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Abstract

This work is focused on an accelerated global-in-time solution strategy for the Oseen
equations, which highly exploits the augmented Lagrangian methodology to improve the
convergence behavior of the Schur complement iteration. The main idea of the solution
strategy is to block the individual linear systems of equations at each time step into a
single all-at-once saddle point problem. By elimination of all velocity unknowns, the
resulting implicitly defined equation can then be solved using a global-in-time pressure
Schur complement (PSC) iteration. To accelerate the convergence behavior of this
iterative scheme, the augmented Lagrangian approach is exploited by modifying the
momentum equation for all time steps in a strongly consistent manner. While the
introduced discrete grad-div stabilization does not modify the solution of the discretized
Oseen equations, the quality of customized PSC preconditioners drastically improves
and, hence, guarantees a rapid convergence. This strategy comes at the cost that the
involved auxiliary problem for the velocity field becomes ill conditioned so that standard
iterative solution strategies are no longer efficient. Therefore, a highly specialized
multigrid solver based on modified intergrid transfer operators and an additive block
preconditioner is extended to solution of the all-at-once problem. The potential of
the proposed overall solution strategy is discussed in several numerical studies as they
occur in commonly used linearization techniques for the incompressible Navier-Stokes
equations.

Keywords. Oseen equations; parallel-in-time; pressure Schur complement; augmented
Lagrangian; waveform relaxation

1 Introduction
To numerically simulate unsteady flow phenomena, a commonly used approach is to first apply
some time integration technique and then solve space-only problems at discrete time instances,
which are coupled forward in time matching the nature of the physical process. This inherently
sequential workflow naively prevents the full potential of today’s supercomputers, which
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consist of an enormous amount of computing units tuned to execute many computational tasks
in parallel. To circumvent this barrier and increase the scaling capabilities especially when
spatial parallelization techniques saturate, so called parallel-in-time solution strategies come
into play, which parallelize the solution process in time so that the overall time-to-solution
can be further reduced.

One famous representative of this class is Parareal first introduced by Lions, Maday, and
Turinici [LMT01], where the sequential process of time integration is relaxed in an iterative
manner by applying the solution strategy on subintervals in parallel and then synchronizing
the auxiliary solutions in an inexpensive corrector step. This algorithm was first applied
to the solution of the incompressible Navier-Stokes equations in [TP04; TP06] using a first
order finite volume scheme for space discretization, whereas finite element and spectral
approximations were considered by Fischer, Hecht, and Maday [FHM05]. An extension
of the approach to non-isothermal flows was investigated in [CK09; MJY19], while Croce,
Ruprecht, and Krause [CRK14] and Steiner et al. [Ste+15] focused on the performance
of practical implementations and discussed the influence of the Reynolds number on the
convergence behavior. But also other parallel-in-time methods were successfully applied to
the Navier-Stokes equations. For example, the Paraexp algorithm was used in [KBG18] for
rather low viscosity parameters, while Falgout et al. [Fal+14] and most recently Christopher
and coworkers [Chr19; Chr+20] studied the influence of MGRIT for the Reynolds-averaged
Navier-Stokes equations and in case of an adaptive space-time mesh refinement strategy,
respectively.

The algorithm discussed in this work for solution of the Oseen equations is based on [DSW22;
LT23] and accelerates the convergence behavior of the all-at-once pressure Schur complement
(PSC) solution strategy presented therein using the augmented Lagrangian (AL) methodology.
The latter approach was first introduced in [Hes69; Pow69] and modifies the momentum
equation by means of the residual of the continuity equation. In this way, the solution
remains the same, but very accurate and efficiently applicable PSC preconditioners can be
constructed. These preconditioners are most accurate, if already existing global-in-time
PSC preconditioners for the original system are incorporated in the solution process. In this
work, global-in-time extensions of commonly used preconditioners like the pressure convection
diffusion (PCD) [DSW22; LT23] and the least squares commutator (LSC) preconditioner
[LT23] are considered for these purposes. The resulting solution strategy then converges
rapidly to the solution of the Oseen equations even without the need of a coarse grid correction
as proposed by the authors in [LT23].

Unfortunately, the AL methodology also comes with a disadvantage: The velocity problem
involved in each Schur complement iteration becomes ill conditioned as more stabilization
is introduced due to the fact that a singular matrix is added. Therefore, commonly used
solution strategies fail for this problem and highly specialized versions are mandatory for an
efficient solution algorithm. For example, Benzi and Olshanskii [BO06] and Schöberl [Sch99]
introduced a geometric multigrid approach with an adapted relaxation and intergrid transfer
for triangular meshes. In this work, an extension to quadrilateral meshes [SSW23] based on the
Q2-P1 finite element (FE) discretization is combined with the multigrid waveform relaxation
method developed by [LO87] for efficiently solving the aforementioned global-in-time velocity
problems.
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The contents of the following sections are as follows: The unsteady incompressible Navier-
Stokes equations are introduced in Section 2. The problem is then discretized in space and
time to construct a global-in-time problem for the solution at all time instances (cf. Section 3).
Section 4 summarizes the pressure Schur complement solver as presented in [LT23]. This
approach is extended by the augmented Lagrangian methodology in Section 5 and numerically
investigated in several linear and nonlinear test cases in Section 7. The work concludes in
Section 8 with a discussion of future challenges, especially for convection-dominated fluid
flows.

2 Continuous setting
The flow of a viscous and incompressible fluid through a domain Ω ⊂ Rd, d = 2, 3, can be
described by the incompressible Navier-Stokes equations

∂v

∂t
+ (v · ∇)v −∇ ·

(
2µ(γ̇(v))D(v)

)
+ grad(p) = g, (1a)

div(v) = 0, (1b)

where v ∈ Rd and p ∈ R denote the unknown velocity field and pressure variable, respectively.
Here, the body force density acting on the fluid is given by g ∈ Rd, while the dynamic
viscosity µ > 0 may depend nonlinearly on the effective shear rate γ̇ =

√
2
∥∥D(v)

∥∥
F

of the
strain rate tensor D(v) = 1

2 (∇v + ∇v⊤). In the special case of a Newtonian fluid, the
viscosity parameter µ is constant so that the viscous part of the momentum equation (1a)
simplifies to −µ∆v due to the validity of the continuity equation (1b).

In the literature, there exist several different numerical solution techniques for problem (1).
One common approach is to first apply a linearization technique, such as the Picard iteration
or Newton’s method, and then solve the resulting Oseen equations in each nonlinear iteration.
For the former approach, the linearized system of partial differential equations reads

∂v

∂t
+ (v̄ · ∇)v −∇ ·

(
2µ(γ̇(v̄))D(v)

)
+ grad(p) = g, (2a)

div(v) = f (2b)

for some known initial guess v̄ and a vanishing right hand side f = 0 of the continuity
equation. In case of Newton’s method, the solution update solves (2) for the right hand
sides g and f corresponding to the residuals of the momentum and continuity equations,
respectively, while the additional term

R(v̄;v) = (v · ∇)v̄ −∇ ·
(
4µ′(γ̇(v̄))γ̇(v̄)−1

(
D(v̄) : D(v)

)
D(v̄)

)
is involved in the definition of the momentum equation (2a). This linearization technique can
significantly improve the nonlinear convergence behavior compared to the Picard iteration if
the initial guess is sufficiently good. In the numerical examples, we therefore focus on test
problems for the linear Oseen equations as occurring in the Picard iteration as well as on the
nonlinear convergence behavior of Newton’s method.
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3 Global-in-time discrete Oseen problem
In this section, we discretize the Oseen equations in space and time and construct a global
linear system of equations to compute the numerical approximation in all time instances
simultaneously. For this purpose, the problem is discretized in space using the isoparametric
Q2-P1 FE pair, where each component of the velocity field is approximated by a continuous
and piecewise biquadratic function while the pressure space is given by all piecewise linear
functions on a quadrilateral mesh [BF91]. As we will see, this discretization technique
allows the construction of efficient pressure Schur complement solvers using the augmented
Lagrangian methodology and provides several advantages compared to an Taylor-Hood FE
pair as considered in [LT23].

After discretization in space, the linear system of ordinary differential equations reads

Muu̇(t) + Au(t)u(t) + Bp(t) = g(t), B⊤u(t) = f(t) (3)

where u(t) ∈ RNu , Nu ∈ N, and p(t) ∈ RNp , Np ∈ N, are the time-dependent vectors of
degrees of freedom associated with the velocity field and pressure variable, while g(t) ∈ RNu

and f(t) ∈ RNp correspond to the right hand sides of the momentum and continuity equation.
The velocity mass matrix Mu ∈ RNu×Nu is computed using the Simpsons rule and is
therefore diagonal. Furthermore, the matrices B ∈ RNu×Np and B⊤ ∈ RNp×Nu are the
discrete counterparts of the gradient and divergence operator, respectively, while all other
contributions to the momentum equation are summarized in Au(t) ∈ RNu×Nu .

To numerically approximate the solution to (3), we eventually apply the Crank-Nicolson
scheme for time integration, where the time step size δt > 0 is assumed to be constant for the
sake of simplicity. Then the approximations u(n+1) ≈ u

(
(n+1)δt

)
and p(n+1) ≈ p

(
(n+ 1

2 )δt
)

solve the linear system of equations (c.f. [Tur99])

A
(n+1)
i u(n+1) + δtBp(n+1) = δt

2 (g
(n+1) + g(n))−A(n)

e u(n), (4a)

B⊤u(n+1) = f(n+1) (4b)

at each time step n = 0, . . . ,K, where K ∈ N denotes the total number of time steps and
the system matrices A

(n+1)
i and A

(n)
e are defined by

A
(n+1)
i = Mu + δt

2 A
(n+1)
u , A(n)

e = −Mu + δt
2 A

(n)
u .

Compactly written, the velocity field u(n+1) and the scaled pressure unknown p̃(n+1) =
δtp(n+1) solve the saddle point problem(

A
(n+1)
i B
B⊤

)(
u(n+1)

p̃(n+1)

)
=

(
g̃(n+1) −A

(n)
e u(n)

f(n+1)

)
, n = 0, . . . ,K (5)

using the right hand side g̃(n+1) = δt
2 (g

(n+1) + g(n)). The solution of this system is usually
advanced in time step-by-step due to the fact that the solution (u(n+1), p̃(n+1)) depends on
the previous velocity field u(n). To circumvent this barrier and provide the possibility to
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parallelize the solution procedure in time, we treat all K time steps simultaneously and block
the individual subproblems into a single all-at-once system of equations

A
(1)
i B

A
(1)
e A

(2)
i B

. . . . . . . . .
A

(K−1)
e A

(K)
i B

B⊤

B⊤

. . .
B⊤





u(1)

u(2)

...
u(K)

p̃(1)

p̃(2)

...
p̃(K)


=



g̃(1) −A
(0)
e u(0)

g̃(2)

...
g̃(K)

f(1)

f(2)

...
f(K)


. (6)

Obviously, problem (6) is equivalent to (5) and, hence, leads to the same velocity and pressure
solution at all time steps. However, efficient and very robust solution techniques have to be
applied to reduce the overall computational time compared to a sequential solution procedure.
In the following section, a PSC approach is described, whose convergence behavior can
significantly be improved by exploiting the augmented Lagrangian methodology.

4 Global-in-time pressure Schur complement iteration
In this section, we briefly summarize the PSC solution technique for the global-in-time saddle
point problem (6) as it is described in [DSW22; LT23]. For this purpose, we interpret the
linear system of equations as a blocked saddle point problem(

AK BK

B⊤
K 0

)(
u
p̃

)
=

(
g̃
f

)
, (7)

where all involved quantities are defined as expected. Multiplying the first equation of (7)
by A−1

K and inserting the resulting expression for the velocity field u = A−1
K (g̃ −BK p̃) into

the discrete counterpart of the continuity equation, we obtain the PSC equation

B⊤
KA−1

K BK p̃ = B⊤
KA−1

K g̃ − f (8)

for the unknown global-in-time pressure variable p̃ only. Unfortunately, the involved PSC ma-
trix PK = B⊤

KA−1
K BK is generally a dense matrix and, hence, practically impossible to

compute. Therefore, iterative solution techniques are commonly exploited to solve this
problem without explicitly knowing the entries of the system matrix PK . For example, the
preconditioned Richardson iteration reads

p̃ 7→ p̃+ q, q = C−1
K

(
B⊤

KA−1
K (g̃ −BK p̃)− f

)
(9)

for some initial guess p̃ while C−1
K is a suitable approximation to the inverse of PK . In each

iteration of the solution procedure, a global linear system of equations has to be solved for
computation of the auxiliary velocity field ũ = A−1

K (g̃ −BK p̃). This quantity approximates
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the exact velocity solution of (7) if the norm of the global-in-time PSC residual r = B⊤
K ũ− f

is sufficiently small. While the efficient solution of the velocity problem is (partially) discussed
in Section 6, we now define three possible preconditioners C−1

K , where the first two have
in common that they are exact for infinitely small time step sizes δt while all three can be
applied very efficiently to the space-time problem under investigation.

PCD preconditioner The first candidate of a Schur complement preconditioner is a global-
in-time counterpart of the pressure convection diffusion (PCD) preconditioner [KLW02] and
was first introduced by Danieli, Southworth, and Wathen [DSW22]. Compactly written, the
preconditioner has the form [LT23]

C−1
K = (IK ⊗M−1

p )AK,p(IK ⊗ D̂−1
p ), (10)

where AK,p is a suitable approximation of AK defined in the pressure FE space, while
Mp ∈ RNp×Np and D̂p ∈ RNp×Np denote the pressure mass matrix and pressure Poisson
matrix, respectively. According to the use of a discontinuous pressure approximation, the
latter matrix is readily not defined. However, a mixed formulation of the Poisson problem
can be used to justify the choice of D̂p = B⊤M−1

u B. Note that this matrix can be explicitly
determined due to the fact that Mu is computed using the Simpsons rule and is therefore
diagonal. For further details on the derivation and application of the PCD preconditioner,
we refer to [DSW22; LT23].

LSC preconditioner An all-at-once extension of the least-squares commutator (LSC) pre-
conditioner [QV17] is defined by [LT23]

C−1
K =

(
IK ⊗ (D̂−1

p B⊤M−1
u )
)
AK

(
IK ⊗ (M−1

u BD̂−1
p )
)
. (11)

This preconditioner explicitly exploits the definition of the system matrix AK and, hence, can
be applied to more general Oseen equations where different components of the velocity field
possibly interact with each other. This fact is especially of interest when the deformation
tensor is used in the definition of the momentum equation or Newton’s method is applied to
linearize the incompressible Navier-Stokes equations. In case of the PCD preconditioner, a
practically well-established workaround is to simply neglect these terms.

Uzawa preconditioner For a constant viscosity parameter µ and sufficiently large time
increments, it is easy to show that the inverse of the PSC matrix PK is spectrally equivalent
to

C−1
K = δt

2 µ


M−1

p

M−1
p M−1

p

. . . . . .
M−1

p M−1
p

 = δt
2 µ


1
1 1

. . . . . .
1 1

⊗M−1
p .

However, for small up to moderate time step sizes, this approximation is quite bad and,
hence, will be considered only briefly in the below numerical examples.
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At this point, we emphasize that all preconditioners can be applied very efficiently on
modern hardware architectures due to the fact that all involved global linear systems of
equations can be decomposed into K independent subproblems. The spatial system matrices
to be inverted therein are the same over the whole time interval, so each global problem is
equivalent to a single space-only problem with K right hand sides. This allows the use of very
efficient solution strategies based on vector operations with reduced data communication.

5 Augmented Lagrangian methodology
In the previous section, we summarized the idea of a global-in-time pressure Schur complement
iteration, which solves the discretized Oseen equations for all time steps simultaneously.
The involved preconditioners for the pressure-only problem are designed as straightforward
extensions of their sequential counterparts and provide a high degree of parallelism. However,
we will observe in Section 7 that the convergence behavior of this basic Schur complement
iteration is quite slow and even deteriorates as the spatial resolution increases or more and
more time steps are blocked. To improve the solution methodology, the authors proposed
in [LT23] the incorporation of a coarse grid correction in the framework of a hierarchical
multigrid approach. While this technique relaxes the dependency of the rate of convergence
on the above mentioned discretization parameters, the efficient solution of the resulting
coarse grid problem is still an unsolved problem.

In this work, we extend the PSC iteration by the augmented Lagrangian methodology. The
approach was originally developed independently by Hestenes [Hes69] and Powell [Pow69]
and aims to improve the convergence behavior without the need of a coarse grid correction by
modifying the discrete momentum equation in a strongly consistent manner. This guarantees
that the solution of the discrete problem remains the same, while (theoretically) arbitrarily
accurate PSC preconditioners can be constructed. The success of this technique is due to
the Sherman-Morrison-Woodbury identity [Hag89]

(A + γUCV)−1 = A−1 −A−1U(γ−1C−1 +VA−1U)−1VA−1 (12)

holding true for any invertible matrices A, C, and C−1 +VA−1U while γ is some positive
parameter. Roughly speaking, equation (12) describes the influence of a (possibly singular)
perturbation on the inverse of a non-singular matrix in an additive fashion. If A is chosen
as a spatial system matrix Ai (we drop the superscript (n+ 1) for the time being) and the
identity is multiplied from left and right by B⊤ and B, respectively, the first expression
on the right hand side of (12) coincides with the PSC matrix of (5) while the left hand
side is the PSC matrix using a modified system matrix Ai,γ = Ai + γUCV. Therefore, the
PSC matrix Pi,γ = B⊤A−1

i,γB is the sum of Pi = B⊤A−1
i B and some additive term. The

crucial question is now how to define the matrices U, V, and C so that the inverse of Pi,γ can
be approximated more accurately than the inverse of Pi while at the same time the action of
the approximation can be applied very efficiently. One possibility is the choice of U = B,
V = B⊤, and C = δtM−1

p , which does not even extend the sparsity pattern of the system
matrix Ai due to the special choice of a discontinuous pressure FE space. For this definition,
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simple algebraic manipulations and another application of the Sherman-Morrison-Woodbury
identity (12) lead to the ingenious identity (cf. [Wec19, Lemma 5.2])

P−1
i,γ = P−1

i + γδtM−1
p .

Thus, the inverse of Pi,γ converges to γδtM−1
p as γ increases. This additive term can be

applied exactly and does not need to be approximated in any way due to the fact that Mp is
block-diagonal. This guarantees that very accurate approximations C−1

i,γ = C−1
i + γδtM−1

p of
P−1
i,γ can be constructed by adapting the value of γ even if the approximation C−1

i of P−1
i

is quite inexact. However, adding γδtBM−1
p B⊤ to the system matrix Ai generally modifies

the solution of the saddle point problem, which is especially not acceptable for large values
of γ. This downside can be avoided by simultaneously adapting the right hand side of the
momentum equation in a strongly consistent way. More precisely, we replace (5) by(

A
(n+1)
i,γ B

B⊤

)(
u(n+1)

p̃(n+1)

)
=

(
g̃
(n+1)
γ −A

(n)
e u(n)

f(n+1)

)
(13)

using the velocity system matrix A
(n+1)
i,γ = A

(n+1)
i + γδtBM−1

p B⊤ and the modified right
hand side g̃

(n)
γ = g̃(n) + γδtBM−1

p f(n). Then the first equation of (13) reads

A
(n+1)
i u(n+1) +Bp̃(n+1) = g̃(n+1) −A(n)

e u(n) + γδtBM−1
p (f(n+1) − B⊤u(n+1))︸ ︷︷ ︸

=0

,

where the last expression vanishes due to the fact that B⊤u(n+1) = f(n+1) is satisfied by the
second equation. Therefore, the saddle point problem (13) is equivalent to (5) while the
inverse of its PSC matrix can be approximated very efficiently for large values of γ.

The augmented Lagrangian methodology described above can readily be extended to the
global-in-time saddle point problem (6). In this case, only the block-diagonal of AK is
modified and results in the all-at-once linear system of equations(

AK + γδtBKM−1
K,pB

⊤
K BK

B⊤
K 0

)(
u
p̃

)
=

(
g̃ + γδtBKM−1

K,pf

f

)

: ⇐⇒



A
(1)
i,γ B

A
(1)
e A

(2)
i,γ B

. . . . . . . . .
A

(K−1)
e A

(K)
i,γ B

B⊤

B⊤

. . .
B⊤





u(1)

u(2)

...
u(K)

p̃(1)

p̃(2)

...
p̃(K)


=



g̃
(1)
γ −A

(0)
e u(0)

g̃
(2)
γ

...
g̃
(K)
γ

f(1)

f(2)

...
f(K)


,

where MK,p = IK ⊗Mp denotes the global-in-time pressure mass matrix. Using the same
argumentation as above, we conclude that the inverse of the all-at-once PSC matrix can be
approximated by

P−1
K,γ = P−1

K + γδtM−1
K,p ≈ C−1

K + γδtM−1
K,p =: C−1

K,γ ,
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where C−1
K is an approximation to P−1

K and might be chosen as discussed in Section 4.

6 Global-in-time velocity solver
While the augmented Lagrangian approach is a promising stabilization technique to improve
the convergence behavior of the Schur complement iteration, the involved subproblems for
computing auxiliary velocity fields become arbitrarily ill conditioned (cf. [SSW23]). This is
caused by a singular matrix added to the original velocity system matrix, which becomes
more dominant as the AL parameter increases. Therefore, tailor-made solution techniques
have to be constructed, which handle these instabilities in a robust and efficient manner. In
this section, we present a candidate for solution of the all-at-once velocity problems, which
might be stabilized using the augmented Lagrangian technique. The described approach
combines the multigrid waveform relaxation method developed by [LO87] with a highly
specialized multigrid solver proposed in [SSW23], which by itself is inspired by [BO06; Sch99].

In each step of the PSC iteration (9), a global-in-time linear system of equations for the
auxiliary velocity field ũ must be solved, which has the general form

AK,γu = h : ⇐⇒


A

(1)
i,γ

A
(1)
e A

(2)
i,γ

. . . . . .
A

(K−1)
e A

(K)
i,γ




u(1)

u(2)

...
u(K)

 =


h(1)

h(2)

...
h(K)

 . (14)

Problem (14) can be interpreted as a space-only problem for vector-valued unknowns,
where each spatial degree of freedom consists of the velocity solutions associated with the
corresponding spatial basis function at all time steps. Using this notation, the multigrid
waveform relaxation method is nothing else than a space-only multigrid technique applied to
the space-only problem so that each time step is treated in the same manner. If the multigrid
technique exploits a Jacobi smoother, the whole algorithm is also called time-simultaneous
multigrid technique [Dün+21] and the linear system of equations involved in the relaxation
step decomposes into independent subproblems for each spatial degree of freedom. Although
this solution algorithm performs very well for diffusion-dominated test cases, we will see that
the convergence behavior drastically deteriorates as the AL parameter γ increases. Therefore,
we combine this global-in-time solution technique with the highly specialized multigrid
algorithm proposed in [SSW23], which is tailor-made for space-only problems stabilized by
the augmented Lagrangian methodology. More precisely, we replace the intergrid transfer
operators as well as the block Jacobi smoother by customized versions, which are based on
solutions to many independent subproblems on local patches. For its precise definition, we
first summarize the main components of the solution process as proposed in [SSW23] for a
space-only linear system of equations

Ai,γu = (Ai + γδtBM−1
p B⊤)u = h (15)

using some (spatial) system matrix Ai,γ ∈ RNu×Nu , the unknown solution u ∈ RNu , and the
right hand side vector h ∈ RNu .
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Space-only Smoother The relaxation method presented in [SSW23] is based on an additive
block preconditioner, where local subproblems for each spatial node of the triangulation
have to be solved. More precisely, the subproblems refer to the parts of the linear system of
equations Ai,γu = h whose degrees of freedom are associated with points in the interior of
nodal patches. For their definition, we introduce the subset ϖj ⊆ Ω as the composition of all
elements Ke containing mesh node xj , i.e.,

ϖj =
⋃

e, xj∈Ke

Ke, j ∈ {1, . . . , Nn},

where Nn ∈ N is the total number of mesh nodes. Then the index set Nj is defined as

Nj =
{
k ∈ {1, . . . , Nu} : x̃k ∈ ϖ̊j

}
, j ∈ {1, . . . , Nn},

where x̃1, . . . , x̃Nu
are the locations associated with the biquadratic basis functions

φ1, . . . , φNu
of the velocity FE space, i.e., φj(x̃k) = δjk, and ϖ̊j is the interior of ϖj ,

i.e., ϖ̊j = ϖj \ ∂ϖj . Now the additive block preconditioner D−1
i ≈ A−1

i,γ solves local
subproblems for the degrees of freedom in Nj and sums up the local solutions for all spatial
nodes of the mesh, i.e.,

D−1
i =

Nn∑
j=1

Ij(I⊤
j Ai,γIj)−1I⊤

j . (16)

Here, the injection operator Ij ∈ RNu×|Nj | maps a vector of unknowns associated with
the local patch ϖj to a vector of global degrees of freedoms and introduces zero entries in
components that are not included in Nj . Note that all degrees of freedoms associated with
cells or edges of the mesh are treated several times and the updates are not averaged in the
gathering progress.

Space-only intergrid transfer For definition of the specialized intergrid transfer operators,
let P be the prolongation operator naturally induced by the Q2 FE space. This quantity
should not be mixed up with the PSC matrices Pi,γ and Pi introduced in previous sections.
Then the robust intergrid transfer operators are defined by

P̃ =
(
I−

N̄n∑
j=1

Ij(I⊤
j Ai,γIj)−1

(
I⊤
j (γδtBM−1

p B⊤)Ij
)
I⊤
j

)
P, R̃ = P̃⊤ (17)

where x1, . . . ,xN̄n
are assumed to be the common mesh nodes of the coarse and fine

triangulation. This definition is consistent in the way that P = P̃ holds true for γ = 0.
Furthermore, the local subproblems occurring in the definition of P̃ are also involved in the
definition of D−1

i and, hence, may only need to be computed once.

We now extend the relaxation technique as well as the intergrid transfer operators to the
global-in-time problem (14), so they can be exploited in the context of multigrid waveform
relaxation.
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Global-in-time smoother The additive block preconditioner (16) is extended to the all-
at-once problem by solving subproblems on local patches for all time steps simultaneously
without synchronizing the solutions in between. This guarantees that all subproblems can be
solved independently of each other and preserves the methodology of the time-simultaneous
(multigrid) approach providing a high degree of parallelization. In detail, the additive block
preconditioner reads

D−1
K =

Nn∑
j=1

(IK ⊗ Ij)
(
(IK ⊗ Ij)AK(IK ⊗ I⊤

j )
)−1

(IK ⊗ I⊤
j ).

In the numerical examples presented below, this preconditioner is embedded into the
GMRES method without restart to increase the robustness of the solution strategy.

Global-in-time intergrid transfer The robust space-time prolongation and restriction oper-
ators are given by

P̃K =


P̃(1)

P̃(2)

. . .
P̃(K)

 , R̃K = P̃⊤
K

exploiting the sequential versions of the robust intergrid transfer operators as defined in (17).
In contrast to the relaxation scheme, these operators only use the block diagonal entries of
AK , but must be assembled for each time step individually. This makes the customized grid
transfer more expensive than the one naturally induced by the FE space.

7 Numerical examples
In this section, we solve several numerical test problems using the augmented Lagrangian
technique to accelerate the convergence behavior of the pressure Schur complement iteration
as described in Section 4. This iterative solver is embedded into a GMRES method, which
is restarted after four inner iterations. To quantify the efficiency of the solver at hand, the
total number of inner iterations is counted. This value (approximately) measures how often
the implicitly defined system matrix and the involved Schur complement preconditioner are
applied till a certain tolerance in accuracy is reached for a vanishing initial guess.

The numerical examples are computed on the ‘flow around a cylinder’ domain as illustrated
in Fig. 1, where all external forces are set to zero. Furthermore, homogeneous Neumann
(‘do nothing’) boundary conditions are prescribed on Γout = ∂Ω \ (Γin ∪ Γwall) while no slip
boundary conditions are enforced on Γwall. Therefore, the dynamics of the fluid are solely
governed by the inflow boundary data

vin = U(t)
4y(0.41− y)

0.412

(
1
0

)
, U(t) = U0

∣∣sin(π8 t)∣∣, U0 = 0.3 on Γin

and the initial data v0 = 0 of the velocity field v (cf. [LT23]).
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Figure 1: Computational domain including partition of boundary and triangulation on coars-
est mesh level 0.

As mentioned above, the problem is discretized in space using the Q2-P1 FE pair, while
the time integrator is given by the Crank-Nicolson scheme using a fixed time step size
of δt = 1

25 · 2−lvl, where lvl ∈ {0, . . . , 5} denotes the number of uniform refinements of the
triangulation at hand (cf. Fig. 1). Note that the convergence behavior of the iterative solution
strategy using the PCD or LSC preconditioner can be significantly improved by choosing
smaller time increments because these preconditioners then become more accurate. However,
this property of the solver will not be investigated in this work and we refer to [LT23] for
numerical results in this regard.

7.1 Stokes problem
The first test case is given by the Stokes problem, where no convective contribution is
involved in the definition of the momentum equation and the viscosity parameter is fixed
to µ = 10−2. In this case, we first discuss the influence of the AL parameter on the norm of the
PSC residual (for a fixed solution) to define a reasonable stopping criterion for the iterative
solution procedure. Figure 2 illustrates the convergence behavior of the GMRES method for
the PCD preconditioner and different values of γ, where the preconditioned PSC residual is
evaluated using another choice of the AL parameter, denoted by γ̃. While a rapid convergence
can be observed for all considered variants of the PSC residual if γ is chosen sufficiently large,
the relative norm of the preconditioned PSC residual depends only marginally on γ̃. Thus,
this quantity seems to be an adequate measure for the quality of the solution and reducing
it by a certain value is a reasonable stopping criterion. Fortunately, the preconditioned
PSC residual is already determined in GMRES implementations frequently used in the
literature so that no additional computations are required. In all linear test cases considered
in this work, the GMRES method therefore terminates if∥∥∥C−1

K

(
B⊤

KA−1
K (g̃ −BK p̃)− f

)∥∥∥
2
< tolrel

∥∥∥C−1
K

(
B⊤

KA−1
K g̃ − f

)∥∥∥
2

(18)
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Figure 2: Stokes problem: History of norm of preconditioned PSC residual evaluated using
different AL parameters γ̃ for PCD preconditioner on mesh level 2 for 800 blocked
time steps.

Table 1: Stokes problem: Total number of iterations on mesh level 2 for 800 blocked time
steps and different PSC preconditioners.

preconditioner ⧹ γ 10−1 100 101 102 103 104

PCD precon. 31 20 9 6 4 3
LSC precon. 63 36 18 7 5 3
Uzawa precon. 21 323 2198 314 48 12 6

is satisfied for a tolerance of tolrel = 10−11.
In Table 1, the total number of (inner) iterations required to reach this stopping criterion

is summarized for different PSC preconditioners. As expected, this value decreases for
all solution strategies under investigation as γ increases. However, the GMRES method
exploiting the Uzawa preconditioner is not competitive with the other algorithms for moderate
choices of the AL parameter γ because this preconditioner approximates the inverse of the
PSC matrix PK less accurately. Although only (block-diagonal) pressure mass matrices have
to be inverted for its application, each GMRES iteration is still costly due to the fact that
an auxiliary velocity field must be computed whenever the PSC residual is determined. This
makes the Uzawa preconditioner less interesting in practical applications and explains why it
is not considered further in the following investigations.

Next, we vary the total number of blocked time steps K and discuss its influence on the
convergence behavior for the Stokes problem (cf. Fig. 3). While the GMRES method using
the PCD preconditioner requires more and more iterations as the length of the time interval
increases, the rate of convergence for the LSC preconditioner seems to be bounded above
independently of this value even for the unstabilized Schur complement equation. However,
introduction of AL stabilization significantly reduces the total number of iterations and
especially relaxes the dependency on K for the PCD preconditioner. The same behavior can
be observed for the solution technique using the LSC preconditioner as the spatial resolution
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Figure 3: Stokes problem: Total number of iterations on mesh level 0 for different numbers
of blocked time steps.

Table 2: Stokes problem: Total number of iterations on different mesh levels for 800 blocked
time steps.

PCD preconditioner LSC preconditioner

lvl ⧹ γ 0 10−1 100 101 102 103 0 10−1 100 101 102 103

0 102 48 25 9 6 4 40 23 16 9 5 4
1 76 35 23 9 6 4 66 39 26 13 6 4
2 65 31 20 9 6 4 102 63 36 18 7 5
3 48 22 17 9 6 4 155 96 49 25 9 5
4 37 20 14 9 6 5 219 139 67 36 12 6
5 30 17 12 9 6 5 280 190 100 46 17 7

increases, as shown in Table 2. While the convergence behavior deteriorates on finer meshes,
the influence becomes less significant for larger values of γ. In contrast to this, the algorithm
exploiting the PCD preconditioner even improves as the spatial resolution increases. However,
a rapid convergence can be observed for both preconditioners only for a great amount of
AL stabilization.

7.2 Oseen problem for Newtonian fluid
After investigating the Stokes equations, we now add convectivity to the definition of the
momentum equation and study the resulting Oseen problem for two different viscosity
parameters, namely µ = 10−2 and µ = 10−3. In these cases, the velocity field involved
in the convective contribution is set to the solution of the incompressible Navier-Stokes
equations (1), so the linear problem at hand coincides with the final Picard iteration to solve
the underlying nonlinear problem. Although no vortex shedding is to be expected behind
the cylinder for both viscosity parameters as the Reynolds number does not exceed Re = 2
or Re = 20 (cf. [Sch+96]), the convective contribution is more dominant for µ = 10−3 and
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significantly affects the convergence behavior of the GMRES method (cf. Table 3). Without
any AL stabilization, the total number of inner iterations using the PCD preconditioner
increases as more and more time steps are blocked. This dependency becomes more dominant
as the viscosity parameter goes to zero and possibly even leads to a non-converging solution
procedure. For the LSC preconditioner, this effect is reversed and the solver tends to improve
for smaller viscosity parameters. However, more and more iterations are required as the
spatial resolution increases, which perfectly fits the observations for the Stokes equations.

These dependencies become less significant as AL stabilization is introduced in the solution
procedure and the total number of inner GMRES iterations goes to zero as γ increases for all
configurations under investigation. In case of the largest value of the AL parameter γ = 103,
only 3− 6 iterations are required to solve the linear system of equations. In this case, the
use of the PCD preconditioner seems to be preferable due to the fact that its application is
two times less expensive than the application of the LSC preconditioner (cf. [LT23]).

7.3 Oseen problem for Carreau-Yasuda viscosity model
In the final linear test problem, the Newtonian fluid rheology exploiting a constant viscosity
parameter µ is replaced by a non-Newtonian one as described by the Carreau-Yasuda
model [YAC81]

µ(γ̇) = µ∞ + (µ0 − µ∞)
(
1 + (λγ̇)a

)(n−1)/a
. (19)

This nonlinear definition of the viscosity parameter simplifies to the well-known Carreau
model [Car72] for a = 2 and simulates shear thinning effects for n < 1. In the following
numerical studies, the other material parameters are chosen as µ∞ = 0, λ = 1, and n = 0.31,
while the maximum viscosity parameter µ0 is set to 10−2 and 102 leading to an effective
viscosity parameter µ(γ̇) ∈ [0.0004, 0.01] and µ(γ̇) ∈ [5.8126, 100], respectively, as it might
occur in the flow behavior of thermoplastics. Therefore, the ratio between the maximum and
minimum viscosity parameters is approximately the same and only the type of nonlinearity
changes by modifying µ0. Another consequence of the varying viscosity parameter is the
fact that the viscous part of the momentum equation does not simplify to µ∆v. Therefore,
different components of the velocity field are coupled with each other even in case of the
Picard iteration and only the LSC preconditioner is readily applicable to this fluid rheology.

In Table 4, the total number of inner GMRES iterations is summarized for this precondi-
tioner and different amounts of AL stabilization. As already observed in the previous test
problems, the total number of iterations required to reach the stopping criterion grows on
finer meshes, while the length of the time horizon has only a minor influence on the rate of
convergence. As µ0 increases, solution of the Oseen problem becomes more expensive on
mesh level 4. For both values of µ0, however, the total number of iterations can be drastically
reduced by introducing AL stabilization and goes down to 4−6 for the considered values of γ.
Note that the range of AL parameters is shifted by four orders of magnitude for µ0 = 102

compared to µ0 = 10−2 to achieve a similar effect in the convergence behavior. Therefore, the
amount of required AL stabilization to significantly reduce the number of GMRES iterations
is mainly coupled to the viscous term of the momentum equation for this test case.
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Table 3: Oseen problem for Newtonian fluid: Total number of iterations.

(a) PCD preconditioner.

µ = 10−2 µ = 10−3

K lvl ⧹ γ 0 10−1 100 101 102 103 0 10−1 100 101 102 103

100 0 41 24 18 10 5 4 88 19 12 7 5 3
100 2 29 17 12 10 6 4 20 9 8 7 5 4
100 4 25 13 9 8 7 5 17 8 7 6 5 4

400 0 106 56 27 10 6 4 − 31 14 7 5 3
400 2 48 24 18 9 6 4 − 19 12 7 5 3
400 4 35 17 12 9 6 5 26 9 8 7 5 4

1600 0 706 102 33 10 6 4 − 63 16 7 5 3
1600 2 104 54 26 10 6 4 − 29 15 7 5 4
1600 4 53 23 18 9 6 5 − 19 13 7 5 4

(b) LSC preconditioner.

µ = 10−2 µ = 10−3

K lvl ⧹ γ 0 10−1 100 101 102 103 0 10−1 100 101 102 103

100 0 31 21 12 8 5 4 24 9 6 5 4 3
100 2 71 47 24 15 8 5 30 16 9 7 5 3
100 4 99 75 43 19 12 6 43 22 14 8 6 4

400 0 34 22 15 9 5 4 33 10 7 5 4 3
400 2 87 57 30 17 7 5 41 20 11 8 5 4
400 4 168 114 60 33 12 6 67 36 16 11 6 4

1600 0 35 22 15 9 5 4 43 10 7 5 4 3
1600 2 100 64 40 18 8 5 51 23 16 8 5 4
1600 4 254 160 75 38 12 6 100 47 23 13 6 4
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Table 4: Oseen problem for Carreau-Yasuda viscosity model: Total number of iterations for
LSC preconditioner.

µ0 = 10−2 µ0 = 102

K lvl ⧹ γ 0 10−1 100 101 102 103 0 103 104 105 106 107

100 0 32 16 10 7 5 4 30 16 12 7 5 4
100 2 65 28 17 13 7 5 49 44 36 14 7 4
100 4 94 58 36 18 12 6 154 148 110 37 10 5

400 0 42 19 13 8 5 4 30 17 12 7 5 4
400 2 78 33 22 14 7 5 60 45 36 14 7 4
400 4 106 75 40 28 12 6 221 166 126 34 10 6

1600 0 44 19 13 8 5 4 30 17 12 7 5 4
1600 2 86 43 32 15 7 5 60 46 36 14 7 4
1600 4 159 89 52 29 12 6 236 185 127 33 10 6

7.4 Nonlinear Carreau-Yasuda viscosity model
So far, only linear test problems were studied as they occur in the final iteration of a Picard
iteration for solution of the incompressible Navier-Stokes equations. However, this nonlinear
solver converges only slowly to the solution, especially for the considered space-time problems
(cf. [LT23]), so more efficient linearization techniques are required to outperform sequential
solution strategies. In case of Newton’s method, additional terms must be considered in
the definition of the momentum equation resulting in a stronger coupling between different
components of the velocity field. However, the above mentioned linear Schur complement
iteration as well as the augmented Lagrangian methodology are still applicable in this case
and result in an efficient solution strategy as we will see in this section.

To analyse the nonlinear convergence for (an inexact) Newton’s method, we again solve
the incompressible Navier-Stokes equations for the Carreau-Yasuda viscosity model and the
maximum viscosity coefficient µ0 = 102. Firstly, all involved linear subproblems are solved
exactly to illustrate the performance of Newton’s method and measure the minimum number
of nonlinear iterations required for this test problem. In Fig. 4, the nonlinear convergence
behavior is illustrated for different values of the AL parameter by plotting the norm of the
(unpreconditioned) PSC residual. Due to the fact that the AL stabilization does not modify
the solution of the Oseen equations, the nonlinear convergence behavior is exactly the same
for all AL parameters under investigation. However, the norm of the residual is shifted
for different values of γ and may lead to an inaccurate solution caused by ill-conditioned
problems if γ is chosen too large. Therefore, the AL parameter cannot practically be chosen
too large without compromising the accuracy of the solution.

The exact Oseen solver is now replaced by the above mentioned GMRES method based
on the Schur complement equation and the augmented Lagrangian approach, while the
(inexact) Newton method is stopped if the relative norm of the PSC residual is smaller than
10−10. In contrast to the above investigations for linear test problems, different relative
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Figure 4: Carreau-Yasuda problem for µ0 = 102: History of norm of PSC residual for
Newton’s method on mesh level 2 using 800 blocked time steps.

Table 5: Carreau-Yasuda problem for µ0 = 102: Total number of nonlinear (left column)
and linear (right column) iterations on mesh level 2 for 800 blocked time steps and
different linear stopping criteria.

tolrel ⧹ γ 0 103 104 105 106 107

nonl. lin. nonl. lin. nonl. lin. nonl. lin. nonl. lin. nonl. lin.

10−1 14 69 14 54 12 38 12 17 10 10 10 10
10−2 10 96 10 55 11 47 10 17 10 10 10 10
10−3 11 156 10 77 10 56 10 22 10 13 10 10
10−4 10 186 10 102 10 68 10 29 10 17 10 13
10−5 10 239 10 120 10 87 10 36 10 23 10 16
10−6 10 287 10 148 10 101 10 42 10 24 10 21
10−7 10 341 10 179 10 120 10 53 10 33 10 23

tolerances tolrel are used in the stopping criterion (18) to determine the most efficient overall
solution strategy.

In Table 5, the number of nonlinear Newton steps as well as the total number of inner
GMRES iterations are summarized for different values of γ and tolrel. For an overresolved
computation of the solution to the Oseen problem, the number of nonlinear iterations
coincides, as expected, with the total number of (exact) Newton steps for this problem.
However, these configurations without AL stabilization require an enormous number of linear
GMRES iterations and, hence, are practically very inefficient. By relaxing the tolerance
for the linear subproblems, more nonlinear steps may be required, but the total number
of GMRES iterations reduces. Therefore, the overall solution strategy becomes more effi-
cient. This procedure can be further accelerated by introducing AL stabilization. In this
case, all linear subproblems are solved with sufficient accuracy even with a single inner
GMRES iteration for γ ⩾ 106 and tolrel ⩽ 10−2. Under the assumption that the cost for
each GMRES iteration is independent of the choice of the AL parameter, this is the most
efficient solver considered in this work.
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Table 6: Velocity problem for Carreau-Yasuda viscosity model and µ0 = 102: Total number
of specialized multigrid iterations on mesh level 2 for 200 blocked time steps.

ν1 = ν2 ⧹ γ 0 10−2 10−1 100 101 102 103 104 105 106 107

1 50 50 51 51 54 279 − − − − −
2 19 19 19 19 17 55 78 171 210 174 126
4 9 9 9 9 10 23 24 42 53 49 52
8 6 6 6 6 6 12 13 18 21 22 22
16 5 5 5 5 5 8 8 8 10 10 10
32 4 4 4 4 4 6 7 6 6 6 6

7.5 Velocity solver for Carreau-Yasuda viscosity model
As mentioned above, the linear solution strategy proposed in this work can only perform well
if the auxiliary velocity field involved in the definition of the PSC residual can be computed
efficiently. In Section 6, a highly specialized multigrid solver is presented, which solves the
velocity problems using customized techniques for relaxation and intergrid transfer. This
solver is now applied to the Carreau-Yasuda test problem as occurring in the final step
of Newton’s method. This means that the exact solution vanishes due to homogeneous
boundary data and a zero vector for the right hand side. For validation purposes, the initial
guess is given by the exact velocity field of the incompressible Navier-Stokes equations and
the solution is accepted if 11 digits in the Euclidean norm of the residual are gained within a
maximum number of 500 iterations.

In Table 6, the number of multigrid iterations is summarized for different numbers of pre-
and post-smoothing steps ν1 and ν2, respectively. Here, the solution is considered on mesh
level 2 for K = 200 blocked time steps. While the specialized solver diverges for a large
amount of AL stabilization and few smoothing steps, the convergence behavior significantly
improves for more relaxation steps. Especially for ν1, ν2 ⩾ 16, the numerical effort for solving
the space-time problem depends only marginally on the AL parameter γ and solution of the
stabilized velocity problem is at most two times as expensive as in case of γ = 0.

This observation stays valid on finer meshes and for longer time intervals, as summarized
in Table 7. While no more than 10 multigrid iterations are required to solve the problem
at hand if the highly specialized relaxation and intergrid transfer are used, the rate of
convergence for a commonly used multigrid waveform relaxation algorithm using the canonical
prolongation and restriction operators as well as the block Jacobi relaxation (cf. [Dün+21])
drastically deteriorates for γ ⩾ 100. Thus, the latter approach fails in the context of the
Oseen equations with AL stabilization, where γ ⩾ 106 seems to be a reasonable choice for
efficiently reducing the overall numerical complexity (cf. Table 5).

8 Outlook
The numerical investigations presented in Section 7 focused on test cases for small up to
moderate Reynolds numbers. In these cases, the dynamics of the fluid are mainly prescribed
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Table 7: Velocity problem for Carreau-Yasuda viscosity model and µ0 = 102: Total number
of iterations for different multigrid solvers using 16 pre- and post-smoothing steps.

standard multigrid specialized multigrid

K lvl ⧹ γ 0 10−1 100 101 102 103 0 103 104 105 106 107

100 2 7 7 7 9 57 − 5 8 8 9 9 9
100 4 8 8 8 9 71 − 5 10 8 10 9 9

400 2 7 7 9 26 401 − 5 8 9 10 10 10
400 4 8 8 8 42 − − 5 9 9 10 10 10

1600 2 7 8 13 139 − − 6 8 9 10 10 10
1600 4 9 10 32 − − − 6 8 9 10 10 10

Table 8: Oseen problem for Bench3 configuration: Total number of iterations.

PCD preconditioner LSC preconditioner

K lvl ⧹ γ 0 10−1 100 101 102 103 0 10−1 100 101 102 103

100 0 − 95 33 11 6 4 112 21 9 5 4 3
100 2 67 15 10 8 5 4 34 15 9 6 5 3
100 4 19 8 7 6 5 4 43 22 14 8 6 4

400 0 − 181 40 11 6 4 369 27 11 6 4 3
400 2 − 75 32 11 6 4 307 20 10 7 5 4
400 4 − 15 10 8 5 4 64 34 16 11 6 4

1600 0 − − 53 11 6 4 − 32 12 6 4 3
1600 2 − 143 36 11 6 4 450 23 12 8 5 4
1600 4 − 76 32 11 6 4 132 38 21 12 6 4

by the viscous part of the momentum equation and the initial condition only slightly influences
the final solution. For this kind of problems, many parallel-in-time algorithms perform well
and significant speedups compared to sequential solution strategies can be observed. This
behavior changes as the convective term becomes more dominant, for instance, when focusing
on the third test case of the well-known flow around a cylinder benchmark for µ = 10−3

and U0 = 1.5 [Sch+96]. In this case, the Reynolds number attains the maximum value of
Re = 100 at t = 4 and a von Kármán vortex street occurs behind the cylinder.

Although the unstabilized Schur complement iteration converges hardly at all for this test
problem, again the augmented Lagrangian stabilization significantly improves the convergence
behavior and only 3− 4 inner GMRES iterations are required to reach the stopping criterion
for γ = 103, no matter how many time steps are blocked or how fine the mesh is resolved
(cf. Table 8).

However, the time-simultaneous multigrid algorithm for the velocity subproblems is not
able to preserve the performance as observed for the Carreau-Yasuda viscosity model. The
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Figure 5: Velocity problem for Bench3 configuration: Total number of specialized multigrid
iterations using 16 pre- and post-smoothing steps for solving velocity problem on
mesh level 3 and time intervals

[
Kδt(i− 1),Kδti

]
, i = 1, . . . , 1600K−1.

line plot in Fig. 5 shows the total number of multigrid iterations for the global-in-time velocity
problem as occurring in different temporal subintervals. Especially in the middle of the
time interval, where the magnitude of the velocity field attains its maximum and, hence, the
convectivity is most dominant, the rate of convergence deteriorates significantly as more time
steps are blocked. This behavior is even more pronounced if AL stabilization is included in
the linear system of equations. Therefore, the so far considered time-simultaneous multigrid
solver is not well suited for convection-dominated problems and calls for other global-in-time
solution strategies. One candidate possibly performing better might be a space-time velocity
solver as proposed by Gander and Neumüller [GN16], which exploits time coarsening for
discontinuous Galerkin discretizations in time. Unfortunately, this approach has not yet
been studied in combination with the augmented Lagrangian approach and, hence, is part of
future investigations.

9 Conclusions
The augmented Lagrangian methodology is a well known approach to improve the convergence
behavior of Schur complement solvers for the Oseen equations. It has already proved itself
in several numerical test cases for stationary or sequential solution strategies. To the best
knowledge of the authors, the present work provides the first attempts to extend this approach
to the global-in-time solution of the Oseen equations. In combination with already existing
pressure Schur complement (PSC) preconditioners for the unstabilized system and embedded
into a GMRES method, the resulting solver guarantees a rapid convergence no matter how
fine the spatial domain is resolved or how many time steps are considered simultaneously.
The numerical results presented in this work illustrate the performance in several numerical
test cases and suggest that a speedup can indeed be achieved compared to sequential solution
strategies.

Unfortunately, the AL methodology comes at the cost that the velocity problems involved
in each computation of the PSC residual become arbitrarily ill conditioned and, hence,
require customized solution techniques. For this purpose, the specialized multigrid algorithm
proposed in [SSW23] was successfully extended to solution of the global-in-time velocity
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problem. If enough smoothing steps are performed, the rate of convergence seems to be
independent of the amount of AL stabilization and the number of blocked time steps, at
least if the viscosity parameter is sufficiently large. However, for high Reynolds numbers,
the time-simultaneous solution procedure deteriorates for longer time intervals. Therefore,
future work will focus on more sophisticated solution strategies for the velocity problem in
the regime of dominant convective contributions. Furthermore, nonlinear solvers for the
incompressible Navier-Stokes equations have to be investigated. As considered above, one
promising candidate is (a global-in-time) Newton’s method, which requires some globalization
technique to guarantee convergence for arbitrary initial guesses and large time intervals.
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