

 No. 671 January 2024

Fast Semi-Iterative Finite Element Poisson

Solvers for Tensor Core GPUs Based
on Prehandling

D. Ruda, S. Turek, D. Ribbrock

ISSN: 2190-1767

Fast Semi-Iterative Finite Element Poisson
Solvers for Tensor Core GPUs Based on
Prehandling

Dustin Ruda[0000−0003−4252−3099] ,
Stefan Turek[0000−0002−9740−6087] and
Dirk Ribbrock[0000−0002−2932−0513]

Abstract The impetus for the research presented in this work is provided by recent
developments in the field of GPU computing. Nvidia GPUs that are equipped with
Tensor Cores, such as the A100 or the latest H100, promise an immense computing
power of 156 and 495 TFLOPS, respectively, but only for dense matrix operations
carried out in single precision (with even higher rates in half precision), since
this serves their actual purpose of accelerating AI training. It is shown that this
performance can also be exploited to a large extent in the domain of matrix-based
finite element methods for solving PDEs, if specially tailored, hardware-oriented
methods are used. Such methods need to preserve sufficient accuracy, even if single
precision is used, and mostly consist of dense matrix operations. A semi-iterative
method for solving Poisson’s equation in 2D and 3D based on prehandling, i.e.,
explicit preconditioning, by means of hierarchical finite elements or generating
systems, that satisfies these requirements, is derived and analyzed. Actual benchmark
results on an H100 allow the determination of optimal solver configurations in terms
of performance, which ultimately exceeds that of a standard geometric multigrid
solver on CPU.

1 Introduction

First, the hardware under consideration and the difficulties that arise when it is
intended to be used for the numerical solution of PDEs using matrix-based finite
elements are described. We focus on a particular type of Nvidia GPUs that are

Dustin Ruda, Stefan Turek, Dirk Ribbrock
TU Dortmund University, Department of Mathematics, Chair of Applied Mathematics and
Numerics (LS3), Vogelpothsweg 87, 44227 Dortmund, Germany
e-mail: dustin.ruda@math.tu-dortmund.de
stefan.turek@math.tu-dortmund.de
dirk.ribbrock@math.tu-dortmund.de

1

2 Dustin Ruda, Stefan Turek and Dirk Ribbrock

Table 1 Peak rates in TFLOPS according to manufacturer specifications depending on precision
(double (DP), single (SP), half precision (HP)) and use of Tensor Cores (TC).

model DP DP TC SP SP TC HP HP TC

V100 7.8 - 15.7 - 31.4 125
A100 9.7 19.5 19.5 156 78.0 312
H100 34.0 67.0 67.0 495 n/a 990

equipped with Tensor Cores. Their purpose is to accelerate AI training, which is
why they are designed to perform the most expensive component, dense matrix
multiplications, at very high speed, especially in lower (single or half) precision,
since double precision is not necessary in this context. The threemain representatives
of this hardware are the V100 (2017), A100 (2020), and H100 (2023), with their
peak performance in terms of TFLOPS listed in Table 11. Their importance to high-
performance computing becomes clear when the current TOP500 list (November
20232) is considered. Six of the top ten systems are supported by V100, A100 or
H100 GPUs. Two others include AMD Instinct MI250X accelerators, which draw
their computing power from Matrix Cores, a technology similar to Tensor Cores.

Of course, it would be desirable to profitably use the high performance of Tensor
Cores for PDE computing, but two main difficulties arise: The matrices resulting
from finite element discretizations are sparse and therefore unsuitable to exploit
Tensor Cores, and the use of lower precision leads to a loss of accuracy of the
solution if the underlying stiffness matrix is ill-conditioned.

The latter is the case for Poisson’s equation, to which we restrict ourselves for the
scope of this work, since the spectral condition number of the resulting stiffness ma-
trix with respect to a standard, nodal basis is ^(�ℎ) = O(ℎ−2), where ℎ denotes the
mesh size. According to perturbation theory of linear systems, the condition number
is the amplification factor of the data error. Neglecting all other possible sources
of error, the data error is given as the machine epsilon of the respective precision
Yprec. Hence, the computational error can be approximated as ^(�ℎ)Yprec ≈ ℎ−2Yprec
and increases with increasing mesh resolution. In contrast, the discretization error,
given as O(ℎ2) for (bi-)linear finite elements, decreases. The actual error decreases
only up to the point where the computational error becomes dominant. If a precision
lower than double is used, this critical mesh size is already reached at a coarse stage
of the mesh. To circumvent this and to allow the use of lower precision by reducing
the computational error, we have introduced the concept of prehandling, an explicit
way of preconditioning, or in other words a transformation of a linear system into
an equivalent form with more advantageous properties. For a detailed description,
see [1]. Let �, �̃ ∈ R#×# be the matrix before and after prehandling, respectively.

1 see https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-
fnl-web.pdf, https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-
a100-datasheet-us-nvidia-1758950-r4-web.pdf, https://resources.nvidia.com/en-us-tensor-
core/nvidia-tensor-core-gpu-datasheet for datasheets
2 see https://www.top500.org/lists/top500/2023/11/

Fast Semi-Iterative Finite Element Poisson Solvers for Tensor Core GPUs 3

For this approach to be sensible, three conditions must be met: A significant reduc-
tion of the condition number (^(�̃) � ^(�)), preservation of sparsity and a fast
transformation of the linear system (i.e., # log(#) operations).

One method whose suitability for prehandling in the 2D case has been demon-
strated in previous research is hierarchical finite elements. More recently, the use of
so-called generating systems has also proven effective in the 3D case.

1.1 Hierarchical Finite Elements

The hierarchical finite element method (HFEM) has been known since the 1980s and
was mainly analyzed by H. Yserentant in [2]. It was shown that the stiffness matrix
associated with Poisson’s equation in 2D with respect to a hierarchical basis has a
condition number ^(�̃) = O

(
(log 1/ℎ)2

)
. The method was proposed as a precon-

ditioner for the conjugate gradient (CG) method. However, an explicit computation
of the transformed system results in a matrix, that is slightly denser but still sparse.
The construction of a hierarchical basis requires a sequence of uniformly refined
meshes starting from a coarse mesh, on which a nodal basis is fixed. For each level
of refinement, a nodal basis corresponding to the newly added nodes of that level is
added. If the original linear system is �G = 1, we obtain the system with respect to
a hierarchical basis �̃G̃ = 1̃ via �̃ = (T�(and 1̃ = (T1. The solution of the original
problem is G = (G̃. The transformation matrix (is given as a product (9 . . . (1 for 9
steps of refinement, where each factor (: is a square version of the interpolation (or
prolongation) operator from level : − 1 to : . We use the Cholesky decomposition of
�̃ restricted to the rows and columns corresponding to the coarse mesh for further
prehandling to obtain even lower condition numbers while keeping the numerical
effort and storage consumption low, since the number of coarsemesh nodes is usually
small. For details, see [1, 2]. Indeed, a higher accuracy can be obtained by means of
prehandling with hierarchical finite elements in 2D if the system is solved in single
or half precision [1]. The results in 3D concerning the condition number of matrices
with respect to hierarchical bases are less satisfactory because it is ^(�̃) = O(ℎ−1),
as shown in [3].

1.2 Generating Systems

The use of generating systems, an approach similar to HFEM, was introduced by
M. Griebel in the 1990s in [4, 5]. A generating system is again based on a hierarchy of
gradually refined meshes and it is given as the union of the nodal bases on all levels.
It is therefore not a basis and contains more functions than the nodal basis on the fine
mesh. The stiffness matrix with respect to a generating system � is symmetric and
positive semi-definite and its number of rows, or the size of the generating system
#� , grows by a factor of 2 in 1D, 4/3 in 2D and 8/7 in 3D compared to # . The

4 Dustin Ruda, Stefan Turek and Dirk Ribbrock

properties of � are sufficient for the convergence of the CG method to a non-unique
solution. The great advantage of using generating systems is that preconditioners,
which are otherwise difficult to implement and unsuitable for prehandling, have a very
simple counterpart in this context. For instance, the BPX preconditioner of Bramble,
Pasciak and Xu [6] corresponds to the Jacobi preconditioner if the representation
with respect to a generating system is used. The symmetric Jacobi preconditioner
can easily be used for prehandling by computing � � = diag(�)−1/2� diag(�)−1/2

without any fill-in. Due to the equivalence with the BPX preconditioner, we have
^(� �) = O(1), which is independent of the dimension.

Analogous to HFEM, the transformation of the original linear system �G = 1

to the representation with respect to a generating system (comprising 9 levels)
�G� = 1� is possible by means of a transformation matrix (= (9 . . . (1, that is
now rectangular ((∈ R#×#�). In order to describe the assembly of the factors (: ,
we set some notations: Let =: be the number of interior grid points on level : , so
that = 9 = # , and let #�,: = =: + . . . + = 9 , so that #�,0 = #� and #�, 9 = # ,
with the convention #�,: = 0 for : > 9 . The (: are constructed as 2 × 3 block
matrices consisting of identity and zero blocks as well as interpolation (prolongation)
operators %:

:−1 ∈ R
=:×=:−1 from level : − 1 to : as

(: =

(
%:
:−1 �=: 0=:×#�,:+1

0#�,:+1×=:−1 0#�,:+1×=: �#�,:+1

)
∈ R#�,:×#�,:−1 .

Originally, (was intended to be used in its product form as an implicit preconditioner,
but the explicit computation of � is possible without excessive storage consumption.

2 Derivation of a Hardware-Oriented Semi-Iterative Solver

In previous research, we provided a proof of concept that Tensor Cores can be
exploited when solving Poisson’s equation in 2D by means of a fully direct, HFEM-
basedmethod described in [7] achieving 60,000TFLOPS in half and 46,000TFLOPS
in single precision on the V100 for multiple right-hand sides while preserving
sufficient accuracy. Since this measure alone is not meaningful when comparing the
method to a standard geometric multigrid solver with different complexity, we also
consider the measure of millions of unknowns solved per second (MDof/s), in which
the direct method is also significantly superior due to the benefit of Tensor Cores
despite higher complexity. It has been shown in [8] that this method works equally
well when extended to semi-structured grids.

The assumption of multiple right-hand sides or a dense matrix as right-hand
side is advantageous with regard to the use of Tensor Cores and it has practical
relevance, for example, in the context of global-in-time solvers for the Navier–Stokes
equation [9], which require the solution of the pressure Poisson problem for all time
steps at once with respect to the same matrix, given a fixed mesh. However, the direct
method is limited to triangular meshes with linear finite elements and orthogonal

Fast Semi-Iterative Finite Element Poisson Solvers for Tensor Core GPUs 5

Fig. 1 Illustration of the two
types of nodes I(•) and J(∗)
on a uniformly refined coarse
grid (bold lines) for the unit
square with ℎ0 = 1/4 and
ℎ = 1/16, yielding 16 coarse
mesh cells containing 9 nodes
each, and &1 finite elements.

quadrilateral meshes with bilinear finite elements, and to the 2D case due to high
storage consumption of O

(
#

3/2) (the analogous method in 3D would require the
storage of O

(
#

5/3) non-zeros).
The aim is to derive a more versatile solver that also works in 3D, still consisting

mainly of dense operations, whereby a higher share of sparse operations is accepted
to reduce the storage cost. After a detailed analysis of all possible resulting variants
– HFEM and generating systems are applicable in both 2D and 3D – it turned out
that the more efficient and, in terms of conditioning, advantageous option in 2D is
the one based on HFEM, and in 3D is the one based on generating systems, and
therefore only these will be treated in the following.

First, we consider the 2Dcase. For simplicity,we denote the linear system resulting
from prehandling via HFEM (and later generating systems) as �G = 1. As a first
step, the unknowns are divided into two types: I is the set of all unknowns in the
interior of the cells given by the coarse mesh, and J is the complement, i.e., those
on the edges of the coarse mesh as shown in Fig. 1. We assume that I is ordered cell
by cell and in the same geometric order within each cell. Note that for a fixed fine
mesh, the cardinalities of both sets can be influenced by adjusting the refinement
level of the coarse mesh. Renumbering the linear system accordingly and making
some notational simplifications yields(

�JJ �JI
�T
JI �II

) (
GJ
GI

)
=

(
1J
1I

)
⇔:

(
�1 �
�T �

) (
D

{

)
=

(
11
12

)
. (1)

Due to the numbering of I, the matrix � decomposes into independent blocks �8 .
The number of submatrices is equal to the number of coarse mesh cells and their row
number is equal to the number of nodes in the interior of these cells. Furthermore, the
�8 are equal, if they correspond to similar coarse mesh cells, and well-conditioned
because they are HFEMmatrices. These properties allow an explicit computation of
the inverse �−1, since only the submatrices �8 need to be inverted and saved (once
for each group of similar cells), and an application of �−1 is transformed into small,
dense matrix products, which can be performed very fast by means of Tensor Cores.
The semi-iterative method is derived from system (1) by eliminating D applying a
Schur complement approach. We obtain the algorithm

1. Solve �̂D = 11 − ��−112, where �̂ = �1 − ��−1�T, with the CG method.
2. Compute { = �−1 (12 − �TD

)
.

6 Dustin Ruda, Stefan Turek and Dirk Ribbrock

The computation of �̂ and the transformation of the obtained solution components
back to the representation with respect to the nodal basis by (as part of post-
processing are performed in double precision. The iterative step 1 and the direct step
2 are carried out in single precision. The main part of the computational cost of the
stated method consists of dense operations, complemented by a multiplication of
the sparse matrix �̂ with a dense matrix, axpy, and a dot product for each iteration
in step 1, and intermediate steps consisting mainly of multiplications with � and
�T. The final composition of the method, and thus the complexity and the potential
for Tensor Cores depends on the choice of the coarse mesh and is discussed in the
following section.

Adapting the method to the 3D case requires some adjustments. In order to obtain
the same block structure of the matrix �, a partitioning of the unknowns analogous
to the 2D case is performed: I includes the nodes in the interior of the three-
dimensional coarse mesh cells. For the nodes that do not belong exclusively to the
fine mesh and therefore appear repeatedly in the generating system, only one index
has to be chosen as an element of I in order to obtain invertible submatrices �8 .
This could be done by simply choosing the indices corresponding to the fine mesh,
which would lead to �8 being standard FEM matrices. However, a lower condition
number is obtained if the indices are chosen in such a way that the �8 are related
to a hierarchical basis. The remaining ones plus those on the edges and faces of the
coarse mesh are contained in J . The semi-iterative method then has the same form
as given above. One difference is that the matrix �̂ is positive semi-definite and that
its explicit computation would result in a high storage consumption. Therefore, in the
3D case, the implicit form �1 − ��−1�T is preferred, which can be used to compute
the products arising in the CG method.

3 Numerical Results

The derived method is now analyzed in terms of storage requirements, expected per-
formance on the H100, and the optimal coarse mesh size using the toy problem of the
uniformly and equidistantly refined unit square or cube. For different combinations
of fine and coarse mesh sizes (ℎ and ℎ0) in 2D and 3D, the iteration numbers and
the relevant properties of all matrices are known. Additional benchmark results on
an H100 for the GFLOPS of all occurring operations in single precision (assuming
many right-hand sides) allow a reliable estimate of the overall performance.

The main results for the 2D and 3D case are shown in Table 2 and Table 3,
respectively. In each case, the first four rows show the storage requirement in terms
of non-zero entries (NNZ) relative to # of the matrices used in the semi-iterative
method and in total. Note that the matrix�−1

8
is expanded by zeros so that its number

of rows and columns divides 16, since Tensor Cores work particularly fast in this
case. Except for the case (ℎ, ℎ0) = (1/128, 1/4) in 3D, the total storage requirement
is practically independent of ℎ and moderate, compared to 9# in 2D and 27# in
3D, considering that the matrices of the semi-iterative method are stored in single

Fast Semi-Iterative Finite Element Poisson Solvers for Tensor Core GPUs 7

Table 2 Properties, benchmark results and performance model of the semi-iterative method in SP
on H100 in 2D.

ℎ = 1
1024 ℎ = 1

2048 ℎ = 1
4096

ℎ0 = 1
16 ℎ0 = 1

32 ℎ0 = 1
32 ℎ0 = 1

64 ℎ0 = 1
32 ℎ0 = 1

64

NNZ(�̂)/# 15.01 24.92 19.15 40.46 16.20 27.24
NNZ(�−1

8
)/# 15.17 0.91 3.79 0.23 15.54 0.95

NNZ(�)/# 1.02 1.59 1.05 1.62 0.66 1.07

Total NNZ/# 31.19 27.42 23.99 42.30 32.39 29.25

iterations 30 24 28 23 31 25
share dense 94.44% 75.38% 93.46% 66.43% 98.43% 91.86%

GFLOPS �−1 213,504 164,504 220,525 163,620 403,598 230,973
GFLOPS �̂ 3,743 3,566 3,115 2,404 3,204 2,479
GFLOPS � 2,107 2,083 2,138 2,070 2,138* 2,070*
GFLOPS �T 698 948 713 948 713* 948*

Total GFLOPS 47,028 12,010 36,877 6,600 130,867 26,010

Total MDof/s 2,860 2,428 2,221 1,177 2,024 1,541

*estimate

Table 3 Properties, benchmark results and performance model of the semi-iterative method in SP
on H100 in 3D.

ℎ = 1
128 ℎ = 1

256

ℎ0 = 1
4 ℎ0 = 1

8 ℎ0 = 1
16 ℎ0 = 1

8 ℎ0 = 1
16 ℎ0 = 1

32

NNZ(�1)/# 11.32 22.06 37.05 14.24 24.92 39.50
NNZ(�−1

8
)/# 433.30 5.56 0.06 53.53 0.69 0.01

NNZ(�)/# 15.36 16.61 15.30 16.54 17.66 16.44

Total NNZ/# 459.98 44.23 52.41 84.31 43.27 55.95

iterations 8 11 18 11 18 35
share dense 99.86% 98.25% 79.30% 99.84% 98.00% 77.33%

GFLOPS �−1 309,278 216,213 93,052 389,710 214,190 83,020
GFLOPS �1 3,063 3,174 3,156 2,877 2,966 3,026
GFLOPS � 2,807 2,930 2,850 2,550 2,620 2,563
GFLOPS �T 3,656 3,812 3,802 3,690 3,768 3,790

Total GFLOPS 265,263 87,605 10,520 310,909 78,200 9,374

Total MDof/s 478 1,162 842 436 680 400

precision. The number of unpreconditioned CG iterations of step 1 is also small.
The row below shows the share of dense operations, i.e., multiplications with �−1,
in the total numerical cost of the method in FLOP, which is strongly influenced by
the choice of ℎ0. The benchmark results of the most important operations performed
with the actual matrices on an H100 follow. As expected, the highest performance of

8 Dustin Ruda, Stefan Turek and Dirk Ribbrock

83 up to 403 TFLOPS is observed for the dense part. The sparse times dense matrix
multiplications are performed at 0.7 to 3.8 TFLOPS. The cost of matrix additions
(144 GFLOPS) as well as axpy operations (287 GFLOPS) and dot products (479
GFLOPS) occurring in the CG method are almost negligible in comparison.

Knowing the numerical effort for each operation and the corresponding perfor-
mance, it is possible to calculate the overall performance of the solver in terms
of GFLOPS and MDof/s, as shown in the last two rows of the tables and de-
termine the optimal coarse mesh size ℎ0. In the 2D examples, for each ℎ, the
value of ℎ0 yielding the highest overall performance in terms of GFLOPS is
also associated with the most unknowns solved per second, namely for (ℎ, ℎ0) ∈
{(1/1024, 1/16), (1/2048, 1/32), (1/4096, 1/32)}. In 3D, this is not the case. While the high-
est performance is obtained with the choices (ℎ, ℎ0) ∈ {(1/128, 1/4), (1/256, 1/8)}, the
highest value of MDof/s is obtained with one additional refinement step of the coarse
mesh. This is because the effort for the very fast multiplications with the matrices
�−1
8

increases, leading to high overall performance, but also to a higher complexity
and thus to lower MDof rates. In 2D, this effect is not as strong due to the slower
growth of the matrices �−1

8
as a function of ℎ0 (approx. (ℎ0/ℎ)2 in 2D instead of

(ℎ0/ℎ)3 in 3D).
To better evaluate the results, it should be noted that the maximum value ob-

tained with an optimized geometric multigrid solver in the C++-based finite element
software package FEAT33 on CPU and in double precision, due to ill-conditioning
without alternative, is approx. 8 MDof/s.

Finally, we want to examine the behavior of the solver if the underlying mesh does
not consist of equal squares or cubes as previously assumed, but rectangles or cuboids
with high aspect ratios. Commonly, the convergence behavior of iterative solvers like
multigrid methods deteriorates in the case of such anisotropic meshes and sophisti-
cated preconditioners are necessary. Again, we consider the unit square/cube, but in
the first step of refinement, the central node is shifted along one or more coordinate
axes by a constant distance. From then on, the mesh is refined uniformly. This yields
the two (three) types of anisotropy in 2D (3D) depicted in Fig. 2 (Fig.3). The iteration
numbers of the unpreconditioned CG method (stopping criterion: relative residual
< 10−6 (10−4) in 2D (3D)) were determined and are shown in Table 4 for the 2D case
and in Table 5 for the 3D case depending on the coordinates of the central node and
the mesh size. Since there is no constant mesh size, we consider ℎ̂ and ℎ̂0 denoting
the reciprocal of the number of elements of the fine and coarse mesh, respectively,
in one coordinate direction. Therefore the pairs of mesh sizes (ℎ, ℎ0) in the isotropic
and (ℎ̂, ℎ̂0) in the anisotropic case yield the same number of unknowns and sizes of
�̂, �8 , etc.

It can be seen that the iteration numbers increase with increasing anisotropy, but
only moderately compared to the aspect and volume ratios of the elements, so that
the performance of the solver is not severely restricted in this case, particularly as
the direct part is not affected besides a higher number of different matrices �−1

8
that

need to be stored.

3 see https://www.mathematik.tu-dortmund.de/featflow/feat3

Fast Semi-Iterative Finite Element Poisson Solvers for Tensor Core GPUs 9

Fig. 2 Two types of
anisotropy in 2D in direc-
tions G (left) and G,H (right).

Table 4 CG iterations on anisotropic meshes in 2D depending on coordinates of the central node.

ℎ̂ = 1
1024 ℎ̂ = 1

2048 ℎ̂ = 1
4096

G H ℎ̂0 = 1
16 ℎ̂0 = 1

32 ℎ̂0 = 1
32 ℎ̂0 = 1

64 ℎ̂0 = 1
32 ℎ̂0 = 1

64

1/2 1/2 28 23 27 21 30 22
1/4 1/2 35 30 33 27 36 30
1/8 1/2 40 34 37 31 40 34
1/16 1/2 48 43 46 40 50 42
1/4 1/4 40 33 37 31 41 35
1/8 1/8 50 43 48 41 54 44
1/16 1/16 71 66 71 65 76 70

Fig. 3 Three types of anisotropy in 3D in directions G (left), G,H (center), and G,H,I (right).

Table 5 CG iterations on anisotropic meshes in 3D depending on coordinates of the central node.

ℎ̂ = 1
128 ℎ̂ = 1

256

G H I ℎ̂0 = 1
4 ℎ̂0 = 1

8 ℎ̂0 = 1
16 ℎ̂0 = 1

8 ℎ̂0 = 1
16 ℎ̂0 = 1

32

1/2 1/2 1/2 8 11 18 11 18 35
1/4 1/2 1/2 11 18 34 18 35 71
1/8 1/2 1/2 16 21 42 21 43 87
1/16 1/2 1/2 21 28 44 27 44 90
1/4 1/4 1/2 14 20 38 20 38 77
1/8 1/8 1/2 24 30 45 27 46 94
1/16 1/16 1/2 32 42 54 39 52 98
1/4 1/4 1/4 15 21 41 21 41 84
1/8 1/8 1/8 27 33 47 31 47 96
1/16 1/16 1/16 41 52 64 44 58 94

4 Conclusion and Outlook

The aim was to develop a memory-efficient variant of the fully direct Poisson solver,
which is suitable for the 3D case and still uses Tensor Cores in lower precision

10 Dustin Ruda, Stefan Turek and Dirk Ribbrock

profitably while maintaining sufficient accuracy. This is achieved by means of a
hardware-oriented semi-iterative solver based on HFEM in 2D and generating sys-
tems in 3D, which is expected to compare favorably with a standard solver on CPU.

Tasks for future research include the implementation of the entire method on
GPU, examining preconditioners and initial guesses for the solution to further lower
the iteration numbers as well as the behavior of the method for other differential
operators and meshes.

Acknowledgements This work was supported by the Federal Ministry of Education and Research
(BMBF) through the project “StroemungsRaum” 16ME0706K, which is part of the initiative “Neue
Methoden und Technologien für das Exascale-Höchstleistungsrechnen” (SCALEXA).

Comparative results have been created using the FEM software package FEAT3, whereby
calculations have been carried out on the LiDO33 cluster at TU Dortmund University.

Evaluation access to an H100 GPU was kindly provided by Jülich Supercomputing Centre4.

References

1. Ruda, D., Turek, S., Zajac, P., Ribbrock, D.: The Concept of Prehandling as Direct Precondi-
tioning for Poisson-like Problems. In Vermolen, F.J., Vuik, C. (eds.) Numerical Mathematics
and Advanced Applications ENUMATH 2019. Lecture Notes in Computational Science and
Engineering, vol 139, pp. 1011–1019. Springer, Cham (2021) doi: 10.1007/978-3-030-55874-
1_100

2. Yserentant, H.: On themulti-level splitting of finite element spaces. Numer.Math. 49, 379–412
(1986) doi: 10.1007/BF01389538

3. Ong, M.E.G.: Hierarchical Basis Preconditioners in Three Dimensions. SIAM J. Sci. Comput.
18(2), 479–498 (1997) doi: 10.1137/S1064827594276539

4. Griebel,M.:Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen. In: Bock,
H.G., Hackbusch, W., Rannacher, R. (eds.) Teubner Skripten zur Numerik. Vieweg+Teubner
Verlag, Wiesbaden (1994) doi: 10.1007/978-3-322-89224-9

5. Griebel, M.: Multilevel Algorithms Considered as IterativeMethods on Semidefinite Systems.
SIAM J.Sci.Comput. 15(3), 547–565 (1994) doi: 10.1137/0915036

6. Bramble, J.H., Pasciak, J.E., Xu, J.: ParallelMultilevel Preconditioners.Math. Comp. 55(191),
1–22 (1990) doi: 10.2307/2008789

7. Ruda, D., Turek, S., Ribbrock, D., Zajac, P.: Very fast finite element Poisson solvers on lower
precision accelerator hardware: A proof of concept study for Nvidia Tesla V100. Int. J. High
Perform. Comput. Appl. 36(4), 459–474 (2022) doi: 10.1177/10943420221084657

8. Ruda, D., Turek, S., Ribbrock, D., Zajac, P.: An extension of a very fast direct finite ele-
ment Poisson solver on lower precision accelerator hardware towards semi-structured grids. In
Kvamdal, T., et al. (eds.) ECCOMAS Congress 2022 – 8th European Congress on Computa-
tional Methods in Applied Sciences and Engineering (2022) doi: 10.23967/eccomas.2022.292

9. Lohmann, C., Turek, S.: On the Design of Global-in-Time Newton-Multigrid-Pressure Schur
Complement Solvers for Incompressible Flow Problems. J. Math. Fluid Mech. 25(64) (2023)
doi: 10.1007/s00021-023-00807-6

4 see https://www.fz-juelich.de/en/ias/jsc

	EB 671 1. Seite
	EB 671

