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“The capacity to learn is a gift;
The ability to learn is a skill;

The willingness to learn is a choice.”

Brian Herbert, House Harkonnen
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Zusammenfassung
Die vorliegende Arbeit befasst sich mit der skalenübergreifenden Modellierung von Ma-
terialien und ist in fünf Abschnitte gegliedert. Der erste Abschnitt beschäftigt sich mit
der Entwicklung von computergestützten Mehrskalenansätzen für elektro-mechanisch ge-
koppelte Probleme elektrisch leitfähiger Materialien bei infinitesimalen und finiten De-
formationen. Die Anwendbarkeit dieser Verfahren wird im zweiten Abschnitt unter
Berücksichtigung experimenteller Ergebnisse untersucht. Angesichts der Komplexität
realer Mikrostrukturen liegt der Schwerpunkt im dritten Abschnitt auf der Entwicklung
einer Grenzschichtformulierung, um den Einfluss von materiellen Grenzflächen und von
Versagensprozessen in diesen auf die effektiven elektrischen Eigenschaften der betrachte-
ten Mikrostruktur in Simulationen abbilden zu können. Die signifikanten Rechenzeit- und
Speicheranforderungen, die insbesondere bei Mehrskalenmethoden für gekoppelte Pro-
bleme vorliegen, motivieren die Behandlung effizienter Lösungsverfahren unter besonde-
rer Berücksichtigung wavelet- und FFT-basierter Ansätze im vierten Abschnitt der vor-
liegenden Arbeit. Im abschließenden fünften Abschnitt wird die Spannungs-Gradienten-
Theorie als alternativer Ansatz zur Berücksichtigung mikrostruktureller Eigenschaften
in makroskopischen Simulationen betrachtet, wobei insbesondere der Einfluss von span-
nungsfreien Randschichten und damit verbundene Größeneffekte untersucht werden.

Abstract
This contribution focuses on the modelling of materials across multiple length scales
and consists of five primary parts. The first part is concerned with the development
of electro-mechanically coupled computational multiscale formulations for electrical con-
ductors in small and finite deformation settings. Their applicability is demonstrated in
the second part by a detailed comparison with experimental findings. Given the com-
plexity of real microstructures, focus in the third part is laid on the development of
a cohesive zone formulation for electrical conductors so as to account for the action of
material interfaces and associated failure processes at the microscale. Addressing the se-
vere computational effort of multiscale approaches, fast and efficient solution approaches
to microscale boundary value problems are investigated and a hybrid wavelet-FFT ap-
proach is proposed in part four. Finally, the stress gradient continuum theory as an
alternative approach to account for the underlying material microstructure in macro-
scopic simulations is discussed in part five with particular focus lying on the simulation
of boundary-layer- and associated smaller-is-softer-type size effects.
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1 Introduction

This chapter provides an overview of experimental observations at various length
scales and briefly discusses, in a broader sense, modelling approaches that are taken to
account for these in numerical simulations. In particular, the experimental observations
and numerical approaches summarised in Section 1.1 motivate the research questions
that are formulated in Section 1.2 and that build the basis for the present contribution.

1.1 Motivation and state of the art

After a brief introduction to (multiscale) material modelling in Section 1.1.1, funda-
mental observations with regard to conducting materials are highlighted in Section 1.1.2
before the focus is laid on wavelet-based approaches in Section 1.1.3 and on generalised
continuum approaches in Section 1.1.4.

1.1.1 Materials with microstructure

Computational mechanics is a considerably interdisciplinary discipline integrating, amongst
others, knowledge and methods from materials science, scientific computing and manu-

(a) microscale experiment
(courtesy of C. Kirchlechner, Karls-
ruhe Institute of Technology)

(b) macroscale simulation
(courtesy of L. Rose, TU Dort-
mund University)

(c) macroscale forming process
(courtesy of A. E. Tekkaya and R.
Meya, TU Dortmund University)

Figure 1.1: On experimental investigations at multiple scales, the development of simulation-based
approaches and the application to forming processes: a) Micropillar compression test to determine the
critical resolved shear stress of ferrite in DP800 steel. b) Comparison of finite element-based macroscale
simulation results with experimental data obtained by using digital image correlation. c) Radial stress
superposed bending (RSS bending) of DP800 sheet material.
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1 Introduction

(a) pyrite (Fe2S) (b) voxel-based discretisation

Figure 1.2: Polycrystalline pyrite (Fe2S) and voxel-based discretisation of a representative volume
element for a polycrystalline solid. Reproduced from [9] under the terms of the Creative Commons
Attribution-NonCommercial-No Derivatives License (CC BY NC ND).

facturing technologies with the ultimate goal of predicting material behaviour. Today,
experimental findings at various length scales build the basis for the development of state
of the art material models. This is exemplified in Figure 1.1 where experimental investi-
gations at the micro- and macroscale, finite element-based macroscale simulation results
and a forming process at the macroscale are shown. Without any doubt, the underlying
microstructure and the physical processes taking place at the microscale determine the
effective material response at the macroscale, for which a thermodynamically consistent
mathematical description in terms of material models is required to simulate the forming
process.

As opposed to classic phenomenological material models that postulate constitu-
tive relations based on the experimentally observed effective material behaviour at the
macroscale, computational multiscale methods allow detailed information of the mi-
crostructure and micromechanics models that have been developed at the level of in-
dividual phases to be accounted for. To this end, the underlying microstructure is
geometrically resolved in so-called representative volume elements as exemplarily shown
in Figure 1.2, see also [9, 23, 89], and the evaluation of macroscale material models is
substituted by detailed microstructure simulations. By introducing scale-bridging rela-
tions, quantities at the different scales under consideration are related to each other.
In particular, macroscale fields are defined as volume averages of their microscopic ana-
logues, boundary conditions for the microscale boundary value problem are determined
by macroscopic fields, and energetic consistency conditions are established.

Originating from the pioneering works [82, 94] computational multiscale methods
are meanwhile well-established in the computational mechanics community, see [26, 27,
61, 87] for detailed reviews. For purely mechanical problems, first-order computational

2
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VVV

Rspe = Rref
spe

Rgeo < Rref
geo

Rref
spe < Rspe

Rref
geo = Rgeo

Figure 1.3: Differences in the geometric dimensions and in the underlying microstructures of the ide-
alised wire-like structures (left, right) manifest themselves in different geometric and specific resistances
compared to the reference specimen (middle). Reproduced from [42] under the terms of the Creative
Commons Attribution 4.0 International License (CC BY 4.0).

homogenisation schemes are for instance discussed in [14, 15, 53, 63–66]. The exten-
sion to generalised continuum theories by additionally taking the second gradient of
the placement field into account has been studied in, e.g., [35, 54, 55, 76]. Moreover,
computational homogenisation schemes for thermo-mechanically coupled problems are
addressed in [10, 11, 80, 90, 95], formulations for magneto-mechanically coupled prob-
lems are discussed in [36, 93], and formulations that focus on the simulation of piezo-
and ferroelectric materials are elaborated in [48, 49, 88]. In contrast to the theoretical
developments on (dielectric) electro-active solids discussed in [48, 49, 88], a particular
focus of the present contribution lies on the development of electro-mechanically cou-
pled computational multiscale formulations for electrical conductors as motivated by the
experimental observations discussed in Section 1.1.2.

1.1.2 Electro-mechanical coupling

For motivation purposes, assume for now a homogeneous, quasi-one-dimensional electri-
cal toy problem for which the effective macroscopic electrical resistance is given by

R =
1

κ

L

A
= RspeRgeo , Rspe =

1

κ
, Rgeo =

L

A
. (1.1)

While the geometrical contribution Rgeo to the electrical resistance is defined by the
macroscopic length L and cross-sectional area A of the conductor, the specific resistance
Rspe which is defined as the inverse conductivity κ is an effective macroscopic mate-
rial parameter that accounts for the (possibly inhomogeneous) material microstructure.
The different contributions to the effective macroscopic resistance are exemplified in
Figure 1.3 for a material featuring microstructural imperfections.

Gaining a detailed understanding and predicting the influence of microscale features
such as the phase composition, grain- and phase boundaries or micro-cracks on the effec-
tive electrical conductivity is of importance for manufacturing technologies and reliability
engineering alike:

3
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1 Introduction

(a) grain boundary resistivity in Cu films
(courtesy of H. Bishara, MPIE)

(b) MnS-delamination and void growth in 16 MnCrS5

(courtesy of A. Dunlap, RWTH Aachen)

Figure 1.4: Exemplary studies of grain and phase boundaries in the context of electrical conductivity
and deformation-induced failure processes: a) Electron backscatter diffraction-based analysis of grain
orientations in a Cu thin film sample, used in a study of grain boundary resistivity. b) Experimental
analysis of damage evolution in the vicinity of MnS inclusions in 16 MnCrS5 steel using scanning electron
microscopy.

Firstly, consider as an example flexible electronic devices such as wearable sensors
[5, 69] and foldable displays [12, 51], which are in the focus of many engineering ap-
plications. To ensure the functionality of these devices, detailed knowledge is required
on the electro-mechanical material properties for various loading conditions. However,
the experimental characterisation of material thin films, especially the study of failure
mechanisms, is difficult and requires the development of advanced measuring technolo-
gies as discussed in [16, 28, 58]. Computational multiscale homogenisation schemes are
promising numerical approaches to support these developments as they allow material
microstructures and their evolutions to be resolved in numerical simulations. Moreover,
complex deformation processes which are difficult to study experimentally are accessi-
ble by using suitable computational multiscale formulations that were calibrated on the
basis of experiments and enable predictive simulations.

Secondly, experimentally recorded electrical signals at the macroscale may be inter-
preted as a fingerprint of the material state. Against this background, computational
multiscale formulations for conductors are expected to contribute to the development
process of advanced non-destructive electrical resistance-based testing methods used to
analyse defect structures in specimens, e.g., [52].

Focusing in more detail on the microscale, the electrical characterisation of individual
grain boundaries in a Cu film is exemplarily shown in Figure 1.4(a) and the experimen-
tally observed delamination process of a MnS particle in 16 MnCrS5 steel is shown in
Figure 1.4(b). As opposed to the bulk properties of individual microscale phases, both
experimental investigations are intrinsically related to material interfaces. The former
study is concerned with the additional resistivity measured due to the presence of grain
boundaries, the latter with the evolution of interface damage and void growth at the
microscale that is, likewise, expected to affect the effective conductivity. The distinct
properties of the interfaces in the previous examples differ significantly from those of the
surrounding continuum and can be accounted for in simulations by the introduction of

4
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Figure 1.5: Hat-wavelets and scaling functions on a periodic domain with period 2.0 mm. The domain
is discretised with two grid points on discretisation level 0 and four grid points are used in the corre-
sponding level 1 discretisation. Crosses indicate the spatial positions and the discretisation levels on
which grid points occur for the first time. It is observed that the grid point at x = 0.0 mm is associated
with scaling function φ00 in a level 0 discretisation and with scaling function φ10 in a level 1 discretisation.
Likewise, the grid point at x = 0.5 mm is associated with wavelet ψ0

0 and scaling function φ11, respec-
tively. Reproduced from [45] under the terms of the Creative Commons Attribution 4.0 International
License (CC BY 4.0).

interface models. In these approaches, the physical interface (of finite thickness) is not
geometrically resolved but rather approximated as a lower-dimensional object (e.g. as a
surface in a three-dimensional setting).

Based on the assumed continuity of field quantities across the interface, different types
of interface formulations may be distinguished, see [37] and references cited therein.
Elastic-interface models originate from the pioneering works of Gurtin and Murdoch on
interface elasticity [30, 74], and assume the displacement-type fields to be continuous,
whereas traction-type quantities may exhibit jump-discontinuities across the interface.
Classic cohesive interface models that date back to the seminal works by Barenblatt
on quasi-brittle materials [8] and by Dugdale on ductile materials [19] on the other
hand, assume traction continuity across the interface and allow for the modelling of
jump-discontinuities in the displacement-type fields. Although seemingly different, it
has recently been shown that classic cohesive zone formulations and interface elasticity
formulations can be regarded as two extremes of the unifying theory of generalised
imperfect interfaces elaborated in [37, 38, 79, 85].

Since the works of Barenblatt and Dugdale [8, 19], classic cohesive zone models that
are in the focus of the present contribution have been subject of intense research with
many contributions focusing on the consistency of cohesive zone formulations with funda-
mental requirements of continuum mechanics (particularly for finite deformations), e.g.
[71, 78, 99, 105], and on the elaboration of specific traction separation laws that account
for irreversible processes such as damage and plasticity, e.g. [20, 33, 77, 83, 98, 107]. In

5
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1 Introduction

addition to the developments on cohesive zone formulations for purely mechanical prob-
lems, cohesive zone formulations for coupled multi-physics problems have been studied.
In particular, thermo-mechanical coupling has been addressed in [21, 22, 81] and electro-
mechanically coupled cohesive zone formulations for electro-active solids have been pro-
posed in [4, 56, 57, 97, 103, 104]. However, focussing on piezo- and ferroelectric effects
in dielectric solids, the latter formulations differ significantly from the developments on
electrical conductors in the present contribution.

The experimental results summarised in this section show that computational mul-
tiscale methods intrinsically rely on an accurate representation of the underlying mi-
crostructure, both in terms of its morphology and the constitutive response of individ-
ual constituents. For this reason, the repetitive solution of microscale boundary value
problems is associated with significant computational costs and memory requirements,
in particular in multi-physics applications or when non-linear constitutive relations are
to be solved [26]. Against this background, elaborated numerical approaches for the
efficient solution of microscale boundary value problems are discussed in Section 1.1.3

1.1.3 Wavelet-based approaches

Wavelet analysis emerged in the early 1980s, driven by applications in seismic geology
[70], electrical engineering [92] and quantum science [29]. It is based on the fundamental
concept of multiresolution analysis [60] and has been shown to be particularly useful in
the study of physics problems that include characteristic features at significantly differ-
ent length scales. Hence, it is often also referred to as the numerical microscope [59]. By
providing an hierarchical sequence of basis functions and by establishing transformation
relations between the different resolution levels considered, wavelet-based approaches
allow signals to be systematically analysed and compressed by successively ”peeling
off” high frequency components. Vice versa, compressed signals may be retrieved and
detailed representations of a signal may be derived by making use of wavelet synthesis
operations. In this regard, wavelet-based approaches differ significantly from classic spec-
tral approaches since wavelet basis functions have good localisation properties in both
physical and spectral space. This eventually allows the determination of the frequency
spectrum of a signal and the locations in physical space at which particular frequen-
cies occur [106], and to properly resolve localised features of a signal by systematically
adding/removing higher level wavelets in the respective wavelet expansion.

As an example, consider the wavelet family depicted in Figure 1.5. By adding level 0
wavelets ψ0

k (x) (spanning the wavelet space W0) to level 0 scaling functions (spanning
the scaling function space V0) one arrives at a level 1 discretisation space (V1 = V0⊕W0).
In addition to the intrinsically hierarchical character, the previous example demonstrates
an interesting characteristic of classic wavelet-based approaches: scaling functions and
wavelets at the different resolution levels are translates and dilates of mother scaling
functions and mother wavelets, respectively.

6
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Figure 1.6: Exemplary wavelet expansion in a one dimensional setting using Deslauriers-Dubuc wavelets:
a) Deslauriers-Dubuc scaling function and wavelet (N = 2). b) One-dimensional periodised Gaussian

g (x) = [0.2 ∗ π]
−0.5

exp
(
−5x2

)
with period 8 and level 4 wavelet expansion g4≥ (x) using Deslauriers-

Dubuc wavelets (N = 2). Active grid points are indicated in black colour, inactive grid points in grey
colour. Reproduced from [47] under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

Focusing on wavelet-based representations of functions, the approximation of a Gaus-
sian in a one-dimensional setting is shown in Figure 1.6 where wavelet-coefficients smaller
than tolerance εd where neglected in the general wavelet expansion

f (x) ≈ f j≥ (x) =
∑
k

s0k φ
0
k (x) +

j−1∑
i=0

∑
k

|dik| ≥ εd

dik ψ
i
k (x) . (1.2)

In (1.2), f (x) denotes a scalar-valued function that is approximated at different res-
olution levels j in terms of scaling function coefficients sjk and wavelet coefficients djk,
with index k indicating translation in space. In addition to the one-dimensional exam-
ple shown in Figure 1.6, the wavelet-based representation of a two-dimensional field – a
greyscale image of the mechanical engineering building at TU Dortmund University – is
shown in Figure 1.7. Whereas almost all information is lost when naively compressing
the image by taking only information of pixels in the top left corner into account, im-
portant information such as the reference to the Institute of Mechanics or the address
and building number are still recognisable in the wavelet-compressed image. This exam-
ple demonstrates that the complexity of problems (in this case the number of greyscale
values stored) can significantly be reduced while preserving most of the information by
using adaptive hierarchical wavelet approaches.

Due to their remarkable time-frequency decomposition characteristics, adaptive wave-
let-based approaches to the solution of (partial) differential equations have been in the
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(a) original 2048×1024 pixel image

(b) 90% compressed image relying only on information of the top-left corner

(c) 90% compressed image based on wavelet analysis

Figure 1.7: On targeted refinement and the representation of information: a) Original 2048×1024 pixel
image. b) Naive image compression by taking only information of pixels in the top-left corner into
account. c) Image compression by using Deslauriers-Dubuc wavelets (N = 2, three discretisation levels)
and by dropping ”small” wavelet coefficients in the wavelet-expansion.
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1.1 Motivation and state of the art

(a) closed-cell aluminium foam
(reprinted from [91], copyright (2010),
with permission from Elsevier)

L

d

(b) compression test
(motivated by [75])

(c) experimentally observed size effect
(reprinted from [3], copyright (2001),
with permission from Elsevier)

Figure 1.8: Boundary layer and size effects in closed-cell aluminium foams. a) Microstructure of a closed-
cell aluminium foam (ALPORAS©). b) Compression test of a foam-type sample of length L and with
pore diameter d. c) Experimentally determined unloading stiffness E∗ for different foams. The dashed
line represents the solution derived in [75] based on simulations with a fully resolved microstructure.

focus of intense research, see [59] for a detailed review. These include wavelet colloca-
tion [31, 32, 102], wavelet Galerkin [1, 2, 39] and wavelet finite element methods [13].
However, applications to continuum mechanics problems have been rather limited and
there are but a few works that focus for instance on the application of wavelets to struc-
tural optimisation problems [50], on wavelet-enhanced finite element-based approaches
for the efficient solution of microscale boundary value problems [6, 7] or on adaptive
wavelet-based reduced order models [100, 101]. Against this background, the applica-
bility of wavelet-based approaches to reduce the computational complexity of microscale
boundary value problems and the combination of these approaches with state of the
art spectral solvers is studied in this contribution. Moreover, given the computational
effort that is still associated with elaborate multiscale schemes, alternative approaches
to account for the effect of the underlying microstructure in macroscale simulations are
additionally considered in Section 1.1.4.

1.1.4 Stress gradients, boundary layer and size effects

For motivation purposes consider the closed-cell aluminium foam depicted in Figure 1.8(a)
and assume that the foam is subjected to a compressive load state as schematically
shown in Figure 1.8(b) for a simplified two-dimensional setting. In this example, two
characteristic measures of unit length occur: 1) the (average) cell diameter d and 2)
the macroscopic sample size L. Moreover, it is observed that the outer cells, marked in
red colour, are stress-free and do not contribute to the overall effective stiffness which
is, hence, a function of the internal length d and the sample size L. This size depen-
dence was studied experimentally in [3] and numerically in [75], where use was made
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of analytical solutions and finite element-based simulation results for beam-networks.
The corresponding experimental data is provided in Figure 1.8(c) along with the pre-
dicted normalised stiffness of the samples. Both experiment and simulation results show
a striking smaller-is-softer-type size effect that is explained in [3, 75] by reduced kine-
matic constraints in the cells close to the boundary and by an increasing area fraction
of the (stress-free) boundary layer with decreasing sample size.

As a counter part to well-established strain gradient theories [67, 68], a stress-gradient
continuum theory has recently been proposed in [24]. Belonging to the class of micro-
morphic continuum approaches, the stress gradient theory relies on the introduction
of additional macroscopic degrees of freedom. These so-called micro-displacements are
work-conjugate to the deviatoric part of the stress gradient and associated with the
deformation of the underlying microstructure. In particular, it has been shown in [34]
that, by making use of a generalised computational homogenisation approach, the micro-
displacements can be interpreted as the (deviatoric part of the) first moment of the
micro-strainfield. In addition to this physical motivation of stress gradient continua, the
well-posedness of boundary value problems for different sets of boundary conditions has
been shown in [84] and an analytical solution to Eshelby’s inclusion problem for stress
gradient continua was derived in [96].

In the light of the experimental investigations discussed at the beginning of this
section, a salient feature of the stress gradient theory is the natural occurrence of an
internal length scale that allows smaller-is-softer-type size effects to be accounted for
in simulations. This is in striking contrast to smaller-is-stiffer-type size effects that are
encounter in classic gradient elasticity approaches. Furthermore, it is noted that the
stress gradient theory allows for the (complete) stress tensor to be controlled at the
boundaries such that stress-free boundary layer effects can be taken into account.

1.2 Scope and research questions

The experimental findings and modelling approaches summarised in Section 1.1 motivate
research questions that guide the developments presented in this contribution. In par-
ticular, eight research questions are formulated in the following that are directly related
to the publications (Paper 1–Paper 8) this contribution is based on.

From a materials science point of view, a numerical tool is required that enables a
detailed study of the influence of different microscale features and processes under differ-
ent loading conditions on the effective electrical conductivity. Computational multiscale
formulations are expected to provide such capabilities so that the first two research
questions read

RQ 1: Can a computational multiscale formulation for electrical conductors be developed
that enables a detailed study of the influence of deformation-induced microscale
processes on the effective electrical conductivity in an infinitesimal deformation
setting?

10
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RQ 2: Can a computational multiscale formulation for electrical conductors be developed
that enables a detailed study of the influence of deformation-induced microscale
processes on the effective electrical conductivity in a finite deformation setting?

The applicability of the multiscale scheme is studied in a next step by taking into account
experimental data and by addressing the research questions

RQ 3: Can the experimentally recorded resistivity of artificially generated, geometrically
well-defined microstructures be reproduced by applying the developed computa-
tional multiscale scheme?

RQ 4: Can the experimentally recorded changes in the electrical properties of metal thin
films be related to experimentally recorded microscale cracks by accounting for
CLSM laser intensity information in simplified two-dimensional representative
volume elements?

With the experimentally-validated multiscale scheme at hand, focus is laid on the mod-
elling of different microscale features that affect the electrical conductivity as formalised
in the research question

RQ 5: Can electro-mechanical properties of material interfaces (grain boundaries, phase
boundaries, cracks...) be accounted for in simulations by using multi-field cohe-
sive zone formulations?

To address the significant computational effort that is associated with computational
multiscale approaches, efficient solution schemes that make use of the characteristic
structure of the microscale boundary value problem are studied thereafter in the light
of the research questions

RQ 6: What are the key properties of wavelet-based approaches – are wavelet-based ap-
proaches promising candidates to improve the overall computational efficiency of
multiscale schemes?

RQ 7: Can adaptive hierarchical wavelet approaches be used to (further) increase the
computational efficiency of FFT-based spectral solvers for microscale boundary
value problems?

and alternative, generalised continua-based approaches to account for microscale features
in macroscale simulations are finally pursued

RQ 8: Can a finite element implementation of the stress gradient theory that allows one
to account for stress-free boundary layer- and associated smaller-is-softer-type
size effects be derived?

11





2 Extended summary

Guided by the research questions posed in Section 1.2, an extended summary of re-
search findings published in the peer-reviewed journal articles Paper 1–Paper 8 is
provided in this chapter. In particular, computational multiscale approaches for elec-
trical conductors (Paper 1, Paper 2) and their application to experiments (Paper
3, Paper 4) are discussed in Section 2.1 and Section 2.2, respectively. Focusing on
the modelling of material interfaces, the fundamentals of electro-mechanically coupled
cohesive zone formulations (Paper 5) are studied next in Section 2.3. Thereafter, fo-
cus is laid on efficient wavelet-based solution approaches for microscale boundary value
problems (Paper 6, Paper 7) in Section 2.4 before the stress gradient theory (Paper
8) as an alternative approach to account for the underlying material microstructure is
addressed in Section 2.5.

2.1 Computational multiscale modelling of conductors

The fundamentals of computational multiscale approaches for electrical conductors in
infinitesimal (Paper 1, Section 2.1.1) and finite (Paper 2, Section 2.1.2) deformation
settings are summarised in this section and their applicability is demonstrated by a
study of selected (academic) boundary value problems.

2.1.1 Infinitesimal deformation setting

By assuming a quasi-static, quasi-stationary setting and by neglecting body forces and
temperature effects, the governing set of balance equations for electrical conductors re-
duces to the balance equation of linear momentum and the continuity equation for the
electric charge, namely,

∇ · σ = 0 , (2.1a) ∇ · j = 0 . (2.1b)

The stresses σ and the electric current density vector j that occur in the coupled set
of partial differential equations (2.1) require constitutive specification. In classic phe-
nomenological modelling approaches, constitutive relations in terms of strains ε, electric
field vector e, and possibly a set of internal variables are postulated in accordance with
the dissipation inequality. Thereafter, the field equations are solved for the primary
fields of interest – the displacement field u and the electric potential field φ – that are
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e1

e2

BM B

tM = tM iM = iM

φM = φ
M

f
M

uM = uM

εM, eM, . . .

σM, j
M
, . . .

RVE

Figure 2.1: First-order computational homogenisation scheme for electro-mechanical problems. At the
microscale different material regions, representing for example different grains, are indicated (middle
figure). In addition, cracks that are geometrically resolved are schematically depicted (right figure).
Prescribed quantities, such as tractions tM or electric current density iM, are denoted with an overbar.

related to the former kinematic quantities according to

ε =
1

2

[
∇u+ [∇u]t

]
, (2.2a) e = −∇φ . (2.2b)

In the electro-mechanically coupled computational multiscale approach developed in
Paper 1, the evaluation of the phenomenological macroscale material model is substi-
tuted by the solution of a microscale boundary value problem as schematically shown in
Figure 2.1. To this end, an extended form of the Hill-Mandel energy equivalence con-
dition together with the associated set of micro-macro and macro-micro scale bridging
relations is established, a finite element-based implementation is derived, and represen-
tative boundary value problems are studied.

The consistent macroscale tangent stiffness tensors of the electrical problem are of
particular interest for the developments in Paper 3 and Paper 4. These can be ex-
tracted from the finite element discretised microscale boundary value problem and take
the specific form

∆jM ≈

[
1

v

npn∑
i=1

npn∑
j=1

(i)x⊗ (ij)K̂φu ⊗ (j)x

]
︸ ︷︷ ︸

=
djM
dεM

: ∆εM +

[
−1

v

npn∑
i=1

npn∑
j=1

(ij)K̂φφ (i)x⊗ (j)x

]
︸ ︷︷ ︸

=
djM
deM

·∆eM

(2.3)

where v is the volume of the representative volume element, npn the number of finite
element nodes where the displacement is prescribed, (i)x the position of node i, and
(ij)K̂•∗ the (generalised) stiffness contribution related to nodes i and j. The contribution
djM
dεM

is a measure for deformation-induced changes in the electrical conductivity, e.g.,
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e1

e2

0.2 0.6 0.2

(a) circular

e1

e2
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(b) groove-shaped

e1

e2

0.7 0.1 0.10.1

(c) diagonal

Figure 2.2: Sketch of different two-dimensional microstructures analysed with the electro-mechanically
coupled multiscale finite element formulation. Reproduced from [42] under the terms of the Creative
Commons Attribution 4.0 International License (CC BY 4.0).

caused by the evolution of microscale cracks. The contribution djM
deM

, relating changes
in the electric field vector to changes in the electric current density vector, can be
identified with the macroscale conductivity tensor SM and interpreted as a fingerprint
of the microstructure.

As an example consider the microstructures depicted in Figure 2.2 and assume the
linear constitutive relation

j = S · e (2.4)

for each microscale material point, with the isotropic conductivity tensor S = κ I being
defined in terms of the scalar-valued conductivity κ. The application of the homogeni-
sation scheme with periodic boundary conditions yields the macroscopic conductivity
tensors

[SM]cirij =

[
0.56 0.00
0.00 0.56

]
κ , [SM]groij =

[
0.86 0.00
0.00 0.64

]
κ , [SM]diaij =

[
0.31 0.07
0.07 0.31

]
κ

(2.5)

with superscripts referring to the respective microstructure. Comparing the effective
macroscopic conductivity tensor of a material with circular voids with the conductivity
tensor of an idealised material, it is observed that the effective macroscopic constitutive
response remains isotropic, whereas a reduction in the conductivity of approximately
44% is observed. In contrast, the effective macroscopic conductivity tensor that results
from a microstructure with a groove-shaped void as depicted in Figure 2.2(b) is signif-
icantly anisotropic. However, the principal material axes are aligned with the e1- and
e2-coordinate axes such that the conductivity tensor is in diagonal form. In the case of
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the microstructure of diagonal type depicted in Figure 2.2(c), the e1- and e2-coordinate
axes are not aligned with the principal material axes. Thus, the effective macroscopic
conductivity tensor is not in diagonal form but features off-diagonal components.

The previous examples demonstrate the applicability of the electro-mechanical mul-
tiscale formulation to extract effective macroscopic conductivity tensors for given mi-
crostructures. Further examples focusing, amongst others, on the simulation of macroscale
boundary value problems with spatially varying microstructures and on deformation-
induced changes in the effective conductivity, e.g. caused by the evolution of microscale
damage, are provided in Paper 1. In a finite deformation setting, severe changes in
the microscale morphology, for instance associated with the shape of microscale pores,
result in an additional coupling of the electrical and mechanical field equations. These
effects are in the focus of the finite deformation multiscale approach developed in Paper
2 and are discussed in Section 2.1.2.

2.1.2 Finite deformation setting

In analogy with the developments in an infinitesimal deformation setting, the governing
set of field equations under the assumptions of quasi-statics and quasi-stationarity con-
sists of the balance equation of linear momentum and the continuity equation for the
electric charge. With respect to the referential configuration they take the form

∇X · P = 0 , (2.6a) ∇X · J = 0 , (2.6b)

where P denotes the first Piola-Kirchhoff stress tensor and J the referential electric
current density vector. These tensors require constitutive specification and are, in gen-
eral, functions of the deformation gradient F , the referential electric field vector E and
internal variables. Similar to mechanical problems, the electrical sub-problem can be
formulated with respect to referential or spatial quantities which are related via push-
and pull operations according to

J = det (F ) F−1 · j , (2.7a) E = F t · e . (2.7b)

Moreover, it is noted that the referential and spatial electric field vectors are derivable
from the electric potential field as

E = −∇Xφ , (2.8a) e = −∇xφ , (2.8b)

hold, with subscripts indicating derivatives with respect to referential and spatial coor-
dinates.

In paper Paper 2, a computational multiscale formulation for electrical conductors
in a finite deformation setting is proposed where the phenomenological constitutive re-
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Figure 2.3: Biaxial tensile test specimen used in the electro-mechanically coupled multiscale simulations.
Microstructural imperfections according to b) are assumed in the dark grey coloured region and resolved
by using the proposed multiscale approach. In the light grey coloured region, a classic phenomenological
material model is used. Dimensions are given in mm. Reproduced from [43] under the terms of the
Creative Commons Attribution 4.0 International License (CC BY 4.0).

lations at the macroscale, relating stresses to strains and electric current densities to the
electric field, are substituted by the solution of a microscale boundary value problem. To
this end, the respective scale-bridging relations are established, a finite element-based
implementation is developed and representative boundary value problems are analysed
so as to reveal principal model properties of the proposed formulation.

For demonstration purposes a Neo-Hookean-type energy potential and a linear rela-
tion between the (spatial) electric current density vector and the (spatial) electric field
vector, namely,

j = St · e , (2.9)

are adopted at the microscale. In (2.9), St denotes the positive (semi-)definite spatial
conductivity tensor that is chosen to be constant, isotropic, and to depend on the scalar-
valued conductivity parameter κt, i.e. St = κt I. By additionally invoking (2.7), the
referential representation of (2.9) follows as

J =
[
JF F

−1 · St · F−t
]
·E . (2.10)

Assuming κt to be constant allows us to study the influence of finite geometry changes
at the microscale (e.g. of voids) on the effective electrical conductivity tensor at the
macroscale. To this end, focus is on the biaxial tensile test specimen depicted in Fig-
ure 2.3(a). The specimen consists of two different materials as indicated in light and dark
grey. In the dark grey coloured region, a material microstructure with a circular void
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(b) electric current as a function of deformation

Figure 2.4: a) Deformation and electric current density for the biaxial tensile test specimen according
to Figure 2.3 with u = 7.0 mm, ∆φ1 = 0.1 mV and ∆φ2 = 0.0 mV. The outline of the reference config-
uration is depicted in light grey colour and grey coloured arrows indicate the direction of the electric
current. b) Electric current I• as a function of deformation for a prescribed electric potential difference
∆φ• = 0.1 mV. Curves labelled with ”FE2” indicate fully coupled electro-mechanical multiscale sim-
ulations. Curves labelled with ”pheno.” indicate reference solutions with a multiscale approach used
for the mechanical problem and a classic phenomenological material model with a constant spatial con-
ductivity tensor used for the electrical problem. Reproduced from [43] under the terms of the Creative
Commons Attribution 4.0 International License (CC BY 4.0).

according to Figure 2.3(b) is assumed, and the effective macroscopic material behaviour
is calculated by using the proposed multifield multiscale formulation. In the light grey
coloured region, an idealised material behaviour representing a microstructure without
voids is assumed. The specimen is loaded in e1-direction, with the prescribed horizontal
displacement u being linearly increased and the vertical displacement enforced to be zero
at both ends. The remaining boundaries are assumed to be traction-free. Regarding the
electrical subproblem either a potential difference ∆φ1 or a potential difference ∆φ2 is
prescribed. The remaining boundaries are assumed to be electrically insulated.

A reference model is introduced in order to evaluate the influence of the microscale de-
formation on the effective macroscopic quantities that may be measured in experiments.
This model does not take changes in the effective conductivity tensor due to deforma-
tion processes at the microscale into account. However, the mechanical behaviour is still
assumed to be governed by the microscale so that the macroscopic deformation is the
same as in the fully-coupled FE2-model. To this end, the FE2-based calculation of the
electrical subproblem in the dark grey coloured region is replaced by a classic single-scale
material model with the effective spatial conductivity tensor S̃Mt = κ̃t I that resembles
the properties of the microstructure in the undeformed state. The respective elongation-
electric current curves are provided in Figure 2.4: 1) By comparing the ∆φ1 = 0.1 mV
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2.2 Application to and comparison with experiments

and ∆φ2 = 0.1 mV curves, a significant difference in the electric current is observed that
can primarily be attributed to the macroscopic deformation process. In particular, the
effective electrical resistance in e1-direction increases because the length of the specimen
increases while the effective cross section is reduced. Likewise, the effective electrical
resistance in e2-direction decreases. 2) Regarding the difference between FE2-based sim-
ulations (that account for the influence of the inhomogeneous microscale deformation on
the effective macroscopic conductivity tensor) and the reference model as defined above
(that does not account for deformation-induced changes in the conductivity tensor), one
observes a significant decrease in the electric current with increasing deformation for the
complete FE2 model.

The simulation results demonstrate the capability of the proposed multiscale formula-
tion to account for mechanically-induced changes in the effective electrical conductivity
and to predict the response of a macroscale specimen with a spatially varying, evolving
microstructure. With the electro-mechanically coupled multiscale formulations at hand,
focus is laid on the application to and the comparison with experiments in Section 2.2.

2.2 Application to and comparison with experiments

The applicability of the computational multiscale scheme proposed in Paper 1 is studied
in this section by taking experimental data into account. To this end, the influence
of artificially generated, geometrically well-defined microscale pores (Paper 3) and of
deformation-induced microscale cracks (Paper 4) on the effective electrical conductivity
is exemplarily analysed in Section 2.2.1 and Section 2.2.2, respectively.

2.2.1 Probing porosity in metals by electrical conductivity

Paper 3 deals with a detailed study of conductivity changes caused by the presence
of sub-microscale pores. Reducing the complexity of the material system, geometrically
well-defined pore arrays are created by focused ion beam (FIB) milling in Cu thin films
and characterised by 4-point probe electrical measurements. Specifically speaking, four
needles approach the surface of the sample as shown in Figure 2.5. The outer needles
supply the electric current and are in a fixed position during the experiment. The inner
needles are used to measure the voltage drop along the measurement line.

The experiment is designed such that an overall (quasi-)unidirectional electric current
is observed that is, however, strongly inhomogeneous in the region where the microstruc-
tural imperfections are induced. Motivated by Saint-Venant’s principle of mechanical
problems, it is thus proposed to measure the electric potential difference at a distance
from the imperfections and to evaluate their influence on the overall electrical material
properties by using the equivalent model sketched in Figure 2.6.

More specifically speaking, the electric potential difference ∆φ between the points
B and C that are a distance lφ < lI apart is in a first step measured for a prescribed
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(a) experimental setup

(b) d2 = 420 nm (c) d2 = 515 nm

(d) d2 = 660 nm (e) a2 = 950 nm, b2 = 510 nm

Figure 2.5: Experimental setup and artificially created microstructures featuring circular pores of di-
ameter d2 and elliptical pores with principal axes {a2, b2}, respectively. Reproduced from [46] under
the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

electric current I. In a second step, the experimental data is compared with simulation
results that are based on series and parallel connections of resistors as sketched out in
Figure 2.6(b). In addition to the effective resistance R2 associated with the n2 × n2

array of unit cells, the resistance caused by the material region of length l−, i.e. R−,
and the resistance associated with the material region of height h|, i.e. R|, are accounted
for. In this regard, it is noted that the geometric dimensions are directly extracted from
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Figure 2.6: Experimental setup and modelling approach with 0 ≤ α− ≤ 1, 0 ≤ α| ≤ 1 and lφ =
n2l2 + l−. The material and structural properties do not significantly vary over the thickness t, such
that a two-dimensional modelling approach is taken. Reproduced from [46] under the terms of the
Creative Commons Attribution 4.0 International License (CC BY 4.0).

the experimental images. The remaining unknowns that occur in the calculation of the
potential difference

∆φ (lφ) ≈

[
R− +

[
1

R2
+

1

R|

]−1]
I

=

[
1

κ

lφ − n2l2[
h| + n2h2

]
t

+

[
κ2
h2t

l2
+ κ

h|t

n2l2

]−1]
I

(2.11)

are the scalar-valued conductivity κ of the base material, and the effective conductivity
(in e1-direction) of the material region that features pores, κ2. Conductivity coefficient
κ2 is, however, not independent but can be related to the conductivity of the base
material by making use of the computational homogenisation scheme proposed in Paper
1 and by projecting the homogenised conductivity tensor SM into the e1-direction,

κ2 = e1 · SM · e1 . (2.12)

Accordingly, by making use of the computational homogenisation scheme and by
introducing the conductivity ratio

β2 = κ2/κ (2.13)

that measures the influence of the pore-type inclusions on the effective resistivity, relation
(2.11) can be recast in the form

∆φ (lφ) ≈

[
lφ − n2l2[
h| + n2h2

]
t

+

[
β2
h2t

l2
+

h|t

n2l2

]−1]
I

κ
. (2.14)
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Figure 2.7: Comparison of experiment and simulation: a) Finite element discretised unit cell with
elliptic inclusion (l2 = h2 = 2000 nm, a2 = 950 nm, b2 = 510 nm) b) Experimentally determined
(×, ◦,O, ∗,�) and simulated (−,−−,−·, ··,−) potential difference as a function of contact distance.
Simulation results for I = 10 mA and κ = 51.3 mA/mVµm are shown. Reproduced from [46] under the
terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

To study the applicability of the computational homogenisation scheme for electrical
conductors, finite element discretised unit cells as exemplarily shown in Figure 2.7(a)
are, in a first step, prepared from the experimental images shown in Figure 2.5. Based
on these, effective conductivity tensors and conductivity ratios are calculated in a second
step by application of the computational homogenisation scheme.

In addition to the microstructures with pores shown in Figure 2.5, an ideal Cu thin
film is taken into account as a reference. For all samples, a spatially uniform thickness
is assumed and the geometric dimensions are extracted from the experimental images.
With these data at hand and for the particular choice κ = 51.3 mA/mVµm that is based
on the direct measurement of the pristine thin-film, the evaluation of (2.14) yields the
∆φ-lφ-curves depicted in Figure 2.7(b).

In addition, the experimentally obtained data points are provided in Figure 2.7(b).
As expected, it is observed that the measured voltage-drop between the inner needles
increases with the distance between the contacts and that the measured voltage-drop
scales with the dimensions of the pores. Overall, experiment and simulation agree well,
both quantitatively and qualitatively, which shows both: the accuracy of the electrical
measurements and the applicability of the proposed modelling approach.

2.2.2 Predicting effective properties of metal thin films

Paper 3 dealt with a multiscale study of artificially generated microstructures to gain
a detailed understanding of the proposed multiscale approach when applied to ex-

22

https://creativecommons.org/licenses/by/4.0/
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(a) cycle 1 (b) cycle 11 (c) cycle 22
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R
/
R

0

cycle

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1 11 22 123 148
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(f) relative resistance ratio

Figure 2.8: a-e) Laser intensity images for different deformation states of a 200 nm Cu film with a 10 nm
Cr adhesion layer on a 50 µm thick Upilex Polyimide substrate (130 µm × 130 µm micrographs). The
tensile straining was parallel to the horizontal direction and all scale bars are 20 µm. f) Experimentally
recorded relative resistance ratio as a function of load cycles and multiscale simulation results for
γ = 6.5. Reproduced from [41] under the terms of the Creative Commons Attribution 4.0 International
License (CC BY 4.0).

periments. These developments are extended in Paper 4 where the focus is laid on
deformation-induced microscale cracks in metallic thin films.

To this end a bilayer made of a 200 nm Cu film with a 10 nm Cr adhesion layer on a
50 µm Upilex Polyimide substrate is cyclically strained and analysed by using four point
probe resistance measurements and confocal laser scanning microscopy (CLSM) imaging.
For the in-situ electrical measurements, the relative resistance ratio, R/R0, is used where
R0 is the initial resistance before straining (without mechanical damage or cracks) and
where R is the instantaneous measured resistance. The relative resistance ratio as a func-
tion of the load cycle number is depicted in Figure 2.8(f) and exemplary laser intensity
images that are the basis for the subsequent developments are shown in Figure 2.8 (a-e).

The geometric data from the CLSM laser intensity images is converted into finite
element meshes, which serve as the basis for the computational homogenisation scheme.
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2 Extended summary

(a) cycle 123, γ = 4.0 (b) cycle 123, γ = 6.5 (c) cycle 123, γ = 8.0

Figure 2.9: Comparison of identified cracks using three different filter options. Depicted are 114 µm×
114 µm micrographs for γ ∈ {4.0, 6.5, 8.0} with red lines indicating the cracks that have been identified.
Reproduced from [41] under the terms of the Creative Commons Attribution 4.0 International License
(CC BY 4.0).

Being more specific, greyscale gradients in loading direction (e1) of the micrographs
depicted in Figure 2.8 are calculated in a first step, since the cracks preferably form in the
transverse direction (e2). In a second step, only pixels with negative greyscale gradient
values that are higher than a factor γ times the mean value of the negative greyscale
gradients in loading direction are considered to represent cracks. This condition can be
stated as

−∇Gi · e1 > γ
1

npix

npix∑
j=1

max {0,−∇Gj · e1} , (2.15)

with G• denoting the greyscale value of pixel • and with npix denoting the number of
pixels in the image. By additionally applying morphological operations, representative
volume elements with geometrically resolved cracks as exemplarily shown in Figure 2.9
are prepared from the experimental images, and effective conductivity tensors S•M are
extracted for each load step •. In accordance with the (quasi-one-dimensional) model
problem depicted in Figure 1.3, in view of the experimental results presented in Fig-
ure 2.8(f), and by taking into account that

R

R0

=
κ0
κ

L

L0

A0

A
≈ e1 · S0

M · e1

e1 · S•M · e1

L

L0

A0

A
(2.16)

holds for a quasi one-dimensional setting, the simulation results are normalised with
respect to an idealised material which does not contain cracks at the microscale.
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B−

B+II− I+

n−
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Figure 2.10: Specification of quantities in the continuum B and at the interface I. Reproduced from
[40] under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

The experimental data and the relative resistance ratios that were calculated by means
of multiscale finite element simulations are provided in Figure 2.8(f). In general, and
especially for high cycle numbers, experiment and simulation are in good agreement.
However, there is an interesting difference at cycle 22 which suggests that for small cycle
numbers too many regions have been associated with through-thickness cracks which
leads to an increase in the predicted relative resistance ratio. Comparing the corre-
sponding micrograph of cycle 22 shown in Figure 2.8(c) with the images corresponding
to higher cycle numbers, e.g. Figure 2.8(d) or Figure 2.8(e), it is observed that the
greyscale gradients are much less pronounced. Accordingly, this observation underlines
the need for further experimental and simulation based analyses in future works, in
order to reliably distinguish between through-thickness cracks and plastic localisation
zones. Nevertheless, the comparison of simulation results and experimental findings
clearly demonstrates the usefulness of the proposed multiscale formulation in relating
deformation-induced microscale cracks to macroscopic electrical properties of metal thin
films.

2.3 Modelling of material interfaces

In Sections 2.1 and 2.2, and in the corresponding publications Paper 1–Paper 4 focus
was laid on the prediction of effective electrical properties of, possibly evolving, mi-
crostructures by making use of computational multiscale approaches. The quality of the
predictions in these approaches intrinsically relies on accurate material models that have
been developed at the level of individual phases. In this regard, it was observed in the
experimental studies summarised in Figure 1.4 that material interfaces at the microscale
and related mechanically-induced failure processes such as decohesion and crack prop-
agation may have a significant influence on the overall material response. These effects
are in the focus of Paper 5 that deals with the fundamentals of electro-mechanically
coupled cohesive zone formulations for electrical conductors.

25

https://creativecommons.org/licenses/by/4.0/


2 Extended summary

At the outset of the developments, the governing set of partial differential equations
and jump conditions that characterises (thermo-)electro-mechanical processes in a con-
tinuum with material interfaces is derived. The continuum is sketched out in Figure 2.10
with superscript •+ and •− referring to quantities at opposing sides of the interface I.
The interface itself is characterised by its unit surface normal vector ñ, the jump of a
quantity across the interface is defined as J•K = •+ − •− and the interfacial mean value
reads {{•}} = 1

2
[•+ + •−]. With these definitions at hand and by introducing the traction

vector t̃ = σ · ñ, the mechanical subproblem for a quasi-static quasi-stationary setting
and negligible body forces takes the form

∇ ·σ = 0 (in the bulk) , (2.17a) J̃tK = 0 (at the interface) . (2.17b)

The electrical subproblem reduces to the continuity equation for the electric charge

∇ · j = 0 (in the bulk) , (2.18a) J̃iK = 0 (at the interface) , (2.18b)

with ĩ = j · ñ denoting the projected current density vector, and to Faraday’s law of
induction which can naturally be fulfilled by the introduction of an electric potential
field φ such that e = −∇φ. The balance equation of energy takes the form

ρ ė = σ : ε̇ + j · e −∇ · q (in the bulk), (2.19a)

ρ̃ ˙̃e = Ju̇K · {{t̃}} − {{̃i}} JφK− Jq · ñK (at the interface) , (2.19b)

where e and ẽ denote (mass-specific) internal energy densities, ρ and ρ̃ mass densities, ε
the small strain deformation tensor, q the heat flux vector and u the displacement vec-
tor. By additionally introducing (mass-specific) free energy density functions ψ and ψ̃,

entropy densities s and s̃, and absolute temperatures θ and θ̃, the dissipation inequality
takes the form

σ : ε̇ − ρ
[
ψ̇ + s θ̇

]
+ j · e − 1

θ
q · ∇θ ≥ 0 (in the bulk) (2.20a)

Ju̇K · {{t̃}} − ρ̃
[

˙̃
ψ + s̃

˙̃
θ
]
− {{̃i}} JφK + θ̃

[
{{q · ñ}} Jθ−1K +

[
{{θ−1}} − θ̃−1

]
Jq · ñK

]
≥ 0

(at the interface) . (2.20b)

With the governing set of balance relations (2.17)-(2.20) at hand, a thermodynami-
cally consistent cohesive zone formulation that accounts for the influence of interfacial
damage processes on the electrical conductivity is developed in Paper 5. As to reveal
principal properties of the proposed formulation, an isotropic linear elastic response and
a constant isotropic conductivity tensor are assumed in the bulk. At the interface, a
linear elastic relation combined with a classic energy-driven 1− d̃ damage formulation is
adopted under tension, whereas the interface is assumed to regain its initial stiffness un-
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Figure 2.11: Bar of length 2 l and cross-sectional area A, subjected to mechanical and electrical loadings.
A material interface is positioned in the middle of the bar as indicated by dark grey colour. Analytical
solutions and two-dimensional finite element simulation results for the axial stress σ and axial electric
current density j as functions of deformation are provided. Reproduced from [40] under the terms of
the Creative Commons Attribution 4.0 International License (CC BY 4.0).

der compression. Moreover, the deformation-induced damage processes at the interface
are assumed to influence the electrical conductivity. The specific form of the constitutive
equation for the electric current density

{{̃i}} =

{
−
[
1− d̃

]
κ̃ JφK if JuK · ñ > 0 (tension)

−κ̃ JφK if JuK · ñ ≤ 0 (compression)
, (2.21)

with κ̃ denoting the idealised conductivity of the interface, thus establishes a coupling
between the electrical and mechanical field equations.

As a first example, consider the bar depicted in Figure 2.11(a) that is subjected to
a prescribed elongation ∆u and potential difference ∆φ. For monotonic tensile load-
ings, the quasi-one-dimensional boundary value problem is amendable to analytical
techniques. The respective load-displacement- and electric current density-displacement
curves predicted by a finite element-based simulation are shown together with their ana-
lytical counterparts in Figures 2.11(b) and 2.11(c). After the onset of damage evolution,
significant decreases in stiffness and conductivity with increasing deformation are ob-
servable which demonstrates: a) the influence of the material interface on the overall
properties of the sample and b) the coupling between the electrical and mechanical field

equations via the damage variable d̃.

As a second example, focus is laid on the polycrystalline specimen depicted in Fig-
ure 2.12, where the grain boundaries are resolved by making use of the proposed cohesive
zone formulation. In a first load step, the sample is subjected to tensile loading which
causes the evolution of interface damage. In a second load step the loading is reversed,
leading to a compressive load state. The different configurations and the electric poten-
tial field distributions depicted in Figure 2.12 exemplify: a) the predicted intergranular
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(a) reference state

φ in mV
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(b) tensile state

φ in mV

0.040 0.045 0.050 0.055 0.060

(c) compressive state

Figure 2.12: Electric potential field φ for a polycrystalline specimen under various loading conditions.
It is noted that the material interface in c) is damaged due to the deformation history. Normalised
electric current density vectors are indicated by black arrows. Reproduced from [40] under the terms
of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

crack propagation, b) the reduction in conductivity caused by the evolution of interface
damage and c) the recovery of the initial conductivity under compressive load states.

2.4 Wavelet approaches to the solution of microscale
boundary value problems

The detailed resolution of the material microstructure in computational multiscale meth-
ods is associated with a severe computational effort in terms of CPU time and memory
requirements. This particularly holds true for the coupled problems considered in Paper
1–Paper 4 and when sophisticated material models, such as the cohesive zone formula-
tion developed in Paper 5, are used at the microscale. Against this background, tailored
solution approaches to microscale boundary value problems are developed. Amongst
those are FFT-based spectral solvers and wavelet-based approaches that are in the focus
of Paper 6 and Paper 7. Specifically speaking, Paper 6 (Section 2.4.1) focuses on
the fundamental properties of wavelet-based approaches when applied in the context
of multiscale mechanics, and Paper 7 (Section 2.4.2) discusses a hybrid wavelet-FFT
approach for the efficient solution of microscale boundary value problems.

2.4.1 Adaptive wavelet-based collocation method

There are but a few works available in the literature that focus on the development and
application of tailored wavelet-based approaches for continuum mechanics problems that
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2.4 Wavelet approaches to the solution of microscale boundary value problems

include non-linear history-dependent material behaviour. In particular, detailed studies
of wavelet-based solution approaches in the context of multiscale mechanics are, to the
author’s best knowledge, not available despite the multiresolution property of wavelets
which seems promising to properly resolve (possibly evolving) microscale features in rep-
resentative volume elements. Against this background, the fundamental properties of
a wavelet-based collocation approach in the context of computational homogenisation-
based multiscale mechanics are studied in Paper 6. To this end, an in-depth analysis of
elementary one-dimensional problems that occur in multiscale mechanics and for which
analytical solutions can be furnished for validation purposes is carried out. Particular
focus is laid on irreversible material behaviour and on microstructures that feature ma-
terial interfaces and material interphases, respectively. The following key observations
are made:

O1 (Adaptivity): It is shown that the chosen wavelet coefficient-based refinement algo-
rithm is capable of dynamically adapting the numerical grid to the solution profile.
In particular, the numerical grid is automatically refined close to material inter-
faces and interphases – i.e. in regions where significant changes in the solution pro-
file are expected based on the phase-contrast – and close to deformation-induced
elasto-plastic transition zones. Hence, the hierarchical character of wavelet-based
approaches and the naturally occurring local refinement characteristics allow for an
accurate representation of localised changes in the microscale fields.

O2 (State variables): It is shown that the proposed wavelet-based approach naturally
gives rise to a mapping algorithm for state variables and does not require intricate
patch-recovery techniques that are for instance used in FE-based schemes.

O3 (Scale transition): It is shown that the vanishing moment property of the lifted-
interpolating wavelet family considered leads to an efficient integration of the do-
main and, hence, to an efficient computational homogenisation scheme. Moreover,
a closed-form relation for the macroscale algorithmic consistent tangent stiffness
tensor can be derived.

O4 (Hill-Mandel condition): It is shown that by accounting for the periodicity of mi-
croscale fields in wavelet synthesis and wavelet analysis operations the Hill-Mandel
consistency condition can naturally be accounted for.

O5 (Meshfree method): The proposed wavelet-based approach is intrinsically mesh-free
which allows experimental pixel-based data to be efficiently processed as compared
to FE-based schemes where the creation of conforming discretisations for complex
multiphase microstructures still poses a challenge.

As an application example consider the one-dimensional microscale boundary value
problem depicted in Figure 2.13(a). The periodic microstructure, consisting of two
different materials and the interphases between them, is subjected to the macroscale
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Figure 2.13: Periodic microstructure featuring material interphases: a) Sketch of microscale boundary
value problem with periodic boundary conditions and spatially varying Young’s modulus E(x). b)
Micro-fluctuation field ω(x) and c) relative error in predicted macroscale stress σM with respect to
analytical solution σana

M for a prescribed macroscale strain state, εM = 0.005, and various refinement
tolerances εr. Simulation results for lifted interpolating wavelets (N = 1, Ñ = 1, two-point forward
differences) are shown. Reproduced from [45] under the terms of the Creative Commons Attribution
4.0 International License (CC BY 4.0).

strain εM. Moreover, a linear elastic material response is assumed with Young’s mod-
ulus E(x) being a function of space. For this setting, the micro-fluctuation field ω (x)
that characterises the deviation from an affine deformation of the representative volume
element and that represents the primary unknown of the proposed wavelet-collocation
approach is depicted in Figure 2.13(b). Moreover, the convergence behaviour of the
effective macroscale stress σM as a function of wavelet-refinement tolerance εr is exem-
plarily shown in Figure 2.13(c) for lifted-interpolating wavelets defined by the control
parameters N = 1, Ñ = 1. A decrease in refinement tolerance εr leads to the targeted
activation of grid points on different resolution levels as shown in Figure 2.14. In par-
ticular, it is observed that grid points in the vicinity of the material interphases, i.e. in
regions where significant changes in the solution profile are expected, are activated in
the adaptive hierarchical wavelet approach.

The promising properties of wavelet-based approaches in the context of computational
multiscale methods discussed in Paper 6 motivate the development of a hybrid wavelet-
FFT approach for the efficient solution of microscale boundary value problems in Paper
7.

2.4.2 Wavelet-enhanced FFT-based spectral solver

Motivated by the specific structure of the microscale boundary value problem, FFT-
based solution approaches have been in the focus of intense research, see [27, 87] for
detailed reviews. These approaches originate from the pioneering works [62, 72, 73] and
rely on Fourier space representations of the governing fields and of the Eshelby-Green
operator. Specifically speaking, the microscale boundary value problem is reformulated
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Figure 2.14: Dyadic grids as a function of refinement tolerance εr for the microscale boundary value
problem depicted in Figure 2.13(a) and a prescribed macroscale strain state, εM = 0.005. The activation
of grid points for lifted interpolating wavelets (N = 1, Ñ = 1, two-point forward differences) is shown.
Active grid points are indicated by black-coloured crosses, inactive grid points by grey-coloured crosses.
Reproduced from [45] under the terms of the Creative Commons Attribution 4.0 International License
(CC BY 4.0).

as an integral equation that can efficiently be evaluated in Fourier space and use is made
of sophisticated implementations of the fast Fourier transform (FFT) [17, 25] to map
field quantities from the physical to the frequency space and vice versa. Due to this
reliance on efficient implementations of the FFT, a regular structured grid is assumed.
This is a significant restriction when small-scale features occur in the solution domain
since the grid spacing is determined by the smallest feature to be resolved. Thus, the
system size and the number of material model evaluations significantly increase.

Against this background, a hybrid wavelet-FFT approach is developed in Paper 7
that is based on adaptively refined computational grids such that localised features can
be resolved accurately while the overall number of material model evaluations is signif-
icantly reduced. This is demonstrated by a detailed study of representative boundary
value problems in one- and two-dimensional domains, with a reduction in the number
of material model evaluations of up to 95% being achieved.

By introducing polarisation stresses τ (x) that correspond to a reference material
with stiffness tensor E0, the balance equation of linear momentum on the microscale
domain B gives rise to the Lippmann-Schwinger-type equations for the strains

ε̂ (ξB) = −Γ̂0 (ξB) : τ̂ (ξB) ∀ ξB 6= 0 , ε̂ (0) = εM (2.22a)

ε (x) = −Γ0 (τ (x)) + εM ∀ x ∈ B (2.22b)

where •̂ indicates the Fourier coefficients of the field variable • at angular frequencies

ξB. In Fourier space, representations of the Eshelby-Green operator Γ̂0 (ξB) are available
and its application reduces to tensor contractions. In particular, the specific form of the
Eshelby-Green operator that is consistent with a discretisation in terms of Deslauriers-
Dubuc wavelets [18] is derived in Paper 7.

31

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


2 Extended summary

e1

e2

E1,ν1

E2,ν2

(a) matrix with soft inclusion (b) σ11, non-adaptive

σ11

MPa

1000

1150

1300

1450

1600

(c) σ11, εW = 10−3

Figure 2.15: Hybrid wavelet-FFT approach for microscale boundary value problems: a) Matrix with
soft inclusion. b) Stress distribution predicted by a non-adaptive and c) by an adaptive scheme for
prescribed macroscale strains εM = 0.005 e1⊗e1 and a linear elastic material response (Young’s moduli:
E2 = 0.6E1, Poisson’s ratios: ν1 = ν2). Reproduced from [47] under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

In the light of the developments for fast and efficient FFT-based approaches the
Barzilai-Borwein extended version of Moulinec-Suquet’s basic scheme for the solution of
(2.22) that was proposed in [86] is adopted. The scheme is based on the interpretation
of the basic scheme as a gradient descent method and makes use of the well-established
Barzilai-Borwein step size selection to be competitive with the fastest solvers available.
More specifically speaking, the update scheme

n+1ε (x) = nε (x)− nγ
(
nσ (x) , n−1σ (x) , n−1γ

)
Γ0 ( nσ (x)) , (2.23)

where counter n refers to the iteration step and with γ denoting the Barzilai-Borwein
step size, is used. The evaluation of an update in strain space (2.23) requires the stress
field nσ (x) to be determined for a given strain field nε (x). For complex material
behaviour this amounts to the numerical solution of a system of ordinary differential
equations at each grid point, resulting in a significant computational effort. In this
regard, the main idea of the approach proposed in Paper 7 is to represent the stress
field in a wavelet basis and to successively derive higher level stress approximations in
the nested set of approximation spaces by making use of wavelet transforms. In doing so,
localised microscale features can properly be resolved while a rather coarse discretisation
is maintained in the remainder of the solution domain.

As an application example for the proposed adaptive hierarchical wavelet-FFT scheme,
the unit cell featuring a matrix with a soft inclusion depicted in Figure 2.15(a) is consid-
ered. The unit cell is subjected to macroscale strains εM = 0.005 e1⊗e1 and a linear elas-
tic response of the individual constituents is assumed. The σ11 stress distribution that is
predicted by a non-adaptive scheme based on a regular grid is shown in Figure 2.15(b)
and the one predicted by the proposed adaptive scheme in Figure 2.15(c). Whereas
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(a) iteration 0, εW = 10−3 (b) iteration 0, εW = 10−4

(c) iteration 2, εW = 10−3 (d) iteration 2, εW = 10−4

(e) iteration 4, εW = 10−3 (f) iteration 4, εW = 10−4

Figure 2.16: Activity of grid points in the tension problem of a unit cell with a soft inclusion depicted
in Figure 2.15(a) for various iteration steps and values of refinement tolerance εW. The simulations
are based on an Eshelby-Green operator associated with the wavelet discretisation. Active grid points
are marked in red colour inactive grid points in blue colour. Reproduced from [47] under the terms
of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC
BY-NC-ND 4.0).
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327680 material evaluations are required in the non-adaptive scheme, 52384 material
evaluations are required in the adaptive scheme for a refinement tolerance εW = 10−3

that controls the accuracy of the wavelet-based stress approximation. This significant
gain is achieved by a targeted activation of grid points as exemplified in Figure 2.16 for
different iterations.

As a different approach to account for microscale features in macroscopic stimulations,
Paper 8 focuses on the finite element implementation of a micromorphic continuum
theory. In this regard, it is noted that the stress-gradient continuum approach under
consideration can be motivated by means of an extended computational homogenisation
scheme, cf. [34].

2.5 Stress gradient theory

Based on the works [24, 84, 96], Paper 8 focuses on the development of a finite element
implementation of the stress gradient theory as to study stress-free boundary layer and
associated size effects. At the outset of the developments, a generalised (volume specific)
stress energy density function of the form w∗ (σ,R) in terms of the small deformation
stress tensor σ and the third order hyperstress tensor R is postulated, and the stresses
and hyperstresses are subjected to the extended set of static admissibility conditions

∇ · σ = 0 , (2.24a) R− [∇σ]dev = 0 . (2.24b)

By multiplying (2.24a) and (2.24b) with the kinematic field variables δu and δΦ, by in-
tegrating the ensuing equations over the domain B with boundary ∂B and with outward
unit normal vector n, and by applying the divergence theorem one arrives at∫

B
σ : [[∇δu]sym +∇ · δΦ] +R ∴ δΦ dv︸ ︷︷ ︸

P (i) (δu, δΦ)

=

∫
∂B
σ : [[δu⊗ n]sym + δΦ · n] da︸ ︷︷ ︸

P (c) (δu, δΦ)

.
(2.25)

Equation (2.25) can be interpreted as a generalised virtual work balance, with the virtual
work of internal forces P (i) (δu, δΦ) and the virtual work of contact forces P (c) (δu, δΦ).
With regard to the virtual work of internal forces P (i) (δu, δΦ), energetic dualities are
observed between the stresses σ and the generalised strain tensor

e = [∇u]sym +∇ ·Φ , (2.26)

and between the hyperstress tensor R and the kinematic variable Φ, which is henceforth
referred to as the micro-displacement tensor. The latter observation motivates the in-
troduction of a generalised strain energy density function w (e,Φ) such that
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2.5 Stress gradient theory

σ =
∂w (e,Φ)

∂e
, (2.27a) R =

∂w (e,Φ)

∂Φ
. (2.27b)

By additionally introducing the generalised displacement field Ψ = Ψdev +Ψ sph, with

Ψdev = Φ , (2.28a) Ψ sph =
1

2
[u⊗ I + u⊗ I] , (2.28b)

relation (2.25) can be recast in the form∫
B
σ : [∇ · δΨ ] +R ∴ δΨ dv =

∫
∂B
σ : δΨ · n da . (2.29)

The virtual work statement (2.29) is particularly useful for the finite element implemen-
tation, as it implies that either the components of the stress tensor or the corresponding
normal projections of the generalised displacement field can independently be prescribed.
In this sense, the two-field problem in terms of the displacement field u and the micro-
displacement field Φ is reformulated in terms of one primary field quantity, i.e. in terms
of the generalised displacement field Ψ .

In the following, the symmetric positive definite quadratic form for the generalised
stress energy density function

w∗ (σ,R) =
1

2
σ : C : σ +

1

2
R ∴ C ∴ R , (2.30)

is assumed, with C and C denoting the compliance and the generalised compliance tensor.
By making use of the Legendre(-Fenchel) transform, the corresponding generalised strain
energy density function takes the form

w (e,Φ) =
1

2
e : E : e+

1

2
Φ ∴ E ∴ Φ , (2.31)

with the stiffness tensor E and the generalised stiffness tensor E defined as E = C−1 and
E = C−1. Moreover, a classic form for the stiffness tensor E in terms of the Lamé-type
constants λ and µ, namely

E = λ I ⊗ I + 2µ Isym , (2.32)

is adopted and the generalised stiffness tensor is assumed to take the form

E =
µ

`2
Isym,dev , (2.33)
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σ ⊗ n = 0
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Ψ · n = 0

σ ⊗ n
=

σ33 e3 ⊗ e3 ⊗ e3

100 �20

Figure 2.17: Geometric dimensions (in mm) and boundary conditions of the cylindrical bar under
tension. Reproduced from [44] under the terms of the Creative Commons Attribution 4.0 International
License (CC BY 4.0).

with Isym and Isym,dev denoting the fourth order symmetric and the sixth order symmetric
and deviatoric projection tensors. As opposed to classic strain gradient approaches,
it is observed that the length scale parameter ` naturally occurs in the denominator,
indicating a smaller-is-softer-type size effect.

The virtual work statement (2.29) and the specific form of the generalised stiffness
tensor (2.33) stipulate two salient features of the stress gradient theory: a generalised
Neumann boundary condition that allows for the (complete) stress tensor to be pre-
scribed in simulations and the occurrence of a smaller-is-softer-type size effect. To
demonstrate these, focus is laid on the cylindrical bar depicted in Figure 2.17. At
the left boundary (z = 0 mm), generalised clamping boundary conditions of the form
Ψ · n = 0 are assumed for the generalised displacement field. At the right boundary
(z = 100 mm), generalised traction boundary conditions of the form

σ ⊗ n = σ33 e3 ⊗ e3 ⊗ e3 , (2.34)

with the overbar indicating a prescribed quantity, are applied. Moreover, the outer
surface of the cylindrical bar (r = 10 mm) is assumed to be stress-free, i.e.

σ ⊗ n = σ ⊗ er = 0 . (2.35)

First, it is observed that the boundary condition (2.35) causes all coefficients of the
stress tensor to approach zero at the lateral surface. This is a significant difference com-
pared to the classic Cauchy continuum approach where only the normal projection of the
stress tensor can be prescribed and where a constant stress profile σzz ≈ 2100 N mm−2

is expected for the given boundary value problem when an isotropic, linear elastic ma-
terial response is assumed. In contrast, σzz takes a parabolic profile in the present case,
with the extreme value at r = 0 mm and the slope of the profile being functions of the
material length scale parameter `, see Figures 2.18(a) and 2.19(a). The in-plane coeffi-
cients of the stress tensor σrr and σzz, which would take zero values for a classic Cauchy
continuum theory, are depicted in Figures 2.18(b) and 2.18(c). They are observed to be
approx. two orders of magnitude smaller than the axial stresses and to approach zero at
the lateral surface of the bar due to the vanishing stress boundary conditions.
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Figure 2.18: Stress distribution predicted by finite element calculations of the tensile problem depicted
in Figure 2.17 (E = 210 000 N/mm2, ν = 0.3, ` = 1.0 mm). Reproduced from [44] under the terms of
the Creative Commons Attribution 4.0 International License (CC BY 4.0).

In addition to the finite element simulation results, an analytical solution is provided
in Figure 2.19(a) for validation purposes and the axial stiffness K` and torsional stiffness
J`, normalised with respect to a classic Cauchy continuum, are provided in Figure 2.19(b)
as functions of the characteristic length scale ratio. Whereas the stiffness of a classic
Cauchy continuum is recovered in the limit of an infinite length scale ratio, boundary
layer effects become dominant with decreasing length scale ratio and a smaller-is-softer-
type size effect is observed.
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Figure 2.19: Validation of the finite element implementation of the stress gradient theory and a study of
boundary layer and associated size effects: a) Finite element and analytic solution of the simple tensile
problem depicted in Figure 2.17 (E = 210 000 N/mm2, ν = 0). b) Relative stiffness of a cylindrical
bar in tension and in torsion as a function of the ratio between the bar radius rm and the intrinsic
length scale ˜̀=

√
2 `. Reproduced from [44] under the terms of the Creative Commons Attribution 4.0

International License (CC BY 4.0).
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3 Concluding remarks

A brief summary of the main contributions (C-RQ) in relation to the research ques-
tions (RQ) posed in Section 1.2 is provided in this section:

C-RQ 1: A computational multiscale approach for electrical conductors in an infinites-
imal deformation setting was developed and a FE2-based implementation was
discussed. In particular, it was shown that the proposed approach enables
the calculation of effective conductivity tensors for given, possibly evolving,
microstructures.

C-RQ 2: A computational multiscale approach for electrical conductors in a finite defor-
mation setting was developed and a FE2-based implementation was discussed.
In particular, it was shown that the influence of finite geometry changes, e.g.
of microscale pores, on the effective conductivity can be accounted for in the
proposed finite deformation multiscale approach.

C-RQ 3: It was shown that experimentally recorded changes in conductivity caused by
the presence of geometrically well-defined microscale pores can be accounted
for in simulations by making use of the proposed computational multiscale
approach. Moreover, a sensitivity analysis of the experimental data was car-
ried out and the usefulness of the proposed modelling approach to interpret
experimental data was demonstrated.

C-RQ 4: It was shown that experimentally recorded changes in the conductivity of
cyclically strained metal thin films can, in principle, be related to microscale
cracks by automated generation and processing of unit cells based on CLSM
laser intensity images. However, the study also revealed severe challenges with
regard to the interpretation of the CLSM images and the generation of unit
cells based thereof.

C-RQ 5: An electro-mechanically coupled cohesive zone formulation for electrical con-
ductors was developed and a finite element-based implementation was pro-
posed. The formulation allows for the possibly evolving electrical resistivity of
material interfaces, for instance caused by mechanically-induced degradation
processes, to be considered in simulations.

C-RQ 6: A wavelet collocation approach for the solution of microscale boundary value
problems was developed, and fundamental features such as adaptivity and
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grid refinement capabilities, mapping algorithms for internal variables and
(discrete) scale-bridging relations were investigated.

C-RQ 7: An adaptive hierarchical wavelet-enhanced FFT-based approach for the effi-
cient solution of microscale boundary value problems was developed and the
corresponding Eshelby-Green operator associated with the underlying wavelet
discretisation was derived. A significant reduction in the number of material
model evaluations as compared to a non-adaptive approach was achieved with
the novel wavelet-FFT-approach.

C-RQ 8: A finite element implementation of the stress-gradient theory was developed
and analytical solutions were derived for validation purposes. Furthermore, it
was shown that the formulation allows for stress-free boundary layer effects
and smaller-is-softer-type size effects to be accounted for in simulations.

and future research directions (D-RQ) emanating from Paper 1–Paper 8 are discussed:

D-RQ 1,2: The computational homogenisation approach developed in Paper 1 and
Paper 2 relies on accurate representations of the underlying material mi-
crostructure and on appropriate microscale material models. This includes
microscale features such as material interfaces and evolving microscale cracks
that can be accounted for in (single-scale) simulations by using the cohe-
sive zone approach developed in Paper 5. Against this background, the
developed computational multiscale approach is to be extended as to ac-
count for unit cells featuring material interfaces. Moreover, the evolution of
microscale cracks may induce softening at the macroscale such that appro-
priate regularisation approaches need to be developed. Furthermore, it is
natural to additionally consider thermal coupling in future works since the
flow of electric charge is intrinsically dissipative.

D-RQ 3: The detailed understanding of the influence of microscale pores on the effec-
tive electrical conductivity gained in Paper 3 is to be complemented by fur-
ther experimental and simulation-based studies focusing, for instance, on the
dislocation density and on grain and phase boundaries. With such a system-
atically developed modelling approach at hand, the individual contributions
of different microscale features to the overall resistivity of a sample may be
distinguished and predictive simulation approaches may be developed.

D-RQ 4: In accordance with the experimental determination of crack densities, the
identification of cracks and the associated generation of unit cells in Paper 4
were based on the grey scale gradient of laser intensity images. The procedure
was observed to be sensitive with regard to the particular choice of a filter
parameter. Moreover, the non-trivial distinction between plastic localisation
zones and through thickness cracks, and the identification of crack patterns
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in the case of weakly pronounced grey scale gradients pose severe challenges.
Against this background, further combined numerical and experimental stud-
ies are required.

D-RQ 5: The electro-mechanically coupled cohesive zone formulation developed in Pa-
per 5 makes it possible to account for the influence of material interfaces
at different length scales. Focusing on the microscale, experimental data for
grain and phase boundaries is to be taken into account in a next step to cal-
ibrate the generalised traction-separation laws. Focusing on the macroscale,
computational homogenisation schemes for material interfaces are promising
approaches to account for the underlying material microstructure when devel-
oping generalised traction-separations laws for electro-mechanically coupled
problems.

D-RQ 6,7: Fundamental properties of wavelet-based approaches when applied to mul-
tiscale problems in continuum mechanics were studied in Paper 6, and a
hybrid wavelet-FFT approach for the efficient solution of microscale bound-
ary value problems was developed in Paper 7. The numerical performance
of the hybrid approach was studied in a simplified setting, adopting lin-
ear elastic constitutive relations. However, an even more significant gain
in computational efficiency is expected when applied to materials exhibit-
ing nonlinear history-dependent behaviour since these require, in general, a
system of evolution equations to be solved at quadrature point level. Being
based on adaptive irregular grids, such a study requires mapping algorithms
for internal variables such as the wavelet-based ones developed in Paper 6.

D-RQ 8: Stress-free boundary layer and associated smaller-is-softer-type size effects
have been reported in experiments on metallic foams as summarised in Sec-
tion 1.1.4. Against this background and with the developments of Paper
8 at hand, the question naturally arises if the experimental findings can be
reproduced by using a stress gradient continuum theory at the macroscale.
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