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Abstract
Photon echoes emerge from the delayed optical response of inhomogeneous ensembles of emitters upon
resonant laser excitation. In semiconductors, they allow to uncover internal scattering and interaction
dynamics on the picosecond timescale, while also holding promise as the realization of quantum optical
memories in future quantum networks. Based on these two fields of application, this work uses photon
echoes to investigate two material systems: Organic-inorganic perovskites and (In,Ga)As quantum dots.
Organic-inorganic perovskites have attracted significant attention for their exceptional performance in
photovoltaics and light-emitting applications. However, a comprehensive understanding of coherent
light-matter interactions in this material class and in particular the role of excitons close to the band gap
remained elusive. This work reveals that excitons dominate the nonlinear optical response of MAPbI3 and
FAPbI3 single crystals and are subject to strong inhomogeneous broadening even at cryogenic temperatures.
Compositional substitution is found to induce spatial band gap fluctuations on the nanometer scale that
localize excitons accompanied by an extension of their coherence time by two orders of magnitude.
Furthermore, exciton interactions are studied through polarization-dependent photon echoes, uncovering
the formation of a biexciton state and the contribution of spin-dependent many-body interactions to
nonlinear optical spectra. Subsequently, the focus shifts to confined excitons in (In,Ga)As semiconductor
quantum dot ensembles, that represent an ideal platform to explore new approaches on how to coherently
transfer, manipulate, and retrieve optical information to a solid state on picosecond timescales. First,
it is demonstrated that collective Rabi rotations of the photon echoes from a quantum dot ensemble
can be observed when a spatially uniform excitation profile is used. In this way, internal mechanisms
of decoherence under strong laser excitation are identified. Thereafter, the photon echo sequence is
expanded by two control pulses, providing all-optical control over the emission time, spectral response,
and polarization state of photon echoes from quantum dots. Here, the interplay of temporally sorted
multi-wave-mixing signals is exploited.

Kurzfassung
Photonen-Echos entstehen aus der verzögerten optischen Antwort von inhomogenen Ensembles von
Emittern bei resonanter Laseranregung. In Halbleitern ermöglichen sie es, interne Streu- und Wechselwir-
kungsdynamiken auf der Pikosekundenskala aufzudecken und könnten einen wichtigen Beitrag zu der
Realisierung von quantenoptischen Speichern in zukünftigen Quantennetzwerken leisten. Basierend auf
diesen beiden Anwendungsbereichen nutzt diese Arbeit Photonen-Echos, um zwei Materialsysteme zu
untersuchen: Organisch-anorganische Perovskite und (In,Ga)As-Quantenpunkte. Organisch-anorganische
Perovskite haben aufgrund ihrer außergewöhnlichen Leistung in der Photovoltaik und bei lichtemit-
tierenden Anwendungen große Aufmerksamkeit erregt. Ein umfassendes Verständnis der kohärenten
Licht-Materie-Wechselwirkungen in dieser Materialklasse und insbesondere die Rolle von Exzitonen
nahe der Bandlücke blieben jedoch bisher unklar. Diese Arbeit zeigt, dass Exzitonen die nichtlineare
optische Antwort von MAPbI3 und FAPbI3 Einkristallen dominieren und selbst bei kryogenen Tempe-
raturen einer starken inhomogenen Verbreiterung unterliegen. Es wird gezeigt, dass kompositionelle
Substitutionen räumliche Bandlückenfluktuationen im Nanometerbereich verursachen, die Exzitonen
lokalisieren und ihre Kohärenzzeit um zwei Größenordnungen verlängern. Darüber hinaus werden Exzit-
onenwechselwirkungen durch polarisationsabhängige Photonen-Echos untersucht, wobei die Bildung
eines Biexzitonzustands und der Beitrag von spinabhängigen Vielteilchenwechselwirkungen zu nicht-
linearen optischen Spektren beobachtet werden. Anschließend verlagert sich der Fokus auf lokalisierte
Exzitonen in (In,Ga)As-Halbleiter-Quantenpunktensembles, die eine ideale Plattform darstellen, um neue
Ansätze zur kohärenten Übertragung, Manipulation und Rückgewinnung von optischen Informationen
im Festkörper auf Pikosekunden-Zeitskalen zu erforschen. Es wird demonstriert, dass kollektive Rabi-
Rotationen der Photonen-Echos aus dem Quantenpunktensemble beobachtet werden können, wenn ein
räumlich homogenes Anregungsprofil verwendet wird. Auf diese Weise werden interne Dekohärenzme-
chanismen unter starker Laseranregung identifiziert. Anschließend wird die Photonen-Echo-Sequenz
um zwei Kontrollpulse erweitert, was eine optische Kontrolle der Emissionszeit, der spektralen Antwort
und des Polarisationszustands der Photonen-Echos von Quantenpunkten ermöglicht. Hierbei wird das
Zusammenspiel von zeitlich sortierten Multi-Wellen-Mischsignalen ausgenutzt.
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Introduction

Direct band gap semiconductors are the fundamental components of modern light-emitting
devices, sensors, and solar cells [1, 2]. The ongoing pursuit of more efficient and low-cost semi-
conductors with improved light emission and absorption properties is the driving force behind
fundamental research, including the field of laser spectroscopy [3]. The most fascinating proper-
ties of light-matter interaction are revealed close to the band gap, where Coulomb interactions
between photo-excited carriers lead to the formation of excitons – bound electron-hole pairs [2–5].
Of particular interest are the dynamics on a picosecond time scale during which the light emitted
by the recombination of excitons remains coherent with the resonant excitation light source [3].
These dynamics can be temporally resolved using transient four-wave-mixing spectroscopy,
where the optical resonance is resonantly excited by two short laser pulses with an adjustable
delay. Here, the temporal resolution is solely limited by the duration of the pulses and therefore
nowadays lies in the femtosecond regime [6]. In most semiconductor systems, the coherent
dynamics of excitons is hidden by the inhomogeneous broadening of their optical transition
energy. This obstacle can be circumvented using photon echoes, being the delayed four-wave-
mixing response of an inhomogeneous ensemble of emitters [7]. The theoretical foundations and
experimental methods of photon echo spectroscopy, critical for understanding the phenomena
discussed in this thesis, are covered in Chapters 1 and 2. There are two motivations for the
interest in photon echoes of excitons. First, temporally resolving the coherent dynamics offers
the possibility to gain insight into fundamental scattering processes and quantum mechanical
interactions in unexplored semiconductors [3]. Second, semiconductor nanostructures where
excitons are weakly bound to their environment, and thus exhibit long coherence times, are
appealing for completely new functionalities in the field of quantum optics [8, 9]. Here, systems
with large inhomogeneous broadening are especially interesting for high-capacity storage and
coherent control of large bandwidth non-classical light states [10, 11]. Motivated by these two
fields of application, this work uses photon echoes to investigate two material systems: Organic-
inorganic perovskites and (In, Ga)As quantum dots. In the following, a historical overview of the
development of the experimental techniques used in this thesis is given.

The evolution of coherent spectroscopic techniques has been closely tied to advances in laser
technology starting in the mid-20th century. Rapidly following the realization of laser pulses
with nanosecond durations, photon echoes of a ruby crystal were observed for the first time in
1964 [12]. The progress of lasers generating picosecond or even femtosecond pulses [6, 13] opened
up the possibility of investigating coherent dynamics in semiconductors starting in the 1980s.
Initial studies observed the decoherence of excitons in bulk crystals of gallium arsenide (GaAs)
on a picosecond timescale [14] and on a femtosecond time scale for free electron-hole pairs [15].
Many of the early experiments were applied to semiconductor heterostructures such as group III-V
quantum wells that confine excitons in two dimensions [16, 17]. By performing measurements
as a function of temperature [18] or using additional optical illumination [19], the contribution
of phonons or carrier scattering to the decoherence of excitons was analyzed. The ability to
temporally resolve the non-linear optical response using streak cameras [20] or the superposition
with a reference pulse [21] was of major importance to identify photon echo formation and
thus the impact of inhomogeneous broadening. In this way, the effect of structural disorder in
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Introduction

mixed bulk semiconductors [20] or quantum wells with spatially varying thickness [21] and its
interconnection to extended coherence times of localized excitons were identified. Furthermore,
the time-resolved photon echo technique enables to observe quantum beats resulting from
the superposition of optical resonances whose energetic splitting is small compared to the
inhomogeneous broadening of the system. For example, quantum beats resulting from the
superposition of light-hole and heavy-hole excitons were observed [22]. An intriguing topic in
coherent spectroscopy results from the effect of many-body Coulomb effects in semiconductors
which lead to significant modifications in the temporal dynamics or the dependence on the
polarization of the exciting laser pulses that were expected for ensembles of non-interacting
excitons [23, 24]. In this context, also the contribution of the biexciton, a bound state of two
excitons, was observed in quantum wells based on its characteristic polarization dependence
and quantum beats revealing the biexciton binding energy [25]. Starting in the late 1990s,
the first coherent experiments on fully localized excitons in epitaxially grown indium gallium
arsenide quantum dots were performed [26]. Measurements at cryogenic temperatures revealed
that excitons in quantum dots can exhibit coherence times in the range of 1 ns that are only
limited by radiative recombination [27, 28]. The increased sensitivity of heterodyne techniques
in combination with microscopy methods offered the possibility to study spectra of single
quantum dots [29]. At that time, phase-stabilized coherent techniques were developed that
include information about the absolute values of absorption and emission frequencies and their
correlations, which forms the basis of two-dimensional Fourier transform spectroscopy [30].
Nowadays, photon echo spectroscopy and related techniques represent a well-established toolbox
contributing to the understanding of exciton dynamics and interactions in a variety of modern
semiconductors such as monolayer transition metal dichalcogenides [31], exciton-polaritons [32]
or perovskites [33]. The latter are subject to Part I of the experimental investigation presented in
this thesis.

Hybrid organic-inorganic perovskites gained substantial attraction considering their remarkable
performance in photovoltaics and light-emitting applications [34–37]. Two prominent examples
are methylammonium- and formamidinium lead tri-iodide (MAPbI3 and FAPbI3). The efficiency
of these compounds in prototype solar cells rapidly increased from 4 % in 2009 [38] to 26 % in
2021 [39]. Furthermore, the quantum yields of light-emitting diodes nowadays exceed 20% [40].
Hybrid perovskites thus approach the performance of conventional inorganic materials such as
gallium arsenide or silicon while providing substantial benefits in terms of tunability, reduced
processing complexity, and lower production cost [37].

These technological advancements have sparked significant interest in exploring the fundamental
aspects of light-matter interactions within hybrid organic-inorganic perovskites. In particular,
photo-excitations close to the band gap and their dynamics are key to light absorption and charge
transport [41]. At cryogenic temperatures, the optical spectra in this energy range are dominated
by excitons [42]. Observing the decoherence of excitons using photon echo spectroscopy is a
sensitive probe to structural inhomogeneities on the nanometer scale and thus directly related
to technological applications. However, the available studies of coherent exciton phenomena
are mainly concentrated on low-dimensional systems such as nanocrystals or thin films [43–46].
Exciton properties in bulk hybrid perovskites that underlie those in low-dimensional systems
are in turn poorly understood, which is attributed to short coherence times as well as crystal
instabilities. In Chapter 3 of this thesis, the photon echo spectroscopy is therefore applied
to single crystals of the perovskites MAPbI3 and FA0.9Cs0.1PbI2.8Br0.2. Here, the influence of
inhomogeneous broadening on the emission properties of excitons is investigated. It is found
that an inherent property of both perovskites is the inhomogeneous broadening of the exciton
resonance, occurring on a scale of 10meV. However, the compositional substitution in the
mixed FAPbI3 crystal is found to induce band gap fluctuations that lead to the localization of
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excitons. Remarkably, the localized excitons exhibit coherence times of roughly 80 ps, which
is by two orders of magnitudes larger than found in MAPbI3. This finding not only provides
valuable information about the effect of compositional substitutions on the energy structure of
perovskites but also suggests new potential applications of perovskite crystals as bright quantum
light sources.

Building upon these initial characterizations of the coherent exciton properties, Chapter 4 sets a
focus on the interactions of excitons. Based on pronounced dependences of the photon echoes
on the polarization of the applied lasers, conclusions are drawn on the interactions of coherently
excited excitons. In MAPbI3, a bound state of two excitons, the biexciton, is observed. A
detailed modeling of the polarization dependences of the exciton-biexciton system is applied,
which allows a comparison between experimental and theoretical predictions across various
polarization configurations. The biexciton binding energy of 2.4meV is extracted using quantum
beats of the photon echo polarization state. This approach turns out to offer a higher resolution
as compared to quantum beats of the photon echo amplitude and thus allows to resolve quantum
beats when the binding energy is comparable to the homogeneous exciton linewidth. The
long coherence times in FA0.9Cs0.1PbI2.8Br0.2 associated with the localization of excitons offer
great potential to study weak interactions among excitons and their influence the nonlinear
optical response of the system. Through a detailed analysis of polarization characteristics as
well as polarization-dependent decoherence times, it is concluded that exciton interactions have
a spin selectivity. These results are interpreted in terms of a spin-selective excitation-induced
broadening of the resonance. By employing a model that takes into account correlated excitonic
states, the experimental results are reproduced and an understanding of localized excitons in
perovskites is developed.

Part II of the thesis is dedicated to the coherent control of photon echoes from an ensemble of
self-assembled (In,Ga)As semiconductor quantum dots placed in a planar microcavity. Quantum
dots confine excitons in a nanometer-sized volume, which leads to a full quantization of their
energy spectrum just as in natural atoms. In contrast to atoms, the energy spectrum of quantum
dots is tunable by adjusting their size, shape, or composition [47]. Quantum dots already find
their application in classical devices such as lasers that benefit from the increased temperature
stability of zero-dimensional systems [48, 49]. Moreover, due to their large oscillator strength,
well-defined optical selection rules, and lifetime-limited coherence times, quantum dots are
regarded as a versatile platform for future applications in quantum networks. Those applications
include the creation of entangled photons [50, 51] or the efficient transfer between stationary and
photonic qubits as needed for quantum communication [52]. Coherent spectroscopic techniques
have been of major importance in understanding the microscopic sources of decoherence in
quantum dots within the last 20 years [27, 53, 54]. On a single dot level, it has been widely
demonstrated that quantum dots can be prepared in a targeted state on the sub-picosecond
timescale using Rabi oscillations [9, 55–57]. Extending these coherent control experiments to
ensembles of quantum dots remains challenging due to unavoidable inhomogeneities of the
system. The particular interest in ensembles of quantum dots is motivated by the realization of
optical quantum memories that store and retrieve non-classical light states on demand using
the photon echo effect [11]. For example, quantum memories are needed to synchronize single
photons that result from spontaneous emission processes [11, 58] and as the key element of
quantum repeaters [59]. In this context, special interest arises from charged quantum dots whose
lifetimes, which limit potential storage times, can be extended to several nanoseconds through
the transfer between optical and spin coherence [60, 61]. Therefore, exploring further methods to
control the optical coherence stored within an ensemble of charged quantum dots is an intriguing
topic covered in Chapters 5 and 6.
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One of the major problems of observing collective Rabi rotations of an ensemble of quantum dots
results from the inhomogeneity of laser intensities within the excitation area [62]. In Chapter 5,
refractive beam shaping optics are implemented to resolve this issue and excite a quantum dot
ensemble with a uniform distribution of laser intensities. In this way, collective Rabi rotations
of the ensemble are observed in intensity-dependent photon echoes. Further, Rabi rotations
arising from charged and uncharged quantum dots are distinguished using specific polarization
configurations of the exciting laser pulses. A detailed analysis of the remaining decoherence
mechanisms is applied which reveals the efficient coupling to acoustic phonons as the main
source in the regime of strong laser excitation. Chapter 6 explores further possibilities to optically
manipulate the coherent response of the quantum dot ensemble. A sequence of two control
pulses is added to the photon echo scheme that allows to temporally control the photon echo
emission or manipulate its spectrum using Ramsey interference. By addressing the specific dipole
selection rules of charged quantum dots, additional possibilities for the control of the photon
echo’s polarization state are demonstrated. Furthermore, the effect of the dephasing dynamic
of the quantum dot ensemble during the action of picosecond laser pulses is analyzed using a
multi-wave-mixing expansion.
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Theoretical background 1
This chapter introduces the relevant theoretical background for coherent spectroscopy in semi-
conductors. Section 1.1 presents the basic electronic properties of group III–V and perovskite
semiconductors involving excitons and semiconductor nanostructures. Thereafter, in Section 1.2,
we establish the theoretical framework for photon echo spectroscopy. This framework forms the
basis for modeling results that accompany the experimental observations presented in Parts I
and II. Finally, Section 1.3 introduces Rabi rotations that are experimentally studied in Chapters 5
and 6.

1.1 Electronic structure of semiconductors

The optical properties of semiconductors are determined by their band structure that exhibits
a characteristic energy gap in the order of 1 eV between the highest occupied band (valence
band) and lowest unoccupied band (conduction band). The band structure defines the dispersion
relation of electrons in a crystal upon interaction with a periodic lattice formed by the nuclei. In
real space, the band structure corresponds to quasi-continuous allowed energy intervals separated
by the band gap. The formation of bands can be understood by considering the hybridization
of atoms when they are brought close to each other. Through the finite overlap of the valence
electronic orbitals, bonding and antibonding molecular states are formed that are separated by an
energetic gap as imposed by the Pauli principle. Arranging more atoms in a crystal lattice leads
to a broadening of the bonding and antibonding molecular orbitals into bands. Generally, valence
bands are called hole bands, where holes refer to empty electronic states that can be treated
as quasiparticles with a positive charge. Introducing the concept of holes strongly simplifies
the treatment of the modified carrier distribution in the valence band upon excitation of an
electron from the valence band to the conduction band. We can understand the optical excitation
of an electron from the valence band to the conduction band equivalently as the creation of
an electron-hole pair. Of special interest for optical applications are direct semiconductors,
where the valence band maximum and conduction band minimum appear at the same position in
momentum-space. Here, electron-hole pair excitation/recombination can be efficiently mediated
by the absorption/emission of a photon. Among those semiconductors are III–V semiconductors
like gallium-arsenide (GaAs) and hybrid organic-inorganic perovskite semiconductors based on
MAPbI3 or FAPbI3, which are subject to the investigations presented in this thesis. The most
important properties of the band structure of these two types of semiconductors are reviewed in
the following. [5, 68]

The crystal structure of the III–V semiconductor GaAs is based on two face-centered cubic lattices
of Ga and As that are shifted along the main diagonal by 1/4 of the diagonal length as visualized
in Figure 1.1a. Here, the bonding of the atoms is mediated by the valence electrons that are in the
configuration 4s24p for Ga and 4s24p3 for As. The difference in electronegativity of Ga and As
leads to a partial transfer of one electron from As to Ga. Forming sp3 hybrid orbitals with their
four nearest neighbors arranged in a tetragon, the four electrons per atom tend to create covalent
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1 Theoretical background

bonds, resulting in a zinc-blende structure. The valence and conduction bands of GaAs are formed
from the three bonding and one antibonding sp3 orbitals that have strong p- and s-character at
the band edge, respectively. This leads to a band structure close to the band gap as shown in
Figure 1.1b. Here, the bands have a nearly quadratic dispersion and carriers behave similarly
to free particles with an effective mass determined by the inverse second derivative of the band
dispersion. As a result of the spin-orbit coupling, the orbital angular momentum 𝐿 couples to
the electron spin 𝑆 resulting in the total angular momentum 𝐽 = 𝐿 + 𝑆 [68]. For the conduction
band (𝐿 = 0), the eigenstates are |𝑗 = 1/2, 𝑗z = ±1/2⟩, where 𝑗z is the 𝑧-component of 𝐽. For
the valence bands (𝐿 = 1), the eigenstates are |3/2, ±3/2⟩ (heavy-hole), |3/2, ±1/2⟩ (light-hole),
and |1/2, ±1/2⟩ (split-off). The spin-orbit coupling leads to the energetic splitting between the
bands with 𝑗 = 3/2 and the split-off band with 𝑗 = 1/2. Thus, for the optical properties near the
band edge, only the heavy- and light-hole bands are relevant. In low dimensional systems, the
degeneracy between light- and heavy-hole bands at 𝑘 = 0 is usually lifted [5].

Figure 1.1: (a) Visualization of the zinc-blende structure of GaAs. (b) Simplified band structure
𝜀(𝑘) of GaAs close to the direct band gap at 𝑘 = 0 with an s-type conduction band and a p-type
valence band. The bands are denoted as conduction band (cb), heavy-hole (hh), light-hole
(lh), and split-off (so). (c) Perovskite crystal structure of MAPbI3 and FAPbI3. (d) Simplified
perovskite band structure with s-type valence band and p-type conduction band. The bands are
denoted as light-electron (le), heavy-electron (he), split-off (so), and valence band (vb). (e) The
schematic absorption spectrum of a semiconductor taking into account the lowest lying exciton
state split by the Rydberg energy 𝑅∗ from the band gap 𝜀𝑔. The black line shows the idealized
situation with a delta-like exciton absorption and √𝜀-behavior of interband transitions. The
green line shows schematically the effect of inhomogeneous broadening. (f) Optical excitation
selection rules for the generation of bright exciton states |X↑↓⟩ from the crystal’s ground state
|G⟩. (g) Optical selection rules for the excitation of trions. Here, |e↑↓⟩ and |T↑↓⟩ denote the
degenerate ground and excited states of the resident electron and excited trion, respectively.

Perovskites denote materials that share the composition ABX3. Within this thesis, the focus is
set on hybrid organic-inorganic lead halide perovskites where A is an organic molecule such
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1.1 Electronic structure of semiconductors

as formadinium (FA, NH2CH) or methylammonium (MA, CH3NH3), B is lead (Pb), and X is a
halide like iodine (I). The crystal structure is formed by a lead-halide ionic cage PbI3

– , where
Pb is surrounded by six halide atoms in an octahedral arrangement as visualized in Figure 1.1c.
Here, the organic cations A+ are located in between the octahedra. The Pb and I ions with
valence configurations 5d106s26p0 and 5p6, respectively, are dominantly responsible for the
highest valence and lowest conduction band states [69]. In particular, the valence band is formed
from hybridized lead 6s and iodine 5p orbitals, where the 6s orbital dominates close to the band
gap while the conduction band is formed from unoccupied lead 6p orbitals [69, 70]. Thus, the
simplified band structure appears reversed compared to the aforementioned III–V semiconductors,
i.e. the valence band is s-type, whereas the conduction band is p-type, compare Figure 1.1d. Due
to the spin-orbit coupling, the lowest energy optical transition takes place between the valence
band states with the total angular momentum of 𝑗 = 1/2 and the conduction band. The band gap
of organic-inorganic perovskites can be tuned in a wide range by changing the halide content.
For example, the band gap of crystals with the composition FAPbI3-xBrx can be adjusted between
roughly 1.5 eV for 𝑥 = 0 and 2.5 eV for 𝑥 = 3 [71]. The organic molecule in the perovskites has
profound influences on their electronic and crystallographic structure [72, 73]. These influences
mainly result from the static dipole moment of the molecules that can lead to deformations of the
Pb-halide octahedra depending on the rotation of the molecule. Due to the coexistence of multiple
crystallographic phases, spatial fluctuations of the band gap occur that cause inhomogeneous
broadening [74, 75]. This additional source of inhomogeneous broadening is absent in perovskites
with rotational isotropic cations, for example CsPbI3 [76].

1.1.1 Excitons

For both III–V and perovskite semiconductors, the concept of excitons is of great importance for
the nonlinear optical properties close to the band gap. Exciton states result from the attractive
Coulomb interaction between electrons and holes and thus represent a semiconductor analogy to
hydrogen atoms. Regarding the absorption spectrum of semiconductors, schematically shown
in Figure 1.1e, excitons manifest themselves as additional absorption peaks below the band
gap. The lowest energy state is shifted by the Rydberg energy 𝑅∗ from the band gap. Highly
excited exciton states that follow a hydrogen-like series 𝑅∗/𝑛2, where 𝑛 is an integer, are rarely
observable only in selected semiconductor systems like CuO2 [77] or two-dimensional transition
metal dichalcogenides [78]. In most semiconductors, excited exciton states are spectrally too close
to each other and the continuum transitions to be resolved. Moreover, as shown by the green line
in Figure 1.1e, the energetic position of the exciton resonance is typically subject to statistical
fluctuations induced by crystallographic disorder, which leads to an overall inhomogeneously
broadened line that overlaps with the continuum.

Nonlinear optical phenomena are associated with excitation-induced changes in the absorption of
optical resonances [79]. Due to their discrete energy state structure and strong oscillator strengths,
exciton resonances typically dominate the nonlinear response of semiconductors as they are
sensitive to light-induced saturation or energetic shifts and broadenings [3, 79, 80]. Moreover,
the coherence time of excitons (proportional to the inverse spectral width) is substantially
longer (picosecond-regime) compared to unbound electron-hole pairs (femtosecond-regime) [81].
Therefore, monitoring the exciton dynamics by nonlinear spectroscopic techniques is a sensitive
tool to study various interaction mechanisms in semiconductors [3], as we explore within this
thesis.

Optically bright excitons require a 𝑧-component of their total angular momentum of 𝑗z = ±1. In
III–V semiconductors, two of these exciton states are formed by antiparallel electron (𝑗z = ±1/2)
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1 Theoretical background

and heavy hole spins (𝑗z = ∓3/2). In perovskites instead, the bright exciton states are formed
by parallel electron (𝑗z = ±1/2) and hole spins (𝑗z = ±1/2). Optically dark exciton states with
spin projections of ±2 or 0, respectively, cannot be directly excited but may become important in
correctly interpreting spin relaxation mechanisms or magnetic field dynamics of excitons [82,
83]. The dipole selection rules of the two bright exciton configurations, denoted as |X↑⟩ and
|X↓⟩, are summarized by the V-scheme shown in Figure 1.1f, where the two exciton states can be
excited from a common ground state |G⟩ using circularly polarized light 𝜎±. As is discussed in
Section 1.2.3, the scheme has important implications on polarization selection rules in nonlinear
optical spectra of excitons.

The interaction of excitons with carriers can give rise to the formation of charged excitons
(trions) [47]. To optically excite a trion, a resident electron (or hole) in the ground state of the
crystal is required, which may result for example from doping of the sample. Thus, the ground
state is doubly degenerate with respect to the two spin configurations of the resident carrier, as
exemplary shown for the presence of a resident electron in Figure 1.1g. The two optically bright
trion states with angular momentum of ±3/2 for III-V structures (or ∓1/2 for perovskites) result
from antiparallel electron spins and one hole spin and can be excited by the circular polarizations
as depicted by the arrows in Figure 1.1g. Further excitonic complexes such as doubly charged
excitons [84] or a bound state of two excitons (biexciton) [63] can be found in semiconductor
structures. The biexciton state, in particular, is investigated in Section 4.1.

1.1.2 Semiconductor quantum dots

The lifetime of excitons and their light interaction strength can be enhanced in low-dimensional
systems because excitons are more isolated from their environment and electron-hole pairs
are closer to each other. Modern growth techniques such as molecular beam epitaxy enable
the fabrication of semiconductor heterostructures with atomic precision [47]. Heterostructures
are composed of multiple layers of semiconductor materials with different band gaps and thus
exhibit a spatially modified electronic structure. When a layer of a lower band gap material
like InAs is surrounded by two layers of a higher band gap material like GaAs, electrons and
holes can be spatially confined in the inner layer. The spatial variation of the band gap for such
a so-called quantum well structure is schematically shown in Figure 1.2a. When the spatial
confinement is comparable to the de Broglie wavelength of the carriers, the energy states become
quantized perpendicular to the confinement direction, whereas the movement perpendicular to
the growth direction is free. In quantum dots (QDs), the spatial confinement is realized in all three
dimensions which leads to a full quantization of energy levels similar to natural atoms. Within
this thesis, we study ensembles of self-assembled (In,Ga)As QDs. Those QDs are formed by the
Stranski-Krastanov method [85], where InAs is deposited on a GaAs substrate. The mismatch
of 7 % of the lattice constant between both materials leads to strain that favors the spontaneous
formation of nanometer-sized islands on a thin layer of InAs (wetting layer) [47], as depicted
in Figure 1.2b. Subsequently, the islands are capped by a GaAs layer which leads to spatial
confinement of carriers in the InAs islands in all three dimensions.

QDs exhibit strong oscillator strengths due to the spatial confinement of electrons and holes.
Further, the discretization of energy levels minimizes the number of allowed inelastic scattering
events and thus strongly increases the coherence time of electron-hole pairs as compared to bulk
materials. Equivalently, the emission line shape of a single QD is more narrow. However, due
to the self-organized growth technique, different QDs on one substrate typically differ in size
and shape, as can be seen in Figure 1.2c. Consequently, the lineshape of an ensemble of QDs
is usually several orders of magnitude broader than the lineshape of a single QD. Studying the
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Figure 1.2: (a) Band alignment in a GaAs/InAs/GaAs heterostructure forming a quantum well
for electrons and holes in the growth direction. (b) Transmission electron microscopy image of
a single self-assembled QD, reprinted from [86, 87]. (c) Scanning electron microscopy image of
several QDs formed by the Stranski-Krastanov method, reprinted from [88]. The QDs differ in
size and shape leading to an inhomogeneous broadening. (d) Schematic of a QD–cavity system.
The cavity is formed by two distributed Bragg reflectors (DBRs). (e) Effect of the cavity as
enhanced photoluminescence of those QDs that are in resonance with the cavity mode with
central frequency 𝜈0 and width 𝛥𝜈.

coherence properties of single QDs, therefore, requires either microscopic techniques (single QD
spectroscopy [89]) or the use of nonlinear techniques that allow overcoming inhomogeneous
broadening as described below.

The light-matter interaction of QDs can be further enhanced using optical microcavities. A planar
microcavity confines light to small volumes by resonant recirculation between two reflecting
surfaces [90]. When placing an optical emitter in the cavity (e.g. a QD), the cavity effectively
wraps a large light-matter interaction distance into a tiny volume [91]. Therefore, the intracavity
field at the position of the QD is enhanced which strongly increases optical nonlinearities. The
efficiency of a microcavity is expressed by the 𝑄-factor that measures the ratio between the stored
energy and the energy loss per oscillation cycle. The 𝑄-factor is given by the ratio between the
central resonator frequency 𝜈0 and the bandwidth 𝛥𝜈, 𝑄 = 𝜈0

𝛥𝜈 . Microcavities can be formed by
distributed Bragg reflectors (DBRs) consisting of alternating layers of two materials with different
refractive indices, such as AlAs and GaAs [92]. The distance between the DBRs defines the central
resonance frequency 𝜈0 of the cavity. When placing the QD ensemble inside the cavity, Figure 1.2d,
the optical response of the QDs which are in resonance with the cavity is strongly enhanced.
This effect can be seen for example in the photoluminescence of the system, schematically shown
in Figure 1.2e. We use a QD–cavity system to drive high-order optical nonlinearities from a QD
ensemble as will be discussed in Section 1.3. Note that the regime of strong coupling between
the cavity mode and the exciton resonance, achieved in high-𝑄 cavities [90, 93], is not considered
within this thesis.

1.2 Dynamics of Optical Excitations – Bloch equations

Coherent spectroscopic techniques are a powerful tool to gain insight into the dynamics and
interactions of optical excitations in semiconductors [3]. Those techniques investigate the
temporal regime during which photoexcited carriers remain in phase with the resonant excitation
source. By monitoring the optically induced macroscopic polarization 𝑃, being itself a source of
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radiation, valuable information about scattering events or quantum mechanical superpositions
of photo-excitations can be extracted. Importantly, the loss of macroscopic polarization caused
by the dephasing of individual excitations within an inhomogeneously broadened ensemble can
be overcome by nonlinear techniques, as will be shown in Section 1.2.1. In the following, we
will first describe theoretical approaches to quantify the dynamics of optical excitations in a
semiconductor.

A comprehensive theoretical description of the coherent light-matter interaction in semiconduc-
tors is governed by the semiconductor Bloch equations, see for example References [3–5, 94]. The
term Bloch equations is adopted from the equations describing the dynamic of an isolated optical
two-level system (TLS) interacting with a nearly resonant light field [95]. The semiconductor
Bloch equations further take into account many-body Coulomb interactions among carriers in
solids which strongly increases the complexity of the problem. A full discussion of the semicon-
ductor Bloch equations is beyond the scope of the theoretical considerations made within this
thesis. However, a critical consequence of Coulomb interaction between photo-excited carriers is
the formation of excitons. As mentioned above, excitons typically dominate the optical response
of semiconductors close to the band edge. In nonlinear optical spectra, excitons may even exceed
the optical response of unbound electron-hole pairs by several orders of magnitude due to the
strong oscillator strength and long coherence time [3].

To introduce the most important concepts of coherent spectroscopy on semiconductors relevant
to this thesis, we neglect Coulomb interactions beyond the formation of bound electron-hole
pairs. When first neglecting the polarization state of the excitation source, the crystal ground
state |G⟩ and a single excited exciton state |X⟩ can be treated as a TLS with energy splitting ℏ𝜔0.
We exclusively consider dipole transitions between these two states. The interaction between
the TLS and a light field with scalar electric field 𝐸(𝑡) is given by the Hamiltonian (written in
2 × 2 base of the eigenstates |G⟩ and |X⟩)

Hint = −𝝁 ⋅ E = −( 0 𝜇𝐸
𝜇∗𝐸 0 ) , (1.1)

where 𝝁 denotes the dipole operator with the non-zero matrix element 𝜇 = ⟨G|𝝁|X⟩. The optical
response of the system results from the expectation value of the dipole operator ⟨𝜓 |d|𝜓 ⟩, where
|𝜓 ⟩ = 𝑐g|G⟩ + 𝑐x|X⟩ denotes an arbitrary superposition of ground and excited states with complex
state amplitudes 𝑐g and 𝑐x. Since this expectation value is related to the bilinear products 𝑐∗g𝑐x
and 𝑐g𝑐

∗
x , it is more convenient to deal with the density matrix 𝝆ij = 𝑐∗i 𝑐j (𝑖, 𝑗 = 𝑔, 𝑥) of the system

than with the state amplitudes. Moreover, the use of the density matrix formalism is unavoidable
when considering an ensemble of TLS that is subject to random scattering events that affect the
relative phase of the state amplitudes (discussed below) [96]. The dynamic of the density matrix
results from the Liouville-von Neumann equation

𝑖ℏ 𝑑
𝑑𝑡
𝝆 = [H, 𝝆], (1.2)

where H = H0 + Hint, with the unperturbed Hamiltonian H0 = diag(0, ℏ𝜔0). Equation (1.2)
leads to the optical Bloch equations for the two independent elements of the density matrix
𝑝 = 𝝆gx = 𝝆∗

xg and 𝑛 = 𝝆xx = 1 − 𝝆gg

𝑑
𝑑𝑡
𝑝 = 𝑖𝜔0𝑝 − 𝑖

𝜇𝐸
ℏ
(1 − 2𝑛) (1.3a)

𝑑
𝑑𝑡
𝑛 = 2Im [

𝜇∗𝐸
ℏ

𝑝] , (1.3b)
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where 𝑝 is referred to as the (microscopic) polarization and 𝑛 the population of the excited state |X⟩.
The macroscopic polarization of an ensemble of 𝑁 identical TLS is given by

𝑃 = 𝑁Tr (𝝆 𝝁) ∝ 𝑝. (1.4)

Consequently, the microscopic polarization 𝑝 contains the physics of (nonlinear) optical prop-
erties of the TLS [94]. Equation (1.3a) contains the free oscillation of the polarization with
eigenfrequency 𝜔0 as well as a driving term proportional to the external electric field 𝐸. The
latter decreases with the increasing population of the upper state 𝑛 as a consequence of the
Pauli exclusion principle. This nonlinear response to the external electric field is often called
phase-space filling and gives rise to nonlinear optical effects, for example, excitation-induced
saturation or four-wave mixing [97]. It should be noted that in semiconductors not only the
Pauli exclusion principle but also Coulomb interactions with the many-body environment of
an exciton can have a significant impact on the saturation of the absorption, which is a major
difference to atomic systems [24]. We can therefore regard the term (1 − 2𝑛) in Equation (1.3a)
as a phenomenological approach that takes into account various contributions that lead to a
saturation of the resonance. Other influences of many-body interactions that are not governed
by Equations (1.3), can be tackled by mean-field approaches as we will discuss in Section 4.2.

The Bloch equations (1.3) are expanded phenomenologically by decay rates 𝛤2 and 𝛤1 for the
polarization and population to account for relaxation processes that contribute to the equilibration
of the optical transition

𝑑
𝑑𝑡
𝑝 = 𝑖𝜔0𝑝 − 𝑖

𝜇𝐸
ℏ
(1 − 2𝑛) − 𝛤2𝑝 (1.5a)

𝑑
𝑑𝑡
𝑛 = 2Im [

𝜇∗𝐸
ℏ

𝑝] − 𝛤1𝑛. (1.5b)

We denote the corresponding time constants 𝑇2 = 𝛤−1
2 and 𝑇1 = 𝛤−1

1 as decoherence time and
population decay time. The population decay time may include energy relaxation through
scattering events as well as the finite radiative lifetime of excitons that is inversely proportional
to the dipole moment squared [28, 98]. As a consequence of the definition of the polarization
𝑝 through the probability amplitudes 𝑝 ∝ √|𝑐x|2 ∝ exp(−𝑡/2𝑇1), the decoherence time 𝑇2 is
ultimately limited by the population decay through 𝑇2 = 2𝑇1. Moreover, 𝑇2 can account for pure
decoherence mechanisms that leave the excited state population unaffected while changing the
phase between the ground and the excited state. Thus, we define

1
𝑇2

= 1
2𝑇1

+ 1
𝑇 ′2

, (1.6)

where 𝑇 ′2 is the timescale of pure decoherence. The limiting case 𝑇2 = 2𝑇1 can be found in
isolated systems where elastic scattering events with phonons are minimized at low temperatures
(compare Chapter 5). It is one of the tasks of four-wave-mixing spectroscopy to measure the
decay times and thus gain insights into the efficiency of the underlying scattering mechanisms.
We describe the working principle of this technique in the following section.

1.2.1 Four-wave-mixing spectroscopy and photon echoes

The induced polarization 𝑃 in a semiconductor depends in general in a nonlinear fashion on the
exciting electric field ℰ. Nonlinear components can be classified by expanding the polarization in
a Taylor series

𝑃 = 𝜒 (1)ℰ + 𝜒 (2)ℰ2 + 𝜒 (3)ℰ3 + … , (1.7)
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where 𝜒 (m) is the m-th order susceptibility [99]. In inversion symmetric systems, the lowest
nonlinear component is given by the third order ∝ 𝜒 (3)ℰ3, which forms the basis of transient
four-wave mixing (FWM) spectroscopy. Linear spectroscopic techniques such as linear absorption
spectroscopy rely on a spectrally or time-resolved observation of the linear polarization 𝑃 (1) ∝ ℰ.
In principle, when temporally resolving the linear polarization after excitation with a short laser
pulse, the loss of coherence caused by elastic or inelastic scattering events can be measured [7].
However, optical resonances like excitons in semiconductors are often subject to inhomogeneous
broadening, as schematically shown in Figure 1.3a. Here, the spectral width of single resonance
∝𝑇−12 is hidden under a distribution of resonance frequencies 𝜔0. When temporally resolving the
linear response 𝑃 (1), a rapid decay of the macroscopic polarization will be observed due to the
dephasing of the ensemble, which is known as free induction decay, Figure 1.3b. The timescale
of the free induction decay, i.e. the dephasing time 𝑇 ∗2 , can be significantly shorter than the
decoherence time 𝑇2 of an individual optical excitation. Nonlinear FWM spectroscopy allows
overcoming the reversible loss of macroscopic polarization due to dephasing as will be explained
in the following.

Figure 1.3: (a) Schematic absorption spectrum of an inhomogeneously broadened resonance.
Here the statistical distribution of resonance frequencies (black dashed line) exceeds the width
of the homogeneous lines of individual resonances (colored lines). (b) Temporal behavior of
linear polarization for an inhomogeneously broadened resonance. The macroscopic polarization
(solid) dephases on a shorter time scale as the microscopic polarization of an individual oscillator
(free induction decay). (c) Pulse arrangement for a three-pulse photon echo (PE) experiment
in reflection geometry. (d) Visualization of the three-pulse PE formation within a third-order
nonlinear process as explained in the text.

The standard experimental geometry of transient FWM spectroscopy is depicted in Figure 1.3c.
Here, the laser field ℰ is in general split into three laser pulses ℰi with relative delays 𝜏12 and 𝜏23
and wavevectors ki. We exclusively consider degenerate FWM spectroscopy, where all pulses
share the same central optical frequency 𝜔L. We write the electric fields as

ℰi(𝑡) =
1
2
𝐸i(𝑡)𝑒

𝑖k⋅r+𝑖𝜔L𝑡 + c.c., (1.8)

where 𝐸i(𝑡) denotes a slowly varying pulse envelope. The nonlinear response of the sample gives
rise to a third-order polarization component ∝ 𝐸∗1𝐸2𝐸3 being the source of a fourth optical field
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1.2 Dynamics of Optical Excitations – Bloch equations

emitted in the direction k3 + k2 − k1 (phase-matching condition). Using different wavevectors of
the excitation pulses is advantageous from an experimental point of view since it leads to a spatial
separation of the FWM response from other (nonlinear) signals. The temporal characteristic
of the FWM response as a function of the relative delays between the exciting pulses 𝜏ij and
real-time can be obtained from a perturbative expansion of the optical Bloch equations (1.3).
For this purpose, the microscopic polarization 𝑝 and population 𝑛 are expanded in perturbative
orders 𝑝(m) and 𝑛(m) with respect to the order m of the electric field. This procedure leads to the
following set of coupled equations of motion [3]

𝑑
𝑑𝑡
𝑝(1) = (𝑖𝛥 − 1

𝑇2
) 𝑝(1) + 𝑖

𝜇𝐸
ℏ

(1.9a)

𝑑
𝑑𝑡
𝑛(2) = − 1

𝑇1
𝑛(2) − 𝑖

ℏ
(𝜇𝐸𝑝∗(1) − 𝜇∗𝐸∗𝑝(1)) (1.9b)

𝑑
𝑑𝑡
𝑝(3) = (𝑖𝛥 − 1

𝑇2
) 𝑝(3) − 2 𝑖

ℏ
𝜇𝐸𝑛(2). (1.9c)

Here, we introduced the detuning 𝛥 = 𝜔0 − 𝜔L between resonance and laser frequency and
neglected terms that oscillate at 𝜔0 +𝜔L (rotating wave approximation). Even orders of 𝑝 and odd
orders of 𝑛 vanish when assuming that the system is initially in the ground state [3]. The time
dependence of the FWM response is obtained by subsequently solving the set of Equations (1.9).
For simplicity, we assume that the slowly varying envelopes of the three pulses are given by delta
functions. The first pulse induces a linear polarization given by

𝑝(1)(𝑡) = 𝑖
𝜇𝐸1
ℏ

𝐻(𝑡) exp [𝑖k1r + 𝑖𝛥𝑡 − 𝑡
𝑇2
] , (1.10)

where 𝐻(𝑡) denotes the Heaviside function. The polarization freely oscillates with the detuning
𝛥 associated with the oscillator and exponentially decays with 𝑇2. Averaging over a distribution
of detunings leads to a decay of the macroscopic linear polarization 𝑃 (1) on a timescale given
by 𝑇 ∗2 . This dephasing motion is visualized in Figure 1.3d. The linear polarization 𝑝(1) represents
a source term ∝ 𝑝∗(1)𝐸2 in the second order population 𝑛(2) of Equation (1.9b), which results in

𝑛(2)(𝑡) = −
|𝜇|2𝐸∗1𝐸2

ℏ2
𝐻(𝜏12)𝐻(𝑡 − 𝜏12) exp [𝑖(k2 − k1)r − 𝑖𝛥𝜏12 −

𝜏12
𝑇2

−
𝑡 − 𝜏12
𝑇1

] . (1.11)

The second-order interaction of the first and second pulses results in a spatial and spectral
modulation of the second-order population at frequencies k2 −k1 and 𝜏

−1
12 , which is referred to as

a population grating. The amplitude of the population grating decays with the population decay
time 𝑇1. The second-order population finally results in a source term ∝𝐸3𝑛

(2) in the third-order
polarization

𝑝(3) = 𝑖
𝜇|𝜇|2𝐸∗1𝐸2𝐸3

ℏ3
𝐻(𝜏12)𝐻(𝜏23)𝐻(𝑡 − 𝜏12 − 𝜏23)×

× exp [𝑖(k2 + k3 − k1)r + 𝑖𝛥(𝑡 − 𝜏23 − 𝜏12) − 𝑖𝛥𝜏12 −
𝜏23
𝑇1

−
𝑡 − 𝜏23
𝑇2

] .
(1.12)

The third-order optical response of the system ∝𝑝(3) can be interpreted as the diffraction of the
third pulse on the population grating created by the first and second pulse. In Equation (1.12), it
can be seen that the phase of the linear polarization 𝛥𝜏12, acquired during the time interval 𝜏12,
is subtracted from the phase evolution in the time interval after the third pulse. Therefore, the
free evolution of the system after the action of the third pulse leads to a reformation of the
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macroscopic polarization at time 𝑡 = 2𝜏12 + 𝜏23, as visualized in Figure 1.3d. When averaging over
a Gaussian distribution of detunings, the macroscopic third-order polarization 𝑃 (3) is given by a
Gaussian laser pulse centered at 𝑡 = 2𝜏12 + 𝜏23

𝑃 (3) ∝ exp [−
𝜏23
𝑇1

−
2𝜏12
𝑇2

] exp [−
(𝑡 − 𝜏23 − 2𝜏12)

2

2𝑇 ∗22
] , (1.13)

which we call the three-pulse PE. When measuring the amplitude of the three-pulse PE as a
function of 𝜏12 or 𝜏23, we can access the decoherence time 𝑇2 and population decay time 𝑇1, while
a measurement of its duration includes information of the dephasing time 𝑇 ∗2 . It is therefore of
striking importance to establish a time-resolved detection technique, as will be introduced in
Section 2.1, to independently study homogeneous and inhomogeneous decoherence effects. A
measurement of 𝑇2 can also be performed using only two pulses resulting in the two-pulse PE at
𝑡 = 2𝜏12. The derivation of the corresponding third-order nonlinearity 𝑝(3) ∝ 𝐸∗1𝐸

2
2 is equivalent

when replacing 𝐸3 by 𝐸2 and setting 𝜏23 = 0 in Equation (1.12). In our experiments, we choose
k2 = k3. Thus, the two-pulse PE and three-pulse PE share the same phase-matching condition.

1.2.2 Diagrammatic perturbation theory

The perturbative expansion of the optical Bloch equations presented in the previous section
for a TLS up to the third order can be analogously continued up to an arbitrary perturbative
order to describe the formation of multi-wave-mixing signals. Moreover, similar equations of
motion can be obtained for few-level absorbers such as the V-scheme for excitons as presented in
Figure 1.1f, where the spin degree of freedom is incorporated in the dipole selection rules. An
elegant formalism to keep track of all terms contributing to a certain nonlinear optical response
is diagrammatic perturbation theory [99, 100]. Here, each summand contributing to an m-th
order polarization has a representation as a double-sided Feynman diagram. These diagrams are
especially useful to easily check dipole selection rules in multi-level systems within a particular
multi-wave-mixing process. We define these diagrams in the following according to Refs. [100,
101]. Here, we also take into account non-vanishing pulse durations, which lead to multivariate
time integrals. Those are used to obtain the modeling results presented in Chapters 4 and 6.

We consider the interaction of 𝑁 laser pulses with a general multi-level system with energy
levels 𝜀n and corresponding density matrix 𝝆. The dynamic of the density matrix is described by
the Liouville-von Neumann equation (1.2). Decay rates are added phenomenologically through
̇𝜌ij ∝ −𝛤ij𝜌ij as shown in Equations (1.5) for the TLS where population decays with 𝑇1 and

coherence with 𝑇2. The m-th order expansion of the density matrix with respect to the external
optical field is then recursively obtained from

𝝆(m)
ij (𝑡) = ∫

𝑡

−∞

𝑖
ℏ
[𝝆(𝑚−1)(𝜏 ),V(𝜏 )]

ij
e−𝑖𝛺ij(𝑡−𝜏)𝑑𝜏 , (1.14)

where 𝛺ij = 𝜔ij − 𝑖𝛤ij with 𝜔ij = (𝜀i − 𝜀j)/ℏ. In a multi-wave-mixing experiment, the external
electric field is given by a train of laser pulses with field envelopes 𝐸j(𝑡) and corresponding
wavevectors kj. The interaction operator V(𝑡) thus reads as

V(𝑡) = −
𝝁(𝑡)
2

𝑁
∑
j=0

(𝐸j(𝑡)e
−𝑖kj⋅r + 𝐸∗j (𝑡)e

𝑖kj⋅r) . (1.15)

As a result of the nested commutators in Equasion (1.14), the m-th order expansion of the density
matrix consists of 22m𝑁m summands. Each of these summands has a representation as a double-
sided Feynman diagram that illustrates the different pathways by which the external electric
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1.2 Dynamics of Optical Excitations – Bloch equations

fields mediate between populations and coherences in the multi-level system. Any diagram can be
obtained by vertically stacking together the following four unique elements with corresponding
contributions to the m-th order density matrix element [101]:

|𝑖⟩⟨𝑗|kn kn|𝑖⟩⟨𝑙| 𝝆(m)
il (𝑡) = −𝑖

𝜇jl
2ℏ

e−𝑖km⋅r∫
𝑡

∞
𝐸∗m(𝜏 )e

−𝑖𝛺il(𝑡−𝜏)𝝆(m−1)
ij (𝜏 )𝑑𝜏 (1.16a)

|𝑖⟩⟨𝑗| knkn |𝑙⟩⟨𝑗| 𝝆(m)
lj (𝑡) = +𝑖

𝜇il
2ℏ

e−𝑖km⋅r∫
𝑡

∞
𝐸∗m(𝜏 )e

−𝑖𝛺lj(𝑡−𝜏)𝝆(m−1)
ij (𝜏 )𝑑𝜏 (1.16b)

|𝑖⟩⟨𝑗|kn kn|𝑖⟩⟨𝑙| 𝝆(m)
il (𝑡) = −𝑖

𝜇jl
2ℏ

e+𝑖km⋅r∫
𝑡

∞
𝐸m(𝜏 )e

−𝑖𝛺il(𝑡−𝜏)𝝆(m−1)
ij (𝜏 )𝑑𝜏 (1.16c)

|𝑖⟩⟨𝑗| knkn |𝑙⟩⟨𝑗| 𝝆(m)
lj (𝑡) = +𝑖

𝜇il
2ℏ

e+𝑖km⋅r∫
𝑡

∞
𝐸m(𝜏 )e

−𝑖𝛺lj(𝑡−𝜏)𝝆(m−1)
ij (𝜏 )𝑑𝜏 . (1.16d)

For example, one contribution to the FWM response of a TLS, as discussed in Section 1.2.1, is
illustrated by the following diagram:

|G⟩⟨G| k1|G⟩⟨X|k2 |X⟩⟨X| k2|X⟩⟨G|2k2 − k1

. (1.17)

Here, time evolves from top to bottom, and arrows indicate interactions with the fields. The
direction of the arrows with label kj indicates whether 𝐸j𝑒

−𝑖kj⋅r or 𝐸∗j 𝑒
𝑖kj⋅r contributes. Here, the

final emission is marked by a differently styled arrow. Note that the number of relevant Feynman
diagrams 22m𝑁m is strongly reduced when the optical pulses are strictly temporally ordered
and only a particular phase-matching condition is filtered. In this case, the temporal dynamic
of a particular wave-mixing process as a function of temporal delays, polarizations or electric
field amplitudes can be conveniently calculated by constructing all dipole-allowed Feynman
diagrams and subsequently using the calculation rules given in Equations (1.16). The magnitude
of the emitted signal field, which is the measured quantity in our experiments, is assumed to be
proportional to the microscopic polarization.

1.2.3 Photon echo polarimetry

Figure 1.4: Polarimetric behavior of exciton (a) and
trion (b) as described by the level schemes in Figures 1.1f
and 1.1g within the PE polarimetry technique. The
red and blue lines show the magnitude of the H and
V polarized FWM signal as a function of the relative
polarization angle 𝜑 between the first and second pulse,
respectively.

A powerful degree of freedom in FWM spectroscopy is given by the relative polarization of the
excitation pulses that allows to analyze polarization selection rules of the investigated optical
resonance. The PE polarimetry technique, introduced in Reference [102], makes use of this degree
of freedom to distinguish different excitonic complexes like excitons and trions in CdTe quantum
wells. We actively apply the technique throughout the thesis to gain additional information
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1 Theoretical background

about excitons in perovskites and QDs. Here, we detect the horizontally (H) and vertically
(V) polarized components of the PE amplitude as a function of the relative polarization angle
𝜑 between the horizontally polarized first pulse and second pulse. The choice of horizontal
polarization for the first pulse is arbitrary since only the relative polarization angles are relevant.
The two measurement routines are denoted as HRH and HRV, respectively. As an example,
we compare the polarimetric behavior of trions and excitons with the dipole selection rules as
depicted in Figure 1.1f and 1.1g. The theoretical polar dependences of the FWM signal fields in
the configuration HRH and HRV are given by [102]

|𝐸XHRH| ∝ cos2(𝜑) |𝐸XHRV| ∝
1
2
| sin(2𝜑)| (1.18a)

|𝐸THRH| ∝ | cos(2𝜑)| |𝐸THRV| ∝ | sin(2𝜑)|, (1.18b)

with superscript X and T for exciton and trion. The dependences are visualized in Figures 1.4a
and 1.4b in polar coordinates. We call these figures polar rosettes throughout the thesis.

Through the measurement in horizontal and vertical detection (HRH/HRV), we can also calculate
the linear polarization angle of the signal 𝜑S and the total signal amplitude |𝐸tot| as given by

𝜑S = arctan (
𝐸HRV
𝐸HRH

) (1.19a)

|𝐸tot| = (|𝐸HRH|
2 + |𝐸HRV|

2)1/2 . (1.19b)

For the exciton, the signal polarization is directly set by the polarization angle of the second
pulse, i.e. 𝜑S = 𝜑. Moreover, the total signal amplitude vanishes in cross-polarized configuration
𝜑 = 𝜋/2. This property intrinsically results from the fact that the two exciton transitions are
not two independent TLS, but share a common ground state |G⟩. Thus, a population of one spin
species also results in a nonlinear response from the second spin species as a consequence of the
depletion of the ground state. Further, the superposition of the two excited states gives rise to
a FWM response. For linearly cross-polarized excitation pulses, the multiple contributions to
the FWM process cancel each other such that the total signal amplitude is zero. For the trion,
consisting of two independent TLS instead, the total signal amplitude is fully independent of the
polarization angle 𝜑 and the polarization angle of the signal is given by 𝜑S = 2𝜑. Thus, the signal
dependences in HRH and HRV are simply given by projections on the horizontal and vertical
axis, as described by Equation (1.18b). Note that two configurations play an essential role in
distinguishing between excitons and trions. For 𝜑 = 𝜋/2, only the trion gives a signal, while for
𝜑 = 𝜋/4, only the exciton gives a horizontally polarized signal. In Chapter 5, we make use of this
property to independently study the FWM response of excitons and trions in an inhomogeneously
broadened QD ensemble where the two resonances cannot be spectrally distinguished from each
other.

1.3 Rabi rotations

Rabi rotations are a fundamental non-classical phenomenon of light-matter interaction that arises
for field strengths strongly exceeding the limits of perturbation theory presented in the previous
sections. Here, the coupling between the ground and excited state of a TLS, mediated by a nearly
resonant optical field, reaches the regime of strong coupling which manifests in oscillations of
the inversion of the system [95]. When applying a temporally limited optical field, i.e. a laser
pulse, with a certain duration, strength, detuning, and optical phase, the system can be prepared
in an arbitrary state. We are interested in the application of this approach to an inhomogeneously
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broadened ensemble, where Rabi rotations have to be considered in a PE configuration. The
relevant equations for Rabi rotations are presented in the following.

As for the derivation of the optical Bloch equations in Section 1.2, we start from the Hamiltonian
that takes into account the dipole interaction between a TLS and an optical field of constant
amplitude

H = ℏ
2
( −𝛥 −𝛺R
−𝛺R 𝛥 ) , (1.20)

formulated in the rotating frame. Here, 𝛺R = 𝜇𝐸/ℏ denotes the Rabi frequency. We consider 𝐸
as constant, spatially isotropic, and real in the following. This Hamiltonian is diagonal in the
so-called dressed state base spanned by

|𝑙⟩ = 1
√2𝛺

(√𝛺 − 𝛥|G⟩ + √𝛺 + 𝛥|X⟩) (1.21a)

|𝑢⟩ = 1
√2𝛺

(√𝛺 + 𝛥|G⟩ − √𝛺 − 𝛥|X⟩) , (1.21b)

where 𝛺 = √𝛺
2
R + 𝛥2 is the generalized Rabi frequency and the corresponding eigenvalues

are given by ±𝛺/2. The dressing of the energy states by the interaction with the light field is
visualized in Figure 1.5a. Dashed lines show the energy states in the absence of the optical field
in the rotating frame as a function of detuning. When turning on the optical field, the splitting
between the upper and lower dressed state is given by 𝛺, which leads to an avoided crossing
behavior at 𝛥 = 0, where the splitting is given by the Rabi frequency 𝛺R. The dynamics of the
independent density matrix elements in the dressed base are given by

𝑝uu(𝑡) = 𝑝uu(0), 𝑝lu(𝑡) = 𝑝lu(0) exp(𝑖𝛺𝑡). (1.22)

We expand these equations of motion when taking into account the interaction of QDs with
acoustic phonons in Chapter 5.

0
Detuning 𝛥

0

En
er
gy

𝛺R

(a)
|𝑢⟩
|𝑙⟩

0 1 2 3

Time (𝛺−1
R )

-1

0

1

In
ve
rs
io
n
𝑤

(b)
𝛥 = 0
𝛥 ≠ 0

2𝜏12
Time

0

𝜋

2𝜋

3𝜋

4𝜋

5𝜋

Pu
ls
e
ar
ea

𝐴
2

(c)

0.0

0.5

1.0

Po
la
ri
za
tio

n

Figure 1.5: (a) Dressing of energy states of a TLS by interaction with a nearly resonant light
field with constant magnitude. (b) Rabi oscillations of the inversion 𝑤 of the two-level system
for zero and non-zero detuning. (c) Manifestation of Rabi rotations in a PE protocol where the
magnitude of the PE light pulse, centered at 2𝜏12, oscillates as a function of the second pulse’s
area.

Transforming back to the undressed base leads to dynamics of both the polarization and occu-
pation of the system. Those dynamics can be geometrically analyzed by introducing the Bloch
vector with real entries

(
𝑢
𝑣
𝑤
) = (

𝑝 + 𝑝∗

𝑖(𝑝 − 𝑝∗)
2𝑛 − 1

) , (1.23)
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where 𝑢 and 𝑣 characterize the real and imaginary part of the complex-valued polarization and 𝑤
is the real-valued inversion of the system. Using Equations (1.21), (1.22), and (1.23), the temporal
evolution of the Bloch vector can be written as a matrix operation

(
𝑢(𝑡)
𝑣(𝑡)
𝑤(𝑡)

) =
⎛
⎜
⎜
⎝

𝛺2
R+𝛥

2 cos(𝛺𝑡)
𝛺2 −𝛥

𝛺 sin(𝛺𝑡) −𝛥𝛺R
𝛺2 [1 − cos(𝛺𝑡)]

𝛥
𝛺 sin(𝛺𝑡) cos(𝛺𝑡) 𝛺R

𝛺 sin(𝛺𝑡)

−𝛥𝛺R
𝛺2 [1 − cos(𝛺𝑡)] −𝛺R

𝛺 sin(𝛺𝑡) 𝛥2+𝛺2
R cos(𝛺𝑡)
𝛺2

⎞
⎟
⎟
⎠

(
𝑢(0)
𝑣(0)
𝑤(0)

) . (1.24)

As a special case, we consider the dynamic of the inversion 𝑤(𝑡) for a system that is initially in
the ground state (𝑤(0) = −1)

𝑤(𝑡) = −
𝛺2
R cos(𝛺𝑡) + 𝛥2

𝛺2 . (1.25)

As plotted in Figure 1.5b for resonant excitation (𝛥 = 0), the population inversion performs
temporal oscillations between −1 and +1 at the Rabi frequency 𝛺R (Rabi oscillations). For off-
resonant excitation 𝛥 ≠ 0, the oscillation frequency is faster but the system is not fully inverted,
i.e. 𝑤 < 1.

In general, the matrix in Equation (1.24) describes rotations of the Bloch vector as directly follows
from the fact that the optical Bloch equations can be rewritten as a torque equation for the Bloch
vector

𝑑
𝑑𝑡

(
𝑢
𝑣
𝑤
) = (

𝛺R
0
𝛥
) × (

𝑢
𝑣
𝑤
) . (1.26)

Thus, light geometrically acts as a torque on the Bloch vector and leads to a rotation by an angle
of 𝛺𝑡. When considering a rectangular light pulse, i.e. a constant optical field that is turned on for
a finite time of 𝑡𝑝, the unitless quantity 𝛺𝑡𝑝 is called the pulse area 𝐴. For an arbitrarily shaped
optical pulse, the pulse area is defined as

𝐴 = ∫𝑑𝑡𝛺R(𝑡) (1.27)

and measures the angle by which the Bloch vector is rotated on the Bloch sphere. For example,
when probing the population of the excited state while scanning the pulse area, oscillations can
be observed. To differentiate these pulse area-dependent oscillations from the time-dependent
oscillations, we call them Rabi rotations.

Figure 1.6: Vizualization of the ideal PE sequence in the regime of Rabi rotations. The first
𝜋/2 pulse excites all Bloch vectors to the equator plane. The subsequent dephasing dynamic is
inverted by a second 𝜋 pulse. A macroscopic polarization is thus reformed at twice the delay
between the first and second pulse.

The effect of Rabi rotations on an inhomogeneously broadened ensemble of TLS can be observed
in a PE sequence as is visualized in Figure 1.6. Here, the dynamics of the Bloch vectors are shown
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1.3 Rabi rotations

on a sphere, which is called the Bloch sphere. For the PE, the ideal pulse sequence leading to a
full reformation of macroscopical polarization consists of temporally separated 𝜋/2 and 𝜋 pulses.
The first pulse excites all Bloch vectors from the ground state (𝑤 = −1) to the equator plane
of the Bloch sphere (𝑤 = 0), where the polarization is maximum. Subsequentially, the system
dephases due to the different eigenfrequencies of the oscillators (represented by the different
colors in Figure 1.6). Applying a 𝜋 pulse inverts the phases of all oscillators which leads to a
rephasing dynamic and a reformation of the macroscopic polarization. When sweeping the area
of the first/second pulse (𝐴1/𝐴2), the amplitude of the PE oscillates as

𝐸PE ∝ sin(𝐴1) sin
2(𝐴2/2). (1.28)

The oscillations of the amplitude of the PE pulse as a function of 𝐴2 are visualized in Figure 1.5c.
Equation (1.28) results from the assumption of short pulses with respect to the dephasing time of
the ensemble, 𝑡𝑝 ≪ 𝑇 ∗2 . It should be noted that strong modifications of the temporal shape of the
PE response can arise when the pulse duration is comparable to 𝑇 ∗2 [103], which is a key topic of
Chapter 6.
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Experimental methods 2
This chapter describes in detail the experimental setup for transient four-wave mixing (FWM)
spectroscopy and provides relevant information about the studied material systems. The focus is
set on the accurate description of the heterodyne technique (Section 2.1), which lies at the heart
of the experimental method. Further, Section 2.2 describes a developed experimental approach to
observe pronounced Rabi rotations using a flattop laser intensity profile. A description of the
studied samples is given in Section 2.3.

2.1 Experimental setup for transient four-wave-mixing
spectroscopy

A schematic picture of the experimental setup is shown in Figure 2.1. We use a mode-locked
titan sapphire laser (MIRA900, Coherent) as a source of laser pulses that is optically pumped
by a continuous wave laser providing 10W at a photon energy of 2.33 eV (Verdi-V10, Coherent).
Depending on two possible arrangements of the laser cavity, the MIRA900 delivers laser pulses
with a duration of either ≈4 ps or ≈200 fs at a repetition rate of 𝑓rep = 𝑇−1rep = 75.75MHz, where
𝑇rep ≈ 13 ns is the corresponding repetition period. The central photon energy of the laser pulses
can be tuned between 1.13 eV and 1.77 eV. Using beam splitters, the pulses are split into the first,
second, and third excitation pulses as needed for the three-pulse photon echo (PE) technique.
A fourth part is used for the reference pulse that is needed for the time-resolved heterodyne
detection as described below. Motorized delay lines are used to adjust the delays 𝜏12, 𝜏13, and 𝜏ref
between all pulses relative to the first pulse. Here, the smallest temporal step is roughly 30 fs
and the maximum temporal range covers the full repetition period 𝑇rep. The FWM experiments
are carried out in a non-colinear arrangement of the pulses, where however the optical paths
of the second and third pulses are joined after passing the corresponding delay lines. In this
way, the beams share the same wavevector k2 = k3 and thus the phase matching conditions
of the three- and two-pulse PE are equal k3 + k2 − k1 = 2k2 − k1. The wavevectors of the
first and second pulses correspond to angles of incidence on the sample of approximately 4° and
3°, respectively. The sample under study is placed in the variable temperature insert (VTI) of
a helium bath cryostat, which is pumped to a pressure of roughly 15mbar. At such pressures,
helium reaches a superfluid phase with an approximate temperature of 1.5 K, which is the smallest
temperature used in our experiments. Using a parabolic mirror with 50 cm focal length, the laser
beams with an initial diameter of ≈3mm are focussed down to a spot diameter of ≈ 100 µm on
the sample surface. The FWM signal is captured in reflection geometry in the direction 2k2 − k1
by the same parabolic mirror. Undesired reflections of the exciting pulses are blocked by an iris
diaphragm. The signal beam and the reference beam are guided to the heterodyne detection
scheme, whose working principle is explained in the following based on Reference [104].

The optical heterodyne technique relies on a measurement of the interference between a weak
signal of interest ℰS at central optical frequency 𝜔S and a strong reference field ℰref at frequency 𝜔R.
Their interference contains a beating component at the difference frequency 𝛥𝜔 = 𝜔S − 𝜔R that
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Figure 2.1: Scheme of the experimental setup for time-resolved four-wave-mixing spectroscopy
as described in detail in the text. The scheme is adapted from [105]. Abbreviations: acousto-
optical modulator (AOM), helium (He), photo-diode (PD).

is actively chosen to lie in theMHz-range. In this way, the beating signal can be resolved by slow
photodetectors and subsequently filtered from noise components. Through the superposition
with the strong reference beam, the beating component can strongly exceed the intensity of the
original signal field. We show how exactly the magnitude and phase of the beating signal depend
on signal and reference fields in the following. Both fields are pulse trains at a repetition rate of
𝑇−1rep and can be written as

ℰS = e𝑖𝜔S𝑡+𝜑∑
n

𝐸S(𝑡 − n𝑇rep) + c.c. (2.1a)

ℰref = e𝑖𝜔ref(𝑡−𝜏ref)∑
n

𝐸ref (𝑡 − 𝜏ref − n𝑇rep) + c.c., (2.1b)

where the arrival time of the reference pulses is shifted by 𝜏ref and signal and reference pulses
may have in general a relative optical phase shift of 𝜑. The functions 𝐸S(𝑡) and 𝐸ref(𝑡) denote
the slowly varying temporal envelopes of each pulse within the pulse train. Note that the time
domain description in Equations (2.1) is equivalent to a description in the frequency domain. In
the frequency domain, the output of a mode-locked laser field is given by equidistant modes
separated by the repetition rate of the laser 𝑓rep multiplied with an envelope given by the Fourier
transform of the temporal envelopes 𝐸i(𝑡). The signal and reference pulses are superimposed by a
50:50 non-polarizing beam splitter cube (see Figure 2.1), whose two output beams are focused on
the two photo-diodes of a balanced photodetector (New Focus 2107). The output voltage of the
balanced detector 𝑈PD is proportional to the difference of photocurrents 𝛥𝐼PD = 𝐼+PD − 𝐼−PD of the
two diodes. As shown in Figure 2.1, the superposition in the beam splitter is arranged such that
the intensities on the two photo-diodes are given by |ℰref ± ℰS|2. The output voltage thus reads

𝑈PD ∝ 2∫
𝑇PD

ℰSℰref 𝑑𝑡

∝ ∫
𝑇PD

𝑑𝑡 e𝑖(𝜔S−𝜔ref)𝑡−𝑖𝜔ref𝜏ref+𝑖𝜑∑
n

𝐸∗ref(𝑡 − 𝜏ref − n𝑇rep)𝐸S(𝑡 − n𝑇rep) + c.c.,
(2.2)

where all terms that are oscillating at optical frequencies are neglected due to the slow integration
time 𝑇PD of the detector. The use of a balanced detection is advantageous since common noise
components arising from the individual optical fields, especially from the strong reference beam
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∝ℰ2
ref, are suppressed while the beating term ℰSℰref is doubled. Expression (2.2) can be further

rearranged to

𝑈PD ∝ ∫
𝑇PD

𝑑𝑡 e𝑖(𝜔S−𝜔ref)𝑡−𝑖𝜔ref𝜏ref+𝑖𝜑∫𝑑𝑡′𝐸∗ref(𝑡
′ − 𝜏ref)𝐸S(𝑡

′)∑
𝑛
e
𝑖2𝜋𝑛 𝑡−𝑡′

𝑇rep . (2.3)

Here, it can be seen that filtering the signal at the beating frequency (or higher harmonics
separated by the repetition rate of the laser) results in a signal, which is proportional to the
cross-correlation between the reference and signal field envelopes

𝑈𝛥𝜔
PD ∝ e−𝑖𝜔ref𝜏ref+𝑖𝜑∫𝑑𝑡𝐸∗ref(𝑡 − 𝜏ref)𝐸S(𝑡

′) + c.c. , (2.4)

where the integration over 𝑇PD is negelcted due to 𝑇PD ≪ 1/𝛥𝜔. Scanning the arrival time of the
reference beam thus allows temporally resolving the signal field, which is of major importance for
disentangling homogenous and inhomogeneous decoherence times as explained in Section 1.2.1.
Moreover, information about the relative optical phase 𝜑 between signal and reference is in
principle preserved.

The desired frequency shift 𝛥𝜔 between reference and signal is achieved by introducing acousto-
optical modulators (AOMs) in the paths of the first and reference beam, as indicated in Figure 2.1.
AOMs rely on the Doppler-shifted signal upon diffraction of light on a propagating sound
wave that is created in a glass material by a piezo-electric transducer. The AOMs shift the
optical frequency components of the first and reference pulses to 𝜔1 = 𝜔0 − 81MHz and 𝜔ref =
𝜔0 + 80MHz, where 𝜔0 is the unshifted optical frequency. Here, the difference in sign of the two
frequency shifts is realized by choosing the wavevector of the incoming light to have a component
either in the same or opposite direction of the propagating soundwave. As a result of the frequency
shift of the first pulse, the FWM signal has an optical frequency of 𝜔S = 2𝜔2 − 𝜔1 = 𝜔0 + 81MHz,
where 𝜔2 = 𝜔0 is the unshifted central frequency of the second pulse. The beating frequency
between reference and signal pulses is thus given by 𝛥𝜔 = 𝜔S − 𝜔ref = 1MHz. Importantly, the
two AOMs are driven by the same control unit, which provides an electric reference signal at the
frequency 𝛥𝜔 as an additional output. This is important to subsequentially extract the beating
signal from broadband noise components using lock-in methods.

We use the digital lock-in amplifier UHFLI 600MHz (Zurich Instruments). In general, a lock-in
amplifier is capable of extracting a signal with a known frequency from a noise background
whose frequency-integrated amplitude may be orders of magnitude stronger than the signal of
interest. This is achieved by electronically multiplying the input signal 𝑈PD(𝑡) with a carrier
wave 𝑈C(𝑡) ∝ cos(𝜔C𝑡) with frequency 𝜔C. When the carrier frequency 𝜔C is set to the desired
frequency component of 𝑈PD(𝑡), the product contains a DC component that can be filtered from
other components using a low-pass filter. It is important to point out that the output signal
of a lock-in is sensitive to the relative phase 𝜃 between the signal wave and carrier wave as
𝑈out ∝ |𝑈S| cos (𝜃), where |𝑈S| is the amplitude of the extracted frequency component. In this
sense, themeasured signal is also directly sensitive to the relative optical phases between reference,
first, and second pulses as can be seen from Equation (2.4). Since the optical pathways between
the involved beams in our experiments differ, the relative optical phases are not temporally
stable. Instabilities arise for example because of air flux fluctuations or mechanical vibrations. To
overcome this problem, we use a dual-phase lock-in amplifier. The dual-phase technique enables
us to measure the relative phase between the signal and carrier wave, as well as the absolute value
of the signal. By multiplying the signal separately with a sine and cosine carrier wave two outputs
are created, commonly denoted as 𝑋 = 𝑅 cos(𝜃) and 𝑌 = 𝑅 sin(𝜃). In this way, the magnitude 𝑅
of the signal can be obtained from 𝑅 = √𝑋 2 + 𝑌 2 and the phase between carrier and signal waves
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2 Experimental methods

from 𝜃 = arctan(𝑌/𝑋). Thus, the quantity 𝑅 is not affected by phase fluctuations and therefore
serves as the observable that is proportional to the magnitude of the electric field of the FWM
signal. A phase-sensitive measurement of the FWM response requires active stabilization of the
relative optical phases of the involved laser pulses, which is not considered in this thesis.

We make use of a double lock-in technique to isolate the signal from undesired noise components.
The first lock-in operates at a frequency of 1MHz as given by the AOM controller, followed
by a short-pass filter with a bandwidth of roughly 1 kHz, which strongly minimizes the effect
of electronic 1/𝑓 noise. Subsequentially, the output 𝑅1 of the first lock-in serves as input for a
second lock-in. The second modulation stage is necessary because of two reasons. First, in the
case of imperfect sample surfaces, diffusively scattered light of the exciting beams may not be
efficiently filtered by the iris diaphragm that is used to isolate the FWM response in the direction
2k2−k1. Such scattering components of the i-th pulse with electric field 𝐸sci result in beating terms
∝𝐸sci 𝐸∗ref. Those spurious beating terms can be spectrally broad and thus have components at the
very same frequency as the desired beating term ∝𝐸S𝐸

∗
ref with comparable amplitude. We cannot

eliminate those frequency components by a single lock-in stage. The effect arises most strongly
from scattered light of the second and third beam as they are spatially close to the PE response
and temporally overlap more strongly with the reference pulse in the range of small values of
𝜏12 in a two- or three-pulse PE experiment. To eliminate these spurious signals, we modulate
the amplitude of the first beam using a mechanical chopper at a frequency of 𝑓ch = 800Hz. The
amplitude modulation creates frequency sidebands of the beating component ∝𝐸S𝐸

∗
ref shifted by

±𝑓ch from 𝛥𝜔, while not affecting the spurious signals ∝𝐸sc2 𝐸∗ref and ∝𝐸sc3 𝐸∗ref. The frequency 𝑓ch
serves as a reference for the second lock-in with a short pass filter of roughly 3.2Hz bandwidth.
In this case, the spurious beating components from the scattered light are effectively subtracted.
By introducing a second chopper for the path of the second beam, spurious signals arising from
the first beam could be filtered by setting the lock-in to the difference or sum frequency of the
two choppers.

A second contribution to the remaining noise after the first lock-in stage is given by imperfect
filtering of intensity fluctuations of the strong reference beam. Such contributions can result
from an imperfect balance of the balanced detector, for example, because of unequal dynamical
efficiencies of the photo-diodes or a non-perfect phase difference between the beating terms
resulting from the two outputs of the beam splitter. Consequently, the reference creates broad-
band noise fluctuations which may have significant contributions at 𝛥𝜔 = 1MHz. In the same
way as for the scattered light contributions, this offset signal is substracted by the chopper
modulation of the first beam.

Even in the case of perfect balance, a finite random noise is present within the bandwidth of the
first lock-in that typically scales with the intensity of the reference beam. This noise component
introduces an intrinsic non-linearity in the detection scheme as is carefully considered in the
following. Due to the aforementioned phase fluctuations, we have to use the amplitude output
of the first lock-in stage 𝑅1 as input for the second lock-in. We suppose that the dual-phase
outputs 𝑋1 and 𝑌1 of the first lock-in are Gaussian distributed with a mean value 𝑥0 and standard

deviation 𝜎. Then 𝑅1 = √𝑋
2
1 + 𝑌 21 /√2 has a distribution strongly deviating from a Gaussian

when 𝑥0 and 𝜎 are comparable. In the limiting case of 𝑥0 = 0, 𝑅1 is distributed as

𝑝(𝑟) = 2𝑟
𝜎2

exp (− 𝑟2

𝜎2
) . (2.5)

The distributions of 𝑋1 and 𝑅1 are vizualized in Figure 2.2a. Here, the distribution of 𝑅1 has a
non-zero mean value of √𝜋𝜎/2. For arbitrary values of 𝑥0, 𝑅1 has a mean value of √𝑥

2
0 + 𝜋/4𝜎2.
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2.2 Realization of spatially flat laser pulses

Thus, the noise component effectively introduces an offset which is however added in a nonlinear
manner to the signal. When applying the double lock-in technique, this offset is linearly subtracted
leading to the dependence of the mean value of 𝑅2 of the second lock-in stage given by

𝑅2 = |
√
𝑥20 +

𝜋𝜎2
2

− √𝜋𝜎
2

| . (2.6)

𝑅2 is thus only propotional to 𝑥0 for 𝑥0 ≫ 𝜎. We theoretically consider an example where the
discussed nonlinearity of the detection scheme is relevant. We assume that the mean value
𝑥0 = exp(−𝑡/𝑇 ) decays exponentially as a function of a parameter 𝑡 with decay constant 𝑇 shown
by the black dashed line in Figure 2.2b. A random Gaussian noise with mean value zero and
𝜎 = 0.01 is added to 𝑋1 and 𝑌1, which results in the green curve for 𝑅1 in Figure 2.2b. The output
of the second lock-in is shown in red. Here, the signal strongly deviates from the exponential
decay starting from roughly 𝑡 ≈ 3𝑇 before the signal reaches a reduced noise level defined by the
bandwidth of the second lock-in. It is of major importance to be aware of such non-linearities
when interpreting for example the decay of the two-pulse PE amplitude as a function of 𝜏12. To
extract the decoherence time 𝑇2, a linear regime of the detector has to be identified to avoid a
systematic correlation between the decoherence time and signal amplitude. The influence of
the nonlinearity can be minimized by choosing a longer time constant of the first lock-in which
however enlarges the total measurement time. Since the PE signal is usually measured as a
function of many parameters, a tradeoff between signal-to-noise ratio and total measurement
time has to be made. Typically, a signal-to-noise ratio of at least 100:1 is achieved with the
described filtering techniques.
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Figure 2.2: (a) Visualization of the distributions of 𝑋 and 𝑅. (b) An example of the nonlinearity
introduced by the double lock-in technique. The mean value of the signal (black) is assumed to
decay exponentially with a time constant 𝑇. Adding a Gaussian noise results in the green and
red curves for the outputs 𝑅1 and 𝑅2 of the first and second lock-in stages.

2.2 Realization of spatially flat laser pulses

As discussed in Section 1.3, Rabi oscillations refer to the time-dependent rotations of the Bloch
vector when it is exposed to an optical field. When the optical field is in resonance with the
two-level system, the frequency of the Rabi oscillations is given by 𝛺R = 𝜇𝐸/ℏ, where 𝜇 is the
dipole moment of the transition and 𝐸 denotes the electric field amplitude of the optical field. A
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2 Experimental methods

direct manifestation of this phenomenon is given by intensity-dependent Rabi rotations when
the two-level system (TLS) is excited by resonant laser pulses. Here, the final state of the Bloch
vector is set by the pulse area 𝐴. In the PE experiment we can observe the effect of Rabi rotations
in the form of oscillations of the PE amplitude as a function of the areas of the first and second
pulse 𝐴𝑖 according to

𝑃 ∝ sin(𝐴1) sin
2 (

𝐴2
2
) . (2.7)

Thus, the signal has local maxima for 𝐴1 = (2n + 1)𝜋/2 and 𝐴2 = (2n + 1)𝜋, where n is an
integer. In the presented study, we focus on Rabi rotations as a function of the second pulse’s
area 𝐴2. This choice is advantageous because of two reasons. First, the peak position of the echo
emission is not influenced when sweeping 𝐴2 and the Rabi oscillations can be analyzed at a fixed
time delay of 𝜏ref = 2𝜏12 [62]. Second, because of the sin

2 dependence in Equation (2.7), we can
differentiate a decrease in the PE amplitude caused by the inhomogeneity of Rabi frequencies
within the ensemble from a homogeneous excitation-induced decay of microscopic polarization.
The former leads to a loss of contrast of the oscillation approaching a constant non-zero value,
while the latter leads to a decay of the oscillation to zero without affecting the contrast.

One of the main problems in the observation of Rabi oscillations in intensity-dependent PEs from
an ensemble of quantum dots (QDs) results from the Gaussian distribution of laser intensities
within the finite spot size on the sample [62]. QDs that are located at the edges of the laser spot
experience a smaller laser intensity compared to QDs in the center of the spot. The pulse area in
Equation (2.7) therefore depends on the distance 𝑟 from the center. The total signal measured by
the interference of the signal field with the reference pulse may be written as

𝑃 ∝ ∫
∞

0
𝑟 e−

𝑟2

𝜎2 sin(𝐴1(𝑟)) sin
2(𝐴2(𝑟)/2) 𝑑𝑟 , (2.8)

where we assumed that all pulses (first, second, and reference) share the same radial symmetric
Gaussian profile 𝐴𝑖(𝑟) ∝ 𝐴𝑖,0 exp(−𝑟

2/𝜎2) with amplitude 𝐴𝑖,0 and width 𝜎. The integration over
the spatial coordinate 𝑟 in Equation (2.8) thus represents an integration over a distribution of
effective pulse areas, which results in a fading of the Rabi rotations, even when all QDs are
identical and share the same dipole moment.

We aim to overcome the elaborated problem by introducing a more narrow distribution of
intensities of the second pulse within the region of spatial overlap between the first and second
pulse. The simplest realization of this condition relies on using a significantly larger spot diameter
for the second beam such that the intensity is nearly constant in the region of spatial overlap,
which was for example used in Reference [106]. In this case, however, a large portion of the
available laser power is not used, which strongly limits the number of observable Rabi cycles.
Therefore, a uniformly distributed intensity profile of the focussed beam is desired, which is
ideally realized when using a flattop intensity profile for the second beam

𝐸Flattop2 (𝑟) = {
𝐸2,0 𝑟 ≤ 𝑅0
0 𝑟 > 𝑅0

. (2.9)

Here, the radius of the profile 𝑅0 shall be chosen in the range of 100 µm comparable to the
focussed Gaussian beam used in our experiments. The electric field distribution in the focus of a
lens 𝐸f(r) is given by the Fourier transform of the distribution before the lens 𝐸in(r)

𝐸f(𝑟) = FT [𝐸in(𝜌)] (𝑟) = ∫
∞

0
𝐸in(𝜌)𝐽0(2𝜋𝑟𝜌)𝜌d𝜌, (2.10)
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2.2 Realization of spatially flat laser pulses

with the zero-order Bessel function of first kind 𝐽0. A flattop intensity profile can be achieved by
using an Airy disk pattern for 𝐸in(r)

𝐸in(𝑟) ∝
𝐽1(2𝜋𝑟)
2𝜋𝑟

(2.11)

where 𝐽1(𝑟) is the first order Bessel function of the first kind. The task thus consists of realizing
an approximation of the Airy disk pattern using the Gaussian beam provided by the laser system
as an input.

Figure 2.3: (a) Explanation of a simple realization of a focal refractive beam shaper. Here,
a Gaussian beam passes an aspherical optical element (schematically sketched on top) with
thicker width 𝑑 within a radius 𝑅0. The resulting radial electric field amplitude is shown in red
in comparison to an Airy disk pattern (black). (b) Resulting radial intensity distribution in the
focal plane from a Gaussian (blue), Airy disk pattern (black), and field distribution resulting
from the refractive optical element described in (a) (red). (c) Schematic picture of the technical
realization of the beam shaper AdlOptica Focal 𝜋-Shaper. Here, a similar refractive element as
discussed in (a) and (b) is integrated into a zoom telescopic arrangement consisting of three
lenses with adjustable distances. The resulting beam is focussed with a lens to the sample plane.
To characterize the intensity profile, an optional mirror is introduced that guides the beam to a
camera.

The Airy disk pattern for example results from the diffraction on a circular aperture that is
sufficiently smaller than the width of the laser beam. Here, however, we meet again the problem
that a big portion of the laser intensity is lost. Therefore, we aim to approximate the Airy disk
pattern using refractive optics, which is a well-established approach in other fields of optics or
engineering where flattop intensity profiles are needed [107, 108]. Refractive beam shapers that
realize an Airy disk pattern are commercially available. In particular, we use the Focal 𝜋-Shaper
9HP from the company AdlOptica. The working principle of the shaper is briefly explained in
the following. A simple refractive optical element that creates an approximation of the Airy disk
pattern is given by an aspherical element whose thickness 𝑑(𝑟) as a function of distance 𝑟 to the
optical axis is given by

𝑑(𝑟) = {
𝑑0 𝑟 > 𝑅0
𝑑0 + 𝑁 𝜆

2𝑛 𝑟 ≤ 𝑅0
, (2.12)

where 𝑑0 is the thickness of the outer part (𝑟 > 𝑅0), 𝑁 is an odd number, 𝜆 is the wavelength of
the laser beam, and 𝑛 is the refractive index of the material. This binary phase plate is sketched
in the top part of Figure 2.3a. The thickness of the thicker inner part (𝑟 < 𝑅0) is chosen in such
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2 Experimental methods

a way that the phase of the radial electric field distribution within the radius 𝑅0 is shifted by 𝜋
relative to the outer part of the beam. Therefore, the sign of the electric field pattern is inverted.
We show the resulting electric field of a Gaussian beam passing this phase plate in Figure 2.3a in
comparison to the Airy disk pattern. Through the sign inversion of the wings of the Gaussian,
the overshoot of the Airy disk is approximated. The resulting intensity profile in the focal plane,
i.e. the absolute square of the Fourier transform of the electric field distributions in 2.3a, is shown
in Figure 2.3b. For comparison, a Gaussian intensity profile is shown in red. It can be seen
that the intensity profile from the phase plate exhibits a more flat intensity distribution in the
inner part as well as sharper edges on the sides. More sophisticated refractive beam shapers
optimize the discussed binary phase plate for a better approximation of the Airy disk. Here, a
smoother transition between the inner and outer parts of the phase plate is chosen to prevent
issues like overheating on the sharp edges, especially when using strong lasers. Furthermore, to
optimize the beam pattern, the phase plate is integrated into a zoom telescopic arrangement as
schematically shown in Figure 2.3c. Here, by shifting the relative distances between the three
optical elements, the size of the input Gaussian beam relative to the size of the phase-shifting
element can be adjusted. In this way, the flatness of the beam in the focal plane can be optimized.
To precisely adjust the profile of the beam in the focal plane, the intensity profile in the focal
plane has to be visualized. For this purpose, an optional mirror is introduced (Figure 2.3c) that
guides the beams on a charge-coupled device (CCD) camera placed at the same distance as the
sample plane.
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Figure 2.4: (a) Intensity profile of the first beam in the FWM experiment in the focal plane. The
profile is approximately given by a 2D Gaussian distribution. (b) Intensity profile of the second
beam, which was manipulated by the refractive beam shaper. (c) Cross-sections of the intensity
distribution in (a) and (b) for 𝑦 = 0. (d) Distribution of the intensities of the first and second
beam within the region of spatial overlap, marked by vertical dashed lines in (c).

Figure 2.4a and 2.4b present the intensity profiles of the first and second beams that we use for
the Rabi experiments. It can be seen that a more uniform distribution of the intensity profile
in the inner part of the second beam is achieved. Figure 2.4c shows cross-sections of the two
profiles for 𝑦 = 0. The Gaussian profile of the first beam lies well inside the uniform part of the
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2.3 Description of samples

flattop intensity profile of the second beam. To highlight the difference between the two intensity
profiles, we examine the intensity distribution through histograms, as shown in Figure 2.4d. For
the Gaussian profile, the area within which one can find the same intensities grows with the
distance from the center of the spot. As a result, the intensities are distributed over the full range
with an increasing trend towards zero. On the other hand, the shaped profile concentrates all
intensities closely around a mean value near the maximum intensity 𝐼0. By using a flat intensity
profile for the second beam while keeping the first beam Gaussian, we expect to significantly
reduce the damping of Rabi rotations as a function of 𝐴2. The experimental results are presented
in Chapter 5.

2.3 Description of samples

This section gives a brief description of the studied samples and how they were fabricated.

2.3.1 MAPbI3 and FA0.9Cs0.1PbI2.8Br0.2 single crystals

Figure 2.5: Images of (a) MAPbI3 and (b)
FA0.9Cs0.1PbI2.8Br0.2 single crystals. The lines
on the paper below have a separation of 1mm. The
images are reprinted from References [63] and [109].

Figures 2.5a and 2.5b show images of the studied MAPbI3 and FA0.9Cs0.1PbI2.8Br0.2 single crystals
that were grown within the groups of Vladimir Dyakonov at the University of Würzburg and
Maksym Kovalenko at ETH Zürich, respectively. Both crystals have sizes of roughly 3×3 ×2mm3

and exhibit a black color. Facets of the crystals can be identified that correspond to diagonal
planes of the cubic unit cell as discussed in Section 1.1. Both crystals are solution-grown. For
the growth of the MAPbI3 crystal, the components MAI and PbI2 were dissolved in a solution
consisting of 𝛾-butyrolactone and an admixture of different alcohols. The solution was heated
to a temperature of 85 °C, which led to the formation of perovskite crystals. For the growth of
the FA0.9Cs0.1PbI2.8Br0.2 crystal, CsI, FAI, PbI2, and PbBr2 were dissolved in 𝛾-butyrolactone and
the growth temperature was set to 100 °C. A detailed description of the growth procedures of
both systems can be found in References [110] and [109], respectively. The FWM experiments
presented in Chapters 3 and 4 were performed in reflection geometry. To improve the surface
quality of the crystals, the crystals were polished using a silk scarf and diamond dust.

2.3.2 (In,Ga)As quantum dot sample

A schematic side view of the studied (In,Ga)As quantum dot–cavity system is presented in
Figure 2.6a. The sample was grown by molecular beam epitaxy within the research group of
Sven Höfling at the University of Würzburg. A single layer of self-assembled quantum dots with
a density of roughly 1.8 × 109 cm−2 was grown through the deposition of InAs on GaAs using
the Stranski-Krastanov method. Details of the growth mode can be found in Reference [112].
Figure 2.6b shows a scanning electron microscopy image of the quantum dots before the growth
of additional layers. A silicon 𝛿-layer is positioned 10 nm below the quantum dots within the
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Figure 2.6: (a) Schematic side view of the quantum dot cavity system consisting of a single
layer of self-assembled (In,Ga)As quantum dots embedded in a cavity formed by two AlAs GaAs
distributed Bragg reflectors. A silicon 𝛿-layer is used to form mainly charged quantum dots.
Graphic from Reference [111]. (b) Scanning electron microscopy (SEM) image of the quantum
dots before capping. (c) SEM image of the layers forming the DBRs for the cavity.

matrix material. It functions as an electron donor in the GaAs material, supplying electrons to
form mainly charged quantum dots. An analysis of this property is given in Section 5.2. The
quantum dots are placed in a 𝜆-microcavity formed by two distributed Bragg reflectors (DBRs).
These DBRs are formed by alternating layers of AlAs and GaAs with respective thicknesses of
82 nm and 68 nm. The top and bottom layers consist of five and eighteen layers of AlAs/GaAs
pairs, respectively. A scanning electron microscopy image of the layers forming the cavity is
presented in Figure 2.6c. The studied sample is a roughly 5×5mm2 piece of a round wafer that was
rotated during the growth procedure. Therefore, the sample has a varying thickness that causes
a radial gradient of the resonance energy of the cavity of roughly 5meV/mm. As outlined in
Reference [113], hill-like deformations of the cavity that are naturally self-aligned to the quantum
dots can occur in the studied sample and further increase the light-matter coupling of the quantum
dots. An optical characterization of the system using photoluminescence spectroscopy is given
in Section 5.1.
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Exciton coherence in MAPbI3 and FA0.9Cs0.1PbI2.8Br0.2 –
role of localization 3
The experiments presented in this chapter investigate the coherent optical properties of excitons
in single crystals of MAPbI3 and FA0.9Cs0.1PbI2.8Br0.2. In both samples, the exciton resonance
is found to dominate the nonlinear spectrum. The transient four-wave mixing (FWM) signal is
given by photon echos (PEs) which reveals the effect of crystallographic disorder. Applying the
two- and three-pulse PE techniques, the decoherence time 𝑇2 and the population decay time 𝑇1
are extracted. For MAPbI3, both values are found to be ≲ 1 ps, whereas for FA0.9Cs0.1PbI2.8Br0.2,
the relaxation times are by two orders of magnitude longer. By decomposing the decoherence
time into contributions of pure decoherence and energy relaxation as a function of photon energy
and temperature, signatures of exciton localization in the mixed crystal FA0.9Cs0.1PbI2.8Br0.2 are
revealed that resemble the behavior of zero-dimensional systemswith discrete energy spectra such
as semiconductor quantum dots. The discrepancy found between ternaryMAPbI3 and quinternary
FA0.9Cs0.1PbI2.8Br0.2 suggests that spatial fluctuations of the cation and halide content in mixed
perovskites can lead to crystal potential fluctuations on the length scale comparable to the exciton
Bohr radius. The results presented in this chapter were previously published in:

A. V. Trifonov, S. Grisard, A. N. Kosarev, I. A. Akimov, D. R. Yakovlev, J. Höcker, V.
Dyakonov, and M. Bayer, “Photon echo polarimetry of excitons and biexcitons in a
CH3NH3PbI3 perovskite single crystal”, ACS Photonics 9, 621 (2022)
doi: 10.1021/acsphotonics.1c01603, ©2022 American Chemical Society

S. Grisard, A. V. Trifonov, I. A. Solovev, D. R. Yakovlev, O. Hordiichuk, M. V. Kovalenko,
M. Bayer, and I. A. Akimov, “Long-Lived Exciton Coherence in Mixed-Halide Perovskite
Crystals”, Nano Letters 23, 7397 (2023)
doi: 10.1021/acs.nanolett.3c01817, ©2023 American Chemical Society

3.1 Exciton coherence in MAPbI3

As a first step of our study, we measure the FWM spectrum of the excitonic resonance in MAPbI3
at a temperature of 1.5 K. Throughout the experiments, the sample is excited by the laser from the
top surface which points towards the a-axis as characterized by X-Ray diffraction [110]. To gain
high spectral resolution, we use the spectrally narrow picosecond pulses of the MIRA900 laser
with a duration of 4 ps and spectral width of 0.3meV. First and second pulses in the standard
FWM geometry (Section 2.1) hit the sample simultaneously (𝜏12 = 0) and the FWM response
emitted in the direction 2k2 − k1 is measured as a function of the central photon energy. The
resulting spectral dependence, presented in Figure 3.1a, exhibits a broad resonance with full
width at half maximum (FWHM) of 8meV and a maximum at 1.639 eV. Both, peak position and
width of the observed resonance are in agreement with those observed on the exciton resonance
in Reference [42] where absorption spectroscopy was applied to a MAPbI3 crystal revealing an
exciton binding energy of roughly 10meV [42]. Note that linear spectroscopic techniques such as
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3 Exciton coherence in MAPbI3 and FA0.9Cs0.1PbI2.8Br0.2 – role of localization

reflection and absorption spectroscopy do not allow to disentangle contributions of homogeneous
and inhomogeneous broadening to the overall exciton linewidth. To address this issue, we make
use of the time resolution of our FWM technique in the following. Throughout the rest of this
section, we excite the sample at the maximum photon energy of 1.639 eV. Since the decoherence
time is not resolved using the picosecond-pulses, we switch to the femtosecond regime of the
Mira900 laser, which offers a higher temporal resolution. The spectrum of the 170 fs pulses has a
FWHM of roughly 11meV thus fully covering the exciton resonance.
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Figure 3.1: (a) FWM spectrum of the excitonic resonance in single crystal MAPbI3 measured
using the spectrally narrow picosecond-pulses. (b) Time-resolved FWM signal as a function of
𝜏ref and 𝜏12 measured using the femtosecond-pulses. All pulses are linearly co-polarized. The red
dashed line highlights the expected behavior of the PE 𝜏ref = 2𝜏12. (c) Decay of the PE amplitude
(green dots) and fit to a single exponential function (red line). (d) Temporal cross-section of the
measured signal in (b) for 𝜏12 = 1.5 ps.

To analyze the temporal characteristic of the FWM response, we continuously scan the arrival
time of the reference pulse for a set of values of the temporal gap 𝜏12 between the first and
second pulse. The resulting two-dimensional data set of the heterodyne signal is shown as a color
map in Figure 3.1b. Here, the characteristic dependence of the PE following 𝜏ref = 2𝜏12 can be
observed as highlighted by the red dashed line. An additional signal at 𝜏ref = 0, independent of
𝜏12, is an artifact from scattered light of the first pulse arising from an imperfect sample surface
(as already discussed in Section 2.1). We can conclude that the exciton resonance in MAPbI3
is inhomogeneously broadened. It is remarkable that even in a high-quality MAPbI3 single
crystal at 1.5 K, inhomogeneous broadening of the exciton transition represents a significant
source of optical dephasing. The broadening might be associated with local crystal potential
fluctuations potentially associated with random orientations of the organic cation. A discussion
of this property within a broader context is given in the concluding section of this chapter.

To extract the homogeneous coherence time 𝑇2, we consider the decay of the PE amplitude as a
function of 𝜏ref = 2𝜏12, as shown in Figure 3.1c. A fit to a single exponential, shown in red, results in
𝑇2 = (0.8 ± 0.1) ps corresponding to a homogeneous exciton linewidth of 𝛤2 = 2ℏ/𝑇2 = 1.67meV.
We note at this point that we reconsider the decay of the PE amplitude in Section 4.1.4 where
we take the influence of the biexciton resonance into account. The deviation is here however of
minor importance for the fitted value of 𝑇2. To put the homogeneous broadening into context
with the inhomogeneous broadening of the exciton ensemble, we analyze the temporal profile of
the PE. Figure 3.1d shows a horizontal cross-section of the map in Figure 3.1b for 𝜏12 = 1.5 ps.
The PE pulse is well described by a Gaussian with FWHM of (0.92 ± 0.12) ps. A deconvolution of
the fitted curve from the temporal profile of the reference pulse results in the red dashed line.
The width of the deconvoluted pulse corresponds to 𝑇 ∗2 = (0.88 ± 0.12) ps. Note that the PE peak
position is shifted relative to 𝜏ref = 2𝜏12 = 3 ps. This effect occurs when the decoherence time
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3.1 Exciton coherence in MAPbI3

𝑇2 and dephasing time 𝑇 ∗2 are comparable since the temporal profile of the FWM response is
described by

𝑃(𝜏ref) ∝ exp (−
𝜏ref
𝑇2

−
4ln(2)(𝜏ref − 2𝜏12)

2

𝑇 ∗22
) , (3.1)

as previously discussed in Section 1.2.1. Consequently, the PE pulse has a maximum at

𝜏ref = 2𝜏12 −
𝑇 ∗22

8ln(2)𝑇2
, (3.2)

which simplifies to 𝜏ref = 2𝜏12 in the limiting case of 𝑇2 ≫ 𝑇 ∗2 . Equation (3.2) predicts a constant
shift of (0.18 ± 0.05) ps taking into account the aforementioned values of 𝑇2 and 𝑇 ∗2 . From the
fit using a Gaussian function, as shown by the black line in Figure 3.1d, we extract a shift
of roughly (0.40 ± 0.02) ps. The deviation may be attributed to the influence of the biexciton
resonance as will be discussed in Section 4.1.

An inhomogeneous broadening of the exciton transition due to crystallographic disorder may lead
to spatial confinement of the exciton as a whole when the spatial extent of band gap fluctuations
is comparable to the exciton Bohr radius. In this case, we expect an extended exciton population
lifetime 𝑇1. We therefore experimentally consider the population decay of the exciton in a three-
pulse experiment. The second and third pulses share the same wavevector, such that the three-
and two-pulse PE are emitted in the same direction 2k2−k1. Figure 3.2a visualizes the heterodyne
signal as a function of 𝜏12 and 𝜏ref for a fixed value of 𝜏13 = 4.3 ps. Here, we can observe the
coexistence of two-pulse and three-pulse PE, where the two-pulse PE arising from the first and
second pulse follows 𝜏ref = 2𝜏12 (red dashed line) and the three-pulse PE 𝜏ref = 𝜏12 + 𝜏13 (white
dashed line). The two-pulse PE arising from the interaction of the sample with the first and
third pulse is not resolved in our experiments. The decay of the three-pulse PE as a function of
𝜏ref = 𝜏12 + 𝜏13 for a fixed value of 𝜏12 = 1 ps is shown in Figure 3.2b. A fit to a single exponential
gives the exciton population decay time 𝑇1 = (0.9 ± 0.1) ps which is comparable to 𝑇2.

The observed timescales are comparable to those found in other semiconductor structures such
as GaAs, where excitons are effectively free [4]. Note that the decoherence time and population
decay time in confined semiconductor systems such as (In,Ga)As semiconductor quantum dots lie
in the order of 1 ns [64, 114]. Therefore, we conclude that excitons in the MAPbI3 crystal are quasi-
free, i.e. the characteristic length scale of band gap fluctuations that give rise to inhomogeneous
broadening is significantly larger than the exciton Bohr radius. Although the exciton lifetime
and coherence time are short, exciton-exciton interactions or the formation of multi-excitonic
complexes such as trions or biexcitons may be favored by the effect of crystallographic disorder.
We study this possibility in Section 4.1 by applying the PE polarimetry technique to the exciton
resonance.
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Figure 3.2: (a) Time-resolved heterodyne signal in a three-pulse PE experiment for a set of
delays 𝜏12 between first and second pulse. The delay between the first and third pulse is constant
𝜏13 = 4.3 ps. The dashed lines show the characteristic dependencies of the two- and three-pulse
PE on the delay 𝜏12, as described in the main text. (b) Decay of the three-pulse PE amplitude
as a function of 𝜏ref = 𝜏12 + 𝜏13. Here, 𝜏13 is scanned, while 𝜏12 is set to 1 ps. The fit to a single
exponential (red line) allows to extract the population decay time 𝑇1.

3.2 Long-lived exciton coherence in FA0.9Cs0.1PbI2.8Br0.2

We commence our study of FA0.9Cs0.1PbI2.8Br0.2 following the same procedure as presented for
MAPbI3. In contrast to MAPbI3, the transient FWM response of the quinternary alloy is well
resolved using the picosecond-pulses of the MIRA900 that are applied throughout this section.
Note that the use of spectrally narrow picosecond-pulses allows us to gain information about the
homogeneous exciton linewidth with spectral resolution over the inhomogeneous broadening.

As a first step, we analyze the FWM spectrum of the FA0.9Cs0.1PbI2.8Br0.2 sample close to the
band gap energy 1.52 eV as reported in Reference [115] for a crystal of the same composition.
The spectral dependence is shown in Figure 3.3a where we observe an asymmetric lineshape with
a peak at 1.515 eV. Here, the low energy part of the spectrum has a half width at half maximum
(HWHM) of 8meV, while the high energy part is significantly broader with a HWHM of 23meV.
Thus, the total FWHM amounts to 31meV. The width on the low energy side coincides with the
result of photoluminescence excitation (PLE) spectroscopy performed in Reference [115], whereas
the broad high energy tail may be influenced by contributions from excited exciton states, which
are not resolved in PLE. The large width as well as the asymmetry of the spectrum hint at a
dominant contribution of inhomogeneous broadening [116]. The presence of inhomogeneous
broadening of the exciton line can be confirmed by introducing a delay of 𝜏12 = 26.5 ps between
the first and second pulse with a photon energy of 1.515 eV. In this case, as presented in Figure 3.3b,
the FWM response of the sample is given by a PE pulse. The pulse is well described by a Gaussian
function centered at 𝜏ref = 2𝜏12 = 53 ps with a FWHM of 9 ps. A deconvolution of the fitted
Gaussian from the temporal profile of the reference pulse is shown by the red curve in Figure 3.3b,
revealing a FWHM of 7.5 ps of the PE pulse. Note that the laser spectrum with a width of 0.3meV
is narrower than the inhomogeneously broadened exciton resonance. Therefore, the duration of
the PE pulse is approximately given by the duration of the laser pulses (6.5 ps associated with the
FWHM of the electric field envelope).

Figure 3.3c presents the result of a 𝑇2 measurement at a photon energy of 1.515 eV using the
two-pulse PE. The two-pulse PE amplitude follows a single exponential decay ∝ exp(−2𝜏12/𝑇2)
with 𝑇2 = (83 ± 1) ps corresponding to a narrow Lorentzian homogeneous line with FWHM of
𝛤2 = 2ℏ/𝑇2 = (15.9 ± 0.2) µeV. The FWM spectrum shown in Figure 3.3a is thus dominantly
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Figure 3.3: (a) FWM spectrum of the FA0.9Cs0.1PbI2.8Br0.2 crystal. Arrows indicate the peak
position and FWHM. For comparison, we show the photoluminescence (PL) spectrum. (b)
Time-resolved PE pulse, measured for 𝜏12 = 26.5 ps. The blue line is a fit to a Gaussian function,
the red line is the calculated deconvolution from the reference pulse envelope. (c) Decays of the
two- and three-pulse PE (2PE/3PE). Both decays are measured at a photon energy of 1.515 eV at
𝑇 = 1.5 K. The dashed red lines represent fits to single exponential functions.

inhomogeneously broadened. In particular, the inhomogeneous broadening exceeds the homo-
geneous broadening by three orders of magnitude. It is remarkable that the coherence time of
excitons in the FA0.9Cs0.1PbI2.8Br0.2 crystal is by two orders of magnitude longer as compared to
the measured value in the ternary perovskite crystal MAPbI3 presented in the previous section
(𝑇2 = 0.9 ps). Instead, the observed value resembles results obtained in low-dimensional per-
ovskites systems such nanocrystals of CsPbBr2Cl (𝑇2 ≈ 25 ps measured at 5 K in Reference [117])
or CsPbI3 (𝑇2 ≈ 10 ps at 3 K in Reference [118]).

The long coherence time suggests a reduced interaction of excitons with their environment,
which may be attributed to the localization of excitons in potentials formed by spatial fluctuations
of the crystal composition. This idea is also encouraged by transient photoluminescence (PL)
measurements published in Reference [119]. Here, it is found that the time-integrated PL,
appearing at the low energy side of the exciton transition (shown in Figure 3.3a for comparison),
is dominated by slow recombination dynamics of separately localized electrons and holes. We aim
to understand if such localization sites give also rise to the localization of excitons as awhole which
would explain the long-lived exciton coherence. Coherent laser spectroscopy was successfully
used in the past to study various semiconductor systems that are subject to compositional or
geometric disorder, such as GaAs/(Al,Ga)As quantum wells that exhibit spatial fluctuations of the
well width [21]. Spatial disorder can lead to exciton localization and, consequently, to a reduction
in their mobility accompanied by a narrowing of the homogeneous linewidth. Localized excitons
in mixed semiconductor crystals were studied in a variety of semiconductors such as the II-VI
alloys CdSxSe1–x [20, 120] or ZnSe1–xTex [121, 122]. The formation of quantized energy levels
due to exciton localization in three dimensions can lead to a drastic reduction of phonon-assisted
energy relaxation [123–127]. Further, the relative importance of purely elastic scattering events
can be enhanced by the localization [54, 116, 128].

Figure 3.4 summarizes potential mechanisms that affect the decoherence of localized excitons
in a spatially modulated potential energy landscape. As discussed in Section 1.2, the decay of
coherence is mediated by both elastic and inelastic scattering events. The former is manifested
in the population decay time 𝑇1, the latter in the pure decoherence time 𝑇 ′2 , such that 1/𝑇2 =
1/2𝑇1 + 1/𝑇 ′2 . The population decay time 𝑇1 includes contributions of energy relaxation and
recombination of excitons. The energy relaxation on a timescale 𝜏ε, case (i) in Figure 3.4, may result
from the tunneling of excitons between localization sites of different energy or the relaxation
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3 Exciton coherence in MAPbI3 and FA0.9Cs0.1PbI2.8Br0.2 – role of localization

to lower energy levels within a single localization site. For excitons in the lower energy states,
the population decay time is limited by the finite lifetime through the exciton recombination
or non-radiative dissociation of electron and hole on a timescale 𝜏r, case (ii). Thus, the exciton
population decay time can be written as

1
𝑇1

= 1
𝜏ε

+ 1
𝜏r
. (3.3)

Pure decoherence processes involve, for example, elastic scattering events with phonons, as
we show in case (iii) in Figure 3.4. Here, the exciton is excited to and deexcited from a virtual
state, which leaves the energy and population unaffected, but changes the phase of the exciton
wave function. We aim to quantify the discussed mechanisms to the exciton decoherence in the
following.

Figure 3.4: Visualization of possible contributions to the exciton linewidth in the context of
localized excitons in a random potential. The population decay time 𝑇1 involves contributions of
(i) energy relaxation and (ii) recombination. Elastic scattering events as shown in (iii) represent
a pure decoherence mechanism and only contribute to 𝑇2.

We decompose the coherence time 𝑇2 into contributions arising from population decay and
purely elastic scattering. Therefore, we measure the decay of the three-pulse PE centered at
𝜏ref = 2𝜏12 + 𝜏23 for a fixed value of 𝜏12 = 20 ps. The three-pulse PE amplitude, shown in
Figure 3.3c by a blue line, decays exponentially with 𝑇1 = (88 ± 3) ps. The measured value
for 𝑇2 = (83 ± 1) ps at a photon energy of 1.515 eV is noticeably smaller than 2𝑇1 ≈ 176 ps (as
expected in lifetime limited case 𝑇2 = 2𝑇1), which demonstrates a significant contribution of
pure decoherence mechanisms. Using Equation (1.6), we obtain a value of 𝑇 ′2 = (158 ± 6) ps
and the contribution to the homogeneous linewidth 𝛤 ′

2 = 2ℏ/𝑇 ′2 = (8.3 ± 0.3) µeV. To gain
insight into the origin of pure decoherence, we perform a temperature-dependent measurement.
Figure 3.5a shows two contributions arising from pure decoherence rate 𝛤 ′

2 and population decay
rate 𝛤1/2 = ℏ/𝑇1 as a function of temperature. In this representation, the sum of these quantities
determines the homogeneous linewidth of the exciton 𝛤2 = 2ℏ/𝑇2 (Equation (1.6)). The right axis
in Figure 3.5a shows the corresponding inverted scale for the decay times. We observe that the
pure decoherence rate 𝛤 ′

2 grows faster compared to 𝛤1/2 in a non-linear manner from 8 µeV at
1.5 K to 130 µeV at 10 K. 𝛤1/2 in turn does not experience a significant rise and remains below
20 µeV in the observed temperature range. This observation is in agreement with the localization
of excitons since the discrete energy spectrum of the localized excitons suppresses their energy
relaxation, and in particular activation of higher energy states via phonon absorption. Such
processes would lead to a rise of 𝛤1 with increasing temperature [125, 126]. Pure elastic scattering
events involving phonons in turn are more important for localized excitons due to the enhanced
spread of the exciton wavefunction in momentum space [128]. In this way, pure decoherence is
enhanced by the increasing phonon population with temperature.
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Figure 3.5: (a) Contributions to the homogeneous exciton linewidth 𝛤2 = 2ℏ/𝑇2 associated with
the population decay rate 𝛤1/2 = ℏ/𝑇1 and pure decoherence rate 𝛤 ′

2 = 2ℏ/𝑇 ′
2 as a function

of temperature, measured at a photon energy of 1.515 eV. Here, 𝛤2 and 𝛤1 result from the
measurement of the PE decay as a function of 𝜏12 and 𝜏23, respectively, whereas 𝛤

′
2 is calculated

using Equation (1.6). (b) Dependence of 𝛤2, 𝛤1/2, and 𝛤 ′
2 on the central photon energy of the

ps-laser pulses, measured at a temperature of 1.5 K. The solid line shows the FWM spectrum
for comparison in arbitrary units.

To address exciton states with different energies, we measure a spectral dependence of the exciton
linewidth. Within an ensemble of excitons localized by compositional fluctuations, excitons
contributing to the low energy side of the spectrum are stronger localized compared to excitons
that contribute the high energy side. In Figure 3.5b we plot results for 𝛤1 and 𝛤 ′

2 as a function
of the laser photon energy, measured at a temperature of 1.5 K. The FWM spectrum is shown
in the same graph for orientation. We observe that the contribution of population decay to the
homogeneous linewidth 𝛤1/2 monotonically increases towards higher energies from roughly
5 µeV to 20 µeV, while the pure decoherence rate 𝛤 ′

2 gradually decreases from 15 µeV to 3 µeV
and becomes significantly smaller than 𝛤1/2. Such behavior leads toward the limiting case at
higher energies where the homogeneous linewidth is determined by the population decay, i.e.
𝛤2 = 𝛤1/2 ≈ 23 µeV.

These observations are in agreement with the aforementioned correlation between the efficiency
of energy relaxation and pure decoherence mechanisms for excitons with different degrees of
localization. In particular, a decrease of the pure decoherence rate 𝛤 ′

2 with increasing photon
energy demonstrates that excitons with higher energies possess a smaller degree of localization
because the elastic phonon scattering mechanism is significantly reduced (case (iii) in Figure 3.4).
In contrast, the energy relaxation rate 1/𝜏ε is negligible for excitons in low-energy states due
to the absence of lower energy states that can be accessed via phonon emission [124, 129].
Therefore, the population decay time measured on the low energy side of the spectrum at
1.510 eV, 𝑇1 = (108 ± 4) ps, is the best estimate for the exciton lifetime 𝜏r, which takes place due
to exciton recombination (case (ii) in Figure 3.4). At higher energies, the role of confined exciton
states with larger quantum number as well as hopping of weakly localized excitons into the
deeper potential sites accompanied by phonon emission starts to play an important role, i.e. 1/𝜏ε
dominates the population decay rate (case (i) in Figure 3.4). In conclusion, we thus indeed find
agreement between the expectations of the picture of excitons confined in a random potential
and the measured temperature and energy dependences.
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As a final step, we combine the results from the spectral and temperature dependencies to estimate
the relevant size of exciton localization sites. For this purpose, we assume that the excitons are
localized in a spherically symmetric potential well 𝑉 (𝑟) with finite height 𝑈 and diameter 𝑑

𝑉 (𝑟) = {
−𝑈 𝑟 ≤ 𝑑

2
0 𝑟 > 𝑑

2 ,
(3.4)

which is a well-known model from basic quantum mechanics in three dimensions [130]. The
allowed energy levels 𝜀n in such potential have to obey the equation

tan(𝑧n) = − 1

√
𝑧20
𝑧n

− 1
, 𝑧n = √2𝑚(𝑈 + 𝜀n)𝑑

2ℏ
, 𝑧0 =

√2𝑚𝑈𝑑
2ℏ

, (3.5)

where 𝑚 ≈ 0.5𝑚0 is the exciton mass [131–133]. Our best estimate for the mean depth of the
potential is given by the inhomogeneous broadening of the exciton resonance 𝑈 = 16meV. At
least one bound solution of Equation (3.5) can be found for all 𝑧0 ≥ 𝜋/2, which leads to a lower
bound of the potential diameter [5]

𝑑 ≥ 𝜋ℏ/√2𝑚𝑈 ≈ 7 nm. (3.6)

An upper bound can be estimated from the following observation: Under resonant excitation
with a photon energy of 1.515 eV, we do not observe the activation of higher energy states up to a
temperature of 10 K, which would result in a significant rise of 𝛤1 in Figure 3.5b. This means that
the energy distance to the next higher-lying confinement state is larger than 𝑘B ⋅ 10 K ≈ 1meV,
where 𝑘B is the Boltzmann constant. Using this value as the minimal energy spacing 𝛥min between
the two lowest states of excitons confined in the spherical potential, we can estimate the maximum
diameter of the potential well. Taking into account that the potential height 𝑈 ≈ 16meV is
significantly larger than 𝛥min, we can approximate 𝑧1 ≈ 𝜋 and 𝑧2 ≈ 2𝜋 in Equation (3.5), which
leads to the upper bound

𝜀2 − 𝜀1 =
6𝜋2ℏ2

𝑚𝑑2
≥ 𝛥min ⇔ 𝑑 ≤ 𝜋ℏ√6/𝛥min𝑚 ≈ 95 nm. (3.7)

Therefore, we estimate that potential fluctuations with a magnitude of about 16meV take place
in the FA0.9Cs0.1PbI2.8Br0.2 crystal on a scale of 7 nm to 95 nm.

3.3 Conclusions

This chapter presented two of the first applications of coherent spectroscopy to excitons in
single crystals of organic-inorganic perovskites. The observation of photon echoes revealed
the importance of crystallographic disorder on the transition energy of excitons in high-quality
perovskite single crystals at cryogenic temperatures. As already mentioned in Section 1.1,
the rotational degree of freedom of the organic cation introduces a possible source of spatial
fluctuations of the band gap that may contribute to the large inhomogenous broadening in the
order of 10meV in both MAPbI3 and FA0.9Cs0.1PbI2.8Br0.2. The drastic difference in exciton
coherence times, ≈ 0.8 ps in MAPbI3 versus ≈ 80 ps in FA0.9Cs0.1PbI2.8Br0.2, highlights that
potential energy fluctuations in the two studied systems appear on different length scales. In
the latter case, excitons show clear signatures of zero-dimensional systems in both energy and
temperature dependences which demonstrates that excitons are confined as a whole and thus
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3.3 Conclusions

exhibit extended coherence times. This observation suggests that random fluctuations of the
alloy content in FA0.9Cs0.1PbI2.8Br0.2 introduce an additional mechanism that can lead to band
gap fluctuation on the nanometer scale. To gain full insight into the microscopic origin of
spatial disorder in mixed perovskite semiconductors, detailed studies of the exciton coherence
time as a function of alloy composition are needed. In conclusion, the results presented in this
chapter prove that coherent spectroscopy of excitons can provide valuable information about the
non-trivial structural properties of organic-inorganic perovskites.
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Spin-dependent exciton interactions in MAPbI3 and
FA0.9Cs0.1PbI2.8Br0.2 4
This chapter focusses on the role of exciton interactions in MAPbI3 and FA0.9Cs0.1PbI2.8Br0.2. In
both crystals, pronounced deviations from the assumption of non-interacting excitons are found
in the dependences on the polarization of the exciting laser fields. For MAPbI3 (Section 4.1),
these deviations are found to be a result of the formation of biexcitons, a bound state of two
excitons with opposite spins, upon excitation with broadband femtosecond-pulses. The biexciton
binding energy of 2.4meV is extracted using polarization beats of the photon echo. In the case
of FA0.9Cs0.1PbI2.8Br0.2 (Section 4.2), strong deviations of the nonlinear exciton polarization
selection rules as well as a polarization-dependent power dependence of the homogeneous
linewidth are found to be a result of spin-dependent excitation-induced dephasing.

4.1 Biexciton formation in MAPbI3

In this section, we observe the formation of a biexciton complex inMAPbI3 for which wemake use
of quantum beatings of the PE polarization state. A detailed modeling of the transient polarization
dependences of the exciton-biexciton system enables us to develop an experimental protocol to
measure the biexciton binding energy of 2.4meV. Remarkably, the presented approach allows us
to measure the biexciton binding energy although the beating period is shorter than the exciton
and biexciton decoherence times. Throughout this section, the exciton resonance in MAPbI3 is
resonantly excited at 1.639 eV using the femtosecond-pulses of the MIRA900 laser (FWHM 170 fs,
11meV spectral width). The sample is cooled down to 1.5 K.

4.1.1 Photon echo polarimetry
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Figure 4.1: (a)/(b) Experimental polar rosettes, i.e. photon echo (PE) amplitude as a function
of the linear polarization angle 𝜑 between first and second pulse, for two different values of
𝜏ref = 2𝜏12 as indicated in the subfigure titles. (c) Measurement of the rosettes shown in (a) and
(b) for a set of 𝜏ref values.
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4 Spin-dependent exciton interactions in MAPbI3 and FA0.9Cs0.1PbI2.8Br0.2

As discussed in Section 1.2.3, the PE polarimetry technique reveals the formation ofmulti-excitonic
resonances such as charged excitons (trions) even when the inhomogeneous broadening exceeds
the energetic splitting between such complexes and the single exciton resonance [63, 102]. For
example, the dependence of the horizontally polarized component of the PE amplitude on the
relative linear polarization angle 𝜑 between the horizontally polarized first pulse and second
pulse (configuration referred to as HRH) allows us to conclude on the underlying energy level
arrangement with corresponding dipole selection rules.

Interestingly, we observe that the qualitative shape of the measured rosettes in the HRH con-
figuration in the studied MAPbI3 sample depends on the temporal delay between the first and
second pulse as presented in Figure 4.1a and 4.1b. For 𝜏ref = 0.1 ps, we observe a four-leave
polar rosette with local maxima in the configurations HHH and HVH whereas for 𝜏ref = 2.7 ps,
we only see two local maxima for co-polarized first and second pulse (HHH). To quantify this
temporal dependence, we measure the rosettes for a series of delays and present the result as a
color map in Figure 4.1c. The transition between a four- and two-leave behavior results from a
faster decrease of the signal in HVH configuration on a time scale of approximately 0.5 ps. For
a bare exciton resonance with a V-type energy level arrangement, as shown in Figure 4.2a, the
continuous dependence of the PE signal on the angle 𝜑 reads as cos2(𝜑) (Figure 4.2b). A signal in
the configuration HVH is consequently not allowed. The observation in Figure 4.1c therefore
represents a strong hint that on a short timescale of 0.5 ps, a multi-excitonic complex contributes
to the coherent response of the MAPbI3 crystal. Note that we use the linear polarization basis for
the optical transitions in all the level schemes that we discuss within this section as it simplifies
the discussion of the polarization dependences of the biexciton system (shown below).

|G⟩

|X+⟩ |X−⟩

H V

(a)

|e+⟩ |e−⟩

|h+⟩ |h−⟩

H H
V

(c)(b) 𝜑
0.5

1 (d) 𝜑
0.5

1

Figure 4.2: (a) Energy level scheme of the exciton with allowed optical transitions in linear
polarization base. Here, |G⟩ is the ground state of the crystal and |X±⟩ = 1/√2(|X↑⟩ ± |X↓⟩) are
constructed from the optically bright spin up/down states |X↑↓⟩ of the exciton. (b) Expected polar
rosette for the exciton level scheme in (a). (c) Scheme of the trion, where |e±⟩ = 1/√2(|e↑⟩ ± |e↓⟩)
and |h±⟩ = 1/√2(|h↑⟩ ± |h↓⟩) are ground states of the system with a resident electron with spin
up/down and excited trion states with hole spin up/down. (d) Expected polar rosette of the
trion scheme (blue) and interference of exciton and trion (green) as described in the text.

Taking into account recent studies of resident carrier spin dynamics in similar lead-halide per-
ovskite materials [115, 134], it is a realistic scenario that trions may be formed spectrally close to
the free exciton. For the trion with a four-level energy arrangement as shown in Figure 4.2c, a
signal in HVH is allowed through the quantum path

|e+⟩⟨e+| k1(H)|e+⟩⟨h+|k2(V) |h−⟩⟨h+| k2(V)|h−⟩⟨e−|2k2 − k1(H)

. (4.1)

Here, the polarization components are indicated in brackets for each interaction. The overall
polar dependence is given by | cos(2𝜑)|, which is shown by the blue line in Figure 4.2d. Therefore,
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4.1 Biexciton formation in MAPbI3

at first glance, the observed trend may be explained by the coexistence of excitons and trions.
We consider carefully which polarimetric behavior can be expected from a mixed ensemble of
excitons and trions. Here, the total temporal and polar dependence of the PE amplitude 𝑃(𝜑, 𝜏ref)
results from the superposition of two independent polarizations 𝑃𝑋 (exciton) and 𝑃𝑇 (trion)

𝑃(𝜑, 𝜏ref) ∝ 𝑃X(𝜑) + 𝑟XT ⋅ 𝑃T(𝜑) = (𝑟XTe
− 𝜏ref

𝑇T2 + e
− 𝜏ref

𝑇X2

2
) cos(2𝜑) + e

− 𝜏ref
𝑇X2

2
, (4.2)

where 𝑟XT denotes the ratio between the number of trions and neutral excitons and 𝑇T2 and 𝑇X2
are the respective decoherence times. We assumed that both transitions share the same dipole
moment. Note that the expression in Equation (4.2) exhibits a zero crossing for any choice of
𝑟XT and decoherence times since the sign of the trion polarization in HVH is negative relative to
the exciton and trion polarization in HHH. The resulting polar rosette has a qualitative shape
as shown by the green line in Figure 4.2d for 𝜏ref = 0 and 𝑟XT = 1. We observe a similar polar
dependence of the PE amplitude on an ensemble of InGaAs semiconductor quantum dots where
the ratio 𝑟XT between charged and uncharged excitons is set by the applied optical power through
a photo-charging effect. These results are presented in Section 5.2. However, the observed polar
rosette on MAPbI3 for 𝜏ref = 0.1 ps, Figure 4.1a, clearly deviates from this qualitative shape as a
zero-crossing can not be observed. We thus conclude that the assumption of two independent
subensembles (excitons and trions) cannot explain our observations. A more striking argument
for this conclusion is given below by the experimental observation of quantum beats that cannot
be caused by the interference of two independent polarizations.

In fact, all experimental observations that we present in this chapter turn out to be compatible
with the formation of biexcitons. The biexciton is a bound state of two excitons with opposite spin,
which is in a direct analogy to the hydrogen molecule H2. As depicted in Figure 4.3a, the biexciton
can be considered as a four-level diamond scheme. Here, |G⟩ is the ground state, |X±⟩ denote
the degenerate exciton states as discussed above and |B⟩ = |X↑X↓⟩ is the spin-zero biexciton
state formed by two excitons of opposite spin. The energy of the biexciton state is lowered
by the biexciton binding energy 𝜀B relative to the energy of two non-interacting excitons 2𝜀.
In a four-wave mixing (FWM) experiment, the biexciton can be coherently excited when the
spectral width of the resonant laser pulses (11meV) is sufficiently larger than the biexciton
binding energy 𝜀B [98]. In particular, a signal in the configuration HVH arises from the following
quantum path

| 𝐺 ⟩⟨ 𝐺 | k1(H)| 𝐺 ⟩⟨X+|k2(V) |X−⟩⟨X+|k2(V) | 𝐵 ⟩⟨X+|2k2 − k1(H)

(4.3)

With the final horizontally polarized emission from the biexciton to exciton transition. In this
picture, a faster decay in HVH that we observed in the experiment could result from a shorter
decoherence time of the exciton-biexciton coherence in comparison to the exciton-ground state
coherence. Analytical modeling of the FWM response of the exciton-biexciton system is needed
to confirm the hypothesis of biexciton formation, which we present in the following.

4.1.2 Exciton-biexciton model

To quantitatively model the polarimetric behavior of the exciton-biexciton system within the PE
polarimetry method, we solve the optical Bloch equations in third-order perturbation theory using
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Figure 4.3: (a) Schematic of the exciton-biexciton system which expands the exciton scheme by
an additional biexciton state |B⟩ that is energetically lowered by the biexciton binding energy 𝜀B
from the two-exciton energy 2𝜀. (b) Colormap visualizing the temporal dynamics of the polar
rosettes that results from the energy difference between transitions from biexciton to exciton
and exciton to ground state.

the methods introduced in Section 1.2.2. The Hamiltonian of the unperturbed exciton-biexciton
system reads as

𝐻0 = diag(0, 𝜀, 𝜀, 2𝜀 − 𝜀B), (4.4)

where we have chosen the representation of the eigenvectors as |G⟩=̂(1, 0, 0, 0)⊤, |X+⟩=̂(0, 1, 0, 0)⊤,
|X−⟩=̂(0, 0, 1, 0)⊤, and |B⟩=̂(0, 0, 0, 1)⊤. Taking into account the dipole selection rules as indicated
in Figure 4.3a, the matrix V accounting for the interaction of the system with light is given by

V = −𝜇
⎛
⎜
⎜
⎝

0 𝐸H 𝐸V 0
𝐸∗H 0 0 𝐸H
𝐸∗V 0 0 𝐸V
0 𝐸∗H 𝐸∗V 0

⎞
⎟
⎟
⎠

(4.5)

where 𝜇 denotes the dipole moment, that we assume to be equal for all transitions (we set 𝜇 = 1
in the following) and 𝐸H (𝐸V) is the horizontally (vertically) polarized component of the light
field. We add decoherence times to the equation of motion for the density matrix elements of the
system as

𝑑
𝑑𝑡
𝝆 = 𝑖

ℏ
[𝝆,H0 + V] −

⎛
⎜
⎜
⎜
⎜
⎝

0 𝜌01
𝑇X2

𝜌02
𝑇X2

0
𝜌10
𝑇X2

0 0 𝜌13
𝑇B2𝜌20

𝑇X2
0 0 𝜌23

𝑇B2
0 𝜌31

𝑇B2

𝜌32
𝑇B2

0

⎞
⎟
⎟
⎟
⎟
⎠

, (4.6)

where we denoted the decoherence times of the exciton-ground state coherence and exciton-
biexciton coherence as 𝑇X2 and 𝑇B2 , respectively. All other decay times, such as the population
decay times are ignored since they do not contribute to the considered two-pulse PE experiments.
The temporal envelopes of the optical pulses are assumed to be delta functions. In Table 4.1
we show all time-ordered Feynman diagrams contributing to the four-wave mixing response in
the phase-matched direction 2k2 − k1 with the corresponding contribution to the third-order
polarization on top. Table 4.1 enables us to model the PE response in arbitrary polarization
configurations.
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Table 4.1: Feynman diagrams contributing to the FWM response of the exciton-biexciton
system in linear polarization base. Factors on top show the corresponding contribution to the
third-order polarization.

(A) 𝐸H, 1𝐸
∗2
H, 2e

𝑖 𝜀ℏ (2𝜏12−𝜏ref)+𝑖
𝜀𝐵
ℏ (𝜏ref−𝜏12)−

𝜏ref−𝜏12
𝑇B2

− 𝜏12
𝑇X2 (B) 𝐸V, 1𝐸

∗2
V, 2e

𝑖 𝜀ℏ (2𝜏12−𝜏ref)+𝑖
𝜀𝐵
ℏ (𝜏ref−𝜏12)−

𝜏ref−𝜏12
𝑇B2

− 𝜏12
𝑇X2 (C) 𝐸V, 1𝐸

∗2
V, 2e

𝑖 𝜀ℏ (2𝜏12−𝜏ref)−
𝜏ref
𝑇X2

| G ⟩⟨ G | k1(𝐻)
| G ⟩⟨X+|k2(𝐻)
|Χ+⟩⟨X+|k2(𝐻)
| B ⟩⟨X+|2k2 − k1(𝐻)

| G ⟩⟨ G | k1(𝑉 )| G ⟩⟨X−|k2(𝑉 ) |Χ−⟩⟨X−|k2(𝑉 ) | B ⟩⟨X−|2k2 − k1(𝑉 )

| G ⟩⟨ G | k1(𝑉 )| G ⟩⟨X−|k2(𝑉 ) |Χ−⟩⟨X−| k2(𝑉 )|Χ−⟩⟨ G |2k2 − k1(𝑉 )

(D) 𝐸V, 1𝐸
∗2
V, 2e

𝑖 𝜀ℏ (2𝜏12−𝜏ref)−
𝜏ref
𝑇X2 (E) 𝐸H, 1𝐸

∗2
H, 2e

𝑖 𝜀ℏ (2𝜏12−𝜏ref)−
𝜏ref
𝑇X2 (F) 𝐸H, 1𝐸

∗2
H, 2e

𝑖 𝜀ℏ (2𝜏12−𝜏ref)−
𝜏ref
𝑇X2

| G ⟩⟨ G | k1(𝑉 )| G ⟩⟨X−| k2(𝑉 )| G ⟩⟨ G |k2(𝑉 ) |Χ−⟩⟨ G |2k2 − k1(𝑉 )

| G ⟩⟨ G | k1(𝐻)
| G ⟩⟨X+|k2(𝐻)
|Χ+⟩⟨X+| k2(𝐻)
|Χ+⟩⟨ G |2k2 − k1(𝐻)

| G ⟩⟨ G | k1(𝐻)
| G ⟩⟨X+| k2(𝐻)
| G ⟩⟨ G |k2(𝐻)
|Χ+⟩⟨ G |2k2 − k1(𝐻)

(G) 𝐸H, 1𝐸
∗
H, 2𝐸

∗
V, 2e

𝑖 𝜀ℏ (2𝜏12−𝜏ref)−
𝜏ref
𝑇X2 (H) 𝐸H, 1𝐸

∗
H, 2𝐸

∗
V, 2e

𝑖 𝜀ℏ (2𝜏12−𝜏ref)−
𝜏ref
𝑇X2 (I) 𝐸H, 1𝐸

∗2
V, 2e

𝑖 𝜀ℏ (2𝜏12−𝜏ref)+𝑖
𝜀𝐵
ℏ (𝜏ref−𝜏12)−

𝜏ref−𝜏12
𝑇B2

− 𝜏12
𝑇X2

| G ⟩⟨ G | k1(𝐻)
| G ⟩⟨X+| k2(𝐻)
| G ⟩⟨ G |k2(𝑉 ) |Χ−⟩⟨ G |2k2 − k1(𝑉 )

| G ⟩⟨ G | k1(𝐻)
| G ⟩⟨X+|k2(𝑉 ) |Χ−⟩⟨X+| k2(𝐻)|Χ−⟩⟨ G |2k2 − k1(𝑉 )

| G ⟩⟨ G | k1(𝐻)
| G ⟩⟨X+|k2(𝑉 ) |Χ−⟩⟨X+|k2(𝑉 ) | B ⟩⟨X+|2k2 − k1(𝐻)

(J) 𝐸V, 1𝐸
∗2
H, 2e

𝑖 𝜀ℏ (2𝜏12−𝜏ref)+𝑖
𝜀𝐵
ℏ (𝜏ref−𝜏12)−

𝜏ref−𝜏12
𝑇B2

− 𝜏12
𝑇X2 (K) 𝐸V, 1𝐸

∗
H, 2𝐸

∗
V, 2e

𝑖 𝜀ℏ (2𝜏12−𝜏ref)−
𝜏ref
𝑇X2 (L) 𝐸V, 1𝐸

∗
H, 2𝐸

∗
V, 2e

𝑖 𝜀ℏ (2𝜏12−𝜏ref)−
𝜏ref
𝑇X2

| G ⟩⟨ G | k1(𝑉 )| G ⟩⟨X−|k2(𝐻)
|Χ+⟩⟨X−|k2(𝐻) | B ⟩⟨X−|2k2 − k1(𝑉 )

| G ⟩⟨ G | k1(𝑉 )| G ⟩⟨X−|k2(𝐻)
|Χ+⟩⟨X−| k2(𝑉 )|Χ+⟩⟨ G |2k2 − k1(𝐻)

| G ⟩⟨ G | k1(𝑉 )| G ⟩⟨X−| k2(𝑉 )| G ⟩⟨ G |k2(𝐻)
|Χ+⟩⟨ G |2k2 − k1(𝐻)
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To calculate the signal in the configuration HRH as a function of 𝜏ref, we construct the polarization
vector of first and second pulses in linear polarization base

(𝐸H, 1𝐸V, 1
) ∝ e𝑖k1 (10) , (𝐸H, 2𝐸V, 2

) ∝ e𝑖k2 (cos 𝜑sin 𝜑) , (4.7)

and sum up the contributions of all Feynman diagrams with final horizontally polarized emission.
In this way, we arrive at the temporal dependence of the polar rosettes

|𝐸BHRH| (𝜑, 𝜏ref) ∝ √
4 cos4 (𝜑) e

− 2𝜏ref
𝑇X + e

−𝜏ref(
1
𝑇X2

+ 1
𝑇B2

)
− 4 cos2 (𝜑) cos (

𝜀B
2ℏ

𝜏ref) e
−𝜏ref(

3
2𝑇X2

+ 1
2𝑇B2

)
.

(4.8)
Two special cases are the configurations HHH (𝜑 = 0) and HVH (𝜑 = 𝜋/2)

|𝐸BHHH| (𝜏ref) ∝ √
4e

− 2𝜏ref
𝑇X2 + e

−𝜏ref(
1
𝑇X2

+ 1
𝑇B2

)
− 4 cos (

𝜀B
2ℏ

𝜏ref)e
−𝜏ref(

3
2𝑇X2

+ 1
2𝑇B2

)
(4.9a)

|𝐸BHVH| (𝜏ref) ∝ e
− 𝜏ref

2 ( 1
𝑇X2

+ 1
𝑇B2

)
. (4.9b)

In the absence of decoherence, the function (4.8) can be simplified to

|𝐸BHRH| ∝ √
8 cos2 (𝜑)⏟⏟⏟⏟⏟⏟⏟⏟⏟
Two-leaves

sin2 (
𝜀B
4ℏ

𝜏ref) + cos2 (2𝜑)⏟⏟⏟⏟⏟⏟⏟⏟⏟
Four-leaves

, (4.10)

which is visualized in Figure 4.3b. Here, it can be seen that the rosettes oscillate between a two-
leave and four-leaf behavior at a frequency of 𝜀B/2ℎ, which is also highlighted in Equation (4.10)
by the brackets. Although an experimental transition from a four-leaf to a two-leaf behavior
was observed, the beating patterns could not be identified in the experimental trend shown
in Figure 4.1c. This may be due to decoherence times that are shorter than the quantum beat
period. A rough estimate for the expected quantum beat period results from an analogy to the 𝐻2
molecule whose binding energy (4.7 eV) is about one-third of the Rydberg energy (13.6 eV). Given
the exciton binding energy of 12meV, we can therefore expect a beating period of approximately
1.1 ps, which is significantly longer than the observed decoherence times, both in HHH and
HVH.

The observation of exciton-biexciton quantum beats would represent a direct proof of the biexciton
formation and would allow to extract the biexciton binding energy. To overcome the limitations
of short decoherence times, we considered polarization beats that turn out to allow for the
observation of oscillations on a longer time scale as amplitude beats, which is discussed in detail
in the next section.

4.1.3 Observation of polarization beats from the exciton-biexciton system

Oscillations of the polarization state of spectroscopic signals, such as FWM or photolumines-
cence, are discussed in various works as a sensitive tool to gain information about the optical
characteristics of the quantum mechanical system under study [135–141]. Here, we consider
polarization beats to place stringent constraints on the exciton-biexciton model and develop
an experimental protocol that enables us to measure the biexciton binding energy with high
confidence.
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4.1 Biexciton formation in MAPbI3

To induce polarization beats of the FWM response of the biexciton, we consider a modified
polarization configuration where the first pulse is circularly polarized whereas the second pulse
is horizontally polarized (called 𝜎+H for simplicity). Here, the first pulse simultaneously creates
a superposition of the polarizations |G⟩⟨X+| and |G⟩⟨X−| with a relative phase shift of 𝜋/2. The
interaction with the second H-polarized pulse leads to the emissions from |X+⟩ → |G⟩ (H-
polarized, paths E, F, K, L in Table 4.1), |B⟩ → |X+⟩ (H-polarized, paths A, I), and |B⟩ → |X−⟩
(V-polarized, path B) that interfere with each other. Due to the initial phase between H and V
polarization of 𝜋/2 as set by the circularly polarized first pulse, the final emission will be in
general elliptically polarized. Because of the energy difference between the transitions given by
the biexciton binding energy, the polarization state will perform an oscillatory motion, which
we can calculate by summing up the contributions of the Feynam diagrams from Table 4.1. To
visualize the dynamic of the polarization state, we use the Poincaré sphere. The Poincaré sphere
represents the polarization state of light defined through the Stokes parameters 𝜌𝑖

𝜌1 =
𝐼H − 𝐼V
𝐼H + 𝐼V

, 𝜌2 =
𝐼D − 𝐼A
𝐼D + 𝐼A

, 𝜌3 =
𝐼𝜎+ − 𝐼𝜎−
𝐼𝜎+ + 𝐼𝜎−

(4.11)

where 𝐼j (j = H, V, D, A, 𝜎+, 𝜎−) correspond to the intensity components of the light field
with respect to the horizontal (H), vertical (V), diagonal (D), antidiagonal (A), and circular (𝜎±)
polarization projections. The polarization state of the PE amplitude in the configuration 𝜎+H
describes a circular motion on the Poincaré sphere as we visualize in Figure 4.4a. Here, the green
point marks the polarization state for 𝜏ref = 0 (𝜎+ polarized in this case). The temporal dynamics
of the three Stokes parameters are given by

𝜌𝜎
±𝐻

1 =
cos ( 𝜀B𝜏ref2ℏ ) e

− 𝜏ref
2𝑇𝛥 − 1

cos ( 𝜀B𝜏ref2ℏ ) e
− 𝜏ref

2𝑇𝛥 − 1
2e

− 𝜏ref
𝑇𝛥 − 1

(4.12a)

𝜌𝜎
±𝐻

2 = ±
sin ( 𝜀B𝜏ref2ℏ ) e

− 𝜏ref
2𝑇𝛥

cos ( 𝜀B𝜏ref2ℏ ) e
− 𝜏ref

2𝑇𝛥 − 1
2e

− 𝜏ref
𝑇𝛥 − 1

(4.12b)

𝜌𝜎
±𝐻

3 = ∓
cos ( 𝜀B𝜏ref2ℏ ) e

− 𝜏ref
2𝑇𝛥 − 1

2e
− 𝜏ref

2𝑇𝛥

cos ( 𝜀B𝜏ref2ℏ ) e
− 𝜏ref

2𝑇𝛥 − 1
2e

− 𝜏ref
𝑇𝛥 − 1

, (4.12c)

where 1/𝑇𝛥 = 1/𝑇B2 − 1/𝑇X2 denotes the difference in decoherence rates of exciton and biexciton.
Equations (4.12) also give the corresponding functions for excitation with a 𝜎− polarized first
pulse, which will be important below. The three functions are shown for one quantum beat
period in Figure 4.4b, where we first neglected the finite decoherence times. It can be seen that
𝜌2 shows the highest effect amplitude which we therefore regard as the most informative Stokes
parameter to observe quantum beats. An interesting property is given by the damping behavior
of the oscillations on the polarization state when considering short decoherence times of excitons
and biexcitons. In Figure 4.4c, we plot Equation (4.12b) in direct comparison to the decay of the
amplitude decay of the PE amplitude in HHH and HVH for the same set of parameters 𝑇X2 = 0.8 ps,
𝑇B2 = 0.6 ps, and 𝜀B = 2.4meV. Here, it can be seen that the polarization beats offer a much
higher sensitivity to observe beats since the envelope of the oscillation of 𝜌2 decays with a rate
given by the difference of decay rates between exciton and biexciton. In contrast, the amplitude
beats decay with a weighted sum of the decay rates, compare Equation (4.8). Importantly, a full
quantum beat cycle can be observed in 𝜌2 within a temporal range during which the amplitude
of the signal approximately drops by a factor of 1000, which lies in the dynamic range of our
experimental setup.
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Figure 4.4: (a) Trajectory of the polarization state of the PE from the exciton-biexciton system
upon excitation with a 𝜎+ polarized first pulse and H polarized second pulse, visualized on the
Poincaré sphere. (b) Time dynamics of the three Stokes parameters 𝜌𝑖 within one quantum
beat period. (c) Comparison of the damping behavior of 𝜌2 with the amplitude decay in the
configurations HHH and HVH for the same set of parameters as given in the text.

We demonstrate quantum beats (QBs) using a method introduced by Koch et al. [22]. We define
QBs as the quantum mechanical interference of two transitions with different energies that
share one common state. In the case of the exciton-biexciton system, these two transitions are
the biexciton to exciton and exciton to ground state transition with the exciton as a common
state. Time-resolved FWM spectroscopy offers the unique possibility to distinguish QBs from the
interference of two completely independent polarizations with different energy, which is denoted
as polarization interference (PI) [22]. The idea of this distinction is described in the following.
We consider two independent third-order polarizations 𝑃1 and 𝑃2 in a two-pulse PE experiment.
Each third-order polarization 𝑃j has a time dependence in the form of

𝑃j(𝜏ref, 𝜏12) ∝ exp [𝑖𝜔j(𝜏ref − 2𝜏12)] , (4.13)

where 𝜔j denote the eigenfrequencies of the two transitions. The intensity signal ∝ |𝑃1 + 𝑃2|
2 on

a detector will then produce a time-dependent polarization interference component

𝑃PI(𝜏ref, 𝜏12) ∝ cos [𝛥12(𝜏ref − 2𝜏12)] , (4.14)

which is an oscillating signal with local extrema for 𝜏ref−2𝜏12 = 𝑛/𝛥12, where 𝛥12 = 𝜔1−𝜔2. This
behavior fundamentally deviates from a system where two transitions share one common state as
in the case of the exciton-biexciton system. Here, an oscillating signal in the FWM results from
quantum paths involving both transitions. The temporal dependence of the beating components
is thus given by

𝑃QB ∝ exp [𝑖𝜔1𝜏12] ⋅ exp [−𝑖𝜔2(𝜏ref − 𝜏12)] = exp [𝑖𝜔1(2𝜏12 − 𝜏ref)] ⋅ exp [𝑖𝛥12(𝜏12 − 𝜏ref)] , (4.15)

which will produce an oscillating signal with local extrema for 𝜏ref − 𝜏12 = 𝑛/𝛥12. Measuring
the FWM response as a function of 𝜏ref and 𝜏12 thus allows us to unambiguously distinguish
between the interference of two independent polarizations and QBs by analyzing the temporal
dependence of local extrema of the oscillations.

To visualize the difference between QBs and PI in our experimental protocol, we calculated the
expected PE signal in the HHH polarization configuration for the biexciton and exciton/trion
system, which are shown in Figures 4.5b and 4.5c, respectively. The corresponding experimental
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data is provided for comparison in Figure 4.5a. For the modeling, we assumed a biexciton binding
energy of 𝜀B = 2.5meV and a splitting 𝛥12 between the exciton and trion transition of the same
magnitude. To observe several oscillation cycles in the theoretical color maps within the temporal
width of the PE, we assumed a smaller inhomogeneous broadening of approximately 2meV
compared to the experiment. The crucial difference between QBs and PI lies in the functional
course of the oscillation extrema in the 𝜏12-𝜏ref-map. For the QBs, the extrema run parallel to the
line 𝜏ref = 𝜏12 (red line), whereas for PI, they follow 𝜏ref = 2𝜏12 (blue line). This property provides
a simple way to determine whether our PE signal originates from the biexciton or an independent
interference of two resonances. However, based on the data presented in Figure 4.5a, we cannot
differentiate between QBs and PI since the involved decoherence times are too short to observe
any oscillations of the PE amplitude. However, the influence of the quantum beats could explain
the shifted position of the PE maximum that we mentioned in Section 3.1.

The same argument as for the extrema of the PE amplitude oscillations also holds for the extrema
of any polarization contrast that exhibits oscillations due to QBs or PI. We modeled in Figures 4.5e
and 4.5f the polarization contrast 𝜌2 from biexciton and exciton/trion. Figure 4.5d shows the corre-
sponding experimental data for comparison. Note, regardless of the inhomogeneous broadening,
we can theoretically observe the polarization contrast for any positive values of 𝜏12 and 𝜏ref due
to an unlimited dynamic range. Again, in the case of QBs, the extrema run parallel to 𝜏ref = 𝜏12
(Figure 4.5e) and for PI parallel to 𝜏ref = 2𝜏12 (Figure 4.5f). Because of the different damping
behavior of the polarization contrast, we can observe oscillations in the experimental data for 𝜌2.
We identify that the extrema of the observed oscillations run parallel to 𝜏ref = 𝜏12 (red line),
which rules out the possibility of polarization interference. This observation strongly supports
the hypothesis of biexciton formation and strictly rules out the aforementioned coexistence of
exciton and trion subensembles.
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Figure 4.5: (a) Heterodyne signal as a function of 𝜏12 and 𝜏ref, measured in the polarization
configuration HHH. (b)/(c) Modeled data within the biexciton and exciton/trion models corre-
sponding to (a). For the modeling, we neglected the finite decoherence times of the involved
coherences and, for better visibility of the oscillating signal, assumed a more narrow inhomoge-
neous broadening. (d) Experimental polarization contrast 𝜌2 as a function of 𝜏12 and 𝜏ref. (e)/(f)
Result of the calculation of 𝜌2 within the two models.
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4.1.4 Measurement of the biexciton binding energy by polarization beats

In this section, we describe the fitting procedure that we use to extract the biexciton binding
energy 𝜀B as well as the decoherence times of exciton and biexciton, 𝑇X2 and 𝑇B2 being free
parameters of the biexciton model as introduced above. To accurately access the biexciton binding
energy, we measure transient polar rosettes involving one circular polarized pulse. This method
enhances the potential of the PE polarimetry technique as introduced in Reference [102].
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Figure 4.6: (a) Definition of the angles 𝜖 and 𝜗 as the ellipticity and the tilting angle of the
polarization ellipse, respectively. (b) Time dynamics of 𝜗 for 𝜎±H excitation. The dashed black
lines highlight that the oscillations of 𝜗 are damped by the difference of decoherence rates of
exciton and biexciton 𝑇−1

𝛥 . (c) Two theoretical polar dependences in the configuration 𝜎+RH for
two different temporal positions within the quantum beat period 𝑇QB.

The aforementioned beats of the PE polarization state can be translated into dynamics of the
angles 𝜖 and 𝜗 characterizing the ellipticity and rotation angle of the polarization ellipse as
defined in Figure 4.6a. We concentrate on the rotation angle 𝜗 as an easily accessible parameter
in our experiments. An analytical expression for 𝜗(𝜏ref) within the exciton-biexciton model upon
excitation with circularly polarized first and horizontally polarized second pulse directly results
from the expressions given for the Stokes parameters in Equation (4.12)

𝜗𝜎± = arctan (
𝜌2
𝜌1

) = ±1
2
arctan

⎡
⎢
⎢
⎢
⎣

sin ( 𝜀B𝜏ref2ℏ )

cos ( 𝜀B𝜏ref2ℏ ) − e
𝜏ref
2 ( 1

𝑇B2
− 1

𝑇X2
)

⎤
⎥
⎥
⎥
⎦

≡ 𝜗𝜎±(𝜏ref), (4.16)

which describes damped anharmonic oscillations. The helicity of the first pulse results in a global
sign of the function 𝜗(𝜏ref), which is a characteristic of the exciton-biexciton scheme that we test
in our experiments below. We visualize Equation (4.16) for both helicities in Figure 4.6b, where
we highlight the damping behavior of the oscillations by dashed lines. As can be seen by the
exponential function in the denominator of the argument of the arctangent in Equation (4.16),
the rotation angle 𝜗 experiences damped oscillations that decay proportional to exp(−𝜏ref/(2𝑇𝛥)),
i.e. on a time-scale set by the difference of decoherence rates of exciton and biexciton 1/𝑇𝛥 =
1/𝑇B2 − 1/𝑇X2 ≥ 0. The angle 𝜗 shares the damping behavior of the polarization contrast 𝜌2 and
therefore represents a suitable parameter that allows to access the biexciton binding energy in
the regime of short decoherence times.
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4.1 Biexciton formation in MAPbI3

Experimentally, 𝜗𝜎±(𝜏ref) can be confidently extracted by measuring the PE amplitude as a
function of linear polarization angle between the second pulse and reference pulse 𝜑 which is
described by

|𝐸B𝜎±RH| ∝ [4 cos2 (𝜑) e
−2 𝜏ref

𝑇X2 + e
−𝜏ref(

1
𝑇X2

+ 1
𝑇B2

)

−2 [cos (
𝜀B
2ℏ

𝜏ref) + cos (2𝜑∓
𝜀B
2ℏ

𝜏ref)] e
−𝜏ref(

3
2𝑇X2

+ 1
2𝑇B2

)
]

1/2

.

(4.17)

We call this experimental configuration 𝜎±RH. As can be seen by the red highlighted part of
Equation (4.17), the quantum beats modulate the orientation of the polar rosettes. In Figure 4.6c,
we plot two exemplary polar dependences given by Equation (4.17) for two different values of 𝜏ref.
The orientation angle has a temporal dependence that is determined by 𝜗(𝜏ref), which can be
proven by calculating the angle that maximizes 𝑃B𝜎±RH:

d
d𝜑

𝐸B𝜎±RH = 0 (4.18a)

⇔ 0 = sin (2𝜑 ∓
𝜀B
2ℏ

𝜏ref) e
−𝜏ref(

3
2𝑇X2

+ 1
2𝑇B2

)
− sin (2𝜑) e

−2 𝜏ref
𝑇X (4.18b)

⇔ 𝜑 = ±1
2
arctan

⎡
⎢
⎢
⎣

sin ( 𝜀B𝜏ref2ℏ )

cos ( 𝜀B𝜏ref2ℏ ) − e
𝜏ref
2 ( 1

𝑇B
− 1

𝑇X
)

⎤
⎥
⎥
⎦

= 𝜗𝜎±(𝜏ref). (4.18c)

Figures 4.7a and 4.7b present the polar rosettes measured in the configurations 𝜎+RH and 𝜎−RH
for 𝜏ref = 0.8 ps and 𝜏ref = 3.5 ps. Here, we can observe the effect of the exciton-biexciton
polarization beats as a time-dependent rotational behavior as well as the property that the sign of
the rotation is set by the helicity of the circularly polarized first pulse. We measured such polar
rosettes for a set of delays that we present in the form of color maps in Figures 4.7c and 4.7d
for 𝜎+RH and 𝜎−RH. For each time step, we perform a fit to a simple | cos(𝜑 − 𝜗)| function, to
extract the orientation angle 𝜗. In this way, we arrive at the dynamical behavior of the angle 𝜗
presented in Figure 4.8a. We can indeed identify an oscillatory dynamic of 𝜗 that enables us in
the following to extract the biexciton binding energy.

Equation (4.16) predicts that the angle 𝜗(𝜏ref) is mirrored on the 𝜏ref-axis upon change of helicity
of the first pulse’s polarization, i.e. 𝜗𝜎−(𝜏ref) = −𝜗𝜎+(𝜏ref). Consequently, the sum of both
curves vanishes. However, the sum of the experimental curves, plotted in Figure 4.8b, exhibits
a non-zero offset. A fit to a constant function results in an offset of roughly 5°, shown as a
blue line in Figure 4.8b. To account for this discrepancy between model and experiment, we
phenomenologically expand the model (4.16) by an offset 𝜗±0

𝜗𝜎±(𝜏ref) = ±1
2
arctan

⎡
⎢
⎢
⎣

sin ( 𝜀B𝜏ref2ℏ )

cos ( 𝜀B𝜏ref2ℏ ) − e
𝜏ref
2 ( 1

𝑇B
− 1

𝑇X
)

⎤
⎥
⎥
⎦

+ 𝜗±0 . (4.19)

Moreover, comparing the experimental data in Figure 4.8a with the modeled curves in Figure 4.6b,
it is evident that the model does not accurately describe the experiment for 𝜏ref < 0.8 ps. Specif-
ically, the first two data points (shaded in grey) deviate from the linear trend of the modeled
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Figure 4.7: (a)/(b) Experimental polar rosettes in the configurations 𝜎+RH/𝜎−RH for two
different delays as indicated in the legends. (c)/(d) Measured rosettes as shown in (a)/(b) for a
set of delays. (e)/(f) Modelled data corresponding to (c)/(d) including the fitted parameters of
the exciton-biexciton model as presented in the text.
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Figure 4.8: (a) Temporal dependence of the angle 𝜗 measured in the configuration 𝜎+RH and
𝜎−RH and corresponding fits to Equation (4.19). (b) Sum of the experimental curves shown
in (a) and fit to a constant function. (c) Comparison of the modeled functions 𝜗(𝜏ref) for two
different values of the ellipticity 𝜖1 of the first pulse.
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functions. This deviation can be attributed to two influences. First, our model does not consider
the temporal overlap of the optical pulses, which occurs in the range 𝜏ref < 0.8 ps. Second, our
model assumes perfect circular polarization of the first pulse. However, in our experimental setup,
the circular polarization created by a quarter-wave plate may be modified by the subsequent
reflection on two silver mirrors. In Figure 4.8c, we numerically computed 𝜗(𝜏ref) assuming a
deviation of 𝛥𝜖1 = 2° from a perfect circular polarization 𝜖1 = 𝜋/4 of the first pulse. Here, the
trend for small values of 𝜏ref corresponds well with the experimental observations. However,
there is no closed solution for 𝜗(𝜏ref) for a general elliptical polarization of the first pulse, making
it computationally expensive and impractical to fit the data using standard fitting tools. Therefore,
we use the idealized function (4.19) to fit our data in the following and exclude the first two data
points from Figure 4.8a for simplicity.

To determine the value of 𝜀B, we merge the data for 𝜗𝜎+(𝜏ref) and 𝜗𝜎−(𝜏ref) by fitting (𝜗𝜎+ − 𝜗𝜎−)/2
to Equation (4.19) for 𝜏ref > 0.8 ps. Additionally, the fit delivers the difference between decay
rates 𝑇−1𝛥 and the difference between the offsets 𝜗+0 − 𝜗−0 . A summary of all fitting parameters is
provided in Table 4.2. The obtained value of (2.4 ± 0.2)meV for the biexciton binding energy is
discussed in the concluding section of this chapter.

Table 4.2: Summary of the parameters obtained from fit of the model (4.19) to experimental
data for 𝜗(𝜏ref) in the combined data of the polarization configurations 𝜎+RH and 𝜎−RH. The
data and corresponding fits are shown in Figure 4.8.

𝜀B (meV) 𝑇−1𝛥 (THz) 𝜗+0 (deg) 𝜗−0 (deg)

2.4 ± 0.2 0.45 ± 0.07 −9 ± 1 14 ± 1

As a next step, we utilize the experimental curve of the PE decay in the HHH configuration to
determine the exciton decoherence time 𝑇X2 , Figure 4.9a. Here, we take into account the values
obtained for 𝜀B and 𝑇−1𝛥 and only allow 𝑇X2 as a free fitting parameter. For this purpose, we
express the function (4.9a) in terms of 𝑇−1𝛥 , 𝜀B, and 𝑇X2 :

|𝐸BHHH| ∝ e
− 𝜏ref

𝑇X2
√
4 + e

− 𝜏ref
𝑇𝛥 − 4 cos (

𝜀B
2ℏ

𝜏ref)e
− 𝜏ref

2𝑇𝛥 . (4.20)

The fit gives
𝑇X2 = (0.79 ± 0.03) ps (4.21)

and is visualized in Figure 4.9a. The corresponding homogeneous linewidth amounts to (1.67 ±
0.06)meV. Using the definition of the 𝑇−1𝛥 , we can calculate

𝑇B2 = ( 1
𝑇𝛥

+ 1
𝑇X2

)
−1

= (0.58 ± 0.03) ps, (4.22)

corresponding to a linewidth of (2.3 ± 0.1)meV. Based on our model, the PE signal decays in the
HVH configuration proportional to a single exponential function as given by Equation (4.9b).
Figure 4.9b presents a comparison between the experimental decay and the model that uses
the determined value of 𝑇B2 . The measured decay dynamics in HVH slightly deviate from a
single-exponential. Instead, the signal seems to decay in a Gaussian fashion. This observation
may be linked to an inhomogeneity of the biexciton binding energy that could result from a
correlation between the exciton transition energy and the biexciton binding energy [142]. Our
model does not consider this effect. Apart from that, the model is in excellent agreement with all
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measured polarization dependences. In particular, with the obtained parameters our model can
accurately reproduce the temporal characteristics of the polar rosettes shown in 4.7e, 4.7f, and
4.9b.

0 1 2 3 4 5

𝜏ref (ps)

10−2

10−1

100
PE

am
pl
itu

de
(a
rb
.u
.) (a)

HHH
HVH

0 1 2 3 4 5

𝜏ref (ps)

−𝜋

−𝜋/2

0

𝜋/2

𝜋

𝜑
(r
ad
)

(b)

10
−
2

10
−
1

10
0

PE
am

pl
itu

de
(a
rb
.u
.)

Figure 4.9: (a) Circles show the experimental decays of the PE amplitude in the polarization
configurations HHH and HVH. Solid lines are the results of fits to the exciton-biexciton model.
(b) Full dependence of the PE amplitude on linear polarization angle 𝜑 between first and second
pulses and 𝜏ref = 2𝜏12.

4.2 Spin-dependent excitation-induced dephasing in
FA0.9Cs0.1PbI2.8Br0.2

The results presented in Chapter 3.2 demonstrate that lead halide perovskite semiconductors
can have exceptionally long exciton coherence times associated with the localization of excitons
in band gap fluctuations. In contrast to well-isolated semiconductor quantum dots, weakly
localized excitons in a bulk material may be significantly affected by the coherent interaction
with other photo-excited excitons or carriers [24]. The results presented in the following chapter
show that even under moderate excitation densities, the assumption of isolated excitons in
FA0.9Cs0.1PbI2.8Br0.2 leads to a strong deviation from the experimental observation within the PE
polarimetry technique. In particular, a significant contribution resulting from excitation-induced
dephasing (EID) is found in the PE signal. The EID effect is found to have a spin selectivity, that
is, excitons interact more strongly with excitons of opposite spin. The exciton interactions have
profound influences on the polarization dependence of non-linear optical spectra.

4.2.1 Photon echo polarimetry

Throughout this section, the exciton resonance in FA0.9Cs0.1PbI2.8Br0.2 is resonantly excited at
1.52 eV using the 4 ps pulses of the MIRA900 laser. As presented for MAPbI3 in the previous
section, we apply the PE polarimetry technique to investigate deviations from the picture of
non-interacting excitons or the possible formation of multi-excitonic resonances. Therefore,
we introduce a delay of 𝜏12 = 20 ps between the first and second pulse and measure the PE
amplitude at 𝜏ref = 2𝜏12 = 40 ps in the configurations HRH. The resulting polar rosette is plotted
in Figure 4.10a (red line). For direct comparison, we plot in Figure 4.10b the theoretical dependence
given by 𝐸HRH = cos2(𝜑) resulting from the exciton V-scheme presented in Section 1.2.3. In the
experiment, we observe a clear deviation from the cos2(𝜑) dependence since a pronounced signal is
emitted in the cross-polarized configuration 𝜑 = 𝜋/2 (HVH), which amounts to roughly one-third
of the signal amplitude in co-polarized configuration 𝜑 = 0 (HHH). As highlighted by the green
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line, the dependence is well described by a function of the form ∝cos2 𝜑 + 𝑐, where 𝑐 is a signal
component independent of the polarization between the first and second pulse. To investigate the
polarization of the constant signal 𝑐, we repeat the measurement in the polarization configuration
HRV. The experimental curve and the expectation for the V-scheme (𝐸HRH = | sin(2𝜑)|/2) are
plotted in Figures 4.10a and 4.10b. Here, we can observe that the measured polar rosette in HRV
does not qualitatively deviate from the |sin 2𝜑| dependence. Thus, the signal in the configuration
HVH is fully horizontally polarized. The ratio between the maximum signal strength in HRH
and HRV is larger than 1/2 as a result of the constant horizontally polarized offset 𝑐 in the HRH
dependence.

Figure 4.10: (a) Experimentally observed po-
lar dependencies in the configurations HRH
andHRV for a delay of 𝜏12 = 20 ps. The green
line shows a fit of the HRH dependence to a
function of the form cos2 𝜑 + 𝑐. (b) For com-
parison, theoretical polar dependencies of
the PE amplitude in the configurations HRH
and HRV assuming the V-scheme model of
excitons.

Note that the observed polar trends are neither compatible with the formation of trions nor
biexcitons. For the former, we expect qualitatively different polar dependencies as already
discussed in Sections 1.2.3 and 4.1.1. For the latter, we expect quantum beats in the configuration
HHH which are not observed (compare PE decay presented in Section 3.2). In Section 4.1, the
biexciton binding energy in MAPbI3 was found to be 2.4meV, which we regard as a lower
bound for the biexciton binding energy in FA0.9Cs0.1PbI2.8Br0.2 since localization typically leads
to an increased biexciton binding energy [7]. Because our laser pulses are spectrally narrow
(≈0.3meV), the formation of biexcitons is excluded. Instead of the formation of multi-excitonic
resonances, spin-dependent excitation-induced nonlinearities can naturally describe the observed
polar dependencies as we will motivate in the following.

4.2.2 Spin-dependent excitation-induced nonlinearities

Figure 4.11: (a)/(b) Sketch of spin-dependent excitation induced shift and broadening of the
exciton line. Upon excitation of an exciton population of one spin species, the exciton line for
excitons with parallel (blue) and antiparallel (red) spin is differently affected. (c)/(d) Schematics
of how the mechanisms shown in (a) and (b) give rise to a horizontally polarized FWM signal
upon excitation with linearly cross-polarized pulses (HV).

We first qualitatively describe why spin-dependent excitation-induced shifts and broadening of
the exciton resonance can explain our observations from the previous section. Subsequently, we
perform a power-dependent measurement of the exciton coherence times in different polarization
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configurations. Finally, we present two modeling approaches to account for the polarization
dependence as well as the observed temporal dynamics.

In addition to the saturation upon excitation (phase-space filling, compare Section 1.2), an
excitation-induced shift (EIS) or broadening (equivalent to EID in the time-domain) of the exciton
resonance can give rise to a FWM signal [7, 143, 144]. FWM spectroscopy has been extensively
employed in previous studies to investigate the impact of these nonlinearities on the coherent
optical response of semiconductor structures, including GaAs single crystals [145], quantum
wells [19], and transitionmetal dichalcogenides [146, 147]. As visualized in Figures 4.11a and 4.11b,
both effects effectively lead to a decrease of the absorption at the unperturbed resonance energy.
When first and second pulses in the FWM experiment interfere to form a spatial population
grating, EID and EIS lead to a spatial modulation of the absorption coefficient which gives rise
to a FWM signal diffracted in the phase-matched direction. Note that this discussion on signal
formation can be equivalently conducted considering the spectral grating formed by the first and
second pulse (compare Section 1.2.1). When EID and EIS are fully spin-independent, i.e. only
depend on the total excitation level, no deviation from the polarization dependence resulting
from the phase-space filling is expected. The situation changes when EID and EIS have a spin
sensitivity, that is, the exciton linewidth/resonance frequency for spin up (down) excitons is
differently affected by the number of excited excitons with the same or opposite spin. This case
is visualized in Figures 4.11a and 4.11b by the two different lineshapes (blue and red). In this
case, the symmetry of the exciton V-scheme that leads to the vanishing signal in the polarization
configuration HVH is lifted as we explain in Figures 4.11c and 4.11d. In the absence of spin-
dependent non-linearities, the population gratings 𝑛↑↓ of spin-up and spin-down exciton states
have the same magnitude but are out of phase for cross-linear excitation, compare blue and
red spatial gratings in Figure 4.11c. Since the two exciton transitions are not two independent
two-level systems but share a common ground state, 𝜎+ and 𝜎− light components effectively
get diffracted on both gratings and the total FWM signal in both polarization channels vanishes.
When however spin-dependent EIS or EID are considered, the relative amplitude of both gratings
changes, Figure 4.11d. For example, 𝜎+ polarized light may diffract more strongly on the spin-up
population grating than on the spin-down grating. Therefore, a finite FWM signal remains in
both circular polarization channels.
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Figure 4.12: (a)/(b) Decay of the PE amplitude in HHH/HVH as a function of 𝜏ref = 2𝜏12 for
two different values of the applied laser fluence. Red dashed lines represent fits to a single
exponential function. (c) Corresponding homogenous linewidth 𝛤2 as a function of laser fluence.
The black dashed line is a fit to a linear function.

The effect of EID on the exciton decoherence, in particular, is directly measurable with our
technique. Therefore, we measure the exciton coherence time 𝑇2 as a function of the total laser
fluence (energy per pulse and area of the excitation spot). Figure 4.12a compares the decay
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of the PE amplitude in HHH configuration as a function of 𝜏ref = 2𝜏12 for total laser fluences
of 0.2 µJ/cm2 and 3.3 µJ/cm2. We can observe a notable decrease in the decoherence time
from 𝑇2 = 85 ps to 𝑇2 = 60 ps. As shown in Figure 4.12c, the homogeneous exciton linewidth
𝛤2 = 2ℏ/𝑇2 linearly increases with the applied laser fluence, where the slope is given by roughly
3 μeV/µJcm−2. This finding suggests that the decoherence rate of excitons scales with the number
of resonantly excited excitons. The measurement is repeated in HVH configuration, Figures 4.12b
and 4.12c. Here, the decoherence time for low fluence is with 𝑇2 = 75 ps notably shorter than
observed in HHH. This difference in decoherence times for the two polarization configurations
increases when sweeping the total laser fluence as we present in Figure 4.12c, where the increase
of the linewidth in HVH exhibits a larger slope of 5 μeV/µJcm−2. In this way, the ratio between
the decoherence rates in HHH andHVH decreases from≈ 85% for zero fluence (linear dependence
extrapolated to zero fluence) to roughly ≈ 70% in the observed range of laser fluence. We can
thus summarize that both the intrinsic linewidth as well as the strength of EID have a dependence
on the relative polarization of the excitation pulses. The observed polarization-sensitive EID
effect is a further indication of spin-dependent interactions between excitons that we mentioned
above. However, it should be highlighted that EID represents a relatively small fraction of the
exciton linewidth in the considered range of fluences. To quantify the influence of EID and EIS
on the polarization dependence of the FWM signal, we introduce expanded Bloch equations for
the exciton in the following.

Phenomenological expansion of Bloch equations

The non-linear optical response of non-interacting excitons can be calculated using the coupled
equations of motion for the 3 × 3 density matrix 𝝆 of the V-scheme consisting of the ground state
|G⟩ and the two exciton states |X↑↓⟩. The five independent elements of the density matrix are the
two microscopic polarizations 𝑝± = ⟨G|𝜌|X±⟩, the two occupations 𝑛± = ⟨X±|𝜌|X±⟩ of the excited
states, and the spin polarization 𝑠+ = ⟨X+|𝜌|X−⟩ = (𝑠−)∗. The equations of motion resulting from
the Liouville-von Neumann equation (1.2) read as

𝑑
𝑑𝑡
𝑝± = 𝑖𝛥𝑝± − 𝛤2𝑝

± − 𝑖𝛺±(1 − 𝑛∓ − 2𝑛±) + 𝑖𝛺∓𝑠∓ (4.23a)

𝑑
𝑑𝑡
𝑛± = 𝑖 (𝑝±𝛺±∗ − 𝑝±∗𝛺±) − 𝛤1𝑛

± (4.23b)

𝑑
𝑑𝑡
𝑠+ = 𝑖(𝑝−𝛺+∗ − 𝑝+∗𝛺−). (4.23c)

Here, 𝛺± = 𝜇𝐸±(𝑡)/ℏ are Rabi frequencies with respect to 𝜎± polarized components of the
slowly varying electric field amplitude 𝐸±(𝑡). Note that the dipole moments 𝜇 of the two exciton
transitions are assumed to be equal since the sample does not experience a static circular dichroism.
Static circular dichroism can occur in organic-inorganic perovskite crystals that contain chiral
molecules such as methylbenzylamine instead of formadinium or methylammonium [148]. A well-
established phenomenological approach to account for excitation-induced effects is to introduce
population-dependent decay rates and resonance frequencies [3, 4]. To further expand this
approach for spin-dependent EID and EIS, we introduce population-dependent decay rates 𝛤±

2
and resonance frequencies 𝜔± as

𝛤±
2 = 𝛤2 + 𝛼↑↑𝑛

± + 𝛼↑↓𝑛
∓ (4.24a)

𝜔± = 𝜔0 + 𝛽↑↑𝑛
± + 𝛽↑↓𝑛

∓, (4.24b)

where 𝛼↑↑/𝛼↑↓ (real and positive) measure how strongly the exciton linewidth scales with the
excitation level of excitons with the same/opposite spin. Analogously, 𝛽↑↑/𝛽↑↓ (real) account for
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excitation-induced shifts. We introduce the complex constants 𝑉 = 𝛼 + 𝑖𝛽 to compactly write the
modified equation of motion for the polarizations 𝑝± (Equation (4.23a)) as

𝑑
𝑑𝑡
𝑝± = 𝑖𝛥𝑝± − 𝛤2𝑝

± − 𝑖𝛺±(1 − 𝑛∓ − 2𝑛±) + 𝑖𝛺∓𝑠∓ − (𝑉↑↓𝑛
∓ + 𝑉↑↑𝑛

±)𝑝±. (4.25)

To calculate the FWM response resulting from the third order polarization 𝑝(3)∝𝐸∗1𝐸
2
2 , we expand

the density matrix elements in perturbative orders with respect to the electric field. Therefore,
we have to solve the following set of equations

𝑑
𝑑𝑡
𝑝±(1) = 𝑖𝛥𝑝±(1) −

𝑝±(1)

𝑇2
− 𝑖𝛺± (4.26a)

𝑑
𝑑𝑡
𝑛±(2) = 𝑖 (𝑝±(1)𝛺±∗ − 𝑝±∗(1)𝛺±) − 𝛤1𝑛

±(2) (4.26b)

𝑑
𝑑𝑡
𝑠+(2) = 𝑖(𝑝−(1)𝛺+∗ − 𝑝+(1)∗𝛺−) (4.26c)

𝑑
𝑑𝑡
𝑝±(3) = 𝑖𝛥𝑝±(3) − 𝛤2𝑝

±(3) + 𝑖𝛺±𝑛∓(2) + 2𝑖𝛺±𝑛±(2) + 𝑖𝛺∓𝑠∓(2) (4.26d)

− (𝑉↑↓𝑛
∓(2) + 𝑉↑↑𝑛

±(2))𝑝±(1).

In the equation for 𝑝±(3), it can be seen that through the excitation-induced effects, another
source term for a third order polarization ∝ 𝑛(2)𝑝(1) arises. Considering the phase-matching
condition of our experiment, such third-order polarization can be interpreted as the scattering of
the linear polarization created by the second pulse on the population grating created by the first
and second pulses. For simplicity, we consider first and second pulses as delta pulses centered at
𝑡 = 0 and 𝑡 = 𝜏12, i.e.

𝛺±(𝑡) = 𝛺±
1 𝛿(𝑡) + 𝛺±

2 𝛿(𝑡 − 𝜏12). (4.27)

We thus arrive at the following solutions for the third-order polarizations that fulfill the phase-
matching condition

𝑝±(3)(𝑡) = e𝑖𝛥(𝑡−2𝜏12)−𝛤2𝑡 [(𝛺±
2 )

2𝛺±∗
1 (1 +

𝑉↑↑
2𝛤1

(1 − e−𝛤1(𝑡−𝜏12)))

+𝛺±
2 𝛺

∓
2 𝛺

∓∗
1 (1 +

𝑉↑↓
2𝛤1

(1 − e−𝛤1(𝑡−𝜏12)))] .
(4.28)

Themacroscopic response of an inhomogeneous ensemble is obtained from 𝑃±(3)∝∫ 𝑔(𝛥)𝑝±(3)(𝑡, 𝛥),
where 𝑔(𝛥) is assumed as a Gaussian distribution of detunings. Using Equation (4.28), we can
construct the PE amplitude in the configurations HRH and HRV

|𝐸HRH| ∝
|𝜇|4

ℏ3
𝐸∗1𝐸

2
2e

−2𝛤2𝜏12 {cos2(𝜑) (1 +
𝑉↑↑
2𝛤1

(1 − e−𝛤1𝜏12)) +
𝑉↑↓ − 𝑉↑↑

4𝛤1
(1 − e−𝛤1𝜏12)} (4.29a)

|𝐸HRV| ∝
|𝜇|4

ℏ3
𝐸∗1𝐸

2
2e

−2𝛤2𝜏12 | sin(2𝜑)|
2

{1 +
𝑉↑↑
2𝛤1

(1 − e−𝛤1𝜏12)} . (4.29b)

Here, we can distinguish between spin-independent and spin-dependent excitation-induced
effects. For spin-independent EID and EIS, i.e. 𝑉↑↑ = 𝑉↑↓, the signal amplitudes are modified
while the qualitative shape of the polar dependences is unchanged with respect to the model of
non-interacting excitons. For spin-dependent EID and EIS, i.e. 𝑉↑↑ ≠ 𝑉↑↓, a horizontally polarized
signal, solely arising from spin-dependent interaction is expected for linearly cross-polarized
excitation ∝ 𝑉↑↓ − 𝑉↑↑ independent of 𝜑 which fits our observations presented above. We thus
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can conclude that indeed spin-dependent exciton-exciton interactions can qualitatively explain
the modified polarimetric behavior of the exciton resonance as we suggested above using the
schematics shown in Figure 4.11. We discuss in the following if the simplified expansion of the
Bloch equations can also quantitatively reproduce the polarimetric and temporal behavior that
we observe.

The excitation-induced contributions predicted by Equations (4.29) scale with the ratio between
the interaction constants 𝑉 and the population decay rate 𝛤1. Signals of comparable magnitude
in the configuration HHH and HVH thus require a strong influence of EID/EIS. This prediction
is a contradiction to the observation presented in Figure 4.12c where EID represents only a
small correction to the intrinsic linewidth. Furthermore, all excitation-induced contributions
in Equations (4.29) share a prefactor ∝ (1 − exp(−𝛤1𝜏12)) that rises on a timescale of 1/𝛤1 =
𝑇1 ≈ 100 ps [65]. In the experiment, no deviations from single exponential decays on that
timescale are observed, compare photon-echo decays in Figure 4.12. Note that we neglected
higher-order terms with respect to the external optical field which lead to a power-dependent
decay of the excitation-induced signal. Even when high-order terms are taken into account, the
described model is not capable of explaining the polarization-sensitive decoherence times that
we observed in Figure 4.12. We thus can conclude that the simplified consideration of interaction
effects between excitons through population-dependent linewidths and shifts (Equations (4.24))
is capable of accounting for the additional channels of signal formation, but results in wrong
statements of the observed temporal dynamics as well as the relative amplitudes of signals in
different polarization configurations. Before we present an alternative theoretical approach, we
make use of Equations (4.28) and (4.29) in the limit 𝜏12 ≫ 𝑇1 to distinguish between EIS- and
EID-induced contributions as well as the relative interaction strengths between excitons of the
same or opposite spins.

The contribution of EID and EIS to the electric signal field in Equations (4.29) have a relative
optical phase shift of 𝜋/2, which makes it possible, in principle, to distinguish both effects in a
PE experiment [149]. However, when considering the absolute value of the signal field, as in our
experiments, the indistinguishability is lifted when using excitation with circularly polarized
pulses. Therefore, we investigate the polarization protocol that we already used in Section 4.1 for
the identification of the biexciton, where the first pulse is circularly polarized (𝜎±), and the second
pulse is linearly polarized with variable polarization angle 𝜑 relative to the detected horizontal
polarization component (𝜎±RH). Taking into account both spin-dependent EID and EIS, the signal
field in this configuration can be written as

|𝐸𝜎±RH| ∝
√
cos2 (𝜑 ± 𝜗) +

(�̃�↑↑ − �̃�↑↓)
2

4�̃�↑↑�̃�↑↓
(4.30a)

�̃�𝑗 =
√
(1 +

𝛼𝑗
2𝛤1

)
2
+ (

𝛽𝑗
2𝛤1

)
2
, 𝑗 =↑↑, ↑↓ (4.30b)

𝜗 = 1
2
arctan [

𝛽↑↑ − 𝛽↑↓

(2𝛤1 + 𝛼↑↑) (2𝛤1 + 𝛼↑↓) +
𝛽↑↑𝛽↑↓
2𝛤1

] . (4.30c)

In the absence of excitation-induced effects, the signal dependence reduces to |𝐸𝜎+RH| ∝ | cos(𝜑)|
with local extrema for 𝜑 = 0, 𝜋. This polar dependence is rotated by an angle 𝜗 depending on
the imbalance between the EIS coefficients 𝛽↑↑ − 𝛽↑↓. Such rotation is not expected for (spin-
dependent) EID and therefore allows us to distinguish between spin-selective EID and EIS.
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Experimentally, we can indeed observe a rotation of the polar dependences on a short timescale.
As shown in Figure 4.13a, for 𝜎±RH and 𝜏12 = 0, we observe rotated polar dependences in opposite
directions by an angle of roughly 𝜗 = 0.2𝜋. Wemeasure 𝜗 as a function of 𝜏ref = 2𝜏12 in Figure 4.13b.
Here, we see that 𝜗 decays to zero after roughly 15 ps. Note that in this regime, the optical pulses
in our experiment temporally overlap as we highlight by plotting the cross-correlation between
the reference and first pulse (red line), which represents a measure of the temporal overlap. This
observation suggests that the EIS contribution may depend on the macroscopic polarization of the
ensemble which is present for overlapping pulses in our experiments. However, there are other
realistic contributions to the observed rotation of polar dependences such as the formation of a
macroscopic spin polarization through the excitation with circularly polarized light or exciton
fine structure splitting. To further discuss these findings, measurements with shorter pulses
and magnetic field dependencies are required. Since a rotation angle of the polar dependence
upon excitation with circularly polarized light is not observed on a timescale 𝜏ref > 15 ps, we
conclude that the observed modification of exciton polarization dependences is a manifestation
of spin-dependent EID.
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Figure 4.13: (a) Polar dependences of
the FWM amplitude in the configura-
tions 𝜎±RH measured for 𝜏12 = 0. (b)
The rotation angle 𝜗 of the rosettes in
(a) measured as a function of 𝜏ref = 2𝜏12.
For comparison, we show in red the
cross-correlation (CC) between the first
and reference pulse being a measure for
the temporal overlap of the pulses at a
given value of 𝜏12.

We further comment on the relative size of the constants 𝛼↑↓ and 𝛼↑↑ using the qualitative shape of
the HRH dependence in Figure 4.10a. In Figures 4.14a–c, we compare the qualitative shape of the
polar rosettes in HRH configuration for the cases 𝛼↑↓ = 𝛼↑↑, 𝛼↑↓ > 𝛼↑↑, and 𝛼↑↓ < 𝛼↑↑ according
to Equation (4.29). The experimental curve is compatible with the case 𝛼↑↓ > 𝛼↑↑. Here, no zero

crossing is observed and thus the signals in co-polarized configuration (HHH) ∝ 1 + 𝛼↑↑+𝛼↑↑
4𝛤1

and

cross-polarized configuration (HVH)
𝛼↑↓−𝛼↑↑
4𝛤1

share the same sign, which requires 𝛼↑↓ − 𝛼↑↑ > 0.
Based on this discussion, we can therefore conclude that the exciton linewidth is more strongly
broadened in the presence of other excitons with opposite spin.

𝜑
(a) 𝛼↑↓ = 𝛼↑↑

𝜑
(b) 𝛼↑↓ > 𝛼↑↑

𝜑
(c) 𝛼↑↓ < 𝛼↑↑

Figure 4.14: Qualitative shape of polar rosettes in the presence of excitation-induced dephasing
for different cases of the relative size of the interaction constants 𝛼↑↑/ 𝛼↑↓.
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Two-exciton model

Figure 4.15: (a) Visualization of the two-exciton model as introduced in the text. (b) Dynamics
of the ratio HVH/HHH as measured for a fluence of 0.2 µJcm−2 and fit to the model (4.34). (c)
Comparison of the experimental and modeled polar rosette in the configuration HRH.

We present an alternative model based on References [150–153] that takes into account excitation-
induced dephasing based on a correlated two-exciton model. As we will show below, the model
makes statements about polarization-dependent linewidths and can quantitatively reproduce the
experimentally observed polar rosettes in a regime of weak EID.

We consider a two-exciton model visualized in Figure 4.15a consisting of the ground state |G⟩,
singly excited exciton states |X↑⟩ / |X↓⟩, as well as the three different spin configurations for
unbound but correlated two-exciton states |X↑X↑⟩, |X↑X↓⟩, and |X↓X↓⟩. The bound biexciton
state |B⟩ is also shown in the scheme but is not excited in our experiments as discussed above.
Note that higher correlated states with more than two excitons are not excited when we neglect
nonlinear polarizations higher than FWM. In such consideration, many-body effects can be
introduced phenomenologically as excitation-induced shifts or modified decoherence rates of
the two-exciton to one-exciton states [150]. Based on our discussion in the previous section, we
solely consider modified decoherence rates 𝛤2 → 𝛤2 + 𝛾, where we further distinguish between
parallel and antiparallel spins (𝛾↑↑ / 𝛾↑↓), as indicated in Figure 4.15a. The rates 𝛾 are assumed
to depend on the laser fluence. Calculating the FWM signal of such a six-level system leads to
the interference of quantum paths involving the two-exciton to one-exciton and one-exciton to
ground state transitions. In this way, the polarization dependence as well as the decay dynamic
of the system is modified with respect to the one-exciton model. Following References [150,
151], we construct the dipole moments of the transitions |X↑↓⟩ → |X↑↓X↑↓⟩ as √2(1 − 𝜈)𝜇 and of
the transitions |X↑↓⟩ → |X↑X↓⟩ as (1 − 𝜈)𝜇, where 𝜇 is the dipole moment of the groundstate to
one-exciton transitions. The parameter 𝜈, with 0 ≤ 𝜈 ≤ 1, accounts for the relative importance
of phase-space filling to the FWM response. In the case 𝜈 = 0, space-filling is absent (no FWM
response) and in the case 𝜈 = 1 the system simplifies to the V-scheme describing fully independent
excitons with saturable absorption. We discuss the impact of excitation-induced dephasing on
the polarimetric and temporal characteristics of this model in the following. Using an analogous
calculation procedure as shown for the biexciton system (Section 4.1.2), we arrive at the following
temporal dependence of the PE signal measured in the configuration HRH

|𝐸HRH| ∝ e−2𝛤2𝜏12 {cos2(𝜑) [1 − (1 − 𝜈)2e−𝛾↑↑𝜏12] +
(1 − 𝜈)2

2
[e−𝛾↑↑𝜏12 − e−𝛾↑↓𝜏12]} , (4.31)
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consisting of a term proportional to cos2 𝜑 for 𝜈 ≠ 0 and a polarization-independent part for 𝜈 ≠ 1
and 𝛾↑↑ ≠ 𝛾↑↓. Two special cases are the configurations HHH and HVH

|𝐸HHH| ∝ e−2𝛤2𝜏12 {1 −
(1 − 𝜈)2

2
[e−𝛾↑↑𝜏12 + e−𝛾↑↓𝜏12]} . (4.32a)

|𝐸HVH| ∝ e−2𝛤2𝜏12
(1 − 𝜈)2

2
{e−𝛾↑↑𝜏12 − e−𝛾↑↓𝜏12} . (4.32b)

Here, the signal in HHH configuration has a component arising from the one-exciton to ground
state transitions, which decays at the unperturbed decoherence rate 𝛤2. Instead, the signal in
HVH solely stems from the two-exciton to one-exciton transitions and decays faster as given
by the rates 𝛾↑↑ and 𝛾↑↓. Note however, due to the different signs of the contributions resulting
from the anti-parallel and parallel spin configurations, a finite rise time or, depending on the
relative size of 𝛾↑↑ and 𝛾↑↓, a sign inversion of the HVH signal at a non-zero delay 𝜏12 is predicted
by the model. As discussed in the previous section, the signal in HHH and HVH share the same
sign. This behavior is compatible with the model if the term ∝ e−𝛾↑↑𝜏12 dominates over the term
∝ e−𝛾↑↓𝜏12 in Equation (4.32b). This condition is realized under the assumption that the correlated
state of two excitons with opposite spins |X↑X↓⟩ decays significantly faster as the ones with equal
spins |X↑X↑⟩ / |X↓X↓⟩, i.e. 𝛾↑↓ ≫ 𝛾↑↑, which is in agreement with the picture of spin-dependent
EID. In this limiting case, Equation (4.31) can be simplified to

|𝐸HRH| ∝ e−2𝛤2𝜏12 {cos2(𝜑) [1 − (1 − 𝜈)2e−𝛾↑↑𝜏12] +
(1 − 𝜈)2

2
e−𝛾↑↑𝜏12} . (4.33)

Here, the signal in HVH (𝜑 = 0) decays with a rate of 𝛤2 + 𝛾↑↑/2 whereas the main contribution
of the signal in HHH (𝜑 = 0) decays at the unperturbed rate 𝛤2. A slow rise of the signal is not
expected in both polarization configurations. In this way, the ratio HVH/HHH experiences a
decaying dynamic given by

HVH / HHH = [ 2e
𝛾↑↑𝜏12

(1 − 𝜈)2
− 1]

−1
. (4.34)

Here it can be seen that the ratio between the signal in HVH and HHH for 𝜏12 = 0 is determined
by the parameter 𝜈 whereas its decaying dynamic is defined by 𝛾↑↑. In this way, even in the case
of weak EID (𝛾↑↑ ≪ 𝛤2), comparable magnitudes of the signals in HHH and HVH can be expected.
This represents a strong difference to the previously presented model in which a strong signal in
HVH configuration requires comparable magnitudes of the parameter 𝛼 and the population decay
rate 𝛤1 (compare Equation (4.29)). The model (4.34) is fitted to the corresponding experimental
data for a fluence of 0.3 µJcm−2 which yields 𝛾↑↑ = (5.6 ± 0.5) µeV and 𝜈 = 0.30 ± 0.01. As shown
in Figure 4.15b, the resulting curve can excellently describe the experimental data for the ratio
HVH/HHH. In this way, also the polar rosette for 𝜏ref = 20 ps is well described by Equation (4.33)
with the obtained values for 𝛾↑↑ and 𝜈, Figure 4.15c. The model thus is successful in describing
both the polarization-dependent decoherence rates at a given laser fluence as well as the observed
qualitative shape of the polar rosettes.

The agreement between the two-exciton model and the experimental observations is found
under the assumption of a significantly faster decoherence of the two-exciton state with different
spin, i.e. 𝛾↑↓ ≫ 𝛾↑↑. A microscopic explanation for this behavior might be the relaxation to
the biexciton state. As shown in Figure 4.15a the biexciton state is energetically below the
considered unbound two-exciton state. Relaxation of two excitons into this state, for example
through phonon emission, may represent the additional scattering channel that could explain
the spin-dependent exciton interactions presented in this section. The derived value of the
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parameter 𝜈, approximately 0.3, established a reasonable scenario wherein excitons are localized,
thereby exhibiting a substantial space-space filling effect (𝜈 ≠ 0), yet they are not entirely isolated
(𝜈 ≠ 1). This is in contrast to well-isolated excitons in (In,Ga)As quantum dots that are studied in
Part II of the thesis.

4.3 Conclusions

This chapter demonstrated the important role of spin-dependent exciton interactions in the
non-linear optical response of organic-inorganic perovskites. In MAPbI3, under excitation with
broadband femtosecond pulses, we observed the formation of biexcitons, a bound state of two
excitons with opposite spins. The obtained value of the biexciton binding energy of 2.4meV
amounts to roughly 20 % of the exciton binding energy in this material, which is in agreement
with the ratio found in conventional semiconductors [154]. Note that biexcitons can not be
observed in all bulk semiconductors. Potentially, a certain localization of excitons in MAPbI3
manifested in the inhomogeneous broadening studied in Section 3.1 favors the formation of
biexcitons. Remarkably, the biexciton binding energy was extracted although the period of the
quantum beats exceeds the decoherence time of the system. For this purpose, a measurement
protocol based on polarization beats was developed whose resolution is limited only by the
difference in decoherence rates of exciton and biexciton.

In FA0.9Cs0.1PbI2.8Br0.2, we discovered a different regime of exciton interactions that we interpret
as a spin-dependent excitation-induced dephasing of excitons. We introduced two modeling
approaches: one based on population-dependent decoherence rates, and a correlated two-exciton
model. The former qualitatively described the polarization dependence of the photon echo signal
but failed to account for polarization-dependent decoherence rates. Consequently, we presented
an alternative framework involving correlated exciton states with varying decoherence times.
This approach allowed us to understand both the polarimetric properties and the decay dynamics
by considering an asymmetry between the decoherence rates for correlated exciton states with
parallel and opposite spins. Importantly, the two-exciton model reproduces all experimental
observations even in the case of weakly interacting excitons. These findings highlight the
significant impact of exciton interactions in correctly interpreting the polarization dependences
of non-linear optical spectra in organic-inorganic perovskites.
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Part II

Coherent control of photon echoes from
quantum dots
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Observation of Rabi rotations of a quantum dot
ensemble using spatially shaped laser pulses 5
The observation of collective Rabi rotations from a quantum dot (QD) ensemble is usually
hampered by the inhomogeneity of the laser intensity profile that is used to excite the QDs. We
tackle this problem in this chapter by introducing a flattop intensity profile of the refocussing
pulse in a photon echo (PE) sequence. We show that this modification of the experimental scheme
allows us to observe pronounced Rabi rotations up to a pulse area of 5.5𝜋. Further, we compare
Rabi rotations arising from neutral and charged QDs using the PE polarimetry technique. Here,
it is demonstrated that a photo-induced charging of the QDs leads to a significant reduction of
the number of neutral QDs under resonant excitation. Finally, we analyze the damping of Rabi
rotations considering the interaction with acoustic phonons. The results presented in this chapter
were previously published in:

S. Grisard, H. Rose, A. V. Trifonov, R. Reichhardt, D. E. Reiter, M. Reichelt, C. Schneider,
M. Kamp, S. Höfling, M. Bayer, T. Meier, and I. A. Akimov, “Multiple Rabi rotations of
trions in InGaAs quantum dots observed by photon echo spectroscopy with spatially
shaped laser pulses”, Physical Review B 106, 205408 (2022)
doi: 10.1103/PhysRevB.106.205408, ©2022 American Physical Society

The results of a numerical modeling procedure, presented in Section 5.3, were obtained by Hendrik
Rose within the research group of Torsten Meier at the University of Paderborn.

5.1 Characterization of the quantum dot–cavity system

For the first optical characterization of the QD–cavity system, we apply angle-resolved photolu-
minescence spectroscopy (ARPL) using an experimental setup described in Reference [155]. The
technique allows to characterize the spectral position and width of the cavity mode as a function
of the emission angle. The resonance energy of the cavity 𝐸0 is expected to exhibit a quadratic
dependence on the emission angle 𝜃 as follows from Bragg’s law [156]

𝐸0(𝜃) ∝
1

2𝑑 cos(𝜃)
≈ 𝐸0(𝜃 = 0) (1 + 𝜃2

2𝑛2
) , (5.1)

where 𝑑 is the thickness of the cavity and 𝑛 is the refractive index of the cavity material (GaAs
in our case). We test this prediction on the studied sample using the ARPL technique. As
explained in Figure 5.1a, the basic principle of the technique is based on Fourier spectroscopy.
The sample is placed in a helium flow cryostat and cooled down to a temperature of 5 K. We
excite the sample from the top surface by a continuous wave laser with a photon energy of 2.3 eV,
which is focussed using a microscope objective with a high numerical aperture of 𝑁𝐴 = 0.4.
Thus, the objective collects the photoluminesce light emitted within a wide range of angles
± arcsin𝑁𝐴/𝑛 ≈ ±23.5°, where 𝑛 ≈ 1 is the refractive index of air. The entrance slit of a
spectrometer with a two-dimensional charge-coupled device (CCD) detector is placed in the
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5 Observation of Rabi rotations of a quantum dot ensemble using spatially shaped laser pulses

Figure 5.1: (a) Schematic view of the studied QD–cavity system and working principle of
Fourier spectroscopy. The sample consists of a single layer of (In,Ga)As QDs that is embedded
in a microcavity with thickness 𝑑 formed by two Bragg mirrors. The Bragg mirrors consist of
GaAs/AlAs pairs. (b) Angle-resolved photoluminescence spectrum measured at a temperature
of 5 K. The angle dependence shows a parabolic behavior of the resonance frequency, which is
a characteristic of planar microcavities.

Fourier plane of the microscope objective, i.e. at a distance 2𝑓 from the sample surface, where 𝑓 is
the focal length of the objective. In the Fourier plane, the emission angle 𝜃 is mapped to a radial
position 𝑟(𝜃), as examplary shown in Figure 5.1a for one emission angle. Therefore, the dimension
of the CCD detector parallel to the entrance slit of the spectrometer includes information about
the emission angle whereas the perpendicular dimension is used for the spectral resolution.

The measured ARPL spectrum is presented in Figure 5.1b as a two-dimensional color map. For
𝜃 = 0, the photoluminescence emission can be observed at 1.345 eV. The peak emission shifts
in a quadratic manner towards higher energies as a function of the emission angle, which is a
characteristic of the microcavity as explained above. The solid white line in Figure 5.1b shows
the quadratic dependence according to Equation (5.1) taking into account the resonance energy
at 𝜃=0 and the refractive index of GaAs of 3.5 from Reference [157]. We can conclude that the
cavity is in resonance with the emission spectrum of the QD ensemble. We further characterize
the spectral width of the cavity mode using the cross-section of the ARPL spectrum for 𝜃 = 0,
plotted in Figure 5.2a. The spectrum can be well fitted by a Lorentzian function, which yields a
full width at half maximum (FWHM) of 6meV, resulting in a quality factor of roughly 𝑄 ≈ 200.
For comparison, we show the spectrum of the picosecond laser pulses that we incorporate in
the following for the PE experiments. The spectral width of 0.3meV is significantly narrower
than the cavity width. Equivalently, the photon lifetime in the cavity is significantly shorter
than the duration of the laser pulses. The main effect of the cavity is therefore to enhance the
light-matter interaction of those QDs that are in resonance with the cavity mode whereas, for
example, modifications of the laser spectrum can be neglected from the discussions presented in
this chapter.

We move on to the time-resolved four-wave mixing (FWM) study of the sample at a temperature
of 1.5 K using the experimental setup described in Section 2.1. For all experiments, we use the
picosecond regime of the MIRA900 laser and tune the photon energy to the resonance of the
sample at 1.345 eV. At first, the optical pulses are linearly co-polarized. The intensity profile of
the laser pulses in the focus is a Gaussian with a FWHM of roughly 100 µm. Figure 5.2b depicts an
exemplary PE sequence, where we set the delay between first and second pulse to 𝜏12 = 40 ps and
individually measure the cross-correlations between the reference pulse and first, second, and PE
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Figure 5.2: (a) Comparison of the photoluminescence (PL) spectrum of the QD cavity spectrum
(green) and the laser spectrum (orange) of the picosecond laser pulses used for the transient
experiments. (b) Exemplary PE sequence measured by the cross-correlation between reference
pulse and first, second, and PE pulses, respectively. All pulses are well described by Gaussian
functions (solid lines) with a width of roughly 4 ps. Note that the separately measured cross-
correlations are normalized to the maximum value. (c) Decay of the two-pulse and three-pulse
PE amplitude (2PE/3PE), measured for linearly co-polarized pulses. The red dashed lines show
fit to exponential functions, which yields the decoherence time 𝑇2 and population decay time 𝑇1.

pulse. All pulses are fitted by a Gaussian (solid lines in Figure 5.2b), from which the respective
durations can be extracted. First and second pulses share a duration of 3.8 ps, the PE pulse has a
duration of roughly 4.3 ps. Note that the duration of the PE is mainly set by the duration of the
laser pulses, since the spectrally narrow laser pulses only excite a subensemble of QDs as can be
seen from the comparison of the spectra in Figure 5.2a.

Next, we extract the homogenous decoherence time 𝑇2 by a measurement of the PE amplitude as
a function of 𝜏ref = 2𝜏12, presented in Figure 5.2c. For 𝜏ref > 100 ps, the decay is well described by
an exponential function with a decay constant of 𝑇2 = 790 ps, corresponding to a homogeneous
linewidth of 𝛤2 = 2ℏ/𝑇2 = 1.67 µeV. We note that for 𝜏ref < 100 ps, we observe a faster decay
of the PE amplitude that deviates from the single exponential. We comment on this behavior
below where we discuss the interaction between the QDs and acoustic phonons. As typical for
self-assembled QDs at cryogenic temperatures [53], the decoherence time 𝑇2 is solely limited
by the finite population lifetime, which we demonstrate by a comparison of the two-pulse PE
decay with the three-pulse PE decay in Figure 5.2c. The latter is reprinted by permission from
Reference [158]. The three-pulse PE decays exponentially with a time constant of 𝑇1 = 400 ps,
such that the condition of the limiting case 𝑇2 = 2𝑇1 is roughly fulfilled (compare Equation (1.6)).
The measured values of 𝑇1 and 𝑇2 coincide with those obtained on a sample resulting from the
same wafer reported in Reference [159].

For the analysis of Rabi rotations from the QD ensemble, we incorporate the flattop intensity
profile for the second beam as characterized in Section 2.2. Before we quantitatively compare the
achieved improvement of the Rabi rotations, we apply the photon echo polarimetry technique to
distinguish the Rabi rotations arising from charged and uncharged QDs.
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5.2 Distinction of Rabi rotations from charged and uncharged
quantum dots

In the context of collective Rabi rotations from QDs, a further source of dephasing results from
the possible coexistence of various exciton complexes such as excitons and trions that may exhibit
different dipole moments [160]. The excitation of biexcitons can be ruled out since the expected
binding energy in the range of 3meV, as reported in Reference [161], is significantly larger than
the spectral width of the picosecond laser pulses. The PE polarimetry technique (Section 1.2.3)
allows to identify the contributions from various exciton complexes and enables to independently
address different subensembles by selecting appropriate polarizations of the involved laser pulses.
For uncharged quantum dots (excitons), with a V-type energy level arrangement as shown in
Figure 5.3a, we expect a cos2(𝜑) dependence on the relative linear polarization angle between the
first and second pulse. In contrast, for charged quantum dots (trions) with a four-level scheme
as depicted in Figure 5.3b, we expect a cos(2𝜑) dependence. Both dependences are plotted in
Figures 5.3c and 5.3d, respectively. Since the energetic splitting between exciton and trion is
typically much smaller than the inhomogeneous broadening of the ensemble, these complexes
cannot be spectroscopically distinguished by linear techniques or a FWM experiment with co-
polarized optical pulses. However, when choosing 𝜑 = 𝜋/2 only the trion contributes to the
detected signal, while only the exciton contributes for 𝜑 = 𝜋/4. We refer to these polarization
contributions as HVH and HDH in the following.

Figure 5.3: (a)/(b) Schematics of the energy level arrangement of excitons and trions. (c)/(d)
Theoretical polar rosettes for the level schemes in (a) and (b). (e)/(f) Experimentally observed
polar rosettes for two different values of the applied power of the second pulse as indicated in
the figure titles, given in units of the square root of the energy per pulse, which is a measure for
the pulse area.

We measure polar dependences of the PE amplitude for a delay of 𝜏12 = 40 ps. Interestingly,
we find that the qualitative shape of the polar rosettes depends on the applied optical power,
which is shown in Figures 5.3e and 5.3f. Here, we plot the measured polar rosettes for two values
of the pulse area of the second beam, which is given in units of the square root of the energy
per pulse �̃�2. For the value �̃�2 = 1.5 pJ1/2, we observe a cos2 𝜑 dependence indicating that the
QDs are uncharged. For a higher pulse area of �̃�2 = 4.3 pJ1/2, Figure 5.3f, we find also local
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maxima in the cross-polarized HVH configuration, which is a characteristic of the four-level
trion scheme. The observed power-dependent polarimetric behavior hints at a power-dependent
ratio of charged and uncharged QDs within the ensemble.

To quantify the charging effect, we measure the signals in HVH and HDH continuously as a
function of �̃�2, the result is presented in Figure 5.4a. In the HVH configuration, we observe clear
Rabi rotations from the ensemble, with three distinct local maxima associated with pulse areas
of 𝐴2 = 𝜋, 3𝜋, 5𝜋, as well as two local minima for 𝐴2 = 2𝜋, 4𝜋 (Equation (2.7)). In contrast, the
Rabi rotations in the HDH configuration are more strongly damped, with only one observable
local maximum. Additionally, we observe that the first maximum of the signal in HVH is shifted
towards higher optical powers by a factor of 2.2 relative to the signal in HDH. This shift could be
attributed to differences in dipole moments between the exciton and trion [160]. However, our
analysis of the intensity dependence of the PE amplitude for the trion up to the first maximum
indicates that the damping mechanism for the Rabi rotations of excitons and trions is different.
Specifically, the signal for the exciton follows a sin2(𝐴2/2) as highlighted by the red dashed line
in Figure 5.4a. In contrast, we observe a significant deviation for the trion, which we highlight
with the red area in Figure 5.4a. Instead, the signal for the trion in HVH configuration follows a
polynomial function of a higher degree in the low power range, suggesting that another power-
dependent contribution leads to an increase in the signal. We associate this finding with a
photo-charging of the QDs [162], that occurs on a slower timescale than the decoherence times
of excitons and trions [163]. Increasing the optical power leads to an increase in the number
of singly charged QDs and a corresponding decrease in the number of neutral excitons, which
explains the strong damping of the PE signal measured in the HDH configuration. Note that the
process of QD discharging does not affect the temporal dynamics of the PE and its decay, but it
does change the ratio between the number of excitons and trions contributing to the signal.
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Figure 5.4: (a) PE amplitude as a function of the pulse area of the second beam captured in the
polarization configurations HVH (trion/T) and HDH (exciton/X). The red dashed lines show the
ideal sin2(𝐴2/2) dependences, compare Equation (2.7). For HVH, the red area highlights the
discrepancy between the ideal and measured dependence. (b) Decay of the PE amplitude for the
configuration HVH and HDH. Red lines represent fits to exponential functions.

We compare the homogeneous linewidth associated with charged and uncharged QDs. In
Figure 5.4b, we show the decays of the PE amplitude measured in the configurations HDH and
HVH. For both resonances, we extract 𝑇2 = 0.83 ns, corresponding to a linewidth of 1.6 µeV. This
observation suggests that both charged and uncharged QDs share the same dipole moment and
the shift of the 𝜋-maxima in the Rabi rotations indeed stems from the photo charging effect. For
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5 Observation of Rabi rotations of a quantum dot ensemble using spatially shaped laser pulses

our discussion on the damping mechanisms of the Rabi rotations, we restrict ourselves to the
polarization configuration HVH, where we exclusively detect charged QDs.

5.3 Analysis of damping mechanisms

The goal of this section is to gain insight into the underlying mechanisms that lead to a loss of
the macroscopic coherence within the Rabi rotation experiment. Here, we distinguish between
effects that arise from inhomogeneities of the ensemble and those that are intrinsic to a single
QD. By comparing the experimental results with theoretical predictions, we discuss the relative
importance of each decoherence channel.

First, we emphasize the crucial role of employing a flattop intensity profile to identify internal
sources of decoherence. For this purpose, we compare in Figure 5.5a the Rabi rotations measured
using the flattop intensity profile (blue) with those measured in an experiment where both pulses
share the same Gaussian intensity profile (black). For the latter, the Rabi rotations are strongly
faded as only one weakly pronounced local maximum and minimum are visible followed by a
monotonic damping of the signal. Comparable weakly pronounced Rabi rotations were observed
under similar conditions in References [62, 105, 158]. To quantify the remaining impact of the
inhomogeneity of the flattop intensity profile, a numerical model was introduced in Reference [64].
Here, the measured laser intensity profiles serve as an input for a numerical solution of the optical
Bloch equations. The resulting Rabi rotations are shown by a green dashed line in Figure 5.5a.
No damping is observable within the measured intensity range. Therefore, we conclude that our
experimental method allows to overcome the effect of spatial averaging. Note that the modeled
PE has a lower amplitude for 𝐴2 = 𝜋 than for 𝐴2 = 3𝜋. This deviation from the simplified
sin2(𝐴2/2)-dependence, Equation (2.7), arises from the finite duration of the optical pulses. We
conclude that the accomplished laser intensity profile (characterized in Section 2.2) does not
introduce a significant influence on the fading of the Rabi rotations in the observed range of
pulse areas. We thus proceed to explore additional potential contributions to intensity-dependent
decoherence.
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Figure 5.5: (a) Rabi rotations as a function of the pulse area of the second pulse𝐴2 for a Gaussian
(black) and a flattop intensity profile (blue). The red and green lines show modeling results as
described in the text. (b) Decay of the normalized PE amplitude for 𝐴2 = 𝜋, 3𝜋, 5𝜋 (local maxima
of the Rabi cycle in (a)). The inset highlights the temporal range where the decays deviate from
a single exponential function.
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5.3 Analysis of damping mechanisms

A remaining damping effect, arising from the average over an ensemble, is a potential spread of
dipole moments that are affected by the size and shape of the QDs. In a similar manner as the
fading of Rabi rotations by a Gaussian intensity profile, the inhomogeneity of dipole moments
gives rise to a modification of the total polarization described by

𝑃(𝐴2) ∝ ∫
∞

0
𝜇e

−
(𝜇−𝜇20)

2

2𝜎2𝜇 sin2 (
𝜇
𝜇0

𝐴2,0
2

) d𝜇, (5.2)

where we assumed a Gaussian distribution of dipole moments 𝜇 with mean value 𝜇0 and standard
deviation 𝜎𝜇. 𝐴2,0 = 𝜇0/ℏ ∫ 𝐸2(𝑡)𝑑𝑡 denotes the pulse area associated with the mean dipole
moment. Equation (5.2) describes a loss of contrast of the Rabi rotations due to the superposition
of individual Rabi rotations of the QDs within the ensemble. In the limit 𝐴2,0 → ∞, the signal
reaches a constant value of 50 % relative to the Rabi cycle associated with the mean dipole moment.
In the experiment, we can indeed observe a strong loss of contrast in the rotations: The contrast
between the 𝜋 maximum and the 2𝜋 minimum is roughly 90 % whereas the contrast between the
4𝜋minimum and 5𝜋maximum amounts to only 30 %, which we can associate to a spread of dipole
moments within the excited ensemble. However, the signal drops significantly below a constant
value of 50 % relative to the maximum signal at 𝜋, since the amplitude for the local maximum at
5𝜋 is roughly given by 30 %. This loss of macroscopic coherence can not be explained by an effect
associated with the inhomogeneity of the system. We therefore have to consider decoherence
effects that are inherent to a single QD. Here, the coupling to acoustic phonons is relevant, whose
characteristics will be reviewed in the following based on Reference [164].
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Figure 5.6: (a) Schematic photoluminescence (PL) spectrum of a QD interacting with acoustic
phonons. The spectrum consists of a zero-phonon line (ZPL) and a phonon-sideband. (b) Sketch
of the basic idea of the phonon model described in the text. Here, an optical (Gaussian) pulse
leads to a time-dependent dressing of the two states (green, red). The dressing leads to phonon-
assisted transitions between the dressed states at a rate 𝛾. (c) Phonon spectral density resulting
from the fitting procedure described in the text. Colored lines show the time-dependent Rabi
frequency as set by the electric field pulses with area 𝜋, 3𝜋, 5𝜋.

The coupling of self-assembled (In,Ga)As QDs to their crystal surrounding in the form of carrier-
phonon coupling has been subject to intense research efforts both experimentally and theoretically
within the last 20 years [54, 165–169]. Since direct transitions between the QD states are typically
not accomplished by phonon energies, pure decoherence effects via the coupling to longitudinal
acoustic phonons are most relevant [166]. In the PL absorption spectrum of single QDs at low
temperatures, the influence of phonons can be seen in the form of a phonon sideband on the
low-energy side that superimposes a Lorentzian line at the resonance energy of the QD transition
(zero-phonon line). A schematic spectrum is shown in Figure 5.6a. The phonon sideband typically
shows a maximum at a non-zero detuning from the zero-phonon line, which is referred to as a
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5 Observation of Rabi rotations of a quantum dot ensemble using spatially shaped laser pulses

resonance phenomenon of the coupling efficiency between the QD exciton and the phonons [167].
The coupling efficiency can be described by the phonon spectral density 𝐽 (𝜔) whose spectral
characteristics result from the interplay of two properties of the (In,Ga)As QD system. First, the
lattice parameters of InAs and GaAs are similar and the phonons can thus be considered as bulk
modes, i.e. plane waves. Second, the spatial confinement of the charges restricts the coupling to
acoustic phonons with small wavenumbers, i.e. sound waves with linear dispersion 𝜔 = 𝑐𝑘, with
the speed of sound 𝑐. The carriers couple most strongly to the phonons whose wavelengths are
equal to the width of the carrier wave function, i.e. the size of the QDs. For lower energies, 𝐽 (𝜔)
behaves as in the bulk material, whereas for higher energies the coupling drops due to the finite
size of the QDs. Assuming that the QDs are spherical, 𝐽 (𝜔) can be derived to

𝐽 (𝜔) ∝ 𝐴𝜔3 exp (−𝜔2

𝜔2
𝑐
) , (5.3)

where 𝐴 is a constant and 𝜔𝑐 is a cut-off frequency that is determined by the size of the spherical
QDs [170]. The discussed spectral dependence of the homogeneous line of the QDs corresponds
to a non-exponential decay of the polarization in the time domain, where the signal initially drops
fast on a picosecond timescale corresponding to the emission of a phonon wave packet and partial
loss of coherence [171]. In non-linear spectra, the homogeneous line can strongly depend on the
applied optical power, which therefore results in an intensity-dependent damping mechanism
for the Rabi oscillations. This can be understood by taking into account that the application
of a strong laser field results in a dressing of ground and excited states between which direct
phonon-assisted transitions are allowed. Strong excitation can therefore result in the efficient
creation and emission of a phonon wave packet accompanied by a loss of exciton coherence on
a picosecond-timescale [164, 172]. The coupling is strongest when the Rabi frequency, which
corresponds to the splitting between the dressed states, matches the maximum of the phonon
spectral density 𝐽 (𝜔).

We experimentally investigate the effect of the applied laser intensity on the shape of the ho-
mogeneous line by a measurement of the PE decay as a function of the pulse area of the second
pulse. Figure 5.5b presents the PE decays measured for 𝐴2 = 𝜋, 3𝜋, 5𝜋 (maxima of the Rabi
rotations). With increasing pulse area, we can observe a stronger influence of the aforementioned
fast component in the range 𝜏ref < 100 ps. This temporal range is highlighted in the inset of
Figure 5.5b. Further, the decoherence time 𝑇2 corresponding to the subsequent exponential decay
gradually drops from 830 ps for 𝐴2 = 𝜋 over 790 ps for 𝐴2 = 3𝜋 to 730 ps for 𝐴2 = 5𝜋. This
excitation-induced dephasing (EID) effect may be attributed for example to the coupling to wetting
layer states as discussed in Reference [173]. Concerning the damping of Rabi rotations, the EID
effect results in a damping of the PE amplitude by a factor exp[−𝜏ref/𝑇2(𝐴2)], where 𝑇2(𝐴2) is the
decoherence time as a function of 𝐴2. However, since the Rabi rotations presented in Figure 5.5a
are measured for a short delay 𝜏ref = 80 ps, the contribution of EID on the drop of amplitude
is negligible as emerges from the estimation exp (−80 ps/𝑇2(5𝜋))/ exp (−80 ps/𝑇2(𝜋)) ≈ 99%.
Instead, the described loss of coherence is dominated by the fast drop of the PE amplitude, which
results from the intensity-dependent coupling efficiency to acoustic phonons that we motivated
above. To account for this effect in a quantitative model, we adopt a rate equation approach intro-
duced in Reference [170] for the modeling of time-dependent Rabi oscillations and pump-probe
spectra.

The idea of the model is visualized in Figure 5.6b. The interaction of the QD, considered as a
two-level system (TLS), with a light pulse leads to a time-dependent dressing of the states such
that the energy splitting is given by the generalized Rabi frequency (for the definition of the
dressed state base see Equation (1.21)). Since both dressed states |𝑢⟩ and |𝑙⟩ include an excited state
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5.3 Analysis of damping mechanisms

component, the coupling to phonons, although being of pure type, results in direct transitions
at a rate 𝛾 assisted by the emission of a phonon with energy 𝛺. The rate 𝛾 follows from Fermi’s
golden rule

𝛾 = 𝜋
2
(
𝛺R

𝛺
)
2
𝐽 (𝛺) (5.4)

and therefore includes the non-monotonous efficiency of the coupling to phonons described by
the spectral density 𝐽 (𝜔) [170]. We use the frequency dependence of 𝐽 (𝜔) from Equation (5.3)
that assumes spherical QDs. The assumption of a spherical shape might be a strong simplification
of the actual shape of the studied self-assembled QDs. However, by appropriate choice of the
parameters 𝐴 and 𝜔𝑐 in Equation (5.3), an arbitrary geometry of QDs can be approximated [171].
Therefore, 𝐴 and 𝜔𝑐 serve as fitting parameters of our modeling procedure. Note that for a
Gaussian temporal envelope of the light field, the dressed state base is time-dependent. For a
qualitative discussion, we first present an analytical consideration of the model for which we
assume rectangular-shaped pulses. Afterward, the numerical results obtained in Reference [64]
are presented that take into account the Gaussian temporal envelope.

The phonon relaxation rate (5.4) enters the equations of motion of the density matrix in the
dressed state base as

𝑑
𝑑𝑡
𝜌𝑢𝑢 = −𝛾𝜌𝑢𝑢,

𝑑
𝑑𝑡
𝜌𝑙 𝑙 = +𝛾𝜌𝑢𝑢,

𝑑
𝑑𝑡
𝜌𝑙𝑢 = −𝑖𝛺𝜌𝑙𝑢 −

𝛾
2
𝜌𝑙𝑢, (5.5)

which are solved by

𝜌𝑢𝑢(𝑡) = 𝜌𝑢𝑢(0)e
−𝛾 𝑡 (5.6a)

𝜌𝑙 𝑙(𝑡) = 𝜌𝑙 𝑙(0) + (1 − e−𝛾 𝑡)𝜌𝑢𝑢(0) (5.6b)

𝜌𝑙𝑢(𝑡) = 𝜌𝑙𝑢(0)e
−(𝑖𝛺+ 𝛾

2 )𝑡. (5.6c)

This solution is transformed to formulate the action of a rectangular-shaped pulse of dura-
tion 𝑡𝑝 on the Bloch vector using the transformation between dressed and undressed states from
Equation (1.21) and the definition of the Bloch vector from Equation (1.23)

(
𝑢
𝑣
𝑤
) =

⎛
⎜
⎜
⎜
⎝

𝛺2
R𝑒

−𝛾 𝑡𝑝+𝛥2 cos(𝛺𝑡𝑝)𝑒
− 𝛾
2 𝑡𝑝

𝛺2 −𝛥
𝛺 sin(𝛺𝑡𝑝)𝑒

− 𝛾
2 𝑡𝑝 𝛥𝛺R

𝛺2 [𝑒−𝛾 𝑡𝑝 − cos(𝛺𝑡𝑝)𝑒
− 𝛾

2 𝑡𝑝]
𝛥
𝛺 sin(𝛺𝑡𝑝)𝑒

− 𝛾
2 𝑡𝑝 cos(𝛺𝑡𝑝)𝑒

− 𝛾
2 𝑡𝑝 𝛺R

𝛺 sin(𝛺𝑡𝑝)𝑒
− 𝛾

2 𝑡𝑝

−𝛥𝛺R
𝛺2 [𝑒

−𝛾 𝑡𝑝 − cos(𝛺𝑡𝑝)𝑒
− 𝛾

2 𝑡𝑝] −𝛺R
𝛺 sin(𝛺𝑡𝑝)𝑒

− 𝛾
2 𝑡𝑝

𝛥2𝑒−𝛾 𝑡𝑝+𝛺2
R cos(𝛺𝑡𝑝)𝑒

− 𝛾
2 𝑡𝑝

𝛺2

⎞
⎟
⎟
⎟
⎠

(
𝑢b
𝑣b
𝑤b

)

(5.7)

+
⎛
⎜⎜
⎝

𝛺R
𝛺 (1 − 𝑒−𝛾 𝑡𝑝)

0
𝛥
𝛺 (1 − 𝑒−𝛾 𝑡𝑝)

⎞
⎟⎟
⎠

,

where (𝑢b, 𝑣b, 𝑤b) is the Bloch vector before pulse action. Multiple applications of Equation (5.7)
are used to account for arbitrary sequences of rectangular-shaped pulses. Equation (5.7) repre-
sents an expansion of the equations given in Reference [170], where only the initial condition
(𝑢b, 𝑣b, 𝑤b) = (0, 0, −1) (i.e. system in the ground state) is considered. Equation (5.7) manifests
two distinct effects arising from the phonon interaction. First, the transition rate 𝛾 leads to a
decay of all components of the Bloch vector, thus leading to both decoherence and population
decay during pulse action. Since the decay rate depends on the detuning, this decoherence effect
also affects the contrast of the Rabi oscillations. A second feature is given by the long-term
steady state of the Bloch vector described by the last summand in (5.7), which is independent of
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5 Observation of Rabi rotations of a quantum dot ensemble using spatially shaped laser pulses

the initial Bloch vector. For a fixed Rabi frequency, the steady state on the Bloch sphere solely
depends on the detuning 𝛥 which was already discussed in Reference [174] using path integral
formalism and was proposed as a possible state preparation scheme for QD qubits. Further, it
should be noted that the transition rate 𝛾 shares the resonant nature of the phonon spectral
density. Consequently, for pulses corresponding to a large or small Rabi frequency, as compared
to the cut-off frequency 𝜔𝑐 in Equation (5.3), the influence of phonons is negligible, which is
realized at a given pulse area for sufficiently short or long pulses, respectively.

As a final step, we aim to determine the free parameters of the phonon spectral density, being the
amplitude 𝐴 and cut-off frequency 𝜔𝑐, by performing a fit to the observed Rabi rotations. For this
purpose, a complete numerical model was introduced in Reference [64] that takes into account
the Gaussian temporal profile of the pulses with a FWHM of 3.8 ps. To do so, the Gaussian
pulses are approximated by piecewise constant functions with a stepwidth of 20 fs. For each
step, the equations of motion are transformed to the dressed state base and the Equations of
motion (5.5) are solved numerically. The final polarization in the undressed base is averaged
over an inhomogeneous distribution of detunings and dipole moments. The inhomogeneous
broadening of the dipole moments is assumed to be a Gaussian distribution whose width serves
as a third fitting parameter. The best fit is given for 𝐴 = (0.012 ± 0.002) ps2, 𝜔𝑐 = (3.6 ± 0.1) THz,
and a dipole inhomogeneity of (21±2) % (FWHM). These parameters are in reasonable agreement
with results obtained on similar QD samples [161, 175]. The corresponding damped Rabi cycle is
plotted together with the experimental data in Figure 5.5a. Note that the modeling procedure
does not take into account the photo charging effect that we discussed in the previous section.
Therefore, the modeled curve deviates from the experimental data in the range 𝐴2 < 𝜋. Excellent
agreement between model and experiment is found in the range 𝜋 ≤ 𝐴2 ≤ 3.5𝜋, whereas the
contrast of the measured oscillations is less pronounced for 𝐴2 ≥ 3.5𝜋 as described by our
model. Nevertheless, the comparison between the experimental and modeled Rabi rotations in
combination with the study of EID and the non-exponential decay of the PE amplitude allows us
to conclude that the resonant coupling to acoustic phonons is the dominant mechanism for the
loss of optical coherence inherent to a single QD. In Figure 5.6c we plot the time-dependent Rabi
frequency 𝛺R in direct comparison to the phonon spectral density. For the used pulse durations
of 3.8 ps, the largest pulse areas in our experiment ≈ 5𝜋 feature a maximum Rabi frequency of
roughly 4 THz, which is close to the maximum of the phonon spectral density with the found
parameters. Consequently, the loss of coherence acts very efficiently in the regime of large pulse
areas. Through the use of longer (≈ 50 ps) or shorter (≈ 100 fs) pulses, the coupling to phonons
could be strongly reduced.

5.4 Conclusions

In this chapter, we observed collective Rabi rotations in an intensity-dependent PE experiment
from an ensemble of (In,Ga)As QDs placed in a microcavity with a moderate quality factor of
200. Using the PE polarimetry technique, we independently considered charged and uncharged
QDs. Charged QDs (trions) are found to be dominantly responsible for the coherent optical
response of the sample which we attribute to a photo-charging effect. The main demonstration
presented in this section is given by the successful expansion of the Rabi rotation protocol on an
ensemble of charged QDs using a flattop intensity profile. By overcoming the effect of spatial
inhomogeneity, pronounced Rabi rotations up to a pulse area of 5.5𝜋 were observed, which
was so far not possible in experiments on an ensemble of exciton complexes in semiconductor
structures [62, 103, 106]. A careful analysis of the damping behavior of the Rabi rotations as well
as the qualitative shape of the homogenous line as a function of applied optical power, allowed
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5.4 Conclusions

us to identify the resonant coupling to acoustic phonons as the major decoherence channel under
resonant excitation. The excitation-induced spectral broadening of the zero-phonon line instead
is negligible. We successfully employed an adequate modeling procedure to account for the
resonant nature of the phonon coupling that results from the interaction between bulk phonons
and localized excitations. We presented an analytical expansion of the effect on the Bloch vector
assuming rectangular-shaped pulses and finally took into account the Gaussian temporal shape
of the optical pulses to obtain parameters for the spectral density as well as the inhomogeneity
of dipole moments. The discussed strong dependence of the phonon coupling on the duration
of the resonant laser pulses motivates us to perform similar measurements using pulses in the
femtosecond regime. Here, the effect of biexciton formation is expected to be negligible as the
QDs are mainly charged.
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Temporal sorting of optical multi-wave-mixing
processes 6
The observation of well-pronounced Rabi rotations in Chapter 5 up to an area of 5.5𝜋 using a
flattop intensity profile demonstrates the possibility of performing multiple unitary operations on
the qubit ensemble realized in the studied (In,Ga)As quantum dot–cavity system. These findings
motivate to study more complex pulse arrangements as used in nuclear magnetic resonance
(NMR), where almost arbitrary logical operations can be realized by the combination of magnetic
field pulses acting on qubits represented by nuclear spin states. In the optical regime, the interplay
of multiple pulses with an optical emitter, such as an exciton in a quantum dot (QD), results in
the formation of high-order multi-wave mixing (MWM) responses that allow to directly impact
on the emitting optical coherence [159, 176]. Qubits realized by QDs offer advantages regarding
the speed of control, polarization selectivity, and phase matching condition dictated by spin
and photon momentum conservation. The experimental results presented in this chapter reveal
the rich possibilities of all-optically controlling the emission properties of QD ensembles by
manipulating their phase evolution. In particular, we expand the two-pulse photon echo (PE)
sequence by two optical control pulses that operate on the phase evolution of the ensemble.
The first and second pulse of the two-pulse PE sequence initialize a macroscopic coherence and
reverse the phase evolution leading to PE formation, respectively. The areas of two additional
control pulses serve as tuning knobs for adjusting the magnitude and timing of the coherent
emission. Furthermore, we make use of the spin degeneracy of ground and excited state of
charged QDs to control the polarization state of the emitted signal.

Additionally, we analyze the effect of finite duration of the resonant optical pulses on optical
MWM signals. Usually, high-order MWM terms that share the same phase dependence on
the fields are emitted at the same time and are indistinguishable using heterodyne techniques.
Surprisingly, we reveal that the use of optical control pulses, whose durations are comparable to
the dephasing time of the ensemble leads to a temporal sorting of the MWM processes of different
order. This phenomenon is manifested in a significant modification of the temporal shape of the
coherent optical response for strong optical fields. The results presented in this chapter were
previously published in:

S. Grisard, A. V. Trifonov, H. Rose, R. Reichhardt, M. Reichelt, C. Schneider, M. Kamp, S.
Höfling, M. Bayer, T. Meier, and I. A. Akimov, “Temporal Sorting of Optical Multiwave-
Mixing Processes in Semiconductor Quantum Dots”, ACS Photonics 10, 3161 (2023)
doi: 10.1021/acsphotonics.3c00530, ©2023 American Chemical Society

6.1 Theoretical description of control pulse experiment

In this section, we theoretically describe the coherent control scheme that we use to all-optically
manipulate the phase evolution of an ensemble of singly charged (In,Ga)As QDs. Our approach
is based on the interplay of temporally sorted high-order MWM signals in a PE experiment. All
experiments are performed on the same QD ensemble embedded in an AlAs/GaAs microcavity
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6 Temporal sorting of optical multi-wave-mixing processes

that was studied in Chapter 5. Importantly, we recall that the optical response of the sample
upon moderate optical excitation is dominated by negatively charged QDs, i.e., trions. The trion
scheme is made up of two separated two-level system (TLS) that can be independently addressed
by the two circular light polarizations 𝜎+ and 𝜎−. Under excitation with linearly co-polarized
pulses and in the absence of a magnetic field, the trion behaves effectively like a single TLS
consisting of states |0⟩ and |1⟩. When, however, the relative amplitude or optical phase between
𝜎+ and 𝜎− components of the exciting light are varied, the spin degeneracy of the trion in the
ground and excited state offers possibilities for the polarization control of the coherent optical
response of the QD ensemble, as we will discuss below.

For the discussion of the general properties of the considered mechanisms, we analytically solve
the optical Bloch equations assuming delta-like optical pulses (impulsive limit, Section 6.1.1).
Afterwards in Section 6.1.2, we discuss the effect of a finite pulse duration on the temporal
shape of the resulting PE response. The latter becomes crucial for distinguishing between MWM
contributions that appear at the same temporal position in the case of delta-pulses.

6.1.1 Impulsive limit

Within this section, we consider all resonant optical fields as delta pulses (impulsive limit). Note
that the finite duration of the pulses can only be safely neglected when the spectrum of the pulses
is much broader than the inhomogeneous broadening of the ensemble, i.e. when the duration is
much shorter than the reversible dephasing time 𝑇 ∗2 . Although this condition is not fulfilled in our
experiments (compare discussions in Chapter 5), the consideration of the impulsive limit enables
us to derive meaningful analytical expressions for MWM signals whose general properties remain
valid even when the finite duration of the pulses is taken into account. The profound influence
of the finite pulse duration on the temporal shape of the PE responses is discussed in the next
section.

The excitation scheme is schematically presented in Figure 6.1a. Here, we expand the two-pulse
PE sequence by two additional resonant control pulses, with electric field amplitudes 𝐸C1 and
𝐸C2. The control pulses share the same wavevector kC ≠ k2 ≠ k1 and are temporally split by a
delay of 𝜏C. By exciting the ensemble temporally between the first and second pulse, the control
pulses directly modify the dephasing dynamic of the ensemble after the action of the first pulse.
Therefore, the two-pulse PE response is directly modified. The effect on the spectro-temporal
shape of the PE field is analyzed by temporally resolving the signal using the heterodyne technique.
Besides modifying the two-pulse PE response, the addition of two resonant laser pulses results in
various PE signals formed at different temporal positions and emitted in different directions. For
example, the combination of the first pulse 𝐸1 and first control pulse 𝐸C1 creates a PE emitted in
the direction 2kC−k1. The photon momentum conservation in combination with the heterodyne
technique allows a selective study of those responses that fulfill the phase-matching condition
2k2 − k1 and thus directly impact the two-pulse PE response. This means that we only consider
MWM signals that are not affected by the spatial phase of the control pulses or only depend on
the difference between the phases, which vanishes for the choice kC1 = kC2.

To analyze the effect of the control pulses on the PE response when the area of the control pulses
is driven in the Rabi regime, we analytically solve the optical Bloch equations for a TLS. Since the
considered trion ensemble consists of two independent subensembles that can be addressed with
circularly polarized light, the solution can be transferred to the four-level system by subdividing
the optical fields into circularly polarized components

𝐸±j (𝑡) = 𝐸±0, j𝛿(𝑡 − 𝑡j)e
𝑖𝜙± . (6.1)

84



6.1 Theoretical description of control pulse experiment

Figure 6.1: (a) Temporal and angular arrangement of the optical pulses for our experiments.
The basis is set by the two-pulse PE experiment, where two pulses with wavevectors k1 and k2
generate a PE signal in the phase matched direction 2k2 − k1. In between these two pulses, we
introduce two control pulses sharing the same wavevector kC. The resulting coherent responses
are temporally resolved using the heterodyne technique as introduced in Section 2.1. Note
that all pulses possess the same photon energy and colors in the figure are chosen only for
clarity. (b)/(e) Double-sided Feynman diagrams for the eight- and six-wave-mixing processes
(EWM/SWM) as described in the text. (c) Temporal arrangement of optical pulses for reference
on the time axis of the phase diagrams in (d) and (f). (d)/(f) Evolution of the phase of two
individual TLS for the two different MWM processes in (b) and (e). Dashed lines show the phase
evolution in the absence of the control pulses for comparison.

Here, 𝜙± = k ⋅ r + 𝜑± denotes an optical phase including the spatial phase k ⋅ r and an individual
optical phase 𝜑± for the 𝜎+ and 𝜎− components, which makes it possible to construct arbitrary
polarizations. The effect of a delta pulse on each TLS can be compactly written as a matrix
operation on the elements of the density matrix 𝜌±𝑖𝑗 that transforms the density matrix elements
before the action of the pulse (index b) into the density matrix elements after the action of the
pulse (index a)

⎛
⎜
⎜
⎝

𝜌±00
𝜌±11
𝜌±01
𝜌±10

⎞
⎟
⎟
⎠𝑎

= M±(𝐴±, 𝜙±)
⎛
⎜
⎜
⎝

𝜌±00
𝜌±11
𝜌±01
𝜌±10

⎞
⎟
⎟
⎠𝑏

, (6.2)

where the matrix M± is given by [96]

M± = 1
2

⎛
⎜
⎜
⎝

1 + cos(𝐴±) 1 − cos(𝐴±) 𝑖 sin(𝐴±)e−𝑖𝜙 −𝑖 sin(𝐴±)e+𝑖𝜙

1 − cos(𝐴±) 1 + cos(𝐴±) −𝑖 sin(𝐴±)e−𝑖𝜙 𝑖 sin(𝐴±)e+𝑖𝜙

𝑖 sin(𝐴±)e+𝑖𝜙 −𝑖 sin(𝐴±)e+𝑖𝜙 1 + cos(𝐴±) (1 − cos(𝐴±))e2𝑖𝜙

−𝑖 sin(𝐴±)e−𝑖𝜙 𝑖 sin(𝐴±)e−𝑖𝜙 (1 − cos(𝐴±))e−2𝑖𝜙 1 + cos(𝐴±)

⎞
⎟
⎟
⎠

(6.3)
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with the pulse area 𝐴± = ∫ 𝜇
ℏ𝐸

±
0 𝛿(𝑡 − 𝜏)𝑑𝑡. In this section, we intentionally avoid the Bloch

vector representation of the density matrix elements, given that the incorporation of different
wavevectors for the optical pulses makes this approach less insightful [96]. The free evolution
of the density matrix elements during a temporal gap 𝜏 between two pulses can be analogously
formulated as multiplication with the matrix

M0(𝛥, 𝜏 ) = diag(1, 1, e𝑖𝛥𝜏, e−𝑖𝛥𝜏). (6.4)

By combinations of the matrices given by Equations (6.3) and (6.4), the effect of an arbitrary
sequence of delta pulses with different wavevectors can be modeled.

As a starting point, we use the modeling formalism to obtain the PE response resulting from two
laser pulses. We assume that before the action of the pulses, all oscillators are in the ground state,
i.e. 𝝆±(0) = (1, 0, 0, 0)⊤. The density matrix at observation time 𝑡 is given by

𝝆±(𝑡) = M0(𝑡 − 𝜏12)M
±(𝐴±

2 )M
0(𝜏12)M

±(𝐴±
1 )𝝆

±(0). (6.5)

From a full solution for the coherences 𝜌±01 being microscopic sources of 𝜎± polarized light, we
select only those terms with a spatial phase factor kS ⋅ r = (2k2 − k1) ⋅ r. In this way, we arrive at
the following expression of the two-pulse PE fields in 𝜎+ and 𝜎− polarization

𝐸±2PE ∝ sin (𝐴±
1 ) sin

2 (
𝐴±
2
2
) exp [𝑖(2𝜙±2 − 𝜙±1 ) + 𝑖𝛥(𝑡 − 2𝜏12)] . (6.6)

Due to the phase factor exp [𝑖𝛥(𝑡 − 2𝜏12)], the integration over a distribution of detunings 𝛥 in an
inhomogeneous ensemble restricts the two-pulse PE signal to the temporal position where all
relative phases equal zero. The formation of macroscopical polarization of the ensemble can thus
be observed at 𝑡 = 2𝜏12 in the form of a coherent light pulse. We elaborate in the following on
how this PE field is influenced by the action of the control pulses.

When considering MWM responses from a TLS, the contribution of each control pulse with
wavevector kCi to the overall phasematching condition is 0, ±2kCi, or ±kCi. Therefore, we
can expect three distinct MWM contributions, for which we explicitly write the phasematching
conditions as

kS = 2k2 − k1 + kC1 − kC1 + kC2 − kC2, (6.7a)

kS = 2k2 − k1 + 2kC1 − 2kC2, (6.7b)

kS = 2k2 − k1 + kC1 − kC2. (6.7c)

For the choice kC1 = kC2, all three phase matching conditions simplify to kS = 2k2 − k1. Each
response leads to a PE emitted at a well-defined temporal position relative to the two-pulse PE,
as we discuss in the following.

The first case, Equation (6.7a), implies an insensitivity of the resulting signal to the optical phases
of the control pulses and can be observed for any choice of kC1 and kC2 in the direction 2k2 −k1.
Within the impulsive limit, the temporal position of the resulting coherent emission will not be
shifted relative to the two-pulse PE at 𝑡 = 2𝜏12. As for the two-pulse PE, we derive the dependence
of the signal fields in 𝜎± polarizations on the involved pulse areas

𝐸±FWM = 𝐸±2PE cos
4 (

𝐴±
C

2
) , (6.8)

where the functional dependence of 𝐸±2PE on 𝐴±
1 and 𝐴±

2 is given by Equation (6.6). The signal is
maximum for 𝐴C = 2𝑛𝜋 and zero for 𝐴C = (2𝑛 +1)𝜋, where 𝑛 is an integer. We indexed the signal
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with FWM (four-wave mixing) corresponding to the lowest non-zero MWM order of the signal.
We underline however, that Equation (6.8) is the exact solution including all possible higher-order
MWM components that share the same phasematching condition and temporal characteristic. As
can be seen in Equation (6.8), the pulse area 𝐴C directly modulates the amplitude of the two-pulse
PE, which may be also used to independently modify the contributions of 𝜎+ and 𝜎− components
as we experimentally demonstrate in Section 6.4.

Next, we consider the phasematching conditionk𝑆 = 2k2−k1+2kC1−2kC2, Equation (6.7b), which
simplifies to the phase matching condition of the two-pulse PE for the special case kC1 = kC2.
This phasematching condition is realized, in lowest perturbative order, by an eight-wave mixing
(EWM) process proportional to 𝐸∗1𝐸

2
2𝐸

2
C1𝐸

∗2
C2 as depicted by an exemplary Feynman diagram in

Figure 6.1b. Similar to the action of the refocussing pulse in the two-pulse PE sequence, here,
each of the control pulses converts the polarization to its complex conjugate, i.e. |𝑖⟩⟨𝑗| to |𝑗⟩⟨𝑖|.
The effect of this process on the overall coherent response is represented by the phase diagram
in Figure 6.1d in comparison to the two-pulse PE (dashed lines). The diagram plots the phase
evolution of the field amplitude associated with two oscillators with opposite detuning (blue
and red). A coherent emission of the whole ensemble will appear only at the temporal positions
where the relative phase of the oscillators disappears (crossing points of blue and red lines). For
clarity, Figure 6.1c on top of the phase diagram sketches the temporal arrangement of the pulses.
The ensemble experiences a refocusing dynamic after the first control pulse that is again inverted
by the second control pulse. In this way, the phases of individual oscillators are effectively
unaffected for a time of 2𝜏C after the first control pulse, which we highlight by the grey area in
Figure 6.1d. Consequently, the refocusing pulse, acting at 𝜏12, generates a coherent emission that
is shifted by −2𝜏C with respect to the two-pulse PE at 2𝜏12. Note that the two other moments
where the relative phase is zero within the grey area in Figure 6.1d lead to a coherent emission in
the directions 2kC − k1 and k1, respectively, and are therefore not detected in our experiments.
We again derive an analytical expression for the electric fields as a function of the involved pulse
areas

𝐸±EWM = 𝐸±2PE sin
4 (

𝐴±
C

2
) exp [2𝑖 (𝜙±C2 − 𝜙±C1) + 2𝑖𝛥𝜏C] . (6.9)

The dependence of the signal on 𝐴C oscillates with the opposite phase as compared to the signal
at 2𝜏12 (𝐸

±
FWM ∝ cos4 (𝐴±

C/2)), Equation (6.8). Maxima appear for 𝐴±
C = (2𝑛 + 1)𝜋, minima for

𝐴±
C = 2𝑛𝜋. Consequently, the area 𝐴C acts as a control knob for the coherent transfer between

the two PEs occurring at different temporal positions. For 𝐴C = 𝜋, the control pulses function
as a temporal gate for the coherent emission of the ensemble. Furthermore, the optical phase
of the signal in Equation (6.9) depends on twice the relative phases between the control pulses
2(𝜙±C2 − 𝜙±C1), which opens up the possibility of acquiring full control over the polarization
of the coherent emission by suitable choice of the polarizations of the control pulses as we
experimentally demonstrate below.

Lastly, we consider the phasematching condition k𝑆 = 2k2 − k1 + kC1 − kC2 = 2k2 − k1,
Equation (6.7c), corresponding to a six-wave mixing (SWM) response ∝ 𝐸∗1𝐸

2
2𝐸C1𝐸

∗
C2 in the

lowest-order perturbation theory. A corresponding Feynman diagram is presented in Figure 6.1e.
We again show the phase evolution of two oscillators with opposite detuning in Figure 6.1f.
Here, the dephasing after the action of the first pulse is effectively turned off within a duration
of 𝜏C (grey area) as the control pulses convert polarization |0⟩⟨1| to population |1⟩⟨1| and back.
Therefore, the coherent emission appears at 2𝜏12 − 𝜏C. The functional dependence on the pulse
areas is given by

𝐸±SWM = −
𝐸±2PE
2

sin2 (𝐴±
C) exp [𝑖 (𝜙

±
C2 − 𝜙±C1) + 𝑖𝛥𝜏C] , (6.10)
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6 Temporal sorting of optical multi-wave-mixing processes

which runs through maxima for 𝐴C = (2𝑛 + 1)𝜋/2. Again, the optical phase of the signal can be
controlled by the relative phase between the control pulses.

In summary, we have introduced an arrangement of optical pulses that evoke different MWM
contributions where two control pulses act as gates that can be used to control the amplitude,
temporal position, and polarization of the coherent emission. The overall signal fields 𝐸±S in the
phase-matched direction 2k2 − k1 can be written as the sum

𝐸±S = 𝐸±FWM + 𝐸±SWM + 𝐸±EWM, (6.11)

which is depicted in Figure 6.2a by means of a two-dimensional color map as a function of
real-time and pulse area of the control pulses. Here, we assumed linearly co-polarized pulses,
where the trion scheme works effectively as a TLS. The relative optical phase between the control
pulses is set to zero. We further chose 𝜏12 = 40 ps, 𝜏C = 15 ps, and a Gaussian inhomogeneous
broadening of detunings 𝛥 = 0.3meV, equivalent to 𝑇 ∗2 = 4 ps corresponding to the experimental
situation. For this choice, we can see well-separated Gaussian PE signals at 2𝜏12 = 80 ps (𝐸FWM),
2𝜏12 − 𝜏C = 65 ps (𝐸SWM), and 2𝜏12 − 2𝜏C = 50 ps (𝐸EWM) that oscillate as a function of 𝐴C.
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Figure 6.2: (a) Signal field amplitude 𝐸S as a function of time 𝑡 and the area of the control pulses
𝐴C in impulsive limit according to Equation (6.11). (b) Temporal profile of the signal field 𝐸S for
𝐴C = 𝜋/2 and two different values of the relative phase 𝜙 between the two control pulses. (c)
Amplitude of the Fourier spectra of the temporal profiles shown in (b). The black curve shows
the distribution of detunings within the considered inhomogeneous ensemble of emitters.

The case 𝐴C = 𝜋/2 is in direct analogy to a Ramsey fringe experiment. Ramsey fringes are
commonly used in spectroscopy and atomic clock experiments to achieve high-precision measure-
ments and control over quantum systems [177]. In a standard Ramsey fringe experiment, a TLS
is exposed to two temporally separated 𝜋/2 pulses with a detuning 𝛥 relative to the transition
frequency of the QD. When probing, for example, the population of the excited state as a function
of the detuning or the temporal delay between the pulses, oscillations can be observed that
are known as Ramsey fringes. Maxima of the fringes arise when the product of detuning and
temporal gap, i.e. the acquired optical phase between the two 𝜋/2 pulses, is a multiple of 2𝜋,
minima for an odd multiple of 𝜋. Such an experimental scheme was studied as a demonstration of
coherent control over the quantum state of a single QD in References [178–180]. The combination
of two 𝜋/2 pulses with the two-pulse PE sequence allows to observe Ramsey fringes from the
inhomogeneous ensemble of emitters where different detunings are realized at once. Here, the
Ramsey fringes manifest themselves in the time domain in the form of a temporal shape of
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the emission deviating from a single Gaussian function. We show temporal cross sections for
𝐴C = 𝜋/2 of the response of the QD ensemble in Figure 6.2b for two different values of the
relative phase between the control pulses 𝜙 = 0 and 𝜙 = 𝜋. The overall response consists of three
Gaussian pulses centered at 2𝜏12 − 2𝜏C, 2𝜏12 − 𝜏C, and 2𝜏12. As follows from Equation (6.10), the
sign of the SWM response at 2𝜏12−𝜏C = 65 ps is inverted for a phase shift of 𝜙 = 𝜋with respect to
the case 𝜙 = 0. In the Fourier spectrum, Figure 6.2c, these temporal cross sections correspond to
Ramsey fringes with a period given by 𝜏−1C modulated by the Gaussian distribution of detunings.
The phase of the fringes is directly set by the relative phase between the control pulses.

6.1.2 Effect of finite pulse duration on multi-wave-mixing signals in the Rabi
regime

In this section, we discuss how the results presented for the impulsive limit are modified when
the pulse duration 𝑡p is not significantly smaller than the dephasing time 𝑇 ∗2 . In this case, the
dephasing of the TLS during pulse action has to be taken into account. For our discussion, we
first consider an experiment with only one control pulse under otherwise the same conditions
as in Section 6.1.1. In this way, we gain an intuitive understanding of the effect of finite pulse
durations that can be expanded for more complex pulse arrangements.

We start again with an analytical expression for the full signal detected in the direction 2k2 − k1
in the impulsive limit

𝐸S = 𝐸2PE cos
2 (

𝐴C

2
) , (6.12)

which describes Rabi rotations of the PE as a function of the control pulse area 𝐴C at the fixed
temporal position 2𝜏12. The signal field 𝐸S as a function of real-time and pulse area 𝐴C is
visualized in Figure 6.3a according to Equation (6.12). Note that the time axis is normalized to
the inhomogeneous dephasing time 𝑇 ∗2 .
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Figure 6.3: (a) Dependence of the signal amplitude 𝐸S as a function of time 𝑡 and the area of the
single control pulse 𝐴C in impulsive limit according to Equation (6.12). The time axis is shown
relative to 2𝜏12 in units of the dephasing time 𝑇 ∗

2 . (b) Calculation of 𝐸S for a single control pulse
with finite duration 𝑡p using optical Bloch equations. The time axis is shown in units of 𝑡p. (c)
Temporal cross sections of the map shown in (b) for selected values of the pulse area 𝐴C. For
comparison, the dashed black line shows the result of a perturbative expansion of the signal
field for the case 𝐴C = 𝜋 (corresponds to the black line in (c)).

Next, we model the effect of a control pulse with finite duration and therefore choose 𝑡p = 𝑇 ∗2 , i.e.,
a pulse duration equal to the duration of the PE, which corresponds to the experimental situation
presented later. The exciting and refocusing pulses are considered in the impulsive limit. For
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6 Temporal sorting of optical multi-wave-mixing processes

simplicity, the temporal shape of the control pulse is considered rectangular. For a rectangular
pulse shape, an analytical solution of the optical Bloch equations is well known [95] and can be
used to model the dependence of the coherent response as a function of detuning 𝛥 and pulse
area 𝐴C. For this purpose, the matrix describing the action of the optical pulse on the density
matrix, given for delta pulses in Equation (6.3), has to be modified

M =

⎛
⎜
⎜
⎜
⎜
⎝

1 − 𝛺2
R(1−𝑐)
2𝛺2

𝛺2
R(1−𝑐)
2𝛺2 (−𝛥𝛺R(1−𝑐)

2𝛺2 + 𝑖𝛺R𝑠
2𝛺 ) e−𝑖𝜙 (−𝛥𝛺R(1−𝑐)

2𝛺2 − 𝑖𝛺R𝑠
2𝛺 ) e+𝑖𝜙

𝛺2
R(1−𝑐)
2𝛺2 1 − 𝛺2

R(1−𝑐)
2𝛺2 (𝛥𝛺R(1−𝑐)

2𝛺2 − 𝑖𝛺R𝑠
2𝛺 ) e−𝑖𝜙 (𝛥𝛺R(1−𝑐)

2𝛺2 + 𝑖𝛺R𝑠
2𝛺 ) e+𝑖𝜙

(−𝛥𝛺R(1−𝑐)
2𝛺2 + 𝑖𝛺R𝑠

2𝛺 ) e+𝑖𝜙 (𝛥𝛺R(1−𝑐)
2𝛺2 − 𝑖𝛺R𝑠

2𝛺 ) e+𝑖𝜙 𝑐 + 𝛺2
R(1−𝑐)
2𝛺2 + 𝑖𝛥𝑠𝛺

𝛺2
R(1−𝑐)
2𝛺2 e2𝑖𝜙

(−𝛥𝛺R(1−𝑐)
2𝛺2 − 𝑖𝛺R𝑠

2𝛺 ) e−𝑖𝜙 (𝛥𝛺R(1−𝑐)
2𝛺2 + 𝑖𝛺R𝑠

2𝛺 ) e−𝑖𝜙
𝛺2
R(1−𝑐)
2𝛺2 e−2𝑖𝜙 𝑐 + 𝛺2

R(1−𝑐)
2𝛺2 − 𝑖𝛥𝑠𝛺

⎞
⎟
⎟
⎟
⎟
⎠

, (6.13)

with the Rabi frequency 𝛺R, generalized Rabi frequency 𝛺 = √𝛺
2
R + 𝛥2, 𝑐 = cos 𝛺𝑡p, and 𝑠 =

sin𝛺𝑡p. Using this modified matrix, we obtain the dependence of the signal field emitted in
direction 2k2 − k1 as a function of the area 𝐴C of a single control pulse and real-time 𝑡:

𝐸S ∝ ∫∞−∞ d𝛥𝐺(𝛥) { 𝛥
𝛺C

sin (𝛺C𝑡p) + 𝑖 [
𝛺2
𝑅,𝐶
𝛺2
C
sin2 (

𝛺C𝑡p
2 ) + cos (𝛺C𝑡p)]} exp [𝑖𝛥 (𝜏ref − 2𝜏12 + 𝑡p)] , (6.14)

where 𝛺C = √𝛺
2
𝑅,𝐶 + 𝛥2, 𝛺𝑅,𝐶 = 𝐴C/𝑡p, and the distribution of detunings 𝐺(𝛥)

𝐺(𝛥) =
exp [− 𝛥2

2𝜎2 ]

√2𝜋𝜎
, 𝜎 =

𝑇 ∗2
√8ln2

. (6.15)

The integral over detunings 𝛥 is carried out numerically using the trapezoidal rule. The result is
graphically presented in Figure 6.3b in direct comparison to the impulsive limit 𝑡p ≪ 𝑇 ∗2 in 6.3a.
As in the impulsive limit, we can observe Rabi rotations of the signal with maxima at 𝐴C = 2𝑛𝜋.
However, the maxima for 𝐴C = 2𝜋, 4𝜋 appear advanced by the pulse duration with respect to
the two-pulse PE for 𝐴C = 0, as we highlight in Figure 6.3c where we plot the temporal envelope
of the signal field for selected values of 𝐴C. For non-zero pulse areas, below roughly 𝜋/2, the
maximum of the coherent emission is shifted to positive delay times as shown in Figure 6.3c
by the orange curve corresponding to 𝐴C = 𝜋/2. We can observe an additional pronounced
negative local extremum for 𝐴C = 𝜋 where the signal equals zero in the impulsive limit, as
given by Equation (6.12). The described advancement of PE pulse was observed previously in
Reference [158] and can be explained by the fact that the action of a pulse with an area of 2𝑛𝜋
and 𝛺R ≫ 𝛥 leaves the phases of individual TLS unaffected after a full Rabi rotation induced
by the control pulse during 𝑡p. Therefore, the overall phase evolution is effectively ”frozen” for
a duration of 𝑡p and the coherent emission of the ensemble is shifted. However, the temporal
shifts for arbitrary pulse areas and in particular for 𝐴C ≤ 𝜋/2, where a retardation of the signal
is observed, remained so far unclear.

To gain insight into the non-trivial modification of the temporal shape of the PE profile by
the effect of an additional control pulse with a finite duration, we propose in the following a
perturbative expansion of the signal in MWM orders. As we will show, the effect of finite pulse
duration leads to a temporal shift of the MWM fields that monotonously grows with the order
of the MWM process. For the theoretical discussion, we make use of the perturbative MWM
expansion of the non-linear polarization as introduced in Section 1.2.2. Here, we calculate the
m-th order polarization 𝑃 (m), being the source of a (m+1)-wave mixing response by constructing
all contributing Feynman diagrams and subsequently apply the set of Equations (1.16). We only
capture signals emitted in the direction 2k2 − k1. Therefore, we take into account only those
nonlinear terms that involve the same number of interactions with 𝐸C and 𝐸∗C, such as SWM
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resulting from the fifths order polarization 𝑃 (5) ∝ 𝐸1(𝐸
∗
2 )

2𝐸C𝐸
∗
C. For the SWM process, four

unique Feynman diagrams fulfill the time ordering and phase-matching condition. We show
these diagrams in Table 6.1. The exciting and refocusing pulses are considered as delta-pulses
in the lowest non-vanishing order, i.e. the first pulse in linear and the refocussing pulse in
quadratic order. For the control pulse, we assume a rectangular-shaped envelope of duration 𝑡p.
All diagrams in Table 6.1 give the same contribution to the nonlinear polarization as a function
of detuning 𝛥, that is

𝑃 (5)(𝑡, 𝛥) ∝ 𝐸1(𝐸
∗
2 )

2
∫
𝜏12

−∞
𝑑𝑡C2∫

𝑡C2

−∞
𝑑𝑡C1𝐸𝐶(𝑡C2)𝐸

∗
𝐶(𝑡C1) exp [𝑖𝛥 (𝑡 − 2𝜏12) + 𝑖𝛥 (𝑡C2 − 𝑡C1)] , (6.16)

where we labeled the integration variables corresponding to the control pulse field with 𝑡Cj. Here,
it can be seen that the control pulse has a direct impact on the phase evolution of the ensemble,
as the usual phase factor exp (𝑖𝛥 (𝑡 − 2𝜏12)), that gives rise to a PE centered at 𝑡 = 2𝜏12, is modified
by the factor exp (𝑖𝛥 (𝑡C2 − 𝑡C1)). To finally obtain the overall response of the inhomogeneous
ensemble, we numerically average the nonlinear polarization over a Gaussian distribution of
detuning as described above. In this way, we obtain the PE response of the ensemble in second-
order perturbation with respect to the control pulse field, which is shown in Figure 6.4a (red
dashed line), in comparison to the PE pulse in absence of the control pulse (blue line). Note that
we normalized the signals that were calculated for a fixed value of the electric field 𝐸C to their
maximum. The global sign of the MWM signals alternates with increasing order. This effect
was experimentally observed in Reference [181] where different orders of MWM processes in
pump-probe experiments were compared. Interestingly, the temporal position is shifted towards
negative delays in the case of SWM with respect to the four-wave mixing (FWM) PE pulse at
𝑡 = 2𝜏12. To further analyze this effect, we calculate the PE pulses for higher-order interactions
with the control pulse field. The next order is an EWM process including four interactions with
the control pulse fields. For this perturbative order, there are 16 Feynman diagrams that we
explicitly show in Table 6.2. Note that for higher orders than SWM, not all Feynman diagrams
give necessarily the same contribution to the non-linear polarization. Compare for example in
Table 6.2 the first and second diagram in the top row. Here, the phase evolution between the
second and third interaction with the control pulse field is conjugated. As shown in Figure 6.4a,
the PE pulse from the EWM response is shifted further toward negative delays. We plot the
temporal shift 𝛥𝑡 for up to twelve interactions (sixteen-wave-mixing) with the control pulse field
in Figure 6.4b. Here, |𝛥𝑡| increases monotonically tending towards the pulse duration 𝑡p (red line).
Consequently, the temporal shift between two consecutive MWM orders approaches zero with
increasing order.

We thus can understand the complex waveforms of the coherent response of the ensemble with
increasing area of the control pulse in Figure 6.3c as an interference pattern of MWM orders
that each give rise to a single PE pulse at a well-defined temporal position. Since the temporal
shift is largest between consecutive low-order MWM components (Figure 6.4b), the interference
pattern deviates most strongly from a single Gaussian PE pulse in the range of small pulse
areas where low perturbative orders dominate the signal. As an example of the formation of
non-Gaussian waveforms from the interference of different MWM orders, we plot in Figure 6.4c
the MWM signals up to the sixth order in 𝐸C for 𝐴C = 𝐸C𝑡p𝜇/ℏ = 𝜋. The sum of the pulses with
alternating signs results in the black solid curve that accurately reproduces the exact calculation
as we highlight by directly comparing the exact and perturbative result (green and black line) in
Figure 6.3c. The negative SWM signal (red dashed line in Figure 6.4c) has the largest amplitude
and is therefore dominantly responsible for the negative signal at 𝐴C = 𝜋 and the shift of the
maximum signal towards positive delays for pulse areas ≲ 𝜋/2 that we mentioned above.

91



6 Temporal sorting of optical multi-wave-mixing processes

Table 6.1: Unique Feynman diagrams for the six-wave-mixing process in a single control pulse
experiment fulfilling the phase matching condition 2k2 −k1 and time ordering of 𝐸1, 𝐸C, and 𝐸2.

|0⟩⟨0| k1|0⟩⟨1|k𝐶 |1⟩⟨1|k𝐶 |0⟩⟨1|k2 |1⟩⟨1| k2|1⟩⟨0|2k2 − k1

|0⟩⟨0| k1|0⟩⟨1|k𝐶 |1⟩⟨1|k𝐶 |0⟩⟨1| k2|0⟩⟨0|k2 |1⟩⟨0|2k2 − k1

|0⟩⟨0| k1|0⟩⟨1| k𝐶|0⟩⟨0| k𝐶|0⟩⟨1|k2 |1⟩⟨1| k2|1⟩⟨0|2k2 − k1

|0⟩⟨0| k1|0⟩⟨1| k𝐶|0⟩⟨0| k𝐶|0⟩⟨1| k2|0⟩⟨0|k2 |1⟩⟨0|2k2 − k1

Table 6.2: Unique Feynman diagrams for the eight-wave mixing process in a single control
pulse experiment fulfilling the phase matching condition 2k2 − k1 and time ordering of 𝐸1, 𝐸C,
and 𝐸2.

|0⟩⟨0|
k1|0⟩⟨1|

k𝐶 |1⟩⟨1|
k𝐶|1⟩⟨0|
k𝐶|1⟩⟨1|

k𝐶 |0⟩⟨1|
k2 |1⟩⟨1|

k2|1⟩⟨0|
2k2 − k1

|0⟩⟨0|
k1|0⟩⟨1|

k𝐶 |1⟩⟨1|
k𝐶 |0⟩⟨1|
k𝐶 |1⟩⟨1|
k𝐶 |0⟩⟨1|

k2|0⟩⟨0|
k2 |1⟩⟨0|

2k2 − k1

|0⟩⟨0|
k1|0⟩⟨1|

k𝐶 |1⟩⟨1|
k𝐶 |0⟩⟨1|

k𝐶|0⟩⟨0|
k𝐶|0⟩⟨1|

k2 |1⟩⟨1|
k2|1⟩⟨0|

2k2 − k1

|0⟩⟨0|
k1|0⟩⟨1|

k𝐶 |1⟩⟨1|
k𝐶 |0⟩⟨1|

k𝐶|0⟩⟨0|
k𝐶|0⟩⟨1|
k2|0⟩⟨0|

k2 |1⟩⟨0|
2k2 − k1

|0⟩⟨0|
k1|0⟩⟨1|

k𝐶 |1⟩⟨1|
k𝐶 |0⟩⟨1|

k𝐶|0⟩⟨0|
k𝐶|0⟩⟨1|
k2|0⟩⟨0|

k2 |1⟩⟨0|
2k2 − k1

|0⟩⟨0|
k1|0⟩⟨1|
k𝐶|0⟩⟨0|
k𝐶|0⟩⟨1|

k𝐶 |1⟩⟨1|
k𝐶 |0⟩⟨1|
k2 |1⟩⟨1|

k2|1⟩⟨0|
2k2 − k1

|0⟩⟨0|
k1|0⟩⟨1|
k𝐶|0⟩⟨0|
k𝐶|0⟩⟨1|

k𝐶 |1⟩⟨1|
k𝐶 |0⟩⟨1|

k2|0⟩⟨0|
k2 |1⟩⟨0|

2k2 − k1

|0⟩⟨0|
k1|0⟩⟨1|
k𝐶|0⟩⟨0|
k𝐶|0⟩⟨1|
k𝐶|0⟩⟨0|
k𝐶|0⟩⟨1|

k2 |1⟩⟨1|
k2|1⟩⟨0|

2k2 − k1

|0⟩⟨0|
k1|0⟩⟨1|
k𝐶|0⟩⟨0|
k𝐶|0⟩⟨1|
k𝐶|0⟩⟨0|
k𝐶|0⟩⟨1|

k2 |1⟩⟨1|
k2|1⟩⟨0|

2k2 − k1

|0⟩⟨0|
k1|0⟩⟨1|
k𝐶|0⟩⟨0|
k𝐶|0⟩⟨1|
k𝐶|0⟩⟨0|
k𝐶|0⟩⟨1|
k2|0⟩⟨0|

k2 |1⟩⟨0|
2k2 − k1

|0⟩⟨0|
k1|0⟩⟨1|

k𝐶 |1⟩⟨1|
k𝐶|1⟩⟨0|
k𝐶|1⟩⟨1|

k𝐶 |0⟩⟨1|
k2|0⟩⟨0|

k2 |1⟩⟨0|
2k2 − k1

|0⟩⟨0|
k1|0⟩⟨1|

k𝐶 |1⟩⟨1|
k𝐶|1⟩⟨0|

k𝐶 |0⟩⟨0|
k𝐶|0⟩⟨1|

k2 |1⟩⟨1|
k2|1⟩⟨0|

2k2 − k1

|0⟩⟨0|
k1|0⟩⟨1|

k𝐶 |1⟩⟨1|
k𝐶|1⟩⟨0|

k𝐶 |0⟩⟨0|
k𝐶|0⟩⟨1|

k2 |1⟩⟨1|
k2|1⟩⟨0|

2k2 − k1

|0⟩⟨0|
k1|0⟩⟨1|

k𝐶 |1⟩⟨1|
k𝐶|1⟩⟨0|

k𝐶 |0⟩⟨0|
k𝐶|0⟩⟨1|
k2|0⟩⟨0|

k2 |1⟩⟨0|
2k2 − k1

|0⟩⟨0|
k1|0⟩⟨1|
k𝐶|0⟩⟨0|

k𝐶 |1⟩⟨0|
k𝐶|1⟩⟨1|

k𝐶 |0⟩⟨1|
k2 |1⟩⟨1|

k2|1⟩⟨0|
2k2 − k1

|0⟩⟨0|
k1|0⟩⟨1|
k𝐶|0⟩⟨0|

k𝐶 |1⟩⟨0|
k𝐶|1⟩⟨1|

k𝐶 |0⟩⟨1|
k2|0⟩⟨0|

k2 |1⟩⟨0|
2k2 − k1
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6.1 Theoretical description of control pulse experiment
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Figure 6.4: (a) PE signals calculated for different numbers of interactions with the control pulse
field. (b) Temporal shifts of PEs calculated for different MWM orders. (c) Decomposition of
total signal for 𝐴C = 𝜋 in up to ten-wave mixing components.

In summary, we have discussed a nonlinear optical regime, where the expansion of Rabi rotations
into MWM orders allows to gain meaningful insights into the non-trivial temporal shape of
coherent emission caused by the finite duration of optical pulses. Within the impulsive limit,
such expansion is not useful since all MWM orders appear simultaneously and result in Rabi
rotations centered around a fixed emission time. We found that the finite pulse duration however
lifts this temporal degeneracy and leads to a temporal sorting of MWM orders.

For the experiments including two control pulses, we expect similar modifications of the impulsive
limit, i.e. temporal shifts of the PE signals and the occurrence of new local extrema evoked by
higher-order MWM components. The modified closed expressions for the three signal fields are
given by

𝐸FWM ∝ ∫
∞

−∞
d𝛥𝐺(𝛥) {

𝛺2
𝑅,𝐶𝛥

𝛺3
C

[sin(𝛺C𝑡p) cos(𝛺C𝑡p) − sin(𝛺C𝑡p)]

− 𝛥
𝛺C

sin(𝛺C𝑡p) cos(𝛺C𝑡p) − 𝑖
𝛺4
𝑅,𝐶

2𝛺4
C

sin4 (
𝛺C𝑡p
2

)

+ 𝑖 𝛥
2

2𝛺2
C

sin2(𝛺C𝑡p) + 𝑖
𝛺2
𝑅,𝐶

2𝛺2
C

cos(𝛺C𝑡p)[cos(𝛺C𝑡p) − 1]

−𝑖1
2
cos2(𝛺C𝑡p)} exp [𝑖𝛥(𝜏ref − 2𝜏12 + 2𝑡p)]

(6.17)

𝐸SWM ∝ ∫
∞

−∞
d𝛥𝐺(𝛥) {

𝛺2
𝑅,𝐶𝛥

2𝛺3
C

[sin(𝛺C𝑡p) − sin(𝛺C𝑡p) cos(𝛺C𝑡p)]

+ 𝑖 [
𝛺2
𝑅,𝐶

4𝛺2
C

sin2(𝛺C𝑡p) −
𝛺2
𝑅,𝐶𝛥

2

𝛺4
C

sin4 (
𝛺C𝑡p
2

)]} ×

× exp [𝑖𝛥(𝜏ref − 2𝜏12 + 𝜏C + 𝑡p) − 𝑖𝜙]

(6.18)

𝐸EWM ∝ ∫
∞

−∞
d𝛥𝐺(𝛥) {−𝑖

𝛺4
𝑅,𝐶

2𝛺4
C

sin4 (
𝛺C𝑡p
2

)} exp [𝑖𝛥(𝜏ref − 2𝜏12 + 2𝜏C) − 𝑖2𝜙] . (6.19)

These signal fields are plotted in Figures 6.5a–c.
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Figure 6.5: Temporal modifications of the three signals 𝐸FWM, 𝐸SWM and 𝐸EWM as a function of
𝐴C for finite duration of the control pulse fields.

6.2 Demonstration of control pulse experiment in co-polarized
configuration

Within this section, we neglect the polarization degree of freedom by choosing linearly co-
polarized pulses. As mentioned above, the trion scheme can be considered as a TLS under this
condition. In this way, we first set the focus on the temporal characteristics of the discussed
MWM signals.

The experiments were performed at a temperature of 2 K on the ensemble of (In,Ga)As QDs that
was already characterized in Chapter 5. We excite the sample using 4 ps laser pulses that are tuned
to the maximum of the photonic mode at 1.345 eV. As already discussed in Chapter 5, the spectral
width of the pulses, 0.3meV, is significantly narrower than the spectrum of the QD–cavity system,
but still much broader than the homogeneous linewidth of the QDs (≈ 1.6 µeV). Therefore, the
laser pulses act on a macroscopic subensemble of emitters whose inhomogeneous broadening is
governed by the laser spectrum. Note that this situation where the effective dephasing time 𝑇 ∗2
equals the pulse duration is ideal for studying the effect of finite pulse durations on the coherent
response that we discussed in Section 6.1.2. The area of the laser pulses is adjusted by changing
their intensity using combinations of 𝜆/2 retardation plates and polarizers. Since we study MWM
signals as a function of the pulse area, it is decisive to address all QDs with the same intensity.
Therefore, we use spatially flat intensity profiles of the control pulses as proposed in Chapter 5.
Under this condition, we circumvent a fading of the signal as a function of pulse area which is
present for spatially Gaussian laser pulses.

We introduced a temporal delay between the exciting and refocusing pulse of 𝜏12 = 40 ps and
between exciting and the first control pulse of 𝜏1𝑐 = 13 ps. The temporal gap between the control
pulses is 𝜏C = 15.3 ps. In this way, both control pulses interact with the sample temporally
in between the exciting and refocusing pulse and the temporal overlap between all pulses is
negligible. Note that all temporal gaps are here significantly smaller than the coherence time of
the QDs 𝑇2 = 0.8 ns. As already discussed in Chapter 2.1, the optical phases between all involved
pulses are not actively stabilized. A phase-locked measurement of the signal fields is thus not
subject to our studies. Instead, we capture the mean value of the modulus of the signal field ⟨|𝐸𝑐S|⟩,
where ⟨⋅⟩ denotes here the average over a uniform distribution of optical phases of the involved
pulses. When comparing experimental data with modeling results, we take this phase average
into account.
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Figure 6.6: (a) Experimental dependence of the heterodyne signal on the area of the control
pulses 𝐴C and the reference time 𝜏ref. (b) Result of the calculation of ⟨|𝐸𝑐

S|⟩ using optical Bloch
equations assuming rectangular-shaped temporal envelopes of the control pulses. The intensity-
dependent damping mechanisms were considered phenomenologically as described in the text.

To investigate the influence of the control pulses on the temporal shape of the coherent response,
we measured the heterodyne signal as a function of the reference time 𝜏ref and the area of the
control pulses 𝐴𝐶. For 𝐴C = 0, the coherent response is given by the two-pulse PE pulse centered
at 𝜏ref = 2𝜏12 = 80 ps. The control pulse area is varied by changing the intensity of the laser pulses.
The areas of exciting and refocusing pulse were fixed at 𝐴1 = 𝜋/2 and 𝐴2 = 𝜋, respectively,
corresponding to the maximum of the two-pulse PE, Equation (6.6). The experimental result is
presented as a two-dimensional color map in Figure 6.6a. Next to the unshifted PE at 80 ps for
𝐴C = 0, we can observe four local maxima of the signal within the temporal range between 50 ps
and 80 ps occurring at multiples of𝐴C = 𝜋/2. This observation is in agreement with the modeling
in the impulsive limit (see Figure 6.2a): For 𝐴C = 𝜋/2, the maximum of the SWM response occurs
at 𝜏ref = 2𝜏12 − 𝜏C ≈ 65 ps. Furthermore, at 𝐴C = 𝜋, we can identify the local extremum of
the EWM response located at 𝜏ref = 2𝜏12 − 2𝜏C ≈ 50 ps. Due to the finite duration of the laser
pulses, however, the overall temporal envelope of the heterodyne signal has a more complex
shape as described by Equations (6.8) - (6.10). We can understand this observation using the
approach presented in Section 6.1.2 as a non-trivial interference pattern of MWM contributions
that experience a different temporal shift caused by the finite pulse duration. As a special case,
when each control pulse area equals 2𝜋, the emission appears at 𝜏ref = 2𝜏12 − 2𝑡p ≈ 72 ps, which
can be understood from our discussion of the finite duration of a single control pulse. Here,
high-order MWM contributions appear advanced by the duration of each control pulse. Thus, the
observations are a manifestation of the transition between perturbative and strong field limits as
discussed in Section 6.1.2.

In addition to the temporal modification, we can observe a pulse-area-dependent damping of the
signal. The amplitude of the signal’s maximum for 𝐴C = 2𝜋 amounts to roughly 40 % of the PE
amplitude in the absence of control pulses. In Chapter 5, we identified phonon-assisted relaxation
processes during the action of the laser pulses as the main source for the loss of coherence with
increasing pulse area. Within this chapter, we set the focus solely on the temporal characteristics
of the observed PE signals and especially how they are influenced by the pulse area of the control
pulses. To theoretically reproduce the experimental data, we use the non-perturbative modeling
procedure as applied in Section 6.1.2. Closed expressions for the final modeling results are given
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6 Temporal sorting of optical multi-wave-mixing processes

by Equations (6.17)–(6.19). We further take into account the cross-correlation with the reference
pulse. To quantify the damping of the signal with increasing pulse area, the damping mechanisms
discussed in Chapter 5 are phenomenologically considered by multiplying the modeled data
with a function exp (−𝐴C/𝐴0), where the best agreement is found for 𝐴0 = 2.4𝜋. As shown
in Figure 6.6b, we achieve excellent agreement between experimental and modeled data both
regarding the temporal characteristics of the MWM response and the damping of the signal with
increasing 𝐴C. It is worth recalling that the control pulses in our model adopt a rectangular
shape, demonstrating that the modified temporal response of the ensemble is predominantly
influenced by the pulse area, rather than the precise temporal shape of the control pulses.

As mentioned above, the case 𝐴C = 𝜋/2 is in analogy to a Ramsey fringe experiment. Figure 6.7a
shows the temporal cross-sections of the color maps in Figures 6.6a and 6.6b for 𝐴C = 𝜋/2
consisting mainly of three peaks. In the amplitude spectrum, this temporal shape corresponds
to spectral fringes with a period of roughly 𝜏−1C ≈ 65GHz as presented in Figure 6.7b. This
observation is in agreement with our expectations if compared with Figures 6.2b and 6.2c. We
thus demonstrate that the chosen geometry of optical control pulses realizes Ramsey fringes on a
QD ensemble and thus enables to directly impact on the spectrum of the macroscopic emission.
Note however that the phase of the signal field 𝐸S is not resolved in our experiments. Therefore,
we can experimentally control solely the frequency of the Ramsey fringes. Active stabilization
of the optical phase between the two control pulses would allow to gain further control over
the quantum states of the emitters within the ensemble, which we regard as a prospect for
future studies. Apart from that, the importance of the relative optical phase is manifested in
the possibility to control the polarization of emission from an ensemble of trions as will be
demonstrated in the following section.
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Figure 6.7: (a) Temporal cross-section of the color maps in Figure 6.6a and 6.6b for 𝐴C = 𝜋/2.
Dots and lines correspond to the experiment and model, respectively. (b) Absolute value of the
Fourier transform of the temporal cross sections shown in (a).

6.3 Polarization-selective multi-wave mixing

As a next step, we take into account the spin degree of freedom in the QD sample to expand
the possibilities of the presented control of MWM processes. In what follows, we present two
possible polarization-resolved experiments, where we show that the selection rules for optical
transitions in the four-level trion scheme open up new appealing possibilities to address the
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6.3 Polarization-selective multi-wave mixing

polarization of the emitted photon PEs based on the sensitivity to the relative phase between the
two optical control pulses.

First, we demonstrate that we can use the mutual polarization between the two control pulses to
modify the polarization of the different MWM processes. Therefore, we consider the same pulse
arrangement as depicted in Figure 6.1a. In contrast to the measurements presented so far, the
linear polarization angle of the second control pulse with respect to the linear polarization of all
other pulses is considered as an additional degree of freedom. To account for polarization in the
MWM processes from the trion scheme, we construct the electric fields of the linearly polarized
pulses 𝐸j with linear polarization angle 𝜑j in circular polarization basis

𝐸j(𝜑j) = e−𝑖𝜑j𝐸+j + e+𝑖𝜑j𝐸−j . (6.20)

Without loss of generality, we choose the linear polarizations of exciting, refocussing, and first
control pulse as 𝜑j = 0 (horizontally polarized) and introduce 𝜑 as the relative rotation of the
polarization of the second control pulse. We use Equations (6.8) - (6.10) to calculate the EWM
response at 𝑡 = 2𝜏12 − 2𝜏C and the SWM response at 𝑡 = 2𝜏12 − 𝜏C as a function of 𝜑 and the
polarization 𝜑ref of the reference pulse, which defines the detected polarization component of the
signal

𝐸EWM(𝜑, 𝜑ref) ∝ sin4 (
𝐴C

2
) cos (2𝜑 + 𝜑ref) (6.21a)

𝐸SWM(𝜑, 𝜑ref) ∝ sin2 (𝐴C) cos (𝜑 + 𝜑ref) . (6.21b)

EWM and SWM thus differ by their dependence on the angle 𝜑. To experimentally demonstrate
this property, we choose 𝜑 = 𝜋/2, i.e. the control pulses are linearly cross-polarized, which we
set as horizontally (H) and vertically (V) polarized. According to Equations (6.21a) and (6.21b),
under this condition the EWM response is H-polarized whereas the SWM signal is V-polarized.
The polarization contrast between both components is thus maximized in the configuration
𝜑 = 𝜋/2. Note that the third main contribution to the overall signal 𝐸FWM, as follows from
Equation (6.8), is insensitive to phases of the control pulses and therefore does not depend on the
linear polarization angle 𝜑. The signal 𝐸FWM is therefore expected to be horizontally polarized as
defined by the polarizations of exciting and refocusing pulse.

In Figure 6.8 we measured the signal field amplitude as a function of 𝜏ref and 𝐴C, where we
additionally distinguished between 𝜑ref = 0 (Figure 6.8a, H-detection) and 𝜑ref = 𝜋/2 (Figure 6.8b,
V-detection). By comparing the color maps with the results obtained for co-polarized pulses,
Figure 6.6a, we can observe that we achieved to decompose the MWM response in H- and V-
polarized components. For horizontal detection (𝜑ref = 0), Figure 6.8a, we observe the two-pulse
PE at 𝜏ref = 2𝜏12, the EWM response at 𝐴C = 𝜋, 𝜏ref = 2𝜏12 − 2𝜏C = 45 ps, and the signal at
𝐴C = 2𝜋, 𝜏ref = 2𝜏12 − 2𝑡𝑝 = 70 ps. The SWM response at 𝐴C = 𝜋/2, 𝜏ref − 𝜏C ≈ 62 ps can be
observed solely in vertically polarized detection configuration (𝜑ref = 𝜋/2), see Figure 6.8b. Both
color maps 6.8a and 6.8b can be accurately reproduced by our modeling procedure as discussed
above using the optical Bloch equations for the trion scheme in Figures 6.8c and 6.8d.
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Figure 6.8: (a)/(b) Heterodyne signal as a function of control pulse area and reference time.
In contrast to the measurement in Figure 6.6a, the two control pulses are cross-polarized, i.e.
horizontally (H) and vertically (V) polarized. The signal is detected in H polarization (a) and V
polarization (b). (c)/(d) Modeling results corresponding to experimental data in (a) and (b).

6.4 Temporal splitting of photon echoes

As a second example, we elaborate on the possibility to independently modify the coherent
emission from the two TLS that form the trion scheme using circularly polarized control pulses.
In particular, we use circularly polarized control pulses to independently evoke temporal shifts
of the coherent emission in 𝜎+ and 𝜎− polarization. For this purpose, we modify the temporal
arrangement of the optical pulses as sketched in Figure 6.9a. Here, the exciting and refocusing
pulses are horizontally polarized, while the control pulses have opposite circular polarizations.
The refocusing pulse is temporally located in between the two control pulses. This situation
corresponds to an experiment with only one control pulse for each of the TLS that we considered
in Section 6.1.2. When the area of each control pulse equals 2𝜋, the phase evolution of each
subensemble is frozen for a period of 𝑡p, which is schematically shown by the phase diagram
in Figure 6.9a. However, for one subensemble, the freezing takes place during the dephasing
motion, while for another one during the rephasing motion. Consequently, the coherent emission
is temporally split into two cross-polarized components arising at 2𝜏12 ± 𝑡p.

We experimentally demonstrate the described effect in Figure 6.9 by continuously sweeping
the pulse area 𝐴C and temporally resolving the coherent emission in 𝜎− (Figure 6.9a) and 𝜎+

detection (Figure 6.9b). For a control pulse area of 2𝜋, the 𝜎− component is shifted by −4 ps,
whereas the 𝜎+ component is shifted by+4 ps relative to the two-pulse PE emission at 2𝜏12 = 80 ps
as highlighted by white arrows. The experiments further allow to observe the signal at 𝐴C = 𝜋
that is dominated by a SWM contribution as discussed in Section 6.1.2 and therefore represents a
further demonstration of lifting the degeneracy of MWM orders in the strong field limit by using
finite pulse durations. The overall dependence on 𝐴C and 𝜏ref is well reproduced by the modelled
data in Figure 6.3b.
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Figure 6.9: (a) Schematic illustration of the approach for the temporal splitting of linearly
polarized PE in two cross-polarized components. The phase evolution of two oscillators within
the 𝜎− (𝜎+) subensemble is shown by blue (red) lines. As indicated on top, the first 𝜎− polarized
control pulse is temporally located between the exciting and refocussing pulse, whereas the
second 𝜎+ polarized control pulse acts between the refocussing and PE pulse. When the
respective areas of the control pulses equal 2𝜋, the phase evolution of the two subensembles
(𝜎+ and 𝜎−) is effectively frozen for the pulse duration 𝑡p. In this way, the coherent response
is temporally split into two circularly cross-polarized components. Note that all pulses in the
experiment have the same temporal shape and duration, the two control pulses are schematically
shown as rectangular pulses. (b)/(c) Experimental demonstration of the temporal splitting as
discussed in (a). For 𝐴C = 2𝜋, we can observe a shift of the maximum coherent emission by
∓𝑡p = ∓4 ps for the 𝜎− (b) and 𝜎+ (c) polarized components as highlighted by the horizontal
arrows.

6.5 Conclusions

We demonstrate coherent optical control over the phase evolution of an ensemble of trions in
charged (In,Ga)As QDs by employing temporally sorted MWM processes that are driven under
resonant excitation in the regime of Rabi rotations. We have chosen a temporal and angular
arrangement of four optical pulses, where two pulses act as control knobs of the trion qubits,
whereas the other two pulses serve as a PE protocol to monitor the phase evolution of the
inhomogeneously broadened ensemble. Using the energy and momentum conservation, we select
three PE signals that are generated by degenerate four-, six-, and eight-wave-mixing processes
in the lowest non-vanishing perturbative order. The temporal delay between the three distinct
PE signals is given by the temporal delay between the control pulses. Depending on the area of
the control pulses 𝐴C, the phase evolution of trion ensemble can be modified in several ways.
Ramsey fringes in the trion ensemble can be observed when the area of the control pulses equals
𝜋/2 which is manifested in the time domain as a coexistence of all three discussed PE signals.
Further, the phases of trions can be fully inverted by each of the control pulses with area of
𝜋 which results in a complete transfer of the macroscopic coherence from the FWM-PE to the
EWM-PE.

As a next step, we exploited the spin degree of freedom in a four-level trion scheme to manipulate
the polarization state of the coherent optical response. These findings demonstrate the importance
of the relative optical phase between the control pulses, offering the possibility for arbitrary
manipulation of the addressed trion states. Further, we demonstrate the splitting of the PE into
two cross-polarized pulses, which has potential applications for the transformation between
polarization and time-bin qubits in integrated semiconductor devices. Our demonstrations push
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forward the realization of arbitrary pulse sequences, as widely used in NMR, for quantummemory
protocols or information processing in ensembles of QDs by optical methods. We furthermore
suggest new possibilities for coherent control that are not subject to NMR, such as polarization
and wavevector selectivity.

We considered the importance of the frequency detuning of the driving optical field during the
action of the control pulses. Here, using a perturbative MWM expansion we gained insight
into how the coherent emission is modified when the inhomogeneous broadening of the excited
ensemble and the width of the laser spectrum are comparable. Surprisingly, we revealed that
different orders of MWM lead to an additional temporal sorting of the optical response, which
can be interpreted in terms of additional modifications of the phase evolution. Lifting of the
temporal degeneracy between different MWM processes allows to observe a transition from the
perturbative to strong field regime with Rabi rotations. The strong temporal modification of the
temporal MWM response potentially represents new spectroscopic signatures for investigations
of complex energy structures in unexplored material systems, e.g. excitons in transition metal
dichalcogenides [182, 183] or low-dimensional lead-halide perovskites [33, 184].
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In the first part of this thesis, photon echoes were employed as a spectroscopic tool to compare
so far unexplored decoherence and interaction mechanisms of excitons in two representative
organic-inorganic perovskite single crystals, MAPbI3 and FA0.9Cs0.1PbI2.8Br0.2. The experimen-
tal studies presented in Chapter 3 revealed that, even at cryogenic temperatures, the exciton
resonance in a high-quality MAPbI3 crystal is subject to inhomogeneous broadening on the order
of 10meV. The inhomogeneity might be an intrinsic property of perovskites with organic cations,
whose random orientation introduces a source of spatial band gap fluctuations that is absent in
purely inorganic perovskites. Using the capability of time-resolved photon echo spectroscopy
to overcome inhomogeneous broadening, the coherence time 𝑇2 of excitons in MAPbI3 was
found to be ≲ 1 ps, indicating that excitons are nearly free. In contrast, the mixed perovskite
FA0.9Cs0.1PbI2.8Br0.2 possesses exciton coherence time extended by two orders of magnitude,
although the inhomogeneous broadening is found in a similar range as in MAPbI3. Combining
the two- and three-pulse photon echo techniques, the decoherence time was disentangled into
contributions from elastic and inelastic scattering. Their energy and temperature dependence
confirmed that the extended coherence time arises from the localization of excitons as a whole on
band gap fluctuations at the nanometer scale. Since band gap fluctuations are directly connected
to charge transport, absorption, and emission properties of the system, the findings are relevant
for the optimal design of photovoltaic and light-emitting devices. As a next step, the presented
study should be expanded to different perovskite compositions to study how the property of
exciton localization in mixed perovskites can be optimized or diminished.

Chapter 4 made use of the sensitivity of non-linear spectroscopy to study exciton-exciton inter-
actions in both perovskite crystals. Here, special emphasis was put on the interconnection with
the spin degree of freedom and corresponding polarization dependences of non-linear optical
spectra. For MAPbI3, the exciton resonance was excited with broadband femtosecond pulses
which allowed observing the formation of biexcitons, a bound state of two excitons with opposite
spin. An experimental protocol accompanied by detailed modeling, based on quantum beats
of the photon echo polarization state, was developed that offers high sensitivity to extract the
biexciton binding energy of 2.4meV. The presented technique will be useful to study other
exciton systems with energy splittings that are comparable to the homogeneous linewidth. In
FA0.9Cs0.1PbI2.8Br0.2, under narrowband excitation with picosecond laser pulses the effect of
weak exciton interactions on the µeV energy scale between localized excitons was studied. In
particular, the polarization dependence of photon echo amplitude and its decay dynamic sug-
gested that excitation-induced dephasing has a spin sensitivity. The experimental results were
reproduced by an effective two-exciton model where exciton-exciton correlations are taken into
account. In this way, a more detailed picture of localized but weakly interacting exciton in the
FA0.9Cs0.1PbI2.8Br0.2 crystal was developed. These results suggest that the FA0.9Cs0.1PbI2.8Br0.2
crystal, exhibiting prolonged coherence times while maintaining significant correlation effects
among excitons, could be an interesting system for fundamental research in the field of quantum
optics, particularly for generating non-classical light states.

In the second part, the focus shifted to the coherent control of the photon echo response of
an ensemble of self-assembled (In, Ga)As quantum dots embedded in a planar microcavity. In
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Chapter 5, the experimental setup was expanded by refractive beam shaping optics to establish a
flattop intensity profile of the exciting laser pulses. In this way, the major source of dephasing
in coherent control experiments, which is associated with the inhomogeneity of applied laser
intensity, was overcome. Consequently, pronounced collective Rabi rotations up to an area
of 5.5𝜋 were observed, which was previously only possible on the single quantum dot level.
Through the application of the photon echo polarimetry technique, optically charged quantum
dots were identified as the main source of photon echo response. Through a quantitative analysis
of the remaining damping of the Rabi rotations, it was shown that the pulse-area-dependent
coupling to acoustic phonons represents the main source of decoherence in the system. Since
this decoherence channel sensitively depends on the duration of the applied laser pulses, it would
be interesting to drive the system with significantly shorter or longer optical pulses to minimize
the effect of phonon coupling.

Chapter 6 built up on the possibilities introduced by the flattop intensity profiles to implement
a more complex arrangement of optical pulses to coherently control the optical response of
the quantum dot ensemble. In particular, it was theoretically predicted and experimentally
demonstrated how a set of two optical control pulses can be used to either temporally shift the
emission of the ensemble or modify its spectrum using Ramsey interference. The possibilities
of this approach were expanded using the spin degeneracy of ground and excited state of the
charged quantum dots. Here, utilizing the polarization of the control pulses, the polarization of
the macroscopic emission was modified and the photon echo was temporally split into circularly
cross-polarized components. These demonstrations push forward the realization of arbitrary pulse
sequences for quantum memory protocols or information processing in ensembles of quantum
dots by all-optical methods. Further, the importance of the frequency detuning during the action
of the control pulses was theoretically considered using a multi-wave-mixing expansion. It was
found that multi-wave-mixing orders that share the same phase dependence on the exciting
optical fields become temporally sorted. In this way, the temporal shape of the photon echoes of
the system are strongly modified, which potentially offers new spectroscopic signatures for the
investigation of complex energy structures of unexplored material systems.
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List of Abbreviations

AOM acousto-optical modulator.

ARPL angle-resolved photoluminescence spectroscopy.

CCD charge-coupled device.

DBR distributed Bragg reflector.

EID excitation-induced dephasing.

EIS excitation-induced shift.

EWM eight-wave mixing.

FWHM full width at half maximum.

FWM four-wave mixing.

HWHM half width at half maximum.

MWM multi-wave mixing.

NMR nuclear magnetic resonance.

PE photon echo.

PI polarization interference.

PL photoluminescence.

PLE photoluminescence excitation.

QB quantum beat.

QD quantum dot.

SWM six-wave mixing.

TLS two-level system.

VTI variable temperature insert.
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für die Verfolgung und Ahndung von Ordnungswidrigkeiten ist der Kanzler/die Kanzlerin der
Technischen Universität Dortmund. Im Falle eines mehrfachen oder sonstigen schwerwiegenden
Täuschungsversuches kann der Prüfling zudem exmatrikuliert werden (§ 63 Abs. 5 Hochschulge-
setz).

Die Abgabe einer falschen Versicherung an Eides statt wird mit Freiheitsstrafe bis zu 3 Jahren
oder mit Geldstrafe bestraft.

Die Technische Universität Dortmund wird ggf. elektronische Vergleichswerkzeuge (wie z. B.
die Software „turnitin“) zur Überprüfung vonOrdnungswidrigkeiten in Prüfungsverfahren nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis genommen.

Ort, Datum Unterschrift
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