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Abstract: The old-age dependency ratios are indicators of the number of elderly people who are generally 
economically inactive compared to the number of people of working age. They significantly affect the financial 
burden of social public pension schemes, making it essential to analyze the influence of mortality on this ratio. In 
this paper, the Gompertz model is used to investigate the effect of mortality and fertility on the old-age 
dependency ratio, with a focus on the impact of changes in life expectancy. Elasticity formulas are derived to 
analyze this effect, and the results indicate that an increase in life expectancy leads to a considerable rise in the 
old-age dependency ratio. 
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1. Introduction 
 
The old-age dependency ratio is an important demographic indicator that reflects the 
proportion of elderly people who are not in the labor force and dependent on those who are 
working. It has become important in analyzing the financial burden of social pension 
insurance, as it indicates how many potential retirees a potential worker has to support. Its 
development significantly affects the financial burden of social pension insurance, making it 
essential to analyze the influence of mortality on the old-age dependency ratio. The Gompertz 
model is a suitable model for analyzing this influence since it provides a good approximation 
for low-mortality life tables. According to the United Nations, the old-age dependency ratio is 
projected to increase significantly in the coming decades. By 2050, it is expected to reach 
37% globally, meaning that there will be nearly four elderly people for every ten people of 
working age. This increase is primarily due to the aging of the baby boomer generation and 
declining birth rates in many countries. 
 
The Gompertz model is a well-known model of demography that was proposed by Benjamin 
Gompertz in 1825. It states that the mortality intensity exponentially increases with age in 
adulthood. It has been much applied in life table analysis and in insurance mathematics using 
various modifications. Due to declining children and youth mortality, it has again become 
essential in order to describe "modern" life tables with low mortality. The model allows us to 
fully describe the present and future life tables in industrialized countries using only two 
parameters that are easy to estimate from data. 
 
In this paper, we investigate the influence of mortality and fertility on the old-age dependency 
ratio using the Gompertz model. We derive approximation formulas for the old-age 
dependency ratio and its elasticity with respect to life expectancy. Elasticities are computed to 
analyze the influence of a change in life expectancy on the old-age dependency ratio. We also 
investigate the dependence of elasticities on the population growth rate and the life 
expectancy. Finally, we will demonstrate that in a stable population with a negative growth 
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rate, where fertility is below replacement level, the elasticities are significantly higher than in 
a stationary population. 
 
2. Analyzing the Effects of Life Expectancy 
 
An increase in the old-age dependency ratio causes an increase in the premium, when the 
pensions are constant, or a decrease in the pensions, when the premiums stay constant, all else 
being equal, assuming, for example,  that there is no change in the population growth rate or 
the age classes used to define the old-age dependency ratio. Therefore, it is important to 
analytically analyze the influence of mortality on the old-age dependency ratio. This will be 
done hereafter with the Gompertz model since it provides a good approximation for low-
mortality life tables (see Pollard, 1991). Especially the effect of changes in the life expectancy 
on the ratio is analyzed. An increase in the life expectancy will undoubtedly raise the 
dependency ratio, but by how much? 
 
The old-age dependency ratio is a demographic indicator that measures the number of elderly 
individuals (as defined by us, aged 60 and older) relative to the working-age population (as 
defined by us, those aged 20 to 60); often we find the age 65 instead of 60: 
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distribution with m >> k > 0 ; m is the modal value and k is the growth rate of the exponential 
force of mortality function. For a detailed presentation of the Gompertz distribution, see, e.g., 
Pollard (1991, 1998), Carriere (1992, 1994) or Pflaumer (2018). 
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Thus, the reciprocal value of k can be regarded as a dispersion parameter.  
 
Typical values for low mortality life tables fall generally within the range of 85 to 90 for m, 
and 0.09 to 0.11 for k. For instance, using the German life table 2019/2021 for females with a 
life expectancy of 83.4 years, a fit with the Gompertz distribution yields values of m=89.04 
and k=0.1143. This results in an estimated life expectancy of 83.95 years. The use of only two 
parameters of the Gompertz distribution is sufficient to describe the entire life table and 
obtain good approximations for the life table parameters of empirical tables. The survivor and 
density functions of this German life table are presented in the appendix. 
 
The life expectancy at age x can be approximated by 
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 (cf. Carriere, 1992 and 1994). 
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Substituting the values of the life expectancy and the survivor function at age x in the transformed 
formula of the old-age dependency ratio, provides a good approximation of the ratio when the modal 
age m is greater than 70: 
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If the modal value m is still increasing, then the ratio finally tends to 
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Figure 1 displays a 3-dimensional plot of the OADRs, which depend on both k and e(0). The 
OADR is primarily determined by life expectancy and is less affected by k. An increase in life 
expectancy leads to a considerable rise in OADR, while increasing k only slightly decreases 
OADR. The numerical results of OADR for different e(0) and k values are presented in the 
appendix. 

k

0.08

0.09

0.10

0.11

0.12

e0

60

70

80

90

100
O

A
D

R

0.2

0.4

0.6

0.8

1.0

3D Surface Plot

 
Figure 1. Surface plot of  OADR as a function of e(0) and k (see also the values in the     

appendix) 
     
Table 1 presents the old-age dependency ratios for a fixed value of k=0.1, calculated through 
numerical integration. The difference between the exact and approximate values is negligible 
when the modal ages are high. Moreover, even the simple approximation formula provides 
satisfactory results for very old ages. 
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Table 1. Old-age dependency ratios and elasticities:  Exact and approximate values (k=0.1) 

 

e0 m OADR OADR1 OADRhat Elast Elasthat 

65 70.8 0.220 0.229 0.125 5.18 13 

70 75.8 0.314 0.318 0.25 4.42 7 

75 80.8 0.418 0.419 0.375 3.86 5 

80 85.8 0.528 0.529 0.5 3.43 4 

85 90.8 0.644 0.644 0.625 3.09 3.4 

90 95.8 0.762 0.762 0.75 2.83 3 

95 100.8 0.883 0.883 0.875 2.62 2.71 

100 105.8 1.005 1.005 1 2.44 2.5 
 
 
 
To analyze the influence of a change in the life expectancy on the old-age dependency ratio, 
elasticities are computed. Elasticity is the ratio of the percent change in one variable to the 
percent change in another variable. Mathematically, elasticity is defined as 
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Using the above approximation formula leads to a rather complicated formula 
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An easy-to-use elasticity formula is obtained using the simple approximation 
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The elasticity provides insight into the proportional change in the old-age dependency ratio 
(OADR) in response to a 1 percent increase in the life expectancy. Specifically, at age 85 
(e(0)=85), it indicates that such an increase in life expectancy leads to approximately a 3 
percent rise in the OADR, as shown in Table 1. 
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Figure 2. OADR and Elasticity as a function of e(0) with k=0.1; dotted lines represent 
approximations with the simple formulas 
 
Figure 2 and Table 1 illustrate the elasticities (elast) of the old-age dependency ratio (OADR) 
as a function of life expectancy. The results indicate that a 1% increase in life expectancy 
would result in approximately a 3% increase in the OADR for a stationary population with 
low mortality. 
 
3. Stable Populations and Low Fertility 
 
A population with an unchanging age structure and a fixed rate of increase is called a stable 
population (see, e.g., Keyfitz, 1977). To determine the old-age dependency ratio in a stable 
population with a growth rate of r, one must compute 
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This expression can be approximated based on Keyfitz (1977) by 
 

( ) (0)    T rOADR r OADR e , 

 

where T is the difference between the mean age of the two generations in the age classes 20 to 60 and 
60 to  . 
 
Using the simple approximation of the old-age dependency ratio, for example, results in the 
following elasticity formula: 
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The elasticities are now dependent on the growth rate r and the life expectancy e(0). In a 
stable population with a positive (negative) growth rate, the elasticities are lower (higher) than 
in a stationary population by the factor  T re . For example, at life expectancy e(0)=85, the 
elasticity is initially 3.09 (see Table 1). If we consider a negative growth rate due to low 
fertility of -1% and a generation difference of 30 years (T=30), the factor   T re is 
approximately 1.35, resulting in an increased elasticity of about 4 under these specific 
demographic conditions and generation difference. 
 
4. Conclusion 
 
The paper emphasizes the importance of studying the profound impact of an aging population 
on social welfare policies and the economy. A mere 1% increase in life expectancy translates 
to approximately a 3% rise in the old-age dependency ratio within a stationary population 
exhibiting low mortality. This effect is even more pronounced in stable populations with low 
fertility rates, falling below replacement levels. As the population ages persistently, it is 
imperative for policymakers to effectively address the requirements of both the elderly and 
the younger generations, thereby fostering sustainable economic growth and upholding social 
welfare. Neglecting this balance could entail consequential economic and social repercussions 
for generations to come. 
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Appendix: 
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Figure A1. Comparison between actual (solid lines) and estimated (dotted lines) survival and death 

density functions (German life table 2019/2021 for females: e(0)=84; OADR=0.61) 
 
Table A1. Old-age dependency rations as a function of k and e(0) 

k/e(0) 60 65 70 75 80 85 90 95 100 

0.08 0.180 0.259 0.349 0.447 0.553 0.663 0.777 0.895 1.014 

0.082 0.175 0.254 0.344 0.444 0.549 0.660 0.775 0.893 1.013 

0.084 0.170 0.250 0.340 0.440 0.546 0.658 0.773 0.891 1.011 

0.086 0.166 0.245 0.336 0.437 0.543 0.656 0.771 0.890 1.010 

0.088 0.161 0.241 0.333 0.433 0.541 0.653 0.770 0.889 1.009 

0.09 0.157 0.237 0.329 0.430 0.538 0.651 0.768 0.887 1.008 

0.092 0.153 0.233 0.326 0.428 0.536 0.650 0.767 0.886 1.008 

0.094 0.150 0.230 0.323 0.425 0.534 0.648 0.765 0.885 1.007 

0.096 0.146 0.227 0.320 0.422 0.532 0.646 0.764 0.884 1.006 

0.098 0.143 0.223 0.317 0.420 0.530 0.645 0.763 0.884 1.006 

0.1 0.140 0.220 0.314 0.418 0.528 0.644 0.762 0.883 1.005 

0.102 0.137 0.217 0.312 0.416 0.527 0.642 0.761 0.882 1.005 

0.104 0.134 0.215 0.309 0.414 0.525 0.641 0.760 0.882 1.004 

0.106 0.131 0.212 0.307 0.412 0.524 0.640 0.760 0.881 1.004 

0.108 0.128 0.209 0.305 0.410 0.522 0.639 0.759 0.881 1.003 

0.11 0.126 0.207 0.303 0.408 0.521 0.638 0.758 0.880 1.003 

0.112 0.123 0.205 0.301 0.407 0.520 0.637 0.758 0.880 1.003 

0.114 0.121 0.202 0.299 0.405 0.519 0.637 0.757 0.879 1.003 

0.116 0.118 0.200 0.297 0.404 0.518 0.636 0.756 0.879 1.002 

0.118 0.116 0.198 0.295 0.403 0.517 0.635 0.756 0.879 1.002 

0.12 0.114 0.196 0.294 0.401 0.516 0.634 0.756 0.878 1.002 
 


