWidth Inheritance protocol (M-BWI) [FLC10; FLC12] and
MrsP [BW13; GZB+17] allow nested resource accesses without deadlocks if all
the resources or mutex locks are accessed according to a specified total order.
The Real-time Nested Locking Protocols family (RNLP) [WA12; WA14; JWA15;
NAA18; NAA19] encompasses various variants of supporting nested resource shar-
ing by addressing: a) different waiting mechanisms, i.e., suspension or spinning,
b) different progress mechanisms, i.e., priority boosting [LNR09; BA10], priority
inheritance [SRL90], and priority donation [BA11], and c) how pi-blocking is ana-
lyzed. However most of them do not handle the transitive blocking chain problem.
That is, the traditional First-In-First-Out (FIFO) method of accessing resources
can inadvertently block an entire chain of requests, even if several of them have no
conflict with the requested resources. Only C-RNLP [JWA15] breaks the transitive
blocking chains for nested write requests by applying a cutting ahead mechanism,
where the lengths of critical sections are taken into consideration for lock the and
unlock logic. Dynamic group locks (DGLs), where all resources in the corresponding
group that the nested request belongs to are requested simultaneously when starting
a critical section, also breaks the hold-and-wait condition [WA13]. Moreover, a
fine-grained blocking bound for nested non-preemptive FIFO spin locks under P-FP
scheduling is presented in [BBW16]. The analysis is based on a graph abstraction
that reflects all possible resource conflicts and transitive delays. As the state-of-the-
art, the newly proposed Concurrency Group Locking Protocol (CGLP) by Nemitz
et al. [NAG+21] supports lock nesting using group locking. In addition, concurrency
groups are utilized to break transitive blocking, where a concurrency group is a
group of lock requests that can safely execute together.

3.1.4 Complexity Results

As real-time systems evolve in both intricacy and scale, understanding the compu-
tational complexity associated with resource synchronization becomes paramount.
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Table 3.1: The complexity results that are known and discussed in this dissertation.

Complexity Results Studied Problem

Theorem 3 M ≥ N + 1, any scheduling paradigm
Theorem 9 M ≥ Z, semi-partitioned scheduling paradigm
Theorem 10 and [LR79] M ≥ N > Z = 2, partitioned scheduling paradigm

Theorem 10 and [LR79]
M ≥ N > Z = 3, unit execution time,
partitioned scheduling paradigm

Theorem 10 and [SS95]
M ≥ N = 3, Z = 3, partitioned scheduling paradigm
(with multiple visits to a mutex lock per job)

Theorem 11 and [GJ79]
M ≥ N > Z = 3, partitioned scheduling paradigm
(with flow-shop compatible access patterns)

Theorem 12 and [LR79] M = Z = 2, semi-partitioned scheduling paradigm

Theorem 13 and [LR79]
Z =M = 3, unit execution time,
semi-partitioned scheduling paradigm

Theorem 14 and [SS95]
N = Z =M = 3,
(semi-)partitioned scheduling paradigm

Theorem 15 and [GJ79]
Z =M = 3, semi-partitioned scheduling paradigm
(with flow shop access patterns)

Theorem 16 and [YHL04]
Z = 1, ηi ≥ 3,M ≥ N , unit execution time,
any scheduling paradigm

Different system environments present unique inherent challenges in navigating
resource synchronization, each introducing its unique set of constraints and require-
ments. This section provides investigations for the complexity of tackling these
resource synchronization issues with varied system landscapes. Detailed complexity
results can be found in Table 3.1.

3.2 Implementations and Formal Verification

Numerous resource synchronization protocols have been explored in theory, but only
a few of them have seen practical implementation in real-world RTOSes. While these
protocols are theoretically sound and robust, the critical step of formal verification
bridges potential gaps between theory and practical implementations. In this
section, we focus on the protocols implemented in prominent RTOSes, specifically
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RTEMS and LITMUSRT. Additionally, we discuss formal verification methodologies,
particularly those designed for real-time systems and programs.

3.2.1 Implemented Resource Synchronization Protocols

In the context of protocol implementations in real-time operating systems:

• RTEMS: in its mainstream release 5.1, supports ICPP for uni-processor systems
and MrsP [CBH+15] for multiprocessor systems. We supported MPCP, DPCP,
and FMLP in [SPM+22] for the earlier release of RTEMS 4.12.

• LITMUSRT provides support for a variety of protocols through its modular
scheduler plugins, including MPCP, DPCP, FMLP [Bra11], and MrsP [CBH+15;
SCZ+17].

• ERIKA Enterprise [Evi21]: currently accommodates only the ICPP within its
uni-processor system configuration.

Zhao and Wellings [ZW17] identified challenges arising from MrsP’s integration
into operating systems, such as Linux, that use a “push-and-pull” task migration
approach. Specifically, allowing resource-holding tasks to migrate can lead to imple-
mentation issues and run-time anomalies. They proposed a strategy to counteract
these unintended migrations, and its effectiveness was affirmed through benchmark
tests on a reference implementation within LITMUSRT. This evolution of MrsP
underscores that its implementations across varied real-time operating systems,
like LITMUSRT [SCZ+17; CBH+15] and RTEMS [CBH+15], might correspond to
various adaptations or iterations of the protocol.

3.2.2 Formal Verification Tools

Formal verification tools, especially those adept at handling C implementations,
have grown in prominence due to their applicability across various domains. In this
section, a few notable contributions are introduced:

• Frama-C: This tool has found extensive applications across multiple sectors.
For instance, Efremov et al. [EMK18] innovated a deductive verification
method for Linux kernel functions. They developed a new plugin to address
the incompatibilities between Frama-C and some specific kernel constructs.

• Verifier for Concurrent C (VCC): Cohen et al. introduced VCC, another
tool for deductive verification, as detailed in [CDH+09]. It ensures program
correctness by monitoring the ownership of non-volatile data across all possible
concurrent thread executions. Notably, VCC has been employed in the partial
verification of Microsoft’s Hyper-V Hypervisor [LS09] and a compact, exemplar
Hypervisor [AHP+10].

• Prusti: The Prusti project [AMP+19] extends similar capabilities to languages
like Rust. Prusti emphasizes function contracts akin to those explored in this
work, underscoring the tool’s adaptability.
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• Software Analysis Workbench (SAW): In the domain of security, Chudnov
et al. demonstrated how SAW can be used for the continuous verification of
Amazon’s open-source TLS implementation [CCC+18]. This tool, optimized
for minimal developer intervention, automatically updates and verifies proof
conditions as source code evolves. It is versatile, supporting C, Java, and
Cryptol, with the latter tailored for cryptographic algorithm specifications.
Due to its reliance on bounded symbolic execution, SAW proves especially
useful for programs with finite loops.

• Coq [BC04] offers a formal language environment to draft mathematical
definitions, executable algorithms, and theorems. It is complemented by a
semi-interactive interface for developing machine-checked proofs.

3.2.3 Formal Verification of Operating Systems

Numerous approaches focusing only on the formal verification of operating systems
have been developed and evaluated. One approach emphasizes the design and
implementation of operating system kernels with comprehensive formal verification
from inception, rather than retroactively verifying existing kernels. A concrete
example is seL4, which is presented by Klein et al. [KEH+09]. The microkernel is
verified via refinement steps from the abstract specification represented by a Haskell
prototype over the executable specification in Isabelle/HOL to a manually optimized
C version. Every layer below the verified source code of the microkernel, from the
compiler to the hardware, is assumed correct and not target of the verification.
Gu et al. [GSC+16] presented an architecture for concurrent operating system
kernels consisting of multiple layers. The code of each system layer is verified with
Coq [BC04]. As a demonstration of the architecture, the kernel mC2 was developed
for multiprocessor x86 computers, supporting fine-grained locking, threads with
suspension and serving as a hypervisor.

Gadia et al. introduced an approach specifically targeting RTEMS [GAB16].
In order to verify the implementation of the Priority Inheritance Protocol (PIP)
with a software model checker, it was remodeled in Java along with the relevant
associated scheduling mechanisms. PIP- and race-condition-related safety properties
were included as assertions and the resulting model was investigated with Java
Pathfinder. During the evaluation, an implementation error related to nested resource
sharing was confirmed and fixed. Additionally, Almatary et al. [AAB15] proposed
an approach to reduce the kernel calls when implementing ICPP in POSIX, where
the implementation is verified by using model checking. Vanhems et al. [VRN+22]
provided a formally verified implementation of an EDF scheduler tailored for arbitrary
job sequences, with proofs crafted in the Coq proof assistant.

Recently, Nicole et al. [NLB+21] proposed an automated method to verify two
key properties of an operating system: the absence of runtime errors (ARTE) and
privilege escalation (APE). The verification target is represented by the binary
executable. An abstract interpreter was developed to process the executable and
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determine all possibly reachable states of registers and memory. Based on this,
ARTE and APE can be verified automatically. Compared to verifying source code,
this approach is highly specific to the instruction set architecture for which the
image was built, and the verification is restricted to critical, but fixed, low-level
properties.

3.2.4 Formal Verification of Real-Time Programs

Several studies have focused on verifying specific real-time programs that employ
locks. Chaki et al. [CGS13] presented an approach for verifying the safety and
deadlock freedom of programs utilizing PIP locks. Their approach is based on
sequentialization. That is, a periodic program is converted into an equivalent (non-
deterministic) sequential program at first. Afterwards, a model checker is applied
for verifying the correctness. Furthermore, Suresh et al. [SPD+22] introduced a
technique to statically identify data races in periodic real-time programs, specifically
when using locks on uni-processor systems. Their approach is based on a small set of
rules that exploit the priority, periodicity, locking, and timing information of tasks
in the program. Their focus was on the verification of distinct programs employing
locks, particularly those with multiple concrete tasks and resources.

3.2.5 Formal Verification of Schedulability Analysis

The verification of mathematical correctness has attracted more attention in the
recent years. Pascal et al. [FGM+19] introduced CertiCAN using the Coq proof
assistant, aimed at the formal certification of CAN analysis outcomes. Serving as
a pivotal foundation for formally verified schedulability analysis, Prosa [CSB16],
constructed with Coq, is widely applied for mechanical proof verification. Building
on this foundation, Pascal et al. [FLM+18] provided a generic proof for the Typical
Worst-Case Analysis (TWCA) designed specifically for weakly-hard real-time uni-
processor systems, with the entire formalization embedded in Coq, complemented
by the Prosa library. In parallel, Bozhko et al. [BB20] took efforts to formalize the
long-standing busy-window principle applicable to uni-processor systems. In their
work, the schedulability analyses were formally formed and verified by using Coq
and Prosa framework. Meanwhile, Roux et al. [RQB22] linked the response time
analysis (RTA) and network calculus (NC), that applied Prosa and NCCoq [RBR19]
respectively. Furthermore, Maida et al. [MBB22] presented the foundational response
time analysis through POET, which spawns human-inspectable proofs ensuring
temporal correctness. POET was built on Prosa, and diversified the spectrum of
scheduling paradigms. In a similar context, Bedarkar et al. [BVB+22] provided a
case study, that corroborated a novel response time analysis for sporadic tasks under
FIFO scheduling using Coq. Finally, Guo et al. [GRT21] delineated an approach that
used Prosa’s certified schedulability analysis to formally verify CertiKOS schedules
based on periodic task architectures and preemptive scheduling.
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Collectively, these studies highlight the critical role of schedulability analysis
verification in ensuring the reliability of real-time systems.

3.3 Distributed Machine Learning

The performance of machine learning algorithms is significantly influenced by their
hyper-parameters. The tuning process in resource-constrained distributed embedded
systems is complicated by factors such as privacy concerns and limited computational
capacity. In this section, we present various hyper-parameter tuning algorithms,
followed by a succinct overview of both Model-Parallelism and Federated Learning.

3.3.1 Hyper-parameter Tuning Algorithms

The most direct and easy to implement tuning algorithm is grid search [LBO+12]
which discretizes the hyper-parameter search space and exhaustively evaluates
all possible combinations in a Cartesian grid to find the setting with the best
performance. Another variation is random search [BB12], which randomly samples
hyper-parameter settings from the search space. Both methods, however, do not
leverage information from previous evaluations, leading to potential computational
inefficiencies. In contrast, Sequential Model-Based Optimization (SMBO) [JSW98]
takes advantage of the previous search trajectory. Multiple benchmarks [HHL13;
BRB+17; BNG+18] highlight MBO’s superiority over grid and random search, and
even over evolutionary approaches. In the classical approach, Gaussian process
regression, also called Kriging, is used as its regression model [SLA12]. In specific
scenarios with hierarchical search spaces, tree-based surrogates like Tree-structured
Parzen Estimator (TPE) [BYC13] or random forests [HHL11] have shown advantages.
Also, Bayesian Neural Networks (BNN) [Gra11] can serve as a surrogate. In this
method, a probability distribution for each network weight is established to provide a
variance around the prediction. However its training process is very time-consuming.
Several extensions are proposed to speed up the BNN, e.g., sample multiple sub-
networks from a network trained with Dropout [SHK+14; GG16].

In order to extend MBO with parallel evaluations, various techniques have been
developed to propose and evaluate multiple points in each iteration. Ginsbourger et.
al. [GLC10] proposed several approaches based on imputing the results of currently
running experiments. Hutter et. al. [HHL12] proposed the qUCB, which uses the
Gaussian process upper confidence bound (GP-UCB). By optimizing the GP-UCB
with different weights for the uncertainty, we obtain a set of proposals, i.e., q
denotes the number of obtained proposals. Recently, Rebolledo et. al. [CRE+20]
introduced a parallelized Bayesian optimization that maintains low evaluation
counts for efficiency. By performing parallel evaluations, this approach not only
reduces wall-clock time but also outperforms state-of-the-art parallel CMA-ES
techniques [HO01], even in high-dimensional scenarios like the 20-dimensional Sharp
Ridge function. To account for heterogeneous run-times of different proposals,
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asynchronous parallel strategies [JRG+12] with scheduling methods [RKB+16;
KSL+19] have been developed.

3.3.2 Model-Parallelism and Federated Learning

Due to the increasing demands of distributed data collection, storage, and processing
as well as the concerns about preserving privacy in many applications, federated
learning [KMY+16; LXG+19] has become one of the popular computing paradigms,
where a machine learning model is trained across multiple decentralized edge devices
or servers with their local data. In most federated computing platforms, “no raw data
sharing” is an important requirement, where a machine learning algorithm should be
trained using all data stored in all the distributed machines but without any cross-
machine raw data sharing. In particular, the aforementioned hyper-parameter tuning
algorithms can be accelerated by federated learning and typically be divided into
two types: Data-Parallelism [Bae11] and Model-Parallelism [XHD+15]. In each em-
bedded system or node, the Data-Parallelism approach begins by training the model
on local data. Afterwards, a global model is obtained via model-averaging [CH+08].
The aggregated model is considered as the trained model based on the overall
data (from multiple nodes). Due to the construction of Data-Parallelism, parallel
computing method can be easily applied. The Model-Parallelism requires multiple
nodes to learn a shared prediction model collaboratively. This approach necessitates
either synchronous or asynchronous parameter updates across all nodes, incurring
additional overheads. In several applications, updating these parameters introduces
significant challenges.

Both of the aforementioned methods ensure that the training data remains
localized to their respective nodes. Compared with the Data-Parallelism, the Model-
Parallelism usually can achieve better performance, as it globally optimizes the
performance of the model [XHD+15]. One of the most popular branch of Neural
Architecture Search (NAS) that employs Model-Parallelism is federated NAS [GSD20;
HAA20; ZJ22], which is designed to autonomously search for global and tailored
models suited for non-IID data. To further preserve privacy, differentially-private
FNAS [SZY+20], which adds random noise to the gradients of architecture variables,
has been designed for a higher level of privacy protection. These algorithms mainly
focus on federated learning solutions for NAS with computationally expensive
method(s) (e.g., reinforcement learning-based surrogate method) and powerful
GPUs (e.g., RTX 2080Ti in [HAA20]).

3.4 Control Robustness and Soft-Error Compensation

In control theory, controllers are designed to tolerate erroneous input signals and
maintain control system functionalities amid uncertain environments. To address
this, several techniques have been proposed [Ram99; KGC+12] or dropped signal
samples [HSJ08; BS15; GDD19]. If a sample input contains an error, the sample may



3.4. Control Robustness and Soft-Error Compensation 47

be discarded, and a subsequent control decision can be determined using previous
inputs to maintain the loop [Ram99; HSJ08; BS15].

Another series of fault tolerance techniques rely on the (m,k) models, which
is originally developed to ensure a limited number of deadline misses in firm real-
time systems, also known as weakly-hard real-time systems [BBL01], where a task
has to meet at least m deadlines, or can miss at most m deadlines, in any of k

consecutive jobs1. While the original study [BBL01] utilized (
n

m
) to describe the any

n of m, most of the following works utilize the (m,k) to describe the weakly-hard
constraints [CKZ19; HQE20; SKT20; VPM22]. Afterwards, such (m,k) models
have been widely adopted in the fault tolerance domain to define the robustness
constraints of control systems. That is, a task must have at least m functionally
correct instances out of any k consecutive instances. Such a requirement can ensure
that a control system is still feasible only if it can satisfy the corresponding (m,k)

robustness constraint [CBC+16; YCC18]. To adhere to a given (m,k) constraint,
several static patterns are widely applied for different purposes, i.e., deep red pattern
(R-pattern) [KS95], evenly distributed pattern (E-pattern) [Ram99], and reverse
E-pattern [QH00]. Besides the static pattern based approaches, Chen et al. proposed
an adaptive approach in [CBC+16]. Such an approach tries to minimize the overall
execution time of a task by postponing the execution of reliable mode. Liang et
al. [LWJ+20] developed a novel method and an optimization algorithm to analyze
and improve control stability and system schedulability under deadline misses, faults,
and the application of two different fault-tolerance techniques, where redundant
execution is applied of EOC [GGB13] techniques and re-execution are performed in
case of a soft error.

In recent years, numerous methodologies have been advanced to reduce the
overheads associated with fault tolerance techniques. Nikiema et al. proposed a
new mechanism with near-zero and bounded timing overhead in [NKT+23], to
circumvents the faults as soon as they occur, to significantly reduce the WCET
estimations in systems with hardware faults. In safety-critical systems, achieving
high mean-times-to-failures (MTTFs) while minimizing the overheads of re-execution
or replication is paramount. Addressing this challenge, Matovic et al. introduced
the Consensual Resilient Control (CRC) approach in [MGL+23]. The CRC method
transforms stateful controllers into instances that can be recovered in a stateless
manner, effectively eliminating cold-start effects and permitting control tasks to
rejuvenate during each control cycle. Miedema et al. proposed a new approach for
applying fault-tolerance technique in weakly hard resource constrained real-time
applications, namely strategy switching in [MG22]. Strategy switching aims at
minimizing the effective unmitigated fault-rate by switching which tasks are to be
run under a fault-tolerance scheme at runtime. Their approach does not require
bounding the number of faults for a given number of consecutive iterations.

1Although nonconsecutive situations are considered as well in the original work, this situation is
not considered in this work and hence omitted here.
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In addition, to maintain the control quality and ensure the schedulability, skipping
certain control computation is considered. AlEnawy et al. [AA05] presented an
online speed adjustment algorithm to exploit the slack time of skipped and completed
jobs in order to minimize the number of dynamic failures (in terms of (m,k)-firm
deadline constraints) while remaining within the energy budget. von der Brüggen et
al. [BCH+16] determined if the system with dynamic real-time guarantee can provide
full timing guarantees or limited timing guarantees without any online adaptation
after a fault occurred. Wang et al. [WHK+21] presented a cross-layer approach
to improve system adaptability by allowing proactive skipping of task executions.
Huang et al. [HXW+20] introduced an online intermittent-control framework that
integrates formal verification, model-based optimization, and deep reinforcement
learning. The objective of the proposed framework is to opportunistically skip certain
control computation and actuation to save actuation energy and computational
resources without compromising system safety. Their main constraint is the control
safety rather than schedulability and (m,k) robustness.

3.5 Machine Learning for Real-Time Scheduling

In recent years, machine learning (ML) has attracted significant interests in both
academic and industrial areas. However, only a few of studies have applied ML-
based approaches in (real-time) embedded systems domain due to the stringent
requirements, e.g., timing guarantee, security, and power consumption. Bo et
al. [BQL+21] proposed a deep RL-based scheduler for multiprocessor real-time
systems, modeling the real-time scheduling process as a multi-agent cooperative game.
In [LBW+21], a ML-based approach for priority assignment was proposed. To meet
the complex time-critical requirements, Dole et al. [DGK+21] advocated for using
Duration Calculus (DC) to frame learning objectives in model-free RL for stochastic
real-time systems. In order to improve the efficiency of generating Clock Constraint
Specification Language (CCSL) specifications, Hu et al. [HDZ+21] combined the
merits of both RL and deductive techniques in logical reasoning for efficient co-
synthesis of CCSL specifications. Recently, Xu et al. [XKH+23] introduced a RL
strategy aimed at minimizing overall path latency for all scheduled runnables in
automotive systems. This approach ensures adherence to other essential constraints,
including schedulability, load balancing, and data contention control. The Logical
Execution Time paradigm is employed to schedule all runnables, facilitating time-
deterministic communication on multi-core processors.
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4.1 Overview

In this chapter, we explore the complex domain of multiprocessor resource synchro-
nization. Although much research has been dedicated to multiprocessor resource
synchronization protocols, a considerable gap still exists between theoretical results
and their real-world applications.

Challenges in current approaches: Several challenges persist in bridging
this gap. Most existing synchronization protocols focus on sporadic task systems,
which, while theoretically sound, introduces significant pessimism. To be more
precise, although the minimum inter-arrival time between consecutive job releases
has been determined in sporadic task systems, the actual releases can be irregular and
unpredictable. For bounding the worst-case response time, schedulability analysis
often assumes the worst-case scenario, ensuring all deadlines are met. However, the
majority of tasks in practice are periodic, creating a discrepancy between theoretical
constructs and real-world scenarios. In a recent empirical survey by Akesson et
al. [ANN+20], based on 120 responses, 82% of the systems contained periodic
activation patterns, while over 60 included aperiodic activations. Interestingly, 22%
of the respondents specified that their systems exclusively employed either periodic
or time-triggered activations, eschewing sporadic or aperiodic tasks, in order to
achieve highly predictable behaviors. In contrast, a mere 4% and 2% of participants
reported systems with solely sporadic and aperiodic activations, respectively, devoid
of any time-triggered or periodic tasks. Therefore, having good solutions for periodic
activations is useful for industrial practice.

Moreover, with the widespread integration of machine learning tasks, the lengths
of critical sections have substantially increased, e.g., access to accelerators. Tradi-
tional work-conserving-based resource synchronization methods may no longer be
suitable, necessitating novel approaches.

This dissertation: To tackle these challenges, our study concentrates on the
fundamental difficulties and complexities inherent in resource synchronization. We
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also explore the performance disparities between different scheduling algorithms and
devise strategic scheduling for critical sections to enhance performance.

We initiate our exploration with a frame-based task system: a scenario where all
tasks share identical periods and deadlines, with each task having a single non-nested
critical section. In this simplified setting, the schedulability optimization problem
can be reduced to a makespan minimization problem, offering a valuable starting
point. Recognizing that this basic setting is often too simplistic for real-world
applications, we subsequently expand our analysis by relaxing constraints. We
explore scenarios allowing multiple critical sections per task, nested resource sharing,
and periodic task systems with varying periods. These explorations provide a bridge
between the theoretical models and practical applications, forging new pathways for
effective synchronization in modern multiprocessor systems.

We commence with Section 4.2, where we define the multiprocessor resource
synchronization problem, considering two distinct scenarios, i.e., one critical section
per task and multiple critical sections per task. Next, in Section 4.3, we introduce the
dependency graph approach tailored for a frame-based task system with one critical
section per task. This section includes a detailed overview of the approach’s two
steps, its complexity, a lower bound of the approximation ratio, and the techniques
for constructing dependency graphs. Following this, Section 4.4 extends the approach
to handle multiple critical sections per task, establishing a connection with the job
shop scheduling problem. In Section 4.5, we propose the group execution constraint
to facilitate nested resource synchronization within the dependency graph framework.
We then explore the transition from the frame-based task system to periodic task
systems in Section 4.6, addressing the added complexities and proposed solutions.
To enable effective scheduling of the generated dependency graphs, Section 4.7
presents several algorithms, including semi-partitioned, LIST-EDF, and partitioned
scheduling approaches. Finally, Section 4.8 provides comprehensive evaluations,
illustrating the performance of the proposed methods across various scenarios.

Through this systematic analysis, we aim to contribute a nuanced understanding
of the multiprocessor resource synchronization problem and deliver innovative
solutions that bridge the gap between theoretical insights and practical applicability.

4.2 Resource Synchronization Problem

To start our study of the multiprocessor resource synchronization problem, we
first concentrate on a fundamental and straightforward configuration. In this
configuration, all tasks share the same period and deadline, and simultaneously
release their jobs, creating what is known as a frame-based real-time task system.
These tasks are then scheduled on M homogeneous processors, implying that all
processors are identical. Within this context, we consider two distinct resource
access patterns: a) the OCS task model, where each task contains exactly one
non-nested critical section; and b) the MCS task model, where each task may have
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multiple non-nested critical sections. The consideration of these two task models
allows us to understand the fundamental challenges and dynamics of the problem.
This simplified environment serves as a foundational basis for subsequent, more
intricate investigations.

4.2.1 Single Critical Section in Each Task

We denote the multiprocessor synchronization problem for OCS task systems as
MS-OCS . In scheduling theory, a primary objective is to minimize the makespan
of a task set, defined as the time interval between the first job’s arrival and the
last job’s completion. For frame-based real-time task systems, tasks have identical
periods and deadlines. Each task releases its initial job at time 0 and one job at the
start of every subsequent period. Consequently, if the released jobs from each task
execute exactly with the corresponding WCET, the schedule in the first period is
repeated in the following periods. If the makespan of the task set within one period
does not exceed the relative deadline, all tasks in the task set can feasibly meet their
identical deadline. That is, the task set can be feasibly scheduled under the given
number of processors and the applied scheduling algorithm. We state the makespan
problem for MS-OCS that is studied here as follows:

Definition 10. The MS-OCS Makespan Problem: Given M identical homo-
geneous processors and N tasks following the OCS task model arriving at time 0,
the objective is to minimize the makespan.

Alternatively, we can additionally investigate the bin packing version of the
problem, i.e., minimizing the number of allocated processors to meet a common
deadline D.

Definition 11. The MS-OCS Bin Packing Problem: Given M identical ho-
mogeneous processors and N tasks following the OCS task model arriving at time
0, the objective is to find a schedule to meet the common deadline D with the
minimum number of allocated processors.

Essentially, the decision versions of the makespan and the bin packing problems
are identical:

Definition 12. The MS-OCS Schedulability Problem: Given M identical
homogeneous processors and N tasks following the OCS task model arriving at time
0, the objective is to find a schedule to meet the common deadline D by using the
M homogeneous processors.

We note that an algorithm with an approximation ratio α for the makespan
problem in Definition 10 also has a speedup factor α for the schedulability problem in
Definition 11. That is, an algorithmA for the bin packing problem (i.e., Definition 11)
has an approximation ratio α ≥ 1, if given any task set T, it finds a schedule of T on
αM∗ processors to meet the common deadline, where M∗ is the minimum (optimal)
number of processors required to feasibly schedule T.
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4.2.2 Multiple Critical Sections in Each Task

We define the problem of multiprocessor synchronization in the context of MCS task
systems as MS-MCS . The MS-MCS problem can be transferred to the following
two general problems:

Definition 13. The MS-MCS Makespan Problem: Given M identical homo-
geneous processors and N tasks following the MCS task model arriving at time 0,
the objective is to find a schedule that minimizes the makespan.

A feasible schedule of the MS-MCS makespan problem is a schedule that satisfies
all aforementioned non-overlapping constraints stated in Section 2.2.2. For an input
instance of the MS-MCS makespan problem, an optimal solution is a schedule with
the shortest makespan compared to all feasible schedules of that instance. An
algorithm A for the MS-MCS makespan problem has an approximation ratio α ≥ 1,
if given any task set T and M processors, the resulting makespan is at most α ⋅C∗

max,
where C∗

max is the optimal makespan.

Definition 14. The MS-MCS Schedulability Problem: Given M identical
homogeneous processors and N tasks following the MCS task model arriving at time
0, the objective is to find a feasible schedule that meets the common deadline D on
the given M homogeneous processors.

As in Definition 9, a feasible schedule of the MS-MCS schedulability problem is
a schedule that has a makespan no more than the common deadline D and satisfies
all the non-overlapping constraints in Section 2.2.2. The MS-MCS schedulability
problem is a decision problem, in which for a given D and a given algorithm either
the algorithm produces a feasible schedule that meets the deadlines, or it does not
yield a feasible schedule.

4.3 Dependency Graph Approach

To solve the multiprocessor synchronization problem, we begin with a simpler setting
where all tasks follow the OCS task model and share the same period and deadline.
When the OCS task model is applied, each task contains three computational
segments, i.e., θi,1, θi,2, and θi,3, where θi,2 is the critical section that is protected
by a binary semaphore. We propose a Dependency Graph Approach with two steps
to handle the makespan problem in Definition 10:

• In the first step, we construct a directed graph G = (V,E), as depicted in
Figure 4.1. A computational segment (i.e., a critical or a non-critical section)
is a vertex in V and the edges in E describe the precedence constraints of these
computational segments. The computational segment θi,1 is a predecessor of
the computational segment θi,2, and θi,2 is a predecessor of the computational
segment θi,3. If two computational segments of τi and τj share the same binary
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θ1,1

θ1,2
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θ2,1

θ2,2
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θ4,1

θ4,2

θ4,3

Figure 4.1: A task dependency graph for a task set with one binary semaphore,
where a circle represents the non-critical section and a rectangle repre-
sents the critical section.

semaphore, i.e., σ(τi) = σ(τj), then either the computational segment θi,2 is
the predecessor of θj,2 or the computational segment θj,2 is the predecessor
of θi,2. All the critical sections guarded by a binary semaphore form a chain
in G, i.e., the critical sections of the binary semaphore follow a total order.
Therefore, we have the following properties in set E:

– The two directed edges (θi,1, θi,2) and (θi,2, θi,3) are in E.
– Suppose that Tk is the set of tasks which request the same shared resource
zk. Then, the ∣Tk∣ tasks in Tk follow a certain total order π such that
(θi,2, θj,2) is a directed edge in E when π(τi) = π(τj) − 1.

Figure 4.1 provides an example for a task dependency graph with one binary
semaphore. Since there are Z binary semaphores in the task set, the task depen-
dency graph G has in total Z connected sub-graphs, denoted as G1,G2, . . . ,GZ .
In each connected sub-graph Gz, the corresponding critical sections of the
tasks that request critical sections guarded by the same semaphore form a
chain and have to be executed sequentially. For example, in Figure 4.1, the
dependency graph forces the scheduler to execute the critical section θ1,2 prior
to any of the other three critical sections.

• In the second step, a corresponding schedule of G onM processors is generated.
The schedule can be based on system’s restrictions or user’s preferences, i.e.,
either preemptive or non-preemptive schedules, either global, semi-partitioned,
or partitioned schedules.

In the initial design of dependency graph approach, we focus exclusively on frame-
based task systems. We determine the execution order for computational segments
in the first step and schedule these dependency graphs on M given processors in the
second step. For these systems, the scheduling is determined over a single period and
this schedule is subsequently repeated for subsequent periods. Within this period,
each task releases just one job. The execution sequence of these sub-jobs strictly
adheres to the dependency graph established in the first step.
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The scheduling of dependency graphs has been widely studied in the literature.
A solution to the problem P ∣prec∣Cmax leads to a semi-partitioned schedule, since
the dependency graph is formed by treating either a critical or a non-critical section
as a sub-job. Moreover, a solution of the problem P ∣prec, prmp∣Cmax results in
a global schedule. To derive a partitioned schedule, we can assign the sub-jobs
generated by a job to be tied to a specific processor. That is, P ∣prec, tied∣Cmax
targets a partitioned non-preemptive schedule and P ∣prec, prmp, tied∣Cmax targets a
partitioned preemptive schedule. The detailed algorithms for scheduling generated
dependency graphs are discussed in Section 4.7.

the primary challenge lies in constructing the dependency graph, which corre-
sponds to the first step. We construct the dependency graph under the assumption
of a consistently sufficient number of processors. Specifically, processor count is
assumed as M = N +Z in the first step. Subsequently, in the second step, we take
into account the processor constraint as defined by the target platform.

Definition 15. A feasible schedule S(G) of a task dependency graph G respects
the precedence constraints defined in G and the specified scheduling requirement,
e.g., being global/semi-partitioned/partitioned and preemptive/non-preemptive.
L(S(G)) is the makespan of S(G).

With the above definitions, we can recap the objectives of the two steps in
the dependency graph approach. In the first step, we would like to construct a
dependency graph G to minimize len(G), and in the second step, we would like to
construct a schedule S(G) to minimize L(S(G)).

Lemma 1. len(G∗) is the lower bound of the MS-OCS makespan problem for task
set T on M processors.

Proof. This comes from the setting of the problem, i.e., each task τi has only one
critical section guarded by one binary semaphore, and the Definition 8 of the graph
G∗, i.e., using as many processors as possible.

Theorem 1. The optimal makespan of the MS-OCS makespan problem for T on
M processors is at least

max
⎧⎪⎪
⎨
⎪⎪⎩

∑
τi∈T

Ci,1 +Ci,2 +Ci,3

M
, len(G∗

)

⎫⎪⎪
⎬
⎪⎪⎭

(4.1)

where Ci,1, Ci,2, and Ci,3 are WCETs of the three computational segments in OCS
task model, and G∗ is a dependency task graph of T that has the minimum critical
path length.

Proof. The lower bound len(G∗) comes from Lemma 1 and the lower bound
∑τi∈T

Ci,1+Ci,2+Ci,3
M is due to the pigeon hole principle.
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4.3.1 Computational Complexity

The following theorem shows that constructing G∗ is NP-hard in the strong sense.

Theorem 2. Constructing a dependency task graph G∗ that has the minimum
critical path length is NP-hard in the strong sense.

Proof. This theorem is proved by a reduction from the decision version of the
scheduling problem 1∣rj ∣Lmax, i.e., uni-processor non-preemptive scheduling, in
which the objective is to minimize the maximum lateness assuming that each job Jj
in the given job set J has its known processing time pj ≥ 0, arrival time rj ≥ 0, and
absolute deadline dj . This problem is NP-hard in the strong sense by a reduction
from the 3-Partition problem [LRB77]. Suppose that the decision version of the
scheduling problem 1∣rj ∣Lmax is to validate whether there exists a schedule in which
the finishing time of each job Jj is no less than dj .

Let H be any positive integer greater than maxj∈J dj . For each job Jj in J, we
construct a task τj with OCS task model, where Cj,1 is set to rj , Cj,3 is set to
H − dj , and Cj,2 is set to pj . By the setting, Cj,1 ≥ 0,Cj,2 ≥ 0, and Cj,3 ≥ 0 for every
constructed task τj . The critical sections of all the constructed tasks are guarded by
only one binary semaphore. Let the task set constructed above be T. The above
input task set T by definition is a feasible input task set for the one-critical-section
task synchronization problem (MS-OCS).

We now prove that there is a non-preemptive uni-processor schedule for J in
which all the jobs can meet their deadlines if and only if there is a dependency task
graph G∗ with a critical path length less than or equal to H for the constructed
task set T.

If part, i.e., len(G∗) ≤H holds: Without loss of generality, we index the tasks in
T so that the critical section of θi,2 is the immediate predecessor of the critical section
θi+1,1 in G∗, e.g., as in Figure 4.1. Suppose that G∗(τi) is the sub-graph of G∗ that
consists of only the vertices representing {θk,1, θk,2, θk,3 ∣ k = 1,2, . . . , i − 1}∪{θi,1, θi,2}
and the corresponding edges. Let fi be the longest path in G∗(τi) that ends at the
vertex representing θi,1.

By definition, f1 is C1,1+C1,2. Moreover, fi is max{fi−1,Ci,1}+Ci,2 for every task
τi in T. Since len(G∗) ≤H and Ci,3 =H − di, we know that fi +Ci,3 ≤H ⇒ fi ≤ di
for every task τi in T.

We can now construct the uni-processor non-preemptive schedule for J by
following the same execution order. Here, we index the jobs in J corresponding to
T. The finishing time of job J1 is r1 + p1 = C1,1 +C1,2 = f1. The finishing time of
job Ji is max{fi−1, ri} + pi = max{fi−1,Ci,1} +Ci,2 = fi.

This proves the if part.
Only-If part, i.e., there is a uni-processor non-preemptive schedule in which all

the deadlines of the jobs in J are met: The proof for the if part can be reverted and
the same arguments can be applied. Due to space limitation, details are omitted.
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Theorem 3. The makespan problem with task synchronization for T on M pro-
cessors is NP-hard in the strong sense even if M is sufficiently large under any
scheduling paradigm.

Proof. This follows directly from Theorem 2. Consider M ≥ ∣T∣ + 1 processors. The
if-and-only-if proof in Theorem 2 can be extended by introducing a concrete schedule
that executes the two non-critical sections of task τi on processor i and the critical
section of task τi on processor ∣T∣ + 1.1

Theorem 3 expresses the fundamental difficulty of the multiprocessor synchroniza-
tion problem and shows that already a simplified version of this problem is NP -hard
in the strong sense regardless of the number of processors and the underlying schedul-
ing paradigm. Therefore, the allowance of preemption or migration does not reduce
the computational complexity. The fundamental problem is the sequencing of the
critical sections, which is independent from the underlying scheduling paradigm.
Therefore, no matter what flexibility the scheduling algorithm has (unless aborting
and restarting a critical section is allowed), the computational complexity remains
NP -hard in the strong sense.

4.3.2 Remarks: Bin Packing

Although the focus of this section is the makespan problem in Definition 10 and
the schedulability problem in Definition 12, we also state the following theorems to
explain the difficulty of the bin packing problem in Definition 11.

Theorem 4. Minimizing the number of processors for a given common deadline of
T with task synchronization for T (i.e., Definition 11) is NP-hard in the strong
sense under any scheduling paradigm.

Proof. As the decision problem is Definition 12, we reach the conclusion based on
Theorem 3.

Theorem 5. There is no polynomial-time (approximation) algorithm to minimize
the number of processors for a given common deadline of T with task synchronization
for T under any scheduling paradigm unless P = NP.

Proof. This is based on Theorems 2 and 3. If such a polynomial-time algorithm
exists, then the problem 1∣rj ∣Lmax is solvable in polynomial time, which implies
P = NP.

4.3.3 Lower Bounds

The dependency graph approach requires two steps. The following theorem shows
that even if both steps are optimized, the resulting schedule for the makespan
problem with task synchronization is not optimal and has an asymptotic lower
bound 2 of the approximation ratio.

1The same statement also holds for using M = ∣T∣ processors, but the proof is more complicated.
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Theorem 6. The optimal schedule on M identical processors for the dependency
graph G∗ that has the minimum critical path length is not optimal for the MS-OCS
makespan problem and can have an approximation bound of at least

• 2 − 2
M + 1

M2 under any scheduling paradigm, and
• 2 − 1

M under partitioned or semi-partitioned scheduling.

Proof. We prove this theorem by providing a concrete input instance as follows:

• Suppose that M ≥ 2 is a given integer and we have N =M2 −M + 1 tasks.
• We assume a very small positive number δ and a number Q which is much

greater than δ, i.e., Q
MN ≫ δ > 0.

• All N tasks have a critical section guarded by the same binary semaphore.
• Task τ1 has C1,1 = δ,C1,2 = Q −

Q
M , and C1,3 =

Q
M +Nδ

• Task τi has Ci,1 = δ,Ci,2 = δ, and Ci,3 = Q
M for i = 2,3, . . . ,N .

We need to show that the optimal dependency graph of this input instance in fact
leads to the specified bound. Due to the design of the task set, there are only
N different dependency graphs, depending on the position of τ1 in the execution
order. Suppose that the critical section of task τ1 is the j-th critical section in the
dependency graph. It can be proved that the critical path of this dependency graph
is jδ +Q +Nδ. We sketch the proof:

• The non-critical section C1,3 must be part of the critical path since C1,3 =
Q
M +Nδ, which is greater than any (N − 1)Ci,2 +Ci,3 for any i = 2, 3, . . . ,N − 1.

• The longest path that ends at the vertex representing θ1,2 has a) one non-critical
section, b) j − 1 critical sections from τi for i = 2,3, . . . ,N , and c) 1 critical
section from task τ1. Therefore, this length is δ +(j −1)δ +Q−

Q
M = jδ +Q−

Q
M .

• Combining the two scenarios, we reach the conclusion.

Therefore, the dependency graph G∗ that has the minimum critical path length
is the one where τ1’s critical section is the first one among the N critical sections.
The optimal schedule of the graph G∗ on M processors has the following properties:

• Task τ1 finishes its critical section at time δ +Q −
Q
M .

• Before time δ +Q −
Q
M , none of the second non-critical sections is executed.

Therefore, the makespan of any feasible schedule S(G∗) of G∗ onM processors
is defined as:

L(S(G∗
)) ≥ δ +Q −

Q

M
+
N

∑
i=1

Ci,2

M

= δ +Q −
Q

M
+

(M2 −M + 1) QM +Nδ

M

= (1 + N

M
) δ + (2 − 2

M
+

1
M2)Q
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• Moreover, when the scheduling policy is either semi-partitioned or partitioned
scheduling, by the pigeon hole principle, at least one processor must execute
⌈N
M

⌉ of the N second non-critical sections no earlier than δ+Q−
Q
M . Therefore,

the makespan of a feasible semi-partitioned or partitioned schedule Sp of G∗

on M processors is

L(Sp(G
∗
)) ≥ δ +Q −

Q

M
+ ⌈

N

M
⌉
Q

M

= δ +Q −
Q

M
+ ⌈M − 1 + 1

M
⌉
Q

M

= δ +Q −
Q

M
+M

Q

M

= δ + (2 − 1
M

)Q

We can have another feasible partitioned schedule S∗:

• The first non-critical section τ1 is executed on processor M , and the first
non-critical sections of the other N − 1 tasks are executed on the first M − 1
processors based on list scheduling. All the first non-critical sections finish no
later than Mδ. Each of the first M − 1 processors executes exactly M tasks
since there are N − 1 =M(M − 1) tasks on these M − 1 processors.

• The critical sections of tasks τN , τN−1, . . . , τ1 are executed sequentially by
following the above reversed-index order on the same processor of the corre-
sponding first non-critical sections, starting from time Mδ.

• At time Mδ +Nδ, all the second non-critical sections of τ2, . . . , τN are eligible
to be executed. We execute them in parallel on the first M − 1 processors by
respecting the partitioned scheduling strategy. That is, each of the first M − 1
processors executes exactly M tasks with Ci,2 = Q/M . The makespan of these
N − 1 tasks is (N +M)δ +

(N−1) Q
M

M−1 = (N +M)δ +Q.
• At time Mδ+Nδ, the critical section of τ1 starts its execution on processor M .

Furthermore, at time (N +M)δ +Q −
Q
M , the second non-critical section of τ1

is executed on processor M and it is finished at time (N +M)δ +Q +Nδ =

(2N +M)δ +Q.
• As a result, the makespan of the above partitioned schedule S∗ is exactly

(2N +M)δ +Q.

Therefore, the approximation bound of the optimal task dependency graph
approach is at least L(S(G∗))

L(S∗) under any scheduling paradigm and is at least L(Sp(G∗))
L(S∗)

under partitioned or semi-partitioned scheduling paradigm. We reach the conclusion
by taking δ → 0.
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4.3.4 Algorithms to Construct G

The key to successfully solving the problem is finding G∗. Unfortunately, as shown
in Theorem 2, finding G∗ is NP-hard in the strong sense. However, finding good
approximations is possible. We refer to the problem of constructing G as the
dependency-graph construction problem. Here, instead of presenting new algorithms
to find good approximations of G∗, we explain how to use the existing algorithms of
the scheduling problem 1∣rj ∣Lmax to derive good approximations of G∗.

It should be first noted that the problem 1∣rj ∣Lmax cannot be approximated
with a bounded approximation ratio because the optimal schedule may have no
lateness at all and any approximation leads to an unbounded approximation ratio.
However, a variant of this problem can be easily approximated. This is known as
the delivery-time model of the problem 1∣rj ∣Lmax. In this model, each job Jj has
its release time rj , processing time pj , and delivery time qj ≥ 0. The objective is to
minimize the makespan K. Therefore, the effective deadline dj of job Jj on the given
single machine is dj =K − qj . Since K is a constant, this is effectively equivalent to
the case when dj is set to −qj .

The delivery-time model of the problem 1∣rj ∣Lmax can then be effectively ap-
proximated. Moreover, our problem to construct a good dependency graph for T
is indeed equivalent to the delivery-time model of the problem 1∣rj ∣Lmax. To show
such equivalence, Algorithm 1 presents the detailed transformation. For each shared
resource zk, suppose that Tk is the set of tasks that use zk (Line 1 in Algorithm 1).
For each task set Tk, we transform the problem to construct Gk to an equivalent
delivery-time model of the problem 1∣rj ∣Lmax (Line 3 to Line 8). We then construct
the graph Gk based on the derived schedule of an approximation algorithm for the
delivery-time model of the problem 1∣rj ∣Lmax.

Theorem 7. An α-approximation algorithm for the delivery-time model of the
problem 1∣rj ∣Lmax applied in Algorithm 1 guarantees to derive a dependency graph
G with len(G) ≤ α × len(G∗).

Proof. This theorem can be proved by a counterpart of the proof of Theorem 2. We
will show that Algorithm 1 is in fact an L-reduction (i.e., a reduction that preserves
the approximation ratio) from the input task set to the delivery-time model of the
problem 1∣rj ∣Lmax. In this L-reduction, there is no loss of the approximation ratio.

First, by definition, two tasks are considered independent if they do not share
any semaphore. Moreover, since the MS-OCS problem assumes that a task accesses
at most one binary semaphore, a task τi can only appear at most in one Tk for a
certain k. Therefore, len(G∗) = maxk=1,2,...,z len(G

∗
k).

To show that the reduction preserves the approximation ratio, we only need
to prove the one-to-one mapping. One possibility is to prove that a schedule for
the input instance of the problem 1∣rj ∣Lmax delivers the last result at time X if
and only if the corresponding graph Gk constructed by using Lines 9 and 10 in
Algorithm 1 has a critical path length X. However, this direct correlation is not
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Algorithm 1 Graph Construction Algorithm
Input: set T of N tasks with Z shared binary semaphores;
1: Tk ← {τi ∣ σ(τi,1) = zk} for k = 1,2, . . . , Z;
2: for k ← 1 to Z do
3: J← ∅;
4: for each τi ∈ Tk do
5: create a job Ji with ri ← Ci,1, pi ← Ci,2, and qi ← Ci,3, where qi is the delivery time;
6: J← J ∪ {Ji};
7: end for
8: apply an approximation algorithm to derive a non-preemptive schedule ρz for the delivery-

time model of the problem 1∣rj ∣Lmax on one machine;
9: construct the initial dependency graph Gk for Tk, with the directed edges (θi,1, θi,2) and

(θi,2, θi,3) for every task τi ∈ Tk;
10: create a directed edge from θi,2 to θj,2 in Gk if job Jj is executed right after (but not

necessarily consecutively to) job Ji for accessing shared resource zk;
11: end for
12: return G = G1 ∪G2 ∪ . . . ∪GZ ;

possible because a (technically bad but possible) schedule for the input instance of
the problem 1∣rj ∣Lmax can be arbitrarily alerted by inserting useless delays.

Fortunately, for a given permutation to order the ∣Tk∣ tasks in Tk, we can always
construct a schedule for the input instance of the problem 1∣rj ∣Lmax by respecting
the given order and their release times. Such a schedule for the input instance of the
problem 1∣rj ∣Lmax delivers the last result at time X if and only if the corresponding
graph Gk constructed by using Lines 9 and 10 in Algorithm 1 has a critical path
length X. Moreover, the schedule for one such permutation is optimal for the input
instance of the problem 1∣rj ∣Lmax.

Therefore, the approximation ratio is preserved during the construction of Gk.
According to the above discussions, len(Gk) ≤ α × len(G∗

k). Moreover,

len(G) ≤ max
k=1,2,...,z

len(Gk)

≤ α × max
k=1,2,...,z

len(G∗
k) = α × len(G

∗
)

According to Theorem 7 and Algorithm 1, we can simply apply the existing
algorithms of the scheduling problem 1∣rj ∣Lmax in the delivery-time model to derive
G∗ by using well-studied branch-and-bound methods, see for example [Car82; MF75;
NZ86], or good approximations of G∗, see for example [HS92; Pot80]. Here, we will
summarize several polynomial-time approximation algorithms. The details can be
found in [HS92].

For the delivery-time model of the scheduling problem 1∣rj ∣Lmax, the extended
Jackson’s rule (JKS) is as follows: “Whenever the machine is free and one or
more jobs are available for processing, schedule the available job with the largest
delivery time,” as explained in [HS92].
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Lemma 2. The extended Jackson’s rule (JKS) is a polynomial-time 2-approximation
algorithm for the dependency-graph construction problem.

Proof. This is based on Theorem 7 and the approximation ratio of JKS for the
problem 1∣rj ∣Lmax, where the proof can be found in [KIM79].

Potts [Pot80] observed some nice properties when the extended Jackson’s rule
is applied. Suppose that the last delivery is due to a job Jc. Let Ja be the earliest
scheduled job so that the machine in the problem 1∣rj ∣Lmax is not idle between the
processing of Ja and Jc. The sequence of the jobs that are executed sequentially
from Ja to Jc is called a critical sequence. By the definition of Ja, all jobs in the
critical sequence must be released no earlier than the release time ra of job Ja. If
the delivery time of any job in the critical sequence is not shorter than the delivery
time qc of Jc, then it can be proved that the extended Jackson’s rule is optimal for
the problem 1∣rj ∣Lmax. However, if the delivery time qb of a job Jb in the critical
sequence is shorter than the delivery time qc of Jc, the extended Jackson’s rule may
start a non-preemptive job Jb too early. Such a job Jb that appears last in the
critical sequence is termed the interference job of the critical sequence.

Potts [Pot80] recommended an attempt to improve the schedule by ensuring
that some interference jobs are executed only after the critical job Jc. This can be
achieved by delaying the release time of Jb from rb to r′b = rc. This procedure is
repeated for at most n iterations and the best schedule among the iterations is
returned as the solution.

Lemma 3. Potts’ iterative process (Potts) is a polynomial-time 1.5-approximation
algorithm for the dependency-graph construction problem.

Proof. This is based on Theorem 7 and the approximation ratio of Potts for the
problem 1∣rj ∣Lmax. The proof for the approximation ratio has been provided by Hall
and Shmoys in [HS92].

Hall and Shmoys [HS92] further improved the approximation ratio to 4/3. This
improvement addresses a specific scenario where two jobs, Ji and Jh, satisfy the
conditions pi > P /3 and ph > P /3, with P being defined as ∑Jj pj . In this context,
Potts’ algorithm is run for 2n iterations.2

Lemma 4. Algorithm HS is a polynomial-time 4/3-approximation algorithm for
the dependency-graph construction problem.

Proof. This is based on Theorem 7 and the approximation ratio of HS for the
problem 1∣rj ∣Lmax. The proof for the approximation ratio has been provided by Hall
and Shmoys in [HS92] as well.

2Hall and Shmoys [HS92] further use the concept of forward and inverse problems of the input
instance of 1∣rj ∣Lmax. As they are not highly related, we omit those details.
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The algorithm that has the best approximation ratio for the delivery-time
model of the problem 1∣rj ∣Lmax is a polynomial-time approximation scheme (PTAS)
developed by Hall and Shmoys [HS92].

Lemma 5. The dependency-graph construction problem admits a polynomial-time
approximation scheme (PTAS), i.e., the approximation bound is 1 + ε under the
assumption that 1

ε is a constant for any ε > 0.

4.3.5 Schedules for Dependency Graphs

This section introduces our heuristic algorithms for scheduling the dependency
graph G, obtained from Algorithm 1. We aim to determine the upper bound of the
makespan and the approximation ratio. Detailed scheduling methodologies can be
found in Section 4.7.

We first consider the special case where the number of processors does not restrict
the schedule, i.e., M ≥ N .

Lemma 6. Assume a given task set T, M identical processors, and a given depen-
dency graph G. The makespan of the schedule which executes task τi on exactly
one processor i as early as possible by respecting the precedence constraints defined
in G is len(G) if M ≥ N . By definition, this is a partitioned schedule for the given
jobs which is non-preemptive with respect to the sub-jobs.

Proof. Since M ≥ N , all the tasks can start their first non-critical sections at time
0. Therefore, the critical section of task τi arrives exactly at time Ci,1. Then, the
finishing time of the critical section of task τi is exactly the longest path in G that
finishes at the vertex representing Ci,2. Therefore, the makespan of such a schedule
is exactly len(G).

For the rest of this section, we focus on the other case, i.e., when M < N . We
will heavily utilize the concept of list schedules developed by Graham [Gra69] and
extensions of list scheduling to schedule the dependency graph G derived from
Section 4.3.4. A list schedule works as follows: Whenever a processor idles and
there are sub-jobs eligible to be executed (i.e., all of their predecessors in G have
finished), one of the eligible sub-jobs is executed on the processor. When more
eligible sub-jobs exist than idle processors, many heuristic strategies exist to decide
which sub-jobs should be executed with higher priorities. Graham [Gra69] showed
that list schedules can be generated in polynomial time and have an approximation
ratio of 2 − 1

M for the scheduling problem P ∣prec∣Cmax.
We now explain how to use or extend list schedules to generate semi-partitioned

with preemptive or non-preemptive schedules based on G. Since the sub-jobs of
a task are scheduled individually in list scheduling, a task may migrate among
different processors in the generated list schedule, i.e., resulting in a semi-partitioned
schedule. However, a sub-job by default is non-preemptive in list schedules.
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The following lemma is widely used in the literature for the list schedules
developed by Graham [Gra69]. All the existing results of federated scheduling, e.g.,
[LCA+14; Bar15; Che16], for scheduling sporadic dependent tasks (that are not due
to synchronizations) all implicitly or explicitly use this property.

Lemma 7. The makespan of a list schedule of a given task dependency graph G
for task set T on M processors is at most ∑τi∈T(Ci,1+Ci,2+Ci,3)−len(G)M + len(G).

Proof. The original proof can be traced back to Theorem 1 by Graham [Gra69] in
1969. We omit the proof here as this is a standard procedure in the proof of list
schedules for the scheduling problem P ∣prec∣Cmax.

Lemma 8. If len(G) ≤ α × len(G∗) for a certain α ≥ 1, the makespan of a list
schedule of the task dependency graph G for task set T on M processors has an
approximation bound of 1 + α − α

M if M < N .

Proof. Since M < N , the makespan of a list schedule of G, denoted as L(List(G)),
is

L(List(G))

Lemma 7
≤

(∑τi∈TCi,1 +Ci,2 +Ci,3) − len(G)

M
+ len(G)

=
∑τi∈TCi,1 +Ci,2 +Ci,3

M
+ len(G)(1 − 1

M
)

assumption
≤

∑τi∈TCi,1 +Ci,2 +Ci,3

M
+ α × len(G∗

)(1 − 1
M

)

Theorem 1
≤ (1 + α − α

M
)OPT (4.2)

We now conclude the approximation ratio.

Theorem 8. When applying JKS (α = 2, from Lemma 2), Potts (α = 1.5, from
Lemma 3), HS (α = 4/3, from Lemma 4), and PTAS (α = ε for any ε > 0, from
Lemma 5) to generate the task dependency graph G, the MS-OCS Makespan problem
admits polynomial-time algorithms to generate a semi-partitioned schedule that has
an approximation ratio of

⎧⎪⎪
⎨
⎪⎪⎩

α if M ≥ N

1 + α − α
M if M < N

(4.3)

Proof. The case for M < N is derived from Lemma 8. The case for M ≥ N is based
on Lemma 6 and the fact that a partitioned schedule is also a semi-partitioned
schedule by definition.
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The default list schedulers are non-preemptive in the sub-job level. However, it
may be more efficient if the second non-critical section of a task can be preempted
by a critical section. Otherwise, some processors may be busy executing second
non-critical sections and a critical section has to wait. As a result, not only this
critical section itself but also its successors in G may be unnecessary postponed and
therefore increase the makespan. Allowing such preemption in the scheduler design
can be achieved as follows:

• In the algorithm, the scheduling decision is made at a time t when there is a
sub-job eligible or finished.

• Whenever a sub-job representing a critical section is eligible, it can be assigned
to a processor that executes a second non-critical section of a job by preempting
that sub-job.

The makespan of the resulting schedule remains at most ∑τi∈T(Ci,1+Ci,2+Ci,3)−len(G)M +

len(G) as in Lemma 7. Therefore, the approximation ratios in Theorem 8 still hold
even if preemption of the second non-critical sections is possible.

4.4 Extension for Tasks with Multiple Critical Sections

In this section, we explore the synchronization challenges associated with mul-
tiprocessor frame-based task systems, especially when leveraging the MCS task
model, and elucidate the connections to job shop scheduling. First, we introduce
two critical section access patterns. Subsequently, we explain the connection of
the MS-MCS schedulability problem to the job and flow shop problem by showing
different reductions that can be applied for demonstrating different scenarios with
respect to their computational complexity. Conclusively, we detail the dependency
graph approach for tasks with MCS task model, base on job shop scheduling to
construct the dependency graphs.

4.4.1 Access Patterns for Critical Sections

For convenience, we categorize the access patterns of critical sections into two types
based on the applicable algorithms:

• Flow-Shop Compatible Access Patterns: A task set has a pattern where
flow-shop approaches can be applied. That is, if all tasks access each resource
(in a non-nested manner) at most once and a total order ≺ in which tasks
access the resources can be constructed over all tasks in the set. Hence, a
flow-shop pattern means that σi,j′ ≺ σi,j when j′ < j and θi,j′ and θi,j are
both critical sections. In such a case, we can assume that the mutex locks are
indexed according to the specified total order set. Although the order must be
always respected, a task does not need to access all the mutex locks. That
is, the access pattern of the mutex locks of a task is a subset of the specified
total order set.
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• Job-Shop Compatible Access Patterns allow tasks to access shared re-
sources multiple times and without any restriction on the order in which
resources are accessed.

Flow-shop compatible access patterns are a very restrictive special case of the much
more general job-shop compatible access patterns. We implicitly assume job-shop com-
patible access patterns if not specified differently, but examine flow-shop compatible
access patterns when showing certain complexity results.

4.4.2 Reductions from the Jobshop/Flowshop Problem

In Section 4.3, we show that a special case of the MS-MCS makespan problem is
NP -hard in the strong sense when OCS task model is applied and M is sufficiently
large. The MS-MCS schedulability problem represents the decision version of the
MS-MCS makespan problem. We therefore focus on the hardness of the decision
version in Definition 14. In this dissertation, we provide reductions from the
job/flow shop scheduling problems to different restricted scenarios of the MS-MCS
schedulability problem. Such reductions are used in Section 4.4.5 for demonstrating
the NP -completeness for different scenarios.

We start from the more general scenario under the semi-partitioned scheduling
paradigm.

Theorem 9. Under the semi-partitioned scheduling paradigm, there is a polynomial-
time reduction from an input instance of the decision version of the job shop schedul-
ing problem JZ ∣∣Cmax with Z shops to an input instance of the MS-MCS schedulability
problem that has Z mutex locks on M processors with M ≥ Z.

Proof. The proof is based on a polynomial-time reduction from an instance of the job
shop scheduling problem JZ ∣∣Cmax to the MS-MCS schedulability problem. Suppose
a given input instance with N jobs of the job shop scheduling problem JZ ∣∣Cmax.

• We have Z shops with non-preemptive execution.
• A job i is defined by a chain of ηi sub-jobs, denoted as Oi,1,Oi,2, . . . ,Oi,ηi . The

processing time of Oi,j is Ci,j .
• These ηi operations should be executed in the specified order and Oi,j is

executed on one of the given Z shops, i.e., on shop s(Oi,j), where s(Oi,j) ∈
{1,2, . . . , Z}.

The decision version of the job shop scheduling problem is to decide whether there
is a non-preemptive schedule whose makespan is no more than a given D. The
polynomial-time reduction to the MS-MCS schedulability problem is as follows:

• There are M ≥ Z processors.
• There are Z mutex locks, indexed as 1,2, . . . , Z.
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• For a job i of the input instance of the job shop scheduling problem, we create
a task τi, which is composed of ηi computation segments. The execution time
of θi,j is the same as the processing time of the operation Oi,j . The mutex
lock σi,j used by θi,j has the same id as is used by shop s(Oi,j).

• The deadline of the tasks is D and the period is T =D.

We denote the above input instance for the job shop scheduling problem as I (the
MS-MCS schedulability problem as I ′, respectively). We show that there exists a
feasible schedule ρ for I (in the job shop scheduling problem) if and only if there
exists a feasible schedule ρ′ for I ′ (in the MS-MCS schedulability problem).3

Only-if part: Suppose ρ is a feasible schedule for I, i.e.,

(
Z

∑
m=1

∫

D

0
[ρ(t,m) = Oi,j]dt) = Ci,j ,∀Oi,j (4.4)

and ρ(t,m) ≠ Oi,j for any t and m if s(Oi,j) ≠ m. Since the execution on shops is
non-preemptive, if two operations Oi,j and Ok,` are supposed to be executed on a
shop z, they are executed sequentially in ρ. As a result, without any conflict, for
0 ≤ t ≤D, we can set

ρ′(t,m) =

⎧⎪⎪
⎨
⎪⎪⎩

� if ρ(t,m) = �

θi,j if ρ(t,m) = Oi,j
(4.5)

In the schedule ρ′, critical sections guarded by the mutex lock z are executed
sequentially on the z-th processor. Therefore,

(
Z

∑
m=1

∫

D

0
[ρ′(t,m) = θi,j]dt) = Ci,j ,∀θi,j ∈ Θ (4.6)

and all the constraints of a feasible schedule for I ′ are met. Such a schedule is
a semi-partitioned and non-preemptive schedule (from the sub-job’s perspective),
which is also a global preemptive schedule (from the job’s perspective).

If part: Suppose that ρ′ is a feasible schedule for I ′, i.e.,

M

∑
m=1

∫

D

0
[ρ′(t,m) = θi,j]dt = Ci,j ,∀θi,j ∈ Θ (4.7)

and the schedule ρ′ executes any two critical sections θi,j and θk,` with σi,j = σk,` = z
sequentially. Therefore, for a mutex lock z ∈ {1,2, . . . , Z}, the critical sections
guarded by z must be sequentially executed. As a result, without any conflict, for
0 ≤ t ≤D, we can set

ρ(t, z) = {
Oi,j if ∃m with ρ′(t,m) = θi,j and σi,j = z
� otherwise

(4.8)

3Although we do not formally define the schedule function of the job shop scheduling problem,
we believe that the context is clear enough by replacing the use of the computation segments with
the operations.
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However, since we do not put any constraint on the feasible schedule ρ′, it is
possible that the execution of Oi,j on shop z is not continuous. Suppose that
ai,j (fi,j , respectively) is the first (last, respectively) time instant when Oi,j is
executed on shop z in ρ. Since the schedule ρ′ executes any two critical sections
θi,j and θk,` sequentially when σi,j = σk,` = z, we know that for any t between ai,j
and fi,j either ρ(t, z) = Oi,j or ρ(t, z) = �. Therefore, we can simply set ρ(t, z)
to Oi,j for any t in the time interval [ai,j , ai,j + Ci,j) and set ρ(t, z) to � for any
t in [ai,j + Ci,j , fi,j). The resulting schedule ρ executes all the operations non-
preemptively on the corresponding shops. Therefore, all the scheduling constraints
of the job shop scheduling problem are met and

(
Z

∑
m=1

∫

D

0
[ρ(t,m) = Oi,j]dt) = Ci,j ,∀Oi,j (4.9)

We note that there is no specific constraint of scheduling imposed by the schedule
ρ′.

The proof of Theorem 9 is not valid for the more restrictive partitioned scheduling
paradigm, i.e., all the computation segments of a task must be executed on the same
processor, since the constructed schedule ρ′ in the proof of the only-if part is not
a partitioned schedule. Interestingly, if we use an abundant number of processors,
i.e., M ≥ N , then the reduction in Theorem 9 holds for the partitioned scheduling
paradigm as well.

Theorem 10. Under the partitioned scheduling paradigm, there is a polynomial-time
reduction which reduces from an input instance of the decision version of the job
shop scheduling problem JZ ∣∣Cmax with Z shops to an input instance of the MS-MCS
schedulability problem that has N tasks and Z mutex locks on M processors with
M ≥ N ≥ Z.

Proof. The proof is identical to the proof of Theorem 9 by ensuring that ρ′ con-
structed in the only-if part in the proof of Theorem 9 can be converted to a partitioned
schedule. Instead of applying Equation (4.5), since M ≥ N , without any conflict, for
0 ≤ t ≤D and i = 1,2, . . . ,N , we can set

ρ′(t, i) =

⎧⎪⎪
⎨
⎪⎪⎩

� if ∄m with ρ(t,m) = Oi,j

θi,j if ∃m with ρ(t,m) = Oi,j
(4.10)

Since all computation segments of τi are executed on processor i, the schedule ρ′ is a
partitioned schedule. All the remaining analysis follows the proof of Theorem 9.

Theorem 11. There is a polynomial-time reduction which reduces from an input
instance of the decision version of the flow shop scheduling problem FZ ∣∣Cmax with
Z flow shops to an input instance of the MS-MCS schedulability problem that
has Z mutex locks with a flow-shop compatible access pattern. The conditions in
Theorems 9 and 10 for different scheduling paradigms with respect to constraint of
M remain the same.
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Proof. The proof is identical to the proofs of Theorems 9 and 10. The additional
condition is to access the Z mutex locks by following the index, starting from 1.

The above theorems show that the computational complexity of the MS-MCS
schedulability problem is almost independent from the number of processors (i.e.,
adding processors may not be helpful) and the underlying scheduling paradigm. The
fundamental problem is the sequencing of the critical sections.

4.4.3 The DGA Based on Jobshop/Flowshop

The extended dependency graph approach for tasks with the MCS task model also
consists of two steps:

• In the first step, a directed acyclic graph G = (V,E) is constructed. For each
sub-job θi,j of task τi in T, we create a vertex in V . The sub-job θi,j is a
predecessor of θi,j+1 for j = 1,2, . . . , ηi − 1. Suppose that Θz is the set of
computation segments whose critical sections request the shared resource z,
i.e., Θz ← {θi,j ∣ λi,j = 1 and σi,j = z}. For each z = 1,2, . . . , Z, the sub-graph
of the computation segments in Θz is a directed chain, which represents the
total execution order of these computation segments.

• In the second step, we construct a schedule of G on M processors either
globally or partitioned, either preemptive or non-preemptive.

Next, we explain the reduction process from an input instance IMS of the MS-MCS
makespan problem to an input instance IJS of the job shop scheduling problem
JZ+N ∣∣Cmax.

• We create Z +N shops:
– Shop z ∈ {1,2, . . . , Z} is exclusively used to execute critical sections

guarded by mutex lock z. That is, only critical sections θi,j with λi,j = 1
and σi,j = z (i.e., θi,j ∈ Θz) can be executed on shop z.

– Shop Z + i is exclusively used to execute non-critical sections of task τi.
That is, only non-critical sections θi,j with λi,j = 0 can be executed on
shop Z + i.

• The operation of each computation segment θi,j is transformed to the corre-
sponding shop, and the processing time is the same as the segment’s execution
time, i.e., Ci,j . The optimization objective is to minimize the makespan of the
generated schedule.

Suppose that ρJS is a feasible job shop schedule for IJS . Since ρJS is non-
preemptive, the operations on a shop are executed sequentially in ρJS . The construc-
tion of the dependency graph G sets the precedence constraints of Θz by following
the total order of the execution of the operations on shop z, i.e., the shop dedicated
for Θz in ρJS . Once the dependency graph G is constructed, a schedule ρMS of the
original input instance IMS can be generated by applying any scheduling algorithms
to schedule G, as detailed in Section 4.7.
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Table 4.1: Example of a frame-based task set consisting of 4 tasks and 2 shared
resources. Each task comprises 5 computational segments, of which 2
are critical sections.

Task WCETs Requested Resource
Ci,1 Ci,2 Ci,3 Ci,4 Ci,5 σ(θi,1) σ(θi,2) σ(θi,3) σ(θi,4) σ(θi,5)

τ1 3 4 1 1 1 ∅ 1 ∅ 2 ∅

τ2 1 1 2 4 3 ∅ 1 ∅ 2 ∅

τ3 3 2 2 3 3 ∅ 2 ∅ 1 ∅

τ4 1 4 1 1 1 ∅ 2 ∅ 1 ∅

4.4.4 An Example of the DGA Based on Job Shop Scheduling

To illustrate the workflow of the DGA based on job shop scheduling, we provide an
example in Table 4.1. Consider a frame-based task set with 4 tasks and 2 shared
resources. All tasks have the same period, e.g., Ti = 25. Each task is composed of
five computational segments: two critical sections and three non-critical sections.
These segments within a task must be executed in sequence. Each critical section
accesses one of the shared resources, which is protected by mutex locks respectively.

To construct a dependency graph for the task set, we apply job shop scheduling
using 6 exclusively assigned shops: Shop 1 and 2 are designated for the critical
sections of the two shared resources, while Shop 3 to 6 are reserved for the non-
critical sections of tasks τ1 to τ4. When a task requires access to a shared resource,
its execution is migrated to the appropriate shop (e.g., Shop 1 for resource 1). The
input instance for JZ+n∣∣Cmax is denoted as IJS .

Figure 4.2a presents a job shop schedule for IJS . The execution order for
shared resources 1 and 2 in Shops 1 and 2, respectively, dictates the precedence
constraints depicted in Figure 4.2b. Within this figure, rectangles denote the critical
sections, while circles signify non-critical sections. The numbers inside the circles and
rectangles indicate the execution times of their respective computational segments.
Dashed red directed edges highlight the precedence constraints associated with
mutex lock for shared resource z1, whereas dotted blue directed edges represent
those for mutex lock for shared resource z2. Additionally, black solid directed edges
delineate the internal execution order for each task. Collectively, these directed
edges and shapes form the dependency graph.

To schedule the generated dependency graph, several scheduling algorithms
are discussed in Section 4.7. The detailed schedule of the generated graph by
applying the LIST-EDF scheduling algorithm on two processors can be found in
Appendix A.1.1.

4.4.5 Computational Complexity Analysis

In this subsection, we show the computational complexity of different scenarios.
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non-critical section critical section z1/z2

Shop 1
(z1)

Shop 2
(z2)

Shop 3
(τ1)

Shop 4
(τ2)

Shop 5
(τ3)

Shop 6
(τ4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sh1 Sh2

Sh1 Sh2

Sh2 Sh1

Sh2 Sh1

τ2 τ1 τ4 τ3

τ4 τ3 τ2 τ1

(a) The job shop schedule (with 6 shops denoted as Sh1-6).

3 4 1 1 1τ1

1 1 2 4 3τ2

3 2 2 3 3τ3

1 4 1 1 1τ4

(b) Dependency graph for a task set with two binary
semaphores: execution order for shared resource z1

denoted by red dashed lines and z2 by blue dashed
lines.

Figure 4.2: An example of the DGA based on job shop scheduling for a frame-
bBased task set with MCS task model.

Computational Complexity for Small M

We can now determine the computational complexity of the MS-MCS schedulability
problem when Z ≥ 2 for small M . For completeness, we state the following lemma.

Lemma 9. The MS-MCS schedulability problem is in NP .

Proof. Since the feasibility of a given schedule for the MS-MCS schedulability
problem can be verified in polynomial-time, it is in NP .

The following four theorems are based on the reductions in Theorem 9 and The-
orem 11. In general, even very special cases are NP -complete in the strong sense.
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Theorem 12. Under the semi-partitioned scheduling paradigm, the MS-MCS schedu-
lability problem is NP -complete in the strong sense when Z =M = 2.

Proof. The job shop scheduling problem J2∣∣Cmax with 2 shops is NP -complete in
the strong sense [LR79]. Together with Theorem 9, we conclude the theorem.

The MS-MCS schedulability problem is also difficult when all computation
segments have the same execution time.

Theorem 13. Under the semi-partitioned scheduling paradigm, the MS-MCS schedu-
lability problem is NP -complete in the strong sense when Z =M = 3 and Ci,j = 1
for any computation segment θi,j.

Proof. The job shop scheduling problem J3∣pi,j = 1∣Cmax with unit execution time
on 3 shops is NP -complete in the strong sense [LR79]. Together with Theorem 9,
we conclude the theorem.

The following theorem shows that the MS-MCS schedulability problem is also
difficult when there are just three tasks, three mutex locks, and three processors.

Theorem 14. The MS-MCS schedulability problem is NP -complete in the strong
sense when N = Z =M = 3.

Proof. The job shop scheduling problem J3∣N = 3∣Cmax with 3 jobs (with multiple
operations) on 3 shops is NP -complete in the strong sense [SS95]. Together with
Theorem 9, we conclude the theorem for semi-partitioned scheduling paradigm.

For the partitioned scheduling paradigm, since there are exactly 3 tasks, 3
processors, and 3 mutex locks, the computational complexity remains the same, as
a semi-partitioned schedule can be mapped to a partitioned schedule.

Theorem 15. Under the semi-partitioned scheduling paradigm, the MS-MCS schedu-
lability problem for flow-shop compatible access patterns is NP -complete in the
strong sense when Z =M = 3.

Proof. The flow shop scheduling problem F3∣∣Cmax with 3 shops is NP -complete in
the strong sense [GJ79]. Together with Theorem 11, we conclude the theorem.

Computational Complexity When M ≥ N

Section 4.3 shows that a special case of the MS-MCS makespan problem is NP -hard
in the strong sense when a task has only one critical section and M is sufficiently
large. The following theorem shows that the MS-MCS schedulability problem is
NP -complete when there are only two critical sections per task and the critical
sections are with unit execution time.

Theorem 16. The MS-MCS schedulability problem is NP -complete in the strong
sense when Z = 1, ηi ≥ 3 for every τi ∈ T, Ci,j = 1 for every computation segment
θi,j with λi,j = 1, and M ≥ N .
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Proof. The problem is in NP , since the feasibility of a given schedule can be verified
in polynomial-time. Similar to the proof of Theorem 9, we show a polynomial-time
reduction from the master-slave scheduling problem with unit execution time on the
master [YHL04]. Assume a given input instance with N jobs of the master-slave
scheduling problem:

• We assume a sufficient number of slaves, but only one master that can be
modeled as a uni-processor.

• A job i has a chain of three sub-jobs, in which the first and third sub-jobs
have to be executed on the master and the second sub-job has to be executed
on a slave.

• The processing time of the first and third sub-jobs of a job i is 1. The processing
time of the second sub-job of a job i is Oi > 0.

The decision version of the master-slave scheduling problem is to decide whether
there is a schedule whose makespan is no more than a given target D, which is
NP -complete in the strong sense [YHL04]. The master-slave scheduling problem
is equivalent to the uni-processor self-suspension problem with two computation
segments and one suspension interval.
The polynomial-time reduction to the MS-MCS schedulability problem is as follows:

• There are M ≥ N processors.
• There is one mutex lock.
• For a job i of the input instance of the master-slave scheduling problem, we

create a task τi, which is composed of three computation segments. The
execution time Ci,1 = Ci,3 and Ci,2 = Oi. Computation segments θi,1 and θi,3
are critical sections guarded by the only mutex lock. Computation segment
θi,2 is a non-critical section.

• The deadline of the tasks is D and the period is T =D.

It is not difficult to prove that a feasible schedule ρ for the original input of the
master-slave scheduling problem exists if and only if there exists a feasible schedule
ρ′ for the reduced input of the MS-MCS schedulability problem. Details are omitted
due to space limitation.

4.4.6 Properties of Our Approach

We now prove the equivalence of a schedule of IJS and a directed acyclic graph G
for IMS .

Lemma 10. Suppose that there is a DAG G for IMS whose critical path length is
len(G). There is a job shop schedule for IJS whose makespan is len(G).

Proof. This lemma is proved by constructing a job shop schedule ρJS for IJS , in
which the makespan of ρJS is len(G). Suppose that the longest path ended at a
vertex θi,j in V in the directed acyclic graph G is Li,j . There are two cases to
schedule θi,j in ρJS :
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• If θi,j is a non-critical section, the schedule ρJS schedules the operation on
shop i +Z from time Li,j −Ci,j to Li,j .

• If θi,j is a critical section guarded by mutex lock z, the schedule ρJS schedules
the operation on shop z from time Li,j −Ci,j to Li,j .

The above schedule has a makespan of len(G) by construction. The only thing that
has to be proved is that the schedule is a feasible job shop schedule for IJS .

Suppose for contradiction that the schedule ρJS is not a feasible job shop schedule
for IJS . This is only possible if the schedule ρJS has a conflicting decision to schedule
two operations at the same time t on a shop z. There are two cases:

1. z is an exclusively reserved shop for the non-critical sections of a task. This
contradicts to the definition of G since the non-critical sections of task τi form
a total order in graph G.

2. z is a shop for the critical sections guarded by the mutex lock z. This
contradicts to the definition of G since the critical sections in Θz form a total
order in graph G.

In both cases, we reach the contradiction. Therefore, IJS is a feasible job shop
schedule with a makespan of len(G).

Lemma 11. Suppose that there is a job shop schedule for IJS whose makespan is
∆. Then, there is a directed acyclic graph G for IMS whose critical path length is
at most ∆.

Proof. This lemma is proved by constructing a graph G for I, in which the critical
path length of G is at most ∆. By the definition of G, the sub-job θi,j is a predecessor
of θi,j+1 for j = 1,2, . . . , ηi − 1 for every task τi. For the sub-jobs in Θz, we define
their total order and form a chain in G by following the execution order on shop z
in the given schedule ρJS for IJS . Such a graph G must be acyclic; otherwise, the
schedule ρJS is not a valid job shop schedule for IJS .

We now prove that the critical path length len(G) of G is no more than ∆.
Suppose for contradiction that len(G) > ∆. This critical path of G defines a total
order of the execution of the computation segments in the critical path, which follows
exactly the total order of the operations of a job and a shop in ρJS . Therefore, this
contradicts to the fact that the makespan of schedule ρJS for IJS is ∆.

Based on Lemmas 10 and 11, we get the following theorem:

Theorem 17. An α-approximation algorithm for the job shop scheduling problem
JZ+N ∣∣Cmax can be used to construct a dependency graph G with len(G) ≤ α×len(G∗),
where G∗ is a dependency graph that has the shortest critical path length for the
input instance IMS of the MS-MCS makespan problem.

Proof. Suppose that ∆∗ is the optimal makespan for IJS . By Lemma 10, we
know that ∆∗ ≤ len(G∗). By Lemma 11, we know that ∆∗ ≥ len(G∗). There-
fore, ∆∗ = len(G∗). Suppose that the algorithm derives a solution for IJS with a
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makespan ∆. By the α-approximation for IJS and Lemma 11, we know ∆ ≤ α ×∆∗.
Therefore, by Lemma 11 and above discussions, len(G) ≤ ∆ ≤ α∆∗ = α×len(G∗).

Lemma 12. Let G∗ be defined as in Theorem 17. The optimal makespan for the
input instance IMS of the MS-MCS makespan problem is at least

max
⎧⎪⎪
⎨
⎪⎪⎩

∑
τi∈T

Ci
M
, len(G∗

)

⎫⎪⎪
⎬
⎪⎪⎭

(4.11)

Proof. The lower bound ∑τi∈T
Ci
M is due to the pigeon hole principle. The lower

bound len(G∗) is due to the definition with an infinite number of processors.

Theorem 18. Applying list scheduling for the dependency graph G with len(G) ≤

α × len(G∗) results in a schedule with an approximation ratio of α + 1 for the
MS-MCS makespan problem under semi-partitioned scheduling, where G∗ is defined
in Theorem 17.

Proof. According to Theorem 1 and Section 4 in [Gra69], by applying list scheduling,
the makespan of IMS for the MS-MCS makespan problem is at most

len(G) + ∑
τi∈T

Ci
M

≤ α × len(G∗) + ∑
τi∈T

Ci
M

≤ (α + 1) ×max
⎧⎪⎪
⎨
⎪⎪⎩

∑
τi∈T

Ci
M
, len(G∗)

⎫⎪⎪
⎬
⎪⎪⎭

The resulting schedule is a semi-partitioned schedule since two computation segments
of a task can be executed on different processors. By Lemma 12, we conclude the
theorem.

Since the 1950s, job/flow shop scheduling problems have been extensively studied,
i.e., in [LLK+93; CPW98]. Although the problems are NP -complete in the strong
sense (even for very restrictive cases), algorithms with different properties have
been reported in the literature. If time complexity is not a major concern, applying
constraint programming as well as mixed integer linear programming (MILP) or
branch-and-bound heuristics can derive optimal solutions for the job shop scheduling
problem. In such a case, based on Theorem 18, our DGA has an approximation
ratio of 2 for the MS-MCS makespan problem.

4.4.7 Remarks

At first glance, it may seem impractical to reduce the MS-MCS makespan problem
to another very challenging problem, i.e., job shop scheduling, in the first step of
our DGA algorithms. However, an advantage of considering the job shop scheduling
problem is that it has been extensively studied in the literature, related results can
directly be applied, and commercial tools, like the Google OR-Tools [Goo23], can
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be utilized, as we did in our evaluation. In addition, due to Lemma 10, constructing
a good dependency graph implies a good schedule for IJS .

The last N job shops, i.e., shops Z + 1, Z + 2, . . . , Z +N , in IJS , are created just
to match the original job shop scheduling problem. From the literature of flow and
job shop scheduling, we know that these additional N job shops can be removed by
introducing delay (li,j in Section 2.2). If the first computation segment θi,1 of task τi
is a non-critical section, this implies a non-zero release time ri of task τi in IJS .

In our Google OR-Tools implementation for solving IJS , the no overlap constraint
has to be taken into consideration for both shop and job perspectives. For each shop,
it prevents jobs assigned on the same shop from overlapping in time. For each job, it
prevents sub-jobs for the same job from overlapping in time. The first constraint can
be achieved by applying the AddNoOverlap method, by default supported in Google
OR-Tools, for each shop. For the second constraint, instead of creating N +Z job
shops, we utilize the above concept by creating only Z job shops and adding proper
delays between the operations. We configure the start time (denoted as θi,j .start)
of a computation segment based on the finish time (denoted as θi,j .finish) of an
earlier computation segment. For notational brevity, we assign θi,1.start ≥ 0 and
θi,0.finish = 0. For any j ≥ 2 with λi,j = 1:

⎧⎪⎪
⎨
⎪⎪⎩

θi,j .start ≥ θi,j−1.finish if λi,j−1 is 1
θi,j .start ≥ θi,j−2.finish +Ci,j−1 if λi,j−1 is 0

(4.12)

That is, if θi,j−1 is a non-critical section, the execution time Ci,j−1 is added directly
to the finish time of θi,j−2; otherwise θi,j is started after the finish time of θi,j−1.

Hence, a proper job shop scheduling problem for IJS is JZ ∣rj , lj ∣Cmax, i.e.,
scheduling of jobs with release time and delays between operations on Z shops. An
α-approximation algorithm for the problem JZ ∣rj , lj ∣Cmax can be used to construct
a dependency graph. This problem is not widely studied and only few results can
be found in the literature.

For a task system with a flow-shop compatible access pattern, i.e., the Z mutex
locks have a predefined total order, the instance IJS is in fact a flow shop problem. For
a special case with three computation segments per task in which the second segment
is a non-critical section, and the first and the third segments are critical sections of
mutex locks 1 and 2, respectively, the constructed input IJS is a two-stage flow shop
problem with delays, i.e., F2∣lj ∣Cmax. For the problem F2∣lj ∣Cmax, several polynomial-
time approximation algorithms are known: Karuno and Nagamochi [KN03] developed
a 11

6 -approximation, Ageev [Age07] developed a 1.5 approximation for a special case
when ∀τi ∶ Ci,1 = Ci,3, and Zhang and van de Velde [ZV10] proposed polynomial-time
approximation schemes (PTASes), i.e., (1 + ε)-approximation for any ε > 0.

Specifically, Zhang and van de Velde [ZV10] presented PTASes for different
settings of the job/flow shop scheduling problems. For any of such scenarios, the
approximation ratio of DGA is at most 2+ ε for any ε > 0, according to Theorem 18.
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4.5 Extension for Nested Resource Synchronization

In this section, we expand the dependency graph approach to accommodate frame-
based real-time task systems that employ the Nested-MCS task model, where each
critical section can request multiple shared resources. We begin by detailing the
two core steps of the approach: constructing the dependency graphs and scheduling
the generated graphs, for adapting the Nested-MCS task model. Subsequently,
we introduce the relevant properties of the extension for Nested-MCS task model.
Lastly, we discuss the extended version of the standard nested locking pattern.

4.5.1 Step I: Dependency Graph Construction

We construct a directed acyclic graph (DAG) G = (V,E). For each computation
segment θi,j of all tasks τi in T a vertex is created and, to ensure the sequential exe-
cution of tasks. Since we consider nested resources, each critical section may request
multiple resources. Hence, each critical section may have multiple predecessors,
depending on the number of resources it requests.

When constructing a dependency graph for nested resource sharing, the process
can be formulated using constraint programming. For consistency with Section 4.4,
we use the term ’shop’ to represent the location to which a computational segment
is assigned. In this system, each shared resource is denoted by a distinct shop,
represented as z. Furthermore, every task τi is allocated to a dedicated shop, denoted
as Z + i. Therefore, in total Z +N shops are created:

• Shop z ∈ Z exclusively executes critical sections guarded by mutex lock z, i.e.,
only if the critical section θi,j requests resource z it is executed on shop z.

• Shop Z + i is only used to execute non-critical sections θi,j of τi.

We note that the shops are purely conceptual in order to generate an execution
order irrespective of the actual number of processors in our studied problem.

The operation of each computation segment θi,j is expressed as a processing on
the corresponding shop for the duration of the segment’s execution time. To be
precise, each task τi is assigned to the shop Z + i for the execution of its non-critical
section. Once a task τi has to access a shared resource, the execution of its critical
section will be migrated to the assigned shop for the shared resource. Moreover, any
feasible solution must satisfy the following four constraints:

Constraint 1 (No-overlap Constraint). No two tasks (or segments) can be executed
on the same shop simultaneously. That is, for any shop at any time point, there is
at most one task (or segment) executed on that shop, i.e.,

∀z ∈ Z, i ≠ g ∶ θi,j .start ≥ θg,`.finish or
θg,`.start ≥ θi,j .finish

(4.13)
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Constraint 2 (Precedence Constraint). For any two computation segments with
precedence constraints, e.g., θi,j ≺ θg,`, the starting time of θg,` is no earlier than the
finishing time of θi,j if θi,j ≺ θg,`, i.e.,

∀z ∈ Z′ ∶ θg,`.start ≥ θi,j .finish if θi,j ≺ θg,` (4.14)

and
∀z ∈ Z′ ∶ θg,`.start ≥ 0 if θk,` has no predecessor (4.15)

where Z′ is the conflict nested resource set.

Constraint 3 (Non-preemption Constraint). On the shops, computation segments
execute non-preemptively, ensuring exclusive execution of critical sections and
maintaining the sequential execution order of non-critical sections for task τi on
shop Z + i. That is, if a computation segment θi,j with WCET Ci,j is scheduled
at time t0, the finishing time of θi,j has to be t0 + Ci,j . Then the time interval
[t0, t0 +Ci,j] is appended to the corresponding shop, i.e.,

∀z ∈ Z ∶ θi,j .finish = θi,j .start +Ci,j (4.16)

Constraint 4 (All-at-once Constraint). All resources that are requested within a
critical section must be assigned to their corresponding shops at the same time,
execute for the same amount of time, and finish at the same time. This implies that
the construction of the dependency graph transforms a nested locking scheme into
an all-at-once locking. That is, the time interval [t0, t0 +Ci,j] of θi,j is appended to
all the shops representing for these resources that the segment requests, i.e.,

∀z ∈ Z′′ ∶ if θi,j .start = t0, then θi,j .finish = t0 +Ci,j (4.17)

where the Z′′ is the set of resources that θi,j requests. This constraint is similar to
gang scheduling [Ous82], i.e., multiple processors are requested simultaneously for a
single task.

Consequently, we formulate the dependency graph construction problem using
constraint programming. This involves generating a feasible schedule for a frame-
based task set across Z + N shops in accordance with Constraints 1 to 4. The
optimization objective is to minimize the makespan for the generated schedule, i.e.,
the latest finishing time of any job on any shop. This is formulated to minimize
maxi,j θi,j .finish. Since the generated schedule is non-preemptive, the computation
segments on each shop are executed sequentially. The initial dependency graph
G, which is given by the tasks internal precedence constraints, is refined by the
execution order of the critical sections given by the order of computation segments
on the respective shops.
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Table 4.2: Example of a frame-based task set consisting of 3 tasks and 4 shared
resources. Each task comprises 5 computational segments, of which 2
are critical sections for nested resource accesses.

Task WCETs Requested Resource
Ci,1 Ci,2 Ci,3 Ci,4 Ci,5 σ(θi,1) σ(θi,2) σ(θi,3) σ(θi,4) σ(θi,5)

τ1 1 2 2 2 4 ∅ {1, 2} ∅ {2, 3} ∅

τ2 2 2 1 5 1 ∅ {1, 3} ∅ {2, 4} ∅

τ3 4 3 4 3 6 ∅ {1, 4} ∅ {3, 4} ∅

4.5.2 Step II: Dependency Graph Scheduling

In the second step, the dependency graph G is scheduled on M processors. This
scheduling can be either global or partitioned, and either preemptive or non-
preemptive. The detailed schedule algorithms are discussed in Section 4.7.

In the all-at-once locking scheme, the executions of critical sections that access
at least one identical resource must be mutually exclusive. This implies that if two
computation segments have overlapping resource requests, i.e., they both request
at least one shared resource, their critical sections on these shared resources must
execute sequentially. Critical sections from two distinct tasks can concurrently
execute on separate processors if they do not request overlapping resources.

In addition, we enforce that for each job all computation segments execute for
the duration of their WCETs. That is, even if a segment’s actual execution time
is shorter than its WCET, it must remain active on its designated processor until
the WCET duration is met. Therefore, the generated schedule for one frame/hyper-
period is static and repeated periodically, which avoids the multiprocessor timing
anomalies described by Graham [Gra69].

4.5.3 An Example of the DGA with All-at-once Locking

To demonstrate the operation of the DGA in handling nested resource accesses
using all-at-once locking, we provide an example detailed in Table 4.2. This table
presents a frame-based task set comprising 3 tasks and 4 shared resources. All tasks
share a common period of T = 30 time units. Each task consists of 5 computational
segments, including 2 critical sections and 3 non-critical sections. These segments
are to be executed sequentially within their respective tasks. Each critical section
simultaneously accesses two shared resources, each protected by its own mutex lock.

To construct a dependency graph for the task set, we use constraint programming
as detailed in 4.5.1. We assign a total of 7 shops for this task set. Specifically, the
first 4 shops are designated for the critical sections associated with the 4 shared
resources, while shops 5 to 7 are tasked with the non-critical sections of τ1, τ2, and
τ3. Whenever a task requires access to a shared resource, its execution migrates to
the corresponding shop. For instance, access to resource z1 directs the task to shop
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non-critical section critical section z1/z2/z3/z4

Shop 1
(z1)

Shop 2
(z2)

Shop 3
(z3)

Shop 4
(z4)

Shop 5
(τ1)

Shop 6
(τ2)

Shop 7
(τ3)

0 2 4 6 8 10 12 14 16 18 20

Sh1/2 Sh2/3

Sh1/3 Sh2/4

Sh1/4 Sh3/4
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τ1

τ3

τ3

τ1
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τ2

τ2 τ3

τ3

τ2

τ2

(a) The job shop schedule (with 7 shops denoted as Sh1-7).

1 2 2 2 4τ1

2 2 1 5 1τ2

4 3 4 3 6τ3

(b) A dependency graph of a task set with 4 binary
semaphores.

Figure 4.3: An example of the DGA based on job shop scheduling for a frame-based
task set with Nested-MCS task model.

1. Since the all-at-once locking is applied, a critical section operates on multiple
shops (representing the shared resources) concurrently and does not overlap with
the execution of other critical sections on the same shop.

Figure 4.3a shows an optimized schedule for the provided task set, which is only
used for generating the dependency graph. The execution order of critical sections
from tasks τ1, τ2, and τ3 on shops 1 through 4 determines the precedence constraints
within the derived dependency graph. This is further detailed in Figure 4.3b, where
dashed red arrows represent precedence constraints for mutex lock of shared resource
z1, dotted blue arrows for mutex lock of shared resource z2, densely dashed and
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dotted orange arrows for mutex lock of shared resource z3, and solid green arrows
for mutex lock of shared resource z4.

To schedule the generated dependency graph, several scheduling algorithms
are discussed in Section 4.7. The detailed schedule of the generated graph by
applying the LIST-EDF scheduling algorithm on two processors can be found in
Appendix A.1.1.

4.5.4 Properties of Our Approach

In this section, we prove properties of our graph-based approach to schedule task
sets with nested resource sharing. Specifically, in this section, we demonstrate
that our approach ensures deadlock-free by design and avoids transitive blocking.
Furthermore, we show that it has bounded approximation factor.

Deadlock-Free

Whenever nested resource requests are considered, the possibility of deadlocks is
a major concern. A simple way to avoid deadlocks is to specify an order for all
available resources, and to require that nested locks are acquired according to this
determined order and therefore avoid circular waiting, but it is not obvious how to
determine this access order. Alternatively, dynamic group locks (DGLs) [WA13],
where a superset of the actual requested resources by a critical section are requested
simultaneously, break the hold-and-wait condition. We start by introducing the
required notation. We define:

pre(vi) ∶ {vj ∈ V ∣(vj , vi) ∈ E} and vj ≺ vi if vj ∈ pre(vi)
suc(vi) ∶ {vj ∈ V ∣(vi, vj) ∈ E} and vj ≻ vi if vj ∈ suc(vi)

to denote precedence constraints and paths in a given DAG.
First, we show that the dependency graph G constructed in 4.5.1 has no cycles.

Theorem 19. The generated dependency graph G that respects the all-at-once
locking constraint for nested resources in critical sections from 4.5.1 is a DAG.

Proof. Before the optimization by the constraint programming, each task τi is given
by a chain that is composed of the computation segments θi,1 ≺ θi,2 ≺ . . . ≺ θi,ηi and
thus does not contain any cycles. Let any two critical sections of different tasks,
e.g., θi,j and θg,`, have conflicting nested resource requests, i.e., a subset of resources
Z′ ∈ Z is requested in both critical sections. Assuming that any generated feasible
graph G must respect the constraints 1− 4, if any resource of θi,j is granted, then all
resources in Z′ are granted to that critical section as well. By the non-preemption
constraint (Constraint 3) the resources are held until the completion of that critical
section. In consequence, for any two critical sections that have conflicting nested
resource requests, either θi,j ≺ θg,` or θg,` ≺ θi,j must hold. Since the internal order
inside a task is respected by the generation as well, the generated dependency graph
does not contain any cycles.
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Theorem 20. Any schedule on M processors that respects the precedence constraints
of the dependency graph G as described in 4.5.1 is deadlock-free even if resources
in critical sections are locked as soon as they are required, i.e., when not enforcing
all-at-once locking at run-time.

Proof. We disprove the possibility of circular waiting in any schedule that respects
the precedence constraints in G by contradiction. Let S be a schedule that respects
the precedence constraints in G and at let τi and τj be in the state of circular waiting
at some point in time. This implies that task τi holds at least one resource z and
waits for at least one other resource z′ which is held by task τj , which in return
waits for resource z (held by task τi). However, this means that there exist critical
sections, e.g., θj,k and θi,l, that are in conflict. By Theorem 19, we know that the
set of conflicting critical sections is ordered, i.e., θi,l ≺ θj,k or θj,k ≺ θi,l. Therefore if
S respects the precedence constraints then any resource from the critical section
θj,k could not have been scheduled before all resources used in θi,j have finished
execution. That is, the circular waiting implies a violation of constraints given by G,
which contradicts the assumption.

No Transitive-Blocking

Besides being deadlock-free, the proposed approach also avoids transitive blocking.

Theorem 21. Any schedule on M processors that respects the precedence constraints
of the dependency graph G with nested resources sharing as described in 4.5.1 breaks
the transitive blocking chain.

Proof. Since the makespan minimization of the constraint program only generates
precedence constraints for conflicting critical sections, computation segments that do
not conflict can be executed in-parallel with respect to the precedence constraints.

Approximation Factor

In this section, we prove that our algorithm has a bounded approximation factor for
any variant of list-scheduling when a dependency graph with a bounded approxi-
mation factor α compared to an optimal dependency graph is given. We formally
define a dependency graph with approximation factor α as follows.

Definition 16. A dependency graph G is an α-approximation of a dependency
graph G′ if for some α ≥ 1 the following constraints are satisfied:

• vol(G) = vol(G′)

• len(G) = α ⋅ len(G′)

The optimization quality is determined in relation to an optimal dependency
graph, defined as a dependency graph with the minimum length.



4.5. Extension for Nested Resource Synchronization 83

Theorem 22. LIST-EDF of an α-approximated optimal dependency graph G∗ is
an (1 + (1 − 1

M ) ⋅ α) approximation algorithm for frame-based task sets that use
all-at-once locking to access critical sections with nested resources.

Proof. Let G be the dependency graph that is α-approximated by an optimal
dependency graph G∗. Given the properties of list scheduling, the makespan L(G)

on M processors is at most

L(G) ≤
vol(G)

M
+ (1 − 1

M
) ⋅ α ⋅ len(G∗

) (4.18)

By the fact that an optimal makespan can be no shorter than the length of
the longest path and the perfectly distributed workload, we know that L(G∗) ≥

max{vol(G∗)/M, len(G∗)}. Consequently,

L(G) ≤ L(G∗
) ⋅ (1 + (1 − 1

M
) ⋅ α)

Corollary 1. The Dependency Graph Approach offers a (1 + α)-approximation for
frame-based task sets that use all-at-once locking to access critical sections with
nested resources.

4.5.5 Extension to Normal Locking Patterns

In this section, we extend the dependency graph approach to nested resource sharing
with normal locking patterns, where each critical section can request each resource
at most once.

Definition 17. Normal Locking Pattern: A critical section is said to follow a
normal locking pattern when locking nested resources, if the critical section requests
a resource only when it is needed. Hence, not all resources are necessarily locked
when the execution of the critical section starts.

Within this context, we incorporate the resource access sequence into the com-
putational segment definition. This modification is pertinent only to this subsection.
It is defined as follows:

Definition 18. Resource Access Sequence: The j-th resource access sequence
of task τi (related to computation segment θi,j) is a finite sequence of tuples
σ′i,j = a1, a2, . . . , a`, where each ai ∈ (R+,P(Z)) and P(Z) denotes the power set
of Z. The first element in each access ai, i.e., a0

i , denotes the execution duration
while holding these resources and the second element, i.e., a1

i , denotes the set of
locked resources.

If resource z is used in ak but not in ak+1 then z is unlocked after ak finished. If
z is used in ak and in ak+1 then the lock for z remains. If resource z is not used in
ak but in ak+1 then z is locked after ak finished.
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Definition 19. Computation Segment: The j-th computation segment of a task
τi is defined by θi,j = (Ci,j , λi,j , σi,j , σ

′
i,j), where Ci,j = ∑ak∈σ′i,j a

0
k and denotes the

overall execution time of the resource access sequence σ′i,j . For a non-critical section
∪ak∈σ′i,ja

1
k = ∅.

For simplicity in this subsection, λi,j and σi,j are omitted from θi,j .
Under the normal nested locking pattern, a critical section may request shared

resources even if it already holds other resource(s).

Example 1. If the j-th resource access sequence of τi is described by
σ′i,j = ((1,{z1}), (2,{z1, z2}), (1,{z1})), the first part that only requests resource z1
can be started once resource z1 is locked, rather than waiting for both resource z1
and z2 to be locked. Please note, if resource z2 is not available when the first time
units of execution for resource z1 has finished, the critical section will suspend itself
and wait for the release of resource z2. However during this waiting time, no other
critical section is able to access resource z1, since it is still locked by τi.

The normal locking pattern is well-known for its potential to cause deadlocks,
once two tasks request two shared resources in reversed order, since then both the
hold-and-wait as well as the circular waiting condition are fulfilled. To prevent this,
a new constraint is designed to replace the Constraint 4 in 4.5.1:

Constraint 5 (Pattern-respect Constraint). For any computation segment (rep-
resenting a critical section) that follows the normal locking pattern, the locking
pattern has to be respected. For a computation segment θi,j with σ′i,j = a1, a2, . . . a`,
we have to determine stating times and finishing times for all tuples. We explain
this explicitly for the first and second tuple. The starting time on shops in the
first tuple is θi,j .start = t0 ∀z ∈ a1

1; the starting time of θi,j on shops that are in
the second tuple but not in the first tuple is θi,j .start = t0 + a0

1 ∀z ∈ (a1
2 − (a1

1 ∩ a
1
2));

and the finishing time of θi,j on shops that are occupied in the first tuple but not
occupied any more in second tuple is θi,j .finish = t0 + a0

1 ∀z ∈ (a1
1 − (a1

1 ∩ a
1
2)). Such

a calculation is applied for all the tuples in σ′i,j .

Example 2. For a computation segment σ′i,j = ((1,{1}), (2,{1,2}), (1,{2})), the
pattern is respected if θi,j is scheduled on shop z1 at time t0 (by locking of resource
1) and scheduled on shop z2 (by locking resource 2) at time t0 + 1. Combined with
the Non-preemption constraint, θi,j has to finish its execution at time t0 + 3 on shop
z1 (by releasing resource 1), at time t0 + 4 on shop z2 (by releasing resource 2).

Theorem 23. The generated dependency graph G for nested resources with the
normal locking pattern in critical sections that respects Constraints 1, 2, 3, and 5 is
a directed acyclic graph.

Proof. For each task, the computation segments are still chained, i.e, θi,1 ≺ θi,2 ≺
. . . ≺ θi,ηi , and hence the graph does not contain any cycles. Let any two critical
sections of different tasks, e.g., θi,j and θg,`, have conflicting nested resource requests.
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mutex lock z1|z2|z3
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Figure 4.4: An example of the dependency graph that with normal locking pattern.

That is, a subset of resources Z′ ∈ P(Z) is requested in both critical sections. On
any two shops, e.g., za and zb, that are requested by θi,j or θg,` simultaneously,
the execution time (occupation time) of θi,j on two shops has an overlap, i.e.,
(θzai,j .finish − θ

za
i,j .start) ∩ (θzbi,j .finish − θ

zb
i,j .start) ≠ ∅ (the same for θg,`), since

otherwise it is not a nested resource access. The overlap on both shops for each
computation segment can be treated as an all-at-once lock. Therefore the execution
order of these two segments on both shops are unified. Combined with the non-
overlap constraint and non-preemption constraint, the extra execution of each
computation segment on both shops follows the same order as the overlapped parts.
Therefore, no cycle is included during the generation of graph(s).

Example 3. Consider a task set consisting of 3 shared resources and 3 computation
segments:
θ1 = (12, ((2,{1,2}), (6,{2}), (3,{2,3}), (1,{3}))),
θ2 = (6, ((2,{1}), (4,{1,2}))), and
θ3 = (6, ((2,{3}), (3,{1,3}), (1,{1}))).

A feasible schedule with respect to the constraints 1, 2, 3, and 5 is shown in
Figure 4.4. Due to Constraint 5, although shop z1 is already free at time 2, θ2 starts
its execution at time 9, in order to start its execution on shop z2 at time 11 (since
θ2 on shop z2 has to start its execution 2 time units after the execution on shop z1).

Please note, the optimal schedule in Figure 4.4 is that θ2 is schedule on the
dashed slots on shop z1 and z3. Although θ1 requested 3 resources, it does not
request resource 1 and 3 at the same time. Therefore, θ1 is not considered as
accessing nested resource 1 and 3. Hence θ3 has no nested conflict with θ1, and
its executions on shop z1 and z3 do not necessarily follow the same precedence
constraints with regard to the whole computation segment.



86 Chapter 4. DGA for Multiprocessor Real-Time Synchronization

Algorithm 2 Dependency graph construction for periodic tasks
Input: Union of task graphs that share a common semaphore G1,G2, . . . ,GZ and the

hyper-period of the task system H ← LCM(T);
Output: Dependency graphs for all jobs in a hyper-period for each semaphore

G′1, G′2, . . . , G′Z ;
1: for each Gz ∈ {G1,G2, . . . ,GZ} do
2: unroll all jobs that are released in the hyper-period for the tasks in Gz;
3: for the `-th job of task τi in Gs with 1 ≤ ` ≤ ⌈H/Ti⌉ do
4: r`i ← (` − 1) ⋅ Ti +Ci,1;
5: p`i ← Cj,2;
6: d`i ← (` − 1) ⋅ Ti +Di −Ci,3;
7: end for
8: G′z ← calculate the precedence constraints for the critical sections;
9: for the `-th job of task τi in Gs with 1 ≤ ` ≤ ⌈H/Ti⌉ do
10: add the precedence constraints C`i,1 → C`i,2 → C`i,3 to G′z;
11: end for
12: end for
13: return G′1, G′2, . . . , G′Z ;

4.6 Extension for Periodic Task Systems

The dependency graph approach, along with its various extensions for different
resource access patterns, has been designed for frame-based task systems. To broaden
the applicability of this approach, we extend it to periodic tasks by unrolling all jobs
within a single hyper-period, constructing corresponding job-level dependency graphs.
These graphs can subsequently be utilized for scheduling within each hyper-period.

Suppose that H is the length of the hyper-period, i.e., the least common multiple
(LCM) of the periods of all the tasks in the system. For each task τi, we create
H/Ti jobs of task τi. We discuss the approaches of constructing dependency graphs
at the job-level for different task models.

In the OCS task model, consider the `-th job J `i of task τi, the earliest time
that the critical section can be executed is r`i = (` − 1)Ti + Ci,1 and the absolute
deadline to finish the critical section must be no later than d`i = (` − 1)Ti +Di −Ci,3.
Furthermore, for the job’s processing time represented by p`i , the value is Ci,2. The
set of the jobs that have to be scheduled over one hyper-period H after the above
reduction is thus defined as J = {J `i ∣ 1 ≤ ` ≤H/Ti}.

Please note that we currently consider only the construction of the dependency
graph for the critical sections and assume sufficient resources for the non-critical
sections, i.e., all critical sections are executed sequentially on one processor and
a dedicated processor is exclusively assigned to each task for the execution of
non-critical sections. Therefore, the execution of the non-critical sections is not
considered but the related WCET is used for setting up the release time and the
absolute deadline.
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After this reduction, we can apply any existing algorithm for non-preemptive
uni-processor scheduling to construct the precedence constraints for the critical
sections in J, i.e., the execution order for the critical sections. Moreover, since
the execution of a job has to follow the execution order of θi,1, θi,2, and θi,3, we
include these precedence constraints to get the complete dependency graph for
binary semaphore z.

Algorithm 2 shows the pseudo-code of our approach and Figure 4.5 displays an
example for a resulting dependency graph, where T1 = 5, T2 = 10, and T3 = 20. When
constructing the precedence constraints for J (Line 8 in Algorithm 2), any algorithm
for non-preemptive uni-processor scheduling can be exploited. For example, when
considering the literature of the real-time systems community, Precautious-RM by
Nasri et al. [NK14; NBF+14] and the critical time window-based EDF scheduling
policy (CW-EDF) by Nasri and Fohler [NF16] can be applied.

Alternatively, classical results for the machine scheduling problem of independent
jobs under non-preemptive scheduling can be considered, e.g., the algorithms by
Hall and Shmoys [HS92], Potts [Pot80], and Jackson [Jac55] in Section 4.3.4. These
algorithms assume knowledge about the release times, processing times, and deadlines
of all jobs that have to be considered in the schedule. Please note that the classical
scheduling problem assumes a delivery time that a job needs after it finishes its
execution instead of a deadline and minimizes the length of the schedule. However,
the problem under study can be directly translated by setting the delivery time to
H − d`i or each job and verifying if the schedule’s length is less than H. In this work,
we consider Potts algorithm [Pot80] and the extended Jackson’s rule [Jac55] for the
construction. While the extended Jackson’s rule [Jac55] is similar to non-preemptive
EDF, Potts algorithm [Pot80] starts with a non-preemptive EDF schedule that is
updated over a (fixed) number of iterations by defining a critical job Jc, i.e., a job
that misses the deadline, and forcing a job with a later absolute deadline than Jc
that is executed before Jc (due to an earlier release time than Jc) to execute after
Jc. This procedure may lead to a non-work-conserving schedule.

For both the MCS and Nested MCS task models, the process is similar. A
notable distinction arises when a task requests multiple critical sections, rendering
the sub-graph representation for each shared resource non-viable. To address this,
we commence with the job unrolling process for every task within a hyper-period,
followed by two specific adjustments:

• For the `-th job of τi, set its release time as (`−1) ⋅Ti and its absolute deadline
as (` − 1) ⋅ Ti +Di.

• For each j-th sub-job of `-th job of τi, denoted as J `i,j , set its release time as
(`− 1) ⋅Ti +∑j−1

x=1Ci,x, and its absolute deadline as (`− 1) ⋅Ti +Di −∑
ηi
x=j+1Ci,x.

While both model extensions utilize constraint programming for dependency graph
formulation, their objectives are different. In frame-based task systems, the goal is
to minimize the makespan. However, in periodic task systems, this objective loses
its relevance due to the lack of a direct relationship between a job’s deadline and
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Figure 4.5: The dependency graph for three tasks in over one hyper-period. The
precedence constraints for the critical sections are detailed by the blue
dashed line.

the makespan. The primary aim for constraint programming is to minimize the
maximum lateness of all jobs, defined as the difference between a job’s finishing
time and its deadline.

4.7 Algorithms to Schedule Dependency Graphs

In this section, we delineate our heuristic algorithms for scheduling the generated
dependency graphs, tailored for various task models within both frame-based and
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periodic task systems. We consider list and partitioned scheduling using EDF, and
address both preemptive and non-preemptive scheduling approaches

4.7.1 LIST-EDF Scheduling

We describe how to schedule the unrolled dependency graphs over the hyper-period.
According to our notation, each job J `i has several sub-jobs J `i,1, J `i,2, . . . , J `i,ηi that
represent the related computational segments θi,1, θi,2, . . . , θi,η, respectively. The
release time of the first sub-job J `i,1 is (`− 1)Ti, and the absolute deadline of the last
sub-job J `i,ηi is (` − 1)Ti +Di. Regarding the release times of the rest sub-jobs, we
initially set the earliest possible time the job may be released based on the WCETs
of the other sub-jobs. As for the deadline of the other sub-jobs, we initially assign
the latest possible time the sub-job can finish while still allowing schedulability. To
be precise, the release time of J `i,j is set to (` − 1) ⋅ Ti +∑j−1

x=1Ci,x, and the absolute
deadline of J `i,j is set to (`−1) ⋅Ti+Di−∑

ηi
x=j+1Ci,x. For example, the release time of

J `i,2 is set to (`− 1)Ti +Ci,1 and the release time of J `i,3 is set to (`− 1)Ti +Ci,1 +Ci,2.
The absolute deadline of J `i,2 is set to (` − 1)Ti +Di − ∑

ηi
x=3Ci,x and the absolute

time of J `i,1 is set to (` − 1)Ti +Di −∑
ηi
x=2Ci,x.

For brevity, let r`i,j denote the release time of the sub-job J `i,j and d`i,j as the
absolute deadline of J `i,j . If the absolute deadline of an immediate predecessor
of J `i,j , denoted as IPre(J `i,j), is larger than d`i,j , the absolute deadline of the
immediate predecessor should be reassigned to d`i,j minus the WCET of J `i,j . This is
a standard procedure for scheduling jobs subject to release dates and precedence
constraints. Details can be found in [BLL+83] and an illustrative example is provided
in Section 4.7.1.

For the rest of this section, we assume that the absolute deadline assignment
is adjusted accordingly so that d`i,j for the sub-job J `i,j is always greater than the
absolute deadline of IPre(J `i,j).

After constructing the dependency graphs for a task set, the scheduling problem
becomes a classical multiprocessor scheduling problem. Specifically, scheduling G
on M homogeneous (identical) processors is a special case of the classical scheduling
problem P ∣prec; rj ∣Lmax, i.e., scheduling a set of jobs with specified release times
and precedence constraints on M identical processors, minimizing the maximum
lateness. Our goal is to avoid any deadline misses. Therefore, a schedule is feasible
if Lmax ≤ 0, where Lmax is defined as maxj{fj − dj}.

One possible scheduling strategy is to use the List scheduling developed by
Graham [Gra69] in combination with earliest-deadline-first scheduling (EDF). The
List scheduling method operates as follows: Whenever a processor idles and there
are sub-jobs eligible to be executed (i.e., all of their predecessors in the dependency
graph have finished), one of the eligible sub-jobs is executed on the processor. If
there are more available sub-jobs than processors, we prioritize the sub-jobs that
have the earliest absolute deadlines, and if two sub-jobs have the same absolute
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Table 4.3: The example task set with the (earliest possible) release times and the
deadlines, where tasks request the shared resource 1, and the generated
dependency graph is in Figure 4.5. The release times and deadlines of
the critical sections are changed based on the order and the resulting
restrictions in the dependency graph (colored red), which propagates
to later releases of the second non-critical section or an earlier deadline
of the first non-critical section (colored blue).

Task WCETs Other Param. Release Times Deadlines
Ci,1 Ci,2 Ci,3 Ti Di σ(τi) ` J `i,1 J `i,2 J `i,3 J `i,1 J `i,2 J `i,3

τ1 0.2 0.6 0.2 5 5 1

1 0 0.2 0.8 4.2 4.8 5
2 5 5.2 5.8 5.4 6 10
3 10 13.8 14.4 14.2 14.8 15
4 15 15.2 15.8 19.2 19.8 20

τ2 0.2 0.6 3.2 10 10 1 1 0 0.8 1.4 4.8 5.4 10
2 10 14.4 15 16.2 16.8 20

τ3 4 8 5 20 20 1 1 0 5.8 13.8 6 15 20

Table 4.4: The tasks requesting the shared resource 2, with release times and
deadlines.

Task WCETs Other Param. Release Times Deadlines
Ci,1 Ci,2 Ci,3 Ti Di σ(τi) ` J `i,1 J `i,2 J `i,3 J `i,1 J `i,2 J `i,3

τ4 0.2 0.2 0.2 10 10 2 1 0 0.2 0.4 9.6 9.8 10
2 10 10.2 10.4 19.6 19.8 20

τ5 2 3 2 20 20 2 1 0 2 5 15 18 20

deadline, the one with the larger remaining workload has a higher priority. This
scheduling algorithm is denoted as LIST-EDF.

We note that LIST-EDF in our setting is a preemptive algorithm. Whenever
a new (eligible) sub-job has an earlier absolute deadline than an executing sub-
job on a processor m, this new sub-job can preempt the one that is executing on
processor m. Such flexibility to allow preemption does not create any problem
for the mutual-exclusive constraint of the critical sections guarded by one binary
semaphore z because their execution order has been predefined in the dependency
graph. Therefore, a critical section guarded by semaphore z can only be preempted
by non-critical sections or by critical sections protected by different semaphores.

An Illustrative Example for LIST-EDF

In this subsection, we illustrate the operation of our algorithm with an example. We
consider a task set consisting of the three tasks with OCS task model, as defined
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in Table 4.3, where all tasks request shared resource 1, and two additional tasks
defined in Table 4.4 which request shared resource 2. These five tasks are scheduled
on M = 2 processors by using LIST-EDF.

Starting with the tasks that request resource 1, the chain of critical sections is
depicted by the dependency graph in Figure 4.5. This dependency graph results in
an order of J1

1,2, J
1
2,2, J

2
1,2, J

1
3,2, J

3
1,2, J

2
2,2, J

4
1,2.

From this order, we calculate the release times and deadlines for all sub-jobs’
releases, as shown in Table 4.3. In terms of release times, we consider only the
earliest potential release for critical sections and the second non-critical sections
as defined by the dependency graph. We assume that there is no early completion
of jobs. Please note that the actual release times may be later, depending on the
actual schedule.

All first sub-jobs follow a strict periodic release pattern. However, subsequent
sub-jobs may have adjusted release times, dependent on the earliest completion
times of their predecessors. We make these adjustments sequentially, starting from
time 0 and proceeding until the hyper-period’s end at time H (or 20 as shown in
both Table 4.3 and Table 4.4). Hence, J1

2,2 is released at time 0.8 (marked red in
Table 4.3) due to the earliest possible finishing time of J1

1,2 at 0.8. Therefore, the
release of J1

2,3 is postponed as well (marked blue here and for all other third sub-jobs
that are postponed). The second sub-job of the second release of τ1 can finish no
earlier than at time 5.8, hence the release of J1

3,2 is postponed accordingly. Due to
the long critical section of task τ3, the releases of J3

1,2 and J2
2,2 are postponed to

time 13.8 and 14.4 as well.
In Table 4.3, deadlines are set in a reverse sequence, starting from the hyper-

period’s end and working backward. All the third sub-jobs align their deadlines
with the respective period’s end. Deadlines for the second sub-jobs derive from the
dependency graph. For tasks like J4

1,2, J
2
2,2, J

3
1,2, and J1

3,2, the deadlines are directly
influenced by their third sub-jobs. The extended duration of J1

3,2, however, dictates
an earlier deadline for J2

1,2 (6 instead of 9.8). This, in turn, results in a 5.4 deadline
(as opposed to 6.8) for J1

2,2. We highlighted these adjusted deadlines in red for
second sub-jobs and in blue for the first sub-jobs in Table 4.3.

For tasks τ4 and τ5, listed in Table 4.4, which access resource 2, we deduced
the order as J1

4,2, J
1
5,2, J

2
4,2. Given that neither deadlines nor release times undergo

adjustments in Table 4.4, we have omitted further details.
The schedule based on global EDF is displayed in Figure 4.6 and considers

the deadlines provided in Table 4.3 and Table 4.4. Execution on processor 1 is
marked blue while execution on processor 2 is marked red. In addition, the access
to the critical sections related to resource 1 and resource 2 is shown with different
hatching patterns as detailed in Figure 4.6. We assume that if two tasks with the
same deadline compete for a processor, then the sub-job with the larger remaining
workload is preferred in the scheduling decision. At time 0 the sub-jobs J1

1,1 and
J1

2,1 are scheduled since their deadlines are 4.2 and 4.8. As soon as J1
2,1 is finished at

time 0.2, J1
2,2 cannot be scheduled since J1

1,2 is its predecessor and has not finished
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Figure 4.6: An Example of LIST-EDF with two shared resources.

yet. Therefore, J1
3,1 gets the processor due to its deadline at time 6. At time 0.8, J1

3,1
is preempted by J1

2,2 which has a shorter deadline, namely 5.4, but J1
3,1 is assigned

to the other processor at time 1.0. Then, J1
3,1 finishes its execution at time 4.4,

and J1
4,1 is assigned to the processor. After J1

2,3 finishes executing at time 4.6, the
non-work-conserving behavior of our method becomes evident.

In this scenario, while J1
3,2 has an absolute deadline of 14, earlier than J1

5,1’s
deadline at 15, precedence constraints from the dependency graph dictate that J2

1,2
executes before J1

3,2. As a result, J1
3,2 is not immediately scheduled, and processor 2

is given to J1
5,1. Note that if processor 2 would be assigned to J1

3,2 at this point in
time, then J2

1,2 would miss its deadline since J1
3,2 would not finish its execution before

time 12.6. Under the dependency graph approach this is prevented by postponing
J1

3,2 until J2
1,2 is finished at time 6.

We point out that the release times displayed in Table 4.3 and Table 4.4 are only
considered when constructing the dependency graph but do not have any impact
on the scheduling of the jobs afterwards. In the actual schedule, the sub-jobs are
released based on the actual finishing time of all predecessors which may be much
later than the earliest possible release times considered during construction. The
reason is that during construction we assume that all non-critical sections can be
executed as soon as they are released without considering if sufficient processors
are available to schedule all available sub-jobs. For instance, in the actual schedule
in Figure 4.6, the second sub-jobs of the first job of τ4 and τ5 are released much
later than at time 0.2 and 2, which are the release times in Table 4.4. However, not
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considering the combined workload of the non-critical sections when constructing
the dependency graph allows us to construct the graphs for different resources
individually and to use algorithms for uni-processor non-preemptive scheduling.

4.7.2 Partitioned Scheduling

In a partitioned schedule of the frame-based task set T, all sub-jobs of a task must
be executed on the same processor. Therefore, the list scheduling algorithm variant
must ensure that once the first computational segment θi,1 of task τi is executed
on a processor, all subsequent computational segments of task τi are tied to the
same processor in any generated list schedule. Specifically, the problem is termed
P ∣prec, tied∣Cmax in Section 2.2. In this section, we describe how to schedule the
unrolled dependency graphs of the periodic tasks over their hyper-period by using
Partitioned Earliest Deadline First (P-EDF).

After the unrolling process, we determine the earliest possible release time and
the absolute deadline for each sub-job, as described in Section 4.7.1. We generate
the dependency graphs at the (sub-)job level, within a single hyper-period H. For
the OCS task model, we employ the approaches from Section 4.3.4, for the MCS task
model we use the methodology outlined in Section 4.4.3, and for the Nested-MCS
task model, we refer to Section 4.5.1.

Subsequently, the scheduling problem becomes a classical multiprocessor schedul-
ing problem. The detailed partitioned algorithms are discussed in Section 4.7.2.
Once the tasks partition is given, tasks are executed on the assigned processor using
EDF with the modified deadlines. That is, whenever the processor is idle and there
are sub-jobs eligible to be executed, the one with the earliest deadline is executed
on that processor. The P-EDF in our setting is a preemptive algorithm. Whenever
a new (eligible) sub-job has an earlier absolute deadline than an executing sub-job
on the corresponding processor m, the new sub-job can preempt the one that is
executing on that processor. Such flexibility to allow preemption does not create
any problem for the mutual-exclusive constraint of the critical sections guarded by
one binary semaphore z, because their execution order has been predefined in the
dependency graph, i.e., only when the critical section of the predecessor finishes
its execution, the successor can release its critical section if the first non-critical
section of the successor also has finished its execution. Therefore, a critical section
guarded by a semaphore z can only be preempted by either non-critical sections or
by critical sections guarded by other semaphores.

In addition, if two or more sub-jobs have the same deadline on the assigned
processor, the sub-job with the larger remaining execution time is scheduled.

Partitioning Algorithms for Dependency Graphs

Traditionally, tasks are partitioned in a predetermined sequence. In the OCS task
model, dependency graphs are constructed for each resource. This implies that
jobs inherently have precedence constraints. Therefore, it might be more practical
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to partition tasks collectively when they access the same resource, rather than
individually. However, for MCS and Nested-MCS task models, where a task can
access multiple shared resources, resource-level partitioning is infeasible.

This section introduces two partitioning strategies for dependency graphs: a)
Federated Scheduling-based Partitioning [LCA+14] partitions tasks sub-graph by
sub-graph and is suitable only for the OCS task model; b) Global Worst-fit Heuristic-
based Partitioning, where tasks are successively partitioned, ensuring compatibility
across all task models.

Federated Based Partitioning Algorithm

Federated scheduling was proposed by Li et al. [LCA+14] in order to schedule
parallel real-time task systems with internal precedence constraints that can be
modeled as a directed-acyclic graph (DAG). The primary goal of this scheduling
algorithm is to offer approximations that are provably close to an optimal scheduling
algorithm, taking into account implementation constraints such as cache hit-rates
and runtime memory accesses. Federated scheduling assigns DAGs, specifically those
resulting from our dependency graph construction, that require multiple processors
(termed heavy graphs) exclusively to those processors. Similarly, graphs that can
be scheduled on a single processor, termed light graphs, are jointly scheduled on
the remaining, non-exclusively allocated processors. After this initial partition, the
actual scheduling is done by a work-conserving scheduler on the assigned processors.
Our Federated scheduling heuristic for DGAs is shown in Algorithm 3.

In the first stage, all graphs are categorized into either the set of heavy graphs,
or the set of light graphs. All graphs with utilizations larger than 100% are heavy
by default. or the remaining graphs that have utilizations of 100% or less, an
EDF schedule is simulated to determine if the graph is light or heavy, i.e., if it
can be feasibly scheduled on a single processor. This test is necessary, even for
implicit-deadline tasks with very low resource utilization, a total utilization of 100%
might not be achievable on a single processor. For example, consider two tasks, τa
and τb. Each task comprises three computational segments with WCETs as follows:
τa has (0, ε,3) and τb has (0,6,0), where ε > 0 but is small. Both tasks request
the same shared resource during their second computational segment. Let’s define
the periods and deadlines such that Ta =Da = 6 for τa, while τb has an arbitrarily
large period and deadline. This task set has a total utilization of (50 + 2 ⋅ ε)%
and a resource utilization of (2 ⋅ ε)%. However, since a critical section cannot be
preempted by another critical section for the same resource, the critical section of
τb will eventually need to be scheduled between two of τa’s critical sections (in two
jobs). This results in a total workload of 2 ⋅ (ε + 3) + 6, which is larger then 12 and,
therefore, the critical section of τb is not schedulable in two consecutive periods of
τa. Nevertheless, the task set can easily be scheduled by assigning both tasks to
individual processors.
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Algorithm 3 Federated Based Partitioning Algorithm
Input: Task set T, dependency graph G(T), number of processors M , number of

resources Z, the total utilization for each graph Uz;
1: Initialize: Schedule Sz ← ∅ for each graph, Heavy graphs GH ← ∅, Light graphs
GL ← ∅, Partition Pz for each graph, Available processor Ma ←M ;

2: Divide the graphs from G(T) to either GH or GL
3: Sort the tasks in each Gz decreasingly w.r.t utilizations;
4: for all Gh ∈ GH do
5: mh ← ⌈UGh⌉;
6: Initialize the temporary schedule S′h ← ∅ for Gh;
7: while mh ≤Ma and S′h is unschedulable; do
8: Generate the Ph for Gh on mh using worst-fit;
9: Create S′h based on Ph and mh using P-EDF;
10: if S′h is unschedulable then
11: Assign one more processor to Gh: mh ←mh + 1;
12: else
13: Ma ←Ma −mh;
14: end if
15: if mh >Ma then
16: Return unschedulable;
17: end if
18: end while
19: end for
20: for all Gl ∈ GL do
21: schedule light graphs using greedy algorithm;
22: end for
23: Return task partition;

Within both the heavy and light groups, graphs are sorted in descending order
based on their utilization. For each heavy graph Gh, we must determine the minimum
number of required processors for feasible scheduling (see lines 4-14 in Algorithm 3).
The initial number of processors mh is given by the ceiling of the utilization of
Gh. The tasks in Gh are partitioned on mh processors based on the individual task
utilization, using the worst-fit strategy. Once the partition is generated, P-EDF
is simulated to verify whether the mh processors are sufficient to feasibly schedule
Gh. In case of an infeasible schedule, the number of processors is incremented
and the above procedure is repeated until either the generated schedule is feasible
or the number of allocated processors exceeds the number of available processors.
After feasibly assigning a Gh, the number of available processors is updated, i.e.,
the available processors for the following graphs is set to the number of currently
available processors minus the number of processor necessary to schedule Gh.
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Algorithm 4 Greedy Algorithm to Partition Light Graphs
Input: Set of light graphs GL and number of remaining processors Ma;
1: Sort light graphs GL in non-increasing order with respect to the graph’s utiliza-

tion;
2: Initialize: Partitions P1 ← ∅, P2 ← ∅, . . . , PMa ← ∅;
3: for i← 1 to Ma do
4: for each graph G` in GL do
5: if Pi ← Pi ∪G` is not EDF schedulable then
6: continue;
7: else
8: Pi ← Pi ∪G`;
9: GL ←GL ∖G`;

10: end if
11: end for
12: end for
13: if All graphs are partitioned, i.e., GL is empty; then
14: return Task partition;
15: else
16: return Infeasible
17: end if

On the remaining processors, the greedy algorithm from Algorithm 4 is used
to assign light tasks in descending order based on graph utilization. To maximize
processor capacity utilization, we employ a best-fit strategy. Here, the graph in
GL with the highest utilization is first assigned to a new processor. Afterwards,
we traverse the remaining graphs in Gl and assign them to the same processor if
possible (Line 4 - 9 in Algorithm 4). Whether a graph can be assigned is determined
by running EDF on the related processor. Thereafter, we remove all graphs that
are assigned to the processor from GL and continue with the next processor. This
process is repeated until either all light graphs are assigned to processors or no
remaining processors can accommodate the leftover tasks in GL.

If the graphs in both the heavy group and the light group can be scheduled
feasibly, the corresponding partition is returned.

Worst-Fit Heuristic

Additionally, Algorithm 5 introduces a worst-fit heuristic, where tasks are individually
partitioned. Tasks are first sorted based on a specific strategy and then partitioned
onto available processors using a worst-fit approach. That is, each task is allocated
to the least utilized processor.

We propose two sorting strategies:
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Algorithm 5 Worst-Fit Based Heuristic
Input: Task set T, dependency graph G(T), number of processors M ;
1: Initialize: Partition P
2: Sort all the tasks in T decreasingly w.r.t the utilizations;
3: for all τi ∈ T do
4: Generate the P on M using worst-fit;
5: end for
6: Create schedule S based on P and M using P-EDF;
7: if S is unschedulable then
8: Sort the graphs in G(T) decreasingly w.r.t to the Uz;
9: Sort the tasks in Gz decreasingly w.r.t the utilizations;

10: for all τi ∈ T do
11: Generate the P ′ on M using worst-fit;
12: end for
13: Create new S′ based on P ′ and M using P-EDF;
14: if S′ is schedulable then
15: Return task partition
16: else
17: Return infeasible;
18: end if
19: else
20: Return task partition
21: end if

1. Sort all tasks in descending order based on their utilizations, irrespective of
the resources they request.

2. First, sort the graphs in descending order based on their utilizations. Subse-
quently, sort tasks in each graph in descending order based on their utilizations.

Our heuristic employs both sorting strategies. If the partition P from the first
strategy proves infeasible (meaning the task set cannot be scheduled onM processors
using P-EDF), we turn to the second strategy, generating partition P ′, and then
apply P-EDF to validate it. The algorithm only returns ’infeasible’ if neither of the
aforementioned sorting strategies can produce a schedulable partition. Otherwise,
the task set is schedulable and the partition is returned. Again, if a time driven
schedule should be created the schedule can be returned as well.

Unlike the federated scheduling approach, in this heuristic, tasks that share the
same resource can be partitioned across all available processors. In other words, all
the M processors might host tasks that share a common resource.
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An Example for P-EDF

To further explain the workflow, we provide an example to demonstrate how our
algorithm works. We consider the same task set as stated in Section 4.7.1. From
the previous discussions, we can deduce the earliest potential release times and
deadlines for all sub-jobs across every task. This is illustrated in Table 4.3, which
presents tasks τ1, τ2, and τ3 accessing shared resource 1. Meanwhile, Table 4.4
showcases tasks τ4 and τ5, which interact with shared resource 2. These five tasks
are scheduled on M = 2 processors, the partition is defined by applying the worst-fit
based algorithm in Section 4.7.2. As a result, τ3 and τ4 are assigned to processor 1,
and τ1, τ2, and τ5 are assigned to processor 2. Afterwards, the P-EDF algorithm is
applied to schedule the tasks accordingly.

The schedule based on partitioned EDF is displayed in Figure 4.7. Execution
on processor 1 is marked in blue while execution on processor 2 is marked in red.
In addition, the access to the critical sections related to resource 1 and resource 2
are shown with different hatching patterns as detailed in Figure 4.7. Recall that
we assume that the sub-job with the larger remaining workload is preferred in the
scheduling decision if two tasks with the same deadline compete for a processor.

Due to the high utilization of τ3, only two tasks, i.e., τ3 and τ4 are assigned on
processor 1. The remaining three tasks, i.e., τ1, τ2, and τ5 are assigned on processor
2. Several properties of our P-EDF schedule can be observed in the example:

• Partitioned: All the jobs of one task are assigned to the same processor, so
one row only has one color.

• Earliest Deadline First: At time 0 the sub-jobs J1
1,1 and J1

3,1 are scheduled due
to their deadlines of 4.2 and 6, which are earlier than for the other sub-jobs
released on the related processors.

• Preemptive schedule: At time 10 the critical section of resource 2 of task τ5 is
preempted by the non-critical section of the third job of τ1.

• Larger remaining execution time first: After J2
4,2 finished its execution, J1

3,3
resumes on processor 1. Although J1

3,3 has the same deadline as J2
4,3, it has a

larger remaining execution time, thus J1
3,3 has higher priority to be executed.

• Precedence constraints: At time 5, processor 1 is idle and J1
3,1 has finished its

execution, in a work-conserving schedule, J1
3,2 would start the execution of its

critical section. However, due to the precedence constraints, J1
3,2 cannot be

executed until J2
1,2 has finished its critical section for resource 1 at time 5.8.

This example demonstrates that our proposed approach is able to schedule a
task set with relatively high total utilization, i.e., the total utilization of 186% on
two processors.

Comparing the actual schedule in Figure 4.7 with the earliest release times from
Table 4.3 and Table 4.4, we see clear differences in release times during dependency
graph construction. For instance, in Figure 4.7’s actual schedule, the second sub-
jobs of the first jobs of τ4 and τ5, namely J1

4,2 and J1
5,2, are released later than the
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Figure 4.7: An example of P-EDF with two shared resources.

expected times of 0.2 and 2. These expected times are listed as the earliest possible
in Table 4.4.

4.7.3 Timing Anomaly

Graham [Gra69] demonstrated that the list scheduling can suffer from multiprocessor
timing anomalies. Specifically, the reduction of the execution time of a sub-job can
lead to longer response times of other sub-jobs. We have not proved the absence
of multiprocessor timing anomalies in LIST-EDF and P-EDF. Thus, any schedule
derived from LIST-EDF and P-EDF must be applied statically or offline. One
option is to apply table-driving scheduling to ensure the repetitive schedule in every
hyper-period. Another is to enforce the actual execution time of each sub-job to be
the same as its WCET. Since the scheduling algorithm is deterministic, the schedule
is always repeated. The implementation issues for both options are discussed in
Section 5.3.1.

Additionally, other options exist, such as carefully reclaiming unused time (slack)
without introducing timing anomalies, as seen in [ZMC01]. However, this approach,
which involves additional runtime overhead, is out of the scope of this dissertation.

4.8 Experimental Evaluation

In this section, we detail our numerical evaluation of the proposed approaches across
various task systems, resource access patterns, and configurations. Firstly, we outline
the evaluation setups and all assessed approaches, including the newly proposed
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DGA and its extensions, as well as the state-of-the-art approaches for the dedicated
task systems. Secondly, we focus on the makespan evaluation for OCS task model
with different graph construction strategies.Thirdly, we present the results, focusing
on schedulability across various task models and configurations.

4.8.1 Evaluation Setup

We conducted evaluations for M = 4, 8, and 16 processors. Based on the value of
M , we generate randomized task sets with 10×M tasks each. The number of shared
resources (binary semaphores) Z was either 4, 8, or 16. The utilization of each task
τi is denoted as Ui = Ci

Ti
, hence the execution time for each task is Ci = Ui × Ti. We

generated synthetic task sets with total utilization level, i.e., ∑τi∈TUi, from 0 to
100%×M in steps of 5%×M by applying the DRS algorithm, enforcing that Ui ≤ 0.5
for each task τi.

We generated two types of task sets: frame-based and periodic. In frame-
based task sets, every task has a shared period and a relative deadline, defined as
∀τi ∶ Ti =Di = 1. For periodic task sets, we randomly selected task periods Ti from
a subset of semi-harmonic periods – specifically, Ti ∈ 1,2,5,10 ms. These periods
align with those often employed in automotive systems [HDK+17; KZH15; TEH+16;
BUC+17]. We restricted the period range to create task sets with a high utilization
of the critical sections. These are otherwise by default not schedulable, since critical
sections would be longer than the smallest period.

Configurations for Non-nested Resource Accesses

For the OCS task model, each task τi accesses the shared resource once. For the
MCS model, this access ranges between 2 and 5 times, i.e., ∑λi,j ∈ 1, [2,5]. The
total length of the critical sections ∑λi,j=1Ci,j is a fraction of the total execution
time Ci of task τi, depended on H ∈ {[1% − 10%], [10% − 40%], [40% − 50%]}. In
classical real-time systems settings, the utilization of each task’s critical sections
is relatively low. However, with the surge in computation demand in real-time
systems, especially with applications like machine learning, adopted accelerators,
such as GPUs, function as traditional shared resources. These critical sections
access accelerators have high utilization. This informs our choice for the spectrum
of H settings. The total length of critical sections and non-critical sections are
split into dedicated segments by applying DRS separately. Each critical section
accesses a random shared resource from those available. For task τi, the number
of critical sections Numcs equals to ∑λi,j , and the number of non-critical sections
Numncs = Numcs + 1. In the end, the generated non-critical sections and critical
sections are combined in pairs, and the last segment is the last non-critical section.
We evaluated all resulting 27 combinations of M , Z, and H.
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Configurations for Nested Resource Accesses

In scenarios involving nested resource sharing, a single critical section may access
multiple shared resources simultaneously. To address these nested resource accesses,
we introduced two additional configurations specific to them:

• The nesting depth, denoted as d, can range from 2 to 4. This implies that a
critical section may access up to either 2 or 4 shared resources simultaneously.

• The probability q of a critical section requesting nested resource accesses is
selected from the set {10%, 30%, 50%}.

4.8.2 Configurations of DGA

For generating the dependency graph, we used the following methods:

• JKS: The extended Jackson’s rule [KIM79] is only valid for OCS task systems.
• POTTS: The potts algorithm [Pot80] is only valid for OCS task systems.4
• JS: The method in Section 4.4 for MCS task systems, and 4.5 for nested

resource accesses, with the objective to minimize the makespan for frame
based task systems and minimize the maximum lateness for periodic task
systems. We utilized the constraint programming approach provided in the
Google OR-Tools [Goo23] to solve the job shop scheduling problem.

Our proposed scheduling algorithms are named by combining the following
elements sequentially:

1. LIST-EDF/P-EDF: We scheduled the generated graph using either the LIST-
EDF or the partitioned EDF (P-EDF). Both methods modify the deadlines
according to the rule introduced by Baker et al. [BLL+83].

2. WF/FED: For P-EDF, we considered two partitioned algorithms: a) a worst-fit
partitioning algorithm with respect to the task’s utilization Ui (Section 4.7.2);
and b) a federated-based partitioning algorithm (Section 4.7.2).

3. P/NP: preemptive or non-preemptive for critical sections.

4.8.3 Other Considered Algorithms

We also compare our approach with the following protocols for non-nested resource
synchronization, regarding their schedulability by applying the publicly available
tool SET-MRTS in [Che18] with the same naming:

• ROP-PCP [HYC16]: The Resource Oriented Partitioned PCP binds the re-
sources on dedicated processors and schedules tasks using semi-partitioned
PCP. For OCS task systems, two variants with release enforcement are consid-
ered, i.e., the ROP under fixed-priority scheduling (ROP-FP) and the ROP
under dynamic-priority scheduling (ROP-EDF) [BCH+17].

4We did not implement Lemma 5 due to the complexity issue. Algorithm HS in general has
similar performance to POTTS.
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• GS-MSRP [WB13b]: The Greedy Slacker (GS) partitioning heuristic for spin-
based locking protocol MSRP [GLN01], using Audsley’s Optimal Priority
Assignment [Aud91] for priority assignment.

• LP-GFP-PIP: Linear programming (LP) analysis for global FP scheduling
using the PIP [EA09].

• LP-PFP-DPCP [Bra13]: DPCP [RSL88] with a Worst-Fit-Decreasing (WFD)
task assignment strategy [Bra13]. The analysis is based on a LP.

• LP-PFP-MPCP [Bra13]: MPCP [Raj90] with a WFD task assignment strategy
as proposed in [Bra13]. The analysis is based on a LP.

• LP-GFP-FMLP [BLB+07]: FMLP [BLB+07] for global FP scheduling with a
LP analysis.

For nested resource synchronization, the state-of-the-art methods are evaluated,
namely the Concurrency Group Locking Protocol (CGLP) [NAG+19] and the Uni-
form Contention-sensitive Real-time Nested Locking Protocol (C-RNLP) [JWA15].

• CGLP-G: CGLP [NAG+19] where concurrency groups are assigned by a greedy
algorithm.

• CGLP-N: CGLP [NAG+19] where concurrency groups are assigned by mini-
mizing the number of groups.

• UC-RNLP: C-RNLP [JWA15], which grants resource access to sets of requests,
and the sets are determined dynamically during the run time.

• GC-RNLP: General C-RNLP [JWA15], that grants resource access contention-
sensitively on a per-request basis.

Please note that while the aforementioned methods support concurrent read resource
accesses, we only evaluated mutually exclusive write resource accesses.

4.8.4 Evaluation Results for Makespan

We initiated our investigation into the multiprocessor resource synchronization
problem by focusing on the MS-OCS makespan problem. Consequently, we eval-
uated the makespan of different dependency graph approaches along with dif-
ferent scheduling algorithms. For a generated task set T with total utilization
100% ×M , we calculated a lower bound LB on the optimal makespan based on
Equation (4.1). Since deriving len(G∗) is computationally expensive, we used
minτi∈TCi,1 + minτi∈TCi,2 + maxk=1,...,z CriticalSumk as a safe approximation for
len(G∗), where CriticalSumk is the summation of the lengths of the critical sec-
tions that request shared resource zk. If the relative deadline of the task set is
less than LB, the task set is not schedulable by any algorithm. We compare the
performance of different algorithms according to the acceptance ratio by setting
the relative deadline D = T in the range of [LB,1.8LB]. We consider both JKS
and POTTS for constructing the dependency graphs. Both the semi-partitioned (as
discussed in Section 4.3.5) and the partitioned scheduling algorithms were applied
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Figure 4.8: The makespan for frame-based OCS task systems on 8 processors with
8 shared resources, emphasis on increasing percentage of total critical
sections, i.e., H ∈ {[1%,10%], [10%,40%], [40%,50%]}.
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Figure 4.9: The makespan for frame-based OCS task systems on 8 processors with
[10%,40%] workload for critical sections, emphasis on increasing the
number of available shared resources, i.e., Z ∈ {4,8,16}.

and are denoted as SP and P, respectively. Here, we applied a simple heuristic task
partitioning. All the initial non-critical sections were scheduled using list scheduling,
and they precede any of the critical sections. Once the first non-critical section θi,1
of task τi is assigned on a processor, the remaining execution of task τi is forced
to be executed on that processor. 5 Please note that in our makespan evaluation,
we did not apply the scheduling algorithms from Section 4.7. The primary aim
of makespan evaluation was to demonstrate the MS-OCSmakespan problem, its

5We also considered a task partitioning algorithm that is based on [SGW+17], where BFS∗
algorithm (an extension of the breadth-first-scheduling algorithm) is applied to generate the
multiprocessor schedule for the dependency graphs. In our experiments regarding partitioned
scheduling, the simple heuristic consistently performed better. All the presented results for
partitioned scheduling are therefore based on the simple heuristic.
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Figure 4.10: The makespan for frame-based OCS task systems with [10%,40%]

workload for critical sections, emphasis on increasing the number of
processor and the number of available shared resources simultaneously,
i.e., M = Z ∈ {4,8,16}.

approximation ratio, and to compare various graph construction algorithms. The
detailed comparisons of various scheduling algorithms are presented in Section 4.8.5.

We evaluated all 27 combinations under different settings. Due to the similarity,
only a subset of the results are presented in Figures 4.8, 4.9, and 4.10. Generally,
semi-partitioned scheduling algorithms outperform the partitioned strategies, inde-
pendently of the algorithm used to construct the dependency graph. In addition,
the preemptive scheduling policy with respect to the second computation segment
is superior to the non-preemptive strategy and POTTS (usually) performs slightly
better than JKS. Therefore, in subsequent schedulability evaluations, we only apply
POTTS for the OCS task model. We analyze the effect of the three parameters
individually by changing:

• Workload of Shared Resources, i.e.,
H ∈ {[1% − 10%], [10% − 40%], [40% − 50%]}

(Figure 4.8): if the workload of the critical sections is increased, the difference
between preemptive and non-preemptive scheduling is more significant.

• Z for a fixed M , i.e., Z ∈ {4,8,16} and M = 8 (Figure 4.9): when the
number of resources is decreased compared to the number of processors, the
performance gap between preemptive and non-preemptive scheduling increases.

• M = Z ∈ {4,8,16} (Figure 4.10): Increasing both Z and M slightly widens
the gap between the semi-partitioned and partitioned approaches.

4.8.5 Evaluation Results for Schedulability

In our evaluation of non-nested resource access patterns, while keeping other config-
urations consistent, we analyzed the effect of three parameters individually by:

• increasing the percentage of total critical sections in each task;



4.8. Experimental Evaluation 105

• augmenting the number of available shared resources; and
• expanding both the number of available processors and shared resources.

For nested resource access patterns, we consider two additional scenarios:

• increasing the depth of nested resource accesses; and
• amplifying the probability that a critical section requests nested resources.

Our preliminary evaluation shows several key findings:

• our DGA-based approaches outperform the state-of-the-art in most of evaluated
configurations;

• the LIST-EDF scheduling algorithms dominate the P-EDF scheduling algo-
rithms; and

• the worst-fit partitioning algorithm exhibits superior performance compared
to the federated-based partitioning approach.

Specifically, for frame-based task sets, our DGA-based approaches significantly
outperform the state-of-the-art. Changing the number of resources or simultaneously
increasing the number of processors and shared resources does not significantly
influence the performance of our DGA-based approaches. Therefore, this section
predominantly presents results concerning the growth in the percentage of total
critical sections for frame-based task systems, while additional results can be found
in Appendix A.1.2.

Evaluation Results for OCS Task Systems
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Figure 4.11: The evaluation results for periodic OCS task systems on 8 processors
with 8 shared resources, emphasis on increasing percentage of total
critical sections, i.e., H ∈ {[1%,10%], [10%,40%], [40%,50%]}.

We present a subset of our evaluation results for periodic task systems with the
OCS task model in Figure 4.11, 4.12, and 4.13. Our evaluation results show three
primary scenarios:
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Figure 4.12: The evaluation results for periodic OCS task systems on 8 processors
with [10%, 40%] workload for critical sections, emphasis on increasing
the number of available shared resources, i.e., Z ∈ {4,8,16}.
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Figure 4.13: The evaluation results for periodic OCS task systems with [10%, 40%]

workload for critical sections, emphasis on increasing the number of
processor and the number of available shared resources simultaneously,
i.e., M = Z ∈ {4,8,16}.

• Workload of Shared Resources, i.e.,
H ∈ {[1% − 10%], [10% − 40%], [40% − 50%]} (Figure 4.11): As the work-
load of critical sections rises, all methods experience performance deterioration.
Particularly for H = [40% − 50%], tasks with a period of 10 ms can have
critical section execution times higher than 1 ms, causing direct deadline
misses for tasks with a period of 1 ms in most methods. However, due to the
non-work-conserving attribute, LIST-EDF-P manages to accommodate certain
task sets, especially where the longest critical sections are between 1 and 2 ms.

• Number of Available Shared Resources, i.e., Z ∈ {4,8,16} (Figure 4.12):
When the number of shared resources is increased, compared to the number
of processors, the performance of all the evaluated approaches is improved.
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However, the performance gap between the LIST-EDF-P and the ROP based
approaches, i.e., ROP-EDF and ROP-FP, increases. This indicates the increas-
ing advantages of our non-work-conserving approaches with a larger number
of shared resources.

• Concurrent Expansion of Available Processor and Shared Resource,
i.e.,
M = Z ∈ {4,8,16} (Figure 4.13): An integrated increase in both M and Z
has a slight detrimental effect on the performance of all evaluated approaches.
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Figure 4.14: The evaluation results for frame-based OCS task systems on 8 pro-
cessors with 8 shared resources, emphasis on increasing percentage of
total critical sections, i.e., H ∈ {[1%,10%], [10%,40%], [40%,50%]}.

Figure 4.14 presents the evaluation results for frame-based OCS task systems on
8 processors with 8 shared resources. Three distinct levels of percentage of total
critical sections, i.e., H ∈ {[1%,10%], [10%,40%], [40%,50%]}, are presented. The
results highlight the superior performance of DGA-based approaches in comparison
to other methods. Impressively, even when the percentage of total critical sections
reaches the range of [40%,50%], the DGA utilizing the LIST-EDF-P scheduling
algorithm remains schedulable, sustaining an average processor utilization of 90%.

Evaluation Results for MCS Task Systems

We present a subset of our evaluation results for periodic task systems employing
the MCS task model in Figure 4.15, 4.16, and 4.17. These mirror the same three
primary scenarios addressed for OCS task systems in Section 4.8.5. In addition to
prior observations, the evaluation results show that our approaches significantly
outperform other methods when the workload of the critical sections is high, i.e.,
H = [40% − 50%], in Figure 4.15(c). Conversely, when the workload of the critical
sections is on the lower side, particularly at H = [1% − 10%] in Figure 4.15 (a),
ROP-PCP exhibits superior performance. This can be attributed to the constraint
programming of the problem JZ ∣rj , lj ∣Lmax when constructing the dependency graph,
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Figure 4.15: The evaluation results for periodic MCS task systems on 8 processors
with 8 shared resources, emphasis on increasing percentage of total
critical sections, i.e., H ∈ {[1%,10%], [10%,40%], [40%,50%]}.
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Figure 4.16: The evaluation results for periodic MCS task systems on 8 processors
with [10%, 40%] workload for critical sections, emphasis on increasing
the number of available shared resources, i.e., Z ∈ {4,8,16}.

which seeks to minimize the maximum lateness. It, however, ignores the execution
order of the sub-jobs that do not impact the optimal lateness, potentially leading
to sub-optimal performance when the non-critical sections’ utilization is relatively
high. In addition, the performance of preemptive and non-preemptive scheduling
algorithms trends to be similar, since the optimized dependency graph and the pre-
calculated deadline for each computational segment reduced the potential preemption
due to earlier deadlines.

Figure 4.18 shows the evaluation results for frame-based MCS task systems on
8 processors with 8 shared resources. As the percentage of total critical sections
increases, i.e., H ∈ {[1%,10%], [10%,40%], [40%,50%]}, the results show a rapid
decline in the performance of state-of-the-art algorithms. Notably, these algorithms
underperform compared to their counterparts in OCS task systems, as illustrated in
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Figure 4.17: The evaluation results for periodic MCS task systems with [10%, 40%]

workload for critical sections, emphasis on increasing the number of
processor and the number of available shared resources simultaneously,
i.e., M = Z ∈ {4,8,16}.
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Figure 4.18: The evaluation results for frame-based MCS task systems on 8 pro-
cessors with 8 shared resources, emphasis on increasing percentage of
total critical sections, i.e., H ∈ {[1%,10%], [10%,40%], [40%,50%]}.

Figure 4.14. Moreover, the performance of DGA applying the P-EDF scheduling
algorithms also downgrades. In contrast, the DGA with the LIST-EDF-P scheduling
retains its schedulability, achieving an average processor utilization of 85%.

Evaluation Results for Nested-MCS Task Systems

We present a subset of evaluation results for periodic task systems using the Nested-
MCS task model in Figures 4.19, 4.20, 4.21, and 4.22. For all the evaluated configu-
rations, DGA-based approaches consistently outperform state-of-the-art methods.

Figure 4.19 shows that when the utilization of critical sections increases, the
performance of existing methods decreases considerably. In contrast, the efficiency
of our newly proposed approach remains relatively unaffected. Notably, when the
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Figure 4.19: The evaluation results for periodic Nested-MCS task systems on
8 processors with 8 shared resources and a nested depth of 2,
emphasis on increasing percentage of total critical sections, i.e.,
H ∈ {[1%,10%], [10%,40%], [40%,50%]}.
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Figure 4.20: The evaluation results for periodic Nested-MCS task systems on
8 processors with [10%,40%] workload for critical sections, and a
nested depth of 2, emphasis on increasing the number of available
shared resources, i.e., Z ∈ {4,8,16}.

utilization of critical sections is extremely high, reaching levels of [40% − 50%]

in Figure 4.19(c), existing methods fail. Our novel approach, on the other hand,
continues to offer a reasonable acceptance ratio.

Figure 4.20 illustrates that simply increasing the number of shared resources,
without changing other configurations, does not significantly impact the performance
of any of the evaluated methods. However, increasing the depth of nested resource
accesses (Figure 4.20 to Figure 4.21) results in a slight decline in the performance
for all methods. Similarly, raising the probability of a critical section requesting
nested shared resources, i.e., in Figure 4.22, also leads to a slight performance drop.
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Figure 4.21: The evaluation results for periodic Nested-MCS task systems on
8 processors with [10%,40%] workload for critical sections, and a
nested depth of 4, emphasis on increasing the number of available
shared resources, i.e., Z ∈ {4,8,16}.
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Figure 4.22: The evaluation results for periodic Nested-MCS task systems on 8
processors with [10%, 40%] workload for critical sections, and a nested
depth of 2, emphasis on increasing the probability that a critical
section requests nested shared resources, i.e., q ∈ {10%,30%,50%}.

Figure 4.23 shows the evaluation results for frame-based Nested-MCS task sys-
tems operating on 8 processors with 8 shared resources and a nested depth of 2. As the
percentage of total critical sections rises, i.e.,H ∈ {[1%, 10%], [10%, 40%], [40%, 50%]},
all the state-of-the-art approaches become ineffective when H ≥ 10%. In contrast,
our DGA-based methods continue to offer a satisfactory performance in terms of
acceptance ratio, even at relatively high percentages of total critical sections.

Additionally, the pattern of nested resource access also results in a negative
influence on performance. For instance, while the DGA with the P-EDF scheduling
algorithms manages an average processor utilization rate of just 60%, the DGA
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Figure 4.23: The evaluation results for frame Nested-MCS task systems on
8 processors with 8 shared resources and a nested depth of 2,
emphasis on increasing percentage of total critical sections, i.e.,
H ∈ {[1%,10%], [10%,40%], [40%,50%]}.

combined with the LIST-EDF-P scheduling strategy maintains its schedulability,
reaching an average processor utilization rate of 75%.

4.9 Summary

In this chapter, we address the longstanding problem of resource synchronization for
periodic tasks, aiming to provide an effective solution for a widely-adopted real-time
task model. We seek to answer several fundamental questions related to the problem
by starting with the simplest task models, namely the OCS and MCS task models,
within frame-based task systems. Here is a short summary of our findings:

• The fundamental difficulty is mainly due to the sequencing of the mutually
exclusive accesses to the shared resources (binary semaphores). Introducing
more processors, eliminating periodicity or job recurrence, migrating tasks, or
allowing preemption does not simplify the problem in terms of computational
complexity. Notably, the problem in frame-based task systems, with either
OCS or MCS task model, is NP -hard in the strong sense.

• Our Dependency Graph Approach (DGA) employs non-work-conserving mech-
anisms specifically for critical sections. Although a critical section might be
ready, it might not get executed due to artificially set precedence constraints.
Most existing multiprocessor synchronization protocols assume work-conserving
behaviors for critical section accesses via priority boosting. Our research
highlights the potential benefits of adopting cautious, non-work-conserving
synchronization, particularly for machine learning tasks, which often require
extended critical sections when accessing the GPU.
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• We introduce a structured design flow based on the DGA. This flow leverages
algorithms from uni-processor non-preemptive scheduling (for OCS task model)
and job/flow shop scheduling (for MCS task model), offering approximation
ratios for the determined makespan in frame-based task systems.

• In our study, the performance gap between partitioned, semi-partitioned, and
global scheduling largely arises from the ability to schedule sub-jobs that are
constrained by the dependency graph. Recent research has shown that global
scheduling might not consistently outperform partitioned or semi-partitioned
algorithms [BG16; BS18]. Our evaluation results indicate that partitioned
scheduling performed worse, largely attributable to the limited understanding of
the problem P ∣prec, tied∣Cmax. Further explorations are needed to understand
these scheduling paradigms for a given dependency graph.

To enhance the applicability of DGA, we expanded from the OCS task model to
encompass the MCS model. This allows for arbitrary configurations of the number
of non-nested critical sections per task. Moreover, we adapted the system to handle
nested resource accesses with multiple critical sections and adjusted it for periodic
task systems. This is complemented by the integration of LIST-EDF scheduling,
which is applied for both partitioned and global scheduling strategies.

Our evaluation results demonstrate that our approach excels in comparison to
the state-of-the-art methods in the literature, proving its applicability across a
majority of the studied task models and evaluated configurations.

One significant difference between our DGA-related approaches and the state-
of-the-art methods is that DGA only supports periodic task systems and is not
applicable to sporadic task systems. DGA requires that all tasks be known before
deployment into the operating system, so that the execution order of all critical
sections in job level for each shared resource can be pre-defined. Such a DAG
construction process introduces additional overheads with respect to computational
cost and storage. In addition, DGA forces each (sub-)job to execute in its worst-case
execution time; no early finish is permitted in order to prevent multiprocessor timing
anomalies.
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5.1 Overview

Although many protocols appear theoretically sound, their empirical performance on
real-world platforms often remains unverified. Moreover, although some protocols
receive official support in RTOSes, there is no guaranteed assurance of their imple-
mentations, which can lead to potential mismatches between theoretical postulations
and real-world outcomes. This chapter explores the intricacies of implementing
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resource synchronization protocols and subsequently introduces a formal verification
framework for protocols implemented on an RTOS.

Challenges in Contemporary Approaches: Over the preceding decades,
a number of resource synchronization protocols have been proposed and studied.
While certain protocols, such as ROP [HYC16] and its derivatives [BCH+17], offer
theoretically stringent worst-case response time guarantees, only a few of them have
been implemented in actual computational platforms. Theoretical analyses often
assume that operational overheads are negligible. However, this does not always
align with real-world scenarios. For instance, task migration between cores can
induce significant overheads [SCZ+17], underscoring the lack of in-depth research
on protocol performance within actual RTOS environments.

Furthermore, while RTOSes, such as RTEMS, officially supports ICPP and MrsP,
and LITMUSRT incorporates MPCP, DPCP, FMLP, and DFLP, the correctness
of these implementations remains unverified. During the protocol design phase, a
protocol’s attributes are typically described as a set of rules, that can be implemented.
However, the combination of these rules are complicated when all the details have to
be considered, e.g., the order of priority modifications, the queue-based operations,
and illegal inputs checking. One approach is to test sufficient inputs and validate
the derived outputs. However, a sufficient test set that covers all possible situations
is difficult to be derived, especially for multiprocessor systems. Executing a test
case can only validate the behavior of the entire system, encompassing the OS
kernel primitives, hardware-specific code, and the actual hardware or simulation
platform. Any observed error can also be caused by the interplay of these low leveled
components. Hence, it is difficult to pinpoint the real issues in the implementation
of protocol itself.

In fact, the formal descriptions of a protocol are based on abstracting from
operating system- or hardware-specific details. The chosen RTOS for protocol
deployment might not necessarily comply with all of these foundational assump-
tions. Compensations might be required for successful implementation, potentially
leading to mismatches between the formally described properties and the actual
implementation. Instead of validation, all the properties that are desired to be
achieved by a resource synchronization protocol can be formally proven (so-called
verification) based on its formal descriptions. One approach is based on model
checking. The considered system is first modeled in a formal language where all the
required properties are specified in logic formulas, by which a model checker can
be applied to automatically check the property specifications. However, the system
model is difficult to be specified and there is no guarantee of correctness.

This Dissertation: Initially, we elucidate the fundamental principles of resource
synchronization protocols. Subsequent sections enhance the open-source development
procedures in both RTESM and LITMUSRT, and detail the implementation of the
DGA from Chapter 4 in both RTOSes. Operational overheads are measured on real
platforms and compared against other officially supported protocols to underscore
the applicability of DGA.
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To overcome the drawbacks of traditional validation and verification approaches,
we propose a formal verification framework wherein deductive verification [Hoa69;
Flo93] is employed. This framework is designed to formally verify protocols imple-
mented on an RTOS, operating under the assumption that all underlying layers are
correctly supported. We chose RTEMS as our preferred RTOS due to its applicability
across various domains. The verification specifics for the implementation of DGA,
alongside two officially supported protocols, namely ICPP and MrsP, are executed.

5.2 Basic Rules of Synchronization Protocols

Resource synchronization protocols comprise a set of predefined rules, which every
task must adhere to when accessing resources. The underlying logic behind these
rules is often grounded in rigorous theory, to ensure tasks can meet their worst-case
timing guarantees. In the following, we delineate the fundamental rules associated
with these protocols:

Scheduling Algorithms A synchronization protocol must define its supported
scheduling algorithms, e.g., either earliest deadline first (EDF) or fixed priority (FP).
When EDF is applied, the job with the earliest absolute deadline has the highest
priority, whereas the priorities for all tasks are predefined when FP is applied. For
multiprocessor systems, global schedule, partitioned schedule and semi-partitioned
schedule can be applied, details are stated in Section 2.2.2.

Request Ordering The order of concurrent requests for the same shared resource
also has to be determined. When two or more tasks are blocked by the same shared
resource, the waiting queue of these tasks has to be sequenced by a certain policy.
Two common policies are FIFO queue and priority-based queue. In a FIFO queue,
tasks are ordered by the requesting time, the task with earlier requesting time
can acquire the corresponding shared resource earlier, which bounds the maximum
waiting time for each task. In a priority-based queue, tasks are ordered by their
current priorities, which are normally the tasks’ scheduling priorities. Additionally,
there is a third policy, i.e., in DGA, where the access order for each shared resource
is predefined at the job level for all tasks within a single hyper-period. Therefore,
the wait queue is sequenced by the predefined access order.

Waiting Mechanism The semantic, i.e., how a task is waiting for an occupied
resource, must be identified. Under a suspension-based synchronization protocol, a
task that is waiting for accessing to a currently unavailable resource is suspended by
adding itself into a wait queue. Under a spin-based protocol, the task retains its
privilege on the current processor, executing a spinning loop. It continuously checks
for resource availability before accessing and starting its critical section.
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Bound Measure The measure to bound the maximum blocking time and prevent
unbounded priority inversions has to be set up. Under non-preemptive execution,
once a task begins its critical section, no other tasks on the processor can preempt
it, irrespective of their priorities and deadlines. Similarly, priority boosting allocates
a boosted priority to each critical section, which is higher than the highest regular
priority for scheduling of all tasks. However, under priority boosting, a critical section
can still be potentially preempted by another critical section with higher boosted
priority. Another notable approach is the priority ceiling: When a task executes
its critical section, the priority can be prompted to the corresponding resource’s
ceiling priority, where the ceiling priority can be determined either statically or
dynamically. When the ceiling priority of a shared resource is defined statically,
it simply equals to the highest priority of any task that may request the resource.
If dynamic ceiling priority is applied, the ceiling priority is defined as the highest
priority of all tasks that are currently locking or will lock the shared resource, i.e.,
tasks in the corresponding waiting queue.

Execution Place Unlike protocols for uni-processor systems, multiprocessor re-
source synchronization protocols must specify where the critical sections are executed,
whether locally or remotely. For the former, the critical sections of a task can be exe-
cuted along with its non-critical sections on the processor where the task is currently
assigned. For the latter, critical sections are executed on specified processor(s) where
the corresponding resources are assigned on. In some protocols, the local executed
critical sections can also be executed remotely. For example, the help mechanism in
MrsP allows the current resource owner to execute its preempted critical section on
a remote processor, where a task is spin-waiting for the same resource.

5.3 Implementation in RTOSes

In this section, we concentrate on the implementation of DGA in two widely-
used operating systems in real-time research domain: RTEMS and LITMUSRT.
We start by discussing potential strategies for integrating DGA into LITMUSRT,
supplemented with the implementation of the proposed LIST-EDF scheduling
algorithm. Subsequently, we explore the procedure for supporting new resource
synchronization protocols in RTEMS, taking the implementation of DGA as a case
study. Although we have provided support for other protocols such as MPCP, DPCP,
FMLP, and DFLP in an earlier version of RTEMS 1 as detailed in [SPM+22], they
are not the main focus of this dissertation and are not extensively discussed.

1These implementations were based on RTEMS 4.12. This version has been deleted and officially
superseded by RTEMS 5.1. Transitioning the implementations from RTEMS 4.12 to RTEMS 5.1
requires necessary modifications and is beyond the scope of this dissertation.
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5.3.1 Implementation in LITMUSRT

This section details our implementation in LITMUSRT and compares the imple-
mentation overheads of our approach with FMLP provided by LITMUSRT for both
partitioned and global scheduling. Our implementation has been released in [Shi18]
for the OCS task model and in [Shi19] for the MCS task model. In general, the
implementation for the MCS task model can also be applied to task systems with
the OCS task model. However, as they were designed for different task models, the
implementations vary slightly, leading to different operational overheads. In this
section, we only focus on the implementation for MCS task model.

5.3.2 DGA Implementation in LITMUSRT

When implementing DGA in LITMUSRT, we have two options a) apply the table-
driven scheduling that LITMUSRT provides, or b) implement a new binary semaphore
which enforces the execution order of sub-jobs of critical sections that access the
same resource, with the execution order predefined by the dependency graph. In
the first approach, a static scheduling table is generated for one hyper-period and
then repeated periodically in a table-driven schedule. This table determines which
sub-job is executed on which processor for each time point in the hyper-period.
However, due to the possible large number of sub-jobs in one hyper-period and
possible migrations among processors, the resulting table can be very large. To
avoid this problem, we decided to implement a new binary semaphore that supports
all the properties of our new approach instead.

The new approach is implemented under the plug-in Partitioned EDF with syn-
chronization support (PSN-EDF) and the plug-in Global EDF with synchronization
support (GSN-EDF). The original design of these two plug-ins guarantees the EDF
feature of LIST-EDF . Therefore, we only need to provide the relative deadlines for
all the sub-jobs of each task, and LITMUSRT will automatically update the absolute
deadlines accordingly during runtime.

In order to enforce the sub-jobs to follow the execution order determined by the
dependency graph, our implementation has to: a) let the all the sub-jobs inside
one job follow the predefined order; b) force all the sub-jobs that access the same
resource to follow the order determined by the graph.

The first order is ensured in LITMUSRT by default. The task deploy tool rtspin
provided by the user-space library liblitmus defines the task structure, e.g., the
execution order of non-critical sections and critical sections within one task, the
related execution times, and the resource ID that each critical section accesses.
Each job is executed in rtspin by using Algorithm 6 where execution_for is a
simple spin loop function that emulates purely CPU-bound workloads. The function
execution_for(a, b, c) has three inputs: a is the release time of the sub-job, b
is the execution time of the sub-job, and c is the deadline of the sub-job. Note, that
the release times of the sub-jobs are not predetermined but result from the moment
the job is released (for the first sub-job), and the moments when the corresponding
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Algorithm 6 Inner order enforcement in rtspin
Input: Execution times for all sub-jobs: Ci,1, Ci,2, . . . , and Ci,ηi , relative deadlines for

each sub-job: di,1, di,2, . . . , and di,ηi , and requested shared resources: zi,1, zi,2, . . . , and
zi,ηi (if the corresponding computational segment is non-critical section, the requested
shared resource is ∅);

1: execution_for(r`i,1, Ci,1, d`i,1);
2: semaphore_lock(zi,2);
3: execution_for(r`i,2, Ci,2, d`i,2);
4: semaphore_unlock(zi,2);
5: . . . ;
6: semaphore_lock(zi,ηi−1);
7: execution_for(r`i,ηi−1

, Ci,ηi−1 , d`i,ηi−1
);

8: semaphore_unlock(zi,ηi−1);
9: execution_for(r`i,ηi

, Ci,ηi , d`i,ηi
);

predecessor(s) are finished, i.e., a sub-job can be released only when its predecessor
(if any) has finished its execution. Please note that for sub-jobs related to critical
sections the release time is not only defined by its predecessor’s finish time inside the
same job, but also related to another predecessor that accesses the same resource
(if one exists). The deadlines of the sub-jobs however are calculated beforehand
and result from the dependency graph and the internal sub-job dependencies. All
the commands in Algorithm 6 are executed sequentially, which directly ensures
that the execution order of sub-jobs within one task. Moreover, the resource ID
for each critical section is parsed by rtspin, so the critical section can find the
correct semaphore to lock, and the execution of a critical section is protected
by the corresponding semaphore_lock(zi,j) and semaphore_unlock(zi,j). In our
implementation we do not have to consider addressing the corresponding resources.

Consider a set of periodic real-time tasks where each task releases its first
job simultaneously. The schedule for this task set will be repetitive across each
hyper-period provided if:

• the scheduler is deterministic, always making consistent scheduling decisions
for any given scenario,

• the WCRT of all jobs is smaller than the period of the tasks, i.e., it is ensured
that at any point in time at most one job of each task is in the system, and

• no early completion of (sub)jobs is allowed.

A ticket system is applied to enforce the execution order of sub jobs that request
the same shared resource. To be precise, we extended LITMUSRT data structure
rt_params that describes task details, e.g., priority, period, and execution time for
each task, by adding:

A ticket system is applied to enforce the execution order for sub-jobs accessing the
same shared resource. Specifically, we augmented the LITMUSRT data structure, i.e.,
rt_params, which delineates task attributes such as priority, period, and execution
time, with the following elements:
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• total_jobs: An integer which represents the number of jobs of the related
task in one hyper-period.

• total_cs: An integer that indicates the number of total critical sections in
this task.

• job_order: An array which defines the total order of the sub-jobs associated
with critical sections that access the same resource over one hyper-period.
Additionally, for each shared resource, the array’s final Z elements record the
total number of task set’s critical sections. Therefore, the length of the array
is the number of critical sections in one hyper-period of the described task plus
the number of total shared resources, i.e., len(job_order) = total_jobs ×

total_cs + Z.
• current_cs: An integer that defines the index of the current critical section

of the task that is being executed.
• relative_ddls: An array which records the relative deadlines for all sub-jobs

of one task.

Furthermore, we implemented a new binary semaphore, named as mdga_semaphore,
to make sure the execution order of all the sub-jobs that access the same resource
follows the order specified by the dependency graph.

A semaphore has the following common components:

• litmus_lock: Protects the semaphore structure,
• semaphore_owner: Identifies the current owner of the semaphore, and
• wait_queue: Stores all jobs waiting for this semaphore.

We also introduced a parameter, serving_ticket, to regulate the non-work conserv-
ing access pattern of critical sections. That is, a job can lock the semaphore and start
its critical section only if its ticket matches the corresponding serving_ticket.

The pseudo code in Algorithm 7 shows three main functions in our implementa-
tion. The details are as follows:

The get_cs_order function determines the position (or ’ticket’) of a sub-job in
the execution sequence of all sub-jobs accessing the same shared resource during
run-time. This determination is a two-layered process.

In the first layer, the function identifies the current job’s position within the
current hyper-period. Within LITMUSRT, the job_no keeps track of the number of
jobs a task releases. To obtain the precise position of this job in a hyper-period, we
apply a modulo operation to job_no using total_jobs as the divisor.

The second layer finds the position of the current sub-job with respect to its
associated shared resource. Since a job comprises multiple critical sections, the
current_cs variable determines the position of the current critical section within the
job. We generate the index by summing the critical sections of preceding jobs and
the current_cs of the present job. Following this, the cs_order value is retrieved
from job_order based on the deduced index.
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Table 5.1: An example of the data structure for tasks.

total_jobs total_cs job_order current_cs
τ1 2 2 [1,3,6,8,9,9] 1
τ2 2 2 [0,2,5,7,9,9] 1
τ3 2 2 [1,3,6,8,9,9] 0
τ4 2 2 [0,2,5,7,9,9] 0
τ5 1 1 [4,4,9,9] 0

We present an example with five tasks, four of which (τ1, τ2, τ3, and τ4) are
detailed in Table 4.1 (Section 4.4.4). These tasks have identical periods: T1 = T2 =

T3 = T4 = 25. A fifth task, τ5, has a period T5 = 50 and follows the same pattern as
τ4. Specifically, τ5 requests the resource z2 in its second segment and resource z1
in its fourth segment. Considering these configurations, the hyper-period for this
task set becomes 50. In one hyper-period, tasks τ1 to τ4 release two jobs, while τ5
releases just one. The relevant data structure is illustrated in Table 5.1.

For example, task τ1’s job_order is [1, 3, 6, 8, 9, 9]. The first two elements,
i.e., [1, 3], dictate the execution order of J1

1 ’s two critical sections, while [6, 8]
pertain to J2

1 . The final pair, [9, 9], indicates that nine sub-jobs request each of
the resources, i.e., z1 and z2, within one hyper-period. Operating on a zero-based
index and assuming that the job_no for τ1 is 13, Line 1 of Algorithm 7 yields the
current_jobno as the second job of τ1 in the present hyper-period. Line 2 identifies
the index of the appropriate critical section, i.e., index = 3, while Line 3 from the
same algorithm determines the corresponding execution order. Hence, the 13th job
of τ1 receives the execution order 8 (i.e., cs_order = 8) to access the resource.

The mdga_lock function is responsible for locking the semaphore to gain access
to a dedicated resource. Upon invocation, it first obtains the appropriate execution
order within a hyper-period using the get_cs_order() function. Following this,
the semaphore’s current status is assessed. If the semaphore is occupied by another
job, the incoming job is immediately added to the wait_queue. Otherwise, the
semaphore’s serving_ticket is compared with the job’s cs_order. If they match,
the current job is granted ownership of the semaphore and can begin its critical
section. However, if there is a mismatch, the job is added to the wait_queue.

Please note that our wait_queue is sorted increasingly by the cs_order of
the jobs. This ensures the job with the smallest cs_order is at the front. Such
prioritization ensures that when the active semaphore owner finishes its execution,
only the first job in the wait_queue needs to be examined, eliminating the inefficiency
of scanning an unordered wait_queue.
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Algorithm 7 DGA with multi-critical sections implementation
Input: Upcoming task τi{job_no, total_jobs, total_cs, current_cs, relative_ddls},

and Requested semaphore sz{semaphore_owner, serving_ticket, wait_queue};

Function get_cs_order():
1: current_jobno ← τi.job_no mod τi.total_jobs;
2: index ← current_jobno × τi.total_cs + current_cs;
3: cs_order ← τi.job_order[index];

Function mdga_lock():
4: if sz.semaphore_owner is NULL and
sz.serving_ticket equals to τi.cs_order then

5: sz.semaphore_owner ← τi;
6: Update the deadline for τi;
7: τi starts the execution of its critical section;
8: else
9: Add τi to sz.wait_queue;

10: end if

Function mdga_unlock():
11: τi releases the semaphore lock;
12: Update the deadline for τi;
13: τi.current_cs++;
14: if τi.current_cs = total_cs then
15: Set τi.current_cs ← 0;
16: end if
17: sz.serving_ticket++;
18: if sz.serving_ticket = num_cs then
19: Set sz.serving_ticket ← 0;
20: end if
21: Next task τnext ← the head of the wait_queue (if exists);
22: if serving_ticket equals to τnext.cs_order then
23: sz.semaphore_owner ← τnext;
24: τnext starts the execution of its critical section;
25: else
26: sz.semaphore_owner ← NULL;
27: Add τnext to sz.wait_queue;
28: end if

The mdga_unlock function is invoked when a job completes its critical section
and attempts to unlock the semaphore. The task’s current_cs is incremented
by 1 to target the next potential critical section within the corresponding job. If
current_cs reaches total_cs, it will be reset to 0. This indicates all critical sections
in the job have been executed.

Subsequently, the semaphore’s serving_ticket is incremented. The semaphore
then becomes ready to be acquired by any successor in the dependency graph. If
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serving_ticket reaches the total number of critical sections associated with this
resource within a hyper-period, denoted as num_cs, the serving_ticket resets to
0. This action initiates the next iteration. Importantly, the num_cs value resides
within the last Z elements of job_order, corresponding to the related resource id.

After this step, the first job in the wait_queue, named τnext, is examined. If the
cs_order of τnext matches the semaphore’s serving_ticket, then the semaphore’s
ownership is assigned to τnext. Consequently, τnext can begin the execution of its
critical section. Otherwise, the owner of the semaphore is set to NULL, and the task
τnext is placed back in its respective wait_queue.

Furthermore, each sub-job has a unique modified deadline. This implies that a job
may have varying deadlines during different segment executions. Careful attention
is required during the deadline update in the implementation. When deploying a
task using rtspin, the relative deadline of its initial sub-task is presented as the
overall task’s relative deadline. Given that two consecutive non-critical sections are
not permissible, a sub-job’s completion triggers either mdga_lock or mdga_unlock.
When mdga_lock is invoked, the new critical section’s deadline is updated using the
relative_deadline. Invoking mdga_unlock lets only the completed critical section
refresh the associated job’s deadline for its subsequent section (if any).

The implementations for both global and partitioned plug-ins are similar. How-
ever, due to frequent preemptions or interruptions in global scheduling, preemption
must be disabled during semaphore-related function executions to ensure the func-
tions’ integrity. If a job fails to acquire the semaphore and sleeps in the respective wait
queue until the simulation’s end, it enters an uninterruptible sleep status. To avoid
this scenario, make sure the simulation runtime is a multiple of the hyper-period,
as this guarantees task completions within their periods. Otherwise, restarting
the system before the next iteration is recommended to prevent complications. In
addition, our implementation does not fully address over-run scenarios. Therefore,
a missed task deadline could potentially disrupt the ticket system.

Overheads Comparison in LITMUSRT

We evaluated the overheads of our implementation on an SMP system with an x86
architecture. Detailed configurations are provided in Section 2.4.3. For comparison,
we also evaluated the FMLP supported in LITMUSRT, which includes the P-FMLP
for partitioned scheduling and the G-FMLP for global scheduling. All four protocols
were tested using identical task sets, with each task having multiple critical sections.
The overheads that we tracked are:

• CXS: context-switch overhead.
• RELEASE: time spent to enqueue a newly released job into a ready queue.
• SCHED: time spent to make a scheduling decision, i.e., find the next job to

be executed.
• SCHED2: time spent to perform post context switch and management

activities.
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Table 5.2: Overheads of protocols in LITMUSRT in µs.

Max. (Avg.) CXS RELEASE SCHED SCHED2 SEND-RES

P-FMLP 29.51 (0.98) 17.68 (0.96) 31.85 (1.31) 28.77 (0.18) 66.33 (2.86)
PDGA-MCS 30.65 (1.25) 18.63 (1.02) 31.09 (1.64) 29.43 (0.19) 59.09 (21.06)
G-FMLP 30.51 (1.05) 48.53 (3.75) 45.99 (1.51) 29.62 (0.16) 72.26 (2.50)

GDGA-MCS 26.87 (0.94) 30.01 (2.19) 30.25 (1.02) 19.26 (0.14) 72.53 (21.50)
PDGA-OCS 18.76 (0.90) 18.98 (1.06) 48.50 (1.33) 29.25 (0.16) 38.3 (1.61)
GDGA-OCS 30.87 (1.79) 61.63 (12.06) 59.05 (4.46) 27.17 (0.25) 72.09 (20.77)

• SEND-RES: inter-processor interrupt latency, including migrations.

The overheads are reported in Table 5.2. This data illustrates that the overheads
of our methodology are comparable to those of P-FMLP and G-FMLP. Furthermore,
the implementations for the OCS task model, called PDGA-OCS and GDGA-OCS,
were evaluated to examine the overhead and reported in Table 5.2 as well. A direct
comparison of PDAG-OCS and PDGA-MCS (GDGA-OCS and GDGA-MCS, respec-
tively) is not possible because they are designed for different scenarios, depending on
the number of critical sections per task. As illustrated in Table 5.2, the overheads
across different task model implementations appear to be of a similar magnitude.

5.3.3 Implementation in RTEMS

In this section, we start with an overview of the symmetric multiprocessing capabili-
ties within RTEMS. Following that, we discuss the detailed implementation of DGA
in RTEMS. To offer a unique perspective on the procedure, we utilize workflow
diagrams to describe RTEMS’s implementation details rather than providing a
verbose algorithmic description. We conclude by evaluating the operational over-
heads of our approach, comparing them with the officially supported multiprocessor
synchronization protocol, specifically MrsP, in RTEMS.

Symmetric Multiprocessing Support in RTEMS

RTEMS allows users to develop new resource synchronization protocols by adhering
strictly to the RTEMS API. When creating a new semaphore, the SEM_Initialize
function is invoked to designate particular attributes tailored for each synchronization
protocol. Apart from the protocol-dependent semaphore creation, this section
emphasizes the ubiquitous components present across all protocols. These include
both lock and unlock directives, and application configurations.

Lock and Unlock Directives The workflow of the lock directive is demonstrated
in Figure 5.1. When a task, i.e., τi, requests a shared resource, it attempts to lock the
relevant semaphore. After identifying the appropriate semaphore, denoted as SEM,
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Figure 5.1: Workflow of the lock directive. Block Ao and Bo are specified according
to the adopted protocols.

τi invokes the _SEM_Seize function. The semaphore’s ownership is subsequently
verified by examining the owner of the Thread queue Control. If the semaphore is
locked by another task, τi must wait until the current owner releases the semaphore.
The operations within block Ao are defined based on the individual protocol designs.
If there is no owner yet, τi usually becomes the semaphore’s owner and initiates
the execution of its critical section in work-conserving scenario. The actions within
block Bo might vary, contingent on the specific protocol design.

The workflow of the unlock directive is presented in Figure 5.2. This directive is
activated when τi concludes its critical section’s execution and intends to release
the semaphore’s lock. To check whether τi is the semaphore’s current owner, the
directive pinpoints the appropriate _SEM_Surrender function. If τi is not the owner,
the semaphore remains locked. However, if it is the owner, τi can proceed to unlock
the semaphore, with the main operation in block Ar aimed at identifying the next
potential owner if there is another task awaiting the semaphore. If no tasks are
in queue, the ownership is redefined to NULL. The precise functions within Ar are
elaborated upon in subsequent sections dedicated to each protocol.

Application Configuration To support semi-partitioned scheduling in RTEMS,
the configuration procedure outlined in Figure 5.3 should be followed. Initially,
processors are associated with distinct scheduler instances using the _RTEMS_-
SCHEDULER_ASSIGN macro, which is supported in RTEMS by default. Subsequently,
tasks are assigned to specific scheduler instances through the rtems_task_set_-
scheduler directive. Please note that a task is restricted to be executed on the
processor associated with its scheduler instance.
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Figure 5.2: Workflow of the unlock directive. Block Ar is specified according to
the adopted protocols.
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Figure 5.3: Configuration steps in RTEMS for semi-partitioned scheduling.

As shown in Figure 5.3, configuring an RTEMS application for SMP support
necessitates the integration of multiple new functions. In the first step, a preliminary
task, set to execute at the beginning of the RTEMS application, must be defined.
This association between scheduler instances and processors is based on the official
c-user guide. The dedicated scheduling algorithm for the scheduler instances has to
be determined at first. Within the context of this dissertation, the default RTEMS-
supported Deterministic Priority SMP Scheduler is employed, which is the same as
the Fixed-Priority (FP) scheduler discussed in academic literature. Please note that
to effectively support semi-partitioned scheduling, scheduler instance definitions
should encompass all available processors within the system. This provision facilitates
task migration across processors via adjustments in their scheduler nodes.

DGA Implementation in RTEMS

In our DGA-based implementation within RTEMS, we specifically address the OCS
task model. Similarly, a ticket system is employed in RTEMS to ensure forced order
execution. Each task is allocated a set of tickets, with the ticket count equating to
the number of jobs released within a single hyper-period. Sequentially released jobs
from each task are designated their corresponding ticket, denoted as job_ticket.

The DGA semaphore control structure, as detailed in Listing 5.1, is defined by:
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• Wait_queue: Manages the collection of tasks that are queued due to their
pending requests for a shared resource.

• ticket_order: Stores the ticket sequence of jobs within a hyper-period. This
sequence dictates the execution order of jobs that seizes this semaphore.

• order_size: Specifies the dimensions of the ticket_order.
• current_position: Acts as an array pointer, pinpointing the ticket of the

next task permitted to lock the semaphore.
Semaphores are initialized using the rtems_semaphore_create function. The

current_position is set to 0 initially. This value increments by one each time
a task finishes its execution of a critical section protected by the corresponding
semaphore. Once the current_position equals the order_size, it resets to 0.

1 typedef struct {
2 Thread_queue_Control Wait_queue;
3 Ticket_Control ∗ticket_order;
4 int order_size;
5 int current_position;
6 } DGA_Control;

Listing 5.1: DGA semaphore control structure.

The wait queue is implemented using the Red-Black Trees API of RTEMS. The
ticket-based queue has a structure, named Ticket_Node, similar to the priority
queues in RTEMS. This structure organizes the tickets of tasks in the wait queue
and is detailed in Listing 5.2. We introduced a new field in the task control block
that references its ticket node. When a task is created, it is associated with a ticket
node, setting the *owner field of that node. The Ticket_Control is an integer
representing the actual ticket number. Additionally, the union is utilized for the
RBTree-based queue.

1 typedef struct {
2 union {
3 Chain_Node Chain;
4 RBTree_Node RBTree
5 } Node;
6 Ticket_Control ticket;
7 Thread_Control ∗owner;
8 } Ticket_Node;

Listing 5.2: Ticket Node structure.

In addition to the Chain Control structure, we added an RBTree Control to
the thread queue heads. It assists in managing the RBTree Nodes introduced to
the queue. The ticket queue now requires a new function table, as illustrated in
Listing 5.3. The operations for the thread queue are listed as follows:

• .priority_actions: Priority actions are not defined for this semaphore
because there is no need for priority-related actions.
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Figure 5.4: Locking operation of the DGA semaphore.

• .enqueue: If the corresponding RBTree has been initialized, the RBTree Node
from the Ticket Node structure will be identified and positioned. If not, the
RBTree will be initialized, the current node is served as the initial node.

• .extract: This operation removes a node from the RBTree.
• .surrender: This makes use of the first directive to identify the RBTree Node

with the lowest ticket number, subsequently extracting it from the queue.
• .first: It identifies the node with the lowest ticket number in the tree. It

then uses the RTEMS_CONTAINER_OF macro to get the associated Ticket Node.
Finally, it determines the owning task for this node using the *owner pointer.

1 const Thread_queue_Operations _Thread_queue_Operations_TICKET = {
2 .priority_actions = _Thread_queue_Do_nothing_priority_actions,
3 .enqueue = _Thread_queue_TICKET_enqueue,
4 .extract = _Thread_queue_TICKET_extract,
5 .surrender = _Thread_queue_TICKET_surrender,
6 .first = _Thread_queue_TICKET_first
7 };

Listing 5.3: Ticket related operations in thread queue.

The workflow for block Bo in Figure 5.1 is detailed in Figure 5.4. When task
τi requests a shared resource, it verifies the ownership status of the requested
shared resource (semaphore). Contrary to work-conserving resource synchronization
protocols, a task cannot directly lock the semaphore, even if the resource’s owner is
NULL. The task’s job_ticket has to be compared with the semaphore’s current_-
ticket. A match authorizes the job to access the shared resource. Otherwise, the
task is enqueued in a wait queue. This queue is organized in increasing order based
on ticket numbers.

The workflow for block Ar in Figure 5.2 is demonstrated in Figure 5.5. Once task
τi completes its execution of critical section, it releases the semaphore. Subsequently,
the value of current_ticket associated with the semaphore increments by 1. If
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Figure 5.5: Releasing operation of the DGA semaphore.

the new ticket value matches total_tickets, which represents the total count of
critical sections within a single hyper-period, then current_ticket is reset to 0.
In scenarios where the wait queue is empty, the semaphore’s owner is set to NULL.
Otherwise, if the first task in the queue has a job_ticket equivalent to the updated
current_ticket, then the new task is set as the new semaphore owner.

Overheads Comparison in RTEMS

We conducted an evaluation of the operational overheads associated with our
DGA implementation on an NXP QorIQ T4240 RDB reference design board. A
comprehensive description of the hardware configurations is provided in Section 2.4.3.

Unlike LITMUSRT, RTEMS lacks inherent tools for overhead measurement.
To trace the overheads of our DGA implementation, we integrated timestamps
both before and after the functions within our design. We specifically measured
the Seize (commonly denoted as ’lock’) and Surrender (or ’unlock’) semaphore
functions. Since MrsP is the only officially supported multiprocessor resource
synchronization protocol in RTEMS, we limited our overhead comparison to MrsP
and our DGA implementation. It is important to note that RTEMS does not
support synchronized task releases by default, as also reported in [LGS+23]. This
deviation disrupts the DGA’s foundational assumption where all tasks release their
first jobs synchronously, ensuring a consistent schedule within each hyper-period.
After extended system operation, the ticket system’s execution may deviate from its
original design, potentially resulting in deadline misses. Our implementation only
focuses on the forced sequential execution of critical sections for each shared resource.
However, addressing synchronized release is out of the scope of this dissertation.
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Table 5.3 demonstrates the overheads for two protocols. The data shows that
the overheads of our DGA implementation align closely with those of MrsP. Di-
rectly comparing the overheads between the DGA implementations in RTEMS and
LITMUSRT is not possible, due to the different objectives and architectures of the
two RTOSes. We observed that the recorded overheads for both MrsP and our DGA
are considerably reduced compared to those documented in [CBH+15; SPM+22],
even when using the same testing script and hardware as presented in [SPM+22].
We attribute this performance enhancement to the update from version 4 to 5 of
the RTEMS kernel. Nevertheless, a detailed exploration of this specific aspect was
not included in this dissertation.

Table 5.3: Overheads of protocols in RTEMS in ns.

Max. (Avg.) Seize (Lock) Surrender (Release)

MrsP 255 (131) 254 (134)
DGA-OCS 247 (146) 251 (133)

5.4 Formal Verification Framework

In this section, we present the framework for the formal verification of resource
synchronization protocols. First, we introduce the fundamental concept of deductive
verification. This is followed by a discussion on the common assumptions made
within our framework. We then illustrate the workflow of our formal verification
framework. Finally, we discuss the necessary pre-processing steps required for the
RTOS source code.

5.4.1 Deductive Verification

In this subsection, we first introduce the foundational elements of Hoare Triple
and the concept of the Weakest Precondition. Afterwards, we explain the function
contracts formulated by ACSL as applied within the context of Frama-C.

Hoare Triple and Weakest Precondition

A Hoare Triple of the form PreprogramPost is formulated, to specify a certain
property of a program. In this structure, the postcondition Post holds if the program
is executed with a fulfilled precondition Pre. If a postcondition is supposed to hold
in any possible case, the precondition is just true. To verify such a property against
a program, its weakest precondition that required to satisfy the post-condition is
derived. If the defined precondition Pre implies the derived weakest precondition,
the property is proven to hold for the analyzed program. The development of the
weakest precondition is often performed backwards through the code by iteratively
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transforming the postcondition based on the code statements using the rules defined
by Hoare [Gar19].

We provide an example using the function absDiv(x,y), which divides ∣x∣ by ∣y∣,
as shown in Listing 5.4. Since dividing by zero is not permitted (with the function

1 int absDiv(int x, int y){
2 int d1, d2, res;
3 if (x >= 0) {d1 = x;}
4 else {d1 = x ∗ −1;}
5 if (y > 0) {d2 = y;}
6 else if (y < 0) {d2 = y ∗ −1;}
7 else {return −1;}
8 res = d1 / d2;
9 return res;

10 }

Listing 5.4: One implementation of the function absDiv.

returning −1 in such cases), the desired behavior (Property) can be formulated as
follows, where /res is the value returned by absDiv:

{y ≠ 0}absDiv{/res = ∣x∣/∣y∣} (5.1)

Furthermore, the result is expected to be non-negative since both the divisor and
dividend are non-negative. Therefore, a new Property can be formulated:

{y ≠ 0}absDiv{/res ≥ 0} (5.2)

Statement (5.3) based on an implementation in Listing 5.4 concludes the derivation
of the weakest precondition for Property (5.1).

x ≥ 0⇒ [(y > 0⇒ x

y
=

∣x∣

∣y∣
) ∧ (y < 0⇒ x

−y
=

∣x∣

∣y∣
)∧

(y = 0⇒ −1 = ∣x∣

∣y∣
)]∧

x < 0⇒ [(y > 0⇒ −x

y
=

∣x∣

∣y∣
) ∧ (y < 0⇒ −x

−y
=

∣x∣

∣y∣
)∧

(y = 0⇒ −1 = ∣x∣

∣y∣
)]

(5.3)

By replacing the = ∣x∣∣y∣ with ≥ 0, the weakest precondition for Property (5.2) can be
obtained as well.

ACSL Function Contracts in Frama-C

To verify a function’s specification consisting of Hoare-triples, also called function
contract, against the source code of the implementation of a targeted protocol,
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Frama-C can be applied [FRA23]. The plugin wp (weakest precondition) of Frama-C
provides the capabilities for static analysis and deductive verification of source
code. The contracts are formulated by using the ANSI/ISO C Specification language
(ACSL) [BCF+21]. It allows users to formally specify the behavior(s) of a function
as a function contract in the form of annotations to its source code enclosed in
special comments, i.e., //@ or /*@ ... */.

Contracts can consist of different behaviors, each of which ensures a set of
postconditions depending on different preconditions or assumptions and may be
declared to be complete or disjoint. To ease the formulation of a specification,
constructs like predicates, logic functions and assertions are provided. A predicate
evaluates its parameters and returns either true or false. Predicates can be
used within assertions, function contracts or other predicates. Logic functions
can have any return type and perform assignments or computations. An ACSL
function contract for the previous example is given in Listing 5.5. It describes the
Property (5.1) and Property (5.2). The behaviors are declared to be disjoint, i.e.,
no two behaviors can occur as a consequence of one set of inputs. When Frama-C is
invoked and given the annotated code of a function, the contract can be verified
against the implementation with wp.

1 /∗@ // auxiliary predicates and logic_functions
2 predicate IsZero(int x) = x == 0;
3 predicate NonZero(int x) = ! IsZero(x);
4 logic int abs_div(int x, int y) = \abs(x) / \abs(y);
5 ∗/
6 /∗@ // function contract
7 behavior err:
8 requires IsZero(y);
9 ensures \result == −1;

10 behavior div:
11 requires NonZero(y);
12 ensures \result >= 0;
13 ensures \result == abs_div(x,y);
14 complete behaviors;
15 disjoint behaviors;
16 ∗/
17 int absDiv(int x, int y) {...}

Listing 5.5: An example of ACSL function contract using predicates, logic functions
and builtin functions (/abs)

Another ACSL concept, i.e., ghost code, enables the use of C code within an-
notations, which is helpful when specifying more complex behaviors, e.g., loops.
Ghost code makes implicit information explicitly visible and addressable in function
contracts without affecting the behavior of the original source code under analy-
sis [Bla21]. In this dissertation, ghost code is applied to transfer stateful information
along a call hierarchy (in Listing 5.9) and to abstract from low-level operating system
mechanisms (in Listing 5.12).
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A memory model is employed to map the analyzed high-level memory concepts
of types and pointers to a mathematical representation. An example is wp’s default
typed memory model. To aid the abstraction, memory locations and pointers can be
annotated with several terms and predicates predefined in ACSL. A valid pointer p
that can be safely dereferenced, is declared by \valid(p). All the modified memory
locations are listed in the assigns clause within the contract. A function or its
behavior that has no side-effects and assigns no non-local memory can be annotated
with assigns \nothing [BCF+21]. In addition, the ACSL annotations are prepro-
cessed and integrated into the Abstract Syntax Tree (AST), which is built using a
modified form of the C Intermediate Language (CIL). It specifies the transformation
of C programs into a reduced subset of C, which abstracts from low-level language
concepts, supports compiler-specific extensions and facilitates automatic analyses.
Furthermore, the program is type-checked during the transformation. Afterwards,
several syntactical transformations are performed, e.g., a unified representation
for loops and conditional branches and the removal of “syntactic sugar” like the
convenience operator for dereferencing pointers [CKK+12; CCK+21; NMR+02].

Analyses with wp are launched either for a complete function contract or for its
properties individually. For the selected properties, proof obligations are generated
in a wp-own syntax that describe the goals to be proven based on the first order
logic representation of the analyzed code and its annotations. These obligations
are simplified by the builtin Qed engine, by either fully resolving them or adding
further conditions facilitating the proof [Cor14]. If they are not resolvable by Qed,
obligations are forwarded to an automatic SMT prover in the form of a Why3
script [BFM+11]. If existing provers are not sufficient, interactive proof assistants
such as Coq [Inr] can also be utilized to complete the verification [BBC+21].

5.4.2 Common Assumption

In our formal verification framework, only the implementation of a protocol is verified.
The proposed framework is applied to verify the correctness of the implementation
for all the specified properties from a given protocol, i.e., function contracts. Any
other components that are not specified in the protocol definition are assumed to be
functionally correct. We choose RTEMS as our target RTOS. The abstracted layers
of the verification concept can be viewed in Figure 5.6. More precisely, the proposed
framework assumes that an implemented resource synchronization protocol is based
on a correct underlying operating system.

In order to verify the implementation layer separately from its underlying layers
with deductive program verification, several abstractions have to be applied. First
of all, the verification scope does not include the basic locking and scheduling
operations, e.g., mutexes, queues and threads. The mutually exclusive execution of
critical sections is considered as a part of the dependencies which are assumed to be
correctly implemented. Furthermore, no notion of time is considered. Due to the
verification perspective and the assumptions on underlying OS concepts, temporal



5.4. Formal Verification Framework 135

Hardware

Board Support Package

QueuesInterrupt
Management

Scheduling
Infrastructure

Memory
Management Threads Mutexes

Protocol-controlled Resources

Application Software

Application Programming Interface(s)

Libraries

Drivers               

Assumed
Correct

Verif ication 
Target

Figure 5.6: Abstracted layers of the verification concept within an RTOS.

properties are not necessary to verify the protocol specifications. Thus, if all the
determined properties of a protocol have been verified to be implemented correctly,
the protocol in the OS is formally verified.

5.4.3 Workflow of Formal Verification Framework

Verifying the implementation means we do not verify its compiled (i.e., compiler-
and architecture-specific) results nor its runtime behavior. Instead, the source code
of the corresponding implementation should be verified with formal specifications
of all required properties of the resource synchronization protocol. This can be
achieved by deductive program verification, which proves whether a program fulfills
a set of post-conditions when assuming a set of preconditions.

When the deductive verification approach is applied, the implementation under
verification can be written in high-level programming languages. Additionally, to
allow for the separation of protocol-specific code and relied-upon OS primitives, the
analysis should be performed in a modular way. That is, a set of conditions for
a function body should be verified based on its statements and, for further called
functions, based on their formal specification only. These called functions either
need to be verified if they are specified by the protocol or can be assumed to be
correct if they are provided by the RTOS. Hence, verification is confined to a specific
layer or depth. The protocol-specific code that is to be verified and its dependencies
have to be distinguished clearly. Precisely, the workflow of our framework can be
described as follows:

1. Identify the subset of the targeted OS’s source code that represents the protocol
implementation.
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2. Identify the resource synchronization protocol’s properties and rules, e.g., the
request and release of resources.

3. Design specifications consisting of Hoare-triples for the behavior of all utilized
OS primitives.

4. Design specifications consisting of Hoare-triples for the protocol implementation
based on the formal specification of the protocol.

5. Verify the specification of the implementation against its source code with
deductive program verification, aided by appropriate software.

Please note that, unlike implementing with formal verification from scratch,
our approach focuses on verifying an already-implemented synchronization protocol
against its formal properties. This implementation is based on abstractions derived
from the operating system or hardware specifications. In addition, the protocol’s
implementation is typically integrated throughout the operating system, and its
implementation flow might not strictly adhere to the formally described properties.
Therefore, point-to-point verification, i.e., directly linking each formally described
property and its specification to the real implementation, is usually not possible.

In our verification framework, the source code of the implemented resource
synchronization protocol is analyzed at first. All the implemented properties must
be converted and matched to the formally described properties, and the specifications
of Hoare triples need to be designed in accordance with these formal properties
while also matching the abstractions of the implementation being verified.

5.4.4 Preprocessing the source code

To apply Frama-C for verification, the proposed framework only needs to utilize the
cross-compilation toolchain without building or executing the OS code. However,
the source code of the targeted RTOS needs to be preprocessed to resolve the
inclusion dependencies and gain meta-information from macros and customized data
types [CCK+21]. In order to describe the customized data types in the memory
model, information on the bit width is also required. Furthermore, some header files
are architecture-dependent. These headers may come with the cross-compilation
toolchain or be generated during the source configuration.

To analyze the implementations in RTEMS, a separate source configuration is
generated for uni-processor and multi-processor systems, respectively. To avoid
compatibility problems, 32-bit PowerPC is chosen as the target architecture for the
toolchain, which comes with SMP support in RTEMS and is supported by Frama-C
as well [CCK+21]. Building the toolchain yields the required header stddef.h.
Please note that the term thread in RTEMS is synonymous with task in this work
and in real-time systems literature.
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5.5 Verification of Protocols in RTEMS

In this section, we detail the verification process for officially supported ICPP and
MrsP, and the new implemented DGA in RTEMS.

5.5.1 Verification of ICPP in RTEMS

In this section, we adopt the proposed verification framework to verify the Immediate
Ceiling Priority Protocol (ICPP) officially implemented in RTEMS [BW09], which
is a well-known synchronization protocol for uni-processor real-time systems [But11].
It is commonly considered as an advanced variant of the PCP [SRL90], as it has the
same upper bound on the blocking time but less context switches. However, the
standard implementation of ICPP has not been previously discussed. Any mismatch
between the implementation and the formally proved properties can potentially lead
to an error, e.g., deadlock.

Throughout our verification framework, we find out that the current implementa-
tion is in fact not deadlock free. To reach this serious conclusion, in the following, we
present how we declare the function contracts for ICPP to employ our verification
framework, and give a concrete example to illustrate how the deadlock can occur
under the current implementation. The verified functions are listed in Table 5.4,
where the _CORE_ceiling_mutex is the common prefix of all function names in the
table. All the required properties of ICPP are as follows:

1. For a resource zj , the priority ceiling is defined as
Π(Rj) = max {π(τi) ∣ τi requests Rj}, where π(τi) is the priority of task τi.

2. The set of the resources’ priority ceilings that a task τi holds at time t is
denoted as Cτi,t = {Π(Rj) ∣ τi holds Rj at time t}

3. At any time t, a task runs at the highest priority among its base priority and
the priority ceilings of its held resources: π(τi, t) = max {π(τi), Cτi,t}

4. Whenever a task τi requests a resource zj at time t, it is granted access and
it immediately inherits zj ’s priority ceiling: Cτi,t = Cτi,t−1 ∪ {Π(Rj)}. Task τi
executes its critical section with the priority following Rule 3.

5. When task τi releases a resource zj at time t, its priority ceiling is revoked
from the set, i.e., Cτ,t = Cτ,t−1 ∖{Π(Rj)}. Afterwards, task τi is executed with
its original priority if there is no following critical section, or it is executed for
its next critical section with the priority derived by following Rule 3.

In the ICPP implementation of RTEMS, after a task successfully locks the semaphore2,
then the priority of the task is elevated to the ceiling priority if the original priority
is lower than the ceiling priority. When a task or thread waits on a semaphore,
it is added into a data structure, named as thread_queue. The priority queuing

2The locking protocols are originally for mutex, but they are realized by binary semaphores in
RTEMS, which are technically as mutex locks. Here, we stick to the terminology of locking protocol
to ’lock’ a semaphore.
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Table 5.4: Functions for acquiring and releasing a resource under ICPP.

Protocol Function Purpose
_Seize Acquire an available or self-locked resource
↪ _Set_owner Check and inherit resource ceiling, set resource owner
_Surrender Release a locked resource

discipline simply orders the threads according to their current priority and in FIFO
order in case of equal priorities.

Preprocessing

Before the verification, we decouple the implementation of ICPP into two parts:
a) the protocol-specific parts that will be analyzed, and b) the employed OS func-
tionalities. To lock and unlock a resource, the RTEMS Classic API exposes the
functions rtems_semaphore_obtain and rtems_semaphore_release. These func-
tions lock an actual semaphore object from the passed system-wide ID and perform
the demanded actions depending on its type. For a semaphore controlled by ICPP,
the corresponding functions _CORE_ceiling_mutex_Seize and _CORE_ceiling_-
mutex_Surrender are called, where mutex locks are applied as binary semaphores
to protect shared resources. Besides, another protocol-specific function is _CORE_-
ceiling_mutex_Set_owner. The remaining functions are lower-level primitives,
which provide operations to update a thread’s priority, achieve basic mutual exclu-
sion for data consistency, and access the underlying non-protocol Core Mutexes and
queues, are assumed to be implemented correctly. Since the implementation of a
protocol may be spread across the source base, two header files are created to bundle
these functions’ specifications: a) fc_common_stubs.h is used for all implemented
protocols; b) fc_icpp_stubs.h contains the ICPP-specific stub definitions.

Abstractions and Function Contracts

The OS utilities are treated in two different ways when they are annotated to declare
their (intended) behavior in the analysis. On the one hand, functions that have
no effect in the analyzed situation, are bypassed. That is, the annotations do not
declare their behavior, but assert their invocation has no side effects and can be
ignored during verification. Listing 5.6 shows an example for bypassing calls for
basic locking pairs, where the interrupt has already been disabled when the function
is called in a uni-processor system. On the other hand, OS functions that perform
actions that are not considered as a part of the protocol analysis but are critical to
the ICPP implementation, have to be annotated with a description of their intended
(and considered correct) behavior. The example in Listing 5.7 shows a contract that
ensures the thread’s priority either remains the same or corresponds to the passed
priority node after its execution.
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1 //@ assigns \nothing;
2 RTEMS_INLINE_ROUTINE void _CORE_mutex_Acquire_critical(
3 CORE_mutex_Control ∗the_mutex,
4 Thread_queue_Context ∗queue_context );

Listing 5.6: Bypassing of a system utility function.

1 /∗@
2 requires \valid(the_thread) && \valid(priority_node);
3 assigns ∗the_thread, g_thread_inherited, g_prio_node;
4 ensures g_thread_inherited == the_thread && g_prio_node == priority_node;
5 behavior inherit_higher:
6 assumes priority_node−>priority < Current_Priority(the_thread);
7 ensures Current_Priority(the_thread) == priority_node−>priority;
8 behavior inherit_lower_or_equal:
9 assumes priority_node−>priority >= Current_Priority(the_thread);

10 ensures Current_Priority(the_thread) ==
11 \old(Current_Priority(the_thread));
12 disjoint behaviors;
13 complete behaviors;
14 ∗/
15 void _Thread_Priority_add(
16 Thread_Control ∗the_thread,
17 Priority_Node ∗priority_node,
18 Thread_queue_Context ∗queue_context );

Listing 5.7: The system utility function adds a priority node to a thread.

Contracts for ICPP-Seize

Once all necessary OS functions have been provided with contracts, the actual
behaviors of the protocol operations seize and surrender can be specified. The
following two properties are verified for seize in a pure ICPP:

• A task requesting a resource is granted the resource.
• After a resource is granted, the task runs on the highest ceiling priority of all

currently held resources.

The implementation in RTEMS considers and checks more possible cases, which
are not formally described by the protocol specifications. Overall, these additional
scenarios lead to further properties:

• Acquiring a resource fails, if its priority ceiling is lower than the acquiring
thread’s base priority.

• Resources may be acquired again by the holding thread before release. The
level of self-nested access is tracked.

• Acquiring a locked resource enqueues the thread into the resource’s priority-
based waiting queue. Such a request operation can be either successful by
obtaining the resource eventually or failed if the request times out.
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All the above five implemented properties are derived from the formally described
properties 1-4 of ICPP. Therefore, if all these properties can be successfully verified,
it implies that the first four formally described properties have been verified.

The check of the acquiring task’s base priority is a legitimately safe measure
to compensate incorrectly priority ceilings setting or unallowed resource accesses.
Locking an already locked resource does not affect the ICPP. The last case happens
only if a task suspends while holding a resource. This behavior is not considered in
the definition of ICPP and would break the property. Towards this, the precondition
is necessary that the requested resource is either available or locked by the current
requesting task (Listing 5.8, Lines 4-5), which matches the formal property of ICPP,
i.e., once a task starts its execution, all required resources must be available [BW09].
Therefore, the third case in the list is excluded in the analysis, which makes
annotations for the responsible function _CORE_mutex_Seize_slow unnecessary.

These collected properties can be formulated as a function contract for the
function _CORE_ceiling_mutex_Seize, shown in Listing 5.8. The preconditions
in Lines 2-3 require that the pointers to the mutex and the executing thread
are valid, i.e., dereferenceable, and their memory regions do not overlap. The
precondition in Lines 4-5 expresses the invariant for a seize operation under ICPP,
that the requested resource is free, and adds the situation that the shared resource
has been acquired by the requesting task already. The default behavior, termed
behavior seize_successful, ensures that the requesting thread locks the resource,
and subsequently inherits the resource’s ceiling priority. To ensure that the priority
inheritance is passed from the acquired resource to the requesting thread, the
PriorityInherited predicate is introduced (as shown in Listing 5.9). It checks
if the passed thread and priority are the same as those set in the contract of
_Thread_Priority_add (Listing 5.7) and whether the priority of the thread is
updated after the change of the priority aggregation. The inheritance does not
necessarily lead to a priority raise, since the thread may already hold a resource
with a higher ceiling.

Within the seize function, the second relevant protocol-specific function from
Table 5.4 is the _Set_owner function in Listing 5.10. It performs the check of
the resource ceiling. If valid, the executing thread inherits the acquired resource’s
priority ceiling and is set as the resource owner. If the resource ceiling is violated
due to the thread’s priority, the operation fails. The conditions for the ceiling and
the ceiling priority inheritance are known from the invoking seize function.

Contracts for ICPP-Surrender

The contract for the ICPP surrender function, _CORE_ceiling_mutex_Surrender,
can be designed in a similar sense. Since the ICPP does not allow threads to be
enqueued and waiting for the shared resource, the contract is constructed with
a precondition that the resource’s queue has to be empty. The revocation of the
formerly inherited priority is guaranteed by another predicate, i.e., PriorityRevoked.
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1 /∗@
2 requires \valid(the_mutex) && \valid(executing);
3 requires \separated(the_mutex, executing);
4 requires Mutex_Owner(the_mutex) == NULL ||
5 Mutex_Owner(the_mutex) == executing;
6 behavior seize_ceiling_violation:
7 assumes Mutex_Owner(the_mutex) == NULL && Base_Priority(executing) <
8 Mutex_Priority(the_mutex);
9 ensures \result == STATUS_MUTEX_CEILING_VIOLATED;

10 behavior seize_successful:
11 assumes Mutex_Owner(the_mutex) == NULL && Base_Priority(executing) >=
12 Mutex_Priority(the_mutex);
13 ensures PriorityInherited(executing, Mutex_Priority(the_mutex));
14 ensures Current_Priority(executing) <= Mutex_Priority(the_mutex);
15 ensures Mutex_Owner(the_mutex) == executing;
16 ensures \result == STATUS_SUCCESSFUL;
17 behavior seize_nested:
18 assumes Mutex_Owner(the_mutex) == executing;
19 assumes nested == _CORE_recursive_mutex_Seize_nested;
20 assigns the_mutex−>Recursive.nest_level;
21 ensures Nest_Level(the_mutex) == \old(Nest_Level(the_mutex)) + 1;
22 ensures \result == STATUS_SUCCESSFUL;
23 disjoint behaviors;
24 ∗/
25 RTEMS_INLINE_ROUTINE Status_Control _CORE_ceiling_mutex_Seize(
26 CORE_ceiling_mutex_Control ∗the_mutex,
27 Thread_Control ∗executing,
28 bool wait,
29 Status_Control ( ∗nested )( CORE_recursive_mutex_Control ∗ ),
30 Thread_queue_Context ∗queue_context
31 ) { /∗...∗/
32 //@ calls _CORE_recursive_mutex_Seize_nested;
33 status = ( ∗nested )( &the_mutex−>Recursive );
34 /∗...∗/ }

Listing 5.8: Contract declaring the ICPP functionality for the seize operation

The thread’s dynamic priority after surrendering the resource is either lower than
before, or remains the same if another resource with the same ceiling is still held.
This is derived from the fifth formally described property.

Verification and Mismatch

Due to the modular analysis, the seize function can be analyzed without inspecting
the code of the called _CORE_ceiling_mutex_Set_owner. Instead, only its contract
is used. Once the function under analysis fulfills that contract’s preconditions, its
postconditions are assumed to be fulfilled. This analysis successfully proves all
stated properties. However, when attempting to verify the called set owner function,
the verification fails to prove the ceiling check and parts of the successful acquisition.
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1 /∗@ ghost // variables declared in coremuteximpl.h
2 extern Thread_Control ∗g_thread_inherited;
3 extern Thread_Control ∗g_thread_revoked;
4 extern Priority_Node ∗g_prio_node;
5 extern bool prioritiesUpdated; ∗/
6 /∗@ predicate PriorityInherited(Thread_Control ∗t, Priority_Control p) =
7 t == g_thread_inherited && p == g_prio_node−>priority && prioritiesUpdated;
8 ∗/

Listing 5.9: The predicate PriorityInherited checks priority inheritance.

1 /∗@
2 requires \valid(the_mutex) && \valid(owner);
3 requires \separated(the_mutex, owner);
4 behavior set_owner_ceiling_violation:
5 assumes Base_Priority(owner) < Mutex_Priority(the_mutex);
6 ensures \result == STATUS_MUTEX_CEILING_VIOLATED;
7 behavior set_owner_successful:
8 assumes Base_Priority(owner) >= Mutex_Priority(the_mutex);
9 assigns ∗owner, ∗the_mutex, prioritiesUpdated, g_thread_inherited, g_prio_node;

10 ensures Current_Priority(owner) <= Mutex_Priority(the_mutex);
11 ensures PriorityInherited(owner, Mutex_Priority(the_mutex));
12 ensures Mutex_Owner(the_mutex) == owner;
13 ensures \result == STATUS_SUCCESSFUL;
14 disjoint behaviors;
15 complete behaviors;
16 ∗/
17 RTEMS_INLINE_ROUTINE Status_Control _CORE_ceiling_mutex_Set_owner(
18 CORE_ceiling_mutex_Control ∗the_mutex,
19 Thread_Control ∗owner,
20 Thread_queue_Context ∗queue_context ){/∗...∗/}

Listing 5.10: Contract for the _Set_owner function.

The reason for the incapability to fulfill the conditions can be tracked down with
further annotations.

After a successful ceiling check, the task’s base priority is assumed to be lower
or equal to the resource’s ceiling. However, this assertion cannot be verified. We
note that the resource’s ceiling is not checked against the thread’s base priority, but
against its current dynamic priority derived from the task’s priority aggregation.
However, a resource’s ceiling is required to be set as the highest base priority of all
tasks that are requesting it. This mismatch may lead to a deadlock by erroneously
denying legitimate nested resource access if resources are requested with descending
order of priority ceilings. We give an example to illustrate such a case:

Consider two tasks τ1 and τ2. The priority of τ1 is greater than that of τ2, i.e.,
π(τ1) > π(τ2). There are also two resources: R1, which is accessed by both tasks,
and R2, which is only accessed by τ2. Their priority ceilings are set as Π(R1) = π(τ1)

and Π(R2) = π(τ2), respectively. If it requests the second resource R2, its dynamic
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priority is higher than Π(R2), which leads to a denial of the resource access by the
implemented ceiling check. The consequence of this is a deadlock, i.e., τ2 holds R1
but cannot successfully lock semaphore R2 due to the implemented ceiling check,
whilst τ1 cannot enter the critical section guarded by R1. Such execution behavior
with a deadlock can also be demonstrated by a running example in RTEMS, which
will be released on Github. An acquisition in the opposite order would be accepted.

To correct the mismatch, an adaption to the priority ceiling check is proposed
in Listing 5.11 for coremuteximpl.h. The current method checks the thread’s
potentially elevated dynamic priority. In our proposal, it would compare the
thread’s base priority with the priority ceiling of the newly requested resource. After
applying the correction, all stated properties are successfully verified.

1 if (
2 owner->Real_priority.priority
3 < the_mutex−>Priority_ceiling.priority
4 ) {
5 _Thread_Wait_release_default_critical( owner, &lock_context );
6 _CORE_mutex_Release(&the_mutex−>Recursive.Mutex, queue_context);
7 return STATUS_MUTEX_CEILING_VIOLATED;
8 }
9 //@ assert Base_Priority(owner) >= Mutex_Priority(the_mutex);

Listing 5.11: Proposed correction for the priority ceiling check.

5.5.2 Verification of MrsP in RTEMS

In this section, we verify the MrsP [BW13] officially implemented in RTEMS, which
is designed for semi-partitioned fixed priority task systems on multiprocessors. We
adopt our verification framework to ensure whether the corresponding implemen-
tation derives the specified properties of the MrsP. One highlight of the MrsP is
the help mechanism that employs a spin-waiting task to progress the execution of
the current blocked task which holds the resource. However, a seize operation can
be performed while being scheduled in the presence of the help mechanism. This
requires the priority ceiling of the seized resource to be determined with a caution,
which is of key interest in this work.

The protocol functions that are going to be verified are listed in Table 5.5, where
_MRSP is the common prefix of all function names in the table. From the verification
perspective, similar preprocessing in Section 5.5.1 is necessary for the implementation
of MrsP as well. The help mechanism can be assumed to be implemented correctly
as other OS utilities, as long as dynamic priorities and ceilings are managed correctly.
In addition, the verification is based on one arbitrary thread that performs the
analyzed operation. Any other threads which might interact with it are assumed
to behave correctly. A successful verification implies that this assumption holds as
well. The properties of the original MrsP are as follows:
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1. Each task τi is assigned to a specified processor Pm, and critical sections are
executed locally, unless the help mechanism is applied.

2. Each resource zj has one local priority ceiling for each processor Pm, which is
defined by the highest priority of every task assigned to Pm that requests the
resource: Π(Rj , Pm) = max {π(τi) ∣ τi requests Rj on Pm}.

3. For local resources that are not shared between processors, the ICPP rules are
applied.

4. For global resources, the ICPP inheritance mechanism is applied with their
local priority ceilings. If the requested global resource is not available, the
requesting tasks spin-wait on their own processor in a FIFO order.

5. Help mechanism: a spin-waiting task for accessing to a resource must be able
to help (by offering its computation time to) the current owner of the resource
in case the owner is preempted within the critical section.

In fact, the help mechanism in the original design of the MrsP by Burns and
Wellings [BW13] can cause additional local blocking, since threads are allowed to
acquire priority-promoting resources while being helped on other processors, which
may preempt threads dispatched on their home processors. Garrido et al. [GZB+17]
suggested to resolve this issue by postponing the effect of inherited priorities to the
time when the thread returns to its home processor. The verified implementation
coincidentally realizes the same concept by dispatching idle threads to run subsidiary
for threads that migrate to seek help by Catellani et al. [CBH+15].

Abstractions and Function Contracts

The multiprocessor setup requires further abstractions and adaptations. While some
OS utilities’ stub contracts designed for the verification of ICPP can be reused,
the others need to be wrapped with a new contract. For example, the function in
Listing 5.12 retrieves a thread’s home node, i.e., the scheduler node for its original
processor (The first formally described property). However, it is retrieved as a chain
element via several nested function calls and then extracted by a macro. This macro
is expanded over multiple definitions and is eventually based on a compiler-specific
offset function, which is not able to be formulated in ACSL contracts or logic
functions.

Since the derivation reaches deeply into the OS specific functions, it becomes a
target for abstraction. Instead of tracing the complete call and macro hierarchy, we
declare a global ghost pointer g_homenode of the type Scheduler_Node to represent
the executing thread’s home scheduler node in the context of the verification. The
getter function is specified by an ACSL contract to return a reference to that
scheduler node in Listing 5.12. The ghost object is then said to be valid by the
preconditions of the verified functions, which ensures the validity of dereferencing
and access to its fields. Therefore, we assume the ghost object is equivalent to a
scheduler node retrieved by the original utility function.
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1 // variable defined in mrspimpl.h
2 //@ ghost extern Scheduler_Node ∗g_homenode;
3 /∗@ requires \valid(the_thread);
4 assigns \nothing;
5 ensures \result == g_homenode; ∗/
6 RTEMS_INLINE_ROUTINE Scheduler_Node ∗_Thread_Scheduler_get_home_node(const

Thread_Control ∗the_thread);

Listing 5.12: Abstraction of the function that returns a thread’s home node.

Table 5.5: Functions for acquiring and releasing a resource under MrsP.

Protocol Function Purpose
_Seize Acquire an available or wait for a locked resource
↪ _Claim_ownership Performed if the resource is free
↪ _Wait_for_ownership Performed if the resource is used on another

processor
↪ _Raise_priority Always performed to run at the resource’s local

ceiling
_Surrender Release a locked resource and pass it to the first

(if any) waiting task

We also need to abstract the local resource priority ceilings for each processor
(The second formally described property). A task has to raise its priority to the local
priority ceiling of the resource that is requested. From the verification perspective,
the task’s assigned processor may be arbitrary, but fixed, and can be modeled by
another ghost variable const int g_core. The maximum number of processors
configured in the architecture-specific cpu.h files is 32, which can be formulated as
a constraint for the variable g_core. It also defines the number of valid entries for
a resource’s local ceilings. The detailed function contract is omitted here, but is
available in our Github release [Egi22].

The inheritance and revocation of priorities are modeled by the predicates
PriorityInherited and PriorityRevoked similarly to the verification of ICPP.

The deep integration of the helping mechanism (the fifth formally described
property) into the scheduler infrastructure of RTEMS allows it to be separated
from MrsP’s remaining properties. From a verification perspective, the helping
mechanism can be assumed to be implemented correctly, similar to other operating
system utilities, as long as dynamic priorities and ceilings are managed correctly.
Furthermore, assuming correctness for queue operations implies that both an enqueue
operation and a surrender operation on a non-empty queue will always be successful.
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Contracts for MrsP-Seize

When designing the contracts for the seize operation and its corresponding functions,
a ceiling check similar to the function, i.e., _CORE_ceiling_mutex_Set_owner in
ICPP is detected, which matches the second formally described property. Inside
_MRSP_Raise_priority, the priority of the executing thread is checked against
the local ceiling of the requested resource. The comparison is performed with the
current scheduler node’s dynamic priority rather than with the thread’s base priority.
The above implemented properties match the third and forth formally described
properties. As a result, the current implementation of the seize operation of MrsP
in RTEMS does not allow an arbitrary sequence of resource requests if they are not
properly nested. However, the implementation is valid only under one assumption:
a thread acquiring nested resources always requests them in a non-descending order
of priority ceilings. The assumption is translated to a precondition in the successful
behaviors of the affected functions.

A resource that is additionally acquired while being helped by a waiting thread
does not necessarily have a priority ceiling for the foreign processor to which the
thread has migrated. Instead, the migrated thread always inherits the resource’s local
ceiling stored for its home processor and does not affect the priority of the helping
thread. This feature indicates that the ceiling check correction in Section 5.5.1 could
be applied for multiprocessor systems as well. As long as the thread still holds
the resource it is helped with, it stays in the migrated-to processor and runs at a
legitimate priority. The inheritance of a new ceiling becomes effective as soon as the
thread returns back to its home scheduler.

Please note that the operation described in the fourth formally described property,
where the requesting tasks spin-wait on their own processor in a FIFO order when
the requested resource is not available, is assumed to be correctly implemented. This
assumption is based on the spinning macro and queue operations being provided by
the system-level functionalities.

Contracts for MrsP-Surrender

The surrender operation for MrsP has to be handled carefully due to possible waiting
threads. The contract is shown in Listing 5.13, where the possible waiting tasks
can revoke the surrendered resource’s priority ceiling. Threads waiting for the
resource spin in the corresponding FIFO queue. Therefore, based on the contents
of that queue, we can distinguish the behavior with the assistance of the predicate
MrsPThreadsWaiting in Listing 5.14. In case there is no waiting thread, the resource
owner (which corresponds to the queue owner) is simply reset to NULL. On the other
hand, if the waiting queue is not empty, the first thread is set to be the succeeding
owner. These operations are ensured by the stub contract for the queue’s surrender
function _Thread_queue_Surrender_sticky in Listing 5.15. This function ensures
that the ownership is passed to the next thread and the affected tasks’ priorities are
updated. The new resource owner, represented by the thread, can be abstracted by
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the ghost variable g_new_owner. In both cases, the surrendering thread loses the
inherited priority.

1 /∗@
2 requires \valid(mrsp) && \valid(&mrsp−>Wait_queue.Queue) &&
3 \valid(executing) && \valid(g_homenode);
4 behavior surrender_no_successor:
5 assumes MrsP_Owner(mrsp) == executing;
6 assumes ! MrsPThreadsWaiting(mrsp);
7 ensures MrsP_Owner(mrsp) == NULL;
8 ensures PriorityRevoked(executing, MrsP_Ceiling(mrsp));
9 ensures Executing_Priority >= \old(Executing_Priority);

10 ensures \result == STATUS_SUCCESSFUL;
11 behavior surrender_successor:
12 assumes MrsP_Owner(mrsp) == executing;
13 assumes MrsPThreadsWaiting(mrsp);
14 ensures PriorityRevoked(executing, MrsP_Ceiling(mrsp));
15 ensures Executing_Priority >= \old(Executing_Priority);
16 ensures MrsP_Owner(mrsp) == g_new_owner;
17 ensures \result == STATUS_SUCCESSFUL;
18 behavior surrender_fail:
19 assumes MrsP_Owner(mrsp) != executing;
20 ensures \result == STATUS_NOT_OWNER;
21 disjoint behaviors;
22 complete behaviors;
23 ∗/
24 RTEMS_INLINE_ROUTINE Status_Control _MRSP_Surrender(
25 MRSP_Control ∗mrsp,
26 Thread_Control ∗executing,
27 Thread_queue_Context ∗queue_context ){/∗...∗/}

Listing 5.13: Function contract of the MrsP surrender operation.

The actual transfer of the ownership happens in the counterpart during the
waiting thread’s seize operation, by the queue function _Thread_queue_Enqueue_-
sticky. When the function is called successfully, the calling thread is guaranteed
to receive the ownership of the queue. Furthermore, the waiting thread is expected
to have raised its priority to the resource’s local priority ceiling as expressed by the
annotations of the seize operation. Therefore, the surrendering thread does not have
to take care of priority manipulations for other tasks.

1 /∗@ predicate MrsPThreadsWaiting(MRSP_Control ∗m) =
2 m−>Wait_queue.Queue.heads != NULL;
3 ∗/

Listing 5.14: Helper predicate to determine if a resource wait queue is empty.
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1 /∗@
2 requires \valid(queue);
3 requires queue−>owner == NULL;
4 assigns queue−>owner, prioritiesUpdated;
5 ensures queue−>owner == g_new_owner;
6 ensures prioritiesUpdated;
7 ∗/
8 void _Thread_queue_Surrender_sticky(
9 Thread_queue_Queue ∗queue,

10 Thread_queue_Heads ∗heads,
11 Thread_Control ∗previous_owner,
12 Thread_queue_Context ∗queue_context,
13 const Thread_queue_Operations ∗operations );

Listing 5.15: Stub contract for the surrender operation on a queue for MrsP.

Verification with Frama-C

As explained earlier, the official implementation of the seize operation of MrsP in
RTEMS does not allow an arbitrary sequence of resource requests if they are not
properly nested. Additionally, we introduce an assumption that a thread acquiring
nested resources must request them in a non-descending order of priority ceilings.
This is combined with the derived function contracts. After applying the remedy of
ICPP and the introduced assumption, all the implemented functions are successfully
verified with Frama-C and wp, i.e., satisfying the original definition of MrsP. We
also ensure that the help mechanism conforms to the suggestions proposed by
Garrido et al.[GZB+17]. In case the implementation of the ceiling check and the
priority retrieval are modified, the annotations can be adapted accordingly and the
verification process can be reattempted.

5.5.3 Verification of DGA in RTEMS

In this section, we verify the implementation of DGA in RTEMS. The current
implementation only supports the OCS task model. This implies that each task
contains only one non-nested critical section.

Table 5.6 lists the protocol functions set for verification, with all function names
bearing the common prefix _DGA. From a verification perspective, we applied a
preprocessing approach to the DGA implementation, as detailed in Section 5.5.1.

The core properties of DGA that are to be verified are as follows:

1. Forced Execution Order: Within a single hyper-period, each task receives a
unique set of orders for its jobs. This order designates the sequence of jobs for
the dedicated shared resource accesses during that hyper-period.

2. Non-Work-Conserving Mechanism: Each resource retains an execution order.
A job can only access the shared resource if it holds the corresponding order.
If not, the job is not able to lock the shared resource, even if it is available,
i.e., not held by another task.
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Table 5.6: Functions for acquiring and releasing a resource under DGA.

Protocol Function Purpose
_Set_Thread Set the ticket value
_Seize Acquire an available or self-locked resource
↪ _Set_owner Set resource owner
↪ _Wait_for_ownership Performed if the resource is used on another processor

or ticket does not match
_Surrender Release a locked resource and check the head of the

wait queue

As highlighted in Section 5.3.3, the core principle of the DGA implementation
is ensuring critical sections of jobs requesting the same shared resource execute
in a predefined order. This is achieved using a ticket-based approach to regulate
execution order. Consequently, in addition to the seize and surrender functions, the
Set_Thread function to initialize the ticket system is also verified.

DGA Set Thread

This section describes the function invoked by the API, which is designed to set the
ticket value for the calling task. All associated contracts are detailed in Listing 5.16.

To ensure data integrity and thread safety, the function initiates by entering
a critical section, thereby safeguarding the data structure from concurrent access.
Following this, it checks if the executing thread’s ticket number is 0. This status
indicates the thread’s first-time access to the DGA_Control structure. In such cases,
the function assigns a ticket number to the thread and subsequently logs it into
the ticket_order array of the DGA_Control structure at a predetermined position.
However, if the executing thread’s ticket number is not 0, the function, instead of
allocating a new ticket number, logs the existing ticket number in the ticket_order
array of the DGA_Control structure. The execution order is forced by using the
ticket mechanism, which matches the first formally described property.

Upon completing these steps, the function exits the critical section. Upon
successfully executing its operations, the function returns a STATUS_SUCCESSFUL
status. The encompassing functional contract in 5.16 details two behaviors while also
underlining the dependencies altered during the thread setting function’s execution.

DGA Seize

In the DGA seize operation, the function checks the ownership status of the shared
resource. When the semaphore owner is set to NULL and the requesting task has
a valid ticket, the function triggers _DGA_Claim_ownership, thereby ensuring that
the executing thread claims ownership of the DGA semaphore. However, if the
semaphore is already under the ownership of the requesting task, the function
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1 /∗@
2 requires \valid(dga) && \valid(executing) && \valid(queue_context) ;
3 assigns executing−>ticket.ticket, dga−>ticket_order[position], executing−>ticket.owner ;
4 ensures \result == STATUS_SUCCESSFUL;
5 behavior no_ticket_number:
6 assumes executing−>ticket.ticket == 0;
7 assigns executing−>ticket.ticket, dga−>ticket_order[position], executing−>ticket.owner ;
8 ensures dga−>ticket_order[position] == executing−>ticket.ticket;
9 behavior else:

10 assumes executing−>ticket.ticket != 0;
11 assigns dga−>ticket_order[position];
12 ensures dga−>ticket_order[position] == executing−>ticket.ticket;
13 complete behaviors;
14 disjoint behaviors;
15 ∗/
16 RTEMS_INLINE_ROUTINE Status_Control _DGA_Set_thread(
17 DGA_Control ∗dga,
18 Thread_Control ∗executing,
19 Thread_queue_Context ∗queue_context,
20 int position
21 );

Listing 5.16: Function contracts for _DGA_Set_thread.

promptly issues a STATUS_UNAVAILABLE status, which indicates that the thread is
not permitted to seize the DGA semaphore again.

In scenarios where the current task either lacks a valid ticket or the requested
shared resource is already in a locked state, i.e., owner != NULL, the function
proceeds to assess the wait argument. If this argument is set to true and the
semaphore owner differs from the requesting task, the function employs _DGA_Wait_-
for_ownership to wait for the semaphore’s ownership. Conversely, if the argument
is false and the semaphore owner is not the requesting task, the function directly
returns a STATUS_UNAVAILABLE status, denoting the thread’s inability to acquire the
DGA semaphore. Such operations match the second formally described property.

All subsequent function calls are rigorously verified within the framework to
ensure the integrity of the Seize functionality. A detailed representation of these
behaviors, along with their associated dependencies and results, can be found in
Listing 5.17. Please note that the ordered ticket queue is implemented using a
red-black tree. This functionality is facilitated by the RTEMS API, which is, for
the scope of this discussion, assumed to function correctly.

DGA Surrender

Within the scope of the DGA surrender operation, the function first assesses whether
the executing thread holds the current ownership of the DGA. If the current thread
is not the owner, the function promptly returns a STATUS_NOT_OWNER status. Con-
versely, once ownership is confirmed, the function augments the DGA semaphore’s
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1 /∗@
2 requires \valid(dga) && \valid(executing) && \valid(queue_context) ;
3 behavior noOwner:
4 assumes DGAMutex_Owner(dga) == NULL && DGA_has_valid_ticket(dga, executing);
5 assigns dga−>Wait_queue.Queue.owner;
6 ensures \result == STATUS_SUCCESSFUL;
7 behavior semaphoreExecuting:
8 assumes DGAMutex_Owner(dga) == executing;
9 ensures \result == STATUS_UNAVAILABLE;

10 behavior semaphoreWaitForOwnership:
11 assumes DGAMutex_Owner(dga) != executing && DGAMutex_Owner(dga) != NULL &&

wait;
12 ensures \result == STATUS_SUCCESSFUL;
13 behavior else:
14 assumes DGAMutex_Owner(dga) != executing && DGAMutex_Owner(dga) != NULL && !

wait;
15 ensures \result == STATUS_UNAVAILABLE;
16 disjoint behaviors;
17 ∗/
18 RTEMS_INLINE_ROUTINE Status_Control _DGA_Seize(
19 DGA_Control ∗dga,
20 Thread_Control ∗executing,
21 bool wait,
22 Thread_queue_Context ∗queue_context
23 );

Listing 5.17: Function contracts for _DGA_Seize.

Table 5.7: Derived proof goals and required time of the verification of ICPP, MrsP
and DGA.

Proof Goals
Qed Alt-Ergo

ICPP Functions 51 44
MrsP Functions 75 27
DGA Functions 109 7

ticket value by 1. Following this, it seeks the subsequent owner, identifying it as the
lead thread within the DGA wait queue through the _Thread_queue_First_locked
function. Given the task presents a valid ticket, the function subsequently ex-
tracts this owner from the wait queue using the _Thread_queue_Extract_critical
function. In the absence of a valid ticket, the semaphore’s owner is reset to NULL.

As a final step in its sequence of operations, the function returns a STATUS_-
SUCCESSFUL status. The detailed breakdown of these functionalities can be reviewed
in Listing 5.18.
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1 /∗@
2 requires \valid(dga) && \valid(executing)&& \valid(queue_context);
3 assigns dga−>Wait_queue.Queue.owner,dga−>current_position;
4 behavior notOwner:
5 assumes DGAMutex_Owner(dga) != executing;
6 ensures \result == STATUS_NOT_OWNER;
7 behavior surrenderPossible:
8 assumes DGAMutex_Owner(dga)!= NULL && DGAMutex_Owner(dga) == executing;
9 ensures \result == STATUS_SUCCESSFUL;

10 complete behaviors;
11 disjoint behaviors;
12 ∗/
13 RTEMS_INLINE_ROUTINE Status_Control _DGA_Surrender(
14 DGA_Control ∗dga,
15 Thread_Control ∗executing,
16 Thread_queue_Context ∗queue_context
17 );

Listing 5.18: Function contracts for _DGA_Surrender.

5.5.4 Overhead and Discussion

To verify the protocol-specific functions, we annotate every encountered function,
together with appropriate abstractions from the OS’s details. The corresponding
source code can be reviewed in [Egi22]. Please note that the verification framework
does not build or execute the annotated source code, so the annotation is only for
the verification purpose.

To measure the verification time, we ran Frama-C without its GUI and verified
the protocol functions using the argument -wp-fct f1,f2,...,fn to Frama-C. The
process ran in a single-threaded mode on an Intel Core i7-8700K CPU with 16 GB of
RAM. The computation time for each protocol is less than 10 seconds, which includes
preprocessing, transformation and normalization of the protocol implementation,
the generation and simplification of proof obligations as well as the delegation of
selected proofs to Alt-Ergo [OCa20]. The results for derived proof goals of the
verification of ICPP, MrsP, and DGA are listed in Table 5.7.

Although there are corresponding functions for the acquire and release opera-
tions in ICPP, MrsP, and DGA protocols with ..._Seize and ..._Surrender, the
distinction of protocol-specific functions is still challenging. In RTEMS, the imple-
mentations of the protocol rules are spread over various sub-functions. Furthermore,
the implementation includes several additional checks and actions, which are not
formally described by the protocol specifications.

For ICPP, several additional check mechanisms are added:

• check the correctness of setting the resource’s priority ceiling,
• check if the task reclaims an already locked resource or claims a locked resource

by enqueueing,
• check if the task is allowed to access the resource, and
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• the resource owner actively switches its state to blocked, i.e., self-suspending.

For MrsP, the priority ceiling check is included as well, along with an extension
which runs idle tasks to substitute helped tasks during their migration phase to
improve nested resource access.

These rules above have to be split across the function contracts, where a called
function has to be one part of the caller’s function contract. The call for one
function can generate a call chain of protocol-specific functions. A leaf function’s
preconditions have to be ensured by the calling functions. In turn, its ensured
postconditions can be relevant to the root function along with its contract.

Our case studies show that a protocol is not necessarily implemented exactly as
specified. In practice, the implementation has to cover a broad variety of possible
configurations, e.g., a task requests a self-locked resource or the resource owner is
self-suspending. The approach to handle such difference in this work is to require
ICPP’s invariant as a precondition. Then the protocol-conforming subset of the
actual implementation can be verified efficiently.

With the introduced techniques, further properties could be verified. For example,
the basic locking which was not considered as part of the verification, could be
included. A possible approach is to introduce a boolean ghost status variable for
each locking level, e.g., for the thread-, mutex- and MrsP-queues. Since the analyzed
functions are called from an API-function, the state of the locks at the time of the
call must be included in the preconditions of the called functions. The contracts
of the locking primitives that are currently bypassed could be changed to ensure
the correct state of their affected locks in the postcondition. The contracts of the
protocol functions could then express the properties of the locks by referring to
the ghost variables’ states. To complete the specification of memory assignments,
some top-level functions, e.g., _MRSP_Seize and _MRSP_Surrender would have to
be complemented with assigns clauses in order to make sure that they have no
unspecified side-effects. Such annotations become important if these functions are
included in a possible verification of the invoking API functions.

The proposed verification framework can also be applied on other OSes, with the
assumption that all the low-layer functions are implemented correctly in the targeted
OS, e.g., mutexes, queues, and threads. For each targeted OS, the definitions of the
used helper predicates and logic functions have to be adapted. Once the necessary
OS utilities are abstracted, these basis can be used to verify the implementations of
multiple protocols. For each implemented protocol, the properties derived from the
formal definition for the seize and the surrender operation should be portable to
the targeted OS with reasonable effort. In the end, the function contracts for the
detailed implementation of a dedicated resource synchronization protocol can be
designed and verified.
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5.6 Summary

In the domain of real-time systems, numerous resource synchronization protocols
have been proposed and studied since the 1990s to tackle the challenges posed by
concurrent tasks sharing resources. While a significant portion of research has been
dedicated to theoretical worst-case timing analysis, the practical realization details
and associated pitfalls have received less attention. Even though various protocols
are now supported across RTOSes, ensuring that these implemented protocols (often
contributed by multiple individuals) consistently uphold proven properties remains
a pressing challenge for the community.

In this chapter, we demonstrate the applicability of the newly proposed DGA
for multiprocessor resource synchronization by detailing its implementation in
LITMUSRT and RTEMS. Through comprehensive synthetic experiments, the mea-
sured overheads show that our implementations are comparable to FMLP and
MrsP, which are officially supported in LITMUSRT and RTEMS, respectively. When
accounting for real system overhead, this provides system designers with a clearer
and more decisive understanding of the performance of resource synchronization
protocols. For LITMUSRT, the source code for the OCS task model can be reviewed
in [Shi18], and for the MCS task model in [Shi19]. For RTEMS, the source code
corresponding to the OCS task model is available in [SPS22].

Addressing the imperative of implementation accuracy, we introduce a robust
framework to formally verify existing protocol implementations within RTOSes.
Our approach specifies the intended behaviors of the implementation in the form of
function contracts. We then apply deductive verification to determine whether each
component aligns with its formal description, assuming the foundational primitives
are implemented correctly. Our verification framework enables modular formal
verification of functional components. By defining and isolating the analysis target
from its dependencies, the workflow of the proposed framework retains its conceptual
independence from the platform.

Practical applications of our verification framework to the ICPP and MrsP
protocols in RTEMS underscore its applicability and importance to real-world
RTOSes. Moreover, the discovery of mismatches in the RTEMS implementations
highlights its effectiveness. Post the introduction of a recommended correction, the
implementations of ICPP and MrsP (subject to one additional assumption) were
successfully verified. Furthermore, the implementation of the DGA in RTEMS was
formally verified by applying the proposed framework, solidifying its correctness.
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6.1 Overview

Statistical and machine learning algorithms often possess a high degree of param-
eterizability, making their performance particularly sensitive to hyper-parameter
configurations. For instance, the Multi-layer Perceptron (MLP) [GD98] requires
careful selection of various hyper-parameters, such as the number of layers, the
number of neurons in each layer, the type of activation functions, and learning
strategies. Proper configuration of these parameters is imperative before deploying
a machine learning model in a real-world scenario.

While hyper-parameter tuning is vital for achieving optimal predictive perfor-
mance, it becomes increasingly resource-intensive as the size of the data grows
and the search space expands. Model-Based Optimization (MBO), also known
as Bayesian optimization [JSW98], offers a solution to this challenge. MBO ad-
dresses this expensive optimization by using Gaussian process (GP) regression to
approximate the predictive performance based on the hyper-parameters.
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However, the conventional approach to hyper-parameter tuning, which involves
training and evaluating a dedicated machine learning model on centralized data,
faces limitations in distributed settings. Centralized data collection and processing
may be infeasible due to concerns about privacy and constraints on computational
capacity and storage on each device.

Challenges in current approaches: The conventional tuning process, which
depends on centralized data, is becoming increasingly infeasible in distributed
embedded systems. An emergent alternative suggests that each node tunes its
hyper-parameters independently using its local data. However, this can introduce
variability in the performance of the machine learning algorithm due to the limited
size of individual training datasets which can lead to issues like generalization error,
poor convergence, and inconsistent performance.

The primary challenge of hyper-parameter tuning in distributed embedded
systems is to effectively utilize these decentralized subsets of data. The goal is to
derive a universal hyper-parameter configuration that is effective across all nodes in
the system. We seek an innovative method for this purpose. The method should
simultaneously: a) increase the average prediction accuracy; b) enhance statistical
stability; and c) improve run-time efficiency.

To the best of our knowledge, only a handful of studies in the field have accounted
for resource constraints [KRL+17; KSL+19], and optimized the execution of MBO on
single multi-core embedded systems with a comprehensive dataset [Kot18]. Notably,
none have applied Model-Parallelism in conjunction with MBO for distributed
embedded systems, which possess limited computational resources and store different
sub-datasets on each node.

This dissertation: We address the challenge of hyper-parameter tuning for
machine learning algorithms on resource-constrained distributed embedded systems.
This challenge is formulated as a distributed black-box optimization problem. That
is, each node, utilizing its local data, operates as an individual black box while the
entire distributed embedded system acts as a collective black box. The goal is to
optimize the system’s performance in terms of mean prediction accuracy, statistical
stability, and run-time efficiency.

To tackle this, we introduce a novel framework called MODES. This framework
employs Model-Based Optimization on resource-constrained Distributed Embedded
Systems to fine-tune hyper-parameters for machine learning algorithms both locally
and efficiently. MODES offers two distinct optimization modes:

• Black-box mode (MODES-B) in Section 6.3.2: This mode considers the entire
ensemble as a singular black box and optimizes the hyper-parameters of each
individual model jointly by considering the weights for different nodes

• Individual mode (MODES-I) in Section 6.3.3: Here, all models are considered
as replicates of a single black box, facilitating parallelized optimization in a
distributed context.
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Notably, MODES is designed for versatility, catering to a broad spectrum of appli-
cations with minimal adjustments and the capability for mode switching.

For clarity, we outline the foundational principles of Model-Based Optimization
in Section 6.2. Following this, Section 6.3 offers an exhaustive exposition of our
distributed model-based optimization strategy, which encapsulates the underlying
system model settings and assumptions, designs of both modes tailored to specific
optimization objectives. We also provide a comparative analysis of these modes.
Lastly, we present experimental evaluations, demonstrating the effectiveness of our
approach, in Section 6.4.

6.2 Model Based Optimization

Model-Based Optimization (MBO) aims to solve the following optimization problem:

x∗
= arg max

x∈X
f(x)

for a given function f(x)∶X → R with X ⊂ Rp. We assume that the true expensive
black box function can be approximated through a surrogate. This surrogate is a
regression method that is comparably inexpensive to be evaluated. In this work we
use a Gaussian process regression, which is a typical choice for MBO. To start the
optimization, an initial design D of k points, laid out in a Latin hyper-cube design
across X , is evaluated on the expensive function and yields the outcomes y. In the
following, the sequential model-based optimization iteratively repeats the following
steps until a predefined budget is exhausted:

1. Using all past evaluations D and their outcomes y, a Gaussian process is fitted,
which then serves as a surrogate to globally estimate f .

2. An acquisition function is derived from the current surrogate.
3. The acquisition function is optimized to determine the most promising point

x̂: x̂ = arg maxx∈X acq(x).
4. y = f(x̂) is evaluated, x̂ and y are added to D and y.

The acquisition function must balance two key considerations. First, it must explore,
i.e., evaluate points where the surrogate’s prediction is uncertain. Second, it must
exploit, i.e., evaluate points predicted to be optimal by the surrogate. The final
optimal result x̂∗ is the input that leads to the maximal observed objective value,
e.g., prediction accuracy.

A popular acquisition function is the expected improvement (EI). Using a
Gaussian process as a surrogate yields a Gaussian posterior with mean µ̂(x) and
standard deviation ŝ(x) at each point x. Accordingly the expected improvement
can be derived as follows:

EI(x) = E(max(µ̂(x) − ymax),0)

= (µ̂(x) − ymax)Φ(
µ̂(x) − ymax

ŝ(x)
) + ŝ(x)φ(

µ̂(x) − ymax
ŝ(x)

)
(6.1)
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where Φ is the distribution, and φ is the density function of the standard Gaussian
distribution. Here, ymax represents the best observed value in y so far. This
classical formulation of MBO only yields one proposal x̂ in each iteration. In our
approach, obtaining multiple proposals in each iteration is necessary to leverage
parallel computing infrastructures. The Batch expected improvement (qEI) [GLC10;
RMW14] is introduced as an acquisition function designed for multiple proposals.
It transforms the p-dimensional optimization problem for finding one promising
point into a p ⋅ q-dimensional optimization problem for finding q promising points.
As the qEI lacks of an exact analytical representation for q > 2 it is usually solved
approximately by Monte Carlo (MC) sampling methods. In BoTorch [BKJ+20] the
qEI for X = (x1 . . .xq)

′ is calculated as follows: We sample ỹ ∈ Rq from the joint
posterior of X, which is given by the Gaussian process surrogate. We calculate
the individual improvements I = max(ỹ − ymax, 0). Then, we obtain max(I) for the
current sample. Finally, we repeat those steps multiple (e.g. 1000) times and average
over the obtained maximal improvements to obtain an MC approximation of the
qEI for a given X. To obtain the set of q points that maximizes the qEI, BoTorch
uses gradient-based optimization.

The extensions of the qEI to noisy problems, namely the qNEI [BKJ+20], can be
derived by replacing the fixed value ymax with max(ỹobs) from the sample (ỹ, ỹobs)

′

of the joint posterior of (x1 . . .xq xobs,1 . . .xobs,t)
′, with D = (xobs,1 . . .xobs,t)

′.
Similarly the NEI can be calculated by introducing MC-sampling into the

calculation of the EI. Therefore, we replace ymax with the average of multiple
samples of max(ỹobs).

For single proposal MBO, we apply the EI and NEI methods in MODES-B. In
contrast, MODES-I employs parallelization with multiple proposals using the qEI
and qNEI criteria.

6.3 Distributed Model Based Optimization

This section first introduces the model of the distributed embedded system. After-
wards, to achieve improved mean prediction accuracy, enhanced statistical stability,
and better run-time efficiency, two categories of proposed MODES with different
structures are explained in detail.

6.3.1 Distributed Embedded Systems

Within a distributed embedded system, also referred to as a cluster, multiple
embedded devices collaborate to achieve a unified objective. In this dissertation,



6.3. Distributed Model Based Optimization 159

we focus on a homogeneous cluster1 in which all nodes exhibit identical attributes.
Specific assumptions for this cluster are as follows:

• The cluster comprises n nodes, labeled as ES1, ES2, . . . ESn. Each of these
nodes represents a distinct embedded device.

• Every node has finite storage capacity, constraining the volume of data it can
retain.

• The datasets from different nodes, which can be viewed as subsets of a
comprehensive dataset, vary at least partially.

• Node interconnections have bandwidth restrictions. This limitation constrains
data transfers to small sizes, particularly hyper-parameter configurations and
performance metrics like classification accuracy.

In our proposed architecture, a host-client paradigm is adopted across all nodes.
While each node operates a designated machine learning algorithm, solely one node
executes the MBO algorithm. This particular node, termed the host, concurrently
runs both the MBO and its designated machine learning algorithm. In contrast, the
other nodes, i.e., clients, solely execute their specific machine learning algorithm.

Due to the inherent computational constraints of our embedded systems setup,
we deploy only lightweight machine learning algorithms. This results in a comparably
diminutive hyper-parameter search space. The number of hyper-parameters intrinsic
to the machine learning algorithm is denoted by p.

6.3.2 Black-box Mode MODES-B

In MODES-B, we treat the entire distributed system as a singular black box.
Both the hyper-parameter settings and the weights of individual nodes are jointly
optimized, aiming to enhance performance using ensemble learning. The whole
system only generates one prediction at a time. This approach finds utility in various
applications. For instance, it can be applied for air quality predictions using all
embedded sensors in a given area [BXF+18], and object recognition by using images
taken from different angles [GDO+12].

The structure of MODES-B is shown in Figure 6.1, and the corresponding
workflow is presented in Algorithm 8. Initially, MBO constructs the surrogate,
denoted as S. At the beginning of each iteration, MBO only generates one set
of hyper-parameters with the highest expected improvement with respect to the
current surrogate, comprising a total of (n × p + n) hyper-parameters, represented
as X = x1, . . . , xn,w1, . . . ,wn. In each setting, first set x1 contains p elements that
represent the hyper-parameters of the dedicated machine learning model for the first
node, second set x2 represents the hyper-parameters for the second node and so on.

1While our proposed method can be extended to heterogeneous clusters, doing so would necessi-
tate efforts to synchronize the operations across different nodes. For instance, one might assign
heavier workloads to nodes with more resources and superior computational capabilities. Such
considerations, however, are out of the scope of this dissertation.
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Figure 6.1: MODES-B: The whole distributed embedded system is treated as a
single black box.

Moreover, n weights indicating the importance of each node and its local data are
represented through X as well.

The dedicated machine learning model ML is trained on each node by using the
given hyper-parameter setting (i.e., xj where j is the node id) and the local sub-
dataset. Each node generates one local performance result (accuracy of classification)
of the trained machine learning model by using an evaluation test set. The final result,
Y , is computed as the weighted average of results from all nodes: Y = ∑

n
j=1wj × yj ,

where yj is the local performance result of node j, and ∑nj=1wj = 1. In practice,
each weight lies in the range [0.1, 1]. Afterwards, a normalization is operated to
obtain the real weight for accuracy calculation, i.e., wj = wj

∑ni=1wi
. At the end of each

iteration, this final result updates the surrogate in the MBO. The process is repeated
until the maximum number of iterations is reached or the time budget is exhausted.

In this mode, the search space dimensionality amounts to n × p + n. Therefore,
the large number of nodes (n) in the dedicated cluster and/or the large number
of hyper-parameters (p) of the dedicated machine learning model can lead to a
high-dimensional search space. The computational demand for MBO to update its
surrogate and propose new settings scales with the search space size. However, due
to the limited computational capability, embedded systems may not be able to find
the optimal hyper-parameter setting within such an expansive search space and a
given time frame.

To address this challenge, we mandate that all nodes adopt identical hyper-
parameter settings, while maintaining distinct weights, i.e., ∀i, j ≤ n, i ≠ j ∶ xi = xj
and ∃i, j ≤ n, i ≠ j ∶ wi ≠ wj . As a result, the search space is significantly reduced to
(p + n) dimensions. In each MBO iteration, all the nodes receive the same set of
hyper-parameters, and train the dedicated machine learning model using their local
datasets independently. Afterwards, the evaluation test set is utilized to evaluate
the performance of these trained machine learning models on different nodes, and
the weighted mean is returned to the host node, which is used to update MBO
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Algorithm 8 Workflow of MODES-B
Input: number of nodes n, dedicated machine learning model ML, number of

hyper-parameters p, time budget T , and maximum tuning iterations Itr;
Output: Optimal hyper-parameter setting: HP -B;
1: Initialize: MBO surrogate S, iteration i← 0, time t← 0;
2: while i ≤ Itr and t ≤ T do
3: X ← MBO (S, n, p);
4: for j from 1 to n do
5: yj =ML(xj ,ESj , dataj)

6: end for
7: Y ← ∑

n
j=1wj × yj ;

8: Update surrogate according to (X, Y );
9: i ++;

10: Accumulate consumed time t;
11: end while
12: MBO generates the optimized HP -B according to current surrogate;
13: return HP -B;

surrogate. In the end, we obtain a set of optimized hyper-parameters complemented
by the node weights.

Please note, our proposed MODES-B, which allows distinct hyper-parameters
for each node (i.e., ∃i, j ≤ n, i ≠ j ∶ xi ≠ xj), is also compatible with high-capacity
distributed systems. However, assessing performance on these systems is out of
scope for this work.

6.3.3 Individual Mode MODES-I

In the MODES-I mode, each node is treated as an instance of the same black box.
The whole cluster acts like a multi-processor system and each node serves as a single
processor. This structure enables the parallel application of MBO. In this scenario,
the performance of multiple proposed hyper-parameter settings can be evaluated at
the same time, i.e., each node trains a dedicated machine learning model using one
set of the proposed hyper-parameter settings and its local dataset. In this mode,
improving the timing efficiency is the most important objective, e.g., in some real
world timing-sensitive applications like autonomous driving systems [LAB+11].

Figure 6.2 illustrates the structure of MODES-I, while Algorithm 9 presents
the corresponding workflow. In each iteration, MBO proposes n different hyper-
parameter settings drawing from the insights of the current surrogate and utilizing
either the qEI or qNEI acquisition function as explained in Section 6.2. Each node
uses one hyper-parameter setting to independently train the dedicated machine
learning model using their local data. Afterwards, these trained models are evaluated
by using a local evaluation test set. The individual performance measures, i.e., the
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Figure 6.2: MODES-I: Each embedded system acts as an individual black box.

Algorithm 9 Workflow of MODES-I
Input: number of nodes n, dedicated machine learning model ML, number of

hyper-parameters p, time budget T , and maximum tuning iterations Itr;
Output: Optimal hyper-parameter setting: HP -I;
1: Initialize: MBO surrogate S, iteration i← 0, time t← 0;
2: while i ≤ Itr and t ≤ T do
3: {x1, x2, . . . , xn } ← MBO (S, n, p);
4: for j from 1 to n do
5: yj ← ML({xj , ESj , dataj});
6: end for
7: Update surrogate according to {(x1, y1), . . . , (xn, yn) };
8: i ← i + n;
9: Accumulate consumed time t;
10: end while
11: MBO generates the optimized HP -I according to current surrogate;
12: return HP -I;

accuracy of classification, are sent back to the host node. In our setting, synchronized
updating of surrogate is applied, where the surrogate is updated by MBO only after
all nodes have completed their evaluations. Therefore, the execution duration of
each iteration corresponds to the maximum time taken by any of the nodes. The
iterations are repeated until the time budget is exhausted or the maximum number
of iterations is reached. The optimization result is one hyper-parameters setting
that can be utilized for all the nodes. The entire system can formulate predictions
by averaging outcomes, assigning equal weights across nodes. As an alternative, an
individual node can handle predictions autonomously with compromised robustness.

MODES-I significantly improves the run-time efficiency of the hyper-parameter
tuning process, by fully harnessing the computational resources of every node
within the distributed system, i.e., it evaluates n proposed settings in parallel by
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considering all the information from the local data across various nodes. Although the
performance of the tuned hyper-parameters may not be improved significantly, due
to the fact that different data in different nodes creates noisy results, its applicability
remains robust, especially for time-sensitive operations on distributed embedded
systems. Consider the case of real-time traffic flow prediction, which demands
instantaneous feedback from embedded systems, such as mobile devices, prioritizing
tuning speed over incremental accuracy enhancements. Another illustrative instance
is applications focused on human activity recognition via mobile devices, e.g., mobile
phone or smart watch, which needs fast response (recognition time) according to
the sensor’s signal and the computation power is restricted.

6.3.4 Comparison between MODES-B and MODES-I

The aforementioned MODES-B and MODES-I focus on different requirements with
different assumptions. MODES-B seeks to enhance overall system performance
with respect to prediction accuracy and statistical stability by acknowledging node
heterogeneity. While MODES-I aims at parallelizing the tuning process to improve
efficiency, working on the assumption of high similarity among the hardware setting
of nodes and their local data subsets.

For MODES-B, the entire distributed embedded system operates as a collective
ensemble. Each hyper-parameter setting involves not only the hyper-parameters
for the dedicated machine learning model, but also the weights for different mod-
els. In each iteration of optimization process, only one single proposal is trained
and evaluated in the entire system. In the end, the obtained optimized hyper-
parameter setting is applied for the whole ensemble, and only one classification
result is generated by the system. Theoretically, since the tuned weights represent
the importance of different nodes and corresponding sub-datasets, MODES-B can
outperform other hyper-parameter tuning algorithms if sub-datasets held by different
nodes are imbalanced or some sub-datasets have great noise.

In MODES-I, multiple nodes in a distributed embedded system are treated as
multiple clones of a single node. In addition, the local sub-datasets are considered
as subsets of a consistent dataset. This treatment relies on an assumption that the
optimal hyper-parameters of the dedicated machine learning model for different
nodes are high similar. Therefore, multiple proposals are trained and evaluated on
all the available nodes at the same time, in order to accelerate the optimization
of the corresponding surrogate. Ideally, the tuning process can be sped up by n
times, where n is the number of nodes in the dedicated distributed embedded system.
However, due to the variation of the execution times for different hyper-parameters
on different nodes, some nodes, finishing earlier, must wait for the node taking the
longest time, ensuring synchronized surrogate updates. Hence the improvement of
efficiency is less than n times.

Although asynchronous parallel strategies [JRG+12] as well as scheduling meth-
ods [RKB+16; KSL+19] are developed for heterogeneous run-time of different
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Table 6.1: The comparative analysis of MODES-B, MODES-I, Single, and Central
approaches (notations: + improved, o no change, - decreased).

MODES-B MODES-I Single Central
Privacy + + + -
Data parallelism o + o o
Model parallelism + o o o
Accuracy + o o +
Efficiency o + o -
Statistical Stability + o - +

proposals, the comparison of different surrogate updating strategies is considered
out of the scope. When there are many nodes, the resulting surrogate may not
be able to generate a sufficient number of valuable proposals for evaluating the
machine learning algorithms in parallel in the next iteration. That is, some of the
proposed hyper-parameter settings to be evaluated have to be generated randomly
without any contributions to the corresponding surrogate. Moreover, since each
node can make the prediction independently, MODES-I offers greater scalability
than MODES-B. Thus, adding or removing nodes has no detrimental effect on the
distributed system’s functionality.

Table 6.1 compares all the aforementioned schemes, where Single is that each
node tunes on its local data and Central tunes on centralized data from all nodes.
The performance related features, i.e., accuracy, efficiency, and statistical stability
will be demonstrated in the following section. Please note that Central is not
evaluated as it is considered out of scope.

6.4 Experimental Evaluation

To evaluate the performance of MODES, we deploy it on a distributed embedded
system comprising four nodes. We utilize the emulation platform delineated in
Section 2.4.3, wherein a high-performance AMD server simulates the computational
workload of embedded devices, and a separate GPU server manages the MBO oper-
ations. Our implementation leverages BoTorch [BKJ+20], a Bayesian optimization
library built on PyTorch.

6.4.1 Experimental Setup

We evaluate the MODES framework using four popular real-world datasets, each
with up to 60,000 instances:

1. The MNIST [LCB98] dataset: it contains 60,000 handwritten digits (from 0
to 9) images with 28 × 28 grey-scale resolution. The MNIST dataset is widely
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Table 6.2: The 5 hyper-parameters that are tuned for MLP.

Parameter Type Range
Number of layers N [1, 15]
Units per layer N [10, 150]
Activation Dict. {identity, logistic, tanh, relu}
L2 penalty R [−5,−2] (log-10 scale)
Learning rate for Adam R [−4,−1] (log-10 scale)

used for evaluating the performance of machine learning algorithms. Here, we
fit our learning task as an image classification problem on the MNIST dataset.

2. The Fashion-MNIST [XRV17] dataset: it consists of Zalando’s article images,
where the statistics are exactly the same as the original MNIST dataset,
i.e., with the same number of instances, the same image size, and the same
distribution of different classes. The Fashion-MNIST is more representative
for modern computer vision tasks. It usually serves as a replacement for the
original MNIST dataset when benchmarking machine learning algorithms,
since the original MNIST classification task is easy (e.g., MLP can easily
achieve the accuracy of 95%) and overused in the machine learning domain.

3. The Covertype [BD99] dataset: it is a non-vision dataset as well, coming from
the US Forest Service inventory information. This dataset is originally used
to predict forest cover type from cartographic variables, and it is sensitive
for the model settings (parameter tuning) of some popular machine learning
algorithms (e.g., MLP, SVM and RF). The original dataset contains 581,012
instances and 7 classes. However, the number of instances for different classes
are extremely unbalanced, i.e., 100 times difference. Hence, we downsized the
dataset according to the size of the smallest class, i.e., each class now contains
2,747 instances, and in total 19,229 instances.

4. The HAR [AGO+13] dataset: it consists of 10,299 instances, which are
built from the recordings of 30 subjects performing activities of daily living
while carrying a waist-mounted smartphone with embedded inertial sensors.
Therefore, the HAR dataset naturally fits the distributed embedded systems
scenario and it satisfies the assumptions of MODES well. As a sensing dataset,
six human activities are included, i.e., walking, climbing the stairs, walking
down the stairs, sitting, standing, and laying.

Based on the selected datasets and the computational power of the platform,
two machine learning algorithms that represent the state-of-the-art are selected as
the optimization targets: a) Multi-Layer Perceptron (MLP) [GD98] and b) Random
Forest (RF) [LW+02]. The performance of these two benchmark machine learning
algorithms have been well-reported on the aforementioned datasets, where they
can be used as the references for the performance of our MODES. Moreover, the
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Table 6.3: The 7 hyper-parameters that are tuned for Random Forest.

Parameter Type Range
number of trees N [5, 150]
maximal # of features at every split Dict. {auto, sqrt, log2}
maximal # of levels in trees N [2, 40], or Auto mode
minimal # of samples to split a node N [2, 20]
minimal # of samples at leaf node N [1, 20]
function to measure the quality of a split Dict. {gini, entropy}
usage of bootstrap samples Boolean {True, False}

performances of MLP and RF are both sensitive to the hyper-parameters, which
makes MBO tuning necessary.

To efficiently evaluate the performance of fine-tuned machine learning algo-
rithms, for the most accuracy-sensitive hyper-parameters among all adjustable
hyper-parameters in MLP and RF, we select values based on experience. There
are 5 hyper-parameters for MLP and 7 hyper-parameters for RF need to be tuned,
details can be found in Table 6.2 and Table 6.3, respectively.

To simulate possible patterns of distributed data storage, datasets are pre-
processed. First, each dataset is randomly split into a training set, an evaluation
test set, and an unseen final test set at a ratio of 10 ∶ 1 ∶ 1. The evaluation test
set is used only for hyper-parameter tuning, i.e., to verify the performance of the
proposed hyper-parameter settings. The results are then used to update the MBO
surrogate. The unseen final test set is used to evaluate the final performance of
hyper-parameters, which were optimized using different methods, in their respective
data storage scenarios. Please note that although different evaluation and test sets
can be applied to various nodes in real applications, we use the same evaluation and
test sets for all nodes in our evaluation to eliminate any potential disturbance from
the evaluation and test datasets. Finally, to simulate data storage scenarios in real
distributed embedded systems, a sub-dataset for each node is generated from the
overall training set using the following strategies:

• Uniform Split (D1): Divide the training set equally into four parts.
• Duplicated Split (D2): Each of the four training sets from D1 is augmented

with 30% of data, randomly selected from the other three parts. As a result,
each sub-dataset overlaps with the others.

• Unbalanced Split (D3): Divide the training set unequally with shares of
20%,20%,30%, and 30%.

6.4.2 Selection of Baselines

In order to compare the performance of our proposed methods, 9 algorithms are
evaluated. These algorithms are named based on the following rules: a) B/I/S in
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the first part: MODES-B, MODES-I, or Single is applied. b) EI/NEI in the second
part: expected improvement or noisy expected improvement is applied to generate
proposals for next iteration. For MODES-I, qEI/qNEI is correspondingly applied
when q proposals are generated for parallel execution.

Each MBO tuning procedure has a maximum budget of 100 iterations and 12
hours of runtime. ForMODES-I, only 25 iterations and 3 hours run-time are assigned,
since it can evaluate four different hyper-parameter settings at the same time in each
iteration. In total 100 proposals are evaluated at the end. The optimized hyper-
parameters are applied to train the dedicated machine learning algorithms. To be
fair, the training datasets are the same during hyper-parameter tuning. Finally, the
identical testing data, which is unseen by all methods, is adopted. MBO inherently
involves randomized decisions, including the selection of initial points and proposals
based on surrogates. Thus, analyzing variance is essential to ensure the accuracy of
our evaluation results. We repeated each experimental setting 10 times, to show the
statistical stability of proposed methods.

6.4.3 Experimental Results

We evaluated all combinations and subsequently report the accuracy of the classifi-
cation results for two machine learning algorithms and three data splitting strategies
separately for the different datasets. Since MLP and RF architecture are modularized
and standardized (i.e., Scikit-learn [PVG+11]), the randomness from the algorithm
itself in reloading (training with the same hyper-parameters and the training set) can
be ignored by averaging. This implies that even slight improvements in accuracy are
only due to better hyper-parameter settings. The results are shown in Figures 6.3,
6.4, 6.5, and 6.6.

These results show that the B-EI outperforms all the other methods in most of
the evaluated cases with respect to the mean prediction accuracy and/or statistical
stability. Generally, EI-based methods outperform NEI-based methods in terms of
mean prediction accuracy and statistical stability. This indicates that the MLP and
RF algorithms are inherently noiseless. Although MODES-I (I-q(N)EI) shows less
competitiveness in classification accuracy. It significantly improves the run-time
efficiency, the detailed improvement will be presented in Section 6.4.4. Additionally,
when more overlapping data is incorporated into the training dataset (i.e., transition-
ing from D1 to D2), the performance of I-qEI notably improves. This enhancement
is observed in most evaluated cases and can be attributed to the augmented data
size and heightened similarity across various datasets.

For both MNIST and Fashion-MNIST datasets (Figure 6.3 and 6.4), B-EI shows
its advantages if the data size is unbalanced in different nodes, i.e., D3 datasets.
However, B-EI performs worse than I-qEI and S-EI for D2 datasets, because: a) high
similarity of datasets in different nodes reduces the influence from tuning the weights
of nodes, i.e., simple average in I-qEI already performs well. b) the increased size of
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Figure 6.3: The accuracy of two machine learning algorithms using different hyper-
parameter tuning methods on MNIST dataset.

training data allows each single node to train a machine learning model individually
with good prediction accuracy.

For Covertype dataset, RF outperforms MLP in all the three data splitting
strategies. Hence, only the results for RF are analyzed. In both D1 and D2, B-EI
performs slightly worse than S-EI, since each node can train a machine learning
model with good prediction accuracy based on the relatively easy dataset. However,
for the D3 datasets, where the size of datasets in different nodes is unbalanced, B-EI
outperforms all other methods by considering the weights of different nodes.

Since the HAR dataset has fewer dimensions than MNIST (562:784), considering
the much smaller sample size (1:6), HAR is more difficult to train especially by MLP.
Compared to RF, which is an ensemble of decision trees, MLPs are attributed to
have a higher sensitivity to inputs, which tend to result in a higher risk of deviations
in the case of relatively high dimensional and low-sample sized inputs. Specifically,
when data size in each node is relatively small (D1), B-EI can better reconstruct the
true distribution of HAR dataset through the weighted optimization scheme so as to
achieve a higher accuracy on test dataset, i.e., increase the weights of nodes (learning
with bias) that the distribution of data is closer to the true one. However, when the
size of each dataset increases (D2), the risk of over-fitting decreases [HTF09], i.e.,
the noise compensated in MBO dominates the optimization to prevent over-fitting.
Consequently, NEI-based methods outperform EI-based methods on D2 datasets.
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Figure 6.4: The accuracy of two machine learning algorithms using different hyper-
parameter tuning methods on Fashion-MNIST dataset.

The inherent data imbalance in D3 presents a minor trade-off between weight and
noise. This leads to comparable performance between NEI- and EI-based methods.
The similar phenomenon is also discussed in [CH09]. In most of the evaluated cases,
one of our proposed MODES still outperforms the Singles with respect to mean
prediction accuracy, and show better statistical stability. In contrast, RF shows more
robust behavior for HAR dataset than MLP does, where the results are promising
and similar to what we have observed on the previous dataset. In summary, for a
great variety of datasets and/or applications without data aggregation, the method
MODES, with two different modes, outperforms the traditional approach S-EI in
terms of either accuracy (MODES-B) or run-time efficiency (MODES-I) without
much accuracy degradation.

6.4.4 Scalability and Applicability

In order to investigate the scalability of the MODES, we evaluated it on the Infinite-
MNIST [LCB07] date set with 16 (emulated) nodes. The Infinite-MNIST (also known
as MNIST8M) dataset produces an infinite supply of digit images derived from the
well-known MNIST dataset using pseudo-random deformations and translations.

To mitigate the effect of inadequate training samples in each node, e.g., a
machine learning model may not be well trained if only small size of training data
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Figure 6.5: The accuracy of two machine learning algorithms using different hyper-
parameter tuning methods on Covertype dataset.

is available, following the size of MNIST dataset used in Section 6.4.1 (i.e., 60,000
training samples for 4 nodes), we enlarge the size of dataset linearly with the same
termination condition. In our experiments, we individually chose a total of 240, 000
training samples across both datasets. We applied strategies similar to those used for
generating sub-datasets in Section 6.4.1: a) For D1, we equally divided the training
set into 16 sets; b) For D2, we extended each sub-dataset from D1 by adding 5,000
samples randomly selected from the remaining samples; c) For D3, we divided the
training samples unequally, i.e., 8 sets with 5% share and 8 sets with 7.5% share.

The results of the Infinite-MNIST dataset are shown in Figure 6.7. In general,
the MODES-B outperforms other methods in all the evaluated cases for MLP and
most cases for RF. The performance of MODES-I for MLP shows large variance,
since the key assumption of MODES-I, i.e., data chunks in different nodes have high
similarity that the optimal hyper-parameters are similar for these (sub-)datasets
in different nodes, does not hold any more for 16 nodes. Optimizing models for
different nodes introduces significant noise to the centralized MBO surrogate model
of MODES-I, which can make the tuned hyper-parameter infeasible for the final
test set. This variability in optimization could also explain the outlier observed for
the S-EI method on the D3 dataset. When the similarity of data in different nodes
increases, i.e., in D2 datasets, the variance of I-EI reduces significantly. Therefore,
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Figure 6.6: The accuracy of two machine learning algorithms using different hyper-
parameter tuning methods on HAR dataset.

while MODES-B performs well as the number of nodes increases, MODES-I requires
the applied data subsets on each node to have certain similarities.

To evaluate the applicability of MODES in distributed embedded systems, we
utilize a physical platform comprising four embedded devices. A detailed description
can be found in Section 2.4.3. Each of these devices runs specific machine learning
algorithms (either MLP or RF) for a designated task. The nodes are interconnected,
facilitating data transmission between them. Real-world testing yielded accuracy
metrics consistent with our earlier findings. Remarkably, MODES-I, when executed
on an actual cluster, demonstrated speed improvements of 2.2 to 3.7 times over the
alternative methods.

6.5 Summary

In order to optimize the deployment of machine learning model on a distributed
embedded system with constrained resources, we proposed MODES, a novel frame-
work for model-based optimization on distributed embedded systems. Instead of
aggregating all the data at a centralized server, MODES leverages the local data on
each node to obtain the optimized hyper-parameter setting of dedicated machine
learning algorithms without any raw data sharing. Specifically, two modes are
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Figure 6.7: The accuracy of two machine learning algorithms using different hyper-
parameter tuning methods on Infinite-MNIST dataset.

considered: MODES-B treats the whole system as a single black box and tunes the
hyper-parameters jointly; MODES-I treats each node as a copy of the same black
box and optimizes the hyper-parameters in parallel.

We conduct extensive evaluations on real-world datasets to compare both modes
of MODES with a baseline method, in which each single node tunes its own hyper-
parameter setting by applying MBO using its local data independently. The results
show that: a) MODES-B outperforms all the other methods in most of the evaluated
cases. b) MODES-I highly improves the run-time efficiency, where the improve-
ment depends upon the number of nodes in the distributed system, at a cost of
slightly degraded performance in some cases. The implementation of MODES and
corresponding experiments are released in [SBR21].
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7.1 Overview

Safety-critical systems frequently encounter transient faults, which may lead to soft
errors with catastrophic consequences. Therefore, error-handling must be addressed
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by design. While comprehensive fault protection is resource-intensive, many safety-
critical applications can afford a marginal error rate. In practice, some safety-critical
applications can tolerate a limited number of errors at the cost of temporarily
downgrading the quality of service (QoS), without catastrophic consequences if
some constraints of error tolerance are guaranteed. For instance, certain robotic
applications can effectively accomplish their missions even in the presence of a
limited error count [CBC+16; YCC18]. Such applications often adopt the (m,k)

robustness constraint, ensuring at least m error-free jobs out of any k consecutive
ones. Static patterns, such as the deeply red pattern (R-pattern)[KS95] and the
evenly distributed pattern (E-pattern)[QH00], are used to dictate job execution
modes, either an error-free mode, which might elongate the worst-case execution
time, or an error-prone mode, which offers the benefit of reduced execution time.

Besides ensuring execution accuracy, another primary objective is to minimize the
system’s overall energy consumption [CBC+16; NQ06; NZ20]. Processors exhibit
distinct power consumption levels in their active and idle states. The system’s
average energy consumption is calculated based on the average time spent in each
state, factoring in the state’s respective power consumption. Specifically, reducing
the time in the active or busy state leads directly to a decrease in power consumption.
Therefore, energy conservation is fundamentally associated with limiting the system’s
average utilization.

Challenges in current approaches: While static patterns have demonstrated
their efficacy in energy-aware designs, they often result in resource over-provisioning
due to the relatively low probability of errors. To enhance the adaptability of
these static-pattern-based methods, Chen et al. [CBC+16] suggested a strategy
that continuously monitors resilience during runtime to tweak the patterns as
required. More precisely, their pattern-based scheduler defers resource-intensive
reliable executions until the last feasible moment. This is achieved by tracking the
number of upcoming jobs that can still be faulty without violating the constraints.

Although this method incorporates a degree of adaptability, it may still inadver-
tently lead to a conservative resource allocation, especially when the actual soft error
probability isn’t factored in. Furthermore, its primary emphasis is on schedulability
analysis, ensuring the worst-case response time, rather than focusing on energy
optimization and minimizing average utilization. Moreover, certain situations can
introduce a dynamic element, causing the error probability to fluctuate during
runtime, leading to increased system complexity.

To the best of our knowledge, no current research both addresses energy con-
sumption optimization under the (m,k) constraints and offers high adaptability for
scenarios with low or even variable error probabilities.

This dissertation: We consider a periodic and constrained-deadline task set,
denoted as T. For each task τi, the `-th job, denoted as J `i , has a distinct arrival
time a`i and finishing time f `i . Every job operates in one of four modes: unreliable,
reliable, detected, or a composite mode, i.e., detected + reliable. In the composite
mode, a job starts in the detected mode and switches to the reliable mode if a soft
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error is identified during the same interval [a`i , f `i ). The mode in which a job J `i
is executed determines the probability of soft errors within the interval [a`i , f

`
i ).

Specifically, while jobs in unreliable and detected modes can be faulty, those in
reliable or detected + reliable modes are assumed to be correct.

Our primary objective is to design a mode selection strategy for the upcoming
job. This strategy relies on past errors, the current job’s mode (informed by observed
soft errors in the detected and reliable modes), and an expected error probability
pe. This mode selection approach must invariably ensure that the task in question
complies with the stipulated (m,k)-constraints. Simultaneously, it seeks to curtail
the expected execution time of the task.

To this end, we introduce an adaptive state-based algorithm. This algorithm
leverages explicit information and/or predictions about soft error probabilities to
guarantee (m,k)-compliance for each task, even under real-time constraints. It
effectively curtails the anticipated task execution time. We provide an optimal
solution for a known error probability pe and present an RL-based methodology to
adapt to fluctuating or unspecified error probabilities pe.

In Section 7.2, we present the formulation of all (m,k)-compliant states of a
task using a minimal automaton, allowing transitions only between compliant states.
Based on the soft error probability, a Markov chain model is constructed based on a
stochastic transition system. Section 7.3 then focuses on the optimization of the
expected execution time. Assuming a stationary and known soft error probability,
we introduce an optimization algorithm based on the Markov chain model. This
algorithm aims to compute the stochastic parameters pivotal to the job selection
strategy. Finally, in Section 7.4, we apply a reinforcement learning (RL) strategy for
job mode selection, designed specifically for scenarios where soft error probabilities
remain unknown.

7.2 Minimal Compliant Automata Construction

In this section, we first define the problem of minimizing average utilization while
adhering to the (m,k) constraints. Subsequently, we introduce an algorithm designed
to construct (m,k)-compliant automata, optimizing for a minimal number of states.

7.2.1 Primitives

Definition 20 (Correctness Indication). We denote the correctness of a job at the
end of its execution using the set Σ = {0,1}. That is, an error-free executed job is
indicated by a 1 and an erroneously executed job is denoted by a 0.

The correctness of the `-th job J `i of task τi is represented by the character
c` ∈ Σ. We represent the correctness of a job sequence from J1

i to Jni , using a
(possibly infinite) sequence of these characters, i.e., a word w = c1 ○ c2 ○ ⋅ ⋅ ⋅ ○ cn, where
n ∈ N∗. We denote the sub-word of w that starts at index a and ends at index b as
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Figure 7.1: An exemplary k-error-automata Ak and the (2, 3)-compliant automata
A∗k is highlighted in bold, where the darker states are critical states
and the lighter states are nominal states.

w(a, b) = ca ○ ⋅ ⋅ ⋅ ○ cb for a < b. The w(a, ∶) denotes the sub-word starting at index
a and continuing to the end. Conversely, w(∶, b) represents the sub-word from the
beginning up to the index b.

To eventually guarantee (m,k)-compliance of a task, i.e., of an infinite sequence
of jobs, every sequence of k-consecutive jobs must be analyzed. While there are
infinitely many sub-words (since there may be infinite job releases), there are only 2k
different outcomes Q ∶= {00 . . . 0, . . . , 11 . . . 1} for which we define a k-error-automata.

Definition 21 (k-Error-Automata). A k-error-automata Ak ∶= (qs,Q,Σ, δ) is de-
fined by a 4-tuple, where Q ∶= {0,1}k denotes the finite set of states of all possible
outcomes in any k consecutive job releases. The start qs ∶= 11 . . .1 ∈ Q denotes
the unique starting state, Σ ∶= {0,1} denotes the input alphabet, and δ defines the
transition system δ ∶ (Q,Σ) ↦ Q such that for any state q ∈ Q ∶= {00 . . . 0, . . . , 11 . . . 1}

δ(q,0) = q(2, ∶) ○ 0 ∈ Q (7.1)
δ(q,1) = q(2, ∶) ○ 1 ∈ Q (7.2)

An exemplary 3-error-automata A3 is illustrated in Figure 7.1. While a k-error-
automata models all error sequences in k consecutive jobs, not each sequence is
(m,k) compliant.

Definition 22 ((m,k)-Compliant State). A state q ∈ Q of a k-error-automata Ak
is called (m,k)-compliant if 1[q] ≥m is satisfied, where the operator 1 counts the
number of 1’s in q’s representation. The set of all (m,k)-compliant states is called
the (m,k)-compliant state-space denoted by Q∗ ⊆ Q.

In order to verify if a task satisfies its (m,k) constraint after the finishing of the
`-th job given the indication c` it must be tested if every sub-word of length k in
w = c1 ○ ⋅ ⋅ ⋅ ○ c` for ` ≥ k contains at least m correct executions.
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Definition 23 (Job Sequence Induced State). Given a word w = c1 ○ ⋅ ⋅ ⋅ ○ c` for ` ≥ k,
that indicates the outcomes of all finished jobs. A sub-word of length k starting
at the j-th job w(j, j + k − 1) for j ∈ {1, . . . , ` − k + 1} induces a state q ∈ Q in the
k-error-automata Ak denoted as ψ(w(j, j+k−1)) = q ∈ Q if q’s binary representation
is identical to w(j, j + k − 1).

As the word w indicating the correctness of all finished jobs, evolves with
the finishing of each released job, the state of the k-error-automata transitions
accordingly. More precisely, let the (j + k)-th job finish at time fj+k and let the
sub-word w(j, j + k − 1) denote the latest k-consecutive job outcomes prior to time
fj+k. Based on the outcomes of the (j + k)-th job as indicated by cj+k, the evolved
job sequence induced state in Ak is given by δ(ψ(w(j, j+k−1)), cj+k). The outcome
of the (j + k)-th job is determined by the occurrence of an error, which is assumed
to be stochastic in nature and beyond our control. That is, under the assumption
of a constant error probability pe we have that P(cj+k = 0) = pe and conversely
P(cj+k = 1) = 1 − pe. We can however control the execution mode of the (j + k)-th
job release, i.e., unreliable, detected, reliable or detected followed by reliable.

As described in Section 2.1.3, in the unreliable mode, the correctness of (j +k)-th
job, i.e., cj+k = 0 with probability 1. In detected mode, if an error occurred then
cj+k = 0 with probability pe and cj+k = 1 with probability 1 − pe otherwise. In the
reliable mode, the execution is guaranteed to be correct, i.e., cj+k = 1 with probability
1. In the detected followed by an optional reliable mode, a reliable instance is released
only after detecting an error. This operation ensures that the current instance is
correct, thus maintaining the specified (m,k) constraint.

Recall that our objective is to design a state-based execution mode selection
strategy that can satisfy (m,k) compliance and minimize expected execution time
simultaneously. More precisely, for any job sequence induced compliant state
ψ(w(j, j + k − 1)) ∈ Q∗ of Ak, we devise a mode selection strategy

α ∶ Q∗
↦ {u, d, r, d + r} (7.3)

to choose either an unreliable, detected, reliable, or a detected job optionally followed
by a reliable instance for the (j + k)-th job release such that P(ψ(w(j + 1, j + k)) ∉
Q∗ ∣ ψ(w(j, j + k − 1) ∈ Q∗, α(ψ(w(j, j + k − 1))) = 0 for all j ∈ N. For short, let
xj ∶= w(j, j + k − 1) for some j ∈ N then

P(cj+k = 1 ∣ α(xj)) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 if α(xj) = u
1 − pe if α(xj) = d
1 if α(xj) = r ∨ (d + r)

Conversely, P(cj+1 = 0 ∣ α(xj)) = 1 − P(cj+1 = 1 ∣ α(xj)). Please note that while the
job may actually execute correctly even in unreliable mode, we have to consider it as
an error to guarantee (m,k) compliance, since the outcome is not observable. From
a design perspective, we have to design the transitioning system of Ak such that
only the compliant states Q∗ are reachable.
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Definition 24 (Compliant Transitions). A transition system δ of a k-error-automata
Ak is (m,k)-compliant if and only if for any given word w with j ≥ 1 the following
implication holds

ψ(w(j, j + k − 1)) ∈ Q∗
Ô⇒ δ(ψ(w(j, j + k − 1)), cj+k(α)) ∈ Q∗

Definition 25 (Critical State). A compliant state ψ(w(j, j+k−1)) ∈ Q∗ is a critical
state with respect to (m,k)-constraints if there are only (m − 1) correctly executed
jobs in the word w(j + 1, j + k − 1), i.e., the latest previous (k − 1) jobs.

Definition 26 (Nominal State). A compliant state ψ(w(j, j + k − 1)) ∈ Q∗ is a
nominal state with respect to (m,k) constraints if there are at least m correctly
executed jobs among the latest previous (k − 1) jobs, i.e., w(j + 1, j + k − 1).

It can be observed that in order for the transition system to be compliant, we
have to enforce an outcome cj+k based on whether ψ(w(j, j + k − 1) is a critical or
nominal state. That is if ψ(w(j, j + k − 1)) ∈ Q∗ and critical then cj+k = 1 must be
enforced. In the case that ψ(w(j, j + k − 1)) ∈ Q∗ and nominal then any cj+k ∈ {0, 1}
is a feasible outcome. These observations are formalized in the following corollaries.

Corollary 2 (Critical State Transition). If a compliant state ψ(w(j, j +k−1)) ∈ Q∗

is a critical state then only a correct execution of the (j + k)-th job leads to a
transition into a compliant state Q∗.

Proof. The updated word after concatenation of cj+1 is given by w(j + 1, j + k), i.e.,
w(j + 1, j + k − 1) ○ cj+1. By definition, the number of correct instances is given
by 1[w(j + 1, j + k − 1)] = m − 1. Clearly ∣w(j + 1, j + k)∣ = k and if cj+1 = 0 then
1[w(j + 1, j + k)] =m − 1 and 1[w(j + 1, j + k)] =m if cj+1.

Corollary 3 (Nominal State Transition). If a compliant state ψ(w(j, j+k−1)) ∈ Q∗

is a nominal state then either execution outcome of the (j + k)-th job leads to a
transition into a compliant state Q∗.

Proof. The updated word after concatenation of cj+k is given by w(j + 1, j + k), i.e.,
w(j + 1, j + k − 1) ○ cj+k. By definition, the number of correct instances is given
by 1[w(j + 1, j + k − 1)] = m. Clearly ∣w(j + 1, j + k)∣ = k and if cj+k = 0 then
1[w(j + 1, j + k)] =m and 1[w(j + 1, j + k)] =m + 1 if cj+k each of which complies
with the (m,k) constraints.

Based on these results, we can formulate properties that must be met by any
feasible strategy.

Lemma 13 (Compliant Mapping Strategy). Any mapping strategy α for the k-
error-automata Ak that satisfies the constraints

α(ψ(xj)) =

⎧⎪⎪
⎨
⎪⎪⎩

r ∨ (d + r) if ψ(xj) is a critical state
u ∨ d ∨ r if ψ(xj) is a nominal state

(7.4)

leads to a compliant transition system for xj ∶= ψ(w(j, j + k − 1)) ∈ Q∗ for all j.
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Proof. By the results of Corollary 2 and Corollary 3, we know that for any induced
state q ∶= ψ(xj) ∈ Q∗, the strategy α(q) must enforce a correct outcome of cj+k if
q is a critical state and any outcome if q is a critical state to lead to a compliant
transition. Clearly, a reliable instance or a detected instance followed by an optional
reliable instance in case of an error in case of q being a critical state enforces that
P(cj+k = 1 ∣ α(q)) = 1. Conversely, if an unreliable or a detected instance is chosen if
q is a nominal state then P(cj+k = 0 ∣ α(q)) +P(cj+k = 1 ∣ α(q)) = 1 which thus leads
to a compliant state.

An α-induced (m,k)-compliant subset of a k-error-automata Ak is denoted
by A∗k(α) and only contains compliant states Q∗ ⊆ Q and a compliant transition
system δ∗ ⊆ δ such that for any q ∈ Q∗ the transition δ∗(q, c(α(q))) ∈ Q∗, which is
exemplified in Figure 7.1.

7.2.2 States Reduction and Minimal Automata Construction

We propose an algorithm to generate a minimal (m,k)-compliant automaton A∗k(α),
which is necessary to reduce the computational complexity of our to be designed
expected execution time minimization algorithms. We note that the approach
to generate minimal finite-state machines used by Vreman et al. in [VPM22] is
applicable for (m,k) constraints as well. However, their generation algorithm is
similar to Hopcroft’s algorithm [Hop71], which generates all states and merges
equivalent states. In contrast, our Algorithm 10 utilizes the specificity of the problem
to only generate compliant states right away.

Definition 27. For given (m,k)-constraints the set of n-step equivalent compliant
states of the compliant k-error-automata A∗k is given by

[q]n ∶= {q, q′ ∈ Q∗
∣ (δ(q,w) = δ(q′,w)) ∀w ∈ {0,1}n}

and we say q ∼n q′ if q and q′ are n-step equivalent.

We use the don’t care notation to denote the representative state [q]n, e.g.,
∗ ○ q(2, ∶) = ∗ ○ q′(2, ∶) for 1-step equivalent states q ∼1 q

′ and ∗ ∗ ⋅ ⋅ ⋅ ∗ ○q(n + 1, ∶) =
∗ ∗ ⋅ ⋅ ⋅ ∗ ○q′(n + 1, ∶) for q ∼n q′.

Lemma 14. If there exist q, q′ ∈ Q∗ such that q ∼n+1 q
′ then there exist v, v′ ∈ Q∗

such that v ∼n v′ or conversely if there are not n-step equivalent states then there
are no (n + 1)-step equivalent states.

Proof. We prove this lemma constructively, i.e., let q ∼n+1 q
′ then δ(q,w) = δ(q′,w)

for all w ∈ {0, 1}n+1, which is equivalent to δ(q,w(1)○w(2, ∶)) = δ(δ(q,w(1)),w(2, ∶))
and thus δ(δ(q,w(1)),w(2, ∶)) = δ(δ(q′,w(1)),w(2, ∶)). Let v = δ(q,w(1)) ∈ Q∗

and v′ = δ(q′,w(1)) ∈ Q∗ then due to the fact that ∣w(2, ∶)∣ = n it must be that
v ∼n v

′.
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From this lemma it follows that state equivalence must be constructed iteratively
until no further n-step equivalent states can be generated from the set of (n−1)-step
equivalent states for n ≥ 1. We emphasize that we do not need to consider special
constraints on w as e.g., only critical transitions exist for critical states, since only
nominal states can be equivalent as shown in the following.

Lemma 15. Only nominal states can be equivalent states in a compliant non-
minimized automata A∗k.

Proof. We prove by contradiction that only nominal states can be n-step equivalent.
Assume that there exist any q ∼n q′ such that q is a critical state and q′ is a nominal
state, i.e., by definition 1[q(n + 1, ∶)] =m − 1 and 1[q(n + 1, ∶)] ≥m. Since q′ is
equivalent by assumption we have that q′(n + 1, ∶) = q(n + 1, ∶) and thus 1[q′(n + 1, ∶
)] =m − 1, which implies however that q′ is not a nominal state and contradicts the
assumption.

Corollary 4. The initial set of nominal states can be minimized to a set of repre-
sentatives of the form ∗ ⋅ ⋅ ⋅ ∗ ○v where v is the shortest v such that 1[v] =m and the
prior k − ∣v∣ characters are don’t cares.

Proof. This follows from Lemma 14 and Lemma 15, since we know that states q, q′ are
merged up to n-step equivalence if 1[q(n+1, ∶)] ≥m and thus 1[∗ ⋅ ⋅ ⋅∗○q(n+1, ∶)] ≥m
where n is the maximal equivalence found and thus v = q(n+1, ∶) ∣v∣ = k−(n+1)+1 =
k − n, i.e., shortest ∣v∣.

Theorem 24 (Minimal Automata). The minimal number of compliant states Q∗

of a (m,k)-compliant A∗k is given by

∣Q∗
∣ =

k!
m! × (k −m)!

(7.5)

Proof. The number of compliant states is composed of critical and nominal states,
where the number of critical states is given by (

k−1
m−1) since exactly the last k − 1

characters in a critical state q must contain exactly m − 1 ones.
From Lemma 15, we know that m ≤ ∣v∣ ≤ k −m and thus states with ∣v∣ = ` and

1[v] =m are merged into one representative state for ` ∈ {m,m + 1, . . . , k −m}. The
number of combinations for each above class is given by the binomial ( `m). However
for each ` the number of combinations for ` − 1 must be substracted. This is due to
the fact that by Lemma 14, we know that each state is represented by the maximal
equivalence representative and the combinations with m ones in the last ` characters
can be extended to combinations with m ones in the last `+ 1, which would then be
covered by the representative of `. In consequence, we have that ∣Q∗∣ is given by

(
k − 1
m − 1

) + (
m

m
) +

k−m
∑
`=1

(
m + `

m
) − (

m + ` − 1
m

) = (
k

m
)

which proves the theorem.
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Algorithm 10 Generation of minimal compliant A∗k
Input: Constraint (m,k);
1: A∗k ← (qs,Q

∗ ∶= ∅, δ ∶= ∅,Σ ∶= {0,1});
2: qs ← {∗ ∗ . . .1 };
3: for each z ∈ {0, . . . , k −m − 1} do
4: add q ∶= ∗k−m−z ○ 1 ○ b(m + z − 1,m − 1) to Q∗;
5: add transition δ(q,1) = q(2, ∶) ○ 1 to δ;
6: add transition δ(q,0) = q(2, ∶) ○ 0 to δ;
7: end for
8: for each q ∈ {w ∈ b(k − 1,m − 1) ∣ 1 ○w} do
9: add q to Q∗;

10: add transition δ(q,1) = q(2, ∶) ○ 1 to δ;
11: end for
12: return A∗k;

Let b(z, n) represent all bit strings of length z with exactly n ones which
can be recursively defined and computed using dynamic programming. Using
the above observations and lemmas, we can generate all critical states by {w ∈

b(k − 1,m − 1) ∣ 1 ○ w} and for each critical state q, we add a critical transition
δ(q,1) = q(2, ∶) ○ 1. To generate the minimal set of nominal states for (m,k)-
constraints, we generate the representatives iteratively using ∗` to denote a string of
` many ∗-characters as follows:

k−m−1
⋃
z=0

∗k−m−z ○ 1 ○ b(m + z − 1,m − 1) (7.6)

For instance in the case of (2,4) constraints, the minimal nominal states are
given by Equation (7.6) as ∗ ∗ ○1 ○ b(1, 1) = ∗ ∗ 11, ∗ ○ 1 ○ b(2, 1) = {∗110,∗101}. For
each merged critical state q the transitions δ(q, 0) = q(2, ∶) ○ 0 and δ(q, 1) = q(2, ∶) ○ 1
to the automata.

7.3 Minimization of Expected Execution Time

In this section, we explain our mapping strategy for associating execution modes with
jobs by considering different strategies for critical and nominal states. Subsequently,
we propose an optimization strategy based on the induced Markov Chain. Lastly,
we provide an example to illustrate the workflow of our proposed strategy.

7.3.1 Mapping Strategy

Our mapping strategy leverages the design flexibility across various state categories
to select the execution mode for the next job as described in the following.
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Critical State Action If the current state q is a critical state then the next job
has to be executed correctly and therefore either of the following two actions must
be taken:

1. Release a task instance with reliable mode, i.e., α(q) = r.
2. Release a task instance with detected mode and only release an immediate

follow-up instance with reliable mode in case of a detected error, i.e., α(q) =
d + r.

By this mapping, we have enforced that c(α(q)) = 1 with probability 1. In the first
case, the expected WCET of a job released in state q is either Cr or (1−pe)⋅Cd+pe ⋅Cr.
For very low error probabilities pe, it is better to first run a detected instance followed-
up by a reliable instance.

Nominal State Action If the current state q is a nominal state then the next
job must not be enforced to be executed correctly. Thus we have the following three
options to choose the next job’s mode:

1. Release a task instance with reliable mode, i.e., α(q) = r and c(α(q)) = 1 with
probability 1.

2. Release a task instance with detected mode, i.e., α(q) = d and c(α(q)) = 1 with
probability 1 − pe and c(α(q)) = 0 with probability pe.

3. Release a task instance with unreliable mode, i.e., α(q) = u and c(α(q)) = 0
with probability 1.

Due to the assumed high worst-case execution time of the reliable instances, our
preference is to select either a detected or an unreliable mode instance in each nominal
state q at random. That is, we choose a detected mode instance with probability pd or
an unreliable mode instance with probability pu, ensuring pd + pu = 1. The expected
average execution time is given by pd ⋅Cd + pu ⋅Cu. Based on the randomized mode
selection, the transitions are stochastic in nature, i.e., P(c(α(q)) = 1) = pd ⋅ (1 − pe)
and P(c(α(q)) = 0) = pd ⋅ pe + pu.

7.3.2 Induced Markov Chain

Using the mapping strategy α, we can derive an α-induced Markov Chain from the
automata A∗k.

Observation 1 (Induced Markov Chain). The α-induced (m,k)-compliant A∗k(α)
is a finite discrete-time Markov Chain with transition probability determined by the
error probability and the mapping strategy α.

Due to the state-based mode selection strategy, the probability of being in state
q′ at time k + 1, i.e., P(xk+1 = q′) only depends on the probability of being in a
state q at time k for which (q, q′) ∈ δ∗ holds and the probability of taking a specific
transition thereof. Therefore the markov property is trivially satisfied. Moreover,
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the specific transition probabilities are derived based on the error probability pe and
the stochastic state-based mode selection, i.e., if q is a nominal state then by our
strategy α the following state transitions are given:

P(xn+1 = δ(q,0)∣xn = q) = P(c(α(q)) = 0) = pd ⋅ pe + pu
P(xn+1 = δ(q,1)∣xn = q) = P(c(α(q)) = 1) = pd ⋅ (1 − pe)

and for critical states

P(xn+1 = δ(q,0)∣xn = q) = P(c(α(q)) = 0) = 0
P(xn+1 = δ(q,1)∣xn = q) = P(c(α(q)) = 1) = 1

Definition 28 (Stationary Distribution). Let a finite, irreducible Markov Chain
be given by xn+1 = A ⋅ xn, where xn ∈ Q∗r, A ∈ Fr×r and ∣∣xn∣∣1 = 1 for all n ∈ N and
∣Q∗∣ < ∞. A probability distribution ξ is said to be a stationary distribution or
invariant distribution if

A ⋅ ξ = ξ (7.7)

We then obtain the corresponding stationary distribution ξ according to Equa-
tion (7.7) by treating ξ as an eigenvector of A with an eigenvalue 1 that can
be efficiently numerically solved by e.g., eigenvalue decomposition (spectral the-
orem [PTV+07]). Let the stationary distribution ξT = (ξ1, . . . , ξr) where the ξi
correspond to the stationary probability to be in state qi ∈ Q∗. In consequence, the
expected average execution time is:

E(C) ∶=
r

∑
i=1
ξi ⋅ (pd ⋅Cd + pu ⋅Cu) ⋅ [qi is nominal]

+ξi ⋅min{Cr, (1 − pe) ⋅Cd + pe ⋅Cr} ⋅ [qi is critical]

Our formal objective is to minimize E(C) for each task individually with respect
to the parameters pd (pu = 1 − pd). What is left to show is that each α-induced
(m,k)-compliant Markov Chain always has a stationary distribution.

Theorem 25 (Renewal Theorem [GS20]). A finite, irreducible Markov Chain has a
unique stationary distribution.

Definition 29 (Irreducibility). A Markov Chain is irreducible if for any two states,
i.e., q, q′ there exist n,n′ ∈ N0 such that P(xi+n = q∣xi = q′) > 0 and P(xi+n′ = q′∣xi =
q) > 0 for some i ∈ N.

Theorem 26. The α-induced (m,k)-compliant A∗k(α) is a finite and irreducible
discrete-time Markov Chain.

Proof. From Theorem 24, it immediately follows that A∗k(α) has finite states. More-
over, since the α-induced (m,k)-compliant A∗k(α) has non-zero probability for each
transition by construction, we only have to prove that any two states q, q′ are
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∗11 110 101

0 1

1

1

Figure 7.2: A minimal (2,3)-compliant 3-error-automata A∗3 .

reachable from one another. We prove this theorem for the non-minimized automata,
but since in the minimized automata only equivalent states are merged, it is obvious
that the reachability property remains.

Let q, q′ any two states in the non-minimized α-induced Markov Chain A∗k(α)
then there always exists a sequence of compliant transitions from q ↝ q′ by de-
composition of the transitions into q ↝ 11 . . .1 (k ones) and 11 . . .1 ↝ q′. Since
for each feasible state q ∈ Q the transition δ(q,1) ∈ Q is defined for critical- and
nominal states, the state 11 . . .1 can be reached from any state q by successive
1-transitions. Secondly, for any given (m,k)-constraints, starting from state 11 . . . 1,
(by construction of the automata) we can use a 0-transition at most (k −m) times
and always be in a compliant state. This allows to reach any compliant state q ∈ Q
with 1[q] ≥m to be reachable from 11 . . . 1, since q = δ(11 . . . 1, q) and 1[q]+0[q] = k
and thus 0[q] = k − 1[q] ≤ k −m.

7.3.3 An Illustrative Example

To illustrate our approach, we provide a detailed example of the previously described
task with (m = 2, k = 3)-constraints and assume that the execution times of the
different job modes are given by Cu = 1, Cd = 1.5, and Cr = 3 and the task has an
error probability of pe = 0.1. After minimization according to Algorithm 10, the
generated automata is shown in Figure 7.2. The ordered set of states, denoted as Q,
is given by ⟨Q⟩ = ⟨11,110,101⟩. Here, ∗11 represents a nominal state, while both
110 and 101 represent critical states. By using the mapping strategy described in
Section 7.3.1, we derive the following non-zero transition probabilities:

P(xn+1 = ∗11∣xn = ∗11) = pd ⋅ (1 − pe) = 0.9 ⋅ pd
P(xn+1 = 110∣xn = ∗11) = pe ⋅ pd + pu = 1 − 0.9 ⋅ pd
P(xn+1 = 101∣xn = 110) = 1
P(xn+1 = ∗11∣xn = 101) = 1

The corresponding transition probability matrix A is:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.9 ⋅ pd 0 1
1 − 0.9 ⋅ pd 0 0

0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.8)
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where the row and column indexes are referring to the index of ⟨Q⟩. By solving the
equation ξ ∈ ker(A − I) such that ∣∣ξ∣∣1 = 1, we obtain the values ξ1 = 1/(3 − 1.8 ⋅ pd)
and ξ2 = ξ3 = (1−0.9 ⋅pd)/(3−1.8 ⋅pd) which results in the following expected average
execution time ξ1 ⋅ pu ⋅C

u + ξ1 ⋅ pd ⋅C
d + 2 ⋅ ξ2 ⋅min (Cr,C

d + pe ⋅C
r) and evaluates to

pu ⋅C
u + pd ⋅C

d + (1 − 0.9 ⋅ pd) ⋅min {Cr,C
d + 0.9 ⋅Cr}

3 − 1.8 ⋅ pd

Ô⇒
230 − 137 ⋅ pd
150 − 90 ⋅ pd

for any pd ∈ [0,1] (7.9)

The function in Equation (7.9) is monotonically increasing on the interval [0, 1],
which implies that the minimum value of the expected average execution time is
attained for pd = 0. Therefore, in every nominal state q the mapping is given by
α(q) = u, i.e., to always instantiate an unreliable instance next. Moreover, for each
critical state q, the selection is always α(q) = d. In summary, we obtain the following
mapping strategy:

α(q) =

⎧⎪⎪
⎨
⎪⎪⎩

d if q ∈ {101,110}
u if q ∈ {∗11}

(7.10)

that results in a minimal expected average execution time of 1.533. However, when
we reduce the error probability to 1%, with pe = 0.01, the expected average execution
time becomes:

1150 − 766 ⋅ pd
750 − 495 ⋅ pd

for any pd ∈ [0,1] (7.11)

Unlike Equation (7.9), Equation (7.11) shows a monotonically decreasing trend
over the interval [0,1]. Consequently, the minimum expected average execution
time is reached when pd = 1. This results in the altered strategy to select α(q) = d
for any nominal state.

7.4 Reinforcement Learning Based Approach

When the error probability for each task is unknown, the probabilities of state
transitions are no longer explicit, which makes the static optimization approach
proposed in Section 7.3 inapplicable. To this end, we propose an artificial expert
(agent) based on reinforcement learning (RL), to optimize the selections of execution
modes dynamically during the runtime. In this section, we first give a short overview
of RL. Afterwards, we demonstrate how the execution mode selection with (m,k)

constraints problem is formulated to the RL-solvable problem. Furthermore, the
barrier function that assures the (m,k) constraint is discussed. Finally, we present
the learning policy for RL agent for the studied problem.
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State st+1 Reward rt

Agent

Environment

Action at

State st

Figure 7.3: Agent environment interaction.

7.4.1 Overview of Reinforcement Learning

As one of the machine learning paradigms, RL problems are often represented or
formulated as Markov Decision Processes (MDPs). Figure 7.3 shows the basic
components of a MDP. The environment E is defined as a state space, which is
denoted as S. Each state instance, i.e., st ∈ S, is a description of the environment
at time t. All the actions that an agent can take formulate the action space, i.e.,
A. One iteration of the MDP is shown in Figure 7.3: when an action at ∈ A is
taken based on current state st, the environment is transited to a new state st+1.
During the transition, a reward rt is given to the agent based on the reward function
R. Therefore, reinforcement learning problem can be formulated as a four tuple,
i.e, (S,A,P,R), where P ∶ S × A × S ↦ R represents the probability of state
transitions P (st+1 ∣ st, at), and R ∶ S × A × S ↦ R denotes the corresponding
reward function. According to the Markov property, the next state st+1 only depends
on the current state st and current action at, and is conditionally independent to all
previous states and actions.

The objective of a reinforcement learning task is for the agent to learn a policy
π, which is a probability density function to describe the state-to-action mapping.
That is, an agent can take an action according to the policy and current state, i.e.,
a = π(s). A policy π can be formed in two different ways: a) the deterministic policy
π ∶ S ↦ A is a unique mapping from state to action; b) uniform stochastic policy
π ∶ S ×A ↦ A defines the probability distribution of actions according to a given
state, i.e., π(at∣st) = P(a = at ∣ s = st) where ∑at∈A π(at∣st) = 1. The learned policy
is evaluated by the cumulative future reward, i.e., Wt = ∑

∞
i=t ri. Since future reward

is often less valuable than present reward, a discount rate γ ∈ (0,1] is included, i.e.,
Wt = ∑

∞
i=t γ

i−tri. In addition, value function is applied to estimate the expected future
reward. On the one hand, state-value function is defined as Vπ(st) = EA[Qπ(st,A)],
which defines the expected cumulative reward from state st by applying policy π.
Action-value function for a policy π is defined as Qπ(st, at) = E[Wt∣s = st, a = at],
which indicates the quality of the action at under state st.

According to the learning objectives, model-free RL approaches can be divided
into three main categories:
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• Policy-Based: the objective is to train the (deep) neural network to map the
current state to the best probabilistic action to take, i.e., with the highest
expected state value. The policy gradient ascent approach [SKM00] can be
applied to train the policy network by maximizing ES[V (S; θ)], where the θ
is the parameters of the neural network.

• Value-Based: the action-value function is applied to find the most valuable
action, i.e., a∗t = arg maxaQ∗(st, a), while being in state st. Commonly,
one deep Q network (DQN), i.e., Q(s, a,ω), is deployed to approximate the
Q∗(s, a), where ω is the parameters of the DQN, which can be trained using
the temporal difference (TD) learning [Tes95].

• Actor-Critic: both the policy network (actor) to approximate π(a∣s) and the
value network (critic) to approximate Qπ(s, a) are utilized simultaneously. The
policy network π(a∣st; θ) is trained to increase the state value Vπ(st; θ,ω), and
the value network Q(st, at, ω) is trained to estimate the expected cumulative
reward more precisely.

Besides the above three approaches for model-free RL, other model-based RL
approaches can also be applied when an additional model is deployed to simulate
the environment. One of the most famous model-based RL applications is the
AlphaGo Zero [SHM+16; SSS+17], which utilizes Monte Carlo Tree Search (MCTS)
to find moves based on previously learned moves. Although MCTS can provide
more precise estimation of the reward for each action, it is still time consuming.
Therefore, only the policy network is applied after the training process in some
time-sensitive applications.

7.4.2 RL Formulation

We consider each task to be an agent. Hence, multiple agents exist within the same
task system. These multiple agents in this work operate independently. In other
words, they differ from the multi-agent reinforcement learning paradigm. Each agent
independently takes its own actions based on its observation without requiring any
information from the others. Hence, in the following, we focus on the selection
strategy of execution modes for one task.

As shown in Section 7.3.2, the job level execution modes selections for each task
is an independent MDP. The action space for each task is, selecting the execution
mode for its next job, i.e., A = {0 ∶ unreliable, 1 ∶ detected, 2 ∶ reliable}. The
environment state comprises the execution statuses for a task’s corresponding jobs,
i.e., st = [s1

t , s
2
t , . . . , s

`
t]. The execution status of each job, i.e., sjt , has the following

four attributes:
• Correctness: This is a binary variable indicating the correctness of the corre-

sponding job, i.e., according to Definition 20, 0 denotes error execution and 1
denotes correct execution.

• Execution mode: This records the execution mode of a job, corresponding to
an element from the action space.
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• Expected execution time: This indicates the expected execution time of each
job according to the corresponding execution mode, e.g., Cu, Cd, or Cr. Please
note, the expected execution times here are the same as the WCET of different
modes, which are different to the expected execution times in Section 7.3.1.

• Real execution time: This is used for recording the real execution time of a
job. For both unreliable and reliable modes, a job should have the same real
execution time as the expected execution time. However, for the detected
mode, the real execution time may be much longer than expected when a job
is forced to be correct according to (m,k) constraint but is detected as error.
The job has to re-execute the reliable mode to satisfy the (m,k) requirement,
where the real execution time equals to Cd +Cr.

The length of an environment state, represented by `, should be at least k to ensure
that the execution statuses of a minimum of k jobs can be recorded and checked
against the (m,k) constraint. Once the length of the environment state is determined
and fixed (` = 2k in this work), a FIFO stack-like mechanism is applied, i.e., the
state matrix only record the latest ` jobs’ execution statuses.

An example of the environmental state transition is illustrated in Figure 7.4,
corresponding to a task with the (m = 3, k = 5) constraint. The length of the
environment state is set to k = 5. The task takes the action to execute the detected
mode, i.e., at = 1 ∶ detected for its next new job J6. The second and third elements

of J6’s status have been determined as (
1
Cd

) by default. By checking against the

(m = 3, k = 5) constraint, the J6 must be executed correctly. Therefore, the first
element is marked as 1. However, in the real execution, J6 is detected as error,
an additional reliable mode has to be executed immediately. As a result, the last
element of J6’s status is Cd +Cr. Subsequently, the state transitions from st to st+1,
achieved by adding the status of j6 and removing the status of J1.

J1 J2 J3 J4 J5

1 0 1 0 1

1 0 1 1 2

Cd Cu Cd Cd Cr

Cd Cu Cd Cd Cr




J2 J3 J4 J5 J6

0 1 0 1 1

0 1 1 2 1

Cu Cd Cd Cr Cd

Cu Cd Cd Cr Cd + Cr




st st+1at = 1

Figure 7.4: An example for state transition of a task.

Please note, different environment construction approaches can also be applied.
For example, a three dimensional tensor can be applied to record several latest afore-
mentioned two dimensional matrices, so that the more comprehensive information is
recorded without discarding.
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7.4.3 Barrier Function

To achieve the objective of minimizing the average execution time for each task, the
reward is intuitively set to be inversely proportional to a job’s real execution time, i.e.,
the longer real execution time a job has, the less reward the agent obtains. Besides
the objective of the RL-based approach, i.e., maximize the cumulative reward, the
(m,k) constraint has to be satisfied as well. To address this, we introduce a barrier
function that checks the category of the current state before the agent deploys a job
with the selected execution mode. If the current state st ∈ Snom, the barrier function
bypasses the check as all three execution modes are permissible for the next job.
However, if the current state st ∈ Scrt, the result of next job has to be correct. If
the agent decides to execute the unreliable mode, the barrier function forbids the
action and limit the options to only execute the detected or the reliable mode. In
addition, an extremely large negative reward is returned to the agent. The barrier
function serves two purposes: a) it ensures adherence to the (m,k) constraint, and
b) it teaches the agent to avoid selecting the unreliable mode when st ∈ Scrt.

Although our agent operates in a model-free manner, the barrier function
implicitly enforces adherence to the R-pattern in the worst-case scenario:

Theorem 27. The worst case execution pattern of RL-based approach is the same
as the R-pattern adopted in [CBC+16; KS95].

Proof. The worst case execution R-pattern in [CBC+16] contains (k −m) incorrect
jobs that are executed in the detected mode, and m correct jobs that are executed
in the detected mode and the reliable mode, where all the results of k jobs with the
detected mode are incorrect. In our RL-based approach, the agent is limited to select
one execution mode for the next job. Subsequent to this choice, the barrier function
is applied to check the feasibility of the selected execution mode and the correctness
of the result when a job finishes its execution. If the current state st ∈ Snom, no
additional effort is needed. Only when the current state st ∈ Scrt, the execution
pattern, i.e., the detected mode and reliable mode are executed for the same job,
can happen. The worst case of the RL approach is that the agent always decides to
execute detected mode and all the execution results are incorrect. Therefore, m jobs
with reliable mode are executed right after the detected mode, which is the same as
the R-pattern in [CBC+16; KS95].

Theorem 28. The derived schedule from the RL-based approach under the barrier
function is schedulable if the schedulability based on the R-pattern has been ensured.

Proof. Given a static pattern, a task is schedulable if it passes the schedulability
test in Lemma 1 from [CBC+16]. As shown in Theorem 27, in the worst case the
RL-based approach performs the same as the R-pattern. Therefore, if a task has
passed the schedulaiblity test in Lemma 1 from [CBC+16] based on the R-pattern,
the derived schedule for this task from the RL-based approach must be schedulable
in the worst case, which concludes the proof.
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7.4.4 Learning Policy

In this work, we utilize the deep Q network (DQN) agent as our RL model, where
Boltzmann Q Policy is applied to estimate the Q value of each action. While
exploring, the agent creates an action distribution, which describes how optimal an
action is according to the data gathered. Afterwards, Boltzmann policy turns the
agent’s exploration behavior into a spectrum between picking the action randomly
(random policy) and always picking the most optimal action (greedy policy). The
DQN agent is constructed by a 10-layer neural network, which contains 1 input
layer, 1 activation layer, 1 flatten layer, 6 fully connected layers, and 1 output layer.

Please note that the proposed RL-based approach is not limited to any specific
learning policy, all learning approaches that support a discrete action space are
applicable. Finding the best policy to train a DQN agent is considered out of scope.

7.5 Experimental Evaluation

To evaluate the effectiveness of our proposed approaches, we numerically simulate the
task system. We then compare the performance of the proposed mapping strategy
(both when pe is known and when pe is unknown) against state-of-the-art methods
across a wide range of configurations. The adopted hardware platform was the GPU
server of the emulation platform in Section 2.4.3. Overall, the following approaches
are evaluated, namely:

• Optimized mapping strategy in Section 7.3 (OPT): the selection of execution
mode for each state follows the optimized mapping between states and execution
modes.

• RL-based approach in Section 7.4 (RL): the environment is constructed by
using OpenAI Gym [BCP+16]. The implementation of RL agent relies on
Keras-rl package [Pla16] and TensorFlow [AAB+16].

• Adaptive approach (ADP) [CBC+16]: R-pattern is applied, i.e., postpone the
forced-correct jobs as late as possible, which can benefit this approach due to
the flexibility.

• Static approach (STA) [NQ06]: executes m jobs in the reliable mode and
(k −m) jobs in the unreliable mode for any consecutive jobs. Here, R-pattern
will be equal to E-patterns in terms of utilization reduction, e.g., energy saving,
regardless of the given error probabilities.

7.5.1 Single Task Evaluation

We conducted evaluations on a single task with various experimental settings, such
as the (m,k) constraint and error probability. The m was chosen from a set, i.e.,
m ∈ {2,4,6,8}, k was a constant number, i.e., 10, and the error probability was
given as pe ∈ {0.05,0.15,0.3}. We set Cd to 1.5 ×Cu and Cr to 3.5 ×Cu to emulate
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Figure 7.5: Results of normalized utilization for tasks with different settings.
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Figure 7.6: Results for multitask systems with different error probabilities.

software-based error detection and recovery. Each task released 10,000 jobs for one
iteration, and 100 iterations were performed.

Figure 7.5 shows the results for one single task, where the y-axis represents the
normalized average execution time for jobs of one task, i.e., the lower the better. In
general, the OPT approach outperforms all the other approaches in all the evaluated
cases. When the error probability pe or the ratio m/k is relatively low, e.g., in
Figure 7.5 (a)-(h), (j), and (k), the OPT approach outperforms other approaches
significantly. When both error probability and the ratio m/k increase, e.g., in
Figure 7.5 (i) and (l), the options to select the execution modes become more limited,
which results in a negligible difference between the OPT, RL, and ADP approaches.

The RL approach also dominates in most of the evaluated cases of ADP and
STA approaches, as seen in Figure 7.5 (a)-(g) and (j). However, it always performs
worse than the OPT approach (without knowing the error probability in advance).
When the error probability is relatively low, e.g., in Figure 7.5 (a), (d), (g) and (j),
or both error probability and the ratio m/k are relatively high, e.g., in Figure 7.5 (i)
and (l), the difference between OPT and RL is minor. For a given (m,k) constraint,
when the error probability increases, e.g., rows of Figure 7.5, or for a given error
probability, the number of tolerable error jobs becomes less (m increases with a
constant k), e.g., columns of Figure 7.5, we can observe that the achievable benefit
from the RL approach significantly decreases. It is because the agent tends to
execute the unreliable modes first to maximize the cumulative reward. However,
such an intention also reduces the resilience, causing the subsequent jobs in the
detected mode to often switch to the reliable mode immediately for a detected error.

7.5.2 Multitask System Evaluation

We conducted the evaluation for multitask on multiprocessor systems as well, where
tasks were scheduled by partitioned scheduling. We considered 100 task sets, each of
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them contained 40 tasks that were scheduled on 4 processors. The total utilization
for each task set UT ∈ [20%, 200%] with each step 20%, when all tasks only executing
in the reliable modes. For each task, the utilization was generated by applying the
Dirichlet-Rescale (DRS) algorithm [GBD20], where utilization for each task was not
higher than 50%. The task periods Ti were randomly selected from a set of semi-
harmonic periods, i.e., Ti ∈ {1,2,5,10,20,50,100,200,1000}, which are the periods
recommended for automotive systems [KZH15]. The execution time of reliable mode
for each task was calculated, i.e., Cri = Ui∗Ti, and Cui and Cdi are calculated with the
same ratios in Section 7.5.1. We considered worst-fit partitioning algorithm. That
is, tasks are sorted decreasingly at first. Afterwards, each unassigned task (with the
highest utilization) was allocated to the processor with the lowest utilization. The
configurations for (m,k) constraints were the same as described in Section 7.5.1.
We set each system with only one unified error probability for all the tasks running
on it. We set a hyper-period as 10,000 time units, and obtain the average utilization
of the system by dividing the accumulated execution time from all jobs running in
the system by the hyper-period.

Due to the similarity over results, we selectively show the task systems with
total utilization 200% in Figure 7.6 to present the trends. In general, the results
show that the both OPT approach and RL approach can decrease the utilization for
multitask systems in all the evaluated configurations. In particular, both the OPT
and RL approaches are most effective when the error probability is relatively low,
as seen in Figure 7.6 (a).

7.5.3 Discussions of Overheads

For each task, the optimal approach generates a lookup table offline for on-the-
fly mode selection. The offline computational overhead depends on the (m,k)

constraints, e.g., (m = 2, k = 10) takes 10 seconds, (m = 4, k = 10) takes 20.7 hours,
(m = 6, k = 10) takes 7.8 hours, and (m = 8, k = 10) takes 0.5 seconds on average.
The runtime overhead is only table lookup and negligible.

To evaluate the overhead of training and mode selection, we deployed our RL-
base approach on both the GPU server in Section 2.4.3 and Nvidia Jetson AGX
Xavier (32G) board in Section 2.4.3. On the GPU server, the training process for
each task, with a single configuration, took 450 seconds on average. The training
process is repeated 20 times. The trained DQN with the highest reward is selected,
and the overhead for each task to select the execution mode for the next job is 300
microseconds. On the Nvidia Jetson AGX Xavier board, we evaluated two power
modes with different power budgets: a) the default mode with a 15W power budget
and 4 processors running at 2188 MHz, and b) the MAXN mode, which has no
power budget limitation and has 8 processors running at 2265.6 MHz. The detailed
configurations can be found in [NVI21].

The overhead for training and online execution mode selection of RL-based ap-
proach only depends on the structure of DQN, regardless of given (m,k) constraints.
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In default mode, the training process took 19.7 minutes, and execution mode se-
lection took 1.06 milliseconds on average. In MAXN mode, the training process
took 15 minutes, and execution mode selection took 1 milliseconds on average. We
observe that the increase in the number of processors does not proportionally reduce
the training time, and none of the processors are fully loaded in our evaluation.
In the inference phase, i.e., selecting execution mode, the MAXN mode slightly
outperforms the default mode due to the minor boost of single core frequency.

For real-world applicability, a lookup table can also be utilized since the state
space in our application, i.e., the minimal legal space S∗, is limited. That is, the
trained DQN network can be converted to a table, that shows the mapping between
states and corresponding probabilities of different execution modes. In that case,
the runtime overhead for selecting execution modes of tasks is negligible.

For systems with unknown or changing error probabilities, as one safe policy, the
ADP proposed in [CBC+16] can be first applied to estimate a safe error probability
for the current scenario. If the overhead is acceptable, the proposed automata-
based approach can derive the selection policy. However, to optimize the policy,
recalculating for each scenario is rather expensive. The RL approach could still be
more effective in this case.

7.6 Summary

We study how to selectively deploy fault-tolerance techniques as different execution
modes under (m,k) constraints to reduce the number of expensive executions and
eventually save energy, while satisfying the schedulability. Through formulating the
mapping between states and selections for execution modes of jobs, we propose two
different adaptive approaches. When the error probability is known, we provide a
Markov chain based approach to optimize the mapping strategy. When the error
probability is unknown, an RL-based agent is trained to aid the selection of the
execution mode for its next job. To demonstrate the applicability of our approaches,
we provide extensive numerical evaluations. The results show that both proposed
approaches outperform the state-of-the-art in most of the evaluated cases, especially
when the error probability is relatively low under the same (m,k) constraint.
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In the previous chapters of this dissertation, we investigated the analysis and op-
timizations of timing-constrained embedded systems, approaching the topic from two
distinct perspectives. Machine learning, with its remarkable adaptivity, prowess in
data-driven decision-making, and capacity to manage large-scale data, has emerged
as a key solution provider across various application domains, such as medical
diagnosis, autonomous driving, automation control, and environmental monitoring.
Concurrently, embedded systems, known for their determinism, real-time function-
ality, reliability, and efficiency, are emerging as favored platforms for deploying
machine learning models, particularly within industrial domains.

Despite the synergies, the deployment of machine learning models in embedded
systems presents significant challenges. On the one hand, such applications often
come with strict timing requirements, necessitating careful consideration due to the
inherent complexity of machine learning tasks. On the other hand, the constrained
resources of embedded systems, coupled with the high computational demands of
many machine learning tasks, further complicate this integration.

Moreover, considering machine learning’s adaptability to dynamic environments,
it presents itself as a source of innovative solutions to the existing challenges within
the embedded systems domain. This adaptability becomes a crucial factor in en-
hancing the functionality and efficiency of these systems, particularly in dynamically
changing scenarios.

In the subsequent sections, we summarize the contributions of this dissertation.
The conclusion offers a concise recapitulation, structured according to the chapters
where the main subjects are detailed. Following that, we discuss ongoing and future
research directions, aiming to address the limitations observed in our current study
and to enhance the effectiveness and applicability of our approaches proposed in
this dissertation.
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8.1 Conclusion

In this section, we summarize three contributions to optimize and analyze timing-
constrained embedded systems. First, we focus on resource synchronization, specifi-
cally considering relatively long critical sections. To validate the proposed approach,
we provide the implementation in two widely applied operating systems and propose
a formal verification framework to ensure the correctness. Secondly, we optimize
the deployment of machine learning models on resource-constrained distributed em-
bedded systems. Additionally, we discuss an application that employs reinforcement
learning to address challenges inherent to embedded systems. We also discuss some
limitations observed in our current study.

8.1.1 DGA for Multiprocessor Real-Time Synchronization

Contributions: Chapter 4 answers some fundamental questions regarding multipro-
cessor real-time synchronization. A key finding is that the computational complexity
of the simplest synchronization setting is categorized as NP-hard. In this setting,
each task comprises a single non-nested critical section, i.e., OCS task model, and
all tasks have an identical period and deadline. Introducing additional processors or
permitting task preemption and migration does not alleviate this complexity.

To address the challenges of extended critical sections in machine learning
tasks, for instance, those accessing large datasets or utilizing GPUs for acceleration,
we introduced the dependency graph approach. This non-work-conserving method
contains two steps. In the first step, dependency graphs are constructed to determine
the execution sequence of critical sections for each shared resource. Towards this,
the approach employs uni-processor non-preemptive scheduling algorithms specific
to the OCS task model. We further expanded the approach to more general task
systems, such as those accommodating multiple non-nested or nested critical sections
per task, i.e., MCS and Nested-MCS task model, respectively. For these models,
constraint programming for job shop scheduling is applied to construct dependency
graphs. In the second step, for scheduling the constructed dependency graphs, we
introduced several LIST-EDF-based algorithms. These algorithms set deadlines
for each sub-job by considering the precedence constraints. These algorithms are
supplemented with both global and partitioned scheduling strategies. For the latter,
we introduced two distinct partitioning methods: one based on federated scheduling
to segregate tasks according to shared resources, and another utilizing a worst-fit
heuristic. In addition, periodic task systems are supported by unrolling jobs for all
tasks in one hyper-period, and dependency graphs are constructed at the job level.

Empirical results underscore the performance advantages of our proposed DGA.
It outperforms state-of-the-art methods in the literature across a majority of the
evaluated configurations. This superiority is particularly evident in configurations
where critical sections occupy a relatively long duration, specifically, longer than
10% of a task’s total execution time.
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Limitations: The proposed DGA has two main limitations. First, only periodic
task systems are supported, wherein each task must release its jobs strictly according
to its period, and all tasks simultaneously release their initial jobs. Second, in certain
configurations, specifically when the critical section occupies between 1% and 10%
of the total execution time, our DGA, in certain cases, underperforms compared to
some state-of-the-art methods, such as ROP.

8.1.2 Implementation and Verification of Protocols

Contributions: Chapter 5 details how the proposed dependency graph approach is
implemented in both LITMUSRT and RTEMS. Measured overheads demonstrate that
our implementations closely align with those of officially supported multiprocessor
resource synchronization protocols.

To guarantee the accuracy and reliability of these implementations, we introduced
a framework capable of formally verifying an implemented protocol. The framework
operates under the premise that the protocol is implemented in a correctly functioning
RTOS. Upon utilizing this verification framework, we identified a long-standing
inconsistency between ICPP and MrsP implementations with their formally described
properties in RTEMS. Subsequently, we proposed a solution for ICPP and MrsP
(under a specific condition regarding nested resource access). Specifically, when a
thread acquiring nested resources always requests them in a non-descending order
of priority ceilings.

Limitations: The dependency graph approach does not actually need the
locking/unlocking mechanism anymore since the dependency graph handles mutual
exclusion of the critical sections. However, our current implementation in both
LITMUSRT and RTEMS is still based on the existing locking mechanism. There
is still a lack of research on how to implement the dependency graph approach in
modern real-time operating systems with low overhead. Furthermore, our formal
verification framework operates under a significant presumption. That is, the RTOS,
wherein the protocols are implemented, is assumed to be functionally correct. This
assumption may not always hold true in real-world scenarios. Therefore, a thorough
verification process for the RTOS implementation itself is imperative.

8.1.3 MBO on Distributed Embedded Systems

Contributions: Chapter 6 introduces MODES, a hyper-parameter tuning approach
designed for distributed embedded systems that takes resource constraints and data
privacy into account. MODES consists of two branches, each with different objectives,
i.e., improving prediction performance and enhancing tuning efficiency, respectively.
In MODES-B, the distributed embedded system is treated as a single black box,
with the objective of tuning a set of hyper-parameters for the machine learning
model in each node while simultaneously adjusting the corresponding weights for
these nodes. Conversely, MODES-I treats each node as a duplicate of the same black
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box, allowing the tuning process to be parallelized. This allows multiple proposed
sets of hyper-parameters to be evaluated independently across different nodes.

Evaluation results demonstrate that MODES-B outperforms the baseline ap-
proach, where each node tunes its hyper-parameters in isolation. This superiority
is evident in terms of both prediction accuracy and statistical stability. Mean-
while, MODES-I greatly improves the efficiency of the tuning process and retains
comparable performance levels.

Limitations: Our approach is primarily designed for homogeneous distributed
embedded systems. However, heterogeneous distributed embedded systems are also
common in real-world scenarios. Therefore, modifications are necessary to adapt to
these heterogeneous systems. Additionally, we assumed a consistent environment,
implying that optimized hyper-parameters will remain relevant for future applications.
However, with the shifting nature of environments and data patterns, the optimized
set of hyper-parameters might become inapplicable. This is a challenge commonly
termed as the concept drift problem. Currently, our framework lacks the flexibility
to address this issue.

8.1.4 RL for Average Task Execution Time Minimization

Contributions: Chapter 7 explores an application in which reinforcement learning
is employed to address challenges in the embedded systems domain. This study
focuses on minimizing the average task execution time by selectively deploying fault-
tolerance techniques as different execution modes under (m,k) constraints. The
objective is to reduce the number of expensive executions, thereby conserving energy,
without compromising schedulability. We formalize this challenge by associating
states with choices of execution modes for tasks.

In scenarios where the error probability is known and stable, an optimal method
is designed. This method conducts mapping optimization by transforming all
permissible states into a Markov chain. Conversely, when the error probability
remains unknown or unstable, an RL-driven agent is trained to assist in selecting of
the execution mode for its next job.

Our evaluation results indicate that both introduced strategies outperform
existing methods in a majority of evaluated scenarios, especially when the error
probability is relatively low under the same (m,k) constraint.

Limitations: The RL-based strategy, while promising, exhibits non-negligible
operational overheads on actual hardware. This limitation restricts its practical
applicability. Hence, dedicated efforts to optimize the implementation and reduce
these overheads are imperative.

8.2 Ongoing and Future Work

In light of the identified limitations of our present study, we propose several directions
to advance the deployment of machine learning tasks in embedded systems. These
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encompass: a) improving performance with respect to timing requirements, b)
considering a more generalized task model, c) ensuring a robust implementation,
and d) enhancing overall performance in dynamic environments. Furthermore, we
will discuss our ongoing efforts that leverage reinforcement learning to elevate the
average performance of embedded systems.

Exploration of Different DAG Construction Approaches As highlighted
in Section 4.8.5, the primary objective of job-shop scheduling optimization in
constraint programming is to minimize the maximum lateness. However, this
singular optimization objective might inadvertently neglect the execution order
of intermediate sub-jobs, especially when these sub-jobs do not directly impact
the optimal lateness. Such an oversight could result in performance degradation,
especially when the utilization of critical sections is relatively low.

Our future direction aims to investigate alternative optimization objectives
for constructing DAGs associated with shared resources. Such approaches would
prioritize every sub-job, ensuring a comprehensive treatment. One prospective
strategy might involve deploying two optimization procedures in succession, each
with distinct objectives.

In preliminary experiments, we combined the optimization of maximum lateness
with a workload averaging objective. This combination exhibited promising results,
particularly when the overall utilization of critical sections was in the range of
[1%,10%]. The optimization of maximum lateness is detailed in Section 2.2.1. The
workload averaging objective aims to distribute the workloads of critical sections
from various shared resources uniformly across a specified time frame. To implement
this for a given task set, the following steps are necessary:

1. Operate the optimization to minimize the maximum lateness as stated in
Section 4.6.

2. Segment the hyper-periods into evenly sized time windows.
3. Strive to minimize the disparities in the number (or utilization) of critical

sections across these time windows, ensuring that the maximum lateness, as
established in the initial step, remains unaffected.

The detailed configuration of this approach, specifically the size of the time windows,
requires further investigation. Additionally, for sub-jobs that don’t directly influence
either objective, their execution order still needs to be determined.

Incorporating Release Jitters into DGA Design In the foundational design
of DGA, the primary focus was on frame-based task systems and periodic task
systems. A fundamental assumption was that every task within a set would release
its first job synchronously at time 0, and that subsequent jobs would be released at
the start of each period, i.e., r`i = (` − 1) ⋅ Ti. Consequently, the first step of DGA
enables the predetermined execution order of sub-jobs accessing the same shared
resource through offline strategies.
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Figure 8.1: Different scheduling scenarios using DGA considering release jitters.

While direct application of DGA to purely sporadic task systems may be infeasible
due to these predetermined execution orders of critical sections, there is potential to
adapt it for systems with release jitters. In practical scenarios, such release jitters
imply r`i > (` − 1) ⋅ Ti. Introducing these jitters without adjusting the execution
orders defined by the DAGs can lead to missed deadlines.

To illustrate, consider an example with two tasks under the OCS task model,
where both τ1 and τ2 contain three computational segments and the middle segment
request shared resource z1, i.e., τ1 = (((0.2,0), (3.6,1), (0.2,0)),4,5,5) and τ2 =

(((5.4,0), (0.6,1), (0.6,0)),6.6,10,10). Both tasks require the shared resource z1.
The Potts method constructed graph suggests the critical sections’ execution order
as: J1

1,2 → J1
2,2 → J2

1,2. Scheduled through Partitioned LIST-EDF, τ1 is allocated to
processor 1 and τ2 to processor 2. Without a release jitter, a feasible schedule is
produced in Figure 8.1a. However, the introduction of a release jitter for τ2, i.e.,
r1

2 = 0.6 in Figure 8.1b, makes the schedule infeasible when following the predefined
execution order of critical sections.

To address release jitters, we intend to employ the release enforcement approach.
This strategy enforces the release of a sub-job under certain conditions. Specifically,
if a sub-job’s predecessor is not released by the latest permissible release time, the
sub-job can bypass the dependency graph constraints and release itself directly.
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We denote the latest release time of a sub-job’s predecessor as r̂`i,j . This is
defined by the minimum of two times: the deadline of the sub-job’s predecessor
minus its WCET, and the deadline of the current sub-job minus the sum of its WCET
and its predecessor’s WCET, i.e., r̂`i,j = mindPredJ`i,j −CPredJ`i,j , d

`
i,j −CPredJ`i,j

−C`i,j .
Considering the previously discussed task set, the sub-job J2

1,2 becomes ready at
time 5.2. The combined execution time for all its successors is 3.8 time units. The
worst-case execution time (WCET) of its predecessor, J1

2,2, is 0.6 time units. To
ensure schedule feasibility, J1

2,2 must be released no later than d2
1−C(1, 2)−C1,3−C2,2,

i.e., 5.6. This computation yields a time of 5.6. If J1
2,2 is still not released by this

time,J2
1,2 can commence its execution immediately. The resultant feasible schedule

with enforced release times is shown in Figure 8.1c.
Jobs that miss their latest release times are subsequently added to the wait

queue of the corresponding shared resource(s). This wait queue is prioritized based
on the deadlines of these critical sections.

Although this strategy offers some advantages, the comprehensive worst-case
response time guarantee after applying these adjustments under different scenarios
remains an open question for further research.

Supporting Resource Synchronization Protocols in the Latest RTEMS
Release with Formal Verification In our previous work [SPM+22], we in-
tegrated support for MPCP, DPCP, FMLP, and DFLP in RTEMS version 4.12.
However, the 4.12 release branch of RTEMS has been superseded by the 5.1 release.
Moreover, our initial implementations lacked the rigor of formal verification.

To the best of our knowledge, no existing studies or projects focus on both the
implementation of resource synchronization protocols and their formal verification
within the RTEMS environment. To fill this gap, we plan to convert our previous
implementations to align with the latest RTEMS release, specifically 5.1, and
incorporate formal verification processes to ensure their correctness. Additionally,
it is necessary to expand the formal verification process to some key components
of the RTOS. Verifying the EDF scheduler in RTEMS is our next step. We aim
to offer valuable insights and tools to our community peers by making our refined
patch available as open source.

Considering Concept Drift When Deploying Machine Learning Models
Machine learning model deployment often faces fluctuating environments. A model
optimal in one environment may lose its efficacy when the environment changes, a
phenomenon termed concept drift. Addressing this dynamic nature of environments
when optimizing machine learning models is tantamount to solving a dynamic
optimization problem.

An example of concept drift is the bit flip errors. Grounded in contemporary
computer architecture, data in memory devices is encapsulated as binary digits,
e.g., an 8-bit binary sequence can symbolize 256 distinct decimal values. Memory
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hardware is susceptible to transient faults, known as bit flip errors, which can stem
from manufacturing discrepancies, ambient radiation, or temperature fluctuations.
Essentially, a bit flip error denotes an inadvertent switch from 0 to 1 or its reverse.
To illustrate, an unsigned integer, 10 (binary: 00001010), could transform into
26 (binary: 00011010) due to a bit flip in its fourth binary bit. We assume the
probability of any bit undergoing such a flip remains consistent.

Despite the existence of error detection and mitigation solutions like RAM
parity and ECC memory, their uptake in low-power embedded systems remains low,
mainly due to cost and space constraints. Ferroelectric FET (FeFET), an emergent
non-volatile memory (NVM) technology, holds significant promise. However, its
reliability is intrinsically temperature-dependent. As temperatures rise, the FeFET’s
bit flip error rate increases correspondingly. Many embedded systems applications
operate across a broad temperature spectrum, and most active cooling mechanisms,
like fans, only kick in at critical temperature thresholds.This constraint arises from
considerations of cost, size, and energy consumption. Consequently, the broad range
of feasible operating temperature of applied hardware leads to significant variability
in the bit flip error rate.

A machine learning model’s performance often hinges on its training data and
the new, unseen test data. To gauge how bit flip errors in a specific dataset influence
a machine learning model’s performance, we artificially introduced bit flips into the
memory storing the renowned MNIST dataset [LCB98]. Here, each handwritten digit
is represented using 784 integers, with each integer encapsulated by an 8-bit binary
sequence. Using this data’s bit representation in the model involves introducing bit
flips into the memory. In particular, these bit errors manifest as multi-bit flips that
are symmetric, i.e., the likelihood of a 0 becoming a 1 mirrors that of a 1 becoming
a 0. This presupposition depicts the bit flip probability during each read from this
unreliable, or approximate, memory. Figure 8.2 showcases a sample containing ten
handwritten digits, albeit with divergent error rates.

In our upcoming research, we aim to refine MODES by enhancing its adaptability
to changing environments, e.g., the bit flip errors with changing error rates.

Applying Machine Learning Approaches for Scheduling Real-Time Tasks
Recent research in the domain of embedded and real-time systems has shown growing
interest in machine learning methodologies, especially reinforcement learning, due
to their potential applications. For example, Bo et al.[BQL+21] proposed an
innovative scheduling technique for multiprocessor real-time systems based on deep
RL. Similarly, Xu et al.[XKH+23] introduced an approach leveraging RL to optimize
the path latency across all scheduled runnables in automotive systems.

Despite these promising works, there remains a gap in research concerning the
application of RL for resource synchronization in multiprocessor environments. One
potential exploration is to involve RL within the DGA framework, where it assists
in the construction of the dependency graph. Here, the feasibility of the generated
schedule would determine the reward structure for the RL agent: a positive reward
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(a) A subset of MNIST with 0% error rate. (b) A subset of MNIST with 5% error rate.

(c) A subset of MNIST with 10% error rate. (d) A subset of MNIST with 15% error rate.

Figure 8.2: Examples of visualized MNIST dataset with different error rates.

for feasible schedules and a negative one otherwise. Alternatively, designing an
RL-based scheduler dedicated to synchronize resource access, ensuring mutually
exclusive accesses, presents another interesting direction.

However, However, a significant emerging challenge in this context is RL’s
inconsistency in guaranteeing hard real-time properties. While RL may enhance
performance metrics in an aggregate sense, there remain instances where strict
real-time deadlines may not be consistently met.
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Appendix A

Appendix

A.1 Appendix for Chapter 4

A.1.1 Detailed Schedules for Illustrative Examples

By applying the LIST-EDF scheduling algorithm on two processors, the concrete
schedule for the dependency graph presented in Figure 4.2 is depicted in Figure A.1.

non-critical section critical sections z1/z2

P1

P2
0 5 15 20

θ4,1 θ1,1 θ3,1 θ3,2 θ2,3 θ3,3 θ3,4 θ1,3θ1,4 θ3,5

θ2,1θ2,2 θ4,2 θ1,2 θ4,3θ4,4 θ2,4 θ2,5 θ4,5θ1,5

Figure A.1: Schedule the dependency graph from Figure 4.2 on 2 processors using
LIST-EDF.

Similarly, by utilizing the LIST-EDF scheduling algorithm on two processors,
the schedule for the dependency graph from Figure 4.3 is illustrated in Figure A.2.

non-critical section critical section z1/z2/z3/z4

P1

P2
0 2 4 6 8 10 12 14 16 18 20

θ1,1 θ1,2 θ1,3 θ1,4 θ2,1 θ2,2 θ2,3 θ2,4θ1,5 θ1,5

θ3,1 θ3,2 θ3,3 θ3,4 θ3,5 θ2,5

Figure A.2: Schedule the dependency graph from Figure 4.3 on 2 processors using
LIST-EDF.
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A.1.2 Evaluation Results for Frame-based Task Sets

We present the remaining evaluation results for frame-based task sets across various
task models.

Evaluation Results for OCS Task Systems
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Figure A.3: The evaluation results for frame-based OCS task systems on 8 pro-
cessors with [10%,40%] workload for critical sections, emphasis on
increasing the number of available shared resources, i.e., Z ∈ {4, 8, 16}.
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Figure A.4: The evaluation results for frame-based OCS task systems with
[10%,40%] workload for critical sections, emphasis on increasing
the number of processor and the number of available shared resources
simultaneously, i.e., M = Z ∈ {4,8,16}.

A subset of our evaluation results for frame-based task systems with the OCS task
model can be found in Figures A.3 and A.4. These evaluation results demonstrate
two additional scenarios:
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• Number of Available Shared Resources, i.e., Z ∈ {4,8,16} (Figure A.3):
When the number of shared resources increases relative to the number of pro-
cessors, the performance of most evaluated approaches improves. However, the
performance of DGA with the federated-based partitioning algorithm declines.
This suggests that the federated-based partitioning algorithm struggles when
the number of available shared resources is considerably large.

• Concurrent Expansion of Available Processor and Shared Resource,
i.e., M = Z ∈ {4,8,16} (Fig. 4.13): A simultaneous increase in both M and
Z does not significantly affect the performance of the evaluated approaches.

Evaluation Results for MCS Task Systems
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Figure A.5: The evaluation results for frame-based MCS task systems on 8 pro-
cessors with [10%,40%] workload for critical sections, emphasis on
increasing the number of available shared resources, i.e., Z ∈ {4, 8, 16}.

A subset of our evaluation results for frame-based task systems using the MCS
task model is presented in Figures A.5 and A.6.

As observed previously, the results show that when the number of shared resources
increases relative to the number of processors (as seen in Figure A.5), the performance
of all evaluated approaches improves. Please note that in the MCS task model,
only the worst-fit heuristic was evaluated as the partitioning algorithm for DGA. A
concurrent increase in both M and Z (as shown in Figure A.6) slightly worsens the
performance of all evaluated approaches.

Evaluation Results for Nested-MCS Task Systems

We present a subset of our evaluation results for frame-based task systems using the
Nested-MCS task model in Figures A.7, A.8, and A.9.

In Figure A.7, we observe that an increase in the number of shared resources,
without modifying other parameters, does not substantially affect the performance of
the evaluated algorithms. However, increasing the depth of nested resource accesses
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Figure A.6: The evaluation results for frame-based MCS task systems with
[10%,40%] workload for critical sections, emphasis on increasing
the number of processor and the number of available shared resources
simultaneously, i.e., M = Z ∈ {4,8,16}.
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Figure A.7: The evaluation results for frame-based Nested-MCS task systems on
8 processors with [10%,40%] workload for critical sections, and a
nested depth of 2, emphasis on increasing the number of available
shared resources, i.e., Z ∈ {4,8,16}.

from 2 to 4 (Figure A.7 to Figure A.8) results in a slight decline in the performance
for all methods. In deep nested resource accesses, i.e., depth is 4, an increase in the
number of shared resources leads to a performance improvement for the DGA with
the partitioned scheduling algorithm.

Moreover, an increase in the probability of a critical section requesting nested
shared resources (Figure A.9) does not significantly influence the performance of
the evaluated algorithms.
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Figure A.8: The evaluation results for frame-based Nested-MCS task systems on
8 processors with [10%,40%] workload for critical sections, and a
nested depth of 4, emphasis on increasing the number of available
shared resources, i.e., Z ∈ {4,8,16}.
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Figure A.9: The evaluation results for frame-based Nested-MCS task systems on
8 processors with [10%,40%] workload for critical sections, and a
nested depth of 2, emphasis on increasing the probability that a critical
section requests nested shared resources, i.e., q ∈ {10%,30%,50%}.
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