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Abstract: Age-specific mortality rates for semi-supercentenarians and supercentenarians play a 
pivotal role in comprehending longevity and population dynamics at advanced ages. In this study, we 
introduce a modified Wittstein Model, offering an alternative to the conventional S-shaped curve 
models used in mortality forecasting. The Wittstein Model, originally formulated by Theodor 
Wittstein, has been adapted to suit contemporary contexts. Utilizing life table data for German women 
from 2019/2021, we project age-specific mortality rates, construct life tables commencing from age 
100, and conduct a sensitivity analysis to assess the impact of model parameters on mortality patterns. 
The sensitivity analysis unveils the influence of parameter values on the shape of age-specific 
mortality rates. This study contributes to research in mortality forecasting, with a specific focus on 
semi-supercentenarians and supercentenarians, shedding light on an understudied population segment. 
Accurate projections carry profound implications for public health, healthcare planning, and social 
policy. Further research should explore the model's applicability in different contexts, providing a 
deeper understanding of mortality patterns at advanced ages. As the empirical database of centenarians 
expands, the model is expected to enhance its precision and reliability in forecasting age-specific 
mortality rates at advanced ages. 
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1. Introduction 
 
Age-specific mortality rates for semi-supercentenarians and supercentenarians2 play a crucial 
role in understanding longevity and population dynamics at advanced ages. However, due to 
limited and unreliable data in these age classes, projecting mortality rates becomes essential 
for gaining insights into mortality patterns and making informed decisions. In this article, we 
propose a modified Wittstein Model, as an alternative to traditional S-shaped curve models 
commonly used in mortality forecasting. 
The Wittstein Model, initially developed by Theodor Wittstein in the 19th century, provides a 
foundation for our analysis. We have transformed the traditional Wittstein Model to enhance 
interpretability and applicability in contemporary settings. To demonstrate the effectiveness of 
our approach, we apply it to life table data for women from the German life table of 
2019/2021. 
From the projected age-specific mortality rates, we construct a life table starting at age x=100, 
enabling us to calculate life expectancy at age x. Our analysis includes presenting the 
projection results and performing a sensitivity analysis to assess the influence of different 
model parameters on the curve of age-specific mortality rates. 

                                                 
1 This paper  is the written version of a poster to be presented at the 15th International Seminar on 
Supercentenarians, organized by the Institut national d'études démographiques (INED) at the Campus Condorcet 
in Aubervilliers, France, on November 16-17, 2023. 
2 Supercentenarians are individuals who have reached the age of 110 years or older. The term "semi-
supercentenarians" refers to individuals who have reached an age between 105 and 109 years. 
 



 2

Through the sensitivity analysis, we investigate the impact of varying key parameters on the 
shape and trajectory of age-specific mortality rates. By systematically varying parameters 
such as M (the parameter associated with the maximum age), n (the shape parameter), and y 
(the threshold parameter or median), we can better understand how changes in these 
parameters affect the projected mortality rates. This analysis provides valuable insights into 
the robustness and flexibility of the modified Wittstein Model, allowing for a comprehensive 
assessment of its performance and applicability in different scenarios. 
Importantly, we emphasize that the parameter M, conventionally associated with the age 
where the death probability reaches 1, should not be considered as the maximum age. This is 
because the probability for an individual to reach M is infinitesimally small. Instead, the 
maximum age should be understood as the age at which the last remaining individual in a 
population of size N would reach. We discuss the implications of this finding and emphasize 
the significance of forecasting age-specific mortality rates for individuals aged 100 and above. 
By addressing these key points, including the sensitivity analysis, and presenting our findings, 
we contribute to the growing body of research on mortality forecasting. Our focus on semi-
supercentenarians and supercentenarians sheds light on an understudied population segment 
and underscores the importance of accurate and robust projections for informed decision-
making in various fields, including public health, healthcare planning, and social policy. 
 
 
2. Wittstein's Mortality Formula 
 
Wittstein's complete formula is expressed as: 
 

     1
( ) exp exp

n n
q x k m x k M x

m
          

 
where: 
 
q(x) represents the death probability at age x, ranging from 0 to M;  k, m, and n are 
parameters with values greater than 0. The significance and interpretation of these parameters 
will be further explained in this chapter. 
 
It is important to note that q(M) = 1, and q(0) is approximately equal to 1/m (exact value: 

 1
exp nk M

m
   ) The function exhibits a minimum at age x = M/(m+1), resembling the 

shape of a bathtub in terms of the death probability function. Starting with high infant 
mortality, the function decreases until the age x = M/(m+1), and then it gradually increases up 
to a death probability of 1 at age x = M. It should be emphasized that the parameter M should 
not be regarded as the maximum age, as it is highly unlikely to be reached. 
The first part of the formula represents a decreasing function of x, eventually approaching 
zero, while the second part is an increasing function of x, reaching its maximum value of 1 at 
age x = M. 
In current research, typically only the second part of the formula is utilized to model mortality 
at advanced ages. When n = 1, the formula becomes a special case of the Gompertz formula. 
Therefore, Wittstein's formula offers greater flexibility than the Gompertz formula. 
 
In the following sections, our focus will solely be on the second part of Wittstein's formula. 
This part has been widely employed, such as by the US Bureau of the Census for calculating 
the life table of 1910, where the death probability was assumed to be 1 at the age of 115 (see 
US Bureau of the Census, 1916, p.12). 
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Now we transform the second part of the above formula for a better interpretation: 

By setting q(y) = 0.5, we can determine the "median" value 

1

ln 2 n
y M

k
    
 

. 

Solving the median formula for k yields: 

  ln 2
n

k M y
   . 

Substituting k into the formula leads to an easier-to-interpret form of Wittstein's mortality law 
for old ages: 
 

    /
( ) 2

n
M x M y

q x
  

  . 

 
Here, q(x) depends on the values of n and the difference between M and y. The parameter n is 
a shape parameter that influences the growth rate of the death probability function. The 
growth rate, denoted by r(x), is given by: 
 

   1 1
( ) ln 2

n n
r x n M x M y

        

 
For values of n greater than 1, q(x) increases with decreasing growth rates. When n equals 1, 

q(x) exponentially increases with a constant growth rate: 
ln 2

( )r x
M y




. For values of n 

between 0 and 1, q(x) increases with increasing growth rates. 
If n equals 1, Wittstein's model becomes a special case of the Gompertz model: ( ) k xq x A e   , 

where 
ln 2

expA M
M y

 
    

 and 
ln 2

k
M y




. 

Additionally, if n is greater than 1, the function exhibits an S-shaped curve and has a turning 

point at  
1

1

ln 2

nn

TP

n
x M M y

n

      
 . Specifically, when

1
3.26

1 ln 2
n  


, the turning 

point xTP is equal to y. For values of n between 1 and
1

1 ln 2
n 


 xTP is greater than y, and for 

n greater than 
1

1 ln 2
n 


, xTP is less than y. 

 
Using the R package nlstools, we conducted parameter estimations for the Wittstein model 
with data on the death probabilities of the female population from the life table 2019/2021 in 
Germany between ages 60 and 100. The corresponding estimators are shown in Table 1. 
(Refer to Appendix 1 for the estimation results of life tables for both females and males from 
various years.)  
From the projected q(x), we can calculate the life table with l(100) = 1 and the life expectancy 
at age x, denoted by e(x), from age 100 onwards. At very high ages, the life expectancy can 
be approximated by the inverse of the death probability, 1/q(x) (see Table 2). The results are 
illustrated in Figure 1. The upper-left corner shows the R plotfit function, displaying the 
actual values (depicted as circles) and the fitted ones (represented by solid lines). The upper-
right corner presents the q(x) values of the life table from age 60 to age 100, followed by the 
predicted/forecast values. The lower-left corner shows the life table function from age x = 100 
with l(100) = 1. Notably, the life table rapidly decreases between ages 100 and 105, with only 
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5.07% of centenarians reaching the age of 105 and 0.043% reaching the age of 110.  The life 
expectancy is illustrated in the lower right corner of Figure 1. 
 
Table 1: Estimation Results 
Formula: q ~ 2^(-((M - x)^n)/(M - y)^n); x=60,61,...... 
 
Parameters: 
  Estimate Std. Error t value      Pr(>|t|)     
n   2.1873     0.2854   7.663 0.00000000378  
y 103.6403     0.3171 326.831       < 2e-16  
M 126.6124     4.6308  27.341       < 2e-16  
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Figure 1:  Analysis of Results: Survivor Function, Life Expectancy and Death Probability 
Projections 
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Table 2: Projected Life Table with l(100)=1 

x qx lx ex 1/qx 
100 0.3843 1.00E+00 2.37 2.60 
101 0.4150 6.16E-01 2.22 2.41 
102 0.4466 3.60E-01 2.09 2.24 
103 0.4790 1.99E-01 1.97 2.09 
104 0.5119 1.04E-01 1.86 1.95 
105 0.5452 5.07E-02 1.76 1.83 
106 0.5788 2.30E-02 1.67 1.73 
107 0.6123 9.71E-03 1.59 1.63 
108 0.6457 3.76E-03 1.51 1.55 
109 0.6786 1.33E-03 1.44 1.47 
110 0.7110 4.29E-04 1.38 1.41 
111 0.7424 1.24E-04 1.33 1.35 
112 0.7728 3.19E-05 1.28 1.29 
113 0.8020 7.25E-06 1.24 1.25 
114 0.8297 1.43E-06 1.20 1.21 
115 0.8557 2.44E-07 1.16 1.17 
116 0.8798 3.53E-08 1.13 1.14 
117 0.9020 4.24E-09 1.11 1.11 
118 0.9221 4.15E-10 1.08 1.08 
119 0.9400 3.23E-11 1.06 1.06 
120 0.9555 1.94E-12 1.05 1.05 
121 0.9687 8.63E-14 1.03 1.03 
122 0.9795 2.70E-15 1.02 1.02 
123 0.9880 5.53E-17 1.01 1.01 
124 0.9941 6.66E-19 1.01 1.01 
125 0.9979 3.96E-21 1.00 1.00 
126 0.9998 8.22E-24   
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Figure 2: Wittstein Function and Its Derivatives 
 
R codes for functions in Figure 2 
# Function 
q <- 2^(-((M - x)^n)/(M - y)^n) 
 
# First derivative 
dq <- 2^(-((M - x)^n)/(M - y)^n) * n * (M - x)^(n - 1) * (M - y)^(-n) * log(2) 
 
# Second derivative 
ddq <- 2^(-((M - x)^n)/(M - y)^n) * (n^2 * (M - x)^(2 * (n - 1)) * (M - y)^(-2 * n) * log(2)^2  
    +      n * (1 - n) * (M - x)^(n - 2) * (M - y)^(-n) * log(2)) 
 
# Third derivative 
dddq <- -2^(-((M - x)^n)/(M - y)^n) * (-n^3 * (M - x)^(3 * (n - 1)) * (M - y)^(-3 * n) * log(2)^3 +   3 * n^2 * (M 
- x)^(2 * n - 3) * (M - y)^(-2 * n) * (n - 1) * log(2)^2 + 
          n * (1 - n) * (M - x)^(n - 3) * (M - y)^(-n) * (n - 2) * log(2)) 

 
Figure 2 provides a visual representation of the Wittstein function and its derivatives. By 
examining these derivatives, we gain additional insights into the characteristics of the model. 
The first derivative represents the rate of change of death probabilities. It exhibits an 
increasing trend, reaching its modal value of approximately 106. This modal value coincides 
with the turning point of the death probability function, which is the crossing point of the 
second derivative (green line) with the x-axis. 
The turning points of the first derivatives, calculated numerically, occur at ages 92.94 and 
121.34. These turning points are graphically illustrated as the intersections of the olive curve 
with the x-axis, denoting the 3rd derivatives. 
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3. Graphical Sensitivity Analysis 
 
We perform a graphical sensitivity analysis to illustrate the impact of different parameter 
values on the Wittstein formula (see Figures 3a and 3b). In Figure 3a, we observe that the 
slope or gradient at the turning point increases with higher values of n. This can be interpreted 
as the death probability before the median age (y) decreasing, while the death probability after 
the median age increases. 
For values of n greater than 1, we observe S-shaped curves, while n = 1 represents an 
exponential curve (Gompertz curve). Increasing the median age from 103.64 to 113.64 (or 
reducing the difference between M and y) leads to a delayed increase in death probabilities 
with a steeper slope. 
In Figure 3b, we observe curves with increasing growth rates (0 < n < 1). Smaller values of n 
result in death probabilities approaching 0.5 at an earlier age, followed by a steep increase 
shortly before reaching M. Additionally, Figure 3b demonstrates that a constant death 
probability of 0.5 is observed when n = 0. For values of n less than 0, the death probability 
decreases with age." 
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Figure 3 a:  Wittstein-Mortality Formulas with Varying Parameters ( 1n  ) 
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Figure 3 b:   Wittstein-Mortality Formulas with Varying Parameters ( 1n  ) 
 
 
Figure 4 displays the curves depicting the estimated death probabilities using the Wittstein 
model for selected life tables of Germany for females since 1871. The medians, represented 
by the values of y, exhibit a similar pattern across the years. Notably, the estimators of M 
exhibit exceptionally high values in the years 1901 and 1949. This observation reinforces the 
notion that M should not be solely interpreted as the maximum age or life span. However, to 
ensure a realistic representation of the death probabilities and account for an increased spread 
between M and y, an augmentation of the shape parameter n is required. This relationship is 
further explored in the sensitivity analysis depicted in Figure 5.  
We observe a mortality crossover phenomenon: earlier life tables exhibit higher age-specific 
mortality rates between ages 60 and approximately 105, but they show lower rates at very 
high ages. However, when considering the overall effect, newborns have a lower probability 
of reaching the supercentenarian age in the case of earlier life tables. The pattern observed in 
the earlier life tables may lend support to the hypothesis that age-specific mortality will never 
reach one. 
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Figure 4: Wittstein Models for Selected Life Tables in Germany (females) since 1871 (see 
also Appendix 2) 
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Figure 5: Wittstein Model for the Life Table 1901 (Female) Assuming Different Shape 
Parameters n
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Finally, let's consider the interpretation of M. It undoubtedly represents the age at which the 
death probability reaches one, as mentioned earlier. However, we need to examine whether it 
can be considered the maximum age or lifespan. To evaluate this, we refer to Table 3, which 
presents the survivor function starting at age x=100 with an initial value of l(100)=1. The 
survivor function decreases rapidly as age increases. To assess the number of individuals at 
age 100 required for one individual to survive at a specific age, we compute the inverse of the 
survivor function. 
For instance, at age x=110, the inverse is 2334, indicating that we need 2334 individuals at 
age 100 to observe one survivor at age 110. At age x=120, the inverse is 515,234,717,752 or 
5.152E+11. At age x=126, the inverse is 1.217E+23. These results suggest that M may be a 
theoretical value for the maximum age or lifespan, but it is not a realistic value considering 
the number of individuals required for survival at advanced ages. 
Therefore, while M represents the age at which the death probability reaches one, it is 
important to recognize that it may not be a feasible or attainable maximum age in practice. 
 
Table 3: Maximum Age 
 

x lx lx 
 

1/lx (rounded) 1/lx 

100 1.000000 1.00E+00 1 1.000E+00 

101 0.615654 1.62E+00 2 1.624E+00 

102 0.360131 2.78E+00 3 2.777E+00 

103 0.199283 5.02E+00 5 5.018E+00 

104 0.103831 9.63E+00 10 9.631E+00 

105 0.050680 1.97E+01 20 1.973E+01 

106 0.023048 4.34E+01 43 4.339E+01 

107 0.009708 1.03E+02 103 1.030E+02 

108 0.003764 2.66E+02 266 2.657E+02 

109 0.001334 7.50E+02 750 7.499E+02 

110 0.000429 2.33E+03 2,334 2.334E+03 

111 0.000124 8.07E+03 8,074 8.074E+03 

112 0.000032 3.13E+04 31,346 3.135E+04 

113 0.000007 1.38E+05 137,993 1.380E+05 

114 0.000001 6.97E+05 696,884 6.969E+05 

115 0.000000 4.09E+06 4,090,975 4.091E+06 

116 0.000000 2.83E+07 28,343,354 2.834E+07 

117 0.000000 2.36E+08 235,889,002 2.359E+08 

118 0.000000 2.41E+09 2,408,076,496 2.408E+09 

119 0.000000 3.09E+10 30,922,453,907 3.092E+10 

120 0.000000 5.15E+11 515,234,717,752 5.152E+11 

121 0.000000 1.16E+13 11,587,332,450,070 1.159E+13 

122 0.000000 3.70E+14 370,476,299,149,238 3.705E+14 

123 0.000000 1.81E+16 18,094,304,256,811,700 1.809E+16 

124 0.000000 1.50E+18 1,501,774,571,922,910,000 1.502E+18 

125 0.000000 2.52E+20 252,465,897,537,725,000,000 2.525E+20 

126 0.000000 1.22E+23 121,711,522,028,142,000,000,000 1.217E+23 
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4. Conclusion 
 
In this article, we have explored the potential of the Wittstein Mortality Formula as an 
alternative approach to forecasting age-specific mortality rates at advanced ages. By 
modifying and adapting the traditional Wittstein Model, we have enhanced its interpretability 
and applicability in contemporary settings. 
Through our analysis, we have demonstrated the effectiveness of the modified Wittstein 
Model by applying it to life table data for women from the German life table of 2019/2021. 
By constructing a life table starting at age x=100, we were able to calculate life expectancy at 
different ages and project age-specific mortality rates. 
Our sensitivity analysis provided valuable insights into how different parameter values 
influence the shape and trajectory of age-specific mortality rates. We observed that varying 
parameters such as M (the maximum age parameter), n (the shape parameter), and y (the 
threshold parameter or median) had a significant impact on the projected mortality rates. By 
systematically exploring these parameter values, we gained a comprehensive understanding of 
the model's performance and flexibility in different scenarios. 
Importantly, we highlight that the parameter M, conventionally associated with the age where 
the death probability reaches one, should not be considered as the maximum age. Our 
examination of the survivor function starting at age x=100 revealed that the number of 
individuals required for survival at advanced ages becomes astronomically high. While M 
represents the age at which the death probability reaches one, it is crucial to acknowledge that 
it may not be a feasible or attainable maximum age in practice. 
In conclusion, our exploration of the Wittstein Mortality Formula as an alternative approach 
to forecasting age-specific mortality rates at advanced ages contributes to the growing body of 
research in mortality forecasting. By focusing on semi-supercentenarians and super-
centenarians, we shed light on an understudied population segment and emphasize the 
importance of accurate and robust projections for informed decision-making in various fields, 
including public health, healthcare planning, and social policy. Our findings highlight the 
need for continued research and refinement of mortality models to better understand longevity 
and population dynamics at advanced ages. 
Further research is warranted to expand the application of the modified Wittstein Model to 
different countries, time periods and age ranges. In this study, the model was applied to the 
age range from 60 to 100 (data range of the regression). However, it would be valuable to 
investigate its applicability to broader age ranges and explore its performance in diverse 
demographic contexts. By examining diverse populations, we can gain a deeper understanding 
of the model's performance and its ability to capture variations in mortality patterns. 
Moreover, as the empirical database of centenarians continues to grow, the accuracy and 
reliability of mortality projections using the Wittstein Model are expected to improve, making 
it an invaluable tool for forecasting age-specific mortality rates at advanced ages. 
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Appendix 
 

1. Estimation Results (qxm: for males; qxw: for females) 
 
Formula: qxm2014 ~ 2^(-((M - x)^n)/(M - y)^n) 
 
Parameters: 
  Estimate Std. Error t value Pr(>|t|)     
n   1.6125     0.1121   14.38   <2e-16 *** 
y 102.5132     0.2073  494.61   <2e-16 *** 
M 119.3180     2.0297   58.78   <2e-16 *** 
 
 
Formula: qxw2014 ~ 2^(-((M - x)^n)/(M - y)^n) 
 
Parameters: 
  Estimate Std. Error t value Pr(>|t|)     
n   2.4484     0.2978   8.223 7.12e-10 *** 
y 104.4417     0.2985 349.903  < 2e-16 *** 
M 132.8519     5.1314  25.890  < 2e-16 *** 
 
Formula: qxm1986 ~ 2^(-((M - x)^n)/(M - y)^n) 
 
Parameters: 
   Estimate Std. Error t value Pr(>|t|)     
n   2.40627    0.09718   24.76   <2e-16 *** 
y 104.30765    0.11286  924.23   <2e-16 *** 
M 142.56368    2.23183   63.88   <2e-16 *** 
 
Formula: qxw1986 ~ 2^(-((M - x)^n)/(M - y)^n) 
 
Parameters: 
  Estimate Std. Error t value Pr(>|t|)     
n   2.5427     0.1449   17.55   <2e-16 *** 
y 104.5637     0.1463  714.58   <2e-16 *** 
M 139.4403     2.8706   48.57   <2e-16 *** 
 
Formula: qxm1949 ~ 2^(-((M - x)^n)/(M - y)^n) 
 
Parameters: 
  Estimate Std. Error t value Pr(>|t|)     
n   3.8550     0.6825   5.648 1.88e-06 *** 
y 101.7995     0.2548 399.591  < 2e-16 *** 
M 168.6082    14.5447  11.592 7.05e-14 *** 
 
Formula: qxw1949 ~ 2^(-((M - x)^n)/(M - y)^n) 
 
Parameters: 
  Estimate Std. Error t value     Pr(>|t|)     
n   6.2730     1.4544   4.313     0.000115 *** 
y 104.0455     0.2596 400.750      < 2e-16 *** 
M 225.6614    32.3262   6.981 0.0000000301 *** 
 
Formula: qxm1901 ~ 2^(-((M - x)^n)/(M - y)^n) 
 
Parameters: 
  Estimate Std. Error t value Pr(>|t|)     
n   2.9971     0.7255   4.131 0.000198 *** 
y  99.8355     0.3708 269.252  < 2e-16 *** 
M 152.5698    16.2047   9.415 2.31e-11 *** 
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Formula: qxw1901 ~ 2^(-((M - x)^n)/(M - y)^n) 
 
Parameters: 
  Estimate Std. Error t value Pr(>|t|)     
n  10.3726     5.2133    1.99   0.0541 .   
y 103.6368     0.3468  298.85   <2e-16 *** 
M 339.1188   127.9898    2.65   0.0118 * 
 
 
Formula: qxm1871 ~ 2^(-((M - x)^n)/(M - y)^n) 
 
Parameters: 
  Estimate Std. Error t value      Pr(>|t|)     
n   2.3881     0.3182   7.505 0.00000000609 *** 
y  99.9092     0.2515 397.214       < 2e-16 *** 
M 142.1713     7.5498  18.831       < 2e-16 *** 
 
Formula: qxw1871 ~ 2^(-((M - x)^n)/(M - y)^n) 
 
Parameters: 
  Estimate Std. Error t value Pr(>|t|)     
n   2.2684     0.1672   13.56 6.23e-16 *** 
y  99.8413     0.1430  698.22  < 2e-16 *** 
M 138.2168     3.8595   35.81  < 2e-16 *** 
 
 
 
2. Death probability projections from age 100 to 130 using the Wittstein Model for 

selected life tables of females in Germany 
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2014 (n = 2.4484, y = 104.4417, M = 132.8519)
1986 (n = 2.5427, y = 104.5637, M = 139.4403)
1949 (n = 6.273, y = 104.0455, M = 225.6614)
1901 (n = 10.3726, y = 103.6368, M = 339.1188)
1871 (n = 2.2684, y = 99.8413, M = 138.2168)

 




