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Abstract

Industrial automation deploys a continuously increasing amount of mobile robots in
favor of classical linear conveyor systems for material flow handling in manufacturing and
intralogistics. This increases flexibility by handling a larger variety of goods, improves
scalability by adapting the fleet size to varying system loads, and enhances fault tolerance
by avoiding single points of failure. However, it also raises the need for efficient, collision-
free multi-robot navigation. According to the current state of research, there is a need
for further investigation focusing on guaranteed viable and collision-free motion while
avoiding deadlocks and being able to cope with non-deterministic disturbances, e. g.,
unexpected obstacles and delays caused by computation and communication. These
challenges are addressed in this thesis through the following contributions.

The core problem, namely collision-free multi-robot navigation, is first precisely modeled
in a form that differs from existing approaches specifically in terms of application
relevance and simultaneous structured algorithmic treatability. Collision-free trajectories
for the mobile robots between given start and goal locations are sought so that the
number of goals reached per time is as high as possible. Based on this, a decoupled
solution is designed and implemented, which, in contrast to existing solutions, aims
at avoiding deadlocks with the greatest possible concurrency. Moreover, this solution
includes the handling of dynamic inputs consisting of both moving and non-moving
robots.

Based on an existing, exchangeable planning algorithm, global paths are planned indepen-
dently by each robot in the known semi-static environment. The developed Collaborative
Local Planning Framework then coordinates the movement of the robots along these
fixed, pre-planned paths. The framework defines the communication protocol, the be-
havioral model by a finite state machine, the graph-based conflict representation and the
management of local knowledge on each robot. Robots exchange messages collaboratively
to share knowledge about their current path and state. The pairwise conflicts occurring
between the robots are geometrically detected and communicated to finally determine
the Right-of-Way. Two algorithms were developed for this purpose, which are used
in the framework’s core: the Incremental Coordination-Space Path Scheduler which
proceeds heuristically, and the Optimal Multi-Robot Path Scheduler which calculates
optimal solutions but has exponential runtime complexity. After the Right-of-Way has
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been determined for all conflicts and acknowledgments have been exchanged between all
non-conflicting pairs of robots, robots are allowed to move while respecting the Right-
of-Way. This also takes care of non-deterministic events. The framework guarantees
collision-free movements and allows renegotiations with non-moving robots that request
to move as well.

For testing, performance analysis, and optimization, due to the complexity of multi-
robot systems, the use of simulation is common. However, this also creates a gap
between real and simulated robots. Even worse, simulation speed and both physical and
graphical fidelity are usually a trade-off in robotic simulation and have to be balanced
depending on the investigated problem. These issues can be reduced by using several
different simulators—albeit with the disadvantage of further increasing complexity. For
this purpose, the Robotic Experimentation Framework is introduced to write robotic
experiments with a unified interface that can be run on multiple simulators and also
on real hardware. It is based on the Robot Operating System (ROS) and offers an
easy-to-use Python API that facilitates the creation of experiments for performance
assessment, (parameter) optimization and runtime analysis. The framework has proven
its effectiveness throughout this thesis.

Lastly, experimental proof of the viability of the solution is provided based on a case
study of a complete (simulated) assembly system of decentralized autonomous agents
for the production of highly individualized automobiles. This integrates all the concepts
presented into a holistic application of industrial automation. The modeling includes
the definition of a product lineup and the dispatching of customer orders on the one
hand and their fully autonomous assembly on the other hand.

Detailed evaluations of more than 800 000 solved scenarios with more than 5 700 000
processed goals have experimentally proven the robustness and reliability of the de-
veloped concepts. Up to 50 robots within a single environment were simulated on a
single computer to demonstrate scalability. The execution times of the heuristic solver
algorithm were typically much smaller than one second for up to 20 pairwise conflicts
per input on a multi-core PC. Moreover, the system was able to increase its throughput
while simultaneously incrementing the number of robots. Robots have never crashed
into each other in any of the conducted experiments, empirically proving the claimed
safety guarantees. A fault-tolerance analysis of the decentralized assembly system has
experimentally proven its resilience to failures at workstations and, thus, specifically
revealed an advantage over linear conveyor systems. Finally, an exemplary comparison
with existing local planning algorithms also showed that these were either unsuitable or
achieved a 10x lower throughput of customer orders while even causing collisions.



Zusammenfassung

In der industriellen Automatisierung werden für die Materialflussabwicklung in der
Fertigung und Intralogistik zunehmend mobile Roboter anstelle klassischer linearer
Fördersysteme eingesetzt. Dies erhöht die Flexibilität durch die Handhabbarkeit einer
größeren Warenvielfalt, verbessert die Skalierbarkeit durch Anpassung der Flottengröße
an unterschiedliche Systemlasten und erhöht die Fehlertoleranz durch Vermeidung von
Single Points of Failure. Es steigert jedoch auch den Bedarf und die Anforderungen
an eine effiziente, kollisionsfreie Navigation von Robotern. Nach aktuellem Stand der
Wissenschaft besteht hier weiterer Forschungsbedarf, der speziell auf die garantierte Kolli-
sionsfreiheit mit Ausführbarkeit bei gleichzeitiger Behandlung von nicht-deterministischen
Störungen und der Deadlockvermeidung fokussiert. Diese Herausforderungen werden in
dieser Arbeit durch die folgenden Beiträge behandelt.

Das Kernproblem, die kollisionsfreie Multi-Roboter-Navigation, wird zunächst präzise in
einer Form modelliert, welche sich von existierenden Vorgehensweisen besonders durch
Anwendungsrelevanz und gleichzeitige strukturell methodisch-algorithmische Behandel-
barkeit unterscheidet. Gesucht sind dabei kollisionsfreie Trajektorien für die mobilen
Roboter zwischen gegebenen Start- und Zielpunkten, so dass die Anzahl der erreichten
Ziele pro Zeit möglichst hoch ist. Darauf aufbauend wird ein entkoppeltes Lösungskon-
zept entworfen und realisiert, welches im Unterschied zu existierenden Lösungen neben
den eingangs genannten Herausforderungen auch darauf abzielt, Deadlocks bei möglichst
hoher Nebenläufigkeit zu vermeiden. Zudem umfasst diese Lösung die Behandlung von
dynamischen Eingaben, bestehend aus fahrenden und nicht fahrenden Robotern.

Basierend auf einem existierenden, austauschbaren Planungsalgorithmus werden von
jedem Roboter unabhängig globale Pfade in der ihnen bekannten semi-statischen Um-
gebung geplant. Das entwickelte Collaborative Local Planning Framework koordiniert
dann die Bewegung der Roboter auf diesen festen, vorgeplanten Pfaden. Das Framework
definiert das Kommunikationsprotokoll, das Verhaltensmodell durch einen endlichen
Automaten, die graphbasierte Konfliktrepräsentation und die Verwaltung von lokalem
Wissen. Roboter tauschen kollaborativ Nachrichten aus, um ihren aktuellen Pfad und
Zustand zu teilen. Die zwischen den Robotern auftretenden paarweisen Konflikte werden
geometrisch erkannt und kommuniziert, um schließlich Vorfahrtsrechte zu bestimmen.
Dazu wurden zwei Algorithmen entwickelt, die im Kern des Frameworks genutzt werden:
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der Incremental Coordination-Space Path Scheduler, welcher heuristisch vorgeht, und
der Optimal Multi-Robot Path Scheduler, welcher optimale Lösungen berechnet, jedoch
exponentielle Laufzeit hat. Nachdem die Vorfahrt für alle Konflikte bestimmt wurde und
Bestätigungen zwischen allen nicht im Konflikt stehenden Roboterpaaren ausgetauscht
wurden, dürfen sich Roboter unter Einhaltung der Vorfahrt bewegen. Dies berücksichtigt
auch nicht-deterministische Ereignisse.

Um aufgrund der Komplexität von Multi-Robotersystemen die Entwicklung, Tests und
Optimierungen zu vereinfachen, ist der Einsatz von Simulation üblich. Dadurch entsteht
jedoch auch eine Abweichung zwischen realen und simulierten Robotern. Simulationsge-
schwindigkeit und sowohl physikalische als auch grafische Genauigkeit sind in der Regel
zudem ein Kompromiss bei der Robotersimulation und abhängig von der zu untersuchen-
den Fragestellung. Durch den Einsatz mehrerer verschiedener Simulatoren kann dieses
Problem vermindert werden – allerdings mit dem Nachteil weiter steigender Komplexität.
Hierzu wird das Robotic Experimentation Framework vorgestellt, um Roboterexperimente
mit einer einheitlichen Schnittstelle zu beschreiben, die auf mehreren Simulatoren und
auch auf realer Hardware laufen. Es basiert auf dem Robot Operating System (ROS) und
bietet eine einfach zu benutzende Python API, die die Erstellung von Experimenten etwa
zur Leistungsanalyse, (Parameter-) Optimierung und Laufzeitbestimmung erleichtert.
Das Framework hat sich durch intensive Nutzung im Rahmen dieser Arbeit bewährt.

Abschließend erfolgt ein experimenteller Nachweis der Tragfähigkeit der Lösung anhand
einer Fallstudie eines vollständigen (simulierten) Montagesystems aus dezentral agie-
renden autonomen Agenten zur Herstellung hochindividualisierter Automobile. Diese
integriert alle vorgestellten Konzepte in einen ganzheitlichen Anwendungsfall industrieller
Automatisierung. Die Modellierung umfasst einerseits die Definition einer Produktpalette
und die Einlastung von Kundenaufträgen sowie andererseits deren vollständig autonome
Fertigung.

Detaillierte Auswertungen von mehr als 800 000 gelösten Eingabeszenarien mit mehr als
5 700 000 verarbeiteten Zielen haben die Robustheit und Zuverlässigkeit der entwickelten
Konzepte experimentell nachgewiesen. Dabei wurde auf einem einzelnen Multi-Core-PC
mit bis zu 50 Robotern innerhalb einer Umgebung simuliert, um die Skalierbarkeit
zu zeigen. Bis zu einer Anzahl von 20 paarweisen Konflikten pro Eingabe lagen die
Ausführungszeiten des heuristischen Lösungsalgorithmus typischerweise deutlich unter
einer Sekunde. Darüber hinaus konnte das System seinen Durchsatz steigern, während
gleichzeitig die Anzahl der Roboter erhöht wurde. Die Roboter sind in keinem der durch-
geführten Experimente miteinander kollidiert, was die Zuverlässigkeit empirisch belegt.
Eine Fehlertoleranzanalyse des dezentralen Montagesystems hat seine Widerstandsfä-
higkeit gegenüber Ausfällen an Arbeitsstationen nachgewiesen und damit insbesondere
einen Vorteil gegenüber linearen Fördersystemen aufgezeigt. Ein exemplarischer Vergleich
mit existierenden lokalen Planungsalgorithmen zeigte zudem, dass diese entweder gänz-
lich ungeeignet waren oder einen etwa 10x geringeren Durchsatz an Kundenaufträgen
erzielten und dabei zudem Kollisionen auftraten.
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Chapter 1

Introduction

Robotics continuously gains momentum in the industry and massively changes the
way commodities are being produced, and materials are being transported, improving
quality and reducing costs. For instance, the mobile robot market, mainly consisting of
sales of Automated Guided Vehicles (AGVs) and Autonomous Mobile Robots (AMRs),
increased by 53 % in 2022, with over 4 million robots expected to be installed until
2027 [61]. Especially mobile robotics can be seen as the connecting link between the
processing and transport of goods, parts or materials (production- and intralogistics). In
contrast to fixed linear conveyor systems, a particular advantage of mobile robots is their
variability, scalability and, thus, flexibility. They will therefore continue to supersede
classic structures in logistics and manufacturing [31, 37, 52].

Generally, there are three main advantages of employing concepts of mobile robotics.
First, classic linear conveyor systems are typically designed for a required throughput.
By replacing them with mobile robots, the system can more easily be adapted to varying
loads by adding or removing robots (up to a certain limit). That is, by avoiding fixed
structures, scalability is increased. Second, transporting different goods or materials
may be easier by different types of robots, empowering higher flexibility [6]. If all types
of materials must be transported by the same conveyor system, it must be designed to
always handle the most complex goods which may be fed into the system—even though
this happens only rarely. Additionally, classic linear systems typically require some fixed
topology while not allowing to dynamically skip or detour to another area or drop-off
point. Contrarily, in a complex manufacturing process, decentralized operating mobile
robots also allow for selecting a different assembly station if the originally targeted
station is congested or failed. Third and finally, all segments of a linear conveyor system
or an assembly line constitute a single point of failure. If an incident occurs, the entire
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(a) Parcel sorting with the LoadRunner at the
distribution center of DPD in Cologne [16]; 4
LoadRunner robots (black arrows) and 2 drop-
off targets (red arrows) can be seen in the hall.

(b) Outline of a U-shaped cellular manufactur-
ing system (based on [60]); products to be pro-
duced are loaded (green arrow), processed at
the 4 cells and unloaded (red arrow).

(c) Sketch of fully decentralized assembly stations as a “Smart Factory” (from the SMART
FACE project [25]); there are four workstations equipped with industrial robot arms and a
warehouse (buffering parts and materials for assembly) in the background. Arrows indicate
possible material flow.

Figure 1.1: Different use cases for decentralized mobile robotics; in (a) parcels are
picked up by mobile robots, called LoadRunner, and they move their loaded parcel to
designated dropoff locations. In (b), the U-shaped cellular manufacturing system is both
supplied with materials and may even itself be driven by mobile robots. The sketch in (c)
illustrates decentrally organized workstations spread over an industrial hall. Mobile
robots are responsible for supplying materials and use them for assembly.
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system must typically be stopped which incurs high losses. In contrast, mobile robots
allow for selecting a different target (if any), increasing fault tolerance.
Three exemplary use cases are shown in Figure 1.1. Figure 1.1(a) depicts parcel sorting
at the distribution center of DPD in Cologne, Germany, using the so-called LoadRunner
(black arrows) developed at the Fraunhofer IML [56]. By relinquishing the classic
conveyor belt for sorting parcels, robots exhibit much more flexibility in targeting
different locations for parcel drop-off (red arrows). Conceptually, by joining multiple
LoadRunners together via electromagnets, they can even transport larger objects in a
team.
Figure 1.1(b) visualizes a U-shaped cellular manufacturing system with four “attached”
cells. Such a system is similar to an assembly line because emerging products are
typically loaded into the cell at the input (green arrow) and unloaded at the output
point (red arrow). Similarly to the previous sorting example, such systems may not only
be supplied with parts and materials by mobile robots, which is already common sense,
but they also move the emerging product through the cellular manufacturing system
itself.
As a last use case, consider the sketch in Figure 1.1(c), showing a decentralized assembly
scenario for the production of automobiles from the SMART FACE project [25]. Up until
now, this is normally done in highly optimized assembly lines, but recent trends tend
to replace them with mobile robots as well [37, 41]. Fully or semi-automated assembly
stations (or workstations for short) are distributed across the working environment in
such a way that robots piggyback the cars to be produced while others are responsible
for supplying required parts and materials for work steps conducted at workstations.
All explained use cases share the same theme: the transition from fixed linear structures
to more flexible robots. Thus, based on rising demands for deploying mobile robotics and
motivated by the plethora of possible applications, this thesis deals with efficient and
collision-free multi-robot navigation—an active field of research. Basically and on the
one hand, existing approaches can be categorized into coupled and decoupled. Coupled
approaches [19, 23, 47, 57, 63, 66, 67] combine the path finding with the resolving of
conflicts. Decoupled approaches [14, 27, 34, 39, 50] separate the problem into two phases:
path finding and conflict resolution based on previously computed paths. On the other
hand, approaches may also be categorized into centralized and decentralized. Centralized
approaches [12, 14, 34, 48, 57, 63, 66] have access to all information relevant for the
problem and consider all robots as a whole composite system (global perspective). In
contrast, decentralized approaches [9, 11, 13, 19, 42] treat every robot as an individual
and plan the paths independently (local perspective). In particular, many approaches
[9, 11, 13, 14, 34] directly calculate the trajectories of the robots involved, but require
strict adherence to the calculated target velocities, which can otherwise lead to collisions.
Therefore, according to the current state of research, there is a need for further investi-
gations focusing on guaranteed viable and collision-free motion while avoiding deadlocks
and being able to cope with non-deterministic disturbances, e. g., unexpected obstacles
and delays caused by computation and communication. This also allows accounting
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for simplifications and uncertainties in the underlying modeling of the robots and the
environment. The proposed concept retains flexibility by coordinating pre-planned
paths from almost arbitrary existing and interchangeable global planning algorithms. In
contrast to many existing approaches based on graphs [12, 23, 57, 63, 66], this includes
planning in free space. The approach focuses not only on avoiding but completely
preventing collisions, making it specifically applicable for industrial automation where
autonomous long-term operation is targeted.

The details of the approached problems of this thesis are described in the next Section 1.1.
A thorough explanation of all contributions follows in Section 1.2. Section 1.3 continues
with an outline of the entire thesis. Section 1.4 classifies the author’s publications and
Section 1.5 completes this chapter with a mandatory acknowledgment.

1.1 Problem Statements

This section explains the specific problems approached in this thesis. Section 1.1.1 deals
with the main problem, namely multi-robot navigation. Section 1.1.2 addresses the issue
of increased complexity when using robotic simulation. Both serve as the foundation for
the contributions described afterwards in Section 1.2.

1.1.1 Multi-Robot Navigation

As motivated in the introduction, many industrial use cases can be tackled with mobile
robots requiring multi-robot navigation as a fundamental ingredient. The problem is
defined as follows.

Let a finite number N , N ≥ 0, of inhomogeneous robots at predefined locations in the
plane (2D poses) be given. Their size and shape is approximated by their smallest
enclosing circle, i. e., every robot can have a differently sized circle. The environment is
considered semi-static, that is, there are static obstacles (like walls) known to the robots.
Some of these robots may also be temporarily inactive (idle), represented as known
semi-static obstacles. In other words, idle robots are known as semi-static obstacles to all
other robots, but such obstacles are being removed when they become active again. Note
that unexpected obstacles like humans are not modeled as known semi-static obstacles,
especially because they are unknown and exhibit much higher dynamics.

Goals are being assigned to idle robots from some external entity at any time. A goal
specifies the 2D pose (position and orientation) in the environment, a robot should
move to. Informally, a path defines the continuous series of locations from a robot’s
start location to its current goal. A trajectory additionally specifies the time when a
robot must have reached the locations on its path (yielding velocities, accelerations,
etc.). Once a robot has reached its assigned goal, it remains at the goal and becomes
idle (semi-static obstacle). It may then be assigned another goal, reactivating the robot
(making it active again).
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Initially unknown disturbances may happen along the paths of the robots, occurring
with a low frequency such that there are longer phases of normal operation without any
disturbances. For instance, such disturbances may be humans, occasionally appearing in
the robot’s environment, detected by sensors on the robot (like laser scanners). Moreover,
a small spatial deviation between a robot’s actual and target trajectory is tolerated by
adding safety margins to a robot’s size. This effectively increases the space requirements
of every robot along its path.

Additionally, it is expected that there are bidirectional communication links (e. g., via
Wi-Fi) between all pairs of robots. As a result, in a system with a total of N > 1 active
and inactive robots, each robot knows about all other N − 1 robots. Communication
may have arbitrary delays but no data loss (as ensured by, e. g., TCP). There may be
certain reaction times w. r. t. starting a robot’s motion, e. g., due to delays caused by
computation and communication.

The number N of simultaneously existing robots may vary over time. That is, new
robots may be added as semi-static obstacles in the environment, effectively increasing
N . Similarly, idle robots may be removed from the environment, effectively reducing N .

Within the previously explained specifications, multi-robot navigation eventually aims
at finding collision-free trajectories for all active robots between their start and goal
locations in the plane such that the number of goals per time is as high as possible. This
is similar to the Multi-Agent Path-Finding (MAPF) problem from the literature [40]
while also distinguishing between moving and non-moving robots (dynamic inputs).

1.1.2 Robotic Simulation

Apart from the advantages mentioned in the beginning, the industrial application of
mobile robots becomes more and more complex due to an increased demand for product
individualization up to lot size one, the wish for flexibility w. r. t. the employed robots
(fleet size, inhomogeneous types, etc.), and the requirement to fully integrate robots
seamlessly into the existing supply chains and manufacturing processes. Therefore, a
potential disadvantage is the resulting complexity in developing and integrating such
systems in practice. A common approach to overcome or at least reduce these challenges
is applying simulation, e. g. using the Stage or NVIDIA Isaac simulator [24, 38]. Without
the need to actually build a robotic system, simulation allows for testing, optimizing
and evaluating in a “sandbox”. Ideally, simulation allows to create a so-called digital
twin of all relevant structures, components and goods, i. e., a virtual copy of the real
environment.

Nonetheless, using simulation also creates a so-called reality gap between real and
simulated robots [36]. The only way to overcome this issue is testing on real hardware
which is tedious and costly. Furthermore, simulation speed and both physical and
graphical fidelity are usually a trade-off in robotic simulation that needs to be balanced
depending on the investigated problem. For instance, if a large fleet of robots needs to be
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Figure 1.2: Conceptual overview of the new Collaborative Local Planning Framework
(CLPF) with the main components communication, robot-local knowledge, state syn-
chronization and the path scheduler (solver algorithm)

analyzed, fidelity is typically lower to prevent performance degradation of the simulation.
In contrast, if only a few robots are being simulated, physical and graphical fidelity
may be higher, yielding results that are closer to the behavior of real robots. Such
issues can be reduced by using several different simulators—albeit with the disadvantage
of further increasing complexity because different simulators [18, 24, 33, 38] typically
provide different interfaces.

1.2 Overview of Contributions

This thesis provides the following contributions to the field of mobile robotics and its
application in industrial automation.

First, the core problem, namely collision-free multi-robot navigation, is precisely modeled
in a form that differs from existing approaches specifically in terms of application
relevance and simultaneous structured algorithmic treatability (algorithm engineering).
This was already sketched in Section 1.1.1.

Second, based on this modeling and according to the outlined taxonomy, a decoupled
solution is designed and implemented, which, in contrast to existing solutions, specifically
aims at avoiding deadlocks with the greatest possible concurrency in addition to the
handling of unknown disturbances. Moreover, this solution includes the handling of
dynamic inputs consisting of both moving and yet non-moving robots. Global paths
are planned independently by each robot in the known semi-static environment between
given start and goal locations using an existing, exchangeable planning algorithm. A
map of the environment is provided by the so-called Vector Map Server (VMS).

The developed Collaborative Local Planning Framework (CLPF) then coordinates the
movement of the robots along these fixed, pre-planned paths. The framework defines
the communication protocol, the behavioral model by a finite state machine, the graph-
based conflict representation and the management of local knowledge on each robot,
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see Figure 1.2. Robots exchange messages collaboratively to share knowledge about
their current path and state. The pairwise conflicts occurring between the robots are
geometrically detected and communicated to finally determine the Right-of-Way (RoW).

Briefly speaking, a conflict is present if the occupied spaces around the paths of two
robots intersect each other. In such a situation, we also speak of intersecting paths.
The RoW at a given conflict specifies the order in which the two associated robots are
allowed to pass through the conflict area: a non-eligible robot (not getting the RoW) may
only enter the conflict once the eligible robot (getting the RoW) has completely passed
through and left the conflict area. Determining the RoW at all conflicts of intersecting
paths is termed Path Scheduling. That is, assume that a finite number of possibly
intersecting paths in a 2D plane with robots located at their start locations is given. A
robot is only allowed to move forward and has a defined maximum velocity whereby the
magnitude of acceleration is assumed to be infinite. For all pairwise conflicts, a RoW is
sought such that collision-free motion to the associated goals is possible for all robots
while respecting the RoW and keeping the required time as low as possible.

Two algorithms were developed for path scheduling, which are used in the framework’s
core: the Incremental Coordination-Space Path Scheduler (ICSPS) which proceeds
heuristically, and the Optimal Multi-Robot Path Scheduler (OMRPS) which calculates
optimal solutions but has exponential runtime complexity. Basically, ICSPS is based on
incrementally constructed so-called coordination spaces that are spawned by the paths
of conflicting robots. By representing conflicts in the coordination spaces, the RoW at
every conflict can be deduced by computing the shortest path in every step. OMRPS
uses full search space enumeration of all possible decision vectors encoding the RoW.
Every decision vector is scored and the best-scoring vector is returned. It turns out that
OMRPS is quite applicable for small-sized inputs. ICSPS achieves practicable efficiency
for larger-sized inputs but may not generally find a solution if one exists and may also
return suboptimal solutions. Both solvers assume a static input, i. e., all robots are
(assumed to be) non-moving and located at known start locations.

After the RoW has been determined for all conflicts and acknowledgments have been
exchanged between all non-conflicting pairs of robots, the robots are allowed to move
while respecting the RoW. CLPF operates the robot’s motion controller (which controls
the robot’s engines, cf. Figure 1.2) and gets notified about events like reaching a
goal. It guarantees collision-free movements and allows renegotiations with non-moving
robots that request to move as well (dynamic input), effectively solving the multi-robot
navigation problem. By computing RoWs and enforcing the explicit release of negotiated
conflicts by CLPF’s communication protocol, the handling of unknown disturbances is
made possible which constitutes a major advantage of the proposed concept. Detailed
evaluations of more than 800 000 solved scenarios with more than 5 700 000 processed
goals have experimentally proven the robustness and reliability of the developed concepts.
Up to 50 robots within a single environment were simulated on a single computer to
demonstrate scalability. The execution times of the heuristic solver algorithm were
typically much smaller than one second for up to 20 pairwise conflicts per input on a multi-
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Figure 1.3: Modeling of the decentralized assembly system: concrete agents are shown
on the lowest level in the hierarchy representing all autonomously acting entities

core PC. Moreover, the system was able to increase its throughput while simultaneously
incrementing the number of robots. Robots have never crashed into each other in any of
the conducted experiments, empirically proving the claimed safety guarantees.

Third and due to the increasing complexity justified in Section 1.1.2, the Robotic
Experimentation Framework (REF) is introduced to write robotic experiments with
a unified interface that can be run on multiple simulators and also on real hardware.
It is based on the Robot Operating System (ROS) and offers an easy-to-use Python
Application Programming Interface (API) that facilitates the creation of simulator-
agnostic experiments for performance assessment, (parameter) optimization and runtime
analysis. To the knowledge of the author, there is no such framework yet. Full mature
support for the Stage [24] simulator and basic support for Gazebo [33] and MORSE [18]
have already been implemented as part of this thesis. The framework has proven its
effectiveness throughout this thesis.

Fourth and finally, an experimental proof of the viability of the solution is provided based
on a case study of a complete (simulated) assembly system of decentralized autonomous
agents for the production of highly individualized automobiles [49, 36]. This integrates
all the concepts presented into a holistic application of industrial automation according
to the use case visualized in Figure 1.1(c). The modeling includes the definition of
a product lineup and the dispatching of customer orders on the one hand and their
fully autonomous assembly on the other hand. The component hierarchy of the agents
is sketched in Figure 1.3. Basically, a carrier robot transports the products to be
assembled at workstations and supply robots provide materials from warehouses required
during the assembly. Information about the product lineup, the required work steps
for every product, the materials for every work step and the capabilities required by
every agent are provided by the product server. Conceptually, the system can handle an
unlimited number of different products and variants. In a throughput analysis, the system
experimentally proved its scalability by continuously increasing the number of completed
customer orders while incrementing the robot count. An exemplary comparison with
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existing local planning algorithms also showed that these were either unsuitable or
achieved a tenfold lower throughput of customer orders while even causing collisions.
Notably, the assembly system was analyzed w. r. t. fault tolerance and experimentally
proved its resilience against failures injected into workstation during operation. This
specifically reveals an advantage over linear conveyor systems.

1.3 Outline of This Thesis

According to Figure 1.4, this thesis is organized as follows. Chapter 2 reviews related
work from the literature and classifies the proposed concepts regarding existing state-
of-the-art approaches. In addition, a taxonomy is presented and all reviewed research
is categorized accordingly. Chapter 3 then presents the new Robotic Experimentation
Framework (REF) based on ROS and an easy-to-use Python API which serves the
general purpose of abstracting and simplifying robotic experiments. Chapter 4 presents
and formalizes the underlying problem statements of collision-free multi-robot scheduling.
The two novel solver algorithms, namely the Incremental Coordination-Space Path
Scheduler (ICSPS) and the Optimal Multi-Robot Path Scheduler (OMRPS), are then
described in detail and evaluated to compute a schedule guiding involved robots of a
given input scenario to their goals. This guarantees collision-free motion given that
the required assumptions are met. Chapter 5 introduces the new Collaborative Local
Planning Framework (CLPF) that uses the previously mentioned solvers at its core in
order to handle a fleet of dynamically moving robots in a shared environment, effectively
preventing collisions between them. The framework contains the communication logic
that is employed to negotiate conflicts between robots. After parameter optimization, it
is experimentally evaluated regarding runtime performance, throughput, scalability and
safety. Based on the concepts of all previous chapters, Chapter 6 presents the case study
which comprises a fully operational (simulated) assembly system for the production of
highly individualized automobiles based on decentrally and autonomously acting agents
(with mobile robots in particular). Its evaluation targets throughput, fault tolerance
and a comparison with other planners. Finally, Chapter 7 concludes the thesis with a
brief summary and an outlook regarding further research.

1.4 Author’s Publications

This section demarcates the author’s publications relevant for the content of this thesis.

The design and implementation of roslaunch2 (RL2) is presented in “roslaunch2: Versa-
tile, Flexible and Dynamic Launch Configurations for the Robot Operating System” [5].
It is an essential part of the Robotic Experimentation Framework from Chapter 3.
roslaunch2 was completely designed, implemented and published by the author of this
thesis.
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The paper “Towards Autonomously Navigating and Cooperating Vehicles in Cyber-
Physical Production Systems” [7] deals with initial work on the topic of using mobile
robots in production systems based on ROS. The author contributed the majority of
the paper except for the section on collision avoidance and parts of the discussion and
conclusion. In contrast to the concepts of this thesis, the paper focused on sensor based
reactive collision detection and avoidance. It is only used as a fallback in this thesis in
case of nondeterministic obstacles like humans. In such a case, a robot simply stops and
waits until the obstacle disappears. The resulting delays are properly handled by CLPF
from Chapter 5. Parts of the proposed design from [7] have influenced the concepts of
this thesis while others have been partly abandoned (e. g., hierarchy of collision handling)
or considered out-of-scope (e. g., hardware level).

The joint work “Towards Decentralized Production: A Novel Method to Identify
Flexibility Potentials in Production Sequences Based on Flexibility Graphs” [4] with
Bochmann et al. focuses on analyzing and leveraging the flexibility potentials of paral-
lelizable production steps of the assembly of automobiles at Volkswagen. The author
contributed in writing the sections related to graph theory, i. e., the modeling and
visualization of flexibility graphs as well as the graph analysis of flexibility potentials.
This served as input for the case study from Chapter 6, especially the modeling of
product dependencies (Section 6.3).

Finally, the paper “A Versatile and Scalable Production Planning and Control System
for Small Batch Series” [6] jointly written with Mertens et al. continued on the topic
of transitioning from linear assembly lines to decentralized production, motivated by
product individualization and to exploit flexibilities. The author primarily contributed
to the section of flexibility potentials. The topic also relates to the motivation of the
case study from Chapter 6.
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Chapter 2

Related Work

This chapter reviews related approaches for solving the so-called Multi-Agent Path-
Finding (MAPF) problem from the literature and explains the major differences to the
proposed methods of this thesis (cf. Chapters 4 and 5) without explaining the math.
In Section 2.1, we give a brief overview of the MAPF problem including a taxonomy
of related approaches from the research field. The proposed methods from this thesis
are then classified in Section 2.2 according to the taxonomy of Section 2.1. Finally, four
major clusters of related approaches are identified, presented and delimited in Section 2.3.

2.1 Overview and Taxonomy

All possible states of the robots within the environment are typically called the con-
figuration space C, or C-space for short [40]. It typically comprises its position and
orientation in the environment. The input for the MAPF problem is given by an initial
configuration and a goal configuration for every involved robot. The output (solution) is
a trajectory which specifies the sequence of configurations in time for all involved robots
to reach their goals while avoiding (or even guaranteeing the prevention of) collisions.
Note that a robot’s shape is also represented differently in the various approaches, e. g.,
as a circle [42] or as a convex polygon [34], which can have a crucial impact on the
performance. Every solution to the problem needs to compute a path for every robot.
Approaches can therefore be categorized as follows:

• Coupled (aka direct or integrated) approaches [57, 63, 47, 66, 67, 23, 19] combine
the path finding (aka routing) with the resolving of conflicts. A conflict is given
by the intersection of two or more paths in space and time. That is, paths are

13
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determined while avoiding conflicts between them. Notice that the notion of a
conflict is sometimes separated into (first) space and (second) time for simplicity
because an intersection in space is always a necessary condition for a conflict.

• Decoupled approaches [34, 27, 50, 39, 14] separate the problem into two phases,
namely path finding and conflict resolution. In the first phase, paths are computed
for all robots independently and in the second phase, robots are coordinated along
their path (w. r. t. to time) to resolve all conflicts. The process may be iterative
meaning that both phases are being repeated until an adequate solution was
found. Additionally, the paths may be altered in the second phase to account for
information about detected conflicts.

Based on the amount of information available in the path planner, approaches can also
be classified as follows [40, 11]:

• Centralized approaches [34, 57, 63, 12, 48, 66, 14] consider all robots “to be a
composite robot system, to which a classical single-robot path planning algorithm
is applied”, e. g., A⋆ [40]. In particular, all information is available for all involved
robots as from a global perspective. Centralized approaches normally provide the
possibility of solving the problem optimally and completely (see below).

• Decentralized approaches [42, 13, 11, 9, 19] treat every robot as a separated
individual and its motion is planned independently by treating other robots as
moving obstacles. Notably, robots only have a local perspective on the entire
system. Such approaches can also be cooperative by means of communication
between the robots [42]. However, even if robots execute an algorithm on their
own, sharing all information that a centralized solver would have (equaling a global
perspective) makes the approach itself a centralized one [48]. The spectrum of
decentralized approaches ranges from algorithms that solely rely on local sensor
readings (fully decentralized) to those that build upon communication, cooperation
or even collaboration (less decentralized).

Another distinguishing characteristic is how the approaches deal with the size of the
C-space. For N robots, the combined C-space is given by C1 × . . .× CN which becomes
huge already for small values of N . Thus, some approaches [57, 63, 12, 23, 14] discretize
the C-space (or parts of it) by means of a so-called roadmap, typically represented as a
graph. This effectively reduces the problem to the given graph. Related approaches are
presented in Section 2.3.1.

Completeness refers to the property of a path planner of being able to find a solution, if
one exists [40]. A resolution-complete path planner [12] must provide a solution if one
exists, given a specific C-space discretization that the planner is operating on. Thus, it
might not be complete in the general case. Noteworthy, sampling-based path planners
generally only provide probabilistic completeness, e. g., the Rapidly Exploring Random
Trees (RRT) algorithm [32].
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Optimality refers to achieving the best “quality” of all possible solutions returned by an
approach whereby quality is measured given some specific criterion, e. g., minimizing the
sum of all execution times until a given set of robots has reached their goals (total travel
time, throughput) [14, 23]. Another widely used criterion is minimizing the time it takes
for the longest executing robot to reach its goal (critical path time, makespan) [47, 63].

Completeness, optimality and run-time complexity are tightly coupled with each other.
Since the MAPF problem is PSPACE-hard [40], solving the problem optimally and
completely likely requires exponential run-time complexity. Many proposed algorithms
therefore apply heuristics to overcome practical runtime limitations while sacrificing
either completeness, optimality, or both.

Additional dimensions of the problem are the type of obstacles considered (e. g., static
vs. dynamic obstacles), the handling of deadlocks (and possibly even livelocks), provided
safety guarantees, dealing with uncertainty, model inaccuracies (e. g., w. r. t. motion
dynamics, the robot’s shape, etc.), and in general, assumptions made in the entire
approach. We summarize this by the employed Environmental and Planning Model
(EPM). Most approaches that aim to handle dynamic obstacles (like humans) are
decentralized because such obstacles are typically incorporated by means of sensor
observations (e. g., laser scanners or cameras) [9, 26, 62, 2, 17]. However, in industrial
settings and due to the overall complexity, dynamic obstacles are often neglected by
assuming that robots drive in an isolated environment. Nevertheless, every robot still
poses a dynamic obstacle to all other robots in the same environment.

2.2 Classification of Contributions

The proposed solvers of Chapter 4, namely the ICSPS and the OMRPS as part of
the CLPF presented in Chapter 5, are mainly centralized (with the possibility of
distributing the computations among all robots of the input) and decoupled. This is
because the CLPF establishes a communication and interaction layer for robots of the
system allowing them to share all required information. Computed trajectories from an
instantiated solver within this framework are then executed ensuring safety (collision
prevention) by explicitly releasing negotiated conflicts. Due to restricting the negotation
of conflicts to smaller groups (so-called subgraphs of the intersection graph), the overall
approach (CLPF) adds decentralized flavors. In particular, until distributed knowledge
is synchronized, robots do not share an equal view on the system (hybrid approach).
Within the category of decoupled approaches, the suggested approach falls into the
category of fixed path coordination (cf. [11, 34, 27, 50, 39, 14] for related approaches)
because both solver algorithms, the ICSPS and the OMRPS, aim at deciding the RoW
for all conflicts given previously computed paths that remain fixed.

It is worth noting that a solver expects a static input while the CLPF extends this to
the considerably more complex problem of handling dynamic inputs. A static input
refers to a set of robots that are assumed to be non-moving with known start locations.
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The solver then determines the RoW while assuming robots are at their start locations.
Contrary to this, a dynamic input refers to the situation where a subset of the robots is
already moving while others are standing still but requesting to move as well. In such a
situation, the CLPF provides the methodologies to integrate the yet non-moving robots
into the set of moving robots whereby non-moving robots may request integration at any
time. The CLPF also handles possible uncertainty in the EPM on a conceptual level.

With respect to the general MAPF problem and especially given the assumption of fixed
(that is, non-modifiable or re-plannable) input paths, none of the presented approaches
are optimal or complete. However, note that this also accounts for increased practical
computability. With respect to the path scheduling problem, the OMRPS can be
considered optimal and complete (given the required assumptions) because it checks
all possible solutions (see Section 4.5.1). Generally, the aforementioned properties
depend on the actual instantiated solver within the CLPF. For instance, employing
the ICSPS and considering all possible permutations of the order of the robots should
guarantee completeness. Extending this by also taking into account all possible paths in
coordination space (CS) should theoretically guarantee optimal solutions.

2.3 Range of Related Subjects

Within this section, four main clusters of topics will be presented which are related to the
topic of this thesis, mainly the MAPF problem as introduced previously in Section 2.1.
They contain a brief review and disinction of associated related work. Note that the
clusters are naturally neither distinct nor disjoint.

Section 2.3.1 presents the topic of discretizing the C-space via roadmaps which is one
of the most widely used method for tackling the MAPF problem. Section 2.3.2 then
continues with decoupled approaches employing fixed path coordination. Inspired by
work from the train scheduling domain, Section 2.3.3 presents approaches using Linear
Programming techniques like Mixed Integer Linear Programming (MILP), Integer Linear
Programming (ILP) and Quadratic Linear Programming (QLP) to solve the related
Train Timetabling and MAPF problems. Finally, Section 2.3.4 reviews decentralized
approaches.

2.3.1 C-Space Reduction via Roadmaps

The following papers perform some sort of discretizing the C-space in order to reduce its
size and complexity and then apply different approaches on the simplified configuration
space. Many of the approaches are coupled [57, 63, 12, 66, 23] and therefore also include
the computations of the paths itself. In contrast, the approaches from Chapters 4 and 5
use fixed path coordination and consider the path for every robot to be part of the input
which is a major conceptual difference. Generally, operating on a reduced C-space can
only provide optimality and completeness within the given resolution of the roadmaps.
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Additionally, the roadmap topology must be defined previously and is subject to have
a huge performance impact. Clearly, all approaches are incomplete w. r. t. the general
problem (without roadmaps).

Ter Mors et al. present a centralized, coupled algorithm for planning optimal and
resolution-complete paths [57]. They integrate routing (planning) and conflict resolution
in a “free path approach” while the environment is being modeled as a roadmap which is
termed “infrastructure” where resources (like vertices in a graph) have a given capacity
and a travel time. Reachability between resources is defined via a successor relation on
the resources (similar to edges). A path is then given by a sequence of (free) resources
through the roadmap. With the definitions of free time windows and reachability, the
approach plans on a graph of such free time windows, similar to Dijkstra or A⋆. Robots
can reserve resources up to the given capacity to prevent collisions. It is important
to note that the authors consider the specific case where a set of robots have already
planned paths and an additional one should plan its path as well while respecting the
paths of the existing robots (not precisely equal to MAPF). Thus, this approach depends
on the order of jobs and both optimality and completeness only applies to the single
lastly planned robot. Nonetheless, the approach scales well and provides fast solutions
for a large number of resources (1000) and existing paths (3000).

Yu and LaValle present a centralized, coupled and resolution-complete planning approach
which is optimal on the employed graph model and under the imposed assumptions [63].
Based on their graph model, an ILP formulation of the multi-commodity network flow
problem is presented which can be used to solve MAPF problems, resulting in their
Time Optimal Multi-robot Path Planning (TOMPP) and Distance Optimal Multi-robot
Path Planning (DOMPP) algorithms. However, the authors assume unit speeds and
meet and head-on collision types only. Additionally, the formulation does not work on
multigraphs, i. e., there cannot be more than one edge between two vertices and scenarios
focus on grid-based environments. The output is a “path” on the graph, i. e., a valid
series of vertices on the graph from the start to the goal for every robot which is either
time optimal (TOMPP) or distance optimal (DOMPP). They evaluate their approach
for up to 150 robots but only in grids up to size 32× 32, requiring up to hundreds of
seconds depending on the number of obstacles, robots and the actual grid size. After
a specified cutoff time, the ILP solver was terminated for an input without having a
solution which also indicates the complexity of the problem.

De Wilde et al. suggest the “Push and Rotate” algorithm, an improvement of the
previously published “Push and Swap” [12]. It is a centralized, coupled path planning
approach which is proven to be resolution-complete for two unoccupied locations on
a connected graph. Methodologically, the authors transfer the problem of finding
conflict-free paths to the pebble motion problem which, briefly summarized, deals with
coordinating motions of pebbles placed on vertices in a graph. The pebbles (aka robots)
must be moved from a given source to a goal location in the graph while not violating
capacity constraints on the vertices. The output is a sequence of assignments (like a
“move” in a board game) telling the robots to move from one vertex to another adjacent
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vertex. The first assignment in this sequence equals the start and the last assignment the
goal assignment. The basic idea is to plan a path in the graph for a single robot, identify
conflicts with exiting paths and then try to fix the conflicts by a set of operations (push,
clear, resolve, etc.) that move robots around on adjacent vertices in order to resolve
the conflict. The authors identify graph structures that are the foundation for applying
the various operations. The algorithm improves “Push and Swap” by fixing the handling
of so-called isthmus (i. e., vertices with degree two in the underlying graph). Clearly,
the algorithm respects robots (pebbles) already blocking vertices and thus, it depends
on the order of how robots are planned similar to the work of [57].

Sharon et al. propose a centralized and resolution-optimal algorithm, called Conflict
Based Search (CBS) [48], operating on a graph and optimizing the sum over all robots
of the number of time steps required to reach their goals. The authors consider their
approach as being “a continuum of coupled and decoupled approaches”. They define the
MAPF problem to be on graphs which is not equal to the common general case [40] with
an undiscretized C-space. Sharon et al. summarize the idea of CBS as follows: “CBS
is a two-level algorithm where the high level search is performed in a constraint tree
whose nodes include constraints on time and location for a single agent. At each node
in the constraint tree a low-level search is performed to find new paths for all agents
under the constraints given by the high-level node. Unlike A⋆-based searches where the
search tree is exponential in the number of agents, the high-level search tree of CBS is
exponential in the number of conflicts encountered during the solving process.” Similar
to the intersection graph of Chapter 5, the approach employs what the authors call
“Independence detection” to group robots having conflicts with each other in distinct
groups to solve them independently.

Based on a QLP model, Digani et al. suggest a centralized, decoupled, non-optimal
approach for AGV coordination on predefined paths of predefined roadmaps [14]. This
can be considered as a transfer of the linear programming methods applied in the
use case of the Train Timetabling Problem discussed in Section 2.3.3 to fixed-path
coordination, cf. Section 2.3.2. The world is modelled as a given roadmap with “sectors”
that robots need to travel whereby velocity is assumed to be constant on every sector.
The authors consider robots having (geometric) intersections inside a sector as the input
for the QLP. The output are velocities for the involved robots to coordinate them in
a way to avoid collisions. The paper is based on several assumptions; however, as the
most important distinction to this work (and although some assumptions are equal),
the “collision avoidance” is based on adherence to these assumptions, especially in the
QLP formulation. If this is not the case (as always in practice), collisions can occur
which is not desired in an industrial context. Additionally and as already stated at
the introduction, the approach requires “the roadmap” as well as the partitioning into
sectors and that highly affects the performance.

Finally, Fransen et al. propose a centralized and coupled dynamic path planning approach
[23]. The grid-based layout is represented as a graph with dynamically updated vertex
weights. A vertex represents the center point of a so-called “zone” (a cell of the grid) and
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an edge is present if two neighboring zones are connected. Edge weights are constant
and initialized to the minimum travel time. All robots are assumed to be identical
and the graph is directed, i. e., path segments are unidirectional only. Vertex weights
are initialized to zero and updated based on the waiting time of a robot in a zone
(occupied vertex), following by exponential smoothing after every update. Updates
are performed in every “simulation step” (evaluated in MATLAB), so authors seem
to assume clocked operation of their centralized system. It is considered coupled due
to the dynamic updating of vertex weights. Replanning itself is done via A⋆ based on
the updated vertex and edge weights to minimize a cost function. The approach is
entitled “dynamic” because replanning is triggered frequently, e. g., after traveling a
given number of zones. The authors combine deadlock avoidance (deadlocks can still
occur though) with deadlock recovery which is possible “as long as an alternative path
to the same destination exists for at least one of the AGVs waiting in deadlock [...]” [23].
The authors consider a fair notion of dynamics by means of second order kinematics.
However, they do not provide any information about optimality or completeness.

Notably, the papers [34, 66, 19] also employ C-space reduction but will be discussed in
subsequent sections to elaborate on their central themes.

2.3.2 Fixed Path Coordination

There are decoupled approaches that consider the computed paths to be fixed. The
resulting problem of planning motions (velocities) along the given fixed paths is therefore
termed path coordination (or path scheduling). Approaches of this class will be presented
in this section and are therefore specifically related to the proposed methods of Chapters 4
and 5.

LaValle and Hutchinson provide useful theoretical foundations for algorithms without
evaluating them in simulations or real-world setups [34]. In particular, their centralized
and decoupled fixed path coordination algorithm uses the “coordination space” which
is also employed in the suggested approach of this thesis (cf. Section 4.4). However, in
contrast to our approach, they seem to discretize the coordination space (grid-like voxels).
The authors also present an approach for planning on roadmaps and a centralized motion
planning approach without any C-space discretization but this is out of the scope of
this section. The formulated optimization problems can be considered as a “black
box”: when no solution is found, it is unknown why and how this can be fixed. In
their path coordination approach, similar to C-space discretization, the authors perform
time discretization while sacrificing completeness for resolution-completeness. The work
assumes that “a robot is capable of switching between a fixed, maximum speed and
remaining motionless [...]”. Although this is common in geometric motion planning to
make the underlying problem more tractable, it renders the proposed approaches difficult
to be applied in practice or voids collision avoidance guarantees if no additional care is
taken.
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Guo and Parker propose a decentralized, decoupled and presumably non-optimal (in a
global sense) and incomplete motion planning approach for multiple mobile robots [27].
Incompleteness is inferred from its decentralized nature just as non-optimality, regardless
of the fact that the approach optimizes a cost function for each robot individually and
a “global measurement function” for the entire team of robots. The authors also do
not explain in detail what information is actually shared between the robots making it
difficult to judge whether the approach may even be rather centralized. For example, it is
not explained how the final solution is selected based on what every robot has computed
decentrally and is broadcasting afterwards. However, since it is stated that the approach
can handle unknown terrain which is most probably integrated via additional sensors
(being integrated in the computations), we consider it decentralized. The approach itself
relies on a grid-based sampled environment and paths are being computed independently
of other robots via D⋆. Robots share information to optimize a cost function and
computations are distributed among the robots. Similar to the proposed approach
of Section 4.4, the approach employs a (possibly discretized) “coordination diagram”
to plan collision-free motion for the given input (termed “coordination space” in this
thesis). The overall performance has only been evaluated for up to three robots with
computation times in the magnitude of minutes, making dynamic replanning questionable.
It is therefore also unclear how it scales. Results and experiments are not reproducible
since used weights and software are not stated. In particular, the authors drop all
assumptions in their practical experiments and still finally state that their approach is
optimal. Given the stated computation times, it is hard to believe that this works in a
“dynamic outdoor environment”; especially because they even state that their “approach
is exponential in the number N of robots [but] efficient for a fixed N”. It is unclear
why this is described as “efficient”. Due to its decentralized nature, it cannot guarantee
safety. Finally, it should be noted that deadlocks are not considered at all which are
particularly relevant in narrow environments.

The resolution-complete approach published by Simeon et al. is also based on finding a
path in a so-called coordination diagram (CD) [50] which is similar to the CS representa-
tion of the proposed method from Section 4.4. The authors lack to classify their approach,
however, we consider it to be centralized because all robots must be incorporated into a
single CD. Simeon et al. define a path as a sequence of line segments (S) and arcs (A),
different to the definition of this thesis (considering a path as a series of line segments
only). The paper explains how the CD is defined and then presents an algorithm to do
the path coordination based on searching in a decomposed N -dimensional generalized
coordination diagram. This has the advantage of avoiding the explicit computation
of the CD (exponential in the number of robots N). The authors also explain how
CDs have been used in recent work to coordinate the motion of two robot arms only,
indicating the general complexity of the path coordination problem. Similarly to the
proposed intersection graph from Chapter 5, they also use such a concept to tackle only
subsets of the problem by searching for connected components in the graph. All robots
in the same connected component of the intersection graph have a spatial intersection of
their paths so that they require conflict resolution. In contrast, this is not necessary
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when considering two robots from different connected components. The work also uses
so-called “coordination configurations” which conceptually correspond to the proposed
intersection guards from Section 4.2.1. A coordination configuration represents obstacles
as bounding boxes (simplification) to not explicitly compute them. This is different to
the proposed work of Chapter 4 which makes use of halt and release points, precisely
representing the last and first valid positions on a path respectively. The use of a
simplification [50] may be justified by the more complex path definition (SA). The
authors do not consider deadlocks and there is also no discussion of corner cases, i. e.,
if the start or goal configuration is located on the path of another robot. Another
important difference to the work of this thesis is that Simeon et al. allow backwards
motion of robots along their (fixed) paths, requiring non-monotonic paths in the CD.
This may result in a more complex path planning compared to the monotonic paths in
the CS required in this thesis (cf. Section 4.4).

Given a central instance that already generated deadlock-free paths for all robots, Olmi
et al. have published a centralized and decoupled roadmap-based approach maximizing
the “advancement of the [robot] fleet” [39]. The paper presents an approach for coordi-
nating the planned path and also allows for deviations from the paths which are then
re-coordinated. Coordination is also done in a coordination diagram (CD), as in [34, 50].
However, cells in a CD represent entire segments on the paths, being a specific artifact
of the employed roadmaps. Colliding segments are termed “blocks”. If a robot deviates
from a path, the coordination diagram is updated. The central instance performs the
coordination on a regular period and incrementally adjusts the reserved segments of the
robots accordingly. These are major differences to the approach proposed in Chapters 4
and 5, especially the clocked re-coordination, updating the CD and generally the way,
updated paths are incorporated. Not assuming that robots adhere to the computed
“nominal velocities” on reserved segments can be perceived as a similarity to this work.
With respect to Section 4.4, we achieve this by requiring that the bounding box of every
segment of the path in the CD (aka coordination space) is empty. Although improving
upon an existing proprietary AGV system, the authors did not evaluate on real robots
and results are compared against the proprietary system only. The periodic execution
of the central coordinator with a fixed period seems to require the explicit modeling
of “starving vehicles” (that is, robots coming to a full stop and waiting for the central
instance). In contrast, this thesis (see Chapter 5) suggests reacting to events that require
an update of the coordination. Finally, given the segment granularity of the CD, the
algorithm of Olmi et al. further approximates this by “convex polygonal regions”.

Finally, given fixed paths for a set of robots, the centralized and decoupled coordination
approach by Cui et al. [11] constructs a probabilistic roadmap (PRM) in the coordination
space with a cost map equaling the “repulsive potential energy” between the involved
robots. The repulsive potential energy is computed based on the distance between two
robots’ potential collision points (smaller distance yields higher energy). The authors
also provide an estimation method for determining such “potential collision points”.
Finally, a search heuristic on the PRM is proposed (based on Dijktra incorporating
motion and safety costs) to obtain “pareto-optimal solutions” in the coordination space



22 CHAPTER 2. RELATED WORK

for the robots. The output are velocities for the given paths of all involved robots. The
authors do not provide generalization of their approach to more than three robots (only
applied for up to three robots). Notably, evaluation was only done for two real and
three simulated robots, so scalability and general performance in higher dimensions
is unknown. Expanding the approach and all proposed parts of it is assumed to be
challenging. The paper suggests building a so-called “coordination roadmap” which
is then used to find the resulting trajectories. However, that coordination roadmap is
constructed within the coordination space and therefore depends on the current involved
robot paths. Thus, it must be reconstructed whenever one robot gets a new goal. The
paper does not deal with deadlocks or even the possibility of not finding a solution for an
input at all. The authors further claim that a non-intersecting path in the coordination
space is sufficient for collision avoidance between robots (despite the fact that they are
incorporating “safety costs” in their search as this provides no guarantees). This only
holds true if they precisely adhere to the (resulting) trajectories, or w. r. t. the addressed
paper, if the estimated “potential collision points”, distances and costs are sufficiently
correct. All this may not be true in practice. This is an important distinction to the
method proposed in this thesis which facilitates arbitrary velocity changes (e. g., due to
unknown obstacles).

The work by Digani et al. [14] is also a (centralized) path coordination approach but
has already been presented in Section 2.3.1 because it is also based on a roadmap.

2.3.3 Train Timetabling Problem

This section deals with related approaches employing any kind of Linear Programming
(LP) models as its method for solving the underlying problem. During the review of
relevant work, train scheduling, or more formally, the Train Timetabling Problem (TTP)
has been found to be similar to the MAPF problem. The TTP aims to find a timetable
that must respond both to commercial needs and certain capacity and security related
constraints [8]. It may include the “routing” of trains, i. e., to also determine the route
through the (fixed) railway network. Determining a timetable only refers to finding
appropriate arrival and departure times for all involved trains while servicing desired
stations, adhering to safety constraints, etc. Basically, this just adjusts the velocities
(timings, including full stops with delays) of the trains on their tracks while avoiding
collisions. The majority of approaches model the TTP via graphs [8, 47, 66, 67]. Notice
that the TTP exhibits many variations like the platform design (single- vs. multi-platform
models), the model of tracks (single- vs. multi-tracks which itself can be multi-, bi- or
just unidirectional), the consideration of external constraints (w. r. t. safety, commercial,
service level, etc.), and the requirement of computing periodic vs. aperiodic schedules.
Since the train scheduling use case is only partially related, not exactly equal to the
MAPF problem and many of the papers pursue a similar approach, the following review
is kept brief. Practical feasibility is highly dependent on the resulting complexity of the
LP models and computing time is normally in the magnitude of many minutes [66, 67].



2.3. RANGE OF RELATED SUBJECTS 23

As already presented in Section 2.3.1, there are approaches from the MAPF problem
domain that employ similar methods, namely QLP [14] and ILP [63].

Generally, the reviewed work in the TTP domain always includes the routing of trains
(similar to what is surveyed in Section 2.3.1) making it difficult to compare against the
proposed methods of this thesis. In addition, neither the resulting timetable information
nor the abundance of constraints are relevant within the MAPF problem because they
are a direct artifact of the train transportation context. Nonetheless, the underlying
ideas may be used to solve the problem addressed in Section 4.2.2 via some sort of LP
model as well. However, this is out of the scope of this work.

Samà et al. aim to solve periodic routing and scheduling for the Real-time Train Schedul-
ing and Routing Problem with the objective to minimize train delays. The approach can
be classified as centralized and coupled, like many approaches for the TTP [47]. The
authors apply MILP via the well-known commercial CPLEX solver with a relaxation
of some constraints based on an “alternative graph”, a directed multigraph with edges
being alternatives. The relaxation is used to compute a lower bound which is then
transformed via a “constructive metaheuristic” into a valid schedule, representing a
“good upper bound” to the problem.

The publication by Zhou et al. aims to “simultaneously optimize operation periods,
arrival times, and departure times of all period types of trains on a double-track rail
network” [66]. Their method is based on “the construction of a weighted directed graph,
[...] a 0-1 linear programming model is [then] built to minimize the total travel time of
all period-types of trains subject to many operational constraints.” Being centralized
and coupled, this work reflects the typical approach in the area of the TTP.

Finally, Zhou et al. published additional work for the simultaneous multi-periodic train
timetabling and routing problem by using a MILP model [67] to minimize the total
travel time of trains. The railway network is modeled as a directed multigraph based on
stations and railway tracks; stations are represented as (multiple) vertices, tracks are
edges. They also used CPLEX with a heuristic strategy to simplify the model.

2.3.4 Decentralized Approaches

Within this last section, we focus on decentralized approaches tackling the MAPF
problem. The level of decentralism is also briefly discussed.

Purwin et al. suggest a cooperative decentralized, decoupled, non-optimal and incom-
plete path planning algorithm and communication scheme by negotiation between the
robots [42]. The underlying idea is that robots have to first request and then reserve
areas in order to move strictly inside such areas, aiming to guarantee collision safety.
Robots interact by communicating wirelessly via an Ad-hoc network and the authors
design a protocol that is robust to communication delays. Intersections are computed
geometrically based on rectangles enclosing fitted line segments to the robot’s path
(approximation). Reserved areas are computed based on the rectangle approximation
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and requested areas are determined based on the convex hull of relevant points. If an
intersection of two requested areas (B) is detected, robots exchange information via a
handshake procedure to have recent information about each other. This allows them to
check if also the reserved area (A) intersects (B ⊆ A). The concept of having requested
and reserved areas is motivated by allowing robots to change their paths/goals (e. g., due
to a new goal, a detour or obstacle avoidance, etc.). However, as the authors also reflect,
having such concepts along with (even small) reserved areas A (requiring to be updated
over time as the robot progresses on its path) requires a lot more communication between
the robots. Once reserved areas of two robots are detected to have an intersection, a
priority is determined solely between the two involved robots (decentrally) by evaluating
a scalar cost function. This involves further communication as both robots evaluate their
cost function and the “priority assigner” robot then decides which robot gets priority,
i. e., the Right-of-Way, based on lower costs. The cost function is a heuristic that aims
at minimizing waiting times. Its underlying idea gives robots lower cost which are closer
to an intersection. The approach is presented for a pair (i, j) of agents and just simply
extended by applying it to all pairs i ̸= j. This does not guarantee any form of deadlock
consideration, completeness or optimality. The intent of the suggested approach appears
to be partial reservations (until the goal is reached) as also indicated by the reasoning
for distinguishing between requested and reserved areas, although the authors state
that requested and reserved areas should include the final destination “for performance
reasons”. The approach is extended by the concept of heuristically selected waypoints.
The paper does not address deadlocks; especially given the proposed cost function, they
are assumed to be even more likely (cf. Figure 4.5(a) where all robots are close to their
first intersection, getting priority here). Even though the authors state that “[...] an
extension to the basic algorithm is proposed, which [...] prevents deadlocks”, they lack
to provide justification why deadlocks cannot occur. Given the decentralized nature of
how two agents solve a conflict suggests that deadlocks can happen and are not being
handled at all. Although the authors claim that the system scales well, it has only been
evaluated for up to five robots. Nonetheless, results always depend on numerous factors
which makes them impossible to compare. All robots must be able to communicate with
all other robots and the number of robots must be fixed a priori. However, an ad-hoc
network may not guarantee pairwise communication between all entities of the network
which could somewhat void the claimed safety guarantees.

Desaraju and How have published a cooperative decentralized, coupled and non-optimal
path planning algorithm based on communication between the robots [13]. The authors
present the (Cooperative) Decentralized Multi-Agent Rapidly-exploring Random Tree
(DMA-RRT) algorithm “which introduces a cooperation strategy that allows an agent
to modify its teammates’ plans in order to select paths that reduce their combined cost”.
The DMA-RRT algorithm introduces a merit-based coordination strategy that takes
advantage of the RRT trees to ensure global feasibility. It is non-optimal due to the
employed Closed-Loop-RTT (CL-RTT) which focuses on speed and “uses a closed-loop
simulation of the system dynamics to grow a tree of feasible paths. As a result, it is
able to handle the types of complex and constrained dynamics [...] by embedding the
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complexity in the simulation.” The approach relies on robots to precisely adhere to their
computed velocities (and the underlying models and assumptions to be correct) and
cannot guarantee safety otherwise. The approach only “avoids certain common deadlock
scenarios”, but cannot generally do so or detect them.

The work of Chen et al. aims to solve the MAPF problem with Deep Reinforcement
Learning [9] via their Collision Avoidance with Deep RL (CADRL) algorithm. As a result,
it is decentralized (because every robot executes its own learned model based on sensor
data), coupled (because the applied learned model directly yields velocities specifiying
the paths to travel), non-optimal and incomplete (both due to its decentralized nature).
The authors model the problem as a partially-observable sequential decision-making
problem and apply Deep Reinforcement Learning to learn velocities (output) to move
robots to their goals while avoiding collisions. Thus, the approach cannot guarantee
collision-free motions. The CADRL algorithm incorporates sensor updates (input during
motion) of every robot (approximated as a circle) and queries a previously learned “value
network” while not requiring any communication between the robots (fully decentralized).
However, they do not explain any details about the employed sensors. Sensor data seem
to “report” information about others (robots, obstacles) close to a robot. The authors
claim to do “simulation” but it seems that they are just “computing” the output of their
models without an independent simulation backend. However, a real (physics-based)
simulator would therefore provide a more realistic feedback of how the approach works.
In particular, they have used their algorithm on a real robot (Clearpath Jackal with
a Lidar sensor) but only evaluate for up to two dynamic obstacles (humans or other
robots). Thus, its scaled applicability in practice is assumed to be limited.

Finally, the recent work of Eran et al. is presented [19]. The token-based negotiation
approach for the MAPF problem is decentralized as robots share a local view via
communication, non-optimal, and a mixture of coupled and decoupled because initial
paths are planned individually but executing the proposed Token-Based Alternating
Offers Protocol (TAOP) is being influenced by replanning with A⋆ based on received
offers (aka bids) from other robots nearby. However, we consider it to be rather coupled
because the eventually travelled path is based on communication and replanning. The
approach uses a grid (see Section 2.3.1) which represents the environment as a graph
whereby every cell is a vertex which can be a position of a robot. Edges only connect
the 4-neighborhood (i. e., no diagonal moves supported). The planning algorithm (A⋆)
minimizes the sum of all path lengths whereby an edge has unit length, thus, it basically
counts the number of edges. A field of view (FoV) concept specifies a local region
(in the graph) around a robot’s current position (occupied vertex) specifying to what
other robots it can communicate and share information. Although beneficial in terms of
performance, this causes the approach to be unable to guarantee collision-free motions, by
design, because communication may be delayed or limited causing a lack of information
in the planner of a robot. This is a major difference to the suggested approach from
Chapters 4 and 5. Robots broadcast their paths to others within the FoV. If a conflict is
being detected, robots execute the proposed TAOP to negotiate the conflict. The costs of
planned paths are also used to decide how tokens should be used and whether to accept
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or reject an “offer” of another robot. The main contribution of the paper by Eran et al.
is based on improving the TAOP compared to previous token-(bid-)based protocols;
it is not focusing on sophisticated path planning algorithms. Similar to Chapter 5,
negotiations must be completed before the next one can start. However, we always
communicate with all other (affected) robots to ensure safety.



Chapter 3

Robotic Experimentation
Framework

Robotics typically starts with simulation. This is justified by the overall topic’s complex-
ity, the need for rapid prototyping and simplified testing. Because eventually, such a
system needs to be tested and used with real robots, a modular execution of algorithms
both in simulation and on real hardware is desirable. Choosing an appropriate simulator
is challenging because they all have their advantages and weaknesses–more details will
be explained in Section 3.2. Even worse, working in simulation normally imposes the
so-called reality gap [46]. That is, briefly speaking, a real robot may behave slightly
or even totally different compared to its simulated counterpart. For these reasons,
using multiple simulation environments with different degrees of accuracy or speed may
be beneficial—typically a trade-off. However, this adds even more complexity since
simulators have different interfaces when interacting with the simulated scene.

Based on the Robot Operating System (ROS) middleware [43], this chapter proposes a
framework for abstracting from different simulators to allow switching between variants
more easily while still encouraging rapid prototyping and optimizations. Given the
way how ROS works, it should be noted that ROS nodes (also known to be forming
the computation graph) are running in a somewhat decoupled way from simulation
because the simulator processes inputs for (simulated) actuators and generates output
for (simulated) sensors based on ROS topics. However, this resembles the behavior on
real hardware. The framework has been used efficiently in the experimental evaluations
of Chapters 5 and 6.

The chapter is organized as follows. In Section 3.1, the new framework for abstracting
different existing robotic simulators (and even real hardware) is motivated and presented

27
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Figure 3.1: Components of the Robotic Experimentation Framework (REF) and their
interaction; blue boxes represent robotic simulators and “real hardware” is added for
completeness. The Environment Interface (EIF) (yellow) provides an interface to different
simulators for the Experiment (Supervisor) (red). On the left side, the software stacks
comprising the (simulated) robots are shown as white boxes, communicating with the
Experiment Interface (EPI) (yellow) which provides unified access to certain ROS
functionality for convenience. Arrows indicate communication.

in detail. It allows for writing robotic experiments that can be used to test and quantify
certain aspects of a system. Section 3.2 describes three simulators that are completely or
at least partially supported by the framework. Finally, Section 3.3 explains the (slightly
simplified) Python code of an exemplary experiment.

3.1 Experiments in Abstracted Environments

The general idea is to have a framework that abstracts from a specific simulator (and
even real hardware). This allows for switching between different simulators to trade
off, e. g., precise and complex physics against performance. Another advantage of being
simulator-agnostic is the independence to proprietary or abandoned software.1

The main components of the so-called Robotic Experimentation Framework (REF) are
(cf. Figure 3.1)

• the Environment Interface (EIF),

• the Experiment Interface (EPI),

• the Experiment Supervisor (ESV) and
1In fact, there have been many discontinued robotic simulator projects in the past, e. g., MORSE or

the STDR Simulator.
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• roslaunch2 (RL2) [5].

They are all based on the ROS middleware and written in Python. The Python
language was chosen because it is simple, flexible (due to dynamic typing, reflection and
introspection) and provides a common basis for accessing all components’ APIs in a single
codebase used to write the experiment. Additionally, Python is one of the two major
supported programming language in ROS and unified access to ROS functionality is
provided by the EPI. The EIF is responsible for abstracting from the interface of different
simulators. The ESV simplifies specifying (writing) a concrete scenario (experiment) to
be evaluated, that is, writing experiments for testing, training, and optimizing robotic
algorithms and parameters in a setup defined and controlled by the experiment logic.
Lastly, RL2 provides versatile, flexible and dynamic launch configurations based on ROS’
roslaunch.

For example, consider the feature of pausing, resuming and resetting the simulation
which is typically needed when setting up a specific scenario and repeating the execution
of that scenario. A “scenario” might consist of a set of robots at predefined start locations
and the goal of the experiment is to command them to some predefined goals while
testing for collisions in the underlying planner. For the well-known Adaptive Monte
Carlo Localization (AMCL), it is required to provide an initial pose before a robot
can localize itself. This can be accomplished by providing that pose first, resume the
simulation for some time to let the algorithm settle based on simulated sensor inputs,
and pause it again to continue with the goal assignment. Once all robots are supplied
with goals, the experiment can be started by resuming the simulation again. Registering
collisions is also provided by the EIF which simply invokes a callback provided by the
experiment code when a collision has been detected. Repeating the same experiment
just requires resetting all robots to their initial start locations to start all over again.
Starting ROS components (nodes) dynamically inside an experiment is provided by
roslaunch2, even on different machines in the network.

Figure 3.1 shows the components and their interaction. All arrows in the drawing
represent (possible) flows of information. Robotic simulators are shown as blue boxes
on the right. They are considered as independent software blocks. The EIF (yellow)
provides an unified interface to all supported simulators while the EPI on the left (yellow
as well) provides convenience access to ROS functionality, e. g. waiting for a coordinate
transformation to become available or a message to be delivered. Note that the drawing
is centered around the experiment and experiment supervisor (red) because this is the
Python code that needs to be written using the provided APIs to define the experiment
logic. Experiments can be written from scratch which means that they contain both the
experiment and supervisor logic. In other words, an experiment defines what kind of
tasks the (simulated) robots should do and the supervisor controls and monitors the
execution. Alternatively, experiments may also only define the tasks and some criterion
to be computed once everything has finished, e. g. the total experiment time or the
number of collisions that occurred during the experiment. More details will be presented
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(a) Exemplary scene in Stage (top view) (b) Exemplary scene in MORSE

(c) Simulated “Mini-Demonstrator” in MORSE (d) Real setup of the “Mini-Demonstrator” [7]

Figure 3.2: From simulation to reality: (a) shows the simulated scene in Stage with
18 robots moving around randomly (see traces in red). (b) shows a similar scene in
MORSE with 20 robots based on the state-of-the-art Bullet physics engine. Similarly,
(c) shows a simulated setup in MORSE of the so-called “Mini-Demonstrator” (with 4
robots) developed in the SMART FACE projects with its real setup depicted in (d).

in Section 3.3. Finally, note that parallel experiment execution is possible by employing
systematic ROS namespacing and remapping.

This concludes the overview of the developed concepts, i. e., how simulation environments
can be abstracted and how this can be used to write robotic experiments against that
abstraction. To the knowledge of the author, there is no such concept up to date based on
existing simulation software. In the next section, we are going to discuss three (at least
partially) supported simulators briefly and in Section 3.3 we will explain the possible
experimental designs and give a concrete example.

3.2 Simulators

Initially, various simulators from the field of robotic simulation have been surveyed to
identify the most appropriate ones for this work. Within this section, three simulators
(supported by the REF) will briefly be presented along with their main features and
properties. Figure 3.2 shows some simulated scenes for Stage (cf. (a)) and the Modular
OpenRobots Simulation Engine (MORSE) ((b) and (c)) as well as a real hardware setup
(cf. (d)) which was modeled in simulation (cf. (c)).
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Stage [24] is a 2.5D multi-robot simulator which has been developed at the University of
Southern California back in 2000. Stage provides rather simple robot models allowing to
build large environments with up to hundreds of robots. Due to its high simulation speed,
open-sourced codebase and mature ROS support, this has been the main simulation
environment used throughout this thesis. As an extension to the pure text based world
description format provided by Stage, a Python-based API has been developed to
procedurally generate environments. This has the benefit of allowing more complex
simulations because scenes can automatically be generated for different evaluation
scenarios (and even inside an experiment). The footprints of generated static objects
can be queried from the simulator and send to the map server, making them available
to localization and path planning. Figure 3.2(a) shows a top view of a simulated scene
with 18 robots (red) including their last motion traces (transparent red).

The second simulator to be presented is the Modular OpenRobots Simulation Engine
(MORSE) [18]. It aims at simulating physics by means of the state-of-the-art Bullet
physics engine [10] and provides a 3D visualization using the Blender Game Engine
(BGE). Unfortunately, though still available, BGE was removed and dropped from
Blender in 2019 and MORSE was discontinued in 2020. Because MORSE is written
in Python as well, simulated scenes are also described with Python code. Limited
support for MORSE in the EIF is provided. As shown in the two simulated scenes in
Figure 3.2(b) and (c), MORSE provides a high-quality 3D visualization of the scene due
to the BGE. Unfortunately, simulation speeds are much lower compared to Stage which
is most probably be justified by the more complex physics. Requesting footprints from
scene objects seems to be unsupported.

Third and finally, Gazebo [33] is mentioned for completeness. It is well-known in the
robotics community, has excellent ROS support and is well integrated in the EIF although
requesting footprints from scene objects is not implemented yet. Similar to MORSE,
simulated robots need an attached “collision sensor” (aka contact sensor or bumper) to
allow detecting collisions. Simulated scenes have to be described with XML and, unlike
Stage and MORSE, would require more efforts to allow procedural generation.

3.3 Design of Experiments

It remains to present the experimental design. As already briefly outlined in Section 3.1,
experiments can either also include the supervisor logic or may only specify the underlying
conditions (robot tasks, criterion to be assessed) such that the proposed framework
executes the experiment “automatically”.

Because the former case is the more complex and flexible variant of writing an experiment,
we will now discuss an example for it. Listing 3.1 shows the code for a complete experiment
(including the supervisor logic) based on a configuration file (not shown here for brevity)
written in the Yet Another Markup Language (YAML). The file specifies the number of
robots, their starting positions and goals respectively, as well as other parameters. Line 7
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1 import experiment_supervisor . environment_interface as eif
2 import experiment_supervisor . experiment_interface as epi
3 import roslaunch2 as rl2
4 import rospy , yaml
5
6 # Statistics about the experiment :
7 collisions , reachables , unreachables = 0, 0, 0
8 def onCollision (state , timestamp , name ):
9 if state :

10 rospy . logwarn (f"{name} has collided at { timestamp }!")
11 collisions += 1
12
13 # Step 1: declare and setup the experiment .
14 this_exp = epi. ExperimentInterface ('my_experiment ')
15 launch_package = init_param ('launch_package ', 'experiment_supervisor ')
16 launch_file = init_param ('launch_file ', 'experiment_base .pyl ')
17 # Be able to interact with the " environment " (= simulator or " hardware "):
18 this_env = eif. get_environment_interface ()
19 # Load the scenario stored as a .yaml file:
20 with open ( init_param ('data_path ', None ), 'r') as stream :
21 (robots , scenario_data ) = preprocess (yaml. safe_load ( stream ))
22
23 # Step 2: start the world ( robots ) to be simulated .
24 pkg = rl2. Package ( launch_package )
25 world = pkg.use(pkg.find( launch_file ), robots =robots , instance_id =...)
26 # Start the simulator and wait for the clock server (= simulator ):
27 launch = rl2. start_async (world , silent = True )
28 this_exp . wait_for_non_zero_sim_time ( max_timeout )
29
30 # Step 3: setup test case.
31 path_topic = init_param ('path_topic ', 'path ')
32 global_frame_id = init_param ('fixed_frame_id ', 'map ')
33 goal_action = init_param ('goal_action ', 'move_base ')
34 base_frame_id_suffix = init_param ('base_frame_id_suffix ', 'base_link ')
35 for robot in robots :
36 # Register collision callback ( called when a crash was observed or resolved ):
37 this_env . register_collision_callback ( robot ['name '], onCollision , robot ['name '])
38 # Wait for robots to start their software stack (path planning and localization ):
39 topic = rl2. ros_join ( instance_id , rl2. ros_join ( robot ['name '], path_topic ), True )
40 rospy . loginfo (f" Waiting for navstack at { topic } ...")
41 this_exp . wait_for_topic (topic , None , max_timeout )
42 rospy . loginfo (f" Waiting for localization of { robot ['name ']} ...")
43 this_exp . wait_for_transform ( tf_join ( robot ['name '], base_frame_id_suffix ),
44 global_frame_id , max_timeout )
45
46 # Step 4: let all robots start to move simultaneously .
47 repeats = scenario_data ['repeat '] if 'repeat ' in scenario_data else 1
48 while not rospy . is_shutdown () and iteration < repeats :
49 iteration += 1 # number of repeats is a parameter
50 this_env . pause_experiment ( True )
51 for robot in robots : # assign all goals while simulation is paused
52 sendGoal (robot , robot ['goal '])
53 this_env . pause_experiment ( False )
54 # Wait until all goals have been processed and evaluate the result :
55 for robot in robots :
56 robot ['client ']. wait_for_result ()
57 if robot ['client ']. get_state () == GoalStatus . SUCCEEDED :
58 reachables += 1 # robot successfully reached its goal
59 else :
60 unreachables += 1
61 rl2. terminate ( launch ) # exit the simulation

Listing 3.1: Example for a complete experiment in Python based on the EIF, the EPI
and RL2. Basically, the (slightly simplified) code builds up a simulation with a set of
robots (step 1 and 2), waits for their software components to start (step 3), assigns goals
to all robots and waits until all of them have been processed (reached or considered
unreachable), see step 4. Some imports, parameters, error handling and minor helper
functions have been removed for brevity.
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declares variables recording the number of collisions between participating robots as well
as reachable and unreachable goals respectively. Collisions are detected by the callback
function onCollision() defined in Line 8 (and registered in Line 37 using the EIF).
After declaring the experiment in Line 14 and retrieving a reference to the EIF in Line 18,
the code reads the experiment description YAML file (Line 20), and loads and starts the
simulator (Lines 23-28). The simulator and the simulated world are a dedicated launch
module written and started using RL2. Lines 30-44 set up the experiment by waiting
until the path planning and localization modules have been started using the EPI.

Lines 46-60 contain the logic for assigning goals to the robots and waiting until they have
been processed. The YAML file may contain a parameter “repeat” specifying the number
of repetitions, i. e., how often goals should be assigned to the robots. After pausing
the simulator in Line 50, every robot is assigned its goal in Line 52. The simulation
is then resumed in Line 53 such that all robots start to move simultaneously. The
experiment logic then waits until all the goals have been reached or if robots report them
as unreachable. Both outcomes are used to update the variables defined in Line 7. Once
all repetitions have been processed, the experiment ends by terminating the simulator
in Line 61. It should be noted that, depending on the desired experiment logic and
software stack, one could also call this_env.reset_simulation() at the end of the
while-loop (right before Line 61) to reset the simulator’s state to the startup state.
Because some simulators (like Stage) reset an object’s velocity to zero after detecting a
collision, additional actions may be required upon detecting a collision (e. g., moving a
stalled robot to some free location by calling this_env.teleport_entity()) to avoid
waiting infinitely in Line 56.

As an extension to Listing 3.1, consider the task of optimizing some parameter of the
local planning algorithm. That is, after processing a set of goals, a parameter should be
changed at run-time to retry the processing for the same set of goals while measuring
the required total processing time for different parameterizations. For example, a new
value for a parameter name stored in param_name can be set dynamically with:
for robot in robots :

this_exp . reconfigure (f"{ robot ['name ']}/ path_planner / CollabLocalPlannerPlugin ",
**{ param_name : value })

Putting the code in Lines 46-60 in its own loop (iterating over different values for
param_name), the previous call to reconfigure() would be part of that new loop.

In anticipation of upcoming chapters, it is remarked that the REF is used throughout
the evaluations of Chapters 5 and 6. For example, an experiment was written to assess
the fault tolerance of the decentralized production system (which will be presented
in Chapter 6). Basically, the experiment makes use of RL2’s asynchronous starting
capability to launch a dedicated process generating customer orders (system load). While
the simulation is running and customer orders are being assembled, the experiment
injects failures in workstations at defined time intervals. Meanwhile, the experiment also
collects statistics like the number of detected collisions (if any), the achieved throughput
and the number of completed and failed orders.





Chapter 4

Collision-Free Multi-Robot
Scheduling

This chapter presents two novel approaches for the collision-free scheduling of a given
set of robots with pre-planned paths. That is, given a set of robots with a path for every
robot connecting its start (current position) with its respective goal, the algorithms
described in this chapter either aiming at computing a schedule for every robot that
is guaranteed to be collision-free or detecting infeasibility if there is no such schedule.
With respect to Chapter 6 where robust and safe operation of autonomous mobile robots
is needed in an industrial production system, these algorithms perfectly fit the needs of
such a system. However, to make them applicable in such a dynamic environment, the
concepts of the next Chapter 5 are needed to establish the communication logic between
the robots required to provide synchronized and consistent inputs to the algorithms
presented here. Both algorithms can thus be perceived as “building blocks” that can be
invoked in the communication and synchronization framework described in Chapter 5.

The chapter is structured as follows. Section 4.1 briefly overviews the general underlying
problems tackled here without detailing the math. Section 4.2 then explains the problems
in more detail from a mathematical point of view, namely computing intersections
geometrically and finding a schedule if one exists. The idea of conflict detection between
robots of an input set is detailed in Section 4.3. The two novel solver algorithms are
subsequently explained in Sections 4.4 and 4.5. Notice that related approaches from the
literature have already been presented and delimited thematically in Chapter 2.

35
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(a) Exemplary input scenario with 3 robots
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(b) Circles indicating intersection guards

Figure 4.1: Introductory example showing robots p (red), q (blue) and s (green) with
paths consisting of a single segment each. Start points are indicated with a dot and goals
are visualized by arrows. This scenario has two conflicts I1 and I2 (green intersecting
areas) in total. The boundary around a path is determined by the radius of a robot’s
smallest enclosing circle. For both I1 and I2, the “guarding points” (squared numbered
dots) indicate where robots would enter (green) and leave (yellow) an intersection
(see (b)).

4.1 Introduction

An introductory example for the problem of collision-free multi-robot scheduling is
visualized in Figure 4.1. It shows three robots p, q and s with their paths given as a
single line segment for simplicity. Since all robots occupy space in the environment, their
smallest enclosing circle with a given radius is shown by the rounded (inflated) polygons
around the paths. The start of each segment is the (current) starting position of the
associated robot and its endpoint denotes the goal. Within this particular example, p, q
and s have two so-called pairwise conflicts, indicated as I1 and I2. The input is feasible
because there exists an order of how these robots can be scheduled w. r. t. I1 and I2
without causing any collision or deadlock (cf. Section 4.2.2); for instance, p can get the
RoW both at I1 and I2. When executing this schedule practically, it requires q to not
pass the conflict area at I1 until p has passed it completely and s to not pass through I2
until p has left it as well. This might require q and s to actually wait (for p’s motion)
or to just reduce their velocities in order to adhere to the given schedule. That is, a
schedule specifies how p, q, and s actually move along their paths. Note that the words
“robot” and “path” are used interchangeably here (1:1 relationship).

This chapter deals with two problems. First, given the paths of all involved robots, the
pairwise conflicts must be determined along with their exact so-called guards specifying
where a conflict area begins and ends. Details of this problem are described in Section 4.2.1
and the new solution proposed to this problem is presented in Section 4.3. Second,
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Figure 4.2: Visualization of basic terms like the robot’s shape (blue circle), radius rp

(size approximation), path (solid blue, with N = 4 points), line segment (black curly
bracket), start point p0, goal point (arrow at p3), space S (shaded in light blue), and
progress (exemplarily depicted as red dot with occupied space visualized as blue circle).

once all conflicts are determined, either a Right-of-Way decision must be computed for
all or a subset of all pairwise conflicts, or the input must be detected to be infeasible.
This is explained and formalized in Section 4.2.2, and the proposed solutions are given
in Sections 4.4 and 4.5. These solutions can not only be applied w. r. t. the case of
Chapter 6 but are also generally applicable in contexts where safe multi-robot operation
is needed.

4.2 Problem Statements

In the previous section, we already used terms like “path”, “segment”, etc. without
defining them. Within this section, such terms are formally defined and the associated
problems of this chapter are specified along with their in- and outputs.

Geometrically, a path is an ordered set P = ⟨P0, . . . , PN−1⟩ of N poses and N − 1 line
segments whereby Pi = (pi, oi) is a tuple denoting the location pi ∈ R2 and orientation
oi ∈ R4 (quaternion). The starting pose is given by P0 and the goal pose by PN−1.
A path is assumed to be clean in a sense that there are no recurring elements, i. e.,
∀pi : ∄pj : i ̸= j ∧ pi = pj . Additionally, we require that there are no self-intersections,
thus

∀i, j ∈ {1, ..., N − 1}, i ̸= j, i ̸= j − 1, j ̸= i− 1 : pi−1pi ∩ pj−1pj = ∅, (4.1)

or verbalized, for any two distinct, non-adjacent segments at indices (i− 1, i), (j − 1, j)
of points on the path, their intersection must be empty. This property enforces that
every point on a path is uniquely parameterizable (as explained subsequently along with
the term “progress”).

Given a robot p, its size rp > 0 specifies the radius of its smallest enclosing circle which
is used throughout this chapter to represent a robot’s shape. For simplicity, we may also
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Figure 4.3: Illustration of how a progress value i + t (with t = 0.5 here) relates to a point
on a robot’s path ⟨. . . , pi−1, pi, pi+1, pi+2, . . .⟩ for a line segment pipi+1 according to
Equation (4.3). The dotted path indicates the part that the robot has already travelled.

subsequently refer to a path P = ⟨p0, . . . , pN−1⟩, pi ∈ R2 as being a polyline in 2D space
only, i. e., ignoring orientation completely because given that robots are represented as
circles, their orientations does not matter in subsequent concepts.

The set

S := {p ∈ E | ∃i ∈ [1, N − 1], ∃q ∈ pipi+1 : dist(p, q) < rp } (4.2)

specifies the space occupied by (the path of) p in the environment E ⊂ R× R whereby
dist(p, q) is the Euclidean distance from p to q.

It is convenient to globally parameterize a point p on a robot’s path P in order to fully
specify it with a single scalar value. This way, such points can simply be compared and
stored efficiently by their global parameter (cf., e. g., Figure 4.1). Let i ∈ [0, N − 1] ⊂ N0
be the index of the segment pipi+1 that the robot is currently driving along, that is,
where p is located on. The resulting progress ρ(p) is given by (cf. Figure 4.3)

ρ(p) := i + |p− pi|
|pi+1 − pi|

∈ [0, N − 1] . (4.3)

since

p = pi + t · (pi+1 − pi)⇐⇒ t · (pi+1 − pi) = p− pi =⇒ t = |p− pi|
|pi+1 − pi|

. (4.4)

Figure 4.2 schematically depicts the computation of progress as stated in Equation (4.3).
For instance, the progress value 1.5 (red) refers to the second path segment and the
robot has already reached the half of that segment. In other words, the progress denotes
the completion status of a path, represented as a single scalar.

Vice versa, given a progress value ρ(p), the associated point p ∈ R2 on the robot’s path
can efficiently be computed by linear interpolation:

p = (1− β) pi + βpi+1 with i = ⌊ρ(p)⌋ and β = ρ(p)− i. (4.5)

In this equation, i denotes the index of the affected segment and β denotes the percental
completion status of that segment. For improved readability, the notion “point” and
“progress” will be used interchangeably throughout this text when referring to locations
on a robot’s path.



4.2. PROBLEM STATEMENTS 39

Finally, two robots p, q are said to be in conflict χ(p, q) (binary predicate), also
(geometrically) termed intersection, if and only if there is at least one pair of points
p ∈ P, q ∈ Q on the paths with a distance less than the sum of both radii, i. e.

∃p ∈ P, q ∈ Q : dist(p, q) < rpq with rpq = rp + rq. (4.6)

As already indicated by Figure 4.3, the notion of a conflict somewhat depends on the
starting point of the robot. For the remainder of this chapter, we assume that robots
are always located at their initial start and take the entire path into consideration (e. g.,
w. r. t. Equation (4.6)). However, if this is not applicable (cf. Chapter 5) because robots
may have moved already, the path must be truncated at the beginning and the remainder
is considered to be P to adhere to this assumption.

In the next Section 4.2.1, intersection guards of a conflict are defined, followed by
Section 4.2.2 which presents the detail of scheduling pre-planned paths.

4.2.1 Intersection Guards

This section introduces the notion of pairwise intersections based on Equation (4.6) along
with so-called guards computed for every pairwise intersection. Intersection guards have
already been shown exemplarily in Figure 4.1(b) as yellow and green squared markers
on the involved robot paths. As an intuition, they “protect” the associated intersection
in a sense that they indicate where robots would enter or leave the intersecting space
required by the robots.

Let N robots with paths Pi and radius ri be given as input. For every pair of conflicting
paths (P,Q) of robots p and q in this input (cf. Equation (4.6)), all k ∈ {1, . . . , K}
pairwise intersections

Ik
p,q :=

([
pk

min, pk
max

]
,
[
qk

min, qk
max

])
with (4.7)

pk
min ∈

[
0, pk

max
)
⊂ R, pk

max ∈
(
pk

min, Np − 1
]
⊂ R,

qk
min ∈

[
0, qk

max
)
⊂ R, qk

max ∈
(
qk

min, Nq − 1
]
⊂ R

of associated robots p, q must be determined (output). For every Ik
p,q, the completeness

property

∃p ∈ P, q ∈ Q : dist(p, q) < rpq =⇒ ∃k ∈ {1, . . . , K} :

ρ(p) ∈
(
pk

min, pk
max

)
∧ ρ(q) ∈

(
qk

min, qk
max

)
(4.8)
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must hold, or in other words, there is no point on the path fulfilling Equation (4.6) that
is not covered by at least one Ik

p,q. In addition, the connectedness property

∀k ∈ {1, . . . , K} : ∀p ∈ P : ρ(p) ∈
[
pk

min, pk
max

]
=⇒ ∃q ∈ Q : ρ(q) ∈

[
qk

min, qk
max

]
∧ dist (p, q) ≤ rpq and (4.9)

∀k ∈ {1, . . . , K} : ∀q ∈ Q : ρ(q) ∈
[
qk

min, qk
max

]
=⇒ ∃p ∈ P : ρ(p) ∈

[
pk

min, pk
max

]
∧ dist (p, q) ≤ rpq (4.10)

must apply, that is, for all points in an interval
[
pk

min, pk
max

]
of an intersection Ik

p,q, the
distance to the (partial) segments within the other robot’s associated interval

[
qk

min, qk
max

]
must be less than or equal to rpq (likewise for q in Equation (4.10)).

Note that k depends on the robot that the pairwise intersection is referring to (p here),
that is, for a given Ik

p,q w. r. t. p, there ∃k′ ∈ {1, . . . , K ′} ⊂ N0 : Ik′
q,p =∧ Ik

p,q regarding q

and it does not necessarily hold that k = k′. We write Ik
p,q if we are referencing the k-th

intersection along the path of robot p. Likewise, we omit the subscript in Ik if it is clear
from the context what robots are involved and it is the k-th intersection along the path
of the robot that is lexicographically smaller.

The quadruplet in Equation (4.7) specifies a closed interval [pk
min, pk

max] on path P (a
subpath) and another closed interval [qk

min, qk
max] on Q. Given the left and right interval

boundaries, we can define the halt progress

h(Ik
p,q, p) :=

pk
min if dist

(
ρ−1(pk

min),Q[qk
min,qk

max]
)

= rpq

−∞ otherwise
(4.11)

and release progress

r(Ik
p,q, p) :=

pk
max if dist

(
ρ−1(pk

max),Q[qk
min,qk

max]
)

= rpq

+∞ otherwise
(4.12)

for a given Ik
p,q and an involved robot p. In both equations, dist() is defined as follows

dist
(
p,Q[a,b]

)
:= min

{
dist(p, q) | ∀q ∈ Q : ρ−1(q) ∈ [a, b]

}
(4.13)

and specifies the minimum distance of p to the subpath Q[a,b]. Both boundary values
are commonly termed intersection guards. Halt progresses are also named halt points
or just halts interchangeably throughout this text (likewise for releases). For example,
r(Ik

p,q, q) is the release progress for robot q regarding the k-th intersection counted along
the path of p.

The completeness property is important to ensure safety since all conflicting points p
are then covered in at least one of the pairwise intersections Ik

p,q which will finally be
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Figure 4.4: Different perspectives of how robot sizes can be interpreted w. r. t. intersection
guards (yellow and green squared markers). All three plots show the same three
intersection guards between the two robots p (blue) with size rp = 10 and q (red) with
size rq = 20. Note that rpq = rp + rq = 30. On the left, both paths are enlarged by their
size respectively (dotted lines). In the middle, only p and on the right, only q is enlarged
by rpq (dashed lines).

negotiated by a solver algorithm (cf. Section 4.2.2), ensuring exclusive (space) resource
assignments, that is, only one of the two robots p, q will be in intervals of Ik

p,q simultane-
ously. The connectedness property together with Equations (4.11) and (4.12) provides
the foundation for computing pairwise intersections because the property implies that
only the guards (interval boundaries) have a distance of exactly rpq to the segments
within the subpaths defined by the intervals.

Figure 4.4 depicts the possible perspectives on how the locations of intersection guards
are related to the robots’ sizes. In the leftmost plot, both robots are shown with their
space requirements based on their individual sizes. In the mid-plot, only p (blue) is
enlarged by the sum rpq of both radii while in the rightmost plot, only q is enlarged
by rpq. Basically, to identify the guards for q (cf. mid plot), it is sufficient to find the
intersection points (yellow squared marker) of the inflated polygon around p (blue) with
the polyline of q (red). Likewise, to identify the guards for p (cf. yellow and green
squared marker in the right plot), we intersect the inflated polygon around q (red) with
the polyline of p (blue).

This justifies the assumption that all perspectives are equal w. r. t. finding such guard
points. All pairwise intersections together with their defining guards comprise the output
which serves as the input for the problem described in Section 4.2.2.

We will finally review some useful insights and properties of halt and release points.
Assume two robots p, q, the sum of both radii rpq and an (pairwise) intersection
Ik

p,q =
([

pk
min, pk

max
]

,
[
qk

min, qk
max

])
are given.
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(i) If a halt doesn’t exist for robot p, it means p is already inside that associated
intersection I (blocked at the starting position).

(ii) Equally, if a release doesn’t exist for a robot p, it means p will not be able to leave
the associated intersection I (blocked at the goal).

(iii) If both h(Ik
p,q, p) ̸= −∞ and r(Ik

p,q, p) ̸= ∞, it always holds that h(Ik
p,q, p) <

r(Ik
p,q, p). More precisely, this holds even if only r(Ik

p,q, p) exists.

(iv) Theoretically, a release must always be larger than (and cannot be equal to) the
start progress (and less or equal to the goal progress). Assume there is a release
point on the start. For that release r(Ik

p,q, p), it must hold that it has a distance
exactly equal to rpq to the subpath [qk

min, qk
max] of robot q. Since there is the

intersection I associated with this release, there must be a point p ∈ P with a
smaller progress than r(Ik

p,q, p) (i. e., ρ(p) < r(Ik
p,q, p)) that has a distance less than

rpq to path Q. However, since r(Ik
p,q, p) is equal to the start, there cannot be any

point p satisfying the previously mentioned condition and, thus, a contradiction
to the assumption that the release point is located on the start.

(v) Likewise, a halt must always be less than (and cannot be equal to) the goal progress
(and must be greater or equal to the starting progress). The justification of the
previous property can also be applied here similarly.

(vi) If both h(Ik
p,q, p) = −∞ and r(Ik

p,q, p) =∞, it means that p will never “leave” the
intersection Ik

p,q at all (infeasible).

(vii) If both halts h(Ik
p,q, p) and h(Ik

p,q, q) do not exist, both robots p and q already crash
(or at least are too close) at their starting positions (infeasible). This is considered
invalid input.

(viii) If both releases r(Ik
p,q, p) and r(Ik

p,q, q) do not exist, both robots have goals that
are too close—so-called a goal conflict (infeasible).

4.2.2 Scheduling Pre-planned Paths

As described in the previous section, for any given input scenario, the set of pairwise
intersections Ik is computed which, along with the maximum velocity vmax per robot,
serves as the input for the problem that is detailed in this section. Basically, the
underlying idea is to find a way of how all robots can safely move on their precomputed
paths to their goals by determining an ordering in which they are allowed to pass “critical
areas” (pairwise intersections) and enforcing this ordering temporally without sacrificing
a particular robot (i. e., all robots are considered equal). More specifically, for every Ik

p,q

a Right-of-Way (RoW) decision

δ
(
Ik

p,q

)
∈ {p, q, ∅} (4.14)
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is determined specifying which robot (p, q) is allowed to pass its interval defined in Ik
p,q

first or if Ik
p,q is considered infeasible (∅). For example, an intersection can be infeasible

if it is deadlocked (as detailed shortly). When combining all decisions for all pairwise
intersections, a partial order of subpaths of all involved robots is obtained. Such a
subpath is the partition of the underlying robot path and defined

• from a robot’s starting point to the first relevant1 halt point,

• from a relevant halt to the next relevant halt point and finally,

• from the last relevant halt point to a robot’s goal.

These are the sections along a robot’s path where it can move forward freely without
any synchronization. The schedule ensures safe motion of the involved robots provided
all robots adhere to their RoW and never leave their allocated space. Alternatively,
an input might be classified as fully or partially infeasible if there is no such schedule,
i. e., ∃k : δ(Ik

p,q) = ∅. Note that such a schedule contains the RoW for all pairwise
intersections occurring in the entire scenario from a robot’s start until its goal.

A robot p getting RoW at Ik
p,q can simply ignore the halt point h(Ik

p,q, p) but must report
when it has passed its release r(Ik

p,q, p). This ensures that the other robot q, not getting
RoW at Ik

p,q, gets notified when it is allowed to enter the intersection. Until then, q

is not allowed to drive past its halt h(Ik
p,q, q). The underlying communication logic is

explained in Chapter 5. Also note that robots are not allowed to move backwards on
their paths.

Inputs for this problem can have deadlocks which will be justified and explained next.
To begin with, Figure 4.5 illustrates an example showing a deadlocked scenario. The
black arrows in Figure 4.5(a) highlight how guards form the interval as part of a pairwise
intersection. Note that all intersections miss a release point (cf. Equation (4.12)) for one
particular robot. Two observations are important. First, all decisions at intersections
are already predetermined because there is always one robot involved that would block
an intersection forever. Second, every robot passing through its first intersection to
give RoW at its second intersection will continue to block the first while waiting for
release. Without sacrificing one of the robots, the RoW assignments would be δ(Ip,q) = q,
δ(Ip,s) = p and δ(Iq,s) = s. The predeterminism might even be enforced if the robots
would have already started inside their first intersection (same δ()). For instance,
δ(Ip,q) = q (cf. the three intersection guards labeled “1” in Figure 4.5(a)) is required
because p would block Ip,q forever once reached causing q to not be able to pass it (Ip,s

and Iq,s are justified alike). This schedule imposes the waiting dependencies shown in
Figure 4.5(b), effectively creating a circular waiting relation. Since there is no other
possible schedule (only the deadlocking one), this scenario is considered infeasible.

1“relevant” means that the associated robot does not get RoW requiring it to possibly come to a full
stop at the halt.
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(a) Deadlock situation between p, q and s (b) Waiting dependencies for the robots in (a)

Figure 4.5: Example scenario with three robots p, q and s (r = 15) exhibiting deadlock
behavior because the decisions for all three pairwise intersections {Ip,q, Ip,s, Iq,s} are
predetermined in a sense that the decisions δ(·) are implied by the scenario itself, i. e.,
δ(Ip,q) = q, δ(Ip,s) = p and δ(Iq,s) = s without “sacrificing” one specific robot. These
yield the waiting dependencies depicted in (b).

According to [55], there are four so-called Coffmann conditions which are sufficient for a
deadlock to take effect:

• Mutual exclusion: areas (spaces) in the environment are blocked by robots, and
they must be used exclusively to prevent collisions. Thus, they are the essential
“resource” that is reserved and used mutually exclusive.

• Hold and wait: a robot is always occupying an area around its current position (hold)
and in terms of driving to a goal, areas without any intersections are also reserved
exclusively for that robot (which makes sense since no other robot demands them).
Thus, all areas that do not have an intersection are blocked by that particular
robot and are part of the “hold”. Basically, this treats these areas as if they are
the same (or have the same property). These areas (resources) are held until the
associated area is passed through by driving along the path (release of resources).
Conceptually, a resource is (partially) freed when a robot reaches its next release
point within the given scenario. The “wait” applies for intersection areas where a
robot may not get RoW and, thus, needs to wait until another robot (with RoW)
has passed through that area.

• No preemption: because robots move on their own (will) and safety must be guaran-
teed at any time, assigned resources (reserved areas) can never ever be transferred
to others. In particular, a robot always voluntarily frees segments of its path
during motion.
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(a) Feasible input with deadlock possibility
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(b) Infeasible input due to a goal conflict

Figure 4.6: Examples for (a) a feasible input with deadlock possibility and (b) an
infeasible input due to a goal conflict between robots p and q (no infinite wait, goals are
not reachable for both). In (a), the assignment δ(Ip,q) = q, δ(Iq,s) = s, δ(Ip,s) = p would
be a deadlock because none of the robots would be able to reach their goals (infinite
wait). In contrast, with δ(Ip,s) = s, the input is feasible without deadlocking behavior.

• Circular wait: since robots block areas of the path ahead and wait for subsequent
areas at halts of intersections, a circular waiting situation can occur which will
never terminate, see Figure 4.5(b).

If all conditions are met, an input can (but does not have to) have a deadlock. Of
course, this depends on the actual schedule. One needs to decide between two very
distinct and important cases. On the one hand, a deadlock that cannot be resolved since
it is part of the scenario and there is no deadlock-free schedule at all (cf. Figure 4.5).
On the other hand, there can be inputs where not only deadlocking (invalid) but also
deadlock-free schedules exist (and a planning approach that aims to be complete must
find it, cf. Section 2.1). An example for this is presented in Figure 4.6(a). The assignment
δ(Ip,q) = q, δ(Iq,s) = s, δ(Ip,s) = p would be a deadlock. However, changing δ(Ip,s) = s
would solve the scenario without any deadlocking behavior because s would always get
RoW. For comparisons, Figure 4.6(b) also shows a scenario that is infeasible due to a
goal conflict between p and q (not a deadlock).

Another important observation regarding the use, definition and notion of a “resource”
(area) is that (parts of) resources may also never be freed since robots will always occupy
space at their current position and finally, at the goal. This is somewhat different to
resources in the context of processes in an operating system where resources are typically
used for a fixed amount of time.

Pairwise intersections can also be interpreted in a (spatial) coordination space (CS)
[34] as depicted in Figure 4.7 for the previous deadlock example from Figure 4.5. A
coordination space is spanned by the two involved robot paths defining the horizontal
and vertical axis respectively. More precisely, all segment endpoints of a robot’s path
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(b) CS for robots q and s
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(c) CS for robots p and s

Figure 4.7: Pairwise CS representation for the deadlock scenario shown in Figure 4.5(a).
Each axis represents the length of the associated robot path. The dashed lines indicate
where the path ends, that is, all paths start at (0, 0) (gray marker) and end at the
green squared marker in the upper right. Pairwise intersections are visualized by their
associated red rectangles whose boundaries are given by the halt and release progresses
of the associated robots (if existing).

(polyline) are projected onto its axis (in Figure 4.7(a): p onto the horizontal and q onto
the vertical axis) so that distances are being preserved and any location on that axis
represents a position on that robot’s path w. r. t. its starting point (indicated by the gray
squared markers in the lower left at (0, 0)). Any 2D coordinate in such a coordination
space then represents a specific position of both robots on their paths. In Figure 4.7,
the (axis-parallel) dashed lines at the end of the axes represent the entire path length,
i. e., the goal of the respective robot. The green squared marker in the upper right
therefore represents the goal of both robots. Thus, locations with negative coordinates
or coordinates above (ordinate) and on the right of (abscissa) the dashed lines are invalid
because robots are assumed to just move inside their paths.

Because a pairwise intersection has associated halts and releases according to Equa-
tions (4.11) and (4.12), it can be represented in the CS by so-called collision rectangles.
For instance, the halt h(Ip,q, q) and the release progress r(Ip,q, q) in Figure 4.7(a) specify
points on the associated robot path q (on the ordinate) as indicated by the two dotted
horizontal lines. Both h(Ip,q, q) and r(Ip,q, q) define an interval on the q-axis which equals
the height of the collision rectangle (likewise for the p-axis in Figure 4.7(c) representing
the collision rectangle’s width). If a halt or release does not exist, the associated collision
rectangle boundary does not exist and strives towards infinity as exemplary shown
in Figure 4.7(b) where q is never releasing Iq,s; that is, r(Iq,s, q) = ∞ and the right
boundary of its collision rectangle does not exist, striving to positive infinity on the
q-axis. The CS allows for a useful visualization and intuition of pairwise intersections by
representing intersections as collision rectangles.2

2It also provides the foundation of the Incremental Coordination-Space Path Scheduler algorithm in
Section 4.4 which solely operates in CS.
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Figure 4.8: Visualization of the inputs (line segments Sp = pipi+1, Sq = qjqj+1, sum of
radii rpq) as part of two given robot paths for the segment-hull intersection problem in
search of the points p(βk) on segment Sp (blue) having exactly a distance of rpq (black)
to segment Sq (red). The actual solution depends on how the two segments are located
to each other and the value of rpq. This example has two valid solutions p(β1) and p(β2)
which represent the halt (yellow) and release points (green) for p respectively. Here,
βk, αk ∈ [0, 1],∀k ∈ {1, 2} (i. e., corresponds to case (i) as explained subsequently).

4.3 Conflict Detection

Within this section, two new approaches for computing pairwise intersections and their
associated halt and release points (cf. Section 4.2.1) are presented. After presenting the
fundamentals in Section 4.3.1 for both approaches, the first algorithm, named Smallest
Guarded Segments (SGS) is explained in Section 4.3.2 which aims at finding the smallest
possible intersections based on a segment level. Section 4.3.3 then continues with the
Merged Guarded Subpaths (MGS) algorithm which aims at merging adjacent intersections
to create a smaller number of larger connected intersections. Both algorithms are then
compared in Section 4.3.4.

4.3.1 Segment-Hull Intersections

A fundamental issue that arises in both algorithms presented in Sections 4.3.2 and 4.3.3
is the segment-hull intersection problem which serves as the foundation for computing
halt and release progresses. That is, given two line segments Sp := pipi+1, Sq := qjqj+1
from robot paths P, Q and the sum rpq of both radii, we are interested in finding the
(locally parameterized) intersections βk ∈ [0, 1] on the first segment Sp with the hull of
the second segment Sq whereby the hull is obtained by sliding a circle with radius rpq

along the second segment Sq and taking the convex hull of the union of all such circles.
Note that this problem is not commutative.
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4.3.1.1 Derivation of a Closed-Form Solution

We will now deduce the closed-form solution for this problem, i. e., for finding all
parameterized points on an infinite line given by segment Sp with fixed distance rpq to
another line defined by segment Sq. This is sketched in Figure 4.8.

Therefore, let the coefficient β ∈ [0, 1] ⊂ R denote a point

p(β) := pi + β · (pi+1 − pi) ∈ R2 (4.15)

on Sp (linear interpolation) and, based on p(β), let

α(β) := (p(β)− qj) ∗ (qj+1 − qj)
dist(qj+1, qj)2 ∈ R (4.16)

denote the parameter for the corresponding point qα on Sq if α(β) ∈ [0, 1] whereby

dist(p, q) := ∥p− q∥ =
√(

p(x) − q(x))2 +
(
p(y) − q(y))2 ∈ R≥0. (4.17)

Equation (4.16) is deduced as follows. Again, refer to Figure 4.8 for a visualization of
these terms (whereby α1 := α(β1) and α2 := α(β2) for brevity). First, we can express an
arbitrary point qα ∈ Sq as

qα = qj + α · (qj+1 − qj) . (4.18)

Since the line through that point qα and the given point p(β) must be orthogonal to Sq,
its dot product must be zero:

(qj+1 − qj) ∗ (qα − p(β)) != 0. (4.19)
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By substituting Equation (4.18) into (4.19) and rearranging, we obtain Equation (4.16):

(qj+1 − qj) ∗ (qj + α · (qj+1 − qj)− p(β)) = 0 (4.20)

⇐⇒
(
q

(x)
j+1 − q

(x)
j

)
·
(
q

(x)
j + α ·

(
q

(x)
j+1 − q

(x)
j

)
− p(β)(x)

)
+ (4.21)(

q
(y)
j+1 − q

(y)
j

)
·
(
q

(y)
j + α ·

(
q

(y)
j+1 − q

(y)
j

)
− p(β)(y)

)
= 0 (4.22)

⇐⇒
(
q

(x)
j − p(β)(x)

)
·
(
q

(x)
j+1 − q

(x)
j

)
+ α ·

(
q

(x)
j+1 − q

(x)
j

)
·
(
q

(x)
j+1 − q

(x)
j

)
+ (4.23)(

q
(y)
j − p(β)(y)

)
·
(
q

(y)
j+1 − q

(y)
j

)
+ α ·

(
q

(y)
j+1 − q

(y)
j

)
·
(
q

(y)
j+1 − q

(y)
j

)
= 0 (4.24)

⇐⇒ α ·
(
q

(x)
j+1 − q

(x)
j

)
·
(
q

(x)
j+1 − q

(x)
j

)
+ α ·

(
q

(y)
j+1 − q

(y)
j

)
·
(
q

(y)
j+1 − q

(y)
j

)
= (4.25)

−
(
q

(x)
j − p(β)(x)

)
·
(
q

(x)
j+1 − q

(x)
j

)
−
(
q

(y)
j − p(β)(y)

)
·
(
q

(y)
j+1 − q

(y)
j

)
(4.26)

⇐⇒ −
(
q

(x)
j − p(β)(x)

)
·
(
q

(x)
j+1 − q

(x)
j

)
−
(
q

(y)
j − p(β)(y)

)
·
(
q

(y)
j+1 − q

(y)
j

)
(4.27)

= α ·
((

q
(x)
j+1 − q

(x)
j

)2
+
(
q

(y)
j+1 − q

(y)
j

)2
)

(4.28)

=⇒ α =

(
p(β)(x) − q

(x)
j

)
·
(
q

(x)
j+1 − q

(x)
j

)
+
(
p(β)(y) − q

(y)
j

)
·
(
q

(y)
j+1 − q

(y)
j

)
(
q

(x)
j+1 − q

(x)
j

)2
+
(
q

(y)
j+1 − q

(y)
j

)2 (4.29)

= (p(β)− qj) ∗ (qj+1 − qj)
dist(qj+1, qj)2 . (4.30)

With these definitions, we can specify the equation for finding all points p(β) on segment
Sp that have an Euclidean distance of exactly rpq ∈ R>0 to its corresponding point qα

on Sq (see Figure 4.8):

dist (p(β), qj + α(β) · (qj+1 − qj)) != rpq. (4.31)

Solving this equation for β yields all solution points on Sp according to Equation (4.15);
note that α is defined using β.
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Using the definition of dist() (cf. Equation (4.17)) and rearranging terms appropriately,
we obtain:

⇐⇒ ∥p(β)− (qj + α(β) · (qj+1 − qj))∥ = rpq (4.32)
⇐⇒ ∥p(β)− qj − α(β) · (qj+1 − qj)∥ = rpq (4.33)

⇐⇒

∥∥∥∥∥∥∥∥∥pi + β · (pi+1 − pi)− qj −

γ︷ ︸︸ ︷
(pi + β · (pi+1 − pi)− qj) ∗ (qj+1 − qj)

∥qj+1 − qj∥2

∥∥∥∥∥∥∥∥∥ = rpq

(4.34)

⇐⇒
∥∥∥∥∥
(

p
(x)
i + βp

(x)
i+1 − βp

(x)
i − q

(x)
j − γq

(x)
j+1 + γq

(x)
j

p
(y)
i + βp

(y)
i+1 − βp

(y)
i − q

(y)
j − γq

(y)
j+1 + γq

(y)
j

)∥∥∥∥∥ = rpq (4.35)

⇐⇒

√√√√√√
(
p

(x)
i + βp

(x)
i+1 − βp

(x)
i − q

(x)
j − γq

(x)
j+1 + γq

(x)
j

)2
+(

p
(y)
i + βp

(y)
i+1 − βp

(y)
i − q

(y)
j − γq

(y)
j+1 + γq

(y)
j

)2 = rpq (4.36)

rpq>0⇐⇒
(
p

(x)
i + βp

(x)
i+1 − βp

(x)
i − q

(x)
j − γq

(x)
j+1 + γq

(x)
j

)2
+(

p
(y)
i + βp

(y)
i+1 − βp

(y)
i − q

(y)
j − γq

(y)
j+1 + γq

(y)
j

)2
− r2

pq = 0
(4.37)

⇐⇒
(
p

(x)
i + β∆p(x) − q

(x)
j − γ∆q(x)

)2
+(

p
(y)
i + β∆p(y) − q

(y)
j − γ

(
q

(y)
j+1 − q

(y)
j

))2
− r2

pq = 0
(4.38)

with

∆p :=
(

∆p(x)

∆p(y)

)
=
(

p
(x)
j+1 − p

(x)
j

p
(y)
j+1 − p

(y)
j

)
(4.39)

and likewise for ∆q. To continue solving Equation (4.38), we rearrange γ as follows in
order to isolate constants ci (not depending on β):

γ :=

(
p

(x)
i + β∆p(x) − q

(x)
j

)
·∆q(x) +

(
p

(y)
i + β∆p(y) − q

(y)
j

)
·∆q(y)

∆q(x)2 + ∆q(y)2 (4.40)

=
β ·

c1︷ ︸︸ ︷
(∆p ∗∆q) +

c2︷ ︸︸ ︷
∆q(x)p

(x)
i −∆q(x)q

(x)
j + ∆q(y)p

(y)
i −∆q(y)q

(y)
j

∥∆q∥2︸ ︷︷ ︸
c3

(4.41)

= βc1 + c2
c3

. (4.42)
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Substituting these abbreviations, we can further rearrange Equation (4.38):

⇐⇒
(

p
(x)
i + β∆p(x) − q

(x)
j − βc1∆q(x) + c2∆q(x)

c3

)2

+(
p

(y)
i + β∆p(y) − q

(y)
j − βc1∆q(y) + c2∆q(y)

c3

)2

− rpq
2 = 0

(4.43)

⇐⇒

β

c4︷ ︸︸ ︷(
∆p(x) − c1∆q(x)

c3

)
+

c5︷ ︸︸ ︷
p

(x)
i − q

(x)
j − c2∆q(x)

c3


2

+

β

(
∆p(y) − c1∆q(y)

c3

)
︸ ︷︷ ︸

c6

+ p
(y)
i − q

(y)
j − c2∆q(y)

c3︸ ︷︷ ︸
c7


2

− rpq
2 = 0

(4.44)

⇐⇒ (βc4 + c5)2 + (βc6 + c7)2 − rpq
2 = 0 (4.45)

⇐⇒ (c4 + c5)︸ ︷︷ ︸
a

·β2 + (2c4c5 + 2c6c7)︸ ︷︷ ︸
b

·β + c5
2 + c7

2 − rpq
2︸ ︷︷ ︸

c

= 0 (4.46)

which is the standard form of a quadratic equation aβ2 + bβ + c = 0, having up to two
solutions

β1,2 = − (2c4c5 + 2c6c7)±
√

D

2 (c42 + c62) (4.47)

based on its discriminant D := (2c4c5 + 2c6c7)2 − 4
(
c42 + c62) · (c52 + c72 − rpq

2). The
β1,2 are a (local) parameterization of the associated points on the given segment Sp while
the corresponding α1,2 parameterize the associated points on Sq. However, this only holds
true if such an ideal situation is given as depicted in Figure 4.8 where β1,2, α1,2 ∈ [0, 1].
In practice, Sp and Sq can be located arbitrarily to each other so that the derivation for
computing β1,2 may not be applicable.

To simplify the subsequent case analysis, we assume dist(Sp,Sq) < rpq because if
dist(Sp,Sq) ≥ rpq, there are no conflicting points according to Equation (4.6) anyway
and the segments can be ignored. The case analysis yields an algorithm to compute
a solution for the introduced segment-hull intersection problem which can be outlined
as follows: first, if Sp and Sq are non-parallel, Equation (4.47) is evaluated and the
resulting βk and corresponding αk are filtered based on whether they are inside or outside
the [0, 1]-range. Second, if the input segments are parallel, circle-segment intersections
must be computed because Equation (4.47) is not applicable. This also yields βk-values
describing the locations of the intersection of a given circle with the segment Sp. Third
and finally, the set B of all determined βk undergoes a final postprocessing to only retain
valid solutions.
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(a) Case (ii): β1,2, β′
1,2 ∈ [0, 1] and α′

1,2 /∈ [0, 1] (circle-segment intersection: β1,2)

(b) Case (iii): β′
2 /∈ [0, 1] and α′

2 ∈ [0, 1] (β′
2 is invalid, no solution for the left part)

(c) Case (iv): β′
1 /∈ [0, 1] and α′

1 /∈ [0, 1] (circle-segment intersection: β1,2)

Figure 4.9: Schematic of all possible cases for the computation of β1,2 according to
Equation (4.47) if input segments Sp = pipi+1 and Sq = qjqj+1 are neither parallel nor
equal to each other. Note that all illustrations refer to locations (β1,2) computed on the
segment Sp only. The figures assume that Sp and Sq have a distance less than rpq.
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4.3.1.2 Non-parallel Segments

First, let us consider the case where Sp is not parallel or equal to Sq as visualized
by Figure 4.9. Generally, the discriminant D in Equation (4.47) must be ≥ 0 because it
would only be < 0 if there is no solution at all which applies only if dist(Sp,Sq) ≥ rpq.
Additionally, D = 0 is impossible as well because mathematically, the deduced formula
in Equation (4.47) assumes infinite lines, not (finite) segments and non-parallel lines
will always yield two solutions β1,2 (although not necessarily in [0, 1]).

We can therefore focus on D > 0 which yields the following cases when computing βk

and its corresponding αk, k ∈ {1, 2}, according to Equations (4.47) and (4.16):

(i) βk ∈ [0, 1] ∧ αk ∈ [0, 1]: This is the simple case which has already been depicted
in Figure 4.8. It also applies for β2 in Figure 4.9(c). Because both parameters are
valid, βk is added to B for further processing as outlined below.

(ii) βk ∈ [0, 1] ∧ αk /∈ [0, 1]: This case is visualized by Figure 4.9(a). All β-parameters
on Sp are valid but all α-parameters on Sq are outside [0, 1]. This case shows that
it is insufficient to only consider the β values. To find the correct intersection
points, a circle-segment intersection must be computed with radius rpq and against
segment Sp. More specifically, if αk < 0 we know that the intersection is located
somewhere before qj (as in Figure 4.9(c) for α′

1) and if αk > 1, we are certain
that the intersection is behind qj+1 (as in Figure 4.9(a) for α′

1,2). We therefore
select the circle’s center to be qj if αk < 0 and qj+1 otherwise. However, for
Figure 4.9(a), this would cause two identical circle-segment intersection tests due
to α′

1,2 > 1. Evaluating the signum of the involved α-values avoids performing
these computations twice, requiring sign(α1) ̸= sign(α2). Basically, this case adds
all resulting circle-segment intersections to B for further processing.

(iii) βk /∈ [0, 1] ∧ αk ∈ [0, 1]: The lower left part of Figure 4.9(b) visualizes this case
(via β′

2, α′
2) when focusing on Sq = qjqj+1 (i. e., ignoring q⋆

j and the entire right
side next to qj+1 and pi for this case because that is discussed later). It becomes
obvious that there is no valid solution β because Sp (blue) is completely contained
in the rpq-hull of Sq (red).

(iv) βk /∈ [0, 1] ∧ αk /∈ [0, 1]: This case is shown in Figure 4.9(c) which is somewhat
equal to case (ii) for β1 requiring a circle-segment intersection as well. A subtle
difference is that the endpoints qj and qj+1 are swapped w. r. t. Sp so that the
circle is centered around qj here. Like in case (ii), the circle-segment intersections
are added to B.

As already implied by the gray squared markers in Figure 4.9, some invalid βk might
have been added to B. Their removal is discussed after the parallel case since it is
required therein as well.
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(a) Parallel case with two valid and two invalid solutions; the two solutions labeled as “discarded”
will be removed by non-min/max suppression. The two invalid solutions in the middle arise
from the two circle-segment intersection tests around qj and qj+1 against the segment Sp (blue)
having four solutions here.

(b) Parallel case with only one valid and two invalid solutions; non-min/max suppression is
insufficient here showing the necessity of rpq-equality filtering. This schematic also represents
the case where a β would be found next to pi, i. e., as an entering into the rpq-sized Sq hull (red)
if pi would be located further left (like in (a)).

(c) Parallel case without (Sp = pipi+1) or just invalid (Sp = p′
ip

′
i+1) solutions only. Clearly, both

solutions (labeled as “discarded”) would only be rejected by rpq-equality filtering as indicated by
the “< rpq”. This situation occurs if Sp (blue) is fully contained in the rpq-sized hull of Sq (red)
and there is no entering or exiting of Sp into that hull.

Figure 4.10: Cases for the computation of β1,2 if input segments Sp and Sq are parallel
or equal to each other. If one of these cases applies, Equation (4.47) is not applicable.
Note that all illustrations refer to locations (β1,2) computed on the segment Sp only.
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4.3.1.3 Parallel Segments

Let us therefore now assume that Sp is parallel or equal to Sq. As indicated by Figure 4.10,
the parameterized intersections of the two circles centered around qj and qj+1 with
radius rpq are computed against segment Sp. This results in two (see Figure 4.10(a)),
only one (see Figure 4.10(b)) or no valid solution (see Figure 4.10(c)) for βk to be
added to B based on the segments’ lengths and how they are located to each other.
Algorithmically, all circle-segment intersections are added to B preliminarily.

Thus far, the set B is composed of all βk computed by distinguishing parallel vs. non-
parallel input segments, and in the latter case, by further distinguishing between the
cases (i) to (iv).

4.3.1.4 Postprocessing

The required circle-segment intersection tests from the parallel and non-parallel cases
have also caused “invalid” βk to be added to B (visualized via gray squared markers
in Figures 4.9 and 4.10). A βk is considered invalid if the following invalidity property
holds (cf. Equation (4.16)):

dist(p(βk),Sq) ̸= rpq (4.48)

with

dist(p,Sq) :=


dist(p, qj) if α < 0
dist(p, qj+1) if α > 1
dist(p, qj + α (qj+1 − qj)) otherwise,

(4.49)

α = (p− qj) ∗ (qj+1 − qj)
dist(qj , qj+1)2 and Sq = qjqj+1. (4.50)

The following two-stage filtering is proposed to efficiently remove them from B. First,
a non-min/max suppression only retains the smallest and largest βk from B if |B| > 2.
Second, all βk are removed from B not satisfying Equation (4.48), termed rpq-equality
filtering. Note that non-min/max suppression is always applied first to already remove as
many invalid βk values as possible because it is faster since it only requires comparisons
of scalars. rpq-equality filtering would be sufficient on its own but it is slower due to the
involved distance computations.

For instance, in the absence of q⋆
j in Figure 4.9(b), the only (rightmost) gray marker is

removed by rpq-equality filtering. However, if we assume that Sq starts at q⋆
j (not at qj),

both gray markers are already rejected more efficiently by non-min/max suppression
because β⋆ and β1 are the valid (retained) extremes. Similarly, in Figure 4.9(c), the
gray marker at p(β′

2) is removed by non-min/max suppression as well. For the parallel
cases in Figure 4.10, both gray markers in (a) and the rightmost one in (b) is rejected by
non-min/max suppression while the remaining ones are rejected by rpq-equality filtering.
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(a) Perspective of robot p (blue) on the inter-
section with interval [pk

min, pk
max] = [i − 3 +

0.35, i + 0.82] (highlighted) for Sp against Sq

(b) Perspective of robot q (red) on the intersection
with interval [qk

min, qk
max] = [0, 1.81] (highlighted)

for Sq against Sp (since j = 1 due to “Start”)

Figure 4.11: Strategy of how the SGS algorithm moves along a path both towards the
start and goal to identify a pairwise intersection Ik

p,q = ([pk
min, pk

max], [qk
min, qk

max]) along
with the halts and releases (if any) for both robots based on two conflicting segments
Sp, Sq. (a) shows the perspective of robot p (blue) while (b) shows the same for q (red).
For example in (a), both the halt h(Ik

p,q, p) = pk
min and release r(Ik

p,q, p) = pk
max exist

which “protect” the segment Sp = pipi+1 of interest against Sq = qjqj+1. Note that
other segments of the path Q in (a) are not relevant for the computation here.

This postprocessing ensures that |B| ≤ 2. As for the final output, the ordered set

B⋆ = ⟨i + βk | ∀βk ∈ B⟩ (4.51)

is returned by the algorithm, converting all segment-local parameters βk to a path-global
parameterization (see also Equation (4.5)).

4.3.2 Smallest Guarded Segments

Within this section, the Smallest Guarded Segments (SGS) algorithm is presented which
solves the problem described in Section 4.2.1, that is, given two conflicting input paths P
and Q, determine all pairwise intersections according to Equation (4.7) along with their
halt and releases (cf. Equations (4.11) and (4.12)). It is based on the solution of the
segment-hull intersection problem, see Section 4.3.1, and its output serves as the input
of the solver algorithms for computing a valid schedule (cf. Section 4.2.2). The proposed
approach identifies the smallest possible pairwise intersections based on a segment-level
while still ensuring validity according to the properties (4.8) to (4.10).

Figure 4.11 illustrates the underlying idea of this algorithm. For all pairs Sp = pi, pi+1,
Sq = qj , qj+1 of conflicting segments, i. e., dist(Sp,Sq) < rpq with

dist(Sp,Sq) :=


0 if Sp ∩ Sq ̸= ∅
min{dist(pi,Sq), dist(pi+1,Sq),

dist(qj ,Sp), dist(qj+1,Sp)} otherwise,
(4.52)
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it follows the path P towards the robot’s initial start until it encounters the first entering
segment having a starting point pk, k ≤ i, with dist(pk,Sq) ≥ rpq. In Figure 4.11(a),
this is pi−3 (white) and the entering segment is therefore pi−3pi−2. Similarly, it also
follows P towards the robot’s goal until it encounters the first leaving segment having
an endpoint pk, k ≥ i, with dist(pk,Sq) ≥ rpq. Again in Figure 4.11(a), this is pi+1
(white) and the leaving segment is Sp itself. Such segments (if any) are then used as the
input for the segment-hull intersection problem which defines the interval boundaries
[pk

min, pk
max] for this specific pairwise intersection Ik

p,q. If the entering segment does not
exist, the left interval boundary is set to the progress start, pk

min = 0. Likewise, if
the leaving segment does not exist, the right boundary is set to the progress of the
goal, pk

max = Np − 1. As depicted in Figure 4.11(a), if such segments exist, the interval
boundaries also equal the halt h(Ik

p,q, p) (yellow) and release r(Ik
p,q, p) (green) respectively,

according to Equations (4.11) and (4.12). Notice that this only computes the guards on
path P . To compute the associated interval [qk

min, qk
max], the roles of p and q are swapped,

i. e., the rpq-hull of Sp is intersected with segments of path Q, see Figure 4.11(b) (with
j = 1). On the right side, Q (red) starts inside the rpq-hull of Sp (blue) so that no halt
exists for robot q and this particular intersection, thus qk

min ̸= h(Ik
p,q, q).

More details of the SGS algorithm are given in Algorithm 4.1. After checking for the
corner case of having robots that are already at their goals and having a distance
less than rpq in Lines 2-4, the algorithm first accounts for robots that have already
moved previously. This will be explained within the context of Chapter 5 but for now
it is sufficient to know that robots can be placed anywhere on their current paths.
Such starting positions are denoted as σp and σq for p and q respectively. Because all
progress values are a global parameterization of locations on the paths, the algorithm
first updates the input paths of both robots in Line 5. For instance w. r. t. P, the
location (x, y) at index ⌊σp⌋ is replaced with ρ−1(σp) ∈ R2 which effectively shifts the
start of that segment to the robot’s actual start. These are just temporary modifications
and reverted in Line 22. In the following, if any intersection guards are located on the
updated start segments S⌊σp⌋ or S⌊σq⌋, they must be remapped to account for the (global)
parameterization of the original (reverted) paths. For instance, if

⌊
h(Ik

p,q, q)
⌋

= ⌊σp⌋
(remapping necessary), the halt point h(Ik

p,q, q) must be recomputed as follows (for dist(),
see Equation (4.17)):

h(Ik
p,q, q) =dist(w, u)

dist(v, u) + ⌊σp⌋ whereby (4.53)

u := pold
⌊σp⌋, v := p⌊σp⌋+1 and w := ρ−1

(
h
(
Ik

p,q, q
))

. (4.54)

Within Equation (4.54), pold
⌊σp⌋ denotes the previous point in the path P at index ⌊σp⌋

before UpdatePaths() takes effect (cf. Line 5).

Within the next two loops, the algorithm iterates over all pairs of segments and tests
whether a given pair is in conflict (see Line 8). For every conflicting segment, a new
intersection Ik

p,q is created (cf. Line 9) and the associated halts and releases are computed
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Algorithm 4.1 Pseudocode of the Smallest Guarded Segments algorithm requiring the
paths P, Q, the start progresses σp, σq and the sum of both radii rpq as input. The
output is the set of all pairwise intersections I = {Ik

p,q} between robots p and q including
all halt and release points (if any) for every Ik

p,q.
1: procedure SmallestGuardedSegments(P, Q, σp, σq, rpq)
2: if ⌊σp⌋ = Np − 1 ∧ ⌊σq⌋ = Nq − 1 ∧ dist(ρ(σp), ρ(σq)) < rpq then
3: return ▷ Robots crash already at their starts (equaling their goals)
4: end if
5: UpdatePaths(P, σp, Q, σq) ▷ Reflect new starting points
6: for i← ⌊σp⌋+ 1 to Np − 1 do ▷ Loop through all pairs of input segments
7: for j ← ⌊σq⌋+ 1 to Nq − 1 do
8: if dist(pi−1pi, qj−1qj) < rpq then ▷ Test for conflicting segments
9: Ik

p,q ← CreateIntersection(i− 1, j − 1, I)
10: ▷ Move towards p’s goal and start to find release and halt respectively:
11: r(Ik

p,q, p)← TraceForwards(P,Q, i, j, rpq)
12: h(Ik

p,q, p)← TraceBackwards(P,Q, i, j, rpq)
13: ▷ Likewise for q:
14: r(Ik

p,q, q)← TraceForwards(Q,P, i, j, rpq)
15: h(Ik

p,q, q)← TraceBackwards(Q,P, i, j, rpq)
16: end if
17: end for
18: end for
19: if ⌊σp⌋ = Np − 1 ∨ ⌊σq⌋ = Nq − 1 then ▷ Robot has already reached its goal?
20: HandleCornerCases(P, Q, σp, σq, rpq)
21: end if
22: RevertPathsAndRemap(P, Q, {Ik

p,q}) ▷ Undo changes from Line 5
23: return all pairwise intersections {Ik

p,q}
24: end procedure

for p and q respectively (cf. Lines 11-15). For TraceForwards() in Line 11, we iterate
over the path P towards the goal starting at segment pi−1pi, to find the first point
pk, k > i (i. e., the starting point of the next segment), satisfying dist(pk,Sj−i) ≥ rpq

(“guarding point” behind the conflict). The two segments Sj−i,Sk are then fed into the
solution for the segment-hull intersection problem as described in Section 4.3.1 which
yields a set B of possible solutions. We return max (B) as release point because we know
there is a release due to dist(pk,Sj−i) ≥ rpq and its progress must be the maximum
among all values in B. Similarly, for the case of TraceBackwards() in Line 12, we
start iterating from segment Si−i to S⌊σp⌋ towards the start (i− 1 ≥ ⌊σp⌋) to find the
first point pk, k ≤ i − 1 (i. e., the starting point of the previous segment), satisfying
dist(pk,Sj−i) ≥ rpq (“guarding point” before the conflict). After solving the segment-hull
intersection problem for Sj−i,Sk, we return min (B). Note that in both cases, if no such
“guarding point” were found, the release and/or halt do not exist.
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Finally, the special case is handled where only one of the two robots has already reached
its goal (cf. Lines 19-21). The case must be handled separately because the last segment
of a robot’s path, already being at the goal, degenerates to a single point (that is, the goal
itself). Note that in this case, the two nested for loops (Lines 6 and 7) are not entered at
all. To identify all pairwise intersections for the special case, HandleCornerCases()
traces the segments S of the non-degenerated path towards the goal as explained before
and adds a pairwise intersection for the degenerated segment S ′ and every S if they
are in conflict. Afterwards, halts and releases are computed based on a circle-segment
intersection test whereby the circle is centered around the (degenerated) goal point with
radius rpq and tested against segment S (cf. Section 4.3.1).

4.3.3 Merged Guarded Subpaths

An obvious disadvantage of the SGS algorithm is that it always creates a huge amount
of small pairwise intersections, although they may be close to each other. This raised
the idea of merging such adjacent intersections, leading to the proposed Merged Guarded
Subpaths (MGS) algorithm. It also computes valid pairwise intersections along with
their halt and releases but also tries to combine as many close intersections as possible.

At first, this algorithm performs much like the SGS algorithm by determining all pairs
of conflicting segments. Afterwards, it tries to merge as many segment pairs as possible
based on a specific merge condition. This continues until there are no more segment
pairs fulfilling the merge condition. That is, along the way, the two subpaths contained
in a pairwise intersections can “grow” (due to a merge) while the total number decreases.
Basically, a merge operation combines two intersections to one while effectively reducing
the number of intersections by one. Merged intersections therefore always contain at
least the same or a larger number of segments compared to the pairwise intersection of
the input of the merge.

Algorithm 4.2 shows the pseudocode listing for the algorithm. The Lines 2-5 are equal
to the SGS algorithm, see Section 4.3.2, and the corner case handling has been omitted
because it is similar to SGS. Next, similiarly to the SGS algorithm, the two nested for
loops (Lines 7 and 8) determine all pairwise intersections on a segment level, that is, the
index tupel ((i−1, i−1), (j−1, j−1)) is added to the set I whereby (i−1, i−1) identifies
the segment Si−1 = pi−1pi on P and (j − 1, j − 1) identifies the segment Sj−1 = qj−1qj

on Q. We abbreviate this by writing ((p▷, p◁) , (q▷, q◁)) (see Line 16) whereby p▷ and q▷

denote the indices of the entering segments into the intersection for p and q respectively.
Similarly, p◁ and q◁ denote the exiting segments (i. e., the intersecting subpaths are in
between “▷ · · · ◁”). Note that this is still only index-based, i. e., it is yet unknown what
specific parts of the segments are actually part of the intersection.

The set I serves as the input for the Merge() operation (cf. Line 14) which is detailed
in Algorithm 4.3. The outer loop iterates until there are no more merge operations
possible inside the inner loop. The nested for loop inspects all possible distinct pairs
(Im, In) in the set I to check whether they can be merged (Lines 4-17). In Lines 6
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Algorithm 4.2 Pseudocode of the Merged Guarded Subpaths algorithm requiring the
paths P, Q, the start progresses σp, σq and the sum of both radii rpq as input. The
output is the set I of all pairwise intersections Ik

p,q between robots p and q including all
halt and release points (if any) for every Ik

p,q.
1: procedure MergedGuardedSubpaths(P, Q, σp, σq, rpq)
2: if ⌊σp⌋ = Np − 1 ∧ ⌊σq⌋ = Nq − 1 ∧ dist(ρ(σp), ρ(σq)) < rpq then
3: return ▷ Robots crash already at their starts (equaling their goals)
4: end if
5: UpdatePaths(P, σp, Q, σq) ▷ Reflect new starting points
6: I ← ∅
7: for i← ⌊σp⌋+ 1 to Np − 1 do ▷ Loop through all pairs of input segments
8: for j ← ⌊σq⌋+ 1 to Nq − 1 do
9: if dist(pi−1pi, qj−1qj) < rpq then ▷ Test for conflicting segments

10: CreateIntersection(i− 1, j − 1, I)
11: end if
12: end for
13: end for
14: Merge(I, rpq) ▷ See Algorithm 4.3
15: for all Ik

p,q ∈ I do ▷ Compute all halts and releases
16: Let Ik

p,q := ((p▷, p◁) , (q▷, q◁))
17: if Exists(h(Ik

p,q, p)) then
18: h(Ik

p,q, p)← ComputeHalt(q▷, q◁, p▷)
19: end if
20: if Exists(r(Ik

p,q, p)) then
21: r(Ik

p,q, p)← ComputeRelease(q▷, q◁, p◁)
22: end if
23: if Exists(h(Ik

p,q, q)) then
24: h(Ik

p,q, q)← ComputeHalt(p▷, p◁, q▷)
25: end if
26: if Exists(r(Ik

p,q, q)) then
27: r(Ik

p,q, q)← ComputeRelease(p▷, p◁, q◁)
28: end if
29: end for
30: RevertPathsAndRemap(P, Q, I)
31: return I
32: end procedure
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Algorithm 4.3 Pseudocode of the Merge() operation, as part of the MGS algorithm
(see Algorithm 4.2). The input is the set of initial pairwise intersections I as well as
the sum of both radii rpq. Its output is a possibly modified set I where elements of the
orignal set have been merged and deleted. Note that I contains all pairwise intersections
of two robots p, q.

1: procedure Merge(I, rpq)
2: do
3: for all Im, In ∈ I, m ̸= n do ▷ For all index-based subpath pairs
4: Let Im :=

((
mi

▷, mj
◁

)
,
(
mk

▷, ml
◁

))
and In :=

((
ni

▷, nj
◁

)
,
(
nk

▷, nl
◁

))
5: ▷ Determine intersection of intervals:
6: (d+

p , d−
p )← (max(mi

▷, ni
▷), min(mj

◁ + 1, nj
◁ + 1))

7: (d+
q , d−

q )← (max(mk
▷, nk

▷), min(ml
◁ + 1, nl

◁ + 1))
8: if d+

p ≤ d−
p ∧ d+

q ≤ d−
q then ▷ Intersection non-empty?

9: ∆p← d−
p − d+

p + 1 ▷ Number of elements in p-intersection
10: ∆q ← d−

q − d+
q + 1

11: if ∆p ≥ 2 ∧∆q ≥ 2 then ▷ Segments overlap, ready to merge.
12: valid ← true
13: else ▷ Adjacent segments, testing necessary.
14: Fp ← Verify(Q, mk

▷, ml
◁, nk

▷, nl
◁, pd+

p
, rpq)

15: Fq ← Verify(P, mi
▷, mj

◁, ni
▷, nj

◁, qd+
q

, rpq)
16: valid ← Fp ∧ Fq

17: end if
18: if valid then ▷ Is it valid to merge Im with In?
19: M ←

(
(min(mi

▷, ni
▷), max(mj

◁, nj
◁)), (min(mk

▷, nk
▷), max(ml

◁, nl
◁))
)

20: Update(M , Im, In, I) ▷ Delete Im, In from I and add M .
21: break ▷ Leave inner for-loop.
22: end if
23: end if
24: end for
25: while I has changed ▷ Lines 19 and 20 executed in previous iteration?
26: end procedure
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and 7, the algorithm first computes the intersection d+
p , d−

p of the intervals, defined by
the given indices Im, In (cf. Line 4):

(d+
p , d−

p ) := (max(mi
▷, ni

▷), min(mj
◁ + 1, nj

◁ + 1)) and (4.55)
(d+

q , d−
q ) := (max(mk

▷, nk
▷), min(ml

◁ + 1, nl
◁ + 1)). (4.56)

If such intervals are non-empty (Line 8), there are two possible cases w. r. t. the lengths
∆p, ∆q ∈ N of these intervals: they can either be both ≥ 2 (see Line 11) or at least
one of them has length 1, i. e., ∆p = 1 ∨∆q = 1 (see Line 13). If they have a length
of at least two, the subpaths overlap in an entire segment and can thus be merged
immediately. However, in case they just overlap at their endpoints, further checks are
necessary (cf. Verify() in Lines 14 and 15). Without loss of generality, the check is
executed w. r. t. p if ∆p = 1 so that a merge is possible if either ∆p ≥ 2 or ∆p = 1
and the check succeeds. First, the check tests whether there is at least one segment on
Q[mk

▷ ,ml
◁] with a distance less than rpq to the single shared endpoint pd+

p
in the interval.

Notice that ∆p = 1 if and only if d+
p = d−

p . Second, the check also tests whether there
is at least one segment on Q[nk

▷ ,nl
◁] with a distance less than rpq to the same endpoint

pd+
p

. This way, a shared endpoint of two adjacent segments is ensured to be still part of
the intersection (i. e., has a distance of < rpq). The same conditions and checks must
also hold for q and a merge is triggered if both succeed (Line 16). A merge is eventually
indicated by setting the “valid” flag to true causing a merge in Lines 19-20. According
to Line 19, the resulting pairwise intersection is computed by taking the minimum of
the entering and the maximum of exiting segment indices. It directly follows that the
result of the merge contains both inputs (and is therefore possibly larger). The set I is
updated by removing Im, In (inputs) and adding M (result); this also triggers another
iteration of the outer loop. As the code indicates, the Merge() operation still ensures
that p▷ ≤ p◁ and q▷ ≤ q◁ (similarly for q). Termination is guaranteed because there
are only two possible cases: either nothing can be merged (right at the beginning or
after some iterations) or all can be merged to a single intersection. In the first cases,
the set I will eventually not be changed (anymore) which terminates the loops. In the
second case, once there is only one pairwise intersection remaining, the inner loop will
also terminate without altering I causing the outer loop to terminate as well.

Once all possible merges have been performed, the loop in Lines 15-29 iterates over all
remaining intersections Ik

p,q with indices ((p▷, p◁) , (q▷, q◁)) and computes the halt and
release for p and q respectively. For every intersection guard, we test if it actually exists.
Without loss of generality, we describe this for p but the same applies for q with roles
swapped. For the halt of p, we first check if p▷ = ⌊σp⌋, that is, the first conflicting
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segment in Ik
p,q is equal to the start segment of p’s path. If this applies and the following

condition

{0, 1} ⊆ {R(Si, pp▷pp▷+1) | i ∈ {q▷, . . . , q◁} ⊂ N0 } whereby (4.57)

R(p0p1, q0q1) =


−1 if dist(q0, p0p1) ≥ rpq ∧ dist(q1, p0p1) < rpq,

0 if dist(q0, p0p1) < rpq ∧ dist(q1, p0p1) < rpq,

1 if dist(q0, p0p1) < rpq ∧ dist(q1, p0p1) ≥ rpq

(4.58)

holds true, we know that pk
min = σp and, thus, h(Ik

p,q, p) = −∞ (cf. Equations (4.7)
and (4.11)). The property R(p0p1, q0q1) determines the type of the two given segments,
that is, whether the second segment q0q1 enters (-1), exits (1) or is fully inside (0) the
first segment p0p1. Likewise, for the release of p, we first check if p◁ = Np − 1, that is,
the last conflicting segment in Ik

p,q is equal to the last segment of p’s path. If this applies
and the following condition

{0,−1} ⊆ {R(Si, pp◁pp◁+1) | i ∈ {q▷, . . . , q◁} ⊂ N0 } (4.59)

applies, we know that pk
max = Np − 2 and, thus, r(Ik

p,q, p) =∞. It is worth noting that
the existence checks are crucial here because there are always extrema of a given set
but that may not be the correct halt or release respectively. Only if we know that it
actually exists allows us to safely take the extrema of the underlying sets as halt and
release points. Correctness is then implied by how the segment-hull intersection problem
is solved, see Section 4.3.1.

Given the indices ((p▷, p◁) , (q▷, q◁)) of segments of a pairwise intersection Ik
p,q, the halt

is computed by (cf. ComputeHalt())

h(Ik
p,q, p) = min

q◁⋃
i=q▷

B⋆(Sp▷ ,Si) (4.60)

if it exists. Likewise, the release is computed by (cf. ComputeRelease())

r(Ik
p,q, p) = max

q◁⋃
i=q▷

B⋆(Sp◁ ,Si) (4.61)

if it exists. In the previous two equations, B⋆() ⊂ R≥0 denotes the solution of the
segment-hull intersection problem for the two given segments (i. e., the ordered set of
halts and/or releases, cf. Equation (4.51)) whereby the rpq-hull of Si is intersected with
the segment provided as first parameter. Like in the SGS algorithm, path modifications
due to starting progresses are being reverted in Line 30 and remappings are applied if
any of the computed halts or releases are located on the first (modified) segment (refer
to Section 4.3.2 for more details).

Finally, Figure 4.12 shows an example of the algorithm and the sequence of merge
operations. Figure 4.12(a) shows the resulting merged intersection I1

p,q which originates
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(a) Resulting merged pairwise intersection, i. e.,
I = {((0, 2), (0, 2))} (highlighted), computed by
the MGS algorithm, see Algorithm 4.2

(b) Result of the SGS algorithm (7 pairwise
intersections); note that multiple circles overlay
at the same location

((0, 2), (0, 2))

((2, 2), (1, 1))((0, 2), (0, 2))

((2, 2), (0, 0))((0, 1), (0, 2))

((1, 1), (2, 2))((0, 1), (0, 2))

((1, 1), (0, 0))((0, 1), (1, 2))

((1, 1), (1, 1))((0, 0), (1, 2))

((0, 0), (2, 2))((0, 0), (1, 1))

(c) Sequence of Merge() operations (6 in total, see Algorithm 4.3) for the example in (b) with
|I| = 7 initial pairwise intersections. Numbers ((p▷, p◁), (q▷, q◁)) correspond to the indices of the
points in the path (see (a) and (b)) and therefore refer to subpaths.
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(d) Coordination space for (a)
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(e) Coordination space for (b)

Figure 4.12: Example for the (a) MGS algorithm in comparison with (b) the SGS
algorithm. The number of intersections is reduced from 7 to 1 as indicated by (c).
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from the pairwise intersections depicted in Figure 4.12(b) after applying the sequence
of Merge() operations displayed as a tree in Figure 4.12(c). All boxed subpath
pairs in (c) are the results of pairwise segment-level intersection tests (cf. Lines 7-13
in Algorithm 4.2). The CSs for Figure 4.12(a) and (b) are visualized in Figure 4.12(d)
and (e) and illustrate how intersections are combined. For example, the first merge
operation in Figure 4.12(c) takes Im = ((0, 0), (1, 1)) and In = ((0, 0), (2, 2)) as inputs
and merges them to ((0, 0), (1, 2)) with ∆p = 2, ∆q = 1 and d+

q = d−
q = 2.

4.3.4 Evaluation

This section deals with the comparative evaluation of the SGS and the MGS algorithms.
The benchmarks have been executed on a system with an AMD Ryzen 9 3900X 12-core
processor, 32 GB RAM running Ubuntu 20.04.

Figure 4.13 shows the computation time for the SGS and MGS algorithm w. r. t. two
different scenarios. Each point in the diagram is the result of averaging five measurements
to account for varying system load. The input paths for p and q have been generated
procedurally to analyze how both algorithms scale with regard to varying paths lengths.
Two examples for a total of two path segments each are depicted in Figure 4.14 for
reference. Note that the two scenarios are chosen in order to reflect the extreme cases,
that is, no merge being possible in scenario 1 and all intersections getting merged in
scenario 2. SGS creates up to O(Np · Nq) intersections whereby Np and Nq are the
number of points on the paths of P and Q respectively. This is also what MGS starts
with initially. With respect to the Merge() operation, two cases are possible: none of
the intersections can be merged (equaling scenario 1) or all intersections can be merged
to a single one (equaling scenario 2). For example (scenario 2), with 1000 segments as the
input paths lengths, SGS found 4994 pairwise intersection in 0.119 s. MGS merged these
to a single intersection taking 0.164 s in total, i. e., only 45 ms longer. The difference
for scenario 1 (no merge possible) is even negligible (118.179 vs. 121.508 ms). However,
notice that the number of pairwise intersections does not necessarily scale linearly in the
number of path segments.

The data from Figure 4.13 suggests quadratic run-time complexity of both algorithms
with a small additional amount of time required by MGS for the merging. A least squares
polynomial fit for the data in Figure 4.13 underpins this assumption. For instance, the
polynomial for MGS in scenario 2 (all merged) is approximately

0.00000016x2 − 0.00000268x + 0.00034172 (4.62)

with a fitting error of less than 0.0002002. It should be noted that MGS is not asymp-
totically optimal because there are algorithms for the Rectangle Intersection Problem
running in O(n log(n) + K) time whereby n is the number of input rectangles and K
is the number of intersecting pairs of rectangles [35]. However, for smaller number of
inputs considered here (< 200), MGS is assumed to perform faster in practice.
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Figure 4.13: Computation time in seconds (ordinate) for the SGS and MGS algorithms
and two scenarios based on varying path lengths (abscissa). In scenario 1, all intersections
were too far apart for being merged (rpq = 10). Scenario 2 was similar to scenario 1 but
due to rpq = 50 all intersections can be merged by MGS (black dots). Paths have been
generated procedurally in a zick-zack fashion (see Figure 4.14) and displayed values are
the average over five measurements to account for varying system load.

Given a set of N robots as input, a total of
(N

2
)

= O(N2) calls to these algorithms is
necessary to inspect the intersections of all (unordered) pairs (k = 2) of paths which
serves as the input for the solvers described next.

4.4 Incremental Coordination-Space Path Scheduler

This section deals with the explanation of the novel Incremental Coordination-Space
Path Scheduler (ICSPS), an algorithm used to solve the RoW assignment for all pair-
wise intersections of a given set of robots with associated precomputed paths. More
information about the formal problem has already been presented in Section 4.2.2. The
framework introduced in Chapter 5 uses this solver algorithm in one of its states to
negotiate a set of robots dynamically.
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(a) Sample for scenario 1 (2 intersections)
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1

...

(b) Sample for scenario 2 (1 intersection)

Figure 4.14: Exemplary visualization of the two procedurally generated scenarios used
for performance analysis of the SGS and MGS algorithms for two path segments, cf.
abscissa in Figure 4.13. By increasing the number of path segments, more such “diamond
shaped structures” are being created (see the three dots in the center of both figures).

Computation
of pairwise 

intersections

ICSPS
solver

ExecutionFeasible?  

Infeasible?

Input Right-of-Way

Intersection-free?

Figure 4.15: Overview of how ICSPS is applied after applying conflict detection (pairwise
intersection computation), e. g., via SGS or MGS. Rectangular boxes represent in- and
output while rounded boxes are processing steps. If ICSPS considers a scenario to be
infeasible, it is discarded.

Section 4.4.1 begins with the explanation of in- and outputs of the algorithm along
with a brief overview of how the algorithm works. Section 4.4.2 then continues with
a more detailed discussion of the temporal CS which forms the base of the algorithm.
Recall that the spatial CS, the CS with robot locations on the axes, has already been
introduced briefly in Section 4.2.2. Based on the representation in a 2D CS, Section 4.4.3
explains how an input is solved for only two robots as input. Because the input is
comprised of N robots, N > 1, Section 4.4.4 extends this to the N -dimensional case.
Finally, Section 4.4.5 details how the resulting RoW assignment is deduced from the
solution computed in CS and Section 4.4.7 completes this section with an evaluation of
the solver algorithm.
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4.4.1 Overview

With a few simplifications, Figure 4.15 illustrates how this solver is applied for a set of N
robots in the input. After computing all pairwise intersections Ii,j , either with the SGS
or MGS algorithm (see Sections 4.3.2 and 4.3.3), it takes Ii,j , ∀i, j ∈ {1, ..., N}, i ̸= j,
the paths Pi, the start progresses σi and the maximum velocities vi

max for every robot as
the input and computes the RoW assignment δ() for all intersections, cf. Section 4.2.2.
Finally and once all RoWs have been determined, the solution (if any) is executed by
the robots while respecting the computed RoW. Note that paths can degenerate to a
point if a robot is already at its goal (indicated by its start progress, i. e., σi = |Pi|− 1).

The algorithm operates in the temporal CS which is a velocity-scaled variant of the
spatial CS and is therefore based on time and durations instead of locations and distances.
Basically, it proceeds as follows. As a preprocessing step, all initial timings are computed
for all involved robots and all halts and releases of associated intersections. An initial
timing for a robot p and an intersection Ip,q is given by the distance from the robot’s start
σp to the halt h(Ip,q, p) divided by its maximum velocity vi

max, likewise for the release
r(Ip,q, p). The initial timings allow efficient access to the approximate time required by
every robot to move to its halt and release for all intersections respectively. For a given
order π of robots in the input, the algorithm starts to solve for the first two robots π(0)
and π(1). This constructs the 2D CS with all intersections between robots π(0) and
π(1). The CS has already been introduced briefly in Section 4.2.2 and will be explained
in more detail in Section 4.4.2. Within the CS, it then tries to find a path from (0, 0),
representing the starts, to the upper right, representing the goals of both robots. This
path may not intersect with any CR in CS, each representing an intersection between
π(0) and π(1). Additionally, the bounding boxes of all segments of such a solution path
may not intersect with any of the CRs. Assuming feasibility w. r. t. π(0) and π(1) for
now, the algorithm continues to solve for the remaining robots π(j), j = 2, ..., N − 1,
by iteratively constructing the next CS with the solution path of the previous iteration.
That is, the previous solution path serves as the foundation for the new abscissa in
the next CS. In iteration j, the RoW of intersections between robots π(0), ..., π(j − 1)
(placed on the abscissa) vs. π(j) (placed on the ordinate) are solved which remains a
two-dimensional input. In every iteration step, this requires the reprojection of halts
and releases between all previously solved robots π(k), k = 0, ..., j − 1, and all upcoming
robots π(l), l = j, ..., N − 1, onto the new abscissa, subsequently termed the combined
axis. The 2D solution paths found in every CS (iteration) are used to deduce the RoW
for every pairwise intersection (detailed in Section 4.4.3).

Figure 4.16 shows an introductory example for an input scenario solved by ICSPS.
In Figure 4.16(a) to (f), six steps of how the solution is executed by the robots are shown.
The corresponding CSs are depicted in Figure 4.16(g) and (h). Robots are presented as
semi-transparent circles if they are waiting for the release of an intersection ahead (cf. (a)
and (d)). Halts and releases have been removed once they become obsolete to improve
readability. Notably, because robots are assumed to move with maximum velocities, the
black dashed paths in both CSs represent the animated motions from Figure 4.16(a)
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(h) Second coordination space: p, q vs. s

Figure 4.16: The animation steps (a) to (f) illustrate how an input scenario with
three robots p (red), q (green), s (blue) is executed after being solved by ICSPS as an
introductory example while (g) and (h) visualize the corresponding CS with the solution
paths (brown) and bounding boxes (yellow) for every segment. Black dashed paths
represent the actual executed motions in the animation (with maximum velocity). The
numbers at every intersection correspond to the red-shaded collision rectangles (CRs).



70 CHAPTER 4. COLLISION-FREE MULTI-ROBOT SCHEDULING

to (f). They reside in the segment-induced bounding boxes (shaded yellow). A closer
look on robots p (red) and q (green, transparent) in Figure 4.16(d) reveals how q waits
for the release of intersection 4 by p whose CR is shown in (g). Because q would block
the path of p, the CR strives to +∞ on the q-axis. (h) shows the combined axis for
robots p and q. The waiting of q corresponds to the second (horizontal) segment (dashed
black) in Figure 4.16(g) where no time for q passes (“waiting”) while robot p still moves
(through the intersection area). After the release, q will eventually reach its goal which
corresponds to the second-last point on the dashed black path in (g). Finally, q has to
“wait” again at its goal (reaching it first) while p completes its remaining path (cf. last
segment on blue path). More details on how these trajectories are being deduced from
the solution paths (brown) will be presented in Section 4.4.5, especially how this applies
in higher dimensions (e. g., in (h)).

It should be noted that, theoretically, an N -dimensional CS solver with exponential
runtime complexity is possible by constructing the N -dimensional CS in order to find an
N -dimensional path from the origin to the goal of all robots with the same properties
outlined above. However, this is impossible to compute for practically sized instances
which justifies the choices made in the algorithm design.

4.4.2 Representations in Coordination Space

This section presents the CS with its properties which serves as the foundation of the
proposed ICSPS algorithm. As already briefly introduced in Section 4.2.2, a CS for
just two robots p, q is spanned by the two involved paths defining the horizontal and
vertical axis respectively. Which robot is mapped to which axis is a matter of definition:
we typically assign the “first robot” p to the horizontal and the “second robot” q to
the vertical axis. More precisely, all segment endpoints of a robot’s path (polyline)
are projected onto its axis so that distances are being preserved and any location on
that axis represents a position on that robot’s path w. r. t. its starting point. Any
2D coordinate in such a CS then represents a specific position of both robots on their
paths. The resulting space is termed spatial coordination space. Because a pairwise
intersection Ip,q is (normally) comprised of a halt and release for both involved robots,
we can identify intervals [h(Ip,q, p), r(Ip,q, p)] and [h(Ip,q, q), r(Ip,q, q)] on both axis in
CS that describe a so-called collision rectangle (CR). If one of the limits is missing
(due to a non-existing halt or release), its associated CR strives towards ±∞ according
to Equations (4.11) and (4.12). This model is beneficial because if, for instance, p has
no release (r(Ip,q, p) =∞), the associated CR “blocks” reachability of the common goal
location in the upper right of the CS for p, forcing q to get RoW (otherwise, p would
block the intersection area forever). It is important to emphasize the special meaning
of the borders of such a CR: because halts and releases are defined in such a way that
collisions are still impossible when robots are located on their associated intersection
guards, only the interior of a CR is representing the critical intersection area. That is
why the solution paths in Figure 4.16(g) and (h) are allowed to use edges and corners of
the CRs.
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There is no modeling of time yet. We therefore propose a simple scaling approach: each
axis is scaled by the associated robot’s maximum velocity by dividing distances on an
axis by the maximum velocity. This yields the temporal coordination space. Within the
following context of ICSPS, we will always refer to time-scaled “locations” (becoming
points in time w. r. t. a robot’s start of a motion) and distances (becoming durations) in
CS without mentioning that explicitly. Note that, however, the simplification by means
of scaling axes via the robots’ maximum velocities does not void the safety guarantees
as explained in the next Section 4.4.3.

Notice that the size of a robot is implicitly modeled by the CRs as well and that no
discretization is used at all.

4.4.3 Solving the 2-dimensional Case

Given the CS for two robots p and q as described in the previous Section 4.4.2, we
will now describe how this input is used to find the RoW for all pairwise intersections
Ip,q ∈ I between p and q. The underlying idea can be outlined as follows. Because the
CS for p and q represents all intersections via CRs, we need to find a monotonic path
inside the CS that connects the start of both robots at (0, 0) with the goal in the upper
right while being intersection-free with the interior of all CRs. Every point on this path
represents the position of both robots in time since they have started moving at the
same time. By ensuring no intersections with any of the CRs, it is guaranteed that
the robots will never enter an intersection area simultaneously, given the underlying
assumptions are met. It is important to note that this path must be monotonically
increasing because robots are not allowed to move backwards. They are only allowed to
move forward in the velocity range [0, vmax].

In order to encode all required properties of such a path, we model the underlying
problem with a directed Constrained Visibility Graph (CVG) G = (V, E). The set V
contains a vertex for every corner of a CR, that is, all combinations of halt and releases
for both involved robots if they exist. Additionally, the start and goal locations are
added as vertices. Given two vertices u, v ∈ V, u ̸= v, a directed edge (u, v) ∈ E is
created if the following monotonicity property

vx ≥ ux ∧ vy ≥ uy (4.63)

as well as the intersection-free property

∀Ik
p,q ∈ I : B(ux, uy, vx, vy) ∩B

(
h(Ik

p,q, p)
vp

max
,
r(Ik

p,q, p)
vp

max
,
h(Ik

p,q, q)
vq

max
,
r(Ik

p,q, q)
vq

max

)
= ∅ (4.64)

hold. Notice that every vertex u ∈ V has an associated position (ux, uy) ∈ R2 in CS.
B(x1, y1, x2, y2) denotes the interior of the bounding box of the two 2D points (x1, y1)
and (x2, y2). CRs are just axis-aligned bounding boxes so that intersections can efficiently
be tested by four comparisons only. The monotonicity property enforces edges to be
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(a) Visibility graph for CS in Figure 4.16(g)

1

2

3

5

(b) Visibility graph for CS in Figure 4.16(h)

Figure 4.17: CVGs based on the introductory example in Figure 4.16 with overlayed
CRs (red) to indicate the correspondences between vertices v ∈ V and intersections.
Blue vertices are relevant for the computation of the solution path while gray vertices
(see (b)) are unconnected and can be ignored. Also note that vertices are omitted if
their associated corners do not exit (strive to ±∞).

monotonically increasing w. r. t. both axes. The intersection-free property ensures that
bounding boxes of edges in the graph remain empty with regard to all CRs. This has the
advantage that robots do not need to adhere to a precomputed velocity profile as common
in many related approaches (cf. Chapter 2) and are free to execute the determined RoW
assignments (velocity tolerance). Moreover, unexpected delays, obstacles or model
inaccuracies will not void the provided safety guarantees, making this approach very
robust while sacrificing some efficiency. Figure 4.17 shows two examples for a CVG.

We suggest the A⋆ algorithm [28] to find the shortest path in G. Alternative approaches
are possible because the graph already encodes restrictions so that any path is valid in
that graph. Paths that run on the 45◦-diagonal of the CS3 are preferred due to increased
parallelism because, conceptually, both robots are then allowed to make progress on their
paths simultaneously (with maximum velocity). An empty CS without any intersection
is a simple example for this where both robots can obviously move independently and
with the shortest path being the single diagonal segment (connecting the origin in the
lower left with the goals in the upper right). This is automatically handled by A⋆ because
the shortest path favors diagonals. However, because one robot might reach its goal
earlier than the other and as already explained for Figure 4.16(g), the aforementioned
diagonal segment might not represent the actual path in CS being executed. Note that
in some cases with SGS, “dead ends” can occur in the graph G but since paths are only
valid if they are connecting the origin with the goal, this is automatically avoided by
design. Figure 4.17(b) also illustrates this (cf. lower left corner of intersection 5).

3Note the difference to the diagonal in the CS from (0, 0) to the goal (upper right) because both
axes do not necessarily have the same length.
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4.4.4 Transfer to the N-dimensional Case

ICSPS reduces the entire problem to a series of N − 1 2-dimensional problems which are
solved incrementally. Given a specific order π of the robots in the input, the RoW for
all pairwise intersections between the first two robots π(0) and π(1) is first computed as
explained previously. This yields a solution path S0 in the CS of π(0) and π(1). The
path’s start represents the beginning of both motions and its end represents the time
the longer moving robot requires to reach its goal. It fully specifies the RoW between
π(0) and π(1) which will be explained in Section 4.4.5. The solution S0 defines the
new abscissa for the next iteration when incrementally adding the next robot π(2),
thus solving all intersections between π(0) and π(2) as well as π(1) and π(2). More
formally, given the solution path up to robot π(j − 1), the next iteration solves all
pairwise intersections between all robots π(0), . . . , π(j − 1) (all placed on the horizontal
axis) and the newly added robot π(j) (always placed on the vertical axis). That is, given
N robots in the input, N − 1 coordination spaces are being constructed incrementally.

Except for the first two robots, the abscissa always represents the set of robots between
which pairwise intersections have already been solved. We denote it as the combined
axis in the CS. In iteration j, its length is given by the Euclidean length |Sj−1| based on
the previous solution path Sj−1. This way, the relevant part of the abscissa (indicated
by the two dotted lines in Figure 4.16(h) and (g)) can only grow and will eventually
represent the time the longest moving robot in the input requires to reach its goal.

Conceptually, all halts and releases of robots being part of the CS in j − 1 are mapped
onto Sj−1, that is, guards4 of robots π(0), . . . , π(j−1) on the combined axis are vertically
projected on Sj−1 while guards of the robot π(j) on the ordinate are horizontally projected
on Sj−1. More specifically, let j, 2 ≤ j < N , be the current iteration, i. e., the RoW of all
pairwise intersections of (yet unconsidered) robot π(j) with (already considered) robots
π(k), k = 0, . . . , j−1 has to be determined. Because we will subsequently only encounter
and process intersections between pairs (π(k), π(l)) whereby l = j, . . . , N − 1 indexes the
yet unprocessed robots, all guards between k and l must be projected onto the combined
axis based on the previous solution path Sj−1; the result is termed projected timings
and updated incrementally. Three cases are possible. First, there are already projected
timings stored for π(k) and π(l). In this case, such timings are simply reprojected
onto Sj−1 and the stored values are updated. Second, there are no projected timings,
i. e., none of the halts or releases of π(k) and π(l) have been considered so far. In this
case, we project the initial timings of π(k) w. r. t. π(l) onto Sj−1 and store them as
projected timings for subsequent iterations j + 1, ..., N − 1. Finally, in case there are no
intersections between robots π(k) and π(l), nothing is projected.

We will now describe how the projection is carried out, cf. Figure 4.18. As described,
a guard consists of a halt and a release (if existing) and initial timings have already
been precomputed for all intersections. Note that non-existing guards are ignored in
the projection, that is, the projection of a non-existing guard remains a non-existing

4Recap that “guard” is the catch-all phrase for halts and releases.
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Figure 4.18: Scheme of how projections of timings are computed in coordination space
in iteration j of the ICSPS algorithm for three exemplary intersection guards for robots
π(j), π(k) and π(k′). The path Sj−1 (blue) is the solution of the previous iteration
j − 1 and serves as the projection target. Timings for guards on the abscissa are taken
from projected timings while timings on the ordinate are taken from the precomputed
initial timings. Notice that the fourth and fifth (vertical) segments of Sj−1 are collinear
here. The projection result is exemplarly visualized for h(·, π(k)) (yellow) and r(·, π(k))
(green).

guard. Based on how the algorithm maps robots to axes, we project horizontally if
k ≤ j − 2 and vertically if k = j − 1. Without loss of generality, given such a timing
t and the combined axis Sj−1, we briefly describe how t is projected onto the abscissa
(that is, for case k ≤ j − 2); the projection onto the ordinate is similar. At first, the
segment Zm = smsm+1 ∈ Sj−1 must be identified such that t ∈ [s(x)

m , s
(x)
m+1]. If there are

subsequent segments Zm+1,Zm+2, ... on Sj−1 that are collinear to Zm, we set Zm to the
last collinear segment of that series. This is justified by the fact that the location on the
abscissa is equal for all such collinear segments and they are all safe for the robot under
consideration. By computing the intersection between Zm and the vertical segment
(t, 0), (t, s

(y)
m+1), we obtain the horizontal projection p ∈ Sj−1 ⊂ R2 of t on the combined

axis. The total distance along the path Sj−1 from the beginning up to the location p
yields the final projection result for t. With regard to Figure 4.18, it is important to
note that the depicted path (blue) was computed based on CRs that are not visualized
and are unrelated to the intervals shown on both axes.

Essentially, the combined axis determines how the timings are being “distorted” within
the projection, thus influencing how CRs for subsequent CSs look like. In other words,
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projected timings reflect how computed solutions paths affect and possibly influence the
computation of solution paths in higher dimensions. This is intuitive because computing
the solution for a subset of robots may affect the solution of others and the concept
of projected timings is how the algorithm handles this. Notice that in the process of
projection, the axes are already time-scaled so that no division by the maximum velocity
is necessary. Also note that the path Sj−1 serves as the input for the projection and for
finding the next solution path Sj as explained next.

The projected and initial timings serve as the input for solving the 2D instance between
robots π(l), l = j, . . . , N − 1 and π(k). Since this is very similar to the basic 2D case
described in Section 4.4.3, we briefly outline how the CS is constructed. By design, robot
π(k) is mapped to the ordinate so that the intervals [h(Im

π(k),π(l), π(k)), r(Im
π(k),π(l), π(k))]

for all pairwise intersections Im
π(k),π(l) are taken from the initial timings. Associated

intervals [h(Im
π(k),π(l), π(l)), r(Im

π(k),π(l), π(l))] on the combined axis are taken from the
projected timings. This fully specifies all CRs within the current CS so that A⋆ can
find the shortest path in the underlying CVG (again, see Section 4.4.3), creating a new
solution path Sj . For the sake of completeness, if there are no intersections between π(k)
and all π(l), l = j, . . . , N − 1, within the current iteration j, the CS remains empty, and
the diagonal would be the shortest solution path Sj . This is because the CVG would
consist of two vertices only: the start (lower left) and the goal (upper right). The path
Sj serves as the input for the next iteration j + 1 (if any).

Shorter solution paths close to the diagonal are more favorable compared to those that
take a detour, although this is inevitable in some case where CRs are blocking areas
in the CS. The path Sj is returned as solution. It may be empty (Sj = ∅) if the area
between the start (lower left) and goal (upper right) is completely blocked by CRs such
that no path exists.

4.4.5 Right-of-Way Assignment

It has not been presented yet how ICSPS specifically deduces the RoW for a pairwise
intersection. Recall from the previous section that in every iteration j, a solution path
Sj is determined using A⋆ and that every pairwise intersection is represented as a CR in
the current CS j.

Let p (on the combined axis) and q (on the ordinate) be the two involved robots in an
intersection Ip,q. The lower left corner of a CR represents the halt of p and q, and the
upper right represents the release. The upper left corner represents the halt of p and
the release of q (similarly for the lower right with roles swapped). That is, for instance,
if the solution path runs to the lower left and then to the upper left corner, robot p
is only allowed to move to h(Ip,q, p) (lower left corner) while q can move to its release
r(Ip,q, q) (upper left corner). In other words, the positional relationship of Sj and a CR
allows to infer the RoW for that intersection (binary decision). For this reason, we can
deduce the RoW for an intersection based on how the path runs past the associated CR.
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The RoW at Ip,q is assigned to p if the CR is located above Sj . Likewise, the RoW is
assigned to q if the CR is located below Sj .

Geometrically, this is robustly and efficiently tested by checking whether the center point
of the CR is above or below the solution path. Although we know that the solution path
does not intersect with any CR by construction, the boundary of a CR can be part of
Sj so that the corners of a CR cannot be checked directly. This must be done in every
dimensional step during the execution of ICSPS and the result is stored along with every
intersection for later execution (cf. Figure 4.15).

In the spatial CS, any 2D point represents the location of both robots on their path
simultaneously. Given an iteration j ≥ 2 of ICSPS and assuming a spatial CS for now,
that location may be “behind” a robot’s goal because the combined axis represents the
set of all paths of robots placed on that axis and they most likely do not have the same
length. However, this is not an issue because we simply consider locations “behind a
robot’s goal” to be on the goal. That is, when sweeping along the solution path Sj

from the origin to the goal, this specifies positions for all involved robots on their paths.
If we now assume a temporal CS as foundation for the ICSPS again as explained in
the previous sections, any 2D point represents the time (since motions have started
simultaneously) involved robots have moved on their paths. This can be mapped to
a unique location on their path since dividing by their maximum velocity just scaled
the axes. On the combined axis, velocity scaling only changes the lengths of the paths
(becoming durations). The justification for applying the scaling is to incorporate a
notion of different velocities. For instance, if robot p has to move twice the distance of
another robot q before reaching their first intersection but moves (approximately) twice
as fast as q does, both will reach their first intersection roughly at the same time. A
huge advantage of how ICSPS models velocities w. r. t. safety is that bounding boxes
of segments of Sj are not allowed to intersect any (interior of a) CR. Although being
a restriction, it allows robots to move at any velocity while executing the determined
RoWs without being in danger of a collision.

Based on Figure 4.16(h), we will now justify why all bounding boxes (yellow) of the
segments of a 2D solution path Sj , j ≥ 2 remain intersection-free regarding both all 2D
CRs in iteration j and all CRs from dimensions j′, ∀j′ < j, i. e., why the solution is
valid w. r. t. collision safety. Observe that iterations j are related to dimensions d of
the overall search space. In other words, we justify that the d-dimensional bounding
boxes of the segments of the d-dimensional solution path Sd remain intersection-free to
all d-dimensional CRs. For instance, in Figure 4.16 there are three robots (p, q, s) so
that a CR can be considered as a 3D cube. Intersection 4 in Figure 4.16(g) is a 2D CR
but can be extended to ±∞ w. r. t. robot (dimension) s, making it a 3D CR. Even more
apparent, the “2D CRs” in Figure 4.16(h) are assigned two coordinates on the combined
axis, making them 3D CRs. Basically, this holds for all elements of the visualization; for
the solution path S2 in particular.

That being said, we take a closer look at the transition from j → j + 1 in Figure 4.16(g)
and (h) (j = 1). The first segment of the solution path in Figure 4.16(g) induces two
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Figure 4.19: Illustration on the use of indices within ICSPS: i refers to the current
permutation πi, j refers to the current iteration for a given permutation πi(j), k indexes
all robots before and excluding robot πi(j) and l denotes all yet unconsidered robots
after and excluding πi(j). An involved robot has at least one intersection to another
robot.

intervals: [a, b] on the p-axis and [c, d] on the q-axis. The bounding box B(a, c, b, d) is
empty by construction. When transitioning from j to j + 1 (see Figure 4.16(h)), the two
intervals are represented on the combined p-q-axis and the segments of Sj+1 are still
intersection-free with the CR of intersection 4. That is, for example, the new p-q-interval
[e, f ] of the second segment of Sj+1 in Figure 4.16(h) is a subset of [a, b] and [c, d] which
is known to be safe between p and q. This observation applies to all CRs and previous
dimensions.

4.4.6 Algorithmic Description

Within the previous sections, the methodology of the ICSPS has been explained in detail.
This section completes the explanation by summarizing it by means of the pseudocode
in Algorithm 4.4. Additionally, the concept of analyzing different permutations of the
robots in the input is presented.

Whether ICSPS will be able to find a solution also depends on the order of how robots
are being processed, that is, the order of how the CSs are being constructed. To handle
this issue, the algorithm is extended to loop over a limited set of permutations πi.
Figure 4.19 visualizes the used variables for indices whereby j, k and l have already been
used previously with the same semantic.

Algorithm 4.4 shows a simplified pseudocode listing for ICSPS. In Line 2, the potential
subset of involved robots is determined that actually have intersections with others. This
way, robots without any intersections in the input are ignored; this is important for
the correctness of the indexing in the loops of the algorithm. Note that this does only
ignore a robot that has no intersection to all other robots. In Lines 7-12, the algorithm
solves for the first two robots, stores the quality and solution path if feasible or continues
with the next permutation i → i + 1 if the input between robots πi(0) and πi(1) was
already infeasible. The function Solve2D() (cf. Lines 9 and 20) takes the length of
the combined and new axes, the projected timings Tproject, the initial timings Tinit, the
current permutation πi and the previous iteration j − 1 as input. It returns the solution
path Sj and its associated quality d based on the explanation in Section 4.4.3. The
main loop in Line 13 iterates over all remaining robots πi(j) in the current permutation
πi, projects the timings onto the previous combined axis Sj−1 (Lines 14-19) in order to
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Algorithm 4.4 Pseudocode of the Incremental Coordination-Space Path Scheduler: the
input is given by the path Pm, the start progress σm, the maximum velocity vm

max for
every robot of the input and the set of all pairwise intersections I. The output is the
RoW assignment for every Ip,q ∈ I and the final quality of the solution (Equation (??)).

1: procedure ICSPS(∀m = 1, ..., N : (Pm, σm, vm
max), I)

2: Determine involved robots
3: Precompute initial timings Tinit; set dfinal ←∞
4: Compute starting permutation π0 based on involved robots, let N ← |π0|
5: Precompute remaining path time τ(p) for every involved robot p
6: while πi = NextPermutation(πi−1) do
7: Tprojected ← ∅ ▷ Projected timings must be computed for every permutation
8: Add entries for πi(0) and πi(1) to Tprojected from Tinit
9: S1 ← Solve2D(τ(πi(0)), τ(πi(1)), Tprojected, Tinit, πi, 0)

10: if S1 = ∅ then ▷ Already infeasible between πi(0) and πi(1)?
11: Continue with πi+1
12: end if
13: for all j ← 2, ..., N − 1 do
14: ▷ Project timings for the construction of the next CS:
15: for all k ← 0, ..., j − 1 do
16: for all l← j, ..., N − 1 do
17: Update Tprojected for all intersections between πi(k) and πi(l)
18: end for
19: end for
20: Sj ← Solve2D(|Sj−1|, τ(πi(j)), Tprojected, Tinit, πi, j − 1)
21: if Sj = ∅ then ▷ Infeasible between πi(l),∀l ∈ {j, ..., N − 1} and πi(k)?
22: Continue with πi+1 ▷ Leave for-loop, restart in outer while-loop
23: end if ▷ Else: feasible up to dimension j.
24: end for
25: ▷ Valid solution found:
26: G← CreateDependencyGraph(πi) ▷ Assess the new valid solution.
27: dcurr ← ComputeTimings(G) ▷ See Algorithm 4.6.
28: if dcurr < dfinal then ▷ Solution better than previous solution?
29: dfinal ← dcurr
30: Store RoW assignments from πi as best result (so far)
31: end if
32: end while
33: return dfinal
34: end procedure
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solve the constructed CS in Line 20. Note that a CS can be empty (no CRs) so that Sj

is simply the diagonal as already explained in Section 4.4.4.

Once all robots of the permutation have been processed and a valid solution for πi was
found (see Line 25), the resulting timings are computed in Line 27 using Algorithm 4.6.
It basically estimates the required time for the robots in the scenario to reach their goals
given the provided RoW for πi. The details will be presented along with the optimal
solver in Section 4.5.1. ComputeTimings(G) stores the value in dcurr (Line 27) in order
to compare it against the score dfinal of the best solution yet known. As it can be seen
in Line 28, the quality is minimized over different permutations because shorter timings
correspond to faster execution times. Accordingly, the RoW assignment is kept for the
permutation with the smallest value stored in dfinal. If it remains ∞, there is no solution
to the input.

Iterating over all permutations requires O(N !) many processings and is therefore im-
practical. Possible termination criteria considered in NextPermutation() (cf. Line 6)
include a fixed number of permutations, a time-bound for the execution of the algorithm,
a threshold for relative changes of the quality, searching until a first feasible solution (if
any) is found, or a combination of them. Alternatively, (pseudo-) random permutations
could also be used to randomly sample the optimization space. Because the optimization
space is large and unknown, this is difficult to judge and will be evaluated in the next
section.

4.4.7 Evaluation

This section deals with the experimental evaluation of ICSPS. It is based on 1) the two
scenarios already presented for the evaluation of SGS and MGS in Section 4.3.4 and 2)
two large simulation generated datasets which will be presented in the following.

The Robotic Experimentation Framework (REF) from Chapter 3 has been used to
generate input scenarios for the evaluation based on random goals in a shop-floor-like
environment in such a way that intersections between the paths are more likely to
stress-test the proposed algorithm. A single scenario is stored as a file containing the
identifiers, paths, start progresses, radii and maximum velocities of all involved robots.
Figure 4.20 shows the distribution of robots and pairwise intersections in datasets 1
(with 156 315 scenarios) and 2 (with 118 683 scenarios) respectively. As it can be seen
when comparing Figure 4.20(a) with (c), dataset 2 tends to contain larger scenarios while
dataset 1 exhibits a larger number of scenarios with up to six robots. Figure 4.20(b)
and (d) depicts the absolute frequencies of pairwise intersections, indicating that they
are very similar. Note that the ordinate is scaled logarithmically.

Two quality measures are mainly used throughout the experiments. The total travel time
(TTT) Ttotal is given by the sum of travel times for all N robots in a scenario, including
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Figure 4.20: Distributions of the quantities of robots and intersections for the simulation-
generated dataset 1 (156 315 scenarios) and dataset 2 (118 683 scenarios) used for the
evaluation of ICSPS. Notice the logarithmic scaling of the ordinates in (b) and (d).



4.4. Incremental Coordination-Space Path Scheduler 81

approximated motion times tm (based on maximum velocities, cf. Section 4.4.2) and all
waiting times tw:

Ttotal :=
N∑

i=1
ti
m + ti

w. (4.65)

The critical path time (CPT) Tcritical is the time it takes for the longest moving robot to
reach its goal among all robots in a given scenario:

Tcritical := max{ ti
m + ti

w | ∀i ∈ {1, . . . , N} }. (4.66)

Note that Ttotal ≥ Tcritical (equality is possible if there is just one robot). In operations
research and scheduling, the critical path time is often also referred to as makespan [1],
and it addresses the problem of minimizing Tcritical.

4.4.7.1 Impact of Conflict Detection

We will first examine the impact of SGS and MGS (see Sections 4.3.2 and 4.3.3) on the
algorithm based on the two scenarios 1 and 2 from Section 4.3.4 (see Figure 4.14) as
their outputs are the most relevant inputs to ICSPS (cf. Figure 4.15). Figure 4.21 shows
the results w. r. t. (a) the TTT, (b) the CPT and (c)–(d) the computation time of the
solver itself. All results are computed with ICSPS using A⋆ and the maximum metric
with a permutation limit of 500.

Figure 4.21(a) shows the TTT for all robots in a scenario (ordinate) given the generated
paths of different lengths (abscissa). Generally, the more path segments are being
generated, the higher the TTT in a scenario. There is no difference for the solver
between scenario 1 and 2 w. r. t. the TTT (blue squares and small green circle). In
scenario 2, the TTT is considerably larger for MGS (all merged to one, red big circles)
than for SGS. However, this depends on the input as it only applies if the input paths
have the same directions (as shown here). Conceptually, the performance of SGS can also
be achieved with MGS by allowed partially releases of (long-drawn-out) intersections.
Additionally, it should be noted that this apperent advantage of SGS over MGS does
also not come into play if very long segments are involved. Such cases would also benefit
from a partial release strategy during execution. Note that the diagram looks about the
same here if the CPT is used as criterion instead of TTT (ordinate): similarly, the CPT
also increases with increasing path length (abscissa). When reversing one of the paths,
the results are all equal to the result for MGS on scenario 2 (big red circles) because the
robot not getting RoW must wait until the other robot has completely passed through
the intersection area.

In Figure 4.21(b), the resulting CPT is visualized for both scenarios (and SGS only
for readability), including their reversed variants. Notice how the scale of the ordinate
has changed compared to (a). Similar to the TTT, the CPT increases with increasing
segments in the inputs. Notably, SGS performs equal to MGS (not shown here) when



82 CHAPTER 4. COLLISION-FREE MULTI-ROBOT SCHEDULING

0 100 200 300 400 500

Number of path segments for p and q

0

20000

40000

60000

80000

T
ot

a
l

tr
av

el
ti

m
e

(s
ec

o
n

d
s)

SGS, scenario 1

MGS, scenario 1

SGS, scenario 2

MGS, scenario 2

(a) Total travel time

0 100 200 300 400 500

Number of path segments for p and q

0

10000

20000

30000

40000

50000

C
ri

ti
ca

l
p

a
th

ti
m

e
(s

ec
o
n

d
s)

240 250
14000

14200

SGS, scenario 1

SGS, scenario 2

SGS, scenario 1, reversed

SGS, scenario 2, reversed

(b) Critical path time for SGS only

0 100 200 300 400 500

Number of path segments for p and q

0

20

40

60

80

C
om

p
u

ta
ti

on
ti

m
e

(s
ec

o
n

d
s)

SGS, scenario 1

MGS, scenario 1

SGS, scenario 2

MGS, scenario 2

(c) Computation time

0 100 200 300 400 500

Number of path segments for p and q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
om

p
u

ta
ti

on
ti

m
e

(s
ec

on
d

s)

SGS, scenario 1

MGS, scenario 1

MGS, scenario 2

(d) Like (c) but without SGS on scenario 2

Figure 4.21: Impact on ICSPS given the output of SGS and MGS on scenarios 1 and
2, i. e., procedurally generated paths up to length 500 (abscissas) with A⋆ using the
maximum metric, see Figure 4.14

one of the path’s direction is reversed (cf. big red circles for SGS and scenario 2). This
is justified by the fact that none of the segments can be processed until all adjacent
intersecting segments have been passed. Interestingly, when looking at the zoomed view
(cf. black rectangle) on the lower right in (b), there are subtle differences in scenario
1 (blue squares) compared to the same scenario with one path reversed (small green
circles). Without reversing the direction, one robot (not getting RoW at the very first
intersection) has to wait shortly for release until it can drive behind the robot getting
RoW (at all intersections at once). Waiting for release just causes a small delay (making
this robot the one with the critical path) which is added to the motion time, contributing
to the CPT (no additional waits required). For the reversed scenario 1, two cases need
to be distinguished. With an even number N of generated path segments, robots moving
in opposite directions will meet in the middle where both paths move away from each
other so that both robots can pass one another without waiting.5 In contrast, given an

5This is also possible due to separated intersections returned by SGS.
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odd number N of segments both robots meet at the intersection of their paths in the
middle which requires waiting shortly as well. Thus, in the non-reversed scenario 1, a
robot always has to wait (although alternating data points as blue squares and green
small circles appear to be identical in the zoomed view). For instance, for a path length
of N = 300, the CPT for the non-reversed scenario 1 is 17 075.42 s and 17 055.42 s for
the reversed one. In case of an even N , the CPT drops a little more because in such
cases, no waiting for release is necessary in the reversed scenario 1 (small green circles).
This justifies the alternating visually perceptible differences in the zoomed view between
the blue squares (scenario 1) and the small green circles (reversed scenario 1). Finally,
the CPT in scenario 2 increases a bit more (cf. orange crosses) compared to scenario 1
(blue squares) due to the increased intersection areas (rpq = 50 instead of rpq = 10).

Figure 4.21(c) and (d) depict the required computation time (ordinate) of the solver
given the differently sized inputs (abscissa) for both scenarios. Clearly, the larger the
input the more time it takes to solve. A lot of time is needed by SGS for scenario 2
(small green circles), see Figure 4.21(c). This is caused by many segment pairs that are
within a distance of rpq to each other, causing SGS to encounter many of such pairs
comprising a (small) intersection (cf. Figure 4.14(b)). Because MGS is able to merge
this, its runtime appears to be constant (big red circles, orange crosses).

Because the scale of the ordinate is enlarged due to the huge amount of time required
by solving the output of SGS for scenario 2, Figure 4.21(d) shows the same plot without
the results for SGS on scenario 2. This reveals the huge improvement of MGS over SGS.
For scenario 1, both are on par (upper two curves). For scenario 2 where MGS is able to
merge all intersections to a single one, ICSPS requires only constant time (small green
circles, even on a larger scale) because its input is constant regardless of the path length
(abscissa). The polynomial

2.7011 · 10−9n3 + 3.9987 · 10−7n2 − 2.1604 · 10−5n + 0.0005

with error 0.007 1 was fitted to the points of MGS with scenario 1 (using data generated
in single threaded mode) which suggests runtime in the order of O(n3) for this type of
input whereby n is the number of input segments for both paths (not the number of
intersections). Finally, note that the drop on the right when approaching 500 segments
is caused by multithreading artifacts and can be ignored. It does not happen in single
threaded mode.

Finally, it should be noted that all this applies to the specifically generated scenarios
only, that is, the quality and runtime highly depends on the type of input and it is
impossible to generalize this. For that reason, we will now investigate the algorithm
with the two generated dataset presented at the beginning.

4.4.7.2 Simulation-generated Inputs

As already indicated in Section 4.4.3, ICSPS with A⋆ can be used with different metrics,
typically Euclidean and maximum metric. Figure 4.22 therefore presents (a) the compu-
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Figure 4.22: (a) computation time and (b) motion times for the 118 683 scenarios from
dataset 2 (sorted in ascending order according to the intersection count) in relation to
the number of pairwise intersections

tation time of both aforementioned metrics and (b) the two criteria TTT and CPT for
A⋆ with max metric only. Results have been generated using dataset 2 and sorted in
ascending order according to the intersection count.

Computation times for both metrics are roughly the same as visualized in Figure 4.22(a).
Statistically, the average solver runtime was 45.04 ms for the Euclidean (orange) and
45.16 ms for the max metric (blue). 19 out of 118 683 scenarios were solved differently
while the Euclidean variant was able to solve one more scenario than the max variant
(72435 vs. 72434, 61.03 % of the input dataset).6 ICSPS’s runtime roughly increases with
the number of robots and intersections (cf. Figure 4.22). However, there is no obvious
dependency as it highly depends on the characteristics of the input. For instance, there
can be many robots in the input that do not have many intersections although in terms
of probabilities, the risk of intersections naturally increases with an increased number
of robots. Similarly, the higher the number of intersections, the longer it takes solving
them, cf. Figure 4.22(a). Notice that the scatter plot is largely spread out, underpinning
the dependency on the input.

Negative values in Figure 4.22(b) indicate infeasible scenarios (or at last scenarios where
the solver was not able to find a solution). Because the TTT (blue) contains the CPT
(orange), the blue points are primarily located above the orange ones. Tendentially, the
larger number of intersections (abscissa), the more time it takes for the involved robots
to reach their goals. However, as already explained w. r. t. runtime (see (a)), a larger
number of intersections does not necessarily imply higher motion times (dependency on
the characteristics of the input).

6Note that this does not (yet) state anything about the amount of scenarios in the dataset that can
be solved at all because a permutation limit of 500 (termination criterion) was used.
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Figure 4.23: (a) runtime and (b) critical path time for the 118 683 scenarios in dataset
2; the abscissas show the indexed scenarios, sorted according to the intersection count in
ascending order

We will now compare randomized DFS with A⋆ (based on the max metric). In randomized
DFS, the path from the lower left (start) to the goal in the incrementally constructed
coordination spaces is computed by randomly selecting a neighboring vertex in the CVG
(see Section 4.4.3). Figure 4.23(a) presents the runtime of ICSPS with A⋆ (blue) and
randomized DFS (orange). On average, randomized DFS is one order of magnitude faster
than A⋆ due to its simplicity (2.46 ms vs. 45.16 ms per solver execution). According to
Figure 4.23(b), there is no notable difference regarding the achieved CPT between both
variants (the plot for the TTT looks very similar). However, statistically, the average
CPT of A⋆ (17.94 s) is marginally better than for randomized DFS (18.06 s) among all
118 683 input scenarios.

ICSPS uses different permutations of the robots in an input scenario for constructing
coordination spaces (see Line 6 in Algorithm 4.4). This is favorable because the order in
which coordination space are constructed has an impact on the resulting solution quality
(and even solvability at all). Because the number of permutations of N robots is N !,
a limit is required to bound the computation time in practice. Figure 4.24 compares
the impact of the permutation limit (abscissa) on randomly selected permutations
(blue) with lexicographically sorted permutations (orange) w. r. t. solvability and CPT
(ordinate) for both datasets. As it turns out based on Figure 4.24(a) and (b), using
random permutations has the advantage of being able to already solve the majority
of inputs after a limit of just 100 permutations. In case of lexicographically sorted
permutations, a higher limit of at least 350 is advised because some inputs require a large
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(b) Impact of the permutation limit on
the number of solvable input scenarios in
dataset 2
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(c) Impact of the permutation limit on the
critical path time in dataset 1
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Figure 4.24: Impact of the permutation limit (order of how ICSPS solves an input) on
the solvability (see (a) and (b)) and total sum of improvements of the critical path time
(see (c) and (d)) for randomly sampled permutations (blue) and the first lexicographically
ordered permutations (orange). All results are shown for ICSPS with A⋆ and maximum
metric.

number of permutations to be solvable at all. Correspondingly, the overall solvability is
slightly higher in both datasets when using random permutations, i. e., 69 536 (44.48 %)
vs. 69 759 (44.63 %) for dataset 1 and 72 533 (61.11 %) vs. 72 754 (61.30 %) for dataset
2. Note that, unlike Figure 4.24(a) and (b), these numbers include scenarios with a
pairwise intersection count of zero (4 609 for dataset 1 and 13 471 for dataset 2), i. e.,
they are simply considered as solved successfully here.

Figure 4.24(c) and (d) visualize the impact of the permutation limit on improvements
of CPT for all scenarios. More specifically, given the results for all scenarios and
all permutations up to limit 1000 (abscissa), the points in the plot are computed by
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(a) Dataset 1 solved with lexicographically
ordered permutations in ICSPS
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(b) Dataset 1 solved with randomly selected
permutations in ICSPS
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(c) Dataset 2 solved with lexicographically
ordered permutations in ICSPS
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(d) Dataset 2 solved with randomly selected
permutations in ICSPS

Figure 4.25: Total number of first solutions found (depicted on the ordinates with
logarithmic scale) for all input scenarios from datasets 1 (a, b) and 2 (c, d) depending
on the permutation limit (abscissas). All results are shown for ICSPS with A⋆ and max
metric.

summing up all improvements in the CPT for a particular limit. A point at some limit
i in the plot remains zero (“no improvement”) if none of the scenarios was improved
in the i-th permutation or if it was the first valid solution for that input. Interestingly,
lexicographically sorted permutations (orange) have a larger spread when compared to the
randomly sampled ones (blue). Nonetheless, only lexicographically sorted permutations
guarantee exhaustive search if the limit is greater or equal to N ! (i. e., for small inputs).
This is because random permutations are simply drawn with replacement until the limit
is reached. The scatter plots for both types of generating permutations tend to drop
quite quickly. Randomly sampled permutations, however, can cause improvements in
higher permutations limits for small inputs as well due to sampling with replacement
as indicated in the zoomed parts of the plots. Also notice that improvements in higher
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limits (e. g., > 6! = 720) for lexicographically sorted permutations must originate from
inputs with a larger number (> 6) of robots. It is important to note that the absolute
values of both ordinates in Figure 4.24(c) and (d) do not have direct expressiveness
w. r. t. the scenarios themselves because it shows the sum of all improvements for all
scenarios of a dataset. One can conclude that random permutations result in a higher
solvability while lexicographically sorted permutations seem to provide a slightly better
CPT (56.89 s vs. 57.07 s).

Note that in an experiment with random permutations and randomized DFS, the results
got worse compared to both random permutations only and without any randomization
at all.

Finally, Figure 4.25 depicts the relevant permutations where a first solution was found
by the solver, both for randomly selected ((a) and (c)) and lexicographically sorted
permutations ((b) and (d)). Notice that the ordinates are scaled logarithmically, that
is, the majority of solutions is already found in the first iteration (also cf. Figure 4.20).
The plots also reveal that a larger number of solutions is found with a smaller number of
permutations when using random selection, as already explained along with Figure 4.24.

As a conclusion, it is advised to use lexicographically sorted permutations for small
scenarios where an exhaustive search is practically feasible and random permutations
for complex inputs and those where no solution was found in the first place. Employing
a threshold for relative changes of the quality does not guarantee convergence. However,
it could be used in combination with another termination criterion (e. g., a permutation
limit).

4.5 Optimal Multi-Robot Scheduling

In this section, the methodology and implementation of the Optimal Multi-Robot Path
Scheduler (OMRPS) is presented (Section 4.5.1), that is, it aims to solve the problem
described in Section 4.2.2. Due to its exponential run time complexity, it is intended to
be used for small inputs only as well as to evaluate how close ICSPS (see Section 4.4)
gets towards the optimum in terms of solvability and solution quality. After proofing
the correctness of OMRPS in Section 4.5.2, applied concepts of parallelization will be
described in Section 4.5.3. As it turns out in the experimental evaluation in Section 4.5.4,
the suggested algorithm performs even faster than ICSPS for very small inputs and is
therefore also applicable in practice.

The suggested algorithm produces optimal results in a sense that it either minimizes
the TTT (see Equation (4.65)) or the CPT (see Equation (4.66)), given the underlying
model and assumptions (constant velocity) hold.

As a sidenote, it should be remarked how infeasible robots are handled in an input. Due to
the way the proposed algorithm proceeds to find the optimal schedule (cf. Section 4.5.1),
it would always return infeasible even if only one robot in the input is infeasible (partial
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infeasibility). For that reason, (statically) infeasible robots are detected upfront and
excluded from the input. This is based on the existence of halt and release points. For
example, if two robots have an intersecting goal area, there are no release points for both
of them (because the intersection at their goals is never released). In such a situation,
both robots are known to be infeasible. Nonetheless, this does not handle all cases of
(dynamic) infeasibility, i. e., there can be inputs where the RoW at intersections is not
predetermined by their associated halts and releases, although a subset of intersections
is infeasible. Such a subset comprises a deadlock and is discussed in the following too.

4.5.1 Algorithmic Description

Algorithm 4.5 depicts the stripped-down pseudocode of OMRPS. Based on the input
paths Pm, the start progress σm and the maximum velocity vm

max for every robot m as
well as the set of pairwise intersections I along with associated halts and releases, it
determines the optimal RoW assignment δ(Ip,q) for all intersections Ip,q ∈ I (induced
by the vector ∆opt, see Line 32).

We are now going to explain Algorithm 4.5 in more detail. At the beginning in Line 3,
all predetermined pairwise intersections are collected from the input. An intersection is
predetermined if and only if one of its associated event points does not exist, that is, if
and only if either a halt or release (or both) do not exist.

The underlying idea of the optimal solver is to define a decision vector

∆ := (δ0, . . . , δk, . . . , δK) (4.67)

with an entry δk for every pairwise intersection Ik
p,q ∈ I storing which robot gets RoW

at that intersection. In principle, every entry is binary-valued but since we need to store
predetermined decisions as well (being constant within the solver), additional values
are required during the execution of the algorithm. In Line 5, the decision vector is
initialized based on the collected predetermined intersections Ipd with values 0pd, 1pd
and ∅ (if the decision must be enumerated and optimized, refer to Lines 21-30). The
RoW at such intersections is already known a priori because a robot without a halt must
already be located inside the intersections (requiring RoW to prevent a crash) and a
robot without a release will never release the intersection (not getting RoW to prevent
blocking it for the other robot).

If, for instance, both releases are not existing, the intersection is known to be infeasible.
All possible combinations of the existence of halts and releases for an intersection are
tested in Lines 3 and 5 in order to correctly classifiy all predetermined intersections
and infeasible robots known a priori. The Lines 8-18 are responsible for finding all
directly and transitively infeasible robots in the input. Such robots are then excluded
(see Line 13) to allow finding a solution for the remaining intersections (partial solution).
Note that if they would be kept in the input, none of the enumerated solutions would be
valid in Line 23. Infeasible robots are assumed to stay on their starting position. In the
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Algorithm 4.5 Pseudocode of the Optimal Multi-Robot Path Scheduler algorithm:
the input is given by the path Pm, the start progress σm, the maximum velocity vm

max
for every robot of the input and the set of all pairwise intersections I. The output is
the optimal RoW assignment for every Ip,q ∈ I and the final quality of the solution
according to the TTT or CPT.

1: procedure OptSchedule(∀m = 1, ..., N : (Pm, σm, vm
max), I)

2: ▷ Find infeasible and predetermined intersections in the input:
3: Ipd ← FindPredeterminedIntersections( )
4: ▷ Setup decision vector ∆0 based on predetermined intersections:
5: ∆0 ← InitializeDecisionVector(I, Ipd)
6: ▷ Handle directly and transitively infeasible robots that are a priori
7: ▷ known based on the existence of halts and releases:
8: for all infeasible robots r do
9: Push(r,Q) ▷ Add robot r to queue Q.

10: end for
11: while Q ≠ ∅ do ▷ Propagate infeasibility.
12: r ← Pop(Q)
13: Exclude(r, ∆0) ▷ Remove infeasible robots and intersections.
14: Rdep ← FindDependentRobots(r, I)
15: for all r ∈ Rdep do
16: Push(r,Q) ▷ Add dependent infeasible robots to queue, too.
17: end for
18: end while
19: copt ←∞
20: i← 1
21: while ∆i = Enumerate(∆i−1) do ▷ Perform exhausive search.
22: Gi ← CreateDependencyGraph(∆i)
23: if Gi is acyclic then ▷ Is ∆i a valid solution?
24: vi ← ComputeTimings(Gi) ▷ See Algorithm 4.6.
25: if vi < copt then ▷ Minimize waiting times.
26: copt ← vi

27: ∆opt ←∆i ▷ Remember improved RoW assignment.
28: end if
29: end if
30: end while
31: if copt ̸=∞ then ▷ Solved optimally.
32: return ∆opt
33: else ▷ No solution found (infeasible).
34: return ∅
35: end if
36: end procedure
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(b) Schematic visualization of the Backward
Dependency Condition (BDC): the depen-
dency is given alongside u’s path towards
the start if u gets RoW at Ik

u,v only (but
not at Ik+1

u,w )

Figure 4.26: Schematic visualizations of the Forward and Backward Dependency Condi-
tions for three robots u (blue), v (green) and w (red) as well as two dependent pairwise
intersections Ik

u,v and Ik+1
u,w (with k = 1). According to Equations (4.68) and (4.69), edges

(Ik, Ik+1) ∈ G∆ (black arrows) for the FDC and BDC in an underlying dependency
graph G∆ model the possible effects on the waiting time at the intersection Ik+1 pointed
to by the edge. Notice the common robot u in both figures whose guards are of interest
only here.

loop in Lines 8-10, all directly infeasible robots are stored in a queue Q based on Ipd.
Other robots passing through the start of an infeasible robot are considered transitively
infeasible and will be detected in Lines 11-18. This effectively propagates infeasibility
by following dependent robots.

All intersections marked with ∅ in the decision vector need to be decided optimally by the
solver in the subsequent steps (Lines 21-30) while taking into account all predetermined
intersections (0pd, 1pd). The solver exhaustively enumerates all possible combinations
of the decision vector ∆i in order to test if the given candidate is a valid solution and
to then evaluate its quality. The validity test and the quality evaluation is based on a
dependency graph Gi created in Line 22 for a given enumerated candidate ∆i. They
are now explained in more detail as it is the essential part of the algorithm.

A given decision vector (candidate) ∆ specifies a complete potential solution for the
input as it contains the RoW assignment for every pairwise intersection. For every
candidate, a (directed) dependency graph G∆ = (V, E) is constructed (Line 22) which
reflects the dependencies between the intersections regarding the (computation of the)
waiting times of the robots. The graph is based on the model in which the time required
by the robots to reach their goals is given by the fixed travel time plus the waiting time
at every intersection (if any) whereby waiting times solely depend on RoWs. The set V
contains a vertex for every pairwise intersection Iu,v ∈ I. Edges are being created based
on two conditions which model the dependencies for the computation of the waiting
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times, see Figure 4.26. Let Ik
u,v, Ik+1

u,w be two pairwise intersections with associated
robots u, v and w respectively. That is, both intersections share a common robot u or,
in other words, u is involved in both intersections. The Forward Dependency Condition
(FDC) is defined by (cf. Figure 4.26(a)):

h(Ik
u,v, u) < h(Ik+1

u,w , u) ∧ δ∆(Ik
u,v) = v (4.68)

and the Backward Dependency Condition (BDC) is defined by (cf. Figure 4.26(b)):

h(Ik+1
u,w , u) ≥ h(Ik

u,v, u) ∧
r(Ik

u,v, u) > h(Ik+1
u,w , u) ∧ (4.69)

δ∆(Ik
u,v) = u ∧ δ∆(Ik+1

u,w ) = w.

A directed (“forward”) edge (Ik
u,v, Ik+1

u,w ) ∈ E is created between every two vertices Ik
u,v,

Ik+1
u,w ∈ V if Equation (4.68) holds and the reversed (“backward”) edge (Ik+1

u,w , Ik
u,v) ∈ E

is created if Equation (4.69) holds. Notice that both conditions are expressed for the
common robot u and that the conditions are mutually exclusive. Figure 4.26 visualizes
the two conditions schematically. The FDC in Figure 4.26(a) can be explained as
follows: if robot u (blue) has to wait (δ∆(Ik

u,v) = v) at its first intersection Ik
u,v (with

v, green), it will arrive later at its next intersection Ik+1
u,w (with w, red) such that a

dependency is present, pointing forwards along u’s path (indicated by the black arrow).
This situation can be detected by the order of the halts (yellow circles) of u. Similarly,
the BDC in Figure 4.26(b) models dependencies that are pointing backwards along a
path (towards the start). If u (blue) gets RoW at its first intersection Ik

u,v (δ∆(Ik
u,v) = u)

but not at Ik+1
u,w (δ∆(Ik+1

u,w ) = w), being “very close” to the previous one, u will still
block Ik

u,v while waiting for the release of Ik+1
u,w . That is, there is a dependency from

Ik+1
u,w to Ik

u,v pointing backwards along u’s path (indicated by the black arrow). The
proximity between the two intersections is expressed by r(Ik

u,v, u) > h(Ik+1
u,w , u) and is

essential. Note that the corner cases (w. r. t. the non-existence of halts and releases)
depicted in Figure 4.26 are not necessary for the conditions but used to emphasize RoW
requirements.7 The application of these conditions onto all pairs of intersections with a
common robot yields the set of edges in the graph.

A candidate ∆ inducing circular waiting dependencies causes a deadlock (cf. Sec-
tion 4.2.2). Because all waiting dependencies have been represented as edges, testing
G∆ for being acyclic suffices to ensure that ∆ is valid (see Line 23). For all remaining
valid candidates, either the TTT or the CPT (parameterizable) is computed in Line 24.
The resulting timings are minimized among all candidates because shorter timings are
preferred.

For a given candidate ∆, both the TTT and the CPT can be computed based on G∆
which is a directed acyclic graph, see Algorithm 4.6 (which has also been used to assess

7In fact, recall that due to the enumeration of all possible RoW decisions, every possible value is
assigned to δ(·), represented as ∆.
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Algorithm 4.6 Pseudocode of the algorithm for computing the timings of a given valid
solution ∆. The input is given by the dependency graph G∆, the path Pm, the start
progress σm, the maximum velocity vm

max for every robot m and the set of all pairwise
intersections I (implicitly referenced by the vertices of G∆). The output is the TTT or
the CPT of the scenario (parameterizable) based on the underlying solution ∆.

1: procedure ComputeTimings(G∆, I, ∀m = 1, ..., N : (Pm, σm, vm
max))

2: for all m = 1, ..., N do ▷ Initialize total waiting times for every robot.
3: τR(m)← 0
4: end for
5: for all I ∈ I do ▷ Initialize waiting times for every intersection.
6: τI(I)← −1
7: end for
8: for Ip,q ∈ TopologicalSort(G∆) do ▷ Iterate through topological ordering.
9: ▷ Determine robot v that gets RoW and other robot u not getting it:

10: if (∆[Ip,q] = 1 ∧ p < q) ∨ (∆[Ip,q] = 0 ∧ p > q) then
11: (u, v)← (q, p)
12: else ▷ q gets RoW.
13: (u, v)← (p, q)
14: end if
15: tu = τR(u) + dist(σu,h(Ip,q ,u))

vu
max

▷ Time of u until reaching its halt.
16: tv = τR(v) + dist(σv ,r(Ip,q ,v))

vv
max

▷ Time of v until reaching its release.
17: τI(Ip,q)← max(tv − tu, 0) ▷ Waiting time at Ip,q only.
18: if |S(∆, u, Ip,q)| > 1 then ▷ See Equation (4.73).
19: if ∀I ∈ S(∆, u, Ip,q) : τI(I) ≥ 0 then ▷ All equal halts processed?
20: τR(u)← max∀I∈S(∆,u,Ip,q)(τI(I)) + τR(u)
21: end if
22: else
23: τR(u)← τI(Ip,q) + τR(u) ▷ Additional waiting time for u at Ip,q.
24: end if
25: end for
26: (tTTT, tCPT)← (0,−∞)
27: for all m = 1, ..., N do ▷ Compute resulting timings given the waiting times.
28: t← dist(ρ−1(σr), ρ−1(|Pm|−1))

vm
max

▷ Compute pure travel time for robot m.
29: T ← t + τR(m) ▷ Total time: travel time + waiting time.
30: tTTT ← T + tTTT
31: tCPT ← max(T, tCPT)
32: end for
33: return tTTT or tCPT
34: end procedure
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a solution within ICSPS). At first (see Lines 2-7), the total waiting time τR : R 7→ R
for every robot u ∈ R and the individual waiting time τI : I 7→ R for an intersection is
initialized to 0 and −1 respectively. The negative values for τI() indicate that it has not
been processed because valid waiting times must always be ≥ 0. By iterating through
the topological sorting of G∆ (cf. Line 8), all dependencies of visited intersections are
considered in the correct order. Thus, at every visited intersection Ip,q, we are allowed
to compute the waiting time for that intersection because all previously occurring
waiting times have already been computed and therefore been taken into account. The
computation (see Lines 10-25) is carried out as follows: let p and q be the associated
robots of the intersection Ip,q and, w. l. o. g., assume that q gets RoW. This is explicitly
formulated in Lines 10-14 where variables u and v (representing robots) are assigned
such that v always gets the RoW. Formally, we are interested in computing the waiting
time for p and q at Ip,q. First, we have to compute the time (cf. Line 15)

tp = τR(p) + dist(σp, h(Ip,q, p))
vp

max
(4.70)

which p requires to reach its halt h(Ip,q, p). It adds up the yet accumulated waiting time
τR(p) for robot p and the travel time dist(σp,h(Ip,q ,p))

vp
max

from the robot’s start σp to the halt
h(Ip,q, p) of the intersection Ip,q being currently visited. Similarly, we also require the
time (cf. Line 16)

tq = τR(q) + dist(σq, r(Ip,q, q))
vq

max
(4.71)

which q requires to reach its release r(Ip,q, q). The individual waiting time τI(Ip,q) (for
p) at Ip,q (cf. Line 17) is then given by:

τI(Ip,q) = max (tq − tp, 0) (4.72)

Because there may actually be no waiting required, which would yield a negative time,
we ensure to have a lower bound of 0. The waiting time for q is zero because it gets
RoW, thus, τR(q) does not need to be changed. Omitting the special case handling
in Lines 19-21 for now, τI(Ip,q) is simply added to the robot’s total waiting time τR(p),
not getting RoW here (p corresponds to u in Line 23).

The special case applies if p does not get RoW at more than one intersection whose
halts w. r. t. p are all equal to each other. More formally, if there is a set

S(∆, p, Ip,q) := { Iu,v | Iu,v ∈ I ∧ δ∆(Iu,v) ̸= p ∧ (u = p ∨ v = p) ∧
h(Iu,v, p) = h(Ip,q, p) }

(4.73)

with |S(∆, p, Ip,q)| > 1 and all intersections I ∈ S(∆, p, Ip,q) have already been processed
(see Line 19, that is, a value for τI(I) has been stored in Line 17), the additional waiting
time for p needs to be computed by

max{ τI(I) | ∀I ∈ S(∆, p, Ip,q) }. (4.74)
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This special case is justified as follows. Recall that p has to wait for all I ∈ S(∆, p, Ip,q).
Because all halts are equal, p actually waits simultaneously for the release of all such
intersections. Thus, the total waiting time for this set is given by the longest waiting
time for all I ∈ S(∆, p, Ip,q). Notably, there are no dependencies among them, i. e., the
individual waiting times for all I ∈ S(∆, p, Ip,q) can be computed independently. This
is correctly reflected by the partial order returned by the topological sorting.

Once the total waiting times for all robots have been computed, the TTT (Equa-
tion (4.65)) and CPT (Equation (4.66)) are finally computed by summing up the fixed
travel time from start to goal and the total waiting time (see Lines 31-28). They
are then returned in Line 33 which completes the explanation of ComputeTimings()
from Algorithm 4.6.

Finalizing the explanation of Algorithm 4.5, among all valid solutions ∆i passing the test
in Line 23, the optimal solution ∆opt is given by the decision vector minimizing either
the TTT or CPT vi, stored as copt. If at least one solution was found, it is the optimum
and returned in Line 32. An entry δk = 1 in ∆opt means that the lexicographically
smaller robot gets RoW at Ik

p,q and similarly, if δk = 0, the lexicographically larger robot
gets RoW (robot names are assumed to be unique).

4.5.2 Correctness

We will now argue why the FDC (Equation (4.68)) and BDC (Equation (4.69)) are
sufficient for representing dependencies and justify briefly why Algorithm 4.5 computes
the correct optimal schedule. For simplicity, we assume that the total time required by
a robot to reach its goal is composed of their constant travel time from start to goal and
possibly waiting time τI(I) at intersections I whereby the latter solely depends on the
RoW assignment.

By enumerating all possible decisions for the pairwise intersections (by exhaustively
testing all permutations of the decision vector ∆i), the algorithm is both complete and
optimal if the methodology for the validity check and the scoring of solutions is correct.

The core of Algorithm 4.5 is the minimization of waiting times. Dependencies between
them influence the order how they have to be computed, modeled with the two edge
types in a dependency graph. We therefore have to justify the following:

Proposition 1. All dependencies of the computation of waiting times are completely
represented by forward (see Equation (4.68)) and backward edges (see Equation (4.69)).

Proof. Generally, intersections are geometrically influenced by the size (radii) of the
involved robots, the angle both paths are intersecting each other, the location of goals
and starting points or, more generally, the location of the support points of both paths.
The direction of the involved paths also plays an important role because it affects
the order of a halt and its corresponding release point. A closer look reveals that all
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influencing factors are already properly modeled with halt and release points, that is,
such event points already encode how two paths intersect each other, obviating the
explicit consideration of the influencing factors mentioned before. Nonetheless, the most
important influencing factor are the RoW assignments themselves which directly affect
the dependencies between intersections.

Let robots u, v, w and two arbitrary associated intersections Ik
u,v, I l

u,w be given. We are
going to analyze all possible dependencies between Ik

u,v and I l
u,w that could theoretically

occur w. r. t. the common robot u (w. l. o. g.). If there is no common robot between Ik
u,v

and I l
u,w, there are also no direct dependencies to be modeled. Indirect dependencies are

modeled by a series of direct dependencies (path in the dependency graph), connecting
the two intersections. Although the directions of v and w have an impact on the order
of halt and releases along v and w respectively, they do not affect the events on u. The
direction of u’s path does not affect the location of the event but has an impact on their
order. If we therefore analyze all possible arrangements of halts and releases on u’s
path, we implicitly handle the path’s direction as well. Theoretically, (non-) existence of
halts and releases accounts for 24 possibilities. However, since we can consider this to
make the underlying intersections predetermined, it is already modeled with the RoW
assignment.

Define a := h(Ik
u,v, u), b := r(Ik

u,v, u), c := h(I l
u,w, u) and d := r(I l

u,w, u) to be the event
locations of the two intersections on u’s path with the two other robots v and w (u = w
is possible, k ̸= l counted along u’s path).8 It always holds that a < b and c < d because
halts (a, c) are always located before their releases (b, d). Assuming a, b, c, d ∈ R exist,
there are 13 possible arrangements in total with the previous constraints.9 For every
arrangement, there are 22 possible RoW assignments. The following is a complete analysis
of all these cases w. r. t. occurring dependencies between Ik

u,v and I l
u,w, see Figure 4.27.

For brevity, we will write δ(ab) = u to indicate that RoW at “intersection ab” (with halt
a and release b) is given to robot u.

1. a < c∧a < d∧b < c∧b < d (“abcd”): That is, both a and b are smaller than c and
d which corresponds to the schematic visualization of the FDC in Figure 4.26(a) if
we assume δ(ab) = v. On the other hand, if δ(ab) = u, no waiting is imposed at
all. Similarly, because both intersection are sufficiently far apart from each other,
the decision at cd does not affect the waiting at ab for u. This case is therefore
correctly handled by Equation (4.68).

2. c < a ∧ c < b ∧ a < d ∧ b < d (“cabd”): That is, ab is completely located in
between cd, see Figure 4.27(b). For δ(ab) = δ(cd) = u, no waiting is required. This
applies to all subsequent cases and is therefore omitted subsequently. In cases

8Note that u = v = w is not possible because intersections are considered between two different
robots. Self-intersections can be ignored.

9There are 4! = 24 possible permutations of abcd (to be read as a < b < c < d) but only 6 of these
cases adhere to the constraints a < b ∧ c < d. Due to missing equality (e. g., a = d ∧ c < b ∧ c < a), there
are 7 additional cases, thus, 13 cases in total.
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(a) Case (1): a < c ∧ a < d ∧ b < c ∧ b < d (b) Case (2): c < a ∧ c < b ∧ a < d ∧ b < d

(c) Case (3): a < c ∧ a < d ∧ c < b ∧ b < d (d) Case (4): c < a ∧ c < b ∧ d < a ∧ d < b

(e) Case (5): a < c ∧ a < d ∧ c < b ∧ d < b (f) Case (6): c < a ∧ c < b ∧ a < d ∧ d < b

(g) Case (7): a = c ∧ b < d (h) Case (8): a = c ∧ b = d

(i) Case (9): a = c ∧ b > d (j) Case (10): a = d ∧ c < b ∧ c < a

(k) Case (11): b = c ∧ d > a ∧ d > b (l) Case (12): b = d ∧ c < a

(m) Case (13): b = d ∧ c > a

Figure 4.27: Schematic visualization of possible cases for dependencies between two
intersections ab, cd along a common robot’s path u (blue), identified by halts a, c and
releases b, d. The subfigures illustrate different arrangements of halts and releases.
Exemplary intersection areas are shaded in green w. r. t. ab (for u intersecting with v)
and red w. r. t. cd (for u intersecting with w) for reference only. Also refer to Figure 4.26
for the cases (1), (3), (4), (5) and (6).

δ(ab) = u ∧ δ(cd) ̸= u and δ(ab) ̸= u ∧ δ(cd) ̸= u, there is a forward dependency
from cd to ab (l < k) because the waiting time at ab depends on the waiting
time at cd (FDC). However, if δ(ab) ̸= u ∧ δ(cd) = u holds, a backwards pointing
dependency ab→ cd (along u’s path) is present, handled by the BDC.

3. a < c ∧ a < d ∧ c < b ∧ b < d (“acbd”): That is, intersection ab comes first but is
interleaved with cd (c in between ab). This is visualized in Figure 4.26(b) (although
d is not present there because in Figure 4.26(b), cd is predetermined). The case
δ(ab) = u ∧ δ(cd) ̸= u is covered by the BDC while δ(ab) ̸= u ∧ δ(cd) = u and
δ(ab) ̸= u ∧ δ(cd) ̸= u are covered by the FDC.
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4. c < a ∧ c < b ∧ d < a ∧ d < b (“cdab”): That is, both c and d are smaller than ab,
This is already discussed with case (1) with roles of ab and cd swapped.

5. a < c∧a < d∧ c < b∧d < b (“acdb”): That is, cd is completely located in between
ab, see case (2) (roles of ab and cd swapped).

6. c < a ∧ c < b ∧ a < d ∧ d < b (“cadb”): That is, intersection cd comes first but is
interleaved with ab (a in between cd), see case (3) (roles of ab and cd swapped).

7. a = c ∧ b < d: That is, both intersections start with the same halt on u’s path
and ab ends before cd, see Figure 4.27(g). In case of δ(ab) = u ∧ δ(cd) ̸= u, ab
is potentially blocked by u while waiting for the release of cd. A dependency
cd→ ab is therefore given, covered by the BDC (c ≥ a ∧ b > c). The same applies
for δ(ab) ̸= u ∧ δ(cd) = u with intersection vertices swapped (ab → cd, BDC:
a ≥ c ∧ d > a). If u neither gets RoW at ab nor at cd, there are no dependencies
to be considered between ab and cd because u waits simultaneously for the release
of both.
Generally, the additional amount of waiting time for u in case of a = c (equal halts)
is given by the maximum of the individual waiting times (computed independently)
among all intersections with equal halts for u and where u does not get RoW. This
is reflected by the special case in Line 18 of Algorithm 4.6.

8. a = c ∧ b = d: That is, both halts and releases are equal, see Figure 4.27(h).
Similarly to the previous case (7), all dependencies of this case are handled by the
BDC because for δ(ab) = u∧ δ(cd) ̸= u, c ≥ a∧ b > c and for δ(ab) ̸= u∧ δ(cd) = u
(roles swapped), a ≥ c ∧ d > a holds.

9. a = c∧ b > d: That is, both intersections start with the same halt on u’s path and
ab ends before cd, see Figure 4.27(i). This case is equivalent to case (7) and (8)
because they are independent of the relation between b and d.

10. a = d ∧ c < b ∧ c < a: That is, intersection ab immediately follows after cd
without any free space in between (a = d), see Figure 4.27(j). For the cases
δ(ab) = u ∧ δ(cd) ̸= u and δ(ab) ̸= u ∧ δ(cd) ̸= u, there is a forward dependency
cd→ ab, covered by the FDC. No dependencies are present at all if u does not get
RoW at its second intersection ab, i. e., δ(ab) ̸= u ∧ δ(cd) = u.

11. b = c ∧ d > a ∧ d > b: That is, intersection cd immediately follows after ab,
see Figure 4.27(k). This is already discussed in the previous case (10) with roles
of ab and cd swapped.

12. b = d∧ c < a: That is, intersection cd starts first and both end in the same release,
see Figure 4.27(l). For cases δ(ab) = u ∧ δ(cd) ̸= u and δ(ab) ̸= u ∧ δ(cd) ̸= u, a
dependency from cd to ab is given, covered by the FDC. However, for δ(ab) ̸=
u ∧ δ(cd) = u, the release of cd (RoW for u) depends on waiting at ab, handled by
the BDC (ab→ cd).
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1

2

3

(a) Exemplary input scenario (b) Partition of subpaths

u1

v1

w1

u2

w2

v2

(c) Dependencies of subpaths

Figure 4.28: Example for (a) an input scenario with a given solution ∆ = (1, 0, 0), (b)
the ∆-induced partition of the paths of u (blue), v (green) and w (red) into subpaths
(aka sections ui, vi, and wi respectively), and (c) the dependencies between the subpaths,
directly yielding an execution order. ∆ = (1, 0, 0) means that u gets RoW at I1, v at I2
and w at I3. Note that the subpaths u1, v1 and w1 can be traveled in parallel because
they are on the same layer. The same applies for u2, v2 and w2 if u1, v1 and w1 have
been passed.

13. b = d∧ c > a: That is, intersection ab starts first and both end in the same release,
see Figure 4.27(m). This is already discussed in the previous case (12) with roles
of ab and cd swapped. Note that full equality is already handled in case (8).

There is no need to consider other combinations of u, v and w because this would again
be an isomorphism on the robot names, i. e., a swap of roles (names) only. Because these
are all possible cases that affect the waiting time of a robot, the possible dependencies
are completely reflected by the two proposed edges types, namely forward (FDC) and
backward edges (BDC).

In order to justify the correctness of Algorithm 4.5 (cf. Line 23), we also have to verify
the following:

Proposition 2. For an enumerated candidate ∆ from Line 21 of Algorithm 4.5, the
dependency graph G∆ is acyclic if and only if ∆ is valid.

First, a precise definition of “valid” is required. A candidate ∆ for a given input is
valid if there exists an algorithm A which commands all robots of the input from their
starting points to their goals while respecting the computed schedule ∆. In other words,
the entries of ∆ imply a partial order of the pairwise intersections in the input10 and
A ensures that intersections are passed through according to that order which finally
allows all robots to reach their goals without any collisions.

Proof. We start with “⇒”, that is, given an acyclic dependency graph G∆ for a candidate
∆, we have to provide an algorithm that guides all robots to their goals which would imply

10If the input was partially solved, only the partial input and its solution is used here.
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Figure 4.29: Illustration of the common Rc and non-common robot Rc along a path
with edges ek, ek+1 (black arrows) in a dependency graph G∆ being part of a cycle. The
underlying robot paths (dashed gray arrows), areas (dashed red, green, blue and pink)
and intersections (yellow) are exemplary shown in the background (semi-transparent)
for reference. The main insights visualized by this figure are: (1) the common robot
Rc(ek+1) is equal to the non-common robot Rc(ek, Ik+1), and (2) the non-common robot
Rc(ek, Ik+1) has to wait at Ik+1 for release by the common robot Rc(ek) which itself is
waiting at Ik (shown here if assuming forward edges, likewise for backward edges).

a valid ∆. Fortunately, this algorithm has already been presented: the topological sorting
of the dependency graph (a directed acyclic graph (DAG)) as employed in Algorithm 4.6
reveals the partial order of the pairwise intersections and even allows us to compute
an animation (assuming constant instant velocity) of processing the schedule using the
travel and waiting times. An example has already been given in Figure 4.16. In other
words, we can partition a robot’s path into subpaths “from the start to the first relevant
halt”, “from the previous relevant halt to the next relevant halt”, and “from the last
relevant halt to the goal”, see Section 4.2.2. The algorithm therefore allows every robot
to move to the halt of the first intersection where it does not get RoW. Because we know
there is a partial order of the intersections, there must always be a robot that releases
another intersection by moving along its first subpath (because it got RoW). By releasing
a robot’s next intersection (if any), that robot is allowed to travel along its subsequent
subpath, effectively releasing that intersection for the other involved robot. Note that
there can be multiple robots being allowed to move in parallel, reflected by multiple
pairwise intersections in G∆ being in the same “layer” (w. r. t. the topological sorting).
However, this is not an issue because it even releases multiple intersections concurrently,
thus, giving all associated robots clearance for traveling along their subsequent subpaths.
The order in which subsequent subpaths are being selected is therefore implied by the
topological sorting of the intersections. This continues until all subpaths of all involved
robots have been traveled. Because the subpaths are a partition of the entire path,
we can conclude that all robots have reached their goals, requiring ∆ to be valid. An
example demonstrating how a valid solution is transformed into a set of moving robots
is shown in Figure 4.28.
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It remains to show “⇐”, i. e., assume we have a valid candidate ∆, we have to show
that its dependency graph G∆ is acyclic. Let us for now assume that G∆ has a
cycle. In such a case, there must be a set C of vertices I1, . . . , In ∈ G∆ forming a
cycle. When an algorithm tries to execute the schedule ∆, it will eventually encounter
the pairwise intersections associated with I1, . . . , In, after executing all subpaths and
passing through intersections located before the cycle. An edge of the cycle can either
be a forward or a backward edge according to the Equations (4.68) and (4.69). Let
ek = (Ik, Ik+1) ∈ G∆, Ik, Ik+1 ∈ C be two adjacent intersections of the cycle and let
R(Ik) denote the set of robots involved in Ik, with |R(I)| = 2 for all I ∈ I. We define
Rc(ek) to be the common robot of intersections Ik, Ik+1 as follows, see Figure 4.29: If
|R(Ik) ∩R(Ik+1)| = 1, Rc(ek) maps to that single common robot u ∈ R(Ik) ∩R(Ik+1).
However, if |R(Ik) ∩ R(Ik+1)| = 2 (because two robots have multiple intersections),
Rc(ek) returns the robot whose intersection comes first according to the edge direction
and halts. Note that R(Ik) ∩ R(Ik+1) = ∅ is impossible because Ik and Ik+1 are
connected with an edge in C and must therefore have a common robot. Additionally,
let Rc(ek, Ik+1) := R(Ik+1) \ {Rc(ek)} be the non-common robot11 at Ik+1, again
see Figure 4.29. Starting with an arbitrary intersection Ik ∈ C, we know that there must
be an outgoing edge ek connecting it to some other intersection Ik+1 ∈ C. Regardless
of whether ek is a forward or backward edge (cf. Equations (4.68) and (4.69)), we can
conclude that the non-common robot Rc(ek, Ik+1) has to wait at Ik+1 for release by the
common robot Rc(ek) which itself is waiting at Ik. This directly follows by the RoW
requirements in the definition of the Forward and Backward Dependency Conditions.
As it turns out, this chains up until reaching Ik again, closing the series of waiting
dependencies and making it a cycle.

In other words, if there is an edge ek = (Ik, Ik+1), it can be read as: “the intersection
Ik imposes a (waiting) dependency on intersection Ik+1”, or just: Ik must precede Ik+1.
Thus, if we replace ek by the <-relation denoting that the common robot Rc(ek) is
not getting RoW at Ik s. t. the non-common robot Rc(ek, Ik+1) at Ik+1 has to wait for
release, we could also write Rc(ek) < Rc(ek, Ik+1). This is because “smaller robots”
(w. r. t. to the <-relation) are allowed to move first. By substituting the entire series of
vertices I1, ..., In ∈ C, we obtain the following inequalities:

Rc(e1) < Rc(e1, I2) (4.75)
Rc(e2) < Rc(e2, I3) (4.76)

...
Rc(ek) < Rc(ek, Ik+1) (4.77)

...
Rc(en−1) < Rc(en−1, In) (4.78)

Rc(en) < Rc(en, I1) (4.79)

11For simplicity, we write Rc(ek, Ik+1) to refer to the single element in the set.
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Because generally, the non-common robot Rc(ek, Ik+1) is equal to the common robot
Rc(ek+1) at the subsequent edge ek+1 for all k ∈ {1, . . . , n} in the cycle C, whereby the
successor of edge en is e1 and the successor of intersection In is I1, we obtain

Rc(e1) < Rc(e2) < · · · < Rc(ek) < · · · < Rc(en−1) < Rc(en)
!

< Rc(e1) (4.80)

which is a contradiction. The last inequality is justified by the common robot Rc(e1) of
the first12 edge e1 being equal to the non-common robot Rc(en, I1) of the last edge en.

We can conclude that there is no valid order (serialization) among the robots being part
of the cycle. This means that an algorithm is unable to select one of the involved robots⋃

I∈C R(I) in order to allow it passing through its next intersection while adhering to ∆.
This is a contradiction to the assumption that ∆ is valid and, thus, G∆ must have been
acyclic.

4.5.3 Parallelization

Given a decision vector ∆ = (δ1, . . . , δK) with entries δk ∈ {0pd, 1pd, ∅}, all 2K−L

assignments of ∆ must be enumerated while retaining entries δk = 0pd as 0, δk = 1pd
as 1 (constraints) and trying all combinations of {0, 1} for entries δk = ∅. L is the
number of predetermined intersections in the input, effectively reducing the number
of enumerations to be computed. Recall that for all enumerated decision vectors, the
dependency graph construction, a validity test and, if considered valid, the computation
of the timings need to be executed (processing steps), see Lines 21-30 in Algorithm 4.5.
Due to the exponential number of assignments, this requires a lot of time. Parallelization
is therefore desirable in order to exploit multi-core capabilities of modern computing
hardware.

One way of doing this would be to parallelize the generation of assignments itself.
However, because this is naturally done recursively, one would have to either parallelize
the recursive implementation or transform it into an iterative algorithm to apply paral-
lelization afterwards. Both are not trivial tasks which is why a different approach was
chosen:

1. The generation of assignments is done recursively and sequentially. It generates a
subset of assignments of the decision vector with a fixed chunk size s ∈ N. The
chunk size depends on the available memory but ideally, it should be as large as
possible. This way, the set of all assignments of ∆ are partitioned into

⌈
2K−L

s

⌉
subsets (chunks).

2. For a computed chunk and with the maximum concurrency possible, threads
process all pre-enumerated decision vectors in the given chunk in parallel. This just

12There is no unique “first” or “last” edge in a cycle but it is sufficient here to simply number them
arbitrarily.
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requires to synchronize the minimization of the timings (race condition) among
the threads.

3. The previous two steps are repeated until all chunks have been computed (1.) and
evaluated (2.), or a termination criterion becomes true.

The proposed concept allows for a memory limited parallel evaluation which is the
computationally intensive part. Note that the depth of recursion is K, thus, not a
limiting factor for practically sized instances.

4.5.4 Evaluation

In this section, we are going to experimentally analyze OMRPS based on dataset 2
(see Figure 4.20) and compare it against ICSPS. All experiments have been executed on
an Intel Xeon Gold 4246R with 16 physical and 32 logical cores if not stated otherwise.
Two very complex out of 118 683 total scenarios have been excluded from the following
results because their calculations ran for multiple months without completion due to
the exponential run-time complexity.13 ICSPS was always used with A⋆, the Maximum
metric and a permutation limit of 500.

Figure 4.30 compares the performance of ICSPS against the optimal solver w. r. t. CPT
and solvability. The averaged sum of differences of the CPT between OMRPS and
ICSPS for all input scenarios is shown in Figure 4.30(a). More specifically, the CPT has
been accumulated for all scenarios with a specific robot count N both for OMRPS and
ICSPS, denoted as S

(N)
OMRPS and S

(N)
ICSPS respectively. The value of each bar in the plot is

then given by

S
(N)
OMRPS − S

(N)
ICSPS

M
· 100 (4.81)

whereby M is the number of successfully and optimally solved scenarios. The results
are grouped by the number of robots within a scenario which serves as an indicator for
the complexity because the more robots the more likely are intersections. In fact, a
very similar figure is retrieved when grouping by intersection count (not shown here to
avoid redundancy). For a robot count of two, ICSPS yields the same (optimal) results
as OMRPS, indicated by the zero value. When the number of robots increases, the
larger becomes the difference between the optimal result and ICSPS. Taking a closer
look at Figure 4.30(b) reveals that ICSPS is able to solve up to 80 % of all inputs with a
robot count up to five optimally. The figure shows the amount of scenarios which have
been solved exactly like OMRPS, i. e., optimal. Similarly to (a), when the complexity
increases, the amount of optimal solutions decreases. Figure 4.30(c) shows the amount
of inputs that have been solved at all, i. e., where ICSPS was able to find a solution if
one existed (solvability). Even for inputs with up to 10 robots, ICSPS was able to find

13For simplicity, however, we still refer to “all scenarios in the dataset”.
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(a) Comparison of the optimal solver with
ICSPS based on the averaged differences of
the critical path time (in seconds, ordinate)
for all scenarios grouped by the number of
robots (abscissa). Zero means optimal.
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(b) Amount of optimal solutions computed
by ICSPS for all scenarios grouped by the
number of robots; solutions in this category
must have a critical path time exactly equal
to the one computed by the optimal solver.
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(c) Amount of successfully solved scenarios
by ICSPS grouped by the number of robots;
solutions in this category must have a crit-
ical path time greater or equal to the one
computed by the optimal solver.

Figure 4.30: Comparison of the optimal solver with ICSPS using A⋆ and the Maximum
metric based on dataset 2 (see Figure 4.20). Statistical significance decreases with an
increasing number of robots in the input scenarios, e. g., only 151 solvable scenarios for a
robot count of 14. The results for 14 and 15 robots are therefore considered as outliers.
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(a) Comparison of the optimal solver with
ICSPS based on the averaged differences of
the critical path time (in seconds, ordinate)
for all trivially solvable scenarios grouped
by the number of robots (abscissa). Zero
means optimal.
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(b) Amount of optimal solutions computed
by ICSPS for all trivially solvable scenarios
grouped by the number of robots; solutions
in this category must have a critical path
time exactly equal to the one computed by
the optimal solver.

Figure 4.31: Comparison of the optimal solver with ICSPS using A⋆ and the Maximum
metric based on dataset 2 (see Figure 4.20) for trivially solvable scenarios only. Statistical
significance decreases with an increasing number of robots in the input scenarios, e. g.,
only 97 solvable scenarios for a robot count of six. The results for nine and ten robots
are therefore considered as outliers. Note that ICSPS was able to solve all solvable
inputs (similar to Figure 4.30(c) but for all trivially solvable inputs only, not shown
here).

a solution in more than 80 % of the inputs. In contrast to Figure 4.30(b) (addressing
optimality only), (c) indicates that ICSPS is able to provide high solvability even for
quite complex scenarios (> 10 robots). However, it should be noted that the number
of available (and solvable) scenarios drops for a larger number of robots, e. g. only 151
solvable inputs for a robot count of 14. Results for robot count 14 and 15 are therefore
considered to be outliers.

We continue with the analysis and discussion of Figure 4.31 which compares OMRPS
against ICSPS on trivially solvable scenarios of dataset 2 only (dataset 1 exhibits similar
results). A scenario is defined to be trivially solvable if there are no predetermined
intersections at all, thus allowing for a trivial serialization (as an obvious possible solution).
Apart from solving all scenarios with two robots optimally (see Figure 4.31(a)), the
differences to the optimal results in terms of CPT increase with the number of robots.
As visualized in Figure 4.31(b), ICSPS is able to compute more than 80 % of the optimal
solutions for up to six robots. Further experiments also revealed that ICSPS was able
to solve all solvable inputs (not shown here). However, note that there are much fewer
trivially solvable scenarios because many have at least one predetermined intersection.
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Figure 4.32: Example for a complex input between two robots u (blue) and v (green)
with 25 intersections creating 33 554 432 possible solutions ∆i whereby only 252 are
valid (acyclic). Note that the number of pairwise intersections is 25 in this example,
regardless of whether SGS or MGS is used.

As already noted, this decreases statistical significance for an increasing number of
robots.

As an example for the improvements made due to parallelization (see Section 4.5.3), for
the input in Figure 4.32 with 25 pairwise intersections (33 554 432 possible solutions
to be enumerated), the single-threaded version of Algorithm 4.5 required 11.4 min for
solving. In contrast, the multi-threaded version just required 56.7 s for the same input
with 24 threads on 12 physical and 24 logical cores (AMD Ryzen 3900X) which is more
than 12x faster. Notably, ICSPS (Algorithm 4.4) returned a solution very close to the
optimum for this input when minimizing the CPT (868.54 s < 869.82 s) while being
clearly non-optimal for the TTT (1 669.68 s < 1 702.12 s). The run time for this example
was only 0.54 ms. An important observation is that the run time complexity of OMRPS
mainly depends on the number of pairwise intersections (due to enumerating assignments
of the RoW) while ICSPS mainly depends on the number of robots (due to testing
permutations of robots).

Finally, Figure 4.33 shows the run time (ordinate) of OMRPS for the scenarios (abscissa)
of dataset 2. The color encodes the number of intersections within a given scenario.
For scenarios with less than 10 intersections, the run time typically remains below 1 ms.
Clearly, when the number of intersections increases, OMRPS exhibits its exponential run
time complexity with up to months of calculation time (aborted after about 75 days).
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Figure 4.33: Run time of the optimal solver for the scenarios of dataset 2: scenarios
are depicted on the abscissa while the computation times are shown on the ordinate in
seconds in a logarithmic scale. Colors are used to encode the intersection count of a given
scenario as visualized on the right. Solutions have been computed in a multithreaded
way.

We can conclude that OMRPS is applicable for small inputs while for more complex
inputs, ICSPS should be applied.





Chapter 5

Collaborative Collision Prevention

Path planning is an important concept in empowering robots to act efficiently and
intelligently. It allows them to autonomously move themselves to a given goal while
avoiding collisions with other objects in the environment. Within the framework described
in Chapter 3, path planning along with localization are important ingredients to form
the software stack of a mobile robot.

This chapter deals with a novel local path planning algorithm, termed the Collaborative
Local Planning Framework (CLPF), that aims at preventing collisions by presciently
sharing knowledge among all known robots in the system. For a given set of robots,
CLPF defines the communication logic and state management for the involved robots to
eventually execute one of the solvers presented in Chapter 4. An important distinction
of the framework against the solvers from the previous chapter is its ability to handle
dynamic inputs. A dynamic input refers to the situation where a subset of the robots
may already be moving while others are standing still but requesting to move as well.
In such a situation, CLPF provides the methodologies to integrate the yet non-moving
robots into the set of moving robots whereby non-moving robots may request integration
at any time. This happens frequently during operation. It may also already happen
right at the beginning if goals are dispatched one after another with sufficient time in
between.1 In addition, CLPF’s communication layer allows handling uncertainty in the
underlying motion controller.

The framework not only avoids collisions but also completely prevents them provided
the underlying assumptions are met. Thus, it offers higher safety guarantees compared
to state-of-the-art local planning concepts, which are generally required in industrial
contexts where (autonomous) long-time operation of mobile robots is striven. Addition-

1CLPF may also encounter static inputs e. g., at the very beginning if goals are dispatched in parallel.
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Figure 5.1: Software stack on a mobile robot platform for navigation; this chapter focuses
on the local planner (yellow) and assumes that the other modules are mainly given. A
new goal is assumed to be provided by some external entity.

ally, the suggested framework with its underlying algorithms allows to more precisely
predict when a robot reaches its goal while still allowing planning in “free space” by a
separate independent global planning algorithm (out of the scope of this thesis). This
simplifies the transformation from centrally organized production lines to decentrally
organized shopfloors.

The chapter is organized as follows. Section 5.1 gives a more detailed introduction and
motivates the requirement for the proposed approach. Section 5.2 details the assumptions
that need to be satisfied in order to ensure safety, as well as the limitations of the concept
in general. After giving an overview of the proposed concepts in Section 5.3, the
communication architecture between the robots is explained in Section 5.4, followed
by the description of the state management in Section 5.5. Section 5.6 continues
with the concept of intersection graphs being used to represent groups of robots being
directly or indirectly in conflict with each other. How robots execute their negotiated
motions is described in Section 5.7. Afterwards, Section 5.8 explains global planning
and management of the environmental map including semi-static obstacles. Finally, an
evaluation is presented in Section 5.9 based on an experimental analysis. Note that
related work has already been reviewed in Chapter 2, especially in Section 2.3.4.

5.1 Introduction

In mobile robotics, path planning can be subdivided into local and global path planning
[44]. Global planning aims at finding a path through a known (rather static) environment
from the robot’s current position to the desired goal given a map of (semi-) static obstacles
provided by a map server, see Figure 5.1. The process of following the globally planned
path by sending desired velocities to the engines is termed local planning and requires
periodic updates of the robot’s current pose by a localization algorithm. Divergences
from the path are usually allowed to sidestep obstacles unknown to the global planner.
Most local planners incorporate range sensor measurements from ultrasonic distance
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Figure 5.2: Exemplary situation where two robots R1 (blue), R2 (green) can collide at
a corner because they can only suddenly see each other (indicated by the yellow laser
scanner beams) once turning around that corner (“dangerous zone”, red). Blocked areas
are black and gray. The direction of movement is visualized by the arrows.

sensors or laser scanners in these velocity computations to sense and avoid nearby
obstacles. Even though this works well in situations where obstacles can be detected
early, cluttered environmental objects like walls can cause a missing line of sight from the
robot to obstacles as exemplary depicted in Figure 5.2. If both robots are moving, the
probability of a collision even increases because, given a constant velocity of v (in m/s)
of both robots for simplicity and a remaining distance of d (in m), the reaction time (in
s) until a collision occurs is given by d

2v . That is, the higher the velocities of the robots,
the greater the probability of a collision if the paths overlap as shown in Figure 5.2.
Even worse, smaller reaction times require faster obstacle processing algorithms. One
possible solution would be the combination of behavioral approaches (similar to [53]) in
narrow areas (e. g., at corners) and online motion planning in the remaining free space
(like the Dynamic Window Approach (DWA) [22]). However, this requires the detection
of such “dangerous zones” in a robust fashion which is a challenging issue.

The aforementioned considerations motivate the concept of the local planning algorithm
(yellow in Figure 5.1) presented in this chapter. It provides safety w. r. t. to collisions
between all robots that symmetrically execute the same algorithm given reasonable
practical constraints, as detailed in Section 5.2. Several challenges have been addressed
during the design and development. First, the underlying problem is highly parallel
because robots communicate over network (parallelism of processes) that also causes non-
determinism regarding the communication and message timings—and the way they are
being processed. Notably, multiple executions of a simulation with the same parameters
on a single machine already cause varying behavior and timings during the processing.
Additionally, the algorithm itself needs to be executed in a multithreaded way to provide
reactivity to other robots while still controlling the robot’s engine simultaneously. Second,
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the high dimensionality of the problem (time, goal poses, number and properties of
robots, etc.) exhibits various corner cases that require additional attention. Third and
finally, the algorithm’s computation must be efficient and should restrict assumptions
and limitations to retain practical applicability.

5.2 Assumptions, Limitations and Requirements

Within this section, the assumptions and limitations of the proposed concepts are
presented which particularly relate to the situations and conditions it may be applied in.
Additionally, requirements and design goals are presented and justified.

The software stack of a mobile robot is typically comprised of a localization algorithm,
a local and global planning module and a motion controller that interacts with the
robot’s engines to control its speed and steering [51, 58]. All these components are
somehow (tightly) coupled since one consumes and processes data of another. As an
example, a local planner needs to know the current location of the robot (provided by
the localization algorithm) to decide whether the current goal was reached. Likewise,
the local planner typically takes the path from the global planner. For that reason,
requirements of such components are presented in order to make the proposed algorithms
applicable.

Within the entire scope of this chapter, global planning and localization are assumed to
be given. The former provides a non-self-intersecting path to the algorithm described in
this chapter that connects the robot’s current pose with the goal pose through waypoints
in free space with sufficient clearance. It incorporates limited knowledge of static known
objects in the environment that are known a priori (e. g., walls). The global planner may
not be extended to consider dynamic obstacles since they are changing too erratically.
However, it is assumed that the underlying map of the environment can be extended by
new (semi-) static objects which is then taken into account by the global planner. More
formal details on the path itself are presented in Section 5.3. Thus, unknown dynamic
obstacles (like humans) are not explicitly considered, neither by the global planner nor
by the proposed algorithm. They must therefore be handled by analyzing distance data
retrieved from sensors on the robot or excluded by design. If a robot detects an obstacle
in its FoV, it would just stop and wait until the path is clear before continuing its
previous motion without altering the initial path. This should be considered as a fail-safe
mechanism, for instance, in case of localization inaccuracies, or unexpected obstacles.
It may be relinquished if such problems cannot occur, e. g., due to a global (perfect)
localization system or an encapsulated operation mode (in which dynamic obstacles
cannot intrude).

In general, there are no restrictions on the placing of the goals in the environment or the
timing when they are assigned to robots. If a goal is not reachable due to static (known)
obstacles, it is assumed to be rejected by the global planner. However, the proposed
local planning algorithm may also freely reject one or more goals if it considers a scenario
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(d) Feasible but bears the risk of a
deadlock for δ(Iu,v) = u, δ(Iu,w) =
w, δ(Iv,w) = v. A possible solution (opti-
mum) is given by δ(Iu,v) = v, δ(Iu,w) =
u, δ(Iv,w) = w (no waiting required).

Figure 5.3: Examples of complex corner cases where (a) two robots u (blue), v (green)
intend to swap their positions (considered infeasible without replanning), (b) is a similar
scenario but with offset paths (infeasible as well), (c) three robots u (blue), v (green),
w (red) want to swap their positions in a circular manner (feasible) and (d) bears the
risk of a deadlock depending on the solution computed by a solver. Yellow and green
rectangular markers along the paths indicate halt and release points (if any) respectively.

to be infeasible or goals unreachable. For instance, Figure 5.3 shows four rather complex
scenarios that are briefly discussed in the following. In Figure 5.3(a), the two robots u
(blue), v (green) want to swap their positions which is infeasible without replanning since
one robot would block the path of the other. Note that this scenario already occurs if
the goal areas just partially overlap with paths’ of one another. The scenario visualized
in Figure 5.3(b) is similar to the one in (a) and considered infeasible without replanning
as well since both robots cannot bypass each other without blocking the other one’s path.
Figure 5.3(c) depicts a similar situation where three robots u (blue), v (green), w (red)
want to swap their positions one after another in a cyclic manner. Assuming that there
is sufficient space so that these robots can leave their starting area to make room for
others (indicated by the existence of halts and releases), this scenario is feasible. Finally,
Figure 5.3(d) shows an intersection scenario which is feasible although solving bears the
risk of “creating” a deadlock if δ(Iu,v) = u, δ(Iu,w) = w, δ(Iv,w) = v (see Section 4.2.2),
that is, if u gets RoW at intersection Iu,v, w gets RoW at Iu,w and v gets RoW at Iv,w.
Such situations need to be detected, and resolved if possible, before robots are allowed
to move.

Localization inaccuracies may cause drifts from desired locations. Since this is a huge
challenge in general [21, 65], it is assumed that such inaccuracies are within a reasonable
amount and can thus be handled by, e. g., artificially increasing the robot’s radius. It is
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important to note that localization accuracy has a crucial impact on the property of
actually preventing collisions since the proposed algorithm exclusively reserves dedicated
areas in the environment to allow collision-free motions. However, if a robot deviates
from its path and leaves the reserved area, this property may be violated.

For communication, it is assumed that all robots in the system are (wirelessly) connected
to the same network. Ad-hoc networks between robots are not considered for simplicity
(although they may be used under certain conditions) because they impede the robot
detection logic as well as synchronized clocks (if the network is sparse and not all robots
are connected pairwise). More details about the robot detection logic are presented
in Section 5.4.1. Algorithms can assume that connectivity is mostly available but can
fail for arbitrarily long periods of time so that random delays may occur. Packet loss is
not considered explicitly since it is assumed to be handled by the network layer (through
the Transmission Control Protocol (TCP)). Out-of-order packet reception within the
same channel is ignored for the same reason. Again, more details on the underlying
communication concepts (like channels) are explained in Section 5.4.

A synchronized clock between participating robots is not required by the suggested
algorithm and all of its concepts and, in particular, by its implementation within ROS.
However, ROS typically requires this for, e. g., providing coordinate transformations
across the system [20]. Thus, a synchronized clock among all robots is just assumed to
be given for the sake of a simplified implementation in ROS, meaning that all robots
can request time stamps and compare them to time stamps received by other robots.
Nonetheless, realize that this is not an assumption of the presented methodology.

Robots may be inhomogeneous, not only regarding their shape, size, and velocity but also
w. r. t. their hardware equipment. For instance, calculations may have varying durations
on different robot platforms although they are part of the same system. However, for
simplicity, the CLPF approximates the robot’s shape by the smallest enclosing circle and
robots are assumed to be differential wheeled robots. From a methodological point of view,
the latter restriction is not required but allows for a simpler unified implementation.

The major design goal of the algorithm is safety in terms of collision-free motion. This is
justified by the requirement of (autonomous) long-time operation so that the algorithm
should never reach a point where manual intervention is necessary (if the aforementioned
assumptions are met). Basically, this is achieved by collaboratively negotiating desired
paths before motions are actually allowed to start. Where applicable, the algorithm
should prefer finding a solution for all robots affected by intersections over rejecting
goals just to let one (or a subset) arrive earlier. Furthermore, the design should enable
generalizability w. r. t. the number of robots, that is, there may be up to N > 0, N ∈ N
robots in the same environment and collision-free motion must be ensured for all robots
at all times. Additionally, it is possible to add and remove robots at run-time to adjust
the size of the system to varying loads (flexibility) based on a best effort strategy.
Best effort here refers to the assumption that new robots are only allowed to enter a
running system if they have been detected by all other robots that are already part of
it. This can be realized by a dedicated “merge zone” where robots need to wait until
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they have been detected by others (to join the “wild zone”). Assuming that wireless
connectivity is at least available on the long-run, sufficient waiting times or manual
merging ensures safe operation. Once a robot has joined a running system, robustness
regarding network delays, intersections with paths of other dynamic participants (robots)
or varying calculation times is important. That means that even though communication
is currently impaired or some robot is forced to stop along its path, collisions will not
occur.

As already stated in Section 5.1, each robot executes the CLPF algorithm on its own
decentrally. This not only prevents to have a single point of failure (at a central
negotiating instance) but also facilitates the distribution of solving an intersection
scenario among all affected robots of a group. Clearly, the higher the number of affected
robots, the more computing capabilities for solving are available (scalability). The
proposed algorithm is not implemented in a parallel fashion to exploit such capabilities
yet but possible extensions will be discussed in Section 7.2. Alternatively and depending
on a system’s requirement, the solver (see Chapter 4) may also be executed centrally
in order to distribute the computed result to all affected robots afterwards. This also
reduces the computational load in simulations that are carried out on a single or limited
machine.

5.3 Overview of Methodology

In this section, an overview of the core methodology of CLPF is given and a formalization
of important parts are presented. Note that the algorithm consists of many components
that can be seen as (smaller) algorithms themselves; their details are explained in the
subsequent Sections 5.4-5.7. Supposing that the algorithm is executed symmetrically on
all robots {R1, . . . , RN} = St of the system St at time t, we will now focus on the view
of executing CLPF on a specific robot R ∈ St—termed the current robot. The time t is
considered to be the global time of all robots and just used conceptually to refer to the
order of certain events; it is not required by the algorithm and omitted hereafter if that
information is not relevant for a particular explanation and readability is impeded.

Essentially, CLPF requires a few inputs, namely the paths, radii and maximum velocities
of all robots St, optional progress and acknowledgment information (if available), and
intersection information (if any). For every intersection between two paths, the RoW
is determined based on maximizing efficiency and preventing deadlocks. It is achieved
by deterministically reserving areas and delaying motions along the paths within these
areas but not by altering the paths itself (replanning). Clearly, the path connects the
starting position of each robot with its current goal if there is one. If not, the path just
contains a single pose which denotes the robot’s current pose; such a path is termed a
zero-length path (ZLP), e. g., when idle or charging. The radii and maximum velocities
are used throughout the algorithm to reserve sufficiently large areas and to estimate the
travel time respectively. Acknowledgments are used to ensure that we have valid known
feedback from other robots that do not have any intersection with the current robot. In
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such a case, the current robot would receive an acknowledgment from each of the other
robots whose paths do not intersect. In order to let a robot know that an intersection
area has been passed by the robot that received the RoW, progress values are sent to
communicate the passing of such areas. Progress values are also used to improve the
overall reactivity since path segments can thereby be released partially. Note that the
current and goal poses of all robots are implicitly given by the progress values and the
paths’ final poses respectively. Synchronized intersection information on all robots is
needed to finally determine the RoW at intersecting paths and to yield a solution that
is identical on all affected robots. A robot is said to be affected (by an intersection or
another robot) if its path has at least one intersection with another robot. Note that
being affected is transitive in a sense that if R1 has an intersection with R2 and R2 has
an intersection with R3 then R1 is also (indirectly) affected by (the path of) R3. In
contrast, if R1 has an intersection with R2 and R3 has an intersection with R4 then R1
or R2 are not affected by R3 or R4. The latter allows solving conflicts and executing
motions independently.

The output of CLPF on a robot R is a sequence of velocities over time vt
i (trajectory) that

controls the engines to move to its goal without colliding with others. If the algorithm
requires to stop R because another robot has the RoW at some intersection area, it
emits zeroed velocities vt

i = 0. In contrast, if an intersection scenario is considered
infeasible, R will stay at its current position and discard its goal and path. The outcomes
of processing a goal may be categorized as follows: obviously, a goal may be reachable
meaning the global planner finds a valid path and CLPF finds a deadlock-free solution
(if there have been intersections at all, otherwise the goal is always feasible). A goal
may also be unreachable, either due to blocking static obstacles (rejected by the global
planner) or due to the entire input being infeasible (rejected by CLPF, cf. Figure 5.3(a)).
The proposed algorithm will always end up in one of these cases. No replanning is
currently applied since one cannot ensure to prevent oscillations (replanning requires
replanning and so forth).

For the remainder of this chapter, the notion of a path is fundamental which has
already been introduced in Section 4.2 along with the terms line segment, progress, and
intersection (see also Figure 4.2). Conceptually, such a path is complemented with meta
information termed the path id (nR, tP) which contains the unique name nR of the robot
R (whose path is P) as well as the strictly monotonically increasing (local) time stamp
tP when P was computed. The unique names are subject to a total order based on the
lexicographical ordering of nR and its uniqueness. Every robot always has exactly one
associated path (which may be a ZLP) so that robots and paths can also be (totally)
ordered. The time stamp allows to uniquely refer to the current path of a robot (which
changes over time). More specifically, they allow us to detect whenever a robot was given
a new path (having a larger time stamp) as well as to classify messages as outdated
(cf. Section 5.4).

Figure 5.4 shows a simplified example of how CLPF’s main building blocks interact with
each other. All robots need to manage local knowledge that represent their current (local)
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Figure 5.4: Conceptual overview of the local database, the intersection graph, com-
munication channel and state management based on an example of a system St =
{R1, R2, R3, R4} with four robots R1 (green, ZLP, i. e., no goal given), R2 (black,
intersection-free), R3 (blue) and R4 (red) at some time t. At the current point in time
within this particular example, robot R1 does nothing (idle), R2 is waiting for a yet
missing acknowledgment (ACK) from R3 before being allowed to move, R3 is still solving
the RoW at intersection IR3,R4 and R4 has already started moving again after solving
with R3. Bidirectional communication is indicated by the wireless symbols next to each
robot. Tables show the current local database (containing the local or received progress
ρ, the received ACKs, and the local or received hash of the subgraph) on each robot.
An ACK is either received (✓), still pending (✗), or not applicable aka ignored (∅).
Similarly, the intersection graphs indicate the current local knowledge about detected
intersections. Hashes in the table represent the local or received hash values indicating
the subgraph, a given robot is part of. The current state of the finite state machine
(FSM) is depicted above each robot. Because R4 was asked to renegotiate by and with
R3 here, it emitted a next possible halt (NPH) on its path. Due to communication
delays between R2 and R3 here, R2 does not yet know about the intersection IR3,R4 as
well as still waits for an ACK from R3 (no motion allowed yet).
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view on the system St at time t. This knowledge is stored as a robot-local database
that uses nR as a unique key to access the lastest known state of robot R. Basically,
the aforementioned state refers to the input of CLPF as described in the beginning of
this section, namely path, radius, velocity, progress, acknowledgments and intersection
data. This information is communicated via channels over the network that all robots
are connected to. Details of how messages are processed to update the database are
explained in Section 5.4.

Generally, a robot can be in various states that reflect its current intention, modeled as
a FSM. Normally, a robot is idle if it does not have a goal (e. g., R1 in Figure 5.4). If it
receives a goal, its current state determines how the robot reacts. If it is idle yet, the
goal may be processed. In the simplest case, there may not be any intersections and
the robot can start to move if acknowledgments have been received by all other robots
(e. g., R2 in Figure 5.4). However, if intersections have been detected which is possible
due to publishing new paths right away, the type of intersection need to be considered:
they may either be related to a robot that is already in motion (e. g., R4 in Figure 5.4)
or to a non-moving robot (e. g., R3 in Figure 5.4). Depending on the current state and
type, different actions need to be taken. It also determines how a robot participates
and communicates with others. This observation motivated the use of a state machine
to track changes in the local behavior of a robot and, thus, gave rise to employ a local
(extended) FSM. It is described in detail in Section 5.5.

Another essential requirement of the algorithm is its ability to handle intersections.
The published messages about detected intersections are condensed in a data structure,
denoted the intersection graph whose details are presented in Section 5.6. Principally,
the vertices of the graph represent the robots’ paths and vertices are connected by an
(undirected) edge if and only if their associated paths have at least one intersection,
cf. Figure 5.4. Since robots and paths are in a 1:1 relation, it is valid to state that
vertices represent robots and paths either way. Upon detecting an intersection, the
graph is updated on a robot. This way, local intersection graphs will eventually converge
to the same (global) graph on every robot in the system. For instance, this has already
happened for robots R3 and R4 (although not on R2) in Figure 5.4. Naturally, the
initial graphs are decomposed into |St| connected components containing only a single
vertex. New intersections then reduce the number of components since some of them are
connected by new edges. Likewise, resolved (aka disappearing) intersections increase the
number of connected components since edges are deleted. Every robot R is therefore
always part of a particular connected component that contains all affected robots—such
a component is termed an (intersection) subgraph (w. r. t. R). Once every robot detects
that its subgraph is isomorphic to the subgraphs of all other affected robots, the current
intersection scenario may be solved in terms of determining the RoW. Isomorphisms
are efficiently detected by computing a hash that uniquely represents the structure of
a subgraph. The details are presented in Section 5.6.2. Solving a set of intersection is
also referred to as negotiating the Right-of-Ways. The solvers (described in Chapter 4)
operate on the final synchronized subgraph and is executed on every robot decentrally,
always yielding the same results. This is part of the Solve state (cf. R3 in Figure 5.4).
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Figure 5.5: Overview of local planning with the Collaborative Local Planning Framework
(CLPF) as part of the full software stack on a mobile robot (shown in Figure 5.1). The
framework (yellow) is a local planner itself that provides communication, management
of local knowledge and synchronization between other robots to negotiate intersections
with a configurable solver module as described in Chapter 4. CLPF operates on top
of and gets notified by the motion controller (blue) of a robot to abstract from the
actual robot platform. The motion controller is responsible for precisely following the
pre-planned path when allowed by CLPF.

As described in detail in Section 5.7, the underlying velocities are computed by a motion
controller that is aware of the properties of the robot. Since (re-) negotiation may
happen if robots are in motion, stopping them may be necessary (at least theoretically)
to ensure safe operation. The motion controller not only allows to trigger the NPH
along the robot’s path if in motion (refer to robot R4 in Figure 5.4 as an example) but
also respects halting positions if it needs to give RoW to other robots at precomputed
locations along its way. Such functionality is decoupled from CLPF since it depends on
the motion model of the employed robots. Basically, the precomputed locations (halts)
are the result of the solver, operating on the subgraphs.

Figure 5.5 shows how CLPF (yellow) is integrated into the software stack of a mobile
robot (cf. Figure 5.1). The framework employs a motion controller as an abstraction
to operate the robot (e. g., to allow or reject motion) and to get information about its
current motion state (e. g., whether the goal was reached). While doing so, it exchanges
the current state with other robots in the system to update locally stored knowledge
about the current global system state.

The described concepts of a database, the intersection graph (local knowledge), and
a state machine are combined and form the core methodology of the CLPF (yellow
in Figure 5.5). However, note that updating the database is independent of the current
state. The same observation applies to updating the intersection graph. The resulting
algorithm is event-driven since the FSM performs state transitions based on events like
receiving messages, obtaining and reaching goals, etc.
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5.4 Communication Concepts and Local Knowledge

This section deals with the robot-local database and the communication concept that is
used to update it. The latter employs messages of a fixed format to be sent over topics
(aka channels) by means of the publish-subscriber pattern [3] so that every robot can
receive all messages of others in a loosely coupled way.

Fundamentally, it is assumed that the underlying network layer prevents out-of-order
reception and packet loss but possibly by causing arbitrary delays in the transmission—as
provided by TCP [54]. Since two independent topics are used and all N robots are
connected pairwise with each other using a single (TCP) connection for every topic,
there are 2 ·N2 connections in total. The following message types are used:

• A Path update message is send whenever a robot has computed a valid path to a
goal, if a robot has reached its goal and now has a ZLP, or if a robot is about to
leave the system. Note that when a new robot enters the system, a path update
message with a ZLP is sent as well to announce itself in the system. More details
are explained in Section 5.4.1.

• An Acknowledgement message is sent to distribute acknowledgements once an
intersection-free path has been received (see Section 5.4.2).

• A Progress message is sent when a robot makes progress along its path, especially
when leaving an intersection. This notifies others that certain segments of the
path have already been released as well as an intersection area is passable (again,
see Section 5.4.2).

• A Graph message is sent to announce detected and disappeared intersections. An
explanation of how data is processed and stored is given in Section 5.4.3. Basically,
these messages (together with path messages) are used to update the intersection
graph.

• A Negotiation message is published during the negotiation of a sycnhronized
intersection scenario. They contain the current state of the sender participating at
the negotiation. More details will be described in Section 5.4.3 as well.

• A Hash message is sent to inform other robots about the sender’s own hash
representing the current content of its local intersection graph. Because they are
only relevant for negotiations, this will also be detailed in Section 5.4.3.

Path, Progress, Graph, Negotiation and Hash messages are published to one central
global topic such that every robot receives all messages of all other robots. It especially
enforces that a robot will receive the message (for all types except ACKs) from another
robot in the same order in which they have been sent. However, this just applies to a
pair of robots. There is no global ordering guarantee between more than two robots.
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1 # Globally unique ID of the robot sending the message
2 PathId sender
3 # Sequence of poses defining the path ( including a time stamp )
4 geometry_msgs /Pose [] path
5 # Inflation radius in m, approx . the smallest circle fitting the robot 's shape
6 float32 radius
7 # Maximum velocity in m/s that this agent is capable of:
8 float32 max_velocity

Listing 5.1: Definition of the Path message in ROS; it is used to inform other robots
about a newly planned path to a goal.

The second topic is used to publish ACKs. Because intersection-free paths are acknowl-
edged individually, every robot has its own dedicated topic for receiving ACKs and
maintains a connection to all other robots for publishing them.

As briefly stated in the previous section, every robot manages a database that stores
information about other robots in the system, updated over time through the afore-
mentioned messages. Note that next to the state machine, the local (own) state is
managed but this is explained in Section 5.5; the database just stores the state of remote
(other) robots (from the perspective of the current robot). For simplicity and improved
readability, this has been combined in the tables next to each robot in Figure 5.4. Over
time and when messages are being exchanged and processed, the database’s content
converges to the same content on all robots R ∈ St which enable them to have the same
view on the system. This is used to solve intersection scenarios. This section mainly
focuses on receiving messages and updating the database—the sending of such messages
is described in Section 5.5. Therefore assume that the receiver is denoted by Rr ∈ St

and the sender is Rs ∈ St.

5.4.1 Updating Paths

From a theoretical point of view, it is assumed that the system is always in a valid
configuration, meaning that at any time t, a robot R ∈ St always knows about any other
robot St \ {R} in the system (trivial if St0 = ∅ at startup) and no collisions exist. When
the first robot R1 joins, it publishes its first Path message which is not yet received by
any other (since there are none). If the second robot R2 joins, it publishes its path as
well and also receives the message from R1 since a latch logic is employed to always
deliver the latest (single) message to new robots. This is important to ensure consistency
(not needed for the ACK topic). When more robots R3, R4, ..., Rn join the system,
operation is considered to be safe, if all of them have received all other Path messages.
Depending on connectivity, this state may be reached quickly or requires more time
until all messages have been delivered. To guarantee collision-free motion, merging new
robots must be monitored (e. g., by means of a “merge zone”).

Basically, a Path message contains the geometric path PRr , its meta information Pid,
the radius of the robot and its maximum velocity, see Listing 5.1. When a robot enters
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the system, it publishes its current pose with |PRs | = 1. Likewise, when it leaves, it
publishes PRs = ∅ so that other robots Rr will remove Rs from their database. Again, it
must be ensured (e. g., by entering the merge zone) that the leaving robot is not blocking
the environment anymore since it gets somehow invisible to other robots after leaving.

A Path message from Rs is always stored (on Rr) except for the case where a received
time stamp is less than the stored time stamp; such messages are discarded. Notably,
messages of other types (Acknowledgement, Progress, Negotiation, Graph and Hash)
are always discarded if the time stamp of the lastly received Path message is larger than
the time stamp received along with those messages.

Due to parallel communication, it may happen that Rr receives a Graph message from
Rs that refers to a path’s time stamp tj but the database entry for Rs still stores a path
with the time stamp ti with tj > ti. In other words, the intersection information refers
to a more recent path that has not yet been received in terms of a Path message from
Rs. Again, this is possible due to multiple and parallel connections with other robots.
In such a case, Rr will invalidate the stored path for Rs which flags the entire database
entry for Rs as so-called incomplete. Note that it is important that the database entry
for Rs is still existing and, in this example, stores the just received Graph message
(which would not get sent again). The entry for Rs would become complete again if an
appropriate Path message is received. The same handling applies for all other types of
messages.

5.4.2 Handling Acknowledgments and Progress

If a robot computes a path to its current goal that does not intersect with any other
path, it still requires to receive ACKs from all other robots. This is required to guarantee
safety: assume that a system S = {R1, R2} is given in a valid configuration, that is, R1
knows about R2 and vice versa. Assume further that R1 moves along its current path
and R2 is idle yet. Let’s suppose R2 gets a path that does not intersect with the current
path of R1. Since there is no intersection, R2 would start to move as well while R1 may
have reached its goal, already received a new path but does not have received the path
of R1 (arbitrary network delays). In this situation, R2 would conclude that there is no
intersection with R1’s (previous) path (which may even be a ZLP) and starts to move.
Longer network delays would then even increase the probability of not receiving the
most recent path of R1 in due time on R2. Thus, both would move while erroneously
assuming that they have recent knowledge about each other. In contrast, if both would
have required ACKs before starting their motion, they would have either detected the
intersection or would not have started to move simultaneously. This justifies the need
for ACKs.

An Acknowledgment message, as shown in Listing 5.2, consists of the sender’s path ID as
well as the target path ID that is being acknowledged. If the received time stamp of the
sender is larger than the stored path’s time stamp, the database entry for the receiver is
marked as incomplete. This can happen due to parallel communication over the two
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1 # Globally unique ID of the robot sending the message
2 PathId sender
3 # Id of path/ robot that this message is targeting (aka acknowledging )
4 PathId target

Listing 5.2: Definition of the Acknowledgment message in ROS; it is used to acknowledge
that a newly received path from another robot (target) is intersection-free with the
path of the sending robot (sender).

1 # Globally unique ID of the robot sending the message
2 PathId sender
3 # Completion status of path in [0,N -1] whereby N denotes the number of poses
4 float64 progress

Listing 5.3: Definition of the Progress message in ROS; it is used to communicate the
current completion status of a robot on its path and especially to release intersections.

channels. In such a case, the sender acknowledged the receiver’s path but referred to
a newer local path that the receiver has not received yet. Note that since ACKs are
only sent in reaction to receiving a new path from another robot, it is not necessary
to deliver latest ACK messages to new robots (that have just entered the system) as
contrasted to the other employed message types, namely Path, Hash, Negotiation and
Progress. Graph messages are re-published (“latched”) in a specific way which will be
explained in Section 5.4.3.

Sharing progress when moving along a path is another essential part of the algorithm.
It serves two purposes. First, it allows releasing paths partially which increase the
overall efficiency (as a trade-off regarding network use). Second, progress is used to
inform robots at intersection areas that did not have RoW. To reduce network use, a
more compact representation has been developed by means of progress values already
presented in Section 4.2 (cf. Equations (4.3)-(4.5)).

Received Progress messages (see Listing 5.3) are simply stored and processed upon
reception. If a robot detects that an intersection is released based on its own progress,
it sends an ACK to that robot which is required if a renegotiation is needed during a
motion. A renegotiation is very similar to a “normal negotiation” (and also requires
to find a RoW assignment for all pairwise intersections) but involves robots that are
already in motion. Such robots are handled by requesting them to commit to a halt
position along their paths such that they can be considered as non-moving (located at
their halt positions respectively); more details are explained in subsequent sections. The
remaining steps (testing for valid ACKs, publishing progress, etc.) are described along
with the FSM (Section 5.5) and the intersection graph (Section 5.6).
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1 # Globally unique ID of robot /path sending the message
2 PathId sender
3 # Type of graph update to perform : true to add edges representing new conflicts ,
4 # false to remove existing edges (i.e., all conflicts gone)
5 bool add
6 # - If add is true , sorted list of path IDs having a conflict with the sender .
7 # - If add is false , sorted list of path IDs not having a conflict with the
8 # sender anymore .
9 PathId [] affected

10 # Must be set to the updated hash of the current local subgraph after applying
11 # the update operation locally on the sender 's side.
12 uint64 hash
13 # true to signal a ZPI , false to publish a normal conflict / intersection .
14 bool zpi

Listing 5.4: Definition of the Graph message in ROS; it is used to inform other robots
about newly detected and disappeared conflicts. Upon reception, a robot updates
its local intersection graph. If a zero-length path intersection (ZPI) is signaled, path
re-computation is triggered.

5.4.3 Managing Intersection States

The message type that is used to announce newly detected intersections is the Graph
message as shown in Listing 5.4. The sender refers to the sending robot Rs and identifies
its current path uniquely. The semantic of affected depends on the value of the add
flag: if it is true, affected contains all paths having an intersection with Rs. If it is
false, it contains all paths whose intersections have completely disappeared. Once a
robot detects an intersection (see Equation (4.6)) in reaction to the reception of a Path
message, a Graph message is published to all robots in the system. The details of how
these messages are used to update the intersection graph will be presented in Section 5.6.

Note that ZPIs are handled in a special way: if a robot receives an intersecting ZLP, it
sends a Graph message with zpi set to true and triggers a path re-computation locally
(effectively dropping its current path). In contrast, if a robot receives an intersecting non-
ZLP path but itself currently has a ZLP, it sends a Graph message with the zpi attribute
set to true (without changing its local path). This triggers a path re-computation on the
receiver which resolves the ZPI. This way, ZPIs are never represented in the intersection
graph and therefore somehow ignored. As already described in Section 5.4.2, outdated
messages are discarded and more recent messages will also make the database entry for
the sender Rs (on the receiving robot Rr) incomplete. The hash attribute must always
be set to the sender’s current local subgraph hash. A new Hash message (see Listing 5.5)
is published upon every local change of a robot’s subgraph (more details will follow
in Section 5.6.2.2).

A fundamental property of the CLPF regarding safety is that a robot R is only allowed
to move if
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(a) ACKs have been received by all robots not having an intersection with R and

(b) RoWs have been (at least for R) successfully negotiated at intersections.

Note that ACKs are also required (cf. property (a)) if an intersection occurs. (b) requires
synchronized states beforehand and must also be true if robots are already moving.
For example, if a set of robots has already negotiated their intersections and started
moving, another robot may want to join with a path that also has an intersection with
one or more of the moving robots. In such a case, that robot may only start to move if
renegotiation has taken place successfully so that both properties still apply. Until then,
moving robots will continue to move. Robots that are already moving have implicit
precedence in the algorithm over non-moving robots.

These properties are enforced by communicating Negotiation messages (see Listing 5.6)
and a robot runs through several negotiation states when intersections have been detected.
These states may not be confused with the overall state of the robot as managed by
the FSM (see Section 5.5). The negotiation states can be viewed as a nested state
machine that is used if the specific intersection related states of the FSM are active.
Notably and unlike the overall robot state of the FSM, negotiation states are transparent
to other robots since transitions are communicated with the state attribute of the
Negotiation message. Moreover, all affected robots will perform similar transitions
during a synchronization and as a preparation for solving.

1 # Globally unique ID of robot /path sending the message
2 PathId sender
3 # Hash of the current local subgraph representing the content and connectivity
4 # (must always be > 0)
5 uint64 hash

Listing 5.5: Definition of the Hash message in ROS; it is used to communicate a robot’s
current subgraph hash (to eventually become synchronized).

1 # Globally unique ID of the robot sending the message
2 PathId sender
3 # The robot 's current negotiation state ; possible values are 'Unfrozen ',
4 # 'Frozen ', 'Solved ':
5 uint8 state
6 # The next possible halt (NPH), if any. Only relevent for publishing
7 # ( Unfrozen ->) Frozen . Set to zero if the robot is at its start point ;
8 # must be set to -1 for all irrelevant cases .
9 float64 start

10 # Must be set to the (un) frozen / solved hash. If state is 'Unfrozen ', hash must
11 # be set to the new hash of the graph that already contains the changes .
12 uint64 hash

Listing 5.6: Definition of the Negotiation message in ROS; it is used to communicate
a robot’s current negotation state as well as its NPH. The values of state correspond
to the possible transitions shown in Figure 5.6.
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Figure 5.6: Negotiation states a robot may be in once an intersection has been detected.
This can be considered as a “nested FSM” that is active when one of the red intersection
related states of the “main FSM” (depicted in Figure 5.7) is active. Unlike the main
FSM, state changes in this nested FSM are communicated via the state attribute in a
Negotiation message (see Listing 5.6) and are therefore known to other robots. The
shown state transitions (arrows) take place based on received messages (events). The
circled state on the left denotes the starting state.

Figure 5.6 depicts the negotiation states and indicates when transitions take place. If an
intersection has been detected, the Unfrozen state is active which indicates that further
knowledge needs to be gathered in order to become synchronous. A precise definition of
a “synchronized state” is given in Section 5.6.2; up to now it is sufficient to perceive it
as a set of information that contains the intersection related data of all affected robots
w. r. t. the current robot R. Basically, testing for synchronization is based on a hash
representing the current subgraph that is stored in the hash attribute (see Listing 5.5).
Once a robot detects that it is synchronous with other robots of its subgraph, a timer
is started to expire within Td ≥ 0 seconds. The timer allows other robots to join a
negotiation (and to prevent renegotiations over and over again) if goals are distributed
in close succession—a regular case in practice. In fact, the timer is optional and can
be disabled by setting Td = 0. If it elapses, the current robot R transitions to the
Frozen state which indicates that all required information is given, at least on the
current robot. The state remains Frozen until either R is forced to go back to the
Unfrozen state because the synchronized state was changed by an affected robot that
was not synchronous yet or negotiating the RoWs has been completed. In that case,
R will publish Solved in order to immediately go back to Unfrozen indicating its
ability to renegotiate with other robots. If the negotiation scenario was considered
feasible, transitioning to Solved also involves starting the movement. Renegotiations
are implicitly delayed until an already pending negotiation has been completed because
robots with pending negotiations will prevent synchronization (if they are part of the
renegotiation).

Transitioning between negotiation states is independently handled by the current robot
in contrast to other (remote) robots. More specifically, any robot Ra ∈ St may transition
to, e. g., the Frozen state regardless of the state of the current robot R ∈ St \ {Ra}. If
R receives a Negotiation message indicating Ra’s transition, it simply stores it and may
trigger local transitions if state becomes synchronous. Thus, transitions from remote
robots are always only “observed” and cannot be “directly triggered”. Nonetheless
it is important to note that the remotely frozen state, once received, must be stored
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separately due to the highly parallel and asynchronous state transitions happening on
all robots. More specifically, the current robot R may become synchronous at time ti

and any other affected robot may detect its synchronous state at tj . Then both ti < tj

and ti > tj (even ti = tj) is possible so that the received frozen state must be stored
separately to avoid overwriting it with newer Graph messages as it is used by the solver.

A moving robot asks its motion controller to stop at the next possible position based
on the idea that a robot on its own knows at best when it can stop along its path. It
is converted to a progress (Equation (4.3)) and published in the start attribute of
the Negotiation message. The solver considers that position as the beginning of the
path. The moving robot may not actually come to a halt if the negotiation completes
sufficiently fast. Moreover, the halt returned by the motion controller may also be
parameterized so that it is far more ahead of the robot which reduces the probability
of a complete stop. However, note that earlier halts may increase the probability of
actually finding a solution (trade-off: feasibility vs. efficiency).

5.5 Finite State Machine: States and Semantics

This section focuses on what a robot stores for managing its own state and how the
state is managed locally using a FSM. The latter also affects what and when messages
are being sent.

First, all possible events are presented. Events may trigger state changes and can cause
updates in local data structures.

Table 5.1: Overview of all possible states of the Finite State Machine along with their
precondition and meaning. A robot is always in exactly one of these states at a time.

ID Precondition Semantic
Init None Initial state of the FSM.

Idle
• No goal given
• Not allowed to move Wait for a new goal.

Goal
• Goal given (possibly with

intersecting ZLPs)
• Not allowed to move

Wait for the final path.
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Ack

• Final path given
• No intersections known
• Robot may be moving if it

has re-entered Ack from
a renegotiation

Represents that the robot
has no intersections with
other paths and waits for
ACKs from all others.

AckDelay

• ACKs from all robots re-
ceived

• Robot may be moving or
stopped

Delay motion for Td ≥ 0, in-
creases efficiency if goals are
issued in close succession.

Intersection

• Intersection detected but
not synchronized yet

• Robot may be moving or
stopped

Wait until all required in-
formation needed for solving
are synchronous across all af-
fected robots.

IntersectionDelay

• Local knowledge is syn-
chronous with all affected
robots

• ACKs have been received
from all non-affected
robots

• Robot may be moving or
stopped

Delay synchronization for
Td ≥ 0, increases efficiency if
goals are issued in close suc-
cession.

Lock
• See IntersectionDelay
• State is locally frozen (but

not synchronized yet)

If all affected robots are
in this state, i. e., frozen,
start the solver. If the syn-
chronized state has changed
(by another affected unfrozen
robot), restart the synchro-
nization. Do not change the
frozen state itself.
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Solve

• Synchronized and frozen
state

• ACKs have been received
from all non-affected
robots

• Robot may be stopped or
moving (if moving, a halt
was triggered)

Solve the RoWs and set halt-
ing positions for the current
robot if necessary. See, e. g.,
solvers presented in Chap-
ter 4.

Move

• Goal considered feasible
• All intersections have

been negotiated (if any)
• Halt positions have taken

effect (if any)
• Robot may be moving or

stopped

Robot is allowed to move,
possibly given constraints
(halt points). Also check and
handle upcoming or delayed
negotiation requests (new in-
tersections).

Second, given an understanding of the various events that can occur in the system, we
now review the states. A summary of all states is given in Table 5.1. Figure 5.7 shows
an excerpt of the FSM along with events that can cause state transitions.

5.5.1 The Init, Goal and Idle states

After initialization (Init state), the Idle state is entered and held if there is no current
goal given to the robot. It transitions to Goal once a goal is received and a global path
could be computed successfully (event IntNew). The Goal state is used to request new
paths from the global planner to the same current goal (event IntUpd) until there are
no intersections with ZLPs anymore—we term the resulting path the final path. Note
that a goal is only accepted if the robot is Idle. In particular, if a new goal (IntNew)
is received while another goal is already being processed, the new goal will be rejected.
Thus, the goal cannot be preempted which is generally not desirable in an industrial
context where orders need to be processed until they are completed. Upon a termination
request (event IntTerm), the robot will send an empty Path message indicating that it
leaves the system. Note that IntTerm events are ignored in all other states to ensure
safety, i. e., a robot may only leave the system when others perceive it as being idle (Idle,
Goal). The FSM may veto the motion of the robot; this veto flag is always set when
the Idle state is entered (event IntEnter). Additionally, the ZLP is published because
the robot will never be moving when Idle (see precondition in Table 5.1). Section 5.7
will explain how the veto flag is processed. Note that ZPIs can still occur in subsequent
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Table 5.2: Overview of all events that can affect the Finite State Machine of a robot.
They are categorized in events that are triggered “locally” on the robot (internal events)
and those events that other robots trigger via messages (external events).

ID Semantic

In
te

rn
al

IntNew A new path has been received from the overlying system level
which may be rejected or accepted.

IntUpd A recomputed path has been received due to intersections with a
ZLP.

IntTerm The current robot was requested to terminate from the overlying
system level.

IntAck An acknowledgment delay timer has expired. Motion is about to
start.

IntIts An intersection delay timer has expired. State is about to be
frozen.

IntEnter A transition to a new state has taken place.
IntLeave An old state has been left.

Ex
te

rn
al

ExtNew New robot detected not present in the database yet.
ExtUpd An updated path has been received by an already known robot.

ExtLeave Another robot is about to leave the system and will no longer
receive and process requests.

ExtProgr Progress has been received from another robot. Parts of the path
have been released and an intersection area may be released.

ExtIts
An intersection has been detected by a robot (synchronization
and negotiation required), a negotiation has been completed or
renegotiation is required.

ExtAck An acknowledgment has been received from another robot to indi-
cate “no intersections” with the sender.

states (due to robots already being in motion) which causes a robot to go back to Goal
until there is no ZPI anymore.

Recall from Section 5.4.3 that intersections with ZLPs are handled separately. In fact,
negotiations will never ever deal with ZPIs. As explained for the Goal state, this is
because paths are replanned until they are not intersecting with ZLPs. It is justified
by the idea that robots may become immobilized, e. g., due to faulty engines so that
requiring them to move away renders the entire system more error-prone. Additionally,
moving them away from their position poses the question of an appropriate new location
which is out of the scope of this algorithm and would even need to be addressed by an
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Figure 5.7: Excerpt of the states and transitions of the developed FSM executed on
every robot. After initialization (starting state Init), a robot enters the Idle state
(gray). After a goal has been received and no ZPI has been detected (Goal state), it
continues either in the intersection-free states (blue) or transitions to the intersection
related states (red). Motion is allowed when Move (green) is reached.

overlying system level of the robot’s software stack. For these reasons, a robot informs
other robots about its current (final) position once it comes to a full stop (at a goal).
Moreover, that position is removed from the known map of all robots when a final path
is published. This way, other global planners can incorporate the induced ZLP polygon
to avoid ZPIs, obviating the need to request other robots to move away. However, since
this constitutes a race conditions, replanning is required if they occur nonetheless. Such
ZLP polygons can be considered as semi-static obstacles because they are added to the
global planner’s map.

As an example, assume that at time ti there are two robots Ra and Rb whereby Ra is about
to reach the final goal of its current path P i

a (but its not reached yet), see Figure 5.8(a)–
(c). At the same time, Rb receives a new path P i

b which intersects with P i
a at the goal

area of P i
a (yellow). Rb therefore starts to exchange information with Ra to become

synchronized and negotiate the RoW, see Figure 5.8(a). Moving ahead in time, at ti+1
robot Ra will reach its final goal and updates itself to a ZLP P i+1

a , see Figure 5.8(b).
However, since transmissions takes time, Rb does not know about P i+1

a yet and still
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11

(a) Example 1 at time ti (b) Example 1 at time ti+1 (c) Example 1 at time ti+2

(d) Example 2 at time ti (e) Example 2 at time ti+1

1

1

1

(f) Alternative to (e) at ti+1

Figure 5.8: Two examples for ZPIs and possible evolutions over time due to parallelism
and race conditions between two robots Ra (blue) and Rb (red). In the first example,
to resolve the ZPI detected after (b), replanning on Rb takes place in (c). Depending
on the actual path of Ra in the second example (d), there is either no ZPI at all as
visualized in (e) causing a small detour for Rb when executed, or a normal intersection
(yellow) has to be negotiated by the solver as shown in (f).

assumes that P i
a is valid. For now we will assume that the time ti+1 − ti is too short for

the synchronization and negotiation between Ra and Rb to complete, i. e., Ra will reach
its goal before negotiation completes. At ti+2, Rb will eventually receive P i+1

a and will
detect an intersection with the ZLP P i+1

a which, in turn, will trigger replanning on Rb,
see Figure 5.8(c). Notice that if ti+1− ti is sufficiently large to get synchronized, the used
solver (Chapter 4) will handle this situation. Apropos, if the initial situation is different
in a sense that Ra is about to start moving and its ZLP P i

a will disappear on Rb soon,
Rb will possibly still plan its path taking P i

a into account (again, since transmission
takes a reasonable amount of time), see Figure 5.8(d). This can result in two cases.
First, Rb may need to drive a small detour around Ra (without any intersection) which
is accepted as an artifact of parallelism (see Figure 5.8(e)). Second, if Rb receives P i+1

a

(final non-ZLP of Ra) soon enough (see Figure 5.8(f)), an intersection (yellow) will be
detected which is then again handled by the solver properly. Also note that Rb cannot
have an intersection with the initial ZLP P i

a of Ra. Thus, despite all possible race
conditions, it is impossible that Rb will miss the existence of Ra due to the assumption
of a valid (start) configuration: it will either (locally) detect an intersection with a ZLP
which triggers replanning or an intersection with a final path is negotiated by the solver
of the affected robots.2

2The actual decisions of the solver depend on the timings, distances, velocities, etc. of the scenario.
Here, regarding the first example of an intersection between Pi

a and Pi
b it will (most likely) consider Rb’s



5.5. FINITE STATE MACHINE: STATES AND SEMANTICS 133

5.5.2 The Ack state

Continuing with the explanation of the states, Ack represents the state in which a robot
does not have any intersections at all and waits for acknowledgments from all robots in
the system. It is entered from the Goal state if there are no ZPIs either upon entering it
or when an updated path has been received (event IntUpd). As already explained, Ack
ensures that the absence of intersections is based on recent knowledge. Within the Ack
state, three events are important. First, upon entering (event IntEnter), all ACKs
may have already been received so that the current robot can immediately proceed to
the next state, namely AckDelay. Likewise, when an ExtAck fires, the robot also
transitions to AckDelay if all ACKs have been received. Third and finally, when a
robot leaves the system (ExtLeave), the current robot was possibly refrained from
transitioning to AckDelay just due to the missing ACK from the leaving robot. Since
it left, that ACK is no longer required. Given the current robot R⋆, acknowledgments
from all other robots S := St \ {R⋆} are considered to be valid at some time t if the
following condition holds

∀R ∈ S : c(R) ∧
(
¬χ(R, R⋆)⇒ tack

R = tPR⋆

)
, (5.1)

whereby c(R) indicates if R’s database entry is complete on R⋆ and tack
R denotes the

acknowledged time stamp received from R (i. e., target in Listing 5.2). In other
words, all (other) robots R must have a complete database entry on R⋆ and having no
intersections with another robot R (that is, χ(R, R⋆) is false, see Equation (4.6)) also
requires R⋆ to have an ACK from R that targets R⋆’s current path (uniquely identified
by its time stamp tPR⋆ ).

5.5.3 The AckDelay state

In principle, when all ACKs have been received according to Equation (5.1), R⋆ may
be allowed to move. However, since in practice goals are most probably assigned to all
available robots in a bunch (very close succession), the AckDelay comes into play. It
is entered from Ack when Equation (5.1) applies and a timer is started to expire within
a configurable delay of Td ≥ 0 seconds. Within this amount of time, other robots can
check for intersections and join the negotiation (if necessary) before actually moving. As
already noted in Section 5.4.3, this step can be skipped if Td = 0. The delay provides a
parameter to tune the overall efficiency since a value of zero causes many transmissions
of messages that may be obsolete soon. However, large values of Td delay the start of
motions of the robots which is not desired as well. When the timer has expired and
there are still no intersections, the robot directly proceeds to the Move state. If the
AckDelay is left prematurely (e. g., due to intersections, cf. events ExtNew, ExtUpd,
and ExtIts), the timer is stopped.
path to be infeasible since its goal is already permanently blocked by Ra. With respect to the second
example at the beginning of Ra’s path, it will (presumably) give Ra the RoW because it already blocks
the intersection area.
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Figure 5.9: Sequence diagram illustrating how ACKs are exchanged after a new path has
been computed on robot R1. Upon reception of the new path, robots R2 and R3 check
for intersections and publish an Acknowledgement message directly to R1 indicating
that the received path is intersection-free. After waiting for Td seconds, R1 starts to
move.

The robot enters the Move state if and only if the goal is reachable and there are either
no intersections (Move is then entered from AckDelay) or all detected intersections
have been successfully negotiated (Move is then entered from Solve which is discussed
later), see Figure 5.7. In the absence of intersections and upon entering Move, the
motion-veto flag is unset which triggers the motion controller as described in Section 5.7
so that the robot starts moving. A brief example is shown in Figure 5.9 where robot
R1 just requires the ACKs from R2 and R3 to be allowed to move. In principle, these
states would be sufficient if there would be no intersections at all.

5.5.4 The Intersection state

Four additional states are used to handle intersection related information, namely
Intersection, IntersectionDelay, Lock, and Solve (red in Figure 5.7). Inter-
section is entered from all states except for Init, Idle, Goal and Solve if a new
intersection has been detected. Such a detection is based on the ExtNew, ExtUpd
and ExtIts events. In case of the former two events, an explicit intersection test is
required (see Equation (4.6)) while the latter only requires processing the received Graph
message. If an intersection has been determined upon ExtNew and ExtUpd, a Graph
message is emitted to generate the ExtIts event. More specifically, intersection tests
are only conducted upon receiving a Path message, i. e., a robot Rs with a new paths
prompts other robots Rr to check their current path against Rs’ newly published path
for intersections by publishing a Path message. If one or more intersections have been
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detected, a Graph message is sent. This distributes the work of testing intersections for
a given path equally among all other robots in the system. Intersections are therefore
detected either directly by an intersection test (after being prompted by a Path message)
or by receiving a Graph message (in response to a prompt).
If a Graph message (with add set to false) indicates that all intersections have disappeared
for the current robot, it transitions to Ack if motion is not yet allowed (veto for motion
is set). Otherwise, the motion to the current goal is continued by entering Move.
In case an intersection with a ZLP has been detected (which implies that motion
is currently not allowed), the robot transitions back to Goal to recompute a new
path to the goal (respecting the blocked ZLP area). Observe that intersections can
disappear because if some robots are already moving they may immediately stir out of
an intersection area shortly after the intersection was detected.
Assuming there are still intersections, the current robot transitions to Intersection-
Delay if all affected robots are synchronized and Equation (5.1) holds. Otherwise the
current robot stays in the Intersection state until all affected robots are synchronized.
The current robot R⋆ considers its state synchronous, if the following condition holds:

∀R ∈ S : c(R) ∧ (R ∈ GR⋆ ⇒ hash(R⋆) = hash(R)) . (5.2)

In this equation, GR⋆ denotes the current subgraph of R⋆ and hash(R) returns the
current subgraph hash for the given robot R on the current robot R⋆. In other words,
all known robots must have a complete database entry and if a robot is affected (i. e.,
part of the current subgraph), its received subgraph hash must be equal to the current
robot’s hash—effectively requiring the subgraphs to be identical. Details of the hashing
algorithm are presented in Section 5.6.2. Notice that the entire intersection graph may
differ as it is not required to negotiate with robots that are not affected at all. However,
we require complete database entries for all robots of the system in order to be able to
test if a robot is affected at all (based on the path id Pid).
Upon receiving ExtLeave or ExtProgr, the current robot transitions back to Ack
if all intersections have disappeared (due to the left or progressed robot respectively).
For every robot whose intersection has disappeared (due to received progress in Ext-
Progr), a separate ACK is sent to ensure that such intersection-free robots which
have transitioned to Ack (after being in Intersection or IntersectionDelay)
will eventually proceed to AckDelay. Observe the possibility that intersections may
disappear completely even though a robot has joined a renegotiation. This is because the
robot was moving while detecting the intersection and since it is still moving while trying
to become synchronized, the intersection may disappear. Clearly, this can also happen in
subsequent states, namely IntersectionDelay, Lock, and Solve. However, it is not
a problem because the robot would either transition back to Ack (from Intersection,
IntersectionDelay, and Lock) or the solver would detect that there is no intersection
anymore (within Solve).
As explained in the previous paragraph, a robot transitions from Intersection to
IntersectionDelay if
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• all subgraphs are locally synchronized,

• database entries for all affected robots are complete, and

• ACKs have been received from all non-affected robots.

The idea of the IntersectionDelay state is similar to AckDelay: robots may be
assigned to goals in close succession so that intersections will most likely occur very
shortly, one after another. That is why solving can artificially be delayed to prevent
reoccurring renegotiations. Thus, upon entering IntersectionDelay, a timer is started
to expire within a configurable delay of Td ≥ 0 seconds. If it expires and the current
state is still IntersectionDelay, the robot continues its processing in the Lock state.
Elsewise, if all intersections have disappeared and the motion veto flag is unset, it
transitions to Ack. If it is set (motion is allowed), the residual motion is continued by
transitioning to Move. In case of a new or updated path with an intersection (events
ExtNew, ExtUpd, and ExtIts), the robot goes back to the Intersection state
to become synchronous again. In any case, when IntersectionDelay is left, the
aforementioned timer is stopped.

Note that when a Negotiation message is received with state Unfrozen (cf. Figure 5.6)
but the sender Rs was already marked as Frozen, this means that Rs was forced to go
back to Intersection since the subgraph changed. The current robot only needs to
unfreeze Rs’ state and go back to Intersection, too (as already explained). Likewise,
if the state of the received Negotiation message is Frozen, Rs’ state will be saved and
marked as being frozen. Obviously and like for the Intersection state, the state of
a Negotiation message cannot be set to Solved at this point. A robot’s negotiation
state becomes Frozen when entering Lock which is explained next.

5.5.5 The Lock state

The Lock state ensures a consistent state between all affected robots in a negotiation.
Because all robots execute the solver symmetrically, the same result (RoW assignment)
is expected on all robots if the solver (see Chapter 4) itself works deterministically and
the inputs are identical. The latter is ensured by freezing the state upon entering Lock
so that all affected robots will eventually transition to Solve only if they have reached
a synchronized and frozen state. Transitioning to Lock (i. e., freezing locally) also sends
a Negotiation message with state set to Frozen. Conceptually, the current robot
waits in Lock until it has received a Frozen state (cf. Listing 5.6) from all affected
robots with the same subgraph hash. It then transitions to Solve in order to execute
the solver given the collected data.

New robots that have detected an intersection with one of the affected robots in Lock are
implicitly delayed joining the current subgraph until the current negotiation completes.
However, there is one exception: it can happen that a subset of the affected robots already
transitioned to Lock but the remaining robots are still waiting in IntersectionDelay
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Figure 5.10: Example illustrating the potential risk of crashes in a renegotiation due
to a NPH because the solver only considers intersections between a robot’s starting
position (here: the NPH) and its goal. Because the NPH is issued on R2’s path (red)
while moving, there is a potentially unprotected section between its current position
(red circle) and its NPH (gray circle). Without taking further care, R1 (blue) would
therefore start moving as well while both robots would ignore the yellow intersection
between them.

for their timer to expire. Such robots can and will alter the subgraph which also forces
frozen robots to go back to Intersection. Note that this cannot cause a subset of the
frozen robots (already in Lock) to proceed to Move since they require to receive a
Graph message with state Frozen from all affected robots. In turn, this requires that
a robot is not allowed to go back to Intersection once it has already announced its
Frozen state. In other words, if a robot has reached the Lock state, it may only be
forced to transition back to Intersection by means of another robot in its subgraph
that it not in this state yet, effectively modifying the subgraph.

If a robot enters Lock (IntEnter event), two different situations can occur: the robot
may already be in motion (due to a previous negotiation) or it may be standing still.
To ensure safety, the first case requires to define the henceforth-called next possible halt
(NPH) along the path of the moving robot. It is defined as a position on the path,
represented as a progress (cf. Equation (4.3)), with the following properties:

(i) Considering all known properties of the robot, the computed halt point (as described
in Section 5.7) is the next possible position where the robot will come to a full stop
along its current path. However, as a relaxation, robots can “artificially” return
halt points that are farther afield to reduce the potential of actually coming to a
full stop during a renegotiation.

(ii) An NPH can be the path’s starting point (if the robot is about to move) or the
final goal (e. g., if the robot cannot come to a halt earlier).

(iii) If there is already a halt point active, it will be kept active (and the robot must
not continue to move over that point) and the progress of that point is used as the
NPH. A new halt may never be before a halt (along the path) that was already
issued.
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The NPH is computed by the robot’s motion controller autonomously and considered as
the robot’s current position in the next execution of the solver. This way, moving robots
are perceived as if they are standing still at their NPH. Practically, a moving robot
will continue to drive up to the NPH (if any) if the current negotiation has not been
completed. However, if the negotiation completes, the robot can ignore the halt and may
not even come to a (full stop) at its NPH. Theoretically, this creates the risk of collisions
because robots are not actually at their halt points and still require time to reach such
points. Figure 5.10 illustrates this problem. If solving is sufficiently fast, the robots are
still in motion but the negotiated RoWs does not take into account the path segments
right before the halt points (marked as “potentially unprotected” in Figure 5.10) which
can cause collisions at such segments. In particular, Figure 5.10 shows such a situation
at some time ti where robot R2 (red) is moving (completed 30 % of its path, indicated
by the dotted path section at its beginning) and R1 (blue) is standing still yet. Because
both have detected the intersection (yellow), synchronized and solved, R1 is about to
start moving at ti + ϵ. Since R2 was moving already, it issued a NPH (gray) which serves
as its starting point for solving. However, the solver considers R1 at its start (blue circle)
and R2 at its NPH (gray circle), thus, there is no intersection to be negotiated and both
robots are allowed to move. This example illustrates that, without taking further care,
intersections between a robot’s current position and its NPH may be ignored because
they are before a robot’s starting position from the perspective of the solver.

To overcome this issue, different solutions are possible:

• Requesting the halt point must include waiting until the robot has actually reached
that point, effectively delaying the Frozen state. This is simple but not efficient
since it prevents concurrency.

• The current negotiated solution (right up to the NPH) is processed according to
the previous negotiation. New (non-moving) robots will never get the RoW in case
of intersections with path segments right before the NPH. This is more complex
but also increases the performance because waiting is avoided (or at least reduced
to non-moving robots).

• Artificial start halts are added for every robot Ra having intersections to a robot
Rb which in turn has activated a NPH. A start halt ensures that Ra must wait
at its starting position (which might in turn be a NPH as well), until all robots
Rb with a NPH have actually reached it. A start halt for Ra is therefore released
when Rb reaches its NPH. This way, waiting for NPHs is moved to the execution
of a negotiated solution but does not delay freezing or solving at all.

The latter approach can be considered as a compromise between performance and
complexity, and was implemented for this thesis.

It must be noted that there are three different types of halts: the NPH is set by a robot
on its own in order to ensure deterministic results when already in motion. It is removed
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Figure 5.11: Example visualizing a situation at time ti where a robot R1 (blue) in the
Lock state is forced to go back to Intersection because the affected robot R2 (red)
changes its subgraph due to a yet undetected intersection with R3 (green). R2 received
an ACK from R3 (which allowed it to become synchronized with R1) based on R3’s
previous ZLP at time ti−1 indicated by “✓i−1”. Note that this visualizes the case right
before making the transitions Lock → Intersection on R1 and IntersectionDelay
→ Intersection on R2 at time ti+1.

when the solver completes. Start halts are somewhat similar although they are removed
once corresponding NPHs are reached. The solver itself may compute halt points that
are required for the current robot to respect the RoW of others, as already explained
in Section 4.2.1. They are taken into account while the robot moves along its path.
More detailed information are presented in the next section.

The most important event within this state is ExtIts, i. e., when Graph, Hash and
Negotiation messages are received from another robot Rs. At first, for every received
message, a robot Rr tests whether it is affected, that is, if Rs (sender attribute in all
message types) is in the current frozen subgraph. If it is not affected, the message can
be ignored w. r. t. Lock.

Let hf be the currently frozen subgraph hash of Rr. If a relevant Graph message is
received, the hash differs from hf , the sender is neither marked as frozen nor masked
w. r. t. hf in its database entry (updated previously), then Rr unfreezes its local state,
publishes Unfrozen and transitions back to Intersection. This is because Rs modified
the subgraph and Rr is forced to follow. A database entry for a robot Rs is said to be
masked w. r. t. a given hash if that robot has already sent the state Solved for that
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given hash. It is an important property to keep track of because masked robots are not
allowed to force other robots back to Intersection.

If a relevant Negotiation message is received, the state (cf. Listing 5.6) can either be
Unfrozen, Frozen, or Solved. In case of state Unfrozen, Rs is in a renegotiation if
and only if Rs is masked. In this case, the message in only stored in the (non-frozen
part of the) database entry and the entire intersection graph is updated; the frozen state
of Rs is not modified. Notice that the state of Rs is not unfrozen and, in particular, no
state changes are performed yet because the negotiation of the current robot must be
completed previously. Technically, in order to make this work, it hardly requires that
messages arrive in the same order that they have been sent (cf. Section 5.4). Note that
regardless of how many Unfrozen messages are received here (while frozen / in Lock),
only the non-frozen database entry of Rs (and the intersection graph) is updated. Since
the frozen state is not altered, the condition of when to transition to Solve remains
verifiable.

In contrast, if the current robot did not receive a Solved state from Rs yet (i. e., it is
not masked), we must assume that Rs changed its subgraph such that Rr also needs to
transition back to Intersection. This operation is performed by all affected robots
in the frozen subgraph, i. e., they will all end up being in Intersection again in
order to become synchronous and frozen again. All these negotiation state changes are
communicated via the state attribute of the Negotiation message (cf. Listing 5.6).

An example for this is shown in Figure 5.11 at time ti. At time ti−1, robots R1 (blue)
and R2 (red) already have an intersection I1 (yellow) as visualized while R3 (green) has
a ZLP without any intersection (not visualized). Because R2 received an ACK from R3
(indicated by “✓i−1” in its local database) w. r. t. its ZLP, both R1 and R2 were able to
transition to IntersectionDelay, that is, both R1 and R2 got synchronized. Because
the timer in IntersectionDelay already expired on R1 here, R1 already switched to
Lock. However, R3 published its new path and detected an intersection I2 (yellow) with
R2 (as shown in Figure 5.11). Since the timer on R2 has not expired yet, R2 incorporates
this information into the local graph (not shown anymore in Figure 5.11) causing it to
transition to Intersection. This also includes publishing a Graph message containing
the new subgraph hash. When R1 receives that message, it detects that the synchronized
and frozen subgraph with hash 6589 has changed from an affected robot, forcing it to go
back to Intersection as well. Now all three robots will start to become synchronous
again in order to negotiate the intersections in a group (the subgraph equals the entire
intersection graph here which has just one connected component).

Most importantly, if the received state is Frozen, this indicates that the sending robot
Rs locally got frozen so that the current robot will freeze Rs’s state in its database as
well. Internally, “freezing” means that a copy of all data of Rs, relevant to the solver,
is created. This data is bound to the subgraph hash which means the if the subgraph
changes, the hash changes as well which, in turn, renders the frozen data to be useless.
For that reason, the hash received from Rs must be equal to the current robot’s local
subgraph hash. Additionally and according to Figure 5.6, it cannot happen that a robot
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sends multiple Frozen states one after another. Upon being informed about another
affected robot that just became frozen, the current robot R⋆ must test if it can transition
to Solve. This is true if all affected robots R are frozen and if their submitted subgraph
hash hash(R) equals the hash hash(R⋆) of the local frozen subgraph GR⋆ :

∀R ∈ GR⋆ : frozen(R) ∧ hash(R) = hash(R⋆). (5.3)

For completeness, notice that if the received state is Solved and Rs was marked as
frozen, the current robot Rr now knows that Rs has completed its solving. As already
explained, Rs is marked as masked on Rr. However, since Rr is still in Lock and has not
even started its solver, the frozen state of Rs remains unchanged and only its non-frozen
database entry is altered.

5.5.6 The Solve state

After a synchronized (IntersectionDelay) and frozen (Lock) state has been reached,
the current robot R⋆ enters the Solve state. This state represents the fact that all
information is collected and synchronized to determine a RoW assignment at every
(pairwise) intersection of the affected robots’ paths. Within this state (upon IntEnter),
the intersection graph is used to determine the RoWs locally, as detailed in Chapter 4.
Solving itself may have two possible outcomes. First, the scenario may be feasible which
requires to publish the Solved state (using a Negotiation message) and to preceed to
the Move state in order to start the motion. Second, if the scenario is infeasible, the
local state is unfrozen (discarded), the current goal is rejected and R⋆ transitions back
to Idle.

In order to be able to test if a renegotiation is required, the hash of the frozen (and
just negotiated) subgraph is stored as a negotiation ID. It is set to zero, if a scenario is
infeasible. Later on in the Move state, this ID is compared to the current subgraph
hash. If it has changed, a renegotiation is necessary.

Solving has also been implemented centrally, i. e., instead of executing the solver on every
robot, a central instance executes the solver algorithm once for a set of robots within a
given scenario. This has a few advantages: it simplifies evaluation and testing, reduces
the computational load on every robot, and it also reduces computational load of the
simulation machine if everything is executed on a single machine. Solving centrally works
as follows: if robots are configured to contact the central solver (server), they execute a
remote procedure call (RPC) while providing the number of robots in the scenario and
its hash. The robot with the lexicographically smallest name among all robots in the
scenario–termed input provider–must also provide all paths, start progresses, radii, etc.
as input to the server. This way, the input is transmitted only once. The server collects
all requests and delays the response for the robots of a given scenario until (a) all robots
have made the RPC and (b) all requests are referring to the same hash. This allows for
verifying consistency among the requests. Solving starts right away in parallel when an
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input provider has contacted the server for a given scenario. Clearly, multiple scenarios
may be solved on the server concurrently (multi-threaded). Scenarios are referred to by
the server using their unique hashes. If the central solver (server) has not been started
or crashes (even while solving), robots fall back to solving locally without interrupting
operation.

5.5.7 The Move state

This state represents the fact that the current robot R⋆ is allowed to move, possibly
given a set of constraints (represented as halt points along its path). Additionally, other
robots may receive new paths which can intersect with R⋆’s current path while moving.
New intersections therefore need to be renegotiated which is handled in Move as well.
When the goal is reached, R⋆ unconditionally transitions to Idle, effectively becoming
available again for new goals.

Upon entering this state (IntEnter), halt positions are updated according to the result
of the solver which especially includes erasing the NPH, possibly issued during Lock
(cf. Section 5.5.5). Next, the motion veto flag is unset which triggers the motion controller
(cf. Section 5.7) to actually start moving the robot’s base through the environment. As
already indicated in the explanation of the Solve state (cf. Section 5.5.6), the subgraph
is checked for changes in order to immediately go to Intersection in order to handle
an accrued renegotiation. This also applies if a new intersection has been detected
(events IntNew and IntUpd). In such a case, the robot is moving although it is in the
Intersection state which can only happen due to renegotiations. However, note that
this was “authorized” by entering Move previously to enforce collision-free motion.

When a robot receives an ExtProgr event within the states Ack, ..., Move (cf. Ta-
ble 5.1), it always uses the received progress value to test if intersections have disappeared
and to remove associated halts along its current path. This is because any of these states
may be active when the robot moves and, thus, may need to consider halts. Halts will
also be removed if a robot with an associated halt leaves the system (ExtLeave event).

Finally, the reception of a Graph message within Move needs to be explained (ExtIts).
Recall that the negotiation ID represents an unique identification of the previously
negotiated intersection scenario (cf. Section 5.5.6). Basically, a renegotiation is required
if the stored negotiation ID (see Section 5.5.6) is different to the current subgraph hash,
the received message actually indicates a new intersection in the graph (add is set to true,
see Listing 5.4) and R⋆ is really affected by the message, i. e., R⋆’s subgraph has changed
due to the message. Apart from the fact that the negotiation ID is set to zero if the
solver fails to find a solution (cf. Section 5.5.6), it is also set to zero if Move is entered
from AckDelay because in such cases, there is no previous negotiation to consider
(since there are no intersections at all). Once R⋆ enters Move (from Solve) again, the
negotiation ID will be set to a new hash (during Solve) and the same procedure can
happen again if necessary. In contrast, if intersections are gone, and R⋆ continues in
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Move from AckDelay (see Figure 5.7), the ID is zero and the same procedure can
happen again. Given this context, the Move state can be grasped as a “parent state”.

Finally, Figure 5.12 shows a simplified sequence diagram that illustrates the entire
process of negotiating a scenario with two conflicting robots. It visualizes the exchange
of messages to become synchronized, the execution of the solvers and, eventually, the
start of motions (the states Init, Idle and Goal have been omitted for brevity).
Hash messages have been omitted for readability and because the relevant hashes are
exchanged here via Graph messages.

5.6 Intersection Graphs

The fundamental structure that is used to represent intersections in the system is the
intersection graph; its definition is given in Section 5.6.1. During operation, the graph
is updated continuously to represent the latest knowledge about intersections—this is
explained in Section 5.6.2.

5.6.1 Overview and Definition

The intersection graph G = (V, E) serves as a representation for conflicts between robots
in a system and is therefore time-dependent. Every robot manages its own local graph
by incorporating received messages from the network. Thus, intersection graphs are a
continueously updated data structure in the lifetime of a robot that is synchronized over
time between all robots. Synchronization is done by sending and receiving Graph and
Path messages which either contain an “add edges/vertices” or “remove edges/vertices”
action. This way, the graphs on all robots will eventually converge to the same graph
which will be explained in more detail in the next section.

Conceptually, each robot is represented as a vertex in the graph. Two vertices u, v ∈ V
are connected by an undirected edge {u, v} ∈ E if χ(u, v) holds true, i. e., if u has at
least one intersection with v (cf. Equation (4.6)). Figure 5.13(b) shows an example for
an intersection graph with its associated scenario visualized in Figure 5.13(a). As it can
be seen in Figure 5.13(b), the subset of vertices that are connected with a path to each
other form a connected component Ci (gray) in the graph, also termed subgraph. Such
subgraphs represent the groups of robots that require negotiation with each other and
subdivide the entire set of robots into potentially smaller groups based on the current
intersections. It is worth mentioning that transitive intersections are modeled as well
because they can have an impact on the computed RoW.

An important property of the intersection graph is that all vertices are unique and there
is a lexicographical ordering on the vertex labels. Given that ordering, the root of a
subgraph (red bold vertices in Figure 5.13(b)) is defined as the vertex with the smallest
label across all vertices in that subgraph.
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Figure 5.12: Example to illustrate the negotiation of intersections between two robots R1
and R2. After sending their paths via Path messages, they are tested for intersections
and both robots react with publishing Graph messages. After transitioning from Goal
to Intersection, both become synchronized causing the transition to Intersection-
Delay which also starts a timer on each robot locally. After a timer expires, a robot
switches to Lock individually, effectively freezing its state. This is communicated by a
Negotiation message (with state set to Frozen). Because R1 is already frozen locally,
it immediately transitions to Solve and Move upon receiving the Frozen state from
R2. Note that based on timings, many variations of this diagram are possible.
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(a) Input scenario with eight intersections (b) Intersection graph with three subgraphs

Figure 5.13: Exemplary input scenario in (a) with ten robots R1, ..., R10, eight inter-
sections (yellow) and the associated intersection graph in (b) with three connected
components C1, C2, C3 (aka subgraphs, gray). Vertices (black labeled circles) in (b)
have been approximately placed at the beginning of each path for reference only. An
undirected edge (black) indicates that the two connected vertices (robots) are in conflict,
see Equation (4.6).

5.6.2 Synchronizing Graphs

We will now describe how an intersection graph is created and continuously updated
on a robot by means of processing Path and Graph messages. Because the network
it considered a spare resource, reducing the transmitted data is desirable. However,
in order to ensure safety (collision-free motions), robots require global knowledge of
each other. The proposed hashing of a robot’s local subgraph—described in more
detail in Section 5.6.2.2—is aimed at (a) reducing the required amount of data to be
transmitted to a single (hash) value and (b) efficiently allowing to check if subgraphs are
isomorphic (equality of hash values). If not stated otherwise, the described operations
are independent of the state of the FSM (see Section 5.5).

Given a robot R⋆ ∈ St and its current local subgraph GR⋆ = (VR⋆ , ER⋆), the synchronized
state contains

• a complete database entry for all R ∈ St (including radius, maximum velocity and
the current path) and

• a robot’s starting position (which might be the NPH if a robot was moving and
asked to renegotiate).

Note that this is irrelevant if R⋆ has no intersections at all (since its subgraph just
contains R⋆). The intersection graph is linked to the synchronized state by means of
the PathId which is stored as the label in every vertex (Figure 5.13(b) just shows the
robot’s name for simplification). As already explained in Sections 5.5.4 and 5.5.5, once
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a robot has collected all parts of the state, it becomes synchronous w. r. t. all robots
R ∈ VR⋆ once

1. hashes are equal, i. e., all subgraphs are equal to each others for all robots in the
subgraph GR⋆ and

2. ACKs have been received from all non-affected robots (those not being part of the
subgraph GR⋆).

The synchronized (and frozen) state is the input for the solver as described in Chapter 4.

5.6.2.1 Message Processing

Upon receiving a Path message (see Listing 5.1) from Rs (sender), the intersection graph
is updated as well, depending on the message and graph content:

• If the graph already contains a vertex for Rs then the time stamp of the PathId is
updated if it is larger than the stored time stamp. Additionally, all edges of the
existing vertex (if any) are deleted because the updated vertex represents a new
path of Rs so that old intersections (edges) are not valid anymore. The existing
vertex is searched by the unique robot name only because its time stamp is already
outdated. However, we require that the new time stamp is larger than the stored
time stamp of the existing vertex. Otherwise, the message is discarded as outdated.

• If Rs is not yet known in the graph, a new unconnected vertex is created.

• If the message contains an empty path (i. e., Rs is about to leave the system), its
vertex in the graph is deleted along with all associated edges.

Additionally, when a robot updates its own path (events IntNew and IntUpd, see Ta-
ble 5.2), it also updates its own vertex with the new time stamp.

Similarly, upon receiving a Graph message (see Listing 5.4) from Rs, the graph update
procedure is as follows:

• If Rs’ intention is to add new intersections to the graph (add in the Graph message
is true), a receiver first checks whether it is affected by the message based on the
robot names only. That is, for all vertices v in the graph matching a stored name
in the message fields sender or affected, the time stamp of v is updated to the
matched one in the received messages if it is actually smaller. If it is larger and it
matches the sender, the entire received message is considered outdated. However,
if a time stamp of an element in the affected array is smaller than a matching
vertex in the graph, only that element is marked as outdated. For all PathId’s in
the received message that were not found in the graph, a new vertex is created.
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Finally, for all such updated or created vertices, the edges {Rs, R}, for all R in
affected are added if they have not been added already (e. g., in a previously
received message of the same kind).

• If Rs’ intention is to remove intersections from the graph (add equals false), all edges
{Rs, R} are deleted whereby R denotes all robots stored in the affected attribute
of the Graph message. Note that the vertices are identified by fully matching the
entire PathId (name and time stamp) to prevent deleting intersections that are still
relevant. This is done by forcing Rs to link the information of what intersections
(edges) to be deleted to the paths in conflict (PathId), or, in other words, edges
must be specified as a tuple of PathId’s. Recap that an edge represents the
existence of intersections between two robots and, thus, deleting an edge requires
that all intersections have disappeared.

Additionally, when a robot detects intersections between its own new path and other
known paths or if a received Path message is in conflict with a robot’s current path, the
graph is locally updated first in order to get the new hash of the resulting graph. The
hash is then published to other robots in the system.

Aside from updating the graph based on Path and Graph messages, there are two
additional cases where intersections (edges) need to be deleted locally first:

• Upon receiving a Progress message (see Listing 5.3) and while the robot is in
Intersection or IntersectionDelay, issued halt points are deleted if the
received progress values indicates clearance (i. e., the intersection was released).
This allows a robot to actually pass a released intersection (where it previously
did not get the RoW).

• When a robot moves on its path and the states Intersection, Intersection-
Delay or Move are active, it periodically checks whether it went past a release
point. If also all intersections to a particular robot have disappearched, a Graph
message with add set to false is published to allow other robots updating their
graph as well.

When a robot’s state changes to Lock, it also freezes its current subgraph GR⋆ because
all robots R ∈ GR⋆ form the input for the solver. The entire frozen state is unfrozen
(discarded) 1) if a robot is forced to go back to Intersection, 2) if the solver considers
the input infeasible, and 3) upon entering Move after solving.

5.6.2.2 Hashing

Instead of transmitting the entire intersection graph via network over and over again,
just a hash of it is exchanged via Hash (and Graph) messages. The hash represents the
structure including all vertex labels. If the graph changes, its new hash is published too
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(cf. hash attribute in the Hash message in Listing 5.5). Robots store the lastly received
hash for all other robots in their local database as already shown in Figure 5.11.

The hash is computed by iterating through a given subgraph G = (V, E) via deterministic
DFS, starting at the root. This way, all vertices of the graph are visited in a deterministic
order and their labels are concatenated to a large string and that string serves as the
input of a hash function. In other words, this allows to check for isomorphisms between
subgraphs in polynomial time due to the strict ordering of the vertices. In theory,
the string representation could also be directly transmitted but hash values are much
smaller and therefore reduce the network utilization. They also simplify the check
for isomorphisms on the receiver’s side because comparing two values is faster than
comparing the full string representations.

The runtime complexity of computing a hash is O(|E|+ |V| ·D · log(D)) whereby D is
the maximum number of neighbors (vertex degree). Since such a graph can be fully
connected (all robots have an intersection with all others), D = O(|V|). The term
D · log(D) is justified by the need for sorting the children of a vertex inside the DFS
traversal which itself requires O(|V|+ |E|).

For two graphs G1, G2 with G1 ̸= G2, the resulting string representations s1, s2 are
always guaranteed to be different (s1 ≠ s2). However, for two such strings s1, s2 with
s1 ̸= s2, the probability of hash(s1) = hash(s2) approaches 1

2B−1 whereby B is the
number of bits of the resulting hash. Typically, B = 64 which results in a very low
probability of 0.000 000 000 000 000 005 % for a hash collision.

5.7 Motion Control and Right-of-Way

Recap from Section 5.5 that a robot is only allowed to move if its motion veto flag is
not set. Virtually, this flag is unset when a robot transitions to Move from one of the
following previous states (cf. Figure 5.7):

• If it is entered from AckDelay, there are no intersections and ACKs have been
received from all robots already.

• If it is entered from Solve, it means that there are intersections which have been
successfully negotiated in the previous solver execution.

• Entering it from Intersection means that a renegotiation was triggered (i. e.,
there are unnegotiated conflicts between moving robots with robots that have not
yet moved) but during synchronization3, all intersections have disappeared due to
the motion executed in parallel.

3That is, while gathering the states of all robots in the subgraph.
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The motion veto flag is set again when becoming idle. This procedure ensures that
proper care was taken (acknowledgements and negotiation) before a motion takes effect.

The motion controller of the robot is responsible for considering and implementing
computed halt points (if any) while the robot moves (cf. Figure 5.5). While doing so, it
must ensure that halt points become active before the robot actually starts moving to
not miss them and to respect the RoW. As already explained in Section 5.6.2.1, upon
receiving Progress messages, halt points for released intersections are being removed
such that a robot is eventually allowed to pass through them.

In terms of the ROS navigation stack [29], the motion controller is a local planner which
is configured to precisely follow the path computed by the global planner if the motion
veto flag is not set, i. e., it is responsible for managing the engines’ velocities. Within
a real setup, these velocities are consumed by, e. g., a Controller Area Network (CAN)
bus. In simulation, the simulator moves the (simulated) robot based on the received
velocities.

The implementation of CLPF is a local planner as well which is working on top of
the motion controller and uses it to practically implement a solved input scenario by
setting or removing halt points, allowing or preventing motions (veto flag) and by getting
notified if a goal has been reached. In other words, the motion controller, as part of
every robot, is owned and controlled by the herein proposed framework (see Figure 5.5).
It is considered as an abstraction to interface with a robot’s capability of moving its
base.

5.8 Global Planning

Within this section, we describe the global planning approach employed throughout this
thesis, see Figure 5.1. This also includes the concept of distributing the environmental
map including (semi-) static obstacles using the developed Vector Map Server (VMS).

The global planner is based on the work of M. Kallmann [30]. It uses a specific type of
triangulated navigation meshes, the so-called Local Clearance Triangulation (LCT), to
efficiently compute optimal paths of arbitrary clearance from a polygonal representation
of the environment. The polygonal representation is given as a map which contains
information about traversable and blocked areas. If globally optimal paths are desired,
an extended search for the global optimum is possible while requiring significantly more
computation time and only offering a small improvement on average.

The VMS is similar to the map server of the ROS navigation stack [29] aside from the
fact that it uses vectorized instead of rasterized maps (bitmaps). It stores the map
of the environment making it available to all global planners that are executed on a
robot. In addition, it allows to dynamically add, update and remove obstacles in the
current map which are then redistributed to all subscribed global planners. A vectorized
representation of the environment was chosen because it allows for simpler updates



150 CHAPTER 5. COLLABORATIVE COLLISION PREVENTION

(including association to the updating entity) and floor plans of industrial buildings are
most likely available as CAD-like drawings so that they can be converted more easily.

Within the methodology of CLPF, idle robots are modeled as semi-static obstacles
as already briefly mentioned in Section 5.5.1. This has the benefit of automatically
avoiding idle robots (thus, having a ZLP). Moreover, if a robot has some (mechanic)
issues, the proposed methods do not depend on the broken robot’s cooperation as it can
simply be modeled as being idle at its current position. Besides, requiring idle robots
to pull over would raise the challenging question of where to command them to, thus,
would make the system more error-prone. The ZLP’s contour is approximated by a
sampled circle (polygon) and a robot, becoming idle, sends its ZLP to the VMS which
redistributes the change to the global planners of all other robots. Similarly, when a
robot is assigned a new goal and has computed its path through its global planner, it
removes the contour from the VMS. Notice that updating the map (by means of adding
and removing ZLP contours) and respecting such changes in the global planner of every
robot is a race-condition, that is, it is possible that a global planner computes a new
path to a given goal without yet knowing about a recent map update. It is therefore also
handled in the FSM as a regular case: once a ZPI is detected with the ZLP of another
robot, a robot (that was not allowed to move yet) returns to the Goal state to trigger
a recomputation of its current path.

In a nutshell, the relation between the VMS and the global planner is as follows: every
global planner is subscribed to the global environmental map, provided by the VMS.
Robots can add and remove their ZLP contour to the map and such changes are then
redistributed to all global planners. This way, global planners will eventually have the
most recent map and automatically respect other idle robots, making the entire system
more robust against faulty robots. Figure 5.14 shows an example for 15 robots in total
from the perspective of robot p (located in the lower right) while all other robots (small
black circles) are perceived as semi-static obstacles. All black polygons are provided by
the VMS.

CLPF is not restricted to the employed approach [30]. The global planner is a configurable
module of the software stack and just needs to adhere to the following assumptions:

• A path has no self-intersections according to the definition given in Equation (4.1).

• Path segments are piece-wise linear functions (i. e., line segments) whereby the
start point of segment i + 1 is equal to the endpoint of segment i.

• A valid path consists of at least two support points.

• An environmental map is provided containing the (semi) static obstacles which
must be considered during planning.

Note that CLPF allows for smoothing a path using the Douglas-Peucker algorithm [15].
If a global planner emits very densely sampled paths (e. g., for grid-based approaches),
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Figure 5.14: Example for the planning result of the employed global planner based on
navigation meshes (gray lines showing the LCT). Black lines show borders and pilings of
the building while white areas indicate free space. For illustration purposes, a planned
robot path from ps (lower right) to pg (upper left) is shown along with 14 other robots
standing still at their ZLP, effectively being semi-static obstacles (sampled circles with
36 corner points) for robot p. Dark blue lines in the mesh indicate the regions used
by p’s global planner for computing the resulting path (magenta). The inflated path
polygon around the path based on the robot’s size is shown in magenta as well. The
front of every robot is visualized by the red axis starting at a robot’s center point (e. g.,
p is facing upwards). The grid with a cell size of 1 m is shown for reference only.

the complexity of paths can be reduced by simplifying line segments represented by
more than two support points using the parameter ϵ = 0. However, note that massive
smoothing (ϵ ≫ 0) is not advised as it changes the pre-planned paths too much and
may cause collisions with (semi-) static obstacles. Finally, note that such a polygon
simplification can especially be important if the SGS algorithm (see Section 4.3.2) is
used.

5.9 Evaluation

It remains to evaluate the performance and throughput of the proposed framework
(CLPF) with the two solvers presented in Chapter 4 and the global planner and VMS
described in Section 5.8. All analyses are conducted using the Stage simulator [24] with
the full software stack presented in the previous sections.

The setup and configuration for this evaluation is as follows. We choose ICSPS as
the solver (see Section 4.4) with a limit of 500 iterations and lexicographically sorted
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(a) Conflict-free (b) With conflicts (c) With dense conflicts

(d) Industrial hall with static obstacles (e) Narrow industrial hall with walls and pilings

Figure 5.15: Preview of different scenarios used for evaluation: (a) shows an example
of six robots moving up and down in parallel without having any conflicts. (b) shows
a setting with a total of ten robots whereby five of them (placed along the ordinate)
move rightwards and leftwards, and the other five (placed along the abscissa) move up
and down (like in (a)) creating a total of 25 complex conflicts (5-by-5). (c) shows a
similar scenario except that robots are placed more closely to each other causing a higher
probability of infeasible conflicts (as they pile up). (d) depicts an industrial hall-like
environment with a few static known obstacles and 20 robots. (e) shows an equally sized
environment that exhibits many narrow passages (walls, pillars) with up to 16 robots.
The environments in (a), (b) and (c) have a total size of 200 m× 200 m (excerpt shown
only) while (d) and (e) are 50 m by 24 m. A cell represents 1 m2.

permutations (for increased reproducibility). OMRPS is not used at all because it
can take too long for large scenarios which occur frequently, or it does not return a
solution with a limited set of iterations. It has also already been extensively evaluated
in Section 4.5.4. If not stated otherwise, the robots’ type (differential drive) and size
(approximated by a circle with a radius of 0.5 m) remains unchanged. Its maximum linear
velocity is set to 1 m/s and its maximum linear acceleration is 2 m/s2. The maximum
angular velocity is 1 rad/s and a robot’s maximum angular acceleration is 2 rad/s2.

The radius of each robot was increased by a so-called safety margin ds of 0.1 m. This
value can be increased to compensate localization inaccuracies. However, to not affect
the results by such issues, the simulator-provided (perfect) localization was used. This
also reduces the load on the evaluating machine due to reduced computational load.
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In addition to the safety margin parameter, there is a conflict tolerance parameter
dc, dc ≪ ds that allows to control the sensitivity regarding small intersections. More
specifically, a conflict χ(p, q) between two robots p, q with associated paths P, Q and
radii rp, rq is ignored if

dist(P,Q) ≥ rp + rq + 2ds − dc (5.4)
holds. dc is set to 0.05 m for all experiments to ignore very small conflicts. The desired
speedup, also termed real-time factor (RTF), for the simulator is set to five, that is, the
simulator tries to run five times faster than real-time (5 s of simulated time corresponds
to 1 s of wall-time). However, if the simulator is not able to catch up with this rate
because the simulated world is too complex, it is reduced automatically and can therefore
vary over time. Using an RTF > 1 not only allows to execute longer simulations in
shorter periods of times but also demonstrates the overall efficiency. More on this will
be presented in Section 5.9.5.
Generally, there are multiple aspects that influence the performance of the presented
framework which include but are not limited to the environment, the number of robots
and the type of load (number and probability of conflicts, solvability and resulting
complexity). For obvious reasons, it is virtually impossible to assess all combinations. A
reasonable subset has therefore been selected for a deeper analysis.
Figure 5.15 shows examples of different scenarios used in this evaluation. They were
chosen to have a wide variety of controlled conditions to evaluate different influencing
factors. Having controlled conditions in which the experiments are being conducted
allows one to reason more precisely about resulting observations. Figure 5.15(a) provides
guaranteed conflict-free paths with a fixed length of 5 m. Robots simply move up and
back down and this is repreated a configurable number of times. It serves to test
the communication logic required to acknowledge conflict-free paths before robots are
actually allowed to move. (b) arranges the robots in a vertical and horizontal lineup
such that many feasible conflicts occur. (c) is very similar to the previous case except
that robots are placed much closer to each other. This can cause goals to be reported
as infeasible in the solver because conflicts can add up and robots only try to reach
their current goal once. (d) contains various static obstacles which can cause paths
to be more complex as well as conflicts to be more probable. It mimics an industrial
hall where machines are placed in the environment as well. Lastly, (e) depicts a similar
environment containing various blocking walls and pillars causing narrow passages. Such
passages are expected to reduce the throughput considerably and will be used together
with (d) to evaluate the environmental impact.
It remains to explain load generation. A simple way of creating new goals is random
generation. This is used for the scenarios (d) and (e). A drawback is that while even
considering the locations of robots and known static obstacles, many generated goals
turn out to be unreachable, either because the global planner is not able to find a
path or because the solver returns infeasible. In case of many conflicts and cluttered
environments, this forces the framework to require a lot of communication, making it an
ideal test for robustness of the communication protocol and to tackle worst-case inputs.
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As already indicated, load generation for scenarios (a) to (c) uses procedurally generated
(scripted) start and goal locations. Robots simply move back and forth between these
locations. To also simulate some sort of batch processing where goals are dispensed
in close succession, a synchronous mode was implemented. That is, all robots are
given a goal and triggered to move simultaneously. Before assigning the next goal, all
robots must have reached their previous goal. This makes the resulting scenarios very
deterministic and similar and bundles the conflicts to very large instances.

Alternatively, goals may also be dispensed asynchronously, i. e., after a robot has
processed its current goal, it immediately receives its next goal. After a short time of
operation, a promiscuous mixture of robot poses, states and starting positions evolves.
This has the advantage to test close-to-real behavior without entering uncontrolled
random goal generation while still creating turmoil and many different inputs.

If a robot fails to reach its goals, it continues with the next one. In the scenarios (a) to
(c), this results in simple back and forth motion. In the scenarios (d) and (e), a new
random goal is generated and processed.

Finally, note that everything was solved centrally to reduce workload on the evaluating
machine (see Section 5.5.6) and to increase the maximum limit of robots. It also simplifies
verification and collections of statistics. The system executing the experiments was
equipped with an AMD Ryzen 3900X (clocking up to about 4 GHz) with 12 cores (24
threads) and 64 GB of RAM.

The remainder of this section is organized as follows: Section 5.9.1 addresses the
optimization of the state delay and NPH ahead distance parameters. Section 5.9.2
analyzes the runtime and reactivity including the amount of time spent in waiting for
the release of halts. In Section 5.9.3, the throughput of the different scenarios and load
generation modes is evaluated. This prepares for analyzing the scalability of the proposed
framework w. r. t. varying numbers of robots in Section 5.9.4. Finally, Section 5.9.5
concludes the assessment with a brief review on safety aspects.

5.9.1 Optimization of Parameters

This section deals with the optimization of the parameters of CLPF. The presented
results are averaged over at least three iterations to account for varying system load.
Recall that the state delay parameter Td represents the time to wait in the AckDelay
and IntersectionDelay states of the main FSM (see Section 5.5). This is motivated
to process goals sent to robots in close succession all together and to avoid renegotiations.

Figure 5.16 depicts the optimization results for different values (simulated seconds) of the
state delay parameter (abscissa) and the resulting total processing time (ordinate) for a
given scenario in seconds. Scenarios have been generated by varying the number of robots
(10, 20 and 40), by selecting either the conflict-free (Figure 5.15(a)) or the conflicting
environment (Figure 5.15(b)) and processing goals synchronously or asynchronously.
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(a) Results for 10 robots
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(b) Results for 20 robots
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(c) Results for 40 robots

Figure 5.16: Optimization results for the state delay parameter Td for varying numbers of
robots within the conflict-free (Figure 5.15(a)) and conflicting scenarios (Figure 5.15(b)).
For both scenarios, synchronous (blue, orange) and asynchronous goal assignment (green,
red) have been analyzed. 100 goals were assigned to every robot.

This yields a total of 12 different setups (cf. legends in Figure 5.16) and a total of 100
goals has been assigned to each robot in every scenario. In contrast to (b) and (c), Td

has been analyzed for up to 5 s in (a). Generally, notice that the processing time for
scenarios without any conflicts (blue and green) are much smaller and very close to each
other compared to scenarios with conflicts (orange and red), regardless of whether goals
are assigned synchronously or asynchronously. In fact, those scenarios turned out to be
very similar because synchronization does not have much effect if no conflicts occur.

As it can be seen from Figure 5.16(a) for 10 robots, processing times increase for larger
values of Td. This would imply that the parameter adds no benefits and could be removed.
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In fact, waiting is a trade-off because it will always add the waiting time to the total
processing time measured here. However, if fewer renegotiations are needed afterwards,
it might redeem the seconds waited in the first place. This being said, taking a closer
look at Figure 5.16(b) already reveals that for a larger number of conflicting robots
(20) and asynchronous goal processing, a delay of 1 s reduces the total processing time
by 25.29 s compared to a delay of 0 s (red). For synchronous goal processing (orange),
the time is reduced by 2.21 s. Not visible due to scaling, the processing time for the
remaining 2 scenarios still increases slightly (blue: 6.29 s, green: 5.92 s).
A similar observation applies to Figure 5.16(c) with 40 robots: even though the processing
time is still slightly increased for the conflict-free cases (blue: 8.09 s, green: 2.44 s), it is
greatly reduced for the conflicting case with asynchronous goal processing (red) with a
drop of 789.82 s from a zero to a one-second delay. Synchronous processing undergoes a
decrease of 39.80 s (orange). This can be justified by the fact that smaller delays are
sufficient because the goals are already assigned at the same time (synchronized). The
asynchronous mode perturbs the processing, requiring more renegotiations and possible
stops over time.
Another observation from random goal processing (not shown here) is that the total
processing time is obviously dominated by travel time and therefore dependent on
the number of successfully reached goals. Thus, depending on the robot density and
environmental characteristics, even higher values of the state delay can yield lower
total processing times (i. e., higher throughput) because many goals are being reached
requiring time and dominating the overall processing time.
It can be concluded that rather small values (≪ 1 s) of Td should be chosen for up to
15 robots and higher delays (≥ 1 s) are suitable for larger robot fleets. The current
implementation does not yet allow to make this parameter dependent on the number
of robots currently known in a robot’s database but that is simple to implement. In
addition, it would be advised to not use the parameter for the AckDelay state because
all experiments have shown that this increases the total processing time. This makes
sense since there is no need to wait for all ACKs anyway, thus, further delaying the
beginning of a motion is unnecessary. The parameter Td is currently used for both states
AckDelay and IntersectionDelay.
Other criteria than the processing time could have been used as target value, too. For
instance, the number of feasible goals would also be interesting to analyze. However,
it is not a good fit for the proposed scenarios in Figure 5.16 because all inputs have
been considered feasible. In addition, feasibility may be maximized while processing
times increase which may not be desirable (shifting it to a more complex optimization
problem with multiple criteria).
It remains to present the optimization results for the ahead distance values of the NPH
parameter. Recall that the ahead distance parameter D specifies the desired distance for
the selection of the NPH on a robot’s remaining path. When a moving robot is asked to
renegotiate with non-moving robots, the moving robot selects its NPH to be D meters
ahead of its current position unless there is another halt in between which then becomes
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Figure 5.17: Optimization results for the NPH ahead distance parameter for a fixed
input of 100 goals per robot. Arrows in the legends indicate the associated ordinate a
plot belongs to.

the NPH (see Section 5.5.5). If the selected position would be on or past the goal, the
NPH equals the goal (effectively causing no NPH to be set). Practically, this means that
the moving robot will move to its goal without stopping. A renegotiation will take place
nonetheless but the moving robot will be considered to be already at its goal position in
the solver (diminishing the solution space).

The effects of varying the ahead distance values for the NPH are visualized in Figure 5.17
for the conflicting environment (Figure 5.15(b)), asynchronous goal assignment and
10 (blue), 20 (red) and 40 robots (green) respectively. Distance values D have been
sampled from 0 to 4 m with steps of 0.5 m (abscissa) and the resulting processing times
are plotted on the ordinate (seconds). Because the processing with 40 robots required
considerably more time to complete, it is shown with reference to a dedicated ordinate
on the right (as indicated by the arrows in the legends). Note that the use of conflict-free
scenarios makes no sense because no NPH are used/emitted at all. The scenario with
dense conflicts was omitted because similar results were expected. Synchronizing goal
assignments is also not a good choice because robots would never be in motion (requiring
to set an NPH) while asked to renegotiate.

For only ten robots (blue), the processing time continues to increase slightly when D is
increased. From D = 0 to 2 m, the processing time increases by 7.37 s (3.14 %). For 20
robots, a decreased processing time of 16.95 s (3.82 %) can be observed when increasing
D from 0 to 2 m. As expected, for a very large robot fleet with 40 robots (green), there
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is a sweet spot at 3 m where the processing time is minimized. On the one hand, smaller
values require much more communication and renegotiations such that distances ≤ 3
increase the processing time. On the other hand, larger distances than D = 3 allow
moving robots to continue their motion (up to the given parameter D) without any stop.
However, this forces non-moving robots to wait until moving robots have reached those
locations on their paths, increasing the overall processing time.

The scenario has also been analyzed with an ahead distance set to∞, i. e., not activating
a NPH at all. That means that moving robots will always move to their current goals
before non-moving robots are allowed to execute a (re-)negotiated scenario. In other
words, moving robots are prioritized because non-moving robots will set an implicit
start halt as explained in Section 5.5.5. For all three evaluated robot counts, the total
processing time got worse with D = ∞ which underpins the previous explanation
regarding the increased processing times for D > 3 of the green plot (40 robots) in
Figure 5.17.

We conclude to set Td = 1 s and the NPH ahead distance to 2 m for the remainder of this
evaluation, both as a compromise between smaller and larger robot fleets. It should be
noted that a major advantage of the presented framework is its tiny set of parameters,
making it easier applicable in practice.

5.9.2 Runtime and Reactivity

This section continues with the analysis of the runtime and reactivity of various parts
of the framework. It should be noted that it is difficult to measure the “total runtime”
because the framework processes goals when they are assigned to a robot and the resulting
runtime depends on various different aspects like robot parameters (size, velocity, etc.),
environmental characteristics, robot density, conflict probability, etc. This analysis
therefore focuses on specific parts of the framework, namely the time it takes until a
motion was started (start delay), the total time robots spend waiting for the release of
halts, the average duration robots spend in various states of their FSM and the average
number of messages sent and received during the processing of a goal.

Figure 5.18 visualizes the reactivity by means of (a) the start delay and (b) the total time
a robot spent waiting for the release of halts while processing a goal. More specifically,
a data point in both plots represent a single reached goal processed by one of the 15
robots. Time was measured in simulated seconds, i. e., wall-time was about 5x slower
(smaller) than the shown duration due to a RTF of about five. Because the start delay
also contains the state delay Td measured in simulated seconds (i. e., depending on the
simulator’s speedup), it is reasonable to also measure simulated time here.

A “processed goal” is defined from leaving the Idle state until entering it again, either
because it was considered infeasible by the solver or because it was reached. The start
delay is defined as the time a robot requires from starting the goal processing (leaving
Idle) until reaching Move for the first time. Note that Move may be entered multiple
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Figure 5.18: Reactivity analysis of CLPF w. r. t. (a) the start delay and (b) waiting time
for halts for a total of 100 goals per robot and seven different scenarios. Every point in
the diagrams represents a measurement on one of the involved robots for processing a
single goal.
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times if renegotiations are necessary and multiple halts may be added over time. The
waiting time in Figure 5.18(b) is defined as the sum of all durations between coming
to a full stop at a halt until continuing the motion afterwards. In both diagrams, the
abscissa shows the somehow arbitrary index of the goals how they have been stored,
grouped according to the different scenarios. The scenarios have already been presented
in Figure 5.15. Random goals (gray) have been assigned to the 15 robots in the
200 m× 200 m environment (also partly shown in Figure 5.15(a)).

For the two conflict-free cases (1st in blue and 2nd in green) on the left side of Fig-
ure 5.18(a), the start delays are all within 1 and 1.5 s. This is justified by Td = 1 s
(see Section 5.9.1) including some minor communication time for requesting and process-
ing ACKs. The two conflicting scenarios with synchronous goal processing (3rd in red
and 5th in black) are also very similar to each other with a low spread in start delays due
to the synchronization. All conflicts are already negotiated right at the beginning when
every robot gets its goal causing no disturbances. Because some robots will always detect
conflicts a little later than others (effectively restarting the state delay), this will add up
causing higher start delays compared to the conflict-free scenarios. Note that the number
of robots was always 15 for all scenarios to make the results comparable. The start delay
within AckDelay for the conflict-free scenarios can always start independently on all
robots and there is no need for restarting it.

Taking a closer look at the conflicting scenarios with asynchronous goal processing (4th
in magenta and 6th in brown) reveals the much higher spread compared to the previously
discussed synchronous case. This becomes apparently clear in the dense conflicting
case (brown) where start delays can be even higher than 14 s. This is justified by the
disturbances caused by asynchronous goal processing requiring many renegotiations,
although the majority of delays remains below 6 s. The random goal case (gray, rightmost
dataset) shows a combination of the behavior of the conflict-free and conflicting scenarios
because given the large environment of 40 000 m2 where just 15 robots move to random
positions, a few of them have no conflicts at all while others have a conflict here and
there. All delays cannot be zero because the current implementation always imposes
the state delay (cf. Section 5.9.1). This again reveals some further tuning potentials of
CLPF.

Figure 5.18(b) shows the total sum of all waiting times in halts. For conflict-free scenarios
(blue and green), waiting times are all always zero because halts are not necessary.
Interestingly, comparing the synchronous (red) with the asynchronous case (magenta) of
the (non-dense) conflicting scenarios, shows that asynchronous goal processing exhibit
more gradually distributed waiting times while synchronous goal processing exhibits
a rather fixed set of waiting times roughly sampled between 0 and 20 s. The latter is
caused by synchronization forcing robots to move in “waves” and halting at similar
locations over multiple runs. The disturbances in asynchronous processing distribute the
waiting times more smoothly. The scenario with random goal processing (gray) exhibit
the largest spread in waiting times which seems reasonable given that many different
situations can occur due to randomness. It should be noted that the results for the
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Figure 5.19: Average durations of states in the FSM while processing 100 goals per robot
in different scenarios, load generation modes, and a total of 15 robots.

conflicting cases are all based on scenarios with not only a conflict probability of (or at
least very close to) one but also a high number of conflicts. That is, the expected waiting
time at halts is massively influenced by the characteristics of the scenario (conflict
probability, density, etc.). The higher the number of conflicts, the more likely it is for
robots to halt. In that sense, the analyzed cases are rather worst-case scenarios.

We continue with the analysis of how long a robot stays in the states of the FSM
according to Figure 5.19. The states are given on the abscissa and the average duration
in (simulated) seconds are shown on the ordinate. All synchronous goal processing based
results ((a) to (c)) exhibit a much higher duration for Idle because synchronization
forces robots to wait until the entire set has reached its current goal. Meanwhile, they all
wait in Idle. The Move state is also the dominant state in nearly all scenarios which is
desirable because robots should move most of the time. An exception is Figure 5.19(f)
where IntersectionDelay dominates. This is justified by the huge amount of conflicts
and resulting (re-)negotiations due to the dense positioning of the robots. This is
also visible by means of the highest peak at Intersection among all known results.
However, it also underpins an observation already made: if the subgraph changes on
a robot because another robot triggers a yet unknown conflict within the state delay
of IntersectionDelay, it re-enters IntersectionDelay after incorporating that
conflict, effectively restarting the timer for Td. This leaves room for improvement.

In the conflict-free scenario (a), the AckDelay peaks at about Td = 1 s and all other
states apart from Idle and Move do not matter at all. The corresponding asynchronous
case is not shown here as it looks about the same. The ACK related states also do not
play an important role in all other scenarios considered because conflict management
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Figure 5.20: Average number of messages received (blue) and sent (orange) while
processing 100 scripted goals per robot in different scenarios, load generation modes,
and a total of 15 robots.

dominates. The Solve state also includes the time for actually executing the solver
(see Chapter 4) and is higher in scenarios with more conflicts and/or disturbances.

The random goal case in (d) is very different to all other scenarios because the average
duration in Move dominates all other states considerably. This is justified by the
longer paths through the very large environment—98.77 m on average, e. g., compared
to 35.04 m in (e) (2nd longest case).

Figure 5.20 visualizes the average number (ordinate) of messages received (blue) and
sent (orange) during goal processing. For every processed goal, the number of messages
was counted and averaged over all assigned goals and for every message type (abscissa).
The presented diagrams also give an intuition of the required amount of communication
based on the absolute number of messages exchanged (given that within all scenarios,
the same total number of goals where assigned to every robot). For instance, in the
conflict-free case (a) only Path, ACK and Hash messages where exchanged. The number
of received messages is always higher than the number of sent messages because, except
for ACKs, a robot receives messages of all other robots. In contrast, (e) and (f) peaking
at nearly 1 500 received messages on average due to many conflicts and difficult conditions
for negotiations due to disturbances caused by asynchronous processing. A possible
optimization would be the waiver of publishing Hash messages if a robot has no conflicts
at all to save bandwidth.

A similarity among all diagrams is the high number of Hash messages. It is justified by
the fact that every modification in a local intersection graph must be communicated
with an updated hash. Fortunately, Hash messages are also intentionally the smallest
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Figure 5.21: Throughput analysis for a fixed number of 15 robots and nine different
scenarios over a total of 2 h of simulation time (abscissa). The ordinate shows the number
of successfully reached goals per minute.

messages among all types. The number of Progress messages could be kept relatively
low which offers potentials for partially releasing paths (not implemented yet).

The results indicate that CLPF is running as expected, apart from minor tuning potentials
w. r. t., for example, the state delay handling.

5.9.3 Throughput

We are now going to analyze the throughput, that is, the number of goals successfully
reached per (simulation) time with a fixed robot count of 15 and different scenarios. The
timeframe for computing the throughput was set to one minute. Within the next section,
the average throughput (across an entire pass) will be analyzed regarding different
numbers of robots (scalability).

The analysis was conducted for nine different scenarios and is given in Figure 5.21.
Compatible with the previous insights of the evaluated scenarios, the conflict-free
cases exhibit the highest throughput because no conflicts need to be negotiated and,
thus, no halts need to be considered. There are only marginally differences between



164 CHAPTER 5. COLLABORATIVE COLLISION PREVENTION

synchronized and non-synchronized goals with an average throughput of 70.89 goals/min
vs. 71.59 goals/min. It is expected that the asynchronous mode is a bit more efficient due
to the missing time for synchronization. The fluctuations in all cases are justified by the
way the experiments have been conducted, i. e., assigning (possibly synchronized) goals,
waiting for negotiation and solver execution, and executing the computed schedules
while waiting for the release of halts (if any). By considering longer time slots than
1 min, the resulting plots would be smoother.

Surprisingly, the synchronized conflicting case (dotted) shows a relatively constant
throughput of 14.21 goals/min. The synchronization combined with the existence of
conflicts seems to cause robots not to reach their goals simultaneously as contrasted to
the conflict-free case which smoothens the throughput over time. The asynchronous case
fluctuates around it with a marginally higher throughput of 15.0 goals/min on average.
A similar observation applies to the dense conflicting case. One might wonder why the
dense case, exhibiting the same number of conflicts but with more densely placed and
moving robots, has a higher throughput. This is because the paths are shorter (14.47 m
vs. 35.04 m)—an effect of placing them more closely to each other.

A similar observation applies to the large empty hall with random goal assignment (blue)
and an average path length of 104.18 m. The throughput is reduced due to the long
travel times. The two industrial hall-like scenarios exhibit shorter path lengths (17.25 m
and 26.55 m respectively) but suffer from many conflicts due to static obstacles and
narrow passages. The narrow one even has the lowest throughput among all cases.

As already indicated in the previous analyses, we can conclude that the results are heavily
dependent on the context (environment, conflict probability, etc.). If the underlying
conditions allow, the proposed framework provides constant throughput rates without
any congestion of message processing or other kinds of delays.

5.9.4 Scalability

This section evaluates the scalability of the proposed framework regarding different robot
counts. Figure 5.22 shows the throughput (ordinate) for different numbers of robots
from 1 to 20 (abscissa) in nine different scenarios for about 2 h of experiment time, that
is, a time limit of 2 h was used while the number of goals was not limited. After expiry,
goal dispatch has been stopped and the experiment continued to run until emitted goals
have been processed completely. Within the given time limit, the average throughput (in
goals per hour) has been computed and plotted w. r. t. every robot count. Only reached
goals were considered.

Because the throughput was considerably higher for the conflict-free cases (blue and
orange), a dedicated ordinate on the right of Figure 5.22 has been used. The diagram
shows a clear linear correlation between the number of robots and the throughput for
both synchronized (blue) and non-synchronized (orange) goal processing. Being on par
with previous observations, synchronization introduces a small drop in throughput which



5.9. EVALUATION 165

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of robots

0

250

500

750

1000

1250

1500

1750

A
ve

ra
ge

th
ro

u
gh

p
u

t
(g

oa
ls

p
er

h
ou

r)

←
Large empty hall (random goals)

Narrow industrial hall (random goals)

Industrial hall + obstacles (random goals)

With conflicts, sync (scripted goals)

With conflicts, async (scripted goals)

With dense conflicts, sync (scripted goals)

With dense conflicts, async (scripted goals)

1000

2000

3000

4000

5000

6000

A
ve

ra
ge

th
ro

u
gh

p
u

t
(g

oa
ls

p
er

h
ou

r)

→
Conflict-free, sync (scripted goals)

Conflict-free, async (scripted goals)

Figure 5.22: Throughput regarding varying numbers of robots (scalability) for nine
different scenarios. Note that two plots for the conflict-free cases (blue and orange) have
their own associated ordinate on the right due to a different scaling. The total runtime
for every experiment was 2 h.

becomes especially visible when larger sets of robots (≥ 14) are used. This underpins
the framework’s efficiency for the non-conflicting case.

However, in practical situations, conflicts are normally present in the inputs. The
remaining seven scenarios shown in the legend in the upper left of Figure 5.22 (all
referring to the left ordinate) therefore deal with conflicting cases. Generally, it turns
out that all observations are again highly dependent on the input characteristics. The
scenario with the 200 m-by-200 m hall without any static obstacles (blue) has sufficient
space for all 20 robots evaluated here such that its throughput continuously increases.
That is, CLPF is able to handle the required communication and (re-)negotiations to
keep up with the increasing robot count. However, as already stated previously, the
paths for this input are relatively long (101.76 m on average) which explains that this
scenario has a much slower ascending curve. It can therefore be seen as a combination
of the conflict-free cases mixed with some conflicts “here and there”.

The throughput of the industrial hall scenario with static obstacles (green, preview of
scenario shown in Figure 5.15(d)) starts with a steep increase up to 11 robots and then
continues to decrease (with a throughput at 20 robots equaling the throughput of five
robots). This indicates that the scenario has a sweet-spot at approximately 11 robots
and adding more robots causes congestion. This is expected behavior even though the
limit is very specific to the characteristic of a scenario.
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Comparing this with the narrow industrial hall scenario (orange, preview shown in
Figure 5.15(e)) reveals a similar observation at already nine robots. It is justified by the
narrow passages making it difficult for many robots to find a feasible way. Due to the
small space and similar observations, evaluation has been capped at 16 robots for this
case.

The remaining four curves are referring to the conflicting cases (see previews in Fig-
ure 5.15(b) and (c)). As already explained in Section 5.9.3, the higher throughput of the
dense conflicting cases (compared to the non-dense cases) is justified by the shorter path
(an effect of placing robots more closely to each other). For up to five robots, there is only
a marginal difference between the synchronized and non-synchronized mode. Starting at
8 and 14 robots respectively, the asynchronous goal processing allows a slightly increased
throughput. Fortunately, CLPF is able to benefit from increasing robot counts because
the achieved throughputs increase when the number of robots is incremented.

To allow a closer look, Figure 5.23 visualizes the feasibility rates for the analysis shown
in Figure 5.22, i. e., for all evaluated robot counts, the percentage of successfully reached
goals is shown (ordinate). As expected, the non-conflicting cases always have a feasibility
of 100 %. The narrow industrial hall scenario exhibits the highest and steepest decrease
in feasibility, approaching 0 % after about 14 robots already. Note than all real scenarios
use random goal generation to create input load and, thus, numerous goals are reported
to be infeasible. This explains the steep decline (green) within the industrial hall scenario
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containing static obstacles. Notice that random goal processing adds a lot of stress on
the communication logic (see Section 5.4) because a high infeasibility rate forces robots
to continuously start the processing and negotiation of new paths. It can therefore just
be a flip-flopping in terms of communication: receiving a new goal, computing a new
path, requesting ACKs, detecting conflicts, initiating negotiations, solving, detecting
infeasibility, becoming idle again, requesting the next goal, and so on. This might even
result in robots standing still or just moving gradually from time to time (in case of very
congested and dense inputs). Nonetheless, it verifies the robustness of the presented
communication concepts and also reveals inefficiencies in the underlying scenarios.

An interesting comparison is the large empty hall scenario (blue) against the dense
conflicting case (async, green). Figure 5.23 illustrates that their feasibility rate is very
similar while Figure 5.22 shows a much higher throughput for the dense conflicting case.
Even though the dense conflicting case exhibits many challenging conflicts, especially
for up to 20 robots (cf. Figure 5.15(c)), CLPF and its employed ICSPS are capable of
utilizing the increasing number of robots by scaling up the resulting throughput. In
other words, CLPF is able to perform well even in highly conflicting scenarios.

Note that a total of 746 139 goals has been processed for Figure 5.22 and 5.23 whereby
450 032 were feasible (60.31 %) and 296 107 were infeasible (39.69 %).

Finally, Figure 5.24 exemplarily depicts the distribution of scenario sizes, i. e., how many
robots are typically part of an input to be forwarded to the solver in a negotiation.
Recall that robots are organized in a dynamically updated data structure called the
intersection graph (see Section 5.6). Negotiations only take place within a subgraph
every robot is part of. The distribution in Figure 5.24 therefore shows how CLPF is
able to reduce the set of robots to relevent subsets only while still retaining safety. In
this particular example, 25 robots (blue) have processed a total 2 566 scenarios and 50
robots (orange) have processed 1 161 scenarios in the large empty hall scenario.

Fortunately, many scenarios exhibit much fewer robot counts than the total number
of robots in the scenario. This increases the efficiency of CLPF because inputs for the
solver become much smaller. However, and as already explained, this also highly depends
on the input.

5.9.5 Safety

Safety refers to the property of ensuring collision-free motions which is fundamental for
industrial automation. It is therefore worth noting that robots have never ever crashed
into each other in all approx. 850 000 goals processed and more than 280 000 scenarios
solved in total for this evaluation (excluding those processed for the evaluation of the
solvers in Chapter 4).

However, the implementation requires that robots stop at their designated halt positions.
In turn, this requires that processing loops are executed sufficiently fast to not miss halts
or goal points while moving. When scaling up the number of robots or the (simulated)
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Figure 5.24: Distribution of scenario sizes in an empty squared environment (200 m
× 200 m) with random goal assignment. 25 robots processed 2 566 scenarios while 50
robots processed 1 161 scenarios in total. All robots have been placed one after another
along the x-axis initially.

environmental complexity, system load increases which could theoretically increase the
probability for collisions due to halts being missed. It is important to note that this
equals the behavior of real robots because their computing hardware and sensor data
processing algorithms must also be designed in a way to deterministically handle all
events in due time. This also has the consequence that the presented simulations cannot
simply be executed on server CPUs (even with numerous cores) because they most
typically lack higher boost frequencies, causing execution performances of single nodes
to be worse compared to higher clocking desktop CPUs.

The upper limits, e. g., on the number of robots in the conducted experiments and the
RTF, have therefore been experimentally approached given the employed simulator and
test system.

Due to lacking support for dynamically adding or removing robots in the used Stage
simulator, this feature has been partially tested by “disabling” a robot and “killing” it
after some time, making it invisible to others that also employ CLPF because the killed
robot gets removed from the other robots’ databases. Also restarting that killed robot
afterwards worked as indented.



Chapter 6

Case Study: Decentralized
Assembly

This chapter deals with a case study of a decentralized assembly system that includes
but is not limited to the production of automobiles similar to Figure 6.1 (repeated here
according to Figure 1.1(c) for improved readability). It consists of a fully simulated
system of decentrally operating robots that allow a customer to order some (possibly
very individualized) product such that this product is then assembled by the system.
Conceptually, the presented concepts are also transferable to real robot hardware.
Notably, it uses the entire software stack of a mobile robot, especially what is presented
in Chapter 4 and 5, and therefore represents a fully functional system. Also note that
the proposed concepts may also be universally applied to other use cases, especially
those presented in Figure 1.1.

Because every entity in the system is represented as an agent, Section 6.1 introduces
the developed agent-based modeling. Given the decentralized and decoupled nature of
the system, Section 6.2 elaborates on how fault tolerance is achieved and implemented.
Section 6.3 explains the representation of product line-ups and the management of
dependencies of assembly steps. After briefly demonstrating some visualization and
introspection possibilities in Section 6.4, the entire system is evaluated from a high-level
perspective in Section 6.5.

6.1 Agent-Based Modeling

The assembly system is modeled as a composition of decentrally and autonomously
acting agents based on [7]. Figure 6.2 depicts the inheritance diagram with all relevant
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Figure 6.1: Sketch of the use case (already shown in Figure 1.1(c)) realized as a case study
in this chapter: the drawing shows a fully decentralized assembly system also termed
“Smart Factory” (from the SMART FACE project [25]). There are four workstations
equipped with industrial robot arms and a warehouse (buffering parts and materials for
assembly) in the background. Arrows indicate possible material flow. For simplicity,
robot arms (manipulators) are not modeled in this case study.

1 uint8 type # Unique type of this agent (e.g. WORKSTATION or PARKING_LOT )
2 uint8 state # State (INIT , IDLE , BUSY , FAIL) of this agent
3 time stamp # Time stamp of this heartbeat
4 string name # Unique name of the sender

Listing 6.1: Compactified definition of the Heartbeat message in ROS; it is used to
detect the agent’s exitence or death and to get to know its current state and type.

classes representing various entities in the system. AbstractAgent is the base class for
all agents and provides a periodically sent heartbeat whose content is given in Listing 6.1.
It serves three main purposes. First, once an agent receives the heartbeat messages
of another agent, it knows about its existence, effectively allowing for decoupled agent
detection. Second, if heartbeats fail to appear within a configurable timeout, an agent is
assumed to be dead. Since the agent’s internal processing logic is coupled with sending
the heartbeats, not only a crashed agent is detected this way but also agents being stuck
in some computation can be detected. Third, the heartbeat also contains the current
state (cf. Listing 6.1), so agents are aware of others being currently idle. Detected agents
are stored in an agent-local database along with their current state managed by the
AbstractAgent class (providing convenient access to it).

The SmartAgent class extends AbstractAgent by adding services for requesting an
agent-specific status and for triggering fail states. For instance, the latter can be used to
trigger maintenance in an agent which then invokes the onMaintenance() function. An
agent can then implement maintenance behavior and even autonomously prolong the
maintenance if necessary. Other agents will be able to detect the end of maintenance
by a state transition (see Listing 6.1) from Fail to Idle. Additionally, SmartAgent



6.1. AGENT-BASED MODELING 171

SmartAgent

StationaryAgentMobileAgent

AbstractAgent

CarrierRobot SupplyRobot Workstation Warehouse ParkingLot ProductServerOrderDispatcher

Figure 6.2: Inheritance diagram showing all classes of the agent-based modeling;
AbstractAgent is the pure-virtual base class for all agents which defines an anony-
mous agent. A SmartAgent adds services for requesting status or maintenance as well
as requires non-anonymity. StationaryAgents and MobileAgents both have a spatial
extend but only MobileAgents allow for changing their pose in the environment (motion).
The OrderDispatcher and the ProductServer have no environmental representation;
they remain virtual but can be detected by other agents to interact with them. The
lowest row of classes is somehow specific to this case study.

requires derived classes to decide on a specific agent type (cf. Listing 6.1) because they
are always detectable by other agents and send heartbeats themselves. In contrast,
anonymous agents (having no own type specified) will never send heartbeats but are
able to receive other heartbeats allowing them to be part of the system without actively
participating (listener). The fail state triggering also allows for injecting failures in
an agent which is useful for simulation and fault tolerance assessment. It will be used
in Section 6.5.

The StationaryAgent and the MobileAgent both have a spatial extend and represen-
tation in the environment. However, only MobileAgents are capable of changing (and
reporting) their pose dynamically; they represent mobile robots. Targets in the environ-
ment are modeled as so-called logical goals. They are justified by the need for moving
to logical targets like a workstation that may require a reservation before starting to
move and a release after completely leaving them. Logical goals introduce the following
features: in addition to specifying the pose (and an optional name), a robot should
move to, a logical goal keeps track of state changes and invokes a callback function upon
detecting any changes. That is, apart from error conditions, a logical goal may be in
one of the states listed in Table 6.1.

If the motion to the pose (stored along with the logical goal) fails, a new attempt is
automatically initiated until a configurable attempt limit is reached. Additionally, the
percental progress of reaching a goal is reported. An important feature is the release
callback: when a mobile robot has completely left the goal area of a logical goal (state
Left, see Table 6.1), its release callback is invoked to allow releasing the logical target
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Table 6.1: Overview of all possible states a logical goal may be in while being processed
and tracked by a MobileAgent. States are always passed through from top to bottom.
The state Moving may be omitted if the robot has already Entered the goal area
before actually starting to move.

State Semantic

Moving The robot is moving to the goal but has not entered the goal area
yet. This is the default initial state after issuing the logical goal.

Entered
The robot has entered the goal area while partially blocking it. This
is a one-shot flag only: it is set once entered and immediately over-
written by Approaching after invoking the state-changed callback.

Approaching After entering, the robot continues to move to the final pose while
blocking it.

Reached
The robot has reached the goal completely; it cannot have an error
anymore. The transition to Leaving is triggered once the next goal
is issued.

Leaving After reaching, the robot now moves away to some other goal while
still blocking it.

Left The robot has finally left the goal area, effectively not blocking it
anymore. This is the terminal state.

associated with the goal. On a higher level, this prevents multiple robots to try to
move to the same goal. MobileAgents therefore allow moving to such logical goals by
means of a convenient API. In the background, they automatically track the release
and occupation while handling possible corner cases (like the abortion of a motion or
the partial occupation of a goal area). The OrderDispatcher and the ProductServer
classes are concrete virtual agents directly derived from SmartAgent. CarrierRobot
and SupplyRobot are two concrete MobileAgents and Workstation, Warehouse and
ParkingLot are concrete StationaryAgents.

As already mentioned in the introduction of this chapter, the agent-based modeling may
also be applied to the use cases from Chapter 1. The details of all already mentioned
concrete classes in the lower part of Figure 6.2 will now be discussed along with Figure 6.3
showing the order processing flow and interaction between the concrete agents in the
assembly system of this case study. Note that some entities (e. g. Order Load Generator)
have been omitted in Figure 6.2 for brevity.

A workload for the system can be created by customers directly by ordering products
via a Webshop and the assembly process can be monitored directly via the Webshop.
Alternatively and especially useful for evaluation, workload can also be generated by
the Order Load Generator. Both entities are derived from AbstractAgent allowing
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Figure 6.3: Block diagram showing the order processing flow and interaction between
all virtual (gray and yellow), stationary (green) and mobile agents (blue) in the system.
Virtual agents shaded in grey are invisible (undetectable) for other agents whereas yellow
shaded agents do send heartbeats making them detectable for others. Unlike virtual
agents, stationary and mobile agents have a topological manifestation in the environment
(a pose and a footprint).

them to listen to heartbeats of Order Dispatcher agents. They collect the workload,
represented as so-called customer orders, and try to dispatch them to Carrier Robots.
They are called carriers because they piggyback the ordered products to be produced.
After a customer order has been dispatched to a specific Carrier Robot, it provides
feedback about the state of assembly to the issuing Order Dispatcher which, in turn,
provides (condensed) feedback to the customer (if any). Once a Carrier Robot receives
a new customer order to be produced, it requests the possible set of work steps for the
product from the Product Server. More details of the Product Server will be presented
in Section 6.3. Given the set of possible work steps, the Carrier Robot tries to find an
appropriate Workstation agent for a given work step. Recall that this can simply be done
by filtering the agent-local database for idle workstations. Once successful, it reserves
the carrier dock of the selected Workstation. In turn, the Workstation will request
the required parts for the reserved work step from the Product Server in order to emit
supply orders to idle Supply Robots. An instructed Supply Robot will try to dispatch a
so-called part order (containing the part needed at the Workstation) to a Warehouse to
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transport the part to the supply dock of the requesting Workstation. More specifically,
this is done by first reserving a dock at an appropriate Warehouse, trigger the part order
after arrival at the dock to start the (simulated) loading, and then transport the loaded
part to the Workstation. Once the Carrier Robot arrives at the Workstation, it emits a
work step order to the Workstation to announce being ready for assembly. When also
all required parts have arrived at the Workstation, the (simulated) assembly begins. As
indicated, all agents in this chain send feedback to allow agents in the “hierarchy” above
them to provide (possibly condensed) feedback themselves. This allows for a detailed
status reporting although all agents act independently. This procedure iterates until all
work steps have been completed. If there is no capable or idle agent available yet, an
agent waits until it is (via incoming heartbeats). All types of order can be identified by
a 128-bit Universally Unique Identifier (UUID).
It remains to describe the parking logic of a MobileAgent and how it is used by Carrier
and Supply Robots in conjunction with the Parking Lot agent. MobileAgents can be
parked either manually (by calling park()) or automatically when becoming idle. This
has the advantage of not blocking important locations in the environment. Parking
involves reserving and then moving to an available parking dock at the Parking Lot
agent. If parking upon becoming idle is activated, a MobileAgent tries to park until
successful, i. e., if reaching the reserved parking dock fails for a configurable number
of attempts, another (or random) parking dock is requested which is then tried to be
reached. Some more details are presented in Section 6.2. This iterates until the robot
has parked successfully.
Carrier Robots will try to find the next Workstation while still standing at the carrier
dock of the current reserved Workstation for a configurable number of attempts. After
that, they issue a park request to continue searching for an appropriate Workstation
from there. Additionally, they will also park automatically when becoming idle, that
is, once they completed the assembly of a product. Similarly, Supply Robots will also
issue a park request upon becoming idle to not block the supply dock of a Workstation.
Finally, note that many variations are possible because the described behavior can be
influenced by parameters.

6.2 Fault Tolerance

Generally, if an agent has an issue, its state changes to Fail (see Listing 6.1) until
recovered which forces others to ignore that faulty agent. All kinds of orders are
monitored through a so-called order client provided by the developed orderlib (similar
to ROS’ actionlib but based on services instead of topics for reliability). Within a direct
interaction of agents, errors will therefore be signaled directly via the order client. For
instance, if a Carrier Robot arrives at a Workstation, it triggers a work step order which
should finally be marked as completed by the Workstation (once the work step has been
completed successfully). Upon errors, the work step is marked as aborted such that the
Carrier Robot knows to re-trigger it at another Workstation.
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For the sake of fault tolerance, the system puts some measures in place to avoid aborting
a customer order which is considered last resort. It should only happen if the Carrier
Robot itself has an issue. This is then detected by the issuing Order Dispatcher which
can act accordingly (e. g., re-dispatching it to another Carrier Robot). The underlying
concept for fault tolerance is quite simple and eventually based on the assumption of
having redundant entities. If the motion to a logical goal fails, a limited (configurable)
number of retries is attempted to reach the same goal again. Retries are delayed via
truncated exponential backoff [54] because congested scenarios and narrow passages in
the environment have been found to be quite similar to network related issues. If all
attempts fail, another agent of the same type is selected as the logical target until one
becomes available. These concepts especially aim for making the logical goal processing
less prone to issues in the underlying path planning.

As already explained in Section 6.1, parking tries to choose a different or, after a given
limit, completely random parking dock if all previous attempts failed to reach a dock.
Random docks are ultimately used to avoid moving or planning back and forth in narrow
corridors because they increase the probability to select a dock not requiring to pass
one another. To summarize, if a Supply Robot fails, a Workstation tries to find another
Supply Robot. Similarly, if a Workstation fails, a Carrier Robot tries to find another
Workstation. If a Carrier Robot aborts its motion to a reserved Workstation (e. g.
because path planning is unable to reach it), the Workstation tries to abort already
emitted supply orders as soon as possible. Note that awaiting the Carrier Robot and
requesting supplies is done in parallel at a Workstation for performance reasons. If a
part is not available in a Warehouse, a Supply Robot waits until it is (which, in turn,
forces Workstations and Carrier Robots to wait as well).

Finally note that fail state triggering described in Section 6.1 even allows to crash an
agent abruptly which stops heartbeats from that agent instantly. They will eventually
be removed from an agent’s local database due to a timeout.

6.3 Dependencies of Production Stages

Within this section, we are going to describe the modeling of products, the management
of dependencies of work steps, and how products, work steps and parts are related to
the capabilities of an agent.

The product line-up is stored as a set of files loaded by the Product Server at startup.
Every product is specified as a DAG G = (V, E) in a GraphML file also containing
the product’s name, its unique ID and the required capabilities for the Carrier Robot.
GraphML was chosen because it is easy to understand, extendable with application-
specific attributes, and widely supported by graph editors (e. g., yEd) and software
libraries (e. g., Boost for C++ and NetworkX for Python). In such a graph, vertices V
represent work steps and edges E represent the required order in which these steps must
be processed. An example for such a graph is given in Figure 6.4 for a product named
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Figure 6.4: Simplified dependency graph of an electric car “MyE-Car-1” as an example
for a product to be produced via decentralized assembly. Every vertex represents a
required work step and edges indicate the precedence of processing them; the graph must
therefore be fully traversed in topological order to complete the assembly process. For
simplicity, the name of the most important part required by each work step is given as
vertex label for reference. Color-shaded vertices indicate flexibility (multiple subsequent
work steps possible). The details of the work step “power train” along with its required
parts and capabilities is also illustrated as an example.

“MyE-Car-1” with ID 11 and capabilities “heavy-duty-weight” and “large-size” for the
Carrier Robot. A vertex stores the ID of the associated work step (e. g., 67 for the step
“power train”, blue). This ID is used as a key for lookup in a work step definition file
which specifies the work step name, the list of required parts, the required capabilities of
the Workstation and the (simulated) duration it takes until completed. Every required
part is again referenced by a unique ID which serves as a key for lookup in a material
definition file. Such a file maps a part’s key (ID) to a human-readable description of the
part as well as a list of capabilities a Supply Robot needs to have in order to be able to
transport that part. Two examples (IDs 24 and 98) are shown at the top of Figure 6.4
for the work step “power train”.

Capabilities are specified as a list of strings predefined in a capability definition file.
Capabilities can be grouped to combine multiple capabilities in a single string and there is
a catch-all capability for convenience. The agent configuration for Workstations, Carrier
and Supply Robots must also contain what specific capabilities such agents are capable
of. Referring to Figure 6.1 again, for instance, this models that some Workstations may
have a robot arm while others are operated by human workers only. Given a set CO of
required capabilities for some order O and a set CA of specified capabilities of an agent
A, A is said to be capable for O if CO ⊆ CA.
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An important observation is that multiple choices of subsequent work steps may be
possible depending on which work steps have already been completed. For example, if
the “cable harness” from Figure 6.4 has been installed, at least four subsequent work
steps are possible. If also the “power train” has been installed, eight work steps (green)
are selectable as subsequent work step. This so-called flexibility potential allows for
optimizing the production flow by compensating the temporary unavailability of parts or
agents through switching to alternative work step. Unavailability may be caused by yet
missing parts, faulty or congested agents [4]. It is automatically utilized by traversing
the graph topologically. Such flexibility combined with the fault tolerance elaborated
in Section 6.2 makes the proposed approach superior to existing fixed linear systems.
It remains to describe how the Product Server interacts with the other agents in the
system (cf. Figure 6.3). After startup, the Product Server offers a set of services to query
information about the loaded products, work steps and parts. The two most important
services are:

• Given an ID of a product and the specific order ID (UUID), a Carrier Robot
requires the current set of possible work steps. The order ID is used to check which
steps have already been completed. These steps are stored in the Product Server
to prevent submitting them over and over again. Each request of this type may be
supplemented with a work step ID indicating the previously completed step. That
step is then stored in the Product Server for further reference w. r. t. to the given
order ID.

• Given an ID of a work step, a Workstation requires the set of parts required to
process that work step. To reduce communication overhead, for each ID of a part
in that set, it also returns the set of capabilities required to transport it. This is
used to find appropriate Supply Robots.

Notice that this design choice makes the Product Server a potential single point of
failure unless running redundantly because it keeps track of all completed work steps of
products being currently in production. Upon first request by a Carrier Robot asking
for the set of possible work steps, the Product Server instantiates the graph associated
with the provided product ID and executes a “single iteration” of topological sorting for
every request of that Carrier Robot, associated with the provided order ID. If a work
step was provided by the Carrier Robot to be marked as completed, that associated
vertex and all of its outgoing edges are removed from the instantiated graph. To get the
set of currently possible work steps, all source vertices need to be collected, i. e., vertices
with an in-degree of zero.

6.4 Visualization and Introspection

Decentralized and decoupled systems have the drawback of being difficult to visualize
and inspect while running because every agent is managing its own state. Within this
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(a) Screenshot of the Webshop to create cus-
tomer orders by choosing from the currently
offered product line-up

(b) Website of the Agent Dashboard to inspect
the existence of agents and their states (indi-
cated by symbols) in the assembly system

Figure 6.5: Screenshots of developed tools for visualization and interaction: both websites
show content that was gathered live from the assembly system running in the background.

section, we will briefly show how the presented system can be visualized and inspected.
Note that this section only deals with visualizing the state of logical agents (as introduced
in Section 6.1) and is not concerned with visualization of planned paths, obstacles or
anything else that is related to navigation or localization because that is another topic
on its own.

The heartbeat logic (described in Section 6.1) provides a convenient way to detect agents
in the system. This serves as the foundation for all UI tools used for visualization
and interaction. Introspection (if not already built into the UI tools) is realized by
manually invoking ROS services to query information about agents at runtime (refer
to SmartAgent in Figure 6.2).

Figure 6.5(a) shows a screenshot of the Webshop already depicted in Figure 6.3. Once
started, it detects all running Order Dispatchers and lists them in the first drop-down
list box. They serve as the entry point to dispatch the customer orders to. Similarly,
once a Product Server has been detected, the current product line-up is requested and
all offered products are added to the second drop-down list box. When the user clicks
the “Submit” button, a customer order is generated and the system starts to build it.

Finally, Figure 6.5(b) shows the Agent Dashboard as also already referenced in Figure 6.3.
The dashboard subscribes to all heartbeats in the system and lists detected agents in the
center table. Once an agent times out, it is moved to the table on the right. The last
known state of every agent is symbol coded for improved readability. For instance, because
all mobile robots are currently parking (state Idle, green checkmark), there is no free
parking dock such that the /parking_lot agent is Busy (hourglass). Since permanent
failures have been injected in the Order Dispatcher named /retailer_terminal as well
as /workstation2, both are in state Fail (yellow exclamation mark). Finally, because
/supply2 has just been reset, it is still in the Init state (gray gear wheel).
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Figure 6.6: Simulated environment in Stage used for evaluation; the configuration shown
here has eight workstations (light gray), two warehouses (dark gray with orange docks),
a parking lot with 18 docks, nine carrier and nine supply robots (red). The grid size
(shown for reference) is 1 m and the environment 50 m× 24 m.

6.5 Evaluation

It remains to assess the performance of the assembly system and to analyze its properties.
CLPF is used with the same parameters (ICSPS, max. 500 lex. permutations, state
delay Td = 1 s, NPH ahead distance D = 2 m) and test system (AMD Ryzen 3900X 12
core CPU, 64 GB RAM) as already explained in its evaluation in Section 5.9. Note that
those analyses (e. g., the parameter optimizations) and the ones being conducted here
have all been implemented as experiments in the developed REF.

The Stage simulator [24] has been used as well and an example of the simulated
environment is shown in Figure 6.6. The screenshot shows eight workstations (gray)
whereby every workstation has a supply dock and a carrier dock. Carrier robots (red)
reserve and move to the carrier dock for processing certain work steps while supply
robots (red as well) move to the supply dock of a workstation to bring the required
materials (cf. Section 6.1). Products are being manufactured on the carrier robots. The
warehouse (gray) has a configurable number of docks (orange) where supply robots can
collect the required materials. Both robot types can go parking at one of the parking
docks. The latter are reservable locations on the shopfloor and represented as small
bays with a wall on its left and right side. The number of robots, workstations and
warehouses can be varied when generating the environment.

The product lineup, its assembly complexity and the distribution of dispatched customer
orders mainly determine the resulting achievable throughput. Recall that carriers have
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to process all work steps of a given product until it is completed. Clearly, the more work
steps, the longer it takes to assemble the final product. Because this evaluation focuses
on applying the proposed concepts of Chapter 4 and 5 in an industrial automation case
study, we are not using a real, complex product lineup (e. g., as shown in Figure 6.5(a)).
Instead, a random lineup has been generated with defined parameters. That is, a total
of ten different products have been generated, each of them having a random number of
work steps in the range [1, 5] with dependencies modeled as a random DAG. Each work
step has a constant processing duration of 1 s (simulated time), requires zero or one part
from a generated set of parts with a probability of 40 %. The aforementioned constraints
have intentionally been chosen to be rather restrictive/small to let the system generate
observable output in terms of finished orders in a reasonable amount of time.

From this product lineup, random products (customer orders) are being selected to
generate load—as contrasted with and in addition to random and scripted goals in Sec-
tion 5.9. Note that the production of a customer order normally requires the processing
of multiple goals from different robots.

6.5.1 Throughput

Within this section, we are going to analyze the throughput of customer orders while
varying the number of robots, workstations and warehouses. The environment is shown
in Figure 6.6 and the results are given in Figure 6.7 for three configurations of workstations
and warehouses (blue, black, green). Carrier and supply counts have been varied from
1 to 9 in steps of 2, yielding a total of 25 combinations. The total number of robots
(abscissa) in the diagram is the sum of carrier and supply robots, yet indistinguishable
w. r. t. the robot type. At least 2 h of operation has been simulated, and the experiment
has been terminated after all pending orders have been completed. The ordinate shows
the resulting total throughput for the entire experiment time.

As it can be seen in the trend of the number of robots, a higher robot count increases
the resulting throughput as expected. Similarly, the higher number of workstations
and warehouses, the higher the throughput in general. The blue data series shows
the maximum throughput (116 orders) with the largest number of agents. However,
especially up to a total of ten robots, some data points in the diagram do not exhibit an
increased throughput, even within the same configuration of workstation and warehouse
count (cf., e. g., black crosses in Figure 6.7). This is justified by the allocation of the total
robot count per type. For instance, many supply robots will not increase the throughput
if there are only a few carrier robots (responsible for transporting the products). Another
observation is that in case of only four workstations and one warehouse (black crosses),
a total of six robots (3 carrier and 3 supply) is already sufficient to make 87 % of the
achievable throughput because more robots only add a subtle increase.

To further differentiate between the two types of robots, Figure 6.8 shows a 3D diagram
with the number of robots on the x- and y-axis and the throughput on the z-axis. It
underlines the same trend already observed in its 2D simplified version: a larger number of
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Figure 6.7: Scalability measured by throughput of customer orders (ordinate) while
varying the total number of robots (abscissa) which is composed of a given number of
carrier and supply robots (indistinguishable here). Three different experiments have
been evaluated in which the number of workstation (4, 8, 10) and warehouses (1, 2)
have been varied (blue, black, green), each of them simulating a total of at least 2 h of
operation.

robots increases the throughput without showing any indication of congestion even in case
of ten workstations and two warehouses. Given this analysis, it is still indistinguishable
whether the increased number of workstations or the number of warehouses enhances the
throughput. However, it is assumed that it is justified by the number of workstations
because warehouses always had free docks.

A closer look at Figure 6.8 also clearly reveals that increasing the number of carrier
robots outperforms an increased number of supply robots regarding throughput up to a
certain level where the number of supplies becomes the bottleneck. This kind of analysis
helps to find bottlenecks in general and allows to optimize the number of agents based
on requirements and expected load. A plot very similar to Figure 6.8 results if the
throughput would be represented per time (e. g., order count per minute). The resulting
numbers would be much smaller than the goal throughput measured in Section 5.9.3
due to the complexity of the underlying assembly process.
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Figure 6.8: Scalability measured by throughput of customer orders (ordinate) while
varying the number of carrier and supply robots (abscissas). Unlike Figure 6.7, this
diagram distinguishes between the number of carrier and supply robots. At least 2 h of
operation has been simulated for each of the three scenarios.

6.5.2 Fault Tolerance

Section 6.2 has described how the system handles various error cases. As already
explained in Chapter 1, an important advantage of decentralized assembly over linear
(conveyor) systems is its fault tolerance. This and its robustness are analyzed in this
section.

Figure 6.9 depicts the behavior of the system while injecting failures into workstations
(forced maintenance). The experiment took about 14 (simulated) hours (abscissa), that
is, more than one day of continuous operation. Both ordinates show the throughput of
customer orders per minute while only the cumulative throughput curve (gray) refers to
the right ordinate. The blue data series shows the raw throughput per minute while the
black curve visualizes a moving average over a timeframe of 30 min. The five events of
failure injection have been marked with red dashed vertical lines.

After every 2 h of operation, another random workstation has been selected for failure
injection. Immediately after injecting a failure, the workstation becomes inactive and is
automatically avoided by carrier robots based on the status (FAIL) sent via heartbeats
(cf. Listing 6.1). Note that if a workstation would even be unable to communicate,
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Figure 6.9: Analysis of the impact of artificially injected failures in workstations on the
throughput of produced customer orders (left ordinate) for an experiment taking a total
of 840 min (abscissa). The throughput is shown in blue and a moving average is shown
in black. The gray curve shows the cumulative throughput over time with reference to
the right ordinate. After every 2 h of operation, a failure has been injected in a random
workstation (dashed red lines). After 12 h, all failures have been resolved (green dashed
line).

heartbeats would timeout resulting in the same behavior. The system is operated for 2 h
after every injection to let the failure take effect. The last failure is injected at 600 min
(10 h) with 50 % of all ten workstations being faulty. After 12 h, all failures have been
removed (green dashed vertical line) to let the system recover for 2 h. A total of 18 466
goals has been processed by both robot types whereby the majority (57.84 %) fall on
supply robots. 12 843 out of 18 466 goals (69.55 %) have been reached successfully.

As it can be seen from the moving average (black) in Figure 6.9, every injected failure
degrades performance of the system by means of a drop in throughput. However, even
after halving the number of available workstations, the assembly system is still fully
operational and emits completed orders. Similarly, the cumulative throughput (gray)
slowly flattens out while more workstations are taken out of service until rising again
when all workstations are being recovered. As expected, the system reaches its previous
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production capacity once all workstations are running again. A linear conveyor system
would be affected by downtime already after a single failure [64].

It is worth noting that all orders have been successfully produced without any issues
despite the injected failures in the workstations. That is, all carrier robots correctly
dealt with the disturbances caused by failing workstations. Note that such failures were
injected at any time, meaning the carrier robots also needed to handle the case where a
work step has already been started at a workstation that is about to become faulty. In
such cases, carrier robots restarted the work step at another workstation.

6.5.3 Comparison to Other Approaches

We have also tried to evaluate the scenario used in Figure 6.8 (blue) with well known path
planners (online motion planning approaches) like Vector Field Histogram+ (VFH+)
[59], Timed Elastic Bands (TEB) [45] and Dynamic Window Approach (DWA) [22]
as local planners (the latter being the default planner in ROS). However, all planners
already had massive problems in performing the initial parking operations, that is, all
robots are requested to park before the actual order processing can start. To do so,
each robot requests a free parking area at the parking lot agent in order to exclusively
reserve and drive to it. The parking lot agent assigns the closest free parking lot to
every requesting agent to increase efficiency. At startup of the system, this creates the
situation that every robot is assigned its current location (or a position very close to it)
as the motion target for parking. All local planners are therefore challenged to either
just confirm their current position to be the reached final goal or to just make minor
positional adjustments. However, all mentioned planners struggled to do so. VFH+ even
started to compute detours away from the goal, presumably to move back afterwards
while avoiding sharp curves due to its parameterization (turn radius). As a consequence,
the scenario in Figure 6.6 was intractable for all planners on most of the robots (except
for CLPF). Note that the walls around the parking lots were known to the planners.

To overcome the previously described limitation, the environment has been simplified
by getting rid of the walls enclosing the parking lots (10 on the left and 10 on the
right of Figure 6.6). However, Vector Field Histogram+ (VFH+) was still unable to
park all robots properly upon startup. The simulation has been aborted after 650 s
without completing (or event starting) any customer order and more than 200 collisions.
Collisions are automatically detected by means of the presented REF (more precisely,
the EIF, see Section 3.1). Every time a collision is detected, the collided robots are
automatically repositioned at a random collision-free location nearby to let the experiment
continue. This functionality is realized by a combination of the agent detection logic
(see Section 6.1) and the EIF. VFH+’ difficulties are most probably explained by the
fact that the algorithm is not designed to handle this kind of complex reorganization at
startup causing robots to either collide or to get stuck at the park boxes. It is rather
developed to handle longer forward-directed motions while avoiding unknown (semi-)
static obstacles (and no dynamic obstacles in particular). Timed Elastic Bands (TEB)
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was also not able to park at all and while not causing any collisions, also no customer
orders were completed (not even started as well).

After simplifying the environment, DWA was more or less working. However, after
simulating more than 1 h of operation, only five customer orders have been completed
while creating a total of four collisions. The same collision handling has been used as
for VFH+. From Figure 6.7 it becomes clear that CLPF was able to complete more
than 100 orders in 2 h which is more than 10 times higher than DWA for this particular
scenario. For fairness, it must be noted that the generated static obstacles (workstations
and warehouses) are not known a priori to DWA (albeit via laser scans) because ROS’
map server does not allow dynamic updates of the (generated) map (unlike the VMS
presented here).

Generally, note that by design, the large number of robots (18) is challenging here because
all compared algorithms (VFH+, TEB, DWA) require a lot of computation time for
evaluating laser scan data to compute velocities online. By considerably lowering the RTF
to approximately 1.1 in case of DWA, simulation was possible. During the experiment it
went even down to only 0.5x, i. e., 1 s corresponds to 2 s of simulated experiment time.
Distributed computing would surely help in speeding up this experiment.

Finally, despite the results presented in this section, it must be noted that all the
compared planners may be improved by tuning parameters. However, this also constitutes
a major drawback of those approaches because they have many parameters such that
tuning them is a time-consuming and tedious task. In contrast, only a few parameters
are sufficient for CLPF. Note that while using CLPF in all experiments conducted in
this evaluation, robots have never ever crashed into each other.

6.6 Application of Experiments

As already noted, the Robotic Experimentation Framework (REF) from Chapter 3 has
been used throughout the evaluations in this chapter (see Section 6.5) as well as in
Chapter 5. We will retrospectively outline here, how the REF has been applied in those
evaluations to clarify its application.

Except for roslaunch2, Figure 3.1 depicted the main components of the REF. Because
all experiments presented here have been conducted with the Stage simulator, the
StageEnvironment backend class of the abstract EnvironmentInterface class has been
used. It provides all simulator-related functionality, for instance, pausing/resuming,
registering collision notifications, etc.

Notably, the “Robot 1”, ..., “Robot N” boxes indicated on the left of Figure 3.1 represent
the full software stacks required to operate the robots (cf. Figure 5.1). For the evaluations
of Chapter 5, this primarily comprises the localization, the Vector Map Server and the
path planner (instantiating both the global and local planner). All these components
are running in their own ROS node (dedicated processes). The global planner and the
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ExperimentBase

env : EnvironmentInterface
exp : ExperimentInterface

FaultToleranceOrderExperiment

agents
cfg : dict
collision_count : int

wait_for_idle_mobile_agents()

GoalStatisticsExperiment

collision_count : int
current_output_file : NoneType
first_entry : bool
output_files : list
statistics_topic
store_collisions : bool

collision_callback(state, stamp, name)
create_new_json_file(name)
statistics_callback(data)

ParameterOptimizationExperiment

collision_count : int
instance_id : NoneType
load_mode : NoneType
lock : lock
statistics_data : NoneType

collision_callback(state, stamp, name)
main()
statistics_callback(data)
wait_for_statistics()

ScenarioOrderStatisticsExperiment

agents
cfg : dict

wait_for_idle_mobile_agents()

ScriptedGoalStatisticsExperiment

cfg : dict
collision_count : int
timer
wall_timer

timeLimitReached()

Figure 6.10: Excerpt of the experiment classes in Python used for evaluation, instantiated
with the REF; for instance, the FaultToleranceOrderExperiment has been used for
the fault tolerance assessment (see Section 6.5.2). The logic of storing the results
as a JSON file on disk for subsequent analysis and visualization is encapsulated in
GoalStatisticsExperiment. ExperimentBase contains the env object to interact with
the simulator and the exp object to interact with the software stack of the robots.

VMS have been presented in Section 5.8 and the CLPF equals the local planner. Within
this chapter, the agent logic (see Section 6.1) is started additionally and running as a
ROS node in its own process. It is communicating with all aforementioned components
also started for Chapter 5 via the ROS API.

The red block (“Experiment Supervisor” containing the “Experiment”) in the middle of
Figure 3.1 has been written specifically for all various evaluation cases, although based
on a class hierarchy to reuse common functionality. An excerpt is shown in Figure 6.10
for reference. For instance, the FaultToleranceOrderExperiment has been used for
the fault tolerance assessment within Section 6.5.2. This is similar to the exemplary
experiment shown in Listing 3.1, also containing a (shortened) self-containing experiment.



Chapter 7

Conclusion

It remains to conclude this thesis by summarizing its main proposed concepts, results
and findings in Section 7.1. Finally, Section 7.2 gives an outlook regarding further
research in the presented topics.

7.1 Summary

After introducing and motivating the overall topic in Chapter 1, Chapter 2 dealt with the
review of related work. The general Multi-Agent Path-Finding problem was presented
and existing state-of-the-art approaches were sorted into different categories (taxonomy)
to found a better understanding of the research field (Section 2.1). The contributions of
this thesis were then classified and defined w. r. t. existing approaches (Section 2.2). A
detailed review of related subjects was conducted (Section 2.3) whereby the proposed
concepts of this thesis are closely related to fixed path coordination approaches.

Chapter 3 introduced the Robotic Experimentation Framework (REF) to simplify writing
robotic experiments based on ROS using the developed Python API (Section 3.1). It
is designed to analyze, optimize, validate and inspect a system and has also been used
throughout this thesis. Experiments are being written using the APIs of the presented
components, namely the Environment Interface (EIF), the Experiment Interface (EPI),
the Experiment Supervisor (ESV) and roslaunch2 (RL2). The framework’s architecture
has been explained, three supported simulators (Stage, Gazebo and MORSE) have
been presented (Section 3.2), and the code of an exemplary experiment was discussed
(Section 3.3). The REF has been verified along with the evaluations of both Chapters 5
and 6.
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Chapter 4 addressed the problem of collision-free multi-robot scheduling. That is, given
a set of robots at known start locations with pre-planned (fixed) paths, compute a
schedule that coordinates the robots on their paths to their goals while preventing
collisions (Section 4.2). Notably, it is assumed that robots are initially located at their
start locations and that they are not already moving. The proposed solution was based
on so-called intersection guards which are computed first. Every conflict is defined by a
halt and a release parameter identifying the exact location of a conflict’s boundaries—yet
without the consideration of time. Detecting all conflicts and computing halt and release
progresses was referred to as conflict detection (Section 4.3). Two algorithms have been
presented and evaluated for conflict detection, namely Smallest Guarded Segments (SGS)
and Merged Guarded Subpaths (MGS). The schedule is computed by a so-called solver
and specifies the order in which robots of a given input scenario have to pass through the
conflict areas. Two solver algorithms have been presented, evaluated and compared: the
Incremental Coordination-Space Path Scheduler (ICSPS) and the Optimal Multi-Robot
Path Scheduler (OMRPS). ICSPS is based on the coordination space that is spawned
by the paths of conflicting robots (Section 4.4). Conflicts are being represented in
the coordination spaces based on halts and releases for involved robots. Computing
a shortest path inside the coordination space allows to deduce a Right-of-Way (RoW)
assignment for all conflicts. For comparison, an optimal algorithm (OMRPS) has been
developed and its correctness has been proven (Section 4.5). OMRPS is build upon full
search space enumeration of all possible decision vectors and the assessment of every
enumerated candidate regarding a given criterion (total travel time (TTT) or critical
path time (CPT)).

The comparison between SGS and MGS for conflict detection has shown that SGS may
create many very small intersection guards, especially if the input paths contain many
support points in the conflicting sections. MGS turned out to be more efficient while
exhibiting similar computation times because small adjacent intersection guards are
merged (if possible) to form conflicts covering larger sections of a path. This reduces
the runtime of subsequent solver algorithms considerably. MGS was therefore used
throughout the remainder of this thesis. However, depending on the solver algorithm and
input characteristics, not merging adjacent conflicts can have the advantage of allowing
robots to already release sections of a conflicting path.

Evaluating the two solver algorithms revealed that ICSPS is able to find a solution quite
quickly if one exists, even if a limited number (200) of permutations is used. In contrast,
OMRPS with an enumeration limit may not be able to return a valid solution even if
there are only a few robots. Surprisingly, OMRPS turned out to be faster than ICSPS for
very small inputs. Together with its optimality, this suggests combining both algorithm
while distinguishing the input complexity to avoid exponential runtime. Computation
times for ICSPS were typically much smaller than 1 s and only peaked up to 1.2 s rarely
for complex inputs. For up to six robots in the input of the analyzed test cases, ICSPS
was able to achieve an optimal solution in more than 80 % of the test cases.
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Chapter 5 dealt with the conception of the new Collaborative Local Planning Framework
(CLPF) to coordinate a fleet of moving robots while guaranteeing collision-free motions.
After explaining required assumptions, limitations and requirements (Section 5.2) an
overview of the methodology has been given (Section 5.3). Basically, the framework
defines the communication protocol for the robots to negotiate arising conflicts, if any,
while requiring that all robots remain on their paths. In distinction to the solvers
of Chapter 4, the framework allows for dynamic inputs, i. e., it provides the concepts for
(re-) negotiating conflicts between already moving and yet non-moving robots. Arbitrary
communication delays are tolerated, and message loss is considered to be handled by
TCP.

The main components of CLPF are the communication protocol (message definitions
and semantics), the finite state machine (FSM) (behavior model), the intersection graph
(conflict representation) and the representation of local knowledge (robot-local database).
Robots exchange messages of different types to share knowledge about assigned goals and
computed paths (Section 5.4). This way, every robot will eventually know about other
robots in the system and their state. If robots are not in conflict with each other, they
still have to exchange ACKs in order to ensure recent knowledge about their paths. In
contrast, if robots detect conflicts by means of received paths, they have to negotiate the
RoW first before being allowed to move. If a robot gets the RoW at some intersection
over another robot, it publishes progress after completely leaving the conflict area to
notify the other robot of the release. The progress is a compact parameterization of a
robot’s position on its path. The different states require a robot to react differently to
incoming messages. A robot’s behavior is therefore modeled as an FSM (Section 5.5).
Every state in the FSM represents the combination of a robot’s own state and the
currently known state of other robots. Receiving messages or getting a goal may cause
state transitions. Actually starting to move is only allowed after either receiving all
ACKs from other robots if there are no conflicts at all, or after negotiating all direct or
indirect conflicts.

Conflicts are being represented in the intersection graph (Section 5.6) managed locally
on every robot. That is, every robot maintains a graph data structure that is updated
when conflicts are being detected or have disappeared. Updates are mainly triggered by
received messages. A vertex in the graph represents a single robot and an edge indicates
a conflict. This way, the intersection graph on every robot eventually converges to the
same graph on all robots. For performance reasons, negotiations are limited to the
subsets of robots given by the connected subgraphs of the whole, possibly unconnected,
intersection graph. A subgraph w. r. t. a given robot R is defined by the set of vertices
and edges that are directly or transitively reachable from R. A developed hashing
algorithm allows a robot to efficiently identify whether its local subgraph is equal to all
subgraphs from robots also being part of it. In such a case, the scenario is locked to
ultimately trigger solving the synchronized scenario through solver invocation.

Once the RoW has been negotiated (solved), a robot’s motion controller executes
the computed schedule while adhering to the RoWs and releasing conflict areas when
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appropriate (Section 5.7). This way, uncertainty in the motion controller and, more
generally, in the Environmental and Planning Model (EPM) is handled.

Non-moving robots are added as semi-static obstacles to the so-called Vector Map Server
(VMS) which stores a map of the current environment (Section 5.8). When a robot
is assigned a goal, the global planner uses its current map (distributed by the VMS)
to compute a path from the robot’s position to the goal while avoiding obstacles from
the map. Given that fixed path, the previously described procedure for coordinating
the motion along that path is executed. Non-moving robots are allowed to request
renegotiation from moving robots in order to safely move as well. This was realized by
the concept of the so-called next possible halt (NPH) emitted by moving robots (and
controlled by the NPH ahead distance parameter) when requested to renegotiate.

The state delay parameter was used to specify the delay in (simulated) seconds before
transitioning from the AckDelay and IntersectionDelay states to a subsequent state
in the FSM. The optimization of these two main parameters (NPH ahead distance, state
delay) revealed that the state delay is only beneficial for larger scenarios (Section 5.9).
As a rule of thumb, at least 20 robots should be part of the system, but the complexity
also depends on the environment and the distribution of goals. The NPH ahead distance
can be considered useful because it allows already moving robots to continue their
motion while negotiating in parallel and avoiding stop-and-go behavior. All analyses
have generally shown that the findings are highly dependent on the input characteristics
(e. g., environmental complexity, distribution of goals, etc.). As expected, the runtime
analysis has shown that a higher number of robots adds complexity which yields longer
execution times. Up to 50 robots have been simulated in a single scenario on the
same machine (including simulation) which illustrates the effectiveness of the developed
approach. CLPF is able to retain a constant goal rate while fluctuations are possible due
to communication and (re-)negotiations. This is a requirement for safety and unavoidable.
The evaluation of scalability has demonstrated that CLPF scales linearly if there are
no conflicts (analyzed for up to 20 robots). For some scenarios, a sweet spot between 9
to 11 robots could be observed which is justified by (complex or narrow) environments
causing a high conflict probability. Thus, adding more robots in these environments will
not increase the resulting goal throughput. For the other environments, an increasing
throughput could be observed while adding more robots to the system, indicating its
scalability. It is worth mentioning that in all the analyzes performed, none of the robots
ever crashed into each other.

Chapter 6 concluded with a case study of a simulated, yet fully operational, assembly
system (Section 6.1). The system is composed of autonomous agents acting decentrally
with the major advantage of being more fault-tolerant than classic linear conveyor
systems (Section 6.2). The modeled system allows the order and production of complex
and highly individualized automobiles to demonstrate the flexibility of the approach.
A customer order is dispatched to a carrier robot and manufactured piggyback on the
robot. The product lineup has been modeled with a set of so-called product dependency
graphs (Section 6.3). Every possible product is represented as a graph containing a
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vertex for every work step, and edges indicate precedence between work steps. Work
steps are being processed at workstations and may require parts for their processing.
Workstations can request supply robots to bring the required parts. Supply robots move
to a warehouse dock in order to collect the required parts and transport them to the
requesting workstation afterwards. Customer orders, work steps and parts are labeled
with so-called capabilities. This allows to differentiate between differently capable agents
(carrier robots, workstations, warehouses, supply robots). Once robots become idle, they
park themselves to not block the environment. Automobiles have been chosen as an
example—concrete products can be substituted depending on the intended purpose. The
entire implementation is based on ROS and can therefore be also applied on real robots.
Tools for visualization and introspection have been showcased exemplarily (Section 6.4).
Because CLPF is ideally suited for industrial automation due to its robustness, it has
been used together with ICSPS as a solver algorithm on all mobile robots for the case
study. This combined all concepts of this thesis in a single evaluation.

A repeated throughput analysis (Section 6.5), now based on customer orders instead of
goals, showed that the assembly system was able to increase the throughput of completed
customer orders for a generated product lineup while increasing the number of robots
reasonably (up to 18). Some configurations of agent counts indicated stagnation caused
by an inappropriate mixture of agent types. That is, the number of carrier robots should
be at least equal or greater than the number of supply robots.

By artificially injecting failures in workstation while measuring the throughput (com-
pleted orders), the fault tolerance of the system was experimentally proven. Even after
50 % of all workstations had a failure, the system was still operational. Moreover, after
recovery of all faulty workstations, the system’s production capacity went up to its
previous level. Notably, all customer orders were produced without failures. This shows
the robustness of the proposed approaches.

A final comparison against other well known planners from the literature (VFH+, TEB,
DWA) has shown that none of them was an adequate replacement for CLPF because
they were not able to even perform the initial parking, caused collisions or just completed
only a tenth of the completed customer orders compared to CLPF. Finally, note that
the REF has implicitly been evaluated and thereby proven its effectiveness.

7.2 Future Prospects

Within this section, further research is discussed for each of the previous chapters.

A useful addition to the Robotic Experimentation Framework from Chapter 3 would
be snapshots for experiments. This way, robotic experiments in simulations can be
saved at some point in time and continued or repeated multiple times, possibly with
different parameters or configurations—similar to snapshots known from virtual machines.
However, this is a challenging feature because all components and nodes need to be
aware of creating and restoring a snapshot to take measures accordingly.
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Manually tuning the real-time factor (RTF) has also been tedious. If all ROS nodes
would report missed deadlines to some diagnostics topic, the simulator may self-tune
its speed (RTF) by subscribing to that diagnostics topic and adjusting the simulation
speed in some controller feedback loop.
Additionally, adding support for more simulators, like NVIDIA Isaac Sim [38], a simulator
providing photorealistic, physically accurate virtual environments, may further reduce
the described reality gap.
During the analysis of both solvers in Chapter 4, it turned out that a combination
of both would be beneficial. This way, small scenarios would be solved optimally
by OMRPS and large scenarios are quickly handled by ICSPS. This just requires
analyzing the input’s complexity w. r. t. the number of conflicts in order to invoke
the appropriate solver. ICSPS might be improved by taking more paths inside every
coordination space into consideration. Currently, only the shortest path is used (as
computed by A⋆). However, since the construction of coordination space i + 1 is based
on all solutions in the coordination spaces 1, ..., i, other solution paths may allow for an
overall improved solution. Nonetheless, this would increase computational complexity
and further investigations would be required to restrict oneself to “more appropriate”
solution paths.
There is no handling of partial solutions yet. For an input where a subset of robots has
infeasible conflicts, ICSPS will eventually encounter a coordination space in all inspected
permutations that will prevent A⋆ from finding a path at all. Similarly, OMRPS will
also always encounter a partially infeasible decision vector which is discarded as invalid
completely. An experimental implementation for OMRPS has already indicated that
the consideration of partial solution can improve the feasibility rate. However, because
infeasible robots can transitively make other robots infeasible as well, a detailed analysis
of corner cases is necessary.
CLPF from Chapter 5 does not yet support the modification of paths after they have
been computed by the global planner. Theoretically, a robot may stop on certain sections
on its path, anounce itself as being idle again in order to recompute and publish an
updated path. However, actually making use of modified paths is another topic on its
own. Similarly, aborting goals is currently not allowed as well. That is, after announcing
a new path, a robot is required to move to its goals unless it detects infeasibility in a
renegotiation along its way. This can also be used to implement abortion. A direct
advantage for the assembly system would be the abortion of parking in favor of starting a
new customer or supply order right away. As a further extension of CLPF, renegotiation
may be triggered if robots are forced to wait for a time longer than expected due to
unpexpected disturbances (e. g., a human blocking a robot’s path). However, this would
require the special handling of such blocked robots in the solvers.
The current design does not yet allow for partially releasing intersections, i. e., a robot
always must have left the entire conflict area before the robot, not getting the RoW,
is allowed to enter. This can quite simply be implemented during the execution of a
negotiated input scenario for pairs of robots moving in similar directions based on their
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published progress. However, sending periodic progress for partial release is a trade-off
w. r. t. performance.

The benefit of the state delay parameter suggests adjusting it depending on the number
of robots. That is, in smaller setups, a smaller value (or even zero) is more suitable.
Also in case all robots have already joined a negotiation or all ACKs have already been
received, delaying the further processing makes no sense and should be removed. In
case of no conflicts, delaying the motion has also been considered useless and should be
removed. The handling of moving and non-moving robots currently emits so-called start
halts for non-moving robots having an intersection with moving robots. An improvement
over the current design would be the consideration of a previous solution for unprotected
path sections (see Section 5.5.5). While being more complex to implement, it is assumed
to increase throughput.

The case study of Chapter 6 may be extended in various ways. For instance, other use
cases of those already mentioned in Chapter 1 could be modeled. While being out of
scope for this thesis, there is room for improvement w. r. t. the selection and optimization
of agents in the assembly process (e. g., the selection of a subsequent workstation from
a carrier robot’s perspective). However and finally, the specific application and its
requirements should guide the development because all analyses have revealed that
results are highly dependent on the input characteristics (with special focus on the
environmental complexity and load distribution).

It would also be interesting to analyze the behavior of the assembly system on real
hardware as an extension to the conducted evaluation. For simplicity, all experiments
in this thesis have been executed on a single machine. However, ROS also facilitates
multi-machine setups and scaling to multiple machines may allow larger robot fleets
with the presented concepts compared to the ones already evaluated.





Mathematical Nomenclature

Notation Meaning
N Set of natural numbers (1, 2, 3, . . .)
N0 Set of natural numbers including zero (0, 1, 2, 3, . . .)
Z Set of all integers (. . . ,−2,−1, 0, 1, 2, . . .)
R Set of real numbers (may be limited by a subscripted condi-

tion)
S = {s1, s2, . . .} (Unordered) Set of elements si

S = ⟨s1, s2, . . .⟩ Ordered set of elements (a set S with a given order on si)

p N -dimensional vector
(
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i , · · · , p

(N)
i

)⊺
p

(j)
i j-th coordinate (scalar component) of the i-th vector pi

pq Line segment between position vectors (points) p, q

[a, b] Closed interval {x ∈ S | a ≤ x ≤ b } on some set S
p ∗ q Scalar (dot) product ∑N

i=1 p(i) · q(i)
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