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Abstract

Purpose: Novel radiotherapy techniques like synchrotron X-ray microbeam
radiation therapy (MRT) require fast dose distribution predictions that are accu-
rate at the sub-mm level, especially close to tissue/bone/air interfaces. Monte
Carlo (MC) physics simulations are recognized to be one of the most accurate
tools to predict the dose delivered in a target tissue but can be very time con-
suming and therefore prohibitive for treatment planning. Faster dose prediction
algorithms are usually developed for clinically deployed treatments only. In this
work, we explore a new approach for fast and accurate dose estimations suit-
able for novel treatments using digital phantoms used in preclinical development
and modern machine learning techniques. We develop a generative adversarial
network (GAN) model, which is able to emulate the equivalent Geant4 MC sim-
ulation with adequate accuracy and use it to predict the radiation dose delivered
by a broad synchrotron beam to various phantoms.

Methods: The energy depositions used for the training of the GAN are obtained
using full Geant4 MC simulations of a synchrotron radiation broad beam pass-
ing through the phantoms. The energy deposition is scored and predicted in
voxel matrices of size 140 x 18 x 18 with a voxel edge length of 1 mm. The GAN
model consists of two competing 3D convolutional neural networks, which are
conditioned on the photon beam and phantom properties. The generator net-
work has a U-Net structure and is designed to predict the energy depositions of
the photon beam inside three phantoms of variable geometry with increasing
complexity. The critic network is a relatively simple convolutional network, which
is trained to distinguish energy depositions predicted by the generator from the
ones obtained with the full MC simulation.

Results: The energy deposition predictions inside all phantom geometries
under investigation show deviations of less than 3% of the maximum deposited
energy from the simulation for roughly 99% of the voxels in the field of the beam.
Inside the most realistic phantom, a simple pediatric head, the model predictions
deviate by less than 1% of the maximal energy deposition from the simulations
in more than 96% of the in-field voxels. For all three phantoms, the model gener-
alizes the energy deposition predictions well to phantom geometries, which have
not been used for training the model but are interpolations of the training data in
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multiple dimensions. The computing time for a single prediction is reduced from
several hundred hours using Geant4 simulation to less than a second using the
GAN model.

Conclusions: The proposed GAN model predicts dose distributions inside
unknown phantoms with only small deviations from the full MC simulation with
computations times of less than a second. It demonstrates good interpolation
ability to unseen but similar phantom geometries and is flexible enough to be
trained on data with different radiation scenarios without the need for optimiza-
tion of the model parameter. This proof-of-concept encourages to apply and
further develop the model for the use in MRT treatment planning, which requires
fast and accurate predictions with sub-mm resolutions.

KEYWORDS
deep learning, dose prediction, generative adversarial networks, novel treatments, synchrotron radi-

ation therapy

1 | INTRODUCTION

A variety of highly conformal treatment techniques
such as intensity-modulated radiation therapy’ (IMRT)
and volumetric modulated arc therapy? (VMAT) have
been developed in recent decades.® These techniques
have helped to reduce the healthy tissue dose during
the irradiation of tumor cells and have led to strong
improvements in the treatment of many types of
cancer*® However, for certain types of cancer, such as
glioblastoma, the overall clinical outcome has seen little
improvement® One potential treatment technique that
has shown promising results in preclinical studies to
treat these aggressive types of cancer, is microbeam
radiation therapy (MRT), which is based on polarized
high-intensity, spatially fractioned synchrotron X-ray
beams.”® The treatment planning of such beams
requires dose calculations with a spatial resolution
of a few micrometers and are currently performed
using time-consuming Monte Carlo (MC) simulations?®
Accurate predictions of the dose distributions inside a
phantom can take days using such MC simulations."®
Several faster approximations for MRT dose distri-
bution computations have been investigated in recent
years. The fastest reported computation method com-
prises the integration of MRT in the Varian Eclipse
treatment planning software.!" The approach calcu-
lates energy depositions based on the radiological
depth and yields short computation times but cannot
provide accurate dose predictions in heterogeneous
phantoms (overestimation of approximately 20% of the
dose in lung tissue inside water) and at high resolution
(only macroscopic treatment of the dose calculation).
Another approach uses a point kernel algorithm, which
results in an execution time of approximately 5 min
for the prediction of the dose inside a phantom but
is found to lead to large deviations compared to the
full MC simulations, which are especially present at
interfaces between tissues.'? The agreement to full MC
simulations is improved using a hybrid model, which

combines a simplified MC simulation with an analytical
dose kernel approach.'? This method is reported to take
approximately 30 min to compute the dose distribution
inside a phantom, which is still relatively long for a
clinical application of a treatment planning system.

The goal of our work is to develop an algorithm, which
is fast enough for real-world treatment planning systems
and accurate enough for high-resolution radiation ther-
apy such as MRT. In the presented study, we take a first
step in that direction by developing a general and flexible
model for the fast and accurate prediction of dose distri-
butions inside phantoms using modern machine learn-
ing techniques.

In recent years, machine learning has been used in
an increasing number of publications for fast treatment
planning of commercially available therapies."> Most
of these studies have in common, that neural networks
are used to generate a full treatment plan based on a
database of already delivered treatments."* For novel
treatments, such as MRT, existing treatment plans are
usually not available. More recent developments include
the computation of dose distributions using computed
tomography (CT) scans of a large number of patients
as training data for neural networks.'>'" In the case of
novel treatments like MRT, many different targets from
slab phantoms to rats are usually subject to in-silico
and experimental investigations (e.g., by Engels et al ).
To allow development work on the machine learning
model prior to the acquisition of dedicated CT data, we
present a fully MC simulation-based approach using
Geant4'® and digital phantoms, which is possible for
any kind of new therapy method, as long as a model for
the MC simulation exists. The use of digital phantoms,
rather than CT-based phantom geometries, in addition
allows to generate accurate MC training data faster
and to address eventual development problems more
efficiently.

The machine learning algorithm presented in this
paper is based on generative adversarial networks
(GANs)."® GANs have been successfully applied to a
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variety of complex data generation tasks?’ and have
recently also been employed in the field of dose dis-
tribution computations for radiotherapy?’-?? The basic
concept of GANs is to use two competing neural net-
works: A generator network that learns to generate new
data samples similar to given training samples, and a
discriminator (or critic) network, which is trained to dis-
tinguish those generated samples from the ones of the
training data. Feedback from the discriminator enables
the generator to learn to generate output, which is indis-
tinguishable from the training data, while the discrimina-
tor improves its level of distinction by being presented
with more and more similar data from the generator.
A recent study?? found that, especially for the case of
dose predictions in heterogeneous material resulting in
high-dose gradients, GANs are more accurate in their
predictions compared to regression networks due to
their dynamically changing objective function, which can
capture more volume-level information than a localized
loss function. While the training of GANs is a complex
process and often challenging and time-consuming, the
prediction using only the generator is usually very fast,
which makes them an ideal candidate for our purposes.

To our knowledge, there is no prior published study
thatincludes every step of the development process:the
creation of the required digital phantoms, the design of
full MC simulations, which are adapted to a special irra-
diation modality and are experimentally validated, and
finally, training of the studied ML model with detailed
investigation of its performance. While there are many
publications about dose predictions using deep learn-
ing models, only few publications that we know of aim at
similar research goals. For example, Zang et al?® pub-
lished a very notable study on dose predictions with a
GAN in the case of proton irradiation, they did not com-
pare their predictions though on a voxel-by-voxel base,
especially around tissue borders. This makes it difficult
to inspect the usability for high-gradient applications. In
the work of Kearney et al.,>> GANs were used for dose
prediction and results were compared with MC simula-
tions as well, but no detailed comparison of depth—dose
curves is shown as the focus remains on clinical param-
eters like dose—volume histograms. More detailed com-
parisons were conducted, for example, in the work of
Kontaxis et al.,'” but as they use only prostate CT scans
for all their data, it is difficult to understand how the train-
ing and test data really differ, even if taken from individ-
ual patients. Our approach using digital phantoms allows
for a more straightforward understanding of differences
between training and test.

As a proof-of-concept, we apply our GAN model to
three simplified irradiation scenarios, which are incre-
mentally increasing in their complexity: a water phantom
with a rotated bone slab, a water phantom with a rotated
bone slab of variable thickness, and a pediatric head
phantom. For simplicity, we use a broad beam instead
of a microbeam for the irradiation of the phantoms and
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require a spatial resolution of 1 mm?3 in the dose predic-
tion.

This paper is structured as follows: Section 2
describes the MC simulation using Geant4 and the
developed machine learning model. In Section 3 the
dose predictions of the GAN obtained for the three sce-
narios are presented and compared to the full MC simu-
lation. Finally, in Section 4 the results are discussed and
in Section 5 conclusions are made.

2 | MATERIALS AND METHODS

The development of the digital phantoms and the dose
computation model follows an iterative-incremental
approach, which is recognized to a successful soft-
ware process, adopted also in the development
of Geant4242° Following this software process, the
machine learning dose prediction model is trained on
the simpler configurations described in this section. This
allows to generate accurate MC data more rapidly com-
pared to CT-based simulations and thereby to address
eventual development problems more easily and to
develop a more robust software product. As MRT is at
preclinical stage and dosimetric studies are performed
in phantoms and in pets, two digital phantoms that are
commonly used in preclinical research are presented in
this work: a slab and an ellipsoid head phantom.

21 | MC simulation

The photons of the broad beam and their interactions
with the material of the various phantoms are simulated
using Geant4 10.6p01'8 with option 4 of the standard
electromagnetic physics constructor, which is adapted to
model the interactions of the polarized photons with the
target (Livermore Polarized Physics) .26 The beam is sim-
ulated using the description of the Imaging and Medical
beam line (IMBL) at the Australian Synchrotron®’ and
corresponds to a typical highly polarized synchrotron
beam?® as used for preclinical research for MRTZ2°
before passed through a multislit collimator to produce
the microbeams. The energy spectrum of the X-ray
beam is shown in Figure 1a. The initial beam traverses
a tungsten mask in order to obtain a beam cross sec-
tion of 8 x 8 mm? before it hits the various phantoms.
The lateral beam profile together with the in-field and
out-of-field definition is shown in Figure 1b. The phan-
toms are placed at a distance of 4 cm behind the mask
to reduce back-scattering effects, which is shown exem-
plary in Figure 2a for a cubic water phantom with a size
of 14 x 14 x 14 cm®. The tungsten mask (dark gray)
and the water phantom (blue) are surrounded by a total
simulation volume (light gray) of size 30 x 30 x 30 cm?.
For all simulated phantoms, the energy depositions are
calculated for each voxel of size 1 x 1 x 1 mm? in
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gray), the water phantom (blue), and the scoring volume (outlined in white). (b) Normalized energy deposition inside the water phantom along
the depth at the center of the beam. (c) Normalized lateral energy deposition inside the water phantom integrated along beam direction. The
energy deposition is normalized to the maximum value E,,4 of the in-field region of the beam

the scoring volume of D x W x H = 140 x 18 x 18
mm?3, which starts at the surface of the phantom and is
centered around the beam. The one-dimensional (1D)
projection of the normalized energy depositions of the
beam inside this water phantom along the beam (depth)
and the profile perpendicular to the beam (lateral) are
shown in Figure 2b and Figure 2c, respectively.

The Geant4-based data samples were simulated
using the LiDO3 cluster at TU Dortmund University,
which took approximately 2 weeks using on average 500
Intel Xeon cores simultaneously. All simulated data are
divided into training data, which are presented to the
neural network for weight optimization, validation data,
which are used to identify the best model parameters
and test data, which are exclusively used to evaluate
the performances after the best machine learning model
was chosen.

2.1.1 | Water phantom with rotated bone
slab of constant thickness

The simplest phantom considered in this studies, con-
sist of a water cube as described above with a centrally

inserted compact bone slab (ICRU, p = 1.85 g/cm?) with
a constant thickness of d = 2.5 mm, which is rotated con-
tinuously with angles of a € [0, 87]° around an axis per-
pendicular to the beam axis. A schematic of the phantom
including the tungsten mask is shown in Figure 3a with
an exemplary rotation angle of o« = 45°. Figure 3b,c
shows the normalized energy depositions of the beam
inside the phantom along the beam axis and along the
rotation axis integrated over the beam axis, respectively.
Due to the rotation of the bone slab, the energy deposi-
tion peaks slightly before the center of the phantom (70
mm in depths), where the bone slab is inserted.

The simulated data of this phantom serve as a fea-
sibility study to develop a flexible GAN model, which is
general enough to be applied to more complex phantom
geometries and predicts at the same time accurately the
simulated energy depositions inside the phantom. The
traversed distance of the beam within the bone mate-
rial and, as a result, the energy depositions change more
drastically at larger rotation angles. To increase the sam-
pling density of the simulation at those larger rotation
angles, the rotation angles of the simulation are deter-
mined by drawing random numbers from a 1/ cos(a) dis-
tribution. The simulated data are split into training data

85UB017 SUOWILLOD BAIESID 8|edl|dde ay) Ag pausenob e sapile YO ‘8sn Jo S9N Joj ARelqi auljuQ 481\ UO (SUONIPUOD-pUe-SWS)/WI0D A8 | 1M AReg 1[puljuo//:Sdny) SUONIPUOD pUe SWe | 8Y)88S *[7202/20/62] Uo Ateiqiauljuo A8[Im ‘Bunyfeyasag pun uszueud Jeueze@ punwiiod 1Be)seAlun ayasiuye 1 Ag §SGST duwl/Zo0T 0T/10p/wod A im Aelqjeul|uo widee//sdny wouj pepeojumoq ‘s ‘220z ‘602veLre



FAST DOSE PREDICTIONS WITH 3D U-NET GANS

MEDICAL PHYSICS——22

[ Simulated -

{2
N

3 Simulated ]

E/Emax
-
=)

0.6
0.4f

0.2}

(a) (b)

0 20 40 60 80 100 120 140

009 =5 0 5 10
(C) Lateral position [mm]

Depth [mm]

FIGURE 3 (a) Schematic of the simulation setup of a cubic water phantom with inserted bone slab including the world volume (light gray),
the tungsten mask (dark gray), the water phantom (blue), and the bone slab (dark blue) rotated at 45° (white). (b) Normalized energy deposition
inside the water phantom with the rotated bone slab along the depth at the center of the beam. (c) Normalized lateral energy deposition inside

the water phantom with the rotated bone slab integrated along beam direction. The energy deposition is normalized to the maximum value E,x

of the in-field region of the beam

with rotation angles o € {[0, 3) u [7,23) U [27,43) U [47,
63) U [67, 78) U [82, 87]}°, validation data with rotation
angles of a € {[5,7) U [25,27) U [45,47) U [65,67) U [80,
82)}° and test data with rotation angles of a € {[3, 5) U
[23,25) u [43,45) U [63,65) U [78, 80)}°. Here, the sym-
bol “[” denotes an inclusive interval limit, “)” means an
exclusive interval limit, and “U” the union of the individ-
ual intervals. The resulting number of simulated sam-
ples and the split in training, validation, and test set is
shown in Figure 4. The purpose of this split is to have
unbiased simulation data for the performance evalua-
tion during the training and hyperparameter optimization
(validation data) as well as for the final assessment of
the performance (test data). At the same time this allows
for investigating how well the GAN model can interpolate
in one dimension.

2.1.2 | Water phantom with rotated bone
slab of variable thickness

The second phantom is identical to the first phantom
with the exception that the thickness of the bone slab
is varied in addition to varying rotation angle. The pur-

I Training
600+ 3 Validation .
[ Test

400

200

Number of simulations

0 20 40 60 80
Bone rotation angle [deg]

FIGURE 4 Number of simulated training (dark gray), validation
(medium gray), and test samples (light gray) as a function of bone
slab rotation angle

pose of the simulated data using this phantom is to
demonstrate the interpolation capabilities of the GAN
model in two dimensions. This is of particular impor-
tance, because for future applications in treatment plan-
ning, the model needs to be able to accurately predict
energy depositions for unknown geometries, which have
not been used for the training of the GAN. Multidimen-
sional interpolation is in general not an easy task for a
generative model, which is why we consider this as an
important step before moving to more complex phan-
tom geometries. For this purpose, the simulated data are
split into training data with bone slab thicknesses of d
€ {1, 2.5, 5, 10}mm and rotation angles of a € {[4, 17)
U [23, 37) u [43, 57) u [63, 84) U [86, 87)}°. The sim-
ulated data of the same thicknesses but with rotation
angles not used during the training and in the range of
[0, 87]° are used as validation data. In order to investi-
gate the ability of the GAN to predict the energy deposi-
tions inside unknown phantom geometries, the test data
are simulated with bone slab thicknesses of d € {1.75,
4, 7Ymm but continuously in the full rotation angle range
of [0, 87]°. The split of the simulated data is illustrated
in Figure 5.

2.1.3 | Simple pediatric head phantom with
translation

The third phantom is a simple model of a pediatric head.
The skull of the head is constructed using two rotational
ellipsoids (spheroids). The first spheroid has a length of
15 cm and a width/height of 13 cm. The second spheroid
with a length of 14.25 cm and width/height of 12.6 cm is
located inside the first one and is slightly shifted by 1.25
mm from the center to the front. The volume in between
the two spheroids corresponds to the skull and consists
of com pact bone (ICRU, p = 1.85 g/cm?), resulting in
bone thicknesses of 2.5 mm at the forehead, of 5 mm
at the back of the head and of 2 mm at the sides. The
obtained skull is filled with water in order to mimic the
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FIGURE 6

(a) Schematic of the simulation setup of a simple pediatric head phantom showing the tungsten mask (dark gray), the incoming

beam, the skin (red), the skull (black), the brain (blue), and the scoring volume and the fixed scoring volume (outlined by dotted line). (a)
Normalized energy deposition inside the water phantom along the depth at the center of the beam with translation t = 0 mm. The energy
deposition is normalized to the maximum value E,,, of the in-field region of the beam. (c) Number of simulated training (dark gray), validation
(medium gray), and test samples (light gray) as a function of phantom translation. Normalized lateral energy deposition inside the water
phantom integrated along the beam direction. The energy deposition is normalized to the maximum value E,, of the in-field region of the beam

brain tissue and surrounded by a thin layer (1 mm) of
water in order to model the skin. The head is positioned
orthogonal to the beam, such that the radiation would
be performed centrally from the side. A schematic of the
phantom and the tungsten mask is shown in Figure 6a.
The simulation is performed with translations t of the
head orthogonal to the beam in the range of t € [-65,65]
mm along the longitudinal axis of the spheroid in order
to simulate any possible position of the beam along the
equatorial ellipse. The number of simulated samples
is uniformly distributed over the full translation range.
Due to the translation of the head, the thickness, shape,
angle, and position of the radiated bone changes at the
same time. An exemplary normalized energy deposition
inside the phantom at the center of the head with t =0
mm is shown in Figure 6b. The two energy peaks result
from the bones at the front and the back of the skull.
The purpose of this simulated data is to investigate
the GANs ability to predict energy depositions in more
complex geometries and to interpolate the predictions
in dynamically changing geometries in multiple dimen-

sions. Although the head phantom has a relatively sim-
ple geometry compared to realistic heads, this study is
an important milestone and a proof-of-concept for future
applications aiming for real-life treatment planning. The
simulated data are split in training data with t € {[-65,
—54) u[-46,-29) U [-21,-4) U [4,21) U [29,46) U [54,
65]} mm, in validation data with t € {{—54, —50) U [-29,
—25) U [-4,0) u [25,29) U [50, 54)} mm and in test data
with t € {[-50,-46) u[-25,—-21) U [0,4) U [21,25) U [46,
50)} mm as visualized in Figure 6c.

2.2 | The GAN model

In the following we describe and motivate our model,
which was using the simulated data of the first phantom.
We use a conditional GAN®? with a Wasserstein loss
function®’ and a Gradient Penalty term>? to regularize
and stabilize the weight updates, which are performed
using the Adam optimizer®® with an initial learning rate
of a =2 - 10° and a batch size of 32. As the output of

85UB017 SUOWILLOD BAIESID 8|edl|dde ay) Ag pausenob e sapile YO ‘8sn Jo S9N Joj ARelqi auljuQ 481\ UO (SUONIPUOD-pUe-SWS)/WI0D A8 | 1M AReg 1[puljuo//:Sdny) SUONIPUOD pUe SWe | 8Y)88S *[7202/20/62] Uo Ateiqiauljuo A8[Im ‘Bunyfeyasag pun uszueud Jeueze@ punwiiod 1Be)seAlun ayasiuye 1 Ag §SGST duwl/Zo0T 0T/10p/wod A im Aelqjeul|uo widee//sdny wouj pepeojumoq ‘s ‘220z ‘602veLre



FAST DOSE PREDICTIONS WITH 3D U-NET GANS

MEDICAL PHYSICS 22

Concatenation
Strided convolution

(i 1

Convolution
Upsampling3D
"/ A>Y Skip connection

[wuw] "sod [e21IdA

y(x) [a.u.]

[ww] 'sod |ed1dA

-10

Lag, 0 70
€ral pos, [mmlo 0 gepth (o

FIGURE 7

[wuwi] 'sod [e213A

Schematic of the generator 3D U-Net structure with input and output data. Left: Conditional generator input consisting of a 3D

representation of a material density matrix (top) and a 3D matrix of the energy deposition of the photon beam in a water phantom (bottom).
Center: Convolutional encoder and decoder connected by skip connections. The normal distribution below indicates the injection of random
noise in the bottleneck layer. Right: Generator output consisting of a 3D representation of energy depositions inside the phantom

Wasserstein GANs (WGANSs) reflects not only a qual-
itative but also a quantitative assessment by using an
approximation of the Earth-Mover’s distance as loss, the
discriminator is usually called critic instead. One batch
of simulation data are used to update the weights of
the critic five consecutive times, before they are used to
update the weights of the generator a single time. This
ensures that the critic is strong enough to provide valu-
able information to the training of the generator.

2.2.1 | The generator model

A schematic of the generator model is shown in Figure 7.
The goal of the generator is to predict the energy depo-
sitions of the photon beam used for the radiation therapy
inside a three- dimensional (3D) body, for example, a
phantom or a patient. In our case, the output of the
generator is thus a 3D matrix of energy depositions
of size 140 x 18 x 18 corresponding to the voxelized
scoring volume of the simulation (right). The prediction
is dependent on the beam properties as well as the
localisation and properties of the material inside the
body, for example, the localization and density of bone,
skin, or water. Hence, the generator network of the GAN
is conditioned on this information.>° The first conditional
information of the generator are the 3D energy deposi-
tions of a beam inside a pure water phantom (lower left),
which describes the relevant properties of the beam
(energy spectrum, beam profile, polarization, etc.), and
at the same time gives the network information about
how the beam interacts with a default material (water)
in the same format (140 x 18 x 18) as the prediction is
made. Introducing this conditional information consider-
ably accelerates and stabilizes the training and yields
more accurate predictions. The second conditional infor-

mation is the 3D material density matrix of the phantom
model (upper left) of dimension 140 x 18 x 18 as used
for the simulation. This information is of course not avail-
able for a real-life application but would be replaced by
the 3D medical imaging information of the patient, such
as the Hounsfield units of a CT scan. As the conditional
input of the generator consists of two high-dimensional
matrices (140 x 18 x 18 x 2), the dimensionality of this
information is reduced by encoding the 3D images with
multiple strided 3D convolutions into low-dimensional
representations (3 x 3 x 3) of the data combining
the geometrical properties of the phantom with the
information obtained from the energy depositions of
the beam in water (center). The compressed features
are then concatenated with 100 values of random
noise drawn from a Gaussian distribution to statistically
predict the energy depositions inside the phantom by
decoding the images again to dimension 140 x 18 x 18
using 3D up-samplings with subsequent convolutions.
Each convolutional layers of the generator consists of
64 filters of variable size, is activated using the Swish
function,** stabilized using batch normalization>®> and
regularized using dropout®® with a rate of 15%.Because
not only the low-dimensional features contain important
information for the prediction but also the intermediately
obtained features of the encoder, we introduce skip
connections to pass information from the same level
of the encoder to the same level of the decoder by
concatenating the two layers and effectively doubling
the number of the filters in the decoder. This obtained
structure using a convolutional encoder—decoder with
skip connection is usually referred to as U-Net structure,
which was first introduced for fast 2D biomedical image
segmentation.3” A similar structure of a 3D U-Net®® has
recently been applied for dose distribution estimation in
IMRT."”
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FIGURE 8 Schematic of the critic network with input and output data. Left: Conditional generator input consisting of a 3D representation of
a material density matrix (top left) and a 3D matrix of the energy deposition of the photon beam in a water phantom (bottom left) as well as the
simulated or generated 3D energy depositions inside the phantom (right). Center: The critic architecture with six subsequent convolutional
layers. Right: The output is a Wasserstein loss rating the input energy depositions as simulated or generated

2.2.2 | The critic model

The critic of the GAN is built as a relatively simple 3D
convolutional network. A schematic of the critic model
is shown in Figure 8. In addition to the same condi-
tional information as given to the generator, the critic
receives either the simulated or generated energy depo-
sitions inside the phantom as input in order to classify
these two types of data (left). The three input matrices of
dimension 140 x 18 x 18 are concatenated and passed
through six consecutive transposed 3D convolutions of
decreasing filter size (center). Each convolutional layer
of the critic consists of 128 filters, is activated using the
Swish function and regularized using a dropout rate of
15%. The last layer of the critic consists of a single lin-
ear unit resulting in a continuous and quantitative rating
distinguishing simulated from generated samples (right).

2.2.3 | Performance measure

In many machine learning applications, the develop-
ment of the loss over the training process is used as
an indication whether the optimization of the weights is
converged. In the training of GANs, the loss is usually
not a good measure to assess the convergence of the
two networks to a stable equilibrium or to judge about
the performance of the generator. Therefore, we define
the delta index, which is inspired by the global gamma
index,? from which we can derive a performance mea-
sure for the prediction quality of the generator. The delta
index is defined as

Dyen — Ds;
5= gen — S|m, (1)
D

sim

where Dge, is the dose predicted by the generator net-
work of the GAN, D, is the dose obtained by the
Geant4 simulation, and D;'};’;‘qx is the maximum dose
deposition in the phantom as calculated in the MC simu-
lation. The delta index is calculated for each voxel of the
in-field area of the beam inside the scoring volume. As
global performance measure we use the 1% (3%) pass-
ing rate, which is the fraction of the voxels with a delta
index smaller than 1% (3%). The model of the genera-
tor is chosen for the final performance evaluation, which
maximizes the 1% passing rate on the validation data
during the training.

3 | RESULTS

In this section we compare the predictions of the GAN
model for the three different phantoms with the MC sim-
ulation and use the passing rate in order to summarize
the prediction accuracy. The machine learning models
are implemented using the Keras*? interface to Tensor-
flow 2.2*" on a Nvidia GeForce GTX 1080i graphical pro-
cessing unit (GPU). Training took several days for each
model.

3.1 | Water phantom with rotated bone
slab of constant thickness

The development of the 1% (3%) passing rate averaged
over the bone slab rotation angles during the training
process using the data of the first phantom is shown
in Figure 9a for the training and validation data, where
one epoch means, that the full training data have been
used for updating the weights of the GAN model a single
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(a) Global 1% (red) and 3% (black) passing rates for the training (solid) and validation (dashed) data as a function of training

epochs. The best model on the validation data is highlighted with a red circle. (b) Passing rates as a function of the bone slab rotation angle for

training (dark gray), validation (medium gray), and test (light gray) data

TABLE 1 Delta index passing rates with standard deviation for
training, validation, and test data for the water phantom with the
rotated bone slab

Passing rate (%)

Training Validation Test
5<1% 97.2+0.5 96.9 + 0.4 96.9 + 0.7
§<3% 99.8 + 0.2 99.7 £ 0.2 99.6 + 0.2

time. Relatively high passing rates are already obtained
after a few hundred epochs, the highest 1% passing
rate of (96.9 + 0.4)% is achieved on the validation data
after 2800 training epochs. The model from this epoch
is chosen as the best model for evaluating the perfor-
mance of the GAN. Table 1 summarizes the passing
rates of the training, validation, and test data averaged
over bone slab rotation angles of this model. The pass-
ing rates are all at a very high level and agree within
their standard deviations, which indicates that the model
is not overtrained and is capable of generalizing well
to the unseen bone slab rotation angles of the valida-
tion and test data. The passing rates of the selected
model dependent on the bone slab rotation angle are
shown in Figure 9a for the training, validation, and test
data. Over the full rotation angle range more than 99%
of the voxel deviate by less than 3% of the maximal sim-
ulated dose. Although slightly smaller passing rates are
obtained for the validation and test data compared to the
training data the performance is relatively stable over the
full rotation angle range and the GAN shows good ability
to interpolate to geometries of unknown rotation angles.
Figure 10 shows comparisons of normalized simulated
and generated energy depositions of the test data as
a depth profile in-field (a-c) and out-of-field (d-f) of the
beam with bone slab rotation angles of a = [4, 64, 80]°
(a+d,b+e,c+f).In the in-field region of the beam, the rel-
ative energy deposition deviations AEe = Egen/Esim —
1 are mostly well within 5% for all rotation angles except
for the boundary regions of the bone, where the devia-
tions in individual voxels are larger, and the end-region

of the phantom, where the absolute energy depositions
are relatively small. Considering, that the energy depo-
sitions change most drastically in the transition regions
of water and bone in particular for larger rotation angles
and the model could not learn from data around the cho-
sen angles, the agreement over the full depths of the
phantom is remarkable and demonstrates a good inter-
polation capability of the model.

Out-of -field, the relative deviations of the generated
energies from the simulated energies are larger but
mostly within 25% except for the transition regions.
However, the deposited energy is more than one order
of magnitude smaller in the out-of-field regions, which
means deviations of this magnitude will result in rel-
atively small penalties during the training. Considering
this, the energy depositions in the out-of-field region are
qualitatively and quantitatively well predicted. In order
to get an idea of the accuracy of the prediction in two
dimensions, Figure 11 shows the relative dose devi-
ations of voxels as 2D slices of the phantom with a
rotation angle of a = 4° (a) and a = 79° (b), which
are part of the test data. Mostly voxel in the transition
region of water and bone deviate by more than 1%
and only few voxels exactly at the edge of the bone
deviate by more than 3% in their predictions from the
simulation.

3.2 | Water phantom with rotated bone
slab of variable thickness

The development of the passing rates averaged over
bone slab rotation angles and thicknesses during the
training process using the data of the second phan-
tom are shown in Figure 12a for the training and vali-
dation data. The training takes significantly longer until
a plateau is reached and is less stable. The highest
1% passing rate on the validation data is achieved at
epoch 3300, which is chosen as the best model. Table 2
summarizes the passing rates of the training, validation,
and test data averaged over bone slab rotation angles

85UB017 SUOWILLOD BAIESID 8|edl|dde ay) Ag pausenob e sapile YO ‘8sn Jo S9N Joj ARelqi auljuQ 481\ UO (SUONIPUOD-pUe-SWS)/WI0D A8 | 1M AReg 1[puljuo//:Sdny) SUONIPUOD pUe SWe | 8Y)88S *[7202/20/62] Uo Ateiqiauljuo A8[Im ‘Bunyfeyasag pun uszueud Jeueze@ punwiiod 1Be)seAlun ayasiuye 1 Ag §SGST duwl/Zo0T 0T/10p/wod A im Aelqjeul|uo widee//sdny wouj pepeojumoq ‘s ‘220z ‘602veLre



FAST DOSE PREDICTIONS WITH 3D U-NET GANS

2% | \MEDICAL PHYSICS

u-"é’ 1.0 b Simulated 7 u;é’ [ Simulated f [ Simulated
[ t  Generated | o 0-8f I Generated ] o g6l t  Generated ]
0.6 ]
0:6F ] 0.4f .
0.4f ] 0.4r ]
0.2 ] 0.2F ] 0.2F ]
0.0 + t t t + 0.0p t t + + + 0.0p+ + + + } .
— 10 — 10 Tt — 10 T

Y e R g T OF ~amimatnoegl - St 43 Of e, AN NN
uy W = uy >
< _10 1 1 1 1 1 1 < _10 1 1 1 1 1 1 < _10 1 i3 1 1 1 1

0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125
Depth [mm] Depth [mm] Depth [mm]
(a) (b) (c)

()é 003 FT T T T T T 3 ﬁ T T T T T T ()é 004 FT T T T T T 3
S [ Simulated i [ Simulated o [ Simulated
o { Generated o 0.03f { Generated ] W 0.03k o {  Generated

0.02+ 4
0.02} b 0.02F 1
0.01¢ ] 0.01f b 0.01F ]
0.00 0.00 0.00
— 50 — 50 —~ 50
X S X

T O RN st ! v O % ';'F.,"."c;f s & sz O
4 : 4 (R 4
q _50 1 1 1 1 1 1 _50 _50 1 1 1 1 1 1

0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125
Depth [mm] Depth [mm] Depth [mm]

(d) (e) (f)

FIGURE 10 Comparisons of normalized simulated (gray) and generated (black) energy depositions of the test data as a depth profile
in-field (a-c) and out-of-field (d-f) of the beam with bone slab rotation angles of « = [4, 64, 80]° (a+d, b+e, c+f). The lower part of the plots
shows the relative energy deposition deviation AEg| = Egen/Esim_1 in percent. Outliers are indicated with a red arrow
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FIGURE 13 Comparisons of normalized simulated and generated energy depositions inside the phantom along the beam using the test
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TABLE 2 Delta index passing rates with standard deviation for
training, validation, and test data for the rotated bone slab phantom
with different thicknesses

Passing rate (%)

Training Validation Test
5§<1% 88.1+0.7 87.7+0.2 87.2+14
6<3% 98.9+£0.2 98.8 +0.2 98.5+0.4

and thicknesses of this model. The passing rates agree
within the statistical uncertainties, hence there is no indi-
cation of overfitting and the model seems to generalize
well to the unseen bone slab rotation angles and thick-
nesses of the validation and test data. The passing rates
in dependence of the bone slab rotation angle but aver-
aged over the bone thickness is shown in Figure 12b
for the training, validation, and test data. While the 3%
passing rate is still constantly above 98% for all rota-
tion angles, the 1% passing rate is considerably lower
at values between 85% and 90% with a small decrease
at higher rotation angles. The model generalizes well to
the rotation angles and thicknesses of the validation and
test data. In Figure 12c the passing rates are shown in
dependence of the bone slab thickness but averaged
over the rotation angle. The performance is stable for all
bone thicknesses of the training and validation data set.
However, the obtained passing rates are slightly lower
for the interpolated bone thicknesses of the test data, in
particular for thin bones with large rotation angles. These
geometries result in dose distributions, which are par-
ticularly challenging to predict. Figure 13 shows exem-

plary normalized simulated (gray) and generated (black)
energy depositions inside the phantom along the beam
using the test data for the in-field (a-c) and out-of-field
(d-f) region of the beam with bone slab rotation angles
of a = [0, 40, 85]° (a+d, b+e, c+f) and thicknesses of
d=[7,4,1.75] mm (a+d, b+e, c+f). While the energies
are generally well predicted in front of the inserted bone,
the relative deviations AE,g are larger at the bone slab
transition region and behind the bone slab with a small
trend to overpredict the deposited energies behind the
bone slab in the in-field region. In particular the thinnest
bone slab of 1.75-mm thickness with the largest rotation
angle of 85° results in larger deviations at the bone slab
of up to 10% but represents also the most challenging
case of the interpolation. In general, the model shows a
good ability to interpolate to unknown geometries.

3.3 | Simple pediatric head phantom
with translation

During the training of the model using the data of the
simple pediatric head phantom, the highest 1% pass-
ing rate on the validation data is achieved at 6900 train-
ing epochs as shown in Figure 14a. As the dose in the
bone of the skull is much higher compared to the dose
in the water, which is mimicking the brain tissue, any
dose deviations in the brain tissue would have negligi-
ble impact on the delta index, which is normalized to the
total maximal simulated dose. Therefore, we calculate
an additional delta index Sy, that is normalized to the
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(a) Global 1% (red) and 3% (black) passing rates for the training (solid) and validation (dashed) data as a function of training

epochs. The best model on the validation data is highlighted with a red circle. (b) Passing rates as a function of the phantom translation for

training (dark gray), validation (medium gray), and test (light gray) data

TABLE 3 Delta index passing rates with standard deviation for
training, validation, and test data for the simple pediatric head
phantom

Passing rate (%)

Training Validation Test
5§<1% 93 +7 96.0 + 1.7 96.3 +0.9
5§<3% 993 + 15 99.4 + 0.5 99.6 + 0.1
Sbrain < 1% 87 + 10 90 + 6 904 +24
Sbrain < 3% 98.9 + 2.1 99.2 + 04 99.5+0.2

maximal simulated dose inside the brain and the cor-
responding passing rates are only taking the voxels of
the brain tissue into account. The global passing rates
of the best model averaged over the translation of the
head are summarized in Table 3 for the training, valida-
tion, and test data. The generated doses of more than
96% (99%) of the voxels deviate by less than 1% (3%)
of the maximal dose from the simulated dose using the
test data if the whole phantom is considered. Although
the maximal dose inside the brain is much smaller, the
3% passing rate of the brain is very similar, while the
1% passing rate is reduced to 90%. In Figure 14b the
passing rates are shown as a function of the transla-
tion of the head for the training, validation, and test data.
The 3% passing rate is very stable around 99% for the
whole phantom as well as for the brain except for the
extreme cases of the maximum translation of t = +65
mm. These cases are in particular challenging to predict,
because part of the beam traverses only bone and the
angle and thickness of the bone change most drastically,
which results in steep local gradients of the dose depo-
sition. The 1% passing rate shows a stronger depen-
dence on the head position with a decrease to higher
absolute translation distances. The model generalizes
well to the unseen translation distances of the test and
validation data with minimal differences in performance
to the training data. Figure 15 shows exemplary the rel-
ative dose deviations as a 2D slices of the head for a

central case of the test data with t = 2 mm (a) and the
worst performing case of the training data with t = —65
mm (b). For the central case (Figure 15a) only few voxels
mostly at the first bone and behind show deviations of
larger than 1%. For the worst case (Figure 15b), where
the beam is passing through the edge of the head, many
voxels inside the bone and close to it show deviations of
more than 1% and several voxels in particular at thicker
bone structures deviate by more than 3% from the sim-
ulation. Figure 16 shows the comparison of the normal-
ized simulated and generated energy depositions inside
the phantom along the beam for the in-field (a-c) and
out-of -field (d-f) region of the beam with head transla-
tions of t = [2, 48, —65] mm (a+d, b+e, c+f). The trans-
lations of t = [2, 48] mm correspond to test data, while
the translation of t = —65 mm represents training data
but shows the worst performing case. The relative devi-
ations between simulated and generated energy depo-
sitions of the test data (a,b,d,e) are mostly within 5%
(25%) for the in-field (out-of-field) region and the model
shows a good ability to interpolate to unknown phantom
geometries. The deviations of the worst performing case
(c,f) are only at the transition regions of the bones larger
than 5% (25%) in the in-field (out-of-field) region and the
energies are generally even for this case well predicted
by the GAN.

4 | DISCUSSION

We developed, trained, and evaluated a GAN model
for dose predictions of a photon beam inside
three variable phantom geometries with increasing
complexity.

On the first phantom, a water cube with a bone slab
of fixed thickness inserted at various rotation angles,
our model achieved on the test data a global 1% and
3% passing rate of (96.9 + 0.7)% and (99.6 + 0.2)%,
respectively,and demonstrated stable performance over
the full range of the varied rotation angles. In the
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FIGURE 15 2D slices of the phantom with a translation of (a) t = 2 mm as part of the test data and (b) { = 65 mm as the worst performing
case with training data. Voxels with deviations in their dose predictions of larger than 3% (1%) are shown in red (yellow). Whenever the
deviation is smaller than 1%, the gray-scale color of the material density matrix is shown. The in-field part of the beam is located between the
red dashed lines. Voxels with more than 3%D;,,,x dose prediction deviation (red) and voxels with less than 3%D,,x but more than 1%D,x dose
deviation (yellow). The gray-scale colors show the densities of the voxels, the red dashed lines indicate the beam edges
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FIGURE 16 Comparisons of normalized simulated and generated energy depositions inside the phantom along the beam using the test
data for the in-field (a-c) and out-of-field (d-f) regions of the beam with phantom translations of t = [2, 48, —65] mm (a+d, b+e, c+f). The lower
part of the plots shows the relative energy deviation AE, in percent. Outliers are indicated with a red arrow

in-field region of the beam the relative voxel-by-voxel
deviations of the predicted energy depositions were
below 5%, except for voxels at the interface of water and
bone. Out-of-field, the relative deviations were mostly
within 25%, however, the absolute deposited ener-
gies were also approximately two orders of magnitude
smaller and had hence less impact on the loss function
during the training. The model was able to interpolate the
learnt energy depositions of the training data to energy
depositions inside bone slabs with unlearnt rotation
angles of the validation and test data with little loss in
performance.

In the second phantom, the bone thickness of the slab
was varied in addition to the rotation angle. This increase
of complexity reduced the global 1% and 3% passing
rate to (87.2 + 1.4)% and (98.5 + 0.4)%, respectively,
on the test data, but both rates were relatively stable
over the variation of bone slab rotation angle and thick-
ness with small decrease for bone thicknesses that were
only part of the test data. The deposited energies were
accurately predicted on a voxel- by-voxel basis mostly
within 5% (25%) of relative deviation to the simulated
energy deposition in the in-field (out-of-field) region of
the beam. We found that the model was able to predict
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TABLE 4 Execution times of the GAN and the Geant4 MC
simulations compared. CPU refers to an Intel Xeon E5-2630 v4 @
2.2 GHz, GPU to a Nvidia GeForce GTX 1080i

Time per
Model prediction (s) Rel. speed
Geant4 (1 CPU) 9.5.10° 1
GAN (1 CPU) 0.6 ~1.6-10°
GAN (1 GPU) 0.1 ~95-10

the deposited energy with comparable accuracy for
geometries (bone slab thickness and rotation angle) that
were not part of the training data. This demonstrates
that the model is able to generalize the learnt energy
deposition prediction to unknown but similar phantom
geometries. The model showed a small trend to system-
atically overestimate the energy depositions behind the
bone slab insert, in particular for thicker bones, which
indicates that the model did not fully learn the attenua-
tion effect of the bone slab on the beam.

The last phantom, a simple pediatric head, was shifted
orthogonal to the beam in order to emulate dynamically
changing phantom geometries in multiple dimensions.
The obtained 1% and 3% passing rates on the test data
of (96.3 + 0.9)% and (99.6 + 0.1)%, respectively, were
at a high level and stable over the full range of phan-
tom translation except for the extreme case of t = —65
mm, for which the beam passes through the edge of the
head. If only the voxels of the brain tissue were con-
sidered, the 1% passing rate was reduced by roughly
6% and showed stronger dependency on the transla-
tion, while the 3% passing rate was comparable to the
one of the whole phantom. The relative deviations of the
generated energies from the simulations were mostly
below 5% (25%) for most voxels of the in-field (out-of-
field) region of the beam. Larger deviations were found
at the interfaces of the bones. No significant difference
was found in the passing rates or in the energy depo-
sition deviations between those obtained from training
data and from validation or test data. This establishes
that the presented model is able to generalize very well
to dynamically changing geometries, which are unknown
to the model.

Table 4 shows a comparison of the execution times to
obtain the deposited energies inside a phantom either
using full Geant4 MC simulation or the GAN model
on a CPU (Intel Xeon E5-2630 v4 @ 2.2 GHz) and a
GPU (Nvidia GeForce GTX 1080i). While the Geant4
MC simulation takes roughly 264 computing hours, the
GAN is able to make the predictions in only 0.6 s on
the same CPU, which corresponds to a speed-up fac-
tor of roughly 1.6 - 10%. Using a GPU instead for the
GAN prediction, the deposited energies are obtained
in 0.1 s, which is almost 10 million times faster than
the Geant4 MC simulation and also significantly faster
than the 30 min as reported by a previously devel-

oped method.'® Compared to the fastest previously pub-
lished dose computation method,'" the presented model
shows significantly better spatial resolution (the fastest
previous model does not perform voxel by voxel predic-
tions at all) and more accurate predictions at material
interfaces and generally in the case of heterogeneities
in the phantom at similar execution speeds. Compared
to generalist approximations such as GPUMCD*? and
the hybrid approaches for MRT,'° the presented model
does not rely on approximations like averaged attenu-
ation coefficients introduced before generating simula-
tion data. As a consequence, any physical process can
be taken into account for the model prediction as long
as it can be simulated accurately, for example, by MC
methods for radiation physics. As the training data are
generated using full MC simulations, it can be adapted
closely to realistic treatment scenarios. Fast dose pre-
diction approximations, which are currently used in treat-
ment planning programs, have been found to require
greater attention and corrections when it comes to com-
missioning of the system for clinical application (dis-
cussed, e.g., in the studies by Montenari et al*> or
Jia et al**). The constructed MC simulation applica-
tion used in the presented study was validated against
experimental measurements in a previous publication??
and it was successfully used for dose predictions in an in
vivo experiment with rat irradiations® These are impor-
tant research steps, which pose a solid foundation for
an eventual, future commissioning of the proposed TPS
engine. To fully commission the proposed TPS engine,
the pathway would be to commissioning the MC simula-
tions used for the ML training, against dosimetric exper-
imental measurements.

The high accuracy of the predictions, the ability to
interpolate and generalize to unknown phantom geome-
tries, and the fast execution times encourage to further
develop the model and adapt it for the use in MRT. The
model demonstrated flexibility and scalability due to the
conditioning on the beam properties and on the geom-
etry of the phantom. At this stage, the presented model
is trained only at one fixed resolution. To use different
voxel and prediction volume sizes will be subject of the
next stage of the project, where we adapt the developed
ML algorithm to microbeams.

5 | CONCLUSION

We present a proof-of-concept study to use a 3D-
UNet GAN to predict the dose or energy depositions
of a photon beam inside a variety of phantoms. The
GAN is conditioned on the beam and phantom prop-
erties and is trained using a Geant4 MC simulation
of the full radiation transport. The presented model is
successfully trained on three different phantoms with
changing geometry without further need for optimiza-
tion. The model predicts with adequate accuracy the
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energy depositions and deviates by less than 1% of the
maximal deposited energy from the simulation in more
than 96% of the in-field voxels for the most realistic
phantom—a simple pediatric head. The model demon-
strates good ability to generalize the predictions to
unknown but similar phantom geometries.

Our approach differs from previously published stud-
ies on dose estimations with machine learning methods
by relying purely on MC simulations for radiation physics
as training data. This allows the development of a more
general approach that can be deployed to novel treat-
ment methods, for which there are no large number of
available patient CT scans or existing treatment plans
already, such as mini® or MRT.

For an application in treatment planning systems,
dose simulations with satisfactory statistical accuracy
using MC techniques are usually computationally too
demanding, however, approximations of the physics pro-
cesses translate to large dose calculation inaccura-
cies in heterogeneous phantoms, especially at mate-
rial interfaces. In the adopted dosimetric calculation sce-
nario, the presented GAN model is able to achieve
almost MC simulation precision in only a fraction of
a second for a variety of radiation scenarios, which
makes it an ideal candidate for future treatment plan-
ning systems. Encouraged by these results, future
studies will evaluate the presented machine learning
approach using simulations with more realistic patient
geometries, deriving, for example, from the ICRP110
phantom,*® digital phantoms, which allow customization
via parameterization,*®4’ and finally patient data for the
application in treatment planning.
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