
A scalable machine learning system for anomaly

detection in manufacturing

Zur Erlangung des akademischen Grades eines

Dr.-Ing.

von der Fakultät Maschinenbau

der Technischen Universität Dortmund

genehmigte Dissertation

M.Sc. Thomas Schlegl

aus

Starnberg

Tag der mündlichen Prüfung: 15.12.2023

1. Gutachter Prof. Dr.-Ing. Jochen Deuse

2. Gutachter Prof. Dr.-Ing. Rainer Müller

Dortmund, 2023

I

Abstract

Media reports on product recalls in the automobile industry have become a common occurrence

for consumers. In fact, their frequency and the number of affected vehicles has been on the rise

in recent years. The associated costs are an enormous economic burden to automobile manu-

facturers. Most recalls can be traced back to production faults. The ability of manufacturers

to detect these faults early on during production and prevent a recall can be a competitive

advantage. Aside from improved quality management processes, intelligent and automated

analyses of the process data promises great potential that has remained largely untapped. This

is because the challenges are immense: the amount of data is enormous and the data patterns

characteristic of a process fault are unknown. A promising approach is the use of Machine

Learning (ML) to scour this data for the metaphorical needle in the hay stack. The goal is to

use algorithms that learn to distinguish between normal and anomalous process behavior and

warn the process expert if an anomaly is detected. Researchers in both industry and academia

have been trying for years to establish such ML systems in manufacturing. However, most ML

projects fail before reaching the productive phase. The few systems that do make it into produc-

tion require a huge amount of resources for system operation and add little net economic value

to the business. This has lead to the widely accepted realization that, while it is relatively easy

to develop ML prototype systems that exhibit sometimes bafling results, it is incomparably

more difficult to scale these into productive systems that monitor hundreds or even thousands

of processes. Surveys of ML experts confirm, that often unnecessarily complex algorithms are

used for these systems and that the long-term complexity that these design choices entail for

system operability are either ill understood or not considered.

The goal of this thesis is the development of an approach to train scalable ML models for

anomaly detection in manufacturing process data. The training process for model initializa-

tion and adaptations must be highly automatable to allow for a structured and orchestrated

scaling process. This should allow to reduce the complexity on a system level and facilitate

long-term operability. Due to the practical problem statement and applied ML research, the

Design Science research methodology was central to this thesis. This research paradigm focuses

on generating new knowledge by iterative development and field testing in an applied setting.

Based on literature, two promising techniques were identified that served as the starting point

for the development. On the one hand are Deep Learning models (DL) whose prediction accu-

II

racy outperforms alternate approaches in most benchmark studies, irrespective of the field of

application. On the other hand, are Data Mining techniques (DM) where considerable advances

have been made in recent years that improved the performance and technical implementation

of powerful DM algorithms. The majority of the thesis focuses on a bottom-up evaluation and

iterative field-testing of both techniques in parallel development cycles to arrive at a scalable

approach for constructing large-scale ML systems in production. Their scalablility was sub-

sequently evaluated under real-world condition during a 20-week evaluation phase. To ensure

the comparability of both approaches, a purpose-built ML management software was used to

ensure a structured process for training, scaling and adapting models. The number of models

required for monitoring the production system of the DM/ML approach was nearly half com-

pared to the DL approach. The DM/DL approach allowed to trade a short-term increase in

resources required for model training for improved long-term system maintainability and can

be considered scalable in both relative and absolute terms. This conclusion is supported by

developer reports of large-scale ML systems in production that are comprised of low-complexity

DM/ML models.

III

Acknowledgement

First and foremost I want to thank my brother Stefan. He served as an invaluable sparring

partner and lent his unconditional support throughout the entirety of my doctoral studies. The

research summarized in this thesis would not have been possible without him.

I would like to thank my doctoral supervisor Prof. Dr. Jochen Deuse for ensuring the scientific

rigor of my work while at the same time giving me the utmost freedom to pursue my research.

I am also grateful to my industry supervisor Sebastian Mayer, who I could always rely on for

support and have come to view as a personal mentor. Both have shaped me as much as the

research work itself and have made me grow as a person.

I would like to thank my friend Dr. Daniel Carton for focusing my efforts on the publication

of my research work. He also told me, that ”a good dissertation requires the willingness to

sacrifice personal relationships.” I am now engaged to my then girlfriend Samirah - which I try

to convince myself is a testament to her courteous and accepting nature rather than the quality

of this dissertation. I will let the reader be the judge of the latter.

Lastly, I would like to thank my family for their unwavering encouragement and emotional sup-

port, particularly my parents Ulrich and Sabine, my sister Christina as well as my grandparents

Ottmar and Elisabeth.

CONTENTS IV

Contents

Nomenclature VII

List of Figures IX

List of Tables XII

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Research topic . 6

1.3 Research methodology . 10

1.3.1 The importance of applied ML research 10

1.3.2 Design science research . 12

2 Challenges and requirements 14

2.1 Operating large-scale machine learning systems 15

2.1.1 System scalability by extension . 15

2.1.2 Maintaining machine learning models . 19

2.2 Anomaly detection . 20

2.2.1 One-class classification . 20

2.2.2 Continuous learning based on user feedback 22

2.2.3 Learning from rare events . 25

2.3 Pattern recognition in time series data . 25

2.4 Summary of requirements . 27

3 State-of-the-art in research and practice 29

3.1 ML algorithms for anomaly detection . 31

3.2 Retraining models in production . 33

3.3 Productive large-scale ML systems . 34

3.4 Reproducibility of results . 36

4 Time series data mining for anomaly detection 38

4.1 Motivation for pattern matching models . 38

4.2 Fundamentals of pattern extraction and matching 40

4.2.1 Time series subsequence matching . 40

CONTENTS V

4.2.2 Distance measures . 43

4.2.3 Time series snippets . 46

4.2.4 Time series shapelets . 49

4.3 Unsupervised anomaly detection . 51

4.3.1 Adopting the snippet algorithm . 51

4.3.2 Anomaly detection using snippets . 53

4.4 Semi-supervised pattern extraction and refinement 60

4.4.1 Extracting shapelets for highly imbalanced data 61

4.4.2 Interactive data exploration and pattern refinement 68

4.5 Continuous adaptation of anomaly detection models 72

4.5.1 Adapting one-class models . 73

4.5.2 Training classification models . 75

5 Deep learning for anomaly detection 76

5.1 Motivation for deep learning models . 76

5.2 Fundamentals of deep learning . 79

5.2.1 Multi-layer neural networks . 79

5.2.2 Backpropagation and gradient descent 83

5.2.3 Training deep networks . 85

5.3 Semi-supervised anomaly detection . 87

5.3.1 Recognizing patterns in time series data 88

5.3.2 Anomaly detection using latent variables 90

5.3.3 Latent variable model for anomaly detection 96

5.4 Continuous model retraining . 102

5.4.1 Cost function for one-class classification 102

5.4.2 Retraining strategy . 103

6 Real-world system evaluation in the manufacturing domain 104

6.1 Domain setting . 105

6.1.1 Fundamentals of tightening processes . 105

6.1.2 Tightening process data . 108

6.2 Machine learning operations workflow . 111

6.3 System architecture . 118

6.3.1 Graph-based model management . 118

CONTENTS VI

6.3.2 Model and data services . 121

6.4 Evaluation . 124

6.4.1 Model adaptability . 124

6.4.2 System scalability . 126

7 Conclusion 130

7.1 Critical evaluation of results . 130

7.2 Research contribution . 134

7.3 Outlook . 136

NOMENCLATURE VII

Nomenclature

Abbreviations

AI

ANN

APCA

AUC

CASH

CNN

DL

DM

DP

DSR

DTW

FMEA

GRU

HPO

ICLR

ICML

IR

LSTM

LVM

MIT

ML

MLM

MLOps

MLP

MNIST

MP

NeurIPS

NHTSA

Artifical Intelligence

Artificial Neural Network

Adaptive Piece-wise Constant Approximation

Area Under the Curve

Combined Algorithm and Hyperparameter Selection

Convolutional Neural Network

Deep Learning

Data Mining

Distance Profile

Design Science Research

Dynamic Time Warping

Failure Mode and Effects Analysis

Gated Recurrent Unit

Hyperparameter Optimization

International Conference on Learning Representations

International Conference on Machine Learning

Information Retrieval

Long Short-Term Memory

Latent Variable Model

Massachusetts Institute of Technology

Machine Learning

Model Lifecycle Management

Machine Learning Operations

Multi-Layer Perceptron

Modified National Institute of Standards and Technology

Matrix Profile

Neural Information Processing Systems

National Highway Traffic Safety Administration

NOMENCLATURE VIII

NN Nearest-Neighbor

OEM Original Equipment Manufacturer

PAA Piece-wise Aggregate Approximation

PRF Pseudo Relevance Feedback

RNN Recurrent Neural Network

SAX Symbolic Aggregate Approximation

SME Subject Matter Expert

SVM Support Vector Machine

VAE Variational Autoencoder

Symbols

L Loss term

Θ Threshold

A Subsequence set

a Activation vector

b Bias vector

CS Snippet candidate

D Distance profile

h Hidden state vector

J Similarity join

P Matrix profile

Q Query subsequence

S Snippet

T Time series

w Weight vector

x Input vector

y Output vector

z Probablistic latent vector

LIST OF FIGURES IX

List of Figures

1 Result of a poll among 114 ML practitioners about the percentage of ML models
deployed to production [1] . 4

2 Google search trend of the term ”MLOps” as a proxy for the growing focus of
researchers and practitioners on the challenges of ML system operation. 5

3 The field of data science is an interdisciplinary field of traditional research, ma-
chine learning and software engineering [2]. 9

4 The number of accepted papers, their authors and average number of citations
of paper published in the NeurIPS conference from 2000-2020. 11

5 Design science cycles according to Hevner et al. [3] 13
6 Horizontal vs. vertical scaling of ML models to increase system capacity. 16
7 Advantages and disadvantages of horizontal vs. vertical scaling of ML models. . 17
8 The advantages of scaling a model horizontally/vertically may change over time. 18
9 Schematic grouping of the anomalous and faulty objects that may or may not

coincide. 21
10 Objects of the target class may be (much) closer to objects of the majority class

than to other objects within that class. 23
11 Number of papers published on the topic of adaptive learning in some of the

highest-ranking venues for ML research from 2010-2020. 24
12 Accuracy of a 1-NN classifiers trained on different SAX feature representations

of real-world manufacturing data. 28
13 Challenges and requirements for an ML system for anomaly detection in manu-

facturing. 29
14 Clustering of literature on anomaly detection systems according to their adapt-

ability and scale. 31
15 Qualitative evaluation of the reproducibility of available literature 37
16 Schematic depiction of the components of a pattern matching model. 39
17 The (Euclidean) distance profile D of different query subsequences Q and a time

series T . 42
18 Similarity between real-world process data objects according to different distance

measures. 44
19 The DTW algorithm locally aligns the signals before calculating the (Euclidean)

distance between them [4] . 45
20 Motifs discovered in an industrial data set [5] 47
21 Distance profile using the MP distance and Euclidean distance for two randomly

selected subsequences in manufacturing data. 48
22 The class-separability of a shapelet candidate C can be evaluated based on the

distance of that candidate to the nearest neighbor to every object T 50
23 The snippet length m is dynamically adapted to optimally cover the time series

between adjacent null markers. 53
24 The value max(MDP) quantifies the most anomalous pattern in the time series

that cannot be explained using the current snippet library. 55
25 An excerpt of a snippet library for a tightening process that are representative

of mutually exclusive operating modes. 57
26 The patterns in the snippet library are matched to the target object and the

results successively consolidated across snippet subsets. 58
27 The high-level algorithm based on time series snippets allows intuitive clustering. 59

LIST OF FIGURES X

28 Data scientists can retrace the decision process of the snippet model to under-
stand why a particular object was misclassified 60

29 The values of the minimum distance profiles DA and DB of two shapelet can-
didates A and B plotted on separate number lines. The maximum information
gain for both optimal split points is the same [6]. 64

30 Swarm plot of the feature space of the top shapelet for the conventional maxi-
mum information-gain criterion (left) and the proposed margin-based criterion
(right) [6]. 65

31 Top five shapelets extracted using the shapelet transformation algorithm (ma-genta)
vs. the margin-based greedy shapelet search (blue) [7]. 67

32 Changes to the query set of the adaptive search system over multiple relevance
feedback cycles [8]. 72

33 Objects are no longer detected as anomalies after their shapelets are added to
the pattern library of the one-class model. 74

34 The extracted patterns can be annotated by SMEs to create a taxonomy of the
domain knowledge learned by the model. 75

35 Deep Learning is a sub-field of machine learning, itself a sub-field of artificial
intelligence. 77

36 Number of academic papers indexed by Google Scholar and ArXiv that include
the keywords ”deep learning” and ”anomaly detection”. 78

37 The MCP neuron can be used to implement different Boolean operations. 80
38 Graphical representation of the mapping function of the perceptron model. . . . 80
39 The linear OR-function (right) can separate two classes using a single line, while

this is not possible for the non-linear XOR-function (left). 81
40 A multi-layer perception has one or more hidden layers between the input and

output layers. 82
41 The recursive network of an RNN is ”unrolled” to train the model using back-

propagation ”through time”. 87
42 An inception module proposed by [9] that is used in deep CNN for machine

vision applications. 89
43 Schematic representation of the latent space of most conventional DL models

(left) and with a normally distributed majority class (right). 92
44 A continuous latent space is the result of a continuous mapping function which

results in similar representations being conserved across spaces. 93
45 The reparametrization trick makes it possible to learn deterministic values Θ for

a probabilistic latent vector z . 94
46 A VAE with a collapsed posterior will reconstruct the same output y for different

inputs x . 95
47 High-level architecture of the latent variable model for semi-supervised anomaly

detection. 97
48 The model detects different features in the latent space for visibly different input

data. 99
49 A linear two-dimensional projection of the latent space of the LVM that was

trained using images of the digit one of the MNIST dataset. 100
50 A (small) number of latent features correlate with visible features in the input

data. 101
51 Cost function of the one-class LVM for anomaly detection. 103
52 The change in the training loss and the latent space of the model during the

retraining procedure. 104

LIST OF FIGURES XI

53 Schematic torque-angle signature of typical tightening processes. 107
54 Process data of pre-tightening and angle- or torque-controlled tightening opera-

tions can be very different. 109
55 Characteristic objects of the majority class and anomaly class of a single tight-

ening process. 111
56 Schematic workflow for ML model life cycle management. 112
57 Monitoring page of the web front-end of the purpose-built ML Ops application. 114
58 Automated tasks in an orchestrated training pipeline. 116
59 Decision diagram of the model training process 117
60 A model pipeline (including its history) can be interpreted as a simple graph. . 119
61 The same model pipelines can be used to monitor multiple processes. 120
62 The data flow between the services, front-ends and databases that comprise the

ML Ops software system. 122
63 The precision of one-class models retrained to discriminate critical anomalies

(left) and the false positive rate of the same models retrained to include unin-
teresting anomalies in the normal class (right). 125

64 Number of productive models over twenty development cycles as the system is
scaled. 128

65 Number of processes monitored per model at the end of the pilot phase. 129
66 Time spent on model training during the pilot phase. 130

LIST OF TABLES XII

List of Tables

1 Comparison of fundamental and applied research according to Hedrick et al. [10]. 12
2 Questions used to evaluate publications regarding their ability to meet the re-

quirements in section 2.4. 30

1 INTRODUCTION 1

1 Introduction

Product recalls in the automotive industry are notorious for their enormous scale and cost. The

costs of replacement or repair, legal litigation and loss in sales can be devastating. In 2016,

over 50 million recalled vehicles were reported to the U.S. National Highway Traffic Safety

Administration (NHTSA) in the Unites States alone [11], costing automobile manufacturers

over 22 billion dollars in warranty accruals [12] - approximately equivalent to the annual R&D

expenditures of the industry [13]. While this was the worst year on record, both in terms of

the number of recalls and total number of affected vehicles, it is indicative of a broader trend

[14, 15]. Over the past decade, more than 30 million vehicles have been recalled in the U.S.

per year on average [11]. In any given year more vehicles are recalled than sold [16]. There

are structural reasons why these high recall rates persist. Increasing product complexity and

shorter development cycles, driven by customer demand and regulatory requirements, as well as

growing competition from new emerging manufacturers force original equipment manufacturers

(OEMs) to cut costs in order to stay competitive. Their widespread response has been to adopt

common part strategies across their product portfolio and outsource business activities to an

increasingly globalized value chain. This greatly increases the number of potential sources

and amplifies the repercussions of quality defects. The vast majority of these sources can be

classified as design flaws and manufacturing faults [17], whereby the latter account for nearly

60 percent of all recalls [18]. There is, therefore, an enormous economic incentive for OEMs to

develop and implement intelligent measures to detect and avoid manufacturing faults in their

operations.

1.1 Background and Motivation

Background The starting point for a recall is usually a quality issue that is detected along

the value stream of the OEM or ”in the field” by customers and service shops after the vehicle

has been delivered. To investigate reported quality issues, OEMs often conduct root cause anal-

yses based on the process data recorded during production. The aim is to identify characteristic

patterns in the data that can be associated with the quality issue in the field. If the production

data contains a robust indicator of the fault, it can be used by OEMs to recall only affected

vehicles in a precision recall. While this is obviously desirable to minimize the economic fallout,

it also means that the recall could have been avoided if manufacturers had been able to detect

the pattern preemptively. The problem is that such patterns are initially unknown - after all, if

1 INTRODUCTION 2

they had been known, measures would have been put in place to detect them. Thus, preventing

recalls requires manufacturers to detect patterns that they know exist without knowing what

they look like - essentially to detect ”known unknowns”. Standard control systems rely on

statistical thresholds to ensure process conformity and detect known patterns through a set of

if-then-rules [19]. These systems are unsuited for reliably detecting unknown patterns. Instead,

a monitoring system is required that raises a warning if an anomalous pattern is detected that

deviates from normal process behavior. It is a challenge in its own right to design a system

that detects these anomalies - after all, the distinction what is normal and what is not is often

difficult to define in precise terms. To complicate matters further, an anomalous pattern only

ever may indicate a fault. Just like not every fault presents itself as an anomalous pattern

in the data, not every anomalous pattern is indicative of a fault. This distinction between

anomalies that are indicative of a fault and those that are not cannot be inferred from the data

alone, but requires the input of subject matter experts (SMEs). While SMEs may not be able

to define a set of general classification rules, they are often able to judge if a concrete object

is critical or not (”I know it when I see it”). The system must therefore learn to make this

distinction based on user feedback and do so efficiently to avoid overburdening the user with a

flood of irrelevant warnings [20].

Artificial intelligence (AI) is the theory and development of computer systems able to perform

tasks normally requiring human intelligence, such as pattern recognition and decision-making

[21]. In principle, it should be possible to apply this technology in the manufacturing domain

and develop an adaptive anomaly detection system. In particular, the AI-subfield of machine

learning (ML) provides the necessary tools to enable the system to adapt its ability to detect

meaningful anomalies based on user-provided feedback. ML is the use and development of

computer systems that are able to learn and adapt without following explicit instructions, by

using algorithms and statistical models to analyse and draw inferences from patterns in data

1. The automotive manufacturing industry is often credited with being particularly well-suited

for the application of ML technology [22, 23]. This is due to the high degree of automation

and machine connectivity that results in the availability of large amounts of data as well as

a high-volume, high-value product that allows to quickly amortize development costs. For

these reasons, researchers have been working on transferring the popularized successes of ML

applications to the manufacturing domain for many years. Compared to other ML applications

1Oxford dictionary

1 INTRODUCTION 3

that seek to improve quality control (which accounts for the majority of AI-related expenditures

in the manufacturing domain [24]), an adaptive anomaly detection system is arguably one

of the most promising applications of ML technology. Rather than seeking to cut costs by

replacing existing quality assurance systems with an ML system that is trained to do the

same task, the system extends the capability of manufacturers. Consider the often-cited case

of predictive quality, where the aim is to detect patterns in the manufacturing data that are

known to correlate with manufacturing defects (or lack thereof). If these correlations are

reliable, downstream testing procedures could be shortened or avoided. However, this is only

possible if the system is both accurate and reliable. Even if this is the case, cost savings are

limited to the investment that would otherwise be necessary to provide sufficient test capacity

(minus the cost of developing and operating the ML system). In contrast, an anomaly detection

system seeks to prevent field recalls that OEMs currently have no effective way of preventing,

seeking to extend rather than replace existing quality assurance measures.

Motivation The idea of developing ML systems for applications in the manufacturing domain

is not new. However, despite decades of applied research and countless prototypes that have

demonstrated the potential of industrial ML systems for a range of applications (including

anomaly detection) [25, 26, 27, 28, 29, 30], the large-scale adoption of these systems has so

far proved evasive. This phenomenon is not limited to the manufacturing domain [31]. While

more than 90 percent of companies invest in AI [32], only around one fifth have deployed

ML systems into production [33, 23] with only ten percent of these systems adding significant

economic value to the business [34]. For the majority of cases the cost for system development

and operation presumably exceeds its business value. This is corroborated by a poll conducted

among ML practitioners across various industries, that shows that the overwhelming majority

of ML models intended for productive use are never actually deployed. The results of the poll

are shown in figure 1.

1 INTRODUCTION 4

Figure 1: Result of a poll among 114 ML practitioners about the percentage of ML models
deployed to production [1]

How can the touted successes of small-scale pilot systems be reconciled with the apparent

inability of established companies to build on this success and move these systems into pro-

duction? It is often assumed, that the adoption of new technologies follows a linear path from

fundamental research to applied research to commercialization [35]. However, this process is

considerably more complex in practice. In the case of real-world ML systems, the reason for

this slow technology transfer is twofold. First, is the often overlooked fact, that the operation

of a productive ML system is considerably more complex and difficult than its development.

While developing and deploying ML systems is relatively fast and cheap, maintaining them over

time in production is difficult and expensive [36]. This has been known in software engineering

for a long time. The failure to consider the challenges associated with system operation during

the development phase quickly results in a system that is inoperable when taking into account

economic factors. This is compounded by the pressure to deliver results in a short amount of

time, which is particularly pronounced for industry projects [37]. This results in technical debt

- a common phenomenon in software engineering that refers to the compounding effect of sub-

optimal design considerations during the development stage on the long-term cost of rework and

maintenance. The same reasons that make this true for software systems apply to ML systems.

In fact, ML systems are usually considerably more complex than conventional software sys-

tems, requiring additional processes for model life cycle management, orchestration of training

pipelines, tracking data dependencies, etc. The added complexity of real-world ML-systems is

often described as a special capacity of these systems to incur hidden technical debt [36]. This

1 INTRODUCTION 5

is further compounded by the fact that the development of ML systems is often done by people

with a background in engineering or mathematics that have limited experience in professional

software development [38]. Consequently, these systems often consist of a patchwork of legacy

code and glue-code snippets. Such systems are extremely difficult and costly to maintain. To

set up and operate these individual subsystems requires a broad range of expertise [39]. This

has led to the rise of a new discipline that combines expertise in the area of machine learning,

data engineering and software engineering, called MLOps. As can be gleaned from figure 2,

MLops has been gaining momentum in recent years, which shows, that people are increasingly

aware of the challenges of ML system operation.

Figure 2: Google search trend of the term ”MLOps” as a proxy for the growing focus of
researchers and practitioners on the challenges of ML system operation.

The second major reason for the slow technology transfer is economics. While most companies

struggle to deploy ML technology into production, tech companies have been offering large-

scale ML-based products and services for years [40, 41, 42, 43]. Clearly, neither the maturity

nor accessibility of the technology is the problem. OEMs themselves have commercialized ML-

based product features like voice recognition and advanced driver assistance systems at scale.

Most notably, they are investing huge sums into the development of autonomous driving tech-

nology. These systems are undeniably more complex than an anomaly detection system, yet

most researchers expect level four autonomy to be made available to customers by 2030 [44].

To understand this asymmetry, one must consider the differing business value of these ML sys-

tems. The value of an industrial ML system is determined by its ability to improve the bottom

line of manufacturing operations through cost savings. These costs are dominated by variable

1 INTRODUCTION 6

costs that are either highly optimized or outside the control of the OEM. Between 40 and 50

percent of a passenger vehicle’s retail price is attributable to material costs [45], roughly half

of which are in turn attributable to the price of steel. A ten percent drop in the price of steel,

therefore, increases profit margins by up to two percent [46]. To realize the same increase in

profit margins through internal cost saving measures would require cutting the R&D budget or

capital expenditures by one third (both R&D and depreciation account for roughly 6 percent of

costs [47, 48]. In contrast, autonomous driving technology could conceivably contribute more

to the top line of an OEM than all possible cost saving measures combined could contribute

to the bottome line. This rough breakdown of the cost structure of automobile OEMs shows,

that the economic potential of industrial ML systems is inherently limited. It follows, that the

resources that managers are prepared to commit to the development and operation of these

systems is equally constrained.

In summary, while researchers have demonstrated the potential of ML systems in the manu-

facturing domain in general and for anomaly detection in particular, OEMs struggle to move

these pilot systems into production. This is because ML system operation is considerably more

difficult than the development of pilot systems may suggest. The additional complexity of ML

systems compared to conventional software systems results in a propensity to incur hidden

technical debt that degrades system operability. Despite the convincing case for adopting AI

technology for large-scale anomaly detection in manufacturing, the resources available for main-

taining and operating the system are inherently constrained. On the one hand, this requires

establishing effective MLOps practices within the business. This is largely an organizational

responsibility of hiring the right people to do the right things. On the other hand, system

operability must be the central design tenant during the development of such a system. This

thesis was motivated by the latter question of how to approach the development of a machine

learning system for large-scale anomaly detection in manufacturing.

1.2 Research topic

Research question Production systems are highly controlled and optimized systems, which

means that faults are exceedingly rare, isolated events. This means that detecting an (inter-

esting) anomaly is comparable to the figurative search for a ”needle in the hay stack”. The

system must be capable of monitoring a large number of processes in parallel to increase the

likelihood of detecting meaningful anomalies. Additionally, the ML models must be continu-

1 INTRODUCTION 7

ously retrained based on user feedback to remain effective. Ensuring the ability to continuously

adapt the system at scale in an environment of severely constrained resources is extremely chal-

lenging. To ensure system operability, the manual effort required for model training must be

sufficiently low, requiring a high degree of orchestration of the training process. This, in turn,

requires suitable ML algorithms.

The models that make up the ML system have a fundamental effect on the complexity and,

therefore, operability of the system (complex systems are inherently more difficult to maintain

[49]). To minimize system complexity data scientists should select suitable ML algorithms to

train these models. However, there are no established best practices for algorithm selection [50].

Countless comparative studies of the same algorithms continue to be published in literature

[51, 52, 53]. In practice, the selection process is often unsystematic and highly dependent on

the preference and experience of the developer [54]. This unstructured process of algorithm

selection and model training often results in the adoption of unnecessarily complex models that

can overwhelm development teams [50]. Managing complex models consumes huge amounts

of developer resources and quickly becomes intractable at scale. Excessive model complexity

is perhaps the most underappreciated impediment to the operability of real-world ML systems

and will often impede the transition from a pilot to a (feasible) productive system.

Definition 1 The research goal of this thesis is the development of a framework that allows

data scientists in the manufacturing domain to build an ML system for anomaly detection that

remains operable at scale. The central research focus is the development of ML algorithms

for training and adapting ML models that are easy to manage and maintain. This avoids an

unstructured algorithm selection process and allows data scientists to devote their time to scaling

and optimizing the system.

In the context of this thesis, the following definition of a framework is taken from the field of

software engineering:

Definition 2 A framework is a semi-complete application. A framework provides a reusable,

common structure to share among applications. Developers incorporate the framework into their

own application and extend it to meet their specific needs [55].

From a practical perspective, a framework is a system providing generic functionality that can

be selectively changed to develop a specific application. It is of a technical nature and must

1 INTRODUCTION 8

therefore be distinguished from a high-level conceptual framework. The framework is intended

to serve ML practitioners in the manufacturing domain as a support structure that facilitates

the development of large-scale anomaly detection systems irrespective of the particular manu-

facturing setting (albeit with some constraints that are discussed in the research scope in the

next section 1.2). It provides data scientists with ML algorithms that can be selectively applied

to train both unsupervised and semi-supervised models as well as a process for managing the

model life cycle that includes training, adapting and versioning of these models.

Research field and scope This work falls in the field of data science research. Despite

its widespread use there is no consensus on the definition of the term data science. However,

it is undoubtedly a field of study in its own right: universities offer degrees in data science,

there are job listings for data scientists and researchers get funded to do data science research.

Broadly speaking, it is an interdisciplinary field that is concerned with extracting actionable

insight from large data sets using algorithms to solve real-world problems [56]. It incorporates

elements from (software) engineering, computer science, mathematics (in particular statistics)

and data management, among others [39, 38]. This interdisciplinary nature is shown in figure

3. As discussed, machine learning is concerned with (a) the development of computer systems

that use (b) algorithms and statistical models to draw inferences from data. This corresponds

to the primary objective of computer science and statistics, respectively. Computer science is

itself an area of academic research, while software engineering focuses on programming and

software design to solve practical problems. Data science research combines these sub-fields

with a clear focus of providing a practical solution to real-world problems.

1 INTRODUCTION 9

Figure 3: The field of data science is an interdisciplinary field of traditional research, machine
learning and software engineering [2].

The focus on applied research in a real-world setting is a central aspect of this thesis and

reflected in the research methodology discussed in the following section 1.3. The goal of the

research is to generate knowledge that is immediately relevant to data scientists in the manu-

facturing domain. The work combines existing knowledge from literature with insights gained

from rigorous scientific experiments and practical experience gathered during the development

and operation of a real-world ML system. The ML system was developed, deployed and op-

erated in the automotive assembly industry with the aim of detecting (interesting) anomalies

in tightening processes of threaded fasteners. Tightening defects are some of the most com-

mon reasons for manufacturing-related recalls in the automotive industry [18] and thousands

of threaded joints are used in the assembly of an automobile and its components - thus, this

setting is an ideal case study of the potential and challenges of a large-scale industrial ML

system for anomaly detection. Below is a summary of the most important aspects that are

considered within or outside the scope of this thesis.

• Time series data is widespread in the manufacturing domain, especially for process data.

This requires ML models that are capable of pattern recognition in time series data.

• The interdisciplinary nature of the data science field means that a broad range of knowl-

edge is required. The hunt for talent that combines all of this knowledge has been likened

to that of a unicorn [39] - something that one may wish for but does not exist. Therefore,

these responsibilities are often distributed across multiple functions in an organization.

1 INTRODUCTION 10

The establishment of structures within an organization that facilitate close collabora-

tion between these functions for an effective MLOps process is not considered. This is

predominantly a managerial challenge and lies outside the scope of this thesis.

• Monitoring systems that communicate directly with machine controls often require real-

time data processing and are heavily constrained regarding the availability of network

bandwidth. This low-latency, low-bandwidth requirements have fueled the shift from

centralized computing towards distributed edge computing or embedding the model di-

rectly within the system. These considerations regarding the topology of the system are

not considered.

1.3 Research methodology

1.3.1 The importance of applied ML research

The science of machine learning is, above all, a science of engineering, dedicated to creating

knowledge about the design and construction of computer programs that use data to build

practically useful models [57]. However, researchers often focus on incremental improvements

of algorithms on benchmark data sets. This is evident from the large number of published

research papers that present algorithms that outperform existing state of the art methods by

narrow margins. These purported improvements are often small and frequently fail to translate

to real-world settings [31]. The performance of developed algorithms often rapidly diminish once

deployed into production [31]. This is not limited to research in the manufacturing domain. For

example, while current state of the art models for machine reading comprehension (MRC) (a

sub-field of natural language processing) have purportedly ”surpassed human performance” [58]

on a narrow set of benchmark datasets, these results do not generalize well to new data. Even

the most advanced MRC-models continue to make basic mistakes that show that they are a long

way from true reading comprehension [59]. Why is there such a consistent discrepancy between

reported performance in machine learning research and real-world applications? The innate bias

of the benchmark data sets used to compare the novel methods play a significant role and have

been increasingly criticized in recent years as out of touch with real-world data [60]. However,

the main reason behind this trend is attributable to a shift in the research culture over the past

decades [61]. The growing political, financial and public interest in the field of machine learning

has led to a rapid increase in the size of the research community. This has fueled an increase

in the number and frequency of published papers and caused growing competition among ML

1 INTRODUCTION 11

researchers. Figure 4 shows the number of papers accepted for publication by the Conference

on Neural Information Processing Systems (NeurIPS), the number of first-time authors and the

average number of papers within an author’s first five-year period over the past three decades.

NeurIPS is widely credited with being one of the most prestigious venues for ML researchers,

which is why it is selected here as a proxy to showcase a broader trend.

Figure 4: The number of accepted papers, their authors and average number of citations of
paper published in the NeurIPS conference from 2000-2020.

This figure indicates, that a growing number of (first-time) researchers are publishing an ex-

ponentially growing number of papers. While this gives the superficial impression of increased

productivity, the average number of citations (and relevance) of the papers has declined steadily.

Faced with this flood of papers, many researchers attempt to increase their odds of getting pub-

lished by focusing on quantitative (marginal) improvement of the state of the art. This results in

a narrow focus on model performance on benchmark data sets at the expense of their real-world

applicability. In some cases, researchers (knowingly or not) tweak models to beat the state of

the art by exploiting spurious patterns in data [62]. A Meta-review of deep learning research

demonstrated, that many published improvements, claimed to be due to innovations in net-

work architectures, were actually due to simple hyperparameter tuning [63]. As a consequence,

renowned experts in the field, including board members of NeurIPS and ICLR, have recently

called for revision of the publication process in the field of ML. While this is predominantly

an academic discussion, the conditioning of researchers to prioritize marginal improvements on

1 INTRODUCTION 12

benchmark datasets over real-world problems incurs a very real opportunity cost. To make real

contributions, researchers must solve real-world research questions and focus on obstacles that

impede the practical applicability of machine learning. In a nutshell, applying ML to real-world

problems requires applied ML research. Naturally, the transition between applied research and

fundamental research is gradual. Instead of relying on generic definitions, it is much easier to

compare their differences along a number of dimensions that characterize the type of research.

The most important distinguishing features are summarized in table 1

Purpose

Scope

Context

Method

Fundamental research
The extension of knowledge is an end in
itself
Narrow research scope with tightly focused
research question
Funded by grants and executed in an aca-
demic setting with lower cost and time
pressure
Rigorous experimental design and control
of variables to establish sound causal rela-
tionship

Applied research
The goal is to improve understanding of a
problem to contribute to its solution
high-level issue that raises multiple
broader research questions
Funded by contracts and executed in a
field setting with inflexible goals

Focus on the practical effects of interest in
a complex environment

Table 1: Comparison of fundamental and applied research according to Hedrick et al. [10].

Based on this summary, the research in this thesis clearly falls within the domain of applied

research. The distinction between fundamental and applied research is one of degree and not

of kind. However, it has important implications for the design and execution of the research.

Specifically, the set of methods and best practices that can and should be used to address

the research questions are generally much broader than in fundamental research. The research

strategy that describes how research is to be undertaken and what methods are to be used is

commonly referred to as a research methodology. A methodology is different from a method -

the former is a contextual framework that is used to plan the research during the initial stages,

whereas a method is a technique of data collection and evaluation that is laid out by this

framework [64]. Essentially, the methodology is the justification for using a particular research

method. This distinction may seem somewhat blurry and at times incidental - however it helps

the reader get a sense of how the research in this thesis was carried out and the motivation

behind its structure.

1.3.2 Design science research

The research presented in this dissertation is based on the design science research (DSR)

methodology. DSR is centered around the development and application of artifacts as a means

1 INTRODUCTION 13

of creating knowledge in a specific domain [65]. An artifact can be any logically coherent

research outcome like an algorithm, system design, process model etc. [66]. The main goal

of creating this knowledge is to enable the design of solutions for real-world problems. DSR

is constructive research, compared to more conventional explanatory research that is focused

on establishing correlations between observed variables [67]. It is intended to bridge the gap

between research and practice [68] whose ’theory-with-practical-implications’ research strategy

often fails to produce results that are of practical interest [69]. Essentially, it is the theoretical

manifestation of ”learning by doing”. DSR subdivides the research activity into three distinct

research cycles depicted in figure 5. The relevance cycle ensures the relevance of the research by

connecting the application domain with the design science activities. It initiates the research

by providing the research questions and requirements and serves as a feedback-loop for field

testing the designed artifacts in a real-world environment [3]. If the artifact does not satisfy

the initial requirements, or these requirements turn out to require adjustment, the design cycle

is reiterated. The rigor cycle connects this design cycle with a knowledge base that contains

expertise and state-of-the-art artifacts from the application domain to ensure the scientific rigor

of the research. It is this cycle that distinguishes design science from the everyday practice of

building artifacts [69].

Figure 5: Design science cycles according to Hevner et al. [3]

Design science is most widely applied in the engineering and computer science disciplines and

particularly widespread in the field of information system. However, in recent years, it has been

adopted by researchers in various field such as the social sciences [64]. Renowned research insti-

2 CHALLENGES AND REQUIREMENTS 14

tutions like the MIT’s Media Lab, Stanford’s Centre for Design Research and Carnegie-Mellon’s

Software Engineering Institute use this methodology. A majority of the research proposals sub-

mitted to the U.S. National Science Foundation in the field of computer and information science

and engineering use a DSR methodology. Due to the thematic overlap of this dissertation with

these disciplines as well as the interdisciplinary research context discussed in section 1.2, design

science was the research methodology of choice for this work.

What does this imply for the research and structure of this dissertation? The cyclical approach

encouraged by the DSR methodology reflects the iterative and non-linear work that charac-

terized this research. The first relevance cycle initiates the research by defining the practical

requirements laid out in the following section 2. Most state-of-the-art approaches either did

not meet these requirements or were not reproducible (this is discussed in detail in section 3).

Based on expert opinion and iterative testing, two promising approaches emerged. As a result,

two parallel design cycles were initialized for the development of separate algorithms. The rigor

cycle continuously integrated research results of other research groups as they were published.

For example, the algorithms presented in section 4 is based on research that was published

while the work was ongoing. The algorithms were quantitatively evaluated in experiments on

real-world and synthetic data sets. This is a common method for evaluating algorithms in

scientific literature [70]. Most research does not go beyond this step. However, most design im-

pulses came from the relevance-cycle of field-testing in the manufacturing setting and feedback

from SMEs. The results and final design considerations of each approach are consolidated in

section 4 and section 5. Additionally, these relevance cycles initiated a third design cycle for

the development of a broader framework to integrate the algorithms on a system level. The

framework and results are summarized in section 6.

2 Challenges and requirements

This section discusses the interdependent challenges and requirements of realizing a large-scale

anomaly detection system in the manufacturing domain and the shortcomings of attempts to

realize such a system that are published in literature. The first three subsections deal exclusively

with these challenges and requirements. The first subsection discusses generic high-level system

requirements relating to the operation of large-scale productive ML systems. Note, that the

term productive system is used as is common in the field of software development i.e. a system

2 CHALLENGES AND REQUIREMENTS 15

that is used live by stakeholders. The second subsection focuses on the ML problem of anomaly

detection. This is an essential discussion that sets the stage for much of the work presented in

this thesis. The third subsection focuses on the particular challenges associated with pattern

recognition in time series data. The final subsection analyzes the vast amount of literature

on applying ML technology for anomaly detection and fault detection in the manufacturing

domain and discusses the shortcomings of existing attempts to realize a large-scale system.

2.1 Operating large-scale machine learning systems

This sections discusses the most important non-functional requirements associated with the

development and operation of large-scale ML systems in an industrial context. Non-functional

requirements describe properties of the system relating to its operation (compared to functional

requirements, that describe a specific behavior or function of the system) [71]. These are shared

by virtually all real-world ML systems to some degree.

2.1.1 System scalability by extension

Although the general notion of what is meant by scalability seems clear, its lack of a precise

definition has been criticized for decades. People will often refer to a system as being scalable

or not - however, this is a gross oversimplification. Almost any system will scale to some degree

and, just as importantly, no system scales indefinitely [72]. The informal definition of the term

that most readers will be familiar with serves as a starting point [73]:

Definition 3 Scalability is the ability of a system to continue to function with acceptable

performance when the workload has been significantly increased.

Of course, what constitutes acceptable performance depends entirely on the setting. This def-

inition lacks the necessary rigor to be of much practical use. It makes no mention of how the

system’s capacity to handle the workload is increased and, more importantly, the resources re-

quired to make this increase possible [72]. If increasing system capacity requires an unfeasible

amount of resources, we would not consider this system scalable in a practical sense, even if this

is technically possible. In the context of this thesis, the workload of the system is the number of

manufacturing processes that must be monitored. This can range from a handful of processes

for small (pilot) systems to hundreds or even thousands of processes for large systems required

to monitor entire production systems. As this number is increased, the capacity of the system

to monitor these processes must scale accordingly. Extending the system’s capacity can be

2 CHALLENGES AND REQUIREMENTS 16

realized in one of two ways, namely by (1) adapting existing models or (2) deploying additional

models to monitor these processes. This can be thought of as similar to scaling a computer

cluster, whose total computing power is increase by either upgrading existing machines in the

cluster (vertical scaling) or adding additional machines to the cluster (horizontal scaling). This

same terminology can be adapted for scaling of ML models and is schematically depicted in

figure 6.

Figure 6: Horizontal vs. vertical scaling of ML models to increase system capacity.

The discussion so far focused on the definition of system workload as well as ways to increase

the system’s capacity to handle it. The obvious next question is which approach is preferable

- should models be scaled horizontally or vertically as the workload increases? This questions

leads to the second important consideration, namely the resources required for scaling the

system. The short answer is that this largely depends on the nature of the processes - neither

scaling approach is per se better than the other (in fact, a combination of both is often preferable

in practice). Consider the extreme cases of two systems that monitor the same number of

processes, where system A consists of a single vertically scaled model and system B consists of

multiple horizontally scaled models that each monitor a single process. All knowledge learned

by system A is consolidated in a single model, whereas the same knowledge is distributed among

multiple models in system B. The ease of scaling these systems to a new process depends on

how similar that process is to those already monitored by the system. If the new process is

sufficiently similar, system A can be scaled without any changes to the model. If the process

is different, however, the model must be adapted. The difficulty lies in retraining the model

without negatively affecting its performance for other processes. Ensuring this incremental

improvement is challenging. Optimizing the performance for one process may adversely affect

that of other processes. This is known as the CAKE-principle (”changing anything changes

everything”) and may require lengthy tuning of model hyperparameters. As the system is

2 CHALLENGES AND REQUIREMENTS 17

scaled, these data dependencies grow as well, magnifying the problem. These dependencies

and the associated problems can be avoided by scaling models horizontally. The simplest way

to do this it to train a completely new model ”from scratch”. This is by far the fastest way

to getting a model into production. However, if the process is similar to existing processes,

manual feedback from SMEs is required to ”relearn” knowledge that is already incorporated

in other models. This wastes the constrained resources of SMEs and prolongs the time until

the model is able to detect meaningful anomalies. This can be avoided by starting with the

model of the most similar process, essentially creating a ”branch” of an existing model. This

transfers previously gathered knowledge to the new model and is a form of transfer learning.

The advantages and disadvantages of horizontal and vertical scaling are summarized in figure

7.

Figure 7: Advantages and disadvantages of horizontal vs. vertical scaling of ML models.

Essentially, the choice is determined by a trade-off between the speed of deployment, the re-

quired input of SMEs for data annotation and the complexity of the resulting models. This,

in turn, depends on the similarity between the processes. In most settings, some processes will

be very similar while others are different. For example, process data of insertion operations

is vastly different from that of tightening operations, which can be subdivided into dozens

of sub-categories depending on the machine, fastener sequence, assembled part etc. Thus, a

combination of horizontal and vertical scaling may be preferable. However, determining which

processes can be grouped together is extremely challenging. Asking SMEs to manually group

processes that appear to be similar is not reliable. This is because the question of similarity is

2 CHALLENGES AND REQUIREMENTS 18

one of degree not of kind i.e. judging whether two objects are objectively similar requires both a

similarity measure and a threshold - the selection of which is challenging and often task-specific

[74]. This is why clustering time series data is so difficult [75]. Therefore, the initial decision

to scale vertically/horizontally is only an initial best guess and may need to be revised later

on as more information becomes available. This is unavoidable. Additionally, the advantage

of vertical/horizontal scaling may change over time. When the number of processes is small

during early (pilot) stage, it may make sense to maximize the speed of deployment and scale

horizontally until clear groups of processes emerge. As the number of models grow, similar

models can be ”merged” into a vertical model. Conversely, it may make sense for a vertically

scaled model to be split up into separate horizontal models. If, for example, an adapted ver-

tical model shows improved performance for some processes but worse performance for others,

it may make sense to continue with separate horizontal models (essentially ”branching” the

existing version). This is schematically depicted in figure 8.

Figure 8: The advantages of scaling a model horizontally/vertically may change over time.

In summary, both horizontal and vertical scaling of ML models have relative advantages that

may vary over time. As the number of processes and the available information changes, so too

must the degree of vertical/horizontal scale. For the system as a whole to remain scalable, this

adjustment must be automated. Thus, an automatable strategy for evaluating different scaling

options is required to find the best path forward. This leads us to the concept of scalability by

extension which is a more meaningful definition of scalability in the context of ML-systems:

Definition 4 Scalability is the ability of a system to handle increased workloads by repeatedly

applying a cost-effective strategy for extending its capacity [72].

2 CHALLENGES AND REQUIREMENTS 19

This definition of scalability considers the resources required for system maintenance and op-

eration. The fact that this strategy must be cost-effective (in terms of required resources) is

vital. Clearly, it does not make sense to scale an inoperable system.

2.1.2 Maintaining machine learning models

Once the first model is deployed into production, resources are required to operate and main-

tain the system. The major cost driver of a software system is not development but operation.

This includes investigating and resolving failures, adapting the system to new infrastructure

and repaying technical debt [36]. ML systems incur additional costs associated with model life

cycle management (MLM). This section focuses on the challenge of maintaining ML models

throughout their operational phase that extends from deployment of the model until the mo-

ment it is retired. Maintainability is the ability to restore a failed component to a specified

condition [76]. In the context of ML models, this means restoring a degraded model to satisfac-

tory performance. An ML model is said to be degraded, if its predictions no longer match the

ground truth of annotated data with sufficient accuracy. This occurs due to a change in the

input data that may occur gradually over time (concept drift) or abruptly (due to a so-called

change point) [77]. This problem is highly relevant for ML models in production. Due to the

large number of dynamic influences in a manufacturing environment, processes may change

frequently. A real-world example is the cyclical change of the torque curve over the year as the

elastic properties of the fastener change with the ambient temperature on the shopfloor. When

the input data deviates too far from the training data of the ML model, it may no longer be

able to monitor the process effectively.

To maintain ML models in production requires the ability to (1) detect and ideally anticipate

model degradation and (2) retrain and potentially debug degraded models. The simplest way to

detect model degradation is an apply-to-failure approach, where the model is kept in production

until feedback from SMEs raise the issue to the data scientist. This may erode user confidence

in the system. Alternatively, the input data can be monitored for concept drift and change

points to anticipate model degradation. Once a degraded model is detected, the model must be

retrained. The standard approach is to optimize the hyperparameters of the model to restore

its performance. This may be difficult to automate for imbalanced data. If this does not

work, data scientists must resort to manually debugging the model. Essentially, they try to

retrace what the model has learned to understand why it fails to classify objects correctly.

2 CHALLENGES AND REQUIREMENTS 20

This can be very challenging and time-consuming. The pattern detection and decision making

processes of ML models is usually complex and difficult to interpret. An interpretable model

would facilitate debugging. We consider a model interpretable, if the reason for its decision

can be understood. This would allow data scientists to ”look inside the model” and more

quickly identify the cause behind the low model performance. Additionally, the exchange of

information with SMEs is an indispensable part of system operation. In practice, an unreliable

model quickly erodes the confidence of domain experts [78, 79, 80]. This is made significantly

worse if it is difficult to understand the reasoning behind a model decision. The ability to

explain the model’s decisions (even if these decision are incorrect from an the perspective of an

SME) helps restore this confidence. These motivations are often cited in literature [81, 82, 83]

and have lead to an increase in research aimed at improving the interpretability of machine

learning models [84, 85].

2.2 Anomaly detection

2.2.1 One-class classification

The goal is to build a monitoring system that is able to detect patterns in the process data

that indicate quality faults. The most straight-forward approach would be to implement a set

of rules that can be used to detect such patterns. This rule-based classification of process data

is how conventional process control system works. However, this is approach is not feasible for

unknown patterns. The system would have to rely on rules to detect possible patterns defined

by SMEs based on educated guesses about possible faults and how they would be discernible in

the data. This approach is bound to fail - after all, if it was known with certainty what could

fail and how it can be detected, there would be measures in place to do so. Even the most

thorough failure mode and effects analysis (FMEA) performed by engineers cannot account for

many of the faults that ultimately lead to product recalls. Additionally, production systems are

subject to numerous dynamic influences that may lead to the onset of new fault mechanisms

over time. Even in the (rare) cases where concrete data is available, SMEs tend to find it very

difficult to define suitable classification rules. While it is often possible to judge if a given

pattern may indicate a fault, it is much more difficult to define a set of rules by which such

patterns can be detected that generalize well to large amounts of data. This I-know-it-when-

I-see-it mentality is common in practice. Additionally, as is common for real-world problems,

the boundaries of what constitutes a fault are often fuzzy. There is the fundamental problem

2 CHALLENGES AND REQUIREMENTS 21

with a purely knowledge-based monitoring system. Instead, the desired system should detect

the ”known unknowns” - patterns that SME know they are missing with their conventional

process monitoring system without knowing what they look like.

In order to detect faults preemptively, a system is required that detects patterns that may

indicate an underlying fault. In principle, patterns that do not conform to the expected normal

behavior of the underlying process may indicate a fault. These non-conforming patterns are

called anomalies. This does not mean that every anomaly is a fault, merely that all faults that

can be detected will be anomalies. This important distinction is visually depicted in figure 9.

Instances in category II, where a fault is present but no anomalous pattern exists in the data

cannot be detected by monitoring the process data. The anomalies that do exist may or may

not indicate a fault (category I and IV, respectively). Note, that the transition from normal to

anomalous patterns is often fluid. Defining a suitable threshold is difficult and often based on

arbitrary assumptions (this is known as the threshold problem).

Figure 9: Schematic grouping of the anomalous and faulty objects that may or may not coincide.

Anomaly detection is relevant for countless applications in virtually every domain. It may

come as somewhat of a surprise, therefore, that the term anomaly is used very inconsistently

in literature. This is largely attributable to the ambiguous definition of what constitutes an

anomaly.

Definition 5 An anomaly is a pattern that does not conform to the expected behavior [86].

Expected behavior may refer either to (1) recurrent patterns that are representative of the major-

ity of the data or (2) patterns that a domain expert familiar with the underlying process would

2 CHALLENGES AND REQUIREMENTS 22

expect to see for a fault-free process. Essentially, this is the difference between a data-centric

versus a domain-centric perspective. Alternative names such as outliers, discords, novelties or

exceptions are sometimes used in literature to try to alleviate this confusion. However, their

definitions in literature are inconsistent and they are often used interchangeably [86]. To avoid

having to differentiate between these vaguely defined terms and risk adding to the confusion,

they are collectively referred to as anomalies in this work. In the context of this thesis, anomaly

detection is the detection of non-conforming patterns from a data perspective. The goal, of

course, is to ensure that these anomalies coincide with underlying faults as much as possible.

This is a very challenging problem. An unsupervised ML model trained on the data will result

in a naive anomaly detector that cannot make this distinction. Consequently, these models will

either fail to reliably detect faults or suffer from a large number of false positives. Instead, the

model should learn a comprehensive representation of the normal class that includes anomalies

that do not indicate a fault. This approach is called one-class classification. Essentially, an

object is an anomaly if it does not belong to the normal majority class.

2.2.2 Continuous learning based on user feedback

The decision of whether or not an object belongs to the majority class requires a decision

boundary. However, real-world data is noisy and the boundary between what is normal and

anomalous is often fuzzy. Objects of the fault class can be (subjectively) closer to the normal

class than individual objects of the normal class to each other. For a real-world example from

the manufacturing domain, refer to figure X in section Y. Additionally, the normal majority

class may change gradually over time due to influences like tool wear or changes in the ambient

environment. This is known as concept drift and leads to degradation of model performance over

time. All of this results in a complex and changing decision boundary. This is schematically

depicted in figure 10.

2 CHALLENGES AND REQUIREMENTS 23

Figure 10: Objects of the target class may be (much) closer to objects of the majority class
than to other objects within that class.

How can an ML model learn this complex decision boundary that is necessary to define the

normal class? The simple answer is that it can’t - at least not initially. The decision whether an

anomaly is indicative of a fault or merely a rare event that has no effect on product quality can

only be made by an SME. Therefore, SMEs must be integrated into the model training process

so that these models may learn directly from user feedback. Since the data may change over

time, keeping the models up to date requires a continuous cycle of user feedback and model

retraining. This human-in-the-loop approach to training ML models has gained enormous

popularity in recent years.

Figure 11 shows the number of relevant papers published in the International Conference on

Machine Learning (ICML), International Conference on Learning Representations (ICLR) and

the Conference on Neural Information Processing Systems (NeurIPS) over the past decade.

This trend reflects a growing interest within the research community. The motivation is clear:

rather than spending resources on fine-tuning models, focus on early model deployment and

rapid improvement cycles.

2 CHALLENGES AND REQUIREMENTS 24

Figure 11: Number of papers published on the topic of adaptive learning in some of the highest-
ranking venues for ML research from 2010-2020.

There are two elements that must be considered when setting up a continuous learning pro-

cess. First, the learning cycle must be initiated with little prior knowledge about the data (in

particular, few if any labeled data points are initially available). This is often referred to as the

”cold-start” problem [87]. Effective model initialization is important to ensure an efficient feed-

back cycle. We can leverage the fact that the vast majority of the process data is representative

of the normal class by using a semi-supervised learning strategy for model training. Second,

the resources of SMEs are often extremely limited. This means, that the amount of required

feedback to train the one-class models must be as low as possible. The system should query the

user for labels on the most informative data points that allow it to efficiently retrain the model.

This is known as active learning. The key idea behind active learning is that a machine learning

algorithm can achieve greater accuracy with fewer training labels if it is allowed to choose the

data from which it learns [88]. An active learning model poses queries in the form of unlabeled

data instances to be labeled by a human annotator. Active learning is well-motivated in many

modern machine learning problems, where unlabeled data is abundant and readily available but

labels are difficult, time-consuming, or expensive to obtain [89]. Manufacturing data scientists

need to face both of these problems when developing and operating an adaptive system for fault

detection. Unsurprisingly, many researchers have started to address this issue by employing

active learning strategies for anomaly detection [90].

2 CHALLENGES AND REQUIREMENTS 25

2.2.3 Learning from rare events

The previous section explained (1) why anomaly detection is necessary for preventive fault

detection, (2) why efforts should be directed towards continuous learning of one-class models

based on user feedback and (3) how the active learning paradigm can be used to makes this

feedback cycle more efficient. While the ability to train one-class models with little user feedback

improves the practical feasibility of the system, it becomes absolutely necessary when trying to

detect a specific fault class. Known faults that go undetected will quickly erode the confidence

of SMEs in the system. In practice, it is very difficult to use the same one-class models for this

classification task. The decision boundary is continuously evolving and cannot be guaranteed to

reliably detect a specific class as the training data changes over time (for the reasons discussed

in the previous section). Instead, it makes sense to use a dedicated classification model per

fault class. The challenges of training a classifier on extremely imbalanced data using only a

few labeled objects is well documented in literature. It is generally difficult to infer rules that

generalize well to large amounts of new data from only a few samples. Although most real-

world problems of interest are imbalanced [91], it is especially pronounced for fault detection in

manufacturing: as soon as a fault is found, shop floor personnel will put measures in place to

prevent it. Consequently, there will never be large amounts of annotated data for most faults.

Their early detection (and remedy) is both the goal of the system and, at the same time, its

curse from an ML perspective.

2.3 Pattern recognition in time series data

Time series data has become ubiquitous in virtually every domain [92] due to the increase in

sensor connectivity and capability to process and store large amounts of data.

Definition 6 A time series is a sequence of values T = t1 . . . tn stored in an ordered list.

The spacing of the observations in time need not be constant. Any sequence of values can

be though of as a time series, irrespective of its temporal context. For example, handwriting

[93], speech recordings [94] or DNA sequences [95] can be interpreted as time series. Even

two-dimensional shapes can be projected to one-dimensional sequences [96]. In fact, this done

quite regularly to take advantage of techniques for pattern recognition in time series data and

apply them to image recognition applications. Analyzing time series data is known to be rela-

tively challenging for two reasons. First, it requires analyzing a large number of correlated data

2 CHALLENGES AND REQUIREMENTS 26

points. Time series databases may contain trillions of data points. ML algorithms have difficul-

ties learning structures in high-dimensional data - this is known as the curse of dimensionality.

Additionally, data points typically depend on preceding data points. Thus, observations are

not independent and identically distributed random variables, which violates the assumption

made by many ML algorithms. Second, an individual data point is usually only meaningful

when viewed in its temporal context i.e. in relation to the values of its neighboring observations

in time. Evaluating observations in isolation on a point-by-point basis is often meaningless.

This is similar to the field of computer vision, where the color value of a single pixel in an

image says nothing about its contents. This means, that effectively analyzing time series data

requires the ability to recognize patterns in the time series. In practice and even most scientific

papers, a precise definition of what constitutes a time series pattern is lacking, often result-

ing in unnecessarily abstract formulations. In a practical sense, a time series pattern is any

(characteristic) subsequence of a longer time series. Depending on the problem, the length of

a pattern can span multiple orders of magnitude, ranging from a small number of timesteps

to the entire length of the sequence. The challenges of pattern recognition in time series are

similar to those in image recognition. A model trained for object detection in image data should

detect the object irrespective of its location, scaling, rotation, distortion, etc. Similarly, models

for pattern recognition in time series data should be invariant to (1) spikes and dropouts, (2)

the offset and phase shift of the time series and (3) distortions in amplitude and time of the

pattern [97].

The task of pattern recognition can be approached in one of two different ways: template

matching and feature analysis. There is some physiological evidence from neurological studies

indicating that biological brains use similar mechanisms [98, 99]. Models based on the template

matching approach classify a time series pattern by comparing it to a set of stored templates.

Feature detection models rely on the extraction of higher-level features that describe interesting

properties of the data. Both of these have their merits and are widely used in computer vision

and time series analysis. The main challenge of both approaches is automating the extraction

of effective templates or features from the data. The extraction process is accompanied by

an unavoidable trade-off between a loss of information and the number of templates/features

that are extracted. More features generally results in a lower information loss but increases

the dimensionality of the feature space, making the problem increasingly intractable for con-

ventional ML algorithms. As discussed in section 2.2, this template/feature extraction process

2 CHALLENGES AND REQUIREMENTS 27

must work with both a small amount of annotated data and entirely unsupervised. In recent

years, advanced data mining (DM) algorithms to extract descriptive templates from large sets

of time series data have been developed and are quickly gaining popularity for many practi-

cal applications [100, 101, 102]. These DM algorithms will be discussed in section 4.2. By

comparison, many of the widely used feature extraction techniques for time series data were

developed with the intent of data compression rather than description/classification. Examples

include the Fourier or wavelet transformation (these have been shown to be similarly effective

depending on the application [103]), piece-wise aggregate approximation (PAA) such as the

SAX-notation [92, 104] or adaptive piece-wise constant approximation (APCA). While many

generic and purpose-built feature extraction algorithms have been published over the years

[105], they are used much less frequently. Finding a trade-off between data compression and

loss of information is extremely challenging, especially in an unsupervised setting. To get a

sense of this problem, consider the classification results of a 1-NN classifier trained for different

SAX feature representations of real-world manufacturing data. The 1-NN classifier is typically

chosen as a benchmark classifier due to its robustness and competitive performance for many

real-world problems [106, 107]. The data is describes in detail in section 6.1.2. The SAX repre-

sentation was chosen because it allows a systematic grid search of both the number of features

and the number of values these features can take. Both were varied logarithmically across a

wide range. The results in figure 12 show, that different fault patterns require vastly different

feature representations to be accurately classified. The task of finding a problem-specific trade-

off cannot be automated for unlabeled data [108] and is extremely difficult for imbalanced data

- there simply is no way around this problem.

2.4 Summary of requirements

The challenges and requirements discussed in the previous sections are recapitulated below.

Their relationship is graphically depicted in figure 13.

• A knowledge-based monitoring system will reflect only past knowledge and is unsuited

for detecting unknown patterns. It is these unknown patterns that we wish to detect.

Preventing faults requires an anomaly detection system.

• The majority of the data is unlabeled and belongs to the normal class. Anomalies can be

detected via a one-class model of this normal class.

2 CHALLENGES AND REQUIREMENTS 28

(a) Class 1 (b) Class 2

Figure 12: Accuracy of a 1-NN classifiers trained on different SAX feature representations of
real-world manufacturing data.

• The large number of uncontrolled influences in the manufacturing environment result in

a complex decision boundary between the normal and target class that evolves over time.

Thus, the one-class model must learn continuously from user feedback on its classification

results.

• Process data is predominantly unlabeled. Learning from this data requires semi-supervised

learning strategies to maximally leverage the annotated data that is available.

• To monitor a large number of processes requires the ability to efficiently train and adapt

a large number of ML models. Model management must be highly automated and or-

chestrated.

• Process data is typically time series data. This requires ML models that are able to

recognize time series patterns.

3 STATE-OF-THE-ART IN RESEARCH AND PRACTICE 29

Figure 13: Challenges and requirements for an ML system for anomaly detection in manufac-
turing.

3 State-of-the-art in research and practice

There is a vast amount of literature on ML applications for anomaly detection. These range

from the application of out-of-the-box ML algorithms to the development of new algorithms

and from proof-of-concept testing on public benchmark datasets to large-scale ML systems.

To provide an overview of this literature and determine the state-of-the-art that is relevant to

the scope of this thesis, the papers were categorized according to the requirements identified

in the previous section. While most papers consider only a subset of these requirements, two

important requirements for large-scale industrial ML systems were identified as particularly

underrepresented, namely (1) the adaptability and (2) the scale of the (productive) ML sys-

3 STATE-OF-THE-ART IN RESEARCH AND PRACTICE 30

tem. In an effort to base the evaluation on objective criteria and eliminate personal bias, a

set of criteria was used to judge each publication (cf. table 2). Each criteria was evaluated

qualitatively on a range from 1 to 5 and the values added up to get a final score.

Dimension

Adaptability

Scalability

Criterion
Unsupervised training to overcome cold-start problem
Ability to learn from rare events & extreme class skew
Interactive learning cycle can be automated
Field-tested in real-world setting with SMEs
Orchestrated model training process
System monitoring and quality control measures
Field-tested under operating conditions at scale
Documentation of system architecture and workflow

Table 2: Questions used to evaluate publications regarding their ability to meet the require-
ments in section 2.4.

Based on this evaluation, the literature can be grouped into four approximate groups as shown in

figure 14. By far the biggest group (B) is comprised of publications that report the results of out-

of-the-box applications of existing ML algorithms or propose novel changes to those algorithms

for niche anomaly detection applications. Most of the investigations include benchmark studies

and some (often limited) field-testing in real-world settings. However, there is no focus on large-

scale deployment and operation of a productive system. Where no information is available that

indicates otherwise, it is assumed that these systems have not made it past the pilot stage.

The majority of these publications are focused on anomaly detection in time series in the

manufacturing domain - generic publications on the subject or those from other domains were

only included if it contained additional information relevant to the requirements in section 2.4.

3 STATE-OF-THE-ART IN RESEARCH AND PRACTICE 31

Figure 14: Clustering of literature on anomaly detection systems according to their adaptability
and scale.

3.1 ML algorithms for anomaly detection

The simplest approach from an ML-perspective is to reduce the dimensionality of the time se-

ries data and use ”out-of-the-box” ML algorithms to detect anomalies in this lower-dimensional

space. The quality of this approach fundamentally depends on the effectiveness of the dimen-

sionality reduction technique. The difficulty of doing this in an unsupervised setting has been

demonstrated in section 2.2. An alternative to this approach is the extraction of descriptive

features from the time series. The goal is to capture the characteristic properties of the time

series in a (much smaller) set of features. Typically, the time series is segmented using a slid-

ing window from which statistical features are extracted [109, 29]. Anomalies are detected by

applying unsupervised ML algorithms (e.g. one-class support vector machines (OCSVM) [110],

local outlier factor [29]) on the resulting feature representations. This approach has been used

for anomaly detection in various manufacturing processes e.g. metal forming [28], steel rolling

[109] and semi-conductor manufacturing [30, 29].

The frequency of publications based on this approach have been declining over the years due

to the inherent difficulties associated with extracting meaningful features. There is no generic

one-size-fits-all approach to minimizing both the number of features and the loss in information

3 STATE-OF-THE-ART IN RESEARCH AND PRACTICE 32

is not possible. This was demonstrated to be the case in the introductory section 2.3. For unsu-

pervised settings, finding a trade-off requires profound understanding of both the data and the

feature extraction algorithm - at which point it is often easier to define these features manually.

Consequently, researchers have increasingly turned to other approaches, particularly the use

of deep learning. Numerous benchmark studies attest a superior performance of DL models

for a broad range of anomaly detection applications [111]. Frequently cited advantages of DL

models are the ability to deal with variable-length input data [110] and to capture complex

dependencies between timesteps [28]. Essentially, they are credited with being both easy to

apply (thanks to the high-level nature of open-sourced ML frameworks) and powerful (complex

features can be learned from the data without requiring manual input). Standard DL mod-

els have been piloted for anomaly detection in the manufacturing domain [26, 112] and other

engineering fields like power sensors for smart grid monitoring [113] and telemetry data [114]

with some success. An often criticized drawback is the lack of interpretability of DL models

[84, 85] and the associated difficulty of systematically improving their accuracy. Due to the

large number of model parameters, DL models are often treated as black-box models where data

scientists rely on (more or less well-founded) hyperparameter-tuning to reach sufficient model

accuracy. While ensemble DL models may improve accuracy on some (benchmark) datasets

[115], it changes model interpretability from bad to worse. Some researchers have tried to

address this by making the model itself more interpretable, like simplifying the topology [116]

or formulating a dedicated learning objective [117]. Others have built software systems that

allow to visually explore DL models via a graphical user interface [118, 119]. This process of

hyperparameter-tuning is often tedious, especially when maintaining a large number of models

in production. Whiel there are experience reports from the industry that purportedly show the

use of these models at scale, little to no information is provided about the (long-term) feasi-

bility of these systems [120]. To date, no detailed experience report exist that focuses on the

large-scale implementation of unsupervised/semi-supervised DL models for anomaly detection

in time series data.

Following this initial wave of applying DL models as a black-box end-to-end approach for

anomaly detection, researchers have begun to leverage the models’ feature-learning ability. DL

models are used as feature extractors and combined with simpler and more interpretable ML

classifiers. Essentially, this is a return to the two-step approach of feature extraction and clas-

sification discussed in the beginning. This approach offers competitive accuracy on benchmark

3 STATE-OF-THE-ART IN RESEARCH AND PRACTICE 33

datasets [110] and has been integrated into stand-alone algorithms for anomaly detection appli-

cations [121, 122]. More importantly, the model output allows for better interpretation of what

the model has learned. In some cases, the model’s feature representation of the (unlabeled)

input data can be used to explore underlying structures in the data. To do this, the latent

variables of the unsupervised model are summarized using dimensionality reduction techniques

[123] and clustering algorithms applied to the final feature representation [124, 125]. Some

researchers have used generative models [126] with dedicated learning objectives [127] to help

interpret the latent space. While there is much to be said of this approach, unsupervised fea-

ture learning using DL models is challenging and has become a fringe area of research in its

own right [128, 129]. Aside from data exploration, the learned features can be used to detect

anomalies directly (e.g. for monitoring of ECG measurements [130]), including one-class models

for anomaly detection [131, 132].

3.2 Retraining models in production

Changes in the data (or understanding thereof) are common in practice, which makes the issue

of model adaptability central for productive ML systems. Data scientists are often concerned

with ways to reliably detect concept drifts in the data and retrain the model to avoid model

degradation. For anomaly detection in particular, the primary focus lies on detecting changes

in the normal class of the data [133]. A number of suitable methods have been proposed and

verified for both benchmark and real-world data [134, 135]. For productive systems, mechanisms

for concept drift and change-point detection are used to automatically trigger the retraining

process [136]. This is a basic, yet important tool for quality assurance of productive ML systems.

The second aspect, namely the ability to retrain models based on evolving understanding of

the data, has enjoyed a growing increase in research interest in recent years. As discussed

in section 2.2, active learning promises to resolve this problem. The ability to continuously

adapt models based on human feedback makes it possible to deploy models into production

faster and quickly close the training/serving-skew through iterative improvements. This avoids

the up-front cost of labeling large datasets that is often prohibitively expensive in practice

[137]. Researchers agree, that the potential of this human-in-the-loop machine learning is an

important but often neglected potential for real-world ML systems [138]. Although its feasibility

has been demonstrated for a range of benchmark time series datasets [138], existing research

remains mostly experimental with limited field-testing. Research focus has been devoted to

finding efficient labeling strategies for settings where the classes are extremely imbalanced and

3 STATE-OF-THE-ART IN RESEARCH AND PRACTICE 34

random sampling would subsequently lead to a lot of wasted effort [20]. Most approaches for

active learning of anomaly detection models use an initially unsupervised model to give the

SME recommendations on which objects to label. The model is retrained in an interactive

data exploration loop to make the anomalies more relevant to the user [90]. This has been

demonstrated for anomaly detection in time series data [90] and object recognition in image

data [88]. These interactive human-in-the-loop learning cycles require extended interaction

between the user and the system.

3.3 Productive large-scale ML systems

The practical aspects of ML system operation (especially at scale) have only started becoming a

focus of research in the past decade. Due to the limited amount of literature, it is important to

look beyond the manufacturing domain and time series data. From the titles alone, one would

be forgiven for wrongly assuming that a framework for large-scale operation of productive

ML systems for anomaly detection in time series data already exists. For example, consider

the following titles of published manuscripts: ”generic and scalable framework for automated

anomaly detection on large scale time-series data” [27], ”framework for large-scale process

monitoring” [139] or ”framework for end-to-end deep learning-based anomaly detection” [140].

Despite their assertion of having solved this problem, these papers lack any definition of what

constitutes scalability, let alone a metric to evaluate it. The published frameworks are little more

than a proof-of-concept of a marginally new ML algorithm tested on a hand full of benchmark

datasets. They fail to address almost all of the challenges discussed in section 2 and are only

marginally reproducible at best (a point that will be discussed in more detail at the end of this

section). Li et al. propose an automated approach to training an end-to-end anomaly detection

pipeline [141]. The approach aims to automate both algorithm selection and hyperparameter

optimization (HPO). This is known as the combined algorithm and hyperparameter selection

(CASH) problem, which is notoriously difficult to automate for unlabeled data. Additionally, it

relies on an effective feature extraction subroutine with all the associated difficulties. Chen et al.

propose a modeling framework to train a hierarchical Bayesian network for large-scale process

monitoring [139]. The framework was evaluated on a single (synthetic) benchmark dataset of

chemical processes that is comprised of 40 variables from six processes. This is hardly ”large-

scale” - as discussed in section 1, the number of processes in a production systems can easily be

two orders of magnitude higher. Stojanovic et al. propose a ML system for process monitoring

that is much simpler, although tested on even fewer processes [142]. Laptev et al. published a

3 STATE-OF-THE-ART IN RESEARCH AND PRACTICE 35

report on a framework used at Yahoo that uses a collection of anomaly detection and forecasting

models in a layered structure to detect anomalies in the time series data [27]. The framework was

validated on both synthetic and real-world data. A key aspect of the framework is its modular

structure, although the design of these modules is not explained. Following a similar trail of

thought, Ren et al. proposed a modular framework for preprocessing, analyzing and classifying

time series [143]. The system is used for various (unspecified) time series anomaly detection

applications at Microsoft. All of these approaches exhibit the following critical shortcomings:

• The description of the system architecture is limited to a high-level discussion (if presented

at all). Details on model management are not provided. Thus, reproducing the system

as described in the publication is not possible.

• Experience reports (let alone quantifiable metrics) on the maintainability of the ML

models and the system as a whole are not provided in any publication.

• The challenges of adapting models based on feedback from SMEs is not addressed in any

publication. Although the importance of adapting models is explicitly stated [142], no

solution is proposed.

These publications from the manufacturing domain are ill-suited as a starting point for further

research. Instead, they merely serve as evidence of an increasing shift in research focus towards

bringing anomaly detection systems into production.

Despite this sobering verdict, there are some (few) examples of applied research (outside the

manufacturing domain) that report on many of the same challenges discussed in 2. These

offer interesting insights into possible design considerations for the framework and the ML

algorithms. Sculley et al. published as paper on a large-scale ML system for adversarial

advertising (e.g. detecting phishing, malware or counterfeit goods) at Google consisting of

thousands of models [41]. Although the system monitors text rather than time series data,

the issues of multiple unknown classes and a large majority normal class are similar, including

all the associated challenges of learning from these extremely rare events. The system uses

conventional ML algorithms (nearest neighbor, naive bayes and linear SVM classifiers), focusing

on minimizing system complexity. The need for effective system monitoring and a high degree of

automation are highlighted. Additionally, the need and potential of active learning is reaffirmed,

making it possible to rapidly develop and deploy new models, often requiring only a few dozen

hand-labeled examples. Raeder et al. report on a similarly large system in operation for display

3 STATE-OF-THE-ART IN RESEARCH AND PRACTICE 36

advertising [144]. Here, too, a fundamental focus is placed on the ability to learn from the data

despite extreme class skew (up to 1 in 100,000 objects belong to the target class). The major

focus of the research was to ensure the ability to scale and extend the system by automatically

adding new models to ”minimize human intervention” (cf. the discussion of scalability by

extension in section 2.1.1). Both systems are much more advanced, both in terms of scale as

well as degree of automation, than those reported in the manufacturing domain. The authors

focus on many of the same key challenges that have been discussed in the previous section.

Specifically, the need to integrate an active learning procedure at scale [41], learn from rare

events, and designing both the algorithms and the system from the ground up to cope with the

challenges of maintaining a large number of models in production [144]. Interestingly, while

DL models frequently outperform all other models for anomaly detection, both systems are

”large-scale data mining systems” [41]. This suggests, that the use of time series data mining

algorithms is a promising alternative to deep learning models. However, both systems do not

deal with time series analysis, which require disproportionately more sophisticated data mining

approaches. In recent years, the research group around Keogh et al. has developed a number

of DM algorithms for extracting patterns from time series data [106, 145, 146, 147]. These

algorithms have already been used for anomaly detection in time series [148, 149] and been

integrated into expert systems for interactive data exploration and pattern extraction [150, 8].

3.4 Reproducibility of results

To conclude this literature review, a comment on the reproducibility of published results is

necessary. The scientific process is built on the idea of extending current knowledge by building

on published results. However, the ability to reproduce the published results of applied ML

research is often poor. This is because researchers are often not required or able to share

proprietary data and source code. While the use of benchmark datasets alleviates the former

problem, the results often do not translate to the real world. Meta-analysis of literature shows

that the vast majority of results cannot be reproduced. This may be due to (unknowningly)

cherry-picking the benchmark datasets or extensive hyperparameter optimization (HPO). An

analysis of the reproducibility of the publications considered in this review was performed that

considered the availability of the source code, whether the results were verified on benchmark

data sets at all and if the paper offered at least some discussion of the hyperparameters. The

results are shown in figure 15. While the trend of providing source code has increased over the

years, it remains low, especially in applied research outside the computer science domain.

3 STATE-OF-THE-ART IN RESEARCH AND PRACTICE 37

Figure 15: Qualitative evaluation of the reproducibility of available literature

Authors are often quick to equate marginal improvements over a number of prexisting meth-

ods on benchmark datasets with generalizable controbutions that easily translate to real-world

improvements. Statements such as ”the proposed approach outperforms classical feature ex-

traction procedures” [124] when only two other methods were tested seem like quite a leap.

Other claims like ”our technique consistently improves all known algorithms by a wide margin”

[132] seem at least questionable. More often than not, authors consider their algorithms to

be scalable, robust or adaptable, without providing any evidence that supports their claims.

Claiming that an algorithms ”automatically adapts itself to the anomaly detection use-case

that is important to the user” [27] without providing a detailed explanation what this means

and how this is done in practice contributes little to the current state of the art. This trend has

already been discussed in section 1.3.1 and was used as a justification for employing the design

science research methodology. To avoid these pitfalls, this thesis will not make the claim of a

one-size-fits-all ML system for anomaly detection. Instead, the goal is a framework to develop

such systems. The design considerations behind each research artifact will be explained in

detail and verified on both benchmark and real-world data to allow third parties to adapt the

framework to their setting. The source code and technical documentations for each artifact is

made publicly available. ”Operating a [...] system at scale requires more than [...] brilliant

algorithmic design. The consistent need to grow and change the system while maintaining or

improving performance means that quality control becomes increasingly important as the sys-

tem matures.” [144]. Therefore, an entire section is dedicated to the design of the ML system

itself, that is used to evaluate both DL and DM approaches at scale under real-world conditions.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 38

4 Time series data mining for anomaly detection

The discussion in the previous section showed, that the few productive anomaly detection sys-

tems operated at scale are essentially ”large-scale data mining systems” [41]. The first research

cycle, therefore, built upon these insights by using State-of-the-art DM algorithms to develop a

DM system for anomaly detection in time series data. These algorithms classify a time series by

matching it with a library of time series patterns. While the matching operation itself is simple,

the process of extracting these patterns and classifying objects requires more sophisticated DM

algorithms. When applying these algorithms at scale to construct DM models, data scientists

are faced with the same challenges discussed in section 2. The first subsection recapitulates

the different motivations for using DM models for anomaly detection. The second subsection

summarizes the fundamentals of time series pattern matching and state-of-the-art algorithms

for supervised and unsupervised pattern extraction. The third subsection presents an approach

that uses these algorithms to construct an unsupervised anomaly detection model. The fourth

subsection presents an improvement of the state-of-the-art pattern extraction algorithm that

improves the ability to extract effective classification patterns from highly imbalanced data.

The last subsection shows how both contributions can be integrated into a single framework to

train and adapt one-class models for anomaly detection based on continuous user feedback.

4.1 Motivation for pattern matching models

A pattern matching model uses a set of patterns to classify an object. The patterns are

extracted from the data using DM algorithms and organized into libraries. These patterns can

then be used as templates for time series analysis. Note, that there is a distinction between

a template and a prototype. A template is based on a real instance observed in the past

that is used to find a one-to-one match. A prototype, on the other hand, is a sort of average

representation derived from shared features of various instances of the same class. The pattern

extraction algorithms discussed in this thesis are template extraction algorithms. The model

matches these templates to a time series object using a pattern matching subroutine. The

result is a pattern-based feature representation of the object. ML models can then be used to

learn decision boundaries for classifying the objects. This is schematically shown in figure 16.

Therefore, a pattern matching model relies on both DM and ML algorithms.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 39

Figure 16: Schematic depiction of the components of a pattern matching model.

There are three factors that motivated the development of pattern matching models. First,

these models can be trained so that their complexity matches that of the data. As discussed in

section 2, overly complex models may overburden developers in practice. Ideally, the same ML

algorithm will train simple models when possible and complex models when necessary. Pattern

matching models allow this flexibility by simply extending or altering the library of patterns.

If a target pattern is easy to detect, a simple model based on a small number of sequences

can do the job. For more complex classes, the model can learn to classify an object based on

a combination of the presence and/or absence of numerous patterns allowing for an almost

arbitrarily complex decision process.

Second, this approach makes it possible to organize the knowledge learned by the model into

a taxonomy that can be easily understood by humans. All information used by the model for

pattern detection is contained in the sequences stored by the model. These can be categorized

into groups and deviations of patterns that the model looks for. This helps developers and

SMEs better understand both the model as well as the underlying data. Additionally, clas-

sifying an objects by matching it to a library of sequence templates/prototypes is a low-level

method of pattern detection, resulting in models whose decision making remains relatively easy

to interpret even for complex patterns. This greatly simplifies model debugging.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 40

Third, this approach to pattern recognition is widespread in computer vision and shares sim-

ilarities to the way biological brains work. Template and prototype matching are two basic

theories in the field of neuroscience that explain the recognition of patterns as a cognitive pro-

cess of matching perceived information with information retrieved from memory [98]. While

this is a weak justification on its own for choosing a modeling approach, empirical observa-

tion of SMEs suggests that this process is indeed used when manually classifying data. When

asked to explain what constitutes a particular fault class, SMEs refer either to the presence of

a sequence that is not present in normal objects or the absence of a sequence that is always

present. If they are unsure, they typically review a series of known normal objects (ground

truth) before labeling the target object. This suggests, that the classification performed by

SMEs is based on matching a set of normal sequences that have been committed to memory

with the target object. Thus, the approach is essentially emulating the decision process it is

trying to automate.

4.2 Fundamentals of pattern extraction and matching

This subsection summarizes the theoretical fundamentals of pattern extraction and pattern

matching in time series data. The first half covers the low-level concepts and algorithmic

subroutines used for matching time series patterns. The second half summarizes state-of-the-

art high-level data mining algorithms used for unsupervised and supervised pattern extraction

from time series data. These algorithms are the result of decades of research conducted by

the research group around Eamonn Keogh [151, 152, 101, 153, 5, 145] that was identified as

promising in section 3.

4.2.1 Time series subsequence matching

As discussed in section 2.3 a pattern in a time series T is a subsequence of that time series.

Definition 7 A subsequence Ti,m = ti , ti+1 . . . ti+m−1 of time series T is a shorter sequence of

length m starting from index i where 1 ≤ i ≤ n − m + 1.

A time series can be broken down into its constituent subsequences by sliding a window of size

m across the time series T . This yields a subsequence set A. There are n−m + 1 subsequences

in the set A. A separate set exists for each m where 1 < m < l − 1.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 41

Definition 8 A subsequence set A = {T1,m, T2,m . . . Tn−m+1 ,m} of a time series T is an ordered

set of all possible subsequences of T of length m.

The definition of a subsequence set is provided to make it easier for readers to understand the

pattern matching subroutine. A time series is said to contain a pattern if that pattern is similar

to any subsequence in the set A. This evaluation is based on a simple matching operation,

whereby a single query subsequence Q is compared to all subsequences in A. The sequence of

distances between Q and all subsequences in A is referred to as the distance profile D [97, 154].

Definition 9 A distance profile D of a time series T is a vector of the distances between a

given query subsequence Q and each member in the subsequences set A of T . [149]

Figure 17 depicts the distance profile of three query subsequences Q and a time series T .

The time series is an ECG signal of a normal heart beat. Most readers will be familiar with

the general shape, making it easier to understand the concept of a distance profile D. The

subsequences correspond to the three main polarization regimes of the heart muscles. Note,

that both the query subsequence Q and each subsequence in A must be z-normalized before

calculating the distance between each subsequence-pair. This is important for the distance to

quantify the similarity between their shapes, irrespective of the amplitude of the signal [4, 155].

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 42

Figure 17: The (Euclidean) distance profile D of different query subsequences Q and a time
series T .

Low values in the profile correspond to subsequences of the time series T that are similar to

the query Q. The minimum value of D quantifies the presence of Q in T and corresponds to

its nearest neighbor in the set A.

Definition 10 The 1NN-function f (Q, A) is a Boolean function, that returns ”True” if A[i]

is the nearest neighbor of Q in the set A and ”False” otherwise. [149]

The distance profile and the 1NN-function are two fundamental concepts in time series data

mining. A vast number of high-level pattern detection algorithms in literature are constructed

from just these two building blocks [156, 149, 102, 157, 147, 158]. By applying the 1NN-function

to two all-subsequences sets A and B, the nearest neighbor to each element in set A among

all elements in set B can be found. This entails comparing every element in set A with every

element in set B and is called a time series similarity join [149].

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 43

Definition 11 A similarity join J A B between two all-subsequence sets A and B is a set of

subsequence-pairs of each subsequence in set A and its nearest neighbor in set B. [159]

Note, that some subsequences in B may be the nearest neighbor of multiple subsequences in A

while others may not be the nearest neighbor to any subsequence. In most cases J A B = JB A .

The similarity join is standard database operator used extensively for data processing in diverse

application domains [159]. The efficient computation of set similarity joins has received much

attention from both academia and industry [160]. A matrix profile can be defined based on the

time series similarity join.

Definition 12 A matrix profile P A B is an array in which the Euclidean distance between each

pair in J A B is stored. [149]

4.2.2 Distance measures

The discussion so far has focused on comparing the similarity between subsequences without

considering how to measure this similarity. Generally, the only way to compare two objects

is to calculate a distance between them, which is why the terms similarity and distance are

often used interchangeably. Since distance values are typically unbounded (i.e. there is no

upper limit a distance value can take), they are difficult to interpret in absolute terms [149].

In fact, depending on the distance measure in question, these values may not even correspond

to what an SME would consider as similar in relative terms. Consider the real-world example

of tightening data depicted in figure 18. A process expert would be hard pressed to say that

”object A is twice as similar to object B as to object C” and may even have trouble deciding

which object is more similar at all. Either object can be more similar depending on the distance

measure used. This example illustrates the difficulty of measuring the similarity of two patterns

and explains why a vast number of distance measures have been proposed to more effectively

measure the similarity between two sequences for different applications. The two most widely

used distance measures for time series data are the Euclidean distance and the Dynamic Time

Warping (DTW) distance. Most other distance measures for time series proposed in literature

can be considered variants of these two that address specific variations in time series data [156].

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 44

Figure 18: Similarity between real-world process data objects according to different distance
measures.

Consider the simple case of two points in three-dimensional space, where each point is repre-

sented by its coordinates. The Euclidean distance is defined as the root of the sum of the squared

differences between these vectors (this corresponds to the length of the shortest line connect-

ing these points). The Euclidean distance calculation can be generalized to any n-dimensional

space. Thus, the Euclidean distance can be calculated between two time series, provided they

are of the same length. While simple, the Euclidean distance is often ill-suited for the compar-

ison of time series data. Even small shifts or distortions of the underlying patterns may lead to

a large Euclidean distances between two objects. This is referred to as (statistic) brittleness of

the distance measure [156]. The Euclidean distance essentially considers every point along the

time series an independent dimension, ignoring local structures of neighboring points. This is

the same reason why it is difficult to find a meaningful nearest neighbor in high-dimensional

space. Therefore, researchers developed elastic distance measures, the most popular of which is

the DTW distance. This elasticity makes it possible to compare non-adjacent points of two time

series. The DTW algorithm was developed in the 1970s to measure the similarity between two

temporal audio signals for applications in speech recognition [161, 162]. Because people have

different speaking rates, the speech patterns of the same spoken word may vary. DTW finds

a non-linear mapping between two sequences by locally compressing and stretching the time

axis of one sequence so that its signal is optimally aligned with the other. This local distortion

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 45

of the time axis is referred to as time warping and makes it possible to calculate a meaningful

distance metric between both sequences. Figure 19 shows the mapping between two sequences

as calculated by the DTW algorithm compared to the Euclidean distance for real-world data.

This mapping allows to assess the similarity between sequences, even if their signals are mis-

aligned or distorted. Two time series are considered similar if, after non-linear adjustment of

the time axis, they can be made similar under Euclidean Distance [163]. This property makes

DTW relevant for many sequence analysis problems, which has led to its widespread use for

clustering [164], classification [74] and similarity search [165].

Figure 19: The DTW algorithm locally aligns the signals before calculating the (Euclidean)
distance between them [4]

The often-cited drawback of the high time complexity of the DTW algorithm [166] has been

largely eliminated thanks to algorithmic optimizations developed over the past decade, mak-

ing it feasible for many practical applications [163, 167]. The computational complexity is no

longer a bottleneck. Instead, the continued challenge of using the DTW-algorithm for real-

world application lies in adjusting its hyperparameters to get the right degree of elasticity

of the distance measure. Empirical demonstrations show, that optimal constraint parameters

depend on the data set and are typically determined through an iterative process of trial and

error [168, 169] and requires understanding of the overlapping effects of the various parameters.

A novel near-paramater-free distance measure called matrix profile distance (MPdist) was pro-

posed in 2017, that is able to handle the vast majority of common data issues in real-world data

[170]. It does this, by comparing the constituent patterns of both time series and considering

them to be similar if they share many of the same patterns. The invariance of this comparison

to the location of the patterns in the time series allows the distance measure to ignore dropouts

and spikes, repeated patterns and phase shifts in the signal. As its name implies, the MPdist

is based on the matrix profiles of the compared time series. Recall, that the matrix profile

P A B encodes the presence of every constituent pattern of A in time series B. Likewise, P B A

represents the presence of every pattern of B in A. The combined matrix profile PA B B A repre-

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 46

sents the presence of every pattern of A in B and vice versa. Intuitively, PA B B A contains all

necessary information for a pattern-based comparison of two time series. The largest value in

PA B B A corresponds to the most dissimilar pattern within the two sequences (referred to as time

series discord), whereas the smallest value corresponds to the most similar pattern (referred

to as time series motif) [170]. Clearly, neither one of these extremes is particularly useful as

a similarity measure. Taking the smallest value results in little discrimination between most

time series. This would be akin to measuring the distance between sentences in the English

language based on their most similar word. Since most sentences contain words like ”a” or

”the”, these would all be equidistant [170]. Likewise, taking the maximum value would result

in a distance measure that is susceptible to a single dropout or spike. Instead, the MPdist is

defined as the kth smallest value in PAB B A . For a discussion of this parameter k, the reader

is referred to the original publications [170]. Suffice to say, that empirical demonstration has

shown for the effect to be negligible for most real-world data. For this reason, the MPdist can

be considered a parameter-free distance metric.

Below is a summary of the relationship of the three distance measures:

• Euclidean distance: two time series are similar if the difference of every point along both

time series is small.

• Dynamic Time Warping distance: two time series are similar, if after non-linear warping

of the time axis, they can be made similar under Euclidean Distance [170].

• Matrix Profile distance: two time series are similar if their constituent subsequences are

similar under Euclidean distance.

To be precise, both the DTW distance and the MPdist are distance metrics. The difference

between a metric and a measure is that the latter does not conform to the triangle inequality

i.e. if A is close to B and B close to C, A need not be close to C. All three of these distance

measures are used by the anomaly detection algorithm presented in the next section.

4.2.3 Time series snippets

One of the most fundamental tasks of analyzing time series data is identifying typical, repeated

patterns that are representative of a given data set. Finding such patterns is often extremely

challenging for large data sets, primarily because of the difficulty of defining what constitutes a

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 47

representative pattern [147]. One apparently obvious definition is patterns that are frequently

repeated in the data. A basic algorithm for identifying frequently occurring patterns (called

motifs) in time series data was formalized as early as 2002 [153]. An (inefficient) motif discovery

algorithm can be formulated based on the previously introduced concepts of time series joins

and the matrix profile. Given a time series T , the algorithm applies a similarity join on the

time series and itself J T T . Subsequence pairs whose distance exceeds a given range R in the

matrix profile P T T are discarded. The remaining subsequences are ordered according to their

frequency, with the most frequent subsequence called the first motif, the second most frequent

subsequence called the second motif and so on. Note, that the motif discovery algorithm can be

generalized to a set of time series objects instead of a single time series [157]. Essentially, the

motif discovery algorithm performs a range similarity query for each subsequence in A and ranks

these subsequences according to the number of returned results. While this brute-force approach

is quadratic in time complexity, algorithmic optimizations have been developed to reduce the

runtime by three orders of magnitude [5], making it feasible for real-world applications. Over

the years, motif discovery has been applied in various domains like medicine, entertainment,

biology [95] and manufacturing [5] (cf. figure 20).

Figure 20: Motifs discovered in an industrial data set [5]

While motifs are useful for detecting and analyzing repeated structures in time series, they

do not consider the coverage of the data. Coverage refers to the extent to which the data is

represented by those patterns [171]. This makes them unsuitable for constructing an anomaly

detection model. To detect anomalies, it must be possible to explain every part of a time

series i.e. it should be possible to use the patterns stored in the model’s library as building

blocks to reconstruct the time series. In 2018 Keogh et al. introduced a data mining primitive

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 48

called time series snippets, that allows to extract patterns that guarantee complete coverage of

the time series. Since snippets are fundamental to the high-level anomaly detection approach

proposed in the next section, a brief overview of the algorithm is provided. It combine all of the

previously introduced concepts of similarity joins, the matrix profile and the MPdist metric.

The first step is to break the time series T down into a set of non-overlapping subsequences.

These are referred to as snippet candidates S. The goal of the algorithm is to find an ordered

set of snippets, that together cover the entire length of the time series as effectively as possible.

The snippet finder calculates a distance profile between each snippet S and the time series

using the MPdist metric. The resulting distance profile takes on low values along sections

of the time series that share constituent patterns with the query and takes on high values

otherwise. Consider the example of real-world tightening data in figure 21.

Figure 21: Distance profile using the MP distance and Euclidean distance for two randomly
selected subsequences in manufacturing data.

When looking at the MPdist profile of a single snippet, the lower the area under the curve

(AUC), the better its coverage of the data. This idea can be extended to a set of snippets by

taking the minimum of their individual MPdist profiles at each time step.This curve is called

the minimum (MPdist) distance profile. Based on this idea, it is possible to formulate a loss

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 49

function to find the set of snippets that best represents the data: minimize the AUC under the

minimum distance profile [147]. Given a number of snippets k to select from p profiles yield

k-choose-p possibilities. An exhaustive combinatorial search of all possible combinations of k

snippets will quickly become intractable. To keep the runtime of the algorithm manageable,

the snippet finder uses a greedy search strategy to find an approximate solution. The snippet

algorithm will serve as the starting point of the unsupervised anomaly detection model proposed

in section 4.3

4.2.4 Time series shapelets

The previous section discussed the unsupervised extraction of patterns that are representative

of a large amount of unlabeled data. Additionally, it is often desirable to extract patterns that

are maximally characteristic of a class of labeled data. These patterns can be used to classify

an objects as belonging to a particular target class or discriminating an object as not belonging

to that class. The shapelet algorithm published by Ye et al. in 2009 [146] was developed for

this very purpose. The algorithm extracts maximally discriminative time series subsequences

(shapelets) from annotated time series objects by evaluating the ability of each subsequence to

separate the classes. Like the snippet algorithm, it is based entirely on the similarity join oper-

ation discussed in section 4.2.1 and therefore considered a data mining primitive (fundamental

algorithm). Since its inception, it has been applied to numerous real-world settings for time

series classification [75]. Due to its effectiveness, it continues to be subject of ongoing research

interest and improvement efforts [172, 173, 174]. This section gives a very brief overview of the

algorithm, as it is the basis of the semi-supervised template extraction and refinement process

described in section 4.4. For a comprehensive description, readers referred to the original works

of its authors [146].

Given a set of n time series objects T that belong to one of two classes, the shapelet algorithm

evaluates each constituent subsequence to find the one that is maximally characteristic of one

class and maximally uncharacteristic of the other class. This subsequence is referred to as

a time series shapelet and can be used to classify an object as belonging to the same or a

different class as the time series from which it was extracted. The first step is to extract a

subsequence set A of subsequence length m for each of the n time series objects T . Initially,

every subsequence is considered a potential shapelet candidates C. For each candidate C, the

algorithm calculates the minimum distance between the candidate and every time series T i.e.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 50

the matrix profile. The algorithm repeats this process for each candidate C and object T in

the data set. The results can be used to quantify the ability of C to separate the classes. This

can be seen by plotting the values on a number line as shown in figure 22.

Figure 22: The class-separability of a shapelet candidate C can be evaluated based on the
distance of that candidate to the nearest neighbor to every object T .

The algorithm scores the candidate based on the information gain criterion, which measures

the ability to linearly separate both classes. The information gain criterion is based on the

concept of information entropy, whereby a data set of high class purity has a low entropy and

vice versa [175]. When linearly splitting a data set into two partitions, the total entropy either

stays constant or decreases. The maximum reduction in entropy occurs for the split-point that

separates the data set into partitions of maximum class purity. Thus, the criterion makes it

possible to quantify the ability to linearly separate two classes. It is a concept from the field

of information theory and widely implemented in many conventional ML algorithms to learn

class-separating boundaries (e.g. the decision tree algorithm).

The distance calculation and evaluation is repeated for each candidate C, carrying forward the

best-so-far shapelet candidate until all candidates have been evaluated. Intuitively, the final

candidate with the highest score is a pattern that best separates the two classes. The shapelet

algorithm essentially performs an exhaustive trial-and-error search of all possible patterns of

length m in the data set. This brute-force approach requires calculating the matrix profile

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 51

between all subsequence sets A in the data set [149]. For a set of n time series objects of

average length m, the number of candidates of all possible lengths is O(m2n). Scoring each

candidate takes O(mn) resulting in a total complexity of O(m3n2) for the algorithm [176].

This is intractable for most real-world data sets [176]. To reduce the number of calculations,

algorithmic optimizations have been developed such as (1) caching the distance calculations

during the similarity join operation [177], (2) abandoning the distance calculation between a

candidate and a subsequence if it exceeds its lowest-so-far distance to the time series (early

abandoning) and (3) abandoning the distance calculation as soon as the maximum possible

information gain falls below that of the best-so-far shapelet (entropy pruning). Their combined

effects is a reduction in the time complexity by approximately three orders of magnitude,

resulting in a runtime of a few hours for thousands of time series [176, 177]. Additionally,

simple dimensionality reduction methods like piece-wise aggregate approximation (PAA) allow

additional speed-ups in the order of a magnitude [145] (essentially, this reduces the average

time series length m). These algorithmic optimizations are sufficient to make the algorithm

feasible for many real-world applications [8].

4.3 Unsupervised anomaly detection

This section presents an approach that uses the snippet algorithms discussed in section 4.2.3

to construct an unsupervised anomaly detection model. The first subsection explains how

the algorithm is adopted from its standard implementation. The second subsection discusses

how the snippets are organized and used for anomaly detection. The focus of this approach

is to ensure a highly orchestrated training process and easy debugging of the model by data

scientists. As discussed in section 2.1 this is vital for scaling and maintaining a large-scale

system. The process of adapting the pattern library based on user feedback and transforming

model into a true one-class model for anomaly detection is explained in section 4.4 and section

4.5, respectively.

4.3.1 Adopting the snippet algorithm

The snippet algorithm can be used to extract representative patterns from unlabeled process

data. Before discussing how a shapelet-based model for anomaly detection can be constructed,

it helps to consider some practical aspects related to the application of the snippet algorithm.

First, that the extracted snippets are, in fact, representative of normal process operation and

do not capture any anomalous patterns. There are two ways to ensure that this is the case:

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 52

• SMEs can manually annotate a (small) subset of the available process data that is used

for snippet extraction. This requires in a trade-off between a small subset to minimize

SME resources and a subset large enough to be representative of the normal class.

• The number of anomalies in the data are generally very low. This is one of the main

challenges that make it difficult to train ML models. In this case, however, this fact

can be exploited by using a large subset of raw data in which the (expected) fraction of

anomalies will be sufficiently low.

The second option is much more preferable as it allows to automate the training process with-

out requiring manual input from SMEs. In practice, the size of the subset is selected so that

it is considerably larger than required. This can be considered a form of weak supervision, as

this training process is based on assumptions about the data (that is, that most data belongs

to one class).

Second, the original snippet algorithm extracts snippets from a single time series. However,

process data is typically recorded as separate time series objects for individual parts, batches,

machine cycles, etc. Thus, snippets need to be extracted from a set of time series. At first

glance, this may seem like a trivial problem of simply concatenating the time series and running

the algorithm on this long time series as before. However, the concatenated time series will

contain periodic pattern where the start and endpoints of consecutive time series have been

joined together. This is depicted in red in figure 23. This pattern recurs often and will therefore

tend to end up in the top snippets. Thus, the subroutine of the algorithm needs to be adjusted

to extract snippet candidates CS in such a way, that these patterns are avoided. This is done

by placing a marker between each concatenated object and discarding snippet candidates CS

that contain this marker. While this avoids the extraction of undesirable shapelet candidates

SC it will lead to a low snippet coverage around these markers. To resolve this, the otherwise

fixed snippet length m is dynamically adapted until the snippet candidates CS fill the interval

between two markers. This is schematically shown for real-world manufacturing data in figure

23.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 53

Figure 23: The snippet length m is dynamically adapted to optimally cover the time series
between adjacent null markers.

Third, it is not immediately clear how to automatically set the hyperparameters of the snippet

algorithm i.e. the (average) length and number of snippets. As discussed in section 2, a high

degree of automation is desirable to ensure system scalability. Since snippet discovery should

occur completely unsupervised, it must inevitably rely on a heuristic. The ability to quantify

the snippet coverage makes it possible to define such a heuristic for the number of snippets. For

a given snippet length, the (decreasing) coverage of the data for every additional snippet can

be measured. By using a simple knee-point detection algorithm, an optimal number of snippets

can be determined. Essentially, the knee-point detection is used as a cut-off criteria for the

decreasing marginal benefit of adding an additional snippet. Knee-point detection is a widely

adopted algorithm in machine learning typically used for determining an optimal threshold

setting based on the ROC curve. Finding a good snippet size, on the other hand, requires a

trial-and-error grid search for different lengths. Note, that the process of unsupervised model

initialization need not be optimal. Since the aim is to adapt the model based on user feedback

anyways, the unsupervised model must only provide a reasonable first that is good enough to

start a feasible feedback cycle and overcome the cold-start problem discussed in section 2.

4.3.2 Anomaly detection using snippets

The previous section discussed the application of the snippet algorithm for the extraction of

representative patterns from unlabeled process data. To understand how anomalies can be

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 54

detected using these patterns, it is necessary to define what constitutes an anomaly in the

context of temporal pattern detection. There are three ways in which a time series can be

considered anomalous:

1. The time series contains an anomalous pattern that is not representative of the normal

class.

2. The time series is missing a pattern that is representative of the normal class.

3. The time series contains exactly the same patterns as the normal class but their position

along the time axis varies.

This differentiation is a result of the need to set a fixed length for the snippet algorithm. All

anomalies can be considered as belonging to category 1 if the anomalous pattern can take on

any arbitrary length. To detect both the presence of anomalous patterns and the absence of

normal patterns requires a comprehensive set of normal patterns that covers all eventualities.

Essentially, the idea is that it must be possible to reconstruct a normal time series from this

library of snippets. This does not mean, that every snippet is present in every object but that

every (normal) object can be reconstructed form a subset of possible snippets. Consequently,

a snippet-based model for anomaly detection cannot simply match all snippets to an object

and rely on global thresholds for classification. Instead, the model must use thresholds for

combinations of snippets. In principle, ML algorithms could be used to learn a multivariate

decision boundary for all snippets. However, the resulting model will quickly become complex

and difficult to interpret, especially for large snippet libraries. Instead, a hierarchical process of

snippet matching is proposed that consolidates the results into a small number of meaningful

features. This makes the final ML model simpler and easier to interpret.

Detecting anomalous patterns The starting point of the algorithm is a library of snippets

extracted from a set of normal data using the approach described in the previous section. Given

a new time series T , the first step of the algorithm is to calculate a distance profile D for each

snippet S in the library using the MPdist. The algorithm then calculates the minimum across

all of these distance profiles. This yields a meta-profile of equal length, that indicates how well

each corresponding section of the target time series can be represented by any normal pattern.

This meta-profile is called the minimum distance profile MDP . Note, that these steps are

analogous to the snippet algorithm. Low values in the MDP indicate, that the corresponding

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 55

section of the target time series is similar to a normal pattern. Conversely, the maximum value

of the MDP quantifies the maximum dissimilarity of the target time series to any normal

pattern. Thus, the value max(MDP) can be used to quantify the most anomalous pattern

in the time series. This makes it possible to detect anomalous patterns in time series using a

single threshold. This threshold can be learned by standard ML algorithm such as decision tree

algorithm, SVM algorithm etc. This is schematically depicted in figure 24.

Figure 24: The value max(MDP) quantifies the most anomalous pattern in the time series
that cannot be explained using the current snippet library.

Detecting the absence of expected patterns The next step is to use the same library

of snippets S to detect the absence of normal patterns. Once again, the starting point is the

distance profiles DP between each snippet Si in S and a time series T . The minimum value of

the distance profile min(DPi) of snippet Si quantifies the presence of the snippet in the time

series, whereby min(DP) = 0 corresponds to a perfect match and a large value indicates the

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 56

absence of the snippet. Thus, the information about the presence/absence of a snippet Si is

captured by its value min(DPi).

The information contained in the values min(DPi) is consolidated into fewer, more meaningful

features. To make these values comparable for different snippets, they must each be standard-

ized. This is because the variance of the values min(DPi) may differ for different snippets.

This metadata is stored in the snippet model. If all time series objects were to contain all

patterns in the library S, the maximum value of all distance profiles max(min(DP)) could be

used to quantify the absence of any normal pattern. However, this is generally not the case

for real-world data. Manufacturing processes often exhibit various normal operating modes,

characterized by distinct, often mutually exclusive patterns. This may be due to a host of

secondary influences such as variable machine settings, material properties, etc. Many of these

variations will be captured in the snippet library but are only present in a (significant) minority

of the objects. Thus, time series of the normal class need only contain some patterns to be con-

sidered normal. Figure 25 shows a library of snippets extracted from a tightening process that

exhibits two different operating modes (corresponding to different machines). For a particular

time series object, either snippet A or B will be absent, although both are representative of the

process.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 57

Figure 25: An excerpt of a snippet library for a tightening process that are representative of
mutually exclusive operating modes.

Therefore, the snippet library must be subdivided into subsets of mutually exclusive patterns

so that a particular time series object contains exactly one pattern from each subset. These

subsets are defined based on the same training data from which the snippets were extracted.

Analogous to the snippet algorithm, the objects are divided into non-overlapping sections.

Then, each snippet Si in the library is matched to each time series T and the matching section

recorded. If two snippets are matched in the same section across different time series, they are

assigned to the same subset. This meta-data is stored by the model and used to determine the

minimum value for each subset of snippets min(min(DP)). This values indicates if any one of

a number of alternative patterns is present for a subset. Figure 26 shows how this metadata is

used to consolidate the features.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 58

Figure 26: The patterns in the snippet library are matched to the target object and the results
successively consolidated across snippet subsets.

Thus, the ML model must only learn simple thresholds i.e. univariate decision boundaries for

each subset. This results in a vastly simpler model. Additionally, the individual scores can

be further simplified into a single high-level score max(min(min(DPi))). This absence score

indicates the absence of a normal pattern in any of the subsets. Together with the novelty score

presented in the previous section, it can be used by data scientists as a high-level approach to

visually inspecting the ”feature space” of the model.

Retracing model decisions The snippet-based model discussed so far makes it possible to

quantify both (1) the presence of anomalous patterns and (2) the absence of normal patterns in

a target time series (at the expected point along the time axis) using only two anomaly-scores.

These scores are based on a two-step hierarchical decision process, that uses simple logical

operations to evaluate the ability to reconstruct a time series from a library of normal patterns

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 59

(snippets). By using a threshold, these scores can be directly used for anomaly detection.

To learn these thresholds directly from the data, existing unsupervised ML algorithms can

be used. The result is an inherently interpretable anomaly detection model, that facilitates

communication between data scientists and SMEs and more targeted model debugging and

improvement. To understand what this looks like in practice, consider the same anomalous

objects discussed in the beginning of the section. Figure 27 shows how these scores allow to

detect the previously discussed anomalous objects. When the two anomaly scores are plotted

on a plane, we can see that they complement each other well.

Figure 27: The high-level algorithm based on time series snippets allows intuitive clustering.

The great advantages of the proposed approach is the interpretability of the model that makes it

easy to debug. This enables data scientists to investigate the cause of poor model performance.

Consider object A in figure 27. This object is classified as anomalous by the model but does not

belong to a target class. To to understand why, data scientists can simply retrace the decision

process of the model as schematically depicted in figure 28. While the normal class exhibits a

characteristic bend between the transition of the two linear compression phases, object A does

not. Instead, it exhibits a smooth, progressive increase in the tightening torque. Since this

phenomenon is rare, the snippet algorithm did not extract and match a corresponding snippet.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 60

Figure 28: Data scientists can retrace the decision process of the snippet model to understand
why a particular object was misclassified

4.4 Semi-supervised pattern extraction and refinement

The previous section introduced an algorithm based on time series snippets for the unsupervised

detection of anomalies. These anomalies are then manually annotated by SMEs. The next

step is the extraction of representative pattern from this annotated data. These patterns are

used either for (1) classifying a particular target class or (2) updating the one-class model

to ignore uninteresting anomalies in the future. The latter is discussed in detail in the next

section. The first question that needs to be addressed is how to extract these representative

patterns. The amount of annotated data is typically very small because anomalies are inherently

rare and the resources of SMEs for annotating the data severely constrained. This section

proposes ways to address these challenges. The first subsection presents an improvement of

the shapelet algorithm discussed in section 4.2.4. This adaptation makes it possible to extract

robust shapelets from highly imbalanced time series data [6]. The second subsection proposes

an information retrieval system that enables SMEs to efficiently sieve through large time series

data archives to annotate historical data of a target class. Throughout the field-testing and

development stages of this research, this guided annotation of the data archives has proven to

be an extremely cost-effective way of improving the classification accuracy of the deployed ML

models (and simultaneously improving SME understanding of the data) [167]. Both approaches

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 61

are semi-supervised as they make structural assumption about the underlying data. Due to

their broader relevance outside the manufacturing domain, both approaches were validated

using benchmark datasets and independently published during the course of this research [8, 6].

This section includes some results of these benchmark studies in addition to field testing results

from the manufacturing domain.

4.4.1 Extracting shapelets for highly imbalanced data

This section summarizes changes to the shapelet algorithm introduced in section 4.2.4 that

improve the algorithm’s applicability to highly imbalanced data. These change allow to extract

more robust patterns using fewer annotated objects at the expense of a considerable increase

in runtime. Nonetheless, this trade-off is acceptable for many real-world applications.

The shapelet algorithm described in section 4.2.4 yields a single shapelet. Empirical studies

have shown, that the accuracy of shapelet-based classifiers can be significantly improved by

using multiple shapelets [178]. This is unsurprising, as drawing on a larger number of features

allows a model to make more complex decisions (or be more certain of a decision). More-

over, some classification problems require the consideration of multiple features simultaneously

[7]. However, shapelet sets frequently contain a large number of redundant and non-robust

shapelets. This has adverse effects on the accuracy and interpretability of the classifier [178]

and is attributable to two causes:

• The shapelet selection process is based on a univariate evaluation of each shapelet can-

didate. However, taking into accouunt the redundant information shared by multiple

features is often necessary to select non-redundant shapelets.

• Existing methods for evaluating a shapelet candidate are based on its ability to linearly

separate the classes without considering the margin of the class separation. The margin is

widely recognized as an important indicator of feature robustness [179] and is particularly

critical for imbalanced data [176].

As long as enough labeled data is available, these drawbacks can be largely compensated by

extracting a large number of shapelets and eliminating feature redundancies through appro-

priate adjustments to the training process like filtering or cross-fold validation. However, this

approach is not feasible in the case of highly imbalanced data, where only a handful of instances

of the target class are available.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 62

The challenges of extracting a shapelet set This section gives an overview of the chal-

lenges of extracting a set of shapelets from (imbalanced) data. It starts with a brief introduc-

tory discussion of the shortcomings of existing approaches before detailing proposed changes

that improve its ability to find robust shapelets with minimal information redundancy. The

shapelet algorithm scores every candidate, keeping the best-so-far candidate. Thus, it seems as

though finding a set of shapelets is straightforward: simply keep the top-k candidates instead

of the single best candidate. However, a shapelet set constructed this way would contain a

large number of overlapping shapelets of the same feature. The information redundancy would

render the shapelet set useless, even for moderately sized data sets. One approach to resolve

this issue is to split the data using the optimal split-point of the final shapelet and reiterate

the shapelet discovery algorithm on the subsets. This approach is proposed by the original

authors for multi-class classification problems [146] and can be adapted as a recursive splitting

process for binary classification problems. However, this approach of essentially constructing a

shapelet-based decision tree will return suboptimal shapelet set for two reasons:

• Approximating a multivariate decision boundary via univariate split-points is inefficient

[6]. This is an inherent problem of univariate feature selection and results in a set of

redundant shapelets and consequently inefficient models that are difficult to interpret

[178]

• A recursive shapelet search is only possible as long as the subsets contain objects of both

classes i.e. no ”perfect” classification is possible based on the current shapelet set. Once

all objects of the target class can be linearly separated, the algorithm terminates. While

this may seem logical, there are often additional candidates that could be included in the

shapelet set to improve robustness. This is problem is much more pronounced for highly

imbalanced data sets where it is often possible to ”perfectly” separate a few objects from

the majority by focusing on a spurious distinguishing features that does not generalize to

new data.

Recognizing the advantages of a shapelet set, Hills et al. proposed to transforming time series

data directly into a shape-based feature vector, using a set of k shapelets [178]. The main

objective of this work was to decouple the shapelet extraction from the decision tree classifier

and establish it as a stand-alone method of feature extraction. This made it possible to combine

the advantages of shapelets with the advantages of more powerful ML classification algorithms.

To address the previously discussed problem of information redundancy in the top-k shapelets

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 63

returned by the original shapelet algorithm, the authors proposed a pruning strategy to exclude

overlapping shapelet candidates from the same time series from the shapelet set. While this

reduces the information redundancy in the shapelet set, it is unlikely to yield an optimal set, as

it only considers the feature redundancy within an individual time series. Since multiple time

series in a data set often contain the same features [180], redundant shapelets may still be added

to the set from different time series. This effect has been documented in the original paper

[178] and becomes more pronounced as the imbalance and uniformity of the data increases

[6]. To address this problem, Grabocka et al. extended the pruning strategy to consider the

similarity between the next-best candidate and the best-so-far candidates in the shapelet set

[180]. However, neither of these approaches considers the multivariate dependencies between

the shapelet set and the next-to-add candidate [6].

Margin-based shapelet scoring The shapelet algorithm scores each shapelet candidate

based on the information gain criterion. This entropy-based split-point criterion is simple to

compute well-suited for scoring shapelet candidates for most applications. However, its inability

to consider the separating margin may sometimes lead to undersirable results. Consider the two

minimum distance vectors of candidates A and B in figure 29 whose optimal split-points lead to

the same class purity in the subsets. The information gain criterion would yield the same score

for both candidates. However, candidate B intuitively looks like a more robust choice that we

would expect to generalize better to unseen data. This is because it exhibits a lower inter-class

variance and a larger intra-class separating margin [6]. The margin is an important indicator

of feature robustness [181, 179] and is the fundamental principle underlying margin-based ML

algorithms. It is often used to estimate the generalization error of the classifier [182] and its

ability to generalize well to unseen data [179]. Although this information is available in the

data, the information gain criterion makes no use of it. Consequently, the shapelet algorithm

indiscriminately selects either feature.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 64

Figure 29: The values of the minimum distance profiles DA and DB of two shapelet candidates A
and B plotted on separate number lines. The maximum information gain for both optimal split
points is the same [6].

This phenomenon, while generally undesirable, is particularly problematic for imbalanced data.

Measures of class purity are ill-suited for evaluating the separability of a highly imbalanced mi-

nority class, as it is biased towards the majority class [183, 184]. This is why decision tree

algorithms are prone to overfitting when trained on imbalanced data, resulting in deep and

unstable trees [184]. To counteract this problem, cost-sensitive learning strategies are often

employed, where the cost of misclassification is adjusted to reflect the class imbalance (classifi-

cation errors of the minority class are penalized more strongly to counteract the bias). For the

shapelet algorithm, replacing the information gain criterion with the F-score (which emphasizes

the misclassification error) improves the accuracy for many data sets [178]. However, neither

score makes use of the (multivariate) margin of the class distributions within the shapelet fea-

ture space. This is the main caveat of any entropy-based scoring method, as they ignore the

margin of separation i.e. how far these distributions (specifically the tails of these distributions)

are apart.

Based on these considerations, a new way of scoring shapelet candidates is proposed that

replaces the entropy-based split-point with a margin-based split-point. The idea of utilizing

the margin concept for shapelet scoring is not, in fact, a new one. It was mentioned in the

original shapelet discovery algorithm as a tie-breaker for shapelet candidates that have the

same information gain [176], whereby the margin is approximated as the difference between

the class means (a crude, computationally cheap way to approximate the margin). Essentially,

the idea is to reverse the order of operation, by using a margin criteria to find the most

suitable split-point and the information gain criteria to evaluate the shapelet candidate using

the margin-based split-point. The advantages are, that (1) the split-point considers the margin

of separation, improving the applicability for highly imbalanced data and (2) the margin can be

extended to the multivariate case, ensuring that complementary shapelets with low information

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 65

redundancy are selected in a form of ”simultaneous feature extraction and selection” [6]. This

makes it possible to quantify and automate the feature selection process. To demonstrate this

effect, we can compare the margin-based scoring to the conventional scoring approach on the

public Gun Point benchmark data set. This is one of the most widely studied data sets in

literature [176] and published results are available for both the shapelet discovery algorithm

and the shapelet transformation algorithm [146, 178]. This makes it easier to validate the

results of our work. Fig. 30 depicts the feature spaces of the top shapelet selected by both

scoring methods for the test data.

Figure 30: Swarm plot of the feature space of the top shapelet for the conventional maximum
information-gain criterion (left) and the proposed margin-based criterion (right) [6].

The two scoring functions select shapelets with a vastly different feature space (in particular,

thetop-k shapelets are extracted from opposite classes). While the margin-based shapelet does

not allow to linearly separate the classes on the training set, this is (just) possible using the

shapelet found via the conventional information gain criterion. This is a consequence of the

(soft) margin implemented in the algorithm, that may lead to imperfect accuracy even if the

train set is linearly separable [6]. While on the face of it, this may seem like a disadvantage,

it is in fact a desirable property. For many (particularly imbalanced) classification problems,

enforcing a hard decision boundary can lead to overfitting of the data and low generalizability

to new data. This is evidence by the margin-based split-point that performs more robustly

on the test set than the conventional split-point criteria, achieving a much higher accuracy.

Additionally, the sensitivity of the classification accuracy to changes in the split point is much

lower. As discussed, this improved generalizability of margin-based decision boundaries is

particularly important in the case of imbalanced data.

N n!

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 66

Greedy shapelet selection In addition to improving the robustness of the shapelet, the

margin-based shapelet scoring is fundamental to extracting a shapelet set that (1) consists

shapelets with minimal information redundancy to improve classification accuracy, (2) is small

to improve the interpretability of the classifier [178], and (3) whose quality can be quantified

as more shapelets are added to the set. As discussed in section 4.4.1, any univariate evaluation

of shapelet candidates will tend to select redundant shapelets to approximate a multivariate

decision boundary. To avoid this, the class separability of a combination of feature must be eval-

uated simultaneously. This requires a multivariate decision boundary in the feature space. The

margin-based decision boundary can be simply extended to the multivariate case to evaluate

the entire shapelet set. For n shapelet candidates, the number of possible combinations of size

k (permuatations without replacement) is determined by the binomial coefficient
(

k

)
= k !(n−k)! .

The brute-force method of finding an optimal solution to this problem is intractable for the

large number of shapelet candidates n. The problem, therefore, is which combination of shapelet

candidates to consider. To resolve this issue, a greedy search strategy is used, that builds the

shapelet set step-by-step. This is a common approach to finding an approximate solution to

otherwise unfeasible combinatorial problem. Each candidate is evaluated in combination with

the current shapelet set and the best one added to the set. This is repeated one-by-one until

k shapelets have been extracted. Fig. 31 shows the top five shapelets returned by the margin-

based greedy shapelet search [6] and the widely cited shapelet transformation [178]. While in

the latter case, all shapelets are concentrated in similar sections of different time series ob-

jects (representing the same/similar feature2), the shapelets greedy search returned a shapelet

set that (qualitatively) seem to capture additional features. A benchmark study conducted

for a number of popular ML algorithms supports this observation, enabling equal or higher

classification accuracy for all models.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 67

Figure 31: Top five shapelets extracted using the shapelet transformation algorithm (magenta)
vs. the margin-based greedy shapelet search (blue) [7].

Additionally, a termination criterion for the greedy search that is based on the growing combined

margin of the shapelet set is proposed. As shapelets are added to the set, the multivariate

margin will increase asymptotically (albeit not necessarily monotonically, since a greedy search

only finds the locally optimal solution at each step). When the incremental margin ∆m growth

is small, the search can be terminated since adding more shapelets will not have a significant

impact on the classifier. The main advantage of this criterion is that it replaces the use-defined

parameter k with the parameter ∆m. While this may seem like trading one (bad) thing for

another, it is a much more objective stop criterion gives an indication of (1) how well the classes

can be separated with the shapelets extracted so far and (2) how much more information there

likely is in the data. While there is no universally applicable optimal value of ∆m, it is much

more steady across data sets/within a setting than k. During field-testing in the manufacturing

setting described in the section 6, the empirical results showed that most classifiers achieved

acceptable accuracy when the search was terminated once ∆m fell below 10 percent. While

this value is not universal (due at least in part due to the fact that there is no universally

acceptable limit of what constitutes ”acceptable” model accuracy), it suggests that ∆m can,

at the very least, be used as a data-specific heuristic to determine the size of the shapelet set.

This is important when trying to automate model training. Additionally, the ∆m-criterion

tends to produce very small feature sets. This is desirable, because (1) the complexity of the

greedy search (unlike existing algorithms) scales linearly with k - keeping this number small

avoids unnecessary resources and (2) fewer features generally result in simpler models that are

more interpretable [178]).

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 68

4.4.2 Interactive data exploration and pattern refinement

During the relevance cycle of the anomaly detection algorithms, it became clear that (1) more

annotated data (in addition to the detected anomalies) could decrease the time spent on model

tuning considerably and (2) historical data stored in data archives could be a readily availble

source of this data. This insight initiated a secondary design cycle for the development of a

search system to retrieve similar objects from large time series databases. This novel informa-

tion retrieval (IR) system constitutes a stand-alone research artifact useful for many related

applications (cf. section 1.3.2) and was therefore published in a domain-agnostic journal [8].

During the subsequent relevance cycles, it has emerged as an important way for increasing sys-

tem interaction and data understanding of SMEs and reducing the workload for data scientists.

In many large-scale manufacturing settings process data is recorded for each part during produc-

tion and archived in large time series databases 2. In practice, there are a number of scenarios

where these archives can serve as an important source of information:

• If an interesting anomaly is detected, a retrospective search through the archives may

reveal further affected parts. Accurately identifying these allows OEMs to contain the

damage and launch a targeted recall [8].

• Searching for objects similar to annotated data allows SMEs and data scientists to increase

the amount of annotated data and improve model performance.

• SMEs may wish to better understand an anomaly. Often, the casual mechanisms behind

an anomaly are initially unknown. Finding similar instances in the past allows SMEs to

cross-reference change in the environment and occurence of the anomaly and establish a

lead into potential causes.

When searching through the database, the user wishes to retrieve objects that are similar to a

given search object of interest. This is known as similarity search. Often, the object of interest is

an anomaly detected by a model in production. The main challenge that complicates this search

is the size of the data archive. For a manufacturing database, the search quickly encompasses

millions of time series objects, even for short time frames of only a few days [8]. An exhaustive

visual inspection of the data is therefore intractable. Instead, automated information retrieval

systems are required to guide and conduct this search (similar to the way search engines are

2For critical processes, OEMs may be required to do so by law.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 69

used to search the Internet). This section presents a novel information retrieval system to

efficiently search through large time series databases. It combines a relevance feedback cycle

with automated query adaptation that makes use of the optimized shapelet algorithm presented

in the previous section.

Exploratory search in databases Typically, the interaction between a user and the database

in question is exploratory in nature, owed to the imperfect understanding of both the data (the

search space) as well as the target class. When querying the database for objects similar to a

particular query object, the retrieval system ranks the objects in the database in descending

order of similarity to the query. The SMEs then visually inspect the top k results. Due to

resource constraints of the user, k is in the order of a few hundred results and practically never

exceeds a tiny fraction of the total number of objects in the database. Often, these search results

exhibit variations that are interesting variations of the original object of interest that warrant

further investigation. These newly found objects are then themselves selected as queries for

a subsequent search. This process of defining queries based on results of previous queries is

common in information retrieval and is known exploratory search [185, 186].

The search is terminated once no more relevant objects are found upon subsequent search

iterations. However, empirical studies show, that users are unable to effectively engage in this

query-response process for an extended period of time [187]. This is, however, unavoidable

due to the relatively long response time of the system and the need to manually verify the

results (what is similar from a data-viewpoint may not be interesting to the user). This risks

missing relevant objects by premature termination of the search. Broadly speaking, there are

two ways to improve this process, namely (1) reducing the query response time of the system

and (2) reducing the number of required interactions altogether [8]. Fast query-response cycles

are extremely valuable in exploratory search [188]. The near-real-time response of web search

engines like Google makes it possible for users to quickly narrow down their information need

through a process of trial-and-error. Another way to avoid a prolonged query-response cycle is

for the IR system to automatically refine the query so the search results coincide more closely

with the search intent of the user. Various methods have been proposed to infer the user’s

search intent by caching the query history of previous search sessions, analyzing click-through

rates [189] and building cognitive models of the user [190].

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 70

Reducing retrieval time There are technical limits to both the speed with which state-

of-the-art search algorithms can rank the objects in a time series database and the extent to

which these databases can be optimized to facilitate this scan. The upper bound in terms

of runtime for ranking a time series database is a sequential scan of all objects. In a high-

volume production environment (like the automobile industry) a typical search that considers

data of a few months may encompass in the order of ten million objects. Assuming each object

contains a thousand data points, a sequential scan of all objects under DTW would take around

18 minutes to complete on standard computing hardware [163] (a brute-force sequential scan

would require an unfeasible 1012 operations to complete). This is much slower than the near-

zero retrieval time of web search engines like Google that we are familiar with. This search

speed is possible, because results are retrieved from indexed databases by matching a query

with metadata tags of an object. Scanning of the content is not required during the search

but essentially ”outsourced” to an indexing process. This process is a continuous background

task that crawls the internet and attaches metadata to web pages. However, transferring this

approach to time series databases is challenging. Multidimensional indexing structures that

consider each point in time a separate dimension are slower than a brute-force sequential scan

for long time series [104] and therefore unsuited. A widely adopted work-around is to extract

features from the time series data and index this lower-dimensional space. This makes it possible

to quickly retrieve the nearest neighbors to a search query in the feature space and calculate

an exact solution using the raw data of the nearest objects. Naturally, the effectiveness of this

approach fundamentally depends on the quality of the feature extraction [103]. To enable a high

recall in the manufacturing context, these features need to accurately capture the presence of all

possible fault patterns that span orders of magnitude in length. It was shown in section 2.3 that

this is often not feasible in practice. Any index structure on a generic feature representation

will improve system response time but severely limit the recall for some faults. This trade-off

is not acceptable in practice. To ensure a high recall, there is often no way around a sequential

scan of the database [191, 8].

Query adaptation based on relevance feedback Since speeding up the query-response

cycles is not feasible, the focus must instead be shifted to reducing the number of interactions

by optimizing the query. There are two ways to do this, namely (1) expanding the query using a

set of predefined rules or (2) adapting the query based on relevance feedback of previous search

results. The former is the standard approach for text-based queries but is not feasible for time

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 71

series data [117]. Thus, the only remaining option is to adapt the query based on relevance

feedback. The idea is that the user provides feedback about the relevance of the search result

to the system that adapts the query and retrieves a new result that is better aligned with the

search objective. This has shown to be an effective way of increasing search recall for different

applications [192, 193].

When the user submits one or multiple time series objects to the system, the IR system uses the

optimized shapelet algorithm discussed in the previous section 4.4.1 to extract a set of query

patterns from the objects. Thus, the system is able to simultaneously consider multiple patterns

from different objects. The nearest neighbor in the database is found based on a majority vote

of these patterns. This many-to-one nearest neighbor search has proven to be very robust in

practice [8]. The objects in the database are ranked accordingly and presented to the user. As

the user evaluates the results, the feedback can be used by the IR system to improve the query

patterns and provide more relevant results. Depending on the data and the search objective,

caching strategies that limit the re-ranking operation to the top-k results can achieve near-real

time re-ranking of results.

In cases where the user wants to ensure that ”all needles in the haystack” have been found (such

as when identifying safety-critical process faults), relying on a user-defined k is not acceptable.

In these cases, the query-response cycle is rerun multiple times. As previously mentioned,

this cycle time is in the order of minutes. The development focus was therefore laid on the

reduction in the necessary number of these cycles, trading an increase in retrieval recall for a

(considerably) longer runtime. The system achieves this by attempting to infer the feedback

provided by the user and automating the query-response cycle without relying on manual input.

This is known as pseudo relevance feedback (PRF) and used in other IR systems to increase

search accuracy without requiring prolonged system interaction. The rationale of PRF is based

on a fundamental hypothesis in IR known as the cluster hypothesis, whereby ”closely associated

documents tend to be relevant to the same requests” [194]. The system implements this idea

by searching the database using the result of a previous query, checking whether it is able

to find a ground truth of manually annotated objects within the search results, accepting or

rejecting the object accordingly and rerunning the query adaptation and search process [8].

The autonomous adaptation of the search query (set) as the search progresses is depicted in

figure 32. In this particular case, the tightening tool slipped off the bolt during the tightening

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 72

operation due to misalignment between the tool and the fastener. Initially, two characteristic

patterns are extracted and added to the initially empty query set. Both patterns describe a

drop in the tightening torque that occurs during the slip-off of the tool. After a few iterations,

the query refinement subroutine replaces one of these patterns with that of a steep increase

in the tightening torque that occurs during tool re-entry of newly found objects. These two

shapes in combination allow the algorithm to more easily find the next variation of the fault

pattern, in which the tool skips one side of the hexagonal bolt head before re-entry. This

example shows how the algorithm incorporates information from subsequent search results to

discover variations that are increasingly different from the starting object. However, the PRF

mechanism frequently gets trapped in single pattern variations (depending on the starting

point) and generally suffers from a self-affirmation bias. For a more detailed discussion of the

algorithmic design considerations and results, readers are referred to the original publication

[8].

Figure 32: Changes to the query set of the adaptive search system over multiple relevance
feedback cycles [8].

4.5 Continuous adaptation of anomaly detection models

The previous sections discussed the algorithms and systems that were developed to extract and

refine patterns that are maximally characteristic of a specific class. This serves two distinct

purposes that are briefly discussed in this section.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 73

4.5.1 Adapting one-class models

The first (and arguably most important) purpose of these contributions is the ability to adapt

the decision boundary of the one-class anomaly detection model - essentially providing a means

for the model to ”remember” uncritical anomalies. This helps ensure the practical feasibility

of the system, as repeated annotation of the same objects tie up resources and reduce the

confidence of SMEs in the system. Given a number of objects that are detected as anomalies

but uninteresting from a domain perspective, the first step is usually to use the IR system

discussed in the previous section to increase the amount of available data. The input data set

of the shapelet algorithm consists of (A) all available data of these uninteresting anomalies and

(B) a representative subset of the ground truth of the normal majority class or, alternatively, a

sufficiently large sample of unlabeled data. The latter is acceptable as long as the assumptions

about the frequency of (interesting) anomalies discussed in the previous section holds. The

pattern extraction subroutine of the shapelet algorithm is restricted to data set (A) and the

patterns added to the library of the one-class anomaly detection model. This process is shown

in figure 33.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 74

Figure 33: Objects are no longer detected as anomalies after their shapelets are added to the
pattern library of the one-class model.

The advantage of the intuitive interpretability of these pattern-based models cannot be under-

stated. Aside from model debugging, this helps SMEs consolidate and systemize their domain

knowledge that has been fed into the system over time. A concrete real-world example is

provided for a one-class model of a tightening process in figure 34.

4 TIME SERIES DATA MINING FOR ANOMALY DETECTION 75

Figure 34: The extracted patterns can be annotated by SMEs to create a taxonomy of the
domain knowledge learned by the model.

4.5.2 Training classification models

The main objective of the ML systems is to monitor a large number of manufacturing processes

and detect anomalies that it does not recognize and therefore might indicate a process fault.

In practice, once an anomaly has been detected and a fault confirmed, there are frequently

calls by SMEs and decision-makers to deploy additional models to detect this specific verified

faults. While countermeasures are underway, SMEs may have to rely on these models in the

meantime. This requires a supervised classification model instead of the unsupervised one-class

models that the majority of the system consists of. While this is a different model type, it

turns out, that a suitable model can be constructed from the same . In this case, the shapelets

are used to extract a shape-based feature representation of the data. The training data is

compiled from annotated data of the target class and data from the majority class. Standard

5 DEEP LEARNING FOR ANOMALY DETECTION 76

ML algorithms are then used to learn univariate thresholds for each shapelet, resulting in an

inherently interpretable classification model [178]. This approach to time series classification

is essentially a two-step process of committing characteristic patterns to memory and learning

to associate them with the underlying classes. The shapelet library, the matching subroutines

and the classification model are packaged into a single model and stored in the model registry

for deployment (cf. figure 16).

5 Deep learning for anomaly detection

5.1 Motivation for deep learning models

Many of the popularized achievements in the field of artificial intelligence, such as the defeat

of world-class chess masters by Deep Blue’s AI in the 1990s [195] and mastering the game of

Go by DeepMind’s AlphaGo Zero AI in the 2010s [196, 197], are attributable to the success

of deep learning (DL). This technology has enabled numerous break-through developments

for real-world applications in computer vision, speech recognition and language translation

[198]. The last couple of years have seen an explosion in the application of deep learning to

problems in different domains. This is in no small part due to powerful open-source machine

learning frameworks like Google’s TensorFlow [199] and PyTorch [200] (primarily invented by

AI researchers from Facebook) [201]. Before discussing the motivation behind the use of deep

learning for anomaly detection, it is helpful to define what deep learning is and how it relates

to the broader fields of machine learning and artificial intelligence.

Definition 13 Deep learning is a type of machine learning based on artificial neural networks

in which multiple layers of processing are used to extract progressively higher level features from

data. (Oxford dictionary)

DL is therefore a sub-field of ML, which, as discusses in the introduction, is itself a sub-field

of what is broadly referred to as artificial intelligence. The relation between these three is

schematically shown in figure 35.

5 DEEP LEARNING FOR ANOMALY DETECTION 77

Figure 35: Deep Learning is a sub-field of machine learning, itself a sub-field of artificial intel-
ligence.

At the heart of deep learning lie artificial neural networks (ANN). They are computational

learning systems that learn to transform a data input into a desired output using a network

of nodes [198]. At the most basic level, an ANN is an optimization algorithm used to approx-

imate a mapping function between input and output [202]. The information processing and

adaptation of this network is conceptually inspired by the neuron structure in biological brains.

Multi-layer ANNs with more than one hidden layer are usually considered deep learning models,

although there is no widely agreed definition. The trend to increase the number of layers came

after studies in the 1980s showed, that model performance could be improved by increasing the

number of layers [203]. Current state-of-the-art deep learning models for real-world applica-

tions are often very deep networks [197].

Why should a deep learning approach for anomaly detection in the manufacturing domain be

considered? Based on the discussion of the challenges in section 2 and the review of existing

literature in section 3, deep learning was deemed a promising approach for a number of reasons:

• There are theoretical and empirical studies that show, that ANNs learn to combine infor-

mation from previous layers into increasingly abstract features. In principle, the ability of

the model to learn hierarchical features directly from the time series data makes it possi-

ble to avoid the problem of information loss associated with the extraction of descriptive

features discussed in section 2. Empirical results suggest that this is indeed the case. DL

models regularly outperform conventional ML approaches for tasks such as time series

5 DEEP LEARNING FOR ANOMALY DETECTION 78

forecasting, classification and clustering.

• There is considerable research on DL algorithms for time series analysis generally, and

anomaly detection in particular. The most competitive models for anomaly detection

applications are based on ANNs [122] as ”deep learning completely surpasses traditional

methods” [204]. These results have encouraged researchers to use DL models for various

real-world anomaly detection applications. This is supported by the growing number

of academic papers on applications of deep learning for anomaly detection in various

domains 3. The trend is shown in figure 36.

• The large amounts of data required for training DL models was readily available in the

manufacturing setting.

• Many break-through results published at the time of this research employed DL models

for problems that seemed much more sophisticated than the problem at hand.

• The user-friendliness of open-source DL frameworks in principle opened the possibility of

high-level model training and management without requiring low-level debugging of the

models.

Figure 36: Number of academic papers indexed by Google Scholar and ArXiv that include the
keywords ”deep learning” and ”anomaly detection”.

Despite the impressive results of DL for many applications, it is no silver bullet that can be

thrown at any problem. Deploying this technology in production for anomaly detection comes
3The information was retrieved from the APIs of Google Scholar and ArXiv with the help of third-party

code [205, 206]

5 DEEP LEARNING FOR ANOMALY DETECTION 79

with serious practical challenges. If retraining the model based on user feedback does not

work (which is likely, given the extreme scarcity of annotated data) it is not immediately clear

to data scientist what they need to do (point five above quickly turned out to be elusive in

practice). How should they change the model? Simply ”making it deeper” will usually not

solve the problem. Additionally, hyperparameter tuning is based on experimental results more

than theory i.e. it requires a process of trial-and-error that does not scale well. The research

summarized in the subsequent section was motivated by the goal of exploiting the feature-

learning ability of ANNs without having to rely on extensive hyperparameter tuning. The idea

was to develop an approach that would give up the notion of an end-to-end model for anomaly

detection in return for a simpler and more robust model. This would make it possible for data

scientists to train and manage a large number of DL models in production and was considered

a decisive precondition for the scalability of a DL-based approach.

5.2 Fundamentals of deep learning

ANNs are computational learning systems, which refers to the neural network architecture itself

as well as the optimization algorithms used to learn its parameters. To follow the design con-

siderations and discussion in this section requires a high-level understanding of these systems.

This section provides a brief overview of how ANNs process information, how they ”learn” from

the data and the challenges of training deep networks, particularly for processing sequential

data. Important concepts and implications are stated without mathematical proof - interested

readers are referred to dedicated literature.

5.2.1 Multi-layer neural networks

An ANN is a network of interconnected nodes called artificial neurons, that are simplistic

computational models of biological neurons 4. To understand how ANNs process information,

it helps to retrace the design motivations that went into the development of these neuron

models. The first computational model of a neuron was a threshold logic unit. It was inspired

by the way in which biological neurons process and transmit signals [209]. The dendrites of a

neuron receive electric input signals from connected neurons that can be either excitatory or

inhibitory. If the accumulated charge in the cell exceeds its activation potential, the neuron

4Over time, the development of these neuron models has moved away from biologically motivated design to
improve empirical performance [207]. More recent approaches such as attention mechanisms and spiking ANNs
are reversing this trend [208].

n

5 DEEP LEARNING FOR ANOMALY DETECTION 80

fires and transmits the signal to other connected neurons. Based on this understanding, the

McCulloch-Pitts-neuron, named after its inventors, takes n binary inputs x and an inhibitory

input i and outputs a binary output y according to the following Boolean function:

1
y =

0

i f
∑

k = 1 xk ≥ Θandi = 0,

otherwise.

The neuron outputs a 1 if the inhibitory input i is inactive and the sum of its excitatory inputs

x exceed the threshold Θ. This threshold can be set so that the MCP neuron performs different

Boolean operations like logic gates.

Figure 37: The MCP neuron can be used to implement different Boolean operations.

Based on this simple model, Frank Rosenblatt developed the perceptron in 1958 [210].

y = H(w · x + b)

where w is a real-valued vector of weights, H is the Heaviside step function and b the bias of

the model. This model can be visualized as a directed, weighted graph 38.

Figure 38: Graphical representation of the mapping function of the perceptron model.

Crucially, the perceptron is able to learn these weights w (as well as the threshold Θ) from

5 DEEP LEARNING FOR ANOMALY DETECTION 81

a labeled dataset using a simple supervised learning algorithm. The algorithm calculates the

difference δ between the function output and the label and iteratively adjusts the weights until

the algorithm converges.

Algorithm 1 The perceptron algorithm

while not converged do
δ = ŷ− σ(wx + b)

if δ! = 0 then
w = w + δ · x
b = b + δ

end if
end while

 Calculate difference

 Change weights
 Change bias

In short, the weights are adjusted proportional to the input that caused the error. The al-

gorithm is guaranteed to converge if the labeled data is linearly separable [211]. Although

groundbreaking at the time, the algorithm has considerable limitations regarding its ability to

learn more complicated functions. It was shown early on, that learning even a simple non-linear

function like the XOR function requires a more sophisticated algorithm [212]. A non-linear func-

tion is a function, that combines the inputs in a way that cannot be reproduced from a linear

combination of the inputs. Graphically, this can be understood as the inability to separate

two classes using a straight line on a two-dimensional plane as shown in figure 39. Since the

decision boundaries of most real-world problems are non-linear, the perceptron is limited in its

usefulness to solve relevant problems..

Figure 39: The linear OR-function (right) can separate two classes using a single line, while
this is not possible for the non-linear XOR-function (left).

The seemingly straight-forward answer to this problem is to add additional layers between input

and output as is shown in figure 40. Since a perceptron can model logic gates and a XOR-

function can be constructed from these logic gates, a multi-layer perceptron (MLP) should be

dC

δC

5 DEEP LEARNING FOR ANOMALY DETECTION 82

able to model that function. The MLP is a type of (deep) ANN that is schematically depicted

in figure 40 5. However, the perceptron algorithm cannot be used to train MLPs.

Figure 40: A multi-layer perception has one or more hidden layers between the input and
output layers.

To train these networks, the learning task is formulated as an optimization problem [214]. The

weights w and biases b are adjusted to minimize a cost function C(w). This cost function mea-

sures the deviation between the desires output and the output of the ANN in response to an

input x. Finding an analytical solution to this problem so that dw = 0 is intractable for larger

networks. Instead, the weights are incrementally adjusted through a numerical optimization

algorithm known as gradient descent. This algorithm relies on the gradient of the cost function

with respect to the weights of the ANN δw . The algorithm that is commonly used to approxi-

mate this gradient is called backpropagation. To solve this optimization problem numerically

requires replacing the Heaviside function for two reasons:

• Numerical optimizations algorithms are based on the idea of incrementally tweaking the

input values of a function to change the output in a desired direction.

in the weights and biases should result in small changes in the output.

Small changes

The Heaviside

function returns only binary values which means the MLP does not exhibit this behavior.

• The backpropagation algorithm requires a differentiable activation function. The Heavi-

side function is non-differentiable at x = 0 and has a derivative of zero elsewhere. Without

a gradient, the gradient decent algorithm cannot update the weights.

5Visualization based on open-sourced tool developed by Alex LeNeil [213]

5 DEEP LEARNING FOR ANOMALY DETECTION 83

The simplest function that meets these requirements is a linear function. However, this would

mean that the output of a layer is simply a linear transformation of its inputs. Thus, any

number of layers could be reduced to a single-layer model (avoiding this was the motivation

behind an MLP in the first place). This is why ANN require non-linear activation functions

to be able to approximate non-linear decision boundaries 6. An ANN with just one hidden

layer and a sigmoid activation function can already approximate any (continuous) non-linear

function [202, 216]. There is no practical limit to the complexity of the mapping functions

ANNs can learn. They can easily be trained to achieve zero training error on randomly labeled

data [217] (provided a sufficiently large network). This means, that it can essentially remember

input data perfectly. On the other hand, it can learn to construct any output from noise that

is virtually indistinguishable from real data (this property is used by many generative deep

models [218, 219]).

5.2.2 Backpropagation and gradient descent

This section provides a high-level explanation of the optimization algorithms used for training

ANNs that define how these models ”learn” from data. This is important to understand the

challenges associated with deep learning and unsupervised learning that are relevant for the

later sections. The optimization algorithms iteratively adjust the weights and biases of the

network to minimize the cost function C(w, b). The parameter change at each iteration is

determined by the gradient of the cost function. The elements of the gradient vector quan-

tify how much the cost will change due to a change in the weights and biases of the network.

Mathematically, the gradient of a (multivariate) function is defined as the partial derivatives of

the function with respect to its arguments. Calculating this gradient analytically is intractable

for large networks. Instead, an algorithm to approximate the gradient, called backpropagation,

is used. The process of iteratively adjusting the parameters in the direction of the (negative)

gradient is called gradient decent. These two algorithms are the standard approach for training

ANNs [220].

A rigorous mathematical proof of the backpropagation algorithm is avoided in favor of a short

summary of the underlying intuition. The discussion is based on simple three-layer ANN such

as the oen depicted in figure 40 and limited to the gradient of C with respect to the weights

6Strictly speaking, an MLP is a special type of ANN that uses threshold activations. Referring to ANN as
MLP is a misnomer [215].

δCδC δa δz

 δC
3

δC
3

δC δC δa δz δa δz

5 DEEP LEARNING FOR ANOMALY DETECTION 84

w. The gradient with respect to the bias follows the same logic. The activation a of a node

in layer l is a (differentiable and non-linear) function of the weighted sum of the values of the

nodes in the preceding layer l − 1. This can be summarized as

al = σ(zl)wherezl = wlal−1 + bl (1)

During the forward pass, the input data is processed by the network and mapped to the output

vector a3. The cost function is used to calculate the deviation of this output vector a3 from

the desired output y. The backpropagation algorithm calculates the partial derivative of the

cost function C with respect to the weights of each layer. This process is recursively repeated,

starting with the output layer. The partial derivative of the cost C with respect to the weights

w3 is the following:

3 3

δw3
=
δa3 δz3 δw3

= 2(y − a3)σ′(z3)a2 (2)

The weights w3 affects the input to the layer z3 and therefore its final output a3. Therefore,

the partial derivative δw
 is expanded into three separate terms according to the chain rule.

The first term is the change in the cost due to a change in the output activations. Since the

activations are the only argument to the cost function, this is easy to calculate. Consider

the mean squared error (MSE) as the cost function C = (y − a3)2. Then the derivative is

δa
 = 2(y − a3). The second term is the change in the activations due to a change in the input

to the layer. This is simply the gradient of the activation function σ′(z3). The third term is the

change in the input due to a change in the weights. According to equation 1, this derivative

is equal to the activations of the previous layer. If a node in the the previous layer is only

weakly activated, changing the corresponding weights will have little impact on the next layer.

Consider the partial derivative of the cost with respect to the weights of the previous layer w2:

3 3 2 2

δw2
=
δa3 δz3 δa2 δz2 δw2

= 2(y − a3)σ′(z3)w2σ′(z2)a1 (3)

The first two terms describe the cost incurred in the output layer and are the same as in equation

2. This cost is passed to the previous layer by multiplying it with the weights w2. The cost at

each node is the sum of the errors of all connected nodes. Essentially, the cost is ”propagated”

backwards through the network - hence the name of the backpropagation algorithm. The fourth

and fifth term are analogous to equation 2. The backpropagation algorithm is essentially the

chain rule applied recursively to each layer until the gradient in that layer can be described

δw
δC

5 DEEP LEARNING FOR ANOMALY DETECTION 85

as a function of the output y and the activations a of the intermediate layers. Thus, the

algorithm uses only values that are already calculated during the forward-pass to approximate

the gradient, making it highly efficient. After the gradient is calculated, it is possible to optimize

the weights and biases using the gradient decent algorithm 2.

Algorithm 2 The gradient decent algorithm

while not converged do
w = w − ϵδC

b = b − ϵ δb

 Change weights
 Change biases

end while

In practice, this algorithm is performed in a batch-wise process, where the average of the

gradient of multiple samples is computed. This is referred to as stochastic gradient decent

and helps reduce the computational time of the algorithm. Epsilon ϵ is called the learning

rate, which defines how much the parameters are changed in the direction of the gradient at

each iteration. The learning rate affects both the training time as well as the likelihood of the

optimization getting trapped in a local minimum. For a non-convex cost function, points exist

along the (multidimensional) surface defined by the function where the gradient is positive.

These points are known as local minima. Most real-world problems are non-convex. The

(stochastic) gradient descent algorithm is not guaranteed to find the global minimum of the

cost function. Although this was long thought to be a critical problem, empirical evidence

shows that the algorithm rarely gets stuck in local minima [221]. The reason for this is the

large number of parameters of ANN. In the high-dimensional parameter space, most critical

points are saddle points. To stay with the picture of a surface, the large number of parameters

allow the model to ”slide down” from the saddle point along multiple dimensions. The large

number of possibilities mean that the algorithm need not find the one optimal solution but can

find one of many possible (nearly) optimal solutions. This explains why these models generalize

so well [197, 198]

5.2.3 Training deep networks

The motivation behind increasing the number of layers is that it allows ANNs to learn in-

creasingly complex features from the data [203]. However, increasing the number of layers in

deep networks makes model training more challenging. The previous discussion of the gradient

descent algorithm can help understand why:

5 DEEP LEARNING FOR ANOMALY DETECTION 86

• The backpropagation algorithm calculates the gradient of layer l based on the error propa-

gated backward from the layer l +1. This error is scaled by the derivative of the activation

function. If this derivative is smaller than one, the gradient decreases exponentially for

each layer 7. This is known as the vanishing gradient problem.

• The activations in layer l affect the gradient in layer l + 1. Large activation values will

lead to larger gradients in the subsequent layers that cascade through the network in a

phenomenon known as exploding gradients.

These effects are particularly pronounced for deep networks, as a growing number of derivatives

and activations are multiplied together. For decades, training of deep networks was all-together

impossible due to exploding or vanishing gradients. The former can be managed by regularizing

the model or limiting the gradients via clipping [222]. Vanishing gradients are generally more

problematic. While a suitable choice of the activation functions can mitigate the problem, it

does not resolve it. Training very deep networks was practically not possible until Hinton et

al. proposed a greedy training algorithm “[trains] layers sequentially and greedily by tying the

weights of unlearned layers” [223, 224]. Rather than training the network end-to-end, layers

are trained successively one-by-one.

The problem of unstable gradients is particularly pronounced for recurrent neural network

(RNN). RNNs are the go-to network architecture for sequential data, as it allows to process

variable-length input data [225, 115]. Most ANNs require input data of fixed size, which may

require prepossessing steps such as appending/dropping data points or mapping a sequence

to a fixed length. This is often associated with a skew or loss in information. Thus, RNNs

are central to the application of DL for anomaly detection in time series data. An RNN is a

recursive network that stores a representation of the sequence in its ”memory” called a hidden

state h. The RNN takes as input a sequence x = (x1, x2, . . . xn) and recursively processes each

element, updating the hidden state hi at each step by mapping the input element xi to the

previous hidden state hi−1 using a function fθ , where θ are the weights and biases learned by

the model.

hi = fθ(xi , hi−1)

A schematic network architecture of an RNN is depicted in figure 41.

(4)

To apply the back-

7For this reason, activation functions usually do not have a gradient greater than one.

5 DEEP LEARNING FOR ANOMALY DETECTION 87

propagation algorithm for model training requires ”unrolling” the recursive network into a

feed-forward network that is made up of a connected sequence of copies of the original network.

Each network processes the hidden state of the previous network and a part of the sequence.

This unrolled network is usually very deep. This by itself already makes training more chal-

lenging. Additionally, calculating the gradient at each layer requires repeatedly multiplying

the same weight matrix with itself. This will tend to magnify disturbances which results in

an intrinsically unstable situation. In practice, gated RNNs are used to avoid this instability.

Widely known exmplaes include the Long Short-Term Memory model (LSTM), and gated re-

current units (GRU). These networks are based on more complex neuron models that are able

to store information unchanged over multiple inputs. An in-depth explanation is not necessary

to understand the approach presented in this section - readers are instead referred to pertinent

literature [226, 227].

Figure 41: The recursive network of an RNN is ”unrolled” to train the model using backprop-
agation ”through time”.

5.3 Semi-supervised anomaly detection

This section proposes a semi-supervised ANN model for anomaly detection. The training ap-

proach is semi-supervised since the model makes assumptions about the unlabeled training

data. The following subsections discuss various design considerations regarding the network

architecture that motivated the final design choices of the model. Note, that the final model

constitutes one possible way to implement these considerations. The abundance of hyperparam-

eters of ANNs and the speed of development in the field means that vastly different approaches

are possible, even if the same considerations are taken into account. While some elements

have been established as de facto standards for specific applications (e.g. convolutional neural

5 DEEP LEARNING FOR ANOMALY DETECTION 88

networks (CNN) for machine vision and LSTMs for natural language processing), a plethora

of papers continue to be published that propose new architectures for specific tasks. Most of

these can be considered minor variations or extensions of standard architectures. The aim of the

research described in this section is not to add ”yet another one” to this list, but to show how

DL can be applied for anomaly detection in the manufacturing domain. As discussed in section

2, DL models have so far seen very little large-scale productive deployment in manufacturing

settings.

5.3.1 Recognizing patterns in time series data

The first consideration is to ensure the ability of the model to detect patterns in time series

data. As discussed in section 2, one of the challenges of analyzing time series data is that the

value of a data point is usually meaningless without its temporal context. Thus, the model must

analyze contiguous sections of the sequence at a time to detect structures and patterns in the

data. This is similar to analyzing written text. Individual letters only convey meaning when

strung together to form words, which must themselves be organized into coherent sentences.

The answer to this problem is to focus the information processing of the network on one sub-

section at a time in order to learn coherent patterns. This is known as a convolution operation.

It has been used in the field of machine vision to address the issue of pattern recognition for

image data 8. The same approach is adopted for processing time series data. A convolution

operation can be interpreted as measuring the similarity between a section of a (larger) input

vector and a (shorter) vector known as a kernel. For sequence data, this means comparing a

shorter subsequence to a longer input sequence. Note the similarity to the sequence matching

subroutines discussed in section 4.2.1. The only differences is that a convolution operation com-

pares these patterns by a mathematical convolution operation (hence its name). For real-valued

data, this is the same as the cross-correlation which is the preferred implementation in popular

ML frameworks as it avoids the expensive integral calculation required for a ”real” convolution

[199]. Calculating the cross-correlation between a subsequence and a longer sequence is known

as a sliding dot product and is a common approach to search for a known feature in long signals

in signal processing.

Just as in the case of the similarity join, the question of an appropriate kernel size needs to be

8The development of the convolutional neural network (CNN) by LeCun et al. at Bell Labs in 1989 [203]
jump-started the development of deep learning.

5 DEEP LEARNING FOR ANOMALY DETECTION 89

answered. The standard approach is to try out different kernel sizes similar to the trial-and-

error search of different subsequence lengths. However, this process of hyperparameter tuning is

difficult to automate for unlabeled data. To allow for an automated training process, the same

data is processed in parallel by multiple kernels of different sizes instead of relying a single kernel

size. The idea is to have the network learn which of these sizes are best-suited to accurately

detect a pattern and ignore those that are not. To combine these separate information streams,

the hyperparameters of the parallel convolutional layers (padding, stride, dilation, etc.) can be

adjusted so that their outputs are the same size and can be easily aggregated. This layered

processing of the input data using different kernel sizes is not a novel idea. It is central to

state-of-the-art deep CNN for image recognition 9. This concept is illustrated in figure 42.

Figure 42: An inception module proposed by [9] that is used in deep CNN for machine vision
applications.

So far, the only conceptual difference between how this ANN and the data mining algorithms

described in section 4.3 analyze a time series is that the kernels are ”learned” from the data

rather than extracted directly. The data mining algorithms extract template patterns from the

data through an optimized trial-and-error search whereas the neural network learns prototype

patterns by minimizing a loss function. Aside from the ability to detect the presence/absence

of patterns of various lengths, the model must consider the position of those patterns along the

time series. This is accomplished by using an RNN that processes the data sequentially. As

subsequent sections of the time series are fed to the RNN, the model stores the information of

what is has processed so far in its hidden state. A pattern that has been shifted in time results

in a changed hidden state. Thus, the RNN encodes information on the position of its input

patterns.

9In 2014 Szegedy et al. proposed a neural architecture called inception that beat the previous record in the
famous VisionNet image recognition challenge [9]

5 DEEP LEARNING FOR ANOMALY DETECTION 90

5.3.2 Anomaly detection using latent variables

Motivating the use of latent variables Many reported applications of deep learning for

anomaly detection rely on the so-called autoencoder model as a DL model and the reconstruc-

tion error as an anomaly score [115, 113, 117, 228]. The learning objective of the autoencoder

is to (1) map the input data to a feature space and (2) reconstruct the input data based on the

feature representation of the input data in that same feature space. The difference between the

original input and reconstructed output is called the reconstruction error or prediction error

(depending on the model). There are two reasons why this approach to anomaly detection is

so popular: first, it is easy to implement. Autoencoders are one of only a few unsupervised

models, they are simple to construct and the reconstruction error used for anomaly detection

is calculated anyways as part of the loss function for model training. Secondly, the underly-

ing idea seems plausible: the model learns to represent data in a feature space from which it

is able to reconstruct that same data. Thus, these features must contain all information that

characterizes the input data. If a large amount of unlabeled process data is used to train the au-

toencoder, it would seem reasonable to assume that it has learned the most important features

characteristic of the majority normal class. If the model fails to reconstruct an input sequence

using the same feature extraction logic learned from the training data, then the input data must

contain (anomalous) features it has not seen before. While this approach to anomaly detec-

tion has been successfully applied to numerous real-world applications, its drawbacks become

apparent during large-scale maintenance of many of these models in production. The problem

is, that the use of a single reconstruction-based score results in a very high-level approach to

model management - either the score is sufficient to detect anomalies or it is not. While ini-

tial unsupervised model training and deployment is straight-forward and the models tended

to perform well as simple anomaly detectors [117, 229], model adaptation proved much more

difficult. Due to the black-box nature of the model, the only option of the ML practitioner to

retrain the model based on user feedback is to revert to trial-end-error hyperparameter-tuning.

Attempts to develop a systematic process for adapting these autoencoder models over numerous

field-testing cycles failed. The effort required for managing a large number of models was not

practicaly feasible.

Instead, the idea is to pursue a more low-level approach that makes direct use of the features

the model has learned. Rather than making assumptions about how well the input sequence

conforms to the rules the model has learned to abstract and reconstruct the input data, this

5 DEEP LEARNING FOR ANOMALY DETECTION 91

feature representation is analyzed directly. Essentially, this is like asking the question directly

”Does the input data contain anomalous features?” rather than inferring an answer ”If the

output of the model output is different from the input, then the input must contain anomalous

features”. The intermediate layers of the DL model are often referred to as latent variables.

This term is borrowed from the field of statistics to describe variables that are not observed

but rather inferred indirectly by a (statistical) model. This naming convention is adopted in

this section. The use of latent variables for anomaly detection provides two benefits for data

scientists:

• It facilitates model debugging by helping understand why a particular object was detected

as anomalous (or not). Correlating individual latent variables with observable features

in the data may provide clues as to what the model has learned, making it is possible

to leverage their feature-learning ability. Investigative studies from the NLP field show,

show that this is indeed possible [118, 119, 230]. Using models trained for text translation,

researchers could show that some latent nodes corresponded to interpretable features such

as keeping track of quotations [230].

• It makes it possible to find a more complex and often better-suited decision boundary.

As discussed in section 2, anomaly detection is inherently a threshold problem. A latent

variable model for anomaly detection can use different thresholds for different variables,

instead of relying on a single threshold for the reconstruction error. During model re-

training, it may be sufficient to adapt only these thresholds without having to change the

model’s weights and biases. Changing any of the network parameters changes the entire

processing logic of the model. This is known as the CACE-principle (”changing anything

changes everything”) [36]. This should be avoided if possible, as it requires a lengthy

model training and validation process to ensure that previously learned structures were

not ”forgotten”. This issue is discussed in detail in section 5.4.

Resolving the threshold problem Recall, that an ANN is an algorithm to approximate

a mapping function from one vector space to another. In a deep network, the input data is

successively transformed between vector spaces as it passes through its hidden layers. The

representation of the data in these intermediate spaces reflects what the ANN has ”learned”

from the data during the training process. To be precise, the ANN learns to adjust its weights

i.e. the mapping between these vector spaces. While each layer in an ANN constitutes its

own latent vector space, the analysis is made easier if the dimensionality of the latent space

5 DEEP LEARNING FOR ANOMALY DETECTION 92

i.e. the number of latent variables is small. Since the information processed by the model

flows through each layer (in conventional feed-forward networks), the model must compress

all information into this low-dimensional space. In principle, the input data may take on any

arbitrary representation in this latent space as long as it helps minimize the cost function. If

the learning objective is merely to minimize the reconstruction error of the model (as is often

the case in literature), the latent variables may take on any arbitrarily complex distribution.

This means, that it is not possible to decide whether a point in the latent space is anomalous

by itself. Instead, it is necessary to evaluate the point relative to the latent representations

of the majority class. Essentially, this requires defining clusters of normal points in the latent

space, as depicted in the first subplot of figure 43.

Figure 43: Schematic representation of the latent space of most conventional DL models (left)
and with a normally distributed majority class (right).

This opens up a number of challenges associated with clustering multivariate data. The lit-

erature provides a host of probabilistic, partitioning and density-based clustering methods.

However, the effectiveness of clustering algorithms critically depends on the choice of the hy-

perparameters of the algorithm. The difficulty of automatically setting these hyperparameters

for real-world data has been thoroughly documented [231, 75, 117]. Thus, that in addition

to training DL models, data scientists would have to deal with the challenges associated with

clustering data in high-dimensional space. The need for clustering the data could be avoided, if

the latent variables conformed to a predefined distribution. This can be achieved by changing

the loss function of the model so that it learns to map the input data accordingly. What dis-

tribution of latent variables would make sense? For anomaly detection applications, the model

should learn latent features characteristic of the normal class. If we assume these features to

represent patterns in the process data that are themselves caused by an underlying physical

process, and assume those processes to be normally distributed (as many natural phenomena

5 DEEP LEARNING FOR ANOMALY DETECTION 93

are), then it would makes sense for the latent variables to be normally distributed. This allows

to use simple statistical thresholds, greatly simplifying the threshold problem and making it

possible to automate the unsupervised learning process.

Training variational autoencoders As discussed, the ANN should map input data x to

the latent space in such a way, that the latent variables z are normally distributed. For the

latent variables to conform to a predefined normal distribution, a suitable term must be added

to the cost function. This term must quantify the difference between the learned distribution

of the latent variables p(z) and the desired normal distribution N (z). The learned distribution

is often called the posterior distribution and the predefined (normal) distribution the prior

distribution. In 2013, Kingma et al. [232] proposed an ANN called variational autoencoders

(VAE) that implements this cost function. The VAE is a generative latent variable model that,

in addition to ensuring the normal distribution of the latent variables, esnures that the latent

space is continuous i.e. the mapping between the input layer and the latent layer is a continuous

function. This means that a small variation in the input data causes a small variation in the

latent feature representation. This is schematically depicted in figure 44. Thus, objects that

are close together in the input space will be close together in the latent space. This makes

interpreting the latent space easier, as data with characteristic features will tend to cluster

together.

Figure 44: A continuous latent space is the result of a continuous mapping function which
results in similar representations being conserved across spaces.

A normal distribution is defined by its mean µ and its standard deviation σ. Instead of mapping

the input x to a latent vector z it is mapped to two layers, namely a mean vector µ(x) and a

standard deviation vector σ(x). An exponential activation is added to σ(x) to ensure that it is

positive (there is no negative standard deviation). Note, that a truly multivariate model of the

5 DEEP LEARNING FOR ANOMALY DETECTION 94

latent space would require a covariance matrix that describes how each variable is correlated

to each other variable. However, VAEs only constrain the univariate distributions i.e. consider

only the diagonal values of the covariance matrix. To compare the distribution of the prior

and the posterior, points from the posterior distribution are sampled (to be precise, points are

sampled from a normal distribution parameterized with the learned values for µ and σ) and

compared to points sampled from a prior normal distribution of mean µ = 0 and standard

deviation σ = 1. Two distributions can be compared by calculating the statistical distance

between them, referred to as a divergence. The Kullback-Leibler divergence is used as a loss

term. It can be interpreted as ”drawing out the two distributions, and wherever they do not

overlap will be an area proportional to the KL divergence.” [233].

KL(p(z|x)||N (z)) (5)

The process of randomly sampling data points from the posterior distribution is non-deterministic.

This is a problem for model training. Recall, that the backpropagation algorithm is used to

calculate the gradient of each parameter θ with respect to the final output. It is not possible

to calculate a gradient for a stochastic process. To make it possible to use the backpropagation

algorithm, the stochastic nature of the sampling process is separated from the deterministic

learnable parameters. Instead of randomly sampling the latent vector z from a distribution

parameterized with the learned values for µ and σ, its value is determined by a function that

takes as an input the mean µ, variance σ and a stochastic variable ϵ sampled from a normal

distribution. As a result, the gradient between z and µ and σ can be calculated. This is known

as the ”reparametrization trick” and depicted in figure 45

Figure 45: The reparametrization trick makes it possible to learn deterministic values Θ for a
probabilistic latent vector z

The latent variable model (LVM) for anomaly detection proposed in the next section adopts

the formulation of the KL-divergence loss and the reparametrization trick for learning a normal

distribution of the latent variables. It does not, however, make use of the reconstruction error

5 DEEP LEARNING FOR ANOMALY DETECTION 95

of the decoder, as is typically the case in VAEs. There are two reasons for this. First, VAEs

are typically used as generative models to create objects that are similar to the dataset it

was trained on. For anomaly detection, there is no such need to generate new objects. Second,

VAEs suffer from a well-documented phenomenon known as posterior collapse, where the output

becomes disconnected from the input x [234, 235]. This is schematically shown in figure 46.

This phenomenon occurs due to one of the following reasons:

• The signal from the input x to the posterior is too weak, which results in µ and σ ap-

proaching constant values that are irrespective of x. The posterior distribution essentially

becomes disconnected from x. Thus, the decoder receives a constant signal q(z|x) ≈ q(z)

for different x.

• The signal from the input x to the posterior is too noisy, which results in noisy µ and σ.

To reconstruct a sensible x̂, the decoder learns to ignore z. Thus, z becomes disconnected

from x̂.

Papers continue to be published that investigate the issue of posterior collapse [235]. The main

advice is to ”weaken” the decoder to enforce a stronger dependency between the latent variables

and the output. The proposed model avoids this issue by removing the decoder entirely.

Figure 46: A VAE with a collapsed posterior will reconstruct the same output y for different
inputs x

5 DEEP LEARNING FOR ANOMALY DETECTION 96

To summarize, enforcing a normal distribution of the latent variables has the following advan-

tages:

• It avoids the clustering problem and allows to define simple statistical thresholds that

correspond to an intuitive understanding of normality.

• It allows to quantify the uncertainty of the model associated with a particular point

belonging to the normal class. This allows to prioritize the labeling of a given number

anomalies.

• It acts as a natural regularization. Empirical studies have shown, that regularization

improves the ability of ANNs to detect meaningful patterns in the data.

• It has been shown to enforce a weak form of feature disentanglement. This means that the

latent variables will capture more diverse features of the input data which should allow

the model to detect a broader range of anomalies. Additionally, feature entanglement is

the main reasons neural networks are so difficult to interpret [83]. Thus, it will tend to

improve the interpretability of the latent layer.

5.3.3 Latent variable model for anomaly detection

Model training and anomaly detection This section proposes an LVM for anomaly de-

tection. The model design was motivated by the theoretical considerations discussed in the

previous section as well as practical challenges encountered during productive deployment of

the model. To enable training and deploying a large number of these models, data scientists

must be able to orchestrate the training process. This section (1) presents a high-level architec-

ture of the model (2) explains how it is trained in an unsupervised setting and (3) demonstrates

its ability to detect anomalies in both real-world manufacturing data as well as benchmark data.

The latter is particularly important to show that the proposed model is not fine-tuned to the

particular setting but generalizes to other applications.

The LVM combines two network architectures: a CNN inception network and a (gated) RNN

that serve two distinct purposes. First, the input data is passed to the inception network, that

uses parallel kernels of different size to recognize contiguous patterns in the time series. Each

kernel is able to detect features of different lengths. The output of the inception network is a

feature map, that encodes information about the presence of those features in the input data.

5 DEEP LEARNING FOR ANOMALY DETECTION 97

The inception network serves as the model’s feature detector. This information is passed to

the RNN, that analyzes the presence and order of these features. The RNN scans across the

feature map, sequentially processing the strength and order of the feature activations. This

scan is similar to the sliding window used for subsequence matching of time series patterns

discussion in section 4. If the input to the RNN is different from what it has previously learned

from the data, its final hidden state will be different as well. Thus, the RNN essentially serves

as a feature analyzer. This hidden state is mapped onto a set of latent variables using a mapping

layer. The location of the point in the latent space determines the anomaly score of the object.

The mapping layer and the thresholds applied to the latent variables together form the anomaly

detector of the system. This architecture is summarized in figure 47, where the information

flow during the forward pass of the model is depicted using black arrows.

Figure 47: High-level architecture of the latent variable model for semi-supervised anomaly
detection.

The cost function for unsupervised model training consists of two separate terms. The first

term is the reconstruction error between the output of the RNN and the input data. This term

ensures, that the RNN is able to reconstruct the input data from the feature map i.e. that it

is able to interpret the feature map. This cost is passed backward to train both the RNN and

the inception network. This does not risk the collapse of the posterior z as it is applied before

the latent layer. The second term is the KL-divergence calculated from the distribution of the

latent variables in the final layer. This loss is passed through the entire model and used to train

the mapping layer as well as the RNN and inception network. The combined cost function is

5 DEEP LEARNING FOR ANOMALY DETECTION 98

provided below:

Lunsuperv ised = Lreconstr uction + LK L−divergence (6)

These two loss terms are trained in alternating succession rather than simultaneously. As dis-

cussed in section 5.2.3, training layers sequentially helps avoid the vanishing gradient problem

in deep networks. First, the model is trained using only the first term Lreconstruction . This en-

sures, that the inception network and the RNN are able to recognize and reconstruct features of

the training data. The anomaly detector is not trained, as no loss is propagated backward. In

a second step, the model is trained using the second term LK L−divergence , whereby the weights

of the inception network and the RNN are frozen. Thus, the mapping layer learns to map the

hidden state of the RNN to a normally distributed latent space. In a final step, the layers

are unfrozen and the combined cost function Lunsuperv ised used to fine-tune the model. If the

model does not converge, the first two steps are repeated in alternating order. The training

process can be automated without requiring user input. The flow of information of the back-

propagation during model training is depicted in red in figure 47. Note, that there are two

mutually exclusive paths for backpropagating the loss to the mapping layer. One is used for

unsupervised training model training, while the other is used for the continuous adaptation of

the model. This is discussed in the next section.

Theoretical considerations aside, how well does this model perform in the field? How well does

it generalize to different processes and to what degree does it lend itself to automated training

and easy maintenance? To answer these questions, the model underwent extensive field-testing

before it was deployed and assessed at scale (discussed in the next section). To make it easier

to compare the results the pattern matching model discussed in section 4, the same tightening

process data was selected for model training. The distribution of the latent variables is shown in

figure 48. The latent features of the majority of input objects are normally distributed around

the same mean µ = 0. The annotated anomalies are often clustered around the tails of the

distribution and are even linearly separable for some variables. An important thing to note, is

that different anomaly classes take on similarly different values for the latent variables. This

suggests, that the model is indeed able to learn distinct features from the input data. For the

sake of better interpretability of the latent space, a principal component analysis is used to

create a linear two-dimensional projection of the data. Using this projection, both anomalies

5 DEEP LEARNING FOR ANOMALY DETECTION 99

can be linearly separated from the majority class using a single threshold. Since the principal

components are a linear combination of the latent variables, these anomalies can be detected

by applying linear thresholds on these latent variables. This makes it relatively easy for data

scientists to retrace model decisions (the same visualizations shown in figure 48 were repeatedly

used by data scientists during the deployment phase). Note, that while this ability to linearly

separate anomalies based on their latent representation is desirable, it need not be the case.

Figure 48: The model detects different features in the latent space for visibly different input
data.

This example shows, that the proposed LVM can be used for anomaly detection in tightening

process data for a particular manufacturing setting. However, it is important to evaluate to

what extent this approach is applicable to other processes in different settings. Otherwise, we

have simply created ”yet another model”. While the considerations in section 5.3.2 are generic

5 DEEP LEARNING FOR ANOMALY DETECTION 100

and not specific to the particular setting at hand, it would be disingenuous to suggest that

the approach generalizes to other settings without proper validation. Thus, it was applied to

public benchmark dataset as was done for the pattern extraction algorithm in section 4.4.1. To

validate the LVM the MNIST image dataset was used. This dataset consists of approximately

70.000 images of handwritten digits and is one of the most widely used benchmark datasets in

the field of Machine Learning [236]. Although the model is intended for time series analysis,

there is nothing stopping us from applying it to image data by simply flattening it into a

one-dimensional vector (the same format as time series data). This is the standard method

of processing image data for computer vision. Since the dataset consists of ten classes of

(roughly) equal size, it is not possible to randomly sample the data for training as was done

with the unlabeled process data. Instead, the model is trained using data of only one (randomly

chosen) digit. Essentially, this digit is the ”normal majority class” and all other digits should

be detected as anomalies during testing. Figure 49 shows that this is indeed the case. The

latent representation of the digit one is normally distributed and different digits form their own

clusters towards the tail of the distribution. This shows, that the model can be generalized

to data other than the process data of the particular manufacturing setting for which it was

developed.

Figure 49: A linear two-dimensional projection of the latent space of the LVM that was trained
using images of the digit one of the MNIST dataset.

5 DEEP LEARNING FOR ANOMALY DETECTION 101

Correlating input features with latent variables As discussed in the previous section,

there are two motivations for using an LVM. First, it allows the model to use simple thresholds

that can be set automatically (provided the variables are normally distributed). Second, it

give data scientists some ability to analyze what the model has learned. This makes it possible

to ”look inside” a model that are usually accepted to be black boxes. For most variables, no

obvious correlation could be established, even if they were useful for detecting anomalies. A

few, however, did show a (weak) correlation with visible feature in the input data. Figure 50

shows an example of selected latent variables that were correlated with a different duration of

the clamping phase and the presence of a ”bump” in the curve. These results are similar to the

results reported by NLP researchers [230]. There is, of course, a lot of uncertainty associated

with identifying such correlations - they are identified by manually comparing the input data

and the distributions of the latent variables. Data scientist may wrongly focus their attention

on spurious patterns and miss others (especially multivariate correlations that are difficult to

detect). However, once a solid correlation is established, data scientists can manually adjust

the threshold of that variable to alter the classification decisions of the model. This is very

similar to the snippet model for anomaly detection discussed in section 4.2.3.

Figure 50: A (small) number of latent features correlate with visible features in the input data.

5 DEEP LEARNING FOR ANOMALY DETECTION 102

5.4 Continuous model retraining

5.4.1 Cost function for one-class classification

The semi-supervised approach discussed so far allows to identify anomalous objects in large

unlabeled datasets. The need for this has been discussed in section 2. Based on this model,

SMEs are asked to annotate objects that lie outside the thresholds of the latent variables. If

an object outside the threshold T is labeled as normal, the model must change its learned

representation of the majority class so that the point lies within this threshold. Both the

reconstruction loss and the divergence loss discussed in the previous section are unsupervised

loss terms i.e. they do not take into account the class a data point belongs to. Therefore, a

third loss term is required to retrain the model based on user feedback. Intuitively, this loss

should increase the further away the object is from the threshold, so that the gradient descent

algorithm will adjust the model parameters Θ more if the point lies far away from what is

considered normal. The simplest loss term Lintegrate that satisfies this requirement is a piece-

wise function 7. Since the normal distribution has, by definition, a mean of zero, the loss is

simply the absolute value of the feature vector x. Once the point lies within the threshold i.e.

is classified as normal, the loss term is zero. Thus, uncritical anomalies will tend to cluster

around the edges of the normal class (as they arguably should).

|x|
Lintegrate =

0

if |x| > T,
(7)

otherwise

The distinction between critical and uncritical anomalies can be very subtle. By focusing only

on retraining uncritical anomalies, we may unintentionally end up with a latent representation

that incorporates critical anomalies into the normal class as well. To avoid this, it must be

ensured that the model retains its ability to discriminate these anomalies from the normal class.

Essentially, the model must not forget what it has previously learned. Therefore, a fourth loss

term is defined using simple exponential decay function 8.

e−λx (8)

The loss is the highest in the middle of the normal distribution and decreases as the object

moves away. This ensures, that critical anomalies move away from the normal distribution

and the loss never reaches negative values. The decay rate λ determines how far away these

5 DEEP LEARNING FOR ANOMALY DETECTION 103

object will be from the normal distribution once the model retraining is completed. Both loss

functions are schematically shown in figure 51.

Figure 51: Cost function of the one-class LVM for anomaly detection.

Thus, the cost function of the one-class latent variable model contains four loss terms. Note,

that both Linteg rate and Ldiscr iminate are conditional loss terms i.e. they are only applied to

objects of their respective class.

L = Lunsuperv ised + Lconditional = Lreconstr uction + Ldivergence + Linteg rate + Ldiscr iminate (9)

5.4.2 Retraining strategy

When retraining the model, its ability to recognize and analyze features should remain intact.

Since the features in the input data have not changed, the aim of retraining the model should

be limited to associating the right features with the normal class. Essentially, the model should

adapt its decision boundary. However, the normal distribution of the latent variables must be

maintained (for the previously discussed reasons). Therefore, model retraining is restricted to

the layer that maps the output of the RNN to the latent variables using the conditional loss

Lconditional . All other layers are frozen. This ensures, that objects of the majority class remain

within the threshold, anomalies remain outside the threshold and the latent space remains nor-

mally distributed. The information flow of this retraining process is depicted in figure 47.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 104

The retraining data is an aggregation of annotated data as well as unlabeled data of the majority

class. The latter is included to ensure that the majority class remains normally distributed i.e.

the model does not ”forget” what it has previously learned. During model retraining, the

conditional loss is increased slowly to ensure a controlled and steady decrease in the training

loss. If this is done too fast, the training loss will jump about about and the model may fail to

converge. When done properly, the model will adapt its mapping to the latent space as shown

in figure 52. It is important to keep a number of factors in mind when retraining the proposed

model:

• Often, very little annotated data is available. Naturally, using a small validation set risks

overfitting the model.

• The ability to retrain the one-class model for a very noisy majority class depends on the

complexity of the mapping layer. Increasing the number of hidden states and the number

of latent variables can increase the model’s capacity for retraining.

Figure 52: The change in the training loss and the latent space of the model during the
retraining procedure.

6 Real-world system evaluation in the manufacturing

domain

The primary focus of the work presented thus far has been the development of an approach

to constructing one-class classification models for anomaly detection, whose (re-)training can

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 105

be effectively orchestrated to allow scaling it to a large number of processes. The previous

two sections described two alternate approaches to do this. This section seeks to evaluate

them on a system-level. Although the previous sections contained evaluations of their own,

these were primarily concerned with motivating design considerations or benchmarking model

performance in isolated experiments. To evaluate their scalability under real-world conditions

requires a comprehensive field study. Thus, both approaches were implemented in parallel

in a real-world manufacturing setting as part of an industrial ML project in the automobile

industry that lasted for 20 weeks. The first subsection describes this setting and the process

data. The second and third subsections summarize the workflow and software system used for

(re-)training and managing the models. These were kept as generic as possible and not tailored

to either approach to ensure comparability of both approaches using the same methods. The

last section evaluates the ability to adapt the models and scale the system over the 20-week

period.

6.1 Domain setting

The field testing was done for 72 different tightening processes in an engine assembly line of

an automobile OEM. Tightening-related faults are the most common source of manufacturing-

related recalls (itself the largest shared of overall recalls). The tightening processes were selected

at random and accounted for approximately 15 percent of all tightening processes in the assem-

bly line. Over the 20-week period, each process recorded 105 − 106 time series measurements.

The first subsection discusses the fundamentals of tightening operations that help the reader

interpret the data. The second subsection discusses the data itself and explains the mechanisms

behind a selected number of anomalous patterns detected during that period.

6.1.1 Fundamentals of tightening processes

Tightening of threaded fasteners is the dominant tightening technology in the automotive as-

sembly industry. In most cases, a bolt is tightened into a threaded (blind) hole in the part to

be assembled. The goal of the tightening operation is to induce a clamping force between the

assembled parts by deformation of the bolt. Although this technology has been used in serial

production for over a century, controlling the process in large-volume, low-tolerance environ-

ments remains challenging. The clamping force cannot be measured directly in a production

environment. It is technically possible to measure the deformation of the bolt and calculate the

tensile forces via the stress-strain relationship of the bolt material. However, this is extremely

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 106

challenging to do in production at scale. Methods exist to measure the elongation of the bolt

via ultra-sound sensors [237] - however, this has thus far not been adopted to high-volume pro-

duction. Instead, the process is controlled by measuring the tightening torque that correlates

with the deformation of the bolt. Tightening a joint to a predefined torque in what is known as

a torque-controlled tightening operation is the most commonly used method of process control.

The challenge is to keep the conditions of the tightening joint constant so that this correlation

is as reproducible as possible. Most of the torque energy is converted to heat due to friction,

while only a small fraction is used to mechanically deform the bolt and the assembled parts.

Approximately 50 percent of the energy is expended on friction at the interface between the

bolt head and the bearing surface of the part and 40 percent on friction in the threads of

the joint [238]. It is extremely difficult to control the various external factors that influence

these frictional forces, such as manufacturing tolerances of the threads, amount of lubricant

or sealant in the thread or the surface properties of the bearing surfaces etc. The amount of

friction and deformation of the bolt and thus the final clamping force can vary considerably,

often as much as 50 percent even in controlled environments [239]. To narrow this variance

and ensure that a sufficient amount of torque energy is introduced into the joint, the bolt can

be tightened past its yield point until it starts to plastically deform. This ensures, that a min-

imum clamping force is reached. The plastic deformation can be detected by monitoring the

tightening torque: the torque curve will level off even as the angle of rotation is increased. This

is because the bolt material will begin to flow and relax the built-up stress in the bolt. This

is called an angle-controlled tightening processes and is predominantly used in the automobile

industry for safety-critical tightening connections [238, 240]. Figure 53 shows the progression

of the tightening torque over the angle of rotation of the bolt for typical tightening processes

in an automotive assembly setting.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 107

Figure 53: Schematic torque-angle signature of typical tightening processes.

The progression of the torque over the angle of rotation is referred to as the torque-angle sig-

nature of a joint. The area under the curve is the energy introduced into the joint that is

dissipated as frictional heat or used to mechanically deform the fastener and the tightened

parts [240]. The process is usually split into a pre-tightening operation and a main torque-

or angle-controlled tightening operation and can be divided into four phases. Pre-tightening

includes the rundown phase before the fastener head contacts the surface and the subsequent

alignment phase, during which the surfaces of the parts are drawn together and aligned. The

next phase is the elastic clamping range during which there is a nearly linear relationship be-

tween torque and angle. Torque-controlled tightening processes are terminated once the torque

reaches a predefined value within this range. For angle-controlled processes, this is followed

by a post-yield phase during which the fastener plastically deforms. The inflection point is

characterized by the underhead embankment of the fastener [240].

Monitoring the angle-torque signature of a joint is the predominant way of process control in

high-volume manufacturing settings. The process data is often readily available, as it is often

the primary (and only) means of process experts to ”look inside” the process. In the case of

safety-critical joints, there are also legal requirements to record and store this data. Thus,

the availability of tightening process data in the automotive industry is essentially guaranteed.

Since most vehicle recalls (by number) are attributable to manufacturing defects, and tighten-

ing faults account for most of those defects, the analysis of torque-angle signatures as a means

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 108

of preventive fault detection has merit beyond this particular setting.

The tightening processes in the assembly line that were monitored during the pilot phase

are completely automated. The work-piece carrier (WPC) moves along the assembly line on

a friction roller conveyor (FRC). After the WPC reaches the operations position within an

assembly station, a stopper fixes its position on the FRC. The bolt is either fixed to the work-

piece manually in a previous operation or fed from the separation unit through a flexible tube to

a holding mount in front of the tightening spindle via compressed air. The tightening spindle is

lowered at low rotating speeds during the finding phase. Once the nut slips into the hex socket

and/or the bolt into the threaded hole of the work-piece, the actual tightening process described

in the previous section begins. As discussed, the torque is measured by the machine controller

to control the tightening process. After the process is completed, the machine controller passes

the data to the digital controller of the assembly station, that stores it in an internal buffer

storage, from which it is transferred to the centralized control system (CCS). The buffer storage

ensures that data can be stored temporarily and resent upon request from the CCS so that it

is not lost if network bandwidth limit is reached.

6.1.2 Tightening process data

Over the course of the 20-week evaluation project over 68.000.000 time series were recorded by

the 72 processes and analyzed by the ML system. Fewer than 1 in 10.000 objects were annotated

by SMEs during the pilot phase (less than 0.01 percent), approximately 100 objects per day on

average. For the experiments described in section 6.4, all data that is not annotated is assumed

to belong to the majority normal class. Both SMEs and data scientists spent considerable time

searching through the data set for objects similar to the identified anomalies. It is unlikely,

therefore, that a large number of objects of interest were omitted.

To get a sense of the variability between different tightening processes and the variance within

the same process, representative normal data from the three process types discussed in the

previous section is plotted in figure 54.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 109

Figure 54: Process data of pre-tightening and angle- or torque-controlled tightening operations
can be very different.

The first columns shows two randomly selected pre-tightening processes. Both the shape and

length of the patterns vary significantly (the latter by the order of one magnitude). The wave-

pattern visible during the rundown phase is due to cyclical changes in the friction between the

thread and the bolt. It is visible exclusively for the pre-tightening processes as the fastener

is not yet under tension. This is a normal pattern in the torque signature of pre-tightening

processes - for other processes a drop in the otherwise monotonically rising torque signatures

would constitute an anomaly. The second and third columns show torque and angle-controlled

tightening processes, respectively. Each process exhibits a characteristic shape and variation,

depending on the process and joined parts. For example, the angle-controlled process in the

first row exhibits a characteristic bend between two elastic deformation phases. The first phase

corresponds to the deformation of the (stiffer) joined parts while the second corresponds to the

deformation of the fastener itself. A similar phenomenon is visible for some torque-controlled

signatures in the first row. The fact, that this is not the case for all instances suggest that

there was a change in the material properties of the assembled parts or the fastener (or both)

during the time period from which this data is taken.

Over the evaluation period five anomaly types were identified that were confirmed to corre-

sponded to quality faults. Figure 55 shows three of these anomalies (red). In the first subplot

(blue), the tool slipped off the bolt during the tightening operation due to misalignment be-

tween the tool and the fastener (cf. section 4.4.2). Although obviously different from normal

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 110

process operation, this is not an interesting anomaly from an SME perspective. In comparison,

the three subplots on the bottom (red) correspond to different anomaly classes detected in the

same and similar tightening process. In the first subplot, the fastener is retightened after an

initially failed attempt. This is problematic for an angle-controlled process, since the fastener

plastically deforms during the tightening operation and must not be reused. The second sub-

plot shows the presence of a foreign object in the thread that causes an anomalous ”bump”

in the torque curve. In the third subplot, a pinched gasket prolongs the compression phase of

the joined parts and delays the onset of the elastic elongation of the fastener. This means that

the tightening process is terminated by the process controller before the the bolt is sufficiently

elongated, resulting in an insufficient clamping force, leakage from the damaged seal of the

gasket and the build-up of mechanical stresses in the assembled part as it is bent over the

bulging gasket. All this can be gleaned by SMEs from the lack of the characteristic transition

from the elastic compression of the joined parts to the elongation of the (stiffer) fastener, that

causes a change in the slope of the torque signature. A somewhat similar pattern is visible

when too much sealant is added to the thread of the fastener, resulting in increased friction in

the threaded connection. This results in a prolonged pre-tightening phase that ”stretches out”

the curve. Although similar (and anomalous), this mechanism is not interesting and was added

to the training data for the respective one-class model. The figures and discussion aimed to

showcase the large variance of the tightening process data and the need to incorporate domain

knowledge when training these models.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 111

Figure 55: Characteristic objects of the majority class and anomaly class of a single tightening
process.

6.2 Machine learning operations workflow

This section provides an overview of the workflow that the data scientists followed during the

evaluation phase. It describes how the modeling approaches developed in sections 4 and 5 were

applied to train and deploy ML models into production. While these tasks typically fall in the

responsibility of a data scientist, the boundaries between the work of other parties involved in

the ML Ops process e.g. analysts and data and software engineers may vary significantly. The

ML Ops workflow can be broadly subdivided into three stages: algorithm development, model

training and model serving. This is schematically depicted in figure 56.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 112

Figure 56: Schematic workflow for ML model life cycle management.

During the exploration phase, data analysts and data scientists define the problem and explore

the data. Once a suitable ML problem is formulated, an experimental phase follows in which

ML models are trained and tested using off-the-shelf or purpose-built algorithms (such as the

ones developed as part of this work). As discussed, algorithm selection is typically based on a

combination of personal preference of the data scientist and model performance. To make this

iterative process more efficient, an orchestrated experimentation pipeline is set up to test the

results of new development iterations on predefined test sets. Once a suitable algorithm has

been found it is registered in the source code repository. Models are then trained using this

source code and stored in a model registry together with information such as the version of the

source code used, preliminary model performance and the data used for training the model. A

separate deployment and serving service scans the registry and deploys the model as a stand-

alone prediction service. Once in production, SMEs provide feedback on the prediction services

by annotating the detected anomalies. This feedback is the central performance indicator used

by data scientists to trigger debugging or retraining of the models. If satisfactory performance

cannot be achieved, the experimentation and development stage is reiterated. Essentially, the

three stages of the MLOps process are connected via two continuous feedback loops.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 113

The focus of this section is to explain the tasks of training models and maintaining them in

production in order to provider the reader with a sound understanding of how the evaluation

phase was conducted. Discussion of the algorithm development process is omitted. It is the

stated objective of this thesis to provide an approach to model training that reduces the iterative

nature of this process - the approaches laid out in the previous sections 4 and 5 are the result

of this process.

System monitoring The goal of performance monitoring is to detect and remedy model

degradation as soon as possible. This is vital to ensure user’s confidence in the system. De-

graded models cause excessive labeling effort for users and may, in extreme cases, render the

prediction service entirely unusable. If this happens frequently, users will lose confidence in

the system. Thus, ML practitioners must try to detect model degradation before it reaches a

degree that users will consider unfeasible. Model degradation is caused not by changes to the

model but by changes in the data:

• A productive model classifies objects as anomalous that are labeled as uninteresting by

the user i.e. the model prediction is different from what the user expects. As long as the

model is not retrained, it will continue to detect these anomalies.

• The statistical properties of the data may change (concept drift). This can result in

the one-class model detecting a larger-than-normal number of (uninteresting) anomalies.

This change may occur suddenly or gradually over time.

In both cases, the model needs to be retrained. Judging whether a model is degraded in

either of these scenarios requires the definition of thresholds on the number/share/frequency of

(uninteresting) anomalies detected in a given time frame. In practice, the choice of threshold

largely depends on the capacity of SME to label the data and of data scientists to retrain

degraded models. In practice, it can be challenging to keep track of the performance of a large

number of models. During the evaluation phase, data scientists interacted with the ML system

via a web front-end of a purpose-built application. The application is structured around the

model life cycle management workflow depicted in figure 56. The landing page of the application

gives the data scientist a quick overview of the state of health of the system and serves as the

starting point of the workflow. It is depicted in figure 57.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 114

Figure 57: Monitoring page of the web front-end of the purpose-built ML Ops application.

The progress and performance of the system is summarized at the top of the page. The mon-

itoring coverage summarizes the share of processes that are monitored by one-class models or

specific classifiers (or both). The model performance summarizes how these models fare in pro-

duction, broken down into (1) models that exhibit nominal performance within (user-defined)

specification limits, (2) models for which an automated warning indicator was detected (a so-

called ”watch dog” that monitors user-defined thresholds on the number/share/frequency of

uninteresting anomalies) and (3) models that have been manually flagged by SMEs as prob-

lematic. This gives the data scientist an overview of the progress related to scaling and adapting

the models. Below this summary is a more detailed table that gives a high-level status of the

state of health of each registered model. The status can be one of three categories: ”OK”,

”Warning” or ”NOK”. There are three separate feedback loops that can change this status:

• If SMEs recognize a problem with a particular prediction service, they can manually flag

the model through the same (separate) SME web front-end that is used for annotating

detected anomalies.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 115

• If the number of anomalies exceeds a threshold, a concept drift warning is raised. While

plenty of research on concept drift detection exists, these approaches are usually based

on (more or less arbitrary) thresholds applied to statistics derived from the data. Rather

than monitoring these statistics, the system applies a threshold directly to the number

of detected anomalies.

• If the number of anomalies labeled as uninteresting make up a significant share of the

detected anomalies (anomaly/label skew).

Model training and serving Training ML models is a central task of ML system operation.

To make this process feasible, the degree of automation of the training workflow must be very

high. The frequency of training new models (when scaling the system), retraining existing

models (when adapting the system) and deploying these models into production is much higher

during the operating phase than during the experimental development phase that precedes it.

Once the system reaches a certain scale, these processes must be automated for the workload

to remain tractable (cf. the definition of scalability in 2). Each process contains a series of

tasks that are automated to varying degrees over the course of development. Automating the

process requires automating this series of tasks including all incoming and outgoing triggers,

dependencies and configurations. This is known as orchestration.

Definition 14 Orchestration is the automated configuration, management, and coordination

of computer systems, applications, and services [241].

Consider the orchestrated training training pipeline depicted in figure 58. When the pipeline

is triggered, the first task is to validate the data. A connection to the data source (in this

case a structured database) is established and the data checked for any inconsistencies that do

not conform to the expected data format such as missing or undefined values. The validated

data is then split into training, test and validation set according to a predefined split criterion.

Next, the source code of the algorithm is pulled from the source code repository and the model

training process initiated. If model performance is satisfactory, the model and its metadata

is pushed to a model registry. Otherwise, the model hyperparameters are adjusted according

to a predefined training strategy (e.g. a greedy search or a brute-force grid search) and the

training process rerun until a performance threshold is reached. If no suitable parameters are

found, the pipeline is terminated and an issue raised to the data scientist. This process reduces

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 116

the required manual input by implementing a predefined (and reproducible) training strategy

using algorithms from the source repository.

Figure 58: Automated tasks in an orchestrated training pipeline.

ML Ops poses much more stringent requirements on version control than regular software

engineering. Conventional version control systems are centered around versioning of the source

code. In addition, version control for ML systems includes versioning of the trained model

pipeline to allow rollback to a previous version, the configuration and metadata that was used

to train this model (this includes the version of the ML algorithm and model hyperparameters)

and the data used to train and validate the model. The model registry serves as a central

repository that stores the ML model along with training artifacts like metadata about the

training job as well as training/test/validation data. Tracking this information is vital to be

able to reproduce a specific model pipeline at a given point in time. This, in turn, is necessary

to evaluate changes to the models and algorithms and allow efficient root cause analysis and

debugging. The model registry combines the functions of a conventional version control systems

and an artifact repositories for traditional software systems. Once the model is pushed to the

registry, it is ready for integration and deployment as a prediction service. The process of model

integration and deployment is completely automated and triggered as soon as a new model is

pushed to the registry (known as continuous model integration).

Optimizing the model landscape An important task for data scientists is to optimize the

model landscape. The aim is to find a trade-off between lowering the complexity of both the

individual models and the overall system. The goal is to simplify system operation by making

it easier to retrain models and leveraging labeled data from one process for training models for

other processes. Data scientists routinely check whether models monitoring different processes

can be unified into a single model (vertical scaling). By analyzing the (annotated) process

data and gathering feedback from SMEs, data scientists may identify processes that are very

similar to each other. This can be verified by cross-validating the performance of these models

with data from different processes. The front-end application contains a module for this task,

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 117

allowing the data scientist to test the performance of registered models in the model registry for

a selected process. If a model is able to classify objects with acceptable accuracy for multiple

processes, the data scientist can continue with one model and retire the rest. This routine

task of model consolidation is part of the standard workflow in figure 59. This same procedure

can also be applied in cases where annotated data of a new process is available from the start.

Instead of training a new model, data scientists can check if a model exists in the model registry

that delivers adequate performance. If this is the case, the model can be directly applied to

the new process. Essentially, both of these processes are a form of transfer learning that avoids

”learning the same thing twice”.

Figure 59: Decision diagram of the model training process

While fewer models makes the monitoring task easier, it tends to make the retraining task

more difficult. While training a new model for a single process is relatively straight-forward,

retraining or replacing an existing model comes with data dependencies. It is important to

ensure that changes to the model do not adversely impact the classification performance for

past data. This data dependency increases with the number of processes. In some cases, the

process of model retraining and debugging is more tedious than maintaining separate models

for each process. In such cases, data scientists will branch a new model from an existing model.

As discussed in section 2, whether it makes sense to use a single model for multiple processes

or vice versa depends on the situation.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 118

6.3 System architecture

This section discusses the architecture of the ML Ops software system that was used to train,

deploy and manage the ML model pipelines. The system is a technical (software) implementa-

tion of the workflow described in the previous section. The software was developed specifically

for the evaluation phase of this research. The source code and documentation of the database

schema and service endpoints are open-sourced [167]. Without this system, a real-world eval-

uation of the scalability of the proposed algorithms would not have been possible. The system

is completely independent of the implemented ML algorithm. Thus, any difference in system

scalability and operability should be attributable to the proposed ML algorithms.

6.3.1 Graph-based model management

To effectively monitor the large number of different processes in a production system, a large

number of model pipelines is required. This number should generally be as small as possible

to reduce the complexity of the system. For processes that are sufficiently similar, it should

be possible to easily reuse (partial) pipelines as much as possible. On the other hand, keep-

ing an overview of these pipelines and their mutual dependencies quickly becomes difficult for

large-scale ML systems. Without a systematic process, model retraining quickly turns into a

time-consuming process of retracing previous steps and manually assembling training data sets.

To avoid this, the software uses a graph-based approach to model management that allows to

keep track of and visualize these dependencies.

Raw data recorded for each production process is processed by a single model pipeline. A model

pipeline is a sequence of models, that process the data from raw data input to prediction output.

Typically, this pipelines consists of data pre-processing, feature extraction and classification. If

we consider the models of a pipeline as nodes and the data flow between these models as edges,

then the pipeline can be represented as a directed (acyclical) graph. Each node processes the

data and passes it onto the next downstream node. This same concept can be extended to the

history of each node (model) in the graph. This is schematically shown in figure 60.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 119

Figure 60: A model pipeline (including its history) can be interpreted as a simple graph.

Since the real-world process outputs raw data that is the input to the pre-processing node, the

process can be considered an upstream node that connects to the first node in the pipeline

graph. Thus, the root node of the graph generates the input data and the leaf node of the

graph outputs a prediction. A root node can be connected to multiple pipeline nodes so that

the same input data is processed by multiple classification pipelines. Additionally, multiple

nodes from different pipelines can share the same downstream node, irrespective of their root

node. In fact, any node A can be connected to any other node B in the graph, irrespective

of the root node so long as (1) node B is a downstream node (e.g. a feature extraction model

must be followed by a classification model) and (2) the connection does not create a loop in

the graph i.e. two nodes pointing at the same node B must stem from different root nodes.

This makes it possible to intuitively depict the dependencies between models across different

processes. This is schematically shown in figure 61.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 120

Figure 61: The same model pipelines can be used to monitor multiple processes.

For example, a process may exhibit two very different fault types that require separate models

for feature extraction and classification. However, the pre-processing of the data may well

be similar, which means both pipelines can branch from a shared pre-processing node. For

sufficiently similar processes, the corresponding root nodes may be pointed directly at a shared

pipeline. This graph-based approach to model management has many desirable characteristics:

• Making changes to a model pipeline is as simple as updating the pointers between the

nodes in the model registry. When a productive model is replaced by a new version, the

old pointers to and from the model are deactivated and new pointers are added. This

makes it possible to reconstruct the pipeline that was active at any given time, allowing

to roll-back changes in the pipelines if performance degrades.

• For classifiers that are used for multiple processes, all relevant training data can be found

by simply retracing the graph to find all relevant root nodes, starting from the leaf node

in question. This is schematically depicted in figure 61.

• The model graph is an intuitive visualization of the history and dependency of the model

pipelines that make it easier to keep an overview of the system.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 121

6.3.2 Model and data services

The ML Ops software system is made up of three separate services:

• The Model Build Service (MBS) orchestrates the model training pipeline and ensures that

active models registered in the model registry are built and deployed into production.

• The Model Management Service (MMS) administers the model graph and ensures con-

sistency of the dependencies.

• The data provisioning service manages the data warehouse that stores the production

data, the prediction results of the ML models and the feedback provided by the SME.

These services communicate with each other using standard protocols and application pro-

gramming interfaces (APIs). APIs allow two independent services, such as the model build

and management services, to communicate with each other by exposing their functionality via

predefined endpoints. The reason for this service-oriented architecture is twofold: restrict data-

heavy and compute-intensive operations to the back end to speed up system interaction and

ensure, that parts of the system can be taken ofline/extended while keeping the rest up and

running. This is especially important for the prediction services of the productive models and

the data provisioning service. Unavailability of the system, an unresponsive front-end or a loss

of data quickly erodes confidence of SMEs in the software. The system architecture, including

its services, databases and data flows are depicted in figure 62.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 122

Figure 62: The data flow between the services, front-ends and databases that comprise the ML
Ops software system.

To explain how this system works, we will consider three training scenarios: (1) unsupervised

training of an initial one-class model (2) semi-supervised retraining of a one-class model/classification

model and (3) simplification of the model landscape to improve operability.

• The ML practitioner sends a training request to the MBS via the front-end application.

The service prepares a detailed training request that specifies the train and validation

data to be used for model training, hyperparameters for data pre-processing and the

type and version of the ML algorithm. The request is then passed to the build server,

which executes the training pipelines. It pulls the source code of the algorithm from the

code repository, parameterizes the algorithm, retrieves the training data from the data

service and starts the training job in a dedicated container. This enables the build server

to run multiple training jobs in parallel. Once the training job is completed, the build

server stores the trained model and the model metadata in an in-memory database that

is accessed by the front-end application. While the data in all other databases is never

deleted (only deactivated), the intermediate training results in the in-memory database

are deleted at the end of the training session. The ML practitioner may inspect the

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 123

results and opt to rerun the training cycle or approve the model. The approval request

is sent to the MBS that retrieves the model and its metadata and sends it to the model

management service which registers the model in the model registry. The activation

of a new model in the registry triggers the execution of a deployment pipeline. The

model is served in a separate container along with a micro-service that pulls new data

from the data warehouse through the data service. The extracted features and final

results are stored in the feature store and the latter passed onto the data service to be

stored in the data warehouse. The SMEs are then able to analyze and label the detected

anomalies through a dedicated frontend application. Information about the number of

detected anomalies and the discrepancy between predicted labels and SME feedback is

continuously monitored by data scientists.

• The ML practitioner may wish to retrain a model pipeline due to low or degrading perfor-

mance. The retraining process will generally start with the leaf node and move upstream

only if sufficient improvement is not possible. This way, changes to the system are as

big as necessary and as small as possible. This becomes more important for vertically

scaled models that have many data dependencies. The MBS pulls all upstream models

from the model management service and specifies the combined test, train and validation

data from all root nodes. The build server handles the training request, reconstructing

the upstream pipeline to train the downstream pipeline. The approved model pipeline

is registered in the registry and the old pipeline is deactivated. The process of building,

deploying and serving the model is analogous.

• To simplify the model landscape, a single model (pipeline) can be trained for multiple root

nodes. Suitable pipelines and root nodes are identified based on recommendations made

by SMEs or the system itself. The system can recommend to combine existing pipelines

by evaluating the hypothetical performance of a pipeline for another root node. The

micro-services of the productive pipelines are extended to get additional data from other

processes. This is a brute-force approach of combining existing pipelines with (other)

existing processes.

the data scientist.

The results are saved in the feature store and can be analyzed by

If the performance of pipeline A for process B is similar that the

performance of pipeline B, chances are that a combined pipeline will suffice. Due to

the large amount of data traffic, this comparison is not run continuously but triggered

manually by the data scientists.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 124

6.4 Evaluation

6.4.1 Model adaptability

A vital part of ML system operation is the ability of data scientists to adapt the one-class mod-

els in production using the two approaches proposed in section 4 and 5. Model adaptability is

determined by the ease with which data scientists are able to retrain models using annotated

data provided by SMEs. One way to evaluate and compare the adaptability of the approaches

would be to deploy two model pipelines at the same time (one for each approach), have SMEs

label the predictions of both models and evaluate model performance after retraining. How-

ever, this was deemed unfeasible during the evaluation phase, as data scientists continuously

changed the model landscape. This meant that some models were scaled to a much higher

degree than others, drawing on more training data and/or covering more processes. Comparing

the adaptability of the approaches based on differently scaled models would essentially be an

apples-vs-oranges comparison. Instead, the adaptability of both approaches was evaluated via

a controlled experiments using a shared data set as follows:

• The data set described in section 6.1.2 is split into 10 subsets, each containing one anomaly

class and all data of the majority class (of the respective process). Five of the anomaly

classes were critical, the other five were not. This yields a one-vs-all data set for a binary

classification problem for each anomaly class.

• Both a DL and DM one-class model is initialized using a randomly sampled subset for

each data set.

• The data set was analyzed by each model and the 100 most anomalous objects added to

the training data for the next iteration, together with their (known) labels. This number

corresponds to the average number of objects SMEs labeled in one session and is larger

than the number of anomalies in each data set (i.e. a precision of 100 percent is possible

on the first iteration). Objects of the normal majority class and uninteresting anomalies

were labeled as 0 and critical anomalies were labeled as 1.

• The model is retrained using the labeled training data. At each iteration, the performance

of the model is recorded and the results labeled and added to the training data. The

retraining process is repeated for 5 iterations, after which no more improvement could be

detected.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 125

Both approaches implemented the training strategy for the unsupervised/semi-supervised model

initialization and the supervised model adaptation that proved the most effective during the

evaluation phase. These strategies included automatic hyperparameter tuning and (in the su-

pervised case) cross-validation that required no manual input. Since the manual effort is the

same (i.e. none) for both approaches, the evaluation of the adaptability of both approaches

can be reduced to their respective performance. A discussion of the effort recorded during the

evaluation for each approach is included in the next section.

The experiments were repeated ten times for each approach and data set in order to mitigate the

influence of random model initialization and data sampling. Figure 63 shows the consolidated

results for the DM and DL approach for all 10 anomaly classes, where the average and range of

the model performance is recorded for each training cycle. For critical anomalies, the precision

of the model is calculated over the retraining cycles, as the models learned to discriminate an

increasing number of objects from the target class. The precision (of a detection model) is

defined as the fraction of relevant instances among all detected instances (in this case the 100

most anomalous objects). For the uninteresting anomalies the false positive rate (FPR) was

calculated. The FPR is the fraction of anomalous objects of that class among the detected

instances. The advantage of this calculation is that the starting performance for the model is

the same for both anomaly types, allowing a more intuitive comparison of the two approaches.

Figure 63: The precision of one-class models retrained to discriminate critical anomalies (left)
and the false positive rate of the same models retrained to include uninteresting anomalies in
the normal class (right).

Both the DL and DM approaches can be used for unsupervised training and supervised adap-

tation of one-class models based on incrementally provided feedback. This is not surprising,

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 126

given the results of the benchmark studies and field testing in the previous sections. The per-

formance of both approaches is sufficient to be practically feasible. Starting with a completely

”fresh” unsupervised model, every third objects that an SME could visually inspect in a single

session belongs to a characteristic anomaly class. While these are welcome results, there are a

number of factors in a productive setting that reduce model effectiveness:

• This experiment considers a data subset consisting of a one-vs-all classification problem.

• Productive models that are scaled across multiple processes come with more complex

data dependencies that make retraining more difficult.

• Based on the results, DL models are relatively better at discriminating a critical anomaly

from the normal class than adapting the normal class to incorporate uninteresting anoma-

lies. In fact, this has been observed consistently throughout the evaluation phase and

becomes more pronounced the more (different) uninteresting anomalies are added to the

normal class.

Thus, the performance depicted in figure 63 is representative of an ideal scenario that likely

overstates what an ML practitioner will encounter in a productive setting.

6.4.2 System scalability

So far, the adaptability of the models were evaluated in isolated settings by looking at model

performance. In this section, the scalability of the proposed approaches is evaluated on a sys-

tem level based on data collected during the evaluation phase. As discussed in section 2 the

scalability of a system fundamentally depends on the ability to extend system capacity using

available resources. In the case of an ML system for fault detection of the kind discussed in this

thesis, the constrained resources are the data scientists required for system maintenance and

SMEs for data annotation. Therefore, evaluating the scalability of the proposed approaches

requires a large-scale system-level evaluation.

Over the 20-week evaluation period, the models were initialized, adapted, debugged and/or

scaled once during fixed development cycles lasting one week. An average of 25 hours were

expended during each development cycle. All development was done by a single data scientist

that was not involved in the development of the algorithm or the ML Ops software system

and had no prior experience with tightening processes. The methods and functions of both

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 127

approaches were integrated into the same abstract class, allowing the data scientist to use the

same methods and procedures for model training. All of these external variables were controlled

to ensure that the results were not subject to personal bias of the data scientist. Additionally,

it allowed to field-test the developed model approaches and ML Ops software system and judge

its generalizability to generic settings.

One important consideration to evaluate the scale of the system is to look at the number

of active models in production. This is an indicator of both the amount of time spent by

data scientists on system operation as well as the amount of time spent by SMEs on data

annotation. A large number of separate models tend to increase the need to annotate more

data, as they need to learn similar representations instead of ”sharing knowledge”. The number

of processes was increased in three phases from initially 40 to 60 to finally 72, as shown in figure

64. The total number of productive models at the end of each development cycle is plotted

for both approaches. At the start of the pilot phase, the data scientist deployed a separate

model for each process (this is the default approach to model training if no annotated data

is available). As annotated data became available, the data scientist was free to branch or

merge different models. To quantify this activity, the ratio of the number of processes over

the number of productive models (i.e. the average number of processes monitored by a single

model) is depicted in figure 64.

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 128

Figure 64: Number of productive models over twenty development cycles as the system is
scaled.

The number of processes is significantly larger for the pattern matching approach with the

spread increasing as the development cycles go on. This can be explained by a combination of

two effects. When extending system capacity to an additional process, the standard approach

is to train and deploy an unsupervised model and then begin retraining it once feedback from

SMEs is available. Additionally, this annotated data can be used to evaluate whether models

already in production could be used to monitor the process. If this is the case, it is usually

much faster to continue with that existing model rather than training a similar model from

scratch. The DL approach requires more labeled data to adapt the normal class than the

pattern matching approach. Thus, it is often possible to transfer pattern matching models to

new processes even if they have been in production for a relatively short time. The second

reason is perhaps the most fundamental advantage of the pattern matching models: they can

be applied to different processes as long as the same patterns can be used for classification. For

example, the slip-off anomaly discussed in section 6.1 behaves similar for different tightening

processes, although their normal state varies significantly. Thus, a single model using a unified

pattern library can be used in these processes. In contrast, deep learning models are end-to-end

models that do not allow this level of ”modularity”. Both of these effects enable data scientists

6 REAL-WORLD SYSTEM EVALUATION IN THE MANUFACTURING DOMAIN 129

to merge multiple pattern matching models into single models that cover multiple processes.

This is supported by figure 65 that shows the number of models that monitor multiple processes

at the end of the pilot phase. While the majority of models continue to monitor single processes,

the pattern matching approach produced many more models that monitor multiple processes.

Figure 65: Number of processes monitored per model at the end of the pilot phase.

Lastly, it is important to consider the amount of resources that were expended for (re-)training

the models that mad up both systems. For this, the working hours of the data scientist were

logged throughout the development cycle. The distribution of the amount of development

time for each approach is shown in figure 66. The total time spent on developing the pattern

matching models was about 20 percent higher than for the deep learning models. However,

these extra resources allowed to decrease the number of models by over 40 percent.

7 CONCLUSION 130

Figure 66: Time spent on model training during the pilot phase.

7 Conclusion

7.1 Critical evaluation of results

Problem statement Vehicle recalls in the automotive industry have been on the rise over

the past decades, both in terms of frequency and volume. Their economic burden is immense

- the largest recalls have wiped out years of OEM profits and pushed suppliers to the brink

of bankruptcy. The cause for this are industry-wide trends that are driven by staunch com-

petition and regulatory oversight that are unlikely to revert in the foreseeable future. The

majority of recalls are caused by manufacturing defects. The ability to detect these defects

during the manufacturing process and prevent these recalls can be a competitive advantage

for manufacturers. In addition to conventional process control systems, manufacturers and

researchers are looking to develop intelligent process monitoring systems. The aim of these

systems is to analyze the large amounts of process data collected in manufacturing settings and

detect patterns that may indicate a defect. Rather than being explicitly programmed to detect

known defects, these systems use ML algorithms to learn the normal state of a process and

detect anomalous behavior that is unknown and would have otherwise gone undetected. These

”known unknowns” - objects that SMEs know they are missing without knowing exactly what

to look for, are the cause of many recalls. Despite years of research and numerous pilot ap-

plications, the productive use of ML technology for large-scale process monitoring applications

in the manufacturing domain has thus far proved evasive. While training models for a limited

7 CONCLUSION 131

pilot environment is relatively easy, scaling this approach to hundreds or even thousands of

processes is extremely challenging.

Thesis statement It is widely accepted that moving pilot ML systems into production is

extremely challenging. On the one hand, there are obvious difficulties like the training/serving

skew of ML models and the scarcity of annotated data, both of which are frequently cited

in scientific literature. Additionally, it is increasingly understood that system scalability and

operability are fundamental challenges that are often overlooked during the pilot phase. As ML

technology has matured and its potential to solve real-world problems in the manufacturing

domain has been proven, a growing number of researchers are faced with the question of how

to move their pilot systems into production. The need to address these challenges is rapidly

gaining in importance. This is evidenced by the number of papers in recent years dedicated

to the challenges of deploying, operating and maintaining large-scale productive ML systems.

How can the training and retraining process by orchestrated effectively? What is the best

way to maximally leverage the limited annotated data that is available? What is a suitable

process to repeatedly extend the capacity of the system (scalability)? All of these questions

essentially center around the difficulty of managing ML models in production without consum-

ing an unfeasible amount of developer resources that are both costly and difficult to recruit.

These challenges are virtually nonexistent during the development phase but dominate during

production.

The thesis statement is as follows: the effort required to scale, operate and maintain ML systems

is determined by the ease with which models can be managed. This fundamentally depends

on the model itself - some models are better suited than others. However, model selection

is unsystematic in practice. Sub-optimal model selection results in increased effort for model

management. As the system is scaled, this may consume a rapidly growing amount of devel-

oper resources until the complexity overwhelms the development team. The system quickly

becomes unfeasible, often before becoming fully operational. This is the reason for the low

adoption rate of ML technology in manufacturing, that has remained stubbornly low for many

years. Leveraging ML technology for process monitoring requires ML algorithms that can be

effectively orchestrated and used to train and adapt models that can be easily maintained and

extended on a system level.

7 CONCLUSION 132

The impulse for this thesis was the experience gained during years of applied ML research in an

industrial settings in the automotive manufacturing industry. The challenges associated with

scaling a pilot system and moving it into production were constantly recurring issues. The

apparent difficulty of ML practitioners, both within and outside the manufacturing domain,

showed that this challenge was not exclusive to the manufacturing setting but systemic across

industries that needed to be overcome.

Goal of thesis The goal of this thesis is to provide ML practitioners in the manufacturing

domain with a set of tools to overcome the challenges of scaling a continuously adaptive system

for anomaly detection as well as operating and maintaining that system at scale. Unsupervised

anomaly detection is fundamentally a threshold problem that cannot be inferred from the data

alone. Instead, the goal is to rapidly transform the anomaly detector into a one-class classifier

based on user feedback. The core of the work focused on applied ML research and development

of ML algorithms that are able to effectively leverage scarcely labeled highly imbalanced data

to train models that are easy to debug and maintain. Following the Design Science Research

methodology, this development incorporated state-of-the-art algorithms and design principles

and relied on rigorous evaluation of the developed algorithms under real-world conditions to

ensure the generalizability of results.

Summary of results Based on a comprehensive review of existing literature, two distinct

modeling approaches were identified as particularly promising. The first are deep learning mod-

els, that have been shown to outperform most other ML models for a wide range of anomaly

detection applications. The second are time series data mining models that classify an object

based a library of characteristic patterns, similar to template-based computer vision systems.

This approach combines data mining algorithms to recognize patterns in the data and con-

ventional ML models to classify objects based on their pattern-based feature representation.

Both model types offer distinct relative advantages and were therefore pursued in parallel. A

comparative evaluation of these approaches was conducted in the form of a large-scale evalua-

tion phase that included training, deployment and adaptation of a large number of models in

a real-world manufacturing setting. The number of processes monitored during the evaluation

phase can be considered large-scale, compared to published results of comparable systems in

the manufacturing domain [27, 139, 140]. The findings are summarized below:

• Both the average time to deployment and the average time spent on model retraining was

7 CONCLUSION 133

approximately 20 percent higher for DM models compared to DL models. On the other

hand, the number of models required for monitoring the production system was almost

50 percent lower. Essentially, the DM approach allows trading off a short-term increase

in resources required for model training for a long-term decrease in resources required for

system operation.

• The majority of DL models only ever monitored a single process. In comparison, DM

models monitored an average of two processes with up to eight monitored by a single

model.

• In settings where only scarcely labeled data is available (as is often the case in real-world

settings) it is difficult to rely on hyperparameter tuning as the sole hit-or-miss training

strategy as it risks overfitting the model. The ability to analyze what the model has

learned can help guide this process. The pattern libraries used by the DM models for

classifying the time series objects provide an intuitive understanding of what the model

is looking for in the data.

All things considered, time series data mining models have proven to be the more scalable ap-

proach in relative terms. The 20-week real-world evaluation showed, that it is (comparatively)

much easier to scale single data mining models to multiple processes. The lower number of

models in production reduces the overall complexity of the ML system and simplifies its opera-

tion. Additionally, scaling a model across multiple processes increases the amount of annotated

training data per model, resulting in more generalizable models and making it possible to trans-

fer these pre-trained models to new processes (avoiding the ”cold-start problem”). These effects

compound as the number of processes in the ML system increases. The added complexity of

managing the data dependencies of these scaled models can be mitigated through the use of ML

Ops software systems that orchestrate the training process. Although more time was spent on

managing data mining models compared to the deep learning models, this is not due to a weak-

ness of the former. On the contrary, data scientists chose to spend more time on these models

because it made sense for them to do so. Most of that time was spent analyzing the extracted

patterns and retracing the decision process of these model to introduce targeted changes to the

hyperparameters during model training. In contrast, associating the latent features of the DL

models with characteristic features in the input data was not done in practice, even though

this was shown to be technically possible in section 5. Instead, data scientists relied solely on

7 CONCLUSION 134

the high-level trial-and-error hyperparameter tuning that is often used for black-box DL models.

It would be disingenuous to generalize this conclusion to all possible data mining and deep

learning approaches that could be used for any process monitoring application in manufac-

turing. The research in this thesis is limited to the two approaches described in sections 4

and 5 and a particular setting in the automobile manufacturing industry. However, since few

restrictions were placed on the manufacturing data itself and the applied research methodol-

ogy was centered around iterative development on benchmark data sets and field-testing under

real-world conditions, the insights are at least relevant to similar settings. The primary reason

behind the success of the pattern matching approach is that it combines the strengths of DM al-

gorithms for pattern recognition and ML algorithms for learning the decision boundary. There

is evidence in scientific literature that supports this conclusion: ”In recent years there has been

an explosion of deep learning work on anomaly detection, [...]. However, we feel that there is

currently little evidence presented that the complexity of these approaches is warranted. Recall

that for the most part we can reproduce or improve upon these results [...] using a method that

is, by any reasonable standard, an order of magnitude simpler” [242]. Interestingly, success-

ful large-scale productive ML systems in other real-world domains also make use of a hybrid

DM/ML framework [144, 41] (albeit without the focus on time series data that is central to

the manufacturing domain and this thesis).

7.2 Research contribution

This subsection discusses the research artifacts, their contribution to the current state-of-the-

art and their implications for researchers and practitioners in the manufacturing domain and

beyond. They can be categorized into artifact types according to the typology proposed by

Offermann et al. [66]. The artifact types relevant to this research are (1) algorithms: an

executable description of a system behavior, (2) guidelines: a generlized suggestion about

system development, (3) patterns: generalized system design elements that can be used as a

blueprint for creating a system design, and (4) system design: an IT-system that comprises the

system architecture, processes and human interactions on any level of granularity. The artifacts

together with their categorization are as follows:

• An improvement of a state-of-the-art supervised pattern extraction algorithm that enables

the extraction of patterns with minimal information redundancy from highly imbalanced

7 CONCLUSION 135

data (algorithm artifact). This is central to the hybrid DM/ML pattern matching ap-

proach and relevant to virtually all classification problems where only a limited amount

of annotated data is available. In many practical settings, the cost of manually labeling

more data may be prohibitively expensive or more data of the target class may simply

not be available. Instead, the algorithm redirects these efforts towards extracting more

effective features from the data, following the maxim ”better data beats more data” [243].

• An approach for constructing and extending pattern matching models for one-class time

series classification. The approach is based on existing DM algorithms that are used to

construct and extend a library of patterns based on user feedback (algorithm artifact).

• An approach to constructing DL models for one-class classification of time series objects.

The central element is the loss function that (1) ensures a normally distributed feature

space that simplifies the threshold problem (highly desirable to simplify the threshold

problem of unsupervised anomaly detection) and improves model interpretability and (2)

allows to continuously retrain the one-class model with annotated data that becomes

available over time (algorithm artifact). Additionally, design considerations are provided

regarding the ANN architecture of DL algorithms for time series analysis (pattern arti-

fact).

• A similarity search system for the high-recall retrieval of objects from large time series

databases. The system adapts the search query based on used-provided feedback on the

search results (system design artifact). It enables users to explore and annotate otherwise

intractable data sets.

• A MLOps software system for training, deploying and managing a large number of ML

models in production (system design artifact). The system implements a proposed graph-

based method for model life cycle management and includes web-based front-ends for

model management by ML practitioners and data annotation by SMEs.

The source code of all research artifacts has been published along with peer-reviewed academic

papers [229, 7, 6, 167]. The model life cycle management system that was used for the real-world

evaluation described in section 6.4 was packaged into a stand-alone software and open-sourced

[244] and can be used with any conventional ML algorithm. This work aims to go beyond

the presentation of new algorithms that improve model performance on benchmark data sets

or the use of out-of-the-box algorithms in small pilot systems to showcase the potential of

7 CONCLUSION 136

ML technology for certain applications. Instead, it takes a holistic view at ensuring system

scalability and operability by developing end-to-end approaches to model management. It is

increasingly understood within the scientific community, that these system-level challenges are

behind the widespread difficulty to transfer promising pilot applications into productive systems

that add business value.

7.3 Outlook

This section discusses directions for further research to improve upon the results of this work

and provides concluding comments on the applicability of the framework.

Firstly, more research should be directed towards further improving system scalability. Al-

though the proposed framework is sufficient for developing and operating an ML system of

significant size, the validation phase showed, that there is still need for significant improve-

ment. To scale system capacity, the framework relies on a two (alternative) approaches for

initializing and continuously retraining one-class models for anomaly detection. This requires

an effective retraining process that avoids model degradation after retraining. Although the

training process can be largely automated, manual intervention is often necessary. A feasible

alternative may be to separate the anomaly detection and classification tasks by using simple,

static models for anomaly detection and training classification models for all annotated data.

This would shift the training objective away from one-class classification towards conventional

binary classification. Provided effective orchestration of the training pipelines, this could allow

a vastly simpler system. ”It is easier to improve a system that provides adequate performance

at scale than to scale a system that was not designed to grow” [144].

Secondly, researchers should work on additional measures to improve the long-term operability

of the system. The starting point should be a critical examination of the approaches proposed

in this thesis and their suitability for changing requirements as the anomaly detection system

matures. After the system has been in production for some time, understanding of the normal

class will become well-established among SMEs and ML practitioners. As the frequency of an-

notating data and retraining models decreases, it makes sense to construct rule-based models

that formalize this knowledge. This would make it possible to further reduce model complex-

ity. The pattern libraries used by the DM models for classifying objects could serve as an ideal

starting point for the construction of these models - this automatic systematizing of domain

7 CONCLUSION 137

knowledge gathered from user feedback is essentially a free by-product of the DM approach.

The work presented in this thesis provides ML practitioners in the manufacturing domain with

a framework for building large-scale anomaly detection systems for time series data. This

includes dedicated ML algorithm, tools to rapidly annotate large amounts of data as well as

a software system for training and deploying ML models and monitoring their performance

in production. It is likely that some changes to the algorithms may be necessary to make

the framework applicable for a particular setting - however, it is encouraging, to know that

researchers in other domains have followed a similar path of building ”large-scale data mining

systems” [144, 41] to the problem at hand. Perhaps a path towards a systematic approach to

transferring ML technology to the problem of anomaly detection in manufacturing is discernible,

after all.

REFERENCES 138

References
[1] E. Siegel, Models are rarely deployed: An industry-wide failure in machinelearning leadership (2022).

[2] N. Bauer, L. Stankiewicz, M. Jastrow, D. Horn, J. Teubner, K. Kersting, J. Deuse, C. Weihs, Industrial
data science: Developing a qualification concept for machine learning in industrial production (2018).
doi:10.5445/KSP/1000087327/27.

[3] A. Hevner, A three cycle view of design science research, Scandinavian Journal of Information Systems
19 (2) (2007) 87–92.

[4] E. Keogh, M. Pazzani, Scaling up dynamic time warping for datamining applications, in: 6th ACM
SIGKDD international conference on Knowledge discovery and data mining, 2000, pp. 285–289.

[5] A. Mueen, E. Keogh, Q. Zhu, S. Cash, B. Westover, Exact discovery of time series motifs, Proceedings of the
... SIAM International Conference on Data Mining. SIAM International Conference on Data Mining 2009
(2009) 473–484. doi:10.1137/1.9781611972795.41.

[6] T. Schlegl, S. Schlegl, A. Sciberras, N. West, J. Deuse, Margin-based greedy shapelet search for robust
time series classification of imbalanced data, in: IEEE International Conference on Big Data, IEEE, 2021,
pp. 5266–5274.

[7] T. Schlegl, S. Schlegl, A. Sciberras, Greedy shapelet search (2021).
URL https://github.com/papelero/greedy_shapelets

[8] T. Schlegl, S. Schlegl, Adaptive similarity search for large time series archives (2021).
URL https://github.com/papelero/adaptive_search

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich,
Going deeper with convolutions, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 1–9.

[10] T. E. Hedrick, Bickman, Leonard, Rog, Debra, Applied Research Design: A Practical Guide, SAGE
Publications, 1993.

[11] U.S. National Highway Traffic Safety Administration, Annual recall report (2020).

[12] M. Held, A. Marian, J. Reaves, The auto dinsutry’s growing recall problem - and how to fix it.

[13] K. Hill, D. Maranger Menk, Cooper Adam, Contribution of the automotive industry to the economies of
all fifty states and the united states.

[14] H. Bates, M. Holweg, M. Lewis, N. Oliver, Motor vehicle recalls: Trends, patterns and emerging issues,
Omega 35 (2) (2007) 202–210. doi:10.1016/j.omega.2005.05.006.

[15] E. Muralidharan, H. Bapuji, Product recalls: A review of literature (2009).

[16] K. Ahsan, Trend analysis of car recalls: Evidence from the us market, International Journal of Managing
Value and Supply Chains 4 (4) (2013) 1–16. doi:10.5121/ijmvsc.2013.4401.

[17] K. Ahsan, I. Gunawan, Analysis of product recalls: Identification of recall initiators and causes of re-call,
Operations and Supply Chain Management: An International Journal (2014) 97–106doi:10.31387/
oscm0180115.

[18] C.-F. Chi, D. Sigmund, M. O. Astardi, Classification scheme for root cause and failure modes and effects
analysis (fmea) of passenger vehicle recalls, Reliability Engineering & System Safety 200 (2020) 106929.
doi:10.1016/j.ress.2020.106929.

[19] H.-J. Lenz, P.-T. Wilrich (Eds.), Frontiers in Statistical Quality Control 7, Physica-Verlag HD, Heidelberg,
2004. doi:10.1007/978-3-7908-2674-6.

[20] D. Pelleg, A. Moore, Active learning for anomaly and rare-category detection, in: L. Saul, Y. Weiss,
L. Bottou (Eds.), Advances in Neural Information Processing Systems 17, The MIT Press, 2005.

[21] Y. Pan, Heading toward artificial intelligence 2.0, Engineering 2 (4) (2016) 409–413. doi:10.1016/J.
ENG.2016.04.018.

[22] J. Grotepass, J. Diemer, Artificial intelligence in industrial automation.

[23] J. Bughin, E. Hauzan, S. Ramaswamy, M. Chui, T. Alles, P. Dahlstroem, N. Henke, M. Trench, Artificial
intelligence - the next digital frontier: Discussion paper.

https://doi.org/10.5445/KSP/1000087327/27
https://doi.org/10.1137/1.9781611972795.41
https://github.com/papelero/greedy_shapelets
https://github.com/papelero/greedy_shapelets
https://github.com/papelero/adaptive_search
https://github.com/papelero/adaptive_search
https://doi.org/10.1016/j.omega.2005.05.006
https://doi.org/10.5121/ijmvsc.2013.4401
https://doi.org/10.31387/oscm0180115
https://doi.org/10.31387/oscm0180115
https://doi.org/10.1016/j.ress.2020.106929
https://doi.org/10.1007/978-3-7908-2674-6
https://doi.org/10.1016/J.ENG.2016.04.018
https://doi.org/10.1016/J.ENG.2016.04.018

REFERENCES 139

[24] The global ai agenda.

[25] D. Lieber, M. Stolpe, B. Konrad, J. Deuse, K. Morik, Quality prediction in interlinked manufacturing pro-
cesses based on supervised & unsupervised machine learning, in: P. Cunha (Ed.), 46th CIRP Conference on
Manufacturing Systems, Vol. 7, Elsevier Procedia, 2013, pp. 193–198.

[26] R.-J. Hsieh, J. Chou, C.-H. Ho, Unsupervised online anomaly detection on multivariate sensing time series
data for smart manufacturing, in: 12th Conference on Service-Oriented Computing and Applications
(SOCA), IEEE, 2019, pp. 90–97.

[27] N. Laptev, S. Amizadeh, I. Flint, Generic and scalable framework for automated time-series anomaly
detection, in: L. Cao, C. Zhang, T. Joachims, G. Webb, D. D. Margineantu, G. Williams (Eds.), 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 15), ACM
Press, New York, New York, USA, 2015, pp. 1939–1947.

[28] B. Lindemann, F. Fesenmayr, N. Jazdi, M. Weyrich, Anomaly detection in discrete manufacturing using
self-learning approaches, Procedia CIRP 79 (2019) 313–318.

[29] G. A. Susto, M. Terzi, A. Beghi, Anomaly detection approaches for semiconductor manufacturing, Pro-
cedia Manufacturing 11 (2017) 2018–2024.

[30] X. Wang, J. Lin, N. Patel, M. Braun, A self-learning and online algorithm for time series anomaly
detection, with application in cpu manufacturing, in: S. Mukhopadhyay, C. Zhai, E. Bertino, F. Crestani,
J. Mostafa, J. Tang, L. Si, X. Zhou, Y. Chang, Y. Li, P. Sondhi (Eds.), 25th ACM International on
Conference on Information and Knowledge Management (CIKM 2016), ACM Press, New York, NY,
USA, 2016, pp. 1823–1832.

[31] L. Baier, F. Jöhren, S. Seebacher, Challenges in the deployment and operation of machine learning in
practice, in: Proceedings of the 27th European Conference on Information Systems (ECIS), 2019.

[32] T. Davenport, K. Malone, Deployment as a critical business data science discipline, Harvard Data Science
Review 3 (1) (2021). doi:10.1162/99608f92.90814c32.

[33] 2020 state of enterprise machine learning.

[34] S. Ransbotham, S. Khodabandeh, D. Kiron, F. Candelon, M. Chu, B. Lafountain, Expanding ai’s impact
with organizational learning: Finding from the 2020 artificial intelligence global executive study and
research project (2020).

[35] D. E. Stokes, Pasteur’s quadrant: Basic Science and Technological Innovation, Brookings Institutional
Press, 1997.

[36] Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary,
Michael Young, Jean-François Crespo, Dan Dennison, Hidden technical debt in machine learning systems
(2015).

[37] D. Dahlmeier, On the challenges of translating nlp research into commercial products, in: Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics, Association for Computational
Linguistics, 2017, pp. 92–96.

[38] M. Kim, T. Zimmermann, R. DeLine, A. Begel, Data scientists in software teams: State of the art and
challenges, IEEE Transactions on Software Engineering (2017) 1024–1038.

[39] S. Baškarada, A. Koronios, Unicorn data scientist: the rarest of breeds, Program 51 (1) (2017) 65–74.
doi:10.1108/PROG-07-2016-0053.

[40] K. Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed
Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law, Kevin Lee, Jason Lu, Pieter Noordhuis, Misha
Smelyanskiy, Liang Xiong, Xiaodong Wang, Applied machine learning at facebook: A datacenter infras-
tructure perspective, 2018 IEEE International Symposium on High Performance Computer Architecture
(2018).

[41] D. Sculley, M. E. Otey, M. Pohl, B. Spitznagel, J. Hainsworth, Y. Zhou, Detecting adversarial adver-
tisements in the wild, in: C. Apte, J. Ghosh, P. Smyth (Eds.), Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining - KDD ’11, ACM Press, New York,
New York, USA, 2011, p. 274. doi:10.1145/2020408.2020455.

https://doi.org/10.1162/99608f92.90814c32
https://doi.org/10.1108/PROG-07-2016-0053
https://doi.org/10.1145/2020408.2020455

REFERENCES 140

[42] S. Tata, A. Popescul, M. Najork, M. Colagrosso, J. Gibbons, A. Green, A. Mah, M. Smith, D. Garg,
C. Meyer, R. Kan, Quick access: Building a smart experience for google drive, in: S. Matwin, S. Yu, F. Fa-
rooq (Eds.), Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, New York, NY, USA, 2017, pp. 1643–1651. doi:10.1145/3097983.3098048.

[43] P. Covington, J. Adams, E. Sargin, Deep neural networks for youtube recommendations, in: S. Sen, W.
Geyer, J. Freyne, P. Castells (Eds.), Proceedings of the 10th ACM Conference on Recommender
Systems, ACM, New York, NY, USA, 2016, pp. 191–198. doi:10.1145/2959100.2959190.

[44] B. Williams, Automated Vehicles and MaaS: Removing the Barriers, John Wiley & Sons, 2021.

[45] H. Kallstrom, Raw materials – the biggest cost driver in the auto industry.

[46] A. Shyam, Automakers to benefit from softening steel prices, duty cuts on fuels.

[47] R. M. Cuenca, L. L. Gaines, A. D. Vyas, Evaluation of electric vehicle production and operating costs.

[48] A. Vyas, D. Santini, R. Cuenca, Comparison of indirect cost multipliers for vehicle manufacturing.

[49] R. D. Banker, S. M. Datar, D. Zweig, Software complexity and maintainability, in: J. I. DeGross, J. C.
Henderson, B. R. Konsynski (Eds.), Proceedings of the tenth international conference on Information
Systems - ICIS ’89, ACM Press, New York, New York, USA, 1989, pp. 247–255. doi:10.1145/75034.
75056.

[50] A. Paleyes, R.-G. Urma, N. Lawrence, Challenges in deploying machine learning: a survey of case studies,
in: The ML-Retrospectives, Surveys & Meta-Analyses Workshop, NeurIPS 2020, 2020.

[51] S. Sabbeh, Machine-learning techniques for customer retention: A comparative study, International Jour-
nal of Advanced Computer Science and Applications 9 (2) (2018). doi:10.14569/IJACSA.2018.090238.

[52] F. Gharibian, A. Ghorbani, Comparative study of supervised machine learning techniques for intrusion
detection, in: Fifth Annual Conference on Communication Networks and Services Research (CNSR ’07),
IEEE, 2007, pp. 350–358. doi:10.1109/CNSR.2007.22.

[53] J. Hagenauer, M. Helbich, A comparative study of machine learning classifiers for modeling travel mode
choice, Expert Systems with Applications 78 (2017) 273–282. doi:10.1016/j.eswa.2017.01.057.

[54] C. Hill, R. Bellamy, T. Erickson, M. Burnett, Trials and tribulations of developers of intelligent systems:
A field study, in: IEEE Symposium on Visual Languages and Human-Centric Computing, IEEE, 2016.

[55] R. Phonson, B. Foote, Designing reusable classes, Journal of Object-Oriented Programming 1 (2) (1988)
22–35.

[56] L. Cao, Data science: A comprehensive overview, ACM Computing Surveys 50 (3) (2017) 1–42. doi:
10.1145/3076253.

[57] F. Provost, R. Kohavi, Guest editors’ introduction: On applied research in machine learning, Machine
Learning 30 (1998) 127–132.

[58] C. Zeng, S. Li, Q. Li, J. Hu, J. Hu, A survey on machine reading comprehension—tasks, evaluation
metrics and benchmark datasets, Applied Sciences 10 (21) (2020) 7640. doi:10.3390/app10217640.

[59] J. Dunietz, G. Burnham, A. Bharadwaj, O. Rambow, J. Chu-Carroll, D. Ferrucci, To test machine
comprehension, start by defining comprehension, in: D. Jurafsky, J. Chai, N. Schluter, J. Tetreault (Eds.),
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Association
for Computational Linguistics, Stroudsburg, PA, USA, 2020, pp. 7839–7859. doi:10.18653/v1/2020.
acl-main.701.

[60] H. Kerner, Too many ai researchers think real-world problems are not relevant: The community’s hyper-
focus on novel methods ignores what’s really important., MIT Technology Review (2020).

[61] Y. Bengio, Time to rethink the publication process in machine learning (2020).

[62] J. Dunietz, The field of natural language processing is chasing the wrong goal, MIT Technology Review
(2020).

[63] Z. C. Lipton, J. Steinhardt, Troubling trends in machine learning scholarship: Some ml papers suffer from
flaws that could mislead the public and stymie future research (2019).

[64] H. Kara, K. Gergen, M. Gergen, Creative research methods in the social sciences: A practical guide,
Policy Press, Bristol, 2015.

https://doi.org/10.1145/3097983.3098048
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1145/75034.75056
https://doi.org/10.1145/75034.75056
https://doi.org/10.14569/IJACSA.2018.090238
https://doi.org/10.1109/CNSR.2007.22
https://doi.org/10.1016/j.eswa.2017.01.057
https://doi.org/10.1145/3076253
https://doi.org/10.1145/3076253
https://doi.org/10.3390/app10217640
https://doi.org/10.18653/v1/2020.acl-main.701
https://doi.org/10.18653/v1/2020.acl-main.701

REFERENCES 141

[65] A. Hevner, S. March, J. Park, S. Ram, Design science in information systems research, Management
Information Systems Quarterly 28 (1) (2004) 75–105.

[66] P. Offermann, S. Blom, M. Schönherr, U. Bub, Artifact types in information systems design science – a
literature review, in: D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, R. Winter, J. L. Zhao, S. Aier (Eds.), Global Perspectives on Design Science Research, Vol.
6105 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp.
77–92.

[67] A. Dresch, D. P. Lacerda, J. A. V. Antunes Jr, Design Science Research, Springer International Publishing,
Cham, 2015.

[68] A. Hevner, S. Chatterjee, Design Research in Information Systems: Theory and Practice, Springer, 2010.

[69] J. Iivari, A paradigmatic analysis of information systems as a design science, Scandinavian Journal of
Information Systems 19 (2) (2007) 39–64.

[70] K. Pfeffers, M. Rothenberger, T. Tuunanen, R. Vaezi, Design science research evaluation, in: International
Conference on Design Science Research in Information Systems, Springer, 2012, pp. 398–410.

[71] K. M. Adams, Nonfunctional Requirements in Systems Analysis and Design, Vol. 28, Springer Interna-
tional Publishing, Cham, 2015. doi:10.1007/978-3-319-18344-2.

[72] J. Goodenough, C. Weinstock, On system scalability: Performance-critical systems.

[73] E. Weyuker, A. Avritzer, A metric to predict software scalability, in: D. Williams (Ed.), Proceedings of
the 8th IEEE Symposium on Software Metrics, IEEE, 2002.

[74] A. Bagnall, J. Lines, A. Bostrom, J. Large, E. Keogh, The great time series classification bake off: a
review and experimental evaluation of recent algorithmic advances, Data mining and knowledge discovery 31
(3) (2017) 606–660. doi:10.1007/s10618-016-0483-9.

[75] J. Zakaria, A. Mueen, E. Keogh, Clustering time series using unsupervised-shapelets, in: 2012 IEEE 12th
International Conference on Data Mining, IEEE, 2012, pp. 785–794. doi:10.1109/ICDM.2012.26.

[76] M. Ram (Ed.), Safety and Reliability Modeling and its Applications: Reliability and maintainability of
safety instrumented system, Advances in Reliability Science, Elsevier, 2021.

[77] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey on concept drift adaptation,
ACM Computing Surveys 46 (4) (2014) 1–37.

[78] J. Wang, B. Guo, L. Chen, Human-in-the-loop machine learning: A macro-micro perspective (2022).

[79] S. Amershi, M. Cakmak, W. B. Knox, T. Kulesza, Power to the people: The role of humans in interactive
machine learning, AI Magazine 35 (4) (2015) 105–120. doi:10.1609/aimag.v35i4.2513.

[80] J. J. Dudley, P. O. Kristensson, A review of user interface design for interactive machine learning, ACM
Transactions on Interactive Intelligent Systems 8 (2) (2018) 1–37. doi:10.1145/3185517.

[81] S. Teso, K. Kersting, "why should i trust interactive learners?" explaining interactive queries of classifiers
to users. doi:NIPS.
URL http://arxiv.org/pdf/1805.08578v1

[82] D. V. Carvalho, E. M. Pereira, J. S. Cardoso, Machine learning interpretability: A survey on methods
and metrics, Electronics 8 (8) (2019) 832. doi:10.3390/electronics8080832.

[83] Y. Lou, R. Caruana, J. Gehrke, Intelligible models for classification and regression, in: 18th ACM
SIGKDD international conference on Knowledge discovery and data mining (KDD 12), ACM, 2012.

[84] S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne, M. Alzantot, F. Cerutti, Srivastava, Mani, A.
Preece, S. Julier, R. Rao, T. Kelley, D. Braines, M. Sensoy, C. Willis, P. Gurram, Interpretability of deep
learning models: A survey of results, in: Symposia and Workshops on Ubiquitous, Autonomic and Trusted
Computing, UIC-ATC, IEEE, 2017.

[85] Q.-s. Zhang, S.-c. Zhu, Visual interpretability for deep learning: a survey, Frontiers of Information Tech-
nology & Electronic Engineering 19 (1) (2018) 27–39.

[86] A. Chandola, A. Banarjee, V. Kumar, Anomaly detection: A survey, ACM Computing Surveys (3) (2009).

https://doi.org/10.1007/978-3-319-18344-2
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1109/ICDM.2012.26
https://doi.org/10.1609/aimag.v35i4.2513
https://doi.org/10.1145/3185517
http://arxiv.org/pdf/1805.08578v1
http://arxiv.org/pdf/1805.08578v1
https://doi.org/NIPS
http://arxiv.org/pdf/1805.08578v1
https://doi.org/10.3390/electronics8080832

REFERENCES 142

[87] C. Perlich, B. Dalessandro, T. Raeder, O. Stitelman, F. Provost, Machine learning for targeted dis-play
advertising: transfer learning in action, Machine Learning 95 (1) (2014) 103–127. doi:10.1007/
s10994-013-5375-2.

[88] C.-A. Brust, C. Käding, J. Denzler, Active and incremental learning with weak supervision, KI - Kün-
stliche Intelligenz 34 (2) (2020) 165–180. doi:10.1007/s13218-020-00631-4.
URL http://arxiv.org/pdf/2001.07100v1

[89] B. Settles, Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Pub-
lishers, 2012.

[90] S. Das, W.-K. Wong, T. Dietterich, A. Fern, A. Emmott, Incorporating expert feedback into active
anomaly discovery, in: 2016 IEEE 16th International Conference on Data Mining (ICDM), IEEE, 2016.

[91] C. Rudin, K. L. Wagstaff, Machine learning for science and society, Machine Learning 95 (1) (2014) 1–9.

[92] J. Shieh, E. Keogh, isax: Indexing and mining terabyte sized time series, in: Proceedings of the 14th
ACMKDD International Conference on Knowledge Discovery & Data Mining, 2008, pp. 623–632.

[93] M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, E. Keogh, Generalizing dtw to the multi-dimensional case
requires an adaptive approach, Data mining and knowledge discovery 31 (1) (2017) 1–31. doi:10.1007/
s10618-016-0455-0.

[94] T. Giorgino, Computing and visualizing dynamic time warping alignments in r: The dtw package, Journal
of Statistical Software 31 (7) (2009). doi:10.18637/jss.v031.i07.

[95] I. P. Androulakis, Selecting maximally informative genes, Computers & Chemical Engineering 29 (3)
(2005) 535–546. doi:10.1016/j.compchemeng.2004.08.037.

[96] G. E. Batista, B. Campana, E. Keogh, Classification of live moths combining texture, color and shape
primitives, in: 9th International Conference on Machine Learning and Applications, IEEE, 2010, pp.
903–906.

[97] S. Gharghabi, S. Imani, A. Bagnall, A. Darvishzadeh, E. Keogh, Matrix profile xii: Mpdist: A novel time
series distance measure to allow data mining in more challenging scenarios, in: 2018 IEEE International
Conference on Data Mining (ICDM), IEEE, 2018, pp. 965–970. doi:10.1109/ICDM.2018.00119.

[98] M. Riesenhuber, T. Poggio, Models of object recognition, Nature Neuroscience (3) (2000) 1199–1204.

[99] W. Shugen, Framework of pattern recognition model based on the cognitive psychology, Geo-spatial
Information Science 5 (2) (2002).

[100] F. Bischoff, F. Cancino, J. Green, T. Marrs, A. Ouyang, A. van Benschoten, The matrix profile foundation
(2020).
URL https://matrixprofile.org/

[101] H. A. Dau, E. Keogh, Matrix profile v: A generic technique to incorporate domain knowledge into motif
discovery, in: S. Matwin, S. Yu, F. Farooq (Eds.), Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, 2017, pp. 125–134.
doi:10.1145/3097983.3097993.

[102] Y. Zhu, A. Mueen, E. Keogh, Matrix profile ix: Admissible time series motif discovery with missing data,
IEEE Transactions on Knowledge and Data Engineering (2018).

[103] K. Chakrabarti, E. Keogh, S. Mehotra, M. Pazzani, Locally adaptive dimensionality reduction for indexing
large time series databases, ACM Transactions on Database Systems 27 (2) (2002) 188–228.

[104] I. Assent, R. Krieger, F. Afschari, T. Seidl, The ts-tree: Efficient time series search and retrieval (2008).

[105] M. Christ, A. Kempa-Liehr, M. Feindt, Distributed and parallel time series feature extraction for industrial
big data applications, Neurocomputing (2017).

[106] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, E. Keogh, Querying and mining of time series data:
Experimental comparison of representations and distance measures, in: P. Buneman, B. C. Ooi, K. Ross,
G. Weber (Eds.), Proceedings of the VLDB Endowment, ACM, New York, NY, United States, 2008, pp.
1542–1552.

[107] G. E. Batista, X. Wang, E. J. Keogh, A complexity-invariant distance measure for time series, in: B. Liu,
H. Liu, C. Clifton, T. Washio, C. Kamath (Eds.), Proceedings of the 2011 SIAM International Conference
on Data Mining, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2011, pp. 699–710.
doi:10.1137/1.9781611972818.60.

https://doi.org/10.1007/s10994-013-5375-2
https://doi.org/10.1007/s10994-013-5375-2
http://arxiv.org/pdf/2001.07100v1
https://doi.org/10.1007/s13218-020-00631-4
http://arxiv.org/pdf/2001.07100v1
https://doi.org/10.1007/s10618-016-0455-0
https://doi.org/10.1007/s10618-016-0455-0
https://doi.org/10.18637/jss.v031.i07
https://doi.org/10.1016/j.compchemeng.2004.08.037
https://doi.org/10.1109/ICDM.2018.00119
https://matrixprofile.org/
https://matrixprofile.org/
https://doi.org/10.1145/3097983.3097993
https://doi.org/10.1137/1.9781611972818.60

REFERENCES 143

[108] M. Feurer, J. T. Springberg, A. Klein, M. Blum, K. Eggensperger, F. Hutter, Efficient and robust au-
tomated machine learning, in: Proceedings of the 28th International Conference on Neural Information
Processing Systems, MIT Press, Cambrdige, MA, USA, 2015, pp. 2755–2763.

[109] J. Deuse, M. Wiegand, K. Weisner, Continuous process monitoring through ensemble-based anomaly de-
tection, in: N. Bauer, K. Ickstadt, K. Lübke, G. Szepannek, H. Trautmann, M. Vichi (Eds.), Applications
in Statistical Computing: Studies in Classification, Data Analysis, and Knowledge Organization, Springer
Nature Switzerland, Cham, Switzerland, 2019, pp. 289–304.

[110] T. Ergen, S. S. Kozat, Unsupervised anomaly detection with lstm neural networks, IEEE transactions on
neural networks and learning systems 31 (8) (2020) 3127–3141. doi:10.1109/TNNLS.2019.2935975.

[111] G. Pang, Chunhua Shen, Longbing Cao, and Anton van den Hengel, Deep learning for anomaly detection:
A review (2020).

[112] D. Kim, H. Yang, M. S. Chung, Squeezed convolutional variational autoencoder for unsupervised anomaly
detection in edge device industrial internet of things, in: 4th International Conference on Information and
Computer Technologies (ICICT), 2018, pp. 67–71.

[113] J. Pereira, M. Silveira, Unsupervised anomaly detection in energy time series data using variational
recurrent autoencoders with attention, in: 2018 17th IEEE International Conference on Machine Learning
and Applications (ICMLA), IEEE, 2018, pp. 1275–1282. doi:10.1109/ICMLA.2018.00207.

[114] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, T. Soderstrom, Detecting spacecraft anomalies
using lstms and nonparametric dynamic thresholding 60 (2018) 387–395. doi:10.1145/3219819.3219845.
URL http://arxiv.org/pdf/1802.04431v3

[115] T. Kieu, B. Yang, C. Guo, C. S. Jensen, Outlier detection for time series with recurrent autoencoder
ensembles, in: T. Eiter, S. Kraus (Eds.), Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence Organization,
California, 2019, pp. 2725–2732. doi:10.24963/ijcai.2019/378.

[116] J. Liu, J. Guo, P. Orlik, M. Shibata, D. Nakahara, S. Mii, M. Takac, Anomaly detection in manufacturing
systems using structured neural networks, in: Y. Liu, Y. Wang (Eds.), 13th World Congress on Intelligent
Control and Automation (WCICA 2018), IEEE, 2018, pp. 175–180.

[117] T. Schlegl, S. Schlegl, J. Deuse, Detektion von anomalien in automatisierten schraubprozessen: Er-
probung von autoencodern zum erlernen des normalzustandes von drehmomentverläufen, Zeitschrift für
wirtschaftlichen Fabrikbetrieb (5) (2020).

[118] F. Hohman, H. Park, C. Robinson, D. H. Chau, Summit: Scaling deep learning interpretability by
visualizing activation and attribution summarizations, IEEE Transactions on Visualization and Computer
Graphics (2017).

[119] M. Kahng, P. Andrews, A. Kalro, D. H. Chau, Visual exploration of industry-scale deep neural network
models, IEEE Transactions on Visualization and Computer Graphics (2019).

[120] J. Gao, X. Song, Q. Wen, P. Wang, L. Sun, H. Xu, Robusttad: Robust time series anomaly detection via
decomposition and convolutional neural networks. doi:paper.
URL http://arxiv.org/pdf/2002.09545v2

[121] M. Munir, S. A. Siddiqui, M. A. Chattha, A. Dengel, S. Ahmed, Fusead: Unsupervised anomaly detection in
streaming sensors data by fusing statistical and deep learning models, Sensors (Basel, Switzerland) 19
(11) (2019). doi:10.3390/s19112451.

[122] M. Munir, S. A. Siddiqui, A. Dengel, S. Ahmed, Deepant: A deep learning approach for unsupervised
anomaly detection in time series, IEEE Access 7 (2019) 1991–2005.

[123] X. Zhou, Y. Hu, W. Liang, J. Ma, Q. Jin, Variational lstm enhanced anomaly detection for industrial big
data, IEEE Transactions on Industrial Informatics 17 (5) (2021) 3469–3477. doi:10.1109/TII.2020.
3022432.

[124] M. Maggipinto, A. Beghi, G. Antonio Susto, A deep learning-based approach to anomaly detection with 2-
dimensional data in manufacturing, in: 17th IEEE International Conference on Industrial Informatics
(INDIN19), IEEE, 2019, pp. 187–192.

[125] N. Madiraju, S. Sadat, D. Fisher, H. Karamabadi, Deep temporal clustering: Fully unsupervised learning of
time-domain features, in: Y. Bengio, Y. LeCun (Eds.), 6th International conference on Learning
Representations (ICLR), 2018.

https://doi.org/10.1109/TNNLS.2019.2935975
https://doi.org/10.1109/ICMLA.2018.00207
http://arxiv.org/pdf/1802.04431v3
http://arxiv.org/pdf/1802.04431v3
https://doi.org/10.1145/3219819.3219845
http://arxiv.org/pdf/1802.04431v3
https://doi.org/10.24963/ijcai.2019/378
http://arxiv.org/pdf/2002.09545v2
http://arxiv.org/pdf/2002.09545v2
https://doi.org/paper
http://arxiv.org/pdf/2002.09545v2
https://doi.org/10.3390/s19112451
https://doi.org/10.1109/TII.2020.3022432
https://doi.org/10.1109/TII.2020.3022432

REFERENCES 144

[126] S. Zhao, J. Song, S. Ermon, Learning hierarchical features from deep generative models, in: Proceedings
of the 34th International Conference on Machine Learning, ACM, 2017, pp. 4091–4099.

[127] L. Li, J. Yan, H. Wang, Y. Jin, Anomaly detection of time series with smoothness-inducing sequential
variational auto-encoder. doi:IEEE.
URL http://arxiv.org/pdf/2102.01331v1

[128] A. Nguyen, J. Yosinski, J. Clune, Understanding neural networks via feature visualization: A survey, in:
W. Samek, G. Montavon, A. Vedaldi, L. Hansen, K. Müller (Eds.), Explainable AI: Interpreting,
Explaining and Visualizing Deep Learning, Springer, Cham, Switzerland, 2019, pp. 55–76.

[129] Q. Zhang, J. Wu, H. Yang, Y. Tian, C. Zhang, Unsupervised feature learning from time series, in: 25th
International Joint Conference on Artificial Intelligence (IJCAI-16), IEEE, 2016, pp. 2322–2328.

[130] J. Pereira, Margarida Silveira, 2019 IEEE International Conference on Big Data and Smart Computing
(BigComp): Proceedings : 27 February-2 March 2019, Kyōto, Japan, IEEE, Piscataway, NJ, 2019.
URL https://ieeexplore.ieee.org/servlet/opac?punumber=8671661

[131] P. Perera, V. Patel, Learning deep features for one-class classification, IEEE Transactions on Image
Processing (2019).

[132] I. Golan, R. El-Yaniv, Deep anomaly detection using geometric transformations.
URL http://arxiv.org/pdf/1805.10917v2

[133] H. Hemati, M. Schreyer, D. Borth, Continual learning for unsupervised anomaly detection in continuous
auditing of financial accounting data. doi:AAAI.
URL http://arxiv.org/pdf/2112.13215v2

[134] S. Ahmad, A. Lavin, S. Purdy, Z. Agha, Unsupervised real-time anomaly detection for streaming data,
Neurocomputing 262 (2017) 134–147. doi:10.1016/j.neucom.2017.04.070.

[135] S. Saurav, P. Malhotra, V. TV, N. Gugulothu, L. Vig, P. Agarwal, G. Shroff, Online anomaly detection
with concept drift adaptation using recurrent neural networks, in: S. Ranu, N. Ganguly, R. Ramakrishnan,
S. Sarawagi, S. Roy (Eds.), Proceedings of the ACM India Joint International Conference on Data Science
and Management of Data (COMAD18), ACM Press, New York, New York, USA, 2018, pp. 78–87.

[136] A. Stocco, P. Tonella, Towards anomaly detectors that learn continuously, in: 2020 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), IEEE, 2020, pp. 201–208. doi:
10.1109/ISSREW51248.2020.00073.

[137] V. M. Souza, R. G. Rossi, G. E. Batista, S. O. Rezende, Unsupervised active learning techniques for
labeling training sets: An experimental evaluation on sequential data, Intelligent Data Analysis 21 (5)
(2017) 1061–1095. doi:10.3233/IDA-163075.

[138] K. Doshi, Y. Yilmaz, Continual learning for anomaly detection in surveillance videos. doi:CVPR.
URL http://arxiv.org/pdf/2004.07941v1

[139] G. Chen, Z. Ge, Hierarchical bayesian network modeling framework for large-scale process monitoring and
decision making, IEEE Transactions on Control Systems Technology 28 (2) (2020) 671–679. doi:
10.1109/TCST.2018.2882562.

[140] N. Davis, G. Raina, K. Jagannathan, A framework for end-to-end deep learning-based anomaly detection
in transportation networks, Transportation Research Interdisciplinary Perspectives 5 (2020).

[141] Y. Li, D. Zha, P. K. Venugopal, N. Zou, X. Hu, Pyodds: An end-to-end outlier detection system with
automated machine learning. doi:2020.
URL http://arxiv.org/pdf/2003.05602v1

[142] N. Stojanovic, M. Dinic, L. Sotjanovic, A data-driven approach for multivariate contextualized anomaly
detection: industry, in: J.-Y. Nie, Z. Obradovic, T. Suzumura, R. Ghosh, R. Nambiar, C. Wang (Eds.),
2017 IEEE International Conference on Big Data, IEEE, Piscataway, NJ, 2017, pp. 1560–1570.

[143] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang, J. Tong, Q. Zhang, Time-series
anomaly detection service at microsoft, in: A. Teredesai, V. Kumar, Y. Li, R. Rosales, E. Terzi, G. Karypis
(Eds.), Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, ACM, New York, NY, USA, 2019, pp. 3009–3017. doi:10.1145/3292500.3330680.

http://arxiv.org/pdf/2102.01331v1
http://arxiv.org/pdf/2102.01331v1
https://doi.org/IEEE
http://arxiv.org/pdf/2102.01331v1
https://ieeexplore.ieee.org/servlet/opac?punumber=8671661
https://ieeexplore.ieee.org/servlet/opac?punumber=8671661
https://ieeexplore.ieee.org/servlet/opac?punumber=8671661
http://arxiv.org/pdf/1805.10917v2
http://arxiv.org/pdf/1805.10917v2
http://arxiv.org/pdf/2112.13215v2
http://arxiv.org/pdf/2112.13215v2
https://doi.org/AAAI
http://arxiv.org/pdf/2112.13215v2
https://doi.org/10.1016/j.neucom.2017.04.070
https://doi.org/10.1109/ISSREW51248.2020.00073
https://doi.org/10.1109/ISSREW51248.2020.00073
https://doi.org/10.3233/IDA-163075
http://arxiv.org/pdf/2004.07941v1
https://doi.org/CVPR
http://arxiv.org/pdf/2004.07941v1
https://doi.org/10.1109/TCST.2018.2882562
https://doi.org/10.1109/TCST.2018.2882562
http://arxiv.org/pdf/2003.05602v1
http://arxiv.org/pdf/2003.05602v1
https://doi.org/2020
http://arxiv.org/pdf/2003.05602v1
https://doi.org/10.1145/3292500.3330680

REFERENCES 145

[144] T. Raeder, O. Stitelman, B. Dalessandro, C. Perlich, F. Provost, Design principles of massive, robust
prediction systems, in: Q. Yang, D. Agarwal, J. Pei (Eds.), Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining - KDD ’12, ACM Press, New York,
New York, USA, 2012, p. 1357. doi:10.1145/2339530.2339740.

[145] T. Rakthanmanon, E. Keogh, Fast shapelets: A scalable algorithm for discovering time series shapelets,
in: J. Ghosh, Z. Obradovic, J. Dy, Z.-H. Zhou, C. Kamath, S. Parthasarathy (Eds.), Proceedings of the
2013 SIAM International Conference on Data Mining, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2013, pp. 668–676. doi:10.1137/1.9781611972832.74.

[146] L. Ye, E. Keogh, Time series shapelets: a novel technique that allows accurate, interpretable and fast
classification, Data mining and knowledge discovery 22 (1-2) (2011) 149–182.

[147] S. Imani, F. Madrid, W. Ding, S. Crouter, E. Keogh, Matrix profile xiii: Time series snippets: A new
primitive for time series data mining, in: 2018 IEEE International Conference on Big Knowledge (ICBK),
IEEE, 2018.

[148] L. Beggel, B. X. Kausler, M. Schiegg, M. Pfeiffer, B. Bischl, Time series anomaly detection based on
shapelet learning, Computational Statistics 34 (3) (2019) 945–976. doi:10.1007/s00180-018-0824-9.

[149] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva, A. Mueen, E. Keogh,
Matrix profile i: All pairs similarity joins for time series: A unifying view that includes motifs, discords
and shapelets, in: 2016 IEEE 16th International Conference on Data Mining (ICDM), IEEE, 2016, pp.
1317–1322. doi:10.1109/ICDM.2016.0179.

[150] A. Dau, D. Silva, F. Petitjean, G. Forestier, A. Bagnall, E. Keogh, Judicious setting of dynamic time
warping’s window width allows more accurate classification of time series, in: 2017 IEEE International
Conference on Big Data, IEEE, 2017, pp. 917–922.

[151] E. Keogh, Indexing and mining time series data, in: S. Sekhar, H. Xiong (Eds.), Encyclopedia of GIS,
Springer, Boston, Massachusetts, USA, 2008, pp. 493–497.

[152] E. Keogh, M. Pazzani, Relevance feedback retrieval of time series data, in: F. Gey, M. Hearst, R. Tong
(Eds.), Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in
information retrieval, ACM, New York, NY, USA, 1999, pp. 183–190.

[153] J. Lin, E. Keogh, S. Lonardi, P. Patel, Finding motifs in time series (2002).

[154] C.-C. M. Yeh, E. van Herle, E. Keogh, Matrix profile iii: The matrix profile allows visualization of
salient subsequences in massive time series, in: 2016 IEEE 16th International Conference on Data Mining
(ICDM), IEEE, 2016.

[155] J. Klemming, Ucr dtw (2018).
URL https://github.com/klon/ucrdtw

[156] S. Gharghabi, S. Imani, A. Bagnall, A. Darvishzadeh, E. Keogh, An ultra-fast time series distance measure to
allow data mining in more complex real-world deployments, Data Mining and Knowledge Discovery 34 (4)
(2020) 1104–1135. doi:10.1007/s10618-020-00695-8.

[157] K. Kamgar, S. Gharghabi, E. Keogh, Matrix profile xv: Exploiting time series consensus motifs to find
structure in time series sets (2019).

[158] M. Linardi, Y. Zhu, T. Palpanas, E. Keogh, Matrix profile x: Valmod - scalable discovery of variable-
length motifs in data series, in: G. Das, C. Jermaine, P. Bernstein (Eds.), Proceedings of the 2018
International Conference on Management of Data, ACM, New York, NY, USA, 2018, pp. 1053–1066.
doi:10.1145/3183713.3183744.

[159] Y. N. Silva, S. S. Pearson, J. Chon, R. Roberts, Similarity joins: Their implementation and interactions
with other database operators, Information Systems 52 (2015) 149–162. doi:10.1016/j.is.2015.01.
008.

[160] W. Mann, N. Augsten, P. Bouros, An empirical evaluation of set similarity join techniques, Proceedings
of the VLDB Endowment (9) (2016) 636–647.

[161] C. Myers, L. Rabiner, A. Rosenberg, Performance tradeoffs in dynamic time warping algorithms for
isolated word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing 28 (1980)
623–635.

https://doi.org/10.1145/2339530.2339740
https://doi.org/10.1137/1.9781611972832.74
https://doi.org/10.1007/s00180-018-0824-9
https://doi.org/10.1109/ICDM.2016.0179
https://github.com/klon/ucrdtw
https://github.com/klon/ucrdtw
https://doi.org/10.1007/s10618-020-00695-8
https://doi.org/10.1145/3183713.3183744
https://doi.org/10.1016/j.is.2015.01.008
https://doi.org/10.1016/j.is.2015.01.008

REFERENCES 146

[162] H. Sakoe, S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE
Transactions on Acoustics, Speech, and Signal Processing 26 (1) (1978) 43–49. doi:10.1109/TASSP.
1978.1163055.

[163] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Zakaria, E. Keogh,
Searching and mining trillions of time series subsequences under dynamic time warping, in: Q. Yang
(Ed.), Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data
mining, ACM, New York, NY, USA, 2012, pp. 262–270.

[164] J. Paparrizos, L. Gravano, k-shape: Efficient and accurate clustering of time series, ACM SIGMOD
Record 45 (2016) 69–76. doi:10.1145/2949741.2949758.

[165] J. Gu, X. Jin, A Simple Approximation for Dynamic Time Warping Search in Large Time Series Database,
2006. doi:10.1007/11875581{\textunderscore}101.

[166] J. Alon, V. Athitsos, Q. Yuan, S. Sclaroff, A unified framework for gesture recognition and spatiotemporal
gesture segmentation, IEEE transactions on pattern analysis and machine intelligence 31 (9) (2009) 1685–
1699. doi:10.1109/TPAMI.2008.203.

[167] T. Schlegl, S. Schlegl, D. Tomaselli, N. West, J. Deuse, Adaptive similarity search for the retrieval of rare
events from large time series databases, Journal of Advanced Engineering Informatics 52 (C) (2022).

[168] E. Keogh, Exact indexing of dynamic time warping, Knowledge and Information Systems 62 (12) (2005)
358–386.

[169] L. Rabiner, B.-H. Juang, Fundamentals of Speech Recognition, Prentice-Hall, Inc, USA, 1993.

[170] S. Gharghabi, Y. Ding, C.-C. M. Yeh, K. Kamgar, L. Ulanova, E. Keogh, Matrix profile viii: Domain ag-
nostic online semantic segmentation at superhuman performance levels, in: 17th International Conference on
Data Mining (ICDM), IEEE, 2017, pp. 117–126.

[171] S. Imani, F. Madrid, W. Ding, S. E. Crouter, E. Keogh, Introducing time series snippets: a new primitive for
summarizing long time series, Data Mining and Knowledge Discovery 34 (6) (2020) 1713–1743. doi:
10.1007/s10618-020-00702-y.

[172] M. Arul, A. Kareem, Applications of shapelet transform to time series classification of earthquake, wind
and wave data, Engineering Structures 228 (2021) 111564. doi:10.1016/j.engstruct.2020.111564.

[173] C. Ji, S. Liu, C. Yang, L. Pan, L. Wu, X. Meng, A shapelet selection algorithm for time series classification:
New directions, Procedia Computer Science 129 (2018) 461–467. doi:10.1016/j.procs.2018.03.025.

[174] J. Grabocka, N. Schilling, M. Wistuba, L. Schmidt-Thieme, Learning time-series shapelets, in: S. Mac-
skassy, C. Perlich, J. Leskovec, W. Wang, R. Ghani (Eds.), 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, New York, NY, USA, 2017, pp. 392–401.

[175] C. Shannon, The mathematical theory of communication, Bell System Technical Journal 27 (3) (1948)
379–423.

[176] L. Ye, E. Keogh, Time series shapelets: A new primitive for data mining, in: J. Elder (Ed.), Proceedings of
the 15th ACM KDD International Conference on Knowledge Discovery & Data Mining, ACM, New York,
NY, United States, 2009, pp. 947–956.

[177] A. Mueen, E. Keogh, N. Young, Logical-shapelets: An expressive primitive for time series classification, in:
Proceedings of the 17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, ACM, New
York, NY, 2011.

[178] J. Hills, J. Lines, E. Baranauskas, J. Mapp, A. Bagnall, Classification of time series by shapelet transforma-
tion, Data Mining and Knowledge Discovery 28 (4) (2014) 851–881. doi:10.1007/s10618-013-0322-1.

[179] Q. Cai, C. Zhang, C. Peng, Analysis of classification margin for classification accuracy with applications,
Neurocomputing 72 (7-9) (2009) 1960–1968. doi:10.1016/j.neucom.2008.03.015.

[180] J. Grabocka, M. Wistuba, L. Schmidt-Thieme, Fast classification of univariate and multivariate time
series through shapelet discovery, Knowledge and Information Systems 49 (2) (2016) 429–454. doi:
10.1007/s10115-015-0905-9.

[181] R. Gilad-Bachrach, A. Navot, N. Tishby, Margin based feature selection - theory and algorithms, in: C.
Brodley (Ed.), Twenty-first international conference on Machine learning - ICML ’04, ACM Press, New
York, New York, USA, 2004, p. 43.

https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1109/TASSP.1978.1163055
https://doi.org/10.1145/2949741.2949758
https://doi.org/10.1007/11875581{_}101
https://doi.org/10.1109/TPAMI.2008.203
https://doi.org/10.1007/s10618-020-00702-y
https://doi.org/10.1007/s10618-020-00702-y
https://doi.org/10.1016/j.engstruct.2020.111564
https://doi.org/10.1016/j.procs.2018.03.025
https://doi.org/10.1007/s10618-013-0322-1
https://doi.org/10.1016/j.neucom.2008.03.015
https://doi.org/10.1007/s10115-015-0905-9
https://doi.org/10.1007/s10115-015-0905-9

REFERENCES 147

[182] C. Burges, A tutorial on support vector machines for pattern recognition, Data mining and knowledge
discovery 2 (1998) 121–167.

[183] Q. Yan, Y. Cao, Optimizing shapelets quality measure for imbalanced time series classification, Applied
Intelligence 50 (2) (2020) 519–536. doi:10.1007/s10489-019-01535-z.

[184] D. Chieslak, N. Chawla, Learning decision trees for unbalanced data, Joint European Conference on
Machine Learning and Knowledge Discovery in Databases (2008) 241–256.

[185] B. Braunmueller, M. Ester, H.-P. Kriegel, J. Sander, Efficiently supporting multiple similarity queries for
mining in metric databases, in: Proceedings of 16th International Conference on Data Engineering, IEEE,
2000, pp. 256–267.

[186] T. Seidl, H.-P. Kriegel, Adaptable similarity search in large image databases, in: R. Veltkamp,
H. Burkhardt, H.-P. Kriegel (Eds.), State-of-the-Art in Content-Based Image and Video Retrieval,
Springer, 2001, pp. 297–317.

[187] G. Marchionini, Exploratory search: From finding to understanding, Communications of the ACM 49 (4)
(2006) 41–46.

[188] R. W. White, R. A. Roth, Exploratory search: Beyond the query-response paradigm, Synthe-
sis Lectures on Information Concepts, Retrieval, and Services 1 (1) (2009) 1–98. doi:10.2200/
S00174ED1V01Y200901ICR003.

[189] X. Jin, M. Sloan, J. Wang, Interactive Exploratory Search for Multi Page Search Results, International
World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, 2013.

[190] W.-T. Fu, T. Kannampallil, R. Kang, Facilitating exploratory search by model-based navigational cues, in:
Proceedings of the 27th Annual CHI Conference on Human Factors in Computing Systems, 2009, pp. 199–
208.

[191] M. Patella, P. Ciaccia, Approximate similarity search: A multi-faceted problem, Journal of Discrete
Algorithms 7 (1) (2009) 36–48. doi:10.1016/j.jda.2008.09.014.

[192] C. Manning, P. Raghavan, H. Schuetze, Introduction to Information Retrieval, Cambridge University
Press, 2009.

[193] Y. Lv, C. Zhai, Adaptive relevance feedback in information retrieval, in: D. Cheung (Ed.), Proceedings of the
ACM 18th International Conference on Information and Knowledge Management, ACM, New York, NY,
USA, 2009.

[194] O. Kurland, The cluster hypothesis in information retrieval, Advances in Information Retrieval (2014).

[195] N. Monty, Deep blue’s contribution to ai, Annals of Mathematics and Artificial Intelligence 28 (2000)
27–30.

[196] S. D. Holcomb, W. K. Porter, S. V. Ault, G. Mao, J. Wang, Overview on deepmind and its alphago zero ai,
in: Proceedings of the 2018 International Conference on Big Data and Education, ACM, New York, NY,
USA, 2018, pp. 67–71. doi:10.1145/3206157.3206174.

[197] Y. Bengio, Y. LeCun, G. Hinton, Deep learning for ai, Communications of the ACM 64 (7) (2021) 58–65.
doi:10.1145/3448250.

[198] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444. doi:10.1038/
nature14539.

[199] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowics, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuter, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden,
Wattenberg, Martin, Wicke, Martin, Y. Yu, X. Zheng, Tensorflow: Large-scale machine learning on
heterogeneous distributed systems.

[200] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style, high-performance deep learning library,
Advances in Neural Information Processing Systems 32 (2019) 8024–8035.

https://doi.org/10.1007/s10489-019-01535-z
https://doi.org/10.2200/S00174ED1V01Y200901ICR003
https://doi.org/10.2200/S00174ED1V01Y200901ICR003
https://doi.org/10.1016/j.jda.2008.09.014
https://doi.org/10.1145/3206157.3206174
https://doi.org/10.1145/3448250
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539

REFERENCES 148

[201] G. Nguyen, S. Dlugolinsky, M. Bobák, V. Tran, Á. López García, I. Heredia, P. Malík, L. Hluchý, Machine
learning and deep learning frameworks and libraries for large-scale data mining: a survey, Artificial
Intelligence Review 52 (1) (2019) 77–124. doi:10.1007/s10462-018-09679-z.

[202] K. Hornik, Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989) 359–
366.

[203] Y. LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, R. E. Howard, Wayne E. Hubbard,
Lawrence D. Jackel, Handwritten digit recognition with a back-propagation network, in: Advances in
neural information processing systems, Vol. 1989, Morgan Kaufmann Publishers, 1989.

[204] R. Chalapathy, S. Chawla, Deep learning for anomaly detection: A survey (2019).

[205] V. Strobel, G. Saponaro, T. Spetebroot, T. Vercauteren, J. Wienke, Historic word occurrence in academic
papers (2018). doi:10.5281/zenodo.1218409.
URL https://github.com/Pold87/academic-keyword-occurrence

[206] J. Born, D. Beymer, D. Rajan, A. Coy, V. Mukharjee, M. Manica, P. Prasanna, D. Ballah, M. Guindy, D.
Shaham, P. Shah, E. Karteris, J. Robertus, M. Gabrani, M. Rosen-Zvi, On the role of artificial
intelligence in medical imaging of covid-19, Patterns 2 (2021).

[207] D. Floreano, C. Mattiussi, Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies, MIT
Press, Cambrdige, MA, USA, 2008.

[208] S. Ghosh-Dastidar, H. Adeli, Spiking neural networks, International Journal of Neural Systems 19 (4)
(2009) 295–308.

[209] W. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bulletin of Math-
ematical Biophysics 5 (1943) 115–133.

[210] F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the
brain, Psychological Review 65 (6) (1958).

[211] C. Murphy, P. Gray, G. Stewart, Verified perceptron convergence theorem, in: T. Shpeisman,
J. Gottschlich (Eds.), Proceedings of the 1st ACM SIGPLAN International Workshop on Machine Learn-
ing and Programming Languages, ACM, New York, NY, USA, 2017, pp. 43–50. doi:10.1145/3088525.
3088673.

[212] M. Minsky, S. Papert, Perceptrons: an introduction to computational geometry, 1969.

[213] A. LeNeil, NN-SVG: Publication-Ready Neural Network Architecture Schematics. 4 (33) (2019). [link].
URL https://github.com/alexlenail/NN-SVG

[214] D. Rumelhart, G. Hinton, R. Williams, Learning representations by back-propagating errors, Nature 323
(1986) 533–537.

[215] N. Gupta, Atrificial neural network, Network and Complex Systems 3 (1) (2013) 24–29.

[216] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals,
and Systems (1989) 300–314.

[217] C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, Understanding deep learning requires rethinking
generalization.

[218] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio,
Generative adversarial networks, Communications of the ACM 63 (11) (2020) 139–144. doi:10.1145/
3422622.

[219] A. Kusiak, Convolutional and generative adversarial neural networks in manufacturing, International
Journal of Production Research 58 (5) (2019) 1594–1604.

[220] D. Rumelhart, R. Durbin, R. Golden, Y. Chauvin (Eds.), Backpropagation: Theory, Architectures and
Applications: Backpropagation: The Basic Theory, 1st Edition, Psychology Press, 1995.

[221] S. Du, J. Lee, Y. Tian, Poczos, Barnabas, Singh, Aarti, Gradient descent learns one-hidden-layer cnn:
Don’t be afraig of spurious local minima, in: Proceedings of the 35th International Conference on Machine
Learning, 2018.

[222] A. Burkov, The Hundred-Page Machine Learning Book, 2019.

https://doi.org/10.1007/s10462-018-09679-z
https://github.com/Pold87/academic-keyword-occurrence
https://github.com/Pold87/academic-keyword-occurrence
https://doi.org/10.5281/zenodo.1218409
https://github.com/Pold87/academic-keyword-occurrence
https://doi.org/10.1145/3088525.3088673
https://doi.org/10.1145/3088525.3088673
https://github.com/alexlenail/NN-SVG
https://github.com/alexlenail/NN-SVG
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622

REFERENCES 149

[223] G. E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets, Neural computation
18 (7) (2006) 1527–1554. doi:10.1162/neco.2006.18.7.1527.

[224] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep networks, in:
Advances in Neural Information Processing Systems 19 (NIPS 2006), MIT Press, 2006.

[225] J. Chung, K. Kastner, L. Dinh, A recurrent latent variable model for sequential data, in: C. Cortes, N.
Lawrence, D. Lee, M. Sugiyama, R. Garnett (Eds.), Advances in Neural Information Processing Sys-tems
28 (NIPS 2015), 2015.

[226] S. Hichreiter, J. Schmidhuber, Long short-term memory, Neural computation 9 (8) (1997) 1735–1780.

[227] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural networks on
sequence modeling, in: NIPS 2014 Workshop on Deep Learning, 2014. doi:NIPS.

[228] D. Park, Y. Hoshi, C. Kemp, A multimodal anomaly detector for robot-assisted feeding using an lstm-
based variational autoencoder, Robotics and Automation Letters (2018) 1544–1551.

[229] T. Schlegl, S. Schlegl, J. Deuse, Scalable anomaly detection in manufacturing systems using an inter-
pretable deep learning approach, in: Procedia CIRP, Elsevier, 2021, pp. 1546–1551.

[230] A. Karpathy, J. Johnson, L. Fei-Fei, Visualizing and understanding recurrent networks, International
Conference on Learning Representations (ICLR).

[231] S. Aghabozorgi, A. Seyed Shirkhorshidi, T. Ying Wah, Time-series clustering – a decade review, Infor-
mation Systems 53 (2015) 16–38.

[232] D. P. Kingma, M. Welling, Auto-encoding variational bayes.
URL http://arxiv.org/pdf/1312.6114v10

[233] J. Langr, V. Bok, GANs in Action, Manning Publications, 2019.

[234] Y. Wang, D. Blei, J. Cunningham, Posterior collapse and latent variable non-identifiability, Advances in
Neural Information Processing Systems 34 (NeurIPS 2021) (2021).

[235] J. Lucas, G. Tucker, R. Grosse, M. Norouzi, Understanding posterior collapse in generative latent variable
models, in: T. Sainath (Ed.), Seventh International Conference on Learning Representations, 2019.

[236] L. Deng, The mnist database of handwritten digit images for machine learning research, IEEE Signal
Processing Magazine 29 (6) (2012) 141–142.

[237] X. Ding, X. Wu, Y. Wang, Bolt axial stress measurement based on a mode-converted ultrasound method
using an electromagnetic acoustic transducer, Ultrasonics 54 (3) (2014) 914–920. doi:10.1016/j.ultras.
2013.11.003.

[238] K.-H. Kloos, W. Thomala, Schraubenverbindungen: Grundlagen, Berechnung, Eigenschaften, Hand-
habung, 5th Edition, Springer-Verlag, Berlin, Heidelberg, 2007. doi:10.1007/978-3-540-68470-1.
URL http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10177097

[239] E. Tempelman, H. Shercliff, B. van Ninaber Eyben, Manufacturing and Design: Understanding the
principles of how things are made, 1st Edition, Butterworth-Heinemann, 2014.

[240] R. Shoberg, Engineering fundamentals of threaded fastener design and analysis (2021).

[241] T. Erl, Service-Orientated Architecture: Service-Orientated Architecture, 4th Edition, Prentice Hall,
2005.

[242] T. Nakamura, M. Imamura, R. Mercer, E. Keogh, Merlin: Parameter-free discovery of arbitrary length
anomalies in massive time series archives, in: 2020 IEEE International Conference on Data Mining
(ICDM), IEEE, 2020, pp. 1190–1195. doi:10.1109/ICDM50108.2020.00147.

[243] A. Halevy, P. Norvig, F. Pereira, The unreasonable effectiveness of data, IEEE Intelligent Systems 24 (2)
(2009) 8–12.

[244] T. Schlegl, S. Schlegl, Mlops framework for model lifecycle management (2022).
URL https://github.com/papelero/mlops-framework

https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/NIPS
http://arxiv.org/pdf/1312.6114v10
http://arxiv.org/pdf/1312.6114v10
https://doi.org/10.1016/j.ultras.2013.11.003
https://doi.org/10.1016/j.ultras.2013.11.003
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10177097
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10177097
https://doi.org/10.1007/978-3-540-68470-1
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10177097
https://doi.org/10.1109/ICDM50108.2020.00147
https://github.com/papelero/mlops-framework
https://github.com/papelero/mlops-framework

