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Abstract
We extend the scope of application for MCP-Mod (Multiple Comparison Proce-
dure andModeling) to in vitro gene expression data and assess its characteristics
regarding model selection for concentration gene expression curves. Precisely,
we apply MCP-Mod on single genes of a high-dimensional gene expression data
set, where human embryonic stem cells were exposed to eight concentration lev-
els of the compound valproic acid (VPA). As candidate models we consider the
sigmoid 𝐸max (four-parameter log-logistic), linear, quadratic, 𝐸max , exponential,
and beta model. Through simulations we investigate the impact of omitting one
or more models from the candidate model set to uncover possibly superfluous
models and to evaluate the precision and recall rates of selected models. Each
model is selected according to Akaike information criterion (AIC) for a consid-
erable number of genes. For less noisy cases the popular sigmoid 𝐸max model
is frequently selected. For more noisy data, often simpler models like the linear
model are selected, but mostly without relevant performance advantage com-
pared to the second best model. Also, the commonly used standard 𝐸max model
has an unexpected low performance.
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1 INTRODUCTION

In drug development, two major steps are of interest when a new compound is examined. First, changes in the dose or
concentration of the compound are intended to cause changes in the response. Once this relation is established, the precise
modeling of the dose–response curve is the next goal. It aims at finding the target dose for the confirmatory Phase III trials.
If multiple comparison procedures (MCPs) are used for signal detection, this can lead to less flexibility as target dose

estimation is restricted to the tested dose levels. One major methodological advancement in this field is the Multiple
Comparison Procedure and Modeling (MCP-Mod) approach by Bretz et al. (2005). It combines MCP and a modeling
(Mod) step by proposing amultistage procedure.MCP-Mod received a positive qualification opinion and a “fit for purpose”
designation by theEMAandFDA in 2014 and 2016, respectively, as statisticalmethodology to analyze Phase II dose-finding
studies under model uncertainty (European Medicines Agency, 2015; Food and Drug Administration, 2016).
This work extends the usual scope of application of MCP-Mod from clinical Phase II to gene expression data. As a

practical example, human embryonic stem cells are analyzed (O’Quigley et al., 2017, Chap. 12.3). Valproic acid (VPA) is
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used for treating epilepsy but it is known to be embryo-toxic when taken in the first trimenon of pregnancy (Genton
et al., 2006). The MCP-Mod framework can help to gain insights on concentration–response relationships between the
concentration of VPA and gene activity.
Specifically, we are interested in two aspects of MCP-Mod when applied on concentration–response data: the detection

of genes where VPA has an effect on the dose–response curve (power) and model selection. We investigate these proper-
ties in analyses on real and on simulated data. Further, the model performance or goodness-of-fit of selected models is
evaluated to identify which models are suitable for gene expression dose–response data.
Model selection and model performance differ substantially in the underlying theory. In model selection a statistical

model from a set of candidate models has to be selected, given a data set. The aim is to select the model that represents
the true, unknownmodel function best (Chap. 1 of Claeskens & Hjort, 2008; Schorning et al., 2016)). In addition to select-
ing the best model among the candidates, we also aim at identifying necessary or dispensable models. Therefore, we use
the goodness-of-fit measure 𝑅2adj. We combine the three aspects power, model selection, and goodness-of-fit in a newly
proposed score that summarizes the suitability of a model set. This approach is applied on the VPA data set and on simu-
lated data.
In the context of clinical Phase II trials, model uncertainty for dose–response modeling is considered to increase pre-

cision in target dose estimation—Ting (2006), Wheeler and Bailer (2009), Bornkamp et al. (2011) among many others.
In Phase II trials, decisions on the model set can be based on expert knowledge and concentrate on a single compound
and dose–response relationship. For gene expression data, model selection must be considered for thousands of genes
simultaneously and it is not straightforward to find or use prior knowledge on the dose–response profile of each gene.
House et al. (2017) and Filer et al. (2016) propose experimental pipelines that include concentration–response modeling
and model selection for toxicological gene expression data. They consider a flat model, the sigmoid 𝐸max model with all
four parameters or with the lower asymptote fixed to zero, and a gain–loss model that is similar to the beta model con-
sidered here. However, detailed investigations on the necessity of model selection and on appropriateness of candidate
model sets for gene expression concentration–response data are lacking, which motivates our work.
This paper is structured as follows. The VPA data set is introduced in Section 2. The statistical methodology including

MCP-Mod and both established performancemeasures and a newly proposed one are presented in Section 3. Our analysis
procedures and results that are based on theVPAdata set are presented in Section 4. Different controlled simulation setups
and corresponding results follow in Section 5. Final conclusions are summarized in Section 6. Source code to reproduce the
results is available as Supporting Information on the journalsweb page (http://onlinelibrary.wiley.com/doi/xxx/suppinfo).

2 GENE EXPRESSION DATA SET

The data set was first presented in the study of Krug et al. (2013), whereVPA is applied, among others, to human embryonic
stem cells (hESC). VPA is widely used to treat different forms of epilepsy. However, it is linked to an increased incidence in
congenital abnormalities (Cotariu & Zaidman, 1991). Krug et al. (2013) state that identifying changes in the transcriptome
induced by toxic substances illustrates interesting mechanistic insights.
Gene expression levels of the hESCs aremeasured repeatedly for different concentrations, using theGeneChipRHuman

Genome U133 Plus 2.0. The data are preprocessed with the Robust Multi-Chip Average algorithm by Irizarry et al. (2003),
such that the expression data are on the logarithmic scale with base 2.
The data set contains G = 54,675 probe sets, which will be referred to as genes in the following, for simplicity. For

every gene, expression values corresponding to the concentrations 𝑑1 = 0, 𝑑2 = 25, 𝑑3 = 150, 𝑑4 = 350, 𝑑5 = 450, 𝑑6 =
550, 𝑑7 = 800, and 𝑑8 = 1000 𝜇M VPA are available. For the control level 𝑑1, 𝑛1 = 6 replicates were measured. For all
other concentrations there are 𝑛2 = ⋯ = 𝑛8 = 3 replicates. There are 𝑁 = 27measurements per gene. The replicates are
biological replicates since different cells were used for each experiment. Due to functional relationships between genes,
we cannot assume independence between the measurements from different genes. Further, six or three replicates per
concentration is small for statistical modeling approaches. These problems are addressed in Section 4.

3 MCP-MODMETHODOLOGY AND PERFORMANCEMEASURES

In this section, the methodology is presented. First, the MCP-Mod approach is outlined. Then, the performance measures
precision and recall for evaluating the model selection in MCP-Mod are explained. Additionally, the newly proposed
measure 𝑆 is presented.
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TABLE 1 Dose–response models 𝑓(𝑑, 𝜽), their standardized versions 𝑓0(𝑑, 𝜽0), and the guesstimates for 𝜽0 for the analysis. For the beta
model 𝐵 is defined as 𝐵(𝛿1, 𝛿2) = (𝛿1 + 𝛿2)𝛿1+𝛿2∕(𝛿

𝛿1
1 𝛿

𝛿2
2 ) and 𝐷 = 1200

Model 𝒇(𝒅, 𝜽) 𝒇𝟎(𝒅, 𝜽
𝟎
) 𝜽

𝟎

𝐸max 𝐸0 + 𝐸max𝑑∕(𝐸𝐷50 + 𝑑) 𝑑∕(𝐸𝐷50 + 𝑑) 𝐸𝐷50 ∈ {100}

Sigmoid 𝐸max 𝐸0 + 𝐸max𝑑
ℎ∕(𝐸𝐷ℎ50 + 𝑑

ℎ) 𝑑ℎ∕(𝐸𝐷ℎ50 + 𝑑
ℎ) 𝐸𝐷50 = 450, ℎ = 5.117

Exponential 𝐸0 + 𝐸1{exp(𝑑∕𝛿) − 1} exp(𝑑∕𝛿) − 1 𝛿 ∈ {144.455}

Linear 𝐸0 + 𝛿𝑑 𝑑 ∅

Quadratic 𝐸0 + 𝛽1𝑑 + 𝛽2𝑑
2 𝑑 + (𝛽2∕|𝛽1|)𝑑2 𝛿 = 𝛽2∕|𝛽1| = −0.001

Beta 𝐸0 + 𝐸max𝐵(𝛿1, 𝛿2)(𝑑∕𝐷)
𝛿1 ⋅ (1 − 𝑑∕𝐷)𝛿2 (𝑑∕𝐷)𝛿1 (1 − 𝑑∕𝐷)𝛿2 𝛿1 = 2, 𝛿2 = 1

3.1 MCP-Mod

The MCP-Mod approach was originally developed by Bretz et al. (2005) to model dose–response relationships in Phase II
clinical trials under model uncertainty. For details see also Xun and Bretz (2017) and Bornkamp et al. (2009).
The MCP-Mod methodology comprises two analysis steps. First, in the MCP-step, a statistically significant signal in

a gene is determined by an optimal-contrast test for a prespecified set of candidate models. If such a signal is found for
at least one model, a significant result of the multiple comparison procedure (signifMCP) is present for the gene. This
means that an effect of VPA on the gene activity is established. The second step, Mod, refers to the modeling. From the
set of models, for which a signifMCP has been established, one model fit is chosen and used as final fit for the data.
Alternatively, model averaging can be performed.
Denote 𝑑1 as placebo concentration and 𝑑2 < … < 𝑑𝑘 as active concentrations with 𝑛𝑖 replicates. For concentration

𝑖 = 1, … , 𝑘 and 𝑗 = 1,… , 𝑛𝑖 , 𝑁 = 𝑛1 +⋯+ 𝑛𝑘, the (preprocessed) expression values are modeled as

𝑦𝑖𝑗 = 𝜇(𝑑𝑖) + 𝜀𝑖𝑗, 𝜀𝑖𝑗
𝑖.𝑖.𝑑.
∼  (0, 𝜎2), (1)

with homogeneous variance 𝜎2 > 0. The mean response E(𝑦𝑖𝑗) = 𝜇𝑖 = 𝑓(𝑑𝑖, 𝜽) at concentration 𝑑𝑖 is assumed to follow a
concentration–response model with parameter vector 𝜽 and 𝜀𝑖𝑗 as independent errors.
For the MCP step, a set of𝑀 candidate models needs to be prespecified. Models commonly used for dose–response

relationships are summarized in Table 1.
All models summarized in the first column of Table 1 can be reformulated as

𝑓(𝑑, 𝜽) = 𝜃0 + 𝜃1𝑓
0(𝑑, 𝜽

0
), (2)

(see second column of Table 1), where 𝑓0(𝑑, 𝜽0) is the standardized version of a model. Introduction of the standardized
model shape concept is crucial for choosing optimal contrasts in the MCP step, as their choice is scale invariant.
It remains to determine initial guesses for the parameter 𝜽0. In practice, for a Phase II study, careful considerations

and prior knowledge on expected percentages of maximal effects at certain doses are translated into guesstimates for 𝜽0.
Here, the large number of genes makes individual, gene-dependent decisions on 𝜽0 difficult. We therefore use the same
guesstimates for all genes. Figure 1 displays the (rescaled) model shapes 𝑓0(𝑑, 𝜽0) used for the analysis. The guesstimates
are listed in Table 1.
To the best of our knowledge there is little preliminary work on dose–response model selection in the context of gene

expression data (Filer et al., 2016; House et al., 2017). In toxicology, often monotone dose–response relationships are
assumed. Especially the 𝐸max model, a special case of the sigmoid 𝐸max model with ℎ = 1, was found to be appropri-
ate for the majority of dose–response relationships in a large meta-analysis of clinical dose–response studies (Thomas
et al., 2014). The inclusion of these two monotonic models in the candidate model set is therefore obligatory. The linear
model is added as a reference or baseline model. For genes where the true underlying model might be a sigmoid 𝐸max
model, but at the maximal considered dose, the turning point has not yet been reached, the exponential model might be
more suitable. The quadratic and the beta model are included as nonmonotone shapes. They are similar to the gain–loss
model used by Filer et al. (2016). There might be a nonmonotone relationship between concentration and gene activity,
for example, for metabolic genes. Such genes might be activated at lower VPA concentrations but successively deactivated
at increasing, highly toxic concentrations.
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F IGURE 1 Candidate model shapes used for the six concentration–response models

The specific guesstimates for 𝜽0 for each model are chosen such that a wide range of dose–response shapes is covered.
Further, we consider that during the experimental design stage, the concentrations were chosen with the expectation
that the dose with the half maximal effect (𝐸𝐷50) is close to 450 and a plateau is reached at concentration 1000, which
translates into the second guess that 95% of themaximal effect is reached at concentration 800.With these two assumptions
(𝐸𝐷50 ≈ 450 and 𝐸𝐷95 ≈ 800), the guesstimate 𝜽

0 for the sigmoid 𝐸max model can be calculated analytically. For the 𝐸max
model, a guess of an 𝐸𝐷50 of 300 is used. And for the exponential model, an 𝐸𝐷50 of 700 is assumed.
Each candidate shape,𝑚 = 1,… ,𝑀, defines a respective mean response vector 𝝁𝑚 = (𝜇𝑚1, … , 𝜇𝑚𝑘). For the MCP-step,

a contrast 𝑡-test as first described by Abelson et al. (1963) is calculated. The test is constructed based on the linear con-
trast 𝒄⊤𝑚𝝁𝑚 where 𝒄𝑚 = (𝑐𝑚1, … , 𝑐𝑚𝑘)⊤ is chosen to maximize the power of the test for the assumed mean response 𝝁𝑚
(Bornkamp et al., 2009). This yields the hypotheses H𝑚

0
∶ 𝒄⊤𝑚𝝁𝑚 = 0 and H

𝑚
1
∶ 𝒄⊤𝑚𝝁𝑚 ≠ 0.

The test statistics for the contrasts are given by

𝑇𝑚 =

∑𝑘
𝑖=1
𝑐𝑚𝑖�̄�𝑖

𝑆

√∑𝑘
𝑖=1
𝑐2
𝑚𝑖
∕𝑛𝑖

, 𝑚 = 1,… ,𝑀, (3)

where �̄�𝑖 is the observedmean at dose 𝑑𝑖 and 𝑆2 =
∑𝑘
𝑖=1

∑𝑛𝑖
𝑗=1
(𝑦𝑖𝑗 − �̄�𝑖)

2∕(𝑁 − 𝑘) is themean squared error. Under H0 and
(1), (𝑇1, … , 𝑇𝑚)⊤ follows a central, multivariate 𝑡-distribution.
A dose–response signal is established if 𝑇max = max(𝑇1, … , 𝑇𝑚) > 𝑞1−𝛼, where 𝑞𝛼 is the equicoordinate 𝛼-quantile of

the null distribution. This approach leads to multiple testing adjustment for {H𝑚
0
, H𝑚

1
} with a strict control of the family

wise error rate at level 𝛼. The models with 𝑇𝑚 > 𝑞1−𝛼 form the set∗ = {𝑀1,… ,𝑀𝐿} of 𝐿 significant models with estab-
lished signifMCP. The modeling step is only executed if∗ ≠ ∅, that is, a dose–response signal is established for at least
one model.
During the Mod-step, either one fitted model of those that passed the MCP-step can be chosen for a final fit or all fitted

models that passed theMCP-step can be averaged. If a singlemodel is selected, criteria as the Akaike information criterion
(AIC) or the Bayesian information criterion (BIC) as well as the largest test statistic (maxT) can be used to pick a model.
For model averaging, standardized weights based on the AIC or BIC can be calculated for the models in, and the final
model is the resulting weighted average of each of the fitted models.
Calculations are done with the DoseFinding R package, version 0.9-17, and the statistical software R, version 4.0.2 (R

Core Team, 2020). For the numerical estimation of the nonlinear parameters, we use the default boundary setting of the
DoseFinding package. As the maximum concentration is 1000, this leads to boundaries for the 𝐸𝐷50 parameter of [1,
1500] and [1/2, 10] for the ℎ parameter of the sigmoid 𝐸max model.
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DUDA et al. 887

3.2 Measures

In this section, we briefly present for our context the definitions of the evaluation measures precision, recall, and 𝑅2adj.
Further, a new measure  is proposed specifically for the context of using MCP-Mod with a fixed candidate set on
many dose–response data sets.
For a set of genes and a specific model𝑀 ∈∗ = {𝑀1,… ,𝑀𝐿}, the precision is defined as the conditional probability

that a model is correct, given that it has been selected. Accordingly, the recall is defined as the conditional probability that
a model is selected, given that it is correct (Buckland & Gey, 1994). Formally, we denote

precision = �̂�(Model is correct |Model is selected) = 𝑡𝑝

𝑡𝑝 + 𝑓𝑝
,

recall = �̂�(Model is selected |Model is correct) = 𝑡𝑝

𝑡𝑝 + 𝑓𝑛
,

where 𝑡𝑝, 𝑓𝑝, and 𝑓𝑛 are the number of true positives, false positives, and false negatives. Precision and recall values are
in the interval [0,1], and a larger value corresponds to a better performance. They can only be evaluated in simulations
where the correct model is known.
For a model fit 𝑓(⋅, �̂�) and data 𝑦𝑖𝑗 of a specific gene, 𝑖 = 1, … , 𝑘, 𝑗 = 1,… , 𝑛𝑖 , we use 𝑅2adj defined as

𝑅2adj = 1 −
(1 − 𝑅2)(𝑁 − 1)

𝑁 − 𝑝
, 𝑅2 = 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
, (4)

where 𝑆𝑆𝐸 =
∑𝑘
𝑖=1

∑𝑛𝑖
𝑗=1
(𝑦𝑖𝑗 − 𝑓(𝑑𝑖, �̂�))

2 and 𝑆𝑆𝑇 =
∑𝑘
𝑖=1

∑𝑛𝑖
𝑗=1
(𝑦𝑖𝑗 − �̄�)

2 is the sum of squared errors and total sum of

squares, respectively. The number of parameters is 𝑝 and the total number of measurements is 𝑁 =
∑𝑘
𝑖=1
𝑛𝑖 .

We further propose a new measure, the suitability of model set score . It can be used in a descriptive manner when
MCP-Mod is applied to dose–response or concentration–response data of many genes. The score balances two desired
properties. First, the number of detected signals (signifMCPs) is desired to be large. Additionally, the detected signals are
also desired to be clear, that is, to have a large 𝑅2adj value. The score balances the number of detected signals and the model
performance, that is, power and goodness-of-fit. It is defined as

 =
1

𝐺

𝐺∑
𝑔=1

𝟙{Gene 𝑔 has significant MCP after adjustment} ⋅ 𝑅2adj, (5)

where 𝐺 denotes the total number of genes and the considered set of candidate models. For a given set, the score
summarizes the proportion of genes with significant MCP after adjustment, weighted by the goodness-of-fit of the respec-
tive genes. Adjustment means that the false discovery rate (FDR) is controlled using the Benjamini–Hochberg (BH) pro-
cedure (Benjamini & Hochberg, 1995).
In the context of MCP-Mod, this means that for each gene, the smallest 𝑝-value from the MCP tests of all candidate

models is chosen. Consequently, each gene is represented by a single 𝑝-value. These 𝑝-values are adjusted with the BH
procedure. If a BH-adjusted 𝑝-value is below 0.05 then this results in a multiplicity-adjusted significant concentration–
response signal. As performance measure, the value of 𝑅2adj of the winner model w.r.t. AIC for the corresponding gene is
used. In general, when comparing two values 1

and 2
, the larger value indicates a favorable choice of the candidate

set, since both the number of detected signals and the model performance are taken into account. For improved clarity, in
addition both the proportion of genes with detected signal and themean𝑅2adj of the fit of the winnermodels corresponding
to those genes will be reported.

4 DATA-BASED ANALYSIS

In this section, setups and results of the data-based analyses are presented. In the following, they are referred to as Analysis
I and Analysis II. In Analysis I, MCP-Mod is applied on the real VPA data set and an overview on model selection results
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888 DUDA et al.

TABLE 2 Overview of the analyses scenarios and their respective data generation details (Section 4) as well as for the simulation study of
Section 5

Part Data (generation)
Analysis I main Original VPA data
Analysis II LOMO Original VPA data
Simulation 𝑛1 = ⋯ = 𝑛8 ∈ {3, 5, 10}

𝜎 = 𝑞(0.5) ⋅ range (𝜎 = 𝑞null(0.5) for null-model)

2376

979

3067

6942

3090

3739

0

2000

4000

6000

betaMod emax exponential linear quadratic sigEmax
Winner model by AIC given signifMCP

N
um

be
r 

of
 g

en
es

F IGURE 2 Distribution of winner counts per model

is provided. An additional goal is to check if any model can be omitted from the candidate model set because it can be
easily substituted by another model. Analysis I is extended by Analysis II through leave-one-model-out (LOMO) analyses.
These include that the entire analysis of Analysis I is repeated several times, and each time one of the candidate models
of is omitted. For an overview of the different analyses and the simulation, see Table 2.

4.1 Setup for Analysis I

In Analysis I, MCP-Mod is applied independently on each gene of the VPA data set. As we cannot assume only increasing
or decreasing effects, each gene is tested with two-sided contrast tests with significance level 𝛼 = 0.05.
We apply multiplicity adjustment between genes by controlling the FDR using the BH procedure as described in Sec-

tion 3.2. For each gene, if a dose–response signal is detected and hence at least one model passes the MCP-step, the AIC is
used as model selection criterion. For small sample sizes, Schorning et al. (2016) show that the AIC outperforms the BIC,
especially if the true underlying model is a complex one among the considered models. There are 𝑁 = 27 observations
per gene in the VPA data set. Thus we use the AIC to avoid too low selection counts of possibly correct, more complex
models. In our analysis we will see that even with the AIC the simple linear model is often selected.

4.2 Results for Analysis I

Of the 54,675 genes, when controlling the FDR, 20,193 (36.9%) genes pass the MCP-step, that is, their concentration–
response profile significantly differs from a flat profile. VPA has a significant effect on the activation (deactivation) of
these genes. For each gene one winner model is selected by AIC as a final fit (Figure 2). The linear model is selected most
often (34.4%), because the AIC penalizes more complex models. However, Figure 3 clearly shows that the linear model
performs comparatively poorly with respect to the 𝑅2adj.
The popular 𝐸max model (cf. Thomas et al., 2014, among many others) wins the fewest times and when it does win, its

fit has low 𝑅2adj values (Figures 2, 3). Figure 4 shows the distribution of model winner counts w.r.t. AIC stratified by 𝑅2adj.
Less noisy genes are represented by the rightmost plot. Assuming (1), we refer to more (less) noisy genes as genes whose
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F IGURE 4 Distribution of winner counts per model stratified by 𝑅2adj

underlying model has larger (smaller) standard deviations 𝜎 in relation to the response range, which leads to smaller
(larger) 𝑅2adj values. While the sigmoid 𝐸max and the beta model win most often for the least noisy stratum, the 𝐸max
model is chosen rarely, regardless of the strata. The nonmonotone beta and quadratic model are chosen considerably
often. For more noisy genes the linear model is preferred. For these genes, none of the models explains a lot of variance,
which favors the linearmodel in terms of AIC. Hence, if the linearmodel is selected by AIC, one should hesitate to assume
a true linear concentration–response relationship. Some example fits are visualized in Figure 5.
To ensure that the low number of 𝐸max winners is not only due to too strict parameter constraints in the numerical

optimization, we visualize the 𝐸𝐷50 parameter estimates for genes where the 𝐸max model won (Appendix, Figure A1).
There is no evidence that the poor performance of the 𝐸max model is due to optimization constraints, but instead due to
the often low 𝐸𝐷50 estimates. For an 𝐸max model, a low 𝐸𝐷50 translates to an early plateau, which can lead to an 𝑆𝑆𝐸
close to the 𝑆𝑆𝑇 and therefore to a small 𝑅2adj.
It is also of interest if any of the models in the candidate set is redundant such that it can be substituted by another

model. Removing such a model from the candidate set would increase power as the number of hypotheses would be
decreased in the MCP-step of each gene. If for many genes the 𝑅2adj for the winner model and the second best model differ
substantially, the winning model should be considered for future analyses. If the quadratic model is the winning model
with a good fit, many genes cannot be modeled well by the second best model (Figure 6).
The sigmoid 𝐸max and the beta model performances also differ by a considerable amount to the second best model’s

performance across the whole range of explained variance. The 𝐸max and the exponential model can mostly be replaced
by othermodels without substantial loss in 𝑅2adj. This especially applies to genes with larger explained variance. The linear
model can always be replaced with minimal loss in explained variance, as it is a special case of the 𝐸max model and the
quadratic model.
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F IGURE 5 Example selection of nonnoisy (rows 1 and 2) and noisy (row 3) genes of the VPA data set with significant
concentration–response model, with added fit of the model selected as winner w.r.t. AIC. Gray dots represent single response values, and the
red dots indicate the mean responses per concentration. Each model has an 𝑅2adj of at least 0.75 (rows 1 and 2) or below 0.25 (row 3)

4.3 Setup for Analysis II

Analysis II offers further insights into possibly expendable models in the candidate set. The analysis setup is similar to
the one of Analysis I. Analysis I is redone several times, but each time one model from the candidate model set is omitted.
We refer to these as LOMO analyses.

4.4 Results for Analysis II

The number of FDR adjusted significant concentration–response relationships is similar to the main analysis where no
model is left out (Table 3). This finding is consistent with the results of Pinheiro et al. (2006). If the quadratic model is
omitted from the candidate model set, the total number of signifMCPs increases at the cost of reduced mean 𝑅2adj for the
remaining genes. This is due to the different, rarely appropriate shape of the quadraticmodel compared to all othermodels.
Measured by the  score, it is proposed to drop the 𝐸max model from the candidate model set (indicated in bold). The
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DUDA et al. 891

F IGURE 6 Scatter plots stratified by winner model (by AIC) showing the 𝑅2adj value of the winner on the 𝑥-axis and the difference to the
𝑅2adj value of the second best model (by AIC) on the 𝑦-axis

TABLE 3 Total number of FDR adjusted significant genes in each LOMO analysis, number of gained and lost genes compared to the
case when no model is left out (Analysis I),  score, rate of FDR adjusted significant genes, and mean 𝑅2adj among significant genes. Largest
 score indicated in bold

Model Total Gained Lost  signifMCP rate mean 𝑹𝟐adj
Sigmoid 𝐸max 20,122 61 132 0.2114 0.3680 0.5743
Quadratic 20,459 697 431 0.2119 0.3742 0.5664
Beta 20,221 150 122 0.2120 0.3698 0.5732
Exponential 20,164 529 558 0.2120 0.3688 0.5748
Linear 20,178 91 106 0.2127 0.3691 0.5763
None 20,193 0 0 0.2134 0.3693 0.5778
𝐸max 20,349 330 174 0.2138 0.3722 0.5745

sigmoid 𝐸max model, which contains the 𝐸max model as a special case, decreases the score the most when removed from
the candidate set.
We are further interested by which model an originally selected model after its omission is typically substituted in the

modeling step (Figure 7). The beta model is selected more often, if the sigmoid 𝐸max model is removed and vice versa. If
the often selected linear model is omitted, the exponential model is most often replacing it.
Two additional evaluations regarding the validity of the  score were conducted. First, a copy of the VPA data set

was generated and all 3067 genes where the exponential model won by AIC were removed and the LOMO analyses were
repeated. As expected, in this artificial scenario the  score suggests to drop the exponential model (Table 4, second
column from the left).
Second, Analysis I was repeated but with a single model as candidate model (Table 4). When a single candidate model

is used, the  score is always smaller than when only one or no model is omitted from the candidate model set and the
original VPA data are used. The lowest score of 0.0825 is obtained if the quadratic model is the only candidate model. This
is because the quadratic model shape passes the MCP-step for only 12.27% of the genes. When using only one candidate
model, the sigmoid 𝐸max model has the largest score of 0.2036.
The absolute differences in scoresmight appear small butmust not bemisinterpreted as irrelevant. For the artificial

scenario where genes with the exponential model as winner model are removed, omitting the exponential model from the
candidate model set is considered reasonable by construction. Therefore, the corresponding difference in the  score of
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F IGURE 7 Absolute count of selections by AIC in the modeling step of each model that had a signifMCP in the MCP-step for each
LOMO scenario

TABLE 4  score, rate of significant genes, and mean 𝑅2adj among significant genes for two added analyses: The LOMO analyses on the
modified VPA data set where genes with exponential winner model are removed and Analysis I repeated but with only one model in the
candidate model set. Largest  score indicated in bold

LOMO analyses on VPA data set without
exponential winner genes

Only model in candidate model set on
original VPA data set

Model 

signif.
genes (%)

mean
𝑹𝟐adj 

signif.
genes (%)

mean
𝑹𝟐adj

sig. 𝐸max 0.1789 0.3062 0.5844 0.2036 0.3771 0.5399
Beta 0.1795 0.3077 0.5834 0.2013 0.3647 0.5520
Quadratic 0.1795 0.3117 0.5758 0.0825 0.1227 0.6722
Linear 0.1803 0.3071 0.5869 0.1855 0.3768 0.4922
None 0.1810 0.3078 0.5882 - - -
𝐸max 0.1813 0.3097 0.5854 0.1690 0.3235 0.5225
Exponential 0.1834 0.3173 0.5778 0.1669 0.3011 0.5544

0.0024 can be interpreted as relevant. Only using the sigmoid 𝐸max model compared to using the full candidate model set
differs by 0.0098, which can hence be viewed as a relevant difference such that it would not suffice to use a single model.
The interpretation of the  score is not straightforward, which is discussed in Section 6.

5 SIMULATION-BASED ANALYSIS

The simulation gives insights on the effect of the number of replications per concentration level while standard deviation
of the noise is fixed (Table 2). Opposed to the data-based analysis, the correct model is known such that precision, recall,
and goodness-of-fit can be evaluated.

5.1 Setup

Concentration–response data sets are generated for 10,000 genes for each of the six considered models and for the null
case, as well as for three different numbers of replicates 𝑛𝑖 and a fixed standard deviation to range ratio (see Table 2).
Details on how the range and standard deviation are chosen are explained in the following. The null case means that a
constant model is used to generate the data. In order to have a realistic data generation process, it is based on the real VPA
data set. For each considered 𝑛𝑖 , a data set structurally similar to the VPA data set but with 70,000 genes, 10,000 for each
of the six nonflat models, and 10,000 for the flat null model, is generated as follows.
Consider a model 𝑓 = 𝑓(𝑑, 𝜽) ∈  where | | = 7 and for the null case, 𝑓 = 𝑓(𝑑, 𝜽) = 𝑓(𝑑, 𝑐) = 𝑐 > 0. The assumed

ratio of standard deviation to range denoted by 𝑞(0.5) is explained below. Define ∗(𝑓) as the set of all genes 𝑔 for which

 15214036, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202000250 by T
echnische U

niversitaet D
ortm

und D
ezernat Finanzen und B

eschaffung, W
iley O

nline L
ibrary on [05/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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TABLE 5 Summary of the simulation results, stratified by correct model and chosen model, respectively. Signif. genes (%) is the rate of
FDR adjusted, detected dose–response signals among the 10,000 generated dose–response data for each model, with 𝑛𝑖 replicates at each dose
level. For the recall rate, the model is the correct model. For the precision rate, the model is the selected model

Measure 𝒏𝒊 Beta 𝑬𝐦𝐚𝐱 Exponential Flat Linear Quadratic sig. 𝑬𝐦𝐚𝐱
3 0.989 0.982 0.979 0.037 0.988 0.988 0.997

Signif. genes (%) 5 1.000 1.000 1.000 0.042 1.000 1.000 1.000
10 1.000 1.000 1.000 0.045 1.000 1.000 1.000
3 0.447 0.496 0.561 0.963 0.705 0.543 0.471

Recall 5 0.567 0.552 0.657 0.958 0.750 0.638 0.567
10 0.712 0.616 0.754 0.955 0.770 0.723 0.717
3 0.582 0.658 0.682 0.925 0.416 0.547 0.510

Precision 5 0.627 0.746 0.745 0.999 0.529 0.565 0.586
10 0.676 0.790 0.822 1.000 0.713 0.614 0.689

model 𝑓 was the selected winner model by AIC in the VPA data set in Analysis I. Further, (𝑓) is a sample of 10,000
genes drawn with replacement from ∗(𝑓). For a gene 𝑔 ∈ (𝑓), the true underlying concentration–response relationship
is assumed to be the model fit 𝑓(𝑔)(𝑑, �̂�) of model 𝑓 on the VPA data of gene 𝑔. For the null model, the mean response �̄�(𝑔)
is used as true value for 𝑐.
Given this true concentration–response relationship of gene 𝑔, noise is added to generate a data set according to the

model equation (1). For concentration levels 𝑑 ∈ {𝑑1, … , 𝑑8} used in the original experiment (see Section 2), generate 𝑦
(𝑔)

𝑖𝑗
=

𝑓(𝑔)(𝑑𝑖, �̂�) + 𝑒𝑖𝑗 , 𝑗 = 1,… , 𝑛𝑖 . The added noise values 𝑒𝑖𝑗 are independently drawn from 𝜀 ∼ (0, (𝜎(𝑓(𝑔), 𝑠))2). If 𝑓(𝑔) is not
the null case, then 𝜎(𝑓(𝑔), 𝑠) ∶= range(𝑓(𝑔)) ⋅ 𝑞(𝑠), where the range for a gene with model 𝑓 is calculated as range(𝑓(𝑔)) ∶=
max

𝑑∈{𝑑1,…,𝑑8}
(𝑓(𝑔)(𝑑, �̂�)) − min

𝑑∈{𝑑1,…,𝑑8}
(𝑓(𝑔)(𝑑, �̂�)). The term 𝑞(𝑠) is the empirical 𝑠-quantile of the ratio 𝑆(𝑔)∕range(𝑓(𝑔)) across

all genes 𝑔 with a detected signal and their respective fits in Analysis I. Here, (𝑆(𝑔))2 =
∑𝑘
𝑖=1

∑𝑛𝑖
𝑗=1
(𝑦
(𝑔)

𝑖𝑗
− �̄�

(𝑔)

𝑖
)2∕(𝑁 − 𝑘) is

the estimated variance for each gene. Hence, for 𝑠 = 0.5, we obtain 𝑞(0.5) = 0.3222, which is used for all nonflat models
and all genes to calculate 𝜎(𝑓,(𝑔) 0.5) (Appendix, Figure A2). If 𝑓(𝑔) is the null case, then range(𝑓(𝑔)) = 0. In this case,
we use 𝜎(𝑓(𝑔), 𝑠) = 𝑞null(𝑠), which is the empirical 𝑠-quantile of 𝑆 calculated for nonsignificant genes 𝑔 of Analysis I. We
obtain 𝑞null(0.5) = 0.1909 (Appendix, Figure A3).
Using an adapted standard deviation per gene and model is preferred over using a fixed standard deviation, because it

allows for comparability between different models and ranges with respect to goodness-of-fit (Kappenberg et al., 2021).
Finally, the generated data set is analyzed as the original VPA data set in Analysis I.

5.2 Results

Table 5 summarizes the results of the simulation w.r.t. signal detection (power), recall, and precision. For 𝑛𝑖 = 3, which
mimics the conditions in the real VPA data set, a signal is almost always detected if it is present. However, the recall
and precision rates for nonlinear and nonflat models for this scenario are below 0.69. If 𝑛𝑖 = 10, the rates of these model
selection errors are still large, even though the sample size𝑁 = 8 ⋅ 𝑛𝑖 = 80 is rather large in the context of toxicology. For
example, if the sigmoid 𝐸max model is correct, for 31.1% of the generated dose–response data another model is incorrectly
selected. Due to the penalty term of the AIC used in model selection, complex correct models as the sigmoid 𝐸max or the
beta model have a comparatively large increase in recall rates when 𝑛𝑖 is increased. For comparatively noisy scenarios,
these models are rarely selected. The opposite holds for the least complex model, the linear model. It has a comparatively
very low precision rate (41.6%) and very high recall rate (70.5%) for 𝑛𝑖 = 3, but not for 𝑛𝑖 = 10. Precision values naturally
have more practical value, as they give insight on how confident one can be with the model selection. The precision rate
increases from 92.5% to 99.9% for the flat model if 𝑛𝑖 increases from 3 to 5. For nonflat models, the precision rate does not
exceed 82.2% at any 𝑛𝑖 .
In practice, often one is not mainly interested in selecting the true underlying model but to have a sufficiently good

fit. Figure 8 summarizes the relative loss in model fit by considering the log-ratio in root-mean-square error (RMSE)
between the winner and the true model, that is, between the actually selected model and the fitted model if the correct
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F IGURE 8 Distributions of log2(𝑅𝑀𝑆𝐸winner∕𝑅𝑀𝑆𝐸true) in the simulation. 𝑅𝑀𝑆𝐸true is the root mean squared error (RMSE) if the
correct model is fitted and 𝑅𝑀𝑆𝐸winner the RMSE of the selected winner model. For 108 genes, the log-ratio is greater than 5 and not displayed

model is selected. For both, the RMSE is calculated with respect to the true dose–response curve that is known in the
simulation. If the correct model is actually selected, this ratio is 0, because the true and selected model are the same. If
the ratio is greater than one, then the selected model differs from the correct model and has a worse RMSE. The ratio
of the RMSE values is independent of 𝑛𝑖 and of the range of the respective gene. It only captures the effect of the model
selection.
In general, the relative loss inRMSEdecreaseswith increasing𝑛𝑖 but is still present for𝑛𝑖 = 10, although𝑁 = 8 ⋅ 𝑛𝑖 = 80

is already a large sample size in toxicology. For𝑛𝑖 = 3 themedian of the log-ratio is 0.0000 for all winnermodels, but 0.0543
for the linear model. This demonstrates the low precision of the linear model for small 𝑛𝑖 . For small 𝑛𝑖 = 3, the penalty of
the AIC is comparatively large, yielding too many selections of the simpler linear model in cases where a more complex
model might be required. If a more complex model such as the beta or sigmoid 𝐸max model is selected, the ratio’s upper
quartile are largest with 20.464 = 1.480 and 20.594 = 1.509, respectively. Hence, for 25% of the generated genes where the
sigmoid 𝐸max model is selected, the selection is not correct and the RMSE is at least 50.9% larger than the RMSE of the
correct model. For the 𝐸max and for the exponential model, the upper quartiles of the ratio are closest to zero for each 𝑛𝑖 .
With increasing 𝑛𝑖 , the penalty term of the AIC becomes comparatively weak. For 𝑛𝑖 = 10, this heavily affects the linear
model. It is selected less often and has log-ratios closely concentrated around zero. For the beta, quadratic, and sigmoid
𝐸max model, the upper quartile of the log-ratios remain comparatively far from 0. If the beta model is selected, for 25% of
the generated genes the selection is incorrect and the RMSE is at least 20.235 = 1.177 times the RMSE if the correct model
was selected. Thus, not selecting the correct model results in a noteworthy relative loss in goodness-of-fit, even when
larger sample sizes are used in toxicology.

6 CONCLUSION

In this work, MCP-Mod was used as model selection approach for gene expression concentration–response data. For the
data set at hand, human embryonic stem cells were exposed to varying concentrations of VPA. For 54,675 probe sets or
genes the expression is measured. The data set indicated that modeling gene expression concentration–response data
requires the consideration of several models, that is, a candidate model set. Only considering the popular 𝐸max or sigmoid
𝐸max model might not be sufficient. Especially nonmonotone models like the quadratic model should also be taken into
account. When usingMCP-Mod, frequent selections of a linear model should not be misinterpreted as evidence for a true,
linear concentration–response relationship. A large noise-to-signal ratio, or, more precisely, a large standard deviation to
true response range ratio, favors the selection of the linearmodel. Also, there is typically no notable loss in goodness-of-fit,
when instead of the linear model the second best model is used.
Using a newly proposed score,, it was observed that the𝐸max model can be omitted from the candidate set despite its

popularity, as long as themore general sigmoid 𝐸max model is included in the candidate set. Further, the score discourages
to omit the linearmodel, even though it can be easily substitutedwith respect to goodness-of-fit. Including the linearmodel
in the candidate set aims to detect unclear concentration–response signals rather than modeling detected signals well. If
the linear model is omitted, one might fail to identify potentially interesting genes. Simulation studies based on the data
set indicate that the confidence in the correctness of the selected model, measured by the precision, is not very high.
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Even when increasing the sample size per concentration from 3 to 10, which is very large for this type of toxicological
experiments, the precision of nonflat models does not exceed 0.83. Thus, increasing the number of experiments does
not increase the precision in model selection proportionally. The relative loss in goodness-of-fit due to model selection
mistakes decreases with increasing sample size, but remains notable even for 10 replicates per concentration.
The newly proposed  score served as a help to summarize analysis and simulation results. For a given candidate

set, it considers the power, that is, number of detected genes, and the goodness-of-fit of genes with a detected signal
simultaneously. Despite its simple form, its interpretability is not straightforward, which allows for improvements. If one
does not want to consider both power and goodness-of-fit at the same time but, for example, focuses on optimizing power,
the score is not an adequate tool.
The data basis of this work is a single data set, which, despite its size and quality, is an obvious limitation. Similar anal-

yses on other gene expression concentration–response data would be valuable to confirm our results. Another promising
approach, which is not considered in this work, is model averaging. It would be interesting to analyze the influence of the
different approaches and parameters on target dose estimation.
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F IGURE A1 Barplots of parameter estimates of the 𝐸max model for genes where it was selected as winner model by the AIC
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F IGURE A2 Barplot of 𝑆 to range ratio for genes with an FDR adjusted signifMCP in Analysis I. The vertical dotted lines are at
𝑞(0.1) = 0.1427, 𝑞(0.5) = 0.3222, and 𝑞(0.9) = 0.5245
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F IGURE A3 Barplot of 𝑆 for nonsignificant genes in Analysis I. The vertical dotted lines are at 𝑞null(0.1) = 0.1236, 𝑞null(0.5) = 0.1909,
and 𝑞null(0.9) = 0.2898
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