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Several psychometric tests and self-reports generate count data (e.g., divergent thinking

tasks). The most prominent count data item response theory model, the Rasch Poisson

Counts Model (RPCM), is limited in applicability by two restrictive assumptions: equal

item discriminations and equidispersion (conditional mean equal to conditional variance).

Violations of these assumptions lead to impaired reliability and standard error estimates.

Previous work generalized the RPCM but maintained some limitations. The two-

parameter Poisson counts model allows for varying discriminations but retains the

equidispersion assumption. The Conway–Maxwell–Poisson Counts Model allows for

modelling over- and underdispersion (conditional mean less than and greater than

conditional variance, respectively) but still assumes constant discriminations. The present

work introduces the Two-Parameter Conway–Maxwell–Poisson (2PCMP) model which

generalizes these threemodels to allow for varying discriminations and dispersionswithin

onemodel, helping to better accommodate data from count data tests and self-reports. A

marginal maximum likelihood method based on the EM algorithm is derived. An

implementation of the 2PCMP model in R and C++ is provided. Two simulation studies

examine the model’s statistical properties and compare the 2PCMPmodel to established

models. Data from divergent thinking tasks are reanalysed with the 2PCMP model to

illustrate the model’s flexibility and ability to test assumptions of special cases.

The Rasch Poisson Counts Model (RPCM; Rasch, 1960) is a one-parameter Item Response

Theory (IRT) model for count data. Several different types of psychometric test generate

count data, for instance reading tests (Rasch, 1960; Verhelst & Kamphuis, 2009). Other

examples include but are not limited to processing speed tasks (Baghaei, Ravand, &

Nadri, 2019; Doebler & Holling, 2016), language tests in the form of C-tests (Forthmann,

Grotjahn, Doebler, & Baghaei, 2020; Forthmann, Gühne, & Doebler, 2020), intelligence
tests (Ogasawara, 1996), verbal fluency tasks and fluency measurement in divergent

thinking tasks (Forthmann, Çelik, Holling, Storme, & Lubart, 2018; Forthmann, Holling,

Çelik, Storme, & Lubart, 2017; Myszkowski & Storme, 2021). Psychometric count data

can also arise from self-reports, for instance of drug use (Wang, 2010) or frequency of
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depressive symptoms (Magnus & Thissen, 2017). Another application of count data IRT

models is the field of text data analysis (Proksch & Slapin, 2009) or the analysis of

bibliometric indicators to assess researchers’ performance (Forthmann & Doebler, 2021;

Mutz & Daniel, 2018). To analyse the properties of these psychometric tests within the
framework of IRT, appropriate models for count data are required. Recent advances have

generalized the RPCM in different directions to address limits imposed by the model’s

assumptions (Forthmann, Gühne, et al. 2020; Myszkowski & Storme, 2021). As the

proposedmodels each only address one assumption, they remain restrictedwith regard to

other assumptions, limiting their flexibility in count data IRTmodelling. The presentwork

aims to fill this gap by generalizing previous work (Forthmann, Gühne, & Doebler, 2020;

Myszkowski & Storme, 2021) further and introducing the Two-Parameter Conway–
Maxwell–Poisson (2PCMP) model.

1.1. Prior research: The RPCM and other count IRT models

The RPCM – for an introduction see, for example, Baghaei andDoebler (2019) or Verhelst

and Kamphuis (2009) – models a participant’s response on their latent ability and an

item’s difficulty. Different estimation methods and extensions have been developed for

theRPCM(e.g., Jansen, 1995, 1997; Jansen&vanDuijn, 1992;Ogasawara, 1996;Verhelst

& Kamphuis, 2009). The RPCM assumes that for each item, the distribution of responses
(conditional on aperson’s latent ability) follows a Poissondistributionwith rate λ. The rate
is modelled to depend on difficulty and latent ability θ and determines both the location

and the spread of the conditional distribution of responses X, so that  Xjθð Þ ¼ ar Xjθð Þ
(equidispersion assumption). Conceptually, the spread of the conditional distribution of

responses is linked to an item’s measurement precision. But as the same parameter

determines both location and spread, the RPCM links an item’s difficulty deterministically

with its measurement precision (for constant ability). This is empirically not always a

plausible assumption. For instance, Forthmann, Gühne, et al. (2020) found that divergent
thinking tasks showed over- and underdispersion depending on the item, and Forthmann

and Doebler (2021) found similar phenomena for items measuring researchers’ capacity.

A violation of the equidispersion assumption results in impaired standard error andmodel-

implied reliability estimation (Forthmann, Gühne, et al., 2020). If  Xjθð Þ<ar Xjθð Þ the
conditional response distribution exhibits overdispersion, and if  Xjθð Þ>ar Xjθð Þ it is
underdispersed, with overdispersion leading to liberal and underdispersion to conser-

vative standard errors (Faddy & Bosch, 2001; Forthmann, Gühne, et al., 2020;

Hilbe, 2011). Different extensions of the RPCM have been proposed that are able to
account for overdispersion – for example, a negative binomial regression model (NBRM;

Hung, 2012), a Poisson mixture model (Verhelst & Kamphuis, 2009), a Bayesian Poisson

Raschmodel (Mutz &Daniel, 2018), a zero-inflated Poissonmodel (IRT-ZIP;Wang, 2010)

and the ICC Poisson counts model (Doebler, Doebler, & Holling, 2014). The recently

proposed Conway–Maxwell–Poisson Counts Model (CMPCM; Forthmann, Gühne,

et al., 2020), based on the Conway–Maxwell–Poisson (CMP) distribution (Huang, 2017;

Shmueli, Minka, Kadane, Borle, & Boatwright, 2005), is the only count data IRT model as

of yet which is able to account for both over- and underdispersion. Just as the Poisson
distribution is a special case of the CMP distribution, so the RPCM is a special case of the

CMPCM.

The CMPCM – like the RPCM – assumes all items to be equally discriminant of the

underlying latent ability. That is, each item is assumed to reflect differences in latent ability

equally well in the responses to the item. Unless a test has been explicitly constructed to
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satisfy this assumption, which is not necessarily very common for count data generating

tasks, it is likely to be violated (Myszkowski & Storme, 2021). This limits the applicability

of the CMPCM. Take, for instance, the example used in thiswork, divergent thinking tasks

(see also Section 5). The ability to think divergently (i.e., to generate many different ideas
in response to a stimulus; Guilford, 1967) can be measured, for example, with items that

ask participants to give alternative uses for everyday objects or with items where

participants have to imagine many different consequences of a change in everyday life.

There is no guarantee that these two types of tasks discriminate equally well between

participants. In any case, it is at least desirable to be able to test that assumption, especially

for existing count data tasks which were not developed to be analysed within an IRT

framework. Further, estimating item discriminations can help to inform item selection.

Previous research has laid the ground work to include discrimination parameters in the
RPCM – for example, in a count data factor analysis framework (Wedel, Böckenholt, &

Kamakura, 2003), or within the generalized linear latent and mixed models (GLLAMM)

framework as PoissonGLAMM (Skrondal & Rabe-Hesketh, 2004) – leading to recent work

on the Poisson GLAMM special case in an IRT context with the Two-Parameter Poisson

Counts Model (2PPCM; Myszkowski & Storme, 2021). As an extension of the RPCM, the

2PPCM contains the former as a special case. Work on including discrimination

parameters in count IRT models without the equidispersion assumption is limited to

models able to account for overdispersion (Doebler et al., 2014;Wang, 2010). This limits
the applicability of two-parameter count IRTmodels as psychometric tasksmight produce

not only equi- or overdispersed but also underdispersed data (Forthmann, Gühne,

et al., 2020).

1.2. The present work

The present work introduces a model that is a natural extension of both the 2PPCM and

the CMPCM: the Two-Parameter Conway–Maxwell–Poisson (2PCMP) model. It models
item-specific discrimination as well as item-specific dispersion parameters (the latter

allow for modelling underdispersion as well as over- and equidispersion). The 2PCMP

model contains the 2PPCM and the CMPCM as special cases, allowing for easy testing and

loosening of their assumptions. The 2PCMP model is thus able to address two major

limitations of the RPCMwithin the samemodel,which has previously not been possible. A

limiting factor for the introduction of a model like the 2PCMP model has been a lack of

appropriate estimators (Forthmann, Gühne, et al., 2020). The present work fills this gap

by deriving a marginal maximum likelihood estimation method for the 2PCMP model
based on the expectation–maximization (EM) algorithm. The paper is accompanied by an

R implementation of the 2PCMP model. The 2PCMP model’s statistical properties are

examined and compared to those of established models in two simulation studies. I

further reanalyse a divergent thinking fluency task data set with the 2PCMPmodel to give

an empirical illustration of the model.

2. The two-parameter Conway–Maxwell–Poisson model

Under the 2PCMP model (as under the 2PPCM; Myszkowski & Storme, 2021), one

assumes that the expected number of counts μij given by person i in response to an item j

depends on the item parameters αj and δj and the person’s latent ability θij (all on the log

scale) as follows:

The two-parameter Conway-Maxwell-Poisson model 413
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μij ¼ exp αjθi þ δj
� �

: (1)

The parameterization in Equation (1) is referred to as the intercept–slope parameter-

ization, with αj as the slope and δj as the intercept. It is often used in IRT for its

computational advantages (Baker & Kim, 2004). An alternative common parameteriza-

tion is the discrimination–difficulty parameterization (i.e., μij ¼ exp aj θi�dj

� �� �
), which

can be obtained by substituting aj ¼ αj for the discrimination and dj ¼ �δj=αj for the
difficulty in Equation (1) and rearranging (the computational disadvantage of this
parameterization is caused by the multiplicative association between aj and dj, resulting

in a trade-off between the two parameters in estimation). Under typical distributional

assumptions for the latent ability θi (i.e.,  θið Þ ¼ 0), the intercept δj indicates the log

counts one would expect from a person of average ability (i.e., θi ¼ 0). With a decrease

in the difficulty dj, a person of the same ability is expected to respond with a larger

number of counts, that is, the item is easier. The slope quantifies how strongly a person’s

latent ability influences the expected response for them. A larger αj indicates that a

person’s response to an item is more representative of their latent ability. Figure 1, as an
illustration, shows the item response curves (expected responses μij plotted against

different latent abilities θi) under the 2PCMP model for six divergent thinking items (see

Section 5 for more details). One can see that the item response curves differ in their

steepness, which indicates differences in the slopes αj. Items which differentiate better

between persons with regard to their latent ability (e.g., item 5) have steeper curves,

indicating that the same difference in θi (x-axis) leads to greater differences in the

expected response μij (y-axis) compared to items with less discriminatory power and

flatter response curves (e.g., items 3 and 6). This information about items can be helpful
to know for researchers in terms of item selection and in terms of weighting items to

build a total score that best measures the latent ability.

As the 2PCMPmodel predicts the expected number of counts, that is, the mean of the

corresponding probability distribution, the model requires a parameterization of said

distribution in terms of its mean. For a long time, such a parameterization of the CMP

distributionwas not available. Recently, Huang (2017) provided amean parameterization

of the CMP distribution which also builds on the foundation of the CMPCM (Forthmann,

Gühne, et al., 2020). The CMPCM is contained in the 2PCMP model as a special case by
imposing the constraint that the slopes are equal across items, α1 ¼ . . . ¼ αM . The density
function for themean parameterization of the CMP distribution is denoted by CMPμ in the

following and is given by

CMPμ x; μ, νð Þ ¼ λ μ, νð Þx
x!ð Þν

1

Z λ μ, νð Þ, νð Þ , (2)

where μ∈ �∞,∞ð Þ is the mean of the distribution and ν∈ 0,∞½ Þ is the dispersion

parameter which controls the spread of the distribution. Z λ μ, νð Þ, νð Þ ¼ ∑∞
x¼0

λ μ, νð Þx= x!ð Þν is a normalizing constant (Huang, 2017). The rate λ μ, νð Þ is a function of μ
and ν, given by the solution to (Huang, 2017)

0 ¼ ∑
∞

x¼0

x�μð Þ λx

x!ð Þν : (3)

414 Marie Beisemann
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Overdispersion (underdispersion) occurs if ν< 1 (ν> 1). For ν ¼ 1, the case of

equidispersion is obtained and Equation (2) simplifies to the Poisson density. This makes

it immediately clear that the 2PCMP model contains the 2PPCM as a special case. The

dispersion parameter ν can be modelled either as equal across items or as item-specific.

Here, I formulate the 2PCMP model in the most general form with item-specific

dispersions νj, j ¼ 1, . . . ,M. A model with equal dispersion across items can be obtained

by imposing the constraint that ν1 ¼ . . . ¼ νM .
Combining Equations (1) and (2), the probability of a person i respondingwith a count

xij to item j, given a latent ability θi for person i and item parameters αj and δj as well as an

item-specific dispersion νj, is then given by

10
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Figure 1. Item response functions (i.e., plotting latent ability θ against the predicted counts μj for
item j) of the 2PCMPmodel for six divergent thinking items (application example). Items are colour-

coded and represented by different line types as indicated on the right-hand side.
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P Xij ¼ xijjθi, αj, δj, νj
� � ¼ CMPμ xij; μij, νj

� �
, (4)

with μij as in Equation (1). Under the assumption of conditional independence, the

probability of observing the response vector xi for a person i to allM items is given by the

product over items j ¼ 1, . . . ,M, that is,

P Xi ¼ xijθi,α, δ, νð Þ ¼
YM
j¼1

CMPμ xij; μij, νj
� �

, (5)

with α ¼ ðα1, :::, αMÞT , δ ¼ ðδ1, :::, δMÞT and ν ¼ ðν1, :::, νMÞT . For ease of reading, the

vector concatenating item and dispersion parameters for all items (α, δ, and ν) will be

denoted by ζ. In terms of maximum likelihood estimation, the marginal maximum

likelihood (MML) method represents the most viable approach for the 2PCMP model, as
the joint maximum likelihood method could result in an inconsistent estimator (because

with each additional observation, we would have to include an additional parameter for

the person’s ability) and the conditional maximum likelihoodmethod is not an option for

two-parameter IRT models (Baker & Kim, 2004).

For MML estimation, assume that the latent ability parameters θ1, . . . , θN are

independent and identically standard normally distributed as θi ∼ N 0, 1ð Þ, i ¼ 1, . . . ,N .

Note that in two-parameter IRTmodels, the latent ability variance needs to be fixed to 1 to

ensure identification of the model (Baker & Kim, 2004). Denote the density function of
the standard normal distribution by ϕ. The joint probability of observing a person iwith a

latent ability θi and a response vector xi is given by P xi, θijζð Þ ¼ P xijθi, ζð Þϕ θið Þ.
Consequently, the marginal likelihood of the item and dispersion parameters under the

data x (across all N persons and all M items) is given by

Lm ζ;xð Þ ¼
YN
i¼1

Z
P xijθi, ζð Þϕ θið Þdθi: (6)

The goal is to obtain the parameter estimates for ζ which maximize the marginal

likelihood in Equation (6) (or rather, the logarithm of Equation (6)). Due to the integral in
Equation (6) which does not exist in closed form, this is challenging to do directly. An

elegant way to solve this issue is to employ the EM algorithm.

3. Marginal maximum likelihood estimation with the EM algorithm

The EM algorithm (Dempster, Laird, & Rubin, 1977; for a general introduction see, for
example, McLachlan & Krishnan, 2007; for an IRT-specific introduction see Bock &

Aitkin, 1981) is an algorithm for iterative maximum likelihood (ML) estimation. This

section introduces an EM algorithm for the 2PCMP model in a compact and computa-

tionally advantageous representation. The corresponding derivation (which first derives a

different representation and shows that it is mathematically equivalent to the more

compact and computationally advantageous one) is shown in Appendix A.

The EM algorithm for the 2PCMP model uses fixed Gauss–Hermite quadrature to

numerically approximate the integral in Equation (6) that does not exist in closed form.
Gauss–Hermite quadrature tends to be a sensible choice in lower-dimensional IRTmodels

for binary and ordinal data (Chalmers, 2012). The integral over a continuous variable (in

416 Marie Beisemann
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this case, θi) is approximated by a sum over a discretized version of the variable (which I

denote by Qi). The levels of the discretized variable are referred to as quadrature nodes,

denoted by q1, . . . , qk for K nodes. Increasing the number of nodes yields better

approximations, but increases the computational cost. The quadrature nodes are

weighted according to their probability of occurrence with quadrature weights, denoted
by wk for nodes k ¼ 1, . . . ,K . Rewriting the marginal likelihood in Equation (6) in

quadrature notation yields

Lm ζ;xð Þ≈
YN
i¼1

∑
K

k¼1

P xijqk, ζð Þwk, (7)

where the expected counts implied by Equation (7) are μjk ¼ exp αjqk þ δj
� �

.

In MML estimation problems like in IRT, one can consider responses x as observed

data and the latent abilities θ (¼ θ1, . . . , θNð ÞT ) as unobserved data, together forming the

complete data x, θð Þ. The EM algorithm, built for this type of incomplete-data problem,

maximizes the complete-data (log) likelihood. It iterates between two steps: In each
expectation (E) step, the parameters (ζ) sought are assumed to be known and the

expected complete-data (log) likelihood is determined. In each maximization (M) step,

the expected complete-data (log) likelihood from the previous E-step is maximized in

terms of ζ (under the parameter estimates from the previous M-step ζ0). The EM algorithm

oscillates between E- and M-steps until a convergence criterion is met. Each EM cycle

increases the marginal likelihood until the fixed point of the algorithm is reached

(McLachlan & Krishnan, 2007).

To be able to take the expectation in each E-step, one needs to calculate the probability
distribution over θ given ζ0 from the previous M-step and the observed data x. One

employs Bayes’ theorem to this end and approximates the posterior distribution of θi by
the posterior probabilities of the quadrature nodes q1, . . . , qk. The posterior probability

for node k and item j given a response vector xi is

P qkjxi, ζ0ð Þ ¼

QM
j¼1

CMPμ xijjqkζ0j
� �

wk

∑K

k0¼1

QM
j¼1

CMPμ xijjqk0ζ0j
� �

wk0

, (8)

where ζ0j denotes the set of item and dispersion parameters for item j from the previousM-

step. The quadrature weights wk constitute the prior probabilities for the quadrature

nodes, approximating the prior distribution for θi, which is assumed to be N 0, 1ð Þ for
i ¼ 1, . . . ,N under the 2PCMP model.

For the 2PCMP, the expected complete-data log likelihood,  LLcð Þ, is proportional to
the following expression (see Appendix A for the derivation):

 LLcð Þ / ∑
K

k¼1

∑
N

i¼1

∑
M

j¼1

xijlog λ μjk, νj
� �� �

�νjlog xij!
� ��log Z λ μjk

���
, νjÞ, νjÞÞ

� �
P qkjxi, ζ0ð Þ

h i
:

(9)

Equation (9) can then be maximized in terms of the item parameters for each item

j ¼ 1, . . . ,M during the followingM-step, where one assumes the P qkjxi, ζ0ð Þ to be given.

The two-parameter Conway-Maxwell-Poisson model 417
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Any omitted terms in Equation (9) are constant with respect to ζ, so that they can be

disregarded when optimizing for ζ. The maximization is carried out by iteratively finding

the roots of the first derivatives with respect to the item parameters. For each αj, the
gradient is given by

∂ LLcð Þ
∂αj

¼ ∑
K

k¼1

∑
N

i¼1

μjkqk

V μjk, νj
� � xij�μjk

� �
P qkjxij, ζ0j
� �

, (10)

where

V μjk, νj
� �

¼ ∑
∞

x¼0

x�μjk

� �2
λ μjk, νj
� �x

x!ð ÞνjZ λ μjk, νj
� �

, νj
� � (11)

denotes the variance of the CMPμ distribution (Huang, 2017), and for each δj,

∂ LLcð Þ
∂δj

¼ ∑
K

k¼1

∑
N

i¼1

μjk
V μjk, νj
� � xij�μjk

� �
P qkjxij, ζ0j
� �

: (12)

For the dispersion parameters νj, it is advantageous in terms of both estimation and

interpretation (Forthmann, Gühne, et al., 2020) to optimize for the log dispersions logνj.
The estimation-related advantage is an unconstrained parameter space. For each logνj, the
gradient is

∂ LLcð Þ
∂logνj

¼ ∑
K

k¼1

∑
N

i¼1

νj A μjk, νj
� � xij�μjk

V μjk, νj
� �� log xij!

� ��B μjk
��

, νjÞÞ
0@ 1AP qkjxij, ζ0j

� �
, (13)

where one can utilize the results by Huang (2017) that A ¼ X log X!ð Þ X�μð Þð Þ and

B ¼ X log X!ð Þð Þ. From the gradients of all three types of parameters, it is easy to see that

gradients for the 2PCMP model with equality constraints (i.e., α1 ¼ . . . ¼ αM or

ν1 ¼ . . . ¼ νM) are simply obtained by taking the derivative in terms of a constant (across

items) α or logν which merely adds a sum over M to the gradients shown above.
As explained in more detail in Appendix A, the expression in Equation (9) for the

expected complete-data log likelihood and the resulting gradients for the M-step

(Equations (10–13)) offer computational advantages. They allow one to express the EM

equations, in particular the derivatives for the dispersion parameters, in efficient terms

with regard to computational costs and numerical stability.

3.1. Standard errors for model parameters
MMLestimationwith the EMalgorithmhas the disadvantage that standard errors are not as

immediately available as they are from Newton–Raphson type estimation procedures

(McLachlan&Krishnan, 2007), as the observed-data log likelihood LLm ¼ LLm ζ;xð Þ is not
maximized directly. Instead, the expected complete-data log likelihood  LLcð Þ is

maximized. The observed informationmatrix (fromwhich one can obtain the asymptotic

covariance matrix of the model parameters) can be expressed in terms of the expected
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complete-data log likelihood (Oakes, 1999). To express the fact that the  LLcð Þ, which is

maximized with respect to ζ, depends on the parameter estimate ζ0 from the previous M-

step,write LLc ζjζ0ð Þð Þ. Then, Oakes’s identity (Oakes, 1999) states that at the fixed point

(when ζ ¼ ζ0),

∂2LLm ζ;xð Þ
∂ζ∂ζT

¼ ∂2 LLc ζjζ0ð Þð Þ
∂ζ∂ζT

þ ∂2 LLc ζjζ0ð Þð Þ
∂ζ∂ζ0T

�����
�����
ζ¼ζ0

: (14)

Chalmers (2018) provided a finite-differences based numerical approximation technique

to Oakes’s identity. With this method, one numerically approximates the two summands

in Equation (14). This method does not require any additional results to those in

Equations (10–13).

3.2. Estimation of ability parameters

Once itemparameter estimates have been obtained, onemay also use the 2PCMPmodel to

estimate person parameters. To this end, one assumes the item parameters as known. An

ML ability estimation technique is given in Appendix B. Under the assumptions of this

method, ability parameters are estimated separately for each person. For the CMPμ
distribution this can quickly become computationally expensive for larger samples. A
Bayes EAP ability estimation method based on the last E-step is computationally much

cheaper in this case and will be used both for the simulation studies and the empirical

example below.

The EM algorithm for the 2PCMP model estimates an approximation to the posterior

distribution of θ, given the data and the item parameters, in each E-step (Equation (8)).

From the (approximative) posterior distribution of the last E-step at the point of

convergence, one can estimate the ability of a person i, i∈ 1, . . . ,Nf g, as the posterior

mean (known as the EAP estimator; Baker & Kim, 2004),

θ̂i,EAP ¼ ∑
K

k¼1

qkP qkjxi, ζð Þ, (15)

where ζ are assumed as known (in actuality, one uses the model parameter estimates at

convergence). As the (final) E-step yields an approximation of the full posterior, one can

just as easily estimate a corresponding standard error,

ŜE θ̂i,EAP
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
K

k¼1

qk�θ̂i,EAP
� �2

P qkjxi, ζð Þ
s

, (16)

and determine the .025 and .975 quantiles to obtain a 95% credible interval. As the

posterior probabilities can be saved from the last E-step, this estimation requires only

negligible additional computation time.

3.3. Computational aspects and implementation

The algorithm for the estimation of the 2PCMPmodel as well as themethods for obtaining

standard errors and ability estimates outlined above have been implemented in R and

The two-parameter Conway-Maxwell-Poisson model 419
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C++, integrated into the R code with the help of the Rcpp package (Eddelbuettel

et al., 2011). The code is available in the R package countirt available on GitHub (https://

github.com/mbsmn/countirt). Details of the computational implementation are given in

Appendix C. The two main challenges in the numerical implementation of the EM
algorithm for the 2PCMPmodel are numerical stability and computational efficiency. The

algorithm repeatedly requires a number of approximations of several infinite series and

the solving of Equation (3) for each item and quadrature node combination. For extreme

quadrature node, slope, and dispersion values, thismay result in numerical instability and/

or noticeably increased computation time. To circumvent this, I tabled the most

important statistics (λ μ, νð Þ, Z λ μ, νð Þ, νð Þ and V λ μ, νð Þ, νð Þ) for a fine grid of μ and ν values.
Values for these statistics are interpolated from the grid using two-dimensional bicubic

interpolation. Computation time can also be reduced by cutting down the number of
iterations until convergence with the choice of starting values. Starting values for slope

and intercept parameters of the 2PCMPmodel are determined by fitting a 2PPCM using a

comparatively fast Poisson density based EM algorithm (also implemented in countirt; see

the Online Supplementary Materials for details on the algorithm). With this method of

choosing starting values, the EM algorithm for the 2PCMP model requires only relatively

few EM iterations, as illustrated in the following two sections.

4. Simulation studies

For the first simulation study, the aim was to examine the 2PCMP model’s statistical

properties, primarily in terms of parameter recovery, in different data settings. For the

second simulation study, I wanted to compare the 2PCMP model’s performance in a

realistic data setting to the performance of established methods which are generalized by

the 2PCMP model. Both simulation studies were conducted in R (R Core Team, 2021).
Details of the implementation of the simulation studies are given in Appendix C. This

work is accompanied by an OSF repository with supplementary materials (https://osf.io/

hx5js/). All scripts used to run the simulations and to prepare the results, the simulation

results (rds files) as well as additional tables and figures (in the Online Supplementary

Materials) are available on the OSF repository.

4.1. Simulation study I

4.1.1. Design and data generation

The design of the first simulation study was inspired by Forthmann, Gühne, &

Doebler, (2020). In alignment with their simulations, the number of items simulated in
this studywas eitherM ¼ 4 orM ¼ 8 and the sample sizes (number of persons) simulated

were eitherN ¼ 100 orN ¼ 300. I set the number of quadrature nodes to eitherK ¼ 121

or K ¼ 201 so that I could assess the speed–accuracy trade-off due to the number of

quadrature nodes used. I simulated four different kinds of item sets: all items

equidispersed, all items overdispersed, all items underdispersed, or a combination of all

three types of dispersion among the items (referred to asmixed items). The levels of these

design factors were fully crossed to yield 32 different simulation conditions. The true

parameter values were inspired by Myszkowski and Storme (2021) as well as my
reanalysis of the same data set (see Section 5); they are shown for all conditions with four

items in Table 1 (see the Online Supplementary Materials for details). For conditionswith
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eight items, I duplicated the four items with the parameter combinations as shown in

Table 1.

I set the number of simulation trials per condition to 250. Note that due to the

numerical complexity of the CMP density, estimation of the 2PCMP model as well as

standard error computation are computationally expensive, thus limiting the number of

simulation trials feasible. For each simulation trial in each condition, I randomly drew N

person ability parameters from a standard normal distribution. Using code from

Forthmann, Gühne, et al., (2020), I then simulated a data set from a CMPμ distribution
under the respective parameter constellations for the condition (see Forthmann, Gühne,

et al., 2020 for details). I fitted a 2PCMP model to the data set and computed standard

errors for the item parameters as well as Bayes EAP ability parameter estimates. I recorded

all computation times.

4.1.2. Performance criteria

To assess the 2PCMP model’s performance in the different simulation conditions, I
used the following criteria. Denote a simulation trial by t and the number of simulation

trials by T.

Bias. For each model parameter p, I estimated the bias as Biasp ¼ mean p̂tð Þ�p, that is,

the difference between the mean of estimates p̂t across trials t ¼ 1, . . . , T and the true

parameter p.
Rootmean squared error (RMSE). For eachmodel parameter p, I estimated the RMSE

as RMSEp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T
∑T

t¼1 p̂t�pð Þ2
q

, that is, the average squared difference between the

estimates p̂t (for t ¼ 1, . . . , T ) and the true parameter p. In comparison to the bias, the

RMSE additionally takes the variance of the estimator into account, with smaller values

indicating that the estimator showed little bias and had small variance.

Coverage of the 95% confidence intervals (CIs). This is the percentage of simulation
trials for which the 95% CI for parameter p covered the true value of p. If the nominal α-
level of .05 is retained, the coverage should be .95. Using aWald approximation, the lower

boundary of the CI for parameter p in simulation trial t is given by

CIlower ¼ p̂t�1:96 SE p̂tð Þ and the upper boundary by CIupper ¼ p̂t þ 1:96 SE p̂tð Þ, where

SE p̂tð Þ denotes the respective estimator’s standard error.

Ability parameters. For each simulation trial, I computed the correlation between

the true ability parameters in that trial and the ability parameter estimates. To

compare performance across conditions and to account for the potential lack of
interval scaling of correlations, I computed the median correlation for each condition.

Furthermore, I computed (model-implied) empirical reliability estimates of the

2PCMP model as described in Forthmann, Gühne, et al., (2020), that is, as

Table 1. True parameter values for simulation study I

j αj δj
Equidispersion Overdispersion Underdispersion Mixed dispersion

νj (log(νj)) νj (log(νj)) νj (log(νj)) νj (log(νj))

1 0.33 2.40 1.00 (0.000) 0.40 (−0.916) 1.60 (0.470) 1.00 (0.000)

2 0.47 1.80 1.00 (0.000) 0.50 (−0.693) 1.87 (0.626) 2.40 (0.875)

3 0.60 1.50 1.00 (0.000) 0.60 (−0.511) 2.40 (0.875) 0.30 (−1.204)
4 0.20 2.10 1.00 (0.000) 0.30 (−1.204) 2.13 (0.756) 1.00 (0.000)
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bRel ¼ 1�mean bSE θ̂i
� �2� �

=bVar θið Þ, where bSE θ̂i
� �

denotes the estimate of the standard

error for the latent ability estimator for person i and bVar θið Þ denotes the estimate of

the latent ability variance. In each condition, I calculated the median across trials for

the empirical reliability estimates. To be able to evaluate the results, I also calculated

the (model-implied) true reliability as Rel ¼ Cor θi, θ̂i
� �2

(Embretson & Reise, 2013),

that is, the variance of the estimated abilities (θ̂i) explained by the true abilities (θi),
in each trial. Again, I calculated the median across trials.1

Additionally, I examined the numerical stability and convergence, average computa-

tion time across trials and average number of EM iterations required to reach convergence.
I recorded the computation times, including the computation of the initial values.

4.1.3. Results

All models in all trials converged once their estimation started properly. However, in

certain conditions, the situation arose in a very small number of trials (depending on the

condition, between 0.4% and 6.8%) that the model estimation fell victim to numerical

instability. That is, certain parameter value combinations did not allow for the gradient to
be computed numerically stably. This occurred early on in the estimation process, mostly

in the first iteration. The conditions concernedweremostly thosewith underdispersed or

mixed items (see the Online Supplementary Materials on OSF for more detailed

reporting). In all other trials across conditions, the model estimation started and

converged properly.

Computation times and number of EM iterations. In terms of computation times and

number of iterations until convergence (shown in detail in the Online Supplementary

Materials on OSF), as expected, settings with equidispersed items exhibited faster
computation times and required fewer iterations than settings with the other item types

(equidispersed items, Mct ¼ 418:110�1656:076 s and M iter≈17�20 iterations; overdis-

persed items, Mct ¼ 637:754�3324:056 s and M iter≈22�28 iterations; underdispersed

items, Mct ¼ 682:159�4287:334 s and M iter≈40�69 iterations; mixed items,

Mct ¼ 1042:459�3673:292 s and M iter≈29�54 iterations). An increase in the number

of items tended to lead to a decrease in the number of iterations (especially for settings

withmixed items), but to an increase in computation time. This means that each iteration

was computationally a lot more expensive for M ¼ 8 due to the greater number of
gradients for which roots need to be found. The number of quadrature nodes tended not

(or only slightly) to affect the average number of iterations, but, as expected, it made each

iteration more expensive, leading in part to considerable increases in computation times.

Note that computation times depend on and will differ between machines.

Bias and RMSE for item parameters. Bias and RMSE estimates are shown for

conditions with equidispersed (top row) and underdispersed (bottom row) items in

Figure 2 and for conditions with overdispersed items (top row) andmixed items (bottom

row) in Figure 3. Only values smaller than 1 in absolute value are shown; all exact values
are shown in the Online Supplementary Materials on OSF. The results showed that across

conditions, bias was very small for the slope and intercepts parameters. RMSE estimates

1Note that a comparison with reliability estimators such as Cronbach’s coefficient α is not useful here as one of
themain assumptions of Cronbach’s coefficient α, equal slope parameters, is violated by the 2PCMPmodel, from
which data are simulated.

422 Marie Beisemann

 20448317, 2022, 3, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.12273 by T
echnische U

niversitaet D
ortm

und D
ezernat Finanzen und B

eschaffung, W
iley O

nline L
ibrary on [16/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



for these parameters tended to be smaller than 0.1 across conditions. The RMSE estimates

for slopes and intercepts tended to decrease for conditions with N ¼ 300. This effect of

the sample size was even more evident for the dispersion parameters. For these, the

results showed more noticeable bias for N ¼ 100, which was visibly reduced for

conditions with N ¼ 300. The same pattern emerged for the RMSE. The RMSE estimates

for dispersions even exceeded values in absolute magnitude larger than 1 (compare the

Online Supplementary Materials). This only occurred for conditions with four items for

under- and overdispersed items, and happened for more conditions with four than with
eight items for mixed items. These large RMSE estimates predominantly occurred for

N ¼ 100, and at the very least stabilized for larger N and more quadrature nodes. It is also

interesting that these are the only cases where increasing K had any noticeable effect.

Otherwise, K ¼ 121 seemed to suffice. This is clearly advantageous in terms of

computation time.

Coverage of 95% CI for item parameters. Results for the coverage of the 95% CI are

shown in the Online Supplementary Materials on OSF. The exact values are also listed in

the Online Supplementary Materials. Overall, the results in terms of coverage were
promising. Across all conditions, coverage estimates tended to be very close to the

nominal level, but note that they were still sometimes slightly liberal (see the Online
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Figure 2. Bias (dots) and RMSE (triangles) for each parameter of each item for all conditions with

equidispersed items ((a) four items, (b) eight items) and underdispersed items ((c) four items, (d)

eight items). Each column within each plot shows the results for a different parameter

(alpha = slope, delta = intercept, log disp = log dispersion). The rows within each plot indicate

the sample size (N) and the number of nodes (K). The item number is shown on the x-axis. The

horizontal lines indicate 0. Only values less than j 1 j are shown; see the Online Supplementary

Materials for all values.
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Supplementary Materials). Coverage tended to improve with larger N, but did not

generally tend to benefit from more quadrature nodes.

Person parameter estimates. Person parameter estimateswere assessed usingmedian

correlations between the true and the estimated abilities (shown in detail in the Online

Supplementary Materials on OSF). These were higher for settings with underdispersed

(median r values from .940 to .969) and mixed items (median r values from .910 to .953)
and reached the lowest values for overdispersed items (median r values from .831 to .908).

Equidispersed items showedmedian correlations between .897 and .946.Otherwise, only

the number of items had a clearly noticeable effect (e.g., for mixed items, N = 100,

K = 121: .910 for M = 4 and .952 for M = 8). As the (median) model-implied true

reliabilities are closely related to the (median) correlations between true and estimated

abilities, they showed a very similar pattern of results (see the Online Supplementary

Materials onOSF). In terms ofmedian (model-implied) empirical reliabilities, those tended

tomore noticeably underestimate the true reliabilities in settingswith only four items. But
there were differences between item groups in this regard, with better results for the

underdispersed items (e.g., for N = 300, K = 121: .887 for the true and .877 for the

estimated reliability) and less favourable results for the overdispersed items (e.g., for

N = 300,K = 121: .703 for the true and .597 for the estimated reliability). For eight items,
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Figure 3. Bias (dots) and RMSE (triangles) for each parameter of each item for all conditions with

overdispersed items ((a) four items, (b) eight items) and itemswith different types of dispersion ((c)

four items, (d) eight items). Each columnwithin eachplot shows the results for a different parameter

(alpha = slope, delta = intercept, log disp = log dispersion). The rows within each plot indicate

the sample size (N) and the number of nodes (K). The item number is shown on the x-axis. The

horizontal lines indicate 0. Only values less than j 1 j are shown; see the Online Supplementary

Materials for all exact values.

424 Marie Beisemann

 20448317, 2022, 3, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.12273 by T
echnische U

niversitaet D
ortm

und D
ezernat Finanzen und B

eschaffung, W
iley O

nline L
ibrary on [16/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



model-implied reliabilities were estimated quite well (at least in the median) for all item

groups except overdispersed items (e.g., forM = 8, N = 300, K = 121: .823 for the true

and .795 for the estimated reliability).

A summary of the main conclusions from simulation study I is provided in Discussion.

4.2. Simulation study II

The aim of the second simulation study was the comparison of the 2PCMP model to

established methods in a realistic data setting where the complexity of the 2PCMP is

warranted (i.e., a setting with varying slopes and varying dispersions). The models I

included for comparisonwere the 2PPCM (Myszkowski & Storme, 2021) and the CMPCM

(Forthmann, Gühne, et al., 2020). I estimated them both once as described by the
respective authors and once as constrained 2PCMP models to examine any potential

differences in estimation algorithms. By design, all models in this study but the full 2PCMP

model are misspecified. The aim of the study was to examine how impaired performance

of the established models is by realistic misspecification and thus what advantage the

2PCMP model can offer.

4.2.1. Design

For the realistic data setting, I used parameter estimates obtained by reanalysing divergent

thinking tasks data (Silvia, 2008a, 2008b; Silvia et al., 2008) made available by the author

with permission to reanalyse (Silvia, 2013) (for the parameter estimates, see Table 5).

Mimicking the real data, I simulated M ¼ 6 items and N ¼ 242 participants in each

simulation trial. As in simulation study I, I drew the underlying abilities of the participants

(θi, i ¼ 1, . . . ,N) from a standard normal distribution and then simulated data from a

CMPμ distribution based on code by Forthmann, Gühne, et al., (2020) with

μij ¼ exp ~αjθi þ ~δj
� �

and νj ¼ exp ~νlog,j
� �

, where ~αj, ~δj, and ~νlog,j are the parameter

estimates for the slopes, intercepts, and log dispersions, respectively, obtained through

the reanalysis (Table 5). I ran 500 simulation trials.

4.2.2. Models for comparison and performance criteria

I fitted the 2PCMP model using the EM algorithm presented above with 121 quadrature

nodes (as the first simulation study indicated that these would suffice in most cases). I

further included theCMPCM(Forthmann,Gühne, et al., 2020)which constitutes a special

case of the 2PCMP, with slope parameters constrained so that α1 ¼ . . . ¼ αM . I fitted the

CMPCM using two different implementations: (1) with the EM algorithm for the 2PCMP

presented above, and (2) as described in Forthmann, Gühne, et al., 2020 using the

glmmTMB package (Brooks et al., 2017). These implementations differ not only with

regard to the algorithm used for model estimation, but also slightly in the model
formulation. Yet they both constitute a one-parameter CMP model. For the first

implementation, the latent ability variance is fixed at 1 and I estimate one slope

parameter (constrained to be the same across items). With the second implementation,

the slope parameters of all items are fixed at 1 and I estimate the latent ability variance

freely (see Forthmann, Gühne, et al., 2020, for details). In order to compare dispersion

estimates from these two implementations, I inverted the estimates provided by

glmmTMB.
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The third model included is the 2PPCM (Myszkowski & Storme, 2021). This model is

contained as a special case within the 2PCMPwith the constraint that ν1 ¼ . . . ¼ νM ¼ 1.

There are existing estimation algorithms and corresponding software implementations

for the 2PPCM – for example with the software MPlus (Muthén & Muthén, 1998, see
Myszkowski & Storme, 2021, for an overview) – but for convenience I also implemented

an EM algorithm for the 2PPCM based on the Poisson density in the countirt package (see

the Online Supplementary Materials on OSF for details). I fitted the 2PPCM oncewith that

Poisson-density-based EM algorithm and once using the EM algorithm for the 2PCMP

based on the CMP density under the constraint that ν1 ¼ . . . ¼ νM ¼ 1. For an explanation

regarding the relation between the EM algorithms based on the Poisson and CMP density,

see the Online Supplementary Materials.

I used the same performance criteria as in simulation study I. Additionally, I computed
the median (across trials) correlations between the ability scores as produced by the five

models.

4.2.3. Results

None of themodels experienced any numerical instability in any of the 500 trials. They all

converged in each trial.

Computation times and number of EM iterations. On average across trials, the
computation time was longest for the CMPCM fitted with glmmTMB (Mct = 1372.287 s).

The (full) 2PCMP took on average the second longest time (Mct = 714.221 s) and on

average requiredM iter≈20 iterations until convergence. This was followed closely by the

2PCMPwith equal slopes (i.e., CMPCMwith alternative formulation;Mct = 711.903 s and

M iter≈26 iterations), the 2PCMPwith dispersions fixed at 1 (i.e., a 2PPCM;Mct = 403.988

s and M iter≈47 iterations), and the 2PPCM (Mct = 10.542 s and M iter ¼ 46 iterations).

These results reflect that the Poisson density and gradients are much easier and less

computationally expensive to evaluate than the CMP density and gradients. The starting
value determination approach for the full and the equal slopes 2PCMP model led to

considerably smaller numbers of iterations (as compared to the two 2PPCMs which use a

different approach). Note that computation times depend on and will differ between

machines. Standard deviations for computation times and number of iterations are

presented in the Online Supplementary Materials on OSF together with additional

considerations.

Bias, RMSE, and coverage of 95% CIs for item parameters. Table 2 displays the

estimates for the bias, the RMSE and the coverage of the 95% CIs. As in simulation study I,
the bias for the (full) 2PCMP was small to negligible across parameters (with

comparatively larger biases for the dispersion parameters). As expected, bias tended to

be greater for the fourmisspecifiedmodels. In particular, at least for some parameters and

models, the bias tended to be larger than the average standard error for the respective

parameter, while for the parameters in the full 2PCMPmodel, the bias was always smaller

(in absolute magnitude) than the average standard error (see the Online Supplementary

Materials on OSF for more details and standard error ranges). This pattern was more

pronounced for slope and dispersion parameters than for intercepts which were overall
the least inflicted parameters in regard to impaired performance (i.e., the biases on the

intercepts were mostly smaller than the respective average standard errors). RMSE

estimates also tended to be larger for themisspecifiedmodels. The coverage of the 95%CI

was overall quite good for the 2PCMP model, with coverage estimates for the intercepts

and slopes very close to the nominal level for the majority of items. For the dispersion
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parameters, the nominal level was exactly met for the fifth item and slightly undercut for

the other items, but still above 0.93 for all items. For the misspecified models, coverage

overall tended to be lower, but was generally less impaired for the intercepts and log

dispersions (but see more detailed descriptions and considerations in the Online

Supplementary Materials). Coverage on the slope parameters in the misspecified models

(if estimated) was in part very poor (in particular, for the 2PCMPwith ν1 ¼ . . . ¼ ν6 ¼ 1).

The pattern with regard to bias and standard errors offers a possible explanation for these

results, as they occur in particular for item and model combinations where the bias is
substantially larger than the average respective standard error.

Person parameter estimates. Table 3 shows that the highest median correlation

between the true and the estimated person parameters was achieved by the (full) 2PCMP

model, followed by the two versions of the CMPCM and the two versions of the 2PPCM,

respectively. Note that due to the simulation design, the (model-implied) true reliability of

the 2PCMP model constitutes the ground truth in this simulation study. The (median)

model-implied true reliability is therefore already negatively biased for the misspecified

models, more so for the 2PPCMs than for the CMPCMs. Further, the (full) 2PCMP and the
two versions of the CMPCM slightly underestimated their respective model-implied true

reliabilities in themedian across trials. Different results for the twoCMPCMs are likely due

to the different estimation procedures. As expected, the two versions of the 2PPCM

showed the same result for the median model-implied estimated reliability. They slightly

overestimated their model-implied true reliability in the median across trials, but still

underestimated the median reliability implied by the true underlying model.

Table 4 shows the median correlations (across trials) between the ability scores as

produced by the fivemodels. The pattern of results alignswith that seen in Table 3. Those
models which are equivalent exhibited perfect correlations as one would expect. The

correlations of the 2PCMP model ability estimates with those of the other models were

Table 3. Evaluation of person parameter and reliability estimates in simulation study II

Model med Cor θ, θ̂
� �� �

med Relð Þ med R̂el
� �

2PCMP .921 .848 .826

2PCMP, α1 ¼ . . . ¼ α6 .915 .838 .799

2PCMP, ν1 ¼ . . . ¼ ν6 ¼ 1 .891 .794 .805

PPCM .891 .794 .805

CMPCM .915 .838 .827

Note. Median correlations between the true and the estimated person parameters

med Cor θ, θ̂
� �� �� �

, the (model-implied) true reliability (med Relð Þ), and the (model-implied)

empirical/estimated reliability (med R̂el
� �

) for all models in simulation study II.

Table 4. Median correlations between models’ ability estimates in simulation study II

1 2 3 4 5

2PCMP (1) 1.000 .993 .966 .966 .993

2PCMP, α1 ¼ . . . ¼ α6 (2) 1.000 .954 .954 1.000

2PCMP, ν1 ¼ . . . ¼ ν6 ¼ 1 (3) 1.000 1.000 .954

2PPCM (4) 1.000 .954

CMPCM (5) 1.000
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very high, especially between the one-parameter (i.e., the two versions of the CMPCM)

and the two-parameter 2PCMPmodels. This pattern is also found for other comparison of

one- and two-parameter models (see, for example, Bürkner, 2020; Loken & Ruli-

son, 2010) and will be discussed in Section 6.

5. Application example

For an empirical application example of the 2PCMP model, I reanalysed divergent

thinking fluency tasks data as published in Silvia (2008a, 2008b) and Silvia et al. (2008)

and made available by Silvia via OSF (https://osf.io/8vrck/) together with permission for
the reanalysis (Silvia, 2013).Myszkowski and Storme (2021) recently reanalysed the same

data using, among other models, the 2PPCM. They also assessed whether the

equidispersion assumption was justified and found evidence to the contrary for the

2PPCM. This makes this data set particularly interesting for reanalysis with the 2PCMP

model which loosens the equidispersion assumption of the 2PPCM.

For a detailed description of the data set, see Silvia et al. (2008). In short, the data set

contains response data from N ¼ 242 college students on M ¼ 6 items. The items were

divergent thinking fluency tasks which instruct participants to provide as many creative
responses as possible to a prompt. Three different types of tasks were employed. They

were alternate use uses tasks (AUT), where participants name alternate uses for everyday

objects (a brick in item 1 and a knife in item 4), instances tasks, where participants are

asked to name instances of a more general class (round things in item 2 and things that

makenoise in item5), and consequences tasks,whereparticipants list consequences of an

event (no more sleep in item 3 and 12 inches height in item 6). The items were

administered with a time limit of 3 min per item. Tasks like this can be scored in different

ways to assess different underlying abilities (Silvia et al., 2008). For the 2PCMP model, I
simply computed the number of responses given by each participant to each item. This is

in line with the data preparation performed by Myszkowski and Storme (2021) and is

considered to measure fluency.

I fitted the 2PCMP model to the data using 121 quadrature nodes (see the OSF

repository for the R code). The model converged after 15 iterations. The parameter

estimates are presented in Table 5. The model estimated the reliability at .821 (see

Section 4.2 for how the reliability is estimated from the 2PCMP model). The slope

parameters αj (which are equal to item discriminations aj) represent howwell differences
in latent ability (i.e., divergent thinking fluency) are depicted by differences in responses.2

Item 2 (an instances task) displayed the highest discrimination, indicating the best ability

to differentiate between participants in terms of their divergent thinking fluency. Items 5

(also an instances task) and 4 (AUT) followed in terms of their discriminatory ability. The

other AUT (item 1) was slightly less discriminatory. The two consequences tasks (items 3

and 6)were leastwell able to differentiate betweenparticipants in terms of their divergent

thinking fluency. This pattern is visualized in Figure 1 which depicts the item response

functions. The better the discrimination of an item, the steeper the item response curve –
implying larger differences in expected responses (y-axis) for different latent ability (x-

axis). Difficulties (dj) can be obtained from slopes (αj) and intercepts (δj) as dj ¼ �δj=αj.

2 Note thatwith a latent variance fixed at 1 (as is the case here for identification purposes), due to the exponential
response function in the 2PCMPmodel, onewould not necessarily expect discrimination values close to or even
larger than 1. This would imply quite large expected counts for higher latent abilities quite quickly. Of course,
whether this is sensible depends on the type of data at hand.
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The itemwith the largest difficulty in absolute value is themost difficult,which in this case

are the consequences items (item 3 with d3 ¼ �8:713 and item 6 with d6 ¼ �7:560).
They are followed by item 1 (AUT, d1 ¼ �6:513) and item 5 (instances, d5 ¼ �6:227),
and then item 2 (instances, d2 ¼ �5:345). Item 4 (AUT) was the easiest, with

d4 ¼ �4:947. The log dispersion parameters indicate howmuch responses are expected

to vary, given a certain latent ability (i.e., due to randomness). Looking at Figure 1, that

would mean how much one expects responses for one given person (with one value on

the x-axis) to vary from the expected response based on item difficulty and discrimination
as shown by the item response curves. Here, items 2 and 5 (instances tasks)were themost

dispersed (they were the only two items with overdispersion). The least dispersed

(implying responses conditional on latent ability varied least around the expected

response) were items 1 and 4 (AUT) which exhibited underdispersion. Items 3 and 6

(consequences tasks) fell in the middle in terms of dispersion (for item 3, equidispersion

cannot be rejected). These results can inform researchers’ item selection. It is not

uncommon to only use one type of task tomeasure divergent thinking (e.g., only AUT) in a

study (e.g., Beisemann, Forthmann, Bürkner, & Holling, 2020). Analyses of different
divergent thinking items with the 2PCMP model can indicate which items are best at

discriminating between divergent thinking abilities. They can also help to further

psychometric understanding of these different items which were not constructed in an

IRT framework.

Within the 2PCMP model, it is easy to test the assumptions of the established models

containedwithin the 2PCMPmodel as special cases – the 2PPCMand theCMPCM. Starting

with the 2PPCM, I fitted a 2PCMP model with the constraint that ν1 ¼ . . . ¼ νM ¼ 1.

Comparing the two models with a likelihood ratio test (i.e., testing the equidispersion
assumption of the 2PPCM), I found evidence of a significantly better fit of the (full) 2PCMP

model, χ2 6ð Þ ¼ 87:903, p< :001. This result is also reflected by the 95% CI for the log

Table 5. Parameter estimates of the 2PCMP model for six divergent thinking items (application

example)

Item Parameter Estimate SE 95% CI

1 Slope 0.296 0.024 [0.249, 0.344]

Intercept 1.930 0.027 [1.877, 1.984]

Log dispersion 0.548 0.114 [0.324, 0.772]

2 Slope 0.396 0.035 [0.327, 0.466]

Intercept 2.116 0.039 [2.040, 2.193]

Log dispersion −0.531 0.121 [−0.768, −0.295]
3 Slope 0.216 0.027 [0.163, 0.269]

Intercept 1.879 0.028 [1.825, 1.933]

Log dispersion 0.148 0.102 [−0.052, 0.347]
4 Slope 0.378 0.026 [0.327, 0.429]

Intercept 1.871 0.030 [1.812, 1.930]

Log dispersion 0.863 0.152 [0.564, 1.162]

5 Slope 0.377 0.033 [0.312, 0.442]

Intercept 2.347 0.037 [2.276, 2.419]

Log dispersion −0.596 0.120 [−0.830, −0.361]
6 Slope 0.244 0.024 [0.197, 0.292]

Intercept 1.846 0.026 [1.796, 1.897]

Log dispersion 0.515 0.106 [0.308, 0.722]
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dispersions in Table 5. Based on the marginal log likelihood which is evaluated in each

iteration of the EM algorithm, the test statistic for the likelihood ratio test is

�2 LLm0�LLm1ð Þ (with LLm0 as the marginal likelihood of the constrained model and

LLm1 as the marginal likelihood of the unconstrained model, both at convergence). This
test statistic is approximately χ2 distributed with as many degrees of freedom as we have

constrained parameters. Testing the assumptions of the CMPCM, I also fitted a 2PCMP

model with the constraints that α1 ¼ . . . ¼ αM . The comparison via the likelihood ratio

test (i.e., testing the assumption of equal slopes of the CMPCM) indicated significantly

better fit of the 2PCMP model, χ2 5ð Þ ¼ 43:550, p< :001. Note that we here have five

constrained parameters, as one slope parameter is estimated for all six items. For both the

2PPCM and the CMPCM, the respective assumptions were violated for this data set,

requiring the model complexity offered by the 2PCMP model.

6. Discussion

The present work introduces the 2PCMP model, a two-parameter count IRT model. The

model allows item discriminations to be varied, which can help researchers with item

selection. With the use of the mean parameterized CMP distribution (Huang, 2017), the
model can account and test for over-, under- and equidispersion at an item-specific level.

The model constitutes a generalization of the recently introduced CMPCM (Forthmann,

Gühne, et al., 2020) as well as the 2PPCM (Myszkowski & Storme, 2021), both of which

extend the RPCM (Rasch, 1960). All three of these models are contained within the

2PCMPmodel as special cases, so that the 2PCMPmodel offers an easy approach of testing

(and if necessary loosening) their respective assumptions. Since, to the best of my

knowledge, no estimation methods for the 2PCMP model were previously available

(Forthmann, Gühne, et al., 2020), I derived an MML estimation method based on the EM
algorithm (Dempster et al., 1977) for the 2PCMP model. Simulation studies showed

promising performance of the 2PCMP model. The empirical example illustrated how

easily the assumptions of the CMPCM and the 2PPCM can be tested within the 2PCMP

model, and that this constitutes a realistic concern.

6.1. Evaluation of the 2PCMP model and recommendations

The simulation study results revealed overall satisfactory performance in terms of
parameter recovery and reliability in a number of different settings varying with regard to

the number of items, the type of underlying item-specific dispersion, the sample size, the

number of quadrature nodes, and under realistic parameter values. Based on the results, I

would recommend larger sample sizes than N ¼ 100 for the 2PCMP model and

administration of more than four items, especially if one is interested in very accurate

estimates of the dispersion parameters. Not surprisingly, a greater number of items also

results in better, and in fact quite good, estimates of model-implied reliability. These

recommendations should minimize the risk of encountering numerical instabilities,
which were overall relatively rare and in practice might be addressed by varying the

starting values slightly. Numerical instabilities may likely be caused by certain parameter

constellations, especially in terms of slopes and log dispersions, when both tend to larger

(absolute) values. A second simulation study comparing the 2PCMP in a realistic data

setting to the CMPCM and the 2PPCM showed that the use of the 2PCMP model is

beneficial in a setting where the assumptions of established methods are violated. This is
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true for parameter estimation accuracy, but in particular in terms of coverage of the 95%

confidence intervals which in some cases falls drastically below the nominal level in the

misspecified models, especially for the slope parameters.

In terms of the ability parameter and reliability estimation, one could also see an (albeit
only slight) advantage of the 2PCMP model. Ability point estimates for the compared

models were strongly correlated, in particular between the one- and two-parameter

version (CMPCM and 2PCMP). This is a common pattern also found in comparisons of the

one-parameter logistic (1PL) and two-parameter logistic (2PL)models for binary data (see,

for example, Bürkner, 2020; Loken & Rulison, 2010). While point estimates tend to be

very similar even if the 2PL model holds and the 1PL is violated, the differences between

one- and two-parameter models are still reflected elsewhere, for example in the standard

errors and the reliability estimates. As the 2PL model can be considered a border case of
the 2PCMPmodel (the binomial distribution is a border case of the CMP distribution), it is

unsurprising to observe similar results for the 2PCMPmodel. For the setting in the second

simulation study, no numerical instabilities were observed. The comparison of compu-

tation times showed that the EM algorithm for the 2PCMP model is not only competitive

compared to other software, but even showed faster computation time on average for the

CMPCM than glmmTMB (Eddelbuettel et al., 2011) (which, however, is much more

general software). The method employed for choosing starting values for the 2PCMP

model proved advantageous in terms of average number of iterations.

6.2. Limitations

Notwithstanding promising results in terms of statistical properties from the simulation

studies and in terms of numerical stability and relative computational efficiency of the

proposed EM algorithm, the present work is also subject to certain limitations. The

number of trials in the simulation studies was limited by the computation costs of fitting

the 2PCMPmodel, so that only 250 or 500 simulation trials were run per scenario. For the
item parameters’ standard errors, only one method was used (based on a numerical

approximation to Oakes’s identity; Chalmers, 2018). Corresponding 95% confidence

intervals were constructed using a Wald approximation. This may leave results for the

coverage of the 95% confidence intervals confoundedwith themethods used for standard

error and CI computation and does not allow any specific weaknesses of the methods to

be deduced. Thus, this work cannot offer specific recommendations as towhichmethods

to use for standard errors and CIs. Due to computation costs, only one method for person

parameter estimation was evaluated, a Bayes EAP estimator (see Appendix B for an
alternative ML method). The comparison of the 2PCMP model with established methods

was focused on models which are special cases of the 2PCMP model and on a setting in

which the assumptions of the establishedmethodswere violated. Thus, the comparison is

unable to offer insights about comparative performance of other count IRT models (e.g.,

for overdispersion, the negative binomial model; Hung, 2012) or about the compared

models’ performance in different types of settings. As only one set of parameter valueswas

used in the second simulation study, the strength of the violation of assumptions of the

established methods was not systematically varied.

6.3. Avenues for future research

With the 2PCMPmodel, future research can analyse count-data-generating psychometric

tasks and self-report items with regard to their discriminatory power, difficulty, and

432 Marie Beisemann

 20448317, 2022, 3, D
ow

nloaded from
 https://bpspsychub.onlinelibrary.w

iley.com
/doi/10.1111/bm

sp.12273 by T
echnische U

niversitaet D
ortm

und D
ezernat Finanzen und B

eschaffung, W
iley O

nline L
ibrary on [16/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



measurement precision. Such investigations can help inform item selection. Future

research could also address some of the limitations of the present work. The 2PCMP

model could be compared to other existingmodels – for example, for overdispersed count

data, the IRT-ZIP (Wang, 2010) or theNBRM (Hung, 2012) –under different conditions. A
model comparison via information criteria such as Akaike’s might be helpful to this end;

best fit for the 2PCMPmodel amongmodels examinedwouldprovide strong validation for

the 2PCMPmodel. In the future, differentmethods for standard error aswell as confidence

interval computation could be compared to allow for recommendations of the best

methods for the 2PCMP model. The performance of other person parameter methods

(such as ML; see Appendix B, but note computational cost) could be examined and

compared to the Bayes EAPmethodused in thiswork. Computation time efficiency for the

2PCMP model EM algorithm could be further improved with the use of EM accelerators
(for a recent review of available state-of-the-art methods, see Beisemann, Wartlick, &

Doebler, 2020, who also compared the methods for binary IRT models). This could help

to makemore simulation trials feasible in future simulation studies to reduce Monte Carlo

standard errors. ThederivedMMLestimation technique for the 2PCMPmodel is based on a

fixedGauss–Hermite quadrature EMalgorithm.Other EMvariants such as adaptiveGauss–
Hermite quadrature EM (see Schilling & Bock, 2005, for the binary case) could be

explored. In general, other estimation techniques might be investigated, such as a

Bayesian estimation approach which might be particularly helpful for smaller sample
sizes. An extension of the 2PCMP model to include an offset would allow for modelling

time limits imposed for the items which is not unusual for psychometric tests generating

count data (e.g., in Silvia et al., 2008, a time limit of 3 min per itemwas used). The 2PCMP

model itself might be extended, for example to a multidimensional 2PCMP model or to

allow for the inclusion of covariates. For instance, by including item covariates on

dispersion parameters, researchers could investigate sources of under- and overdisper-

sion. More complex extensions could include options to model multilevel count data or

more complex factorial designs.
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Appendix A:

Derivation of the EM algorithm for the 2PCMP model
To derive the complete-data log likelihood for the 2PCMP model, the complete data are

chosen to be x, θð Þ, where x are the responses and θ are the latent abilities. To find the

corresponding likelihood, assume that each latent ability θi can be divided up into a finite

set ofK discrete categories, denoted by qk, k = 1, . . .K, yielding the discrete variableQ=
(Q1, . . . QN)

T. With  :f g as the indicator function, let f k ¼ ∑N

i¼1 Qi¼qkf g (k = 1, . . . K)

denote the number of participantswith discrete latent ability of level qk in our sample ofN

participants. Note that ∑K

k¼1f k ¼ N . Denote by f ¼ f 1, . . . , f Kð ÞT the vector containing

the number of participants in each of theK latent ability categories. Under the assumption

that the N discrete latent abilities (i.e., the N participants) are sampled pairwise
independently, one can assume a multinomial distribution for the discrete latent abilities,

with probabilitiesw1, . . .,wk for each of theK categories, as given in the following. Thus,

the probability of f is given by

P f ;w1, . . . ,wKð Þ ¼ N !

f 1! . . . f K !

� 	YK
k¼1

w
f k
k : (17)
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This same assumption is also made in the derivation of the EM algorithm for other IRT

models, for example for binary data (Baker & Kim, 2004). The notation in this section is

deliberately similar to that used in Baker and Kim (2004) to highlight similarities and

differences. For better readability, define Fk ¼ 8i : Qi ¼ qkf g as the set of person indices

where the persons have latent ability level qk. Note that each set Fk has f k elements. Let

r�ijk (j ¼ 1, . . . ,M, k ¼ 1, . . . ,K) denote the response given by a person i of discrete latent

ability qk to item j, that is, r�ijk ¼ i∈ Fk
xij. For an arbitrary but fixed ability level qk

(k∈ 1, . . . ,Kf g), write r�k to denote the response vector r�11k, . . . , r
�
f kMk

� �T
of all persons

i∈ Fk answeringM items. Then the probability of observing r�
k under the 2PCMPmodel is

given by

P r�
k; ζ, qk

� � ¼YM
j¼1

Y
i∈ Fk

λ μjk, νj
� �r�

ijk

r�ijk!
� �νj 1

Z λ μjk, νj
� �

, νj
� �

0B@
1CA (18)

¼
YM
j¼1

λ μjk, νj
� �∑i∈ Fk

r�
ijk

exp νj∑i∈ Fk
log r�ijk!
� �� � 1

Z λ μjk, νj
� �

, νj
� �f k : (19)

Define rjk≔∑i∈ Fk
r�ijk ¼ ∑N

i¼1i∈ Fk
r�ijk (i.e., the sum of the responses of all f k participants

with ability levelqk on item j) andhjk≔∑i∈ Fk
log r�ijk!
� �

¼ ∑N

i¼1i∈ Fk
log r�ijk!
� �

, and obtain

P r�
k; ζ, qk

� � ¼YM
j¼1

λ μjk, νj
� �rjk
exp νjhjk

� � 1

Z λ μjk, νj
� �

, νj
� � f k

: (20)

Denote the vector r�111, . . . , r
�
f KMK

� �T
of all responses by r�. The probability of observing

r� is given by
QK

k¼1P r�k; ζ, qk

� �
. Consequently, the joint probability of f and r�, that is, the

complete-data likelihood Lc, is given by

Lc ¼ P f , r�; ζð Þ ¼
YK
k¼1

YM
j¼1

λ μjk, νj
� �rjk
exp νjhjk

� � 1

Z λ μjk, νj
� �

, νj
� � f k

0B@
1CA N !

f 1! . . . f K !

� 	YK
k¼1

w
f k
k

 !
:

(21)

From the factorization of the likelihood, one can see that f k, rjk, and hjk, for all

j∈ 1, . . . ,Mf g, for all k∈ 1, . . . ,Kf g, constitute sufficient statistics for the complete data

under the 2PCMP model. Taking the logarithm and omitting constants,
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logP f , r�; ζð Þ ¼ LLc

/ ∑
K

k¼1

∑
M

j¼1

rjklog λ μjk, νj
� �� �

�νjhjk�f klog Z λ μjk
���

, νjÞ, νjÞÞ
 !

þ ∑
K

k¼1

f klog wkð Þ

 �

/ ∑
K

k¼1

∑
M

j¼1

rjklog λ μjk, νj
� �� �

�νjhjk�f klog Z λ μjk, νj
� �

, νj
� �� �

:

The right summand which is omitted above from the second to the third line does not
depend on ζ and thus will not influence the optimization in terms of ζ. As this is what the

log likelihood is used for here, any terms not dependent on ζ (i.e., which do not have an

index j) can be ignored. Take the expectation overQ given the observed datax and ζ0. The
expected complete-data log likelihood is proportional to (and equal to save for constant

terms)

Qjx ,ζ0 LLcð Þ ¼  LLcð Þ

/ ∑
K

k¼1

∑
M

j¼1

Qjx ,ζ0 rjk
� �

log λ μjk, νj
� �� �

�νjQjx ,ζ 0 hjk

� �
�Qjx ,ζ0 f kð Þlog Z λ μjk, νj

� �
, νj

� �� �
≕ ELLc:

(22)

With the posterior probability of node qk,P qkjxi, ζ0ð Þ, as defined in Equation (8),wehave

Qjx,ζ0 f kð Þ ¼ Qjx,ζ0 ∑
N

i¼1

 Qi¼qkf g


 �
(23)

¼ ∑
N

i¼1

Qjx,ζ0  Qi¼qkf g
� �

(24)

¼ ∑
N

i¼1

P qk j xi, ζ0ð Þ≕fk, (25)

for all k2 1, . . . ,Kf g.With analogous operations and using the definitions of rjk and hjk one

obtains

Qjx,ζ0 rjk
� � ¼ ∑

N

i¼1

xijP qkjxi, ζ0ð Þ≕rjk (26)

and
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Qjx,ζ0 hjk

� � ¼ ∑
N

i¼1

log xij!
� �

P qk j xi, ζ0ð Þ≕hjk (27)

for all k∈ 1, . . . ,Kf g, for all j∈ 1, . . . ,Mf g. Using these and Equation (22) for the E-step

(as one can and as EM algorithms for, for example, logistic IRT models typically do with

analogous equations; see Baker & Kim, 2004), results in gradients with numerically

challenging terms for the M-step (compare Equations (29–31), with, in particular,

challenging terms in the gradients for the dispersion parameters, see Equations (32–34)).
To alleviate this problem, I substitute the definitions of f k, rjk, and hjk into Equation (22)
and rearrange in the search for a more compact formulation of the expected complete-

data log likelihood (andespeciallymore compact expressions of the resulting gradients for

the M-step). It is easy to show that this expression can be rearranged into Equation (9):

ELLc ¼ ∑
K

k¼1

∑
M

j¼1

rjklog λ μjk, νj
� �� �

�νjhjk�f klog Z λ μjk, νj
� �

, νj
� �� �

¼ ∑
K

k¼1

∑
M

j¼1

∑
N

i¼1

xijP Qk j xi, ζ0ð Þ

 �

log λ μjk, νj
� �� �

�νj ∑
N

i¼1

log xij
� �

P Qkð j xi, ζ0Þ

 �

� ∑
N

i¼1

P Qk j xi, ζ0ð Þ

 �

log Z λ μjk, νj
� �

, νj
� �� �

¼ ∑
K

k¼1

∑
N

i¼1

∑
M

j¼1

xijlog λ μjk, νj
� �� �

�log xij
� �

νj�log Z λ μjk
���

, νjÞ, νjÞÞ
� �

P Qk j xi, ζ0ð Þ
h i

,

(28)

thereby showing that the EM algorithms based on Equations (22) and (9) are equivalent

representations of the same algorithm which maximizes the same expected complete-

data log likelihood in each M-step. In fact, Equation (9) is a simplification of Equation (2),
giving the justification for Equation (9). The advantage of the substitution of f k, rjk, andhjk

in Equation (22) and subsequent rearrangement is – as mentioned above – that the

resulting term yields much more compact representations of the derivatives (note that if

one were to first take the derivatives of Equation (22) and then substitute the respective

definitions for f k, rjk, and hjk, one should arrive at the same representations as

Equations (22) and (9) are equivalent). To illustrate this point, I provide the derivatives of

Equation (22) in terms of the itemparameterwithout substituting f k, rjk, andhjk. They are

∂ LLcð Þ
∂αj

¼ ∑
K

k¼1

qkμjk
V μjk, νj
� � rjk�μjk f jk

� �
, (29)

for the αj, for all j∈ 1, . . . ,Mf g,

∂ LLcð Þ
∂δj

¼ ∑
K

k¼1

μkj
V μjk, νj
� � rjk�μjk f jk

� �
(30)

for the δj, for all j∈ 1, . . . ,Mf g, and
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∂ LLcð Þ
∂logνj

¼ ∑
K

k¼1

νj
rjk

W jk

�hjk þ f jkRjk


 �
(31)

for the logνj, for all j∈ 1, . . . ,Mf g, with

Rjk ¼ ∑
∞

x¼0

λ μjk, νj
� �x

x!ð ÞνjZ λ μjk, νj
� �

, νj
� � x

Wjk

�ln x!ð Þ

 �

(32)

and

Wjk ¼ ∑
∞

x¼0

x�μjk

� �2
λ μjk, νj
� �x

x!ð Þνj Sjk , (33)

where

Sjk ¼ ∑
∞

x¼0

ln x!ð Þ
x�μjk
� �

λ μjk, νj
� �x

x!ð Þνj : (34)

One can immediately see, in particular, that the derivatives for the log dispersions contain

more complicated terms than in the previous section. In any implementation, the series

Rjk, Sjk, and Wjk need to be numerically approximated, adding potential sources of

numerical instability.

Appendix B:

Maximum likelihood ability estimation

Assume the item parameters ζ as known, and that the responses of N participants are

pairwise independent and conditionally independent between items given the partici-

pant’s latent ability. The probability of the response vector for a participant i,

i∈ 1, . . . ,Nf g arbitrary but fixed, given their latent ability θi under the 2PCMP model is

P xijθi, ζð Þ ¼
YM
j¼1

CMPμ xij; μij, νj
� �

: (35)

As one assumes one participant’s responses independent of other participants’

responses, ML estimates of their ability may be found for one person at a time. To obtain

theML estimate of person i (i∈ 1, . . . ,Nf g), one takes the logarithm of Equation (35) and

iteratively optimizes the result with respect to the participant’s ability θi. To this end, the

first derivative of the logarithm of Equation (35), which is given by

∂logP xijθi, ζð Þ
∂θi

¼ ∑
M

j¼1

∂logCMPμ xij; μij, νj
� �
∂θi

¼ ∑
M

j¼1

xijαjμij
V μij, νj
� �� αjμ2ij

λ μij, νj
� � , (36)
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is set equal to 0 and then one iteratively solves for θi, for arbitrary but constant

i∈ 1, . . . ,Nf g. To this end, Newton–Raphson typemethods or similar alternatives can be

employed. These methods usually require second derivatives, which, if not provided

analytically, are approximated numerically. In either case, the estimation is carried out
separately for each person, leading to a large number of evaluations of the gradient in

Equation (36) which may quickly lead to long computation times.

Appendix C:

Details of the computational implementation

2PCMP model EM algorithm

I generated grids for using λ μ, νð Þ, Z λ μ, νð Þ, νð Þ, and V λ μ, νð Þ, νð Þ using TMB Kristensen,

Nielsen, Berg, Skaug, & Bell, 2015) via code I modified from glmmTMB (Brooks

et al., 2017). I used the GSL library (Galassi et al., 2014) from C++ to interpolate values

from the grid using two-dimensional bicubic interpolation, tied into the R code with the
help of RcppGSL (Francois, Eddelbuettel, & Eddelbuettel, 2010). I still numerically

approximate other infinite series (A and B from Equation (13)) in C++ using the same

method as Kristensen et al. (2015), where I start evaluating the series at its mode and add

increments in either direction of the mode until the absolute increments fall below a very

small value ε∈R, ε> 0.

I chose starting values for the α and δ parameters in the 2PCMP model by fitting a

2PPCM to the data. For the 2PPCM, I used part-whole corrected correlations to determine

starting values for the slope parameters and logarithms of the item means for the
intercepts. For the starting values for the log dispersions of the 2PCMP model, I use the

starting values of the slopes and intercepts to generate a number of observations under the

2PPCM (with 1,000 as the default). The logarithms of item-specific ratios of the variance of

the simulated responses to the variance of the observed responses are used as starting

values for the log dispersions.

The fixed Gauss–Hermite quadrature was in part implemented with the help of the R

package fastGHQuad (Blocker, 2018), that is, fastGHQuad was used to generate the

quadrature nodes and weights. Weights were then adjusted to be appropriate for the
standard normal distribution, and sums over the quadrature nodes were implemented in

C++. In simulation study I, I investigated what number of nodes would be a good

recommendation. Prior trial simulations had already shown that it is strongly recom-

mended to use at least 100 quadrature nodes to achieve satisfactory accuracy in parameter

estimation. The iterative root finding of the gradients in eachM-step is carried outwith the

Broyden method as implemented in the R package nleqslv (Hasselman, 2018).

Simulation studies

In both simulation studies, the 2PCMPmodel and constrained versions of it as well as the

2PPCM in simulation study II were fitted using the countirt package. In both simulation

studies, ability parameters for the 2PCMP model were estimated with the Bayes EAP

estimator for better computational efficiency for the simulations. Further R packages used

were the glmmTMB package Brooks et al., 2017) to fit the CMPCM (Forthmann, Gühne,

et al., 2020), the doParallel package (Microsoft Corporation & Weston, 2020) and the

doRNG package (Gaujoux, 2020) to implement parallel computation of simulation trials,
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the tidyr (Wickham, 2021) and the dplyr (Wickham, Francois, Henry, & Müller, 2021)

packages to prepare the simulation results, and the ggplot2 (Wickham, 2016) as well as

the xtable (Dahl, Scott, Roosen, Magnusson, & Swinton, 2019) packages to create the

tables and figures.
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