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ABSTRACT

Traditionally, researchers employ human raters for scoring responses to creative thinking tasks. Apart
from the associated costs this approach entails two potential risks. First, human raters can be subjective in
their scoring behavior (inter-rater-variance). Second, individual raters are prone to inconsistent scoring pat-
terns (intra-rater-variance). In light of these issues, we present an approach for automated scoring of Diver-
gent Thinking (DT) Tasks. We implemented a pipeline aiming to generate accurate rating predictions for
DT responses using text mining and machine learning methods. Based on two existing data sets from two
different laboratories, we constructed several prediction models incorporating features representing meta
information of the response or features engineered from the response’s word embeddings that were obtained
using pre-trained GloVe and Word2Vec word vector spaces. Out of these features, word embeddings and
features derived from them proved to be particularly effective. Overall, longer responses tended to achieve
higher ratings as well as responses that were semantically distant from the stimulus object. In our compar-
ison of three state-of-the-art machine learning algorithms, Random Forest and XGBoost tended to slightly
outperform the Support Vector Regression.

Keywords: divergent thinking, creative quality, human ratings, supervised learning, Random Forest, gradient
boosting, Support Vector Regression.

Scoring of creative thinking tasks is a laborious endeavor that requires human and time resources. Moti-
vated by a potential reduction of scoring efforts automated scoring of creative thinking tests has become a
current hot topic in creativity research. This is documented by several published recent attempts for auto-
mated scoring of the popular Alternate Uses Task (AUT; e.g., Beaty & Johnson, 2021; Dumas, Organisciak,
& Doherty, 2020; Stevenson et al., 2020). Prior work has mostly relied on semantic distance approaches as a
way to automatically quantify the originality of the responses. These approaches are examples of unsuper-
vised machine learning approaches and they have shown remarkable success as evidenced by strong correla-
tions at the person-level between semantic distance scores and scores provided by human raters (Beaty &
Johnson, 2021; Dumas et al., 2020). However, (semi-)supervised learning approaches have also been success-
fully implemented (Stevenson et al., 2020). While all of these approaches displayed promising results, there
is still room for further improvement, and the current work aims at extending and complementing existing
work on automated scoring of the AUT. Specifically, this work focuses on supervised learning approaches
which have been less extensively studied in this context, as well as on improved pre-processing of text data.
The goal was to examine a supervised learning pipeline in terms of its rating performance using varying
supervised learning algorithms (i.e., Random Forest, XGBoost, and Support Vector Regression [SVR]) as
well as varying feature set compositions differing in size and interpretability. We further aimed at finding
the most relevant features for the prediction of human ratings.

DIVERGENT THINKING AND ITS ASSESSMENT
Divergent thinking (DT) refers to the cognitive capacity to generate multiple options in response to a
given task (Guilford, 1967). Hence, the response format is open-ended which naturally implies a scoring of
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AUTOMATED SCORING OF DT TASKS

productivity (i.e., the number of responses). However, this productivity scoring (i.e., fluency) has often been
criticized (e.g., Zeng, Proctor, & Salvendy, 2011) for its lack of conceptual relevance with respect to creativ-
ity. Creativity commonly refers to something that is perceived as original and useful (Runco & Jaeger, 2012)
in the given context. Hence, DT responses should be scored for originality and usefulness beyond mere pro-
ductivity indices such as fluency. Original responses in DT tasks can be identified based on three classical
facets (Wilson, Guilford, & Christensen, 1953): uncommonness, cleverness, and remoteness. Rater instruc-
tions often contain explicit instructions to consider all three when scoring originality (e.g., Hofelich-Mohr,
Sell, & Lindsay, 2016; Silvia et al., 2008).

Uncommonness refers to the statistical rarity of a response Cropley, 1967; Wallach & Kogan, 1965; Wil-
son et al, 1953) and is historically perhaps the oldest originality indicator (Hargreaves, 1927). Cleverness
refers to the cunning aptness of a response and clever responses are maturely thought through. Cleverness
has traditionally been scored by human judges (Forthmann et al, 2017; French et al., 1963; Wilson
et al.,1953). Finally, remoteness refers to responses that are associatively more distant as compared to the
most obvious responses (Silvia et al., 2008; Wilson et al., 1954). Traditionally, remoteness was scored for the
Consequences Task (e.g., generating possible consequences for the scenario that people do not need to sleep
anymore) with more far-reaching consequences being more remote than immediate ones (e.g., that people
go to work at night).

In addition, remoteness has been conceptualized as semantic distance of responses in comparison to the
task stimulus or a semantic representation of it (Dumas & Dunbar, 2014; Hass, 2017). This way originality
can be automatically scored by semantic vector models of meaning such as Latent Semantic Analysis (Lan-
dauver & Dumais, 1997), GloVe (Pennington, Socher, & Manning, 2014), and Word2Vec (Mikolov, Chen,
Corrado, & Dean, 2013). For example, in the AUT, the semantic distance between the item object (e.g.,
knife) and a response (e.g., use it as a mirror) is calculated to reflect the remoteness of the response. Early
validity evidence for scoring based on semantic vector models was quite inconsistent across studies (Forster
& Dunbar, 2009; Harbison & Haarman, 2014; Hass, 2017). Elaboration bias (semantic distance depends
technically on the number of words; Forthmann et al., 2019) of the most often used LSA approach was
identified as one potential source to explain these inconsistent findings.

Newer studies, however, have successfully addressed the issue of elaboration bias and demonstrated
strong validity evidence for person-level aggregated scores (e.g., Beaty & Johnson, 2021; Dumas et al., 2020).
For example, Beaty and Johnson (2021) improved automatic scoring by relying on a variety of semantic
spaces (created by different approaches) as well as multiplicative compositional models instead of additive
ones, whereas Dumas et al. (2020) improved automated scoring by a weighting approach that relies on
inverse document frequency. Notably, beyond the AUT, semantic distance scoring displayed validity evi-
dence for the Torrance Test of Creative Thinking (Acar et al, 2021), creative verb association (Beaty &
Johnson, 2021; Heinen & Johnson, 2018; Prabhakaran, Green, & Gray, 2014), the Consequences Test
(LaVoie, Parker, Legree, Ardison, & Kilcullen, 2020), the Remote Associates Test (Beisemann, Forthmann,
Biirkner, & Holling, 2020), or abstract figure naming (Sung, Cheng, Tseng, Chang, & Lin, 2022).

SUPERVISED MACHINE LEARNING

Supervised machine learning refers to the construction of predictive models rather than descriptive ones
(Lantz, 2013). In such models, an algorithm learns to predict values for a target variable of interest as
opposed to unsupervised machine learning models in which the goal is to build a descriptive model of the
data, typically with the aim to abstract from the original data and discover structure. For example, the
above-mentioned vector models of semantic meaning (e.g., LSA, HAL, GloVe, and Word2Vec) are examples
of unsupervised learning algorithms because vector spaces are created towards a quantitative description of
how different terms relate semantically to each other and not with the goal to predict any specific target.
Supervised models, however, try to approximate an unknown functional relationship between covariates
(also called features) and an outcome variable by learning a model from examples. Such functional relation-
ships can originate either from a regression context where the outcome is continuous or from a classifica-
tion context where the outcome is discrete and input features are mapped to a class label. Here, we consider
the prediction of (mean) creative quality ratings as a regression problem.

There is a wide variety of machine learning algorithms differing in their mathematical and conceptual
approaches, interpretability, numerical demands, and context of the application. In this work, we focus on
Random Forest (Breiman, 2001) and XGBoost (Chen & Guestrin, 2016), because they have shown to be
highly performant in a variety of situations with structured tabular data, and on SVR, the regression analog

18

1PUOD pUe SLLB | 84} 89S *[202/20/yT] Uo Akeiqiauiiuo A8|IM ‘Bunjjeyosag pun uszueud Jeuiezaq punwiliod BelseAIIN aYIsIUYIS | AQ 655 GO0 /Z00T OT/I0p/LI0 A8 1M Ake.qipuluo//Sdny Wwoly papeojumoq ‘T ‘€202 ‘25092912

ol

85UB0 17 SUOLLILLIOD BAIEa1D a|geal idde au) Ag pauenob ae sapie O ‘8sn Jo $ajn Joj Ariq i auluQ 3|1 uo



Journal of Creative Behavior

of the highly competitive and somewhat more well-known Support Vector Machine (Vapnik, 2000) for clas-
sification. All three, Random Forest, XGBoost, and SVR, are known to rely on custom feature engineering
for peak performance, so we will combine them with different feature sets.

USING SUPERVISED MACHINE LEARNING FOR AUTOMATED SCORING OF DT TASKS

Most of the recent attempts to automatically score DT tasks for originality rely on unsupervised learning.
While the current work aims at extending the existing work on automatic scoring of DT tasks it should be
noted that very few supervised learning approaches exist in the literature. First, there is the pioneering work
by Paulus, Renzulli, and Archambault Jr. (1970) that has been neglected until nowadays. They used a sample
of N =100 participants to develop prediction equations for fluency, flexibility, and originality of the
responses based on features of the response such as number of question marks, number of commas, number
of periods, number of words, number of sentences, average word length, the standard deviation of word
length, for example (for complete feature lists for all activities see Paulus et al., 1970). Prediction equations
were developed based on stepwise multiple regression analysis and cross-validated on a sample of N = 53
participants. Their cross-validation results were quite impressive with correlations between automatically
derived scores and human rater scores in the range from .42 to .96, and most of the correlations reported
exceeded .70. More than 50 years later these findings are still impressive and promising as the computational
power and availability of powerful algorithms have clearly increased over the last five decades. A more recent
approach for a (semi-)supervised learning algorithm to score DT tasks has been developed by Stevenson
et al. (2020). Based on the word embeddings (WE) derived from Word2Vec models, they cluster AUT task
responses w.r.t. their semantic distance first. For each cluster, a representative mean creativity score is
obtained by averaging all cluster-specific ratings. New responses are then assigned the creativity score of the
semantically nearest cluster. Thus, Stevenson et al. (2020) employ a hybrid, semi-supervised approach that
combines unsupervised learning (through clustering) and supervised learning (deriving predictions from
observed examples). Their reported validity evidence was clearly on par with the unsupervised approaches
proposed by Beaty and Johnson (2021) as well as Dumas et al. (2020).

AIM OF THE CURRENT STUDY

The aim of our study is to develop and evaluate an ML-based approach for automated scoring of DT
tasks. In contrast to Stevenson et al.’s (2020) hybrid approach, our approach stems more from the tradi-
tional perspective in ML. More precisely, we engineer custom features from original DT data sets and
employ frequently used machine learning algorithms, namely Random Forest, XGBoost, and SVR, to predict
mean creativity ratings. We aim to compare the predictive performance of these three algorithms, and study
the impact of different feature sets (including the influence of individual features) and semantic spaces to
derive conclusions and recommendations for practical use cases.

To this end, we follow the general structure of the pipeline depicted on the right-hand side of Figure 1.
Whereas in the classical human-based approach (left-hand side), human raters base their ratings directly on
the raw response data, our ML-based approach requires further data processing. This usually includes some
form of pre-processing, for example, removing spacing, punctuation, or encoding errors. Once the responses
are properly pre-processed, they are used to generate a set of informative features. The resulting data set is
then used to train the machine learning model. This step can also encompass some sort of model selection,
for example, comparing different learners, performing feature selection, or hyperparameter optimization.
The final model can then be used to obtain predictions for new data points.

METHODS
DATA AND FEATURE ENGINEERING

For our analysis, we used two DT data sets by Silvia et al. (2008) and Hofelich-Mohr et al. (2016), both
containing rated responses from AUTs. While the former data set contains 3,432 responses to alternative
uses of brick and knife rated by three human judges, the latter contains 3,870 responses to alternative uses of
brick and paperclip rated by four human judges. In both cases, ratings ranged from 1 (worst) to 5 (best).
For Silvia et al. (2008), inter-rater reliability was .48 (based on an absolute agreement intra-class correlation
coefficient for average ratings), and for Hofelich-Mohr et al. (2016) it was .66. According to Cic-
chetti’s (2001) criteria, the obtained levels of interrater reliability were fair and good, respectively.

Data formatting and sanitization (e.g., removing errors in spacing, punctuation, encoding, etc.) was not
necessary for both data sets, because they were already pre-processed in the original source. However, text
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FIGURE 1. Pipeline for automated scoring of DT tasks using machine learning.

formatting and sanitization is generally an important pre-processing step. For the purpose of our analysis,
we averaged the respective ratings for each observation. Thus, a baseline observation contained the partici-
pant’s response, the respective stimulus item, and the response’s mean rating. We generated further features
which are displayed in Figure 2. The different features can be grouped based on their type and interpretabil-
ity.

The feature group “meta-features” consists of the features “number of words,” “average word length,”
and “maximum word length”. These can be obtained from the respective response and are handily inter-
pretable. The WE describe the word vector representation of a response w.r.t. to a (pre-trained) semantic
space. Based on the dimensionality d of the semantic space, d features are added, each representing a word
vector space component “loading”. Word embeddings are not interpretable by themselves. Generally, pre-

»

meta features

[ number of Words] [ avg. word length ] [max. word Iength]

[ original answers J

cosine number of number of
similarity norm of WE high loading unrepresented
to stimulus WE words

WE-based features

e e e e e =

FIGURE 2. Features engineered from original answers.
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trained semantic spaces provide vector representations for single words. However, responses in DT tasks are
usually phrases or sentences. To obtain sentence embeddings, we sum the WE of the individual words con-
tained in the sentence.

The feature group “WE-based features” contains the similarity of the response to the stimulus item
(based on the cosine distance of the respective WE), the norm of the response’s WE vector, the number of
a response’s “high” loading WE components (value larger than the 75%-quantile) and the number of words
from the response that could not be represented using the respective semantic space (corpus missings).
These features appear interpretable but one must keep in mind that they are based on uninterpretable WE.

MACHINE LEARNING ALGORITHMS
Decision trees

A major class of supervised machine learning algorithms is decision tree models such as Breiman’s classi-
fication and regression trees (CART; Breiman, Friedman, Stone, & Olshen, 1984). Decision trees split the
feature space into disjoint regions in which the target function is predicted through a constant value. For
regression trees, the constant value is chosen as the mean observed outcome of all observations falling into
the region. Decision trees can be thought of as a tree-like flow chart in which a series of yes/no decisions
(splits) leads to a prediction for the outcome. An exemplary decision tree is depicted in Figure 3. In this
example, an answer containing two words with an average length of five would lead to a predicted mean
creativity rating of 2.5. In the CART algorithm, the splits are chosen such that the total variance of the
observations falling into the two subsequent regions is minimized. Although highly interpretable, single tree
models suffer from high variability as little perturbations in the data may already lead to distinctly different
tree structures. Further, single tree models are often insufficient to capture complicated functional relation-
ships, and thus, several tree models are often combined to form so-called ensembles.

Random Forest

Random Forests (RF; Breiman, 2001) are an ensemble method comprised of a large number of decision
trees whose individual predictions are combined into an overall prediction. The RF algorithm grows its trees
independently on bootstrap samples of the original data (Efron & Tibshirani, 1993). The RF prediction is
then determined (in a regression context) by averaging over all individual tree predictions. It can be shown
that the variance of the RF prediction depends on the pairwise correlation of the individual trees as well as
the number of trees (Hastie, Tibshirani, & Friedman, 2009). The greater the number of trees and the smaller
the pairwise correlation, the smaller the variance term is. Thus, the number of trees is usually chosen large
(i.e., several hundred). As for the pairwise correlation, the RF algorithm aims to de-correlate its trees by
restricting the number of split variables considered inside the individual tree models and instead choosing a
random subset of potential split variables. In this sense, a forest of individual trees with a restricted set of
variables is grown. Thus, the RF reduces the high variability of individual tree models overall, but at the
same time loses the high interpretability of single trees as its prediction is based on aggregating several hun-
dred trees.

| Number of Words < 37

|Avg. Length > 6".’| |Se111a‘nti(: Dist. > 5‘.’|

yes no

| score=1.5 || score=2.5 | | score=3 || score=4 |

FIGURE 3. An example of a single decision tree.
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Gradient Boosting Decision Trees

Gradient Boosting Decision Trees (GBDT; Friedman, 2001) are another ensemble method based on deci-
sion trees. Similar to RFs, GBDT reduce the high variability of single tree models but offers only limited
interpretability. Different from RFs, however, GBDT models are generated in a stepwise fashion aimed at
reducing the mismatch between prediction and data by iteratively fitting decision trees to the discrepancy
between prediction and data. A large number of trees can make the discrepancy arbitrarily small but increase
the risk of overfitting, that is, the model would resemble the training data too closely and fail to successfully
predict unknown future data (Hastie et al., 2009). In this work, we use XGBoost (XGB; Chen & Guest-
rin, 2016) which is a highly performant and fast implementation of GBDT adding various regularization
techniques to reduce the risk of overfitting.

Support Vector Regression

In contrast to regular least squares regression which optimizes a squared loss, the SVR (Vapnik, 2000)
uses the so-called e-insensitive loss (see Appendix A) which only penalizes errors of magnitude greater than
a pre-specified € and ignores smaller errors. The difference between these two loss functions is visualized in
Figure Al (see Appendix A). Geometrically speaking, the SVR aims to place a tube in the data space that
encloses as many data points as possible (i.e., minimizing the e-insensitive loss) while at the same time
penalizing too wide tube diameters. SVR can also be used to model non-linear functions by transforming
the observations into higher dimensional spaces using non-linear mappings and finding an optimal solution
there. To avoid costly computations in high-dimensional spaces, so-called kernel functions are used to per-
form the required calculations in the original (lower-dimensional) space rather than the transformed space
which can greatly reduce the computational complexity. We refer to Vapnik (2000) for examples of such
kernel functions.

DATA ANALYSIS

We implemented our pipeline in R (R Core Team, 2020). Machine learning experiments were conducted
with the mlr (Bischl et al., 2016) interface using the RF, SVR, and XGB implementations from the ranger
(Wright & Ziegler, 2017), e1071 (Meyer, Dimitriadou, Hornik, Weingessel, & Leisch, 2020), and xgboost
(Chen et al., 2020) package, respectively. For our analysis, we considered four different feature sets varying
in size and interpretability as well as five different semantic spaces.

Table 1 provides an overview of the feature sets. Out of these, only the second feature set does not
depend on the WE. Containing only the number of words, average word length, and maximum word
length, it is the simplest and most interpretable feature set, in stark contrast to the first feature set which
only contains the WE and is, thus, completely uninterpretable. The third feature set adds further features
which, however, are only interpretable to a certain degree since they are based on the WE. Feature Set 4
combines all features, i.e. meta information, WE-based features, and the WE.

The pre-trained semantic spaces we used for our analysis differed in word count and dimensionality.
The word count refers to the number of words for which the semantic space contains vector representations.
The dimensionality of the semantic space refers to the length of the word vector representations. The
semantic spaces we used, are further specified in Table 2. Four were originally obtained using the GloVe
algorithm (Pennington et al., 2014), while the fifth was obtained through the Word2Vec method (Mikolov
et al,, 2013). For determining the WE of the answers, we considered additive composition and zero padding
in our analysis.

TABLE 1. Feature Sets Used for Analysis. Cf. Figure 2 for the Explanation of Feature Groups

Feature set Included feature groups

1 WE

2 Meta information

3 Meta information + WE-based features

4 Meta information + WE-based features + WE

Note. WE, Word embeddings.
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TABLE 2. Semantic Spaces Used for Analysis

Algorithm Words Dimensionality
GloVe 400,000 50

GloVe 400,000 100

GloVe 400,000 300

GloVe 2,000,000 300

Word2Vec 3,000,000 300

Our analysis approach was 2-fold. Comparison Study 1 compared the predictive performance of RF,
SVR, and XGB models for the presented data sets. The aim of Comparison Study 2 was to analyze the gen-
eralizability of the ML models using “external” data for validation. For this purpose, we used one of the
data sets for training (i.e., fitting) the models and the other data set, respectively, for validation. Since the
data sets for training and validation originated from different data generating processes, the performance
results gave an indication of how well these models could generalize.

All three ML algorithms used in our analysis have an individual set of hyperparameters that require tun-
ing. Thus, we combined our model training with hyperparameter tuning. Table Al (see Appendix A) con-
tains an overview of the hyperparameter sets and respective search spaces used for tuning. To achieve an
honest comparison between our algorithms in Comparison Study 1, we employed a nested resampling
approach using 5-fold cross-validation (CV) in the outer validation and a 3-fold CV in the inner hyperpa-
rameter tuning loop. This is needed because tuning and validating the same data instances would lead to
overly optimistic error estimates (Cawley & Talbot, 2010). For Comparison Study 2, we performed the
hyperparameter tuning via a 10-fold CV on the training data and used the optimal parameter choices for fit-
ting the respective models on the entire training data set.

RESULTS
COMPARISON STUDY 1

Figure 4 shows the RMSE values achieved in 100 replications of nested resampling for a given combina-
tion of data set, learner, and feature set with an additive composition of WE. Because the choice of semantic
space did not have noticeable impact on the performance, we are only showing the results for the semantic
space GloVe 6B 50d. We refer to the Online Supplement for the results for the remaining semantic spaces. As
a benchmark, we have provided the mean RMSE obtained when using the mean rating computed from the
training data set as a constant prediction for all responses in the validation data set.

For both data sets, the predictive performance was worst when relying only on meta information from
the answer. Including the information contained in the WE either indirectly (through WE-based features) or
directly, greatly improved the performance. The best RMSE values were generally reached by using all fea-
tures combined. Comparing the three ML learners, the RF models seemed to perform best in most of the
scenarios tying with XGB in some cases. There is no scenario in which the SVR achieved the lowest mean
RMSE.

These results are echoed when looking at the correlation between automated predictions and the respec-
tive human ratings on a response level as shown in Figure 5. The highest response-level correlations scores
were achieved with the combination of all features using RF ranging from .71 to .73 on the Hofelich-Mohr
et al. (2016) data set and from .55 to .57 on the Silvia et al. (2008) data set.

We obtained similar results when computing correlations on the person-level. Figure 6 shows that RF
using the combined feature set performs best, achieving scores from .72 to .75 for the Hofelich-Mohr
et al. (2016) data and from .58 to .65 for the Silvia et al. (2008) data.

COMPARISON STUDY 2
Figure 7 shows the RMSE values achieved in the cross-sample analysis. As in Comparison Study 1, the
choice of semantic space did not have a noticeable impact on the performance results. When using the
Hofelich-Mohr et al. (2016) data for model training and the Silvia et al. (2008) data for validation (A), the
ML models could not outperform the mean RMSE achieved when using the mean rating from the training
data as the prediction for the validation data. Thus, the ML models did not generalize well in this case. Only
the SVR could improve upon the benchmark when using the WE as feature. In contrast, when using the
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RMSE

RMSE

A: Hofelich-Mohr et al. (2016). Mean RMSE: 0.73.
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FIGURE 4. Nested resampling RMSE values for Hofelich-Mohr et al. (2016) data (a) and Silvia et al. (2008)
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B: Silvia et al. (2008).
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FIGURE 5. Nested resampling response-level correlations for Hofelich-Mohr et al. (2016) data (a) and Silvia

et al. (2008) data (b).

Hofelich-Mohr et al. (2016) data for model training and the Silvia et al. (2008) data for validation (B), the
ML models outperformed the benchmark mean RMSE in all scenarios indicating improved generalizability.
The lowest RMSE values were reached by XGBoost using the combined feature set.
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A: Hofelich-Mohr et al. (2016).
Features: Meta Features: Meta + WE-based Features: WE Features: Meta + WE-based + WE
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B: Silvia et al. (2008).
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FIGURE 6. Nested resampling person-level correlations for Hofelich-Mohr et al. (2016) data (a) and Silvia

RMSE

RMSE

et al. (2008) data (b).

A: Training: Hofelich-Mohr et al. (2016). Validation: Silvia et al. (2008). Mean RMSE: 0.59.
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B: Training: Silvia et al. (2008). Validation: Hofelich-Mohr et al. (2016). Mean RMSE: 0.75.
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FIGURE 7. Cross-sample RMSE values.

Regarding the response-level correlations (Figure 8), the three ML performed similarly well once WE
were included as features. The highest response-level correlation scores were achieved with the combined
feature set. When validating the Silvia et al. (2008) data (A) RF reached correlation scores between .57 and
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A: Training: Hofelich-Mohr et al. (2016). Validation: Silvia et al. (2008).
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B: Training: Silvia et al. (2008). Validation: Hofelich-Mohr et al. (2016).
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FIGURE 8. Cross-sample response-level correlations between predicted and observed mean ratings.

.58. Interestingly, despite performing best w.r.t. to the RMSE, the SVR achieved lower mean correlations
than the RF and XGB models. When using the Hofelich-Mohr et al. (2016) data for validation (B), XGBoost
achieved the highest correlation scores ranging between .59 and .64.

On the person-level (Figure 9), RF and SVR performed similarly when validating the Silvia et al. (2008)
data (A) using the combined feature set. RF reached correlation scores of .76 to .78. When validating the
data from Hofelich-Mohr et al. (2016), RF achieved correlation scores between .59 and .60.

A: Training: Hofelich-Mohr et al. (2016). Validation: Silvia et al. (2008).
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FIGURE 9. Cross-sample correlations between predicted and observed mean ratings on the person-level.
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FEATURE IMPORTANCE AND PARTIAL DEPENDENCE

To analyze how predictive individual features were, we computed variable importance scores for RF and
XGB models trained on the Hofelich-Mohr et al. (2016) data (we observed similar findings when using the
data from Silvia et al., 2008). Figure 10 shows the feature importance of the seven meta and WE-based fea-
tures as well as the seven most important features for the combined feature set.

For both, RF and XGB, the stimulus similarity was the most important feature followed by the number
of words. As for the combined feature set, the first seven dimensions of the WE (d1-d7) were the most
important features in RF and XGB models. This seems plausible as the WE used here are the results of a
Principal Component Analysis (PCA) of the original WE (see Raunak, Gupta, & Metze, 2019). The deeper
mathematical reason is that the first components of a word vector space, by construction, explain more vari-
ance in the semantic space than components with a higher index.

To explore how some of these features affected the prediction, we calculated the partial dependence
which indicates how the predictions partially depend on the values of the features (see Friedman, 2001).
Figure 11 shows the partial dependence of the most important two (interpretable) features, that is, the stim-
ulus similarity and the number of words. We obtained similar results for RF and XGB. As seems intuitive,
the mean rating increases with the number of words used in response and decreases the more similar the
response and the stimulus object become.

DISCUSSION

We compared the predictive performance of three ML algorithms, that is, RF, XGB, and SVR for the
automated prediction of mean creative quality ratings in DT tasks (Guilford, 1967). These algorithms were
embedded within a pipeline which also encompassed the generation of meaningful features from the original
data. The features generated ranged from interpretable meta information, for example, number of words or
maximum word length, to uninterpretable features such as each response’s WE into a semantic space. The
semantic spaces used in this work were pre-trained using GloVe (Pennington et al., 2014) or Word2Vec
(Mikolov et al., 2013). In each case, the WE added several hundred potential covariates that were either used
as features themselves or as a source of generating further features such as the cosine similarity between the
response and the stimulus object, the WEs’ norm, or the number of high loading WE components.

Our analysis showed mostly subtle differences between the ML algorithms. In most cases, RF and XGB
tied for the best performance while slightly outperforming the SVR. When working with a single data
source, all three algorithms significantly outperformed the RMSE benchmark for predicting the mean rating

Random Forest Random Forest
Features: Meta + WE-based Features: Meta + WE-based + WE
stimutus similarity - | IR a7 (I
Number of words- _ d1-
Num. high scores- _ d4-
Word emb. norm- _ d2-
Max. word length- _ d5-
Avg. word length- [ INNEREGE d3-
Num. missing words- d6-
000 005 010 0715 020 0.25 0.00 0.02 0.04 0.06
Variable Importance Variable Importance
XGBoost XGBoost
Features: Meta + WE-based Features: Meta + WE-based + WE
stimulus similarity - | a5 I
Number of woras- [N d3-
Word emb. norm- _ d7-
Num. high scores- d6-
Avg. word length- d4-
Max. word length- d2-
Num. missing words- di1-
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FIGURE 10. Variable importance for RF and XGB models using different feature sets.
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FIGURE 11. Partial dependence of stimulus similarity and number of words using RF and XGB models.

from the training set. The best model, an RF using meta information, WE as well as WE-based features,
achieved person-level correlations from .72 to .75 for the Hofelich-Mohr et al. (2016) data and .58 to .65
for the Silvia et al. (2008) data. Correlations of similar size were observed cross-sample, with large linear
associations of predictions from one sample to the other.

While the cross-sample correlations were satisfying, the results were not clear-cut for predicting the orig-
inal rating in terms of the RMSE: When training on the Silvia et al. (2008) data and validating on the
Hofelich-Mohr et al. (2016) data, all models handily outperformed the benchmark of predicting the training
sample mean. Once the training/validation order is reversed, that is, when training on the Hofelich-Mohr
et al. (2016) data set and validating on the Silvia et al. (2008) data set, almost all models perform worse
than simply predicting the training sample mean. This indicates that the models did not generalize well to
another sample in these cases, and the deeper reason behind this was mean rating differences. The qualita-
tive differences between the RMSE and correlations are explained as follows: the means of average human
ratings are hard to predict cross sample, introducing a bias from the point of view of the original ratings.
Mathematically, the (square of the) bias is part of the RMSE, explaining why the simple baseline model pre-
dicting the training sample mean is competitive in terms of RMSE. In combination with the positive corre-
lations of moderate to large size, this suggests that differences in how the 5-point Likert scales are used by
raters are at the core of the cross-sample prediction challenges. Indeed, rater means for the brick stimulus
vary substantially (Hofelich-Mohr et al, 2016: M; =229, M, = 2.58, M; = 1.64, M, = 1.61, pooled
M = 2.03; Silvia et al, 2008: M, = 1.89, M, = 1.08, M; = 2.13, pooled M = 1.70). The differing rating
behaviors are further visualized in Figure A2 (see Appendix A). One way to reduce the mean shift problem
is to change the prediction task: When first z-standardizing the (training) sample, the (test) sample mean is
(approximately) zero. However, no faithful prediction of the original rater behavior results.

Even when assuming instruction and stimulus were completely identical in our cross-sample analysis of
predictive performance, there are two inherent substantial generalizability challenges: The underlying popu-
lation and the rater training might differ between studies. Both potential differences affect the rater’s use of
the Likert scale. While this is obvious for effects of training, population differences will for example lead to
different observed maximum performance and are likely to change rater’s perception of relative differences
in latent ability. Relatedly, a drift of population or maturation creates a similar challenge. Any algorithmic
approach, including those studied here, cannot generalize well if target population scaling differs. Mapping
scales is challenging because identical benchmark responses would need to be available. Empirically, we find
some overlap between responses to the brick stimulus in the two data sets, but they are mostly limited to
lowly rated ideas (e.g., building a house, usage as a door stopper, or as a weapon). In sum, generalizability
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challenges limit the quality of predictions in other samples, but part of the problem is not specific to algo-
rithmic approaches, as human raters trained differently would equally distort ratings in another study. In
other words, an algorithmic scoring will implicitly use the scale of the original human raters.

Another potential source of bias related to the raters may be demographic bias, for example, with regard
to respondents’ sex or race. Demographic variables might be known to raters, and bias ratings, or merely
reflected in the choice of wording of otherwise identical ideas. This also ties into the debate of fairness in
ML (for a review see e.g., Mehrabi, Morstatter, Saxena, Lerman, & Galstyan, 2022). Since the data used here
did not contain any demographic information, we could not analyze this form of bias. Even if rater bias is
not as prevalent, an automated rating algorithm may still inherit bias from the semantic space used for
obtaining the WEs (Lauscher & Glavas, 2019).

Regarding the features used, we found that including WE in some form (either directly or indirectly)
greatly increased the predictive performance of the models. Models that solely contained the interpretable
meta-information features were not competitive in comparison. Thus, there exists some form of trade-off
between predictive performance and feature interpretability that needs to be addressed in respective applica-
tions. Additional preliminary results from our simulations also suggest that is possible to reduce the dimen-
sionality of feature sets by performing a PCA on the WE matrix and replacing the WE components by a set
of principal components. When including the first 50% of the principal components of the WE instead of
all WE components themselves, our models achieved similar results as shown in Figure A3 (see Appendix
A). Thus, it is possible to further reduce the computational complexity of our models without notably sacri-
ficing predictive performance. For practical purposes, it would be interesting to study how much further the
complexity of our models can be reduced before suffering a significant performance loss.

The choice of the semantic space used for generating the WEs did not have an impact on the model per-
formance. However, further preliminary results suggest that the WE composition method may be a potential
source of performance gain. In this work, we have used additive composition for determining the WE of
sentences, that is, the WE of individual words were simply added up. The downside of this approach is that
through the summation syntactic or word-order information of the phrases is lost (Landauer, 2002), and
since not all phrases are of equal length, simply stacking the vector representation of all words together
would result in different lengths of input vectors for the ML models. A simple solution is the so-called zero
padding method, which adds zeros at the end of the short responses to match the length of long responses.
The drawback of this method is that the dimensionality of the input vector can become particularly large
for a few particularly long responses. Figure A4 (Appendix A) shows that padding improves predictive per-
formance in most cases. One potential explanation is that additive composition entails information loss by
aggregation and that several responses could lead to a similar composite. For practical use, however, it must
be stressed that padding leads to greatly increased computational effort in time and memory. Therefore, if
one is willing to sacrifice a small amount of predictive performance, using additive word composition may
already suffice.

Overall, this work serves as proof of concept for automatically predicting creative quality ratings from
DT tasks in the spirit of Paulus et al. (1970) leaving open many potential research avenues for future work.
A research question of particular practical importance might be analyzing whether or not algorithms for
automated predictions can distinguish between responses that would be deemed creative and responses that
would be deemed nonsensical by the human rater. This could be seen as a specific instance of so-called “ad-
versarial examples” (Biggio & Roli, 2018), an approach widely used in pattern recognition to gain insights
about a model and to understand when predictions of a model tip in an unexpected direction.

The supervised approaches discussed here attempt to algorithmically reproduce human ratings, the cur-
rent gold standard in AUT scoring. In contrast, unsupervised approaches rely on WEs and related features
and are not explicitly optimized to reproduce human ratings, but are found to be correlated (Beaty & John-
son, 2021; Dumas et al., 2020). The semi-supervised approach of Stevenson et al. (2020) relies on distances
to clusters learned in an unsupervised manner from a training set and predicts mean cluster ratings without
employing regression or prediction models, circumventing the need for extensive parameter tuning. We see
several clear methodological increments relative to the conceptually closest semi-supervised approach by
Stevenson et al. Next to the cross-sample validation in two large English language samples, our pre-
processing pipeline has the potential to improve upon all other existing approaches (unsupervised or semi-
supervised). Further, our nested cross-validation framework allows us to easily change the learners (any
supervised algorithm could replace the three approaches we study), the evaluation metrics, as well as the
cross-sample comparison.
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A logical next step is the direct comparison of unsupervised, supervised, and semi-supervised approaches.
Toward a fair comparison, measures like the (cross-validated) RMSE potentially favoring supervised
approaches would need to be complemented by validity evidence and robustness analysis, including adver-
sarial examples and measures for the ability to handle previously unobserved responses.

The field of creative thinking research is currently on the mission to further improve the automated
scoring of tasks such as the AUT. The current work extends and complements the existing body of research
by examining supervised learning algorithms and a variety of features. The best-performing algorithms (i.e.,
RF and XGB) in our work push person-level correlations into the range of previous works using unsuper-
vised or semi-supervised algorithms (Beaty & Johnson, 2021; Dumas et al., 2020; Stevenson et al., 2020),
which renders them as promising algorithms to further improve automated scoring in future work (with the
take-home message that the RMSE is hard to do well cross-sample because of mean differences). In addi-
tion, the studied feature sets look promising, and we have shown that dimensionality reduction approaches
can help in reducing model complexity. Overall, we expect that a combination of unsupervised, semi-
supervised, and supervised algorithms has the potential to push the correlation between ratings and predic-
tions towards the correlation of two independent groups of raters, with latent variable correlation approach-
ing unity.
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APPENDIX A

e-INSENSITIVE LOSS
For a pre-specified ¢, the e-insensitive loss L(|y—F(x)|.) is given by

0, if —JX) =6
L(ly=T(),) = { ly=T(x)|—e, otllljrv;{s(e I

where y is the observed target value, x is the input feature vector and J(x) =7y is the
predicted target value (Vapnik, 2000).
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FIGURE Al. Comparison of e-insensitive loss and quadratic loss.

LINEAR SVR OPTIMIZATION PROBLEM

The linear SVR optimization problem is given by finding parameters w and b such that

n

* * 1 *
(D(w,gl, &L EL ...,ﬁn) :E(W‘W) +CZ(§1-+§{)
i=1
is minimized subject to
yi—(w-x)=b  <e+§&, i=1...,n
(w-x;)+b—y, <e+é&, i=1...,n
$néi >0, i=1,...,n

where C is a pre-specified penalization/cost factor and ¢;, &7 are so-called slack variables
for each unit i introduced to ease the optimization process, that is, to allow for obser-
vations to lie outside the e-tube (Vapnik, 2000).
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TABLE Al. Hyperparameters and Respective Search Spaces

Learner Hyperparameter Search space
Random Forest mtry {2, ..., #Features}
min.node.size {1, ..., 10}
splitrule {variance, extratrees}
Support Vector Regression cost 2% with xe [-5, 5]
gamma 2% with x€ [-5, 5]
XGBoost nrounds {10, ..., 200}
max_depth {1, ..., 20}
eta [0.05, 0.3]
alpha [0, 1]
lambda [0, 1]
gamma [0, 5]

HM1-

HM2-

HM3-

S2-

S3-

0.00 0.25 0.50

Cumulative relative frequency

FIGURE A2. Rating behavior for the four raters (denoted by HM1-HM4) from Hofelich-Mohr et al. (2016)

and the three raters (denoted by S1-S3) from Silvia et al. (2008).
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A: Hofelich-Mohr et al. (2016). Mean RMSE: 0.73.
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B: Silvia et al. (2008). Mean RMSE: 0.55.
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. Nested resampling RMSE values when including WE or the first 50% principal components of

a PCA performed on the WE.
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A: Hofelich-Mohr et al. (2016). Mean RMSE: 0.73.
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FIGURE A4. Nested resampling RMSE values for additive composition and padding.
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