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Abstract

Recent years has seen a sharp rise in interest pertaining to Reinforcement Learning (RL)
approaches for production scheduling. This is because RL is seen as a an advantageous
compromise between the two most typical scheduling solution approaches, namely priority
rules and exact approaches. However, there are many variations of both production
scheduling problems and RL solutions. Additionally, the RL production scheduling
literature is characterized by a lack of standardization, which leads to the field being
shrouded in mysticism. The burden of showcasing the exact situations where RL outshines
other approaches still lies with the research community. To pave the way towards this
goal, we make the following four contributions to the scientific community, aiding in
the process of RL demystification. First, we develop a standardization framework for RL
scheduling approaches using a comprehensive literature review as a conduit. Secondly, we
design and implement FabricatioRL, an open-source benchmarking simulation framework
for production scheduling covering a vast array of scheduling problems and ensuring
experiment reproducibility. Thirdly, we create a set of baseline scheduling algorithms
sharing some of the RL advantages. The set of RL-competitive algorithms consists of a
Constraint Programming (CP) meta-heuristic developed by us, CP3, and two simulation-
based approaches namely a novel approach we call Simulation Search and Monte Carlo
Tree Search. Fourth and finally, we use FabricatioRL to build two benchmarking instances
for two popular stochastic production scheduling problems, and run fully reproducible
experiments on them, pitting Double Deep Q Networks (DDQN) and AlphaGo Zero (AZ)
against the chosen baselines and priority rules. Our results show that AZ manages to
marginally outperform priority rules and DDQN, but fails to outperform our competitive
baselines.





Kurzfassung

In den letzten Jahren ist das Interesse an Ansätzen des Reinforcement Learning (RL) für
Produktionsteuerung stark gestiegen. Dies liegt daran, dass RL als vorteilhafter Kompro-
miss zwischen den beiden typischsten Steuerungsansätzen, nämlich Prioritätsregeln und
Neuplannung mittels exakten Verfahren, angesehen wird. Jedoch gibt es eine Vielzahl
sowohl an Produktionsteuerungproblemen als auch an RL-Lösungesansätzen. Darüber
hinaus ist die wissenschaftliche Literatur zu RL-Ansätzen für Produktionsteuerung von
einem Mangel an Standardisierung gekennzeichnet, was dazu führt, dass das Feld in einer
gewissen Mystik gehüllt ist. Die Last, die genauen Situationen aufzuzeigen, in denen RL
andere Ansätze übertrifft, liegt immer noch bei der Forschungsgemeinschaft. Um den Weg
zu diesem Ziel zu ebnen, leisten wir die folgenden vier Beiträge an die wissenschaftliche
Gemeinschaft, die den Prozess der RL-Entmystifizierung unterstützen. Zunächst en-
twickeln wir ein Standardisierungs-Framework für RL-Produktionsteuerungsansätze über
eine Systematische Literaturrecherche. Zweitens entwerfen und implementieren wir
FabricatioRL, ein Open-Source Benchmarking-Simulations-Framework für die Produktion-
steuerung, das eine Vielzahl an Produktionsteuerungsprobleme abdeckt. Insbesondere
erleichtert das Simulations-Framework die Gewährleistung der Reproduzierbarkeit von
Experimenten. Drittens wählen wir eine Menge an Baseline-Scheduling-Algorithmen,
die die RL-Vorteile teilen. Der Satz an RL-kompetitiven Algorithmen besteht aus einer
von uns entwickelten Constraint Programming (CP) Meta-Heuristik namens CP3, und
zwei simulationsbasierten Ansätzen, nämlich ein von uns entwickelter neuartiger Ansatz
namens Simulation Search, und Monte Carlo Tree Search. Nicht zuletzt wandeln wir
zwei weit verbreitete Benchmarking-Instanzen für Produktionsplanung in Instanzen für
Produktionsteuerung um und verwenden FabricatioRL um vollständig reproduzierbare
Experimente hierauf durchzuführen. Dabei vergleichen wir zwei populäre RL-Ansätze,
und zwar Double Deep Q Networks (DDQN) und AlphaGo Zero (AZ) mit den oben
genannten Baselines, sowie mit einfachen Prioritätsregeln, hinsichtlich des erreichten
Makespans. Unsere Ergebnisse zeigen, dass AZ es schafft, Prioritätsregeln und DDQN
geringfügig zu übertreffen jedoch nicht die von uns vorgeschlagenen RL-kompetitiven
Baselines.
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Chapter 1

Introduction

“Begin at the beginning”, the King said gravely, “and go on till you come
to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

The importance of scheduling cannot be overstated. It is ubiquitous across human
activity in general, and across scientific fields and industrial applications in particular.
Technology-enabled solutions for complex scheduling problems are all around us, from
planning hospital shifts, through deciding upon the next process being allotted the CPU,
to deciding which machine is to process the next operation required for the construction
of a product.

Since the advent of industrialization, production has taken up a central role in our societal
environment. As such, production scheduling stands out among other fields. Advances
herein have a tremendous, albeit not always obvious, impact on human life. In an industrial
production setting, planning the assignment of valuable resources, such as human labor
or machine processing time, is crucial. A good production scheduling solution can lead to
higher monetary gains and an increased customer satisfaction through a more efficient
resource use. Given the elevated profit margins that a good production scheduling scheme
promises, the amount of attention the problem garners is understandable.

The field of production is characterized by interdisciplinarity and a high degree of
dynamism, given that production reality changes constantly, pushed by digitalization
trends. As production data and computing resources become more readily available and
production itself becomes more versatile, the incorporation of Machine Learning (ML)
techniques, particularly Reinforcement Learning (RL), for production scheduling becomes
more attractive.

Broadly speaking, production scheduling is the problem of sequencing a number of
operations that are associated with different jobs onto production resources, such that an
objective function is optimized. Different constraints on the set of jobs and production
resources along with different relevant goals define individual scheduling problems.
Production scheduling is NP-complete for most real-world cases, and, as such, difficult
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to solve optimally for large production instances. Furthermore, unexpected events such
as new job arrivals, operation duration deviations, or resource availability issues, may
invalidate schedules, leading to a need for their re-computation.

Solutions to production scheduling problems mainly fall into one of three categories,
namely exact approaches, priority rules, and meta-heuristics. Exact approaches, e.g.
Mixed Integer Linear Programming (MILP), Constraint Programming (CP), seek to find
the optimal solution with respect to the objective function. Priority rules define preferences
for operations that are to be assigned to resources, e.g. prefer operations with the Longest
Processing Time (LPT), and, by design, do not yield optimal solutions. Meta-heuristics, e.g.
Evolutionary Algorithm (EA), RL, also defer optimality in favor of good enough solutions
that are found through different flavors of non-exhaustive solution space search. Note
that using the term “exact approches” in stochastic environments is a misnomer, since
optimality can only be defined ex-post, and not ex-ante. However, assuming the absence
of stochasticity and employing a re-planning strategy, exact approaches are very much still
applicable, often with good, albeit not (necessarily) optimal results. For lack of a better term,
we continue using “exact approaches” to refer to the category of solution approaches it
encompasses.

RL is broadly defined through the interaction between an agent, and its environment. The
agent takes actions within the environment based on the perceived state and receives
feedback by means of a reward signal. Its task is to take actions in such a way that his
cumulative reward is maximized.

RL schedulers are fast, require no mathematical modeling (as opposed to exact approaches),
promise a high degree of adaptivity and could transfer learned patterns between different
production setups. Adaptivity, which we define as the capability of maintaining solution
quality under information uncertainty (see Chapter 4 for a more detailed discussion of
the term), is especially important since the production environment is highly complex
with the planning input being characterized by uncertainty. These advantages make the
undeniable interest in RL solutions (see Figure 1.1) understandable. While the interest in
scheduling topics seems to grow linearly, the interest in RL scheduling solutions displays
an expponential like behavior with the number of publications on the topic rising from
less than five between 1998 and 2018 to more than 40 in 2022.

1.1 Problems in the RL Production Scheduling World

While growing in volume, the RL production scheduling work, is still young and suffers
from several problems stemming from a lack of standardization. Aside from the missing
standardization itself, these problems are the absence of a baselining production simulation
framework, the lack of RL-competitive baseline scheduling algorithms and the absence of
focus with respect to scheduling setups.

There are three dimensions to the standardization problem. First, no unified way of
discussing production scheduling setups exists. This gives way to ambiguity in the problem
descriptions impeding clear conclusions in experimental work. Production scheduling
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(a) Publications on Production Scheduling. (b) Publications on RL Production Scheduling.

Figure 1.1: Distribution of publications on the topic of production scheduling problems
between 1995 and 2020 (left). Distributions pertaining to reinforcement learning solutions
for production scheduling problems between 1995 and 2022 (right). Numbers were
compiled using the Web of Science Portal using the topic search with the keywords “shop
scheduling” (a) and “shop scheduling and reinforcement learning (b). Date: August 2022”

is not a single problem, rather it is a family of related problems which grows to keep up
with the shifting production reality. Secondly, there are many flavors of RL, and, more
importantly, many ways in which RL can be modeled to solve production scheduling
problems. While for problems like chess the definition of RL elements (action, states,
etc) is fairly intuitive, the same cannot be said about production environments. Finally,
and most importantly, there is no standard validation practice in RL scheduling literature.
Experiments are often not reproducible and insufficiently baselined.

The growing body of RL scheduling literature displays an increasing sophistication of RL
solutions to increasingly complex production scheduling problems but the RL potential is
still hard to assess within the field. While in the past relatively simple Q-Learning (QL)
approaches were the norm, nowadays varied novel RL algorithms such as AlphaGo
Zero (AZ) and Deep-Q Networks (DQN) built on top of increasingly complex network
structures ranging from Fully Connected Neural Network (FCNN), to Graph Convolutional
Network (GCN), and Self Organizing Maps (SOM). Despite the hundreds of papers on
the subject, the lack of standardization makes a conclusive statement on the position of RL
within the scheduling context difficult.

Our target field could benefit from the established evaluation approaches from more
traditional ML fields such as computer vision. Here, the state of the art is more easily
established, because of the standard benchmarking datasets available, such as ImageNet,
Cifar, etc. Authors run their experiments on these common, publicly available datasets,
and report their results using standardized evaluation techniques. As such, improvements
on the state of the art are mostly transparent.

To validate RL approaches a currently unavailable general and RL compatible benchmark-
ing simulation framework is required. RL is intrinsically linked with simulation. Since it
would be too costly and time-consuming to train agents in a live environment, a simulative
environment becomes the only viable alternative. Additionally, simulations are required
to test the influence of stochastic factors on different solution approaches. Broadly, an RL

http://apps.webofknowledge.com/UA_GeneralSearch_input.do?product=UA&SID=F29DquWKGwp4ilYKZyw&search_mode=GeneralSearch
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compatible simulation is one that allows RL agents to guide its execution by means of
actions (agent outputs) while providing them with a state (agent inputs) representation
and a reward signal reflecting the quality of their decision making. This is most easily
achieved by implementing the OpenAi Gym Application Programming Interface (API)
(Brockman et al., 2016).

A benchmarking simulation framework would serve three purposes. First, such a frame-
work would guarantee experiment reproducibility. Experiments currently ran on stochastic
environments are impossible to reproduce exactly, which requires researchers to addition-
ally implement the models described in the original papers. By the inherent nature of
stochasticity, the results reported in literature might not match the own results. Voluntary
or involuntary cherry picking (Morse, 2010) may invalidate established results, when not
enough experiments were ran. Secondly, the framework would shift focus away from
software engineering and towards algorithmic solution engineering. Since the code associ-
ated with a simulation experiment is (almost) never available, in order to validate a new
scheduling approach for a particular setup against a published RL solution, researchers
have to re-implement the simulation. This is indeed a daunting, not to mention redundant,
task given all the complexity of production setups simulated.

The frequently employed RL baseline algorithms are not competitive, meaning that
they mostly do not share the properties that make RL attractive. This yields a baselining
research gap. However, meta-heuristics sharing at least the adaptivity, and fast runtime
qualities both do exist and can be constructed. RL approaches are generally evaluated
by means of comparison with simple priority rules, and, in deterministc scheduling
setups, with the known optimum. While adaptive, the priority rules solution quality can
be found to be lacking. Conversely, exact approaches that can be used to find optimal
solutions in deterministic cases are slow and considered not to be adaptive. Looking
towards RL alternatives is important because RL systems incur a high degree of “technical
debt” (Sculley et al., 2015). This means that post-deployment, the maintenance of an
RL scheduling system could become difficult and costly. Problems can arise from data
dependencies, configuration issues, and changes in the real world. Moreover, the authors
identify reproducibility among other areas of ML-related debt.

From an application point of view, RL scheduling literature suffers from a lack of focus
on the production scheduling setup. There is no sine qua non solution approach for
production scheduling. The solution requirements depend highly on the characteristics
of the production setup considered. In cases where stochastic influences are expected
to be only slight and there is sufficient time available for planning and the scheduling
problem instance size is manageable, re-planning using exact approaches is preferable to
any other approach. Conversely, in highly stochastic cases, using priority rules or even
random strategies may yield as good a result as any other approach. At this point, the
burden of proof still lies with the research community to identify the exact situation where
RL solutions are preferable to others.
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1.2 Demystifying RL Production Scheduling Approaches

Because of the problems discussed in the previous section, RL production scheduling
approaches are currently shrouded in a certain mysticism. This work intends to render
RL scheduling approaches less mystical. Our work serves a dual purpose of creating
an experimentation standard for RL approaches to production scheduling and drawing
attention to the disadvantages of RL while providing competitive alternative solution
approaches.

Our demistification path provides four large (bold numbers) and one marginal contribution
to the research community:

1. First, we create an experimentation standard based on a systematic literature
review of unprecedented breadth and depth in the field in Chapter 2. We isolate
and categorize experimental RL production scheduling literature focusing on three
aspects, namely scheduling setups, RL modeling, and experiment evaluation. This
contribution simultaneously documents the current research gaps.

2. Secondly, in Chapter 3 we derive requirements for an RL benchmarking simulation
framework and provide an open-source implementation that satisfies them. Our
framework, which we named FabricatioRL, is general, configurable, runtime efficient,
extensible and guarantees experiment reproducibility.

3. Thirdly, we concisely present the RL theory necessary for the in depth understanding
two popular RL algorithms, namely Dual Deep-Q Networks (DDQN) and AZ in
Chapter 4. The chosen RL algorithms are elaborated in detail, such that their
implementation becomes transparent. The complete introduction of the DDQN
and AZ from theory to implementation provides a relevant, albeit more marginal
contribution to the field.

4. Fourthly, we identify the relevant criteria for RL-competitive baselines and select
or construct the corresponding algorithms in Chapter 5. We provide a total of three
novel baselines two of which were created by us. The first baseline algorithm —
Simulation Search (SimSearch) — emulates RL but relies on simulation instead of
prediction to make informed decisions. The second baseline — CP3 — is a adaptation
of CP which defers optimality in favor of faster runtimes. The third baseline — Monte
Carlo Tree Search (MCTS) — was selected from the broader scheduling literature
based on its characteristics.

5. Finally, we put everything together, thus providing an exemplary set of fully
reproducible experiments with a distinct focus on both production setup and
RL design in Chapter 6. The experiments compare the performance of DDQN and
AZ against our baselines on two widely encountered stochastic setups, namely a
dynamic job-shop scheduling problem (𝐽𝑚 |𝑟𝑠

𝑗
|𝐶max) and a dynamic flexible job-shop

scheduling problem with machine capabilities (𝐹𝐽𝑐 |𝑟𝑠
𝑗
, 𝑀𝑜

𝑖
|𝐶max). Before the final

evaluation, a model selection phase is used to assess the quality of several RL models
varying both design and model parameters. When constructing the scheduling
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setups, we use FabricatioRL to determine key environment parameters. We limit the
extensive design choices by means of a novel ex-ante evaluation of (feature-)state
representations and reward signals.

Our experiments confirm some of the results in literature while simultaneously relativiz-
ing the RL performance with respect to both solution quality and transferability, and
highlighting the importance of scheduling setup analysis. In the 𝐹𝐽𝑐 case AZ marginally
outperforms the priority rules baselines often used in literature. However, the baselines
we propose significantly outperform AZ. Additionally, our DDQN approach does not
outperform all priority rules. Thus the high RL performance reported in literature is
relativized. The transfer learning capability often used as an argument for RL is also
relativized given that when deployed to the 𝐽𝑚 setup, our RL approaches, which were
trained solely on the 𝐹𝐽𝑐 setup, perform poorly. By carefully assessing the job-arrival
behaviour and relating it to the scheduling results, we demonstrate that the scheduling
algorithm choice should be based on the setup at hand. Within the 𝐹𝐽𝑐 setup, which offers
more optimization potential, the performance difference between different scheduling
approaches is much higher than within the 𝐽𝑚 setup.

While this work is quite extensive, there are some aspects which we do not consider so
as to keep within its frames. Firstly, we do not review the entirety of the RL literature
available. Rather we target the most influential papers currently known to us. With respect
to the categories defining the elements of our standard, we focus on high level aspects
rather than exact details. For instance we note down whether actions are direct or indirect
rather than specifying the exact variable significance, e.g. job indices or particular priority
rules. Similarly we discuss whether approaches were sufficiently baselined rather than
listing the algorithms employed. Secondly, we do not provide all implementation details
of neither our simulation framework nor our algorithms. Rather we describe everything in
such a fashion that the reader can more easily dive into our code, which we open sourced.
Thirdly, we cannot investigate all the setup-RL design-baseline combinations encountered
in literature. Instead we focus on popular setups and designs coupled with baselines that
are RL-inspired and/or RL-competitive.

Please note that, given the large number of variables required to explain the different
elements of our work, the symbols we use are not always unique throughout this elaboration.
We do our best to respect scheduling literature naming conventions and ensure uniqueness
of variables used between sections. However, the reader is still advised to contextualize
variables and mathematical symbols locally rather than globally.

The present elaboration both bundles and extends several of our past papers and serves
as a root for future publication effort. Chapter 2 builds upon the conference paper titled
“Towards Standardizing Reinforcement Learning Approaches for Production Scheduling
Problems” (Rinciog et al., 2022), which was initially published as a white paper (Rinciog
et al., 2021c). Chapter 3 is based on paper we called “Fabricatio-RL: A Reinforcement
Learning Simulation Framework for Production Scheduling” published in the Winter
Simulation Conference (Rinciog et al., 2021a), that details the first version of our software
(Rinciog et al., 2021b). The description of AZ in Chapter 4 closely follows the one put
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forward in “Sheet-Metal Production Scheduling Using AlphaGo Zero” (Rinciog et al., 2020).
The double blind peer-review process associated with three of the five listed publications
(Rinciog et al., 2020; Rinciog et al., 2021a; Rinciog et al., 2022) served confirm the need this
thesis. Future experiment papers using the original work in Chapters 5 and 6 are currently
being developed alongside a journal paper detailing the state of the art in our field based
on Chapter 2.
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Chapter 2

Ordering Disorder:
A Standardization Framework for RL
Production Scheduling

If you think of standardization as the best that you know today, but which
is to be improved tomorrow, you get somewhere

— Henry Ford

This section contains a meta-analysis of published RL production scheduling approaches
aimed at establishing an experiment design standard that eases reproducibility and boosts
the validation strength of future research. To that end, 98 publications from the field are
reviewed in terms of their simulated production setup and their RL design. We also assess
the reproducibility of the surveyed literature as well as the way in which the results were
validated.

The 98 papers to be reviewed were compiled in seven steps. Firstly, we compiled a list of 176
publications from the field by means of a topic search on the Web of Science Portal (WoS)
portal using the “shop scheduling” in conjunction with “reinforcement learning” keywords.
The choice of our first keyword is motivated by the fact that most canonical production
scheduling setups include the term “shop”. Out of nine machine setups introduced by
Pinedo (2012), five contain the word “shop”. Furthermore, the production grounds are
widely referred to as “shop-floor”. In a second step, we sorted the works descendingly by
the number of citations and the publication year. Our third step consisted of eliminating
the works with no citations, leading to a new total of 123 works. The fourth step consisted
of eliminating 25 publications that did not pertain to production (e.g. Zhang et al., 2017;
Yoshida et al., 2009; Park et al., 2020a) eight papers that were conceptual in nature rather
than experimental (e.g. Ey et al., 2000; Serrano Ruiz et al., 2021; Serrano-Ruiz et al., 2022)
and eight that were supposedly on the topic of RL but did not follow the Markov Decision
Process (MDP) formalism (e.g. Kim et al., 1998; Yu et al., 2006). We eliminated five of the
remaining papers due to insufficient access rights as a fifth step.

9
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The remaining two steps, while not reproducible, serve to alleviate the potential bias
associated with a single search on a single platform. In a sixth step, we expanded our search
using google scholar using the following keywords prepended by “reinforcement learning”:
“shop scheduling”, “sheet metal”, “semiconductor”, “production”, “scheduling”. For each
of the five searches, we selected the first 20 results and pooled them together to form a
population of 60 additional papers. Finally, in our seventh step, we sampled papers one by
one without replacement, adding them to the papers to be reviewed or discarding them
either if they were already contained in the WoS group.

Our contribution of bringing order to the 30 years of work done in the field of RL production
scheduling, can be broken down as follows:

1. Firstly, we index the setups used in RL experiments using the Graham notation
extending the standard whenever necessary (Section 2.2). The setups are defined
as the combination of base scheduling problems, 𝛼, additional constraints 𝛽 and
optimization goals 𝛾.

2. Secondly, we index the RL design choices taken by different publications (Section 2.3).
The index dimensions are given by the MDP Breakdown, a concept we introduce to
group similar modeling approaches on a high level, several fields dedicated to the
chosen agents, and information on the type of states and actions.

3. Finally, we assess the validation approaches (Section 2.4) taken by authors with
respect to reproducibility and evaluation underlining the respective research gaps.

Our literature based standardization work is framed by the related efforts and research
gaps sections (2.1 and 2.5 respectively). We begin by noting down the related effort
with respect to the RL scheduling literature investigation and standardization thereby
demonstrating the meta-analysis gap. The concluding section lists the gaps that our
investigation uncovered, which we strive to address in this thesis.

With respect to standardization section structure, our work follows the same pattern for
each of our contributions. First, we briefly introduce structure we used to tabulate the
98 publications with respect to the respective section criteria (setup, design, validation).
Then we discuss the different table fields one by one, using examples from the literature.
Each field discussion includes a frequency analysis of the different values in that particular
column. This provides a useful tool for researchers in the field for isolating the most
closely related work from the hundreds of available publications. The full tables, which
act as the source for the frequency analysis, are attached in Appendix A.

Note that it would be impossible to losslessly condense decades of research in the current
work. It follows that not all aspects of our subject papers can be scrutinized. We do not,
for example, look in detail at every piece of information used in the state, action, and
reward formulation. We do however give examples of such. Similarly, we do not consider
every RL algorithm in the same level of detail. Instead, we focus on the most pervasive
agents.
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2.1 Related Efforts

Standardization Work: Bartz-Beielstein et al. (2020), give eight criteria for benchmarking
within the Operations Research (OR) field, namely clearly stated goals, well-specified
problems, suitable algorithms, adequate performance measures, thoughtful analysis,
effective and efficient (experiment) designs, comprehensible presentations, and guaranteed
reproducibility. Moving past the reproducibility that is in no way guaranteed for production
scheduling RL experiments, the absence of standardization affects the rest of the criteria,
particularly well-specified problems and suitable algorithms.

In terms of describing production scheduling problems, a notation system respected as
canon in much of the scheduling community exists. Being introduced by Graham et al.
(1979), the notation system is often called “Graham” or “(𝛼 |𝛽 |𝛾)” notation. The first
position of the triple defines the base scheduling setup and encodes information about
operation precedence constraints as well as the number and type of resources. There
can be exactly one 𝛼 parameter per setup. The 𝛽 parameters define additional setup
constraints, such as transport or setup times. Setup definitions can contain any number of
𝛽-parameters, including none. The gamma parameter defines the optimization goal. This
Graham notation was extended by Lawler et al. (1993), Knust (2000) and Pinedo (2012).
Using (𝛼 |𝛽 |𝛾) one can not only give precise information about the setup at hand but also
relate problems to one another, since a subscription relationship is defined over them, with
more specific setups subsuming more general ones. However, the notation system needs
to be extended to cover the increasingly complex problems tackled by the RL scheduling
literature.

First steps in the direction of RL project standardization were taken by OpenAI Gym1,
whereby a general RL API is defined. The Gym API has become the de-facto standard for
RL environments with libraries such as keras-rl adopting it for the therein implemented
agents. This is also reaffirmed by Hubbs et al. (2020). The authors created OpenAI Gym
simulations for varied combinatorial optimization problems from the field of OR, e.g.
the Bin Packing or Traveling Salesman.2. For the production scheduling problem of the
semiconductor industry an environment built on top of tensorforce (Kuhnle et al., 2017),
which respects the OpenAI Gym API3, is provided by Kuhnle et al. (2019). While this is a
decisive step forward for RL production scheduling experiments, the environment is fixed
to the semiconductor industry material flow. A more flexible setup is required. Another
caveat of this implementation is the absence of guaranteed reproducibility.

Past the standardization of agent-environment communication, RL production scheduling
literature often suffers from the absence of a clear presentation of the RL design choices. A
good standard of this is put forward by Kuhnle et al. (2019). Aside from the RL algorithm
itself and its hyper-parameters, a clear definition of the RL-environment interaction loop,

1https://gym.openai.com/
2The code is available on https://github.com/hubbs5/or-gym
3Tensorforce provides tensorflow implementations of several RL agents as well as adapters for several RL

environments such as OpenAI Gym, OpenAI Retro, VizDoom etc. and is available at https://github.com/ten
sorforce/tensorforce

https://gym.openai.com/
https://github.com/hubbs5/or-gym
https://github.com/tensorforce/tensorforce
https://github.com/tensorforce/tensorforce
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state-space, action-space as well as the agent reward is needed.

Apart from an available simulation code and a well-described RL design scheme, the
production setting needs to be clearly defined and the associated experiment inputs need to
be made available. There are four families of production scheduling problems traditionally
tackled by the OR community, namely the Flow Shop Scheduling Problem (𝐹𝑚), Job Shop
Scheduling Problem (𝐽𝑚), Flexible 𝐽𝑚 (𝐹𝐽𝑐), and Open Shop Scheduling Problem (𝑂𝑚).
The distinction criteria for these are given by the technological constraints of operations
in a job. 𝐹𝑚s contain identical jobs with their operations being totally ordered. At the
other end of the spectrum, 𝑂𝑚s contain different jobs with no ordering constraints. 𝐽𝑚s
and 𝐹𝐽𝑐s lie between the two. While in their standard formulations these problems
are deterministic, stochastic influences, such as job release times, processing time noise
or machine breakdowns, can be added to them. For standard deterministic problems,
benchmarking inputs are available from previous publications. 𝐽𝑚 benchmarking instances
were provided by Yamada et al. (1992), Storer et al. (1992), Applegate et al. (1991), Lawrence
(1984), Fisher (1963), Demirkol et al. (1998), Adams et al. (1988), and Taillard (1993).4 Some
𝐹𝑚, 𝐽𝑚 and 𝑂𝑚 instances can be found in Beasley’s OR library (Beasley, 1990).5 𝐹𝐽𝐶

instances were provided by Barnes et al. (1996), Brandimarte (1993), Dauzère-Pérès et al.
(1998), and Hurink et al. (1994). All of these instances are available through Mastrolli
(1998).

These standardization efforts fail to address the particularities of the RL production
scheduling field. Firstly, the RL literature defines many scheduling setups using inconsis-
tent nomenclature. Secondly, RL offers many design choices for production scheduling
problems. Finally, in stochastic settings, validation is difficult because of the high instance
variance. Our work addresses these issues by providing a unified way of discussing schedul-
ing setups, detailing RL design and establishing an RL-specific validation scheme.

Literature Reviews: The works by Jones et al. (1998), Slotnick (2011), Cunha et al.
(2018), Mohan et al. (2019), and Kayhan et al. (2021) contain related investigations of the
production scheduling literature. Save for Slotnick (2011) and Kayhan et al. (2021), these
elaborations are somewhat superficial and serve more as an orientation for researchers
seeking to broadly familiarize themselves with the field. Jones et al. (1998) focus on the
different method categories, such as the aforementioned mathematical programming
or heuristics, for job shop scheduling. Cunha et al. (2018) compare deep reinforcement
learning techniques with genetic algorithm approaches for Job Shop Scheduling. Mohan
et al. (2019) categorize the types of algorithms employed as solvers for dynamic versions
of job shop scheduling problems.

Slotnick (2011) investigates the different scheduling problems solved in literature and
creates a taxonomy thereof. The authors split the 70 production scheduling papers with a
distinct focus on order release into a conceptual category (A) consisting of four papers,
and four experimental categories namely “deterministic single-machine problems” (B),

4The shop instances extracted from all of these publications as well as known upper and lower bounds for
them in terms of makespan can be found here: http://jobshop.jjvh.nl/.

5http://people.brunel.ac.uk/~mastjjb/jeb/orlib/flowshopinfo.html

http://jobshop.jjvh.nl/
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/flowshopinfo.html
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“stochastic single-machine problems” (C), “multiple-machine problems” (D), and “order
rejection problems” (E) consisting of 22, eight, 21, and 15 papers respectively. Within each
experimental category, the authors investigate the different setup characteristics present
in the respective papers as well as the optimization objective and the solutions deployed,
e.g. heuristics, MILP, and EA. The setup characteristics taken into account by the authors
reveal themselves to be the type of arrival times (stochastic, deterministic, or, in the case
of E, a variable to be optimized), alongside 8 additional flags indicating the presence of
resource setup times, preemption, a pricing model, release dates, deadlines, adjusted
processing times, precedence constraints and resource constraints. Note that not all flags
are present in each experimental category.

While the authors provide a good overview of problems considering order release, the
present setup flags do not clearly relate to the canonical Graham notation. As such
the present categories and the relationship between them become somewhat murky.
Furthermore, the solution categories listed differ in level of granularity, with broader
categories such as “heuristics” or “neural” being sometimes used, while at other times
a more precise approach designation such as MILP or EA is given. Finally, given the
enormous volume of work in the field (see 1.1) the elaboration is, by now, somewhat
dated. Different from the work of Slotnick, 2011, we focus on RL scheduling, describe
the scheduling setups using Graham notation, investigate validation on an high level
consistently and consider recent papers in our analysis.

The work most closely related to ours was done by Kayhan et al. (2021). Herein the authors
investigate 80 scheduling papers containing RL scheduling approaches with respect to
eight aspects. The “problem type” (1) describes the scheduling setup using the Graham
notation, with extensions thereof whenever necessary, e.g. 𝐻𝐹 for the hybrid flow shop,
and includes the optimization criteria. The “objectives” (2) field details whether the
indexed works employed single- or multi-criteria optimization schemes. Using “system
type” (3), the authors distinguish between deterministic and stochastic problems. The
authors’ “learning algorithm” (4), “action selection” (5), and “state definition” (6) criteria all
pertain to components of the RL algorithm albeit in a somewhat unusual way: (5) tabulates
the exploration strategy rather than the action-spaces and (6) indexes the agent-internal
state representation (e.g. neural network) rather than the expected state-space. The
“learning algorithm” column indicates the RL algorithm itself, e.g. Q-learning, temporal
difference learning. “Action selection” refers to the exploration strategy employed, e.g.
𝜖-greedy, Boltzmann probability. “State definition” refers to the type of RL function, e.g.
neural network, aggregation (i.e. table). The “agent” category (7) signals whether the
investigated works deploy single or multiple RL agents. Finally, using the “benchmark
method” category (8), the authors note down the algorithms used to compare the RL
approaches’ performance.

Upon closer inspection, the fields used to structure the authors’ comprehensive review
reveal some caveats with respect to the scheduling problem (1, 2, 3), RL (4, 5, 6, 7), and
validation approach (8). Firstly, the extensions introduced for the “problem type” field
fail to take the work of Pinedo (2012) into account leading to duplication at times, e.g.
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in the case of the hybrid flow-shop (Ruiz et al., 2010; Armstrong et al., 2021), which is
well defined as a flexible flow shop in Pinedo’s work. Furthermore, the subsumption
relationship between different constraints is not clearly delineated. In terms of the “system
type” category, the authors are at times too trusting of the investigated works. Zhao et al.
(2021c), for instance, motivate their use of RL using the stochastic nature of production as
a pro-RL argument, however, they run their experiments on a deterministic setup. Yet
Kayhan et al. (2021) index the setup employed by Zhao et al. (2021c) as stochastic. Secondly,
the fields used to detail the RL algorithms fail to capture the RL design, i.e. the state,
action, and reward-spaces. Thirdly, the validation approach used in the investigated works
should be extended to account for reproducibility and a sufficient number of experiments
having been run. Our work distinguishes itself from the one lain down by firstly matching
the scheduling setup with Graham categories by closely inspecting the constraints detailed
by the different authors rather than their own naming of the setup. Secondly, we clearly
report the RL designs, extending the recipe by Kuhnle et al. (2019). Finally, we take
reproducibility into account as well as the baseline algorithms.

It is also worth mentioning, that the applied methodology for the full paper read selection
may contain a bias towards Q-Learning and tabular RL approaches to scheduling which
may not reflect current trends in the field. The authors used “Reinforcement Learning”,
“Scheduling”, “Q-Learning” and “Neuro-dynamic Programming” as keywords for an
article body search on the WoS portal. Due to the use of the overly specific keyword
“Q-Learning” during the literature search, policy-based RL approaches such as Trust
Region Policy Optimization (TRPO) or actor-critic methods such as Proximal Policy
Optimization (PPO) or AZ may not be captured. We avoid this bias by only using
“Reinforcement Learning” in our search string to capture the ML component of the target
papers.

2.2 Job Shop Scheduling Variants

In what follows we use an extension of the Graham notation to describe the different
production scheduling setups studied in RL literature. We detail the different values of
𝛼, 𝛽 and 𝛾 defined by Pinedo (2012) together with the required extensions in subsections
2.2.1, 2.2.2 and 2.2.3 respectively

Table A.1 offers an overview of the deterministic and stochastic production setups studied
in the RL scheduling literature in terms of 𝛼, 𝛽, 𝛾, and the particular maximum problem
size. The question mark signals ambiguity pertaining to the respective detail. Several
publications (e.g. Jiménez, 2012; Reyna et al., 2015) run experiments on more than one
setup. In such cases, we consider the most general setup only. Note that the problem size
simply serves as an orientation for the combinatorial complexity tackled by the different
publications and is not explicitly discussed within this thesis.
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2.2.1 Production Scheduling Problem Families

Formally, production scheduling is the problem of assigning start times 𝑠 𝑗𝑖 > 0 to a number
of operations 𝑜 𝑗𝑖 with processing times 𝑝 𝑗𝑖 grouped into 𝑛 jobs (𝐽 ∈ 𝒥), onto one of 𝑚
production resources 𝑀 ∈ ℳ to optimize some target value, for example makespan
which is defined as 𝐶max := max{𝐶 𝑗 : 𝑗 ∈ {1 . . . | 𝐽 |}}, where 𝐶 𝑗 := max{𝑠 𝑗𝑖 + 𝑝 𝑗𝑖} is the
completion time of job with the index 𝑗. There are two more variables associated with
jobs, namely, release dates 𝑟 𝑗 and due dates 𝑑 𝑗 . The release date specifies the point in time
from which the job can be processed (∀𝑗∀𝑖 : 𝑟 𝑗 ≤ 𝑠 𝑗𝑖), while the due date is the point in
time before which the job needs to be finished. Jobs finished past the due date generally
lead to some form of quantitative or qualitative penalization for the production site. In
what follows, if not otherwise specified, we use 𝑗 to denote a job index and 𝑖 for machine
indices. In most cases, resources are limited to processing one job at a time (no-overlap)
and cannot be interrupted (no-preemption).

The main types of production resources are processing and transport resources, which
we henceforth refer to as machines and vehicles respectively. Note that the machines
and vehicles terms are, strictly speaking, misnomers. Processing resources execute job
operations and can be either human laborers, machines or a combination of both. Transport
resources transfer jobs from one processing resource to another. Again, transport resources
can be either humans, human operated vehicles, automated vehicles or any other transport
technology (coveyors, cranes etc.). However, the chosen terminology both better aligns
with the bulk of the scheduling literature and is more concise.

Figure 2.1 shows the hierarchy of scheduling problems aggregating the values of the
𝛼-column from Table A.1. The green fill color indicates that the problems were defined by
Pinedo (2012), while the red fill color indicates that they were defined by us to accommodate
setups found in RL scheduling literature. Problems on gray-filled rectangles are logical
extensions of present problems that have yet to be studied. Numbers in parentheses
pertain to the number of publications that used the respective setup. The generalization
relationship between problem classes is indicated with arrows.

The 𝛼 parameter takes exactly one of the following categories as a value. Depending on
the number and order of operations within jobs and the number and speed of resources
available for different operation types, production problems can be categorized into one
of 17 problem classes. Figure 2.1 displays two generalization dimensions starting with
single machine problems, 1, in the lower left corner, and ending with the unrelated flexible
partially open shops in the top right corner, 𝑅𝑚 + 𝐹𝑃𝑂𝑐, which is the super-class of all
setups at hand. The first generalization dimension (left to right) differentiates classes
based on number of machines and their speed, while the second generalization dimension
(bottom to top) differentiates setups based the job operation types and the operation order
within the jobs.

Single machine problems are defined in terms of 𝑛 jobs, each containing exactly one
operation with duration 𝑑 𝑗1. The task is to schedule all operations onto a single resource.
If we extend this setup by replicating the machine we obtain the 𝑃𝑚 setting. By endowing
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Figure 2.1: Hierarchy of machine setups (𝛼) for scheduling problems. The number of
publications containing the particular setups are noted in parentheses. The entries in
green were selected from the work of Pinedo (2012). The hierarchy needed to be extended
to cover the scheduling problems reviewed (red boxes). The gray filled boxes represent
as of yet unstudied logical extensions noted down for completion. The Problems on a
white background have yet to be studied in relationship with RL. The arrows represent
the generalization relationship.

resources with different speeds 𝑣𝑖 we reach the 𝑄𝑚 setup. The processing time of a
particular operation 𝑜 𝑗𝑖 is, in this case, dependent on both its base duration 𝑑 𝑗𝑖 and machine
𝑖’s speed 𝑣𝑖 , i.e. the total duration will be 𝑑 𝑗𝑖 · 𝑣𝑖 . If the machine speed depends not only
on the machine index 𝑖 but also on the job index 𝑗, the production has an 𝑅𝑚 setup.

By extending the 1-setup to contain 𝑚 resources with jobs consisting of the same number
of operations, we obtain “shop-scheduling” problems. Each operation is bound to a
particular resource, and each resource is visited exactly once to complete a job. We
use the mapping 𝑡𝑦𝑝𝑒 : 𝒪 → ℳ to denote the machine binding of the particular
production scheduling problem, where 𝒪 is the set of all operations over all jobs and
ℳ is the set of all machines. If operations are totally ordered, i.e. the constraint
∀𝑗 ∈ {1, . . . , 𝑛} : ∀𝑖1 , 𝑖2 ∈ {1 . . . 𝑚} : 𝑖1 < 𝑖2 ⇒ 𝑠 𝑗𝑖1 < 𝑠 𝑗𝑖2 is in effect, and all jobs need to be
processed on machines in the same order, then the production setup is that of 𝐹𝑚. If job
operations are totally ordered, but the machine sequence is different for different jobs,
then a 𝐽𝑚 is in place. If job operations have no precedence constraints, then an 𝑂𝑚 is in
place.

Any shop setup can be extended by replicating one or more resource types and group-
ing them into so-called “work-centers”. The 𝑡𝑦𝑝𝑒 mapping now gives the index 𝑖 of
the work-center 𝑐𝑖 where the operation can be executed. Note that an operation can
be executed on machines of exactly one work-center, i.e. ∀𝑗 : ∀𝑖1 , 𝑖2 : 𝑜 𝑗𝑖1 ≠ 𝑜 𝑗𝑖2 ⇒
𝑡𝑦𝑝𝑒−1(𝑜 𝑗𝑖1)

⋂
𝑡𝑦𝑝𝑒−1(𝑜 𝑗𝑖2) = ∅. If the setup prior replication was 𝐹𝑚, the setup now be-

comes 𝐹𝐹𝑐. Analogously 𝐽𝑚 becomes 𝐹𝐽𝑚. While a flexible 𝑂𝑚 is certainly plausible, we
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have not found evidence of such setup neither in the RL literature nor in the systematization
put forward by Pinedo (2012).

The setup used by Zhang et al. (1995) and Zhang et al. (1996) does not fit with any of the 𝛼

values described to this point. The two works describe a planning problem where jobs
contain only partially ordered operations. This means that the precedence constraints for
operations in a job can be described by a Directed Acyclic Graph (DAG) (Thulasiraman
et al., 2011), instead of a chain, as is the case for the (𝐹)𝐽𝑚 and (𝐹)𝐹𝑚 families. This setup is
also more recently employed for final assembly use-cases within the automobile industry
(Oh et al., 2022). Since job operations in this setup are partially ordered, we dubbed it
partially ordered job shop (𝑃𝑂𝑚) and flexible partially ordered job shop (𝐹𝑃𝑂𝑐) for the
variants with and without replicated machines respectively.

Having briefly discussed the constraints that apply to job operations, we turn our attention
to the machines themselves. These are limited to processing one operation at a time, in the
absence of preemption.

In Figure 2.1 the rightmost two columns contain setups which combine the different
machine-speed setups (𝑄𝑚 and 𝑅𝑚) with the different flexible shop setups (𝐹𝐹𝑐, 𝐹𝐽𝑐 and
𝐹𝑃𝑂𝑐) using the + sign. This signals situations where the processing speeds of operations
from jobs respecting the structure defined by 𝐹𝐹𝑐, 𝐹𝐽𝑐 and 𝐹𝑃𝑂𝑐 are machine dependent
(𝑄𝑚+) or job and machine-dependent (𝑅𝑚+). We used the + sign instead of coming up
with new names so as to keep in line with Pinedo’s 𝛼 definitions as much as possible. Note
that many of the 𝐹𝐽𝑐 instances available through benchmark sets (e.g. Mastrolli, 1998) are,
not always “pure” 𝐹𝐽𝑐 setups, as per Pinedo, but, in fact 𝐹𝐽𝑐 + 𝑅𝑚 instances.

Note that in the case of the 𝑃𝑚, 𝑄𝑚 and 𝑅𝑚 setups, their super classes, as well as 𝑂𝑚,
and 𝑃𝑂𝑚, two types of scheduling decisions need to be taken, namely job routing and
sequencing. Since in these cases some or all job operations can be executed on a set of
different machines, rather than a single machine, the machine assignment for operations
becomes a choice variable. Assuming the machine assignment was decided, i.e. the job
route has been set for all jobs, the order in which operations get executed by a particular
machine needs to be chosen. We refer to the second decision type as “sequencing”. The
complete set of both decision types defines the schedule.

From the number frequency of setup occurrences in literature, we observe a slight tendency
towards more flexible scheduling problems, i.e. those allowing for job routing flexibility.
Of the 98 papers investigated, 46 built on setups only requiring sequencing decisions (𝐹𝑚,
𝐽𝑚, 1), while 52 contained setups with routing flexibility (𝑂𝑚, 𝑃𝑂𝑚, 𝐹𝐹𝑐, 𝐹𝐽𝑐, 𝐹𝑃𝑂𝑐,
𝑅𝑚, 𝑅𝑚 + 𝐹𝐹𝑐, 𝑅𝑚 + 𝐹𝐽𝑐, 𝑅𝑚 + 𝐹𝑃𝑂𝑐), thus requiring both job routing and sequencing
decisions. Overall the most popular setups are 𝐽𝑚 (31) and 𝐹𝐽𝑐 (22). This ranking is
somewhat reflected by the number of available benchmark instances.

2.2.2 Additional Setup Complexity

The 𝛽 values modify the scheduling problem by adding constraints or changing existing
ones. Figure 2.2 aggregates the information in the 𝛽-column from Table A.1. The 𝛽-
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parameters encountered in literature are presented along with the number of times they
were used in different publications. Since multiple 𝛽 values are possible for a single setup,
the total number of parameters need not be equal to the number of publications reviewed.
The green fill color indicates that the constraints were both defined by Pinedo (2012),
and present in the RL literature. If a rectangle is filled red, then it is part of the setup
considered in at least one of the publications surveyed, but not defined by Pinedo. White
filled rectangles were defined by Pinedo, but were not present in the surveyed papers.
Gray filled rectangles mark logical extensions present neither the work of Pinedo, nor the
RL scheduling literature. Arrows indicate an extension/generalization relationship.
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Figure 2.2: Job Properties (𝛽). The numbers in parentheses indicate the number of
publications the constraints are present in. The values in the red or green filled blocks
can be found in the reviewed literature setups and were defined by us and Pinedo, 2012
respectively. White filled rectangles correspond to parameters defined by Pinedo that are
not present in the RL literature. Gray filled blocks are logical extensions we define for
completion. Arrows represent a generalization relationship.

The 𝑝𝑟𝑚𝑢 parameter, defined by Pinedo (2012), which is present, for instance, in the works
of Wu et al. (2020), Yang et al. (2021b), Yang et al. (2021a), and Lee et al. (2022), stands
for “permutations”. It can be applied for 𝐹𝑚 setups only and indicates that jobs need to
be processed on all resources in the exact same sequence. Thus, the sequence in which
job operations are processed by the first resource fully determines the schedule, meaning
that solutions can be represented as a permutation of the 𝑛 jobs to be processed. This
considerably reduces the solution space.

The “Precedence” parameter 𝑝𝑟𝑒𝑐 introduced Pinedo, 2012 defines additional precedence
constraints, though this time over the set of jobs rather than operations. Hereby, a total
order ≺ is defined not only over operations from individual jobs but also over the job
set itself. Jobs operations from jobs 𝑗1 can only be processed on any resource if all the
operations from all the jobs 𝑗2 preceding it (𝑗2 ≺ 𝑗1) have been completed. 𝑝𝑟𝑒𝑐 also
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tightens the solution space and was encountered in a single publication, namely in the
work of Moser et al. (2020).

An example of a constraint implied by 𝛼 being changed by a 𝛽-value is “re-circulation”
(𝑟𝑒𝑐𝑟𝑐). If this value is present in the 𝛽 set, then job operations are not constrained to
be processed on every machine type exactly once. Instead, some work centers can be
visited more than once, whereby cycles ensue in the operation precedence graph, hence
the name. From the details offered by Pinedo (2012), it is unclear if 𝑟𝑒𝑐𝑟𝑐 allows for a
variable number of operations in jobs. To model the situation where different jobs require
a different number of processing steps (e.g. Zhang et al., 1996; Zhang et al., 1995; Rinciog
et al., 2020) we introduce the more general constraint relaxation of a variable number of
operations per job, 𝑣𝑛𝑜𝑝𝑠, which subsumes 𝑟𝑐𝑟𝑐.

All base setups assume the existence of unlimited buffer spaces between resources. The
constraint of limited buffer space can be added by adding the 𝑏𝑙𝑜𝑐𝑘𝑖𝑛 or 𝑏𝑙𝑜𝑐𝑘𝑜𝑢𝑡 value to
𝛽 to limit either resource input and/or output buffers to a capacity 𝑏𝑖𝑛 and/or 𝑏𝑜𝑢𝑡 . Note
that the related 𝑏𝑙𝑜𝑐𝑘 parameter described by Pinedo (2012), does not distinguish between
in- and output buffers. The presence of 𝑏𝑙𝑜𝑐𝑘 is defined for 𝐹𝑚 and 𝐹𝐹𝑐 setups only and
indicates the presence of buffers between consecutive processing stages. The implication
is that a resource can only process a job if there is enough space in the buffer following
it. In reality, buffers can be placed either before or after a machine. This distinction is
important when there is job routing flexibility as a result of the machine setup. When the
input buffer of a machine is full, no job operation can be routed to it until another position
gets freed by mapping a buffered operation to the corresponding machine. Conversely,
when an output buffer of a machine is full, job operations can be routed to the machine,
but no further processing is possible until a buffer position gets freed by routing a job
operation to the next processing stage. Setups where 𝑏𝑙𝑜𝑐𝑘 is present are subsumed by
both 𝑏𝑙𝑜𝑐𝑘𝑖𝑛 and 𝑏𝑙𝑜𝑐𝑘𝑜𝑢𝑡 defined by us.

Stochastic operation processing times being present in a particular setup are indicated
by the 𝑝𝑠

𝑗𝑖
parameter defined by us. When 𝑝𝑠

𝑗𝑖
is not present, the processing times 𝑝 𝑗𝑖 of

operations 𝑜 𝑗𝑖 are assumed to be deterministic. In reality, however, these times are just
estimates, and as such, subject to noise. Some of the authors consider this explicitly (e.g.
Wang et al., 2007; Jiménez, 2012; Stricker et al., 2018; Park et al., 2020b).

Whenever present, our extension parameter “job batches” 𝑗𝑏𝑎𝑡𝑐ℎ indicates that due dates 𝑑 𝑗𝑖
are specified for groups of jobs rather than individual jobs. The group specification along
with the associated due dates are required so as to compute group-level optimization goals
such as the total weighted batch tardiness (e.g. Wu et al., 2020). While no other grouping
usage was identified in the literature, in theory, 𝑗𝑏𝑎𝑡𝑐ℎ could be used in conjunction with
other optimization goals, e.g. batch flow time.

To model environments with multiple machines capable of executing an operation type
(e.g. 𝐹𝐽𝑐, 𝐹𝐹𝑐), where the work-center capacity can vary dynamically, we add 𝑓 𝑟𝑒𝑠 (flexible
resources) to the possible 𝛽-values. Such an environment was studied by Thomas et al.
(2018), where bottleneck resources could be enhanced during the scheduling process.
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Another aspect that is traditionally not considered by the OR community is that of transport
times and vehicles. When not considering these, two implicit assumptions are made,
namely that (a) distances and hence transport times are either negligible, constant or
part of the processing times 𝑝 𝑗𝑖 , and (b) vehicles are always available to transport a job
immediately after its latest operation has finished.

As soon as (a) does not hold, which can be the case for setups with job routing flexibility,
transport times should be modeled separately. If the production setting to be scheduled
contains enough vehicles, (b) can still hold (e.g. Thomas et al., 2018). We mark this setup
by means of 𝑡𝑟(∞) (transport times) in 𝛽. If on the other hand, vehicles are limited, or even
a bottleneck resource, we have to model them explicitly in terms of location, since the latter
determines the job transport waiting time and is a supplementary scheduling decision.
We call the corresponding 𝛽-value “Transport Resources” (𝑡𝑟(𝑟)). Examples of 𝑡𝑟(𝑟) can be
found in the experiments conducted by Arviv et al. (2016) and Kuhnle et al. (2020). Finally,
some authors model situations where vehicles can carry more than one operation between
machines (e.g. Kim et al., 2022). This is signaled our “Capacity Transports” extension
𝑡𝑟(𝑘, 𝑟).

For each of the vehicle parameters, a stochastic version could be defined, if the transport
times are assumed to be very noisy. While such an assumption was only encountered once
in the surveyed literature (Han et al., 2019) we introduce the extension parameters 𝑡𝑟(∞)𝑠 ,
𝑡𝑟(𝑟)𝑠 and 𝑡𝑟(𝑘, 𝑟)𝑠 for the sake of completion.

In all the settings considered up to this point, any particular machine could only execute
one type of operation. It could be, however, that a machine can execute multiple operation
types (e.g. Martínez et al., 2011; Jiménez, 2012; Bouazza et al., 2017; Luo, 2020). Pinedo
defines machine eligibility restrictions 𝑀 𝑗 as a 𝛽 value for 𝑃𝑚 environments only, and uses
it to limit the capabilities of machines of executing any and all operations to a particular
subset thereof: 𝑀𝑖 := 𝐽′ ⊂ 𝒥 ,∀𝑖 ∈ {1, . . . , 𝑚}. Note that since in 𝑃𝑚 jobs only have one
operation, a job index uniquely identifies an operation. This concept needs to be expanded
to cover setups past 𝑃𝑚. We use the 𝑀𝑜

𝑖
value in 𝛽 to distinguish between the original

machine eligibility constraints for jobs and our more general ones for operation types.
In the 𝑀𝑜 context, the sets 𝑀𝑖 := 𝑂′ ⊂ 𝑡𝑦𝑝𝑒(𝑂) for 𝑖 ∈ {1, . . . , 𝑚} describe the machine
capability constraints.

Our “parallel operations” 𝑝𝑜𝑝𝑠 and “forced parallel operations” 𝑓 𝑝𝑜𝑝𝑠 extensions relax the
constraint on job operations to be executed one at a time. In setups with a partial operation
order within jobs, e.g. 𝑂𝑚, 𝑃𝑂𝑚, 𝐹𝑃𝑂𝑐, operation precedence can be represented as a
DAG, with nodes 𝑣, 𝑤 representing operations and directed edges (𝑣, 𝑤) marking that
operation 𝑤 can only be processed after 𝑣 has been completed.

The presence of 𝑝𝑜𝑝𝑠 allows for operations in parallel paths to be executed simultaneously,
as long as the precedence constraints are respected. This allows for the definition of
the setup described by Brammer et al. (2022) (Independent Line 𝐹𝑚) to conform to the
formalism used by Pinedo (Figure 2.3a). In the aforementioned work, the authors segment
𝐹𝑚 jobs into operation partitions with no order being defined for individual partitions.
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This corresponds to a 𝑃𝑂𝑚 setup. Individual job partitions can be executed in parallel,
which is described by the just introduced 𝑝𝑜𝑝𝑠 extension. Specifying 𝑓 𝑝𝑜𝑝𝑠 as a beta
value forces operations in parallel graph paths to be executed concomitantly. This makes
setups such as that detailed by Martins et al. (2020) (𝛼 |𝛽 |𝛾) definable (Figure 2.3b). In
these two cases, an extension of 𝛼, which is implied by the authors, should be avoided,
since 𝛼 parameters are solely concerned with operation precedence (total, partial or none),
machine replication (single machine or work-centers) and machine speeds (homogeneous,
machine-dependent or machine and job dependent), none of which are affected by the
suggested modifications.

Independent line 𝐹𝑚 → 𝑃𝑂𝑚 𝑝𝑜𝑝𝑠)Dual Resource 𝐹𝐽𝑐 → 𝐹𝑃𝑂𝑐 𝑓𝑝𝑜𝑝𝑠)
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(a) Partitioned 𝐹𝑚 jobs as described by Bram-
mer et al. (2022) (left) can be represented as
a 𝑃𝑂𝑚 (right); Operations in different paths
can be executed in parallel (𝑝𝑜𝑝𝑠).

Dual Resource 𝐹𝐽𝑐 → 𝐹𝑃𝑂𝑐 𝑓𝑝𝑜𝑝𝑠)
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Independent line 𝐹𝑚 → 𝐹𝑃𝑂𝑐 𝑝𝑜𝑝𝑠)

(b) Dual Resource 𝐽𝑚 where each operation
requires two resources as described by Mar-
tins et al. (2020)(left) represented as a 𝐹𝑃𝑂𝑐
(right); operations in parallel graph segments
must be executed in parallel ( 𝑓 𝑝𝑜𝑝𝑠).

Figure 2.3: Examples of using 𝛽-parameters instead of defining new machine setups (𝛼). This
should be preferable, since 𝛼-parameters are distinguished by job operation ordering (total, partial
or none), machine replication (single-machine or multiple machines per operation) and machine
speeds (homogeneous, machine-dependent or machine and job dependent), and the new setups
do not extend any of these three dimensions.

In many cases, the constraint of sequence-dependent setup times 𝑠 𝑗𝑘 is required for a
realistic mapping of the production reality. The 𝑠 𝑗𝑘 constraint, describes a setting where
a machine incurs a processing time penalty 𝑠 𝑗𝑘 when switching from an operation from
job 𝑗 to an operation from job 𝑘. This could represent the time required to change the
necessary tools at a processing station or re-configuring a machine. If the setup times are
supplementary machine dependent, the 𝛽-value 𝑠 𝑗𝑘𝑖 reflects this. Pinedo also describes the
situation where jobs can be grouped into so-called families. When switching between jobs
of the same family, no setup times are incurred. The aforementioned extension of the setup
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times value is marked by the presence of the 𝑓 𝑚𝑙𝑠 value in the 𝛽 section of the problem
definition. Similarly, vehicles can incur a penalty for switching between transporting
different jobs. This is expressed by the extension parameter 𝑠𝑡𝑟

𝑗𝑖
.

A further example of a constraint relaxation is the 𝑏𝑎𝑡𝑐ℎ parameter. If this value is included
in 𝛽, machines are allowed to process multiple operations simultaneously. Batches are
fixed per machine in such a setup. To describe a setup where batches vary depending on
operation characteristics, as is the case for the sheet-metal production (Rinciog et al., 2020),
we add 𝑑𝑏𝑎𝑡𝑐ℎ as a possible 𝛽 value. It could be, that the batch content affects the batch
processing time, as is the case with the aforementioned publication. In such a case we
only know the operation duration 𝑝 𝑗𝑖 post batch assignment. This additional complexity
can be indicated by additionally placing 𝑑𝑝 𝑗𝑖 (dynamic processing times) in 𝛽.

In setups containing the no-wait parameter 𝑛𝑤𝑡, all operations need to be processed
immediately after the predecessor operation has been processed. “For example, in
aerospace product manufacturing, the inspection step must be immediately conducted
after the heat treatment or aging treatment to ensure the quality of products. In steel
manufacturing, the hot work-in-process must continuously go through the subsequent
production steps to avoid unwanted cooling.” (Lin et al., 2022) The partial no-wait 𝛽
parameter 𝑝𝑛𝑤𝑡 introduced by us describes situations where only a subset of the job
operations need to be executed in a no-wait fashion. Such is the case in the paper by Lin
et al. (2022).

Pinedo does not elaborate on the distinction between constraints of a stochastic nature
and those of a deterministic nature. Release dates (𝑟 𝑗), could be deterministic, depending
on the underlying planning process, but are most often stochastic (𝑟𝑠

𝑗
) (e.g. Kuhnle et al.,

2020). Similarly, breakdowns are deterministic (𝑏𝑟𝑘𝑑𝑤𝑛), if resources are taken offline
for planned maintenance, and stochastic in case of unexpected failure (𝑏𝑟𝑘𝑑𝑤𝑛𝑠) (e.g.
Hofmann et al., 2020). The presence of the demand parameter (𝑑𝑚𝑑 𝑗) implies that release
dates are a system inherent choice. In a 𝑑𝑚𝑑 𝑗 system, finished jobs are consumed from
a sink buffer as per incoming demand. A stochastic demand is indicated by 𝑑𝑚𝑑𝑠

𝑗
. This

situation is considered by Mahadevan et al. (1998), Qu et al. (2015), and Paternina-Arboleda
et al. (2005).

To round up the picture, we mention at this point, that there is a single further constraint
defined by Pinedo that was not used in the surveyed RL literature, namely preemption –
𝑝𝑟𝑚𝑝. 𝑝𝑟𝑚𝑝 models situations where operations can be preempted, i.e. removed from a
machine before having been completed (Pinedo, 2012).

The number of new 𝛽 values defined and their frequency in the surveyed literature is a
testimony to the need for the current work. As opposed to the 𝛼 values, where only five
of the 13 setups present in RL were defined by us, the 𝛽 new parameters needed to be
defined to accommodate all the setups in literature, the 𝛽 parameters needed to be doubled
to describe the studied setups. Of the four most popular parameters, namely stochastic
release times 𝑟𝑠

𝑗
(24 publications), operation capabilities 𝑀𝑜

𝑖
(21 publications), stochastic

resource failures 𝑏𝑟𝑘𝑑𝑤𝑛𝑠 (12 publications), 𝑝𝑠
𝑗𝑖

(11 publications), the former three were
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defined by us. Also, note the prevalence of stochastic parameters in the RL scheduling
work. About half of the considered papers focus on stochastic setups.

2.2.3 Objectives

As can be seen from Figure 2.4, there are many possible optimization targets within
the realm of production scheduling, depending on the emphasis on the particular use
case. The green rectangles represent targets available delineated by Pinedo (2012), while
the red ones were defined in the surveyed literature. Filled-in rectangles represent
optimization targets used in the surveyed literature, while the ones not filled are defined
in the aforementioned work but were not investigated by the RL literature. The gray
rectangles represent intermediary variables needed for the target definition. The number
of papers using the particular optimization target are noted down in parentheses within
the blocks.

Central to nearly all objective function definitions are the job completion times 𝐶 𝑗 . To
highlight its central importance, this intermediary variable is circled rather than boxed.
Figure 2.4 contains them twice for spatial ordering reasons.

The zoo of optimization different optimization targets in literature is a clear statement of
the diversity of production scheduling as a field. Because of this diversity, systematizing 𝛾

parameters is a daunting task, reflected by the apparent chaos in Figure 2.4. There is no
such thing as a universal goal. Rather, the optimization goal is use-case dependent, and
could potentially shift with time.

There are four main categories of optimization targets pertaining to how much gets
produced (throughput, makespan), how fast jobs get done (flow-time), whether the
production is timely (lateness, tardiness, unit cost – i.e. the number of delayed jobs), and
whether the system is well utilized (machine utilization, vehicle utilization, job idle time,
machine failures, buffer length, buffered times, setup times, inventory levels).

The most often encountered metric is the makespan, 𝐶𝑚𝑎𝑥 , defined at the beginning of
Section 2.2.1. While 𝐶𝑚𝑎𝑥 makes sense for static contexts where there is a fixed number of
jobs to be processed, for dynamic environments a throughput measure, could be more
fitting since it makes scheduling problems comparable independent of the planning
time horizon. In literature average job throughput 𝑇𝑝𝑡 𝑗𝑎𝑣𝑒 := 1/𝑡∑ 1{𝐶 𝑗≤𝑡} at time 𝑡 is
used (Thomas et al., 2018; Kuhnle et al., 2020). Additionally, operation throughput
𝑇𝑝𝑡𝑜𝑎𝑣𝑒 := 1/𝑡∑𝑗 ,𝑖 𝑝 𝑗𝑖 · 1{𝑠 𝑗𝑖+𝑝 𝑗𝑖≤𝑡} could be considered. Flow-time (sometimes called lead
time) 𝐹𝑗 measures the time between job release and job completion, 𝐹𝑗 := 𝐶 𝑗 − 𝑟 𝑗 . The
average flow-time 𝐹𝑎𝑣𝑒 := 1/𝑛∑ 𝐹𝑗 is an indicator of a system’s reactivity/flexibility. Yet
another measure based on the job completion time is the job idle time 𝐼 𝑗 defined as the
difference between flow time and the summed job processing time: 𝐹𝑗 −

∑
𝑝 𝑗 𝑖.

The timeliness-related metrics are perhaps the most relevant for the industry (Schuh et al.,
2013). Here the intermediary variable needed for all targets is the so-called lateness, i.e.
the difference between completion time and due date, 𝐿 𝑗 := 𝐶 𝑗 − 𝑑 𝑗 . Note that lateness can
be negative when jobs are finished before their due date. Tardiness extends lateness by
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Figure 2.4: Optimization targets in the surveyed literature (𝛾). The number of publications
employing particular targets are indicated in parentheses. Green blocks were defined by
Pinedo (2012). Red blocks are defined by us. Gray blocks represent intermediary variables
used in the target computation. White blocks are Optimization targets defined by Pinedo
(2012) but were not encountered in RL literature. The job completion time intermediary
variable 𝐶 𝑗 occurs twice for spatial ordering reasons.

ignoring early jobs 𝑇𝑗 := max{0, 𝐿𝑗}. The tardiness based optimization goals encountered
are constructed by aggregating the tardiness variables, e.g. 𝑇𝑎𝑣𝑒 , 𝑇𝑚𝑎𝑥 ,

∑
𝑇𝑗 . Alternatively,

the number of tardy jobs (
∑
𝑈 𝑗 ) can simply be counted using the unit cost variables

𝑈 𝑗 := 1𝐶 𝑗>𝑑𝑗 (e.g. Wang et al., 2005). Perhaps somewhat counterintuitively, finishing jobs
too early can also be detrimental (Baker, 2014). As such, earliness 𝐸 𝑗 := |min𝐿 𝑗 , 0| can
be another minimization target as it is considered by Wang (2020) where tardiness and
earliness are jointly minimized.

Resource utilization at time 𝑡 could be defined as 𝑈𝑡𝑙𝑖 := 1/𝑡∑ 𝑝 𝑗𝑖 · 1{𝑠 𝑗𝑖+𝑝 𝑗𝑖≤𝑡}, i.e. the
time the machine was working over the total elapsed time 𝑡. Similarly one can define the
transport utilization 𝑈𝑡𝑙𝑡𝑟 as the time spent carrying a load over the total elapsed time.
The buffer composition can also be used as an optimization target. In general, one would
like to keep buffer lengths to a minimum. In the publication by Qu et al. (2015) the number
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of buffered operations 𝐵 𝑓𝑖 at resource 𝑖 was used as an optimization goal within a more
complex cost function also involving lateness and the total number of tool switches. While
the related total processing time of buffered operations 𝐵 𝑓 𝑡𝑖 at time 𝑡 and resource 𝑖 was
only used as a state-space feature in the surveyed literature (Thomas et al., 2018; Zhou
et al., 2020; Wang, 2020), it could indeed also be considered an optimization goal.

Complementary to utilization are the intermediary variables and related goals built
around idle times. Both job idle times 𝐼 𝑗 and resource idle times 𝐼𝑖 can be considered for
minimization goal definition. With respect to resource idle time, we distinguish between
machine idle times 𝐼𝑚

𝑖
and vehicle idle times 𝐼𝑡𝑟𝑟 . Goal examples for processing and vehicle

idle times can be found in the works of Bouazza et al. (2017) and Kuhnle et al. (2020)
respectively.

Outside of the traditional intermediary variables and optimization goals described above,
other production aspects are sometimes considered for 𝛾. Examples of such are the
material waste (𝑊) (Rinciog et al., 2020), inventory levels (𝑆𝑡𝑘 𝑗) for jobs 𝑗 (Mahadevan
et al., 1998; Paternina-Arboleda et al., 2005; Kuhnle et al., 2020), the number of failures
(𝑀𝐹𝑖) of resource 𝑖 (Mahadevan et al., 1998), and the electricity consumption of resource 𝑖

(𝐸𝐶𝑖) studied by Wang et al. (2022) and Du et al. (2022).

These metrics listed thus far target different, possibly conflicting, aspects of the production
system and can be combined into a joint optimization target (e.g. Paternina-Arboleda et al.,
2005; Qu et al., 2015; Rinciog et al., 2020; Wang, 2020). This is done either by constructing a
score as a function of multiple targets (scalarization), by simply measuring multiple scores
individually, without involving all the measured metrics in the optimization target (e.g.
Mahadevan et al., 1998; Chen et al., 2010; Kuhnle et al., 2019), or by following a Pareto
front (e.g. Mendez-Hernandez et al., 2019).

A typical example of conflicting metrics is that of flow time and utilization/throughput
as noted by Choo (2017). In dynamic setups this, i.e. those subsumed by 𝑑𝑚𝑑𝑠

𝑗
, a so

called Work in Progress Window (WIP) is often used to control this trade-off (e.g. Hopp
et al., 1991; Reyes et al., 2017; Barhebwa-Mushamuka et al., 2019). Additionally the WIP
makes inventory management easier (Huang et al., 2008). The WIP limits the number of
jobs to be scheduled concurrently to a fixed number, i.e. the WIP size. Jobs are added
to the WIP when slots get freed as a result of WIP jobs being processed to completion.
A large WIP size favors utilization/throughput at the expense of flow time. Note that
the RL scheduling literature at hand either does not employ, or does not detail aspects
related to the WIP. Also note that the WIP could be interpreted as a 𝛽 parameter, should
the scheduling setup impose its use. Alternatively, its use could be seen as a scheduling
algorithm choice.

While many sui generis optimization goals are considered in the RL scheduling literature,
the “traditional” targets are still the most frequent. Among them, the makespan 𝐶max is
by far the most popular with 59 of the 98 surveyed works using it as an optimization goal.
It is followed by the tardiness-related goals present in 19 of the surveyed literature. Flow
time related goals rank third being present in six of the 98 publications.
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2.3 RL Modeling for Job Shops

In this section, we discuss how the authors of the surveyed literature designed and
presented the RL models for the setups in the previous section. We introduce the MDP on
a high-level in the next subsection and discuss several of MDP categories that succinctly
describe the broad RL modeling approaches to scheduling. We call these categories MDP
breakdowns and introduce them in Section 2.3.1. In Sections 2.3.2 and 2.3.3 we look at the
state, action, and reward designs for RL-driven production scheduling and the employed
agent algorithms respectively. Note that we do not go into details with respect to the
employed algorithms at this point. Instead we refer to the original publications.

This section is supported by the information in Table A.2, which gives an overview of
the modeling choices encountered. The columns are grouped into MDP characteristics
and agent characteristics. The former category contains the MDP breakdown, along with
the state- and action-space information, and whether multiple agents interact with each
other within the same environment. We abstained from tabulating the reward-spaces
encountered in literature, since there is no clear pattern that can be discerned herein. The
agent characteristics are comprised of the class of RL algorithm (policy, value or both), the
exact algorithm name and the representation of the agent function.

2.3.1 Markov Decision Process Breakdowns

RL is broadly defined through the interaction between a learner, or agent, and a so-called
environment outside the agent as depicted in Figure 2.5. The agent senses the current
environment-state and takes an action from a fixed set, whereby the environment is moved
to a new state. This loop continues until an end-state is reached. Through a numerical
reward signal that the environment provides, the agent receives feedback pertaining to
his actions. The agent’s goal is ultimately to take action in such a way, that the obtained
reward is maximized. Through repeated environment interaction the agent’s assessment
of the actions maximizing future reward should improve.

Figure 2.5: Abstract agent-environment interaction in RL: The environment presents
the agent with a reward and a state. The agent takes an action that is fed back into the
environment. A new state and reward signal is generated. (Source: Sutton et al., 2018)

The MDP describes the different elements of the interaction, lain down. Its components
are the set of actions, or action-space, the set of states, or state-space, and the set of rewards,
or reward-space, along with the environment logic, or state-transition function.
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Note that there is a distinction between agent-state (view) and environment-state. While
in the case of a “fully observable environment” the two are identical, within a “partially
observable environment” the agent-state contains only a subset of the information in the
environment-state.

To solve any problem with RL first an MDP must be modeled for the particular domain.
While for many RL settings the design of agent-environment interaction is fairly obvious,
for production scheduling there are many design choices to be made for each interaction
component. Consider for instance the chess game for which currently an RL solution,
namely AZ (Silver et al., 2016; Silver et al., 2017a) is state of the art. Here the interaction
is quite obvious: the environment is a chess simulation, the state is a view of the board,
an action is an eligible move, and the reward has one of three values depending on the
win-lose-draw outcome.

Let us now consider (𝐹𝑃𝑂𝑚 |𝑡𝑟(𝑎), 𝑟𝑠
𝑗
, 𝑏𝑟𝑘𝑑𝑤𝑛𝑠 , 𝑝𝑠

𝑗𝑖
|𝑈𝑡𝑙𝑎𝑣𝑒). Here we have a considerably

more complex simulation to code, and various design decisions to make. There are at
least two types of decisions that should potentially be considered separately, namely job
routing and sequencing. For both, there are several discrete events that could be used as a
trigger for agent action, e.g. a machine finishes processing an operation or a vehicle has
been freed, a job has finished, a new job has arrived, etc. Furthermore, the questions of
action, state, and reward design still have to be answered.

Building an MDP for production scheduling boils down to first

1. breaking down the production scheduling process into discrete scheduling steps,
then

2. choosing one or more RL agents

3. defining what exactly constitutes the relevant state information,

4. what a scheduling decision is, and

5. how to judge if an action is better than another by means of a reward.

Having written a simulation reflecting these modeling decisions the MDP is implicitly
defined.

Our investigation of the pertinent literature reveals that the production scheduling process
is broken down in one of the 11 ways, we call “MDP breakdowns”. Our breakdowns can
be can be grouped along three meta-categories. We describe the eleven breakdowns along
with their meta-categories in the following, thereby contributing to a clearer communication
of RL design choices.

Completely Reactive Breakdowns: Six of the 11 breakdowns are centered around either
processing or vehicles becoming available and constitute “completely reactive scheduling”
approaches (Bukkur et al., 2018). This means that no production plan is generated at any
point in time. Instead, scheduling decisions are taken ad-hoc on particular cues (e.g. when
a resource is freed).
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The four main types of decisions that can arise on resource release are depicted in
Figure 2.6. We use roman numerals to represent machine dependent decisions and letters
to represent vehicle dependent decisions. When machines become available they require a
new operation to work on (i). The eligible operations are the ones present in the machine
input buffer. If the setup is additionally characterized by job routing flexibility, either
because of the partial ordering of job operations (𝑂𝑚, 𝑃𝑂𝑚), the machine replication
(all the parallel setups), and/or because of machine (operation) capabilities (𝑀𝑖 , 𝑀𝑜

𝑖
), the

downstream machine for the next operation from the job whose operation just finished
needs to be selected (ii).
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Figure 2.6: Overview of decisions within the context of purely-reactive scheduling.

Should vehicles be modeled explicitly (𝑡𝑟(𝑛), 𝑡𝑟(𝑛)𝑠 , 𝑡𝑟(𝑘, 𝑛), 𝑡𝑟(𝑘, 𝑛)𝑠 setups), two more
decisions need to be taken into account. When a vehicle has become free by dropping off
its load at a target machine, a new source destination needs to be selected for it (a). When
vehicles reach a source destination, an operation from the source machine’s output buffer
needs to be selected for transport (b). Finally, after the operation is loaded, the vehicle
destination, and therefore, implicitly, the job destination needs to be selected (c). Note that
(c) corresponds to (ii).

We name the six completely reactive breakdowns Iterative Sequencing, Routing Before
Sequencing, Interlaced Routing and Sequencing, Transport-Centric Sequencing, Iterative Routing
and Interlaced Tooling and Sequencing. Bearing the decision types described above in mind,
we can describe these breakdowns as follows:

1. Within the Iterative Sequencing breakdown, the moments when machines become
free represent the discrete time steps when decisions can be taken. The free resource
can then be assigned an operation from the ones queued in its input buffer (i). The
operation would run on this machine for a duration specified by its processing time
𝑝 𝑗𝑖 depending on the specification of the job 𝑗. After 𝑝 𝑗𝑖 time units, the particular
operation is marked as finished, the operations becoming eligible as a result are
queued up in the input buffers of downstream resources and a new decision has to be
made for the now free machine. This is both the simplest and the most widely spread
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breakdown with 50 of the 98 publications considering it. In 𝐽𝑚 and 𝐹𝑚 problems,
upon finishing an operation from a job, there is exactly one operation from the ones
remaining in the job that becomes eligible for processing. Additionally, the eligible
operation can be processed on exactly one machine downstream. As a result, the
Iterative Sequencing is sufficient for defining all possible schedules. Examples of
this can be found in most of the surveyed literature (e.g. Kim et al., 1998; Mahadevan
et al., 1998; Riedmiller et al., 1999; Aydin et al., 2000; Gabel et al., 2007a).

Iterative Sequencing can be applied to environments with job routing flexibility as
well. If the assumption of negligible transport times and endless capacity buffers
is present, then all the downstream operations becoming eligible as a result of a
particular operation being finished can be considered virtually queued in the input
buffers of all their alternative resources concomitantly. The job routing choice (ii)
is then defined implicitly through (i) by a machine picking one of these operations
next. Naturally, the virtual operations that represented alternative job routes need to
be removed from the respective input buffers.6 Such approaches were investigated
by Rinciog et al. (2020), Qu et al. (2015), Thomas et al. (2018), Waschneck et al. (2018),
Zhou et al. (2020), and Luo (2020).

2. Within the Routing Before Sequencing breakdown, job routes are fixed in their entirety
before the sequencing process. This is the approach taken by Martínez et al. (2011),
who construct separate agents for job routing and sequencing. Whenever a new job
arrives, the job routing agent iteratively assigns machines to it (ii), until it has a fixed
completion path through production. Afterward, a sequencing loop starts where
operations are pulled from the buffer when machines become available (i). Jiménez
(2012) sets the job routes before sequencing for one of the three problem families
considered, namely 𝐹𝐽𝑐. Note that this MDP could prove to be problematic since
all the job routing decisions for a job are made before the production process has
started, whereby the adaptivity of RL is partially relinquished.

3. Interlaced Routing and Sequencing is yet another option for dealing with the combined
job routing and sequencing problem. Herein, the combined problem is solved in an
interlaced fashion. Bouazza et al. (2017) decide upon the next machine (input buffer)
to transport a job to on-demand when an operation is finished. This decision (ii) is
then immediately followed by a sequencing decision (i) on the same freed resource.

4. Transport-Centric Sequencing is only encountered in setups with explicit vehicle
modeling, e.g. 𝑡𝑟(𝑛) (e.g. Kuhnle et al., 2020; Hu et al., 2020a), and reveals an
additional way in which mixed job routing and sequencing decisions can be handled,
namely through fixing one of the decisions to a heuristic. Within this breakdown,
machines sequence operations following a priority rule, e.g. First In First Out (FIFO).
Decisions are required when vehicles are idle. The agent alternates between the
selection of source machines (a) and destination machines (c) The oldest job in the
source output buffer is chosen (b) and transported to the destination input buffer.

6This assumes that job operations cannot be executed in parallel even if the job routing flexibility would
allow it.
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5. The Iterative Routing breakdown is analogous to Transport-Centric Sequencing in that
it is encountered in setups with job routing flexibility and involves a fixed priority
rule to take sequencing decisions. There is, however, a decisive difference between
the two: In the case of Iterative Routing, vehicles are not modeled explicitly. In
terms of Figure 3.1, decisions (a), (b) are not needed and decision of type (i) are fixed.
Hence, the scheduling agent only needs to take job routing decisions (ii) whenever
machines finish their current work. Such is the case with the 𝐹𝐹𝑐 problem described
by Jiménez (2012), and the 𝐹𝐹𝑐 problem studied by Arviv et al. (2016).

6. The Interlaced Tooling and Sequencing breakdown is similar to Interlaced Routing and
Sequencing, as the name suggests, with decisions being taken in an interlaced fashion.
Different from Interlaced Routing and Sequencing, instead of job routing decisions,
a tooling decision is made. As with most of the breakdowns before, decisions are
required when resources finish processing an operation. All operations buffered
at the resource have an associated toolset that needs to match the toolset of the
machine in order for the operation to be executed on it. Within Interlaced Tooling
and Sequencing, the resource tool set is first chosen by an agent. Then, an operation
from the group of same-tool set operations is chosen for processing (i) as in Seq.
Note that we did not explicitly model this decision type in Figure 2.6, as there was a
single instance of this MDP sound in literature.

Planning Breakdowns: Reactive breakdowns have the advantage of being potentially
more robust against unforeseen events, since with such modeling, a decision is always
made based on the particular situation at time 𝑡. An alternative to this would be to create
a plan a priori and simply execute it during production. The next four breakdowns follow
this paradigm. To distinguish reactive scheduling from the ex-ante schedule creation, we
use the term “planning” for the latter situation.

We named the four planning breakdowns encountered in literature are Iterative Gantt
Improvement, Iterative Edge-Definition, Direct Planning and Iterative Search Refinement:

7. In the Iterative Gantt Improvement breakdown, there is no need for an event discrete
simulation, as in the breakdowns before it. Instead, the state sequence of the RL
loop consists of consecutive snapshots of production plans, which are represented
as Gantt charts, where operations with their start and finish times are mapped to
their respective resources. Individual snapshots can be either valid (e.g. Palombarini
et al., 2019; Du et al., 2022) or invalid schedules (e.g. Zhang et al., 1995; Zhang et al.,
1996). Given a particular plan, the agent selects between several operators that are
then applied to the production plan seeking to improve or even repair it. Zhang
et al. (1995) and Zhang et al. (1996), for example, first create a so-called “critical-path
schedule”, i.e. an idealized infeasible plan, by assuming endless resource capacity.
The no-overlap constraint for machines7 is then repaired by employing an RL agent
to shift operation start times or reallocate resources.

7No more than one operation can be executed on any machine at any time. See scheduling definition in
2.2.1
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8. Within the Iterative Edge-Definition RL planning paradigm (e.g. Zhang et al., 2020;
Li et al., 2020; Seito et al., 2020) a plan is generated by using a disjunctive graph
representation of the 𝐽𝑚 setup and incrementally setting disjunctive edges. Decisions
are being taken as long as the schedule is incomplete. The plan modified as per the
agent’s decision constitutes the new state and is fed back to the agent.

9. The Direct Planning approach is a fringe situation encountered in the works of Pan
et al. (2021) and Wu et al. (2020). Herein the entire job sequence is fed into an Agent
which then outputs the scheduling plan in its entirety. The plan is evaluated with
respect to the optimization target, and a reward is generated for the agent. The
process continues until the agent learning converges. The approach is tested on
small (𝐹𝑚 |𝑝𝑒𝑟𝑚 |𝐶max) instances. While an interesting idea, it is doubtful that this
MDP breakdown generalizes well to other setups. Since a schedule for 𝑝𝑒𝑟𝑚 setups
is described by a permutation over jobs, the action-space is kept small and intuitive.
This is not possible for the vast majority of scheduling problems where production
plans are organized as Gantt charts.

10. Iterative Search Refinement is a planning approach where RL plays a supporting role.
Different iterative search algorithms represent the base planning method. The search
algorithm can be anything from a local search to a complex heuristic (e.g. Min
et al., 2022; Heger et al., 2021). Between search algorithm iterations, RL is used to
manipulate the search parameters based on the current search state. Search state
can refer to either search algorithm particularities, e.g. population features in the
case of EA, the production state itself, or both. Cao et al. (2021), for example, set the
step length control factor 𝛼 during every search iteration of Cuckoo Search8 (Yang
et al., 2014) based on the current population features (i.e. the current search state).
Similarly, Zhao et al. (2021a) use an RL agent to modify the Variable Neighborhood
Search (Mladenović et al., 1997) parameters based on the current solution features.

Predictive-Reactive Breakdowns: An intermediary scheduling paradigm is the so
called “predictive-reactive scheduling” (Bukkur et al., 2018). Herein an initially generated
production schedule is adapted on occurrence of stochastic events. A single breakdown
falling in this third category was encountered in the RL scheduling literature, namely
Iterative Re-Planning:

11. Iterative Re-Planning can be used to describe the agent-environment interaction
encountered in the work of Shahrabi et al. (2017). Here, the authors use a Variable
Neighborhood Search approach which they parameterize depending on the particular
production state. The events triggering a decision are the stochastic job releases.
Upon the arrival of a new job, the RL agent chooses the parameters for the Variable
Neighborhood Search, which is then used to formulate a fixed plan. This plan is
followed until the next job release, and so on. ReP is closely related, but distinct
from Iterative Search Refinement. As with Iterative Search Refinement, the RL agent
parameterizes an external search algorithm. However, the parametrization happens

8Cuckoo Search represents a special class of EA, namely � + �–evolution strategy (Villalón et al., 2021)
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Table 2.1: Decisions included by reactive MDP breakdowns.

MDP Breakdown Sequencing on
Machines (i)

Vehicle
Source
Selection (a)

Job Operation
Selection (b)

Job
Destination
Selection (c/ii)

Iterative Sequencing X (X) implicit
Routing Before
Sequencing

X (X) fixed
ex-ante

Interlaced Routing
and Sequencing

X X

Transport-Centric
Sequencing

(X) fixed rule X (X) fixed rule X

Iterative Routing (X) fixed rule X
Interlaced Tooling
and Sequencing

X + tool
choice

(X) implicit

Holistic Routing and
Sequencing

X X X X

exactly once per plan computation and not over different iterations of search used to
generate the same plan.

Discussion: The extension of the Transport-Centric Sequencing breakdown to accommo-
date sequencing decisions explicitly, so as to allow RL agents to access the scheduling
solution space in its entirety, represents a new avenue of interesting research. We name
this as of yet not investigated breakdown Holistic Routing and Sequencing. Table 2.1
provides an overview of the decisions associated with the different reactive scheduling
breakdowns discussed thus far. Decisions taken by RL agents are marked by “X”. “(X)”
marks decisions present in the scheduling system, albeit not necessarily taken by RL agent
(e.g. fixed heuristic). The table shows that the proposed Holistic Routing and Sequencing
MDP subsumes all other reactive breakdowns.

Figure 2.7 depicts the occurrence of the different breakdowns in the surveyed literature.
The popularity of the deployed breakdowns both correlates with the breakdown simplicity
and suggests a trend towards a mixed OR-RL approach to scheduling. The top four
breakdowns in terms of their frequency in literature are Seq, Iterative Gantt Improvement,
Iterative Routing and Iterative Search Refinement with 50 publications employing the
first and the rest being considered by nine publications each. Iterative Sequencing and
Iterative Routing are both relatively straightforward and cover 60% of the total publications
together. Iterative Gantt Improvement is relatively easy to implement in terms of training
and evaluation environment. Somewhat surprising is the popularity of Iterative Search
Refinement, particularly in more recent years. This presents a high potential avenue of
research combining the performance of traditional search approaches from the field of OR
with the adaptability of RL methods. Note however, that Iterative Search Refinement is
mainly tested on static setups. Also note that in about 13% of cases we were uncertain
about the precise nature of the MDP breakdown at hand (“?” in the pie-chart). In some of
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these cases we noted down both the most plausible category and the presence of inclarity
and counted the paper both towards the hypothesized and the “?”-category.

Figure 2.7: Overview of MDP breakdowns in RL scheduling literature.

Looking at the frequency of breakdowns in conjunction with the scheduling setups they
were deployed to, reveals an additional gap, namely using RL to schedule setups with
job routing flexibility dynamically. Save for Interlaced Routing and Sequencing, which is
present in only five of the 98 papers (see Figure 2.7), none of the considered breakdowns
solve mixed job routing and sequencing problems using RL without restricting the space
of possible solutions. However, flexible setups are abundant among the surveyed papers.
There are at least 34 publications tackling production setups offering job routing flexibility,
judging by the frequency of the 𝛼 variables alone (see Figure 2.1). Using approaches
such as Iterative Routing or Iterative Sequencing for flexible environments (by fixing the
complementary decision to a heuristic), for example, limits the space of possible schedules
and may lead to the RL approach missing good solutions. Furthermore, in flexible
environments, RL solutions may offer more advantages over traditional approaches, since
the job routing flexibility adds an enormous overhead to search approaches by dramatically
increasing the solution space.

From the presentation of the possible RL loops thus far, it should become obvious that
there is no one way to solve a production scheduling problem with RL. To make matters
worse, the exact formulation of the state-space (𝒮), action-space (𝒜), and reward signal
(𝑟) are also privy to considerable design choices, not to mention that there are many RL
agents to choose from.

2.3.2 State, Action and Reward Modeling

States: The information based on which the state-transition occurs, also known as the
environment-state, depends on the production setup considered and the MDP breakdown
chosen. Take, for instance, a standard job-shop scheduling problem (𝐽𝑚 | | 𝐶𝑚𝑎𝑥)with an
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Iterative Sequencing breakdown. Here, the complete state information could be encoded
as four equal size matrices 𝑇 ∈ N𝑛×𝑚 , 𝑃 ∈ N𝑛×𝑚 , 𝐿 ∈ {1, . . . , 𝑚}𝑛×𝑚 , 𝐴 ∈ {0, 1}𝑛×𝑚 , the
system time 𝑡 and the index 𝑖 of the machine requesting a sequencing decision. The matrix
size is defined by the number of jobs 𝑛 and number of machines 𝑚.

The type matrix 𝑇, keeps track of the precedence within jobs (rows) along with the type of
resource 𝑡𝑦𝑝𝑒(𝑜 𝑗𝑖) job operations 𝑜 𝑗𝑖 need. The corresponding values in the 𝑃 matrix keep
tabs on the remaining processing times 𝑝 𝑗𝑖 for each operation, with 𝑝 𝑗𝑖 = 0 if the operation
has finished. The location of all operations could be encoded using a matrix 𝐿 with entries
𝑙 𝑗𝑖 , where 𝑙 𝑗𝑖 = 𝑚𝑘 if operation 𝑜 𝑗𝑖 is in the input buffer or being processed at the machine
𝑚𝑘 . To distinguish between operations being actively processed and those waiting in the
machine input buffer, one could use the matrix 𝐴, with entries 𝑎 𝑗𝑖 taking the values of
either one or zero with one signaling active processing.

This is just one possibility of state encoding. One could, for instance, reduce the dimen-
sionality of the state by making use of the precedence constraints within jobs. Since there
is only one eligible operation per job at any time, 𝐿 and 𝐴 could be flattened to a vector.
Yet another alternative would be to use two matrices 𝑃′ and 𝐴′ of dimension 𝑜 × 𝑚, where
𝑜 is the sum of operations over all jobs, to encode the remaining processing time of all
operations and whether they are being processed actively processed at time 𝑡 or not. If all
jobs have the same number 𝑚 of operations and consecutive rows 𝑚𝑗, . . . , 𝑚(𝑗 + 1) − 1 are
ordered as per operation precedence, this is all the environment-state information needed.
Something similar was done by Waschneck et al. (2018).

If we present the environment-state information in its entirety to the agent together with a
machine requesting a new operation, we are in a fully observable environment situation.
This means that the agent has all the state-transition information the environment has and
could, in theory, perfectly approximate the state-transition function 𝑝 as well as reward
function 𝑟.

Because of the sheer size of some of the scheduling problems, and/or their stochastic
nature, this is not always possible. In fact, in all of the literature surveyed employing an
Iterative Routing Iterative Sequencing or Iterative Gantt Improvement, save for a paper
by Rinciog et al. (2020), full observability is not given. In the Iterative Edge Definition
breakdown, full observability is given since the environment is not the production system,
but rather its (incomplete) schedule (Zhang et al., 2020).

More often than not, only a part of the information used for the environment-state-transition
is presented to the agents. This corresponds to a partially observable environment. Note
that stochastic environments are only partially observable by design since the nature of
the stochastic processes makes it impossible to perfectly foresee the next state.

Partial observability is also the norm in multi-agent Iterative Sequencing setups, where the
agent only knows about the state information pertaining to the resource or job it controls
(e.g. Riedmiller et al., 1999; Gabel et al., 2007a; Gabel, 2009; Jiménez, 2012). This is a design
choice to improve scalability and ease the integration of new resources into an existing
production system. If all the available local information is provided local full observability
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ensues, which is not to be confused with full observability.

In Table A.2 we distinguish between two ways of constructing agent-states, namely “raw”
information and “features”. By raw information, we mean that an agent receives an
unprocessed view of the state directly from the simulation, such as one or more of the
𝑇, 𝑃, 𝐿, 𝐴, 𝑡, 𝑚𝑙 information in the example above. Features imply that some environment-
state information was condensed into some indicator(s). Note that in the case of Iterative
Gantt Improvement, Direct Planning and Iterative Edge Definition the raw state is a partial
scheduling plan, rather than a snapshot of shop-floor attributes. The partial plan of the
Iterative Edge Definition state distinguishes itself from the other two by means of its
representation, i.e. a disjunctive graph.

In terms of features, multitudinous options are available to the RL designer. Particularly
older RL approaches relying on Q-value tables employ quantized features to keep the
problem dimensionality in check (e.g. 𝑈𝑡𝑙𝑎𝑣𝑒 < 𝜏1 , 𝜏1 < 𝑈𝑡𝑙𝑎𝑣𝑒 < 𝜏2 , 𝜏2 < 𝑈𝑡𝑙𝑎𝑣𝑒 for some
thresholds 𝜏1 , 𝜏2 defined by researcher). Such a quantization approach was taken by
Shahrabi et al. (2017). Here, the states are represented as a discrete Cartesian product of
job levels and total operation processing time levels.

Whether discretized or continuous, the employed features fall into one of three categories
depending on whether they pertain to job properties (1), resource attributes (2), or an
optimization target (3):

1. Job-centric features condense job information. Examples of such are inventory-
backorder difference for all jobs (Paternina-Arboleda et al., 2005), remaining job
operations, remaining job processing time (Gabel, 2009) or the number of jobs in the
system (Shahrabi et al., 2017).

2. Resource-centric features target an aggregation of machine properties, such as remain-
ing processing time in buffers (Zhou et al., 2020), resource workload (Gabel, 2009;
Wang, 2020), the ratio of remaining processing times for machines and buffered
processing time (Chen et al., 2010), number of product types in each buffer or
machine health (Qu et al., 2015).

3. Target-Centric features, i.e. estimates of the target function, or of other targetable
indicators are also often included in the construction of the state-space. Such
examples are slack time (Aydin et al., 2000), estimated total tardiness (Wang et al.,
2005; Luo, 2020), makespan estimate (Gabel, 2009), average machine utilization
(Thomas et al., 2018; Luo, 2020), average vehicle utilization or the aforementioned
average buffer length (Thomas et al., 2018).

Note that the first two categories are separated from the third by the granularity of the
indicator. Average buffer length (e.g. Thomas et al., 2018), for instance, is an optimizable
target in and of itself and falls in the third category. The vector with the buffer length of
each individual machine (Wang et al., 2005; Aydin et al., 2000), on the other hand, falls in
the second category.

Figure 2.8 shows the frequency of the different state modeling approaches. Extracting
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features is the more popular technique, being used in 51 of the indexed publications (Zeng
et al., 2011; Lin et al., 2019). Raw state information is presented to the agents in 38 of the
98 publications studied. Naturally, raw state information can be used in conjunction with
features as is being done, for instance, by Thomas et al. (2018) and Kuhnle et al. (2020).
The communication of state information suffers from a distinct lack of clarity with 20%
of the publications presenting opaque or incomplete state descriptions (?). Note that the
number of publications in the pie-chart is larger than the publications investigated. This is
because we could often infer the rough agent-state category (raw or features) but not the
precise state information. In such cases we noted down both the state category, and the
lack of transparency (see Table A.2)

Figure 2.8: RL state modeling in RL schedul-
ing literature.

Actions: In terms of actions, there are two
main approaches to production scheduling.
The agent either takes a direct action, thereby
impacting the shop-floor directly, or outputs
an indirect action, that is then used to se-
lect or parameterize an additional procedure,
which, in turn, selects the direct action.

In the explored literature, direct actions are
associated with one of the reactive MDP
breakdowns. Direct actions are used the
agent to directly select a target machine dur-
ing the job routing process (e.g. Kuhnle et al.,
2020) or a target operation for the sequencing

step (e.g. Jiménez, 2012). When the precedence constraints limit the eligible next operations
to exactly one per job (e.g. 𝐽𝑚, 𝐹𝑚), the job index suffices as an action, rather than the
operation index (e.g. Gabel, 2009; Fonseca-Reyna et al., 2018). In the Interlaced Tooling
and Sequencing breakdown, an index of a tool configuration from the tooling set can
additionally be an action (Yang et al., 2021a).

The Direct Planning and Iterative Edge Definition scenarios force a different interpretation
of direct actions. In the former breakdown, the entire schedule is created in one forward
pass, hence the direct action is the schedule itself. In the latter breakdown, the action-space
consists of the disjunctive edges of the schedule graph. The agent selects one of these
edges to add to the graph. Since setting such an edge directly impacts the next state, it is
considered a direct action.

The interpretation of direct actions is transparently dependent on the MDP breakdown.
Indirect actions, on the other hand, are less transparent. As such, we use three different
categories to make information more accessible, namely priority rules, Gantt operators
and parameters:

1. Priority rules are a popular approach to modeling the agent actions for reactive MDP.
The basic intuition is that different rules will be more effective in different production
scenarios. Given a production state, the agent will output the index of a rule from a



CHAPTER 2. STANDARDIZATION FRAMEWORK 37

fixed set. The rule is then applied to prioritize the operations in the machine buffer
(sequencing decisions) or the viable downstream machines (job routing decisions).
The highest priority operation/machine is then selected.

Mostly, the encountered priority rules are very simple. The most frequent examples
of operation prioritization rules are Shortest Processing Time (SPT), LPT, Earliest Due
Date (EDD), FIFO or Last In First Out (LIFO). The rule names are self-explanatory.
Job routing priority rules function analogously. One could, for instance, prioritize
the downstream machine with the shortest queue in terms of processing time, the
one with the least elements, or the shortest setup times.

2. Gantt operator actions are characteristic of the Iterative Gantt Improvement breakdown.
Within this breakdown, agents select an operator, e.g. a time-shift and reassignment
operation (Zhang et al., 1996), which is then applied to the Gantt chart of the schedule
to generate a new state. This indirect action class name reflects the operator domain
and codomain, i.e. the Gantt representation of the schedule.

3. Parameter actions are present in the Iterative Search Refinement, Iterative Sequencing
and Iterative Re-Planning breakdowns. The agent action is used to parameterize
a single (planning) algorithm rather than choosing between multiple procedures
(e.g. priority rules). Iterative Search Refinement examples include the publication of
Cao et al. (2021) where different stages of a Cuckoo Search are parameterized, or
Samsonov et al. (2021), where the agent selects a relative operation duration 𝑎, which
is then chosen by a simple lookup algorithm to select the index of the eligible action
with the duration closest to 𝑎.

In the encountered Iterative Sequencing breakdowns, the parameter action given by
the RL agent based on the current state is used to modify a sequencing priority rule
(e.g. Heger et al., 2021; Min et al., 2022).

The single Iterative Re-Planning approach found in RL scheduling literature was
taken by Shahrabi et al. (2017). Here, the RL agent only gets deployed for action
when a stochastic event, namely a new job arrival, occurs. At this point, a Variable
Neighborhood Search is started to recompute a schedule for the operations not yet
started. The RL agent action outputs the Variable Neighborhood Search parameters
for the given state.

Figure 2.9 counts the different action modeling schemes present in the RL scheduling
literature. Whenever the action-space was insufficiently described in the respective
publication (17% of the publications), we added a “?” to the action-space column in
Table A.2. We could often-times capture the action category despite the presence of
inclarity, in which cases both the respective category and “?” were entered into the table.
The most popular approach to action modeling is using direct-actions with 47 of the 98
indexed works employing this scheme. As a whole, indirect actions are almost equally
popular, with 45% of the papers employing them. Among the indirect action schemes, the
most popular is the priority rule approach (26% of publications).
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Figure 2.9: RL action modeling in RL
scheduling literature.

Reward: The last modeling decision to be
made pertains to the reward signal produced
by the environment. In the investigated litera-
ture, the reward is most often proportional to
the optimization target or a value that highly
correlates with it (e.g. makespan and aver-
age utilization). That being said, there is no
universally accepted scheme by which the
studied authors construct their reward func-
tions. Arviv et al. (2016), for example, who
seek to optimize makespan, set the reward as
a function of the minimum vehicle idle time

and the minimum job waiting time. Gabel et al. (2007a), Gabel (2009), and Jiménez (2012)
use completely different state information, namely the number of queued operations in
the current machine’s input buffer, to build the reward signal (the shorter the queue the
higher the reward), though their optimization target is still the makespan.

Reward functions also differ based on when the agent receives a non-zero reward, for
instance at every decision point, at the end of the (scheduling) game, or at any point in
between. Other design choices include whether the reward is discrete or continuous
(Matignon et al., 2006), strictly positive or both positive, and negative and many more (see
Sutton et al., 2018). Finding an appropriate reward is of singular importance, given that it
strongly determines learning convergence, and can be a challenging task for scheduling
(Lang et al., 2020).

Since the reward signals vary wildly, we did not systematically take them into account, so
as not to burst the frame of this work. However, during our experiments (Chapter 6) we
investigated several of the rewards used in the scheduling literature to optimize makespan
and tried out some of our own. We encourage the reader to jump ahead to the referred
section for some concrete examples.

2.3.3 Agent Types

RL Algorithms: RL agents are trained according to the Generalized Policy Iteration
principle (see Section 4.1). Herein two stages are distinguished, namely policy evaluation
and policy improvement. During policy evaluation, agents select actions according to a
policy function, and observe their returned reward. During policy improvement, the policy
is adjusted based on the observations made. These stages are repeated until convergence
(hopefully).

RL algorithms can be classified along three discrete axes (cmp. Sutton et al., 2018):

1. value, policy or actor-critic methods,

2. model-free or model-based methods, and

3. on- or off-policy methods.
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In what follows we introduce these axes using algorithms encountered in RL production
scheduling literature as examples. Note that we describe the last two categories for
completion only, without tabulating the literature along these axes. This is because these
two dimensions are somewhat more intuitive and less descriptive than the third.

Value-based methods try to estimate future reward by means of a value function, which
is used to estimate the “goodness” of either states or actions from given states. During
the policy evaluation stage, actions are selected by using the value function to ascertain
the quality of the states reachable from the current one. The observed rewards are used
during the subsequent stage to improve the value function. Examples of such methods
are State Action Reward State Action (SARSA) (Rummery et al., 1994), QL (Watkins, 1989),
DQN (Mnih et al., 2013), DDQN (Van Hasselt et al., 2016) and Dueling Dual Deep-Q
Networks (DDDQN) (Wang et al., 2015) and Temporal Difference Learning (TD(�)) (Sutton
et al., 2018).

Policy-based methods are complementary to value-based methods. Within policy approaches
to RL, agent policies 𝜋� are used directly to select actions during the evaluation stage.
Based on the observed rewards, the reward expectation under policy 𝜋� is estimated,
its gradient with respect to � is computed and the policy is updated using stochastic
gradient ascent. Examples include REINFORCE (Williams, 1987), and TRPO introduced
by Schulman et al. (2015). Aside from these well-defined algorithms, in RL scheduling
literature, we additionally encountered an unnamed policy-gradient method in Gabel
et al., 2012.

Policy and value approaches can be combined into actor-critic algorithms. Instead of
using environment interaction to approximate the expected reward directly, the (state)
value function approximator (critic), is used to inform the policy approximator (actor)
of the quality of its action. In RL scheduling literature, we find five different well-
known actor-critic algorithms, namely Advantage Actor Critic (A2C) (Mnih et al., 2016),
Asynchronous Advantage Actor Critic (A3C) (Mnih et al., 2016), Deep Deterministic Policy
Gradient (DDPG) (Lillicrap et al., 2015), PPO (Schulman et al., 2017), and AZ (Silver et al.,
2017b). Note that AZ is not, strictly speaking, an actor-critic system, but rather a paradigm
of its own. Nevertheless, it does use both a value and a policy function. Additionally, Han
et al., 2021; Pan et al., 2021; Li et al., 2020 use what seems to be a Q-value actor-critic Value
Actor Critic (VAC) (a precursor of A2C) without providing a name.

Figure 2.10 shows the frequency of value, policy and actor-critic approaches in RL
scheduling literature. While the vast majority of approaches (70 of 98 papers) focus on
value approximation, there is a growing body of work turning to actor-critic methods
(17/98 papers). Pure policy approaches are relatively seldomly encountered (5/98
publications). The question mark indicates inclarity with respect to the algorithm class
(5/98 papers).

On-policy methods (e.g. SARSA) use the same policy during evaluation stage that was
adjusted during the improvement stage. This leads to more stable learning at the expense
of exploration, which can lead to local optima. Conversely, in off-policy methods (e.g. QL,
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DQN, DDPG, TD(�)), the policy used during the evaluation stage can differ from the
one used in the improvement stage, which leads to more exploration at the expense of
convergence speed.

Figure 2.10: RL agent categories in RL
scheduling literature.

RL algorithms can be further split into model-
free and model based approaches. Save for AZ,
all RL algorithms encountered in the pro-
duction scheduling literature are model-free.
Model-based approaches use an environment
model to plan a few steps into the future be-
fore deciding on an action. The involved
environment model is either estimated by
the agent itself, e.g. Imagination Augmented
Agent (Racanière et al., 2017), or simply given
to it, e.g. AZ.

Figure 2.11 provides an overview of the fre-
quency of different RL algorithms in the production scheduling literature. Notice the
diversity of employed methods. QL, one of the most straightforward RL algorithms, is
very popular with the RL production scheduling community, being deployed in nearly half
of the surveyed works (44/98 papers). Its successor, DQN is the second most encountered
approach (17/98 papers). When counting the DQN approaches, we do not distinguish
between variations of the algorithm (e.g. DDQN). However, this information is present in
Table A.2. Here too “?” marks inclarity pertaining to the employed algorithm.

Figure 2.11: RL algorithms in RL schedul-
ing literature.

The distribution of RL algorithms in the pro-
duction scheduling literature hints at the
fact that there should be more focus on ap-
proaches other than value-based. Particu-
larly value-based approaches employing off-
policy training with an Neural Network (NN)
as function estimators, a combination also
known as the “deadly triad”, is problem-
atic with respect to convergence according
to Sutton et al. (2018). The deadly triangle
(DQN, TD(�)) occurs in 23% of the surveyed
publications.

Function Representations: The data in the
RL function column of Table A.2 and the

counts of different RL functions in Figure 2.12 display a trend towards increasingly
sophisticated neural approaches. While the tabular representation of RL (value) functions
is still used by recent approaches, (e.g. Kim et al., 2022), the frequency with which it
is encountered today has decreased. For tabular approaches (38 of 98 papers) to work,
the state-space needs to be relatively small. The size requirement is met by leaving out
information, by value quantization, or, as is done by Shiue et al. (2018), by employing the
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SOM (Kohonen, 1990) clustering method to compress the function domain.

Figure 2.12: RL functions in RL scheduling
literature.

Five different types of NN are used to map
states to actions in as part of the agent func-
tion in RL production scheduling. The most
popular type of employed NN (38 of the
indexed publications) is the FCNN. The ar-
gument for it is the lack of spatial and tem-
poral correlations between states (Rinciog
et al., 2020). However, depending on the
state modeling approach, these correlations
may be present in the state, which is why
Convolutional Neural Network (CNN) are
used in four of the publications. The Time

Delay Neural Network (TDNN) introduced by (Waibel et al., 1989) and used in RL schedul-
ing literature by Zhang et al. (1995) and Zhang et al. (1996) can be seen as a precursor to
CNN. Similarly, the modeling of the state as a graph structure within the context of the
Iterative Edge Definition breakdown makes the application of GCN (Kipf et al., 2016) sen-
sible. This is done in five of the surveyed publications. The NN thus far require fixed-size
inputs. The five literature approaches employing Recurrent Neural Network (RNN) are
capable of accommodating variable input sizes. Note that the function approximator need
not be a NN. Zhang et al. (2013) use an analytic function parameterized by a weight vector
� instead.

Multi-Agents: The last RL agent aspect we briefly discuss is that of a multi-agent system.
Rather than having a single decision entity, we can allow multiple RL agents to act within
the same environment. These agents can be cooperative, i.e. striving to jointly maximize
the expected reward or competitive, with each agent targeting a maximization of his reward
only. These aspects, as well as further research-worthy multi-agent system modeling
details, such as information sharing and goal definition exist (see for instance Jan’t Hoen
et al., 2005), are beyond the scope of this work.

Figure 2.13: Agent deployment in RL
scheduling literature.

Many of the authors in the surveyed litera-
ture employ such a multi-agent system (Fig-
ure 2.13). In all but one cases, within the Itera-
tive Sequencing breakdown, the multi-agent
system assigns one dedicated agent per ma-
chine 𝑚𝑝 to decide the resources’ operation
sequence. A single exception to this rule can
be found in the work of Paternina-Arboleda
et al. (2005), where an agent is associated
with each job and decides on the operation
to follow. With respect to Iterative Routing,
agents are deployed either per job 𝑗 (Jiménez,
2012), operation (Martínez et al., 2011), job
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family 𝑓 𝑚𝑙 (Bouazza et al., 2017) or vehicle 𝑚𝑟 (Arviv et al., 2016). The job routing agents
decide on which machine to execute the next downstream operation on. Finally, agents
can be deployed to solve a sub-problem. If the MDP contains different types of decisions,
e.g. in the case of Interlaced Routing and Sequencing, machine indices for job routing and
job indices for sequencing, dedicated agents are deployed for the different decision types,
i.e. per sub-problem, as is the case with the publications by Yang et al. (2021a) and Wang
et al. (2021a).

Note that authors sometimes describe systems where a single NN is used to make all
decisions as multi-agent systems (e.g. Pol et al., 2021). The agents are said to “share
the network”, i.e. the policy, which is equivalent to a single RL agent being present in
the system. Multi-agent RL systems are not to be confused with the much more general
agent-based modeling and simulation paradigm. The former is mathematically well-defined
within the frame of the Markov Game formalism. In particular, within Markov Games,
each agent has its own individual policy (see Gronauer et al., 2022). The latter formalism
encompasses the former and is considerably looser. Herein, agents are “any type of
independent component” with behaviors ranging “from primitive [...] decision rules to
complex adaptive intelligence” (Macal et al., 2005).

While, deserving of attention, multi-agent RL the apparent interest in such scheduling
systems is somewhat surprising, given that single-agent schemes have yet to prove
themselves within the domain. In particular, it stands to reason, that multi-agent RL
scheduling systems should at least be benchmarked against single-agent approaches. We
encountered a single instance of such an elaboration, namely in the work by Qu et al.
(2015). Here, the authors benchmark a single agent against a multi-agent approach, with
the single agent over-performing the alternative.

2.4 Validation

In this section, we take a closer look at what is needed in order to ensure reproducibility
and provide sufficient evaluation of RL production scheduling experiments in Section 2.4.1
and Section 2.4.2 respectively.

The analysis at hand is based on Table A.3, which summarizes the surveyed literature in
terms of five reproducibility and three evaluation criteria. The five reproducibility-related
aspects we consider are, production setup clarity, RL design clarity, code availability,
simulation input availability and reproducible stochasticity. In terms of evaluation we
tabulate and discuss the train-test split, the state-of-the-art coverage through baseline
algorithms, and, finally, the cherry-picking potential.

2.4.1 Reproducibility

Reproducibility is a condition sine qua non for ensuring sufficient validation. The following
gives an example of how the lack of reproducibility can lead to insufficiently validated
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approaches. Wang (2020) reports his Q-learning algorithm’s9 performance with respect to
the results of the RL approaches reported by Lin (2009), Yang et al. (2009), and Wang et al.
(2016) 10. Of these authors, only Yang et al. (2009) benchmark the proposed method against
something other than RL. The authors have shown, that the proposed method outperforms
EDD, and SPT, but since experiments are not reproducible, the implicit comparison (by
transitive property) between the RL approach and heuristics put forward by Wang (2020)
does not hold and the paper falls short in terms of result validation.

Setup Clarity: By setup clarity, we mean the transparent delineation of the complete set
of constraints required to recreate the studied setup along with the problem dimensions
(number of jobs, number of machines machines etc.). The clarity requirement is a
necessary albeit not sufficient condition for experiment reproducibility. In the presence of
ambiguous problem and solution descriptions and the absence of code and simulation
inputs, duplicating experiments can indeed become problematic, if at all possible. In
Section 2.2 we saw how diverse the production setups considered by the RL literature are.
In the absence of setup description standardization, it becomes difficult not to forget to
include all production setup details.

From Figure 2.14, we see that in the literature at hand, the presented setups were
mostly described transparently (in 68 of 98 publications). The figure treats deterministic
and stochastic setups separately. The percentages marked in parentheses are relative
to the deterministic and stochastic subcategories respectively. The publications in the
deterministic category, of which 81% are clear, fare much better than the publications
dealing with stochastic setups, where only 54% are sufficiently detailed. This is not
surprising, given that the encountered deterministic setups tend to be simpler and rely on
available benchmarking instances. If only details related to the problem size were missed,
we consider the respective publication to be partially clear. In any core constraints defining
the problem itself are missed (e.g. operation precedence within jobs) then, we count the
work as unclear.

Overall, most of the setup constraints are presented clearly save for the exact problem
size (e.g. number of machines in each work center) and sometimes some constraint
parameters (e.g. buffer capacities, number of transporters, machine-to-operation type
mapping). Particularly stochastic setups are victims of such omission (e.g. Stricker et al.,
2018; Waschneck et al., 2018; Kuhnle et al., 2020). Moreover, for setups including dynamic
job release dates, the number of jobs considered in total during the simulation execution is
sometimes in-transparent.

The total number of jobs tested should always be provided, as was done for example
by Chen et al. (2010) and Luo (2020). Providing the experiment length in terms of
total executed operations (e.g. Shahrabi et al., 2017), is insufficient, because the problem
complexity is thereby obfuscated. Take for instance a 𝐽𝑚 setting with 100 operations. The

9WQ_CDS stands for “Weighted Q-learning [...] based on clustering and dynamic search” (Wang, 2020); the
algorithm seems to be a variation of QL using a clustering technique to control the state space dimensionality.

10All the algorithms are variations of tabular Q-learning; “B–Q learning algorithm [with an] adaptive
scheduling control policy (BQ_ASCP)”(cmp. Yang et al., 2009); “state membership grade weighted Q-learning
([...]SMGWQ)” (cmp. Wang et al., 2016)
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(a) Setup clarity by setup type. (b) Setup clarity overall.

Figure 2.14: Setup clarity in RL literature.

combinatorial complexity of two jobs of length 50 is considerably lower than that of ten jobs
á ten operations. Using the number of decisions taken by the agent (Jiménez, 2012; Qu et al.,
2015; Stricker et al., 2018; Kuhnle et al., 2020), or, equivalently, the number of time-steps
(Paternina-Arboleda et al., 2005) in dynamic setups is not particularly useful, since the agent
behavior can, depending on the simulation implementation, influence the total number of
jobs that passed through the system. Consider, for instance, implementations where agents
can output a wait signal. It is also important to note, that RL algorithms explore their
environment in a stochastic fashion either because of the stochastic nature of the function
approximators (e.g. NN initialization) or because of the selected exploration-policy (e.g.
𝜖-greedy). Because of this one cannot guarantee the same experiment execution a second
time.

RL Design Clarity: The design clarity indicator considers whether the MDP components
associated with a particular experiment are sufficiently detailed to allow for their re-
implementation even in the absence of code. Because of all the design choices involved
in deploying RL methods to production scheduling, the MDP breakdown, state- and
action-space, reward function, and agent algorithm may not always include all the details
required to emulate experiments. We distinguish between situations in which some but
not all of the MDP elements are clearly delineated (partial clarity), and situations in which
the none of the elements are clear, or the RL loop itself, i.e. the MDP breakdown, is unclear
(inclarity).

Figure 2.15 displays the RL clarity aspect of the considered publications. Form it, we can
see that almost half of the papers (48 out of 98) contain at least some elements which would
impede the exact recreation of the lain down designs. Overall, publications dealing with
stochastic setups tend to fare better than papers on deterministic setups, with 61% of the
former and 41% of the latter being sufficiently clear.

More effort should be put into a clear presentation of the RL design elements. Particularly
the state and action designs suffer from a lack of clarity in the surveyed literature.
Sometimes the lack of clarity gains a transitive dimension. Reyna et al. (2015), for instance,
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(a) Design clarity by setup type. (b) Design clarity overall.

Figure 2.15: RL design clarity in RL scheduling literature.

model the state-space as per Gabel et al. (2007a), where the state-space information offered
to the agents is murky. As such, the reader is still somewhat in the dark. Additionally,
when using NN as function approximators, there is a need for an exact account of the
network architecture employed, as well as its parameters.

Input Availability: In order to compare production scheduling approaches, the exact
inputs, i.e. the job sequence including the operation sequence within jobs and the operation
duration, need to be provided. In the case of standard (𝐽𝑚 | | 𝐶𝑚𝑎𝑥), (𝑂𝑚 | | 𝐶𝑚𝑎𝑥)
or (𝐹𝑚 | | 𝐶𝑚𝑎𝑥), such inputs are available in the OR library and other repositories.
These enable authors to compare diverse scheduling approaches by simply using the
reported target makespan in previous research for those particular instances. Most of the
deterministic setups use these inputs and corresponding previous results for benchmarking.
Much of the literature surveyed, however, expands the production settings considered to
more closely match the production reality.

Figure 2.16 gives an overview of the number of publications satisfying the input availability
criterion. 65 out of 98 publications do not satisfy this requirement. Partial satisfaction of
the input availability requirement (11 out of 98 papers) means that the inputs are based on
some benchmark, albeit extended, with the extended inputs not being provided exactly
(e.g. Brammer et al., 2022). The input availability problem is significantly more acute for
stochastic setups. Here a whopping 88.64% of the publications are found lacking.

In stochastic cases, the illusion of input availability is creating through the provision of
the sampling scheme used. Note, however, that this is often not sufficient for problems
with a high degree of variance, which is characteristic of most production scheduling
problems. Running experiments on randomly sampled inputs has the caveat of requiring
a large number of experiments and statistical testing to ensure comparability with other
approaches in the absence of reproducibility. Such an explicit statistical analysis is absent
from the RL scheduling literature.

Code Availability: All but two of surveyed works fail to provide the associated simulation
code (Figure 2.17). For a deterministic setting with a clear formulation and transparent
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(a) Input availability by setup type. (b) Input availability overall.

Figure 2.16: Input availability in the surveyed literature.

inputs, the absence of simulation code, while leading to redundant implementation work,
does not impact the usefulness of the study’s results, since future work can still compare
against the results reported. The scientific community as well as the industry would still
profit from published code, as this would free up energy for more complex problems.

(a) Simulation availability by setup type. (b) Simulation availability overall.

Figure 2.17: Simulation availability in the surveyed literature.

Reproducible stochasticity: Code availability alone does not suffice to ensure reproducible
stochasticity, though it is a necessary condition in the absence of input availability. There
is a simple way to ensure that a sequence of sampling actions produces the same output
irrespective of the system the simulation is run on: Random Number Generator (RNG)
seeding, as noted by Kuhnle et al. (2020). While here the authors do employ RNG seeding,
they note that two runs with different controls will not necessarily end up with the same
sequence of jobs, since different controls can lead to different processing sequences, which
in turn may influence the meaning of a new sampling action, e.g. the nonce could be used
to generate a new job or decide whether a machine fails.

To ensure that the occurrence time of the stochastic events is independent of the scheduling
algorithm, one should sample all the stochastic events along with their occurrence time
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during simulation initialization. These events can then be queued and triggered at the
appropriate time. In doing so, it can be ensured that the same nonce is always used in the
same way. A simulation implementing this scheme is described in Chapter 3. An added
benefit of this scheme, is that the instantiation of all stochastic variables can be easily saved,
thus enabling the satisfaction of the input availability requirement.

Figure 2.18, gives an overview of the publications meeting the reproducible stochasticity
criterion. The figure demonstrates that this is, indeed a significant gap in the RL scheduling
literature: With one exception, Stochasticity is not reproducible for any 44 stochastic setups
reviewed. We deemed the stochasticity present in the work of Kuhnle et al. (2020) partially
reproducible, given the author’s own comment of different controls leading to potentially
different stochastic events. For deterministic setups (54 papers), this condition is, of course,
not applicable (N/A).

(a) Reproducible stochasticity by setup type. (b) Reproducible stochasticity overall.

Figure 2.18: Reproducible stochasticity in RL scheduling literature.

2.4.2 Evaluation

The last three criteria we used to order the reviewed literature pertain to how the RL
approaches are being validated against preexisting solutions. First, we consider whether
there is a separation between production instances used for training and those used
to report the results on, i.e. a test-train split. Secondly, we checked whether the RL
approaches are benchmarked against both established search approaches from the field of
OR and heuristics. Finally, we loosely assessed the potential for voluntary or involuntary
cherry-picking.

Test-train Split: As with all supervised or semi-supervised ML approaches, the phe-
nomenon of overfitting can occur for RL schedulers. This refers to a situation where a
strategy is developed that is very well suited for the training instances but cannot generalize
well to an unseen situation (test instances).

Figure 2.19 displays the ratio between the publications employing the test-train evaluation
technique and those that do not while distinguishing between deterministic and stochastic
setups. Altogether, a total of 31 authors employ the technique, while the other two thirds
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do not. 39 of the 54 deterministic setups in the reviewed papers (72%) do not make use of
the test-train split. In stochastic cases, a lower percentage of publications (63%) of authors
report their results on the training set only.

(a) Test-train split by setup type. (b) Test-train split overall.

Figure 2.19: Test-train split in RL scheduling literature.

Not differentiating between test and training set in the case of deterministic production
(e.g. Zhang et al., 2013; Wang et al., 2021b; Samsonov et al., 2021) is equivalent to assuming
that the scheduling instance to be optimized is recurrent. In such a situations RL looses its
attractiveness: The speed argument evaporates, since RL training times are quite extensive,
and the adaptivity argument is not pertinent convincing given the absence of stochasticity.
In such cases, one may be better served by using other, more established search approaches,
such as EA, local search, or even exhaustive search if the instance is small enough. This
is reflected by the literature, seen as whenever the comparison is available, RL fails to
outperform the literature’s lower bounds for makespan.

Conversely, the presence of a train-test split for deterministic problems (e.g. Gabel, 2009;
Park et al., 2021; Ren et al., 2021b) suggests a situation which is (potentially) better suited
for RL. While the training process is slow, during deployment, RL algorithms are fast. If
an RL agent can generalize well, it could be first trained with no time-constraints on
some instances and be then deployed to different, unknown instances where time is of
the essence. In such a non-recurrent situations, if the size of the problem is considerable,
RL may indeed be a preferable solution as compared to planning approaches with long
convergence times, e.g. EA.

In the dynamic setting, the test-train separation is not mandatory, since the stream of
product specifications induces a test-train split, with the beginning of the stream being
used for training and the latter part for testing. More generally, the train-test split is
also not mandatory in other stochastic situations even if the problem is static, e.g. those
with stochastic processing times, machine failure, etc. Given the stochastic nature of the
respective instances, though the job structure and stochastic event distribution(s) may be
the same, the occurence of stochastic events still varies. Here the agent’s generalization
capabilities are still tested within the same scheduling instance. Note however, that,
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depending on the amount of stochasticity present in the system, re-planning approaches,
e.g. using exact methods, may very well still outperform RL.

While not mandatory, some authors (e.g. Kuhnle et al., 2020; Luo et al., 2021a) still
employ the split in such cases to additionally test the transfer learning capacity of the
agents. The difference between generalization and transfer learning is mainly given by the
distance between training and testing domains. Training a model to recognize synthetically
generated object images and testing it on the real-world images, for example, constitutes
a transfer learning task. In scheduling terms, transfer learning is investigated when the
agents are trained and tested on significantly different problem instances (e.g. different
problem size, different stochastic event distributions), or even different problems altogether
(e.g. training of 𝐹𝐽𝐶 and deployment to 𝐽𝑚).

Sufficient Baselines: Sufficient baselining entails pitting RL against both simple heuristic
approaches and more established search techniques from the field of OR, e.g. EA, CP. If
only simple heuristics are used for comparison, we note down a partial baseline sufficiency
for the respective paper.

For static production settings most approaches are sufficiently validated by comparison
with either the optimal results or the state-of-the-art search approach. However RL
solutions for stochastic settings are almost exclusively baselined against heuristic solutions.
It could very well be, however, that constructing schedules as if there were no stochasticity
and simply ignoring plan deviations thereafter could be a competitive approach to RL
or heuristics. Yet another approach would be to recompute a schedule on occurrence of
unforeseen events, as is done by Shahrabi et al. (2017).

Figure 2.20 points towards a baselining gap for RL scheduling approaches. 67 of the
explored works benchmark their approaches insufficiently. Of those, ten do not provide
any viable baseline at all. Note that most of the correctly baselined approaches are tested
on deterministic setups (24 papers). This makes up 44% of the category, which is still
surprisingly low. In the stochastic case, the baselining gap is even wider, with only 16% of
experiments in this category being compared with both heuristics and search.

(a) Baseline sufficiency by setup type. (b) Baseline sufficiency overall.

Figure 2.20: Baseline sufficiency.
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While finding optimal solutions is not tractable for large instances, proof of concept
experiments can leisurely be performed for smaller instances by using a CP or MILP
solvers such as the ones offered by the ORTools11 library or those available through the
MiniZinc12 integrated development environment. Such solvers often allow for the use of
a time limit for the solution space search procedure. Therefore, RL solutions for large
production instances could at least be benchmarked against search, which is a standard
OR strategy.

Cherry-Picking Potential: Cherry picking as a concept is very simple: One runs 𝑛

experiments, but only reports the results on 𝑚 < 𝑛 of those that support the hypothesis.
Whenever the results are reported on only a small number of experiments, the experiment
design is not reproducible, and there is no statistical testing involved, this lingering
suspicion remains. Most surveyed publications concerning stochastic setups suffer from
this caveat, which is sometimes noted in the literature as well (e.g. Cunha et al., 2021). To
avoid cherry-picking suspicion, a sufficiently large number of experiments should be run
and statistical significance testing should accompany the scheduling results.

Figure 2.21 visualizes the distribution of the perceived cherry picking potential in the
reviewed literature. In 18 publications, just a handful of experiments are ran on stochastic
problems with a high degree of variance. In this cases the potential for cherry picking
is quite high. Most publications (43) are in an interim stage with at most hundreds
of experiments conducted. In 37 publications thousands of experiments are ran or the
statistical significance of the described comparisons is explicitly analyzed.

(a) Perceived cherry picking potential by setup type. (b) Perceived cherry picking potential overall.

Figure 2.21: Perceived cherry picking potential.

2.5 Research Gaps

From the present standardization effort, several significant research gaps become apparent.
The missing pieces can be grouped along the following six dimensions.

Standardization Gap: The standard introduced here should be maintained, extended,

11https://developers.google.com/optimization
12https://www.minizinc.org/

https://developers.google.com/optimization
https://www.minizinc.org/
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and implemented. The tables in this work should be maintained and extended as needed
as new work surfaces in the field. Additionally, the information used in the definition of
states, actions, and rewards should be exactly extracted and formalized. For instance, we
should define individual features and rewards and not just their categories, as was done
here.

Benchmarking Simulation Gap: The present standard should be used to implement or
extend an open-source benchmarking simulation that ensures experiment reproducibility.
Such a simulation should target the more general production scheduling problems in
terms of base setups and additional constraints and allow for the monitoring of varied
scheduling targets. Furthermore, because of the many options for RL design, it should offer
researchers the possibility of configuring the associated state, action and reward-spaces
and be compatible with available RL agent libraries, such that the agent implementation
overhead is additionally eliminated. The simulation should be extensible to allow for
the embedding of new constraints. Finally, the simulation should be efficient in terms of
runtime, since RL algorithms are immensely data hungry.

Comperitive Baseline Gap: A set of competitive benchmarking algorithms should be
developed for the stochastic cases. The benchmarking algorithms should share some of
the traits that make RL attractive, e.g. they should be fast and adaptive.

Stochastic Experiments Gap: More RL experiments focusing on stochastic setups should be
conducted. Intuitively, RL agents can be trained to adapt to unforeseen situations, while still
using the expectation of future rewards to plan a little. As such, they position themselves
between myopic heuristic approaches and the re-planning approaches which could be
easily broken by stochasticity. RL has been deployed for solving both deterministic and
stochastic production scheduling problems with varying degrees of success. In standard
deterministic setups, RL generally fails to outperform the state of the art (e.g. Gabel et al.,
2012; Reyna et al., 2015; Arviv et al., 2016; Fonseca-Reyna et al., 2018; Mendez-Hernandez
et al., 2019; Zhang et al., 2020). For stochastic setups (e.g. Hofmann et al., 2020; Hu et al.,
2020b; Liu et al., 2020; Luo, 2020; Kuhnle et al., 2020) and highly complex static setups
(e.g. Zhang et al., 1996; Rinciog et al., 2020) RL shows more promise. We theorize, that
whether re-planning, RL, or heuristics work best, is highly dependent on the amount of
stochasticity inherent to the problem considered.

Stochastic Benchmarking Setup Gap: Seen as the burden of proof still lies with the
RL scheduling field to showcase the situations where RL is a better candidate than its
alternatives, experiments should focus more on setup details. In particular, more effort is
required with respect to the quantification of the level of uncertainty inherent to particular
instances. Benchmarking datasets for the different problems and different stochasticity
levels should be constructed using a simulation guaranteeing reproducibility. This would
allow for the comparison of the many RL design options available on the same problem,
such that a more informed choice can be made pertaining to the best models.

RL Design Gap: There is a need for a transparent discussion of the model selection process
not only in terms of RL algorithm parameters, but also in terms of the the available design
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options. Because of the many design and parameter choices available for MDP definition,
and the RL algorithms themselves, training (deep) RL solutions for production scheduling
is an uphill battle. While MDP for board games such as chess or go (Silver et al., 2016),
or computer games such as Atari (Mnih et al., 2015) are fairly straightforward to design,
production scheduling is the opposite. Many design options are available for the MDP
components in terms of actions, states and rewards.



Chapter 3

FabricatioRL:
A Benchmarking Simulation Frame-
work for RL Production Scheduling

When you design without simulation you end up overdesigning
— Justing Hendricksen, ANSYS Inc

Although studies have shown RL to be promising, there is a validation gap calling for a
simulation framework enabling researchers to robustly embed RL methods within the
state of the art (see 2.5). This can be best achieved by ensuring that the simulation allows
the reproduction of the scheduling problem’s inputs as well as other stochastic effects by
means of variance control techniques.

A well designed benchmarking simulation would reduce the overhead associated with
RL scheduling experiments significantly. First, the work associated with building the
scheduling setup would be eliminated or at least reduced, depending on whether the
simulation needs to be extended or not.

Secondly, a simulation respecting RL standards would help increase the diversity of RL
methods employed for scheduling. Production scheduling literature mainly employs
variations of QL or DQN as scheduling agents (see Table 2.11). While popular and easy
to implement, QL, and DQN are by no means the only options. A simulation framework
compatible with RL libraries such as KerasRL (Plappert, 2016), Stable-Baselines (Hill et al.,
2018), Stable-Baselines3 (Raffin et al., 2021), Horizon (Gauci et al., 2018) or Tensorforce
(Kühnle et al., 2017) would make the deployment of varied RL algorithms to production
scheduling problems much easier. The less time spent implementing RL algorithms could
also lead to a focus shift towards experimenting with various RL designs.

Thirdly, the validation effort for stochastic setups would decrease. In the absence of
reproducibility, researchers seeking to compare the results of a new scheduling method to
results reported in literature need to re-implement the methods described by the authors

53
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and re-run the reported experiments. However, if variance control is implemented correctly,
authors can simply reproduce the scheduling instances and compare the results of the new
methods directly with the results reported in literature on these same instances.

In what follows we detail our implementation of a benchmarking simulation framework
which we call FabricatioRL. We achieve this in two steps. First we use the standard
put forward in Chapter 2 to derive requirements for an RL benchmarking simulation
framework for production scheduling problems in terms of scheduling setup, RL control
interface and reproducibility (Section 3.1). Then we show how these requirements can be
satisfied by describing the design and implementation of FabricatioRL, with a particular
emphasis on its inputs, API, and core logic (Section 3.2). Before conclusing this section with
an outlook on future work (Section 3.4), we describe a visualization app associated with
the simulation together with two simple framework usage examples (Section 3.3).

3.1 Requirements

The pivotal role requirements play within the context of software engineering has been a
generally accepted fact for decades (Bell et al., 1976; Karlsson, 1996; Hussain et al., 2016).
In the present case, accounting for the particularities stemming from the overlap between
the production scheduling and RL fields is crucial to ensure the overall effectiveness of
our work. By defining the simulation’s goals, scope, and constraints, we ensure a tight
domain fit, thus increasing the acceptance potential of our framework while reducing the
implementation overhead. This requirement analysis and implementation task is made
particularly challenging by the high degree of variance with respect to scheduling setups
and RL designs demonstrated in the previous chapter.

Hereafter, we distinguish between functional (f) and non-functional (nf) requirements. In
terms of the functional requirement definition, the literature reveals a broad consensus
(Glinz, 2007): They define the functions that a system must be perform, i.e. the system
scope and goals (IEEE Computer Society. Software Engineering Technical Committee,
1983; Glinz, 2007; Robertson et al., 2012). However, this consensus does not apply with
respect to non-functional requirements. We choose to see non-functional requirements
as “attribute[s] of or constraint[s] on [the] system” (Glinz, 2007). Essentially, functional
requirements specify what the system does, while non-functional requirements mandate
how the functions should be performed.

We use the standard put forward in the Chapter 2 to derive requirements for our simulation
framework. Following our standardization framework’s structure yields three requirement
categories. First, we discuss requirements associated with scheduling setups in Section 3.1.1.
Secondly, in Section 3.1.2, we focus on requirements ensuring the smooth interaction of our
framework with RL algorithms. Last but not least, we detail the requirements stemming
from our experiment validation standard in Section 3.1.3.
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3.1.1 Scheduling Setup

The following requirements arise from the discussion of scheduling setups in Section 2.2.
Functionally, FabricatioRL should target the more general production scheduling problems
in terms of base setups and additional constraints, and should allow for the monitoring
of varied scheduling targets. The non-functional requirement associated with setups is
modularity.

Generality (f): The setups considered in RL literature show just how varied production is.
However, different 𝛼 and 𝛽 are not independent of each other. Rather, there is a subsumption
relationship between them, meaning that setups with more generic constraints subsume
setups with stricter constraints. This is most obvious for the 𝛼-parameters. While less
evident, the subsumption relationship also exists for some of the 𝛽-values. We require the
benchmarking framework to cover a large number of typical scheduling setups, or, stated
differently, to be as general as possible.

Because of the subsumption relationship defined by 𝛼 (see Figure 2.1), implementing the
flexible partially open shop setup (𝐹𝑃𝑂𝑐) would lead to the coverage of 91% of the setups
studied in the investigated RL literature. Having implemented this setup, the simulation
could then be instantiated to any of the setup’s sub-classes. Additionally, machine and job
related speeds (𝑅𝑚) should, ideally, be implemented as well. In doing so a 100% coverage
of the literature setup would be reached.

In terms of 𝛽, the set consisting of the following eight parameters yields a 77% literature
coverage at a manageable implementation cost:

1. variable number of operations (𝑣𝑛𝑜𝑝𝑠),

2. input buffers (𝑏𝑙𝑜𝑐𝑘in),

3. stochastic processing times (𝑝𝑠
𝑗𝑖
),

4. transport times (𝑡𝑟(∞)),

5. operation capabilities 𝑀𝑜
𝑖
,

6. resource- and sequence-dependent setup times (𝑠 𝑗𝑖𝑘),

7. stochastic release times (𝑟𝑠
𝑗
), and

8. machine breakdowns (𝑏𝑟𝑘𝑑𝑤𝑛𝑠).

Because of the their more sparse subsumption relationship (see Figure 2.2), 𝛽-parameters
induce much more implementation work. To obtain the full coverage of the investigated
RL scheduling work, 𝑟𝑠

𝑗
would need to be replaced by the stochastic demand (𝑑𝑚𝑑𝑠

𝑗
), and

ten more parameters would need to be implemented, namely:

9. permutations (𝑝𝑟𝑚𝑢),

10. job precedence (𝑝𝑟𝑒𝑐),

11. output buffers (𝑏𝑙𝑜𝑐𝑘out),
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12. job batches (𝑗batch),

13. flexible resources ( 𝑓 𝑟𝑒𝑠),

14. stochastic capacity transports (𝑡𝑟(𝑘, 𝑟)𝑠),

15. transport setup times (𝑠𝑡𝑟
𝑗𝑖

),

16. forced parallel operations ( 𝑓 𝑝𝑜𝑝𝑠),

17. dynamic batches (𝑑𝑏𝑎𝑡𝑐ℎ), and

18. partial no wait (𝑝𝑛𝑤𝑡).

This would indeed be a daunting task.

We deem the following setup to be sufficiently general, since, it subsumes most of the
setups described by Pinedo (2012) and the RL literature: (𝐹𝑃𝑂𝑐 |𝑣𝑛𝑜𝑝𝑠, 𝑏𝑙𝑜𝑐𝑘in , 𝑝

𝑠
𝑗𝑖
, 𝑡𝑟(∞),

𝑀𝑜
𝑖
, 𝑠 𝑗𝑖𝑘 , 𝑟

𝑠
𝑗
, 𝑏𝑟𝑘𝑑𝑤𝑛𝑠). This means that the job operation precedence is described by a

DAG and operations can be executed on one or more available machines. The number
of operations in every graph can differ, and particular operations can occur more than
once within the same job. The processing speed is machine dependent and is used to
scale the duration associated with every operation. Every operation has an associated tool
set, and the tool switching times are sequence-dependent. Transport times are modeled
explicitly but it is assumed that sufficient vehicles are available so as to immediately start
every transport task. Buffers of a certain capacity (including 0 and∞) are placed before
each machine. machine breakdowns, job arrivals, and operation processing times are
stochastic. For a better readability, we refer to this scheduling setup as Generalized Flexible
Job Shop (GenFJS).

The selection of the parameters to exclude was driven by practicality. We do not implement
the 𝑅𝑚 setup since it is seldom used and requires the inflation of operation duration
matrices along a third dimension, which implies memory overhead. In terms of 𝛽 we
mostly disregard one off parameters, e.g. 𝑓 𝑝𝑜𝑝𝑠, 𝑓 𝑟𝑒𝑠, which we consider fringe cases.
There is one exception to this rule, which concerns the explicit modeling of vehicles, i.e.
the setups subsumed by 𝑡𝑟(𝑘, 𝑟)𝑠 . There are 18 works considering some variant of these
parameters, which amounts to 11% of all the encountered 𝛽s. While significant in terms
of coverage, the overhead associated with implementing two additional decision types
(see Figure 2.6) on top of the two we already consider, (see Figure 3.1) was deemed to
high for the first version of the simulation framework. Note that the job routing decisions
are induced by the presence 𝐹𝑃𝑂𝑐 as an 𝛼-parameter, or the presence of 𝑀𝑜

𝑖
in the

𝛽-parameter-set or both.

γ-Traceability (f): 𝛾 defines either job- or resource-centric optimization goals. The
most frequent job-centric goals are aggregates (e.g. maximum, average, minimum) of
job completion times, flow times, throughput times, lateness, tardiness, earliness and job
idle times. Resource-centric goals aggregate resource utilization, number of operations in
buffers, buffered processing times, incurred setup times, machine failures and inventory
levels. The simulation should track all of these intermediary variables at every time-step,
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such that the desired target, e.g. minimizing the maximum completion time (makespan),
can easily be measured by applying a corresponding aggregation function. To this we
refer as 𝛾-traceability.

Furthermore, the intermediary variables in Figure 2.4 should all be available, such that
custom optimization targets can be easily implemented and experimented with.

Modularity (nf): To ensure that our framework can be expanded upon in the future, we
require it to be modular. On the one hand, we do not implement all the setups that we
encountered while assessing the state of the art. On the other hand, there may be many
more production details that will be considered hereafter, as computing resources become
more readily available and production itself becomes more diverse. For these reasons it
is essential, that the simulation have a modular design, such that new constraints can be
mapped to simulation logic with as little overhead as possible.

3.1.2 RL Modeling

Because of the many options for RL design, the first functional requirements related to RL
modeling (see Section 2.3) revolve around configurability with respect to the action, state,
and reward-spaces. Additionally, FabricatioRL must be compatible with available RL agent
libraries. From a non-functional point of view, the simulation needs to be asymptotically
efficient in terms of runtime.

Reactive Breakdown Coverage (f): In terms of MDP breakdown, FabricatioRL should
mainly focus on purely-reactive breakdowns. Because of the significat differences between
the 11 breakdowns introduced in Section 2.3.1, more than one simulation paradigm is
required to accommodate them all. Since the six purely-reactive breakdowns make up 73%
of the investigated literature and the reactive paradigm best fits the adaptivity argument
used for RL scheduling, we use this breakdown category as a reference point in discussing
how to accommodate the the others.

Simulations for purely-reactive breakdowns are orthogonal relative to the Iterative Gantt
Improvement breakdown. On the one hand, purely-reactive breakdowns require an
environment that accepts direct shop-floor decisions (operation indices etc.) based on a
shop-floor state, when resources are freed. Within Iterative Gantt Improvement breakdown,
on the other hand, RL agents operate directly on (partial or broken) scheduling solutions,
i.e. the Gantt-chart representations. Given the orthogonal nature of the environments
expected by the two breakdown classes, at least two distinct simulation paradigms are
required to cover all the experiments in literature.

A well designed purely-reactive breakdown simulation could be used as a core component
for the Iterative Search Refinement breakdown. A key component of a Iterative Search
Refinement breakdown simulation is a scheduling solution checker. Consider for instance
the approach by Cao et al. (2021). Recall that in the referenced work, the agent is presented
with EA population features (state) and is expected parameterize the next iteration of the
algorithm by means of an action. The solution checker can be used both for generating the
raward signal between iterations and for calculating the fitness for individuals within the
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population. However, a wrapper is required to extract population features and control the
RL agent-action-guided population evolution.

Different from the other two previous breakdowns, a purely-reactive breakdown en-
vironment can be used to train agents following the Iterative Edge-Definition, Direct
Planning, and Iterative Re-Planning breakdowns. The Iterative Edge-Definition case can
be modeled as a purely-reactive breakdown. The addition of disjunctive edges to the
graph representation of the schedule could be triggered when machines become available.
The node in the graph corresponding to the machine requesting a decision is then marked
for the agent, who is additionally presented with the partial graph corresponding to
the current state. The agent is then limited to adding edges for that machine only. In
the Direct Planning case, given that the agent produces the schedule in one pass based
on an initial state, i.e. the list of jobs to be scheduled together with their properties, a
purely-reactive breakdown environment simply needs to be capable of executing and
evaluating the schedule produced by the agent. The same holds true for Iterative Search
Refinement. Here the simulation can be used to inform the agent of the quality of the
solutions present within the EA populations, for example. For Iterative Re-Planning
compatibility, the purely-reactive scheduling simulation needs the capability to follow a
predefined operation sequence plan and request a new decision on occurrence of stochastic
events.

In keeping with the pragmatic approach of covering as much of the reviewed literature
experiments with as little implementation overhead as possible, we require FabrikatioRL
allow for the easy instantiation of all the purely-reactive MDP breakdowns accommodating
Sequencing on Machines (i) and Job Destination Selection decisions (ii) (see Table 2.1 and
Figure 2.6). This leads to the exclusion of the Transport-Centric Sequencing1 and Interlaced
Tooling and Sequencing breakdown. Despite it, the proposed requirement, which we call
Reactive Breakdown Coverage for concision, still accommodates 68% of the breakdowns
in literature.

The most important event to a reactive production scheduling MDP is that of a resource
finishing its current task. For GenFJS, two questions arise on such an occurrence: “What
operation should be processed next on the resource just freed?”(i), “To which downstream
resource should the job just processed be sent?”(ii).

The (i + ii) sparation of scheduling decisions leads to the process flow depicted in Figure 3.1:
Whenever the operation of a job is finished on a machine, an RL agent selects the next
operation for this machine from the input buffer (i). Then, the agent selects the transport
destination (ii). The possible destinations for the job just processed depend on the next
eligible operations and the machines capable of processing them. The operation feasibility
can be derived from the precedence graph depicted in the top left corner. Depending
on the particular scheduling problem and its assumptions, not all decision types will be
encountered. For standard job-shop scheduling problems, for instance, only decisions of
type (i) will be required.

1Note that our definition of the generality requirement as a simulation implementing GenFJS is also not
sufficient for instantiating Transport-Centric Sequencing breakdowns.
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Figure 3.1: The two decision types in a production setup with operation precedence graphs
(top left) and machine breakdowns. Operation and machine types are indicated with
capital letters. In (i) and (ii), gray arrows model decisions made, and blue arrows represent
alternatives. In the case of breakdowns (iii) all operations buffered at the failed machine
need to be routed away; Should an operation execution be interrupted by the breakdown
(𝑜20

7 above) it too needs to be routed away. The three different decisions correspond to
different simulation modes which will be detailed in 3.2.4.

Machine breakdowns within contexts with job routing flexibility also induce job decisions
(iii). In this case, all the operations buffered at the failed machine need to be moved away
to alternative processing stations. Should these alternatives not exist, then the operations
remain blocked at the failed resource until its repair.

Each decision in Figure 3.1 is associated with a different simulation mode. Depending
on the mode, decisions taken by RL agents will be interpreted and handled differently:
In Sequencing Mode, agent actions will be interpreted as operation indices, while in the
routing, and breakdown modes actions correspond to machine indices. The difference
between the routing and breakdown modes is given by the position of the operation
transported. The mode details will be elucidated in the subsequent implementation section
(see Section 3.2.4).

Action-Space Configurability (f): There are two main approaches to encoding the actions
described above. When faced with a decision, an agent can either select an action directly or
indirectly. Indirect actions are chosen by selecting an optimizer from a fixed set, which then
determines the next direct action. Direct action for (i) comes in the form of an operation
index, i.e. the tuple (job number, operation number), from the set of all available operations
in production. For (ii) and (iii) the action is given by a machine index. Additionally, the
action can be deferred by outputting a wait signal. Examples of direct decisions can be
found in the elaborations of Jiménez (2012), Qu et al. (2015), and Kuhnle et al. (2020),
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while indirect decisions are covered by Aydin et al. (2000) and Luo (2020), for instance.
Optimizers are often, but not always (e.g. Shahrabi et al., 2017), simple priority rules.

For the simulation framework, these alternative approaches lead to the action-space
configurability requirement. The simulation should allow both direct and indirect actions.
Additionally, it should be configurable whether the RL agent is responsible for all decision
types, or just a subset, deferring action to fixed optimizers for the rest. The optimizer
sets for indirect actions and RL complementary action should be easily customizable and
extensible.

State-Space Configurability (f): The information needed for state-transition depends
on the production setup considered: The state tracks the jobs currently in production
together with the operations still in need of processing, their remaining processing time,
position (machine index) and status (in transport, waiting for processing, processing).
Additional fixed information such as transport times, tool switching times, precedence
constraints, machine capabilities, buffer capacities, operation types and tool sets should be
available, such that the setup constraints can be enforced by the simulation and learned by
the agent.

In RL, a distinction is made between agent-state and environment-state. The latter contains
all the information required for the environment to implement its logic, while the former
is an agent view of the latter. For production scheduling, the agent-state often only
contains a subset of the information available in the environment-state. This is because the
environment-state-space may be too large for the agent algorithm to handle. Furthermore,
simulated stochasticity is transparent to the environment, but should not be transparent to
the agent. Lastly, it may be useful to have agents make good decisions based solely on
environment-state features that are independent of problem size. This would improve the
agent’s transferablility and generalization qualities.

The exact information comprising the agent-state needs to be established through experi-
mentation. On the one hand, raw environment-state information as listed above, can be
used. On the other hand, environment-state information can be condensed into features.
Features fall into three categories, namely job features, resource features or target features.
The first category aggregates job information, e.g. remaining job processing time or
remaining job operations. The second aggregates machine or vehicle related information,
e.g. remaining processing time in machine input buffers or number of operations queued
for processing or transport. Information in these categories can be stored per job/machine
or aggregated further into single scalars using centrality (e.g. mean, median) and variance
measures (e.g. standard deviation, gini). The last feature category contains optimization
goal related variables such as estimated total tardiness (Wang et al., 2005; Luo, 2020) or
average machine utilization (Thomas et al., 2018; Luo, 2020).

The simulation framework should allow the selection of the agent-state components and
allow extensions thereof. These can be either raw state information such as the current
operation duration matrix or operation position, as well as different features including
goal oriented metrics. Moreover, it should be made possible to accommodate user defined
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state features.

Reward Configurability (f): There is no generally accepted scheme for reward design,
which means that appropriate signals have to be found through experimentation. Since RL
agents try to maximize future reward, it stands to reason that, for production scheduling,
the reward is often a function of the optimization goal or a goal-related intermediary
variable, (e.g. Qu et al., 2015; Wang, 2020; Luo, 2020; Kuhnle et al., 2020). Important choices
in reward design include the time points at which the reward is returned (at every step,
every 𝑘 steps for some 𝑘 or at the end of the game), whether the reward is continuous or
discrete, strictly positive, strictly negative or both, bounded or unbounded (Sutton et al.,
2018).

Extended Gym Compatibility (f): In terms of the agent interface, the simulation should
respect the OpenAI Gym standard, such that external agent libraries such as keras-rl
can be used in conjunction with FabricatioRL. This allows the application of different
pre-implemented RL agents, whether they be policy-based, value-based or actor-critic
systems, to be trained and tested within the environment in a convenient fashion.

Additionally, the simulation should address two supplementary RL techniques not
currently covered by the gym standard, namely illegal action masking and offering an
environment clone for model-based RL approaches such as AlphaZero (Silver et al., 2017b).
To construct action masks, the environment has to provide the agent with a list of legal
actions at every step. Environment clones can be used by agents to directly see the effects
of one’s actions a few steps ahead.

Runtime Efficiency (nf): A simulation requirement that does not follow directly from the
details laid down until now is that of simulation performance in terms of runtime. RL is
sample-inefficient (Haarnoja et al., 2018), which implies that many simulation runs will be
required for the agent(s) to converge. Thus, to increase the ease of experimentation, we
should strive to decrease the runtime as much as possible.

3.1.3 Validation

For the purpose of allowing for easy scheduling approach validation (see Section 2.4),
FabricatioRL needs to implement one non-functional and two functional requirements.
From a non-functional point of view, our simulation framework should allow for the
reproduction of stochastic experiments. Functionally, FabricatioRL should ensure the
separation of scheduling inputs from the scheduling process itself, and be compatible with
not only RL, but also planning methods.

Reproducible Stochasticity (nf): Recall that, while the reproducibility requirement is
not bound to the domain of stochastic scheduling, in the RL scheduling literature, this
essential requirement was often neglected (see Figure 2.18).

For (online) stochastic problems, the general literature approach is to sample stochastic
events on demand during the simulation. For the purpose of ensuring the experiment
reproducibility, solely reporting the distributions used to simulate stochastic influences, as
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is being done in literature, is not sufficient. Consider, for instance, a scheduling problem
with 10 jobs and 5 machines. Let the job operation sequence be defined by a random
permutation of numbers 1 to 5. This leads to 5!10 possible scheduling instances. The
enormous sample space coupled with a relatively small number of experiments leads to
an extremely low probability of sampling similar instances a second time. Because of
the probable difference in sample composition, a reliably comparing the results of new
approaches to those reported in literature is virtually impossible. To prevent this problem,
a variance reduction technique (see Yang et al., 1991) should be implemented.

To control stochasticity, the common random numbers (Glasserman et al., 1992) approach
can be used instead. This means that (a) the sequence of random numbers required
during the simulation is a function of a single independent variable and (b) the meaning
of drawn random numbers is the same between simulations. We refer to the requirement
of implementing common random numbers as “reproducible stochasticity”.

Input Separation (f): By fulfilling the reproducible stochasticity requirement and
publishing the simulation framework code, experiment reproducibility could be bound
to the use of FabricatioRL. Consider the following sampling scheme for a (𝐽𝑚 | 𝑟𝑠

𝑗
) setup,

for example: At the beginning of the simulation, we sample job release times 𝑟1 , . . . , 𝑟𝑛 .
Then, whenever the simulation time reaches 𝑟𝑘 , the operation type and operation duration
sequences defining a new job are sampled, and the job is added to the system. While
the use of RNG seeding along with the publication of experiment-associated seeds
would enable researchers to reproduce the associated results when using our framework,
running identical experiments using an alternative simulation framework would not be
possible.

To curtail this problem, we require that the simulation inputs, including the instantiation
of stochastic events, be clearly separated from the rest of the run. Within the frame of the
previous example, this would mean that both the release time and the jobs would need to
be sampled during the simulation initialization phase. The inputs can then be saved and
used to parameterize arbitrary alternative simulations. We refer to this requirement as
input separation. As an added bonus, the input separation requirement also ensures that
RNG-generated nonce sequences would semantically map to the same variables, e.g. the
nonce at position 𝑘 in the sequence would always map to the duration of operation 𝑖 from
job 𝑗, independent of the control algorithm interacting with the simulation.

Backwards Compatibility (f): Seen as many experiments detailed in Chapter 2 relied
on preexisting benchmark scheduling problem instances, we require that our framework
can be instantiated to such instances as well. We dub this requirement “backwards
compatibility” and specify that the production scheduling instances made available by
Beasley (1990) (OR library) and Mastrolli (1998) be available through FabricatioRL as
well.

Planning Compatibility (f): Lastly, the simulation should allow following an externally
computed production plan, where the operation start times are listed for every resource.
Such an execution plan is often the output of more traditional OR exact re-planning
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approaches, e.g. MILP, CP. While such an a priori plan may be affected by stochastic
events, it may still yield better results than RL in many situations. The exact situations
where RL outperforms such OR approaches have yet to be established. Our simulation
framework should enable researchers to cover this gap, which leads to the planning
compatibility requirement.

3.2 Implementation

FabricatioRL is written purely in Python and contains no significant external dependencies
outside of numpy and Gym. In particular, we use no discrete event simulation libraries such
as SimPy (Müller et al., 2020) to maintain full control over all the simulation framework’s
structures, which makes the task of guaranteeing reproducibility more manageable. We
chose Python since this integrates seamlessly with both Gym and the most widespread RL
agent libraries. Additionally, one of the best performing CP frameworks, namely ORTools
(Perron et al., 2022), can also be easily embedded within Python code.

Note that it is not the purpose of this elaboration to fully describe the implementation.
Rather we strive to describe just enough to make it easier for the reader to dive into our code.
We focus somewhat more on the simulation functionality contained by the FabricatioRL
class located in the interface module, which contains the simulation entrypoint. This is
because a good understanding of the API functions will enable researcher to make
use of FabrikatioRL without understanding all its innerworkings. However, if the
reader’s purpose is the extension of the simulation, a deep dive into the code cannot be
circumvented.

We start the implementation discussion with a very brief presentation of FabricatioRL’s
architecture in Section 3.2.1. This section offers a high-level overview of the simulation
framework’s main structures, anchoring the implementation details that follow. We
encourage the reader to revisit this overview whenever a re-contextualization of particular
simulation framework elements is required. In Section 3.2.2 we discuss the FabricatioRL’s
initialization process and its many possible parametrizations (inputs) along with associ-
ated sampling functionality leading to the generation of varied production scheduling
setups. Section 3.2.3 details FabricatioRL’s API with a particular emphasis on RL design
configuration. Last but not least, in Section 3.2.4 we turn to the core module, focusing our
elaboration on the simulation state structure and main simulation loop. At the end of each
of the last three implementation sections note how the particular implementation aspects
contribute to the satisfaction of the previous section’s requirements.

3.2.1 Architecture

Figure 3.2 shows the main components of the layered architecture of FabricatioRL following
the Gym API. The Gym API consists of three core methods namely init, step and reset.
init is used for parameterizing and instantiating the simulation. step takes an action as an
argument and returns a state, the reward for the particular state, a flag signaling whether
the simulation has ended and a dictionary with debugging information. reset is called to
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move the simulation back to its starting state. The render is an optional method defined by
Gym to create a visual representation of a state. This last method is not implemented by
FabricatioRL though we do list it here for completion.
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Figure 3.2: Class diagram of the environment architecture.

FabricatioRL separates the main simulation functionality located in Core module from the
FabricatioRL wrapper, which implements the Gym interface. The layer components are
highlighted in light green. The red classes pertain to the definition and storage of simulation
inputs. The dark green classes deal with customizing FabricatioRL’s interface in terms
of actions, state representation and rewards. The dark and light blue highlighted classes
represent the two main data structures of the environment, namely SimulationManager
and State together with their respective components.

3.2.2 Initialization and Inputs

Initialization: FabricatioRL’s initialization process is depicted in Figure 3.3. The se-
quence diagram visualizes the communication between the FabricatioRL, FabricatioRNG,
MultisetupManager Input, Core, SimulationManager and State classes, i.e. all the main
simulation components. Note that all classes depicted in Figure 3.2 are, in fact, involved
in the process. Nevertheless, we excluded the details of the SimulationManager, State,
and SchedulingLogger initialization for concision. First FabricatioRL.init is called with five
parameters, namely user_inputs, transformer, optimizers, seeds and logger_path.

The parameters passed to the Fabricatio.init 0 call are in part defined by the simulation
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Figure 3.3: Sequence diagram of FabricatioRL’s initialization process.

itself, within the interface_templates module. The user_inputs parameter is a list of
SchedulingUserInputs types. This class defines and documents the parameters that can be
used to define a GenFJS instance or an instance of any of the other subsumed problems. The
transformer and optimizers objects, which can be used to modify FabricatioRL’s interface,
must implement the API defined by ReturnTransformer and Optimizer respectively. The
seeds parameter is expected to be a list of integers to be used as RNG seeds. Finally, the
logger_path is a string pointing to a folder where logfiles are to be written.

There are seven main steps involved in the simulation initialization. The first three steps
pertain to defining the simulation instance. The fourth step’s purpose is the initialization
of the core logic modules, while the final three steps pertain to FabricatioRL’s API
configuration.

In step one, the simulation’s own RNG is initialized 1 . Initializing FabricatioRNG
returns a numpy RNG instance distinct from the one used internally by the library. In
separating between our own RNG and numpy’s, we ensure that seeding the numpy RNG
outside our simulation does not affect the sampling sequence within FabricatioRL. In
step two, the list of user inputs are passed to the MultiSetup initialization function 2 .
FabricatioRL can cyclically run on multiple distinct instances, which can be useful for
training and/or evaluating models with transferability in mind. The MultiSetupManager’s
job is to create the sequence of unique instances though which FabricatioRL cycles as the
Cartesian product of the scheduling input and seed sets. In step three, the first pair of
user_input-seed objects together with the sim_RNG are used to initialize an Input object
3 . Depending on how the user defined the user_input object, random sampling may

be required to generate the full scheduling instance, which is why the RNG is used. The
Input class encapsulates all scheduling instance information.
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Step four involves using the freshly assigned inputs attribute to initialize the core object
which is stored within an attribute of the same name in the FabricatioRL object 4 . The
core initialization itself consists of instantiating and storing the central core data structures,
to wit the SimulationManager and State objects.

Having instantiated the core, the initialization process moves to the final steps. In step five,
the action-space configuration, is inferred during the setup_optimizers from the number
and type of optimizers passed to FabricatioRL.init 5 . The action-space configuration
defines the simulation’s action interpretation in terms of direct or indirect actions (see
Section 2.3.2) for the different decision types, i.e. regular job routing, sequencing, and failure
job routing. The get_action_space call in the sixth step then initializes the action_space
property defined by the gym interface to the appropriate dimension 6 . Similarly the
observation space dimension is inferred using the ReturnTransformer parameter in the
final step 7 . If no such object is passed, the simulation simply sets the observation_space
property to None. The next section offers more details on the possible API parametrizations
induced by the Optimizer and ReturnTransformer objects

Inputs: The following scheduling instance information can be specified by instantiating
SchedulingUserInpusts appropriately. Let 𝑛, 𝑚, 𝑜, 𝑙, 𝑡 be the number of jobs, number of
machines, maximum number of operations per job, number of system tool sets and
number of operation types respectively. The inputs for GenFJS are given by the operation
precedence graphs 𝑂𝑃 ∈ {0, 1}𝑛×𝑜×𝑜 , the operation type matrix 𝑂𝑇𝑦 ∈ {1, . . . , 𝑡𝑦}𝑛×𝑜 ,
the operation duration matrix 𝑂𝐷 ∈ N𝑛×𝑜

+ , the operation tool set 𝑂𝑇𝑙 ∈ {1, . . . , 𝑡 𝑙}𝑛×𝑜 ,
the machine speed vector 𝑀𝑆 ∈ R𝑚 , the machine distance matrix 𝑀𝑇𝑟 ∈ N𝑚×𝑚

+ , the tool
switching time matrix 𝑀𝑇𝑙 ∈ N𝑙×𝑙

+ , the machine input buffer size vector 𝑀𝐵 𝑓 ∈ N𝑚
+ , machine

capability matrix 𝑀𝑇𝑦 ∈ {0, 1}𝑚×𝑡 , the maximum number of failures per machine 𝑓 , the
distributions for the time between failure 𝜙, the operation duration noise 𝛿 and the job
inter-arrival time �. The operation duration noise 𝑂𝐷′ ∈ (0, 2)𝑛×𝑜 , job release times 𝑅 ∈ R𝑛+
and machine breakdown times 𝐵 ∈ R𝑚× 𝑓+ get sampled in accordance with 𝛿, 𝜙 and �

respectively. A due date vector can be passed to the simulation 𝑇 ∈ N𝑛 defining job due
dates. 𝐵 and 𝑅 are used to create the stochastic events to be added to the event queue in
Core during its instantiation. To run the simulation on instances of problems subsumed
by GenFJS, the unnecessary inputs can be simply left out.

For dynamic problems, FabricatioRL uses a WIP, which means that the WIP size 𝑤 < 𝑛

must be additionally specified. Furthermore, the number of initially visible jobs 𝑛′ < 𝑛

must be provided in such cases.

FabricatioRL offers three ways of defining the matrix inputs. First, the simulation user can
choose to pass all the listed matrices and vectors directly to the FabricatioRL.init function.
Secondly, the different input dimensions, e.g. the number of jobs and the number of
machines in a 𝐽𝑚 setup, together with or without a corresponding sampling function can
be provided. Sampling functions are expected to take a shape as a parameter and return an
numpy array of corresponding size filled with the desired entries. When dimensions are
provided without the sampling functions, FabricatioRL uses its extensive default sampling
functionality to fill the gaps. Finally, a path to a standardized scheduling instance (e.g.
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Beasley, 1990) can be provided. In such all the job and resource information contained
in the respective instance, is extracted from the file. Dynamic scheduling setups can be
created based on instance files as well. The job information contained in the file will
be uses as a sampling pool in such cases. The desired 𝑛 total jobs will then be sampled
uniformly at random with replacement from the file based pool. Currently only 𝐽𝑚 and
𝐹𝐽𝑐 instances are supported for the file-based instantiations.

Sampling Schemes: The random sampling functionality for operation types 𝑂𝑇𝑦 and
durations 𝑂𝐷 is connected. Recall that for a machine to execute an operation, the machine
and operation type must match. Operation type sampling depends on the desired setup.
FabricatioRL generates 𝐽𝑚 and 𝐹𝑚 style job types using 𝑛 different random permutations
of numbers 1 to 𝑚 for the former case and a single random permutation for the latter.
Completely random types can also be generated, e.g. for 𝑣𝑛𝑜𝑝𝑠 setups, by sampling each
operation type from {1, . . . , 𝑡𝑦}. Once the types have been defined (either through sampling
or using the user input directly), duration distributions are created separately for each type
by summing up two lognormal distributions, namely Lognormal(50 + 50 · 𝜏/𝑡𝑦, 0.2) and
Lognormal(150 − 50 · 𝜏/𝑡𝑦, 0.08), where 𝜏 is the operation type. This generates bi-modal
distributions with both modes moving towards each other as 𝜏 increases until a uni-modal
distribution is reached (Figure 3.4). This synthetic data generation scheme, though not
rooted on empiric cases, models the intuitive dependency between operation type and
duration. The distribution modes are loosely based on the OR library benchmark operation
duration averages.

(a) Type (𝜏) dependent opera-
tion duration distribution for
𝜏 = 3

(b) Type dependent operation
duration distribution for 𝜏 = 6.

(c) Type dependent operation
duration distribution for 𝜏 = 9.

Figure 3.4: Examples of the type 𝜏 dependent operation duration distributions 𝑍 = 𝑋 + 𝑌
where 𝑋 ∼ Lognormal(50 + 50 · 𝜏/𝑡𝑦, 0.2) and 𝑌 ∼ Lognormal(150 − 50 · 𝜏/𝑡𝑦, 0.08) for
𝑡𝑦 = 10 total operation types.

The random operation precedence generation process is the most sophisticated among the
sampling schemes. Figure 3.5 visualizes the generation process for a single job with 𝑜 = 5
operations. First a random integer between 1 and 1𝑒6 is sampled uniformly at random, its
divisor set is computed and the graph of the division relation is created (Table 3.5a). If
the numbers in the divisor set has a cardinality larger than 𝑜 + 1, divisors are removed
from it until only 𝑜 + 1 integers remain. Conversely, if there are not enough divisors in
the set, a second integer is sampled, its divisor set computed and added to the prior set.
While adjusting the divisor set cardinality, we ensure that one always stays contained in
the set. In a second step, the nodes in the division relation graph are renamed to using
sequential integers starting at one and ending with 𝑜 (Table 3.5b). One is renamed to 0.
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Finally, we compute the transitive reduction (Aho et al., 1972) of the renamed division
graph to eliminate any redundant edges (Table 3.5c). The resulting graph represents the
desired random precedence. The 0 node represents a dummy root node with its edges
pointing to the job operations that can be processed first.
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(a) Divisor graph.

0

1

2 3

4

5

(b) Renamed divisor graph.
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(c) Transitive reduction of the
renamed division graph.

Figure 3.5: Stages of DAG generation.

If indicated by the user, transport times 𝑀𝑇𝑟 and tooling times 𝑀𝑇𝑙 are sampled based
on the values in 𝑂𝐷 such that transports constitute an overhead comparable to operation
processing. The minimum, maximum, mean and standard deviation of operation durations
are first extracted from 𝑂𝐷 . These values are then used to parameterize a truncated normal
distribution from which a symmetrical distance/tooling time matrix is sampled.

Release dates 𝑅, breakdown and repair times 𝐵 and due dates 𝑇 have no associated
sampling scheme. The first two need to be defined by the user. For the due date
computation, a float defining due date tightness is expected as a parameter. This number
is then multiplied with the sum of operation durations in every job resulting in the job
due dates. Note that for release dates, the scheme described in 6.1.2 will be implemented
within FabricatioRL in the future.

The sampling schemes associated with the remaining inputs 𝑀𝑡𝑦 , 𝑀𝑆 and 𝑂𝐷′ are
straightforward. Machine capabilities are sampled in two steps. For each machine, the
number of capabilities 𝑚𝑡𝑦 is sampled uniformly at random from {1, . . . , 𝑡𝑦}. Then 𝑚𝑡𝑦

types are sampled uniformly at random without replacement from the same type set.
Machine speeds are sampled uniformly at random from the interval [0.5, 1.5]. There is no
sampling functionality associated with the buffer length. Operation duration noise matrix
𝑂𝐷′ is sampled using a truncated normal distribution with a mean and standard deviation
of 1, lower bound of 0.1 and upper bound of 2. This is quite extreme, since the noise is
multiplicative and the described sampling scheme yields an almost uniform distribution
of perturbation on the interval [0.1, 2]. Alternatively, a float 𝑧 from the interval (0, 1) can
be used to parameterize the noise. In such a case the noise matrix entries are sampled
uniformly at random from the interval [1 − 𝑧, 1 + 𝑧]

Requirements: Reproducible stochasticity, is achieved by seeding the dedicated Fabri-
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catioRNG object. All sampling happens after seeding but before the beginning of the
simulation execution. In doing so, running the simulation on a particular input set with
the corresponding seed would always yield the same stochastic events irrespective of the
scheduling method employed. Thus, a dataset of input seed pairs could be used for the
validation step, analogous to the benchmarks of supervised learning.

After the initialization of the Input object, the full input set (𝑂𝑃 , 𝑂𝑇𝑦 , 𝑂𝐷 , 𝑂𝑇𝑙 , 𝑀𝑆 ,

𝑀𝑇𝑟 , 𝑀𝑇𝑙 , 𝑀𝐵 𝑓 , 𝑀𝑇𝑦 , 𝑂𝐷′ , 𝐵, 𝑅, 𝑇) including stochastic variable instantiations is fixed.
During the Core initialization, the Input information is added to the State object. The state
information is then used to determine the next processing steps and their duration. For
example, the processing duration 𝑑 of operation 𝑖 of job 𝑗 on the machine 𝑘 having a current
tool set of 𝑝 can be calculated as 𝑑 = 𝑀𝑇𝑙

𝑝𝑂𝑇
𝑗𝑖

+ 𝑂𝐷
𝑗𝑖
· 𝑀𝑆

𝑘
· 𝑂𝐷′

𝑗𝑖
. While the State version of

the input information is modified during the simulation to reflect the production process
progress, e.g. by zeroing out job matrix positions corresponding to finished operations,
the Input information remains untouched. Logging these inputs leads to the fulfillment of
the input separation requirement.

FabricatioRL contains all the 𝐽𝑚 and 𝐹𝐽𝑐 instances collected by Beasley (1990) and Mastrolli
(1998), together with the required conversion functionality (see Section 6.1.1 for more
details on the instance format). Loading a benchmark instance only requires specifying
its path in the corresponding input parameter. As such, our simulation framework in
backwards compatible.

3.2.3 Interface Module

Action-Spaces: Given the direct and indirect action designs found in literature together
with different types of decisions possible, the multitude of state representations and
posible rewards (Section 2.3), there is a clear need for API configurability in terms of action,
state and reward.

To configure the action-space, different types and numbers of Optimizer objects are meant
to be used. RL agents could, for instance, focus solely on sequencing decisions (Figure 3.1
i), deferring the job destination selection (Figure 3.1 ii and iii) to Optimizers objects passed
to the FabricatioRL constructor. Such is the approach taken by Kuhnle et al. (2020), where
agents solely take job routing decisions. All sequencing decisions are being done by a
hard-wired optimizer, namely the FIFO heuristic.

The architecture presented here is more flexible, with optimizers being any object imple-
menting the Optimizer interface from the interface_templates module. The interface is
very simple, consisting of a type string, which can be either sequencing or routing, and the
get_action method. Said method is offered a read-only State object and is expected to
return a direct action adequate for the decision type, i.e. a machine index or an operation
index. Note at this point that the operation index is an integer and not a tuple, as one
might expect. The integer does unravel to a tuple, however.

Depending on the number and type of the Optimizer objects passed to the FabricatioRL,
during initialization, and the types of decisions inherent to the defined setup, one of 11
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optimizer configurations is possible, each leading to a different action-space. The configu-
ration is stored in the optimizer_configuration field of the entry point class. Figure 3.1 gives
an overview of the optimizer configurations together with their numbers and meaning. In
the absence of any optimizer, the the action-space size for job routing decisions is given by
the number of machines in the system, 𝑚. For sequencing actions, the direct action-space
is given by the number of operations within the WIP, 𝑤 · 𝑜. If both decision types are
present in the system, the action-space size would correspond to the sum of job routing
and sequencing actions, i.e. 𝑚 +𝑊 · 𝑜. Since all production scheduling action-spaces are
discrete, the action-space would be represented as a vector of size 𝑤 · 𝑜 + 𝑚. Note that
FabricatioRL expects the first action-space vector positions to correspond to sequencing
actions and the last to correspond to job routing actions. The situation just described
corresponds to the optimizer configuration 0, if the scheduling setup contains job routing
flexibility and 1 if the scheduling inputs define a sequencing only setup.

Table 3.1: The 11 possible optimizer configurations influencing the action-space shape.

0

optimizer-
_configuration == 0/1
Sequencing: Direct
Job Routing: Direct

optimizer-
_configuration == 2
Sequencing: Direct
Job Routing: Fixed
Indirect

optimizer-
_configuration == 3
Sequencing: Direct
Job Routing: Indirect

1

optimizer-
_configuration == 4/5
Sequencing: Fixed
Indirect
Job Routing: Direct

optimizer-
_configuration == 6
Sequencing: Fixed
Indirect
Job Routing: Fixed
Indirect

optimizer-
_configuration == 7
Sequencing: Fixed
Indirect
Job Routing: Indirect

optimizer-
_configuration == 8/9
Sequencing: Indirect
Job Routing: Direct

optimizer-
_configuration == 10
Sequencing: Indirect
Job Routing: Fixed
Indirect

optimizer-
_configuration == 11
Sequencing: Indirect
Job Routing: Indirect
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Adding optimizers modifies the interpretation of the action-space vector. If a single
optimizer of a particular type is added, the corresponding section of the action-space is
eliminated. For instance, if a single sequencing optimmizer was passed to the simulation,
but no job routing optimizers were defined (configuration 4), FabricatioRL will always
expect direct job routing actions. Adding a single job routing optimizer and no sequencing
optimizer yields to complementary behavior. In these cases the single optimizer is used by
FabricatioRL directly when decisions of that particular type are encountered. The agent
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will only be asked to pick the complementary direct action type.

When multiple optimizers of the same type are added, the action-space vector segment
corresponding to that type will have a length equal to the number of corresponding
optimizers. Take, for instance, configuration 8, and assume 𝑛𝑠𝑜 optimizers of type
sequencing were passed to the simulation. Here we have a setup with job routing flexibility,
where multiple sequencing optimizers have been defined, but no job routing optimizer is
present. Whenever job routing decisions are encountered, the agent will have to select
one of the machines directly, which will correspond to indices 𝑛𝑠𝑜 , . . . , 𝑛𝑠𝑜 + 𝑚 − 1 of
the action-space vector. 𝑚 is the number of machines in the system. When sequencing
actions are encountered, the agent will be expected to output the index of one of the
sequencing optimizers, i.e. positions 0, . . . , 𝑛𝑠𝑜 − 1 of the action-space. All other optimizer
combinations impact the action-space analogous to the listed examples.

State and Reward Spaces: The ReturnTransformer interface defines an object which allows
the customization of both the agent-state-space and the reward-space. The class located
in the interface_templates module defines two functions namesly transform_state and
transform_reward for this purpose. Both functions are passed the complete environment-
state as a parameter. The transform_state function is expected to select and format state
information presented to the agent in a way that can be consumed by the latter. Currently
only Box action-spaces are supported by FabricatioRL, meaning that the state must be
a (multi-)dimensional numpy array. The transform_reward function works analogously:
Given the entirety of the state information at a particular time, within transform_reward a
numeric reward signal is to be constructed and returned. Note that it is possible for the
class implementing the ReturnTransformer interface to define instance attributes allowing
to save historic information that could be useful for constructing both rewards and state
representation. Implementing either of the functions will require the user to familiarize
himself with FabricatioRL’s (nested) state structure.

Step: Figure 3.6 depicts the discussed structures working together during calls to the
step function. In a first step, FabricatioRL decides how the action should be interpreted
depending on the current optimizer configuration 1 . If the agent action is to be
interpreted as direct, e.g. opt_configuratio is 3 and the simulation_mode property of the
state is 1, indicating that a job routing decision is required, then the control flow jumps
directly to the second step 2.1 . Otherwise, if the action is indirect, FabricatioRL executes
get_action on the optimizer selected by the agent, passing the current state as a parameter
3 . The get_action call results in the generation of an appropriate direct_action. In a

second step, FabricatioRL’s Core attribute executes its step method using the direct_action
as a parameter 2.1 / 2.2 , thereby moving the simulation into a new state, which is returned
to the caller together with a flag that indicates whether the simulation has finished or not.
Thirdly, and lastly, the returned State object is passed to the ReturnTransformer attribute
which generates a state representation and reward signal as defined by the user within the
implemented transform_state 4 and transform_reward 5 functions.

Reset: From the interface module’s point of view, where the entry point class is located,
the reset method can be seen as a combination of the init and step. Similarly to init, the
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FabricatioRL

transform_state(state)

core.step(direct_action)

transform_reward(state)

Core

get_action(core.state)

direct_action

state, done
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reward
state_repr, 
reward, done, 
{}
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agent_action)

Optimizer
Return

Transformer
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[direct_action]

core.step(agent_action)

state, done
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2.2

2.1

3

4

5

Figure 3.6: Sequence diagram of FabricatioRL’s step function from the interface point of
view.

SetupManager is used to get the next pair of user inputs and seed. These are used to re-
initialize an Input object which in turn is used to re-initialize the simulation core. Similarly
to step, the ReturnTransformer is used to transform the post re-initialization core.state into
the representation defined by the user. This representation is then returned.

Legal Actions: To allow for the implementation of masking, the FabricatioRL class exposes
the get_legal_actions method, which returns the action-space indices corresponding to
viable actions. Illegal actions would lead to the termination of the simulation. The
legal_action property maintained by the Core object in the State is used to infer the
current legal direct actions. Indirect actions matching the current simulation_mode are all
legal.

Consider the optimizer configuration three (Figure 3.1). The action-space in this case is
a vector of size 𝑛 · 𝑜 + 𝑛𝑟𝑜 where the first 𝑛 · 𝑜 positions correspond to direct sequencing
actions and the next 𝑛𝑟𝑜 positions represent indirect job routing actions. The variables
𝑛, 𝑜 and 𝑛𝑟𝑜 represent the number of jobs in WIP the maximum number of operations and
the number of job routing optimizers respectively. When the simulation is in job routing
mode (simulation_mode == 1 or simulation_mode == 2), the returned legal actions
correspond to the complete list of job routing optimizer indices 𝑛 · 𝑜, . . . , 𝑛 · 𝑜 + 𝑛𝑟𝑜 − 1.
When the simulation is in sequencing mode (simulation_mode == 0), the legal actions will
correspond to the those operation indices 𝑖 ∈ {0, . . . , 𝑛 · 𝑜} which are currently buffered at
the current_machine property of the state.

Deterministic Copy: The get_deterministic_copy function returns a variant of the
simulation, where all stochastic events are removed from the state structure. More
accurately, any jobs 𝑗 with release times 𝑟 𝑗 larger than the state’s system_time are removed
from the simulation, the operation perturbation matrix 𝑂𝐷′ is replaced by a matrix with
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all entries equal to one, and all the machine breakdown events are eliminated from the
simulation.

This functionality is required by model based RL approaches such as AZ. In general, it is
perfectly legitimate for any scheduling algorithm, RL or otherwise, to use the simulation
for the assessment future states, as long as the stochastic information is not included.

Requirements: The described mechanisms lead to the fulfillment of the RL configurability
requirement. By means of the Optimizer system, the action-space can be configured
allowing for both direct and indirect actions. Using the ReturnTransformer object, the
user has full control over what the agent can see in terms of states and rewards. Since the
transformation functions both take a State object as a parameter, all the raw information,
including tracking variables, is transparent, whereby full state and reward-space configurability
is enabled.

The gym compatibility is satisfied by design, since the FabricatioRL class inherits from
gym.Env and implements all three gym methods. By adding our get_legal_actions and
get_deterministic_copy methods we satisfy the extended gym compatibility requirement.
Section 3.2.4 will shed more light into the inner-workings the API functions from the
core_perspective.

3.2.4 Core Module

The Core class contains the simulation logic expressed through the task of managing the
event queue and state objects. Correspondingly, the main attributes of the class are the
state of type State and the event management object, EventManager. Additionally, the
class defines two autoplay attributes determining whether trivial decisions are skipped or
not. If sequencing_autoplay is set to true, in sequencing decision cases where there is a
single operation buffered at the machine will be skipped. Similarly, if routing_autoplay is
set to true and there is a single viable downstream resource available for the job that needs
to be routed, the decision will be taken by the simulation automatically. Note that turning
on the autoplay function leads to limiting the space of all possible schedules. Sometimes
it may be advantageous to defer processing an operation in favor of waiting for another
operation to enter the machine input buffer, for example.

State: The State contains the all the information required for the simulation logic imple-
mentation. State information can be further grouped into four categories distinguished by
the information’s primary purpose. These are: agent information, convenience structures,
WIP management information, and decision management information.

1. Elements of the agent information category can be directly offered to a scheduling
algorithm. This can either be the raw information contained by the Matrices
type attribute or features contained by the Trackers field. Figure 3.7 gives an
overview of the environment matrices contained by the Matrices class along with
their dimensions. The system_time 𝑡 and current_machine 𝑐, which are part of
the decision management information, were added to exemplify how a full raw
sequencing state of the GenFJS could look like.
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Figure 3.7: Agent information components of the environment-state and their dimensions.
For concision we only exemplify four of the state components. Except for the precedence
graphs, which is a stack of operation adjacency matrices, all components are at most two
dimensional. RL agents should only be presented with WIP information (e.g. the green
jobs in the operation type matrix). As operations finish processing, the corresponding
entries in the job matrices are zeroed out. The operation location and operation status
matrix track the current position and processing status of operations respectively. Red
colored state components encode stochastic information and should not be presented to
agents.

Note that it is not legitimate to expose the listed components in their entirety to
the agent. The red variables in Figure 3.7 contain the future stochasticity, and, as
such, should remain visible to the simulation only. Similarly, jobs outside the WIP
should remain hidden. In the lower-left corner of the figure, we see a simplified
depiction of the internal WIP representation. Green-colored job information is part
of the WIP and can be shown to the agent while gray-colored information should
remain obscured.

Mostly, the Matrices objects contains the tensors, matrices and vectors already listed
in Section 3.2.2. However, in the state, a part of this information changes dynamically
to reflect the scheduling process progress. As operations are completed, for example,
the corresponding matrix entries are zeroed out, thus tracking the state progression.
Additionally, the operation location matrix 𝐿 tracks the position of the current job
operations in terms of the machines they are currently at. The operation status
matrix 𝑆 tracks the processing state for operations: queued — 1, processing — 2, in
transport — 0. Both location tracking matrices have a size of 𝑛 × 𝑜.

The main function of the Trackers object contained by the state is, as the name
suggests, tracking key aspects of the simulation. The available information is listed
in Figure 3.8 along with the dimension of the different attributes. The tracking
information can used either directly as agent features, e.g. the total remaining work
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𝑇𝑟𝑤 , or it can be used as base feature information, e.g. the average flow time �(𝐹𝑗).
The information highlighted in red in the figure contains intermediary optimization
goal variables (see optimization goals — Figure 2.4).

Remaining operations 
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Figure 3.8: Components of the Trackers class. The red vectors contain intermediary goal
variables (cmp. Figure 2.4), indexed either by the machine number, e.g. utilization times
𝑈𝑡𝑙𝑖 , or intermediate or job numbers, e.g. completion times 𝐶 𝑗 . The black vectors contain
additional information useful for state feature construction.

2. The second information category, namely the convenience structures, consists of the
PrecedenceGraph and Machines state attributes. Primarily these objects allow us to
retrieve legal_actions in constant time (𝑂(1)). The legal action computation is not
only required to allow agent to mask out illegal actions. Legal actions are essential to
ensure the correct simulation run. While it would be possible to infer the legal actions
from by looping through the matrices from the first state information category, that
would lead to a linear asymptotic runtime relative to the number of operations 𝑛 · 𝑜
in the scheduling instance, 𝑂(𝑛 · 𝑜).

The PrecedenceGraph contains the precedence DAG of all remaining operations from
all jobs. The constraints corresponding to a job hang under a dummy node we call
the job root, which is marked with the job number. Job roots themselves dangle
under one of two global root nodes. The two roots distinguish between arrived jobs
(root_visible) and jobs not yet released (root_hidden). As operations finish, they
are removed from the graph. The graph allows us to retrieve the next downstream
operations, and, consequently, the next downstream machines, i.e. the legal job
routing actions, in constant time, 𝑂(1).

The Machines structure contains a dictionary of Machine objects indexed by the
machine numbers in the system. An individual Machine type object contains a
field corresponding to its input buffer which is updated throughout the simula-
tion. As such, inferring legal sequencing actions is equivalent to looking up the
current_machine within the Machines structure and retrieving its queue, which,
again, takes constant time.
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3. The WIP management information, consists of wip_jobs list, the global_to_wip dic-
tionary, and the arrived_jobs deque. All three are properties of the state, being
updated as required on every simulation step. The purpose of wip_jobs is to allow
quickly retrieving the job information that an agent is allowed to see from the state
matrices. Since the latter are arrays, this retrieval occurs in constant time. Conversely,
global_to_wip is used to quickly find the job position within the state matrices given
a particular WIP index. This is required to quickly update the target jobs in the global
matrices based on the agent action, which is WIP relative. Finally, the arrived_jobs
property maintains a FIFO queue of jobs that were already released, but do not fit
inside the WIP. Whenever a WIP slot opens up, i.e. when all the operations of a
WIP job finish, the arrived_jobs is popped and the other two attributes are updated
accordingly.

4. The decision management information is contained by the remainder of the properties
listed directly under the State class in Figure 3.2. These are the simulation_mode,
system_time, current_machine, current_job, current_operation, and legal_actions
properties. This information plays a vital role in switching between different state
update logics on agent actions.

The simulation mode, which can take values in {0, 1, 2}, determines the interpretation
of the agent decision and, at the same time, signals the type of decision required
to the scheduling algorithm. When the simulation requires a sequencing decision,
the simulation mode will have a value of 0. The information about the machine for
which the decision is to be taken can be retrieved from the current_machine property.
When simulation_mode == 1, a job routing decision is expected. In such cases, the
current_job property indicates which job is supposed to be routed. A simulation
mode equal to 2 indicates job routing operations from behind a failed machine.
This time, the agent does not have the freedom to chose one of several operations
from a particular job (if the operation precedence allows). Instead it has to select an
alternative machine for precisely one operation. The targeted operation is indicated
by the current_operation property. The legal_actions property has a dual function:
On the one hand, it is used by our simulation to quickly terminate the simulation if
the agent tries to execute undefined actions. On the other hand, it can be used to
implement the masking technique some RL algorithms can make use of (e.g. AZ; see
Section 4.2.2). Finally, the system_time property is used ubiquitously throughout
the simulation. Nearly all state updates, including event creation schemes require
this property.

Simulation Manager: The attribute of the EventManager type contained by the core
deals with handling the simulation events. More precisely, there are four queues that
this objects deals with, namely the event_heap, the routing_queue, the routing_pre_q
queue, and deferred_seq queue. The first queue is a binary heap and lies at the heart of
the simulation. The other three objects help deal with multiple decisions needing to be
taken without moving the simulation time forward, i.e. simultaneously relative to the
system_time.
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The event_heap consists of all the simulation events sorted ascendingly by their occur-
rence_time. Tie breaking is not explicitly being handled, since the order of execution
for concomitant events is irrelevant within FabricatioRL, and heapq, the binary heap
implementation we use, is deterministic. The events of the heap all implement the Event
interface and fall into one of four categories, namely ResourceAvailability, OperationFin-
ished, JobArrival and TransportArrival. Event objects are self-handling, the state update
logic is encapsulated within the respective event. Whenever the event triggers, the handle
method is called to modify the state.

Events can be either blocking, or non-blocking (blocking == false). If the event is non-
blocking, the next event in the queue will be triggered upon the return of the first
event’s handle method. For instance, when jobs arrive, the corresponding entry is added
to arrived_jobs and the tracker variables are updated. Since new job arrivals do not
impact the resource availability directly, the next event triggers. Conversely, when
an OperationFinishedEvent occurs, the event processing is halted upon marking the
corresponding machine as free, so as to allow the agent to make the next decision.

The routing_pre queue is filled with operation indices when resources fail. In such cases
all the operations buffered at the failed resource are first added to this queue. Operations
from this queue are popped one by one and the scheduling agent is required to route the
operations away from the failed resource. This decision loop stops when the queue is
empty. Agents can alternatively chose to leave the operations blocked in the buffer behind
the failed resource until the latter is repaired.

Aside from a phase immediately after initialization, the routing_queue is empty or contains
exactly one operation. At the very beginning of the simulation (system_time == 0), the
routing_queue contains all job indices. These indices are then popped from the queue
one by one, and the agent is required to select the appropriate downstream resource. The
simulation proceeds with popping the next event from the event_heap once the queue
is empty. Then, whenever an operation finishes, the job to which the finished operation
belonged to is added to the routing_queue, such that the sequencing decision can first
be dealt with. After the sequencing decision, the simulation immediately switches to
the job routing decision by popping the job index from the routing_queue. Since wait is
undefined for the job routing mode, the queue empties out immediately.

The deferred_seq queue is needed to deal with the deferred sequencing decisions, as the
name suggests. When the simulation is in sequencing mode, an agent can decide to defer
the sequencing decision by means of a wait flag. As a result the particular resource is
added to the deferred_seq queue. The simulation proceeds with asking the agent for a
job routing decision and then rolls the time forward by popping the next event from
the event_heap. If a new sequencing decision is required, the associated resource is first
added to the deferred_seq queue. Then the simulation loops over the queue exactly once
and the agent is presented with the respective sequencing decisions again. The resource
indices associated with deferred sequencing decisions stay in the queue until the wait
flag stops being produced by the agent or until the wait flag becomes illegal. The latter
situation occurs when there are no more events to be triggered in the SimulationManager’s
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event_heap.

Core: The Core method names are suggestive of the link to the outer layer class
(FabricatioRL). While the outer simulation layer contains the representation logic, the
actual simulation logic, with the exception of the reset function, is implemented entirely
by the Core class. The step method the fundamental channel of the simulation logic,
functioning as the sole state-transition coordinator. Legal actions are computed and
assigned to the corresponding State property by the class-private get_legal_actions
method during step calls. The make_deterministic function is used by the corresponding
make_deterministic_copy function of the outer layer to eliminate the stochastic elements
of the state. As opposed to the FabricatioRL class, the Core is not configurable. Core.step
only “understands” direct actions, i.e. operation indices for sequencing and resource
indices for job destination selection decisions.

All simulation dynamics are implemented within the step method of the Core object.
Figure 3.9 sketches the method’s control flow as a sequence diagram. Depending on the
simulation mode 1 , step interprets the agent action differently and correspondingly
updates the simulation state 2.1 / 2.2 / 2.3 . Before returning, the method creates and
queues the event resulting from the agent decision 3.1 / 3.2 / 3.3 , pops a decision from
the correct simultaneous decision queue 5 or triggers and handles the next events from
the event heap 6 7 8 , queues the next required decisions and changes the mode if
necessary 9 , and computes the next legal actions 10 . The only events that are created as
a result of an agent’s action are of type OperationFinishedEvent and TransportArrivalEvent
(renamed to ofe 3.1 and tae 3.2 3.3 in the figure, respectively). The former is created when
the simulation is in the sequencing mode ((i) in Figure 3.1), and reflects the agent’s choice
of operation to start processing on the machine indicated by the current_resource variable
in the State. The latter event ((ii) and (iii) in Figure 3.1) is created in job routing mode
and reflects the agent’s dual choice of next job operation and machine that is to process
the chosen operation. If the simultaneous decision queues (deferred_seq, routing_queue,
and routing_pre) require handling 4 , the respective event is popped from the queue 5 .
For simplicity, the queues are represented as the single decision_queue in the figure. If no
decision needs to be been handled 4 , the simulation pops events from the event_heap
7 and updates the state by calling their handle method 8 until a blocking event is

encountered 6 . In the final two stages, the core object then prepares the state reflecting
the need for the next decision 9 , and updates the legal_actions property of the state 10
before returning control to the agent. Note that the setup_decision in the figure represents
a simplification analogous to decision_queue.

Requirements: The described implementation logic associated with job routing and
sequencing decisions ensures the satisfaction of the reactive breakdown coverage requirement.
Moreover, the Trackers class maintains all intermediary variables used for target (𝛾)
computation including the current system time, thus guaranteeing 𝛾-traceability.

The mechanisms of the core module described here enable an efficient runtime, which
depends mainly on the event queue and state update procedure. During simulation
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Figure 3.9: Sequence diagram of FabricatioRL’s step function from the core module’s point
of view.

execution, events are created dynamically depending on agent decisions and stochastic
influences, and added to the event_heap, which is a binary heap. The events are handled
in order of their occurrence depending on their type. The event handling runtime is 𝑂(1):
This is because the exact positions in the State that need to be updated on occurrence
are saved within the event instance on creation, e.g. the index of the operation and the
machine it is processing on, for OperationFinishedEvents. Let 𝑛 be the total number of
operations to be scheduled during a simulation run. Every operation first needs to be
transported then processed. That means that there are 𝑂(2𝑛) events to be processed. The
event_heap has an insertion time of 𝑂(log(𝑛)) and 𝑂(1) for popping the next event. This
leads to a total asymptotic runtime of 𝑂(2𝑛log(𝑛)).

The planning method compatibility requirement is enabled by the core module allowing
agents to defer actions by means of a wait signal at the first cycle through the deferred_seq
queue. Without the wait signal, it is not possible to iteratively build – and hence simulate –
all possible schedules.

3.3 Visualization and Examples

For debugging and exemplification purposes we implemented logging functionality within
FabricatioRL which works in conjunction with a visualization webapp. We detail the
visualization in Section 3.3.1.

To make it easier for researchers to familiarize themselves with our code, we provide
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two simple usage examples within the Github repository (Rinciog et al., 2021a) hosting
our code. These examples are much simpler than the scripts associated with our later
experiments which are also published. The latter are reserved for more advanced users.
The introductory examples discussed in Section 3.3.2.

3.3.1 Webapp and Logger

The webapp consists of a Flask (Grinberg, 2018) backend and a pure JavaScript frontend
using the D3.js (Bostock, 2022) and dagre (Newell, 2022) visualization frameworks to render
the different state components. This visualization solution was chosen for its speed and
flexibility. Depending on the scheduling problem, the amount of information contained in
a state can be staggering. This leads to a dual problem. On the one hand, using standard
python plotting libraries such as seaborn (Waskom, 2021) for the visualization of different
state components can lead to long waiting times for generating the visual information. On
the other hand, given the sheer amount of information contained by the scheduling state,
it can become difficult to sift through the generated data in an intuitive fashion.

Visualization App: Both the backend and the frontend are conceptually straightforward
in terms of architecture. The backend consists of several functions that read and parse the
JavaScript Object Notation (JSON) data written by the logger and a function that compares
the number of states rendered by the frontend with the number of states written by the
logger in the corresponding log directory. The frontend contains a single HTML page
which is constructed dynamically using JavaScript. To keep the page updated with the
latest backend information, an asynchronous polling function is embedded in the page’s
scripts.

Every ten seconds, a call is made to the backend. If new state logs have been written, then
the frontend is asynchronously updated with the new state information. Currently, the
state information of a complete simulation run is loaded to the page in its entirety but kept
hidden. States are then displayed one at a time using a slider.

The app’s page is structured structured as can be seen in Figure 3.10. It consists of a slider
at the top 1 , a menu on the left 2 and a series of plots grouped into distinct tiles within
the main body. Panning and zooming is set up for all visualization tiles. At the bottom of
the page’s main body, the contents of the event_heap are displayed as a table 3 . The
slider allows scrolling through the different states produced by the simulation. The system
time and state number are displayed to the right of the slider 4 .

There are five categories of tiles that can be displayed. The first category 5.1 displays
the precedence of the remaining operations within all jobs as a graph using dagre as a
visualization library. The top left tile in Figure 3.10 is an example of this 5.2 .

The second category pertains to matrices 6.1 . Matrix tiles (e.g. middle left) correspond to
different state matrices and vectors and are visualized as heat-maps 6.2 . Job-matrices,
contain additional information encoded through colors. Grayed out job information
corresponds to jobs currently outside the WIP. Red highlights indicate the last sequencing
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Figure 3.10: Simulation visualization front-end.

decision while yellow highlights represent the other legal actions during the last decision
making step.

The third category 7.1 contains Gantt charts. The toggled in tile 7.2 displays the chart of
the all operations scheduled to date (e.g. middle right). Additionally, if the simulation
follows a scheduling plan rather than a purely-reactive control, the plan can be logged and
displayed in the front-end.

The fourth tile category contains bar plots for different goal variables, also referred to as Key
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Performance Indicator (KPI). In the discussed figure, the job-centric KPI 8.1 are displayed
on the bottom left tile and the resource-centric KPI 8.2 on the bottom right.

The fifth category 9.1 contains a single tile (top right) and represents the resource state
using a separate table for each resource 9.2 . The first table row contains the machine
name and the list of types it can process. The next row contains the two headings namely
“Input Buffer(𝑏)” and “Processing”. The 𝑏 in the first heading represents the total number
of buffered operations. The last row contains the first three operations in the buffer. The
cell under the “Processing” heading contains the index of the operation currently being
processed. The decision that lead to this particular state is visualized using connectors
between resource tiles. Red connectors represent sequencing decisions, while green
connectors represent job routing decisions.

The menu on the left 2 controls what information is displayed on the page body. In
each menu group 5.1 6.1 7.1 check-boxes allow the user to toggle the visibility of that
particular element within the body of the page. At the very bottom of the menu, the
“Runs” dropdown menu 10 allows the user to switch between separate simulation runs.
The log file stream corresponding to a run needs to be isolated from the others using
distinct directories. Currently, the tile representing the machine state 9.1 , the KPI tiles
8.1 8.2 and the event table at the bottom 3 cannot be toggled off. For job matrices, the
menu contains a radio 11 button specifying whether the displayed job matrix information
should be limited to the WIP or not.

The tile set selection chosen (through checked boxed in the menu, run selection and
radio button) remains in place when using the slider. As such, the user can inspect
the progression of particular state aspects rather than the evolution of the state in its
entirety.

Logger: To make use of the visualization, the logging functionality needs to be first turned
on by specifying a non empty logfile_path string when instantiating FabricatioRL. Our
simulation framework will then write log files to the specified location. If the webapp
is concomitantly running, and its log input directory corresponds with FabricatioRL’s
log output directory, it will parse and visualizes the logfiles as they are produced by the
simulation.

Turning on the logger adds considerable overhead to the simulation, hence it should not be
used during runtime sensitive processes such as model training. The overhead stems from
both the IO operations associated with writing files to the disk and the looping involved
with piecing together the log components. For debugging purposes, we also recommend
turning off any auto-play elements within FabricatioRL, such that there is less difference
between two consecutive states, and, as such, the simulation logic is easier to track.

The information compiled by the logger for every state consists of eight components,
which combine both State and EventManager information, and is written to the disk as
a single JSON file named by the state number. The simulation data contained in the
current simulation state is read by the logger and transferred into a JSON format file as
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expected by the visualization app. The JSON log contains the following eight top level
keys: management_info, precedence_graphs, partial_schedule, machines, matrices, pend-
ing_events, metrics_machines, and metrics_jobs. Most of this information is compiled
from a single source within the State, e.g. matrices or precedence_graphs, while others are
compiled using additional properties maintained by the logger, e.g. the partial_schedule,
which is a Gantt chart compiled within the logger’s schedule property as the simulation
progresses.

3.3.2 Usage Examples

Simple Heuristic Control: Running the simulation with a simple heuristic, e.g. LPT
(Benoit et al., 2021) can be done in three steps.

In a first step, the ReturnTransformer object should be implemented. LPT only operates
on processing times for the buffered operations and does not consider the return signal.
As such, the transform_reward function can simply return None. The transform_state
function should return the legal_actions list and the operation duration matrix from the
Matrices object. To be able to compute the values of different optimization goals at the end
of the simulation, the Trackers object should also be returned.

The second step consists pf the setup parameter definition. Since standard JSSPs are
fully described by the operation type and operation duration matrix, the other simulation
parameters retain their default values.

In a third step, the simulation step function is called on a loop with an action indicated by
a select_action function. The latter takes the legal_actions and operation duration matrix
information and simply selects the operation from legal_actions with the least value in the
the duration matrix. The desired optimization metrics can be computed from the Trackers
object of the last state returned by step.

KerasRL Agent: The second scenario is a DQN training with KerasRL on randomly
generated 𝐹𝑃𝑂𝑐 instances. To showcase interface customization, we use indirect heuristic
actions, (e.g. Luo, 2020), raw state information and average machine utilization as a reward.
We show how to train and test the agent using seeds. This can be done in six steps.

First, the Optimizer objects for machine sequencing and job destination selection need to be
implemented. Assuming these are simple priority rules, this boils down to implementing
the get_action method within an Optimizer object. Said method can be implemented
analogously to select_action in the LPT example above, with the distinction that the full
state structure is now transparent to the method.

Secondly, the ReturnTransformer object needs to be implemented. The transform_state
method takes 𝑂𝐷 , 𝑂𝑃 , 𝑂𝑇 , 𝑀𝑇𝑟 , 𝑀𝑇𝑦 , together with the current machine number, current
job number and the simulation mode from Matrices, flattens the multidimensional
information and returns it. The transform_reward method returns the average of all the
machine utilization tracker values.

Thirdly, the setup parameters including the optimizer lists and ReturnTransformer object
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are used to instantiate the environment.

In the fourth step, the DQN Agent’s NN architecture, is defined using Keras. The NN
in- and output dimensions are obtained from the observation_space and action_space
environment attributes. The NN is then passed to the constructor of the DQNAgent
implemented in KerasRL.

The fifth step pertains to agent training, which is done by calling the fit method on the
previously defined DQNAgent with the environment as a parameter and a number of
decisions to execute before training completes. To train on a specific group of inputs,
the set_seeds method should be called on the environment before the call to fit. The
environment will cyclically use these seeds when re-initializing the environment on the
reset background calls by the agent.

Finally, test can be called on the agent with the environment and number of episodes as
parameters. A different seed set can be set for testing.

3.4 Concluding Remarks

In this section we described the steps we took towards covering the validation gap
uncovered in Chapter 2 by means of an open source benchmarking simulation. To this end
we first derived requirements for our framework based on the RL scheduling experiment
standardization framework put forward in Chapter 2. Table 3.2 gives an overview of
the requirements discussed. In terms of setup, the simulation framework should be
general, extensible and 𝛾-traceable. With respect to RL control, the framework should
allow MDP configuration (breakdown, action, state, and reward), be gym compatible and
be asymptotically efficient in terms of runtime. With respect to experiment validation, the
framework should enable the exact reproduction of stochasticity, clearly separate inputs
from control, run on traditional inputs from the literature and be compatible with planning
methods.

In a next step we have shown how these requirements can be fulfilled by using a layered
architecture implementing Gym. The inputs reflected by the state and separated by means
of a dedicated class, allow for the coverage of many production setups. The simulation
logic is centered around self-handling events and a specialised state structure allowing for
an efficient runtime. The key to RL configurability is creating an interface for externally
implemented objects to affect the simulation in terms of action interpretation and state
and reward representation. By using RNG seeding and executing all sampling before the
main simulation loop, stochasticity is made exactly reproducible.

While this work is a decisive step in the right direction for the task of validating RL
approaches for production scheduling, much remains to be done in terms of framework
validation, extension and actual RL benchmarking. Thorough testing of the provided
framework is necessary for simulation validation.

While the simulation decribed in this section represents significant progress for the filed
of RL production scheduling in particular and dynamic scheduling in general, the project
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Table 3.2: Simulation Framework Requirements Derived from the Standardization Frame-
work.

Requirement RL Scheduling Aspect Requirement Type

Generality Scheduling Setup Functional
𝛾-Traceability Scheduling Setup Functional
Modularity Scheduling Setup Non-Functional
Reactive Breakdown Coverage RL Design Functional
Action-Space Configurability RL Design Functional
State-Space Configurability RL Design Functional
Reward Configurability RL Design Functional
Extended Gym Compatibility RL Design Functional
Runtime Efficiency RL Design Non-Functional
Reproducible Stochasticity Validation Non-Functional
Input Separation Validation Functional
Backwards Compatibility Validation Functional
Planning Compatibility Validation Functional

should by no means end here.

More development effort should be spent along four lines. First, our simulation framework
should be extended to reach a 100% coverage of the scheduling problems in literature.
Secondly, the simulation should be more extensively tested, re-factored and documented.
Note that code makes use of type-hints, documents the main simulation functions and
provides a 70% code line coverage through tests. Still, more can be done, particularly
with respect to testing the more fringe setups made possible by our simulation. Thirdly,
the visualization, which is now, for now, only prototypical, could be developed into a
production level app. This could help make it easier for new researchers to the field
to get started with FabricatioRL in particular and dynamic production scheduling in
general.
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Chapter 4

From Theory to Implementation:
Selected RL Scheduling Algorithms

The way positive reinforcement is carried out is more important than the
amount

— B. F. Skinner

RL approaches position themselves somewhere between exact and priority rule approach-
es. As with exact re-planning solution approaches, RL schedulers make decisions in
the current state while taking future conditions into account. RL schedulers are similar
to priority rules in that they can react adaptively to changes in the production state
(Waschneck et al., 2018).

Note that “adaptivity” is not a well defined term. For terminological disambiguation,
we define “adaptivity” in the context of scheduling as the capability of an algorithm to
retain its solution quality under uncertain/shifting environment conditions. In general, an
algorithm is said to be adaptive if “changes its behavior based on the information available
at the time it is running” (Montillet et al., 2016). Estivill-Castro et al. (1992) define adaptive
(sorting) algorithms as those capable of taking advantage of the order within their inputs,
i.e. smoothly growing functions of both the input disorder. For Zaknich, 2005 adaptive
(filter) algorithms are those seeking “to minimize an appropriate objective or error function
that involves input, reference and [...] output signals”. Adaptive schedulers are defined
by Ferm et al. (2010) as algorithms that “change [their] scheduling scheme according to
the recent history and/or current behavior of the system”. Our definition is in line with
both the idea of reacting to environment conditions put forward by Estivill-Castro et al.
(1992), Zaknich (2005), Ferm et al. (2010), and Montillet et al. (2016) and the optimization
included by Zaknich (2005).

In stochastic environments, RL solutions may be preferable to re-planning using exact
approaches and extensive search for three reasons. First, a priori planning assuming
deterministic inputs may be thwarted by stochastic events occurring during production,
such as resource availability issues or new job arrivals. Secondly, finding optimal or near-
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Table 4.1: Perceived RL solution approach advantages compared to exact re-planning
solutions and priority rules.

Criterion Priority
Rules RL Exact

Re-Planning
Deterministic Setup
Solution Quality Medium High Optimal

Adaptivity High High Low
Transferability High High Variable
Runtime Efficiency High High Low
Mathematical
Modeling Overhead Low Low High

optimal solutions for the planning problem is computationally taxing for large production
instances. Finally, such solutions require exact mathematical descriptions of the problem
at hand, which are sometimes difficult to formulate for complex setups (e.g Rinciog et al.,
2020).

As opposed to simple priority rules, RL approaches could learn to leverage patterns in
the scheduling problem, leading to better scheduling solutions e.g. Kuhnle et al., 2020.
The priority rule approach disregards any structure that may be inherent to the given
problem, i.e. priority rules are myopic (Luo, 2020), and is, by design, not optimal. On the
flip side, priority rules could still work well in uncertain environments (Wang et al., 2017)
and require no expensive computation.

From the RL method comparison with exact approaches and simple priority rules, the
following potential RL advantages become apparent. First, RL solutions are seen as
adaptive (e.g. Hu et al., 2020b), being potentially more robust in stochastic environments
than exact approaches (e.g. Wang et al., 2021c) and yielding better quality solutions than
priority rules (e.g. Luo, 2020). Secondly, RL models, once trained, are efficient in terms of
runtime (e.g. Waschneck et al., 2018). Thirdly, the mathematical modeling overhead of RL
approaches is low e.g. Baer et al., 2019.

Table 4.1 succintly sums up these postulated advantages. Both priority rules and RL are
expected to be highly adaptive, albeit on a different solution quality level. A different
aspect of adaptivity is captured by the transfer learning capability associated with RL.
In the scheduling context, transfer learning implied that models trained on particular
instances or problems can be successfully deployed to different instances or problems
with little or no loss of solution quality. Since neither priority rules nor exact approaches
involve learning, we capture this aspect under the “transferability” attribute. Priority
rules are highly transferable. The transferability of exact approaches depends on the
problem and the particular type of exact re-planning solution approach. In terms of
runtime, we consider polynomial solutions as highly efficient and exponential solutions as
inefficient.

Motivated by the presented RL advantages, in this Section, we formally introduce the
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two RL algorithms, namely DDQN and AZ, which we will later employ as production
scheduling solvers. We start by laying down the mathematical RL formalism required for
the detailed understanding our chosen algorithms in Section 4.1. Thereafter, we motivate
our specific algorithm choice (DDQN and AZ) and describe their particularities from
theory to implementation in Section 4.2.

4.1 Preliminaries

Recall the broad description of the RL loop from Section 2.3: Agents take actions within
an environment based on the current state. The environment takes the agent action and
transitions into a next state while providing the agent with a reward signal. It is by means
of this rewards, that agents, which seek to maximize their future reward, can improve
their action selection strategy.

This interaction is captured by the MDP formalism which we formally introduce in
Section 4.1.1 along with the Generalized Policy Iteration (GPI) which abstractly describes
the way in which agents improve. Based on the mathematical MDP formalization, we then
detail the exact way in which agents can achieve their reward maximization goal within in
different RL approach paradigms. Value-based approaches represent the foundation for
most RL theory and are introduced in Section 4.1.2. The value-based complement, namely
the policy-based approach, is introduced in Section 4.1.3. The brief Section 4.1.4 elucidates
the main idea behind the actor-critic paradigm.

The information in this section can be found in a different form in varied RL manuals,
albeit in a less concise fashion. We heavily rely on the seminal work of Sutton et al. (2018),
who developed an introduction manual that was refined and adapted over more than 20
years (e.g. Sutton et al., 1998) to lay the theoretical foundation that follows. If not otherwise
indicated, the reader is to assume that the lain down concepts are extracted from the Work
of Sutton et al. (2018).

4.1.1 Markov Decision Process and the Generalized Policy Iteration

MDP are formally described as the quadruple (𝒮 ,𝒜 ,ℛ , 𝑝). 𝒮 is the designation of the state-
space,𝒜 represents the action-space, ℛ defines the set of rewards and 𝑝 : 𝒮×ℛ×𝒮×𝒜 →
[0, 1] is the so called dynamics function. The dynamics function gives the probability of
transitioning from some state 𝑠 ∈ 𝒮 into another state 𝑠′ ∈ 𝒮 and receiving a reward 𝑟 ∈ ℛ
on taking an action 𝑎 ∈ 𝒜, as described by Equation 4.1. Here, and in all subsequent
equations, 𝑆𝑡 , 𝑅𝑡 and 𝑎𝑡 denote state, rewards and actions at a particular time 𝑡.

𝑝(𝑠′, 𝑟 | 𝑠, 𝑎) := P(𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟 | 𝑆𝑡−1 = 𝑠, 𝑎𝑡−1 = 𝑎). (4.1)

MDP are sometimes described as the quintuple (𝒮 ,𝒜 ,ℛ , 𝑝, 𝑟). While the dynamics
function fully defines the decision process, it is often split into a state-transition function
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𝑝 : 𝒮 × 𝒮 ×𝒜 → [0, 1] and a reward function 𝑟 : 𝒮 ×𝒜 → ℛ 1. These two functions are
defined for the general case by equations 4.2 and 4.3 respectively, where 𝑡 denotes the
current time and 𝑆𝑡 , 𝑅𝑡 the respective state and reward values at time 𝑡.

𝑝(𝑠′ | 𝑠, 𝑎) : = P(𝑆𝑡 = 𝑠′ | 𝑆𝑡−1 = 𝑠, 𝑎𝑡−1 = 𝑎) =
∑
𝑟∈ℛ

𝑝(𝑠′, 𝑟 | 𝑠, 𝑎) (4.2)

𝑟(𝑠, 𝑎) : = E[𝑅𝑡 | 𝑆𝑡−1 = 𝑠, 𝑎𝑡−1 = 𝑎] =
∑
𝑟∈ℛ

𝑟
∑
𝑠′∈𝒮

𝑝(𝑠′, 𝑟 | 𝑠, 𝑎) (4.3)

Note that for deterministic RL environments, given a current state 𝑠 and a fixed action
𝑎, 𝑝(𝑠′ | 𝑠, 𝑎) = 1 for exactly one next state 𝑠′ ∈ 𝒮 and 0 for all other combinations. For
instance, when making a move 𝑎 from a position 𝑠 in chess, the state that follows, 𝑠′, is a
certainty defined by the game rules. Hence, assuming fixed prior states 𝑠 and actions 𝑎,
the transition probability is 1 for the triple (𝑠′, 𝑠 , 𝑎) only. All other board configurations
𝑠′′ ≠ 𝑠′ have a probability 𝑝(𝑠′′ |𝑠, 𝑎) of 0. In stochastic environments, however, the same
does not hold.

The decision process lain down by (𝒜 ,𝒮 ,ℛ , 𝑝, 𝑟) has the Markov property, meaning that
the transition probability from one state to another is only dependent on the current
state-action pair and not on any of the previous, i.e.

P(𝑆𝑡 = 𝑠 | (𝑆𝑡−1 = 𝑠𝑛 , 𝑎𝑡−1 = 𝑎𝑛), . . . , (𝑆𝑡0 = 𝑆0 , 𝑎𝑡0 = 𝑎0))
= P(𝑆𝑡 = 𝑠 | 𝑆𝑡−1 = 𝑠𝑛 , 𝑎𝑡−1 = 𝑎𝑛). (4.4)

The agent’s job is to maximize the value of the expected return denoted as 𝐺𝑡 , where 𝑡 is the
current time-step. Whenever the agent-environment interaction is finite, i.e. after 𝑇 time
steps there is no more action that needs to be taken, 𝐺𝑡 can be defined as sum of rewards
𝑅𝑡+𝑘 , 1 < 𝑘 < 𝑇 − 1. To avoid 𝐺𝑡 becoming∞, the rewards are generally discounted using
a parameter 𝛾 ∈ [0, 1):

𝐺𝑡 :=
∞∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 = 𝑅𝑡+1 + 𝐺𝑡+1 (4.5)

RL agents use a policy function 𝜋 to decide which action to take in any given state. 𝜋

maps state-action pairs to the probability of the particular action yielding the most reward,
i.e. the action argmax𝑎𝜋(𝑎 | 𝑠) should be chosen from given state 𝑠. The policy is tightly
bound to the concept of state- and action-value, 𝑣𝜋(𝑠) and 𝑞𝜋(𝑠, 𝑎). These functions can be
used to evaluate how “good” a particular position 𝑠 is, and how “good” an action 𝑎 taken
from a position 𝑠 is respectively. Both value functions are dependent on the agent policy
𝜋 and represent an approximation of the expected future reward. Formally, 𝑞𝜋(𝑠, 𝑎) and

1Using 𝑝 for both the transition function and the dynamics function constitutes abuse of notation, but is
the norm as per Sutton et al. (2018).
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𝑣𝜋(𝑠) can be defined as per Equations 4.6 and 4.7:

𝑞𝜋(𝑠, 𝑎) = E𝜋[𝐺𝑡 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]
= E𝜋[𝑅𝑡+1 + 𝛾𝐺𝑡+1 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

= 𝑟(𝑠, 𝑎) + 𝛾
∑
𝑠′∈𝒮

𝑝(𝑠′ | 𝑠, 𝑎)
∑
𝑎′∈𝒜

𝜋(𝑎′ | 𝑠′)E𝜋[𝐺𝑡+1 | 𝑆𝑡+1 = 𝑠′, 𝐴𝑡+1 = 𝑎′]

= 𝑟(𝑠, 𝑎) + 𝛾
∑
𝑠′∈𝒮

𝑝(𝑠′ | 𝑠, 𝑎)
∑
𝑎′∈𝒜

𝜋(𝑎′ | 𝑠′)𝑞𝜋(𝑠′, 𝑎′) (4.6)

𝑣𝜋(𝑠) = E𝜋[𝐺𝑡 | 𝑆𝑡 = 𝑠]

=
∑
𝑎∈𝒜

𝜋(𝑎 | 𝑠)(𝑟(𝑠, 𝑎) + 𝛾
∑
𝑠′∈𝒮

𝑝(𝑠′ | 𝑠, 𝑎)E𝜋[𝐺𝑡+1 | 𝑆𝑡+1 = 𝑠′])

=
∑
𝑎∈𝒜

𝜋(𝑎 | 𝑠)(𝑟(𝑠, 𝑎) + 𝛾
∑
𝑠′∈𝒮

𝑝(𝑠′ | 𝑠, 𝑎)𝑣𝜋(𝑠′)) (4.7)

The optimal action- and state-value functions are defined as the return of the optimal policy
𝜋∗ for every state (Equations 4.8, 4.9). While optimal value functions are impossible to
compute for most real-world RL applications, the relationship defined by the two equations
also is the same for good policies and value functions. This implies that, provided we
find a good approximation of either value function, we can construct a good policy and
vice-versa.

𝑞∗(𝑠, 𝑎) := max
𝜋

𝑞𝜋(𝑠, 𝑎) =: 𝑞𝜋∗(𝑠, 𝑎),∀𝑠 ∈ 𝒮 (4.8)

𝑣∗(𝑠) := max
𝜋

𝑣𝜋(𝑠) =: 𝑣𝜋∗(𝑠),∀𝑠 ∈ 𝒮 (4.9)

This idea is reflected by a generic technique called GPI. Hereby, an agent starts off
with a random policy, which is evaluated through environment interaction by means of
computing (an approximation of) the associated value function (e.g. 𝑞). This stage is
called policy evaluation. The policy improvement stage ensues thereafter. During this
stage, the policy is changed by greedily following the value function estimate to collect
as much reward as possible. These two steps are repeated until the policy and value
functions stop improving (see Figure 4.1). Note the GPI loop lain down is an abstraction.
The granularity and interdependence of the two phases is conditional on the particular RL
algorithm.

There are three main classes of RL algorithms to choose from implementing GPI, namely
value-based (𝑣), policy-based (𝜋), and actor-critic approaches (𝜋, 𝑣). Value-based methods
learn an approximation of a value function first and define the policy implicitly through
the value function. Conversely, policy-based methods learn a policy directly. Actor-critic
methods combine both approaches by learning the policy directly but employing a value
function approximation to inform the learning process.
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Figure 4.1: Generalized Policy Iteration GPI. Policy 𝜋 and value function estimation 𝑉

evolve through alternating evaluation and improvement phases until, ideally, an optimal
policy 𝜋∗ or value 𝑣∗ function is found. Optimal policies induce optimal policy functions
and vice-versa. (Source: Sutton et al., 2018)

4.1.2 Value-Based RL Approaches

The prototypical value-based approach is the so called Temporal Difference Learning
TD(�). The algorithm works as follows. First, the state value function approximation
𝑉 : 𝒮 → R is initialized to random values. For each step of an episode, i.e. the complete
collection of interactions until the environment encounters a terminal state, the agent first
selects an action 𝑎 as per policy 𝜋 induced by 𝑉 . After observing the reward 𝑅𝑡 and the
next state 𝑆𝑡+1, the agent computes the state-value error at time 𝑡 as per Equation 4.10 and
uses it to correct the value function during update as per Equation 4.11.

𝛿𝑡 := 𝑅𝑡 + 𝛾𝑉(𝑆𝑡+1) −𝑉(𝑆𝑡) (4.10)

𝑉(𝑆) ← 𝑉(𝑆) + 𝛼𝛿𝑡 𝑒𝑡(𝑆),∀𝑆 ∈ 𝒮 (4.11)

The update rule in Equation 4.11 above uses so-called eligibility traces 𝑒𝑡 are defined
recursively by 𝑒0(𝑆) = 0,∀𝑆 ∈ 𝒮 and 𝑒𝑡(𝑆) = �𝛾𝑒𝑡−1(𝑆) + 1{𝑆𝑡=𝑆} ,∀𝑆 ∈ 𝒮.2 The eligibility
trace mechanism simply tracks the visited states, such that the temporal difference error 𝛿
can be used to update more than one state at a time, albeit in a discounted fashion. � is
the eligibility trace discount factor. The 𝛼 parameter in Equation 4.11 is called the learning
rate.

The most straightforward way of representing 𝑉 would be a simple table of values that
indexes all environment-states 𝑆 ∈ 𝒮 directly. This, however, is infeasible for large state-
spaces such as those involved in production scheduling, depending on the respective

2Here and henceforth, 1 is an indicator function. Formally, indicator functions 1𝐴 are defined over a base
space Ω and take values in {0, 1}. 𝐴 ⊆ Ω is an event. 1𝐴 takes the value 1 for arguments 𝜔, if and only if
𝜔 ∈ 𝐴. The notation {𝑋 = 𝑘} defines the event wherein a stochastic variable 𝑋 takes the value 𝑘 (cmp. Henze
et al., 2010; Durrett, 2019).
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state-space modeling. Particularly continuous state components cannot be stored in a table
without quantization, which potentially leads to loss of information thereby impeding
algorithm convergence, or leading to a local optimum. Neural networks (NN) 𝑓� : 𝒮 → R,
as universal function approximators (Csáji, 2001), could be used instead. The policy
evaluation step becomes a simple lookahead search to select the action leading to the state
𝑠′ with the highest value 𝑓�(𝑠′) starting from the current state 𝑠.

Equations 4.10 and 4.11 become, 4.12 and 4.14. Here, we generalized the notation used by
Sutton et al. (2018) by involving the NN loss function 𝑙, e.g. Mean Squared Error (MSE),
explicitly in the computation of the state value error term 𝐽𝑡(�). The loss function
𝑙 : R × R ← R computes an error term 𝑙(𝑦, �̂�) between an expected/target value 𝑦 and
an estimated value �̂�. Within the current context, the target value is given by the sum
of the current reward 𝑅𝑡 and the estimated future reward of the next state 𝑓�(𝑆𝑡+1). The
estimation is represented by the neural network’s predicted value of the current state
𝑓�(𝑆𝑡). Note that when computing the gradient of the error term 𝑙(𝑅𝑡 + 𝑓�(𝑆𝑡+1), 𝑓�(𝑆𝑡))
with respect to network weights �, the numeric value of the first argument is used, while
the network function is expanded in the second argument.

𝐽𝑡(�) := 𝑙(𝑅𝑡 + 𝑓�(𝑆𝑡+1), 𝑓�(𝑆𝑡)) (4.12)

𝑒𝑡 ← �𝛾𝑒𝑡−1 + ∇�𝐽𝑡(�), 𝑒0 = 0 (4.13)

�← � + 𝛼𝐽𝑡 𝑒𝑡 (4.14)

The eligibility trace discount factor � can take any value between 0 and 1. Setting � to
0 and deferring the lookahead search in favor of the action-value estimation function 𝑄

yields two popular algorithms, namely SARSA and QL. The error and value estimation
update equations for both SARSA and QL (4.15 and 4.16) are, as one would expect,
very similar to TD(�). The eligibility trace term could be updated for 𝑄 values as
𝑒𝑡(𝑆, 𝐴) := �𝛾𝑒𝑡−1(𝑆, 𝐴) + 1{𝑆𝑡=𝑆,𝐴𝑡=𝐴} ,∀(𝑆, 𝐴) ∈ 𝒮 × 𝒜, but since � is 0, 𝑒𝑡(𝑆) is one for
exactly the current state 𝑆𝑡 and otherwise 0.

𝛿 := 𝑅𝑡 + 𝛾 max
𝑎𝑡+1

𝑄(𝑆𝑡+1 , 𝑎𝑡+1) −𝑄(𝑆𝑡 , 𝑎𝑡) (4.15)

𝑄(𝑆𝑡 , 𝑎𝑡) ← 𝑄(𝑆𝑡 , 𝑎𝑡) + 𝛼𝛿 (4.16)

The difference between the SARSA and QL is given by the moment when the action for 𝑆𝑡+1

is chosen, not by the error term computation or value function update scheme. SARSA
evaluates the policy to choose actions for both 𝑆𝑡 and 𝑆𝑡+1 before updating the 𝑄 function
(and thus the policy), while QL chooses the action for 𝑆𝑡 , updates the policy, and then
chooses the value for 𝑆𝑡+1. This results in the policy of the previous step not necessarily
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being followed, which is why QL is said to be off-policy.

Again, it is possible to use NN, this time 𝑓� : 𝒮 → R|𝒜| to represent 𝑄. The network
weights are then updated as per Equation 4.18. In Equation 4.17, the error term 𝐽(�) only
changes at index 𝑎𝑡 of the previously chosen action 𝑎𝑡 = argmax𝑎 𝑓�(𝑆𝑡) and 𝑙 is once again
the NN’s loss function.

𝐽(�)𝑎𝑡 = 𝑙(𝑅𝑡 + 𝛾 max
𝑎

𝑓�(𝑆𝑡+1), 𝑓�(𝑆𝑡)𝑎𝑡 ) (4.17)

�← � + 𝛼∇�𝐽(�)𝑎𝑡 (4.18)

4.1.3 Policy-Based RL Approaches

An alternative to the value-based methods described up to this point is given by the
so-called Policy Gradient (PG) methods. Herein a parameterized policy 𝜋� is used to select
actions directly. While PG methods may still employ a value function to learn the policy
parameters, the former need not be consulted when selecting an action. PG methods
define an objective function 𝐽(�) as the expected reward under policy 𝜋� starting from
the beginning of the agent-environment interaction. The objective function is initialized
to the value of the first state 𝑣𝜋(𝑆0) under the policy 𝜋 (Equation 4.19). The policy is
then improved iteratively by computing its gradient with respect to the policy weights
(Equation 4.21) and updating these using gradient ascent (Equation 4.22).

𝐽(�0) := 𝑣𝜋� (𝑆0) (4.19)

∇�𝐽(�) = ∇�
∑
𝑆∈𝒮

�𝜋� (𝑆)
∑
𝑎∈𝒜

𝜋�(𝑎 |𝑆)𝑞𝜋� (𝑆, 𝑎) (4.20)

PG Theorem∝
∑
𝑆∈𝒮

�𝜋� (𝑆)
∑
𝑎∈𝒜
∇�𝜋�(𝑎 | 𝑆)𝑞𝜋� (𝑠, 𝑎)

= E𝜋[𝑞𝜋(𝑆, 𝑎)∇�ln𝜋�(𝑎 | 𝑆)]
= E𝜋[𝐺𝑡∇�ln𝜋�(𝑎𝑡 | 𝑆𝑡)] (4.21)

�𝑡+1 := �𝑡 + 𝛼∇�𝐽(�𝑡) (4.22)

Computing the objective gradient is made possible by the policy gradient theorem. The
indirect dependence of the stationary distribution �𝜋� (𝑆) of the Markov Chain on the
policy 𝜋� together with the direct dependence of the action probabilities 𝜋�(𝑎 | 𝑆) on the
policy 𝜋� (first line of Equation 4.21) makes computing the partial derivatives with respect
to � difficult. Because of the policy gradient theorem, it is possible to compute a value
proportional to the objective function gradient by only calculating the partial derivatives
of 𝜋� with respect to its weights � (second line of Equation 4.21). The objective function
gradient can now be expressed as the expectation under policy 𝜋� of the product of the
expected return 𝐺𝑡 and the gradient of the natural logarithm of the policy 𝜋� with respect
to �. We refer the reader to Sutton et al. (2018) for the proof of the PG theorem.
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Given the expectation representation of the gradient, there are quite a few ways to
approximate the PG. The REINFORCE approach, for instance, involves the Monte Carlo
approximation of the policy-dependent expectation in the last line of Equation 4.21. To
this end, trajectories, i.e. sequences of state, action, rewards (𝑆1 , 𝑎1 , 𝑅1), (𝑆2 , 𝑎2 , 𝑅2),
. . . , (𝑆𝑇 , 𝑎𝑇 , 𝑅𝑇) are generated with the current policy 𝜋�. Using the sum of immediate
rewards

∑
𝑖>𝑡 𝑅𝑖 observed along the trajectory as an approximation of the expected return

𝐺𝑡 at time point 𝑡, we can then update the policy weights as per Equation 4.23, for every
trajectory point 𝑡 ∈ {1, . . . , 𝑇}:

�← � + 𝛼𝛾𝑡𝐺𝑡∇�ln𝜋�(𝑎𝑡 | 𝑆𝑡) (4.23)

4.1.4 Actor-Critic RL Approaches

Actor-critic approaches combine policy- and value-approaches into one. Having already
introduced these two paradigms, the description of actor-critic systems can be kept (very)
brief.

Instead of using environment interaction to approximate the expected future reward 𝐺𝑡 ,
as in the REINFORCE example, actor-critic approaches use a value function approximator,
i.e. the critic, to inform the policy approximator, i.e. the actor, of the quality of its
action. The action value function 𝑄(𝑆, 𝑎) could be trained separately following a value-
based approach, e.g. DQN. Its evaluations 𝑄(𝑆𝑡 , 𝑎𝑡) of actions 𝑎𝑡 given states 𝑆𝑡 at time
point 𝑡 is then used directly within the PG computation replacing 𝐺𝑡 in Equation 4.21,
leading to Equation 4.24. The expectation term is approximated by gathering a large
number 𝑛 of (𝑆𝑡 , 𝑄(𝑆𝑡 , 𝑎𝑡),𝜋�(𝑎𝑖 |𝑆𝑖)) tuples, and averaging out the corresponding terms
𝑄(𝑆𝑖 , 𝑎𝑖)∇�ln𝜋�(𝑎𝑖 | 𝑆𝑖).

∇�𝐽(�) ∝ E𝜋[𝐺𝑡∇�ln𝜋�(𝑎 | 𝑆)]

≈ 1
𝑛

𝑛∑
𝑖=1

𝑄(𝑆𝑖 , 𝑎𝑖)∇�ln𝜋�(𝑎𝑖 | 𝑆𝑖)] (4.24)

�𝑡+1 := �𝑡 + 𝛼∇�𝐽(�𝑡) (4.25)

4.2 Selected RL Algorithms

Section 2.3.3 has shown the great diversity of employed RL algorithms within the field
of scheduling. From the many available algorithm options we chose AZ and a flavor of
DQN, namely DDQN, as our RL scheduling champions.

The value-based DDQN algorithm was selected because of its relative simplicity and the
overwhelming popularity of its predecessors QL and DQN within the RL production
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scheduling community (see Figure 2.11). The DDQN flavor of QL was selected as it is state-
of-the art within the family alongside DDDQN, and is implemented by Stable-Baselines 3
(Raffin et al., 2021), an actively maintained RL agent library. Conversely, the actor-critic
AZ approach was chosen because of its innovative combination of different RL and search
paradigms and its few applications within the field of production scheduling.

We describe the inner-workings of DDQN and AZ in Sections 4.2.1 and 4.2.2 respec-
tively.

4.2.1 Double Deep-Q Networks

The DDQN algorithm introduced by Van Hasselt et al. (2016) distinguishes itself from the
generic QL algorithm in three ways, which we describe in the following paragraphs. First, a
NN is used as a value function approximator. Secondly, a technique called memory-replay
is used during training to curtail overfitting and increase data efficiency. Thirdly, a target
network is introduced to improve learning stability and reduce target value overestimation,
hence the name “Double DQN”. The first two extensions are shared by its predecessor
DQN, which was first described by Mnih et al. (2015). We conclude this section with
a brief discussion of the exploration vs exploitation dilemma and an implementation
overview.

NN Approximator: In the case of DQN, a neural network 𝑓� : 𝒮 → R|𝒜| is used to represent
𝑄. Given a state 𝑆𝑡 agents choose the action with the highest value as predicted by the
network (Equation 4.26). The error term is calculated as per Equation 4.17. Large values of
the discount factor 𝛾 serve to shift focus from the immediate reward to future rewards. In
Equation 4.18, which describes the network update, the error term 𝐽(�) is non-zero only
at index 𝑎𝑡 of the previously chosen action 𝑎𝑡 = argmax𝑎 𝑓�(𝑆𝑡) and 𝑙 represents the NN’s
loss function. Parameter 𝛼 defines the DQN learning rate. In supervised learning terms,
the “ground truth” vector �̂�, which has a dimension of |𝒜|, is identical to the predicted
vector 𝑦 := 𝑓�(𝑆𝑡) save for the position 𝑎𝑡 .

𝑎𝑡 = argmax
𝑎

𝑓�(𝑆𝑡) (4.26)

Memory Replay: More sophisticated DQN agents (e.g. Pilchau et al., 2020) do not perform
error term computation and NN updates using a single experience tuple (𝑆𝑡 , 𝑎𝑡 , 𝑅𝑡 , 𝑆𝑡+1)
which results from taking action 𝑎𝑡 in state 𝑆𝑡 . Instead, the agent uses a limited size FIFO
queue 𝐷 named “replay memory” to store experience tuples whenever actions are taken.
The FIFO nature of the queue serves to reflect a preference for more recent experiences,
associated with a better policy over old experiences. The neural network is trained on
targets constructed as per Equation 4.17 using the experience from a random minibatch
drawn from 𝐷 after a predetermined number of steps. Sampling mini-batches helps avoid
training on data that is too similar. This is because consecutive states and the corresponding
error terms tend to be highly correlated. Additionally, a higher data efficiency is achieved
because of the repeated use of the same data points during training.
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Target Network: DDQN builds upon DQN by introducing a second network into the
training process seeking to improve network stability and reduce target value over-
estimation. DDQN separates between the online network 𝑓� used for action selection and
the target network 𝑓�̂ used to compute the target values for the error term. When updating
the online network (Equation 4.18) 𝑓�̂ is used instead of 𝑓� in the first argument of the loss
function in Equation 4.17. The two networks are different solely with respect to the value
of their weights. Every 𝑘 steps, the weights � of the online network are used to update
the target network weights �̂. A soft target weight update, as proposed by Lillicrap et al.
(2015), using an additional parameter 𝜏 ∈ (0, 1], can be performed (Equation 4.27) instead
of directly copying the network weights.

�̂ = 𝜏� + (1 − 𝜏)�̂, � ∈ (0, 1). (4.27)

Exploration vs exploitation: DQN agents use an 𝜖-greedy strategy to tackle the exploration
versus exploitation dilemma (Sutton et al., 1998). Exploitation, i.e. using the knowledge
encoded by the agent NN to choose actions, is needed in order to maximize reward gains.
Exploration, i.e. ensuring that the state-space is sufficiently inspected, facilitates a better
approximation of the optimal Agent policy. When using the 𝜖-greedy strategy, the agent
chooses a random action with probability 𝜖 ∈ (0, 1). The initial values of epsilon, i.e. 𝜖max

is multiplicatively decayed each time an action is chosen using the 𝜖decay ∈ (0, 1) parameter.
The value of 𝜖 used during training can be capped as specified by 𝜖min.

Implementation Overview: Figure 4.2 visualizes the algorithm at a glance and Table 4.2
presents the corresponding algorithm parameters. For concision we deferred visualizing
the 𝜖-greedy action selection scheme. We also neglected the visualization of the frequency
of the online network update (every 𝑘self-play steps), and, similarly the target network
update frequency (every 𝑘target steps).

During the self-play stage, the online network 𝑓� takes agent-states 𝑆𝐴
𝑡 and produces

the action values �̂� from which the action 𝑎𝑡 corresponding to the maximum value is
chosen and passed along to the environment, moving it into the next state 𝑆𝐸

𝑡+1. The
reward produced by the environment 𝑅𝑡 on transition is saved within the replay buffer
𝐷 alongside the old agent-state, the action that lead to it, and the new agent-state as the
experience tuple (𝑆𝐴

𝑡 , 𝑎𝑡 , 𝑅𝑡 , 𝑆
𝐴
𝑡+1). Every 𝑘self-play steps, a mini-batch 𝑏 is sampled from 𝐷,

and the error term is computed for every sample 𝑖 using the experience tuple. To this end,
the MSE between the output vector �̂� := 𝑓�(𝑆𝐴

𝑡 ) and the target vector 𝑦 is calculated. The
vector 𝑦 and �̂� are identical, save for the value at the position 𝑎𝑡 , which, for 𝑦 corresponds
to 𝑅𝑖 + 𝛾 max

𝑎
𝑓�̂(𝑆𝐴

𝑖+1). 𝑓� is updated using the error term 𝑙(𝑦, �̂�) (Equation 4.17) using the
learning-rate 𝛼 (Equation 4.18). Every 𝑘target steps, the 𝑓�̂ is additionally updated as per
Equation 4.27.

The above elaboration is sufficient for readers to understand the parametrization of the
Stable-Baselines 3 (Raffin et al., 2021) implementation which we use during our experiments.
This agent library was chosen because of its continued support, implementation speed
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Table 4.2: DDQN parameters at a glance.

Name Symbol Description
Self-Play/Target Network 𝑓�/ 𝑓�̂ Self-Play/Target Neural Network taking

states as inputs and outputting the value of
all posible actions in the given state.

Learning Rate 𝛼 The rate at which the Self-Play Network is
updated given the error term gradient (see
Equation 4.18).

Buffer Size 𝛽 The maximum number of experiences in
the replay buffer.

Batch Size 𝑏 The number of experiences to sample from
the replay buffer.

Polyak Update Coefficient 𝜏 The soft update parameter used when
updating the target network.

Discount factor 𝛾 The future reward prioritization factor (see
Equation 4.17).

Initial Exploration Rate 𝜖 The initial probability of random actions.
𝜖-Decay 𝜖decay The exploration rate decrease factor.
Minimum Exploration
Rate

𝜖min The lower bound of the exploration rate.

Training Frequency 𝑘self-play The number of steps after which a self-play
network update is performed.

Target Update Interval 𝑘target The number of steps after which a target
network update is performed.



CHAPTER 4. RL THEORY AND IMPLEMENTATION 99

O
n

ll
in

e
M

o
d

e
l 
T

ra
in

in
g

S
e
lf

P
la

y
Umgebung

Experience Tuple

𝑆𝑡
𝐴, 𝑎𝑡, 𝑅𝑡, 𝑆𝑡+1

𝐴
𝑆𝑡+1
𝐴

𝑆𝑡
𝐴

(𝑆𝐷
𝐴, 𝑎𝐷, 𝑅𝐷 , 𝑆𝐷+1

𝐴 ), …, (𝑆1
𝐴, 𝑎1, 𝑅1, 𝑆2

𝐴)

𝑎
𝑡
=

𝑎
𝑟𝑔
𝑚
𝑎
𝑥

𝑎
𝑡𝑖

ො𝑦Simulation

State: 𝑆𝑡
𝐸

Replay Buffer

𝑦𝑖 = 𝑅𝑖 + 𝛾 ⋅ 𝑚𝑎𝑥
𝑎𝑡+1
𝑖

𝑓𝜃(𝑆𝑖+1)

0.6 𝑎𝑡
1

0.35 𝑎𝑡
2

… …

0.1 𝑎𝑡
𝑛

ො𝑦

𝑆𝑖
𝐴

𝑆𝑖+1
𝐴

𝑅𝑖

0.6 𝑎𝑡
1

0.35 𝑎𝑡
2

… …

0.1 𝑎𝑡
𝑛

ො𝑦
0.6

𝒚𝒊 𝒂𝒊

… …

0.1

𝑦

𝑎𝑖

መ 𝜃
=
𝜏𝜃

+
1
−

𝜏
መ 𝜃

Target Model Update

𝛼

𝑓𝜃:

𝑓𝜃:

𝑓𝜃:

𝑓𝜃:

𝑓𝜃:

Figure 4.2: Double DQN Self-play and training process.

and diversity of implemented RL agents, including PPO, A2C and TD(�) employed by
the production scheduling literature. As such, our experiment scripts can function as
a template for easily testing alternative agent algorithms. The implementation speed
stems from the fact that Torch (Collobert et al., 2011), a low level NN framework, is used
with all the implemented agents. Additionally, Stable-Baselines 3 offers the possibility for
monitoring the agent training process using TensorBoard (Abadi et al., 2015). Note that
while the library does not list DDQN among the implemented algorithms, the listed DQN
is in fact a DDQN.

4.2.2 AlphaGo Zero

While originally designed for perfect information (board-)games, AZ’s range of applications
has since expanded to the realm of combinatorial optimization with two use cases for
scheduling (Rinciog et al., 2020; Yu et al., 2020) being listed in Chapter 2. More recently,
more generic applications such as using AZ for search-based solutions to the Boolean
Satisfiability Problem (SAT) have surfaced (Dantsin et al., 2022).

We proceed to discuss AZ taking the following six aspects into account. First, we
contextualize the algorithm and offer some terminological disambiguation helping to
isolate the AZ version we employ. Secondly, we succinctly present the NN approximator
used by the algorithm. Thirdly, we illustrate the algorithm’s action selection mechanism,
which relies on MCTS. Fourthly we outline the AZ training process. Fifthly, we explicate
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the concept of masking. Sixthly, we report the details of our implementation. We conclude
this elaboration with a brief consideration of the RL class AZ falls under.

Disambiguation: There are four versions of the AZ, namely AlphaGo Lee (Silver et al.,
2016), AlphaGo Zero (Silver et al., 2017b), AlphaZero (Silver et al., 2017a) and MuZero
(Schrittwieser et al., 2020). As opposed to the DQN family, the second version of the
algorithm is much simpler than the first. The difference between the second and the third
version is marginal, the third version representing a generalization of the second which
does not use board symmetries present in the game of Go. The last version, which is
capable of mastering board-games without being endowed with knowledge of the game
rules, is in its incipient phase having been just recently published. We describe and use a
variation of the second and third versions here and refer to it generically as AZ.

AZ (Silver et al., 2017b), follows a previous version, namely AlphaGo Lee (Silver et al.,
2016), and was proven to outperform its predecessor. The new algorithm, while building
upon results from the previous work, by using a combination of NN and MCTS, radically
simplifies both the training and the evaluation process. This is being done by introducing
four main changes. First of all, the algorithm is now trained solely through self-play,
without the use of human data. Secondly, the network input was changed to consider
raw states only, with no additional features. Thirdly, the authors merged the previously
distinct policy and value networks into one with two output heads. Last but not least the
MCTS was simplified.

NN Approximator: The NN, 𝑓� with neuron weights �, at the core of AZ combines policy
and value function into one. 𝑓� takes a stack of 𝑘 consecutive raw state representations, with
the current state 𝑆𝑡 at the top, as its input and outputs the pair (𝑝𝑝𝑝, 𝑣) := 𝑓�(𝑆𝑡 , . . . , 𝑆𝑡−𝑘) =:
𝑓�(𝑆𝑡𝑆𝑡𝑆𝑡) of action probabilities 𝑝𝑝𝑝 and the expected game result 𝑣 from the position 𝑆𝑡 . Note
that variables in bold represent vectors. 𝑝𝑝𝑝 and 𝑣 are produced by two dedicated output
heads stacked on top of a ResNet architecture (He et al., 2016) with 40 residual layers
followed by a final convolutional layer. The stack of residual layers act as feature extractor,
pre-processing the information in 𝑆𝑡𝑆𝑡𝑆𝑡 before feeding it into the sub-networks associated
with the two heads, which are referred to as the “policy head” and “value head”. The
output heads are independent of each other in the sense that the gradient contribution of
the policy-head does not impact the gradient in the value-head network and vice-versa.
However, the gradient of the feature extractor weights depends on both heads. Note that,
for simplicity, we drop the time indices 𝑡 in what follows.

Action Selection: The AZ action selection strategy relies on MCTS. The central structure of
MCTS is a game tree with nodes representing states 𝑆 ∈ 𝒮 and directed edges representing
actions 𝑎 ∈ 𝒜 possible from the particular state. Each edge in the game tree stores the
probability of being the best move 𝑃(𝑆, 𝑎), a visit count 𝑁(𝑆, 𝑎) and the average expected
result 𝑄(𝑆, 𝑎). Nodes store the expected result 𝑉(𝑆). The MCTS algorithm consists of
three phases, namely selection (1), expansion and evaluation (2), and backpropagation (3),
that are executed several times before every action. The execution of these steps leads to
the tree structure growing dynamically, as showcased in Figure 4.3:
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1. During the MCTS selection phase nodes reached over edges maximizing

𝑄(𝑆, 𝑎) + 𝑃(𝑆, 𝑎) · 𝑐puct

√∑
𝑎′ 𝑁(𝑆, 𝑎′)

1 + 𝑁(𝑆, 𝑎) ∝
𝑃(𝑆, 𝑎)

1 + 𝑁(𝑆, 𝑎) (4.28)

are recursively selected until a “dangling edge” (an edge pointing to no node) is
encountered. Note that edges are added to the tree before the nodes they lead
to, hence the dangling edges. In the equation above, 𝑐puct is a tunable exploration
parameter and

∑
𝑎′ 𝑁(𝑆, 𝑎′) is the cumulative visit count of all node outgoing edges.

2. In the expansion and evaluation phase, the new leaf node 𝑆𝑛
𝐿

reachable over the selected
dangling edge is first added to the tree. We use the indices 𝑛 to denote the current
MCTS iteration and 𝐿 to indicate that the node is a leaf. In a second step, 𝑓� is used to
compute the best action probabilities and node value (𝑝𝑝𝑝, 𝑣) = 𝑓�(𝑆𝑛

𝐿
). Then𝑉(𝑆𝑛

𝐿
) := 𝑣

is added to the freshly created node and the node’s outgoing edges are added to the
tree and associated with the corresponding values of network’s probability vector
𝑃(𝑆𝑛

𝐿
, ·) := 𝑝𝑝𝑝. If the freshly added node is terminal (i.e. corresponds to an end-game

state), the node value is collected from the environment rather than from 𝑓� and no
edges are added.

3. The value 𝑉(𝑆𝑛
𝐿
) is additionally used to update all edges upwards on the selection

path in the backpropagation phase. The update implies incrementing the edge visit
counts 𝑁(𝑆, 𝑎) and setting their values 𝑄(𝑆, 𝑎) to the average accumulated value up
to the current iteration. Using the indicator function 1{𝑆,𝑎,𝑖} to denote that edge 𝑎 of
node 𝑆 was selected during the 𝑖th MCTS iteration, Equation 4.29 describes these
value updates.

𝑄(𝑆, 𝑎) = 1
𝑁(𝑆, 𝑎)

𝑛∑
𝑖=1

1{𝑆,𝑎,𝑖}𝑉(𝑆𝑖
𝐿) (4.29)

After the predetermined number of MCTS iterations the final move selection is performed.
AZ introduces a temperature parameter 𝜏 ∈ (0, 1] to this step. The visit counts of the root
edges are raised to the power of 1/𝜏, and normalized through division by

∑
𝑎 𝑁(𝑆root , 𝑎)1/𝜏.

This induces a probability distribution over the legal actions relative to the root node. The
final move is then selected by sampling from this distribution. Therefore, 𝜏 controls the
degree of exploration during RL. If 𝜏 is equal to 1, there is a higher chance that an action
not corresponding to the edge with the highest visit count will be selected. When set to an
infinitesimal value, the chance that an edge other than that with the most visit counts is
selected becomes negligible.

Training: AZ has a streamline network training process. AZ training has three steps,
which are repeated until the model weights saturate. These are self-play (i), neural-network
training (ii) and model selection (iii):

(i) During the self-play stage, which is depicted in Figure 4.4a, the MCTS scheme
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Figure 4.3: The MCTS process in AlphaGo Zero: (a) Nodes are selected recursively
by traversing edges corresponding to an action 𝑎 = argmax𝑎𝑄(𝑆, 𝑎) + 𝑈(𝑆, 𝑎) until the
outgoing edge of a leaf node is reached (traversed edges are indicated by black arrows). (b)
A new node 𝑠𝐿 is added to the tree, (𝑃(𝑆, ·), 𝑉(𝑆𝐿)) = 𝑓�(𝑆𝐿) is evaluated and its outgoing
edges are updated with probabilities 𝑃(𝑆, ·). (c) Action values 𝑄 are updated up the tree
path using the mean of all state values 𝑉 stored in the nodes. Source: Silver et al., 2017b,
AZ MCTS

introduced above is used to play games from start to finish, i.e. iterations 1 to 𝑡,
by sampling from probability distributions 𝜋𝑖𝜋𝑖𝜋𝑖 returned by the MCTS algorithm for
states 𝑠𝑖 . Board positions and the corresponding MCTS action probabilities (𝑆𝑖 ,𝜋𝑖𝜋𝑖𝜋𝑖)
are stored for every performed move. When a terminal state 𝑆𝑇 is reached, the
reward 𝑧 := 𝑟(𝑆𝑇) is used to form triples (𝑆𝑖 ,𝜋𝑖𝜋𝑖𝜋𝑖 , 𝑧).

(ii) The AZ network can now be trained on them using gradient descent to minimize the
loss function in Equation 4.30 where (p, 𝑣) = 𝑓�(𝑆) and 𝑐 is a parameter for the 𝐿2
weight regularization. The loss function 𝑙 combines the MSE loss for the value head
(regression) and the Categorial Cross Entropy loss for the policy head (classification).
The training process is depicted in Figure 4.4b.

𝑙 = (𝑧 − 𝑣)2 −𝜋𝜋𝜋𝑇 log p + 𝑐 | |� | |2 (4.30)

(iii) Finally, to make sure data is being generated using the best model, the post training
model is pitted against the old version of itself that generated the data. If the new version
wins, the model used for data generation (i.e. self-play) is replaced by the new
version. In non adversarial settings, the models before and after training could be
evaluated by simply using the cumulative reward, e.g. the game score, as a criterion.

Masking: In AZ, agents are said to “know the game rules”, i.e. no illegal action is
ever taken. This is achived by using a technique called masking: The network output
determining the next moves is multiplied by a bit mask with ones corresponding to legal
actions given a particular state. The result is then re-normalized to represent a probability
distribution through division by the masked vector sum. To do the same for our scheduling
agents, we simply query the environment for legal actions and compute a mask from it.
This mask we then pointwise multiply with the network’s output.
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(a) Self-Play (b) NW Training

Figure 4.4: (a) Games are played from start to finish, using neural MCTS to select a move.
The move probabilities 𝜋𝑖𝜋𝑖𝜋𝑖 are stored together with the corresponding state 𝑠𝑖 . When the
end-state 𝑆𝑇 is reached, the reward 𝑧 is associated with every pair (𝑠𝑖 ,𝜋𝑖𝜋𝑖𝜋𝑖). (b) The network
𝑓� is trained using gradient descent to minimize a combination of mean squared error on
the value head (pairs (𝑆𝑖 , 𝑧)) and cross-entropy on the policy head (pairs (𝑆𝑖 ,𝜋𝑖𝜋𝑖𝜋𝑖)). (cmp.
Silver et al., 2017b).

Implementation Overview: To better use the particularities of production scheduling
problems, we made two slight adaptations to the original algorithm described above. First,
instead of collecting the reward in the terminal state only, we collect the immediate reward
𝑧𝑡 := 𝑟(𝑆𝑡) at every intermediate decision time-point 𝑡. This increase in feedback should
induce more stability in the training process, since the likelyhood of radically different
states being associated with the same reward is decreased. Secondly, we eliminate the
model comparison pitting stage. This is because our preliminary experiments have shown
this step to have no significant impact on the model performance, while significantly
increasing the training time.

Table 4.3 gives an overview of the parameters associated with the steps discussed. By
comparing the AZ parameters with those of DDQN, we see a first potential advantage of
the former approach: Because of the smaller number of parameters, the tuning overhead
should be smaller for AZ. Aside from the MCTS parameters, AZ has no additional
parameters when compared to supervised learning NN.

We implemented AZ from scratch in Python using tensorflow.keras (Abadi et al., 2015), a
high level NN API, for the policy-value network. We chose keras because of its intuitive
API which helped eliminating implementation overhead. The MCTS implementation is
recursive and operates on a tree structure represented as a collection of dictionaries with
state representations (nodes) as keys. A different deterministic copy of the simulation
is used to explore future states and evaluate them for every iteration of the tree search
procedure. TensorBoard is used for training visualization.

Note on RL Class: While AZ falls loosely into the actor-critic RL class, it in fact defies all
standard RL categories. The AZ policy 𝜋 is comprised of a probabilistic search algorithm,
namely MCTS, embedding a policy function 𝑃, and a (state) value function 𝑉 . Both
functions are implemented using a NN. Similarly to actor-critic approaches 𝑉 is used to
inform the policy which ultimately chooses the action in any given state. However, unlike
typical actor-critic approaches, the value function is not directly used during gradient
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Table 4.3: AZ parameters at a glance.

Name Symbol Description
Policy-Value Network 𝑓� Neural Network with two different output

stacks taking states as inputs and returning
the probability of the best action
(policy-head) and the values associated
with the current state (value-head).

Learning Rate 𝛼 The rate at which the network is updated
given the error term gradient (see
Equation 4.22).

Buffer Size 𝛽 The maximum number of experiences in
the replay buffer.

Number MCTS Iterations 𝑖max Determines the number of times the MCTS
stages selection (1), expansion (2), rollout
(3) and back-propagation (4) are executed
before choosing the root node action.

Puct Paramer 𝑐puct MCTS exploration parameter influencing
the weight of node visit counts during the
search.

Temperature 𝜏 Exploration parameter increasing or
decreasing the chance that the highest
probability action is selected after MCTS.

computation. Unlike typical value-based approaches, 𝑉 is not trained using any estimation
of future reward (e.g. 𝑄 in Equation 4.15). Instead, 𝑉 is updated using solely the reward
signal. Finally, unlike policy approaches (Equation 4.21) the PG is not computed over
the policy (which combines MCTS, 𝑃 and 𝑉 functions) in its entirety, rather the policy
network 𝑃 alone is updated as per Equation 4.21. Though this categorial ambiguity makes
formal theoretical analyses of AZ difficult, its results are quite compelling.



Chapter 5

Leveling the Playing Field:
RL-Competitive Scheduling Baselines

If you don’t set a baseline standard for what you’ll accept in life, you’ll
find it’s easy to slip into behaviors and attitudes or a quality of life that’s
far below what you deserve

— Anthony Robbins

As delineated in Section 2.5, RL is not the only class of algorithms positioned between re-
planning using exact approaches and heuristic solutions. In this Section, we seek to move
towards covering the RL baselining gap by describing competitive baseline algorithms
that share the qualities of RL approaches. Recalling the Table 4.1 from Chapter 4, this
entails designing production scheduling solution approaches that offer a high solution
quality in deterministic setups (1), are highly adaptive (2), efficient in terms of runtime (3)
and require little modeling overhead (4).

All models are designed to interact with the production simulation framework Fabrica-
tionRL (see Chapter 3). The MDP breakdown broadly defining this interaction is that of
Interlaced Routing and Sequencing. Hereby, whenever a resource 𝑚𝑖 becomes free, two
decisions have to be taken in sequence. First, an operation index has to be chosen from
the ones available for processing in the resource buffer. Secondly, if job route alternatives
are available, a machine index needs to be selected for the downstream processing of the
job.

We distinguish between baselines that do not require a simulation for decision making
and call them “snapshot-based” approaches, from “simulation-based” baselines that
require an optimization simulation. For approaches in the snapshot-based category, the
only information required for decision making is a static representation of the current
production state. Conversely, simulation-based approaches require the full dynamics of a
production simulation to reach a decision. Note that this constitutes a fair comparison with
RL methods, since these fall in the second category as well. Why this is the case should be
fairly obvious for AZ: The simulation is directly employed during the MCTS stage. DDQN,

105
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along all other model free RL approaches, also fall in this category since they require
the full production simulation for training. The simulation made available for training,
could be modified to load a current shop-floor snapshot such that it can also be used for
decision making, which is why AZ and our simulation-based baselines constitute adequate
algorithmic sparring partners. Note however, that only a few Manufacturing Execution
System (MES) (Ugarte et al., 2009) in place today have the live monitoring capabilities
necessary for the provision of an accurate snapshot state to initialize the simulation.1

Three of the four baselines we elaborate on are not domain independent. While, RL domain
independence is often used as an argument for the approach, this property of RL does not
hold independently of RL design. All designs employing (domain dependent) indirect
actions, e.g. priority rules, become domain specific by extension. Similarly, the domain
independence of RL approaches relying on the Iterative Search Refinement or Iterative
Re-Planning breakdown are domain specific since the underlying search procedures are
domain dependent. Given the large body of work employing domain specific RL, we
do not include domain independence in our RL-competitiveness definition, and do not
require our baselines posses this property.

Free of the domain independence requirement, we design our baselines for production
scheduling setups including both sequencing and job routing decisions. Specifically, we
ensure that our solutions can be tested on (𝐹𝐽𝑐 |𝑟𝑠

𝑗
, 𝑀𝑜

𝑖
|𝐶max) setups and all the subsumed

problems. Note, however, that the simulation-based approaches can be used as solvers for
sequencing and decision problems in any setup.

We describe the snapshot-based baselines in Section 5.1. Section 5.2 introduces our
simulation-based baselines. This chapter is concluded by several remarks on the RL-
competitiveness of our baselines in Section 5.3.

5.1 Snapshot-Based Approaches

The snapshot-based approaches we discuss here are inspired by the classical OR production
scheduling literature and consist of priority rules approaches and a constraint programming
approach. We introduce the two baseline categories in Section 5.1.1 and Section 5.1.2
respectively. The priority rules approaches are chosen as baselines because they are
ubiquitous in the scheduling literature (both RL and otherwise) and surprisingly effective
depending on the production scheduling problem instance at hand. Furthermore they
represent the starting point for a significant volume of RL work, more specifically the RL
experiments using them as (indirect) actions (see Section 2.3.2).

5.1.1 Simple Heuristics

Priority rules, as the name suggests, define priorities for operations or machines depending
on whether the rules are meant to be utilized for sequencing on machines or job destination

1This is supported by an unpublished meta-analysis of MES providers (Kuball, 2022) using the market
analysis works put forward by Wiendahl et al., 2021 and MES-D.A.CH-Verband, 2021 as primary literature.
The study suggests that, albeit small, an intersection set of MES providers and scheduling setups wherein
such shop-floor snapshots are available is likely to already exist.
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decisions (see Figure 3.1). Given a sequencing decision request from a resource 𝑚 with
operations 𝑂𝐵 𝑓 := {(𝑗1 , 𝑖1), . . . , (𝑗𝑘 , 𝑖𝑘)} waiting in its buffer, sequencing priority rules first
sort the buffered operation using specific criteria. The highest priority operation, i.e. the
operation at the head of the sorted queue, then gets assigned to the requesting resource.
Job routing priority rules work analogously. Given job with several downstream machine
alternatives for the next operation, job routing priority rules sort the resources in question
by some priority criterion and select the head of the sorted list as the decision.

Concept: The sorting criteria we consider are operation processing time (a), remaining
processing time in the job associated with the operation (b), the number of remaining
operations in the job of provenance (c), the ratio of remaining processing time to the
number of remaining operation in the job of provenance (d), the due date associated with
the job of provenance (e) and the total load of the machines that can be assigned to the
remaining associated job operations (f).

Sorting descendingly by criteria (a) to (d) gives rise to the LPT, Longest Remaining
Processing Time (LRPT), Most Operations Remaining (MOR) and Most Time Per Operation
(MTPO) priority rules. Conversely, sorting ascendingy by criteria (a) to (d) yields the SPT,
Shortest Remaining Processing Time (SRPT), Least Operations Remaining (LOR), and
Least Time Per Operation (LTPO) heuristics. For criteria (e) and (f) we only sort ascendingly.
The associated heuristics are EDD and Least Utilized Downstream Machine (LUDM). It
should be noted that LUDM is a heuristic developed by us. The intuition behind it is that
we should prefer operations that would lead to a more balanced load of machines further
down the line.

Job routing heuristics, which are additionally required when creating priority rule solutions
for scheduling environments with job routing flexibility, work analogously. Given a job
routing request for job 𝑗 upon the conclusion of one of its operations, simple job routing
heuristics prioritize the possible next downstream machines based on some criteria and
pick the highest priority resource as the decision.

In this work we employ two different job routing criteria leading to four simple heuristics.
The criteria are the number of operations buffered at the next eligible machines (i) and the
amount of processing time buffered at the next eligible resources (ii). Sorting descendingly
by (i) and (ii) results in the Most Queued Operations (MQO) and Most Queued Time (MQT)
heuristics respectively. Sorting ascendingly defines the complementary Least Queued
Operations (LQO) and Least Queued Time (LQT).

Table 5.1 gives an overview of the employed baseline heuristics. Aside from the associated
decision, sorting criteria, number, name, abbreviation, and ordering, we additionally
provide the FabricatioRL State variables required for implementing them in the “Variables
Needed” column. The “Variables Needed” column refers to either tracker variables listed
in Figure 3.8 or raw state information depicted in Figure 3.7. The heuristic list used in
this work is certainly not exhaustive. There are many more discussed in literature (e.g.
Panwalkar et al., 1977).

Implementation: FabricatioRL makes implementing and testing priority rule approaches
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Table 5.1: Overview of the simple heuristic baselines.
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𝑗
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operations within the
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LOR ↗

6 Most Operations
Remaining

MOR ↘
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𝑗
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8 Most Time Per Operation MTPO ↘

(e) Due date of the
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the containing job
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𝑇
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𝑖
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𝐵 𝑓 𝑜

𝑖

3 Least Queued
Operations

LQO ↗

4 Most Queued
Operations

MQO ↘

easy. The heuristic implementation boils down to first retrieving the operations/machines
currently in need of prioritization by means of a call to get_legal_actions or reading the
corresponding property directly from core.state. All the information required for the
sorting criteria is also maintained by the State structure. Our scripts contain dedicated
classes which implement the Optimizer interface for each heuristic (see Figure 3.2). Rather
than sorting the 𝑛 operations/resources in need of prioritization, which would run in
𝑂(𝑛 · log(𝑛)), we simply extract the highest priority by calculating a minimum/maximum
per specified criteria in a single pass. This takes linear time.

The implementation of LUDM follows this same principle, though its implementation is
slightly more convoluted. Mathematically our heuristic can be expressed as in Equation 5.1.
Hereinℳ is the index set of all machines, 𝑜 is the maximum number of operations per job.
The sum in the equation is computed for all jobs 𝑗 associated with buffered operations
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at the current machine, a set we dubbed 𝐽𝐵 𝑓 . The sum itself considers all the machine
𝑚-operation 𝑖, combinations. If the operation 𝑖 of job 𝑗 is unfinished (1{𝑂𝑇𝑦

𝑗𝑖
≠0} ≠ 0) and

machine 𝑚 process the operation’s type, i.e. 𝑂𝑇𝑦

𝑗𝑖
, which is indicated by the the entry 1 in

the operation type matrix, i.e. 𝑀𝑇𝑦

𝑚𝑂
𝑇𝑦

𝑗𝑖

= 1, then the load of the machine 𝑚 contributes to

the sum. Otherwise the addend is 0.

𝑗 = argmin
𝑗∈𝐽𝐵 𝑓

∑
𝑚∈ℳ ,𝑖<𝑜

1{𝑂𝑇𝑦

𝑗𝑖
≠0} · 1{𝑀𝑇𝑦

𝑚𝑂
𝑇𝑦

𝑗𝑖

=1} · 𝑇
𝐵 𝑓 𝑡
𝑚 (5.1)

The implementation of LUDM, while slower than that of other heuristics, is faster than
suggested by the above formula. This is because, given the operation index contained by
the legal actions retrieved from the environment, we can retrieve all machines capable of
executing the operation in constant time from a machine capability dictionary maintained
by the state.matrices object. The machine indices can then be used to retrieve each of
the buffer loads from the state.trackers.buffer_times in constant time The heuristic is also
slightly slower since after retrieving the remaining operations associated with the job the
operation candidate is a part of we need to retrieve the all machines capable of executing
the operation and sum up the associated loads.

The priority rules implementation can be both passed to the environment for indirect action
designs or be used as external controls using the HeuristicControl class which implements
the Control interface. The latter only defines one method, namely play_game which takes a
simulation instance in an initial state as a parameter and returns the simulation end state to
the caller. HeuristicControl uses the heuristic objects it receives during initialization to step
through the simulation until the end state is reached. Depending on the simulation_mode,
get_action is called either on the job routing or sequencing heuristic to retrieve the
appropriate step parameter.

5.1.2 Constraint Programming Heuristic

Solving a problem with CP amounts to mathematically formulating the constraints defining
the problem. The mathematical formulation can then be almost directly plugged into a
solver. In the following set of mathematical models, we use bold math, to indicate decision
variables. Decision variables are to be set by the model. Conversely, parameters, which we
use in conjunction with decision variables to define model constraints, are fixed.

Concept: We formulate a CP model to solve all setups subsumed by the flexible job-shop
with machine operation capabilities and makespan as an optimization goal (𝐹𝐽𝑐 |𝑀𝑜

𝑖
|𝐶max)

subsequently. We start by defining the simpler job-shop setup 𝐽𝑚 and build up to the 𝐹𝐽𝑐

and 𝐹𝐽𝑐 | 𝑀𝑜
𝑖
. After introducing the optimization goal 𝐶max, we describe the formalism

allowing for the model deployment in setups subsumed by (𝐹𝐽𝑐 | 𝑟𝑠
𝑗
, 𝑀𝑜

𝑖
| 𝐶max). The

formal definitions are concluded by the definition of the operations subsets characterizing
our CP heuristic.

The input to a 𝐽𝑚 consists of 𝑛 jobs and 𝑚 resources (or machines). All jobs consist of
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exactly 𝑚 distinct operations that can be mapped to precisely one machine. Hence, the type
𝑜
𝑡𝑦

𝑗𝑖
of operation 𝑖 from job 𝑗 is uniquely identified by the machine 𝑚 𝑗𝑖 it can be processed

on: 𝑜
𝑡𝑦

𝑗𝑖
= 𝑚 𝑗𝑖 . All operations types within a job are distinct with respect to their type.

Each operation 𝑜 𝑗𝑖 has an associated duration 𝑜𝑑
𝑗𝑖
. Any operation 𝑖 + 1 within a job can

only be executed if the previous operation 𝑖 has been completed beforehand (precedence
constraints — Equation 5.2). Each machine can only process one operation at a time (no
overlap constraints — Equation 5.3), and once an operation has started, it must be executed
without interruption for its whole duration (no preemption — Equation 5.4). Assuming
that 𝒥 is the index set of all jobs and 𝒪𝑗 the index set of the operations from job 𝑗, 𝑜𝑡𝑦

𝑗𝑖

the type of the 𝑖th operation from job 𝑗, 𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 the operation start time and 𝐶 𝑗𝑖 the operation
completion time, the above can be expressed as:

𝑖1 < 𝑖2 ⇒ 𝑠 𝑗𝑖1𝑠 𝑗𝑖1𝑠 𝑗𝑖1 < 𝑠 𝑗𝑖2𝑠 𝑗𝑖2𝑠 𝑗𝑖2 ∀𝑗 ∈ 𝒥 : ∀𝑖1 , 𝑖2 ∈ 𝒪𝑗 (5.2)

𝑚 𝑗1 𝑖1 = 𝑚 𝑗2 𝑖2 ⇒ 𝑠 𝑗1 𝑖1𝑠 𝑗1 𝑖1𝑠 𝑗1 𝑖1 + 𝑜𝑑𝑗1 𝑖1 ≤ 𝑠 𝑗2 𝑖2𝑠 𝑗2 𝑖2𝑠 𝑗2 𝑖2 ∨ 𝑠 𝑗2 𝑖2𝑠 𝑗2 𝑖2𝑠 𝑗2 𝑖2 + 𝑜𝑑𝑗2 𝑖2 ≤ 𝑠 𝑗1 𝑖1𝑠 𝑗1 𝑖1𝑠 𝑗1 𝑖1 ∀𝑗1 , 𝑗2 ∈ 𝒥 : ∀𝑖1 , 𝑖2 ∈ 𝒪𝑗1 × 𝒪𝑗2

(5.3)

𝐶 𝑗𝑖 = 𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 + 𝑜𝑑𝑗𝑖 ∀𝑗 ∈ 𝒥 : ∀𝑖 ∈ 𝒪𝑗 (5.4)

The 𝐹𝐽𝑐 extends the 𝐽𝑚 setup by introducing routing alternatives (Equation 5.6). While in
the 𝐽𝑚 case the mapping of an operation type to a machine was unique, in the 𝐹𝐽𝑐 case, as
defined by Pinedo (2012), an operation can be executed on one of several machines from
exactly one of 𝑐 ≤ 𝑚 non-overlapping work centers 𝒞𝑖 (Equation 5.5). This means, that an
operation type 𝑜

𝑡𝑦

𝑗𝑖
is represented by its corresponding work-center index 𝑐 𝑗𝑖 ∈ {1, . . . , 𝑐}.

Each job consists of 𝑐 operations of distinct types. The machine assignment𝑚 𝑗𝑖𝑚 𝑗𝑖𝑚 𝑗𝑖 of operation
𝑜 𝑗𝑖 is now a decision variable:

𝑜
𝑡𝑦

𝑗1 𝑖1
≠ 𝑜

𝑡𝑦

𝑗2 𝑖2
⇒ 𝒞

𝑜
𝑡𝑦

𝑗1 𝑖1
∩ 𝒞

𝑜
𝑡𝑦

𝑗2 𝑖2
= ∅ ∀𝑗1 , 𝑗2 ∈ 𝒥 : ∀𝑖1 , 𝑖2 ∈ 𝒪𝑗1 × 𝒪𝑗2 (5.5)

𝑚 𝑗𝑖𝑚 𝑗𝑖𝑚 𝑗𝑖 ∈ 𝒞𝑐 𝑗𝑖 ∀𝑗 ∈ 𝒥 : ∀𝑖 ∈ 𝒪𝑗 (5.6)

The 𝛽-parameter 𝑀𝑜
𝑖

eliminates the non-overlapping property of the work centers. Ad-
ditionally, the operation types within a job need not be unique anymore. To distinguish
between the (𝐹𝐽𝑐 |) and (𝐹𝐽𝑐 |𝑀𝑜

𝑖
)we drop the work-center assignment variables 𝑐 𝑗𝑖 and use

the operation type parameter 𝑜𝑡𝑦
𝑗𝑖
∈ {1, . . . , 𝑡𝑦} directly henceforth. We use set variables

ℳ𝑖 to denote the subset of resources that can process operations of type 𝑖 which leads to
the following expression:

𝑚 𝑗𝑖𝑚 𝑗𝑖𝑚 𝑗𝑖 ∈ ℳ𝑜
𝑡𝑦

𝑗𝑖

∀𝑗 ∈ 𝒥 : ∀𝑖 ∈ 𝒪𝑗 (5.7)

The definition of the makespan 𝐶max optimization goal in Equation 5.8 completes the
scheduling problem definition. Makespan is defined as the completion time of the last
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operation in the system. The goal of a scheduling algorithm is to set the operation start
times 𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 and, in the case of 𝐹𝐽𝑐, the operation machine assignments 𝑚 𝑗𝑖𝑚 𝑗𝑖𝑚 𝑗𝑖 , such that the
makespan is minimized. Usingℳ to denote the index set of all machines, this can be
expressed as

min
𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 ,𝑚𝑗𝑖𝑚𝑗𝑖𝑚𝑗𝑖∈N×ℳ

𝐶max := min
𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 ,𝑚𝑗𝑖𝑚𝑗𝑖𝑚𝑗𝑖∈N×ℳ

max
𝑗 ,𝑖∈𝒥×𝒪𝑗

𝐶 𝑗𝑖 = min
𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 ,𝑚𝑗𝑖𝑚𝑗𝑖𝑚𝑗𝑖∈N×ℳ

max
𝑗 ,𝑖∈𝒥×𝒪𝑗

𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 + 𝑜𝑑𝑗𝑖 (5.8)

The (𝐹𝐽𝑐 | 𝑀𝑜
𝑖
| 𝐶max)model, being more general, also applies to the more specific 𝐹𝐽𝑐 and

𝐽𝑚 setups. The sole difference between the two being given by the contents of the machine
alternative setsℳ

𝑜
𝑡𝑦

𝑗𝑖

for operations 𝑖 from jobs 𝑗 of type 𝑜
𝑡𝑦

𝑗𝑖
. In the 𝐽𝑚 case,ℳ

𝑜
𝑡𝑦

𝑗𝑖

has a
cardinality of one irrespective of operation index 𝑖 𝑗. In the 𝐹𝐽𝑐 case, machine alternative
sets have a cardinality greater than one for at least some operation types, but these sets
do not overlap for different types, i.e. ∀𝑗1 , 𝑗2 ∈ 𝒥 : ∀𝑖1 , 𝑖2 ∈ 𝒪𝑗1 × 𝒪𝑗2 :ℳ

𝑜
𝑡𝑦

𝑗1 𝑖1
∩ℳ

𝑜
𝑡𝑦

𝑗1 𝑖1
= ∅

(compare the non-overlapping work centers equation — Equation 5.5).

To use this model in the dynamic setups, the CP solver needs to be redeployed to construct a
schedule using time dependent operation sets 𝒪𝑡

𝑗
and job sets 𝒥𝑡 . These sets are computed

at the time 𝑡 of new job arrivals. The job operation sets 𝑂𝑡
𝑗

(Equation 5.9) contain the
indices of operations from job 𝑗 whose start times, as computed by the previous iteration of
the CP solver, lie in the future, 𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 > 𝑡, or were not yet added to the model, 𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 = ⊥. The ⊥
value helps distinguish between decision variables contained by the model that need to be
set anew (𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 > 𝑡) and decision variables that need to to be added to the model, e.g. those
corresponding to operations from new job arrivals. We define 𝒥𝑡 (Equation 5.10) as the set
of job indices corresponding to the not yet finished jobs with a release time smaller than
𝑡.

𝒪𝑡
𝑗 := {𝑖 ∈ 𝒪𝑗 : 𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 ≥ 𝑡 ∨ 𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 = ⊥} (5.9)

𝒥𝑡 := { 𝑗 ∈ 𝒥 : 𝑟𝑠𝑗 ≤ 𝑡 ∧ |𝑂𝑡
𝑗 | ≠ 0} (5.10)

Re-planning is often disregarded as a baseline, because of the long computation times
associated with solving larger instances of NP-hard problems such as the setups at hand.
We circumvent the runtime drawback by limiting/clipping the number of operations
considered for planning to at most three per job (CP3) as well as limiting the search time
allotted to the CP solver to 100 seconds. Given our WIP setup, we additionally only consider
the jobs 𝒥𝑊𝐼𝑃𝑡 within the WIP at timepoint 𝑡. We define the new operation index sets in
Equation 5.11 (clipped operation sets), thereby completing the model employed.

𝒪𝑊𝐼𝑃𝑡3
𝑗

:= {𝑖 , . . . , 𝑖 + 𝑙 :

((𝑠 𝑗(𝑖−1)𝑠 𝑗(𝑖−1)𝑠 𝑗(𝑖−1) < 𝑡 ∧ (𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 >= 𝑡 ∨ 𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 = ⊥) ∧ 𝑖 ≠ 0)∨
(𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 >= 𝑡 ∧ 𝑖 = 0)) ∧ 𝑙 = min(3, |𝒪𝑡

𝑗 |)} (5.11)
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Implementation: Having computed an initial schedule, we look it up whenever the
environment requests a sequencing or job routing decision respectively. Algorithm 1
sketches the interaction between the FabricatioRL instance sim and the scheduling module
implementing the described model cp3. The schedule can be seen as a Gantt chart indexed
by resource numbers with values corresponding to a start time sorted list of job, operation
index pairs. If a sequencing action is required for the resource 𝑚 (line 5), we simply pop
the first operation from the corresponding schedule list (line 6). If a job routing decision is
required (line 18), we check the job index 𝑗 of every first position in the schedule until 𝑗
matches the job index indicated by the simulation state (lines 12 to 17). We then return the
corresponding schedule key, i.e. the machine index.

Algorithm 1 Scheduling with CP3 and FabricatioRL
Input: sim, cp3
Output: state

1: state← sim.reset()
2: schedule← cp3.solve(state)
3: done, wip_j← 𝑓 𝑎𝑙𝑠𝑒, state.wip
4: while ¬ done do
5: if state.mode = 0 then ⊲ Sequencing
6: 𝑎 ← schedule[state.𝑚].pop(0)
7: if 𝑎 ∉ state.legal ∨ 𝑎 = ⊥ then
8: schedule← cp3.solve(state)
9: end if

10: 𝑎 ← schedule[state.𝑚].pop(0)
11: else
12: 𝑚 ← 0
13: while state.𝑗 ≠ schedule[𝑚][0][0] do
14: 𝑚 ← 𝑚 + 1
15: continue
16: end while
17: 𝑎 ← 𝑚

18: end if ⊲ Job routing; state.mode = 0
19: state, _, done, _← sim.step(action)
20: if state.wip ≠ wip_j then
21: schedule← cp3.solve(state)
22: wip_j← state.wip
23: end if
24: end while

The schedule needs to be recomputed before selecting an action based on it in three
situations. First, by design, the schedule is mostly incomplete with respect to all the
operations in WIP. As such situations may arise, when no operation is found in the schedule
on a sequencing decision request (𝑎 = ⊥ in line 7). Secondly, the operation indicated by the
schedule may not yet be present in the buffer at the requesting resource (indicated by the
operation index not being contained by state.legal_actions in line 7). In such situations,
we should technically output a wait signal to the simulation. However, since CP3 has
only limited information, we chose to ignore potentially costly wait signals. Instead, the
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schedule is recomputed. Finally, the schedule is recomputed when the wip index set
changes (line 20).

We use the ORTools (Perron et al., 2022) CP SAT solver in conjunction with FabricatioRL
for our implementation. There are three classes involved in the solution implementation
namely CPPlanner, ReplanningCPSequencing and CPControl.

The CPPlanner is responsible for interfacing with the ORTools library. On initialization, the
planner first gathers the relevant variables from the FabricatioRL state, e.g. operation dura-
tions, machine alternatives, and adds them to the ORTools sat.python.cp_model.CpModel
model together with the 𝐹𝐽𝑐 constraints decribed in this section. The 𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 and 𝑚 𝑗𝑖𝑚 𝑗𝑖𝑚 𝑗𝑖 decision
variables are then assigned within an ORTools sat.python.cp_model.CpSolver object by
calling Solve on it with the CpModel as a parameter. After generating the solution, the
planner object populates the machine_to_assigned_tasks dictionary indexed by machines
with values corresponding to the sequence of operations mapped to it in the order of
their starting times. This is achieved by reading the 𝑠 𝑗𝑖𝑠 𝑗𝑖𝑠 𝑗𝑖 and 𝑚 𝑗𝑖𝑚 𝑗𝑖𝑚 𝑗𝑖 values from the CpSolver
object post Solve call. Sequencing decision are retrieved from the dictionary during call to
choose_fixed_plan_action. If job routing decisions are required, as indicated by the state
parameter passed to the latter method, the appropriate 𝑚 𝑗𝑖𝑚 𝑗𝑖𝑚 𝑗𝑖 variable is read directly from
the solver object.

The ReplanningCPSequencing class, which uses our CPPlanner object, implements Fabri-
catioRL’s Optimizer interface and manages the re-scheduling logic described by the inner
loop of Algorithm 1. Finally, the CPControl object encapsulates the interaction between
the ReplanningCPSequencing optimizer and the FabricatioRL object within the play_game
function.

5.2 Simulation-Based Approaches

The simulation-based approaches combine the indirect action idea encountered in RL
literature with the future reward estimation principle. Similarly to RL the indirect action
expected to maximize the future reward is taken in any given state. However, the simulation
is used directly instead of relying on prediction.

These two methods we describe in here, namely SimSearch (Section 5.2.1) and MCTS
(Section 5.2.2) are RL-competitive. The first is a novel approach we put forward. The
second represents a standard OR strategy, if we leave out the indirect action principle.
Though MCTS can be made RL-competitive, no such approach was encountered in RL
scheduling literature.

5.2.1 Simulation Search

SimSearch is a simple yet efficient algorithm inspired by the popular RL design using
priority rules as actions. In such contexts, RL agents predict the best priority rules for the
current state based on their past experience. SimSearch replaces the prediction step with a
simulation step.
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Concept: The SimSearch scheduling loop depicted in Figure 5.1 and reflected by Algorithm
2 works as follows. The algorithm requires a simulation, a set of 𝑛 algorithms 𝒜, the
completion percentage 𝑝 defining the rollout end, and an optimization target as inputs on
initialization. Given the agent-state 𝑆𝑡

𝐴
at time 𝑡, SimSearch first retrieves a deterministic

copy of the simulation in the current state. We use 𝑆𝑡
𝐸

to underline the distinction between
the environment and agent-state, since the former has a transparent view of future
stochasticity while the latter does not. SimSearch then replicates the deterministic copy
𝑛 times, and rolls out the copies using the different algorithms𝒜𝑖 . For each rollout, the
simulation is ran until 𝑝 of the unprocessed operations in 𝑆𝑡

𝐴
are completed. The scores

achieved by𝒜𝑖 are then measured on the 𝑛 states reached after the rollouts. The algorithm
with the best score is selected to choose the action 𝑎𝑡 := 𝒜best(𝑆𝑡

𝐴
) for the current time step.

Finally, the chosen action is passed to the original simulation to generate the next state
𝑆𝑡+1
𝐴

. This outer loop continues until a terminal state is reached by the simulation.

𝐴1 𝐴2 𝐴𝑘

𝐶𝑚𝑎𝑥
𝐴1 𝐶𝑚𝑎𝑥

𝐴2 𝐶𝑚𝑎𝑥
𝐴𝑘

…

𝑎𝑟𝑔𝑚𝑖𝑛

Det. Copy:
𝑆𝐴
𝑡

Det. Copy:
𝑆𝐴
𝑡

Det. Copy:
𝑆𝐴
𝑡

Simulation 

State: 𝑆𝐸
𝑡

Simulation 
State: 𝑆𝐸

𝑡+1

SimulationSearch

Figure 5.1: Scheduling control using SimSearch for makespan (𝐶max) optimization: Rollouts
are performed using algorithms 𝒜𝑖 from agent-states 𝑆𝑡

𝐴
containing no stochasticity

information. The algorithm with the best score at the end of the rollout is then chosen to
select action 𝑎𝑡 which is passed to the simulation. The simulation performs the action and
produces the next state.

The elements of the set𝒜 can be any scheduling algorithm. To maintain the comparability
with RL methods in literature and because for production scheduling simple heuristic
solutions can be quite strong, we use priority rules exclusively in our experiments. For
simplicity we we did not distinguish between different simulation modes (e.g. job routing
and sequencing) in Algorithm 2. This assumes that algorithms 𝒜𝑖 ∈ 𝒜 can deal with
the different decision types accommodated by the particular scheduling instance. When
using heuristics, this would mean that𝒜𝑖 is defined by a pair of priority rules, one for job
routing the other one for sequencing.

SimSearch’s runtime depends on both the simulation and the algorithm set runtimes. The
worst case is defined by 𝑂(|𝒜|(𝑛 𝑓𝒜(𝑆𝑡

𝐴
) 𝑓sim(𝑎𝑡) + 𝑓copy(𝑆𝑡

𝐴
))). Here 𝑛 denotes the number

of operations in the current state, 𝑓𝒜 is the runtime of the slowest algorithm in𝒜, 𝑓sim(𝑎𝑡)
is the runtime of the simulation’s state-transition function and 𝑓copy(𝑆𝑡

𝐴
) is the overhead
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Algorithm 2 Scheduling with SimulationSearch and FabricatioRL
Input: sim,𝒜, 𝑝, target

1: state← sim.reset()
2: done← 𝑓 𝑎𝑙𝑠𝑒

3: while ¬ done do
4: dc← sim.get_deterministic_copy() ⊲ SimSearch start
5: scores← []
6: for 𝑖 ∈ {1, . . . , |𝒜|} do
7: dca← dc.copy()
8: 𝑠𝑡 ← state
9: while 𝑠𝑡 .completion_lvl < 𝑝 do

10: 𝑠𝑡 ← dca.step(𝒜[𝑖](𝑠𝑡))
11: end while
12: scores← scores + [𝑠𝑡 .target]
13: end for
14: 𝑖 ← argmin(scores)
15: 𝑎𝑡 ←𝒜[𝑖] ⊲ SimSearch end
16: state, _, done, _← sim.step(𝑎𝑡)
17: end while

associated with copying the simulation. As noted in the previous chapter, our simulation
has, start to finish, a loglinear runtime, 𝑂(𝑛log(𝑛)), in the number of operations 𝑛. A
single simulation step requires logarithmic time. The overhead associated with heuristics
choosing an action is linear with respect to the number of scheduling instance operations
in the worst case (𝑂(𝑛)), as dictated by the time required to find the minimum/maximum
in an unsorted sequence. The copy overhead is linear with respect to the state size, which
in turn has a constant size proportional to 𝑛, hence 𝑓copy(𝑆𝑡

𝐴
) ∈ 𝑂(𝑛). All in all this leads

to the following identities:

SimSearch ∈ 𝑂(|𝒜|(𝑛 · 𝑓𝒜(𝑆𝑡
𝐴) · 𝑓sim(𝑎𝑡) + 𝑓copy(𝑆𝑡

𝐴)))
= 𝑂(𝐶1(𝑛2 · log(𝑛) + 𝐶2𝑛))
= 𝑂(𝑛2log(𝑛)) (5.12)

Furthermore, SimSearch is embarassingly parallel. Individual rollouts could be executed
in distinct threads, with no inter-process communication required. This leads to an easy
algorithm optimization.

Implementation: The SimSearch implementation is split between the SimulationSearch
and SimulationSearchControl classes. The latter implements our control interface and,
hence, the play_game method, using the former to select actions via the get_action method.
The former implements the Optimizer interface. As such SimSearch could be used as an
indirect action. The particularity of this Optimizer is that it must contain a copy of the
simulation it is potentially passed to. To break this circular dependency, SimSearch can be
initialized without a simulation copy and passed to a new environment as an optimizer.
The now instantiated simulation can then be copied and assigned to the corresponsing
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SimulationSearch attribute.

Furthermore, simulation-based optimizers need to be updated when another optimizer has
made a decision such that the internal simulation reflects the external simulation state. To
this end, FabricatioRL’s Optimizer interface was extended to contain the additional update
method. This method takes a direct action a parameter and does not return anything. Just
before the simulation’s step function returns, update is called on all embedded optimizers,
if any, with the direct action associated with that particular step call. Simulation-based
methods use the direct action to synchronise the internal simulation.

5.2.2 Monte Carlo Tree Search

MCTS is a method for approximating optimal decisions in artificial intelligence problems,
typically move planning in combinatorial games. It combines the generality of random
simulation2 with the precision of tree search. Research interest in MCTS has risen sharply
due to its spectacular success with board games such as Go as a component of AZ.

MCTS’ application extends far beyond the world of (adversarial board) games. As long as
a problem can be modeled as a game, i.e. a finite sequence of (state, action) pairs with a
value associated with at least the last state in the sequence, any problem can be solved
using it. As such MCTS is a problem agnostic approach.

As with RL, a simulation accepting an action as an input and returning the next state as
determined by the action must be made available to the algorithm. The simulation is used
for the purpose of rolling out the game to asses the value of the current state based on the
value of an end state reachable from it.

Concept: The “game tree” is the central MCTS data structure. Nodes herein correspond
to game states and edges to state-transitions/actions. Generally, from any particular state,
more than one action is feasible. If we were to represent states as nodes and recursively
expand all nodes according to the actions possible in them until an end state is reached, we
would have exhaustively searched the space of all possible move combinations. Having
done that, the optimal move could be selected by choosing the action leading down the
game tree path associated with the best outcome. This is not tractable for complex planning
problems such as Go or, in our case, complex scheduling problems. Instead, a clever way
of focusing solely on the most promising paths is needed. Using MCTS to find a solution
to a problem corresponds to probabilistically searching the most auspicious portions of
the game tree.

The four phases characteristic of the MCTS are the similar to the ones introduced when
discussing AZ in Section 4.2.2. The traditional MCTS stages are selection 1 , expansion 2 ,
simulation/roll-out 3 and backpropagation/backtracking 4 , as depicted in Figure 5.2.
Aside from the game state, every node in the tree stores a value and a visit count. The
search starting point is a tree consisting solely of the root node of the game, i.e. the initial
state. A partial game tree is then constructed as follows:

2Monte Carlo algorithms are a category of stochastic algorithms in which the run-time is deterministic
whereas the solution quality is a random variable. Higher run-times generally lead to more better solutions.
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1 During selection, the current partial tree is traversed by always selecting the child node
with the biggest associated score. This score is calculated through a combination of
the node value and the number of visits.

2 Having reached a leaf node, an action possible from the game state associated with
it is chosen at random. The node corresponding to the state the action leads to is
added as the new leaf node, thereby expanding the tree.

3 During roll-out, a simulation with legal actions chosen at random is executed starting
at the new node.

4 When the simulation reaches a terminal state, the end-game result 𝑟 is used to update
the new node, as well as the value of the nodes up the selection path. The visit
counts are also incremented by one along the path. The value and visit updates form
the backtracking step.

Selection Expansion Simulation Backpropagation

Repeated X Times

1 2 3 4

Figure 5.2: The Monte Carlo Search Tree Algorithm. A partial game tree is constructed
by repeating selection, expansion, simulation and backpropagation X times. During the
Selection phase the current partial tree is traversed from the root to a leaf using values
stored in the nodes to decide the path. During expansion, a new node is added to the leaf
by choosing a random action and saving the resulting state. Then, a simulation taking
random actions is used to reach an endgame state. The value associated with the endgame
state is used to update all nodes up the selection path. After X iterations, the best action
relative to the root node, is chosen using some selection criteria. (Source: Winands, 2015)

There are are several possible selection strategies 1 for MCTS, such as Bandit Algorithm
for Search Trees, Exploration-Exploitation with Exponential Weights or Upper Confidence
Bound 1 (UCB1)-tuned (Browne et al., 2012). By far the most popular is the one derived
from the UCB1 algorithm introduced by Auer et al. (2002). The UCB1 derived selection
strategy is called Upper Confidence Bound for Trees (UCT) (Kocsis et al., 2006), and can be
expressed as follows. From a set 𝐼 of candidate nodes, under the current node 𝑝, select best
node 𝑏 using Equation 5.13 (Winands, 2015), where 𝑣𝑖 represents node 𝑖’s value derived
from and updated through simulation. 𝑣𝑖 should be kept in the Interval [0, 1]. 𝐶 is a
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tunable exploration parameter. 𝑛𝑝 is the visit count of the current node and 𝑛𝑖 the visit
count of the 𝑖th child.

𝑏 = argmax
𝑖∈𝐼

(𝑣𝑖 + 𝐶)

√
𝑙𝑛(𝑛𝑝)
𝑛𝑖
) (5.13)

Expansion and rollout strategies 2 are studied less extensively. While different expansion
strategies, such as expanding more than one node at a time, or prohibiting expansion
until a certain threshold of simulations have been run through it, exist, their effect on the
algorithm’s playing strength is rather small (Winands, 2015).

In contrast, during the simulation/play-out step 3 , a smart simulation strategy has the
potential to significantly improve the algorithm’s results (Gelly et al., 2007). The idea
behind designing a play-out strategy is to use heuristics to filter out implausible moves.
Filtering during play-outs can have two negative effects on the algorithm’s performance.
On the one hand, over-filtering can negatively impact the MCTS’ exploration capability,
leading to potentially interesting nodes not being visited. On the other, depending on the
computational expensiveness of the heuristic, this can impair the algorithm’s speed. As
such, designing a simulation guiding strategy appropriate for the task at hand is a delicate
matter.

As with the previous steps, different strategies can be used for backtracking 4 . These
strategies pertain to how the node values 𝑣𝑖 are updated up the selection path using the
end scores 𝑟 𝑖𝑡 . However, generally the simple score average described by Equation 5.14 is
used (Coulom, 2006).

𝑣𝑖 =
∑

𝑡∈{1,...,𝑛𝑖}

𝑟𝑡

𝑛𝑖
. (5.14)

After the four steps were run a fixed number of times, a move has to be selected starting
from the root node of the now partially constructed game tree. The final move selection
occurs in accordance with one of four strategies. These are max-child (i), robust-child (ii),
robust-max-child (iii) and secure-child (iv):

(i) The first strategy selects the node with the maximum value 𝑣𝑖 as the next move.

(ii) Robust-child selects the node with the maximum visit counts.

(iii) The third strategy selects the node that has both the highest visit count and the
highest value. If no such node exists, supplementary play-outs are run until such a
node is determined.

(iv) Finally, secure child chooses the node that maximizes 𝑣𝑖 + 𝐴
𝑛𝑖

, where 𝐴 is a parameter,
and 𝑛𝑖 is the node’s visit count

Winands, 2015 note, that “the difference in performance between these strategies is limited
when a significant number of simulations for each root node have been played”.
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MCTS offers a number of advantages over other search strategies. Firstly, though it
can be enhanced with domain knowledge during the simulation step, MCTS is domain
independent, and can be used as a solver for any accordingly modeled problem (i.e. an
iterative process where decisions are made based on a state representation). Secondly,
the game tree resulting from MCTS is asymmetric, with more emphasis being lain (more
visits) on areas of the tree leading to potentially better results. Lastly, the algorithm is easy
to implement and tweak.

There are two major disadvantages to using MCTS in its basic form (no domain knowledge).
For one, it can fail to find optimal solutions for medium sized planning problems in a
reasonable amount of time. This is a common problem for most search approaches
confronted with a vast solution space. While the stochastic principle embedded in
the approach somewhat alleviates this issue, it cannot completely eliminate it. The
Second problem, namely the algorithm’s run-time, is derived from the first. Given a
large combinatorial optimization problem instance, a large number of simulations is
required to find good solutions, which negatively impacts speed. Though the use of
domain knowledge during play-offs can reduce the number of required simulations, the
speed-accuracy trade-off cannot be eliminated completely.

Implementation: For our experiments we use FabricatioRL with indirect actions and made
the following choices with respect to the MCTS steps. We use the UCB1 meta-heuristic,
a full expansion strategy, random rollouts, value averaging during backtracking and an
alternative final move selection strategy, we call “max/robust-child”. Max/robust-child
selects the node with the highest value to visit ratio.

Algorithm 3 presents the MCTS variant implemented for this work. The input is an initial
(agent) state 𝑆𝑡

𝐴
, an instance of FabricatioRL, a number of iterations 𝑥 and the exploration

parameter 𝐶. The tree node 𝑖 stores a representation of the state 𝑆𝑖
𝐴

it corresponds to, the
value 𝑣𝑖 , the node’s visit count 𝑛𝑖 , a pointer to the parent node, the action that lead to
it and the moves possible from it. Additionally, every node implements the add_child
function to link a new child node to itself. The simulation is used for executing moves
(step) and for getting the moves possible from a given state (get_legal_actions). Every
new iteration the simulation is reset to the initial state 𝑆𝑡

𝐴
. The full expansion-policy is

forced during the selection loop, where the movement down the tree path is curtailed, if
there are still unexplored nodes for any particular state.

The Optimizer-Control dichotomy is in place for our MCTS implementation as well. The
MCTS class implements Algorithm 3 within its get_action method. As with Simulation-
Search, MCTS objects can dub as indirect actions within FabricatioRL. Here too the MCTS
internal simulation needs to be updated to reflect the external simulation state. The
updates work as described at the end of the previous section. The MCTSControl class
implements the play_game method using the optimizer object to select the action to step
through the simulation from start to finish.
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Algorithm 3 UCT Monte Carlo Tree Search
Input: 𝑆𝑡 , sim, 𝑥, 𝐶

1: root← Node(𝑆𝑡 ,⊥,⊥, sim.get_legal_actions()) ⊲ Root; dummy parent and move
2: 𝑖 ← 0
3: node← root
4: while 𝑖 < 𝑥 do
5: sim← sim.get_deterministic_copy()
6: while node.child_nodes ≠ ∅ and node.untried_moves = ∅ do ⊲ Selection 1

7: node← argmax
child ∈ node.child_nodes

child.value
child.visits + 𝐶

√
node.visits
child.visits

8: sim.step(node.move)
9: end while

10: if node.untried_moves ≠ ∅ then ⊲ Expansion 2
11: move←𝑟𝑎𝑛𝑑 node.untried_moves
12: 𝑆← sim.step(move)
13: child← Node(𝑆, node, move, sim.get_legal_actions())
14: node.add_child(child)
15: node← child
16: end if
17: while sim.get_legal_actions() do ⊲ Roll Out 3
18: moves← sim.get_legal_actions()
19: move←𝑟𝑎𝑛𝑑 moves
20: 𝑆← sim.step(move)
21: end while
22: 𝑣 ← −sim.core.state.system_time
23: while node ≠ root do ⊲ Backtracking 4
24: node.value← node.value +𝑣
25: node.visits← node.visits +1
26: node← node.parent
27: end while
28: 𝑖 ← 𝑖 + 1
29: end while
30: contenders← node.child_nodes
31: best_node← argmax

child ∈ contenders

child.value
child.visits ⊲ Final selection

32: return best_node.move

5.3 Remarks on Baseline RL-Competitiveness

Strictly speaking, the two snapshot-based approaches we introduced are not fully RL-
competitive. Priority rules, while adaptive, efficient in terms of runtime and requiring
no mathematical modeling overhead do not always yield good quality solutions in the
deterministic case. Conversely, the constraint programming heuristic we created, CP3,
yields better solutions, is adaptive and runtime efficient, but requires mathematical
modeling.

Bear in mind, that the mathematical modeling overhead associated with CP is partially
amortized by the subsumption relationship characterizing scheduling setups. Creating a
CP model for a general setup yields a solver for all the subsumed setups. This property is
akin to RL transferability.
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Simulation-based methods do have a caveat: To reach a decision, they not only require
knowledge about the current production state, but, as the name suggests, also a full
simulation of the production process. This however, is a caveat of RL as well. While
model-free RL approaches do not require simulation during deployment, the training
process cannot be decoupled from simulation.
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Chapter 6

Choosing through Experimentation:
Setups, RL Design, Training and Eval-
uation

No amount of experimentation can ever prove me right; a single
experiment can prove me wrong.

— Albert Einstein

This section is focused on the experimental evaluation of RL algorithms for production
scheduling and serves to bind all previous sections together. Chapter 2 informs our entire
experiment design from scheduling setup choice, through RL employed model design, to
our chosen validation scheme. We use the simulation framework described in Chapter 3 to
make sure that our experiment setups are reproducible, such that other authors can easily
test different approaches against the results presented here. We evaluate our chosen RL
algorithms, DDQN and AZ, which were described in Chapter 4, by pitting them against
the baselines constructed in Chapter 5.

Our experiments are tailored to address the stochastic experiments, stochastic benchmarking
setup and RL design gaps from Section 2.5. We first transparently construct two stochastic
production scheduling setups in Section 6.1. In particular we assess the system behavior
and argue for our parameter choices such that the differences between the resulting
benchmarks become clearer. In Section 6.2 we present several design choices framing our
chosen RL algorithms. Here, we also describe two novel approaches to experimentally
evaluate rewards and scheduling state features without requiring model training. Finally,
we run our model selection experiments and evaluate the results of the best models in
Section 6.3. The model selection experiments have the dual purpose of evaluating both
design and RL algorithm parameter choices.

Our experiments are designed in such a fashion that the adaptivity and transferability
(see Table 4.1) of both RL algorithms and our baselines are tested, thereby assessing the
RL algorithm advantages. Highly adaptive algorithms are expected to perform well in
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stochastic environments, such as those constructed in this section. The transferability
property is evaluated by testing both RL and the RL-competitive baselines on different
scheduling problems. Our RL algorithms are trained on one type of problem only.

6.1 Scheduling Setup

19 of the 98 papers reviewed in Chapter 2 applied RL solutions to the flexible job-shop
scheduling problem (𝐹𝐽𝑐) making this problem the second most popular production setting
considered, just after the “classic” job-shop scheduling setup (𝐽𝑚). In terms of additional
constraints, 𝑀𝑜

𝑖
and 𝑟𝑠

𝑗
are the most popular, with 21 and 24 papers respectively considering

them. In terms of optimization goals, 56 of the publications are using makespan 𝐶max

as their target, making the latter the most popular optimization goal. This popularity
analysis lead us to choose the setups (𝐹𝐽𝑐 |𝑟𝑠

𝑗
, 𝑀𝑜

𝑖
|𝐶max) and (𝐽𝑚 |𝑟𝑠

𝑗
|𝐶max) as our algorithm

battlegrounds.

In this section, we construct the arena where RL is to compete against simple priority
rules, our CP heuristic, SimSearch and MCTS. First, we briefly introduce the deterministic
base scheduling problems (𝐽𝑚 | |𝐶max) and (𝐹𝐽𝑐 | |𝐶max) and the structure of the available
benchmark instances in Section 6.1.1. We then proceed to create the dynamic version of
the problems by expanding the base setups in Section 6.1.2, where we also investigate the
resulting dynamic system behavior in terms of workload.

6.1.1 Base Scheduling Problems

There are many available benchmarking instances for both (𝐽𝑚 |) and (𝐹𝐽𝑐 |) setups. Note
however that, for 𝐹𝐽𝑐 the separation between (𝐹𝐽𝑐 | |𝐶max), (𝐹𝐽𝑐 |𝑀𝑜

𝑖
|𝐶max) and (𝑅𝑚 +

𝐹𝐽𝑐 |𝑀𝑜
𝑖
|𝐶max) is not made clear in the benchmark datasets. Also, note that there is also a

correspondence between the job structure of some 𝐽𝑚 and 𝐹𝐽𝑐 instances. This is intuitive
since the latter can be created by simply expanding single machines into work centers or
expanding the operation capabilities of individual machines without changing the job
structure.

We selected orb10.jm from the ORLibrary (Beasley, 1990) and the corresponding orb10.fjs
from the repository maintained by Mastrolli (1998) as the (𝐽𝑚 | |𝐶max) and (𝐹𝐽𝑐 |𝑀𝑜

𝑖
|𝐶max) to

extend. The selection of the 𝐽𝑚 instance was done randomly from the set of instances with
10 machines and 10 jobs in the OR Library. We then looked for the 𝐹𝐽𝑐 instances (Mastrolli,
1998) which were built using the orb10.jm job structure and found three such instances
with an average of 1.1, 2 and 5 machine alternatives per operation respectively (Hurink’s
edata, rdata and vdata). We chose the one with the most alternatives (i.e. vdata).

Figure 6.1 shows the instance representations for 𝐽𝑚 and 𝐹𝐽𝑐 respectively. For 𝐽𝑚s the
representation is fairly straightforward (Figure 6.1a). The first row contains the white
space separated number of jobs 𝑛 and the number of machines 𝑚. Every subsequent row
represents a job and contains the 𝑛 operation type and operation duration pairs.

𝐹𝐽𝑐 instances (Figure 6.1b) are constructed similarly. Additionally, to 𝑛 and 𝑚, the first row
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10 10  
9  66  8  13  0  93  7  91  6  14  5  70  3  99 ...
8  34  9  99  0  62  7  65  5  62  4  64  6  21 ...
9  12  8  26  7  64  6  92  4  67  5  28  3  66 ...  
0  77  1  73  3  82  2  75  6  84  4  19  5  18 ... 

0  34  1  74  7  48  5  44  4  92  6  40  3  60 ...
9   8  8  85  3  58  7  97  5  92  4  89  6  75 ...
8  52  9  43  6   5  7  78  5  12  3  62  4  21 ...
9  81  8  23  7  23  6  75  4  78  5  56  3  51 ...
9  79  8  55  2  88  4  21  5  83  3  93  6  47 ...

0  43  1  63  2  83  3  29  4  52  5  98  6  54 ...

Number of jobs (𝑛𝑛)
Number of resources (𝑚𝑚)

Target operation resource (Oji
𝑇𝑇𝑇𝑇)

Operation processing time (Oji
𝐷𝐷)

(a) The job pool specification for the (𝐽𝑚 | 𝑟 𝑗 |
𝐶𝑚𝑎𝑥) setup (orb10.jm from the ORLibrary
(Beasley, 1990)).

10 10  5.00
10  6  1  66  2  66  3  66   8  66   9  66  10 ...

10  3  2  34  6  34  9  34   1  10  99   4   1  ...
10  6  2  12  3  12  4  12   6  12   8  12  10  ...
10  6  1  77  2  77  4  77   6  77   8  77   9 ...

10  4  1  34  4  34  5  34  10  34   2   2  74  ...
10  5  2   8  3   8  4   8   5   8  10   8   4  ...
10  5  1  52  4  52  5  52   7  52   9  52   6  ...
10  5  1  81  3  81  6  81   9  81  10  81   5  ...
10  4  3  79  4  79  8  79  10  79   4   5  55  ...
10  4  1  43  3  43  4  43   8  43   3   2  63  ...

Target operation resource (alternative)
Operation processing time (per resource) 

Number of job operations (𝑜𝑜𝑗𝑗) Number machine alternatives

Number of jobs (𝑛𝑛)
Number of resources (𝑚𝑚)

(b) The job pool specification for the (𝐹𝐽𝑐 |
𝑟 𝑗 , 𝑀𝑜 | 𝐶𝑚𝑎𝑥) setup (orb10.fjs 𝐹𝐽𝑐 from
Hurink’s vdata made available by Mastrolli
(1998)).

Figure 6.1: Base 𝐽𝑚 and 𝐹𝐽𝑐 instances at a glance.

contains the average number of machine alternatives. The subsequent rows represent jobs
and adhere to the following specification. The first row entry represents the total number
of operations 𝑜 𝑗 within the job. The row is continued by 𝑜 𝑗 variable length operation
specifications. An operation specification contains the number of alternative machines
𝑚𝑎𝑙𝑡

𝑗𝑖
at the first position. This information is followed by 𝑚𝑎𝑙𝑡

𝑗𝑖
number pairs which indicate

the resource index and operation duration for each alternative resource.

The different operation types can be inferred from the number of distinct resource
alternative sets present in the specification. The type of scheduling problem can then be
identified by looking at whether or not these resource sets overlap. The setup at hand
corresponds to a (𝐹𝐽𝑐 | 𝑀𝑜), since there are 97 distinct alternative sets with plenty of
overlap.

6.1.2 Dynamic Scheduling Problems

The dynamic problems (𝐽𝑚 |𝑟 𝑗 |𝐶max) and (𝐹𝐽𝑐 |𝑟 𝑗 , 𝑀𝑜
𝑖
|𝐶max), which represent our algorithm

test-bed are constructed based on the static problems described above. Both our problems
consist of a stream of 100 jobs, with the first 14 jobs being known at time 0 and the
following 86 being revealed as time progresses. The number of jobs was set using the
reviewed literature for orientation. To create the new arrival stream, we sample job
specifications uniformly at random with replacement from the pool of jobs defined by the
static scheduling problem instances described above. To better understand the resulting
scheduling problems, we need to discuss the WIP parameter as well as the choice and
effects of the job release times 𝑟 𝑗 .

Number of Jobs: The 100 total jobs were derived based on problem sizes in literature.
Figure 6.2 shows the distribution of the total number of operations for 62 of the 98 papers
reviewed in Chapter 2. We used the size information in Table A.1 to compile the plot
data. In a preliminary step, we eliminated 33 papers containing inclarity in terms of the
problem size and further three representing obvious outliers (more than 10000 operations
considered). From the figure we can see that the average number of operations is close
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to 1000 which also corresponds to the upper quartile of the data. Since our jobs contain
10 operations each, we limited the number of jobs to 100 to approximately match the
larger instance sizes in literature. Note that the problem size is no direct indication of the
problem’s combinatorial complexity.

Figure 6.2: Distribution of the problem
size in terms of operation numbers in RL
scheduling literature.

WIP: In online scheduling problems, a WIP
is often used to control the trade-off between
flow time and utilization/throughput. The
WIP limits the number of jobs seen by the
scheduling system to a fixed number. Jobs
outside the WIP, e.g. new job arrivals, have
to wait for a WIP slot to open up before being
added to the window. WIP slots become
available on completion of WIP jobs. Flow
time 𝐹𝑗 := 𝐶 𝑗 − 𝑠 𝑗1 is the time between the
processing start time 𝑠 𝑗1 of the first operation
from job 𝑗 and the job completion time 𝐶 𝑗

(cmp. Section 2.2.3). A large WIP leads to
an increase in machine utilization, and consequently throughput, at the expense of an
increasing flow time (Choo, 2017). Conversely, small WIP lead to shorter flow times at the
expense of utilization. There is no standard way of choosing the WIP size.

The WIP impact on production KPI is setup and control dependent and subject to research.
While studies of the WIP impact on particular production setups exist (e.g. for 𝐹𝑚

Yang et al., 2006; Lee et al., 2016) to the best of our knowledge, no setup and control
independent formulation is as of yet known. For 𝐹𝑚, the typical WIP selection procedure
involves plotting average flow time against average throughput, the so-called system
characteristic curve, and selecting the WIP at the point of maximum curvature (Yan et al.,
2019). Figure 6.3 visualizes this approach.

(a) Trade-off between utilization and flow
time for the 𝐹𝐽𝑐 setup.

(b) Trade-off between utilization and flow
time for the 𝐽𝑚 setup.

Figure 6.3: WIP size choice. The WIP was selected at the elbow of the Flow time-utililzation
tradeoff curve.
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For the problems at hand, we use FabricatioRL to choose the WIP size. First, we defined
200 different 𝐽𝑚 and 𝐹𝐽𝑐 instance sizes by varying the number of jobs 𝑛 from 1 to 200.
For each 𝑛 we created 20 different instances by sampling the appropriate number of jobs
uniformly at random from the pool of 10 jobs defined by orb10.jm and orb10.fjs respectively.
Subsequently, we ran the simulation with a simple sequencing heuristics, namely SPT, and
a simple job routing heuristic namely LQT as a control on all 𝐽𝑚/𝐹𝐽𝑐 instances generated.
FabricatioRL was parameterized with a WIP size equal to 𝑛, meaning that all jobs visible to
the control system for all instances. We then noted down the makespan 𝐶max and average
flow time 𝐹ave achieved by the heuristic controls on each of the 4000 instances. We grouped
these values by the number of jobs in the instance. By averaging the values inside the
groups we obtained 200 𝐶ave

max-𝐹ave
ave pairs.

We sorted the 𝐶ave
max-𝐹ave

ave pairs by the number of group jobs increasingly and plotted
the average flow time against the average throughput, i.e. 𝑛

𝐶ave
max

, as per Yan et al. (2019)
(Figure 6.3). We used the “Kneedle” algorithm (Satopaa et al., 2011) to find the number
of jobs corresponding to the point of maximum curvature. This yielded the values of 36
and 34 jobs for the 𝐹𝐽𝑐 and 𝐽𝑚 systems respectively. These points would correspond to
prioritizing throughput and flow time equally in the system. However, we decided to
prioritize flow times over throughput. As such we chose the value of 14 jobs as the WIP
window size for both problems at hand.

Release Times: The definition of job-arrival times is essential with respect to scheduling
system behavior. Depending on how these times are chosen, the system can be under-
or over-booked, which can significantly impact the scheduling problem and hence the
performance of different solution approaches.

However, details with respect to release times definition are mostly scarce in the related
scheduling literature. Wang et al. (2007) sample release times from an exponential
distribution with a mean of 3 and 4 for “light” and “heavy load conditions” respectively.
The authors do not elaborate on what constitutes a “heavy load condition”. Similarly, Luo
et al. (2021b) and Luo et al. (2021a) use a Poisson distribution for arrival times selecting
the distribution parameter � uniformly at random from {25, . . . , 100} and {50, . . . , 200}
respectively without detailing the choice of the distribution or its effect on the system.
Waschneck et al. (2018) also do not detail the release time distribution nor its impact on
the system behavior at all.

Central to defining job arrival times 𝑟𝑠
𝑗

are the times required for one WIP slot to get freed
𝑟slot
𝑗

, which are dependent on the WIP job structure and scheduling mechanism. One could
experimentally determine 𝑟slot

𝑗
through simulation with a heuristic control on a sufficient

number of randomly sampled scheduling instances of 𝑛 jobs, where 𝑛 corresponds to the
WIP size. Job arrival times could then be sampled from the resulting empirical distribution
of 𝑟slot

𝑗
.

To defining 𝑟𝑠
𝑗

we construct the following heuristic requiring a single simulation run on an
instance with a number of jobs equal to the WIP size. Our heuristic requires saving the
resource utilization 𝑈𝑡𝑙𝑡 and the current WIP fill level with respect to operations 𝑤ofl

𝑡 at
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every decision time point 𝑡 during the simulation run. At the end of the run, we calculate
an empiric 𝑟slot

𝑗
approximation using flow times 𝐹𝑗 , a utilization aggregate 𝑈𝑡𝑙agg, 𝑤ofl

ave and
the number of machines 𝑚 (Equation 6.1). We then use 𝑟slot

𝑗
to parameterize a truncated

normal distribution from which we sample inter-arrival times 𝑟ia
𝑗

(Equation 6.2). Finally,
we set the arrival times for jobs 𝑗 as the cumulative sum of the first 𝑗 inter-arrival times
(Equation 6.3).

𝑟slot
𝑗 ≈ 𝐹𝑗 ·

𝑤ofl
ave

𝑈𝑡𝑙agg
· 1
𝑚
· 0.9 (6.1)

𝑟ia
𝑗 ∼ 𝑁(�(𝑟slot

𝑗 ), 𝜎(𝑟
slot
𝑗 ), 𝑟

slot
min , 𝑟

slot
max) (6.2)

𝑟𝑠𝑗 :=
𝑗∑

𝑖=1
𝑟ia
𝑖 (6.3)

The heuristic is based on the intuition that flow times are directly proportional to 𝑟slot
𝑗

.
Using 𝐹𝑗 alone to estimate 𝑟slot

𝑗
is insufficient since 𝑟slot

𝑗
is additionally affected by the

machine utilization 𝑈𝑡𝑙𝑖 and 𝑤ofl
ave. Utilization is inversely proportional to 𝑟slot

𝑗
. If the

utilization is high, the slot release times decrease which is why we use 𝑈𝑡𝑙𝑖 to scale 𝐹𝑗 .
𝑤ofl

ave serves to adjust our formula to the workload present in WIP. Since a higher workload
correlates with a higher slot release time, we use this value as a multiplicative factor.
Finally, 𝑚 accounts for processing parallelization on different resources and 0.9 is an
experimentally determined adjustment factor.

We can partly control whether the system is overbooked, under-booked, or more or
less balanced by using the 𝑚𝑎𝑥, 𝑚𝑖𝑛, or 𝑎𝑣𝑒 operator as the aggregation function in
Equation 6.1 above. We parameterized the 𝐹𝐽𝑐 and 𝐽𝑚 setups with the 𝑚𝑒𝑎𝑛 and 𝑚𝑎𝑥

aggregates respectively.

System Behaviour: To keep with the frame of this work, we only inspect the system’s
behavior with respect to aspects of system load, namely the WIP fill level, and the
machine utilization. Both aspects are directly dependent on the WIP size and release times
parameters. The WIP fill level, i.e. the ratio between the total number of jobs in the system
and the WIP size, takes values greater than one if the system is overbooked and smaller
than one if under-booked.

To investigate the effects of our choices, we created 1600 problem instances for each of the
two scheduling setups using the simulation described in Chapter 3. The simulation was
then run on these inputs using SimSearch as a control. In each state, we store the WIP
fill level, resource utilization, and system time along with 47 further state features (see
Section 6.2.3). These values are conveniently tracked by our simulation. Note that we use
the data acquired in this fashion in the following sections as well. Figure 6.4 shows the full
data acquisition loop.

Figures 6.5 and 6.6 display the effects of our parameter choices (WIP size and 𝑟𝑠
𝑗
) on the
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𝐻1 𝐻2 𝐻10

𝐶𝑚𝑎𝑥
𝐻1 𝐶𝑚𝑎𝑥

𝐻2 𝐶𝑚𝑎𝑥
𝐻𝑘

…

𝑎𝑟𝑔𝑚𝑖𝑛

Det. Copy:
𝑆𝐴
𝑡

Det. Copy:
𝑆𝐴
𝑡

Det. Copy:
𝑆𝐴
𝑡

Simulation 

State: 𝑆𝐸
𝑡

Simulation 
State: 𝑆𝐸

𝑡+1

𝜙1…𝜙49

𝑦

𝑓𝜃

Figure 6.4: Data acquisition loop using simulation search. For all states, features 𝜙1 , . . . , 𝜙49
are first extracted. Then simulation search is being ran to select the best optimizer for
the current state. In this case the optimizers correspond to the ten sequencing heuristics
from Section 5.1.1 combined with the LQT job routing heuristic. the winning heuristic 𝑦 is
saved and associated with the features. Models 𝑓� can be used to predict the 𝑦.

(𝐹𝐽𝑐 |, 𝑟𝑠
𝑗
, 𝑀𝑜

𝑖
) and (𝐽𝑚 | 𝑟𝑠

𝑗
) setups respectively. The green line in all plots indicates the

average y-axis values �𝑡 for the corresponding point in time 𝑡, averaged over the 1600
analysis instances. The plot area around the mean is filled between �𝑡 − 𝜎𝑡 and �𝑡 + 𝜎𝑡 ,
where 𝜎𝑡 is the standard deviation of the 1600 y-values for the time point 𝑡.

(a) WIP fill level (𝐹𝐽𝑐 |𝑟𝑠
𝑗
, 𝑀𝑜

𝑖
). (b) Average utilization for (𝐹𝐽𝑐 |𝑟𝑠

𝑗
, 𝑀𝑜

𝑖
).

Figure 6.5: System load behavior for (𝐹𝐽𝑐 |𝑟𝑠
𝑗
, 𝑀𝑜

𝑖
). The system is overbooked and maxi-

mizing utilization.

From the fill level plot (Figure 6.5a), which depicts the evolution of the WIP fill level (y-axis)
over time, we see that the 𝐹𝐽𝑐 system is overbooked with the number of total jobs in the
system oscillating around 1.5 times the WIP size. The variance of these values between
instances gradually increases before decreasing again towards the end of the scheduling
game. The system utilization (Figure 6.5b) rapidly increases during the beginning of
the scheduling time horizon (𝑡 ∈ [0, 2000]) and peaks towards the end of the simulation
(𝑡 > 6000) with mean values slightly over 80%. The utilization increase during the middle
part of the simulation is only slight.
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(a) WIP Fill Level for the (𝐽𝑚 |𝑟𝑠
𝑗
). (b) Average utilization for (𝐽𝑚 |𝑟𝑠

𝑗
).

Figure 6.6: System Load Behavior for the (𝐽𝑚 |𝑟𝑠
𝑗
). The curves show clear signs of the

system being underbooked.

In Figure 6.6a we see the WIP fill level curve of a mostly under-booked 𝐽𝑚 system. The plot
shows a steady drop in fill level after an initial peak of 1.5 at around 𝑡 ≈ 2000 time units.
The drop continues until it reaches a steady value of approximately 0.5 during the middle
part of the scheduling horizon (𝑡 ∈ [4000, 10000]). There is a further fill level decrease
towards the tail end of the scheduling horizon when no new jobs arrive in the system.
The system utilization in Figure 6.5b confirms the under-booked system hypothesis with
average utilization values decreasing monotonously after a peak of around 65% at 𝑡 = 2000.
The figures also suggest the presence of an outlier in the analysis data, since the variance
interval ends at 𝑡 ≈ 14000. This means that an instance from the 1600 considered has a
significantly longer last decision point, namely at 𝑡 ≈ 16000.

We make three observations based on the described figures. Firstly, we can see that our
inter-arrival time generation heuristic is imperfect, leading to an under-booked system
in the 𝐽𝑚 case contrary to our expectations. This is in part due to the fact that the
heuristic was tailored during experimentation with the 𝐹𝐽𝑐 system. Nevertheless, in
both cases, the job stream is steady during the middle part of the simulation time, with
a WIP fill-level oscillating around 1.5 in the 𝐹𝐽𝑐 case and just under 0.5 in the 𝐽𝑚 case
respectively. Secondly, while it is hard to infer the maximum utilization time for the 𝐽𝑚

setting given the under-booked situation, the utilization plots suggest that the 𝐹𝐽𝑐 setup
can achieve higher utilization percentages, which points to the advantages of the added
system flexibility (i.e. resource alternatives) in the 𝐹𝐽𝑐 case. Lastly, given the radically
different system behavior, we can expect control algorithm ranking to differ significantly
between systems. In particular, it is improbable that transfer learning would work well
between these problems.

6.2 RL Design

In this section we motivate and detail the RL design choices which we consider in our
model selection phase (Section 6.3.2). There are many possible MDP breakdown-state-
action-reward-agent deployment combinations as was revealed in Chapter 2. Because
of the reproducibility and evaluation gaps in RL production scheduling literature, many
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of these combinations are in need of (re-)evaluation. However, completing this task
is far beyond the scope of this work. To cover as much ground as possible, we select
Iterative Sequencing as our MDP breakdown and focus solely on a single agent deployment
scheme. The breakdown choice is informed by the overwhelming popularity the Iterative
Sequencing breakdown in the RL production scheduling community (see Figure 2.7). The
same holds for the single-agent deployment scheme (see Figure 2.13).

We start by laying down our broad state-action design choices and introducing an ex-ante
analysis scheme for rewards and state features in Section 6.2.1. We then proceed to reveal
the results of the ex-ante evaluation with respect to rewards in Section 6.2.2. In Section 6.2.3
we elaborate on the exact composition of our state spaces and reveal the results of the
ex-ante evaluation of state features. Section 6.2.4 is reserved for a discussion of our action
design.

6.2.1 Design Space Reduction

Focusing solely on the Iterative Sequencing breakdown significantly reduces our design
space. However, 𝐹𝐽𝑐 instances require job routing decisions alongside sequencing, since
operations can be executed on one of several machines. Instead of taking both job routing
and sequencing decisions with RL (Interlaced Routing and Sequencing) we use LQT for all
job routing decisions. This approach is complementary to the approach taken by Kuhnle
et al. (2020), where the authors fixed FIFO as a sequencing heuristic and only took job
routing actions using RL agents.

In terms of state space-action space combinations we take the following three approaches
into consideration:

D1 Firstly we offer a part of the raw state information to agents and have them take direct
actions consisting of operation indices.

D2 Secondly, we feed the same raw state information into our agents but model their
action-space such that an action corresponds to a job index.

D3 Lastly, we construct and use global state features for the state-space based on which
agents need to select a sequencing heuristic from a fixed set.

These three designs cover both the raw and feature state categories and both direct and
indirect action paradigms. Thus, our model selection phase can uncover the challenges
associated with all the widespread state-action modeling paradigms within the chosen
MDP breakdown. We do not consider a design for the last possible combination, namely
feature state-raw actions, since global features obfuscate too much of the scheduling
problem’s structure for the agent to be realistically expected to learn to pick a correct
operation or job index. Also note that a combination of both raw states and features should
also be considered in the future.

Using a novel yet simple data-driven ex-ante analysis, we can both isolate a single reward
to be used for all the above designs and select a state feature set for the D3 design without
resorting to costly RL model training end evaluation. To select the reward, we gather
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data by using heuristics as simulation controls and investigate the correlation of different
cumulative rewards with the makespan which represents our optimization goal. Similarly,
we select the feature set by using a Random Forest model, which is trained to predict the
instance makespan given a particular state, as a feature ranker, thereby isolating the ten
most informative features as the D3 input.

The data acquisition loop used for the ex-ante analysis of rewards and state features was
introduced in 6.1.2. In addition to the WIP fill level, resource utilization, and the system
time information stored for each state during the setup analysis, we now store the raw state
information, chosen actions, the “winning” heuristic, the state features, and cumulative
rewards. Note that the time between consecutive states varies considerably. To avoid
high correlations between states, which can be a problem for agent learning, the data
accumulation loop skips recording trivial sequencing decisions, i.e. those where a single
operation is present in the resource buffer.

6.2.2 Reward Design

During the data acquisition loop, we record the following eight rewards, 𝑅1 to 𝑅8 , which
we formally define in the equations below. We use 𝑈𝑖(𝑆𝑡) to denote the utilization time of
machine 𝑖 as recorded by the environment-state 𝑠𝑡 at time point 𝑡. 𝑈𝑖(𝑆𝑡) is calculated as
the total of the machine processing time divided by the current state time. Similarly, the
function 𝑄𝑖(𝑆𝑡) extracts the resource buffer length for the resource 𝑖 from 𝑆𝑡 . Allowing a
slight abuse of notation, the function 𝑡(𝑆𝑡) extracts the time recorded by the environment-
state 𝑆𝑡 at distinct time points. Given any variables 𝑋𝑖 , �̄� represents their mean over the
index set. We use the 𝜎 operator as a shorthand for the standard deviation over index
variables 𝑖 to avoid the lengthy formulation 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖 − �̄�. Last but not least,ℳ represents

the set of all resources, 𝒥 the set of all jobs, and 𝐷 the duration of operations currently
visible in the WIP window.

𝑅1(𝑆𝑡) := 𝑈𝑎𝑣𝑒(𝑆𝑡) −𝑈𝑎𝑣𝑒(𝑆𝑡−1) (6.4)

𝑅2(𝑆𝑡) :=


1, if 𝑈𝑎𝑣𝑒(𝑆𝑡) > 𝑈𝑎𝑣𝑒(𝑆𝑡−1)
0, if 𝑈𝑎𝑣𝑒(𝑆𝑡) > 0.95 ·𝑈𝑎𝑣𝑒(𝑆𝑡−1)
−1, otherwise

(6.5)

𝑅3(𝑆𝑡) := 𝑒
𝑈𝑎𝑣𝑒 (𝑆𝑡 )

1.5 − 1 (6.6)

𝑅4(𝑆𝑡) := 𝑈𝑎𝑣𝑒(𝑆𝑡) · (𝑡(𝑆𝑡) − 𝑡(𝑆𝑡−1))
𝑡(𝑆𝑡)

(6.7)

𝑅5(𝑆𝑡) :=


1, if 𝜎(𝑈𝑖(𝑆𝑡 )·(𝑡(𝑆𝑡 )−𝑡(𝑆𝑡−1))

𝑡(𝑆𝑡 ) ) >
𝜎(𝑈𝑖(𝑆𝑡−1)·(𝑡(𝑆𝑡−1)−𝑡(𝑆𝑡−2))

𝑡(𝑆𝑡−1) )
−1, otherwise

(6.8)

𝑅6(𝑆𝑡) := −(𝑡(𝑆𝑡) − 𝑡(𝑆𝑡−1) (6.9)

𝑅7(𝑆𝑡) := 1 − (𝑡(𝑆𝑡) − 𝑡(𝑆𝑡−1))∑
𝑗 ,𝑖∈ℳ×𝒥 𝐷𝑗𝑖

(6.10)
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𝑅8(𝑆𝑡) := −
∑

𝑖∈{1,...,|ℳ|}
𝑄𝑖(𝑆𝑡) (6.11)

The set of recorded cumulative rewards contains four signals defined in the surveyed
literature as well as three new signals defined by us. 𝑅1 (Equation 6.4) denotes the
“Utilization Difference” between two consecutive states. The idea herein is that the
agent should strive to increase the utilization as much as possible thereby decreasing the
makespan. The “Quantized Utilization Difference” 𝑅2 (Equation 6.5), introduced by Luo
(2020), follows the same principle, with the distinction that the reward between two states
is, this time, discrete. The last utilization-based reward from literature is the “Utilization
Sigmoid” 𝑅3 (Equation 6.6), wherein the utilization is passed through a sigmoid function
(Kuhnle et al., 2020). Since the time difference between two consecutive states is not
constant, we added 𝑅4, i.e. the “Time Scaled Utilization Difference” (Equation 6.7) to our
reward set. The “Quantized Utilization Deviation” 𝑅5 (Equation 6.8) is yet another signal
introduced by us. It punishes high utilization standard deviations and rewards small
ones. 𝑅6 is proposed by Gabel et al. (2012) and represents the negative state-transition
time (Equation 6.9). The cumulative version of this reward is equal to the negative
makespan, which is why we refer to it as the “Negative Absolute Makespan” . 𝑅7, which
we call “Duration Relative Makespan” represents the negative transition time scaled by
the duration of the operations in WIP at the previous step (Equation 6.10). 𝑅8, which was
introduced by Gabel et al. (2007b), returns the “Negative Cumulative Buffer Lengths” at
the current point in time (Equation 6.11).

The correlations between the different reward signals and the goal variable depicted
in Figure 6.7 underline the difficulty of reward engineering for production scheduling
problems: Contrary to our expectation of a strong negative correlation between the
cumulative rewards and the makespan optimization goal, in most cases, the reward signals
do not correlate or even correlate positively with the target. Additionally, given different
setups, the correlation behavior differs. For the 𝐹𝐽𝑐 setup, the viable reward signals are
the negative absolute makespan, 𝑅6, and the cumulative buffer length, 𝑅7. In the 𝐽𝑚 case,
the best contenders are the continuous utilization difference, 𝑅1, and the negative absolute
makespan, 𝑅6. Since in the D3 experiments we intend to test the learning transferability
capacity of our RL models, we select 𝑅6, which, by design, displays a perfect correlation
with the target variable in both the 𝐹𝐽𝑐 and the 𝐽𝑚 cases, as the agent reward.

6.2.3 State Design

With the advent of deep learning, the “raw” versus “features” debate seems to now favor
the former, at least in the field of computer vision. This is because CNN can extract
meaningful information from raw images offering a convenient alternative to hand-crafted
features. This saves researchers the need for domain expertise and development time,
offsetting the overhead to the model training time.

In RL scheduling this debate is, as of yet, still open. There are three aspects to be considered
when making a design choice in favor of one or the other:
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(a) Makespan-cumulative reward correlations for
the 𝐹𝐽𝑐 setup.

(b) Makespan-cumulative reward correla-
tions for the 𝐽𝑚 setup.

Figure 6.7: Correlations between different cumulative rewards signals and the makespan
goal for the 𝐹𝐽𝑐 and 𝐽𝑚 scheduling setups. Since agents seek to maximize their rewards,
and the optimization goal is to lower the makespan, a strong negative correlation is an
indicator of reward viability. The correlation behavior of the cumulative rewards varies
greatly between scheduling setups.

First, there is the issue of the overhead associated with developing features. Con-
structing features is not easy, since both domain expertise and implementation
time are required for it. This makes the raw state information design choice more
attractive.

Secondly, there is the issue of scheduling setup or at least scheduling problem size
invariant models. Features can encode information in a scheduling problem size and
and setup independent fashion, making the same models usable in a vaster array of
applications, which makes features an attractive design choice.

Thirdly, there is the issue of model training. On the one hand, raw states are generally
much larger than feature states which can slow down or even impede learning.
On the other hand, during feature construction, essential state information may be
missed, which can lead to poorer results.

Raw States D1-D2: The complete raw information set that could be used as the agent-state
for the 𝐹𝐽𝑐 and 𝐽𝑚 setups is given by the tuple (𝑂𝑃 , 𝑂𝑇𝑦 , 𝑂𝐷 , 𝐿, 𝑆, 𝑀𝑡𝑦 , 𝑡 , 𝑐), i.e. the
operation precedence graph, the operation type matrix, the operation duration matrix, the
machine capability matrix, the system time, and the current resource requiring a decision
(see Figure 3.7). This would amount to an input size of 𝑛 · 𝑜2 + 𝑛 · 𝑜 · 4 + 𝑚 · 𝑡𝑦 + 2 =

14 · 102 + 14 · 10 · 4 + 10 · 97 + 2 = 2932 for a WIP size of 14 and 97 distinct machine
capabilities.

To reduce the input space, we eliminate 𝑂𝑃 and 𝑀𝑇𝑦 from the agent-state-space. We can
safely eliminate 𝑂𝑃 since the precedence constraints are all the same for all jobs, and, as
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such, constant for both the 𝐹𝐽𝑐 and the 𝐽𝑚 setups. As for the Machine capability matrix,
we theorize, that agents could learn the appropriate correspondence between types and
machines from data, given enough training iterations. This leaves us with a significantly
reduced state size of 562.

Both the D1 and the D2 designs use the vector resulting from flattening and concatenating
the elements of the (𝑂𝑇𝑦 , 𝑂𝐷 , 𝐿, 𝑆, 𝑡 , 𝑐) sextuple. To flatten the contained matrices, we
simply concatenate the contained rows. We use a flat vector rather than the matrices
in their original shape because of the fully connected network architecture of our DQN
models. While CNN have been used in some publications (e.g. Liu et al., 2020) within our
modeling, there are no spatial correlations that CNN can benefit from. Additionally, fully
connected architectures were deployed by most authors in the related literature.

Feature State D3: The feature inputs for the D3 experiments were collected in three steps.
We first computed 49 features thereby significantly extending the feature sets encountered
in related publications. In the second step, we used a Random Forest model trained to
predict the makespan target to assess the feature importance for both the 𝐹𝐽𝑐 and the
𝐽𝑚 setup. We selected the ten best features from the 𝐹𝐽𝑐 setup as inputs for our RL
models.

Table 6.1 gives an overview of the features we employed during our experiments. For
every feature, we noted down the feature number, its name, its formal definition, and the
feature rank as assessed by the feature_importance property of the Random Forest model
for the 𝐹𝐽𝑐 and 𝐽𝑚 setups.

The overview table additionally groups the features into four general categories, namely
resource-centric, job-centric, structural, and behavioral. The first two categories are mostly
literature-inspired (1) while the former two categories are a contribution of ours (2):

(1) Most of the resource- and job-centric features we use are inspired by literature, albeit
normalized in different fashions. The features pertaining to the buffered operations,
which are sometimes referred as “local features”, i.e. 𝐹1, 𝐹2, 𝐹3 and 𝐹4 are derived
from the works of Riedmiller et al. (1999), Aydin et al. (2000), Wang et al. (2005), Gabel
et al. (2007a), Chen et al. (2010), Thomas et al. (2018), Zhou et al. (2020), Wang (2020),
and Kuhnle et al. (2020). These are by far the most popular indicators employed
in RL scheduling approaches. Different flavors of the tardiness features 𝐹8 and 𝐹9
were used by Wang et al. (2005) and Luo (2020). The utilization indicators 𝐹5, 𝐹6
and 𝐹7 were also used by Thomas et al. (2018), Park et al. (2019), and Wang (2020).
The flow-time-related indicators are based on the works of Luo (2020), Hofmann
et al. (2020), and Gabel (2009) The throughput-related features stem mainly from
the work of Luo (2020). Finally, our makespan estimate is inspired by Gabel (2009).
Note that implementing all the features found in the literature and performing an
in-depth analysis thereof is beyond the goal of the current elaboration. As such, it is
possible that some of the features in the existing literature were not implemented.
Furthermore, there are also some features, e.g. the past number of tool changes or
the sum of tooling times at the current machine (Park et al., 2019), the duration of
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machine failures (Zhao et al., 2019) or the utilization of vehicles (Kuhnle et al., 2020)
that do not apply to our chosen setups.

(2) The structural and behavioral categories are developed by us with none of the features
therein having been encountered in the related literature. Structural features encode
information from the state matrices as a whole, rather than focusing on individual
optimization goals, e.g. the entropy of the duration matrix. Behavioral features
encode aspects of the decision-making process over time, thereby loosely linking
scheduling algorithm behavior and scheduling problem. An example of this is the
number of trivial decisions when a single operation can be chosen from the resource
buffer to the total number of sequencing decisions until the current state.

Additionally, within the general categories, features are further separated by the most
closely associated scheduling goals. The fact that structural and behavioral features have
no associated goal category is indicated by the presence of “None” in the associated goal
column.

The formal definitions from Table 6.1 are largely based on the tracker variables within
FabricatioRL state. When introducing the employed trackers, we simplify the notation
by not including WIP and time indices explicitly. While we do not explicitly distinguish
between WIP indices and the global environment-state matrices within the below formulae,
all the trackers calculated over job indices pertain solely to WIP jobs. This is required
since information outside the WIP, in particular not yet released jobs, should not be
leaked to scheduling algorithms. With respect to the time indices, the reader should also
note, that the operation matrices 𝑂𝑃 , 𝑂𝑇𝑦 , 𝑂𝐷 , the operation location matrix 𝐿 and the
operation status matrix 𝑆 as well as the current resource 𝑐 change with the system time.
We differentiate between the feature computation scheme of resource- and job-centric
features (i), structural features (ii), and behavioral features (iii):

(i) Eleven trackers are needed for the definition of resource- and job-centric features.The
number of completed operations per job is monitored by the variables 𝑇𝑐𝑜

𝑗
:=

𝑜 𝑗 − 1{𝑂𝑇𝑦

𝑗𝑖
!=0}, where 𝑜 𝑗 represents the original number of operations in job 𝑗. The

total number of completed WIP operations 𝑇𝑐𝑜 can be then defined as 𝑇𝑐𝑜 :=
∑

𝑗 𝑇
𝑐𝑜
𝑗

.
Similarly, we define the number of remaining operations per job𝑇𝑟𝑜

𝑗
as 𝑜 𝑗−𝑇𝑐𝑜

𝑗
and the

total number of remaining WIP operations 𝑇𝑟𝑜 as
∑

𝑗 𝑇
𝑟𝑜
𝑗

. 𝑇𝐵 𝑓 𝑙

𝑖
:=

∑
𝑗 ,𝑙 1{(𝐿𝑗𝑙=𝑖)∧(𝑆𝑗𝑙=1)}

represents the length of the buffer associated with the machine 𝑙. Using the remaining
work trackers for 𝑇𝑟𝑤

𝑗
:=

∑
𝑖 𝑂

𝐷
𝑗𝑖

where 𝑗 is a WIP job, we define the total amount
of remaining processing time (work) over all WIP operations as 𝑇𝑟𝑤 :=

∑
𝑗∈𝒥 𝑇𝑟𝑤

𝑗
.

𝑇𝑅
𝑗

:= 𝑡 − 𝑅 𝑗 tracks the time elapsed since the release of job 𝑗. For some features,
we will need the job operation processing times at the time of the job arrival. We
use variables 𝑇 𝑖𝑤

𝑗
:=

∑
𝑂

𝑇𝑦,𝑅 𝑗

𝑗𝑖
to denote these quantities. Building on the previous

trackers we define the work done variables for jobs 𝑗 as 𝑇𝑑𝑤
𝑗

:= 𝑇𝑤𝑖
𝑗
− 𝑇𝑟𝑤

𝑗
. The

buffer load of resource 𝑖 with respect to the total processing time of the contained
operations is given by 𝑇

𝐵 𝑓 𝑡

𝑖
:=

∑
𝑗 ,𝑙 1{(𝐿𝑗𝑙=𝑙)∧(𝑆𝑗𝑙=1)} ·𝐷𝑗𝑙 . Note that 𝑆 𝑗𝑙 == 1 if and only

if the corresponding operation 𝑙 from job 𝑗 is buffered at the resource 𝐿 𝑗𝑙 .
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(ii) To define our structural features, we use a series of metrics that quantify the heterogeneity
of jobs in terms of their duration and types. To this end, we first employ two editing
distance operators namely the Hamming Distance 𝐻 (Warps, 1983) and Kendal Tau
𝜏 (Kendall, 1938). We apply 𝜏 to individual rows from the 𝑂𝑇𝑦 using the identical
permutation as a reference vector. Secondly, we cluster jobs with respect to their
types and duration using 𝑘-means and calculate the silhouette coefficient of the
resulting clusters for three values of 𝑘 namely 2, 𝑤 − 1 and ⌊𝑤2 ⌋. Here 𝑤 represents
the WIP size. Before applying 𝑘-means we use min-max scaling on the type and
duration matrix rows and concatenate the matrices column-wise. We use 𝑆𝑘 to
denote the application of the clustering scheme to our data. Last but not least, we
use the categorical cross-entropy operator 𝐶 over the flattened type and duration
matrices to extract additional numeric values for the matrix entry heterogeneity as a
whole. The cross-entropy is defined as

∑
𝑝𝑖 log(𝑝𝑖), where 𝑝𝑖 is the probability of

occurrence of category 𝑖. Applied to our matrices 𝑖 translates to the discrete types
for 𝑂𝑇𝑦 and to one of 10 quantized duration values for 𝑂𝐷 .

(iii) The variables needed for all the behavioral feature definitions, save for the Heuristic
Agreement Entropy (F46) are the WIP index set𝒲, the arrived job set𝒦 , the set of
discrete decision time-points 𝒯 and the legal action set ℒ. These state-dependent
sets are maintained by the employed simulation, similar to the previously introduced
trackers. The last section of Table 6.1 uses the sets above to define the behavioral
features in a straightforward way. F46’s definition requires additional elucidation.
We first run the ten sequencing heuristics 𝐻𝑘 , 𝑘 ∈ {1, . . . 10} from Section 5.1.1 and
note down the array of selected operations (𝑜𝐻𝑘

)𝑘∈{1,...,10}. Note that two heuristics
could yield the same operation index. We then compute the relative frequencies
𝑝
𝑜𝐻𝑘

𝑖
of the distinct operation indices 𝑖 within the 𝑜𝐻𝑘

array. Finally, the entropy over
these relative frequencies is calculated yielding our feature.

Table 6.1: Feature Overview

𝐹1 Buffer Length Ratio 𝑇
𝐵 𝑓 𝑙
𝑐 · (𝑇𝑟𝑜)−1 43 40

𝐵
𝑓 𝑖

/𝐵
𝑓𝑡

𝑖
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𝐹2 Buffer Load Avg. �𝑖(𝑇
𝐵 𝑓 𝑡

𝑖
· (max

𝑖∈ℳ
𝑇
𝐵 𝑓 𝑡

𝑖
)−1) 23 37

𝐹3 Buffer Load St.D. 𝜎𝑖(𝑇
𝐵 𝑓 𝑡

𝑖
· (max

𝑖∈ℳ
𝑇
𝐵 𝑓 𝑡

𝑖
)−1) 22 26

𝐹4 Buffer Time Ratio 𝑇
𝐵 𝑓 𝑡
𝑐 · (𝑇𝑟𝑤)−1 11 29

𝐹5 Current Utilization 𝑚−1 ·∑𝑗𝑖 1{𝑆𝑗𝑖=2} 48 42

𝑈
𝑡𝑙
𝑖

𝐹6 Utilization Avg. �𝑖(𝑈𝑡𝑙𝑖) 12 2

𝐹7 Utilization St.D. 𝜎𝑖(𝑈𝑡𝑙𝑖) 16 7

𝐹8 Estimated Tardiness Rate (𝑇𝑟𝑜)−1 ·∑𝑗𝑖 1{(𝑡+∑𝑖 𝑂
𝐷
𝑗𝑖
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Table 6.1: Feature Overview (Continued)

𝐹9 Tardiness Rate (𝑇𝑟𝑜)−1 ·∑𝑗𝑖 1{(∑𝑖 𝑂
𝐷
𝑗𝑖
)>𝑇𝑗 } 7 35 𝑇

𝑗

Jo
b-

C
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ic

𝐹10 Operation Completion Rate 𝑇𝑐𝑜 · (∑𝑗 𝑜 𝑗)−1 45 45

𝑇
𝑝
𝑡 𝑡

𝐹11 Work Completion Rate 𝑇𝑑𝑜 · (∑𝑗 𝑇
𝑖𝑤
𝑗
)−1 21 28

𝐹12 Job Operation Completion Rate Avg. �𝑗(𝑇𝑐𝑜
𝑗
· 𝑜−1

𝑗
) 46 46

𝐹
𝑗

𝐹13 Job Operation Completion Rate St.D. 𝜎𝑗(𝑇𝑐𝑜
𝑗
· 𝑜−1

𝑗
) 14 39

𝐹14 Job Operation Max Relative
Completion Rate Avg.

�𝑗(𝑇𝑐𝑜
𝑗
· (max

𝑗∈𝒥
𝑇𝑐𝑜
𝑗
)−1) 25 43

𝐹15 Job Operation Max Relative
Completion Rate St.D.

𝜎𝑗(𝑇𝑐𝑜
𝑗
· (max

𝑗∈𝒥
𝑇𝑐𝑜
𝑗
)−1) 4 38

𝐹16 Job Work Completion Rate Avg. �𝑗(𝑇𝑑𝑤
𝑗
· (𝑇 𝑖𝑤

𝑗
)−1) 42 33

𝐹17 Job Work Completion Rate St.D. 𝜎𝑗(𝑇𝑑𝑤
𝑗
· (𝑇 𝑖𝑤

𝑗
)−1) 8 27

𝐹18 Max Relative Work Completion Rate
Avg.

�𝑗(𝑇𝑑𝑤
𝑗
· (max

𝑗∈𝒥
𝑇𝑑𝑤
𝑗
)−1) 18 18

𝐹19 Max Relative Work Completion Rate
St.D.

𝜎𝑗(𝑇𝑑𝑤
𝑗
· (max

𝑗∈𝒥
𝑇𝑑𝑤
𝑗
)−1) 5 17

𝐹20 Absolute Job Throughput Time Avg. �𝑗(𝑇𝑑𝑤
𝑗
· (max

𝑗
𝑅 𝑗)−1) 13 10

𝐹21 Absolute Job Throughput Time St.D. 𝜎𝑗(𝑇𝑑𝑤
𝑗
· (max

𝑗
𝑅 𝑗)−1) 17 15

𝐹22 Relative Job Throughput Time Avg. �𝑗(𝑇𝑑𝑤
𝑗
· 𝑅−1

𝑗
) 9 20

𝐹23 Relative Job Throughput Time St.D. 𝜎𝑗(𝑇𝑑𝑤
𝑗
· 𝑅−1

𝑗
) 3 16

𝐹24 Estimated Flow Time Avg. �𝑗(𝑇𝑅
𝑗
+ 𝑇𝑟𝑤

𝑗
· 1
𝑚

∑
𝑖∈ℳ 𝑈𝑡𝑙𝑖) 10 24

𝐹25 Estimated Flow Time St.D. 𝜎𝑗(𝑇𝑅
𝑗
+ 𝑇𝑟𝑤

𝑗
· 1
𝑚

∑
𝑖∈ℳ 𝑈𝑡𝑙𝑖) 1 19

𝐹26 Makespan Lower Bound to Upper
Bound Ratio

1
𝑚 · (𝐹17 + 𝑇𝑤𝑟 ) · (𝐹17 + 𝑇𝑤𝑟 )−1 36 23
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𝐹27 Normalized Duration Avg. �𝑗 ,𝑖((𝑂𝐷
𝑗𝑖
− 𝑂𝐷

min) · (𝑂
𝐷
max − 𝑂𝐷

min)
−1) 7 35
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𝐹28 Normalized Duration St.D. 𝜎𝑗 ,𝑖((𝑂𝐷
𝑗𝑖
− 𝑂𝐷

min) · (𝑂
𝐷
max − 𝑂𝐷

min)
−1) 2 21

𝐹29 WIP Relative System Time 𝑡 − 𝑚𝑖𝑛
𝑗

𝑅 𝑗 15 11

𝐹30 Normalized Type Avg. �𝑗 ,𝑖((𝑂
𝑇𝑦

𝑗𝑖
−𝑂𝑇𝑦

min) · (𝑂
𝑇𝑦
max−𝑂𝐷

min)
−1)) 32 34

𝐹31 Normalized Type St.D. 𝜎𝑗 ,𝑖((𝑂
𝑇𝑦

𝑗𝑖
−𝑂𝑇𝑦

min)) · (𝑂
𝑇𝑦
max−𝑂

𝑇𝑦

min)
−1) 33 25

𝐹32 Duration Distance Mean �𝑗 ,𝑘(𝐻(𝑂𝐷
𝑗
, 𝑂𝐷

𝑘
)) 39 31

𝐹33 Duration Distance St.D. 𝜎𝑗 ,𝑘(𝐻(𝑂𝐷
𝑗
, 𝑂𝐷

𝑘
)) 20 8

𝐹34 Type Hamming Mean �𝑗 ,𝑘(𝐻(𝑂
𝑇𝑦

𝑗
, 𝑂𝐷

𝑘
)) 41 30

𝐹35 Type Hamming St.D. 𝜎𝑗 ,𝑘(𝐻(𝑂
𝑇𝑦

𝑗
, 𝑂𝐷

𝑘
)) 27 13

𝐹36 Kendall Tau Avg. �𝑗(𝜏(𝑂
𝑇𝑦

𝑗
)) 40 6

N
r

N
am

e

D
efi

ni
tio

n

𝐹
𝐽𝑐

𝐹
𝐽𝑐

𝐹
𝐽𝑐

R
an

k

𝐽𝑚𝐽𝑚 𝐽𝑚
R

an
k

R
el

at
ed

G
oa

l

C
at

eg
or

y

Continued ...



CHAPTER 6. EXPERIMENTS 139

Table 6.1: Feature Overview (Continued)

𝐹37 Kendall Tau St.D. 𝜎𝑗(𝜏(𝑂
𝑇𝑦

𝑗
) 35 14
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𝐹38 Silhouette Minimum 𝑘 𝑆2(𝑂𝑇𝑦 , 𝑂𝐷) 26 9

𝐹39 Silhouette Mid 𝑘 𝑆⌊𝑤/2⌋ (𝑂𝑇𝑦 , 𝑂𝐷) 31 22

𝐹40 Silhouette Maximum 𝑘 𝑆𝑤−1(𝑂𝑇𝑦 , 𝑂𝐷) 38 44

𝐹41 Type Entropy 𝐶(𝑂𝑇𝑦) 29 12

𝐹42 Duration Entropy 𝐶(𝑂𝐷) 34 4

𝐹43 WIP to Arrival Ratio |𝒦 | · |𝒲|−1 44 47
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𝐹44 WIP to Arrival Time Ratio (∑𝑗∈𝒦
∑

𝑖<𝑜 𝑗 𝑂
𝐷
𝑗𝑖
) ·

(∑𝑗∈𝒲
∑

𝑖<𝑜 𝑗 𝑂
𝐷
𝑗𝑖
)−1

28 49

𝐹45 Decision Skip Ratio
∑

𝑡∈𝒯 1{𝑇𝐵 𝑓 𝑙

𝑐(𝑆𝑡 )
=1} · |𝒯 |

−1 19 1

𝐹46 Heuristic Agreement Entropy
∑

𝑖 𝑝
𝑜𝐻𝑘

𝑖
log(𝑝𝑜𝐻𝑘

𝑖
) 47 41

𝐹47 Legal Action to Job Ratio |ℒ| · |𝒲|−1 49 48

𝐹48 Legal Action Length Stream Avg. �𝑡∈𝒯 (|ℒ𝑡 |) 30 3

𝐹49 Legal Action Length Stream St.D. 𝜎𝑡∈𝒯 (|ℒ𝑡 |) 6 5
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We normalized our features to fit in the [0, 1] interval to avoid implicitly biasing our
models towards features with larger magnitudes and to speed up training. There are
few exceptions to this rule, e.g. the WIP to arrival ratio 𝐹43, whose values lie within the
[0, 2] interval. Non-normalized featured are due to either desiring values more easy to
interpret for humans (the exemplified WIP to arrival ratio is useful for understanding
system behavior — see Figure 6.5 and Figure 6.6), or due to no obvious constant time
normalization being possible (e.g. duration entropy).

The top ten ranking induced by the feature_importance property of the Random Forest
regressor trained to predict the makespan achieved by SimSearch given the described
features differs between 𝐹𝐽𝑐 and 𝐽𝑚 instances:

𝐹𝐽𝑐 — The ten best features within the 𝐹𝐽𝑐 setup are, in order of their importance,

1 the Estimated Flow Time Standard Deviation (𝐹25),

2 the Normalized Duration Standard Deviation (𝐹28),

3 the Relative Job Throughput Time Standard Deviation (𝐹23),

4 the Job Operation Max Relative Completion Rate Standard Deviation (𝐹15),

5 the Max Relative Work Completion Rate Standard Deviation (𝐹19),

6 the Legal Action Length Stream Standard Deviation (𝐹49),

7 the Normalized Duration Average (𝐹27),
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8 the Job Work Completion Rate Standard Deviation (𝐹17),

9 the Relative Job Throughput Time Average (𝐹22), and

10 the Estimated Flow Time Average (𝐹24).

This amounts to one behavioral features (𝐹49), two structural features (𝐹28, 𝐹27),
and seven job-centric features (𝐹15, 17, 19, 𝐹22 − 𝐹25).

𝐽𝑚 — In the 𝐽𝑚 case, the ten best features are

1 the Decision Skip Ratio (𝐹45),

2 the Utilization Average (𝐹6),

3 the Legal Action Length Stream Average (𝐹48),

4 the Duration Entropy (𝐹42),

5 the Legal Action Length Stream Standard Deviation (F49),

6 the Kendall Tau Average (𝐹36),

7 the Utilization Standard Deviation (𝐹7),

8 the Duration Distance Standard Deviation (𝐹33),

9 the Silhouette Minimum 𝑘 (𝐹38) and

10 the Absolute Job Throughput Time Average (𝐹20).

This feature set has a very different categorial composition as compared to the 𝐹𝐽𝑐

feature set. It contains three behavioral features (𝐹45, 𝐹48 − 49), four structural
features (𝐹33, 𝐹36, 𝐹38, 𝐹42) two recource-centric features (𝐹6 − 7) and a single
job-centric feature (𝐹20).

Three observations can be made based on the above feature ranking. First, the presence
of structural and behavioral features in the top ten features for both setups — 3/10 in
the 𝐹𝐽𝑐 case and 7/10 in the 𝐽𝑚 case — confirms the relevance of our novel features.
Secondly, encoding related information in different ways does not necessarily constitute a
redundancy. This is suggested by the fact that all the job-centric features in the top ten of
the 𝐹𝐽𝑐 setup are associated with the flow-time goal. Finally, the thin overlap in top ten
features between the two setups, as well a the vast difference in categorial composition,
foreshadows the limitations in transfer capabilities for models trained on one setup in
terms of performance on the other.

6.2.4 Action Design

In terms of the action-space, we investigate two direct (D1, D2) and one indirect action
designs (D3) from literature. In the D3 design, the agent chooses between one of six
simple heuristics, which in turn select the operation to be set to processing on the resource
currently requesting a task.
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Direct Actions D1-D2: Recall that the direct actions are interpreted differently between
the two designs:

D1 In D1 our agents need to indicate the operation for the now free machine by means
of a WIP operation index. The vector of possible actions corresponds in shape to
the flattened operation matrix, limited to 14 rows corresponding to the current WIP
jobs. The training environment then internally unravels the agent action into a tuple,
which is used to implement the simulation logic. To the best of our understanding,
the works of Jiménez (2012), Mendez-Hernandez et al. (2019), Waschneck et al. (2018),
Thomas et al. (2018), and Rinciog et al. (2020) model actions in a similar fashion.

D2 Within the D2 action design, agents select a job index from the set present in WIP
rather than an operation directly. Since both 𝐹𝐽𝑐 and 𝐽𝑚 have linear precedence
graphs, the job index uniquely identifies the next job operation. Similar approaches
were taken by Gabel et al. (2007a), Gabel (2009), Gabel et al. (2012), Reyna et al. (2015),
Fonseca-Reyna et al. (2018), Zhang et al. (2020), and Park et al. (2021).

Note that in the raw action modeling case, agents can take illegal actions (see Figure 6.8),
which would lead to a training environment reset. In fact, in most cases, the majority of
the DQN output vector will correspond to illegal actions. Having many possible illegal
actions can significatly slow down or even impede agent learning, since RL algorithms must first
learn the “rules of the game”.

Figure 6.8: Illegal action masking for the direct action design from an environment
perspective. Assume that machine 𝑐 = 9 requests a decision. The viable operation indices
(𝑗 , 𝑖) are those corresponding to operations present at the target resource (𝐿 𝑗𝑖 = 𝑐 in the
matrix on the left) with a status indicating in buffer wait (𝑆 𝑗𝑖 = 1 in the matrix on the
right). In D1 only three out of 50 actions are legal: ℒ𝐷1 := {(𝑗 , 𝑖) | 𝐿 𝑗𝑖 = 𝑐 ∧ 𝑆 𝑗𝑖 = 1}, i.e.
they do not lead to an environment reset. In D2 only the job index needs to be specified,
leading to three out of five possible actions being legal: ℒ𝐷2 := { 𝑗 | ∃𝑖 : 𝐿 𝑗𝑖 = 𝑐 ∧ 𝑆 𝑗𝑖 = 1}.
To prevent the agent from taking illegal actions, its output vector needs to be multiplied
with the mask (bottom right in the figure). In case of NNs, the adjusted outputs need to be
additionally considered during the backpropagation step.

Brammer et al. (2022) note, citing Zahavy et al. (2018) that “there is currently no straightfor-
ward way of preventing invalid actions in reinforcement learning”. Nevertheless, there is
an arguably straightforward way to overcome this caveat, namely by explicitly zeroing out
the RL Agent’s network output corresponding to illegal actions and re-normalizing the
values prior to the final action selection. This has to be done both after a network forward
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pass and before a network backward pass. Masking out illegal actions would correspond
to endowing the agent with knowledge of the domain rules and was done in the case of
AZ (see Section 4.2.2).

Figure 6.8 provides an example of how masks could be constructed using FabricatioRL,
which supports this technique by means of the get_legal_actions API function. Legal
actions in the D1 case correspond to operation indices (𝑗 , 𝑖) currently positioned at
the resource requesting a sequencing decision, 𝑐 = 9 in the figure, as indicated by
the resource numbers in the location matrix (𝐿 𝑗𝑖 = 𝑐). FabricatioRL returns the sets
ℒ𝐷1 := {(𝑗 , 𝑖) | 𝐿 𝑗𝑖 = 𝑐∧𝑆 𝑗𝑖 = 1} on get_legal_actions calls. In the D2 case, the legal actions
correspond to the set of corresponding job indices ℒ𝐷2 := { 𝑗 | ∃𝑖 : 𝐿 𝑗𝑖 = 𝑐 ∧ 𝑆 𝑗𝑖 = 1}.

We do not employ masking within our DQN experiments for two reasons. Firstly, masking
needs to be additionally supported by the RL agent implementation, since the outputs
adjusted through masking should be considered during backpropagation. Currently, there
is no widely spread RL agent repository implementing the technique for DQN. Secondly,
there is no instance of such an approach being used with DQN in RL scheduling literature.
The sole instance of masking being used in the context of the reviewed RL scheduling
work, is proposed by Rinciog et al. (2020), where an unpublished implementation of AZ
is used. Note that our AZ implementation also makes use of the described masking
technique.

Indirect Actions D3: We do not use all ten heuristics present in the data accumulation
loop for two reasons. On the one hand, we want to ease the agent’s learning process, on the
other hand, as can be seen from Figure 6.9a, there is a clear heuristic hierarchy for the 𝐹𝐽𝑐

setup. The plot counts the number of times different heuristics achieved the best makespan
among their peers, i.e. they “won” the scheduling game. We use this information to
exclude heuristics that perform poorly from the agent’s action-space. The figure isolates
EDD, LUDM, MTPO, and SRPT as the exclusion candidates since these simple heuristics
win, in less than 5% of the cases accumulated as described in Section 6.1.2.

Figure 6.9b shows the distribution of the most successful heuristics for the 𝐽𝑚 data
accumulated. We can clearly see a discrepancy between the heuristic performance of the
two plots. This discrepancy is yet another indicator of the potentially limited transfer
potential between the two setups.

Another indicator foreshadowing poor transfer learning results is depicted in Figure 6.10.
The figures count the number of times multiple priority rules lead to the same winning
makespan result for the 𝐹𝐽𝑐 and 𝐽𝑚 states respectively. The difference in tie distribution
between the 𝐹𝐽𝑐 and 𝐽𝑚 setups suggests a different, setup-dependent pattern.

Additionally, the tie distributions give insight into the D3 learning task difficulty. The
large number of ties (≈ 40% for 𝐹𝐽𝑐) suggests that the task may be (very) difficult for our
models, since the mapping of states to best priority rules is often not unique, and thus, not
a function.
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(a) Best heuristics for (𝐹𝐽𝑐 | 𝑟 𝑗 , 𝑀𝑜 | 𝐶𝑚𝑎𝑥)
states.

(b) Best heuristics for (𝐽𝑚 | 𝑟 𝑗 | 𝐶𝑚𝑎𝑥) states.

Figure 6.9: Distribution of the state-dependent best heuristics for the considered setups
setup. The distribution is calculated over 127,922 and 189,901 data points in the 𝐹𝑗𝑐 and
𝐽𝑚 cases respectively. The magenta bars represent heuristics that achieve the best results
in under 5% of the considered cases.

(a) priority rules ties for (𝐹𝐽𝑐 | 𝑟 𝑗 , 𝑀𝑜 | 𝐶𝑚𝑎𝑥)
states.

(b) priority rules ties for the (𝐽𝑚 | 𝑟 𝑗 | 𝐶𝑚𝑎𝑥)
states.

Figure 6.10: Distribution of the priority rule ties within the context of simulation search.
The figure counts the relative occurrence of multiple priority rules being tied for the first
place in terms of makespan for 127,922 𝐹𝐽𝑐 states (a) and 189,901 𝐽𝑚 states (b). Such ties
could confuse D3 RL models. The different distribution of ties between setups points
towards difficulties in transfer learning.

6.3 Training and Evaluation

Supplementary to the considerable number of design choices available to us when
considering RL applications for production scheduling, deep-learning also presents the
hurdle of a large (hyper-)parameter space. Aside from the parameters defining neural
network architecture, key hyper-parameters associated with both neural networks, e.g.
learning rate, regularization, and RL, e.g. discount factor, exploration parameters, have
to be considered.1 Furthermore, the learning process is in-transparent, with no obvious
correlation between loss decrease and model performance.

After a concise introduction of the experiment setup in Section 6.3.1, we detail our

1The distinction between parameters and hyper-parameters for learning algorithms is given by the nature
of their relationship with the training data. If the model variable are inferred from data during training, e.g.
NN weights, then the variable is a parameter. Otherwise the model variable is a hyper-parameter. (Kuhn
et al., 2013)
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experimental results in two phases. First, we evaluate RL models resulting from different
parametrizations and designs against each other in Section 6.3.2. After isolating the most
promising design using DQN we additionally train an AZ to establish a comparison
between different RL paradigms. Then, in Section 6.3.3 we deploy the best DQN model
together with AZ model to large 𝐹𝐽𝑐 and 𝐽𝑚 test sets. The added 𝐽𝑚 test set serves to
evaluate the limits of learning transfer between significantly different scheduling setups.
We discus the scheduling results relative to the baselines introduced in Chapter 5.

6.3.1 Experiment Setup

The proposed designs are evaluated during the model selection phase using DQN agents.
This is because of DQN’s popularity in the RL production scheduling community. Having
chosen the best design and hyper-parameter set, we then train AZ using the DQN results,
deferring a dedicated AZ model selection phase to future work. Training both DDQN and
AZ reveals AZ to be the more attractive choice, because of the fewer hyper-parameters
required, and faster training speeds. The subsequent evaluation section further reinforces
this, seen as AZ outperforms DDQN.

The model selection phase uses ten different seeds to generate ten different (𝐹𝐽𝑐 |
𝑟 𝑗 , 𝑀

𝑜
𝑖
|𝐶max) instances as described in Section 6.1.2 for agent training. FabricatioRL

cycles through these instances on calls to reset.2 For each of the three designs (D1, D2,
D3) we additionally vary three learning rate values and two replay buffer size values. We
train each of the resulting 18 models for one million steps, which, for the slowest design,
D1, takes several days. The fastest design, D3, finishes training in less than a day. D1 and
D2 models are trained in parallel two at a time using two GPUs. D3 models are trained
six at a time, distributing three models on two GPUs with 11 GB of memory each. The
single AZ is trained alone on the GPU with self-play episodes running concomitantly on
the CPU. All training is monitored using the TensorBoard.

For the model evaluation we sample 6000 seeds uniformly at random to generate corre-
sponding (𝐹𝐽𝑐 | 𝑟 𝑗 , 𝑀𝑜

𝑖
|𝐶max) instances on which we test the best DQN model, together

with AZ and the RL-competitive baselines introduced in Chapter 5. Additionally, we
also generate 6000 (𝐽𝑚 | 𝑟 𝑗 |𝐶max) instances to which we deploy all the algorithms to
be compared. This is done to test another sometimes postulated RL advantage, namely
transfer learning. Different scheduling algorithms are evaluated with respect to winns
and makespan relative to the virtual best selector, i.e. the ex-post best algorithm for every
instance. Job routing decisions are taken by all algorithms except CP3 using the LQT
heuristic. Using LQT and CP3 in conjunction is difficult if at all possible, because of the
different paradigms they represent (planning vs reactive scheduling), and beyond the
scope of this work.

All models except for DQN are ran on the CPU during evaluation. DQN running on a GPU
if available is the standard configuration in Stable-Baselines 3 with which we chose not to
interfere. To speed up the process, we use 40 different threads, varying seeds between

2These are triggered by the agent in the background on simulation completion. A simulation run terminates
either if all jobs have been processed, or if an illegal action was suggested by the agent.
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them. In particular all the compared algorithms run in (the same) sequence in all threads.
All experiments were ran on a server with two 11GB GPUs, an IntelXeon processor with
24 cores and 64GB of RAM. The available hardware allowed for the partial parallelization
of both the model selection and the model evaluation phase, as previously described.
However, with the exception of AZ, the individual algorithms used throughout this paper
are single threaded.

6.3.2 Model Selection

This section will demonstrate the difficulties of training the popular DQN approach
found in RL production scheduling literature. Additionally, we will demonstrate the
implausibility of the direct action designs D1 and D2, in the absence of legal action masking,
for large production scheduling instances. While our designs are informed by choices
encountered in literature, our experiments show that DQN agents fail to learn the “the
rules of the game”, thus leaving the D3 design as the only viable option.

DQN Parameters: For all our designs we use fully connected NN architectures with
Rectified Linear Unit (RELU) activation functions for all hidden layers. The activation
function of the output layer is the identity function, as needed by the DQN algorithm. For
D1 and D2 we use three fully connected hidden layers of sizes 256, 512, and 256. For D1,
where the input has 564 entries and the output vector has a length of 140, this amounts to a
total of 432,640 parameters. Using the same architecture for D2 yields 400384 parameters,
since in this case, the network output has a size of 14. We set the network size using the RL
production scheduling literature as an orientation, e.g. 320-256-128-128-13 (Hofmann et al.,
2020) or 512-128-18 (Waschneck et al., 2018). Also guided by the literature, e.g. 64-32-16-8
(Park et al., 2019) or 100 (Stricker et al., 2018), we use a considerably smaller network for
our feature state indirect action design (D3). Here the agent network consists of a single
hidden layer with 128 nodes, yielding a total of 2182 parameters (10 inputs and 6 nodes in
the output layer).

The DQN flavor we chose from Stable-Baselines 3 is a DDQN with a history replay buffer
and soft target updates. This introduces several additional parameters on top of the
learning rate 𝛼, exploration rate 𝜖, the 𝜖-decay, the reward discount factor 𝛾, and the total
number of data points to gather, i.e. the total number of environment steps to take before
learning halts. As stated in Section 4.2.1, DDQN uses a less frequently updated target
network 𝑓�′ to construct the Q-values 𝑓� is trained on. The target network updates consist
of re-initializing �′ using � for which the frequency and the soft update parameter 𝜏 have
to be set.

It would go beyond the scope of this work to test the influence of each individual parameter
on the overall agent learning behavior and its associated performance. As such most of
the DDQN parameters are set to fixed values. We do, however, investigate the impact
of the learning rate and buffer size during model selection. For 𝛼 we chose three initial
values namely 1𝑒−3, 1𝑒−4 and 1𝑒−5. These values are plugged into a linear learning rate
schedule (Darken et al., 1990) which gradually decreases the learning rate such that it
reaches 0 just after the final gradient update. For 𝛽 we used two values, namely 1𝑒4 and
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1𝑒5. Table 6.2 gives an overview of all DDQN parameter values, both fixed and variable.
Variable parameters are placed within accolades.

Table 6.2: The values taken by the DDQN parameters during model selection.

Name Symbol Values
D1 D2 D3

Self-Play/Target Network 𝑓�/ 𝑓�̂ FCNN: 256-512-256 FCNN: 128
Learning Rate 𝛼 {1e−3, 1e−4, 1e−5}
Buffer Size 𝛽 {1𝑒4, 1𝑒5}
Batch Size 𝑏 128 2𝑒3
Polyak Update Coefficient 𝜏 0.8
Discount factor 𝛾 0.99
Initial Exploration Rate 𝜖 0.5
𝜖-Decay 𝜖decay 33%
Minimum Exploration
Rate

𝜖min 0.01

Training Frequency 𝑘self-play 1𝑒3
Target Update Interval 𝑘target 1𝑒3 2𝑒3

We use an initial 𝜖 of 0.5 with an 𝜖-decay calculated such that the final 𝜖 value of 0.01 is
reached after 33% of the total training steps (1𝑒6 for D1-2 and 2 · 1𝑒6 for D3). This implicit
definition of the 𝜖-decay is a Stable-Baselines 3 implementation flavor. The employed 𝛾 has
a value of 0.99 thereby clearly prioritizing the immediate reward over future rewards. We
do this since the training environment skips over trivial decisions leading to subsequent
states, and therefore rewards, that are sufficiently far in the future by design.

The update of the action selection network 𝑓� is performed every 1000 steps (training
frequency) on batch sizes of 128 for the D1 setup and 2000 on the D2 and D3 setups. For
D1 we sample a single batch from the replay buffer to perform the weight update, while
for D2 and D3 we train on the entirety of data in the replay buffer. We perform fewer
gradient steps on a much smaller batch in the D1 case to save time, given that we expect
the agent to frequently pick illegal actions, which leads to a significant overhead induced
by the training environment re-initialization. In the D1 experiment setup we set the batch
size to a conservative 128 whereas in D2 and D3 we increased this value to 2000.

The soft update parameter is assigned a value of 0.8 and 𝑓�′ is updated every 2000 steps.
Lastly, note the first 𝑓� update is performed at step 2000 and that the replay buffer is a FIFO
queue, meaning that the oldest experience is pushed out of the buffer when its maximal
capacity 𝛽 is reached.

To obtain a better view of the model performance evolution during the exploration stages
(𝜖 > 0.01), we use the evaluation episode parametrization implemented in Stable-Baselines
3. This amounts to testing the agent in a purely exploitative fashion (𝜖 = 0) for a fixed
number of episodes after a fixed number of steps. In our case, “episode” refers to
scheduling all the 100 jobs in our scheduling instances to completion, or until an illegal
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action occurs. We evaluate our agents every 4000 steps on 20 differently seeded scheduling
episodes. For agent training monitoring, we log the 𝑓� loss, i.e. MSE, along with the mean
episode reward, mean episode length as well as the progression of the learning rate and
exploration rate. The mean episode reward and the episode length signals are monitored
separately for training and evaluation.

DQN Model Selection D1-D2: Since the direct action setups can yield illegal actions we
adapted the makespan reward to severely punish agents in the case of illegal actions. The
resulting reward 𝑅′6(𝑆𝑛) administers punishment inversely proportional to the number of
legal actions taken until state 𝑛th state as defined by Equation 6.12, where 𝑡(𝑆𝑛) denotes
the system time associated with state 𝑆𝑛 , ℒ𝐷1/2(𝑆𝑛) the corresponding legal action set, and
𝑎𝑛 the action leading to the reward.

𝑅′6(𝑆𝑛) :=

{
min(−2𝑒4,−1𝑒3 · (100 − 𝑛)), if 𝑎𝑛 ∉ ℒ𝐷1/2(𝑆𝑛)
𝑅6(𝑆𝑡), otherwise

(6.12)

The learning curves associated with both D1 and D2 agent show that the algorithms
struggle to learn the “rules of the game”:

D1 Figure 6.11 displays the D1 model learning curves for the three different learning rates
and a replay buffer size 𝛽 = 1𝑒4. Looking solely at the training loss in Figure 6.11a
we see that the agents do discern a pattern given a high enough initial learning
rate. However, the discerned pattern is not sufficient for learning what the legal
scheduling actions are for all given states. As can be seen from Figure 6.11b, which
depicts the average number of steps per episode, agents only pick legal sequencing
actions an average of four times before the environment resets. This is less than 5% of
a normal episode length which oscillates around 70 steps for the 𝐹𝐽𝑐 case. We notice
that an initial learning rate of 1𝑒−5 leads to agents not being able to learn anything
(the loss in Figure 6.11a does not decrease over time). Both 1𝑒−4 and 1𝑒−3, however,
determine a similar loss convergence and legal action selection performance.

(a) D1 DQN model loss (Mean Absolute Error
(MAE)) over time.

(b) D1 DQN Model mean episode length
(decisions) over time.

Figure 6.11: Learning for the raw state direct (operation) action models using a replay
buffer size 𝛽 = 1𝑒4. “LR” designates the model learning rate. While the models pick up a
pattern for larger learning rates (left), they cannot infer the “rules of the game” (right).
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D2 For the D2 design, the agents display a similar, albeit somewhat more successful
learning behavior. Figure 6.12 displays the training loss and mean evaluation episode
length plotted against the number of training steps for the agents with the D2 design
trained using a buffer size of 1𝑒4. Here the best agent learns to pick a legal action in
about 15% of the cases. Considering that the worst case probability of picking illegal
actions is 1− 2

14 = 0.86 for D2 and 1− 2
140 = 0.99 it is unsurprising that the D2 models

fare better as compared to the D1 models. All agents converge towards a loss of
around 500 for all learning rates, with the lower learning rates displaying less noise
and a slightly better convergence behavior. However, while the models trained with
initial learning rates of 1𝑒−4 and 1𝑒−5 have a better convergence behavior (i.e. less
noise and a smaller convergence error), than their 1𝑒−3 counterpart, they perform
considerably worse in terms of legal action selection. Thus it can be theorized, that
RL learning curves indicate whether the model has found a consistent strategy rather
than a good one. Note that the D2 model trained with the 1𝑒 − 3 seems to keep
improving at the end of 1𝑒6 steps

(a) D2 DQN model loss (MAE) over time. (b) D2 DQN mean episode length (decisions)
over time.

Figure 6.12: Learning curves for the raw state direct (job) action models using a replay
buffer size 𝛽 = 1𝑒4. “LR” deisgnates the model learning rate. While the models pick up a
pattern for larger learning rates (left), they cannot infer the “rules of the game” (right).
The model with the highest learning rate (1𝑒−3) fares best and its training is not complete
after 1e6 steps.

The following two conclusions ca be drawn from the displayed learning behavior:

1. The learning rate significantly impacts the agent’s learning behavior as can be seen
from both D1 and D2 experiments. Moreover, the learning rate impact is different
depending on the chosen design.

2. There seems to be no general correlation between training loss and model performance.
This effect is exemplified by the learning curves in Figure 6.12.

While our agents’ learning failure is obvious, the reasons for it are less transparent. This is
because there is no way to determine whether the model under- or over-fits on the training
data from a single training run. Underfitting can happen if the model is not strong enough
to fit the data in the replay buffer. In such a case we would need to add more parameters
to the agent’s network, increase the learning rate, decrease the buffer size or add more
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gradient steps. Conversely, a non-converging loss can occur because of overfitting. In this
case, the agent perfectly fits the data currently in the replay buffer. As soon as new data is
added, the error shoots up again because of the model’s poor generalization capacity. In
such a case we would need to increase the training buffer size, decrease the number of
nodes in the network, decrease the learning rate or decrease the number of gradient steps.
In our case, the poor model performance is most likely due to under-fitting, since the D1
and D2 experiments ran with the larger buffer size (1𝑒5) display a very similar learning
behavior.

DQN Model Selection D3: The indirect action experiments show more promise. On the
one hand, agents following the D3 design, need not be concerned with discerning legal
from illegal actions, which makes the learning task more manageable. On the other hand,
learning is faster so we can more easily train for more steps. Figure 6.13 shows the loss
and mean evaluation episode reward for the models trained with a buffer size of 1𝑒4 and
1𝑒5 respectively over a span of 2𝑒6 steps.

(a) D3 DQN model loss (MAE) over time for
a replay buffer of size 𝛽 = 1𝑒5.

(b) D3 DQN model mean reward over time
for a replay buffer of size 𝛽 = 1𝑒5.

(c) D3 DQN model loss (MAE) over time for
a replay buffer of size (𝛽 = 1𝑒4).

(d) D3 DQN model mean reward over time
for a replay buffer of size (𝛽 = 1𝑒4).

Figure 6.13: D3 model learning curves in terms of MAE loss (left subplots) and average
episode reward (right subplots) for replay buffers of size 𝛽 = 1𝑒5 (top) and 𝛽 = 1𝑒4 (bottom).
“LR” designates the model learning rate. The models with a learning rate of 1𝑒−5 diverge.
Average episode rewards are noisy and do not display an improving trend.

The following four observations can be made. Firstly, the models trained over larger replay
buffers achieve slightly better training losses than the ones trained with a smaller replay
buffer. Secondly, the initial learning rate of 1𝑒−5 is too small and leads to divergence.
Thirdly, the model loss gets worse before it gets better. This may be due to the smaller
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amounts of data in the replay buffer, in the beginning, coupled with a high exploration
rate. As old data starts being expelled from the buffer and the action selection scheme
starts to gradually favor exploitation, the model loss starts decreasing again. Fourthly,
there is no stable pattern of increasing reward accumulation with an increase in training
steps. Rather the mean reward achieved during the evaluation stage oscillates around
−7375 over the entire training period.

Overall, our best DQN candidate is the D3 agent with a buffer size of 1𝑒5 and a learning
rate of 1𝑒3. The D1 and D2 agents can be excluded from the contest since they did not learn
to discern legal from illegal actions. Note, however, that one could evaluate these agents
as well, by using the masking technique previously discussed during deployment. From
the batch of D3 agents, we picked the ones trained with 1𝑒5 reply buffer sizes, since their
overall training losses are slightly better, signaling more confidence in their own strategy.
Of these three models, we chose the one trained with a learning rate of 1𝑒3 because this
agent has both the best loss after 2𝑒6 steps and the highest peak during evaluation with an
average cumulative makespan reward of -7241.

AZ Parameters: We use the D3 design and the best DQN learning rate to train an AZ
agent. Save for the learning rate and buffer sizes, AZ shares no further parameters with
DQN. Since, as opposed to DQN, the AZ network is trained on the experience buffer in its
entirety (see Section 4.2.2), we employ the smaller buffer size of 1𝑒4 to save training time.
The AZ own parameter 𝑣puct, temperature 𝜏 and number of MCTS iterations per step are
set to 2.5, 1 and 2 during training. During the later evaluation, we increased the number
of iterations per step to 5. Table 6.3 gives an overview of the parameter values including
the essential details of the model’s NN.

Table 6.3: The values taken by the AZ parameters during model selection.

Name Symbol Value

Policy-Value Network 𝑓�

Shared Stack: Conv(64,3,3)-Id(64,3,3)x2
𝜋-Head: Conv(2,1,1)

𝑣-Head: Conv(2,1,1)-Dense(64)
Learning Rate 𝛼 1e−4
Buffer Size 𝛽 1e4
Number MCTS Iterations 𝑖max 2
Puct Paramer 𝑐puct 2.5
Temperature 𝜏 1

In terms of the AZ implementation, we use a small version of the ResNet architecture. While
the feature vector inputs of D3 do not display spatial correlations, temporal correlations
may be useful for learning (see the feature evolution in Annex C). We use a stack of three
consecutive state feature vectors as the network input. After an initial convolutional layer,
we pass our input through three identity blocks (consisting of the main path and a skip
connection) consisting of two convolutional layers on the main path. All convolutional
layers up to this point consist of 64 filters with a kernel size of 3 × 3, a stride of 1, and
padding that maintains the shape integrity of the input. The policy head applies the
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last convolution with two filters a kernel size of 1 and a stride of 1 thereby condensing
the depth of the input to 2 activation maps. These are then concatenated and passed
through a dense layer of the action-space dimension with a softmax activation function.
The value head distinguishes itself from the policy head by adding a dense layer with
64 neurons between the 1× convolutional layer and the single-neuron output layer. All
network neurons have a 𝑅𝐸𝐿𝑈 activation function and batch normalization is applied to
all convolutional layer outputs.

Compared to DQN, AZ performs fewer scheduling steps but requires a comparable time for
training in spite of the parallel self-play and network update processes. The exact number
of AZ training steps is difficult to determine since our implementation is parameterized
by episodes, which are set to 1𝑒4. 𝐹𝐽𝑐 instances require an average of 70 sequencing
decisions to finish. Hence, the total of 1𝑒4 episodes of self-play we employed amounts to
approximately 6𝑒5 steps, which is an order of magnitude lower than the number of steps
used for DQN.

AZ Model Training: Our AZ agent learning process is split into 500 iterations of interlaced
self-play and network training. During self-play 20 episodes are run in parallel on the CPU
with the accumulated experiences being added to the replay buffer at the conclusion of the
last scheduling game. Meanwhile, the agent network is being trained on the GPU using
the experience buffer of the previous iteration. We do two passes over the entire replay
buffer during every network training step. This amounts to 1𝑒3 network updates. Since
data points in the replay buffer get pushed out by new experiences approximately every
ten episodes, the network uses every data point during a backpropagation step around
1𝑒2 times.

The AZ learning curves shown in Figure 6.14 suggest that our agent is all but certain of
his strategy. Figure 6.14a shows the value head MAE over the 1𝑒3 backpropagation steps
while Figure 6.14b displays the policy head accuracy. Since the buffer content of two
consecutive training iterations is 80% identical, we use 10% of the buffer contents to plot
the validation loss at each backpropagation step, so as to get a better feel for the model
generalization behavior. The figure shows that both network heads generalize quite well
on the training episode data, with the value head displaying more of an inclination toward
overfitting. While the value head still misses the actual state value by around 125, the
policy head displays absolute confidence in what the selected strategy should be (accuracy
of near 100% with respect to the MCTS selected action).

6.3.3 Evaluation

To ease the comparability of the scheduling algorithms at hand, we make use of the
Virtual Best Selector (VBS) concept (Lindauer et al., 2015). The VBS is the ex-post best
scheduling algorithm for any particular instance with respect to makespan. Let𝒜 be the
set of scheduling algorithms investigated, i.e. the ten simple heuristics along the best
DQN model, AZ, CP3, and our simulation-based approaches SimSearch and MCTS. The
VBS score for the instance generated using the seed 𝑛𝑖 is where algorithms 𝐴 ∈ 𝒜 have
achieved makespan scores of 𝐶𝐴

max(𝑛𝑖) is defined in Equation 6.13. The average VBS relative
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(a) Value head MAE loss. (b) Policy head classification accuracy.

Figure 6.14: AZ learning curves. The training was stopped prematurely since the model
seemed to have converged.

makespan scores of the compared scheduling algorithms 𝐴 ∈ 𝒜 are then computed as
defined by Equation 6.14, where 𝑖 takes the value of the 6000 seeds used.

𝐶𝑉𝐵𝑆
max (𝑛𝑖) : = min

𝐴∈𝒜
𝐶𝐴

max(𝑛𝑖) (6.13)

𝐶𝐴𝑉𝐵𝑆

max : =
∑

𝑖 𝐶
𝑉𝐵𝑆
max (𝑛𝑖)∑

𝑖 𝐶
𝐴
max(𝑛𝑖)

(6.14)

The parameter sets used for the different algorithms have mostly been elucidated. Never-
theless, we briefly review them here. For the DDQN and AZ the parameter sets in Table 6.2
and 6.3 were used. The snapshot-based approaches are non-parametric. Note that the
maximum number of operations to be considered by the CP solver (see Equation 5.11), is
in fact an approach parameter. To keep with the frame of this work, however, we kept it
fixed to three as reflected by our naming (CP3).

The most important simulation-based approach parameters are represented by the em-
ployed priority rules. SimSearch runs with all ten sequencing heuristics from Table 5.1
and the LQT and LQO job routing priority rules. Its completion percentage parameter 𝑝
(see Section 5.2.1) is set to 0.6. Furthermore, to save time, for the 𝐹𝐽𝑐 case only, the roll-outs
are only executed every ten decisions. In-between the last winning priority rules is used
as to select the next action. MCTS is ran using heuristic actions corresponding to the same
priority rules used by SimSearch. On every decision, the selection, expansion, roll-out and
backtracking steps are executed eight times. The UCT constant 𝐶 is set to two.

The algorithms are compared with respect to two aspects. First, we look at the runtime of
the different algorithm categories (1). Secondly, to emphasize the different picture painted
by different metrics, we look at the scheduling performance (2) with respect to the number
of “wins”, i.e. the number of instances where the scheduling approach is equal to the
VBS and at the average VBS-relative makespans achieved by our scheduling methods. To
illustrate the importance of a solid baseline, we first compare RL approaches solely against
simple priority rules as is often done in literature, which may give the impression that RL
is a very good contender. We then add CP3 and our RL-competitive baselines to the mix.
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When considering all baselines, we first look at the CP3-DQN-AZ-best heuristic group
and then at the extended group additionally containing SimSearch and MCTS.

(1) Runtime Discussion: With respect to runtime (Figure 6.15), the conversation is
quite straightforward albeit important. All considered scheduling methods are
appropriate for deployment in an online context judging by the average experiment
runtime values and the little variance thereof. The longest recorded runtimes are
associated, unsurprisingly, with MCTS on the 𝐹𝐽𝑐 setup, with an average of 1228
seconds being required for a complete scheduling run, which consists of around
200 decisions (100 operations á two decisions each). Hence the time required for a
single decision is around 6.14 seconds (recall that the routing decisions were fixed to
LQT), which should be sufficient for most scheduling cases. For RL algorithms and
priority rules, the number of decisions is less than half (60 on average), because of
the fixed job routing priority rules and FabricatioRL’s decision skip mechanism (see
Section 3.2.3).

(a) 𝐹𝐽𝑐. (b) 𝐽𝑚.

Figure 6.15: Average runtime for scheduling approaches for a full instance scheduling.

Note that the hierarchy of runtimes also differs between setups. In the 𝐹𝐽𝑐 case,
MCTS is slowest with 1228 seconds per instance, followed by CP3 with 176 seconds,
AZ with 49 seconds per instance, DQN with 2 seconds per instance, and SPT which
needs less than one second for a complete instance run. In the 𝐽𝑚 case, MCTS is
slowest needing 127 seconds, followed by AZ with 87 seconds per instance, CP3 with
15 seconds, DQN with 4, and heuristic approaches needing about half a second.

The general decrease in runtimes (with the exception of DQN and AZ) from the 𝐹𝐽𝑐

setup to the 𝐽𝑚 in spite of more decisions being required on average (around 100) for
the 𝐽𝑚 setup may be surprising at a first glance. However, the explanation is simple.
The reason is the higher degree of flexibility of the 𝐹𝐽𝑐 setup. The lack of flexibility
makes solving CP instances much simpler, hence the radical runtime decrease of CP3
by more than 90%. Another important factor here is the system being underbooked,
meaning that fewer WIP operations need to be considered by CP3 on average.

Note that an important overhead associated with RL is the switch between NN
calls to predict individual states. NN frameworks optimize for arrays of data being
processed all at once rather than individual data points. If a GPU is used for predict
calls, as is the case for our DQN application, there is the additional overhead of
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moving data from RAM to GPU memory. This coupled with the larger number of
decisions in the 𝐽𝑚 case could explain why the average DQN runtime increases by
1.5 seconds moving from 𝐹𝐽𝑐 to 𝐽𝑚.

(2) 𝐹𝐽𝑐𝐹𝐽𝑐𝐹𝐽𝑐 Performance Discussion: The results for the 𝐹𝐽𝑐 setup experiment illustrated by
Figure 6.16 three observations, two pertaining to the scheduling hierarchy and two
pertaining to the comparison approach. Note that the first two subfigures compare
scheduling approaches excluding CP3.

AZ is the best scheduling method with respect to the number of wins (around 900 out
of 6000 evaluation instances — Figure 6.16a) and VBS relative score (Figure 6.16b). In
terms of the latter indicator, however, AZ only slightly outperforms the best simple
heuristic, namely SPT (by less than one percent point). The DQN performance is
quite poor. Our best DQN model is the third best in terms of wins (≈500/6000),
but it is overshadowed by AZ and even SPT (≈700/6000) (Figure 6.16a). In terms of
relative makespan, it ranks fifth (Figure 6.16a).

When introducing CP3 into the mix (Figure 6.16c), the new baseline is indistinguish-
able from the VBS and significantly better than both RL approaches and the best 𝐹𝐽𝑐
heuristic, SPT. Finally, from Figure 6.16d we see that the simulation-based baselines
outperform AZ, but do not fare so well when compared to CP3. This is most likely
due to LQT, the job routing priority rule used by both SimSearch and MCTS, not
being sufficiently strong. Note however, that both algorithms could use a set of
heuristics instead of one.

(a) Wins 𝐹𝐽𝑐 (b) DQN vs heuristics 𝐹𝐽𝑐

(c) DQN vs CP3 𝐹𝐽𝑐 (d) RL vs all baselines 𝐹𝐽𝑐

1

Figure 6.16: 𝐹𝐽𝑐 results.
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(2) 𝐽𝑚𝐽𝑚𝐽𝑚 Performance Discussion (Transferability): The results for the 𝐽𝑚 setup testing
the RL model transferability are shown in Figure 6.17. Similarly to the 𝐹𝐽𝑐 results,
the first two subfigures exclude CP3 from the comparison. We observe the following:
In terms of wins, the RL algorithms are top tier occupying the first two positions in
the scheduling approach ranking (Figure 6.17a). Once again AZ seems to outperform
the other approaches with approximately 1700 wins within the 6000 instances.
With respect to VBS relative makespan, the hierarchy drastically changes, with RL
approaches displaying mediocre performances (Figure 6.17b). The top four positions
are occupied by four heuristics among which MOR is the strongest and DQN this
time marginally outperforms AZ.

When including CP3 in Figure 6.17c, the added baseline still outperforms the other
approaches, albeit, this time, not by a large margin. Last but certainly not least, when
additionally considering our simulation-based approaches (Figure 6.17), we notice
that CP3 stops being the best solution. Since in the 𝐽𝑚 case job routing priority rules
are not required, this could be indicative of the relative strength of our sequencing
priority rules. Note however, that the difference in performance between all the
considered algorithms is only very slight.

(a) Wins 𝐽𝑚 (b) DQN vs heuristics 𝐽𝑚

(c) DQN vs CP3 𝐽𝑚 (d) DQN vs all baselines 𝐽𝑚

Figure 6.17: 𝐽𝑚 results.

The different viewpoints of our experiment results serve to strengthen the reader’s
impression that the evaluation approach matters a lot when discussing (stochastic)
scheduling results. Firstly, there is the matter of chosen evaluation metric. If we were to
focus solely on wins, for instance, we would give the impression that the RL approaches,
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Table 6.4: The makespan achieved by the different scheduling algorithms in the 𝐹𝐽𝑐 and
𝐽𝑚 setups. The table rows are sorted ascendingly by the 𝐹𝐽𝑐 results. CP3 significantly
outperforms all other approaches.

Rank Control 𝐹𝐽𝑐

1 VBS 6543.362 (-0.000%)
2 CP3 6543.376 (-0.000%)
3 SimSearch 7117.735 (-8.070%)
4 MCTS 7158.987 (-8.599%)
6 AZ 7252.663 (-9.780%)
7 SPT 7257.879 (-9.845%)
8 LUDM 7277.637 (-10.089%)
9 MTPO 7277.757 (-10.091%)
10 DQN 7280.755 (-10.128%)
11 MOR 7280.815 (-10.129%)
12 SRPT 7281.439 (-10.136%)
13 EDD 7281.779 (-10.141%)
14 LOR 7285.697 (-10.189%)
15 LRPT 7287.514 (-10.211%)
16 LTPO 7294.237 (-10.294%)
17 LPT 7314.608 (-10.544%)
18 RND1 8805.107 (-25.687%)
19 RND2 8992.310 (-27.234%)

Rank Control 𝐽𝑚

1 VBS 11574.535 (-0.000%)
2 SimSearch 11598.260 (-0.205%)
3 MCTS 11599.297 (-0.213%)
4 CP3 11600.112 (-0.220%)
5 MOR 11602.956 (-0.245%)
6 LRPT 11603.182 (-0.247%)
8 SPT 11613.443 (-0.335%)
9 DQN 11615.028 (-0.349%)
10 LTPO 11615.835 (-0.356%)
11 AZ 11615.912 (-0.356%)
12 RND1 11617.816 (-0.373%)
13 MTPO 11618.321 (-0.377%)
14 LUDM 11618.944 (-0.382%)
15 RND2 11621.819 (-0.407%)
16 LPT 11625.108 (-0.435%)
17 EDD 11631.796 (-0.492%)
18 SRPT 11632.794 (-0.501%)
19 LOR 11634.392 (-0.514%)

particularly AZ, perform much better than they actually do. Though it stands to reason,
that approaches outperforming others in many situations are better, the winning margin
is even more important, which is why measuring the optimization target directly should
be preferred. Secondly, the chosen baselines can leave the reader with vastly different
impressions with respect to the efficacy of the baselined approach. From 6.16b it looks as
if there are three tiers of scheduling approaches, with AZ and SPT being in the first tier,
DQN in the second, and LPT in the last. Conversely, baselining against CP3 only makes
AZ, DQN, and SPT look almost the same in terms of performance. Thirdly, the idea of
picking priority rules dependent on the production state seems to be justified, since both
AZ and the simulation-based approaches fare better than all the other heuristics in the 𝐹𝐽𝑐

case. However, given that both MCTS and SimSearch outperform AZ, simulation seems
to be a more reliable strategy than prediction.

Inter-Experiment Discussion: For a more fine-grained view of the numeric results, we
also provide the average makespan scores over the 6000 scheduling instances along with
the distance of individual scores from the VBS in percent in Table 6.4. The results in the
table are sorted ascendingly by the 𝐹𝐽𝑐 average makespan scores. Notice that we included
two flavors of random heuristics in the listed results. As the name suggests, these heuristics
simply pick a random operation from the resource buffer (RND1), or randomly pick
between buffered operations and a wait signal (RND2). In the 𝐹𝐽𝑐 case, these heuristics
fare very poorly, whereas, in the 𝐽𝑚 case, their performance is only mediocre.

Overall, there is a significant shift in results between the 𝐹𝐽𝑐 and 𝐽𝑚 setups. Most notably
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these differences pertain to the following four aspects.

i RL Approach Rank Shift: The decrease in AZ model performance is clear, which
points towards a limited transferability capacity. However, this is not surprising, given
what we know about the significantly different scheduling setup behaviors. DQN
holds fast to its mediocrity, which makes it difficult for us to infer its transferability
potential.

ii Result outliers: The magnitude and number of outliers within the 𝐽𝑚 VBS relative
makespan results are much higher than in the 𝐹𝐽𝑐 setup. This points to more
randomness in the composition of the scheduling instances.

iii Score tightness: The scheduling algorithm score tightness in the 𝐽𝑚 case is much
higher than in the 𝐹𝐽𝑐 case. This points to the more limited optimization potential
of the 𝐽𝑚 setup. If the myopic approaches (simple heuristics) perform similarly to
approaches with a wider planning horizon (CP3), we can expect more planning
would not necessarily lead to better performance.

iv Heuristic Ranking: The lack of distinction between heuristics approaches in particular,
can point either to randomness or limited optimization potential. The employed
baseline heuristics, albeit simple, are quite diverse in terms of the strategic approach
to scheduling. Recurring patterns within scheduling instances (less randomness)
would lead to a more stable heuristic hierarchy. Additionally, all heuristics lead to
the same outcome for many individual decision points during the scheduling run,
e.g. because the vast majority of decisions are trivial, there is most likely not much
that a less myopic approach could improve.

Establishing the optimization potential of a scheduling problem is key to selecting an
appropriate scheduling method. It is in great part because of this aspect, that the scheduling
setup behavior (Section 6.1.2) should be carefully considered. Note at this point, that there
is a close relationship between randomness and optimization potential: A high degree
of randomness surely limits the available optimization potential. The lack of the latter,
however, does not necessarily imply the former. A scheduling setup where all decisions
are trivial, for instance, has no optimization potential but can be perfectly deterministic.
The lack of optimization potential within the 𝐽𝑚 can have various causes. It could be that
the job pool is not diverse enough, the system does not offer much in the way of flexibility
(e.g. no job routing flexibility), or the system is underbooked. Both latter factors could
explain the result tightness and number of outliers in the 𝐽𝑚 setup.
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Chapter 7

Conclusion and Future Work

People do not like to think. If one thinks, one must reach conclusions.
Conclusions are not always pleasant.

— Helen Keller

In this work, we sought to bring order to the growing yet unstructured body of work that
is RL production scheduling, thereby lifting some of the mysticism surrounding it. We
achieved our goal by first creating a standardization framework for experimental work
in the field. We then implemented a benchmarking simulation framework that allows
for the reproducible execution of the vast majority of the experiments in literature. To
eliminate some of the positive bias towards RL, we chose and developed strong scheduling
approaches sharing some of the advantages of RL to serve as competitive baselines. Finally
we ran a series of experiments on two popular stochastic setups, namely (𝐹𝐽𝑐 |𝑟 𝑗𝑖 , 𝑀𝑜

𝑖
|𝐶max)

and (𝐹𝐽𝑐 |𝑟 𝑗𝑖 , 𝑀𝑜
𝑖
|𝐶max), pitting DDQN and AZ against our baselines.

Our experimental scheduling method comparison yielded the following direct conclusions
which point to the overarching conclusion that RL is not a jack of all trades. First, DQN,
which is by far the most popular RL approach in the literature, struggles to outperform
even simple heuristics. AZ marginally succeeds in this endeavor. Secondly, the RL learning
transferability between problems is poor, at least in cases such as ours, where problem
attributes, particularly flexibility and system load, are significantly different. Thirdly, the
proposed baselines, namely CP3, SimSearch and MCTS offer a good challenge for RL
approaches, seen as they outperformed the priority rules and RL approaches on both the
𝐹𝐽𝑐 and the 𝐽𝑚 setups. The performance difference was significant for the former and
marginal for the latter.

The current elaboration served to relativize the advantages of RL within the context
of production scheduling to some extent. On the one hand we selected, adapted or
developed algorithms which share the advantages of RL. On the other hand, the model
selection process makes it clear that training RL approaches is an uphill battle because
of the many design options and model parameters, the long training times, and the
difficulty of establishing the link between learning progress and performance increase.
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Table 7.1: Perceived RL solution approach advantages compared to exact re-planning and
priority rules.

Criteria Priority
Rules RL SimSearch MCTS CP3 Exact

Re-Planning
Deterministic
Setup
Solution Quality

Medium High High High High Optimal

Adaptivity High High High High High Low
Transferability Low Low High High Medium Medium
Runtime
Efficiency High High High High High Low

Mathematical
Modeling
Overhead

Low Low Low Low High High

Design and
Parameter Tuning
Overhead

Low High Low Low Low Low

Simulation
Engineering
Overhead

Low High High High Low Low

Furthermore, building the simulation which is a necessary condition for RL model training
adds supplementary overhead. Table 7.1 compares our baselines with RL showcasing
these conclusions.

In trying to understand the reasons behind the different scheduling algorithm behavior be-
tween setups we noted how relevant setup transparency is. In particular, scheduling setup
clarity allows us to create sound hypotheses about the scheduling problem optimization
potential and the influence of stochasticity and flexibility on the results.

Much remains to be done in terms of future work. Aside from maintaining the proposed
standardization framework and extending our benchmarking simulation framework
— FabricatioRL — to cover at least all the experiments encountered in literature, and
investigating the new baseline algorithms more deeply, we note the following four aspects
derived from our experimental evaluation.

First, we should extend the setup analysis and create new benchmark sets varying
stochasticity, and flexibility and noting down the optimization potential. Assessing these
variables is nontrivial since no such indicators are known for the production scheduling
case. Hence, this avenue of research also implies the development of such indicators.

Secondly, more RL studies need to be conducted on the setups introduced. While AZ,
the best RL approach in this work in terms of scheduling performance, did not manage
to outperform our baselines, that in no way means that RL in general cannot. Since the
current results show that AZ has more potential than DQN, an in-depth look at AZ’s
performance employing other RL designs is needed.
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Thirdly, we should even out the playing field between RL and CP3 by using RL to make
job routing decisions as well as sequencing decisions. This can be done using either a
single agent for both or dedicated RL agents for the individual sub-problems.

Finally, we need to experiment with different optimization goals. Makespan is easier for
exact (re-planning) approaches such as CP to handle. Conversely, it is more difficult to
solve scheduling problems with tardiness as a goal. This could further level the playing
field in favor of RL helping us to isolate the situations where RL best fits in the field of
production scheduling.
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Literature Overview Tables

The problem size in Table A.1 serves to give an orientation with regard to the difficulty of
the combinatorial optimization problem. The following variables are used. The number of
resources is specified using 𝑚, the number of jobs is marked by values of 𝑛, 𝑜 𝑗 indicates
the maximum number of operations per job, 𝑚𝑎𝑙𝑡

𝑎𝑣𝑒 gives the average number of machine
alternatives per operation, 𝑐 indicates the number of work centers, 𝑜𝑎𝑣𝑒 denotes the average
number of operations per job. For dynamic setups, we distinguish between the initial jobs
known at time 0 and the total number of jobs by placing the latter values in parenthesis.
Finally, in cases where vehicles are explicitly modeled (𝑡𝑟(𝑟), 𝑡𝑟(𝑘, 𝑟)) we use 𝑟 to indicate
their number.

Note that, depending on the setup different variables are needed fully define the size. In
the case of 𝐽𝑚, for instance, the problem size is fully defined by the number of machines 𝑚
and the number of jobs 𝑗. For 𝐹𝐽𝑐, the number of resources for every work center would
additionally need to be specified. Owing to the orientative nature of the field and the
potentially many variables needed to fully define complex setup sizes, we do not fully
report the problem size. The reader is referred to the respective publications in such
cases.

Table A.1: Scheduling Setups in Literature.

Deterministic Setups

Zhang et al., 1995 𝐹𝑃𝑂𝑐 𝑟𝑒𝑐𝑟𝑐 𝐶max 𝑛:3,𝑚:82

Zhang et al., 1996 𝐹𝑃𝑂𝑐 𝑟𝑒𝑐𝑟𝑐 𝐶max 𝑛:3,𝑚:82

Riedmiller et al., 1999 𝐽𝑚 𝑟𝑒𝑐𝑟𝑐
∑
𝑇𝑗 𝑛:8, 𝑚:?

Martinez, 1999 𝐹𝐽𝑐 𝑏𝑎𝑡𝑐ℎ, 𝑗𝑏𝑎𝑡𝑐ℎ ,
𝑟𝑒𝑐𝑟𝑐(?)
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APPENDIX A. LITERATURE OVERVIEW TABLES IV

Table A.1: Scheduling Setups in Literature. (Continued)

Csaji et al., 2003 𝐽𝑚 𝑡𝑟(∞)(?) 𝐶max ?

Hong et al., 2004 1 𝑓 𝑚𝑙𝑠 |𝑑𝑏𝑎𝑡𝑐ℎ,
𝑟𝑒𝑐𝑟𝑐

𝑓 (𝑇𝑗)| 𝑓 (𝑈𝑡𝑙𝑖) 𝑛:100, 𝑚:1, 𝑜 𝑗 :2

Gabel et al., 2007a 𝐽𝑚 None 𝐶max 𝑛:10, 𝑚:10

Gabel et al., 2007b 𝐽𝑚 None 𝐶max 𝑛:20, 𝑚:15

Gabel, 2009 𝐽𝑚 None 𝐶max 𝑛:20, 𝑚:15

Martínez et al., 2011 𝐹𝐽𝑐 𝑀𝑜
𝑖

𝐶max 𝑛:20, 𝑚:15

Zeng et al., 2011 𝐹𝐹𝑐 𝑠 𝑗𝑘 , 𝑏𝑙𝑜𝑐𝑘𝑖𝑛 𝐶max 𝑛:600, 𝑚:34, 𝑜 𝑗 :3

Petrova et al., 2013 𝐽𝑚 None
∑

𝐹𝑗 𝑛:20,𝑚:15

Zhang et al., 2013 𝐹𝑚 None 𝐶max 𝑛:50, 𝑚:20

Reyna et al., 2015 𝐽𝑚 None 𝐶max 𝑛:20, 𝑚:5

Arviv et al., 2016 𝐹𝐹𝑐 𝑡𝑟(𝑟) 𝐶max 𝑛:80, 𝑚:20

Fonseca-Reyna et al., 2018 𝐹𝑚 None 𝐶max 𝑛:100, 𝑚:20

Xue et al., 2018 𝐹𝑚 𝑡𝑟(𝑟) 𝐶max 𝑛:50, 𝑚:50, 𝑟:2

Mendez-Hernandez et al.,
2019

𝐹𝑚 None 𝐶max |
∑
𝑇𝑗 𝑛:20, 𝑚:15

Lin et al., 2019 𝐽𝑚 None 𝐶max 𝑛:20, 𝑚:20

Tan et al., 2019 𝐽𝑚(?) None 𝐶max 𝑛:6, 𝑚:6

Marandi et al., 2019 𝐹𝑃𝑂𝑐 𝑡𝑟(𝑟) 𝑓 (𝑇𝑗 , 𝑈𝑡𝑙𝑡𝑟 ) 𝑛:50, 𝑚:20, 𝑜 𝑗 :30

Baer et al., 2019 𝐹𝐽𝑐 ? 𝐶max(?) ?

Zhang et al., 2020 𝐽𝑚 None 𝐶max 𝑛:100, 𝑚:20

Rinciog et al., 2020 𝐹𝐹𝑐 𝑑𝑝𝑠
𝑗𝑖

, 𝑑𝑏𝑎𝑡𝑐ℎ,
𝑣𝑛𝑜𝑝𝑠

𝑓 (𝑊,𝑇𝑗) 𝑛:10, 𝑚:15

Moser et al., 2020 𝐽𝑚 𝑝𝑟𝑒𝑐, 𝑟𝑒𝑐𝑟𝑐,
𝑠 𝑗𝑘

𝐶max 𝑛:12, 𝑚:3

Chen et al., 2020 𝐹𝐽𝑐 𝑀𝑜
𝑖

𝐶max 𝑛:20, 𝑚:15,
𝑚𝑎𝑙𝑡

𝑎𝑣𝑒 :2

Yu et al., 2020 𝑃𝑂𝑚 𝑀𝑜
𝑖

𝐶max 𝑛:1, 𝑚:2, 𝑜 𝑗 :100

Lang et al., 2020 𝐹𝐽𝑐 + 𝑅𝑚 None 𝐶max |
∑
𝑇𝑗 𝑛:20, 𝑚:5, 𝑜 𝑗 :4,

𝑐:1

Martinez Jimenez et al., 2020 𝐽𝑚 None 𝐶max 𝑛:5, 𝑚:5

Ren et al., 2020 𝐽𝑚 None 𝐶max 𝑛:30, 𝑚:20

Li et al., 2020 𝑂𝑚 𝑣𝑛𝑜𝑝𝑠 𝐶max 𝑛:10, 𝑚:10

Martins et al., 2020 𝐹𝑃𝑂𝑐 𝑓 𝑝𝑜𝑝𝑠 𝐶max 𝑛:10, 𝑚:7,
𝑚𝑎𝑙𝑡

𝑎𝑣𝑒 :3

Zhu et al., 2020 𝐹𝐹𝑐 None 𝐶max 𝑛:20, 𝑚:50,
𝑚𝑎𝑙𝑡

𝑎𝑣𝑒 :5
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APPENDIX A. LITERATURE OVERVIEW TABLES V

Table A.1: Scheduling Setups in Literature. (Continued)

Seito et al., 2020 𝐽𝑚 None 𝐶max 𝑛:50, 𝑚:10

Moon et al., 2021 𝐽𝑚 None 𝐶max 𝑛:20, 𝑚:15

Park et al., 2021 𝐽𝑚 None 𝐶max 𝑛:100, 𝑚:20

Cao et al., 2021 𝐹𝑃𝑂𝑐 +
𝑅𝑚

𝑠 𝑗𝑘 , 𝑀𝑜
𝑖

𝐶max 𝑚:10, 𝑛:12,
pcbf:3

Zhao et al., 2021a 𝐹𝑃𝑂𝑐 ? 𝐶max 𝑛:50, 𝑚:9, 𝑜 𝑗 :20
(?)

Zhao et al., 2021c 𝐽𝑚 None 𝑇min 𝑛:20, 𝑚:10

Wang et al., 2021b 𝐽𝑚 None 𝐶max 𝑛:10, 𝑚:10

Pan et al., 2021 𝐹𝑚 𝑝𝑒𝑟𝑚 𝐶max 𝑛:200, 𝑚:20

Han et al., 2021 𝐹𝐽𝑐 𝑀𝑜
𝑖

𝐶max 𝑛:20, 𝑚:15, 𝑚𝑎𝑙𝑡
𝑎𝑣𝑒

Cunha et al., 2021 𝐽𝑚 None 𝐶max 𝑛:50,𝑚:20

Ni et al., 2021 𝐹𝐹𝑐 None 𝐶max 𝑛:240,𝑚:5·?

Ren et al., 2021b 𝐹𝑚 None 𝐶max 𝑛:80, 𝑚:5

Ren et al., 2021a 𝐹𝐹𝑐 𝑡𝑟(∞) 𝐶max ?

Pol et al., 2021 𝐹𝐽𝑐 + 𝑅𝑚 𝑡𝑟(∞), 𝑀𝑜
𝑖

𝐶max(?) 𝑛:600, 𝑚:6

Samsonov et al., 2021 𝐽𝑚 None 𝐶max 𝑛:15, 𝑚:15

Du et al., 2022 𝐹𝐽𝑐 + 𝑅𝑚 𝑀𝑜
𝑖
, 𝑠 𝑗𝑘 ,

𝑡𝑟(∞)
𝑓 (𝐶max,

∑
𝐸𝐶𝑖) 𝑛:200, 𝑚:10 (?)

Long et al., 2022 𝐹𝐽𝑐 𝑀𝑜
𝑖

𝐶max 𝑛:20, 𝑚:15,∑
𝑜 𝑗 :232

Wang et al., 2022 𝐹𝐹𝑐 𝑡𝑟(∞) 𝐶max,
∑

𝐸𝐶𝑖 𝑛:100, 𝑜 𝑗 :8,
𝑚𝑎𝑙𝑡

𝑎𝑣𝑒 :5

Brammer et al., 2022 𝑃𝑂𝑚 𝑝𝑒𝑟𝑚, 𝑝𝑜𝑝𝑠 𝐶max 𝑛:500, 𝑚:60

Cai et al., 2022 𝐹𝐹𝑐 𝑡𝑟(∞), 𝑣𝑛𝑜𝑝𝑠 𝐶max 𝑛:140, 𝑚:200,
𝑜 𝑗 :5, 𝑚𝑎𝑙𝑡

𝑎𝑣𝑒 :5

Kim et al., 2022 𝐽𝑚 𝑡𝑟(𝑘, 𝑛), 𝑠𝑡𝑟
𝑗𝑘

𝐶max 𝑛:75, 𝑚:6, 𝑟:1

Stochastic Setups

Mahadevan et al., 1998 𝐹𝑚 𝑏𝑙𝑜𝑐𝑘𝑜𝑢𝑡 ,
𝑑𝑚𝑑𝑠

𝑗
,

𝑏𝑟𝑘𝑑𝑤𝑛𝑠

∑
𝑆𝑡𝑘 𝑗 |

∑
𝑀𝐹𝑖 𝑛:?(?), 𝑚:3

Aydin et al., 2000 𝐽𝑚 𝑟𝑠
𝑗

𝑇ave 𝑛:5(?), 𝑚:9

Wei et al., 2004 𝐽𝑚 𝑟𝑗 𝑇ave 𝑛:?(15), 𝑚:9

Wang et al., 2005 1 𝑟𝑠
𝑗

𝑇max | 𝑇ave |
∑
𝑈𝑗 𝑚:?(?), 𝑚:1

Paternina-Arboleda et al., 2005 1 𝑠 𝑗𝑘 , 𝑑𝑚𝑑𝑠
𝑗

𝑓 (𝑆𝑡𝑘 𝑗 , 𝐵 𝑓𝑖 ,
∑

𝑠𝑡
𝑖𝑘
) 𝑛:?(?), 𝑚:1

Wang et al., 2007 𝐹𝐽𝑐 𝑟𝑠
𝑗
, 𝑝𝑠

𝑗𝑖
, 𝑀𝑜

𝑖
𝑇ave 𝑚:5, 𝑛:?(?), 𝑜 𝑗 :3,

𝑚𝑎𝑙𝑡
𝑎𝑣𝑒 :2

So
ur

ce

M
ac

hi
ne

Se
tu

ps
(α

)

A
dd

iti
on

al
C

on
st

ra
in

ts
(β

)

O
pt

im
iz

at
io

n
G

oa
l(
γ

)

In
st

an
ce

Si
ze

C
on

si
de

re
d

Continued ...



APPENDIX A. LITERATURE OVERVIEW TABLES VI

Table A.1: Scheduling Setups in Literature. (Continued)

Yingzi et al., 2009 𝐽𝑚 𝑟𝑠
𝑗

𝐶max 𝑛:(?)18, 𝑚:9

Chen et al., 2010 𝐽𝑚 𝑟𝑠
𝑗
, 𝑣𝑛𝑜𝑝𝑠 𝐹ave |𝑇ave 𝑛:5(5𝑒5), 𝑚:5

Gabel et al., 2012 𝐽𝑚 𝑝𝑠
𝑗𝑖

𝐶max 𝑛:30, 𝑚:15

Jiménez, 2012 𝐹𝐽𝑐 𝑝𝑠
𝑗𝑖

, 𝑀𝑜
𝑖

𝐶max |𝑇ave 𝑛:20, 𝑜 𝑗 :15,
𝑚𝑎𝑙𝑡

𝑎𝑣𝑒 :3

Palombarini et al., 2012 1 𝑟𝑠
𝑗
, 𝑏𝑟𝑘𝑑𝑤𝑛𝑠

∑
𝑇𝑗 𝑛:20(21), 𝑚:1

Qu et al., 2015 𝐹𝐹𝑐 𝑠 𝑗𝑘 , 𝑏𝑎𝑡𝑐ℎ(𝑏),
𝑓 𝑚𝑙𝑠, 𝑑𝑚𝑑𝑠

𝑗
,

𝑏𝑟𝑘𝑑𝑤𝑛𝑠

𝑓 (𝐵 𝑓𝑖 , 𝑠 𝑗𝑘 , 𝐿𝑗) 𝑛:2(?), 𝑐:3, 𝑚:6

Qu et al., 2016 𝐹𝐽𝑐(?) 𝑟𝑠
𝑗
, 𝑏𝑟𝑘𝑑𝑤𝑛,

𝑏𝑙𝑜𝑐𝑘, 𝑠 𝑗𝑘𝑖 ,
𝑗𝑏𝑎𝑡𝑐ℎ , 𝑣𝑛𝑜𝑝𝑠,
𝑀𝑜

𝑖
(?)

? 𝑛:?(?), 𝑚:6

Bouazza et al., 2017 𝐹𝐹𝑐 𝑟𝑠
𝑗
, 𝑠 𝑗𝑘 1

𝑚

∑
𝑤𝑖 𝐼

𝑚
𝑖

𝑛:9(500), 𝑚:6

Shahrabi et al., 2017 𝐽𝑚 𝑟𝑠
𝑗
, 𝑏𝑟𝑘𝑑𝑤𝑛𝑠 𝐹ave 𝑛:10(?), 𝑚:10

Thomas et al., 2018 𝐹𝐽𝑐 𝑟𝑠
𝑗
, 𝑡𝑟(∞),

𝑓 𝑟𝑒𝑠

𝑇𝑝𝑡ave 𝑛:6(?), 𝑚:6

Waschneck et al., 2018 𝐹𝐽𝑐 𝑟𝑠
𝑗
, 𝑀𝑜

𝑖
𝑈𝑡𝑙ave ?

Stricker et al., 2018 𝐹𝐽𝑐(?) 𝑟𝑠
𝑗
, 𝑏𝑟𝑘𝑑𝑤𝑛𝑠 ,

𝑝𝑠
𝑗𝑖

, 𝑏𝑙𝑜𝑐𝑘𝑖𝑛(?)
𝑈𝑡𝑙ave 𝑛:?(?), 𝑚:3,

𝑚𝑎𝑙𝑡
𝑎𝑣𝑒 :2, 6

Shiue et al., 2018 𝐹𝐽𝑐 𝑡𝑟(𝑟),
𝑏𝑙𝑜𝑐𝑘𝑖𝑛(?)

𝐹ave | 𝑇𝑝𝑡ave |
∑
𝑈𝑗 𝑛:?(?), 𝑚:5,

𝑚𝑎𝑙𝑡
𝑎𝑣𝑒 :?

Kuhnle et al., 2019 𝐹𝐽𝑐 𝑟𝑠
𝑗
, 𝑏𝑟𝑘𝑑𝑤𝑛𝑠 ,

𝑝𝑠
𝑗𝑖

, 𝑏𝑙𝑜𝑐𝑘𝑖𝑛(?)
𝑈𝑡𝑙ave | 𝐹ave 𝑛:?(450𝑒3), 𝑚:3

Park et al., 2019 𝐹𝐽𝑐(?) 𝑝𝑠
𝑗𝑖

, 𝑟𝑒𝑐𝑟𝑐,
𝑠 𝑗𝑘𝑖 , 𝑓 𝑚𝑙𝑠(?)

𝐶max 𝑛:12, 𝑚:?

Zhao et al., 2019 𝐹𝐽𝑐 𝑏𝑟𝑘𝑑𝑤𝑛𝑠 ,
𝑟𝑒𝑐𝑟𝑐, 𝑀𝑜

𝑖

𝐶max 𝑛:15, 𝑚:10

Palombarini et al., 2019 𝑅𝑚 𝑟𝑠
𝑗
, 𝑏𝑟𝑘𝑑𝑤𝑛𝑠 ,

𝑗𝑏𝑎𝑡𝑐ℎ , 𝑠 𝑗𝑘

∑
𝑇𝑗 𝑛:?(?), 𝑚:3,

𝑚𝑎𝑙𝑡
𝑎𝑣𝑒 :2

Han et al., 2019 𝐹𝐹𝑐 + 𝑅𝑚 𝑡𝑟(∞)𝑠 , 𝑟𝑠
𝑗
(?) 𝐶max 𝑛:12(100?), 𝑚:9,

𝑜𝑎𝑣𝑒 :3?

Hofmann et al., 2020 𝐹𝑃𝑂𝑐 𝑟𝑠
𝑗
, 𝑏𝑟𝑘𝑑𝑤𝑛𝑠 ,

𝑀𝑜
𝑖
, 𝑠 𝑗𝑘𝑖 ,

𝑓 𝑚𝑙𝑠

𝐹ave 𝑛:10(?), 𝑐:5,
𝑚:10

Liu et al., 2020 𝐽𝑚 𝑝𝑠
𝑗𝑖

𝐶max 𝑛:10, 𝑚:10

Zhou et al., 2020 𝑅𝑚 𝑟𝑠
𝑗
, 𝑀𝑜

𝑖
𝐶max 𝑛:3(?), 𝑚:5
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APPENDIX A. LITERATURE OVERVIEW TABLES VII

Table A.1: Scheduling Setups in Literature. (Continued)

Luo, 2020 𝐹𝐽𝑐 𝑟𝑠
𝑗

∑
𝑇𝑗 𝑛:20(200), 𝑚:20

Wang, 2020 𝐽𝑚 𝑟𝑠
𝑗

∑
𝑤1𝑗𝑇𝑗 + 𝑤2𝑗𝐸𝑗 𝑛:0(3𝑒3), 𝑚:8

Kuhnle et al., 2020 𝐹𝐽𝑐 𝑟𝑠
𝑗
, 𝑏𝑟𝑘𝑑𝑤𝑛𝑠 ,

𝑟𝑒𝑐𝑟𝑐, 𝑡𝑟(𝑟),
𝑏𝑙𝑜𝑐𝑘𝑖𝑛

∑
𝑈𝑡𝑙𝑖 |

∑
𝐼𝑡𝑟𝑟 |

∑
𝑆𝑡𝑘 𝑗 |∑

𝑈𝑡𝑙𝑟 | 𝑇𝑝𝑡ave

𝑛:?(?), 𝑐:3, 𝑚:8?

Hu et al., 2020a 𝐹𝐽𝑐(?) 𝑡𝑟(𝑟), 𝑟𝑠
𝑗

𝐶max 𝑛:20(800), 𝑚:1

Park et al., 2020b 𝐹𝐽𝑐 𝑝𝑠
𝑗𝑖

, 𝑟𝑒𝑐𝑟𝑐,
𝑓 𝑚𝑙𝑠, 𝑀𝑜

𝑖

𝐶max 𝑚:175, 𝑛:12

Wu et al., 2020 𝐹𝑚 𝑟𝑠
𝑗
, 𝑝𝑟𝑚𝑢,

𝑗𝑏𝑎𝑡𝑐ℎ

∑
𝑤 𝑗𝑇𝑗𝑏𝑎𝑡𝑐ℎ 𝑚:5, 𝑛:200(?)

Han et al., 2020 𝐽𝑚 𝑝𝑠
𝑗𝑖

𝐶max 𝑛:50, 𝑚:20

Wang et al., 2021a 𝐹𝑃𝑂𝑐 𝑟𝑠
𝑗
, 𝑀𝑜

𝑖
(?) ∑

𝐸𝑗 𝑛:15, 𝑜 𝑗 :24, 𝑐:8,
𝑚:13

Yang et al., 2021b 𝐹𝑚 𝑟𝑠
𝑗
, 𝑝𝑟𝑚𝑢

∑
𝑇𝑗 𝑛:3(200), 𝑚:20

Yang et al., 2021a 𝐹𝑚 𝑟𝑠
𝑗
, 𝑝𝑟𝑚𝑢,

𝑓 𝑚𝑙𝑠

∑
𝑤 𝑗𝑇𝑗 𝑛:15(150), 𝑚:8

Luo et al., 2021a 𝐹𝐽𝑐 + 𝑅𝑚 𝑀𝑜
𝑖
, 𝑟𝑠

𝑗
𝑓 (∑𝑤 𝑗𝑇𝑗 , 𝑈𝑡𝑙ave) 𝑛:20(200), 𝑚:50,

𝑚𝑎𝑙𝑡
𝑎𝑣𝑒 :25, 𝑜 𝑗 :20

Zhao et al., 2021b 𝐽𝑚 𝑟𝑠
𝑗
(?) 𝑓 (𝐶max ,

∑
𝑇𝑗) ?

Luo et al., 2021b 𝐹𝐽𝑐 𝑟𝑠
𝑗
, 𝑏𝑟𝑘𝑑𝑤𝑛𝑠 ,

𝑣𝑛𝑜𝑝𝑠, 𝑝𝑛𝑤𝑡,
𝑀𝑜

𝑖

∑
𝑗 𝑤 𝑗𝑇𝑗 , 𝑈𝑡𝑙ave,

𝐵 𝑓 𝑡std

?

Heger et al., 2021 𝐹𝑚 + 𝑅𝑚 𝑟𝑠
𝑗
, 𝑓 𝑚𝑙𝑠,

𝑟𝑒𝑐𝑟𝑐, 𝑡𝑟(3)
𝑇ave 𝑛:(?)1𝑒4, 𝑚:10

Lee et al., 2022 𝐹𝐹𝑐 𝑝𝑠
𝑗𝑖

, 𝑀𝑜
𝑖
,

𝑝𝑟𝑚𝑢, 𝑡𝑟(𝑟)
𝐶max 𝑛:120,𝑚:6, 𝑜 𝑗 :3,

𝑚𝑎𝑙𝑡
𝑎𝑣𝑒 :1

Lin et al., 2022 𝐹𝐽𝑐 𝑝𝑠
𝑗𝑖

, 𝑠 𝑗𝑘𝑖 ,
𝑟𝑒𝑐𝑟𝑐, 𝑀𝑜

𝑖

𝐶max 𝑛:200, 𝑚:100,
𝑜 𝑗 :3

Min et al., 2022 1 𝑟𝑠
𝑗

∑
𝑤 𝑗𝑇𝑗 𝑛:1𝑒3, 𝑚:1
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Table A.2: RL Designs in Literature.

Designs for Deterministic Setups

Zhang et al., 1995 IGI No F GO (?) 𝑣 TD(�) TDNN

Zhang et al., 1996 IGI No F GO (?) 𝑣 TD(�) TDNN

Riedmiller et al., 1999 Seq 𝑚𝑝 F PR 𝑣 QL FCNN

Martinez, 1999 IGI No R GO ? ? ?

Csaji et al., 2003 SeR j (?) R P 𝑣 TD(�) Tab.

Hong et al., 2004 Seq ? R D 𝑣 QL Tab.

Gabel et al., 2007a Seq 𝑚𝑝 F (?) D (?) 𝑣 QL FCNN

Gabel et al., 2007b Seq 𝑚𝑝 F (?) D (?) 𝑣 QL FCNN

Gabel, 2009 Seq 𝑚𝑝 F D 𝑣 QL FCNN

Martínez et al., 2011 RBS 𝑜 & 𝑚𝑝 ? ? 𝑣 QL Tab.

Zeng et al., 2011 Seq 𝑚𝑝 F PR 𝑣 QL Tab.

Petrova et al., 2013 SeR No ? P ? ? ?

Zhang et al., 2013 Seq No F PR 𝑣 TD(�) �𝑗𝑖

Reyna et al., 2015 Seq 𝑚𝑝 F (?) D 𝑣 QL Tab.

Arviv et al., 2016 Rou 𝑚𝑡𝑟 R D 𝑣 QL Tab.

Fonseca-Reyna et al., 2018 Seq No (?) F (?) D 𝑣 QL Tab.

Xue et al., 2018 Rou No (?) R D 𝑣 QL Tab. (?)

Mendez-Hernandez et al.,
2019

Seq 𝑚𝑝 F (?) D 𝑣 QL FCNN

Lin et al., 2019 Seq No F PR 𝑣 DQN FCNN

Tan et al., 2019 Seq 𝑚𝑝 (?) R D 𝑣 QL Tab.

Marandi et al., 2019 SeR No R P 𝑣 QL Tab.

Baer et al., 2019 Rou (?) 𝑗 R D (?) ? ? ?

Zhang et al., 2020 EdD No R D 𝜋, 𝑣 PPO GCN

Rinciog et al., 2020 Seq No R D 𝜋, 𝑣 AZ FCNN

Moser et al., 2020 Seq (?) No R (?) D (?) 𝑣 QL Tab.

Chen et al., 2020 SeR No F P 𝑣 TD(�) Tab.

Yu et al., 2020 Seq No R D 𝜋, 𝑣 AZ CNN

Lang et al., 2020 RBS Subp. R & F D 𝑣 DQN FCNN &
RNN

Martinez Jimenez et al., 2020 Seq 𝑚𝑝 ? ? ? ? ?

Ren et al., 2020 ? ? ? ? 𝜋, 𝑣 A3C RNN

Li et al., 2020 EdD No R D 𝜋, 𝑣 VAC GCN

Martins et al., 2020 IGI No F GO 𝑣 TD(�) FCNN

Source MDP Characteristics Agent Characteristics
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Table A.2: RL Designs in Literature. (Continued)

Zhu et al., 2020 IGI (?) No R D 𝜋, 𝑣 PPO FCNN

Seito et al., 2020 EdD No R D ? ? GCN

Moon et al., 2021 Seq No F PR 𝑣 DQN FCNN

Park et al., 2021 Seq No R D 𝜋, 𝑣 PPO GCN

Cao et al., 2021 SeR No F P 𝑣 SARSA Tab.

Zhao et al., 2021a SeR ? F (?) P 𝑣 QL (?) Tab. (?)

Zhao et al., 2021c Seq No F PR 𝑣 DQN FCNN

Wang et al., 2021b Seq No R D 𝜋, 𝑣 PPO ?

Pan et al., 2021 DiP No R D 𝜋, 𝑣 VAC RNN

Han et al., 2021 RBS (?) No R (?) D 𝜋, 𝑣 VAC RNN

Cunha et al., 2021 Seq (?) No R (?) D (?) ? ? ?

Ni et al., 2021 SeR (?) No R D 𝜋, 𝑣 PPO GCN

Ren et al., 2021b Seq (?) No F PR 𝑣 SARSA FCNN

Ren et al., 2021a Seq 𝑚𝑝 (?) R (?) D (?) 𝑣 QL Tab.

Pol et al., 2021 TCS No R (?) D (?) 𝑣 DQN FCNN

Samsonov et al., 2021 Seq No F P 𝑣 DQN FCNN (?)

Du et al., 2022 IGI No F GO 𝑣 DQN FCNN

Long et al., 2022 SeR No F P 𝑣 QL Tab.

Wang et al., 2022 IGI No F GO 𝜋 REINF. FCNN +
Att.

Brammer et al., 2022 Seq No F D 𝜋, 𝑣 PPO ?

Cai et al., 2022 SeR No F P 𝑣 QL Tab.

Kim et al., 2022 TCS No R (?) D 𝑣 QL FCNN (?)

Designs for Stochastic Setups

Mahadevan et al., 1998 Seq No ? ? 𝑣 ? ?

Aydin et al., 2000 Seq No F PR 𝑣 QL FCNN

Wei et al., 2004 Seq (?) No F PR 𝑣 QL Tab.

Wang et al., 2005 Seq No F PR 𝑣 QL Tab.

Paternina-Arboleda et al.,
2005

Seq 𝑗 F D 𝑣 QL FCNN

Wang et al., 2007 Rou No (?) F D 𝑣 QL Tab.

Yingzi et al., 2009 Seq No F PR 𝑣 QL Tab.

Chen et al., 2010 Seq No F PR 𝑣 QL Tab.

Gabel et al., 2012 Seq 𝑚𝑝 R D 𝜋 PG FCNN

Jiménez, 2012 IRS 𝑚𝑝 F (?) D 𝑣 QL FCNN

Source MDP Characteristics Agent Characteristics
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Table A.2: RL Designs in Literature. (Continued)

Palombarini et al., 2012 IGT No R GO 𝑣 QL Tab.

Qu et al., 2015 Seq 𝑚𝑝 R D 𝑣 QL Tab.

Qu et al., 2016 Seq No F D (?) 𝑣 QL ?

Bouazza et al., 2017 IRS 𝑓 𝑚𝑙,
𝑚𝑝

R PR 𝑣 QL Tab.

Shahrabi et al., 2017 ReS No F P 𝑣 QL Tab.

Thomas et al., 2018 Seq No R & F D 𝑣 QL FCNN (?)

Waschneck et al., 2018 Seq 𝑚𝑝 R (?) ? 𝑣 QL FCNN

Stricker et al., 2018 Rou No R D 𝑣 QL FCNN

Shiue et al., 2018 (?) No F PR 𝑣 QL Tab. +
SOM

Kuhnle et al., 2019 Rou No R D 𝜋 TRPO FCNN

Park et al., 2019 Seq No R & F D? 𝑣 DDQN FCNN

Zhao et al., 2019 Seq (?) No F (?) PR 𝑣 QL Tab.

Palombarini et al., 2019 IGT No R GO 𝑣 DQN CNN

Han et al., 2019 Rou 𝑗 R D 𝑣 QL Tab.

Hofmann et al., 2020 Rou No F D 𝑣 DQN FCNN

Liu et al., 2020 Seq 𝑚𝑝 R PR 𝜋, 𝑣 A2C CNN

Zhou et al., 2020 Seq (?) No (?) F D 𝑣 DDQN FCNN (?)

Luo, 2020 Seq No F PR 𝑣 DDQN FCNN

Wang, 2020 Seq 𝑚𝑝 F PR 𝑣 QL FCNN (?)

Kuhnle et al., 2020 TCS No R & F D 𝜋 TRPO FCNN

Hu et al., 2020a TCS (?) No F PR (?) 𝑣 DDQN FCNN

Park et al., 2020b Seq 𝑚𝑝 R D 𝑣 DDQN FCNN

Wu et al., 2020 DiP No R D 𝜋 REINF. RNN

Han et al., 2020 Seq No R PR 𝑣 DDDQN FCNN

Wang et al., 2021a IRS Subp. F PR 𝑣 QL Tab.

Yang et al., 2021b Seq No F PR 𝜋, 𝑣 A2C FCNN

Yang et al., 2021a ITS Subp. F PR 𝜋, 𝑣 A2C FCNN

Luo et al., 2021a IRS No F PR 𝑣 DDQN FCNN

Zhao et al., 2021b Seq (?) No R PR 𝑣 DDQN CNN

Luo et al., 2021b IRS Subp. F PR 𝜋, 𝑣 PPO FCNN

Heger et al., 2021 Seq No F P 𝑣 ? ?

Lee et al., 2022 Rou No (?) F D 𝑣 QL Tab.

Lin et al., 2022 Seq No F D 𝑣 QL Tab.

Source MDP Characteristics Agent Characteristics
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Table A.2: RL Designs in Literature. (Continued)

Min et al., 2022 Seq No F P 𝜋, 𝑣 DDPG CNN

Source MDP Characteristics Agent Characteristics
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Table A.3: Validation of RL Experiments in Literature.

Deterministic Setups

Zhang et al., 1995 N/A

Zhang et al., 1996 N/A

Riedmiller et al., 1999 N/A

Martinez, 1999 N/A

Csaji et al., 2003 N/A

Hong et al., 2004 N/A

Gabel et al., 2007a N/A

Gabel et al., 2007b N/A

Gabel, 2009 N/A

Martínez et al., 2011 N/A

Zeng et al., 2011 N/A

Petrova et al., 2013 N/A

Zhang et al., 2013 N/A

Reyna et al., 2015 N/A

Arviv et al., 2016 N/A

Fonseca-Reyna et al., 2018 N/A

Xue et al., 2018 N/A

Mendez-Hernandez et al.,
2019

N/A

Lin et al., 2019 N/A

Tan et al., 2019 N/A

Marandi et al., 2019 N/A

Baer et al., 2019 N/A

Zhang et al., 2020 N/A

Rinciog et al., 2020 N/A
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Table A.3: Validation of RL Experiments in Literature. (Continued)

Moser et al., 2020 N/A

Chen et al., 2020 N/A

Yu et al., 2020 N/A

Lang et al., 2020 N/A

Martinez Jimenez et al., 2020 N/A

Ren et al., 2020 N/A

Li et al., 2020 N/A

Martins et al., 2020 N/A

Zhu et al., 2020 N/A

Seito et al., 2020 N/A

Moon et al., 2021 N/A

Park et al., 2021 N/A

Cao et al., 2021 N/A

Zhao et al., 2021a N/A

Zhao et al., 2021c N/A

Wang et al., 2021b N/A

Pan et al., 2021 N/A

Han et al., 2021 N/A

Cunha et al., 2021 N/A

Ni et al., 2021 N/A

Ren et al., 2021b N/A

Ren et al., 2021a N/A

Pol et al., 2021 N/A

Samsonov et al., 2021 N/A

Du et al., 2022 N/A

Wang et al., 2022 N/A

Long et al., 2022 N/A

Brammer et al., 2022 N/A

Cai et al., 2022 N/A

Kim et al., 2022 N/A

Stochastic Setups

Mahadevan et al., 1998

Aydin et al., 2000

Wei et al., 2004

Wang et al., 2005
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Table A.3: Validation of RL Experiments in Literature. (Continued)

Paternina-Arboleda et al.,
2005

Wang et al., 2007

Yingzi et al., 2009

Chen et al., 2010

Gabel et al., 2012

Jiménez, 2012

Palombarini et al., 2012

Qu et al., 2015

Qu et al., 2016

Bouazza et al., 2017

Shahrabi et al., 2017

Thomas et al., 2018

Waschneck et al., 2018

Stricker et al., 2018

Shiue et al., 2018

Kuhnle et al., 2019

Park et al., 2019

Zhao et al., 2019

Palombarini et al., 2019

Han et al., 2019

Hofmann et al., 2020

Liu et al., 2020

Zhou et al., 2020

Luo, 2020

Wang, 2020

Kuhnle et al., 2020

Hu et al., 2020a

Park et al., 2020b

Wu et al., 2020

Han et al., 2020

Wang et al., 2021a

Yang et al., 2021b

Yang et al., 2021a

Luo et al., 2021a
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Table A.3: Validation of RL Experiments in Literature. (Continued)

Zhao et al., 2021b

Luo et al., 2021b

Heger et al., 2021

Lee et al., 2022

Lin et al., 2022

Min et al., 2022

Source Reproducibility Evaluation
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Appendix B

FabricatioRL Classes

Figure B.1: interface_templates and env_utils Module Classes.

XV
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Figure B.2: interface, interface_input, and interface_RNG Module Classes.
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Figure B.3: core, events, core_management and logger Module Classes.
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Figure B.4: state Module Classes.
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APPENDIX C. FEATURE EVOLUTION OVER TIME XX

(a) 𝐽𝑚 Buffer Length Ratio Behavior. (b) 𝐽𝑚 Buffer Load Average Behavior.

(c) 𝐽𝑚 Buffer Load Standard Deviation Behavior. (d) 𝐽𝑚 Buffer Time Ratio Behavior.

(e) 𝐽𝑚 Decision Skip Ratio Behavior. (f) 𝐽𝑚 Normalized Duration Average Behavior.

(g) 𝐽𝑚 Duration Distance Mean Behavior. (h) 𝐽𝑚 Duration Distance Standard Deviation Behavior.

Figure C.1: 𝐽𝑚 Feature Behavior (1-8).



APPENDIX C. FEATURE EVOLUTION OVER TIME XXI

(a) 𝐽𝑚 Duration Entropy Behavior. (b) 𝐽𝑚 Normalized Duration Standard Deviation Behav-
ior.

(c) 𝐽𝑚 Estimated Flow Time Average Behavior. (d) 𝐽𝑚 Estimated Flow Time Standard Deviation Behav-
ior.

(e) 𝐽𝑚 Estimated Tardiness Rate Behavior. (f) 𝐽𝑚 Heuristic Agreement Entropy Behavior.

(g) 𝐽𝑚 Job Operation Completion Rate Average Behavior. (h) 𝐽𝑚 Job Operation Completion Rate Standard Devia-
tion Behavior.

Figure C.2: 𝐽𝑚 Feature Behavior (9-16).



APPENDIX C. FEATURE EVOLUTION OVER TIME XXII

(a) 𝐽𝑚 Job Operation Max Relative Completion Rate
Average Behavior.

(b) 𝐽𝑚 Job Operation Max Relative Completion Rate
Standard Deviation Behavior.

(c) 𝐽𝑚 Job Work Completion Rate Average Behavior. (d) 𝐽𝑚 Job Work Completion Rate Standard Deviation
Behavior.

(e) 𝐽𝑚 Max Relative Work Completion Rate Average
Behavior.

(f) 𝐽𝑚 Max Relative Work Completion Rate Standard
Deviation Behavior.

(g) 𝐽𝑚 Kendall Tau Average Behavior. (h) 𝐽𝑚 Kendall Tau Standard Deviation Behavior.

Figure C.3: 𝐽𝑚 Feature Behavior (17-24).
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(a) 𝐽𝑚 Legal Action to Job Ratio Behavior. (b) 𝐽𝑚 Legal Action Length Stream Average Behavior.

(c) 𝐽𝑚 Legal Action Length Stream Standard Deviation
Behavior.

(d) 𝐽𝑚 Makespan Lower Bound to Upper Bound Ratio
Behavior.

(e) 𝐽𝑚 Operation Completion Rate Behavior. (f) 𝐽𝑚 Silhouette Maximum 𝑘 Behavior.

(g) 𝐽𝑚 Silhouette Mid 𝑘 Behavior. (h) 𝐽𝑚 Silhouette Minimum 𝑘 Behavior.

Figure C.4: 𝐽𝑚 Feature Behavior (25-32).
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(a) 𝐽𝑚 Estimated Tardiness Rate Behavior. (b) 𝐽𝑚 Absolute Job Throughput Time Average Behavior.

(c) 𝐽𝑚 Absolute Job Throughput Time Standard Devia-
tion Behavior.

(d) 𝐽𝑚 Relative Job Throughput Time Average Behavior.

(e) 𝐽𝑚 Relative Job Throughput Time Standard Deviation
Behavior.

(f) 𝐽𝑚 Normalized Type Average Behavior.

(g) 𝐽𝑚 Type Entropy Behavior. (h) 𝐽𝑚 Type Hamming Mean Behavior.

Figure C.5: 𝐽𝑚 Feature Behavior (33-40).
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(a) 𝐽𝑚 Type Hamming Standard Deviation Behavior. (b) 𝐽𝑚 Normalized Type Standard Deviation Behavior.

(c) 𝐽𝑚 Current Utilization Behavior. (d) 𝐽𝑚 Utilization Standard Deviation Behavior.

(e) 𝐽𝑚 WIP Relative System Time Behavior. (f) 𝐽𝑚 WIP to Arrival Ratio Behavior.

(g) 𝐽𝑚 WIP to Arrival Time Ratio Behavior. (h) 𝐽𝑚 Work Completion Rate Behavior.

Figure C.6: 𝐽𝑚 Feature Behavior (41-48).
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(a) 𝐹𝐽𝑐 Buffer Length Ratio Behavior. (b) 𝐹𝐽𝑐 Buffer Load Average Behavior.

(c) 𝐹𝐽𝑐 Buffer Load Standard Deviation Behavior. (d) 𝐹𝐽𝑐 Buffer Time Ratio Behavior.

(e) 𝐹𝐽𝑐 Decision Skip Ratio Behavior. (f) 𝐹𝐽𝑐 Normalized Duration Average Behavior.

(g) 𝐹𝐽𝑐 Duration Distance Mean Behavior. (h) 𝐹𝐽𝑐 Duration Distance Standard Deviation Behavior.

Figure C.7: 𝐹𝐽𝑐 Feature Behavior (1-8).
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(a) 𝐹𝐽𝑐 Duration Entropy Behavior. (b) 𝐹𝐽𝑐 Normalized Duration Standard Deviation Be-
havior.

(c) 𝐹𝐽𝑐 Estimated Flow Time Average Behavior. (d) 𝐹𝐽𝑐 Estimated Flow Time Standard Deviation Be-
havior.

(e) 𝐹𝐽𝑐 Estimated Tardiness Rate Behavior. (f) 𝐹𝐽𝑐 Heuristic Agreement Entropy Behavior.

(g) 𝐹𝐽𝑐 Job Operation Completion Rate Average Behav-
ior.

(h) 𝐹𝐽𝑐 Job Operation Completion Rate Standard Devia-
tion Behavior.

Figure C.8: 𝐹𝐽𝑐 Feature Behavior (9-16).
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(a) 𝐹𝐽𝑐 Job Operation Max Relative Completion Rate
Average Behavior.

(b) 𝐹𝐽𝑐 Job Operation Max Relative Completion Rate
Standard Deviation Behavior.

(c) 𝐹𝐽𝑐 Job Work Completion Rate Average Behavior. (d) 𝐹𝐽𝑐 Job Work Completion Rate Standard Deviation
Behavior.

(e) 𝐹𝐽𝑐 Max Relative Work Completion Rate Average
Behavior.

(f) 𝐹𝐽𝑐 Max Relative Work Completion Rate Standard
Deviation Behavior.

(g) 𝐹𝐽𝑐 Kendall Tau Average Behavior. (h) 𝐹𝐽𝑐 Kendall Tau Standard Deviation Behavior.

Figure C.9: 𝐹𝐽𝑐 Feature Behavior (17-24).
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(a) 𝐹𝐽𝑐 Legal Action to Job Ratio Behavior. (b) 𝐹𝐽𝑐 Legal Action Length Stream Average Behavior.

(c) 𝐹𝐽𝑐 Legal Action Length Stream Standard Deviation
Behavior.

(d) 𝐹𝐽𝑐 Makespan Lower Bound to Upper Bound Ratio
Behavior.

(e) 𝐹𝐽𝑐 Operation Completion Rate Behavior. (f) 𝐹𝐽𝑐 Silhouette Maximum 𝑘 Behavior.

(g) 𝐹𝐽𝑐 Silhouette Mid 𝑘 Behavior. (h) 𝐹𝐽𝑐 Silhouette Minimum 𝑘 Behavior.

Figure C.10: 𝐹𝐽𝑐 Feature Behavior (25-32).
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(a) 𝐹𝐽𝑐 Estimated Tardiness Rate Behavior. (b) 𝐹𝐽𝑐 Absolute Job Throughput Time Average Behav-
ior.

(c) 𝐹𝐽𝑐 Absolute Job Throughput Time Standard Devia-
tion Behavior.

(d) 𝐹𝐽𝑐 Relative Job Throughput Time Average Behavior.

(e) 𝐹𝐽𝑐 Relative Job Throughput Time Standard Devia-
tion Behavior.

(f) 𝐹𝐽𝑐 Normalized Type Average Behavior.

(g) 𝐹𝐽𝑐 Type Entropy Behavior. (h) 𝐹𝐽𝑐 Type Hamming Mean Behavior.

Figure C.11: 𝐹𝐽𝑐 Feature Behavior (33-40).
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(a) 𝐹𝐽𝑐 Type Hamming Standard Deviation Behavior. (b) 𝐹𝐽𝑐 Normalized Type Standard Deviation Behavior.

(c) 𝐹𝐽𝑐 Current Utilization Behavior. (d) 𝐹𝐽𝑐 Utilization Standard Deviation Behavior.

(e) 𝐹𝐽𝑐 WIP Relative System Time Behavior. (f) 𝐹𝐽𝑐 WIP to Arrival Ratio Behavior.

(g) 𝐹𝐽𝑐 WIP to Arrival Time Ratio Behavior. (h) 𝐹𝐽𝑐 Work Completion Rate Behavior.

Figure C.12: 𝐹𝐽𝑐 Feature Behavior (41-48).
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Appendix D

Further Optimization Goals Measured
During Experiments

Table D.1: Measured 𝐹ave for Scheduling Algorithms (Controls) Optimizing 𝐶max.

Algorithm FJc Jm

VBS 840.736 (0.000%) 810.460 (0.000%)
CP3 840.736 (-0.000%) 822.491 (-1.463%)

SimSearch 1267.921 (-33.692%) 843.656 (-3.935%)
MCTS 1272.316 (-33.921%) 839.429 (-3.451%)

AZ 1353.618 (-37.890%) 822.604 (-1.476%)
SPT 1354.452 (-37.928%) 822.176 (-1.425%)
LUDM 1365.916 (-38.449%) 837.129 (-3.186%)
SRPT 1367.517 (-38.521%) 836.281 (-3.088%)
EDD 1367.961 (-38.541%) 841.744 (-3.716%)
MTPO 1370.164 (-38.640%) 835.772 (-3.029%)
LOR 1373.317 (-38.781%) 848.197 (-4.449%)
DQN 1376.644 (-38.929%) 900.539 (-10.003%)
MOR 1388.150 (-39.435%) 901.893 (-10.138%)
LTPO 1396.319 (-39.789%) 919.581 (-11.866%)
LRPT 1398.457 (-39.881%) 927.345 (-12.604%)
LPT 1411.944 (-40.455%) 955.767 (-15.203%)

RND1 2214.957 (-62.043%) 863.536 (-6.146%)
RND2 2317.412 (-63.721%) 884.272 (-8.347%)

XXXIII
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Table D.2: Measured 𝑇ave for Scheduling Algorithms (Controls) Optimizing 𝐶max.

,

Algorithm FJc Jm

VBS 100.377 (0.000%) 93.883 (0.000%)
CP3 100.377 (-0.000%) 105.460 (-10.978%)

SimSearch 439.192 (-77.145%) 124.543 (-24.618%)
MCTS 443.566 (-77.371%) 120.974 (-22.394%)

AZ 524.627 (-80.867%) 104.557 (-10.209%)
SPT 525.433 (-80.896%) 104.233 (-9.929%)
LUDM 536.667 (-81.296%) 112.163 (-16.298%)
SRPT 537.871 (-81.338%) 111.265 (-15.622%)
EDD 538.166 (-81.348%) 113.003 (-16.920%)
TPO 540.415 (-81.426%) 114.502 (-18.007%)
LOR 544.149 (-81.553%) 121.753 (-22.890%)
DQN 547.622 (-81.670%) 171.611 (-45.293%)
MOR 558.705 (-82.034%) 173.565 (-45.909%)
LTPO 567.311 (-82.307%) 190.628 (-50.751%)
LRPT 569.303 (-82.368%) 198.222 (-52.637%)
LPT 582.366 (-82.764%) 217.146 (-56.765%)

RND1 1384.345 (-92.749%) 137.717 (-31.829%)
RND2 1486.669 (-93.248%) 153.701 (-38.918%)

Table D.3: Measured 𝑈𝑡𝑙ave for Scheduling Algorithms Optimizing 𝐶max.

,

Algorithm FJc Jm

CP3 0.850 (+27.975%) 0.484 (+0.728%)

SimSearch 0.780 (+21.466%) 0.484 (+0.749%)
MCTS 0.775 (+21.007%) 0.484 (+0.739%)

AZ 0.765 (+19.963%) 0.484 (+0.578%)
SPT 0.765 (+19.905%) 0.484 (+0.601%)
LUDM 0.763 (+19.686%) 0.483 (+0.546%)
MTPO 0.763 (+19.684%) 0.484 (+0.553%)
DQN 0.762 (+19.652%) 0.484 (+0.584%)
MOR 0.762 (+19.651%) 0.484 (+0.703%)
SRPT 0.762 (+19.644%) 0.483 (+0.410%)
EDD 0.762 (+19.640%) 0.483 (+0.421%)
LOR 0.762 (+19.597%) 0.483 (+0.394%)
RPT 0.762 (+19.577%) 0.484 (+0.700%)
LTPO 0.761 (+19.503%) 0.484 (+0.577%)
LPT 0.759 (+19.277%) 0.483 (+0.481%)

RND1 0.631 (+2.874%) 0.484 (+0.557%)
RND2 0.618 (+0.810%) 0.483 (+0.523%)

VBS 0.613 (0.000%) 0.481 (0.000%)
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