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Abstract

The IceCube Neutrino Observatory, situated at the South Pole within a cubic kilometer of un-
derground ice, is a state-of-the-art experiment for detecting particles of high energies, with a
special focus on investigating neutrino physics. The neutrino flux can be divided into three dis-
tinct components: astrophysical, originating from extraterrestrial sources; conventional, arising
from the decay of pions and kaons in atmospheric cosmic ray cascades; and the prompt com-
ponent, which has yet to be detected and stems from the decay of charmed hadrons. This study
aims to reconstruct the total flux of neutrinos at Earth and places a particular emphasis on exam-
ining the predicted angular dependence. Unfolding encompasses a collection of techniques that
aim to determine a quantity in a manner independent of specific assumptions, thereby remov-
ing the influence of various assumptions made during the process. In this analysis, the energy
spectrum of muon neutrinos is unfolded with the employment of an innovative technique for re-
shaping the observable space to ensure an adequate number of events in the low statistic region
at the highest energies.

This work presents the unfolded energy and zenith angle spectrum reconstructed from eleven
years of IceCube data in the range from 500 GeV to 4 PeV energies, and compares the findings
with both model predictions and previous measurements.





Zusammenfassung

Das IceCube Neutrino Observatory, das sich am Südpol in einem Kubikkilometer unterirdischen
Eises befindet, ist ein hochmodernes Experiment zum Nachweis von Teilchen mit hoher Energie,
wobei der Schwerpunkt auf der Untersuchung der Neutrinophysik liegt. Der Neutrinofluss kann
in drei verschiedene Komponenten unterteilt werden: astrophysikalische Neutrinos aus extrater-
restrischen Quellen; konventionelle Neutrinos, aus dem Zerfall von Pionen und Kaonen in at-
mosphärischen Luftschauern; und prompte Neutrinos, die noch nicht gemessen wurden, aber
aus dem Zerfall von Hadronen aus Charm-Quarks erwartet werden. Diese Studie zielt darauf
ab, den Gesamtfluss der Neutrinos auf der Erde zu rekonstruieren, und legt einen besonderen
Schwerpunkt auf die Untersuchung der vorhergesagten Winkelabhängigkeit. Die Entfaltung
umfasst eine Reihe von Techniken, die darauf abzielen, eine physikalische Größe modellun-
abhängig zu bestimmen. In dieser Analyse wird das Energiespektrum von Myon-Neutrinos mit
Hilfe einer innovativen Technik zur Umformung des beobachtbaren Raums entfaltet, um eine
angemessene Anzahl von Ereignissen im Bereich der niedrigen Statistik bei den höchsten En-
ergien sicherzustellen.

Diese Arbeit präsentiert das ungefaltete Energie- und Zenitwinkelspektrum, das aus elf
Jahren IceCube-Daten im Energiebereich von 500 GeV bis 4 PeV rekonstruiert wurde, und
vergleicht die Ergebnisse sowohl mit Modellvorhersagen als auch mit früheren Messungen.
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Chapter 1

Introduction

Neutrinos are among the most intriguing particles known to science, and the study of their prop-
erties has been an active area of research for decades. They are elusive and although the most
abundant massive particles, very rarely detected. However, despite their challenging nature, they
are key to our understanding of the universe and the fundamental laws of physics. The study
of neutrinos is a complex and interdisciplinary field, requiring knowledge of particle physics,
astrophysics, and cosmology. In this doctoral thesis, we focus on unfolding the muon neutrino
flux, which is a crucial parameter in understanding the properties of these peculiar particles and
their sources. Therefore, of particular interest is the coverage of flux produced in the Earth’s
atmosphere and the flux of neutrinos created in galactic origins.

The goal of this doctoral thesis is to unfold the muon neutrino flux observed by the IceCube
Neutrino Observatory, a large neutrino detector located at the South Pole. IceCube is designed to
detect high-energy neutrinos produced by astrophysical sources and has observed a significant
number of muon neutrinos since its completion in 2010. However, the observed flux of muon
neutrinos is contaminated by background events from other types of neutrinos and cosmic rays,
and is distorted by various detection limitations particular to this detector.

Unfolding is a set of techniques based on the principle of deconvolution, which aims to re-
cover the underlying physical distribution of a source from the observed data usually affected by
instrumental and statistical effects. In astrophysics, unfolding is used to reconstruct the energy
spectrum of a source, which represents the radiation intensity emitted by the source as a func-
tion of the particle energy. Here, we inspect the diffuse neutrino flux describing the intensity
arriving to Earth from all directions and unspecified sources. Unfolding is a complex process
that requires careful modeling of the source and instrument properties, as well as an accurate
estimation of the statistical and systematic uncertainties associated with the data. This work
focuses on optimizing each segment by utilizing machine learning methods. A notable feature
of unfolding methods is its model independence, enabling the production of results unaffected
by researchers’ assumptions.
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Chapter 1. Introduction

The energy range investigated starts in the region of 500 GeV dominated by neutrinos cre-
ated in the atmosphere and spans to the astrophysical-dominated energies of 4 PeV. While the
atmospheric region has been extensively investigated, the diffuse flux above 2 PeV has not been
reconstructed until this work.

The outcome of this work is an unprecedented calculation of the diffuse neutrino flux, with
substantially lower uncertainty enabled by a never-used-before amount of measured data. A
particular objective is the investigation of the neutrino flux dependence on the angular direction.
The observed variance of flux in five given directions is the first calculation of the flux zenith
dependence in IceCube.

This work is constructed as follows: The second chapter introduces basic theoretical con-
cepts necessary in this analysis development, with sections covering neutrino physics and the
used detection process. The third chapter covers various machine learning methods used in op-
timizing steps given in chapter six. The following chapter explains the two types of data used
in this work. Then, the mathematical basis of unfolding is presented, being the main building
block of the work. Following is the chapter describing the complete analysis chain developed,
with specifics needed for reproducibility. Finally, the seventh chapter concludes with the inter-
pretation of the results, its relevance in the current state of research, and future outcomes.

2



Chapter 2

Theoretical background

The universe is a vast expanse of celestial objects emitting energy through various forms. These
objects span from stars, galaxies, supernovae, and black holes to less understood bodies like
quasars and pulsars, or phenomena like gamma-ray bursts. A meticulous study of these cosmic
objects and events can shed light on the fundamental nature of the universe and the processes
that govern its evolution.

Multimessenger astroparticle physics is a rapidly evolving field that aims to study the uni-
verse through multiple messengers, such as electromagnetic radiation, cosmic rays (CR), grav-
itational waves, and neutrinos. This approach enables us to gather information from different
sources and compare them to form a more comprehensive understanding of astrophysical phe-
nomena, ultimately leading to groundbreaking discoveries and opening new avenues for under-
standing the universe. Among these messengers, neutrinos have played a crucial role in multi-
messenger astroparticle physics due to their unique properties, including their ability to travel
through dense matter without interacting which enables an undistorted reconstruction of their
sources’ directions. In this section, we will discuss the historical context of neutrino detection
and the important role it plays in multimessenger physics.

2.1 Multimessenger astrophysics

The idea of using multiple messengers to study astrophysical phenomena has been around for
several decades. The first observation of cosmic rays being high-energy particles originating
from outside the Earth’s atmosphere was done in the 1930s by Victor Hess [Hes40]. This trig-
gered the rapid development of cosmic ray detectors including cloud chambers, spark chambers,
and emulsions. As a result, muons and pions were discovered, and they will later play a crucial
role in astroparticle physics and the study of both atmospheric interactions and galactic sources.
In 1960, the physicist John A. Wheeler first proposed the idea of using gravitational waves to
study the universe [HTWW65]. He suggested that if two massive objects were to collide, they
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Chapter 2. Theoretical background

would create ripples in the fabric of spacetime that could be detected on Earth. However, it
wasn’t until 2015 that the Laser Interferometer Gravitational-Wave Observatory (LIGO) made
the first detection of gravitational waves, confirming Wheeler’s theory and starting a new era of
multimessenger astrophysics [A+16b]. The first observation of a gamma-ray burst (GRB) by a
gamma-ray experiment was made in 2019 by MAGIC [7419]. In 2020, the HAWC gamma-ray
observatory detected a very high-energy GRB that was also detected by the Fermi Gamma-ray
Space Telescope.

In 1983, the first neutrino detector was built, the Kamiokande in Japan, succeeded by the
Super-Kamiokande and to be succeeded by Hyper-Kamiokande in the following years. In 1987,
eleven neutrinos were detected over a time span of thirteen seconds, coming from the direction
of supernova SN1987A in the Large Magellanic Cloud, substantially contributing to the un-
derstanding of supernovae explosion mechanism [H+88]. This event marked the first time that
neutrinos had been observed from a source outside the solar system and has led to the devel-
opment of dedicated neutrino observatories in the field of astronomy, including but not limited
to Antares and KM3NeT in the Mediterranean Sea, the Baikal Deep Underwater Neutrino Tele-
scope (BDUNT) and Baksan Neutrino Observatory (BNO) in Russia, and the Helium And Lead
Observatory (HALO) in Canada. Starting construction in 2005, the IceCube Neutrino Obser-
vatory (IceCube) became the largest neutrino detector in existence. With this state-of-the-art
telescope, many breakthroughs in the field of astroparticle physics were facilitated, and its un-
precedented aptitude for data analysis enabled the development of this work. The workings of
this detector will be thoroughly covered in the subsequent section.

In 2018, the IceCube neutrino detector detected a high-energy neutrino from outside the
solar system, tracing back to a blazar, a type of active galactic nucleus [CFLM+18]. This was
the first time that a high-energy neutrino had been associated with a specific source. Not only
has this event solidified the importance of astrophysical neutrino detection, but also confirmed
the eminence of IceCube in this field.

2.2 Neutrinos

Neutrinos are fundamental particles belonging to the lepton family. They are electrically neu-
tral and interact only weakly with matter, making them extremely difficult to detect. The very
properties causing the strain in their detection make them ideal candidates for transferring infor-
mation over tremendous distances in space. Neutrinos are created in a variety of astrophysical
sources, such as the Sun, supernovae, and active galactic nuclei. The detection of neutrinos
from these sources can provide valuable information about their properties and the astrophysical
phenomena that produce them. In this section, we will discuss the properties of neutrinos and
how they can be detected in astrophysics, with a focus on muon neutrinos.
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Chapter 2. Theoretical background

There are three types of neutrinos: electron neutrinos, muon neutrinos, and tau neutrinos,
which correspond to the three charged leptons. Although believed to have been massless for
a long time, neutrinos have three distinctive mass states, and each neutrino is a combination
of mass eigenstates. The hierarchy of the mass has not been determined yet [QV15], and
mass states are still calculated only to an upper limit. The neutrino physics was further com-
plicated with the discovery of flavor mixing, where neutrinos also come in combinations of
the flavor eigenstates. As a result, neutrinos can be detected in a different flavor than the
one created in, referred to as neutrino oscillations. The mixing of neutrino states is conve-
niently described since 1962 in the Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS matrix)
[IKMY15] parametrized with three mixing angles (θ12, θ13, θ23) and the charge-parity violations
phase angle δ. In this analysis, muon neutrinos are used in determining the flux, however, the
possible oscillation to the muon flavor is not of interest and therefore out of the scope of this
work.

2.2.1 The Flux and its components

The intensity of neutrinos arriving at Earth can be examined by looking at either distinct point
sources in the sky, corresponding to cataloged astrophysical phenomena [BGH+21], or by in-
vestigating the complete flux detected integrated over the observed sky. The latter is referred to
as the diffuse flux, and resulting from the observatory’s position at the South Pole, the North-
ern Sky is investigated by measuring neutrinos that previously passed through the inside of our
planet.

There are three main components of the neutrino flux: conventional, prompt, and astrophys-
ical, shown in Figure 2.1. The flux is parametrized by a power law in the form

dΦ
dEdΩ

= Φ0(
Eν

100TeV
)−γ (2.1)

where Φ0 is called the normalization constant, and γ the spectral index, determining the slope of
the function. Although all are expected to follow the same form, the three different components
attain different parameter values due to the variance in their properties.

The conventional neutrino flux is produced by cosmic ray interactions with the Earth’s at-
mosphere. These interactions produce charged particles, such as pions and kaons, which subse-
quently decay into neutrinos. The main production channels are the pion and kaon decays

π+ → µ+ + νµ (2.2)

π− → µ− + νµ̄ (2.3)

K− → µ− + νµ̄ (2.4)
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Chapter 2. Theoretical background

K+ → µ+ + νµ (2.5)

with pions and kaons both being long-lived particles. The decay mean free path of mesons is
given by

λm = γcτm (2.6)

with τm being the meson’s lifetime, while their interaction mean free path is

λm =
Amm

σair (2.7)

withσair as the meson-air cross-section and A as the mean mass number of air nuclei. Combining
this gives the critical energy of a meson, at which the interaction starts dominating the decay

ϵm =
cτm

mmc2h0
(2.8)

with h0 being the scale height. With muon energies Eµ below ϵπ = 115GeV and ϵK = 850GeV ,
decay dominates and the muons follow the creating mesons’ spectrum, consequently imitating
the spectrum of Cosmic Rays. At energies Eµ > ϵπ, ϵK , interaction dominates and the muon flux
gets suppressed. The large decay mean free path allows mesons to lose energy before creating a
muon, and as a consequence create a softer flux. Its spectral index is expected to be around 3.7.

Prompt neutrinos are produced in the same cosmic ray interactions as conventional neutrinos
but come from the decay of short-lived particles. These are mainly charmed mesons, and the
creation is governed by the decays

D+ → µ+ + νµ (2.9)

D− → µ− + νµ̄ (2.10)

which is, together with the electron, the favored channel. The tau creation is suppressed com-
pared to the previous two. Although the decay mean free path is as well described with Equation
2.6, the much shorter lifetime of charmed mesons reduces the interaction probability, and the
charmed mesons almost always decay before interacting. With no loss of energy in the atmo-
sphere, these particles create neutrinos with a harder energy spectrum. The prompt component
starts to substantially contribute to the flux at energies around 100 TeV, however, due to the
inability to discriminate neutrinos created from different mesons, both conventional and prompt
neutrinos are observed together. Under the common name of atmospheric neutrinos, the two
fluxes are often parametrized jointly. In the region of conventional dominance at less than 100
TeV, this component has been observed solely, but nonetheless, the prompt component has not
been observed nor parametrized yet [Sch13b].

Last, but not least, is the astrophysical component. It is constituted from neutrinos created in
astrophysical sources, independent of processes on Earth and inside its atmosphere. Due to the
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range of different sources, setting the expectation for a general spectral index is not straightfor-
ward. IceCube has already put restraints on the contribution of GRBs and Active Galactic Nu-
clei (AGN) to the astrophysical component to at most 20% [A+17a, A+17e]. Starburst galaxies
(SBG) are a possible candidate for explaining a substantial amount of astrophysical neutrinos,
but the current models limit the energies in this channel of production to the PeV range [PW18].
A neutrino production channel common to several astrophysical sources is the proton-photon
interaction

p→ n + π+ → n + µ+ + νµ (2.11)

provided an adequate column density of target photons. Neutrino production is expected in
the proton-proton collisions of Fermi mechanisms, with the spectral index imitating the one of
the proton flux [Mé s17]. Despite the previously mentioned features supporting a multi-model
parametrization of the astrophysical component, current efforts are to describe it with a single
power-law, due to the complexity of the problem and the sparsity of detected neutrinos. At 2.62
by the most recent measures [A+22], its spectral index is determined experimentally with no
agreed-upon theoretical model to date.

2.2.2 Angular dependence

The angular dependence of the neutrino flux is a complex matter, spanning from the different
flavors of detected neutrinos and the different production mechanisms observed through the
three components. The dependency is expected due to the different lengths of paths particles
pass depending on their arriving zenith, however several additional factors influence the detected
intensity.

As previously described, the conventional component is primarily driven by cosmic rays
interacting with the Earth’s atmosphere, which results in a higher flux of neutrinos near the
horizon where the atmosphere is thicker. Consequently, a strong dependence on the zenith angle
arises in conventional-dominated region. Even before the creation of the muon, the mentioned
impact of energy loss in the long traversed paths of primary mesons inside the atmosphere
will therefore also influence the distribution of resulting neutrinos. When a pion collides with
the atmosphere perpendicularly, it will swiftly reach the lower, denser, atmosphere where it
interacts with more particles, leading to an increased likelihood of interaction. In contrast,
entering at a larger angle, the pion spends more time in the less populated upper atmosphere,
which enables it to decay without losing energy to interactions, and surrendering more energy to
created neutrinos. This creates an additional energy dependence based on the incoming angle,
apart from the expected creation rate. Upon muon creation, which retains the direction due to
momentum conservation, the column depth of the atmosphere will impact its decay probability.
When the angle of incidence is increased, the distance between the origin of the muons in the

7



Chapter 2. Theoretical background

Figure 2.1: The total neutrino flux and its components, weighted
with energy squared. Atmospheric components are simulated
with MCEq [FEG+15], described in Chapter 4. The dominance of
the conventional component is discernible from the flux, with the
prompt component being concealed by the conventional at lower
energies, and by the astrophysical at higher energies. The flux
is dominated by the astrophysical component at energies above
700TeV, conveniently named the signal region. Atmospheric
components are constructed from expectancies, while the astro-
physical component is an experimental observation taken from
[A+16a].

atmosphere and the detector on the earth’s surface also increases, reaching its maximum at
180◦. At this angle, muons have to travel an average of 400 kilometers to reach the Earth, with
an average decay length of only 33 kilometers. Only several high-energy muons can cover these
distances, resulting in the lowest rate at this angle. The dependency is shown in Figure 2.2.

Due to the short time spent inside the atmosphere in the fast decays of prompt particles, the
column depth does not impact the energy loss, and therefore nor the neutrino rate. The prompt
component is expected to be isotropic for this reason, as shown in Figure 2.3. Both conventional
and the prompt components might be influenced by additional factors including temperature,
season, and similar, but these models have not been developed to include the angular dependence
yet [HTWZ19, H+21].

As is the prompt component, the astrophysical component is expected to be isotropic, al-
though its sources are not fully unraveled. The experimental data points to an isotropic nature
of the flux, with most high energy neutrinos related to an extragalactic origin, however, recent
measures show support for astrophysical neutrino excess in the Galactic plane [C+17].
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Chapter 2. Theoretical background

Figure 2.2: Angular dependence of the conventional component.
The left figure shows conventional neutrino fluxes weighted with
squared energy in three different angle bins. It is imminent to
notice the decrease in neutrino rate for larger angles. The right
figure shows the ratio between conventional neutrino fluxes in an-
gle bins and the all-sky conventional flux. At high energies, the
ratio reaches a constant value. The dashed line shows the highest
energy considered in previous analyses.

Figure 2.3: Angular dependence of the prompt component. The
left figure shows prompt neutrino fluxes weighted with squared
energy in three different angle bins. The fluxes exhibit no differ-
ence and overlap each other. The right figure shows the ratio be-
tween prompt neutrino fluxes in angle bins and the all-sky prompt
flux. Due to the isotropic nature of the prompt flux, its ratio re-
mains one in all angle bins. The dashed line shows the highest
energy considered in previous analyses.

Considering everything stated above, it concludes the angular dependence of the total neu-
trino flux arises solely from the anisotropy of the conventional component. The prompt and
astrophysical can both be approximated to isotropic. The dominance of the three components
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interchanges with energy, with conventional solidly dominating the low energy region, prompt
having a rising contribution in middle energy, and astrophysical dominating the high energy
range. Consequently, the low-energy region will be characterized by stronger angular depen-
dence, with isotropic behavior rising with energy, as depicted in Figure 2.4.

2.2.3 Why muon neutrinos?

In the large volume of ice, neutrinos interact with matter through charged current (CC) inter-
actions and neutral current (NC) interactions. In CC interactions, the neutrino interacts with a
nucleon in the target material and produces a charged lepton of the same flavor as the neutrino.
The resulting lepton can then be detected through an intricate series of steps. NC interactions
lack the creation of lepton, yet the interaction of a neutrino with the nucleus creates an elec-
tromagnetic shower, resulting in a signature inside the detector volume distinctive from a CC
signature. Since interactions creating a charged, and therefore detectable, lepton are of interest,
NC interactions are cleaned out of the sample.

Electrons are lightweight particles that interact strongly with matter. When an electron loses
energy through bremsstrahlung, the emitted photons can create electron and positron pairs,
which in turn produce more photons, creating a cascade of particles and light. The energy is
emitted in a wide cone shape around the electron’s direction as the created shower of particles
develops in a tree-like structure. Due to their interactivity with matter, electrons change direc-
tions often in collisions and interactions with matter, resulting in a torturous path. The release of
electromagnetic radiation on this path results in energy radiated in several directions, that cannot
be easily reconstructed to a single course.

Muons, on the other hand, are much heavier than electrons and have a substantially lower
cross-section. Their penetrating nature allows them to reach detectors on sea level, with high
energy muons even penetrating Earth to reach underground facilities. This sets them apart from
other leptons as the favored particle in neutrino detection. Although considered a background in
this work, muons created in the atmosphere are a valuable constitution to many research goals
of IceCube, including studies on cosmic rays. Particles with lower mean free path than muons
have to be detected at the surface of Earth, or even by specialized satellites, leaving muons as
the only medium in underground detection with a natural shield against noise.

Neutrinos’ low interactivity with matter allows them to surpass large distances inside the
rock and ice volume undisturbed. The creation of a muon in the CC interaction of a neutrino
most often happens in the bedrock surrounding the detector, and the muon retaining a part of
neutrino energy continues to pass the detector volume. The stochastic losses of energy will
then leave a track-like signature in the detector around the muon’s path, with the losses for the
most part being dependent on the muon’s energy. However, loss through material ionization is
constant for these muon energies. The lack of correlation between the original energy of the
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Figure 2.4: Angular dependence of neutrino flux constituted of
different components. The left column shows neutrino fluxes
weighted with squared energy for the conventional (first row),
conventional and prompt (second row), and all three components
(third row). The right column shows the angular dependency
shown as a ratio to the full-sky flux for the respective fluxes. With
rising energy, isotropic components start to dominate the flux, and
the ratio gravitates towards one. The lower right plot is the ex-
pected outcome of an angular dependence analysis like this work.
Atmospheric components are simulated with MCEq [FEG+15],
while the astrophysical component is taken from [A+16a].

muon and the energy loss through ionization leads to inability of ionization losses to be used as
proxies in energy reconstruction. These losses are governed by the Bethe-Bloch equation
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where K = 4πNA,me, r2,c2 and Z being the atomic number of the medium, I the ionization
potential, NA Avogadro number, me and re the mass and radius of the electron, and z the charge
of the particle (in this case a muon). The energy loss, shown in Figure 2.5, increases with ∼ β−2

resulting in slower particles being more ionizing. With increasing muon speed, the energy loss
reaches a minimum in the MeV g/cm2 range in which it remains for energies covered by the
IceCube experiment.

Figure 2.5: Energy loss of muons in water [BVE11]. Labels rep-
resent the following energy loss processes: p for pair production,
b for bremsstrahlung, pn for photo-nuclear interactions, and ion
for ionization. While other interactions show a dependence on
muon energy, ionization loss is independent of starting energy
and cannot be used as a proxy for its calculation.

2.3 Cherenkov radiation

Cherenkov radiation is a type of electromagnetic radiation that is emitted by a charged particle
when it travels through a medium at a velocity higher than the speed of light in that medium.
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The radiation is emitted in a cone-shaped pattern with the apex of the cone located at the point
where the charged particle interacts with the medium [Kno10]. The angle of the cone is given
by the following equation

cosθC = (nβ)−1 (2.13)

where θC is the angle of the cone, n is the refractive index of the medium, and β is the velocity
of the charged particle relative to the speed of light in vacuum. From here, the maximal angle
of particles approaching the speed of light is θCmax = cos−1(1.31−1) ∼ 40.2◦. Furthermore, the
intensity of Cherenkov radiation is

dN
dxdλ

=
4π2z2e2

hcλ2 sin2θC (2.14)

with N being the number of photons emitted, λ the wavelength, and h the Planck’s constant. The
intensity peaks at wavelengths between 300 and 400 nanometers, giving Cherenkov radiation a
distinctive blue glow visible to human eyes.

Cherenkov radiation can be detected using a variety of methods, including photomultiplier
tubes (PMTs) and charged-coupled devices (CCDs), with PMTs being the established method
in water and ice detectors. The exact detection procedure can be fully understood with the
introduction of the detector operation covered in the following subsection.

2.4 IceCube Neutrino Observatory

The IceCube Neutrino Observatory [A+17b] is a particle detector located at the geographic South
Pole and operated on the Amundsen-Scott South Pole station. It is the largest neutrino detector
in the world, with an instrumented volume of one cubic kilometer of Antarctic ice. The main
goal of IceCube is neutrino detection with the aspiration to infer many different conclusions
in the astrophysics area of interest. In this work, we are interested in its detection of muon
neutrinos in already mentioned track-like events with the described Cherenkov radiation. The
main detection process relies on the mechanism of PMTs.

2.4.1 Main detector units

A photomultiplier tube (PMT) is a highly sensitive device used to detect and amplify weak light
signals. The basic principle behind its operation is based on the photoelectric effect, where
photons of light are converted into electrons when they strike a photosensitive material. The re-
sulting electrons are then multiplied using a series of electron multiplication stages, or dynodes,
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Figure 2.6: The schematic representation of a conventional Pho-
tomultiplier tube (PMT), from [BWM01].

resulting in a large output signal. The PMT consists of three main parts: the photocathode, the
electron multiplier, and the anode, depicted in Figure 2.6. The photocathode is a photosensitive
material that absorbs photons of light and emits electrons through the photoelectric effect. The
electron multiplier is a series of dynodes, which are metal electrodes arranged in a chain-like
fashion. The anode is a metal electrode that collects the multiplied electrons and produces an
output signal. When a photon of light enters the PMT, it strikes the photocathode and ejects an
electron. This electron is then accelerated towards the first dynode, where it strikes the surface
and causes the emission of several secondary electrons. These secondary electrons are then ac-
celerated towards the next dynode, where they strike the surface and cause the emission of even
more secondary electrons. This process is repeated for several dynodes until a large number of
electrons are produced and collected at the anode. The key to the PMT’s high sensitivity is the
ability to multiply electrons at each dynode. This is achieved by using a high voltage applied
across the dynodes, which causes the emission of more secondary electrons. The number of
electrons produced at each dynode is typically a factor of 10 to 20 times higher than the previ-
ous dynode. This multiplication process results in a very high gain, which is the ratio of output
electrons to input photons. In addition to its high sensitivity, PMTs also have a fast response
time and low noise characteristics.

The amplification of electrons is however a statistical process, and PMTs do not have a well-
defined amplification constant with drastic differences between units. Each PMT is described
with several variables relating to collected charge per event. An expected charge generated in
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some PMT for a single photon is a probability curve known as the single photoelectron (SPE)
charge distribution. In optimal conditions, a single photon would generate a response of a single
photoelectron, but the stochasticity of the measurement smears the distribution around the value
of 1, as shown in Figure 2.7. The collected charge is therefore an additional parameter to be
calibrated.

Figure 2.7: Single photoelectron charge distribution in an exam-
ple DOM, from [BWM01]. The black histogram shows the charge
in photoelectrons collected in DOM 1 on String 1 for a single in-
jected photon. An ideal PMT would always generate one photo-
electron. The blue and red lines show the fit adjusted to describe
the charge collection response of a given PMT, used to calibrate
the analyzed data.

The 25-centimeter PMTs are fitted into a 30-centimeter wide Digital Optical Module (DOM)
shown in Figure 2.8, together with the mainboard and an LED flasher. To withstand the enor-
mous pressure under over a kilometer of ice, DOMs are built from a pressure-resistant glass
able to resist over 400 atmospheres. An incorporated mu-metal wire cage provides magnetic
shielding.

2.4.2 IceCube Observatory Architecture

The detector consists of an array of 86 strings, each containing 60 digital optical modules
(DOMs) housing a PMT with 17-meter spacing. The strings were deployed vertically into the
ice using hot water drills. The first five years of construction were dedicated to the deployment
of the strings, which were deployed at depths ranging from 1,450 to 2,450 meters. Strings are
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Figure 2.8: The architecture of a single Digital Optical Module
in IceCube [Sto05].

spaced at regular intervals of 125 meters.

Since particles with low energy can go undetected in the spacing between strings, a more
dense detection volume was deployed at the bottom center. Under the name DeepCore, the
volume has strings at 70 meters spacing with DOMs at only 7 meter spacing. This architecture
has reduced the lower energy limit of IceCube to 10 GeV. The architecture is shown in Figure
2.9.

The surface contains 81 stations each with two PMT containing water tanks named IceTop.
Tanks were designed to detect air-shower particles and serve as a veto primarily in background
cleaning.

The DOMs are connected to the surface via a cable, which provides power and data com-
munication. Apart from background events, the proper analysis of IceCube events calls for
in-depth knowledge of the surrounding ice and its properties, including the glacial movements
and its impurity. In addition, the efficiency and operation of the DOMs at different depths have
to be taken into account. We refer to these additional parameters as systematic effects, and they
are respectively handled in this and other works by IceCube.

2.4.3 Event detection

The collected charge in each DOM is conveniently represented in 3-dimensional IceCube events,
as shown in Figure 2.10. The response of each DOM is visualized with a bubble whose size cor-
responds to the collected charge, resulting in large bubbles signaling high-energy events. Addi-
tionally, bubbles are color-coded based on the detection time, with the color spectrum ranging
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Figure 2.9: The architecture of the IceCube Neutrino Observa-
tory [Pon15]. Distinctive sections of detector volume are marked
in the schematic, including specific quantities of detector parts.
The Eiffel Tower is for comparison purposes.

from red for early signals to blue for later triggers. The direction of a particle can be simply
inferred from the color of the bubbles, with its path pointing from the red DOMs towards the
blue range of the spectrum, in track-like events. However, in cascade events, the reconstruction
of the initial particle is not straightforward to conclude, and due to the lack of their relevance in
this work, the exact mechanism is out of scope.

2.4.4 The Collaboration and its Research aims

Apart from its well-known focus on detecting high-energy neutrinos, the IceCube has a wide
range of research objectives, including Dark Matter, Cosmic Ray physics, and Glaciology. It
has also developed a real-time notification software with the goal of detecting transient sources,
with its findings made publicly available for other scientists to use [A+17c]. Its most outstanding
achievement is the constructive and competent collaboration of over 300 scientists spread in 58
institutions around the globe, all working for common scientific goals.
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Figure 2.10: Two example detected events in the IceCube Neu-
trino Observatory [AHPdlH18]. The left figure corresponds to
a track-like event, in which the particle’s direction is more read-
ily reconstructed. In this example, the particle has moved from
center-right to center-left. The right figure represents a high-
energy cascade event. The size of the red bubble points to the
event being energetic, with the timestamps moving outward in ev-
ery direction from the center. This is a typical cascade event in
which the trajectory of the starting particle is difficult to observe.

2.5 Current results

IceCube has set itself on the pinnacle of neutrino flux calculation. The energy range examined
to this date is up to 2 PeV for bin-wise methods, and unbounded for astrophysical fits.

Figure 2.11 shows the results of past efforts in describing the neutrino flux. The atmospheric
region corresponds well to previous results created with the preceding AMANDA telescope
[A+09], and to results created with previous architectures [A+15a], [A+17d]. The large water
telescope ANTARES under the Mediterranean Sea has also produced agreeing results [AM+13],
and all are complemented with low energy results from Frejus [DRB+95].

The normalization constant and the spectral index of the astrophysical flux as described
in Equation 2.1 has to be determined in separate analyses and with special care. IceCube
has produced fits in the low statistic region of high energies by availing data spanning sev-
eral years. Most recent measurements of the diffuse flux calculated both in a bin-wise and
a linear model have produced an estimate of dΦastro

dEdΩ = 1.44+0.25
−0.26( Eν

100TeV )−2.37+0.09
−0.09 [A+22]. The

high energy starting events (HESE) analysis estimated the best fit for the astrophysical flux
as dΦastro

dEdΩ = 6.37+1.46
−1.62( Eν

100TeV )−2.87+0.20
−0.19 [A+21]. Results considered as current best estimate are the

astrophysical fit at dΦastro
dEdΩ = 0.9+0.30

−0.27( Eν
100TeV )−2.13±0.13 [A+16a] and has been used in this analysis in

later steps, whenever creating assumptions in the process of optimization.
This work aims to provide bin-wise estimation in the higher energy region visible to IceCube,

and enrich the current measurements with results of unparalleled precision.
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Figure 2.11: Experimental results of neutrino flux measurement
to date. The flux is weighted with energy squared for higher
prominence of its components. Results include low energy re-
sults from the underground Frejus detector [DRB+95], previous
architectures of IceCube [A+09], [A+15a], [A+17d], and results
from the water detector ANTARES [AM+13]. Astrophysical fits
are made in IceCube assuming the flux model to be described by
Equation 2.1. HESE analysis [A+21] is depicted in pink, and the
results from the diffuse analysis on astonishing 9.5 years of data
[A+22] in orange. Experimental fit from six years [A+16a] has
been used throughout this work as the common best assumption
of the astrophysical flux parametrization.
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Chapter 3

Machine Learning methods and Statistical
tests

Machine learning is a branch of Artificial Intelligence (AI) that deals with the development of
algorithms and models that can learn and make predictions or decisions based on data. Apart
from its wide use in industry, it is an unavoidable part of preparation and analysis of data for
scientific purposes.

The primary goal of machine learning is to enable computers to learn from data, so they can
improve their performance on a particular task over time, or to be utilized for tasks too complex
to be analyzed by hand. This process involves several steps, including data collection, data
preparation, model training, and model evaluation.

Data collection involves gathering relevant data that can be used to train a machine learning
model. Data collection in the context of this work is done by processes described in Section 2.4.
The collected data amounts to vast memory, and contains noise and unnecessary information.
Data preparation involves cleaning and preprocessing the data, so it can be used for training.
The first level of data preparation is done at the South Pole, before being transferred for further
investigation. Collected data, in the form used in this thesis, is further described in Chapter 4,
while the additional preprocessing steps are given in Chapter 6.

Model training involves feeding the data to a machine learning algorithm, so it can learn
from it. The training is highly problem-specific, therefore the algorithm has to be carefully
chosen based on the needs of the scientist. Several different methods have been used in this
work, however, most steps have included the Random Forest algorithm, and it will be described
in more detail in the following section.

Model evaluation involves testing the model’s performance on a separate dataset, so we
can determine how well it can generalize to new, unseen data, and how well it can perform in
future tasks. Although there are general evaluation metrics that can be calculated for any model,
the evaluation is also problem-specific, and depending on the goal the metrics have different

20



Chapter 3. Machine Learning methods and Statistical tests

relevance.

A general separation of machine learning is to supervised and unsupervised learning. Su-
pervised learning includes algorithms in which they are trained on input data with some known
output. Depending on its type, the model adjusts parameters to find the best-describing functions
that map the input to the known result. In unfolding, the model is trained on simulated IceCube
events combined with the simulated response. In this way, the model learns which events cause
the shape of the observables given in simulation, and can generalize this to new data. The algo-
rithms surrounding the unfolding itself (e.g. preprocessing methods) in this work also belong to
supervised learning. Unsupervised learning is used in cases where the output is not known or
simulated, like pattern recognition, but it is outside the scope of this thesis.

3.1 Random Forest algorithm

A Random Forest is an ensemble learning algorithm that is used for classification and regression
tasks. In general, ensemble learning algorithms combine multiple machine learning algorithms
to improve their performance. Specifically, a Random Forest is a combination of decision trees.

3.1.1 Decision Tree

Decision trees are a popular and effective machine learning algorithm that can be used for both
classification and regression tasks. They are easy to interpret and visualize, making them a pop-
ular choice for tasks where understanding the underlying decision-making process is important.
A decision tree is a tree-like structure (hence its name) that models decisions and their possible
consequences. In a decision tree, each node represents a decision, and each branch represents
a possible outcome of that decision, as in Figure 3.1. The decision tree is constructed by recur-
sively splitting the data into subsets based on the values of the input features until a stopping
criterion is met. The stopping criterion can be based on various factors, such as the number of
data points in a subset, the depth of the tree, or the purity of the subsets. The purity of a subset
refers to the degree to which the output values in the subset are the same. The Gini index is a
measure of the impurity of a subset and is calculated as the probability of misclassifying a ran-
domly chosen element into that subset. A feature that splits the data into subsets that are more
pure with respect to the target variable will have a lower Gini index than a feature that splits the
data into subsets with high impurity.

To achieve the optimal set of decisions in a classification task, decision trees seek to reduce
entropy through the choice of splits maximizing information gain. Entropy can be understood
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Figure 3.1: Schematic representation of a decision tree, from
[IIMS20]. Each decision x is related to a limit, in the case of nu-
merical features like in this work. Any event i with a value of nn

higher than the decision x will attain a number of 1, and move to-
wards the right-hand decision. Dashed and undashed lines show
two types of decisions, x are often referred to as nodes, and boxes
show leaves at the end of the decision process.

as a measure of uncertainty, or disorder, in the data. It is given with

E(Y) = −
N∑︂

i=1

−pilog2 pi (3.1)

for an element i among N classes, and pi being the probability of randomly selecting the element
from data. An entropy of 0 relates to a pure set of identical elements, therefore higher entropy
signals higher impurity.

Information gain is a measure of the reduction in entropy achieved by introducing new infor-
mation, where this is achieved by splitting the data based on a particular feature in these types
of models. Information gain from introducing a new decision is

IG(Y |D) = E(Y) − E(Y |D) (3.2)

where E(Y |D) is the entropy of Y given the information achieved by decision D, and E(Y)
entropy of Y . Additionally, we define a gain ratio as a modification of information gain that
takes into account the number of branches created by splitting the data on a particular feature. It
prevents the algorithm from favoring features with a large number of possible values. For every
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parent (branch), the decision tree calculates the information gain by splitting on some feature
and retains decisions that enlarge it. Features in this context are the descriptive observables
measured by IceCube and described in Chapter 4.

Once the decision tree is constructed, it can be used to make predictions on new, unseen data
by traversing the tree from the root node to a leaf node that corresponds to the predicted output
value. The decision tree algorithm can also be used to prune the tree to prevent overfitting, when
the tree is too complex and fits the training data too closely, resulting in poor generalization.
Decision trees are well known to be prone to this issue and have therefore often been expanded
to a more complex model of Random Forest where the building units are decision trees.

3.1.2 Random Forest

A Random Forest is composed of multiple decision trees that are trained on different subsets of
the data and with different subsets of the input features. The decision trees in a Random Forest
are constructed using a technique called bagging. Bagging involves randomly sampling the data
with replacement to create multiple subsets of the data, and then training a decision tree on each
subset. The output value of a Random Forest is determined by averaging the output values of
the individual decision trees, with the main goal of reducing overfitting or impure decision trees
built from imbalanced datasets.

The procedure is as follows. Bagging or bootstrapping is done first, resulting in several
subsets being created. Then, random subsets of features, always slightly lower in size than the
full set, are created for each node with the aim of diversifying the decisions. Decision trees
are constructed, as described in the previous section, using the random subsets of both data and
features. Events from the data sample are passed through decisions, and separated into leaves.
Finally, the average classification of all trees is taken as the result.

Random Forests have the obvious advantage over decision trees in their reduction of overfit-
ting. By introducing randomness, they are also more robust to outliers. As the algorithm is more
complex, it can also handle complex datasets with a tremendous amount of input or variables.
However, the disadvantage to decision trees is the reduced ability of interpretation. Due to the
simplicity of trees alone, they can be interpreted by looking into the decisions they make along
the way. This becomes inconceivable with the rising intricacy of forests.

Forests are built based on several parameters chosen, some of the most important including
the number of trees, maximum depth of branches, impurity evaluation, and minimum number of
elements in a decision. In general and in this work, the Random Forests used are evaluated with
common metrics to determine the optimal set of parameters. Accuracy is the number of correct
classifications per all. However, it is not appropriate for imbalanced datasets. Precision is the
number of correct classifications per the total events of that class, which effectively scales it to
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the size of a given class in that dataset and handles imbalance, and it is given with

P =
N∑︂

i=1

T Pi

T Pi + FPi
(3.3)

where T P and FP are true positives and false positives. Furthermore, recall is given with

R =
N∑︂

i=1

T Pi

T Pi + FNi
(3.4)

with FN being false negatives, and is also robust to imbalance. Finally, we can define the f-
metric

F =
2PR

P + R
(3.5)

as the harmonic mean of precision and recall, and use it to evaluate the performance of different
forests.

3.2 Goodness of fit

Depending on the problem of interest, the quality of reconstruction can be evaluated with several
tests. It is important to use tests appropriate for discrete distributions, such as the unfolded flux
resulting from this analysis.

A goodness-of-fit test is a statistical procedure used to assess whether a sample of data
fits a particular theoretical probability distribution. The test compares the observed data to the
expected frequencies or probabilities predicted by the theoretical distribution. In the final stage
of this work, the observed data is compared to the current theoretical model.

However, the goodness-of-fit is often evaluated during the optimization process. Known
distributions, simulated as described in Chapter 4, are passed through the unfolding process,
and the outcome is compared to true values by a statistical test. This ensures choosing optimal
parameters for the analysis chain by seeking the statistically most significant parameter set.

The most commonly used goodness-of-fit test is the Chi-square test. The test calculates
the Chi-square statistic by comparing the observed frequencies in different categories with the
expected frequencies predicted by the theoretical distribution. The larger the discrepancy be-
tween observed and expected values, the larger the Chi-square statistic will be. If the calculated
Chi-square value exceeds a critical value determined by the desired level of significance and
degrees of freedom, it indicates that the observed data significantly deviates from the expected
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distribution. The Chi-square statistic [Wue11] of a set of N observations O is given with

χ2 =

N∑︂
i=1

(Oi − Ei)2

σ2
i

(3.6)

where E are the expected values, and σ the variance. The square root corresponds to the stan-
dard regression error. In a generalized case, the variance is substituted with expectations E. To
compare the statistics among multiple observations, degrees of freedom have to be accounted
for. Therefore, the reduced Chi-square is introduced as

χ2
r =
χ2

ν
(3.7)

where ν = (n − 1) · (m − 1) is given from the dimensions of observations. The degrees of
freedom for this work are determined by the number of bins to be ν = 13. Dimension of the
target is constant, and therefore testing different unfolded fluxes compared to their true value is
straightforward using either Chi-square or reduced Chi-square.

Given some null hypothesis being tested against the alternative, the p-value measures the
strength of evidence against the null assumption. It is the probability of obtaining the given Chi-
square or larger, under this assumption. It is important to note that the p-value does not provide
the probability for the observed effect (a flux of a certain shape, in the case of this work), but
rather the probability of the hypothesis being true or false. It is often accompanied by a chosen
significance level α, which is the limit value of probability to reject the assumption. A p-value
smaller than the significance

pχ < α (3.8)

points to strong evidence of the null hypothesis being false. However, in the case of multiple
hypotheses, like in the case of testing different parameter sets in this work, it is sufficient to
compare p-values of different sets under the same assumptions.

Between a set of observations and expected values, the higher the p-value, and the lower
the Chi-square statistic, the agreement between the two is stronger. In the extreme case of
observations fully aligning with the theoretical predictions, the p-value would be 1.

There are many common and simple measures to assess the difference between two sets
of discrete values, but they rarely consider the statistical variance of observations which is a
crucial part of statistical testing. These measures are useful in quick checking of alignments
between data, especially histogrammed, and are not restricted to the comparison of observations
to expected values or theoretical models but have a vast application in the whole process given
here. For a set of size N, we can define the Manhattan distance for evaluating the added closest
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distances between two histograms,

DM =

N∑︂
i=1

|xi − yi| (3.9)

for comparing sets x and y. The Chebyshev distance gives the maximum difference in any
direction between two vectors

DCh = maxi(|xi − yi|). (3.10)

and in this work, it has been scaled with the vector xi to express the distance as a ratio of the
expected value.

The lower the evaluated distance among a set of histograms, the better the alignment. The
previously given metrics do not take into consideration the population sizes inside bins i and
can lead to large distances being driven by small uncertainties in vastly populated bins. A more
proficient measure is the Wasserstein distance adjusted to discrete problems, in which case it is
referred to as Earth’s Mover Distance (EMD). The EMD is a measure of work needed to equalize
two distributions [Ngu11] and is given with the minimal amount of work needed to match sets
x and y normalized by the value of the lower input

DEMD =
min(Work(F, x, y))

min(x, y)
(3.11)

where work is the distance covered by any possible flow F,

Work(F, x, y) =
N∑︂

i=1

N∑︂
j=1

fi j · di j (3.12)

di j being the starting distance between points xi and y j and fi j the weight transferred from larger
to lower input during their equalization. Although seemingly complex, EMD is readily available
for usage in Python packages and is a strong tool for evaluating the differences in imbalanced
datasets.
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Simulation and Observations

A mandatory item in understanding any detector is a proper simulation of events and the re-
sponse they trigger. In a Monte Carlo simulation, a large number of random samples or itera-
tions are generated to simulate the uncertain elements of a problem. Each sample represents a
possible outcome, and the simulation calculates the results based on these samples. By repeating
the process many times, the simulation generates a distribution of possible outcomes imitating
some given probability distribution of the problem of interest.

4.1 Air Shower modelling

CORSIKA (COsmic Ray SImulations for KAscade) is a Monte Carlo simulation generating
air showers initiated by interactions of cosmic rays [HKC+98]. CORSIKA propagates primary
particles up to the atmosphere considering the probability distributions of their interactions and
decay, described in Section 2.2.1. Simulations consider many possible influences on particles’
trajectories and their usage is adjustable, some of which include the impact of Eath’s magnetic
field, Moliere scattering, Coulomb scattering, and Ionization energy loss in CORSIKA. Due
to propagation and energy loss, information on all particles’ positions and energies have to be
constantly updated. For this work, the propagation of pions and kaons, and consecutively muons,
is relevant, while resulting electromagnetic showers are of less importance. However, simulation
of light from all interactions is necessary for a successful determination of background.

The hadronic interactions can be described by many different interaction models [DLRF17],
including VENUS (Very Energetic NUclear Scattering), QGSJET (Quark Gluon String model
with JETs), DPMJET (Dual Parton Model with JETs) and SYBILL. SYBILL [REF+20] has
been given an extension with consideration of charm interactions, and therefore includes prompt
particles. The newest version is referred to as SYBILL2.3c.

In SYBILL, when two hadrons collide, they break apart into smaller components called
quarks and diquarks, that form color triplets or anti-triplets. The differently colored components
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of the hadrons combine to form two colored strings, which then undergo fragmentation. In
collisions between hadrons and nuclei, the number of target nucleons determines the number
of strings, with each target splitting into two components. Secondary particles produced by
SIBYLL decay into known particles, but only certain nucleons, antinucleons, charged pions,
and all types of kaons can be treated as projectiles. Other particles are tracked but only undergo
decay without further interaction. This model is especially relevant as it is considered to be the
current most appropriate model in describing interactions leading to neutrinos and has been used
to construct the simulation used for training in this work.

The current standard primary flux is modeled based on fits combined with the theoretical
Hillas model, called the Hillas-Gaisser primary model with the newest version being referred
to as H4a [Gai12]. It was developed separately for protons and neutrons with special attention
to muon ratios and pions and kaons production, relevant for the resulting muon neutrino flux.
In this work, it was tested alongside other models including the previous version H3a [Gai12],
Zatsepin-Sokolskaya model [ZS06], and Gaisser-Stanev-Tilav [GST13], visualized in Figure
4.1.

Solving cascade equations of air showers is conveniently implemented in MCEq (Matrix
Cascade Equations) [FEG+15]. This algorithm numerically solves equations for lepton fluxes
and gives flux probabilities in discrete energy bins for various scenarios. Aside from the primary
model and the hadronic interaction model, it considers the position on Earth and the time of year,
due to differences in densities and temperatures of the atmosphere. Most importantly, the lepton
flux density is constructed depending on the zenith angle, which is principally important in the
making of this work, as described in Section 2.2.2. Different models at different zenith angles
are shown in Figure 4.2. The densities can be applied to any simulation of neutrinos propagated
in IceCube for the desired model. Throughout this work, a combination of primary model H4a
and interaction model SYBILL2.3c at the South pole in different zenith angles has been used to
reweight the densities of simulated neutrinos.

After the simulation of the primary particles in the air shower and the construction of their
respective fluxes, the resulting neutrinos have to be propagated through ice and bedrock.

4.2 Neutrino propagation

In the same manner as air shower simulations, neutrinos are propagated by randomly sampling
known distributions regarding their interactions. Neutrino propagation is clearly experiment-
dependent, as neutrinos are propagated through Earth and ice corresponding to the IceCube ex-
periment. These are called nugen and can also be tweaked depending on many parameters. After
an interaction has been created following everything described in Section 2.2, the response of
IceCube DOMs to this particular particle is generated. A reconstruction of the event like the one
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Figure 4.1: Cosmic ray fluxes of nucleons in different primary
models. Label are as follows, GST 3-gen and GST 4-gen for 3-
generational and 4-generational Gaisser-Stanev-Tilav [GST13],
H3a, H4a, cH3a and cH4a for Hillas-Gaisser variations [Gai12],
default and pamela for Zatsepin-Sokolskaya [ZS06], GSF for
Spline fits [DEF+17], poly-gonato for PolyGonato [Hö03] and
GH for Gaisser-Honda combination. Further explanations are
available in the cosmic ray documentation [Doc]. The solid red
line shows the primary model used in this work.

shown in Figure 2.10 is developed from the properties of the simulated neutrino, as if the event
has been truly observed. The events are described in hundreds of features relating to geometry,
energy, and direction, and stored with information about preceding events causing its creation,
including the primary particles created with air shower simulations. The detector response used
in this work is a nugen set [GK05] from 2016, constructed with the IC86 architecture, with a to-
tal of 9698407 events. Neutrinos are simulated with a E−2 spectrum, which does not correspond
to the expected flux described in Section 2.2.1. However, the events are reweighted to proper
flux using MCEq densities. The angular coverage of this dataset is 0◦ to 180◦, and neutrinos are
simulated with energies of 100 GeV up to 100 PeV. The absorption and scattering coefficients
are 0, and DOM efficiency is 100% in this dataset, which corresponds to baseline values. These
parameters are closely described in the following section.
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Figure 4.2: Angular dependence of the neutrino flux under dif-
ferent assumptions. The figure shows the same dependency as
Figure 2.4 with different primary and hadronic models. The top
figure shows the H4a primary model [Gai12] and the bottom the
Zatsepin-Sokolskaya [ZS06]. Colored lines show different zenith
bands. No significant differences are observed when varying pri-
mary models, as their flux is less influential to the resulting angu-
lar neutrino distribution. Different interaction models show slight
influence in varying zenith bands, but the variations are deemed
insignificant due to their size being lower than the statistical un-
certainty of flux unfolding.

4.2.1 Systematic uncertainties

There are underlying differences in the shape and clarity of ice throughout the kilometer cube
volume in IceCube. Additionally, the thousands of DOMs cannot be expected to perform all
at the same level. To mitigate the effects of these differences, an additional error is added to
the unfolded flux (or any other measurement done). These are jointly referred to as systematic
uncertainties.
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When exposed to photons, DOMs exhibit a linear accumulation of charge until they reach
saturation. Therefore, the efficiency can be modeled with a linear function up to a certain energy.
Simulations are used to calibrate their efficiency and are made so that the response of DOMs
in simulations matches the one from real measured events. Although DOM efficiency closely
relates to the quantum efficiency of the encompassed PMT, it is not the same, and the efficiency
is an IceCube-related measure for scaling Monte Carlo to resemble the environment in ice.
Simulations are made with varied DOM efficiency, and there are sets available of 90%, 95%,
100%, 105%, and 110%. Due to PMTs having a lower limit of detected photons for triggering
a new event, different efficiencies can impact the number of events that are measured in the
volume.

Another set of important systematic uncertainties is the ice absorption and ice scattering
coefficients. As in the case of DOM efficiency, ice absorption doesn’t have a one-to-one corre-
spondence to the known absorption coefficient, but it is rather a scaling value for simulations.
Different ice coefficients are especially relevant since different layers of ice exhibit different
properties, some with lower clarity due to dustiness or freezing speed. Both coefficients are
varied in values of 95%, 100%, and 105%.

The last varied parameter is the hole ice, which describes the difference between the old
glacial ice and the refrozen ice made of water resulting from IceCube drilling.

To quantify the effects of these systematics, Monte Carlo simulations with different values
are generated. Then, each of the sets is used as a training sample in unfolding. Resulting un-
folded fluxes will imminently have slight differences in their shape due to the algorithm learning
to unfold particles from a different environment in ice. When fluxes are finally unfolded by
using different systematic sets, they are compared, and the absolute relative difference in flux
per bin is taken as the systematic error. The final flux is unfolded using the already mentioned
baseline values, but an additional error bar in the size of the attained relative difference is added,
which covers the potential variance that can arise from ice and DOM properties. Details on the
specific values and the resulting influence are shown in Appendix A.5.

4.3 Observations

As described in Section 2.2.3, a dataset consisting of through-going muon tracks is constructed.
For reasons already stated, the main component of observations in IceCube, atmospheric muons,
has to be cleared out.

Track-like events exhibit very poor energy resolution, as it is not known how much energy
has a muon already deposited before reaching IceCube. However, the directional resolution is
great, and it is important both for sample cleaning in this step, and later for angular studies.
This is mainly due to the very small angle between the primary neutrino and the observed muon,
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resulting from the relativistic boost of high-energy neutrinos [Sch13a].

In the sample, dominating events are atmospheric muons. However, at angles of over 85◦ in
zenith, the muons have to cross kilometers of rock or ice and are therefore mainly absorbed. Sim-
ply looking at high enough zenith angles clears the dataset of the dominating background. This
is, however, not sufficient since several down-going muon tracks can be falsely reconstructed as
up-going in the process of event reconstruction. Several proficient steps of event selection need
to be done to properly separate the background and enable background-free unfolding.

Event selection is a tedious task and is highly analysis-dependent. Events are selected in a
series of steps called levels. For collected light to be registered as an event, at least eight DOMs
have to be simultaneously triggered in a time window of less than five microseconds. If this
limit is passed, hits from four microseconds before and six after are stored with the same event.
This constitutes a level 1 event that is further processed as described in the following manner.

4.3.1 Level 2 processing

The hits are translated into waveforms, and the first angular reconstructions start already at the
South Pole, to lower the amount of data to be transferred by a limited bandwidth. This processing
is low-level and mostly focuses on the preparation of information transfer.

4.3.2 Level 3 processing

In this step, the sky is divided into two large regions. The Northern Sky is everything above the
zenith angle of 85◦ degrees, and the Southern Sky is everything below. Analyses often carry the
name corresponding to the sky part of interest. As stated, atmospheric muons cannot traverse
the Earth at these angles, but there still exists a substantial background due to these events being
misreconstructed into the region of the Northern Sky. Therefore, the level 3 processing focuses
on handling faulty directional reconstruction.

Since reconstruction algorithms assume a single primary particle causing the track-like sig-
natures (or cascade-like in other analyses), a filter by the name HiveSplitter is applied and sep-
arates events cleaning out ones with a higher possibility of multiple primaries. The boolean
logic

(((
ldir

180m
)2 + (

ndir

10
)2) AND ndir > 6) OR

αr

ndo f
< 9 OR αr · ndo f > 7.5 (4.1)

corresponds to level 3. Here, it is mandated that the length of track from first to last triggered
DOM ldir or the number of DOMs triggered by at least one photon ndir is high, or that the reduced
likelihood αr associated with some degrees of freedom ndo f is larger than a certain limit. This cut
solely reduced the domination of atmospheric muons to neutrino-created muons to three orders
of magnitude from the starting ten-fold, or higher, ratio.
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Some misreconstructed events remain in the sample, and a higher-level cleaning process is
needed.

4.3.3 Level 4 processing

Selections done in level 4 are always highly adapted to the goal of the analysis, and the steps
presented here are the current approach to event selection for analyses looking at the diffuse sky,
especially in the field of flux reconstruction [Rä17, A+22].

To further separate muon events originating from astrophysical neutrinos with high preci-
sion, the decision tree algorithm, described in Section 3.1.1, is employed. Events that have
been simulated with CORSIKA are labeled as background, and simulated neutrino events from
nugen are labeled as signal. The signal includes exclusively charged current events with a re-
construction error lower than five degrees, to further mitigate the misreconstruction effects, and
are weighted to an E−2 spectrum to avoid bias of the denser populated low energy region. The
sample is split into ten mutually exclusive parts, and are used for training and testing in rotating
sets.

With labeled data, the decision tree is trained to produce the probability of events belonging
to the signal based on several features, of which the most important are the already introduced
ldir, ndir, αr, and additional topological features. The resulting score distribution is shown in
Figure 4.3.

Only events with a signal probability of higher than 90% are kept. Additional hard cuts are
introduced, keeping specifically events with

nDOM > 12, ndir > 6, ldir > 200m, lempty < 400m, cosθ2geo < 0.2 (4.2)

where, in addition to already introduced features, lempty is the largest distance between hit posi-
tions at the track, and θgeo is the angle between the track and a plane that geometrically separates
the track into parts with equal ndir.

A possibility of misclassifying cascade-like events as high-energy neutrino-induced events
remains, due to high energy deposited and their poor angular resolution, and another decision
tree is trained with the goal of rejecting neutral current events.

The tree is trained in a similar manner to the one previously described, however, the back-
ground sample from CORSIKA now consists of cascade events induced by electron neutrinos
interacting with nucleons. This model performs substantially worse, and the tree is often not able
to distinguish cascade events, as seen in Figure 4.4. However, the cascade rejection is a useful
additional cleaning step and has been shown to boost the performance of the overall selection
process. All events with a cascade score higher than 50% are removed from the sample.

To determine the competence of a neutrino sample in reconstructing the flux, the most rele-
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Figure 4.3: Score distribution of the decision tree trained to sep-
arate astrophysical neutrino induced events from muon neutrinos
[Rä17]. The score corresponds to probability of the decision tree
classifying a single event as the signal. The atmospheric muons
depicted in green have a visibly descending distribution towards
high signal scores. Events of interest are depicted in purple, and
have a steadily rising distribution of scores between values of
16% and 100%.

vant measure is the purity of the sample

purity =
nν

nν + nµ
(4.3)

which gives an approximate expectation of the contribution of neutrino-induced events to the
full set of events used in the analysis. Processing event samples created in IceCube up to level
4 by previously described methods results in a purity of 99.87%, meaning that any set will have
at most a 0.13% contribution of atmospheric muons, and is a milestone value in event selection.
Due to their nature, the atmospheric muon background would be most severe at low energies
and around the horizon.
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Figure 4.4: Score distribution of the decision tree trained to sepa-
rate cascade-like from track-like neutrino induced events [Rä17].
The score corresponds to the probability of the decision tree clas-
sifying a single event as a signal. The cascades depicted in yellow
accumulate at low scores, pointing to a deficient performance of
classification.

4.3.4 Level 5 processing

Level 5 is the final level selection, and is adjusted to the specific analysis done, like the one
presented in this work. Level 5 can be considered the further selection of events in the energy
range of interest, which is from 500 GeV up to 4 PeV. A slightly higher than conventional low
energy limit is used to avoid the problematic region of low energy events on the horizon.

Furthermore, the sample is used in full, and also split into angular regions, to explore the
dependence described in Section 2.2.2. In this work, a total of eleven years of data is used,
starting in 2011 and ending in 2021, and processed to the fifth level. Data was taken with the
IC86 configuration, meaning all of the 86 strings holding DOMs in IceCube were active. The
total lifetime is 341132384.3 seconds or 10 years, 298 days, and 7 hours. The total number of
events expected in this time frame is approximately 850000, and a subset of 10% of data called
Burnsample has been used to develop several tests. The event rate after full selection is 1.5
mHz.

The energy resolution σE of reconstructed events is estimated at 0.3 for 100 TeV energies.
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The angular resolution of given energy is 0.25◦ degrees, a rather remarkable result for an event
set spanning a total of 95◦ degrees. The active detection time in IceCube is separated into time
windows called Runs usually lasting from several minutes to eight hours, each of which contains
separate Events.
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Unfolding

In IceCube and other experiments, the neutrino energy is not measured directly but has to be
determined from related measures. The many different features of the reconstructed event are
related to the produced muon energy, and consecutively to the primary neutrino energy.

Unfolding, or deconvolution, is the process of determining the function in inverse problems
[Spa13]. The sought-after quantity x, in this case the neutrino energy, is smeared with the
detector response matrix A, which represents all the stochastic processes happening during the
detection. The measured observables are given with y.

g(y) =
∫︂

A(x, y) · f (x)dx + b(y) (5.1)

When these functions are discretized, the problem translates to a linear model of the form

g⃗ = Am,n · f⃗ (5.2)

in the special cases where the background b(y) can be neglected. Here, the background in the
dataset has been handled in a multi-step process described in Chapter 4.

The migration function A, or detector response, is a matrix of size m, n where m is the dimen-
sion of g and n is the number of bins in the target space f . It indicates the conditional probability
to measure that a given true quantity x is measured with y. A has to map the complete detection
process, from the propagation and interactions of primary neutrinos and emerged leptons to the
whole detector response described in measured features.

The condition number of a matrix is a measure of how sensitive the solution of a linear
system of equations is to small changes in the coefficients of the system [Din17]. In other
words, the condition number of a matrix A measures how much the solution to a general case
Ax = y changes when the entries of A and y are perturbed by small amounts. It is defined as the
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product of the norm of the matrix and the norm of its inverse:

cond(A) = ∥A∥
⃦⃦⃦
A−1

⃦⃦⃦
(5.3)

where ||.|| is any matrix norm, such as the Euclidean norm or the maximum absolute row sum
norm. We refer to problems containing a matrix with a high condition number as ill-conditioned.
This leads to numerical instability and inaccurate results when solving the system of equations
using numerical methods. Conversely, a matrix with a low condition number is well-conditioned
and small perturbations in the input will not significantly affect the output. Therefore, the con-
dition of the matrix is proportional to the uncertainties arising in the solution.

In unfolding, the matrix is ordinarily ill-conditioned due to the size and complexity of the
input. The problem cannot be solved by simply looking for the inverse matrix, as this usually
results in values with large errors. The migration matrix can be determined empirically from
the simulation (Monte Carlo) set and subsequently divided by the energy density function of
the training dataset to make it independent of the training energy distribution. The searched
spectrum is then estimated with the Maximum likelihood estimation where all bins are assumed
Poissonian. The likelihood for each bin for some expected value λ is given with

α(g⃗| f⃗ ) =
m∏︂

u=1

λ
gu
u

gu!
· exp(−λu) (5.4)

where we defined the expectancy for λ in Equation 5.2, leading to

α(g⃗| f⃗ ) =
m∏︂

u=1

(A f⃗ )gu

gu!
· exp(−(A f⃗ )u) (5.5)

For simplicity, the logarithm of the likelihood function is searched for. This leads to an alterna-
tive form of the sought likelihood

α(g⃗| f⃗ ) =
m∑︂

u=1

(guln(A f⃗ )u − (A f⃗ )u) − ln(gu!)) (5.6)

in which the constant term ln(gu!) can be neglected. Due to the mentioned ill-conditioning of
the matrix, the possibility of high variance has to be handled, therefore a regularization factor
R( f⃗ ) has to be added to the expression.

5.1 Regularization

Regularization helps to stabilize the solution by adding a penalty term to the objective function,
which prevents the solution from being too complex or overfitting to the data. Tikhonov regular-
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ization [Kre89] is a specific form of regularization that is commonly used in inverse problems,
where the goal is to reconstruct an unknown function from noisy or incomplete data. Tikhonov
regularization, also known as Ridge Regression or L2 regularization, was developed by Andrey
Tikhonov in the 1940s as a way to solve ill-posed problems in geophysics, however, its use
has widened and in this work, it is adapted to the flux reconstruction problem. The basic idea
behind Tikhonov regularization is to add a penalty term to the objective function that measures
the complexity of the solution. The penalty term is a function of the parameters of the solution
and is designed to favor solutions that are smooth or have small magnitudes. This encourages
the solution to be as simple as possible, while still fitting the data reasonably well. Tikhonov
regularization has several advantages over other regularization methods. First, it is simple and
easy to implement. Second, it has a closed-form solution that can be computed efficiently using
standard linear algebra routines. Third, it has a well-defined regularization parameter that can
be tuned using cross-validation or other methods.

In the particular case of flux unfolding, regularization can be applied with the assumption of
a smooth solution since the neutrino flux is expected to be a power-law. Although the power-
law has expected slope changes, as explained in Section 2.2.1, the flux it describes should not
exhibit any prominent breaks. This is a solid assumption that can be introduced to handling the
solution and is the only limit imposed to control the bias that researchers’ assumptions create in
the results.

In smooth functions, a small second derivative is expected, therefore, a normal distribution
centered around 0 is introduced. This way, the likelihood becomes a prior with expectation zero
for the second derivative of the logarithm of the solution which favors power laws. For the co-
variance of this expression, a diagonal matrix with some regularization strength τ is introduced.
This regularization strength can be adjusted and must be chosen so that unphysical solutions are
suppressed without significant distortion of the results. Adding the normal distribution, Equation
5.6 expands to

α(g⃗| f⃗ ) =
m∑︂

u=1

(guln(A f⃗ )u − (A f⃗ )u)) −
1
2

[︂
(C f⃗ )T Diag(I · τ)(C f⃗ )

]︂
(5.7)

with C as the Thikonov matrix.

Certain ranges, and therefore bins, of the target distribution f can be empty. This would
lead to a logarithm of zero in the given expression, which is not defined. For this reason, a
small offset d is added to the event spectrum. Both the regularization strength and the offset are
optimized through an iterative method explained in Chapter 6. Adding the offset, we arrive at
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the full expression for the likelihood

α(g⃗| f⃗ ) =
m∑︂

u=1

(guln(A f⃗ )u − (A f⃗ )u)) −
1
2

[︂
(C f⃗ + d⃗)T Diag(I · τ)(C f⃗ + d⃗)

]︂
(5.8)

that is to be maximized.

No analytical solution can be found to maximize the likelihood for f⃗ . To find the event
spectrum f⃗ with a maximum probability to be causing the measured observables g⃗ in IceCube,
sampling methods are deployed. Due to the complexity of the problem, a detailed sampling
method has to be found.

5.2 MCMC sampling

Monte Carlo Markov Chain (MCMC) sampling is a computational technique used to gener-
ate samples from complex probability distributions that are difficult to directly sample from
[vRCB16]. MCMC works by constructing a Markov chain whose stationary distribution is the
target distribution that we want to sample from. The chain is constructed in such a way that it
satisfies the detailed balance condition, which ensures that the chain converges to the stationary
distribution regardless of the starting point.

The basic idea is to generate a sequence of random samples from the distribution of interest.
At each step, the current state of the Markov chain is used to probabilistically determine the
next state. This is done by proposing a new state based on the current state, and then accepting
or rejecting the proposal based on a predefined probability. Here, this measure is the likeli-
hood α defined with Equation 5.8 multiplied with the function’s prior, as taken from Bayesian
probability:

pMCMC
n ( f⃗ |g⃗) ∝ αn(g⃗| f⃗ )p( f⃗ ) (5.9)

Each walker compares the likelihood of the proposed state to the likelihood of the current state
and uses a transition probability to balance the trade-off between exploring the state space and
converging to the target distribution. The resulting sequence of states generated by the Markov
chain converges to the target distribution as the number of samples approaches infinity. The
convergence rate depends on the mixing rate of the chain, which is determined by the proposal
distribution used to generate new states, the number of samples, and the number of walkers
employed.

Flux is expressed in terms of energy per unit area, per unit time, and per unit solid angle.
Finally, obtaining a flux from some event spectrum f is by

Φνmu =
f

∆E · 2π∆cosθ · tl · Ae f f
(5.10)
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for considering the angular band ∆cosθ = cosθmin − cosθmax and the energy range ∆E in some
lifetime tl. The flux is commonly measured in GeV−1 · s−1 · sr−1 · cm−2. Oftentimes, the flux is
weighted with energy squared to visually amplify the differences in the slope of the components,
and is in this case measured in GeV · s−1 · sr−1 · cm−2.

The effective area can be understood as the size of the detector that has the perfect efficiency
in detecting neutrinos. It can be simply inferred from the ratio of detected neutrinos to the true
number and is done also from the neutrino propagation simulations. Effective area is

Ae f f =
nobs

nsim
· (ρNA) · σ(Eν) (5.11)

with σ(Eν) as the neutrino cross-section and NA the nucleon density, and is energy and angle-
dependent. nobs is the number of neutrinos detected in the total of nsim, not to be confused with
nexp that measures the amount of experimental events seen in real observations.

5.3 Unfolding in the context of flux reconstruction

One of the most desired features of any method aiming at reconstructing the neutrino flux is
being unbiased. The main advantage of this unfolding method is that it uses training data to
build the response matrix, but it does not depend on the weighting of the input. This means that
the method is less sensitive to the uncertainties in the input data, which can lead to biases in
other methods. Furthermore, being independent of flux assumption is preferred with the goal of
getting the true reconstruction, even in the case of the neutrino flux being modeled or assumed
wrong.

This unfolding method also does not depend on any assumed shape of the model, such as
power-law or broken power-law, since the results are bin-wise points not described by a single
function. This makes the method more robust and applicable in all cases. Methods that do
assume a shape, can ever only fit functions to that particular shape, while in this case the results
are self-governing.

However, unfolding methods also have some limitations. One of the main challenges is the
need for a well-defined detector response. This is achieved by enabling a tremendous amount
of data for the method to learn the behavior of the stochastic processes. Another limitation is
the fine-tuning of regularization parameters, but nonetheless, given enough testing on varied
samples, this limitation is surpassed.

5.4 Comparison to other methods

The early predecessor of this technique is the RUN (Regularized UNfolding) program, widely
used since its development with the aim of unfolding neutrino cross-sections [Blo02]. RUN
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relies on the same concept of discretizing the response from Equation 5.1 to a linear model from
Equation 5.2, and optimizing the strength of introduced Thikonov regularization through a sin-
gle parameter τ. It is also a model-independent bin-wise method, but with a limit of three for the
number of observables used. Based on its workings, an advanced program was developed and
published as TRUEE (Time-dependent Regularized Unfolding for Economics and Engineering

problems), introducing automated observable selection, parameter optimization, and the deter-
mination of input bias [Mil12]. It was used in IceCube for model-independent reconstructions
producing quality results [A+15b, Saa14], up to the introduction of here used, advanced, method.

DSEA+ (Dortmund Spectrum Estimation Algorithm) is an unfolding method [RVW+19],
unlike ones introduced before. It works by translating the task into a multinomial classification
problem, in which it assigns a probability to each event of the sample. This enables DSEA+

to retain information event-wise, a feature unavailable to unfolding methods building a Hessian
matrix. The probability of specific events can be constructed using common machine learning
libraries, giving this algorithm a special edge due to its simplicity of use. It can be considered an
expansion to the familiar Bayesian Unfolding [D’A10], with several limitations resolved. Dur-
ing the development of this work, DSEA+ was extensively tested and compared to the unfolding
method used here. Due to a different formulation of the problem solution, it can be effectively
used in problems with well-known models, or in studying variations [H+21].

DSEA+ is mathematically similar to bin-wise likelihood unfolding [Bun18], often used in
IceCube for flux reconstruction. Most commonly, IceCube has used model-dependent likelihood
methods, in which the power-law assumption is fitted to the observed data. As mentioned, these
methods have a compelling limitation from the introduced bias.

However, using likelihood, different flux models can be accounted for and compared. Uti-
lizing a power-law assumed likelihood, a flux measurement with outstanding precision was re-
cently published [A+22].

In addition to the mentioned advantages of here used method in unfolding, other aspects
of the analysis chain have been improved, with almost all preparatory and surrounding steps
optimized and evaluated using machine learning methods described in Chapter 3.
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Analysis chain

This chapter presents all the steps done in the analysis and the intermediate results achieved.
First, all the data has to be properly prepared. Following is the transformation of data, includ-
ing feature selection and mandatory preprocessing. Then, bias tests are presented along with
optimization of parameters entering unfolding. Finally, the algorithm is applied and results are
shown for several different cases studied here.

6.1 Data preparation

To construct the training sample, the Monte Carlo simulation described in Chapter 4.2 is col-
lected. As a result of neutrino propagation, they contain track-like events from CC interactions.
The so-called f rames of data in IceCube files contain 1346 columns called features which de-
scribe each event. Some reconstruction algorithms repeatedly fail for specific simulations, there-
fore the first step is always handling missing information. Cleaning the frame from empty fea-
tures reduces its size to 1263. Likewise to empty features, features with constant values through
all events do not carry any information and their removal results in a frame of size 965.

When two or more features are highly correlated, they often provide redundant or repetitive
information to the learning algorithm, which can lead to several issues. This can increase the
computational complexity of the model and slow down training and inference processes, leading
to longer processing times and higher resource requirements. Highly correlated features can in-
troduce instability in the following manner; if the algorithm learns the strong linear relationship
among these features, a slight change or noise in one of them can lead to the model’s assump-
tion of the variance in other features, too. Similarly, this can lead to undesired overfitting, by
overtraining the model to the same information through several features seemingly of the same
importance. The migration matrix A described in Chapter 5 is preferred to be of smaller dimen-
sions, to reduce its condition number, which is additionally handled by regularization parameters
described in Section 5.1. Therefore, to achieve stability and reduce dimensionality while saving
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relevant information, highly correlated features are removed from the set. However, handling
correlation is a tedious task and it will be done in two different ways. At this early stage of data
preparation, a simple Pearson cut [FPP07] is applied, to reduce the dataset to a practical size.
From a pair of any two variables x and y, the Pearson correlation coefficient is

rxy =

∑︁n
i=1(xi − x̄)(yi − ȳ)√︁∑︁n

i=1(xi − x̄)2 ∑︁n
i=1(yi − ȳ)2

(6.1)

and attains a value between -1 and 1, depending on the strength of the relationship. In any pair
with |rxy| > 0.95, one of the features is removed. A cut of 0.95 is rather conservative, however,
correlation will be dealt with in depth later. Applying this cut to the full frame reduces its size to
only 272, which is not surprising knowing that many reconstruction algorithms aim to calculate
the same features of an event.

Simulated events do not have any timestamps, as these events do not actually hold place.
There are several features related to simulation production, which do not exist in frames of
real observations. All the events of one simulation are also marked as one Run, information
completely redundant for unfolding. Every feature of this nature is removed, and the final size
of the dataset in this step is 247 features with 9698407 events.

Figure 6.1: Expected event spectrum and its components. The
conventional and prompt components are simulated with MCEq
[FEG+15], while the astrophysical fit is taken from experimental
results [A+16a]. Reweighting is applied to the whole Monte Carlo
simulation, spanning from 100 GeV to 100 PeV in energy.

As mentioned, the simulations do not follow the shape of a realistic flux but are rather de-
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Model Type
Expected number

of events

SYBILL2.3c Prompt 1912.37

SYBILL2.3c Conventional 653743.99

SYBILL2.3c Atmospheric 655660.77

HESE Astrophysical 8475.36

Apj833 Astrophysical 1147.25

SYBILL2.3c + Apj833 Total 656808.02

Table 6.1: Expected total event spectrum for the lifetime used
in this analysis. Atmospheric components are simulated with
MCEq, assuming a primary model H4a [Gai12] and interaction
model SYBILL2.3c [REF+20]. The astrophysical event spectrum
is taken from experimental results in IceCube, including the High
Energy Starting Events analysis [A+21] and the six-year astro-
physical fit [A+16a].

scribed by a single power law. Reweighting assigns a rate in seconds for each type of event
so that they cumulatively give a flux described with density profiles given with MCEq. Here,
the software is applied to produce a flux from a SYBILL interaction model with Hillas Gaisser
primaries, more closely explained in Section 4.1.

With weights calculated, it is simple to arrive at an expected number of events during some
time, since weights represent rates. From

E(nexp) =
nsim∑︂
i=1

witl (6.2)

the expected number of events in experimental data nexp during lifetime tl of almost eleven years
is 656808.02, of which 655660.77 is of atmospheric origin and 1147.25 of astrophysical, as seen
in Table 6.1 and visualized in Figure 6.1. IceCube has in fact observed a total of over 850000
events pointing to an underestimation of current atmospheric models, but nonetheless, a ratio of
atmospheric to astrophysical events can be expected around 571.

Poisson sampling is a method used to generate a sample of data based on event rates that fol-
low a Poisson distribution. The Poisson distribution is commonly used to model the occurrence
of rare events over a fixed interval of time. This is utilized to create pseudosamples, random
sets that imitate the nature of the underlying distribution. Having varying sets from the same
expected flux allows us to test consistencies of different assumptions while preserving the sta-
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tistical properties of the underlying Poisson distribution, such as the average event rate and the
random occurrence of events. Here, the weight represents the average number of events occur-
ring during the given lifetime. A random number generator is used to determine the occurrence
or non-occurrence of each event within the sampling interval. Pseudosamples with different
random seeds following the same underlying distributions are visualized in Figure 6.2. As per
the definition, pseudosamples from the same underlying distributions should create differences
in the unfolded flux at the highest to the level of statistical error. The tests in this work were
mainly performed using a pseudosample, which is the best possible approximation of what we
should see in later unfolding, to avail the possibility of biasing oneself by inspecting the true
measurement before developing the whole analysis chain.

Figure 6.2: Creation of three pseudosamples to be used in test-
ing and optimization during the analysis. The pseudosamples are
based on the underlying distribution in red given by the atmo-
spheric and astrophysical assumptions described in this and Sec-
tion 4.1, with each event sampled in a randomized process. Due
to higher populated low energy region, pseudosamples highly im-
itate the underlying distribution, however, the low statistic high
energy region produces less or none events in pseudosamples, as
expected.

Based on event rates, the sky is divided into five regions to attain approximately the same
amount of statistics in each angular bin. Each angular bin will contain approximately a fifth of
all data. The most populated horizon bin will therefore be shortest in size. The five bins are later
used for unfolding the flux, and were used to simulate expectancies shown in Figures 2.2, 2.3,
2.4, and 4.2. Figure 6.3 depicts the resulting angular bin edges which are 1.5, 1.65, 1.83, 2.04,
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2.33, and 3.14 in radians, translating to approximately 86◦, 95◦, 105◦, 117◦, 134◦, and 180◦ in
degrees.

Figure 6.3: Simulated distribution of events per each angular
bin, assuming a primary model H4a [Gai12], interaction model
SYBILL2.3c [REF+20] and the six-year astrophysical fit [A+16a].
Each of the five regions between dashed gray lines contains ap-
proximately a fifth of the total 850000 events. The zenith is given
in radians.

6.2 Effective area

Effective area, given in equation 5.11, is calculated solely from simulation data, and can there-
fore be retrieved at this early stage of the chain.

Each event results from a certain type of interaction and is simulated based on the probability
of this interaction Wint. To simplify further steps, a measure referred to as OneWeight is assigned
to each event

wone = (
Wint

E−γ
)
∫︂ ∆E

E−γdE · Area ·Ω (6.3)

where the simulation is generated in Area for energies E in the solid angle Ω. γ is the spectral
index from Equation 2.1 for the flux used in simulation and described in Section 4.2. The weight
of each event i following some parametrized flux Φν is then

wi =
wone

nsim
· Φν (6.4)
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Note that equation 6.4 can be used to simply reweight any known simulation, however only in
case of a power-law flux Φν as defined in Equation 2.1. This can be used to reweight various
experimental astrophysical fits parametrized with a normalization constant and a spectral index.
In contrast, atmospheric components are described with complex functions far from a simple
power-law and have to be simulated with MCEq as presented earlier. Furthermore, the effective
area is then calculated for each energy as

Ae f f =
wone

Eν ·
10·log(10)

me f f

(6.5)

where me f f is the number of bins in which the effective area is calculated. For the whole energy
range, which will later be separated into 13 energy bins, the effective area is calculated in 52
energy bins equidistant in logarithmic space. Therefore, for each energy bin, an average from 4
values is taken. The effective area is calculated separately for different sets given in Section 4.2
corresponding to angular ranges and is given in Table 6.2 and in Figure 6.4. As expected, the
effective area at high energies is best for horizontal events and is in comparison deteriorated for
very high angles.

Figure 6.4: Effective area in squared meters for the inspected
energy range. The colored lines show the effective area for the
five angular bins used in unfolding.

After simulation reading, it is necessary to read the measurements. As discussed in Section
4.3.4, the studies are first run on only 10% of the full observations called the Burnsample data,
and later redone on the full set. From subsets of observations called Runs, IceCube generates the
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GoodRun list, which contains all Runs in a given lifetime that satisfy the minimum requirements
for its events to be used in further analyses. The GoodRun selection includes the lower limit of
active DOMs at any point in time, a minimum amount of detector running with no known issues,
and similar. After cleaning the sample from bad runs, the level 5 observations are read and ready
for following studies.

6.3 Feature selection

There are several properties a feature set should satisfy to be used in unfolding. From the
currently available 247 features, only a few will be used to limit the size and instability of the
migration matrix.

Conditions for the feature set can be roughly divided into three categories. First, it is nec-
essary the set contains features with the best available reconstruction of true values. Several
algorithms reconstruct the same observables in a different manner and can be compared based
on their ability to reconstruct a known simulated distribution. Secondly, features in simulation
should resemble the same features observed in real data, as it would otherwise point to a misun-
derstanding or misconstruction of the physical processes involved. Lastly, out of all the available
features, it is desired to retain those containing the most information needed for energy estima-
tion, as energy estimation is the basic component of flux reconstruction. In conclusion, features
should have three properties: proper reconstruction of values, alignment to experimental data,
and information gain in unfolding.

6.3.1 Reconstruction algorithms

Unfolding the energy flux necessarily needs an energy estimator, and in addition, the study of
angular dependence calls for a proper zenith estimator. Values from which the target is inferred
are often called proxies. Although many observables in IceCube are correlated with primary
energy, including the length of track, number of hits, affected DOMS, and similar, a variable
estimating the starting energy is desired.

Based on the underlying equations and fits, or the boolean logic they use, many different
algorithms exist. Example directional reconstructors are LineFit, BestTrack, and MPE. Best-

TrackDirectHits and LineFitGeoSplit focus on counting responses in DOMs, for example. For
energy estimation, all types of TruncatedEnergy reconstructors are commonly used, along with
SplineMPEMuExDifferential. Algorithms belonging to the same groups aim to reconstruct the
same set of values. Therefore, all directional algorithms will have a zenith estimation available.

In this step of feature selection, the power of simulations is yet again used. For some sim-
ulated set of neutrinos, the true zenith distribution is known. Neutrinos are propagated as in
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Figure 6.5: Testing of directional reconstruction algorithms. The
top histogram on each plot shows the true simulated zenith dis-
tribution. On the right, the reconstructed value of each algorithm
is depicted. The middle plots show the alignment of the recon-
structed to the true value, with gray lines showing the spread
of agreement. Here, tests of four reconstructors are showcased,
which attained the following Chi-square statistics: SPEFit2IC
with χ2 = 7020.6 (upper left), BestTrack with χ2 = 9428.7 (up-
per right), MPEFitHighNoise with χ2 = 7222.29 (lower left), and
LineFit HV with χ2 = 127758.0 (lower right). The SPEFit2IC
exhibited the best performance among all available direction re-
constructors.

Section 4.2, and the constructed response is compared to true value. To quantify the quality of
agreement between reconstructed and real values, the Chi-square statistic is calculated for each
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Figure 6.6: Testing of energy reconstruction algorithms. The
top histogram on each plot shows the true simulated energy
distribution. On the right, the reconstructed value of each al-
gorithm is depicted. The middle plots show the alignment of
the reconstructed to the true value, with gray lines showing
the spread of agreement. Here, tests of four reconstructors
are showcased, which attained the following Chi-square statis-
tics: SplineMPEICTruncatedEnergySPICEMie BINS Muon with
χ2 = 204975.1 (upper left), SplineMPEICMuEXDifferential with
χ2 = 1669570.6 (upper right), SplineMPEICTruncatedEner-
gySPICEMie AllBINSNeutrino with χ2 = 7885030.7 (lower left),
and SplineMPETruncatedEnergy SPICEMie ORIG Muon with
χ2 = 1558268.6 (lower right). The SplineMPEICTruncatedEner-
gySPICEMie BINS Muon exhibited the best performance among
all available energy reconstructors.
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available algorithm. A modified form of the Equation 3.6 is used, in which the variance equals
the expected value. Here, E is the simulated, and O the reconstructed distribution. Comparisons
are shown in Figure 6.5.

An equivalent approach is applied to every available energy reconstruction algorithm, with
results shown in Figure 6.6. As explained in Section 4.3, track-like events have poor energy
resolution compared to angular resolution. Therefore, Chi-test results are strongly inferior in
this group of reconstructors. Nonetheless, a type of TruncatedEnergy showed upper performance
compared to others. Finally, based on statistical agreement to true values, SPEFit2IC.zenith and
SplineMPEICTruncatedEnergySPICEMie BINS Muon.energy are added to the feature set.

6.3.2 Data to Monte Carlo agreement

If the features of the simulation weighted to some assumed models are distributing similarly to
distribution inside real data, it is considered the simulation is properly working, and the under-
lying assumptions are true. Customarily in IceCube, data to Monte Carlo agreement is done by
binning distributions into histograms and visually inspecting if any substantial deviations exist.
As part of the standard process, these comparisons will be done later, but first a more elaborate
approach is done.

Instead of merely checking the agreement between the overall distributions, a general Ran-
dom Forest algorithm described in Section 3.1 is employed. This necessity comes from the
fact that features may look similar in histograms, although following different underlying dis-
tributions or correlating to different variables. This is especially true if the choice of binning
is random, and not properly adjusted to reveal distributions’ characteristics. This can be easily
understood with a simple example; if the uniform function is defined as

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩1, |x| < 1;

0 otherwise.
(6.6)

and the triangular functions is defined as

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩1 − |x − c|, |x| < 1, |c| < 1;

0 otherwise.
(6.7)

with an arbitrary constant c, the rather dissimilar functions will look the same binned to a his-
togram of too narrow binning. If only visual inspection of histograms would be applied to
variables with these underlying functions, their equivalence could be falsely claimed. The ex-
ample is explained in Figure 6.7. This is especially relevant since many features represent f lags,
boolean values separating events into types based on some criteria. For example, if there exists
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a f lag separating events into low energy and high energy based on the energy compared to some
critical value, a balanced dataset would result in opposite values per each event but identical
histograms. This is more detailed in Appendix Figure A.13.

Figure 6.7: Comparison of plots of uniform and triangular func-
tions (left) and their respective histograms (right). The triangular
function is defined with a constant c = 0.2 in this example. Func-
tions are shown for a hundred x divided linearly between 0 and 1.
On the right, both histograms of values resulting from two func-
tions are shown, and they fully overlap. Since the binning of the
histogram is too narrow, the differences between resulting values
are engulfed by the width of one bin, and the distributions seem
identical.

An additional complication comes from features depending on other features, whose rela-
tionship is not well understood. To mitigate the presented problem, the alignment is tested by
using a Random Forest, because of its ability to construct decisions based on underlying func-
tions not attainable to analysts. Both real observations and simulations are used in this step.
Events from the Burnsample are labeled with value 1 (for being of type Signal) and Monte
Carlo events get assigned a value of 0. The Random Forest model is built with the goal of sep-
arating events into these two categories, with the target value to be determined being this label,
and not the energy, as in the main part of the analysis. Being able to separate events into data and
Monte Carlo is not desirable, but the model is built this way to expose properties that contribute
to their separation.

The main premise is that there exists an underlying difference in features if the model can
differentiate among two sets when this feature is present. The model is specifically trained and
tuned to separate data from simulation with the best possible performance, and then the effects
of features in this discrimination are interpreted. To quantify an effect a feature has on some
model’s decisions, the change of purity described in Section 3.1.1 is investigated. As noted,
purity is calculated for each decision tree constituting the Random Forest. When a feature is
added to the set, the purity of each decision tree is calculated and averaged out over the whole
forest, and the process is repeated for each inspected feature. The averaged purities of all features
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are normalized to one so that it holds
m∑︂

j=1

I j = 1 (6.8)

where I j is referred to as feature importance in a set of tested features of size m. It follows that in
a set of features approximately equally contributing to information gain, their importance would
center around

I j ≈
1
m
. (6.9)

After the model is trained and the feature importances are evaluated, the Random Forest is
applied to an unseen testing subset of data with known labels. Evaluating the probability assigns
a value between 0 and 1 for each event. If the underlying differences between two sets (data
and simulation) truly exist, the Random Forest will be able to assign probability scores of over
0.5 for events with a known label of 1, and vice versa. If no differences occur, the model will
randomly guess each event belonging to any class due to the absence of proper information
needed for discrimination, and the probability scores should center around 0.5.

For an imperfect feature set in which discrimination is possible, a feature contributes sub-
stantially if its importance is much higher than the mean, as given in Equation 6.9. Calculated
importances are binned into a histogram, and any feature from a set I with a deviation from the
median importance higher than a limit so it holds

I j > Median(I) + 2 · MAD (6.10)

is removed. The MAD (Median Absolute Deviation) is defined similarly to the standard devia-
tion

MAD = Median(|I j − Median(I)|) (6.11)

with the Median being the value of which exactly half the set is larger.

After all importances are evaluated and every feature crossing the critical value from Equa-
tion 6.10 is removed, the process is repeated for the newly attained, smaller, feature set. This
process is repeated until a set is constructed so that no feature importance satisfies Equation
6.10. As a result of retraining the whole model with a new feature set in each epoch, the proba-
bility scores change and the limit applied gets progressively stricter. Migration of the probability
score towards the desired value of 0.5 and of importances to Equation 6.9 is expected with the
advance of the iterations.

With each iteration, the frequency of importances is varied, therefore features that may have
not satisfied the limit in early iterations would be removed in a later set. The more iterations
a feature passes without crossing the critical value, the less it contributes to discrimination.
Therefore, a feature’s alignment between data and simulation is correlated with the iteration in

55



Chapter 6. Analysis chain

which it was removed. From this, it follows that features can be scored based on this iterative
procedure.

The procedure applied to the cleaned set described in Section 6.1 ran for 8 iterations, until no
more features were marked for removal. On the final set, the model is applied once more with
the goal of predicting the label, and it attains a precision of only 0.513, near the ideal value of
0.5. Prediction scores of all events center tightly around 0.5 as well. The procedure is visualized
in Figures 6.8, 6.9, 6.10, 6.11, with the resulting iteration and score shown in Figures 6.12 and
6.13.

The algorithm has been tested on various weightings of atmospheric models. Slight differ-
ences exist in early iterations, however, the final chosen set is independent of weighting. Al-
though weighting is seemingly important in reshaping the Monte Carlo to best imitate real data,
this result stems from the fact that the best-aligned features are always of a geometrical nature.
Straightforward measures like position, sphericity, length, and similar, are always better recon-
structed in IceCube than inferred values relating to energy and zenith. Therefore, this algorithm
prefers geometrical observations. The set resulting from this procedure is not the final feature
set used in the analysis, but rather the scores of data to Monte Carlo alignment for each feature
are stored, based on the last iteration it was included in. These scores are used in combination
with the third, and final, feature selection algorithm described in the following section.

6.3.3 Recursive Feature selection

The final selection procedure relates to the choice of features most appropriate for energy recon-
struction. Different types of algorithms either recursively add or eliminate features from given
sets, and compare them based on some optimization metric.

RFECV (Recursive Feature Elimination with Cross-Validation) is a predeveloped algorithm
from the scikit-learn package [PVG+11]. For the algorithm to evaluate the performance of a
certain set, an underlying classifier has to determine energy. For this, a Random Forest from
Section 3.1 is trained, however, in this case with a target of energy reconstruction, and not data
type discrimination like in Section 6.3.2. Data is discretized in the same manner as it will be for
the final unfolding, and the events are classified based on the outcome probability score into the
same energy bins in the range of 500 Gev to 4 PeV, described in Section 4.3.4. For every size of
set being tested, weighted precision is calculated, a modified version of metric given in Equation
3.3. In this case, precisions are multiplied by the size of their respective category, corresponding
to the 13 energy bins in this model. This handles the imbalance of the dataset and is relevant
due to lower statistics toward the higher end of energies.

Information gain imminently rises with each feature added, however, it is desired to also
preserve low-dimensionality, as discussed in Section 6.1. The benefit of a small information gain
from a less relevant feature is often outweighed by the deterioration coming from dimension
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Figure 6.8: First step of the iterative feature selection, on the
example of the second iteration with a feature set of size 169.
After the Random Forest is fitted and importance is assigned to
each feature, they are sorted and shown on the x-axis with their
corresponding importance on the y-axis.

Figure 6.9: Second step of the iterative feature selection. The im-
portance is binned into a histogram and the median value is cal-
culated. The solid blue line shows a spread of two MADs around
the Median. All features related to values larger than the limit, in
the red-shaded area, ought to be removed.
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Figure 6.10: On features from Figure 6.8, a cut depicted in Figure
6.9 is applied. All features whose importance is higher than the
dotted line are discarded.

Figure 6.11: Probability scores assigned to events of each cate-
gory. Although the separation is not optimal, the probabilities of
signal events (dark blue) gravitate towards one. In the case of
two indistinctive sets, all probabilities should center around the
middle.
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Figure 6.12: In the final iteration, no importance is crossing the
limit. Values distribute more evenly around the Median.

Figure 6.13: The final iteration results in 36 features that are in-
distinctive to the Random Forest, visible from events having prob-
abilities with equivalent distributions in both categories. Scores
centering around 0.5 are often referred to as good as guessing.
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addition. The size of the final feature set is iteratively enlarged until sufficient information is
reached that cannot be considerably improved with more data. This exhibits a saturation, or
visually a plateau, in performance metrics per dimension added.

As shown in Figure 6.14, weighted precision rises up to a set size of 8. With size, the
included features are optimized and are comprised of the best information providers in energy
estimation.

Figure 6.14: Weighted precision for different sizes of tested fea-
ture sets. Uncertainty comes from the standard deviation of preci-
sion on various sets examined. At eight features, the information
gain is sufficient for energy reconstruction and precision reaches
a maximum.

Eight features chosen are energy, n late doms, n dir doms, avg dom dist q tot dom, value,
rlogl, dir track length and dir track hit distribution smoothness, described in Table 6.3. These
are reconstructed in various algorithms, and the choice of reconstructors is based on results from
Section 6.3.2. From the given eight, features with the highest scores from the previous selec-
tion algorithm are retained. A zenith reconstruction is necessary and has been chosen together
with energy reconstruction, in the first selection from Section 6.3.1. The features are described
in Table 6.3 and their agreement to measured data is visualized in Appendix Figures A.16 and
A.17.
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Feature Description

SPEFit2IC. zenith Reconstructed zenith.

SplineMPETruncatedEnergy
SPICEMie BINS Muon.

energy

Reconstructed neutrino energy in GeV.

BestTrackDirectHitsA. n
late doms

The total number of DOMs, which have at least one late
pulse. A late pulse has a time residual, that is after the
direct hits time window.

SplineMPEDirectHitsICC. n
dir doms

The total number of DOMs, which have at least one direct
pulse. A direct rpulse has a time residual, that is inside the
given direct hits time window.

BestTrackCharacteristics.
avg dom dist q tot dom

The average DOM distance from the track.

SplineMPEMuEXDifferential
r. value

Value derived from the specific reconstruction algorithm.

SPEFit2GeoSplit1FitParams.
rlogl

Reduced negative log likelihood for this reconstruction al-
gorithm.

SplineMPEDirectHitsB. dir
track length

The length of the track in meters, which is defined as the
distance along the track from the first hit DOM to the last
hit DOM perpendicular to the track direction.

SplineMPEDirectHitsC.
dir track hit distribution
smoothness

The smoothness value, based on the direct hit DOMs:
How uniformly distributed are the direct hit DOM pro-
jections onto the track.

Table 6.3: Final set of features used in the analysis, chosen in the
presented three-way selection algorithm.
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6.4 Rebinning the observable space

Classifiers and regressors make predictions for a certain quantity based on its relation to the
magnitudes of different observables relevant to their reconstruction. In general, both classifiers
and regressors split the observables in a certain number of bins spanning its range. The multi-
dimensional observable space is usually divided into equidistant bins in linear space. This can
distort the analysis for two reasons. First, with rising number of observables, the number of
bins grows exponentially. Since the amount of data acquired is fixed, the statistics in the expan-
sive number of bins must reduce. Secondly, bin edges are not appropriately chosen this way.
They can either be too narrow (e.g. it is nonsensical to use bins narrower than the sensitivity
of the detector), or they can be too wide and deteriorate the information gain. Additionally, the
observable space is binned with no regard to the question in the analysis.

The target space in this analysis consists of 13 energy bins divided in logarithmic space. If
similar features that span a large range of values are binned in linear space, the resulting bins
towards the high-energy region will be wide and necessarily result in sparse statistics.

Furthermore, some features attain only certain values. For example, if a boolean f lag can
attain values 0 and 1, a two-bin linear space is enough to describe it. If a classifier divides the
maximum range into 11 equidistant bins, the bins spanning values from 0.1 to 0.9 will inevitably
be empty.

For reasons stated above, an additional Decision Tree classifier is introduced with the goal
of rebinning the observable space used in unfolding which takes into consideration the various
features’ distributions. We train a Decision Tree with the selected features with the target being
the neutrino energy, however, it is not used to later actually estimate energy from some set.
Decision trees optimize cuts in observable space when making a decision for classification.
The cuts presented in Section 3.1.1 are then used as bin edges of the observable space. In
the construction of the Decision Tree, the size of leaves can be mandated therefore enabling
the choice of number of samples in each observed bin with the purpose of facilitating enough
statistics in each. The leaf size can be either set up as a fraction of the data or as an absolute
number of events.

The tree is set up with a lower limit of 20 events in each constructed bin and an upper limit
on the number of bins at 2500.

As a result, events are populating observable bins taking into consideration the minimum
amount of events. In the multidimensional observable space, each bin will contain at minimum
the number mandated with the leaf size. This enables the classifier to attain enough information
about an event while preventing the encounter of empty bins.

The produced bin cuts can implicate some properties of the distributions and can reveal
physical relationships of observables to the energy. For example, the dominant processes for
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energy loss of muons at high energies are bremsstrahlung and pair production. Since the
lost energy is dependent on the starting energy, algorithms that reconstruct these losses, like
MuEXDi f f erential, are more informative as proxies for primary energy estimation. In contrast,
at low energies the main energy loss process is ionization. Ionization processes are independent
of starting energy, therefore the energy loss is not relevant for reconstruction. Other features
correlating to primary energy, like track length, become relevant in this range. To encompass
these properties, it is desired to create more bins in regions in which features are more infor-
mative. For this example, more cuts are made in the track length observable at low energies.
Moving with rising energy towards the bremsstrahlung dominated region, fewer cuts are made
until track length is considered only binary. For these events, information is mainly retrieved
from other features. For simple interpretation, shorter bins imply more information gain. The
given example is shown in Figure 6.15.

6.5 Migration Matrix and the MCMC chain

All the necessary information for building the migration matrix A is ready at this stage of the
analysis. Using the Monte Carlo simulated events, reweighted as in Section 6.1, the observ-
able space gsim⃗ is populated into 2500 bins defined with cuts from the Decision Tree built in
previous Section 6.4. Finally, the event spectrum fsim⃗ associated with gsim⃗ is also calculated
from the simulations. The simulated spectrum and its accompanying simulated response de-
fine the intermediate detection process described by A. For the training dataset, all components
from Equation 5.2 are known. Additionally, the migration matrix is divided with the assumed
spectrum to erase the dependency of the process on the chosen weighting.

The resulting matrix has a size of 2500 · 15, for 2500 observable bins and the 13 target
bins with additional overflow and underflow bins. The condition equals 2.7336 · 102. This
can be roughly interpreted as the ratio of output error to input error if the matrix was inversed.
For example, if the assumptions made in the event spectrum and the observed space would
have uncertainties of order 10−10, the inversion would produce a solution with uncertainties
approximately two orders of magnitude stronger, at 10−8.

The measured events from real data are then also populated into the same observable space
and construct the real observable space g⃗. Now, migration matrix A and g⃗ are known in the
likelihood expression from Equation A.3 and it remains to find the optimal event spectrum f⃗

maximizing this likelihood.

To get the best estimate for f⃗ , Markov Chain walkers are employed as described in Section
5.2. 1000 walkers are created each starting at a random position and with each step they calculate
the likelihood from Equation 5.8 for some combination of regularization parameters τ and d.
The difference between the next step and the current step is randomly sampled from a normal
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Figure 6.15: Rebinning of the observable space on a track length
example. The minimum leaf size is greatly exaggerated to better
visualize binning. Towards the lower end of the energy recon-
struction values shown on the x-axis, the track length provides
significant information in energy estimation. This region is split
into more bins to enlarge the number of different values the track
length can attain when used in a machine learning algorithm. To-
ward the higher end, length becomes irrelevant and the number
of bins is reduced to control dimensionality. The relevance of the
feature is highest in the regions with the densest cuts.

distribution. After 3000 jumps have been made, the chain is discarded and the result is used as
the first estimate in a future chain of 10000 steps. The discarded chain is often referred to as
burn−in, and it is used only to ensure the first random assumption is not too far from the optimal
solution. The 10000 steps are all stored and represent the distributions of estimates in each bin.
For each energy bin, 1000 walkers create 10000 estimates, therefore the resulting MCMC chain
is a matrix of size 100000 · 13. The walkers converge to the best estimate in each energy bin,
constructing f⃗ as the medians of each respective distribution.

Statistically more supported energy bins converge to the solution faster, as expected. The
performance of the MCMC chain can therefore be deduced from the spread of the estimates’
distributions. Low energy region produces distributions with well-defined peaks, while the high-
energy region tends to be spread out around the best estimate, due to the higher complexity of
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Figure 6.16: Histograms of MCMC estimates for two example
bins. Bin 3 shows the energy range from 2 TeV to 4 TeV, and Bin
11 from 500 TeV to 1 PeV. The x-axis is the sampled space of f⃗ ,
and the distributions peak at the best estimate. The distribution
has in total 100000 entries. The low-energy and higher statistic
region (left) produces a narrower distribution with a better de-
fined Median. The high-energy region (right) exhibits a larger
spread and slower convergence.

arriving at the solution. An example is shown in Figure 6.16, and the full range is presented in
the Appendix A.15.

6.6 Optimization of Regularization parameters

Unfolding is iteratively repeated for various values of regularization parameters while keeping
the analysis settings from Section 6.5 constant. As mentioned, regularization strength τ has a
greater influence on the resulting spectrum than the offset d. Both parameters are sampled from
a range and the full unfolding algorithm is applied to the pseudo data.

To evaluate the performance of a regularization set, the pseudosample of known distribution
is unfolded. The resulting flux is compared to the true flux via the Chi-square statistics from
Equation 3.6 in which for each bin E is the true flux, O is the unfolded flux, and the variance
is the statistical error of unfolding. Values for both parameters are sampled more densely from
regions exhibiting low Chi-square statistics and large p-values. Each unfolding is additionally
tested with Manhattan, Chebyshev, and Earth Mover’s distances from Section 3.2.

An example of statistical tests on sampled values is shown in Appendix Table A.1, while
Figure 6.17 shows the distribution of p-values for different regularization strengths τ.

65



Chapter 6. Analysis chain

Figure 6.17: Statistical test on the regularization strength pa-
rameter τ. Chi-square statistic χ2 and p-values are defined as
in Equation 3.6, while the modified χ2 and pχ are divided with
expectancy instead of variance. The modified values better test
the agreement between true and reconstructed flux, while unmod-
ified take into consideration the coverage of uncertainty. Opti-
mal strength is at the maximum of p-values, where the Chi-square
statistic showing the deviation from the true value is at the lowest.

6.7 Additional tests

After all parameters have been optimized, additional tests are run to confirm the assumptions
made. Primarily, the impartialness of the method on the weighting used to construct the mi-
gration matrix is checked. Analysis settings are fixed and the same pseudosample is unfolded
varying the assumed flux in the simulated training set. A more proficient statistical test on many
theoretical fluxes has been previously done in another work [Bö18] and showed no substantial
bias even in assumptions of non-physical fluxes. The flux is still retrievable even in cases of
training on only one source of events (one component of flux).

As described in Section 4.3.3, the data may include uncleaned background contamination of
up to 0.13% comprised of atmospheric muons. To simulate the effect this could have on unfold-
ing, 0.13% of events are sampled based on a parametrized muon flux from [Sol19]. Unfolding is
run with usual analysis settings assuming optimal conditions and no background. The resulting
flux has no apparent change in shape compared to a pure sample, with nonsignificant changes in
p-values. The test is shown in the Appendix Figure A.14.
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6.8 Results

A similar analysis chain using the same unfolding algorithm has been previously done and ap-
plied to three years of data, therefore this analysis can be considered an extension, or upgrade,
to said analysis. Previous results are discussed in the Appendix A.3

The optimized settings are first applied to a simulated pseudosample. The simulated flux
is correctly reconstructed inside the statistical error range per each energy bin. The statistical
uncertainty is substantially smaller than in previous results, e.g. the results made with 3 years of
data shown in Appendix Figure A.4, due to considerably higher amounts of data and proficiency
of each step in the analysis. The event spectrum is shown in Figure 6.18.
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Figure 6.18: Event counts of the simulated pseudosample. The
black solid line shows the unfolding in this work, and the dashed
blue line the true event spectrum of the simulated set. The shaded
area around bin counts shows the statistical uncertainty of un-
folding. Event spectrum contains two additional bins: underflow
starting from zero energy, and overflow reaching infinity. Addi-
tional bins are shown in gray.

Using Equation 5.10, the event spectrum is translated into flux, using the real effective area
and the lifetime of the measured sample to be unfolded. The resulting flux is weighted with
energy squared, as it is commonly reported in this form. The unfolded weighted flux corresponds
well to true simulated values, with the statistical uncertainty always encompassing the true flux,
as desired. The statistical uncertainty is less than 10% in the majority of the considered energy
range, with an average of 18.13% and a 53.17% relative error in the highest energy bin. The
offset of the estimate to true value is mainly below 5%, with the offset being at worst at 10.8% in

67



Chapter 6. Analysis chain

the highest bin and at best at 0.63% around 10 TeV. Additionally, statistical tests show excellent
agreement. The results are shown in Figure 6.19 and are an example of what to expect from the
application on real data.

Figure 6.19: Weighted flux of the simulated pseudosample. The
black solid line shows the unfolding in this work, and the dashed
blue line the true flux of the simulated set. The shaded area
around the unfolded values shows the statistical uncertainty of
unfolding. The lower plot shows the ratio of the unfolded and the
true simulated flux, with the black line representing a ratio of one
and perfect agreement. The shading represents the scaled statis-
tical uncertainty. Values in the bottom corners of the upper plot
show the Chi-square statistics of the unfolding agreement from
Equation 3.6.

All results spanning from unfolding true data measured with IceCube are shown with crosses
as opposed to histograms made with simulated data, per the convention in the collaboration.
Additionally, uncertainties of unfolding real data include errors spanning from systematic dif-
ferences, described in more detail in Section A.5. Preliminary results are reached by unfolding
Burnsample data, described in Section 4.3.4, with adjustments where needed. In comparison
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Figure 6.20: Weighted flux of the Burnsample data. The black
solid lines show the unfolding in this work and the evaluated to-
tal uncertainty. Recent results from IceCube for the astrophysi-
cal components are shown in solid lines considering their corre-
sponding energy ranges, with the shading showing uncertainty.
The assumed astrophysical fit used in the total flux estimation
[A+16a] is in green, HESE analysis [A+21] is shown in pink, and
9.5 years diffuse analysis [A+22] in orange. All astrophysical
fits are combined with the atmospheric model prediction given by
SYBILL 2.3c [DLRF17].

to the full dataset and the pseudosample, Burnsample has an approximately ten times shorter
lifetime but equivalent effective area. Since the true distribution is not known, and is the goal
of this analysis, Burnsample unfolding can only be compared to current theoretical models, and
cannot be assessed with statistical tests as in the case of simulated samples. Figure 6.20 shows
the unfolded Burnsample weighted flux, compared to the total neutrino flux predictions made
with different astrophysical models. Appendix Figure A.18 compares results to separated at-
mospheric components simulated with different cosmic ray models and experimental fits on the
astrophysical component. Results show good alignment with both theoretical and experimental
results, with a slight disagreement between 2000 and 4000 TeV. The disagreement might be ac-
credited to the yet unknown precise spectral index of the prompt component, and the exact shape
of the atmospheric flux at these energies where the two components are expected to exchange
dominance. All experimental astrophysical fits, including this work, agree inside the uncertainty
ranges. The amplified statistical uncertainty in the high energy region comes from the limited
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statistics of the Burnsample and will diminish in application to all data.

Figure 6.21: Ratio of fluxes in angular bins to the full range flux.
The dashed lines show the true ratio pseudosampled from simu-
lations, and the solid lines show the unfolded ratio with the sta-
tistical uncertainty shown as the shaded area around the best es-
timate. The statistical uncertainty does not overlap at energies
lower than 1 PeV enabling discrimination among angular fluxes.

In the same manner, with the aim of first testing the algorithm, angular datasets are pseu-
dosampled from the given simulation. The zenith bins are defined as described in Section 6.1
and visualized in Figure 6.3. The unfolded angular fluxes are calculated using effective areas
given in Table 6.2 and examined in comparison to the full range flux ranging from 86 to 180
degrees.

Pseudosampling from a flux following a negative power law leads to higher statistical uncer-
tainty in the regions of lower populations, which in this case corresponds to higher energy. In
the case of unfolding a simulation following a known distribution, it is more sensical to compare
it to the true simulated values instead of theoretical models, especially in the case of testing
with proof-of-concept aims. For bins in which the statistical uncertainties overlap in the angular
unfolding, it is not possible to discriminate fluxes. However, if bins exist with no overlapping
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errors we conclude the fluxes are separable. In the example of one simulated and divided pseu-
dosample, the results of angular flux ratios to the full range are given in Figure 6.21.

A clear separation is possible up to energies of 1 PeV in the five given zenith bins. At higher
energies, the statistical uncertainty encompasses different bins and the bins become indistin-
guishable. The separation works really well in the atmospheric-dominated region for five zenith
bins, which is a step further from the previously examined three bins.

Therefore, in application on real data, the atmospheric-dominated region can be tested against
theoretical models, with behavior as described and given in Figure 2.4.

6.8.1 Unfolding eleven years of data

Finally, the algorithm is applied to the full dataset. Data consists of almost eleven years and is
processed as described in Section 4.3.4. Regularization is chosen as shown in Section A.2, and
the effective area is described in Section 6.2. The final solution is sampled with MCMC walkers
from Section 6.5.

Figure 6.22: Event counts of the unfolded dataset. The black solid
line shows the unfolding in this work. Vertical error bars show the
total uncertainty of unfolding. Event spectrum contains two ad-
ditional bins: underflow starting from zero energy, and overflow
reaching infinity, for which the effective area and statistical un-
certainty are not defined. Additional bins are shown in gray.

The solution, presented in Figures 6.22, 6.23, and 6.24, shows very low uncertainty, as ex-
pected through simulation studies. Exact values for the investigated energy range are given in Ta-
ble 6.4. Results compared to separated components are given in Figure A.19. The atmospheric-
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Figure 6.23: Flux of the unfolded data. The black solid line shows
the unfolding in this work. Recent results from IceCube for the
astrophysical components are shown in solid lines considering
their corresponding energy ranges, with the shading showing un-
certainty. The assumed astrophysical fit used in the total flux es-
timation [A+16a] is in green, HESE analysis [A+21] is shown in
pink, and 9.5 years diffuse analysis [A+22] in orange. All astro-
physical fits are combined with the atmospheric model prediction
given by SYBILL 2.3c [DLRF17]. The results are given in Table
6.4.

dominated region, spanning lower energies up to 100 TeV, is in good agreement with the at-
mospheric models. The astrophysical region also shows great alignment with previous results
from IceCube. However, there is an excess of events in the region where conventional and
prompt components are expected to interchange dominance, more prominent on visualizations
weighted with energy, as given in Figure 6.24. The cross-over energy is not well known and is
only assumed to be around 300 TeV. Different prompt models give different results for the ex-
act cross-over energy, and the atmospheric models used here for comparison have already been
shown to not properly simulate our prompt component expectancy [ERF+17].

The weighting of the resulting flux with E3.7 as presented in Figure 6.25 shows the break
in the spectrum at higher energies. This visualization presents in a simplified way the retrieved
different slopes of the spectral index describing the flux. Points moving away from a horizontal
line point to a change of spectral index, with higher change associated with higher deviation
from horizontal alignment. Another weighted flux is given in Appendix Figure A.20 visualized
to highlight the spectral break.
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Figure 6.24: Weighted flux of the unfolded data. The black solid
line shows the unfolding in this work. Recent results from Ice-
Cube for the astrophysical components are shown in solid lines
considering their corresponding energy ranges, with the shading
showing uncertainty. The assumed astrophysical fit used in the
total flux estimation [A+16a] is in green, HESE analysis [A+21]
is shown in pink, and 9.5 years diffuse analysis [A+22] in orange.
All astrophysical fits are combined with the atmospheric model
prediction given by SYBILL 2.3c [DLRF17]. The unfolded flux
shows good agreement in the atmospheric-dominated region with
theoretical models, and astrophysical region with previous fits.
Similarly, as with Burnsample unfolding, there is an excess in the
cross-over region of conventional and prompt components.

Additionally, these results are compared to previous results developed on less data, and
described in Appendix A.3

The two works show excellent agreement in the atmospheric-dominated region, where best
estimates overlap. This work’s best estimate is included in the uncertainty region of the previous
analysis, which implies agreement between the two results. However, due to limited data, the
previous results yield very high statistical uncertainty, therefore no better conclusions can be
drawn from the comparison. The comparison is shown in Figure A.9.

6.8.2 Unfolding eleven years of data in angular bins

The process following the one described in the previous Section 6.8.1 is reapplied to subsets
of data separated into zenith bins as defined in Section 6.1. The process is comparable, with
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Figure 6.25: Flux of the unfolded data weighted with E3.7. The
black solid line shows the unfolding in this work with vertical
lines showing the total uncertainty. The deviation from the hori-
zontal alignment at higher energies implies a break in the spec-
trum, predicted by the overtaking dominance of the astrophysical
component.

datasets having appropriately recalculated effective areas and systematic errors for their respec-
tive coverage.

The unfolded fluxes are first visualized and inspected without weighting with energy, shown
in Figure 6.26. The five resulting sets of points are separable in several bins, mostly positioned
in the lower energy atmospheric-dominated region. The uncertainties start to overlap at approx-
imately 125 TeV, or the 9th energy bin.

As shown in Section 2.2.2, the particularities of the angular fluxes are best shown when
considered in ratio to the all-range flux. Therefore, each of the resulting angular fluxes is divided
with the flux shown in Figure 6.24. Figure 6.27 shows the resulting calculated ratios, and the
appropriate total error (considering the varying systematic error at different zenith angles, given
in Section A.5). As already implied in Figure 6.26, the bins are separable up to the astrophysical-
dominated region. The non-symmetrical uncertainties span from the same nature of the angular
systematic errors.

The unfolded angular ratio can be compared to the various atmospheric models and astro-
physical fits. As already described, the differences in the models are more prominent when
inspected through angular ratios. The unfolded data points are tested against the theoretical
models described in Section 4.1 with the procedure given in Section 3.2.

75



Chapter 6. Analysis chain

Figure 6.26: Unfolded flux of the five zenith bins considered in
this work. The vertical lines show the total uncertainty of un-
folding. Bins in the atmospheric-dominated region are separable,
while the astrophysical region exhibits overlapping error bars.

The lowest Chi-square statistic is given for the QGSJet interaction model, the H3a Hillas
primary model [Gai12], and the diffuse 9.5-year astrophysical fit [A+22]. The Chi-square statis-
tics of the agreement between the estimate and the various atmospheric models combined with
the diffuse 9.5 year astrophysical fit are given in Table 6.5. The statistics for the two other
astrophysical fits are shown in Appendix Table A.2 and Appendix Table A.3.

All tested models containing an astrophysical contribution have a p-value higher than 0.99,
confirming that the unfolding indeed follows the predicted angular behavior. A comparison of
the unfolded ratio and the described model is visualized in Figure 6.28.

Additionally, atmospheric models with no astrophysical component were tested and all were
shown to underperform in comparison to models with an astrophysical contribution. For refer-
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Figure 6.27: Unfolded ratios of the five zenith bins to the all range
flux. The vertical lines show the total uncertainty of unfolding.
Bins in the atmospheric-dominated region are separable, while
the astrophysical region exhibits overlapping error bars.

ence, the Chi-statistics of purely atmospheric models are given in Appendix Table A.4, and an
example is visualized in Appendix Figures A.21, A.22.
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Diff 9y H4a 4-gen H3a default

SIBYLL23C 10.9931 10.9484 10.9649 11.0692

SIBYLL-2.1 11.2653 11.179 11.2263 11.3669

EPOS-LHC 11.1335 11.0439 11.0931 11.2236

DPMJET-III-3.0.6 10.8505 10.8757 10.8348 10.9073

QGSJet-II-04 10.861 10.8335 10.8327 10.9281

Table 6.5: Chi-square statistic of agreement between the un-
folded best estimates and the expectation made with the diffuse
9.5 year astrophysical fit [A+22] and different atmospheric mod-
els. Columns show different interaction models, while rows rep-
resent primary models. Tested models are described in Section
4.1.
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Figure 6.28: Unfolded ratios of the five zenith bins to the all range
flux. The vertical lines show the total uncertainty of unfolding.
The prediction is shown in solid lines, color-coded to correspond
to the respective angular ranges. The simulation was made with
MCEq [FEG+15] following the QGSJet interaction model, the
H3a Hillas primary model [Gai12], and the diffuse 9.5 year as-
trophysical fit [A+22].
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Discussion and future aims

In this concluding chapter, the research efforts made in this work with the aim of unfolding
the muon neutrino flux are brought together. The primary objective has been to estimate the
neutrino energy spectrum using IceCube data in range spanning from 500 GeV to 4 PeV with
unprecedented precision. The flux has been successfully unfolded and presented in this work,
with additional interesting conclusions made during the analysis.

A contributing factor to the great quality of the reconstruction, inferred from the low un-
certainty surrounding the best estimates, is the unparalleled amount of data available in this
analysis. Previous studies have utilized a maximum of 9.5 years of data, and used different
methods, resulting in less sensitivity. The dataset also demonstrates excellent purity, at 99.87%,
allowing a background-less unfolding. The purity is a result of a meticulous cleaning process
that encompasses both the energy and angular dependence of the events in IceCube.

One of the defining features of this work is the incorporation of machine learning techniques
at various stages of the analysis. From data preprocessing to feature selection, intelligent models
were utilized with the aim of both improving the results and reducing resource usage. Machine
learning has enabled the optimal usage of a tremendous amount of data, and enhanced the overall
precision of the results.

This work presented a three-step feature selection process, ensuring the observables used for
unfolding are not only relevant but also yield precise results and encompass our knowledge about
the detector. The features are selected considering their reconstruction power, their agreement
to data, and their relevance in unfolding. Additionally, a novel rebinning technique was applied
to the observable dataset, establishing proper usage of the available statistics and the underlying
information about the interconnection of observables not available to researchers.

Finally, these results have demonstrated that unfolding is a state-of-the-art technique for
extracting valuable information from the complex nature of IceCube data. The independence on
assumptions made in the process has been repeatedly demonstrated through various tests. The
lower uncertainty range shows the power of the method, while its good agreement with previous
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results and theoretical models further grounds its applicability.
A special aim of this work was the investigation of ratios of angular fluxes, not before eval-

uated nor tested in IceCube. Inspection of ratios allows seeing the peculiarities of the total
neutrino flux, coming from the nature of the three distinct components, in a superior manner
compared to the investigation of fluxes alone. This work also demonstrated the applicability of
the method for these studies and paves the way for more detailed studies of the angular depen-
dence of both atmospheric and astrophysical neutrinos.

The results confirm both the expected shape of the total neutrino flux and the predicted
anisotropy at the atmospheric-dominated energies.

Results can be further used in studies of the various neutrino models, and in probing the
nature of the composition of the neutrino flux depending on the number of constituting parts.
The angular studies can be and are encouraged to be used in future studies of the atmosphere, as
the results encompass the interactions neutrinos partake in while traveling through air.

As the statistical uncertainty is already impressively low, due to the amount of data used,
attaining more data is not expected to significantly improve the results in the following years
of data taking in IceCube. However, the results would benefit from turning to better detector
studies that would lead to a lower systematic impact, which holds true for many other studies
aside from flux reconstruction.

In conclusion, the combination of the presented unfolding technique with high-quality data
and the power of machine learning enabled unrivaled results of the muon neutrino flux mea-
surement. I hope these results inspire future researchers and help them in analyzing and draw-
ing conclusions about the curious Universe surrounding us and the nature of our atmosphere,
through the lens of neutrinos.
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A.1 Unfolding

The expanded derivations of expressions used in this work and described in Chapter 5 are given
here. The Poissonian likelihood

α(g⃗| f⃗ ) =
m∏︂

u=1

λ
gu
u

gu!
· exp(−λu) (A.1)

has the expectancy λ defined with Equation 5.2

α(g⃗| f⃗ ) =
m∏︂

u=1

(A f⃗ )gu

gu!
· exp(−(A f⃗ )u) · exp(R) (A.2)

with an added regularization parameter R. Applying a logarithm to the whole expression

ln(α(g⃗| f⃗ )) = ln(
m∏︂

u=1

(A f⃗ )gu

gu!
· exp(−(A f⃗ )u) · exp(R)) (A.3)

results in

l(g⃗| f⃗ ) =
m∑︂

u=1

(guln(A f⃗ )u − (A f⃗ )u) − ln(gu!)) + R (A.4)

from which the independent term is dropped producing

l(g⃗| f⃗ ) =
m∑︂

u=1

(guln(A f⃗ )u − (A f⃗ )u)) + R (A.5)

Regularization is applied in the form of a Thikonov matrix

l(g⃗| f⃗ ) =
m∑︂

u=1

(guln(A f⃗ )u − (A f⃗ )u)) −
1
2

[︂
(C f⃗ )T (C f⃗ )

]︂
(A.6)
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which is then multiplied with the parameter τ to enable strength of regularization adjustment

l(g⃗| f⃗ ) =
m∑︂

u=1

(guln(A f⃗ )u − (A f⃗ )u)) −
1
2

[︂
(C f⃗ )T Diag(I · τ)(C f⃗ )

]︂
(A.7)

This describes the final form of likelihood to be sampled by the random walkers. C is the
Tikhonov matrix

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0 ... 0 0 0
0 1 −2 1 ... 0 0 0
0 0 1 −2 ... 0 0 0
... ... ... ... ... ... ... ...

0 0 0 ... 1 −2 1 0
0 0 0 ... 0 1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.8)

sometimes referred to as the Ridge Regression matrix. Tikhonov regularization penalizes non-
smooth solutions based on the strength of regularization τ which is optimized for a given prob-
lem.
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A.2 Regularization optimization

The starting estimate for the regularization parameters is sought by a trial-and-error approach.
After approximate orders of magnitude are established, regularization strength and offset are
sampled from a wide range of combinations. Each set is tested against the known distribution,
with measures from Section 3.2 evaluated.

Effects of unregularized unfolding can be seen in Figure A.1.

Figure A.1: Unregularized unfolding of a pseudosample. The es-
timation is substantially deteriorated with high uncertainties due
to the complexity of the problem.
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d = 14.0 d = 20.0

τ = 0.017

χ2 = 0.5235357081622899
pχ = 0.9999999298541741
χ2 = 39.14657058541254

pχ = 0.0001894514072518325
DM = 16272.909784071877
DCh = 0.5035670298077569
DEDM = 1251.762291082452

χ2 = 0.5011805386997424
pχ = 0.9999999466661433
χ2 = 38.86891403134682

pχ = 0.00020980654771567952
DM = 16221.306851060957
DCh = 0.489050930037561

DEDM = 1247.7928346969966

τ = 0.02

χ2 = 0.5183509468671078
pχ = 0.9999999341011512
χ2 = 40.12986328007975

pχ = 0.00013173679422423244
DM = 16495.915866311097
DCh = 0.5166573541549274

DEDM = 1268.9166051008538

χ2 = 0.5001238587562805
pχ = 0.9999999473688342
χ2 = 40.105845685319515

pχ = 0.00013291573598958012
DM = 16502.97752278177

DCh = 0.5037914315913393
DEDM = 1269.459809444752

τ = 0.023

χ2 = 0.5226548192756095
pχ = 0.9999999305914219
χ2 = 41.47324765217568

pχ = 7.982088049592654e − 05
DM = 16783.149865543128
DCh = 0.531696383751279

DEDM = 1291.0115281187022

χ2 = 0.49514285761256244
pχ = 0.9999999505779448
χ2 = 40.681762242894756

pχ = 0.00010729762054787487
DM = 16621.21027907897
DCh = 0.517751333788659

DEDM = 1278.5546368522284

τ = 0.027

χ2 = 0.5243726855408345
pχ = 0.9999999291476315
χ2 = 42.64604224197798

pχ = 5.132759622194328e − 05
DM = 17015.955213002337
DCh = 0.5443434943998559

DEDM = 1308.9196317694107

χ2 = 0.5006840872965537
pχ = 0.9999999469972527
χ2 = 42.16514668423613

pχ = 6.15432629730593e − 05
DM = 16937.51592031455

DCh = 0.5299642180430068
DEDM = 1302.8858400241957

Table A.1: Example of tested combinations of regularization pa-
rameters on an unfolded pseudosample against the known true
distribution. The columns show two different offsets d, and rows
show four strengths τ. Values correspond to various statistical
tests with definitions given in Section 3.2.
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A.3 Unfolding three years of data

Figure A.2: Event counts of the unfolded three-year sample. The
black solid line shows the unfolding in this work, with the shaded
area around bin counts showing the statistical uncertainty of un-
folding. The intensity of shading shows the Pearson correlation
between estimate distributions of neighboring bins. The event
spectrum contains additional two bins: underflow starting from
zero energy, and overflow reaching infinity. Additional bins are
shown in gray.

Prior to this work, the algorithm was applied to three years of data collected in IceCube
from 2012 to 2015. lifetime of the sample is 91709733 seconds with 318224 signal events.
The cleaning procedure is different from the one presented in Section 4.3.3, but samples have
comparable purities. The analysis chain, including preprocessing and feature selection, has
slight differences compared to the new analysis which has been optimized for current data and
the state of prowess.

The energy range considered in the three-year analysis spans slightly lower energies from
125.9 GeV up to 1.995 PeV split into 14 bins, and additional underflow and overflow. The zenith
bins divide the sky into only three regions, due to statistical constraints, with bins from 86◦ to
107◦, 107◦ to 111 ◦, and 111◦ to 180◦.

Correspondingly to the analysis with extended data, the energy range is slightly reduced
when considering the flux in zenith bins, to avoid the already low statistic region of high energy
distorting results after splitting the data into thirds. Therefore, the reduced energy range is from
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Figure A.3: Flux of the unfolded three-year sample. The black
solid line shows the unfolding in this work, with the shaded area
around bin counts showing the statistical uncertainty of unfold-
ing. The intensity of shading shows the Pearson correlation be-
tween estimate distributions of neighboring bins. Flux is calcu-
lated from Equation 5.10 for the energy range from 102.1 to 106.1

GeV.

125.9 GeV to 251.2 TeV.
Figures ??, A.3, and A.4 show the unfolded event spectrum, flux, and the weighted flux of

the three-year sample. Figures A.5, A.6, and A.7 show the unfolded flux in the three considered
angular ranges.

The best estimate of angular unfolding agrees well with the assumptions made with MCEq
simulating the atmospheric components, as shown in Figure A.8. Contrary to the extended
analysis, the astrophysical fit is not added to the MCEq simulation as its dominance starts at
higher energies.

Both the full sky and angular unfoldings exhibit much larger uncertainties in the high energy
region, due to limited statistics of the sample. Uncertainties of this scale do not allow of testing
any models.

After the development of this work, the new results were compared to previous ones and
shown in Figure A.9.
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Figure A.4: Weighted lux of the unfolded three-year sample.
Black solid line shows the unfolding in this work, with the shaded
area around bin counts showing the statistical uncertainty of un-
folding. The intensity of shading shows the Pearson correlation
between estimate distributions of neighboring bins. Flux is cal-
culated from Equation 5.10 and is multiplied with the energy
squared for the energy range from 102.1 to 106.1 GeV.

A.4 Effective lifetime

Any simulated dataset like CORS IKA or nugen, per definition, does not have a lifetime. It is
however convenient to define an effective lifetime of a simulation with the aim of quantifying
the statistical error. An effective lifetime is used to define a minimum amount of data that has a
comparable Poissonian error to the sample that is to be unfolded.

A simulation set with i weighted events xi with accompanying weights wi has a total number
of weighted events

N =
n∑︂

i=1

wi (A.9)

with variance

σ2
N =

n∑︂
i=1

w2
i (A.10)

The number of effective events ne f f is defined as the minimum number of events in the simulation
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Figure A.5: Event spectrum (left) and the weighted flux (right)
of the unfolded three-year sample in the 86◦ to 111◦ zenith band,
also known as the horizon bin. The black solid line shows the
unfolding in this work, with the shaded area around bin counts
showing the statistical uncertainty of unfolding. The intensity of
shading shows the Pearson correlation between neighboring bins.
Flux is calculated from Equation 5.10 and is multiplied with the
energy squared for the energy range from 102.1 to 105.4 GeV.

Figure A.6: Event spectrum (left) and the weighted flux (right) of
the unfolded three-year sample in the 107◦ to 130◦ zenith band,
with markings as in Figure A.5.
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Figure A.7: Event spectrum (left) and the weighted flux (right) of
the unfolded three-year sample in the 130◦ to 180◦ zenith band,
with markings as in Figure A.5.

Figure A.8: Ratio of angular flux to the full sky flux from the three-
year sample. The unfolded spectra from Figures A.5, A.6, A.7 are
divided with the full range unfolding from Appendix Figure A.4
per energy bin. As explained in Section 2.2.2, the low energy
region is dominated by the anisotropic conventional component
producing the dependancy in the ratio. As the energy crosses into
the prompt-dominated region, the ratio decreases. The MCEq
[FEG+15] estimates for each band are simulated with the H4a
primary model and the SYBILL.3c interaction model, with disre-
garded astrophysical contribution.
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Figure A.9: Weighted flux of the unfolded 11 years data (this
work) compared to unfolding of 3 years of data, shown in Ap-
pendix Figure A.4. The black solid line shows the unfolding in
this work while the orange marks show the previous analysis. The
last bin is not comparable as the previous analysis encompassed
a shorter energy range. The two fluxes are in agreement inside the
previous analysis uncertainty range, shown in the orange shaded
area.

to create the same Poissonian error as in the sample, and is given with

ne f f =
N2

σ2
N

=
(
∑︁n

i=1 wi)2∑︁n
i=1 w2

i

(A.11)

The ratio of the weighted simulated events and the effective events is the effective weight w

w =
T

ne f f
(A.12)

which gives the ratio of available events to the minimum events needed to produce comparable
errors. Effective weight below one implies statistics better than Poissonian in the given bin.
From this, it follows to define the minimum effective lifetime as

li f etimee f f =
li f etimesample

w
(A.13)

A given simulation can be used to work with a sample observed over a period of time up to the
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effective lifetime under the requirement of per bin statistics being Poissonian or better. There-
fore, a higher effective lifetime is associated with a superior simulation.

For the full energy range used in this work, with the used simulation and weightings as
described in Section 4.2, the effective lifetime and effective weights per considered energy bin
are shown in Figure A.10

Figure A.10: Effective lifetime (left) and the effective weights
(right) for the used energy bins. The values are reciprocal and
related by Equation A.13. The simulation set is weighted in the
same manner as it is for unfolding in this work.
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A.5 Systematic uncertanties

Systematic uncertainties are inherent to scientific experiments, and represent the uncertainties
stemming from imperfect knowledge of all the factors influencing a measurement. Unlike sta-
tistical uncertainties, which arise from random fluctuations and can be reduced with increased
data, systematic uncertainties are associated with known or unknown biases, majorly constituted
of limitations in instrumentation, or assumptions made about the detector. In IceCube, several
systematic influences are known but not described and cannot be considered straightforward.

Hole ice, the refrozen column of ice in which the DOM strings are embedded, introduces
systematic uncertainties related to optical properties. Hole ice is believed to contain residual
air bubbles, which can alter the optical properties of the ice, making it more scattering. This
introduces uncertainties in the simulation since the scattering properties directly affect photon
propagation. The scattering in hole ice furthermore affects the angular sensitivity of the DOMs,
as it increases the probability of downgoing light scattering into the PMT. This differs from the
behavior of the so-called bulk ice, the glacial ice surrounding the detector components and the
refrozen columns. Different models of hole ice p0 and p1 are considered in the unfolding.

The DOM efficiency represents the number of detected photons relating to the energy de-
posited in the detector, involving uncertainties both in photon production and detection. The
quantum efficiency of the photomultipliers affects the probability of photon detection. Any un-
certainties in the fits of quantum efficiency will propagate to DOM efficiency. Furthermore,
the efficiency of photon transmission through the glass sphere of the DOM can be affected by
factors like surface properties and optical characteristics. Additionally, the presence of detector
components can shadow certain areas of the DOMs, reducing their effective light collection and
lead to a systematic error, in combination with the uncertainty coming from the descriptions of
their positions and geometries. To consider variations of DOM efficiency, values including 90%,
95%, 100%, 105%, and 110% are considered, both in relation to energy and zenith.

Finally, systematic uncertainties include the depth-dependent values of ice scattering and ab-
sorption. These values are also varied in 95%, 100%, and 105%, and considered both depending
on energy and zenith.

The energy-dependent systematic error per each of the considered factors is given in Ap-
pendix Figure A.11. The systematic errors show a bias in the first energy bin, manifesting as an
underestimation of the flux for each factor considered. In the remaining energy range, no bias is
present and the errors distribute as expected.

Systematic uncertainties are evaluated in the same manner, but in angular regions defined in
Section 6.1. Due to the angular-dependent nature of the considered systematic factors, different
errors result for the whole range unfolding and the angular studies.

The angular systematic errors are substantially higher than the general systematic error for
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Figure A.11: The systematic error spanning from hole ice (first),
DOM efficiency (second), and ice properties (third). All system-
atic uncertainties are shown (bottom) with the black dashed lines
showing their maximum value per energy bin.
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the full zenith range considered. The difference between the maximal systematic error of zenith
bands and the maximal systematic error of the full range, shown in Appendix Figure A.12,
implies an overestimation bias, as the errors do not distribute symmetrically. At the highest
energies, the systematic error is dominated by the influence of ice properties. The higher energy
region has a dominating upper systematic error, with the middle zenith band exhibiting the
highest uncertainty.

Figure A.12: The maximal systematic error spanning from hole
ice, DOM efficiency, and ice properties, in considered angular
regions. The maximal systematic uncertainty for the full angular
range per energy bin is shown in black dashed lines, as in Ap-
pendix Figure A.11.
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A.6 Supporting material

The remaining supporting figures and tables relating to the contents of any Section of the pre-
sented work are given in this Section with their respective descriptions in captions.

Figure A.13: Comparison of plots of energy flags (left) and their
respective histograms (right). The lowest energy for an event to
be considered high energy in this example is 10000, and the flags
are applied to a generated set of x with balanced values between 0
and 20000. On the right, both histograms of values resulting from
two functions are shown, and they fully overlap. This is a result
of f lags acting as counters of events, therefore producing simi-
lar counts for approximately evenly distributed input. Inspecting
histograms one might falsely deduce the same underlying logic,
rather than the balance of the set. To interpret the similarity of
histograms, a proper understanding of features is needed, which
is not always feasible for the hundreds of available ones.
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Apj833 6y H4a 4-gen H3a default

SIBYLL23C 11.0971 11.0332 11.0683 11.1795

SIBYLL-2.1 11.439 11.3364 11.3984 11.5534

EPOS-LHC 11.3007 11.1914 11.2586 11.4028

DPMJET-III-3.0.6 10.9074 10.9098 10.8895 10.9704

QGSJet-II-04 11.0044 10.9463 10.9721 11.0839

Table A.2: Chi-square statistic of agreement between the un-
folded best estimates and the six-year astrophysical fit [A+16a]
and different atmospheric models. Columns show different in-
teraction models, while rows represent primary models. Tested
models are described in Section 4.1.

HESE 6y H4a 4-gen H3a default

SIBYLL23C 11.356 11.3973 11.324 11.4714

SIBYLL-2.1 11.5097 11.4783 11.4603 11.6174

EPOS-LHC 11.4529 11.436 11.4024 11.5578

DPMJET-III-3.0.6 11.2624 11.419 11.253 11.3563

QGSJet-II-04 11.1897 11.3003 11.1627 11.2763

Table A.3: Chi-square statistic of agreement between the un-
folded best estimates and the HESE fit [A+21] and different at-
mospheric models. Columns show different interaction models,
while rows represent primary models. Tested models are de-
scribed in Section 4.1.
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Figure A.14: Weighted flux of the pseudosample (left) and pseu-
dosample with added contamination (right). Events are added
following a muon at surface energy distribution at 0.13% to imi-
tate the impurity of the sample described in Section 4.3.3 used in
the analysis. There is a slight difference in absolute bin counts,
but the unfolded fluxes are comparable inside error bars.

Only atmo. H4a 4-gen H3a default

SIBYLL23C 18.2808 17.7452 18.5804 20.7619

SIBYLL-2.1 33.8936 34.0061 33.8781 33.976

EPOS-LHC 33.649 33.7194 33.6479 33.7701

DPMJET-III-3.0.6 14.0361 14.0889 14.0186 13.9873

QGSJet-II-04 33.6899 33.7854 33.6854 33.7213

Table A.4: Chi-square statistic of agreement between the un-
folded best estimates and different atmospheric models, with a
missing astrophysical contribution. Columns show different in-
teraction models, while rows represent primary models. Tested
models are described in Section 4.1.
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Figure A.15: Distribution of Markov Chain Monte Carlo esti-
mates for all target space bins, including underflow and over-
flow. Each distribution has a total of 1000000 entries. The Y-axis
shows the bin counts in the space of estimates shown on the x-
axis. The orange line shows the median of the distribution with
the spread in dashed lines.
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Figure A.16: Data to Monte Carlo agreement of selected features
(1). The Monte Carlo simulation is scaled to the size of measure-
ments and weighted with the predictions of the flux. The features
were chosen in a three-step selection procedure presented in Sec-
tion 6.3

100



Appendix A.

Figure A.17: Data to Monte Carlo agreement of selected features
(2). The Monte Carlo simulation is scaled to the size of measure-
ments and weighted with the predictions of the flux. The features
were chosen in a three-step selection procedure presented in Sec-
tion 6.3

.
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Figure A.18: Weighted flux of the Burnsample data. The black
solid lines show the unfolding in this work and the evaluated total
uncertainty. The dashed lines show different atmospheric models,
with varying interaction models described in Section 4.1. Re-
cent results from IceCube for the astrophysical components are
shown in solid lines in their corresponding energy ranges, with
the shading showing uncertainty. The assumed astrophysical fit
used in the total flux estimation [A+16a] is in green, HESE analy-
sis [A+21] is shown in pink, and 9.5 years diffuse analysis [A+22]
in orange.
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Figure A.19: Weighted flux of the unfolded data. The black solid
lines show the unfolding in this work and the evaluated total un-
certainty. The dashed lines show different atmospheric models,
with varying interaction models described in Section 4.1. Re-
cent results from IceCube for the astrophysical components are
shown in solid lines in their corresponding energy ranges, with
the shading showing uncertainty. The assumed astrophysical fit
used in the total flux estimation [A+16a] is in green, HESE analy-
sis [A+21] is shown in pink, and 9.5 years diffuse analysis [A+22]
in orange.
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Figure A.20: Flux of the unfolded data weighted with E3.5. The
black solid line shows the unfolding in this work with vertical
lines showing the total uncertainty. The deviation from the hori-
zontal alignment at higher energies implies a break in the spec-
trum, predicted by the overtaking dominance of the astrophysical
component. The assumed astrophysical fit used in the total flux
estimation [A+16a] is in green, HESE analysis [A+21] is shown
in pink, and 9.5 years diffuse analysis [A+22] in orange. All astro-
physical fits are combined with the atmospheric model prediction
given by SYBILL 2.3c [DLRF17].
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Figure A.21: Unfolded ratios of the five zenith bins to the all
range flux. The vertical lines show the total uncertainty of unfold-
ing. The prediction is shown in solid lines, color-coded to corre-
spond to the respective angular ranges. The simulation was made
with MCEq [FEG+15] containing only the conventional compo-
nent following the QGSJet interaction model and the H4a Hillas
primary model [Gai12], with no astrophysical contribution. The
misalignment between a purely conventional assumption and the
angular results is evident.
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Figure A.22: Unfolded ratios of the five zenith bins to the all
range flux. The vertical lines show the total uncertainty of unfold-
ing. The prediction is shown in solid lines, color-coded to corre-
spond to the respective angular ranges. The simulation was made
with MCEq [FEG+15] containing only the atmospheric compo-
nents following the SYBILL 2.3c [DLRF17] interaction model
and the H4a Hillas primary model [Gai12], with no astrophys-
ical contribution.
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tecorvo–maki–nakagawa–sakata mixing matrix based on CP-violating bipair neu-
trino mixing. Modern Physics Letters A, 30(05):1550019, feb 2015.

[Kno10] G. F. Knoll. Radiation Detection and Measurement. Wiley, 2010.

[Kre89] R. Kress. Tikhonov Regularization, pages 243–258. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1989.
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[Rä17] L. Rädel. Measurement of High-Energy Muon Neutrinos with the IceCube

Neutrino Observatory. Dissertation, RWTH Aachen University, Aachen, 2017.
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