
Query Evaluation Revised:
Parallel, Distributed, via Rewritings

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Christopher Spinrath

Dortmund

2024

Tag der mündlichen Prüfung: 29.01.2024
Dekan: Prof. Dr-Ing. Gernot A. Fink

Gutachter:
I Prof. Dr Thomas Schwentick
I Prof. Dr Reinhard Pichler

© 2024 Christopher Spinrath; this work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International license.

To view a copy of this license, visit
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en.

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Abstract

This is a thesis on query evaluation in parallel and distributed settings, and structurally
simple rewritings of queries. It consists of three parts, each highlighting various aspects
of query evaluation.

In the first part, the efficiency of constant-time parallel evaluation algorithms is
investigated. That is, the number of required processors or, asymptotically equivalent,
the work required to evaluate queries in constant time. From fundamental results by
Codd and Immerman, it easily follows that all relational algebra queries can be evaluated
in constant time on an appropriate PRAM model in principle. However, these results
do not focus on work-efficiency, and indeed lead to evaluation algorithms with huge
(polynomial) bounds on the work, and the tuples of query result that can be extremely
scattered in memory. In particular, such algorithm require substantially more work than
classical, sequential algorithms require time, for several classes of queries.

We explore work-efficient constant-time evaluation algorithms for classes of queries,
for which efficient sequential query evaluation algorithms are known: Acyclic queries,
free-connex acyclic queries, semi-join algebra queries, and natural join queries – the latter
in the worst-case optimal framework.

Given suitable data structures for the database relations, our algorithms are substan-
tially more work-efficient than naive algorithms. In the case of semi-join queries, the
work of our algorithms even matches the running time of the best sequential algorithms,
and in the other cases it comes reasonably close.

The second part is about deciding parallel-correctness – a natural problem in the
context of distributed query evaluation: In a nutshell, given a query and policies specifying
how data is divided and communicated among multiple servers, does the distributed
evaluation of the query on the servers yield the same result as evaluating the query, over
every database?

Ketsman et al. started the investigation of the distributed evaluation of recursive
queries in the Massively Parallel Communication (MPC) model. Among other results,
they proved that parallel-correctness for general Datalog programs is undecidable, by a
reduction from the undecidable containment problem for Datalog.

We show that the undecidability of parallel-correctness runs deeper: It already holds
for fragments of Datalog with a decidable containment problem, specifically monadic
and frontier-guarded Datalog; even under relatively simple communication policies.
These simple communication policies are defined in terms of data-moving distribution
constraints. We then study a property – which can be imposed by syntactic restrictions
of the constraints, or semantically, and show that the parallel-correctness problem for
frontier-guarded Datalog and constraints with this property is 2ExpTime-complete.
Furthermore, we will obtain the same bounds for the parallel-boundedness problem,

Page iii

Abstract

which asks whether the number of required communication rounds is bounded, over all
databases.

Interestingly, our investigations reveal that not every monadic Datalog query is effec-
tively equivalent to a frontier-guarded one in the distributed setting, although this holds
in the classical, sequential setting.

The third part is about structurally simple rewritings. The (classical) rewriting problem
asks whether, for a given query Q and a set V of views, there is a query Q′ – called
rewriting – over V that is equivalent to Q. Levy et al. proved that this problem is
NP-complete for conjunctive queries and views.

We study the variant of this problem for (subclasses of) conjunctive queries and views
that asks for a structurally simple rewriting Q′. Concerning the existence of structurally
simple rewritings, we prove that, if the given query Q is acyclic itself, an acyclic rewriting
exists if there is any rewriting at all. Analogous statements also hold for free-connex
acyclic, hierarchical, and q-hierarchical queries.

We then study the complexity of our variant of the rewriting problem: It turns out
that it is NP-hard, even if both Q and the views in V are acyclic or hierarchical, and the
arity of the database schema is bounded. However, it becomes tractable if the views are
free-connex acyclic or q-hierarchical (and the arity of the database schema is bounded).

Page iv

Contents

Abstract iii

1 Introduction 1
1.1 Settings and Main Results . 3

1.1.1 Work-Efficient Constant-Time Parallel Evaluation 3
1.1.2 Parallel-Correctness of Distributed Query Evaluation 5
1.1.3 Structurally Simple Rewritings 7

1.2 Structure and Outline . 9
1.3 Publications . 9

2 Preliminaries 11
2.1 Relational Databases . 11
2.2 Query Basics . 13
2.3 Relational Algebra . 13
2.4 Rule-Based Query Languages . 15

2.4.1 Conjunctive Queries . 15
2.4.2 Datalog . 20

2.5 Automata and Machine Models for Upper and Lower Bound Proofs . . . 22
2.5.1 Minsky Machines . 22
2.5.2 Two-Way Alternating Tree Automata 23

3 Work-Efficient Query Evaluation with PRAMs 27
3.1 PRAMs and Constant-Time Parallel Algorithms 28

3.1.1 Parallel Random Access Machines (PRAMs) 29
3.1.2 Lower and Upper Bounds for Constant-Time Algorithms 30

3.2 PRAMs Meet Databases: Settings and Representations 35
3.3 Algorithmic Techniques and Basic Array Operations 40

3.3.1 Algorithmic Techniques . 43
3.3.2 Algorithms for Basic Array Operations 46

3.4 Database Operations . 49
3.4.1 Lower Bounds . 50
3.4.2 Algorithms for the Operations of the Semi-Join Algebra 51
3.4.3 Algorithms for the Join Operation 55

3.5 Query Evaluation in the Dictionary Setting 59
3.5.1 Evaluation of Semi-Join Algebra Queries 60
3.5.2 Evaluation of Conjunctive Queries 60
3.5.3 Weakly Worst-Case Optimal Work for Natural Joins 65

Page v

Contents

3.6 Evaluation via Translation . 71
3.6.1 Into the Dictionary Setting . 71
3.6.2 Query Evaluation in the General and Ordered Setting 73

3.7 Discussion and Related Work . 75

4 Distributed Evaluation of Datalog 79
4.1 Setting and Framework . 80

4.1.1 Distributed Evaluation of Datalog Programs 82
4.1.2 Hash-Based Distribution Policies 84
4.1.3 Constraint-Based Communication Policies 85

4.2 Parallel-Correctness . 87
4.2.1 Undecidability for Hash-Constraints 92
4.2.2 Value-Independent Distribution Policies 98
4.2.3 The Polynomial Communication Property 104
4.2.4 Modest Communication Policies 114
4.2.5 The Non-Transitive Communication Setting 116

4.3 The Containment Problem for Frontier-Guarded Datalog 122
4.4 Parallel-Boundedness . 132
4.5 Discussion and Related Work . 143

5 Structurally Simple Rewritings 147
5.1 Views, Rewritings, and the Problem . 148
5.2 A Characterization . 158
5.3 Towards Acyclic Rewritings . 166

5.3.1 On the Existence of Acyclic Rewritings for Acyclic Queries . . . 166
5.3.2 The Complexity of the Acyclic Rewriting Problem 171
5.3.3 An Implication for Multi-Query Evaluation 177

5.4 A Tractable Case: Mind your Head! . 180
5.5 Hierarchical and Quantified-Hierarchical Rewritings 185
5.6 Discussion and Related Work . 189

6 Conclusion 197

Bibliography 199

Index of Definitions 215

A Revisiting Consistent Approximate Prefix Sums 219

B Parallel-Correctness for Hash-Based Policies 227

Page vi

Chapter 1

Introduction

Evaluating database queries is an ever-evolving topic with many facets. With technical
advances and new applications, requirements and circumstances for evaluating queries
are constantly subject to change. While sometimes new query languages and database
models are meaningful to address these changes, it is often desirable (or even required) to
consider well-established query languages and database models in settings with additional
prerequisites, restrictions, requirements, etc., which have to be taken into account for
query evaluation.

There are numerous examples. For instance, access to the database might be partially
restricted due to privacy or fairness reasons. If the data is stored in an external memory or
has to be transmitted over a network, accessing data might also be considered expensive
– and should therefore be minimized. For huge databases evaluating queries in parallel
using multiple processors or servers might be desirable. Query results from “similar”
queries evaluated earlier on the same database instance could be provided as prerequisites
to optimize the evaluation of the input query. Yet another example are constraints or
derivation rules that have to be taken into account when evaluating a query.

A more involved setting is the following. Since the database is huge only the query
results of a few selected queries, called views, are actually available to evaluate the actual
queries formulated for the original database. Since the query results of the views are still
large and fast query evaluation is paramount, multiple servers are utilized. Each server
has in turn multiple processors. While the processors of a single server can communicate
rather efficiently with each other, say via shared memory, communication between the
servers is more expensive. It seems sensible to pursue the following three objectives in a
scenario like this.
I Queries have to be adapted such that they can be evaluated given the query results of

the views. If possible they should retain all their good properties concerning query
evaluation.

I The communication and distribution of data between the servers should be restricted.
Preferably the database does not have to be redistributed among the servers for each
individual query.

I Each server should perform its task as fast as possible, utilizing all of its resources
and, in particular, all of its processors.

From the perspective of Database Theory, studying these new settings involves aspects
of the following kind – phrased here as questions.

Page 1

Chapter 1 I Introduction

(1) How can the setting be properly modelled, and what is a proper framework to study
the setting?

(2) Are evaluation algorithms from classical or other settings applicable? If not, (how)
can they be adapted, or are new algorithms, potentially influenced by other areas of
Computer Science, desirable?

(3) If there are restrictions or constraints, is correctness of query evaluation guaranteed?
That is, does the query result computed in the presence of these restrictions and
constraints coincide with the (hypothetical) query result computed without them?
If not, is it decidable, given a query and (a family of) restrictions and constraints,
whether sound and complete evaluation is possible for any database instance? And if
it is decidable, what is the complexity?

(4) What are proper measures to rate query evaluation algorithms, and when do we
consider an evaluation algorithm or the complexity of a problem to be “good” or
“efficient”?

(5) What is the complexity of query evaluation, or, if query evaluation is achieved by
some kind of reduction or translation, the complexity of computing this reduction?

(6) Are there characterizations useful for, e.g., designing algorithms, proving complexity
bounds, or identifying circumstances that allow for a more efficient evaluation?

(7) How do algorithms and the complexity of problems compare to their analogous in
other settings, most notably “classical” settings?

Of course, this list is not exclusive, and there might be further aspects, depending on
the setting. It also depends on the setting how relevant any of these aspects are – some
can possibly be easily or even trivially addressed for one setting but for other settings it
might be more involved. Furthermore, the order in which the aspects are best addressed
can vary depending on the setting as well. Addressing Aspect (6) can, for example, yield
characterizations which, in turn, can be very helpful to design algorithms, and, thereby,
addressing Aspect (2). Fully addressing an aspect might also require considering query
evaluation in a broad sense. For example, query optimization, which can arguably be
considered a topic on its own but is entangled with query evaluation, might play a role
for Aspects (5) and (7).

Last but not least, it is potentially meaningful to consider Aspects (2) to (7) for
fragments of query languages which are known to be well-behaved in other settings.

In this thesis we delve into three settings (and some variations thereof), each highlighting
different aspects among Aspects (1) to (7). We will briefly introduce these settings in
the following before we discuss the overall structure and outline of this thesis. Related
work will be primarily discussed in the main part of this thesis.

Page 2

I Settings and Main Results

1.1 Settings and Main Results

The underlying database model of our settings is the classic relational model introduced
by Codd [Cod70]. Relational databases are widely deployed – ranging from large-scale
enterprise deployments to instances embedded into everyday applications for personal
computers. Consequently, there is a wide, expanding range of applications and settings
for query evaluation on relational databases.

Codd [Cod72] also introduced the relational algebra which is the foundation for SQL –
the query language commonly implemented by relational database management systems
– and permits precise and mathematical sound reasoning about queries stated in terms of
relational expressions. An alternative are rule based query languages, most prominently
conjunctive queries defined by Chandra and Merlin [CM77]. They capture some core
aspects of SQL; more precisely, conjunctive queries are exactly the queries that can
be expressed by relational algebra expressions using only the select, project, and join
operators [cf., e.g., Are+21, Theorem 12.7]. The query language Datalog can be seen
as an extension of conjunctive queries by recursion which is often desirable to express
reachability queries. There are various more query languages for relational databases.
Which query language is appropriate for a certain setting depends, in general, on multiple
factors: The setting itself, the questions being investigated, prior work, how well results
and proofs can be stated, etc. Consequently, which query language(s) we consider will
vary depending on the setting.

1.1.1 Work-Efficient Constant-Time Parallel Evaluation

This setting is concerned with the data complexity of parallel query evaluation algorithms
that can utilize a vast amount of processors.

Concerning Aspect (1), we will use the Parallel Random Access Machine (PRAM)
model, which allows for a fine-grained analysis of parallel algorithms. Immerman [Imm89;
Imm99] showed that PRAMs with polynomially many processors can evaluate first-order
formulas in constant time, i.e. in time O(1). The same applies to relational algebra
queries because they can be translated into equivalent first-order formulas [Cod72].
Comparing solely the running time of parallel algorithms and sequential algorithms
neglects, however, that parallelism requires a potentially huge number of processors,
which can be understood as another kind of valuable resource.

In the PRAM literature, it is common to compare the work of a parallel algorithm
with the running time of sequential algorithms instead [cf., e.g., JáJ92]. Here the work is
the overall number of computation steps in a PRAM computation. This will also be the
primary measure we use in this thesis to address Aspects (4), (5) and (7). Regarding
Aspects (4) and (7) in particular, an important goal is to design parallel algorithms that
are work-optimal in the sense that their work asymptotically matches the running time of
the best sequential algorithms. The other measure we will study is the space complexity.

Obviously, for constant-time PRAM algorithms the work and the number of processors
are asymptotically equivalent. Thus, the result by Immerman – combined with the
translation given by Codd [Cod72] – shows that relational algebra queries can be evaluated

Page 3

Chapter 1 I Introduction

with polynomial work. More precisely, the algorithms obtained this way require work
O(INk) where k is the number of variables of the (intermediate) formula. For many
classes of queries this is not work-optimal. We note that optimizing the work was not
an objective of these investigations. Surprisingly however, to the best of our knowledge,
“work-efficiency” of constant-time PRAM algorithms for query evaluation has not been
studied beyond this result in the literature.

Therefore, to investigate Aspects (2), (4), (5) and (7), we will develop PRAM algorithms
for queries directly, omitting intermediate translations to, for example, formulas or circuits;
thereby, building some foundations for “work-efficient” query evaluation in constant time.
While it is not hard to come up with constant-time PRAM algorithms for relational
expressions or conjunctive queries in principle, there are some obstacles affecting the
“work-efficiency” of naive algorithms: Intuitively, the amount of data a single processor
can access and communicate in constant time is very limited. We will see that these
limitations manifest in obstacles like the following.
I It is, in general, not possible to represent the result of a (sub-)query in a compact

form, say, as an array contiguously filled with result tuples.

I It is often necessary to allocate more processors than necessary, only for some to detect
that they are superfluous and do not actually contribute to the query result. This can
be illustrated with an array whose cells are not contiguously filled. That is, some cells
are empty. To process each data item that is actually stored in the array it is often
necessary to allocate one processor for each cell of the array – including the empty
ones.

I The work-efficiency of operations like searching and sorting relies heavily on the
representation of the data items. For sorting a constant-time PRAM algorithms is –
to the best of our knowledge – not even known for the most general case.

Since intermediate results are also affected by obstacles like these, evaluating a relational
algebra expression by combining algorithms for the individual operators naively, can, in
general, lead to large bounds for the required work.

For example, a naive algorithm for the join R on S of two relations R and S can simply
allocate |R| · |S| processors, one for each pair of an R-tuple and an S-tuple. If the tuples
assigned to a processor “match” it can write the corresponding result tuple into an array
of length |R| · |S|. Here we assume that the processors are numbered from 1 to |R| · |S|,
and each processor uses its number as index for the result array. In general, not every
cell of the result array will contain a result tuple, and the algorithm is not work-optimal:
In the sequential setting, sorting the relations suitably yields, for instance, a running
time that is sub-quadratic in the input size (and linear in the output size).

We will investigate these obstacles (among others) and possible mitigations. Essential
ingredients for our mitigations will be the constant-time PRAM algorithm for computing
approximate prefix sums from Goldberg and Zwick [GZ95], and suitable representations
of relations.

We consider three settings that differ in how databases can access (and represent)
database relations.

Page 4

I Settings and Main Results

I In the most general setting, domain values cannot be directly accessed. Instead, they
are represented by tokens, and it can only be tested whether two tokens represent the
same value.

I In the ordered setting we assume that there is a linear order on the domain values and
it can be tested whether one value is smaller than another.

I In the dictionary setting domain values are mapped to an initial, linear-sized segment
of the natural numbers by a dictionary. These keys can be directly accessed by a
PRAM and used in computations.

For each of these setting, we will present algorithms for the operators of the relational
algebra which are more “work-efficient” than naive algorithms.

Based on this, we will study algorithms for queries of the semi-join algebra (a fragment
of the relational algebra), conjunctive queries, and natural join query – the latter in the
worst-case optimal framework. Among other results, we will prove that
I there are work-optimal constant-time evaluation algorithms for queries of the semi-join

algebra;

I there are parallel versions of the Yannakakis algorithm for acyclic conjunctive queries
that require work O((IN + IN · OUT)1+ε), for every fixed ε > 0; and

I an “almost” worst-case optimal work algorithm for natural join queries
in the dictionary setting. Except for the work-optimal algorithm for semi-join algebra
queries, these results carry over to the ordered setting, if the input relations are suitably
ordered a priori. We also present corresponding algorithms for the general setting,
although they require (asymptotically) more work.

Regarding Aspect (2) these results will let us conclude that the query evaluation
algorithms – which we consider – carry over to the parallel, constant-time setting
reasonably well.

1.1.2 Parallel-Correctness of Distributed Query Evaluation

In this setting we shift focus to the communication between entities that participate in
the distributed evaluation of queries. To emphasize this, we use the terms servers and
distributed evaluation instead of processors and parallel evaluation; following the intuition
that processors are “close” to each other and can access shared memory, while servers are
“far apart” and have to communicate over some network. This is somewhat inspired by
data management systems like Apache Spark [Apab; Xin+13] and Apache Hadoop [Apaa]
which distribute large volumes of data among a massive amount of servers to speed up
query processing.

Regarding Aspect (1), Beame et al. [BKS17a] established the Massively Parallel
Communication (MPC) model to study distributed query evaluation. In this model query
evaluation proceeds in multiple rounds where each round consists of a computation and
a communication step. In the computation step, every server operates on its local data
in isolation, whereas in the communication step data is exchanged between the servers.

Page 5

Chapter 1 I Introduction

In comparison, in the PRAM model computation and communication (via shared
memory) is not clearly separated, and it is a “low-level” model in the sense that it
stipulates how a processor can perform computations.1

The “high-level” MPC is therefore arguably more convenient and suited for studying
distributed evaluations where the exact details on how the local computations are
performed are not crucial.

For single-round algorithms, Ameloot et al. [Ame+17] considered an instantiation of
Aspect (3): The problem of parallel-correctness asks whether one can always be sure
that the corresponding algorithm computes the query result correctly, no matter the
actual data, starting from a particular distribution policy. Here a distribution policy
asserts the presence of certain data on certain servers. We emphasize that, in difference
to the setting discussed in Section 1.1.1 this is a static analysis problem, and we are not
concerned with data complexity here. Parallel-correctness and related problems were
subsequently studied for conjunctive queries (with and without negation) and under set
as well as bag semantics by Ameloot et al. [Ame+17], Geck et al. [Gec+16] and Ketsman
et al. [KNV18].

Ketsman et al. [KAK20] started the investigation of the distributed evaluation of
Datalog queries in the multi-round MPC model. To this end, they introduced a framework
entailing economic policies as a means to specify data reshuffling in a recursive setting
where intermediate derived facts can be communicated between servers. That is, in
addition to specifying the initial distribution of the facts in the input database, economic
policies also determine which servers can derive and use intensional facts during the
evaluation of Datalog queries. Among other things, the authors showed that parallel-
correctness for general Datalog queries is undecidable. In light of Aspect (4) they also
proved that the parallel-boundedness problem, that asks whether a Datalog query can
be evaluated in a bounded number of evaluation rounds is, for general Datalog queries,
undecidable as well. Both undecidability results were proved by a reduction from the
undecidable containment problem for Datalog.

In this thesis, we revisit the parallel-correctness and parallel-boundedness problem
for Datalog queries. Given the prior work discussed above, we will primarily focus on
identifying fragments of Datalog and policies with decidable parallel-correctness and
parallel-boundedness problems. For this purpose, we build a more generic framework for
the distributed evaluation of Datalog within the multi-round MPC model which allows for
more general evaluation strategies than the economic policies of Ketsman et al. [KAK20].

Within this framework, we first establish that the undecidability of parallel-correctness
runs deeper than the containment problem. We show that parallel-correctness is already
undecidable under relatively simple distributed evaluation strategies for fragments of
Datalog with a decidable containment problem, namely monadic and frontier-guarded
Datalog queries. In a nutshell, monadic Datalog is the variant of Datalog where intensional
predicates have arity at most one, whereas in frontier-guarded Datalog every rule should
contain an extensional predicate mentioning all the variables occurring in the head of the
rule [c.f., e.g., BKR15a; BCS11; BCO12].

1For details, we refer to Section 3.1.1.

Page 6

I Settings and Main Results

Given these undecidability results, we will then proceed by identifying syntactical and
semantic properties of policies which lead to decidable parallel-correctness and parallel-
boundedness problems for monadic and frontier-guarded Datalog. More precisely, we
show that these problems are 2ExpTime-complete, for suitable combinations of Datalog
fragments and restricted policies. Although this complexity might seem daunting from a
practical perspective, it is not unexpected, since the containment problems for monadic
and frontier-guarded Datalog queries are 2ExpTime-complete and can easily be reduced
to the corresponding parallel-correctness problems.

Our investigations will also reveal that classical results and coherences do not always
hold in distributed settings: The usual ability to transform monadic Datalog queries into
(equivalent) frontier-guarded Datalog queries can break drastically.

1.1.3 Structurally Simple Rewritings

The third and last setting which we consider in this thesis covers scenarios where the
access to the database is restricted – for example, due to privacy, data protection,
confidentiality reasons, or, as in the introductory example, the database is simply too
large. This is somewhat orthogonal to the other two settings, in the sense, that such
restrictions can be considered on top of and, to some degree, independent of parallel (or
sequential) evaluation settings.2

A common way to model access restrictions to databases are views [cf., e.g., CY12;
Hal01] which are queries with a special role: Instead of accessing the database directly,
only the query results for the views can be accessed, or rather, referred to by actual user
queries. Note that, in this model, it is not strictly necessary to materialize, i.e. compute,
the query results for views. A database system could, for example, enumerate these
results or inline the view definitions if the database system itself has access to the full
database but does not expose it to its users.

For such settings Aspect (3) essentially boils down to the study of the query rewriting
problem which asks, for a query Q and a set V of views, whether there is a query Q′

over V that is equivalent to Q, and to find such a rewriting Q′.
If access to the database is only possible via views, it is arguably desirable that rewritings

have good properties. As indicated by our results for the other two settings, structurally
simple queries, like acyclic conjunctive queries, enjoy many good properties. Most notably,
many classes of structurally simple queries allow for efficient query evaluation. This leads
to a modified version of the query rewriting problem which does not merely ask for any
rewriting, but rather for rewritings which are structurally simple and allow for efficient
evaluation.

Let us emphasize that this modified version of the rewriting problem can also be
relevant if access to the database is not restricted. For instance, this is the case for
multi-query evaluation settings where multiple queries are given. A possible question
in such a setting is, if one of the given queries can be evaluated more efficiently given
the query results of the other (input) queries. Here the “other input queries” take the

2In distributed settings restrictions and distribution policies might not be fully independent.

Page 7

Chapter 1 I Introduction

role of the views. Building upon this one may ask for an optimal evaluation order of the
given queries, minimizing the overall evaluation complexity. Furthermore, note that, if
the set V of views consists of one view for each relation in the database, the question
boils down to whether there is a structurally simple query equivalent to the input query
– and, therefore, a classical query optimization problem.

In this thesis we are interested in the following two questions, which concern Aspects (2)
and (5).

(a) Under which circumstances is it guaranteed that a structurally simple rewriting
exists, if there exists a rewriting at all?

(b) What is the complexity to decide whether such a rewriting exists and to compute
one?

We study Questions (a) and (b) for classes of structurally simple conjunctive queries,
and depending on the structure of the given views and the given query. More precisely,
we consider the classes of acyclic conjunctive queries (ACQ), and hierarchical conjunctive
queries (HCQ), as well as their slightly stronger versions free-connex acyclic (CCQ) and
q-hierarchical (QHCQ) conjunctive queries.

It is well-known that many problems are tractable for acyclic conjunctive queries but
(presumably) not for conjunctive queries in general. Notably, the evaluation, minimization,
and the containment problems are tractable for acyclic queries [Yan81; CR00; GLS01]
but NP-complete for the class of conjunctive queries [CM77].

Hierarchical conjunctive queries play a central role in the context of probabilistic
databases [DS07; FO14], and distributed query evaluation in the MPC model [KS11].
Free-connex acyclic and q-hierarchical conjunctive queries play a crucial role in the
context of the enumeration complexity of queries [BDG07; BKS17b; BGS20]. For further
applications of these query classes we refer to the articles of Kara et al. [Kar+20] and
Fink and Olteanu [FO16] as well as the thesis of Keppeler [Kep20].

Our answer to Question (a) turns out to be very simple and also quite encouraging: If
the original query is acyclic and there is any rewriting of it, then there is also an acyclic
rewriting. And the same is true for the three subclasses HCQ,CCQ, and QHCQ of ACQ.
To be more precise, let Rewr(V, Q, R), for classes V, Q, and R of conjunctive queries,
denote the rewriting problem that asks, given a set V views from V and a query Q
from Q, whether there is a rewriting of Q over V in R. Our answer to Question (a)
implies, in particular, that for Q ∈ {ACQ,CCQ,HCQ,QHCQ} and any set V of conjunctive
queries the decision problems Rewr(V, Q, CQ) and Rewr(V, Q, Q) – and, thus, their
complexities – coincide. This somewhat simplifies our study of Question (b).

Our answer to Question (b) reveals that the complexity of the acyclic rewriting problem
depends mainly on two parameters: The views and the arity of the underlying database
schema. We denote the restriction of Rewr(V, Q, R) to database schemas of arity at
most k by Rewrk(V, Q, R), and we indicate by Vk if the arity of views is at most k.

Our main results for Question (b) are as follows.

I The decision problems Rewr3(ACQ, ACQ, ACQ) and Rewr3(HCQ, HCQ, HCQ) are
NP-complete.

Page 8

I Structure and Outline

I If arity of the views is bounded by some fixed k, and both, views and query are
structurally simple, then the rewriting problem becomes tractable. In particular, we
have that Rewr(ACQk, ACQ, ACQ) is in polynomial time, and an acyclic rewriting
can be computed in polynomial time (if it exists). This follows easily with the help of
the known canonical rewriting approach [see NSV10, Proposition 5.1] and our answer
to Question (a).

I The same is true if the views are free-connex acyclic or q-hierarchical, and the
arity of the database schema is bounded by some fixed k: The decision problems
Rewrk(CCQ, ACQ, ACQ), and Rewrk(CCQ, CCQ, CCQ), as well as the decision prob-
lems Rewrk(QHCQ, ACQ, ACQ), and Rewrk(QHCQ, QHCQ, QHCQ) are in polyno-
mial time.

Roughly speaking, the existence of a structurally simple rewriting thus depends on the
input query, and the complexity of finding one depends, in addition, on the views (and
the database schema).

We conclude with the remark that, to prove our answers to Questions (a) and (b),
we will first address Aspect (6), and present a characterization of rewritability. Similar
notions have been used in the literature, but ours is particularly suited for the study of
exact (equivalent) rewritings.

1.2 Structure and Outline
In Chapter 2 we will introduce some basic notions, relational databases, and the query
languages used throughout this thesis.

The main part of this thesis consists of three chapters, one for each of the aforementioned
settings, namely Chapter 3 “Work-Efficient Query Evaluation with PRAMs”, Chapter 4
“Distributed Evaluation of Datalog”, and Chapter 5 “Structurally Simple Rewritings”.
Each of these main-part chapters starts with a detailed introduction and formalization
of the respective setting, and we conclude each of them with a discussion of the results
and related work. We provide a more detailed, individual outline in the opening of each
chapter. They can be read in any order.

In Chapter 6 we give an overarching conclusion.

1.3 Publications
This thesis is based on the following publications, each of which lead to one of the main
chapters of this thesis.

I Jens Keppeler, Thomas Schwentick and Christopher Spinrath. “Work-Efficient Query
Evaluation with PRAMs”. In: 26th International Conference on Database Theory,
ICDT 2023, March 28-31, 2023, Ioannina, Greece. [Full reference: KSS23].

Page 9

Chapter 1 I Introduction

I Frank Neven, Thomas Schwentick, Christopher Spinrath and Brecht Vandevoort.
“Parallel-Correctness and Parallel-Boundedness for Datalog Programs”. In: 22nd In-
ternational Conference on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon,
Portugal. [Full reference: Nev+19].

I Gaetano Geck, Jens Keppeler, Thomas Schwentick and Christopher Spinrath. “Rewrit-
ing with Acyclic Queries: Mind Your Head”. In: 25th International Conference on
Database Theory, ICDT 2022, March 29 to April 1, 2022, Edinburgh, UK (Virtual
Conference). [Full reference: Gec+22].

A video presentation [Spi+22] from me3 has also been published along with the
conference paper “Rewriting with Acyclic Queries: Mind Your Head” [Gec+22]. Moreover,
a journal version of this paper has been accepted for publication in the Logical Methods
in Computer Science (LMCS) journal [Gec+23].

The individual contributions of my co-authors and me as well as the differences in
content between the publications above and this thesis are discussed in the openings of
Chapters 3 to 5.

3While the pronoun “we” is used throughout this thesis to involve the reader, the pronouns “I”, “me”,
and “myself” are used to unambiguously refer to me, the author of this thesis, when discussing
scientific contributions.

Page 10

Chapter 2

Preliminaries

In this chapter, we fix some notation and recall the basic concepts from database
theory that are relevant for this thesis. In Section 2.1 we introduce our notation for
relational databases, and in Sections 2.2 to 2.4 we discuss query languages: The relational
algebra, conjunctive queries, and Datalog as well as fragments and extensions thereof. In
Section 2.5 we provide definitions and some basic facts for some machine and automata
models which we use in this thesis to prove some upper and lower bounds. We start with
notation for some fundamental mathematical concepts.

Basic Notation. By N0 we denote the set of non-negative integers. For integers i, j ∈ N0,
we denote by [i, j] the set {i, . . . , j} = {k ∈ N0 | i ≤ k ≤ j}. In the common case where
i = 1, we write [j] as a shorthand for [1, j]. We write |S| for the number of elements
in S when S is a set, a sequence, or a tuple. For a tuple x̄ = (x1, . . . , xk) and a tuple
p̄ = (p1, . . . , p`) ∈ [1, k]` of positions we write x̄[p̄] for the tuple (xp1 , . . . , xp`). As usual,
we omit parentheses if they are redundant or the tuple consists of only one element. For
instance, given the tuple x̄ = (a, b, c), we have |x̄| = 3, x̄[(2, 3, 2)] = (b, c, b), and x̄[1] = a.

We use the natural extensions of mappings onto sets and tuples without notational
distinction. That is, for a mapping f : X → Y , we write f(X ′) for {f(x) | x ∈ X ′}
and f(x̄) for (f(x1), . . . , f(xk)) for sets X ′ ⊆ X and tuples x̄ = (x1, . . . , xk) ∈ Xk,
respectively. The composition f ◦ g of two functions g : X → Y and f : Y → Z is the
function (f ◦ g) : X → Z defined by (f ◦ g)(x) = f(g(x)) for all x ∈ X. For a (partial)
function f : X ⇀Y , we write dom(f) for its domain, i.e. the set X ′ ⊆ X of all elements
in X for which f is defined. By id we denote the identity mapping (on any domain).

2.1 Relational Databases
Following Arenas et al. [Are+21, Chapter 2] we consider two perspectives from which
databases can be defined: The unnamed and the named perspective. While the resulting
formalisms are equally expressive, the former will be more convenient for studying
static analysis problems in Chapters 4 and 5, and the latter will be more convenient for
presenting evaluation algorithms in Chapter 3.

The Unnamed Perspective. Let dom be an infinite set of domain values.
Databases (and queries) are defined over database schemas. A database schema S is a

finite set of relation schemas, each represented by a (relation) symbol R and associated

Page 11

Chapter 2 I Preliminaries

with a fixed arity ar(R) ∈ N0. The arity of S is maxR∈S ar(R). We usually just write
schema instead of database schema.

A relation symbol R ∈ S and a tuple ā of domain values with |ā| = ar(R) constitute
a fact R(ā) over S. If we want to emphasize the relation symbol of a fact we call it an
R-fact. A database D over a schema S is a finite set of facts over S. The active domain
of a database D, denoted adom(D) (dom, is the set of all domain values that occur
in D.

An R-relation, for a relation symbol R, is a finite set of tuples ā of domain values with
|ā| = ar(R). A database D over a schema S induces, for each R ∈ S, an R-relation D(R),
namely D(R) = {ā | R(ā) ∈ D}. These relations D(R) are called database relations
(of D). We usually write R instead of D(R) for a relation if D is understood from the
context. That is, we use the same notation for relations and relation symbols.

The Named Perspective. Let att be an infinite set of attributes that is disjoint with
the set dom of domain values, and equipped with a linear order. Since we are formalizing
the same concepts as before, just from another perspective, we overload some notation
accordingly.

A named relation schema is represented by a relation symbol R which is associated
with a finite set attr(R) (att of attributes. The arity of R is ar(R) = |attr(R)|. A
named database schema S is a set of finitely many named relation schemas, and its arity
is maxR∈S ar(R).

A named tuple ã over a finite set X (att of attributes is a function ã : X → dom, and
a named fact R(ã) consists of a relation symbol (from a named schema) and a named
tuple ã over attr(R). The arity of a named tuple ã over X is |X |. A database over a
named schema S is a finite set of named facts over S. For every R ∈ S, a database D
over S induces the R-relation D(R) = {ã | R(ã) ∈ D} over attr(R). Here a relation
over a set X of attributes is a set of tuples over X . Like their unnamed counterparts, we
call the relations D(R) the database relation (of D), and just write R instead of D(R).
The active domain adom(D) of a database D is the set of all domain values that occur
in D, i.e. in the range of any named tuple that occurs as part of a fact in D.

For a named tuple over X and a subset or sequence Y of attributes in X , we write ã[Y]
for the restriction of ã to Y, that is, the named tuple b̃ : Y → dom with b̃(Y) = ã(Y),
for all Y ∈ Y. This notation naturally extends to relations: For a relation R and
Y ⊆ attr(R), we define R[Y] = {ã[Y] | ã ∈ R}. If Y is a singleton set {Y }, we just write
ã[Y] and R[Y], instead of ã[{Y }] and R[{Y }], respectively.

Thanks to the linear order on att, we can refer to the j-th attribute of a relation
symbol R. To be a bit more precise, we agree that the first attribute of R is the smallest
element of attr(R) with respect to the linear order on att, and the ar(R)-th attribute of R
is the largest element in attr(R). Of course, this also applies to any finite set X (att of
attributes. Thus, we can identify each named tuple ã over a set X of attributes with a
tuple ā = (a1, . . . , a|X |), where aj is the value assigned to the j-th in X by ã. This allows
us, in particular, to switch to the unnamed perspective (and back) in a straightforward
manner, and to interpret (database) relations as sets of (unnamed) tuples.

Page 12

I Query Basics

For more details on these two perspectives and their relationship we refer to the
discussion of Arenas et al. [Are+21, Section 2, “The Relational Model”].

2.2 Query Basics
In general, we define a query over a (named or unnamed) schema S as a function that
maps databases over S to databases over another schema S ′. If not explicitly noted
otherwise, we will require that the schemas S and S ′ are disjoint. For a query Q and a
database D we call the image Q(D) the query result of Q over D.1

Like functions in general, queries can be composed: Given a query Q over schema S,
that maps databases over S to databases over a schema S ′, and a query Q′ over schema
S ′, we write Q′ ◦Q for the query over schema S defined by D 7→ Q′(Q(D)).

Queries over the same schema can be compared with respect to the query results they
define. Let Q1 and Q2 be queries over the same schema. We say that Q1 is contained
in Q2 and write Q1 v Q2 if Q1(D) ⊆ Q2(D) holds for every database D. We say that Q1

and Q2 are equivalent and write Q1 ≡ Q2 if Q1 v Q2 and Q2 v Q1 hold. We will often
employ the containment problem – for various classes of queries. For classes Q1 and Q2

of queries, the containment problem Cont(Q1, Q2) is defined as follows.

Cont(Q1, Q2)

Given: Queries Q1 ∈ Q1 and Q2 ∈ Q2

Question: Is Q1 contained in Q2? That is, does Q1 v Q2 hold?

A query is monotone if Q(D1) ⊆ Q(D2) holds whenever D1 ⊆ D2 holds, for all
databases D1, D2.

Queries are usually defined syntactically in terms of query languages. In the following
we will briefly introduce the query languages relevant for this thesis.

2.3 Relational Algebra
A query of the (named) relational algebra over a named schema S is an expression over a
set of attributes inductively defined as follows.
I Each relation symbol R ∈ S is a relational algebra expression over attr(R).
I If E1 and E2 are relational algebra expressions over sets X and Y, respectively, then
(E1 on E2) is a relational algebra expression over X ∪ Y. (join)

I If E1 and E2 are relational algebra expressions over sets X and Y, respectively, then
(E1 n E2) is a relational algebra expression over X . (semi-join)

I If E1 and E2 are relational algebra expressions over the same set X of attributes, then
(E1 ∪ E2) and (E1 − E2) are relational algebra expressions over X as well.

(union and difference)
1We note that our definition of queries implies that query results are always finite (databases).

Page 13

Chapter 2 I Preliminaries

I If E is a relational algebra expression over a set X of attributes, then πY(E) is a
relational algebra expression over Y, for every Y ⊆ X . (projection)

I If E is a relational algebra expression over a set X of attributes, then σX=Y (E) is a
relational algebra expression over X for any two attributes X,Y ∈ X . (selection)

I If E is a relational algebra expression over a set X of attributes, then ρX→Y (E) is a
relational algebra expression over (X \ {X})∪ {Y }, for every X ∈ X and Y ∈ att \ X .

(rename)
As usual, we omit superfluous parentheses. Furthermore, for an attribute X, we just
write πX(E) instead of π{X}(E), and sometimes we write πY(E) instead of πY∩X (E) for an
expression E over X , for convenience. We call on,n,∪,−, πY , σX=Y , ρX→Y the operators
of the relational algebra.

Every relational algebra expression E over a set X of attributes and schema S defines
a relation RE(D) over X , for every database D over S, as follows.
I If E = R, for some R ∈ S, then RE(D) = D(R).
I If E = E1 on E2, for relational algebra expressions E1 and E2 over sets X and Y of

attributes, respectively, then

RE(D) =
{
ã | ã is a tuple over X ∪ Y with ã[X] ∈ RE1(D) and ã[Y] ∈ RE2(D)

}
.

I If E = E1 n E2, for relational algebra expressions E1 and E2 over sets X and Y of
attributes, respectively, then RE(D) = {ã ∈ RE1(D) | ã[X ∩ Y] ∈ RE2(D)[X ∩ Y]}.

I If E = E1 ∪ E2, then RE(D) = RE1(D) ∪RE2(D).
I If E = E1 − E2, then RE(D) = RE1(D) \RE2(D).
I If E = πY(E ′), then RE(D) = RE ′(D)[Y].
I If E = σX=Y (E ′), then RE(D) = {ã ∈ RE ′(D) | ã[X] = ã[Y]}.
I If E = ρX→Y (E ′), for an relational algebra expression E ′ over a set X of attributes,

then

RE(D) = {b̃ | b̃ is a tuple over (X \ {X}) ∪ {Y } with
b̃[X \ {X}] = ã[X \ {X}] and b̃[Y] = ã[X] for some ã ∈ RE ′(D)}.

The query Q defined by a relational algebra expression E is then simply the query that
maps every database to the database consisting of the relation defined by E . More
formally, Q(D) = {RE(ã) | ã ∈ RE(D)}, for every database D. We will often identify a
query Q of the relational algebra with its defining expression E . For instance, we write
Q = Q1 on Q2 for queries Q1 and Q2 and RQ(D) instead of RE(D). In the same spirit,
we write E for the relation RE(D), if D is understood from the context.

The semi-join algebra is the fragment of the relational algebra without the join operator.
That is, queries and expressions of the semi-join algebra are defined as for the relational
algebra, but no subexpression is of the form E1 on E2.

For more details on the relational algebra and related terms, we refer to the book of
Arenas et al. [Are+21, Chapter 4].

Page 14

I Rule-Based Query Languages

2.4 Rule-Based Query Languages
In this section we will introduce our notation for and recall the basic concepts of
conjunctive queries and Datalog queries. Both query languages are defined in terms of
(query) rules and the unnamed perspective. Therefore, we will first discuss rules and
related terminology, and then, based upon this, the query languages.

Let var be an infinite set of variables that is disjoint with the sets dom of domain
values, and att of attributes.

Atoms. An atom of arity r is of the form R(x1, . . . , xr) with a relation symbol R of
arity r, and variable set {x1, . . . , xr} ⊂ var. We denote the variable set of an atom A
by vars(A). Similarly, for a set A we write vars(A) for the set of variables occurring in
atoms in A. That is, we have vars(A) =

⋃
A∈A vars(A). Analogously to facts, an atom

with relation symbol R is called an R-atom if we want to stress the associated relation
(symbol). More generally, S-atoms are R-atoms for some symbol R in schema S.

Like for sets and tuples, we also use the natural extension of mappings of variables
on atoms without difference in notation: For a mapping f : var → Y and an atom
A = R(x1, . . . , xr), the image f(A) is R(f(x1), . . . , f(xr)).

A valuation is a partial mapping ϑ : var ⇀ dom. A database D satisfies a set A of
atoms under a valuation ϑ, if ϑ(A) ⊆ D, that is, for every atom R(x1, . . . , xr) in A, the
fact R(ϑ(x1), . . . , ϑ(xr)) is contained in D.

We define the size ‖A‖ of an atom A = R(x̄) as ar(R) + 1. Note that this ensures that
atoms R() of arity 0 have a strictly positive size.

Query Rules. A (query) rule τ represents a conjunction of atoms and has the form

A← A1, . . . , Am

where m ≥ 1 is an integer and A,A1, . . . , Am are atoms. The atom A is called the head
of τ and the set {A1, . . . , Am} is called the body of τ . We denote the head and body of a
rule τ by head(τ) and body(τ), respectively. By vars(τ) we denote the set of variables
occurring in τ . That is, vars(τ) = vars(head(τ)) ∪ vars(body(τ)).

A rule τ is safe if every variable in its head also occurs in at least one atom of the body,
i.e., vars(head(τ)) ⊆ vars(body(τ)) holds. A rule τ is recursive if the relation symbol of its
head also occurs in body(τ). More formally, if head(τ) = H(x̄) for some relation symbol
H then body(τ) contains an H-atom.

We define the size ‖τ‖ of a rule τ as ‖head(τ)‖+
∑

A∈body(τ) ‖A‖, and its length |τ | as
|body(τ)|+ 1.

2.4.1 Conjunctive Queries

A conjunctive query Q over a schema S is defined by a safe rule τ that satisfies the
following condition: The atoms in body(τ) are S-atoms and the atom head(τ), on the
contrary, is not. Since a conjunctive query Q is defined by exactly one rule τ , we usually

Page 15

Chapter 2 I Preliminaries

identify Q with τ . In particular, we write head(Q), body(Q), etc. instead of head(τ),
body(τ), etc., and we have ‖Q‖ = ‖τ‖ as well as |τ | = |τ |.

Variables that occur in the head of a conjunctive query are called head variables; all
other variables are called quantified variables. A conjunctive query without quantified
variables is called a full conjunctive query. Conjunctive queries with two or more body
atoms that refer to the same relation are said to have self-joins. The arity of a conjunctive
query Q is the arity of its head. Furthermore, a conjunctive query Q is a Boolean query
if its arity is 0.

The query result of a conjunctive query Q over a database D is defined as

Q(D) = {ϑ(head(Q)) | ϑ is a valuation and D satisfies body(Q) under ϑ}.

We note that conjunctive queries are monotone [cf., e.g., AHV95, Proposition 4.2.2].

Example 2.4.1. Consider the conjunctive query Q defined by the rule

H(x, y, x)← R(x, z), R(y, z), S(x, y, z).

Its head variables are x and y; the variable z is a quantified variable. The arity of Q is 3.
Let D = {R(1, 2), R(3, 2), R(4, 2), S(1, 3, 2), S(4, 1, 2)} be a database over the schema
{R,S}. The query result of Q over D is the H-relation

Q(D) = {H(1, 3, 1),H(4, 1, 4)}. C

Homomorphisms, Containment, and Minimality. It is well-known that a conjunctive
query Q1 is contained in a conjunctive query Q2 if and only if there is a homomorphism
from the latter query into the first [cf. CM77, Proof of Lemma 13]. Such a homomorphism
is a mapping h : vars(Q2)→ vars(Q1) such that

(a) h(body(Q2)) ⊆ body(Q1) and

(b) h(head(Q2)) = head(Q1) hold.

We call h a body homomorphism if it fulfils Condition (a).
A conjunctive query Q1 is minimal if there is no conjunctive query Q2 such that

Q2 ≡ Q1 and |body(Q2)| < |body(Q1)| holds.

Structurally Simple Conjunctive Queries. Despite their simplicity and restricted ex-
pressiveness, several interesting problems are intractable for conjunctive queries in general.
Therefore, different fragments have been studied in the literature. In this thesis, we
are particularly concerned with “acyclic” conjunctive queries, which allow, for instance,
evaluation in polynomial time. We also consider three subclasses of acyclic conjunctive
queries, namely, free-connex acyclic, hierarchical, and q-hierarchical queries.

Page 16

I Rule-Based Query Languages

Acyclic and Free-Connex Acyclic Queries. A join tree for a conjunctive query Q is a
tree TQ whose nodes are the atoms in the query’s body and that satisfies the following
path property: For every two atoms A,A′ ∈ body(Q) with a common variable x, all
atoms on the (shortest) path from A to A′ contain x. A conjunctive query Q is acyclic if
it has a join tree. It is free-connex acyclic if Q is acyclic and the Boolean query whose
body is body(Q) ∪ {head(Q)} is acyclic as well [BDG07; Bra13].

Hierarchical Queries. For a fixed conjunctive query Q and some variable x that occurs
in Q, let atoms(x) denote the set of atoms in body(Q) in which x appears.

Definition 2.4.2 [DS07], [BKS17b, Definition 3.1]. A conjunctive query Q is hierarchical
if, for all variables x, y in vars(Q), one of the following conditions is satisfied.

(1) atoms(x) ⊆ atoms(y)

(2) atoms(x) ⊇ atoms(y)

(3) atoms(x) ∩ atoms(y) = ∅

Thus, the “hierarchy” is established by the query’s variables and the sets of atoms that
contain them.

A conjunctive query Q is q-hierarchical (short for quantified-hierarchical) if it is
hierarchical and for all variables x, y ∈ vars(Q) the following is satisfied.

(4) If atoms(x) (atoms(y) holds and x is a head variable of Q, then y is also a head
variable of Q.

For brevity, we denote by CQ, ACQ, CCQ, HCQ, and QHCQ the classes of conjunctive
queries in general and those conjunctive queries that are acyclic, free-connex acyclic,
hierarchical or q-hierarchical, respectively (cf. Table 2.1(a)). The relationships of these
classes are depicted in Figure 2.1. We note that, in particular, each q-hierarchical
conjunctive query is free-connex acyclic and each hierarchical conjunctive query is acyclic.

Proposition 2.4.3 (various sources, see discussion below). The inclusions depicted in
Figure 2.1 hold.

The inclusions QHCQ ⊆ HCQ, CCQ ⊆ ACQ, and ACQ ⊆ CQ hold by definition. Idris
et al. [IUV17, Proposition 4.25] proved the inclusion QHCQ ⊆ CCQ. The inclusion
HCQ ⊆ ACQ is mentioned by, e.g., Hu and Yi [HY19] and Kara et al. [Kar+20]; it
also follows readily from the former inclusion: For acyclicity the head of a query is
of no concern, and the Boolean variant of a hierarchical conjunctive query is always
q-hierarchical by definition, and, thus, free-connex acyclic which implies the existence of
a join tree for the body of the original query.

The strictness of the inclusions can easily be verified by (classical) examples.

ACQ (CQ: The triangle query T ()← E(x, y), E(y, z), E(z, x) is not acyclic.

Page 17

Chapter 2 I Preliminaries

CQACQ
acyclic

CCQ ∪ HCQ

CCQ
free-connex

acyclic

HCQ
hierarchical

CCQ ∩ HCQQHCQ
q-hierarchical

((
(

(

(

(
(

Figure 2.1: Relationships of subclasses of the class CQ of conjunctive queries.

query class short description

CQ conjunctive queries

ACQ acyclic queries

CCQ free-connex acyclic queries

HCQ hierarchical queries

QHCQ q-hierarchical queries

(a) Classes of conjunctive queries.

query class short description

DL Datalog queries

MDL monadic queries

FGDL frontier-guarded queries

(b) Classes of Datalog queries.

Table 2.1: Overview of rule-based query classes.

CCQ ∪HCQ (ACQ: The path query P3(x, u)← E(x, y), E(y, z), E(z, u) is acyclic but
neither hierarchical nor free-connex acyclic because the sets atoms(y) and atoms(z) are
incomparable and not disjoint, and the atoms P3(x, u), E(x, y), E(y, z), E(z, u) form a
circle, respectively.

HCQ (HCQ ∪ CCQ and HCQ ∩ CCQ (CCQ: The query H() ← S(x), R(x, y), S(y)
is free-connex acyclic but not hierarchical, since the sets atoms(x) and atoms(y) are
incomparable and not disjoint.

CCQ (HCQ ∪ CCQ and HCQ ∩ CCQ (HCQ: The query P2(x, z) ← E(x, y), E(y, z)
is hierarchical but not free-connex acyclic, because the atoms P2(x, z), E(x, y), E(y, z)
form a circle.

QHCQ (HCQ ∩ CCQ: The query H(x) ← R(x, y), S(y) is free-connex acyclic and
hierarchical but not q-hierarchical because atoms(x) (atoms(y) holds and x is a head
variable, but y is not.

Finally, observe that for full and Boolean conjunctive queries the picture becomes
simpler: Every full acyclic conjunctive query is free-connex acyclic, and every full
hierarchical conjunctive query is q-hierarchical. The same is true for Boolean queries.

Generalized Hypertree Decompositions. In Chapter 3 we will employ a generalization
of acyclic conjunctive queries, which we define next.

Page 18

I Rule-Based Query Languages

A tree decomposition of a conjunctive query Q is an undirected, rooted tree T , where
each node v is associated with a set bagT (v) ⊆ vars(Q) of variables from Q such that the
following three conditions are satisfied.

(a) For each variable x ∈ vars(Q) there is a node v ∈ nodes(T) with x ∈ bagT (v).2

(b) For each atom A ∈ body(Q) there is a node v ∈ nodes(T) with vars(A) ⊆ bagT (v).

(c) For each variable x ∈ vars(Q) the set {v ∈ nodes(T) | x ∈ bagT (v)} induces a
connected subtree of T .

A generalized hypertree decomposition of a conjunctive query Q is tree decomposition T
where each node v ∈ nodes(T) is additionally associated with a set coverT (v) ⊆ body(Q)
of body atoms such that bagT (v) ⊆

⋃
A∈coverT (v) vars(A) holds.

The width of a generalized hypertree decomposition T is maxv∈nodes(T) |coverT (v)|. The
generalized hypertree width of a conjunctive query Q is the minimal width over all of its
generalized hypertree decompositions. We point out that a conjunctive query is acyclic,
if and only if it has generalized hypertree width 1 [GLS02, Theorem 4.5].3

Following Gottlob et al. [GLS02, Definition 4.2] we say that a generalized hypertree
decomposition for a query Q is complete if, for every atom A ∈ body(Q), there is a node v
such that A ∈ coverT (v). Given any generalized hypertree decomposition, it can be
transformed into a complete generalized hypertree decomposition with the same width.

Lemma 2.4.4 [GLS02, Lemma 4.4]. For every conjunctive query Q with generalized
hypertree width k, there is a complete generalized hypertree decomposition of width k.

In a nutshell, a complete decomposition can be obtained by creating, for every atom A
a new node v with coverT (v) = {A} and bagT (v) = vars(A), and attaching it to a node w
with bagT (w) ⊇ vars(A). Such a node w always exists thanks to Condition (b). For more
details we refer to the proof given by Gottlob et al. [GLS02, Lemma 4.4].

For more details on generalized hypertree decompositions and related notions in general
we refer to the question and answer article of Gottlob et al. [Got+16].

Free-Connex Conjunctive Queries. The notion of generalized hypertree decompositions
also gives rise to a generalization of free-connex acyclic conjunctive queries.4

A generalized hypertree decomposition T of a conjunctive query Q is free-connex
if there is a set of nodes U ⊆ nodes(v) that induces a connected subtree in T and
satisfies vars(head(Q)) =

⋃
w∈U bagT (w). The free-connex generalized hypertree width of

a conjunctive query Q is the minimal width among its free-connex generalized hypertree
decompositions. We will sometimes use the following result. A detailed proof of it has
been given by Berkholz et al. [BGS20, Theorem 5.2].

2We note that is condition is actually redundant, because we defined conjunctive queries in terms of
safe rules, and thanks to Condition (b). We include it here to avoid confusion.

3We note that the cited proof [GLS02] is for hypertree decompositions which impose an additional
condition in comparison to generalized hypertree decompositions. However, it is not used in the proof.

4We note that such a generalization can be defined on top of various other notions [cf. BGS20], and
originally free-connex acyclic conjunctive queries were defined in terms of tree decompositions by
Bagan et al. [BDG07, Definition 36].

Page 19

Chapter 2 I Preliminaries

Proposition 2.4.5 [Bra13, p. 82, Footnote 10]. A conjunctive query is free-connex acyclic
if and only if it has free-connex generalized hypertree width 1.

2.4.2 Datalog
A Datalog program P is a finite set of Datalog rules. Here a Datalog rule is just a safe
rule.5

We call a relation symbol occurring in P an extensional relation symbol if it occurs
only in the body of rules in P . All other relation symbols occurring in P , i.e. those which
are not extensional, we refer to as the intensional relations symbols of P . By edb(P)
and idb(P), we denote the schemas induced by the extensional and intensional relation
symbols of P , respectively. We extend these terms to facts and atoms in the natural
way: A fact (or atom) is extensional if its relation symbol is extensional and intensional
otherwise.

A Datalog query Q over a schema S is a pair Q = (P,Out) where P is a Datalog
program and Out /∈ S is a relation symbol such that (1) edb(P) ⊆ S; (2) idb(P) ∩ S = ∅;
and (3) Out ∈ idb(P). That is, all extensional relation symbols are in S while intensional
relation symbols are not in S. We call the relation symbol Out the output symbol of Q.
Moreover, we define the size ‖Q‖ of Q as ‖P‖+ 1 where ‖P‖ =

∑
τ∈P ‖τ‖.

Semantics. Let Q = (P,Out) be a Datalog query and D be a database over some
schema S. We say that a fact R(ā) can be derived by a rule τ ∈ P and a valuation ϑ
from D if R(ā) = ϑ(head(τ)) and D satisfies body(τ) under ϑ. The immediate consequence
operator for P , denoted cP , maps databases over the schema S ∪ idb(P) to databases
over S ∪ idb(P). It is defined by

cP (D
′) = D′ ∪ {ϑ(head(τ)) | τ ∈ P, ϑ is a valuation, and D′ satisfies body(τ) under ϑ}.

Then the output P (D) computed by P over D is defined as the (least) fixpoint that
is reached after iteratively applying cP to D. For a fact R(ā) ∈ P (D) we also say
that R(ā) can be derived by P . The immediate consequence operator is monotone
[AHV95, Lemma 12.3.1] and, hence, P (D) always exists and is well-defined [AHV95,
Theorem 12.3.2].

The query result of Q = (P,Out) over D is then the Out-relation of P (D). More
formally,

Q(D) = {Out(ā) | Out(ā) ∈ P (D)}.

Since the immediate consequence operator is monotone, Q is monotone as well. We refer
to Abiteboul et al. [AHV95] and Arenas et al. [Are+21] for more details on Datalog.

Let us point out that every conjunctive query Q′ constitutes an equivalent Datalog
query Q over the same schema: Q consists of a Datalog program with a single rule,
namely the rule defining Q′, and output symbol is the relation symbol of head(Q′). But
not every Datalog rule defines a conjunctive query. In particular, Datalog rules can be
recursive while conjunctive queries do not allow for recursion.

5We call them Datalog rules to emphasize they do not necessarily define a conjunctive query.

Page 20

I Rule-Based Query Languages

Example 2.4.6. Let atoms of the form Er(x, y) denote red edges and Es(x, y) denote
sea blue edges. The Datalog query Q = (P,Out) where P consists of the rules below
asks for all nodes reachable from a starting node x (indicated by the atom Start(x)) by
a path containing only red and a path containing only sea blue edges.

R(x)← Start(x) S(x)← Start(x) Out(x)← R(x), S(x)

R(x)← R(y), Er(y, x) S(x)← S(y), Es(y, x)

We have idb(P) = {R,S,Out} and edb(P) = {Er, Es}. Let further

D = {Start(1), Er(1, 3), Er(1, 4), Es(1, 2), Es(2, 3)}.

Then Q(D) = {Out(1),Out(3)}. C

Proof Trees. For conjunctive queries Q′ a valuation can serve as a “witness” for a fact
R(ā) being in a query result Q′(D). An analogue notion for Datalog queries are proof
trees [cf., e.g., AHV95; Are+21].

For a rooted tree T , we denote its set of nodes by nodes(T), and its root node by
root(T). We denote the set of children of a node v ∈ nodes(T) by childrenT (v).

Definition 2.4.7 (Proof Tree). A proof tree T for a fact R(ā) with respect to a Datalog
program P is a rooted tree, in which every node v ∈ nodes(T) is labelled with a fact
fact(v) over edb(P) ∪ idb(P), and which has the following properties.

(a) The root node is labelled fact(root(T)) = R(ā).

(b) For every inner node v of T , there is a rule τ ∈ P and a valuation ϑ such that
ϑ(head(τ)) = fact(v) and ϑ(body(τ)) = {fact(w) | w ∈ childrenT (v)}.

(c) Every leaf v is labelled with an extensional fact fact(v) over edb(P).

A proof tree T for a fact Out(ā) with respect to a Datalog query Q = (P,Out) is a proof
tree with respect to P . We say that T is a proof tree with respect to a database D, if all
leaves are labelled with facts from D.

We say that a node v of a proof tree is witnessed by a rule τ and a valuation ϑ as
shorthand for τ and ϑ witnessing that v has Property (b).

The following well-known result can be proved by induction on the depth of a proof
tree (direction from left to right) and on the number of application of the immediate
consequence operator (direction from right to left).

Lemma 2.4.8 [e.g. Are+21, Lemma 38.6]. Let Q = (P,Out) be a Datalog query, D be a
database, and R(ā) be a fact. Then there is a proof tree for R(ā) with respect to P and D
if and only if R(ā) ∈ P (D).

Page 21

Chapter 2 I Preliminaries

Structurally Simple Datalog Queries. A Datalog query Q = (P,Out) is monadic if the
arity of every relation in idb(P) is at most one. It is frontier-guarded, if every rule τ ∈ P
is frontier-guarded, that is, if there is an extensional atom in body(τ), called guard atom,
that contains all the variables from head(τ) [see, e.g., BKR15a].

We note that a monadic Datalog query is not necessarily frontier-guarded. It is however
possible to transform every monadic Datalog query into an equivalent frontier-guarded
Datalog query that is only polynomially larger.

Lemma 2.4.9 [BKR15a, last paragraph p. 2828]. For every monadic Datalog query Q
there is an equivalent monadic, frontier-guarded Datalog query Q′. Moreover, Q′ has size
polynomial in ‖Q‖.

We denote by DL, MDL, and FGDL, the classes of Datalog queries in general and those
Datalog queries that are monadic, or frontier-guarded, respectively (see Table 2.1(b) for
an overview).

Example 2.4.10 (Continuation of Example 2.4.6). The Datalog query Q = (P,Out)
from Example 2.4.6 is monadic because all intensional relation symbols have arity 1. It
is, however, not frontier-guarded: The rule Out(x)← R(x), S(x) does not contain any
extensional atom and, thus, cannot be frontier-guarded.

Replacing Out(x)← R(x), S(x) with the rules

Out(x)← Start(x), R(x), S(x) and Out(x)← Er(y, x), R(x), S(x)

yields an equivalent frontier-guarded Datalog query. C

2.5 Automata and Machine Models for Upper and Lower Bound
Proofs

In this section we provide definitions and some basic facts on machine and automata
models, which we will use to prove some upper and lower bounds in Chapter 4. It is also
viable to skip this section for now. Back references are given when these models become
relevant.

2.5.1 Minsky Machines

A (deterministic) Minsky machine M = (S, s0, sf) consists of a set S of states, an initial
state s0 ∈ S and a halting state sf ∈ S. Moreover, the machine has two counters
numbered 1 and 2. Each state s ∈ S – except the halting state sf – is equipped with a
specific instruction which has one of the following forms.
I Inc(i, s′) which increments counter i and then moves to state s′; or,
I Dec(i, s′, s′′) which, if counter i has a non-zero value, decrements it and moves to state
s′, or else moves to state s′′.

Page 22

I Automata and Machine Models for Upper and Lower Bound Proofs

A configuration is a tuple (s, c1, c2) where s is the current state and ci is the value of
counter i. A configuration (s′, c′1, c

′
2) succeeds a configuration (s, c1, c2) if the former

results from the latter in the natural fashion by applying the instruction associated with s.
No configuration succeeds a configuration (sf , c1, c2) with the halting state. The unique
computation of M is the (possibly infinite) sequence of configurations where
I the first configuration in the sequence is the initial configuration (s0, 0, 0); and
I the (i+ 1)-th configuration succeeds the i-th configuration, for all (applicable) i ≥ 1.
A Minsky machine M halts if the halting state sf occurs in its computation (if sf does
occur then the computation is finite and sf is the state of the last configuration).

In Section 4.2.1 we will utilize the following decision problem as well as the associated
undecidability result.

MinskyHalt
Given: Minsky machine M

Question: Does M halt?

Proposition 2.5.1 [Min61, Theorem Ia]. MinskyHalt is undecidable.

For more details on Minsky machines we refer to the primordial work of Minsky [Min61],
and to the survey of Sapir [Sap15].

2.5.2 Two-Way Alternating Tree Automata

In Sections 4.3 and 4.4 we will utilize alternating two-way tree automata. They recognize
tree languages; that is, sets of finite trees over a ranked alphabet. A ranked alphabet Γ is
a disjoint union Γk ∪ . . .∪Γ0 of finitely many finite sets Γi. We require Γ0 to be non-empty
(any other Γi may be empty). An element of Γ is called a letter and it has rank i if it
is in Γi. Since we consider no other kind of alphabet, we will usually just use the term
“alphabet”.

A tree over Γ is a finite, rooted, and ordered tree whose nodes are labelled with letters
from Γ such that, for every node, its label is in Γi if and only if it has exactly i children.
By TΓ we denote the set of all trees over Γ. A tree language over Γ is a subset of TΓ.

For a set X, whose elements we consider to be propositions, we denote by L+(X)
the set of positive propositional formulas over X and the set {∨,∧} of operations. In
particular, the formula > (tautology) is always contained in L+(X).

Definition 2.5.2 (Alternating Two-Way Tree Automaton). An alternating two-way tree
automaton A is a tuple (S,Γ, ρ, s0) where
I S is a (finite) set of states;
I Γ = Γk ∪ . . . ∪ Γ1 ∪ Γ0 is a (ranked) alphabet;
I ρ : S×Γ→ L+({−1, 0, . . . , i}×S) is the transition function which maps, for all i ∈ [0, k],

each pair from S × Γi to a formula in L+({−1, 0, . . . , i} × S); and

Page 23

Chapter 2 I Preliminaries

I s0 ∈ S is the initial state.

Following Colcombet and Löding [CL10] we define the semantics of A on a tree T ∈ TΓ
in terms of a two-player game denoted by A× T . The positions of the game consist of a
state s of the automaton and a node v of the tree T . The initial position is (s0, root(T)).
The players are Morgana (the existential player) and Arthur (the universal player). A
play is a sequence π = (s0, v0), (s1, v1), . . . of positions where (s0, v0) = (s0, root(T)) is
the initial position and the successor of (si, vi) is determined in round i+ 1 of the game
as follows. Let ai be the label of vi.

(1) If ρ(si, ai) = > the game ends. That is, (si, vi) has no successor in π.

(2) Morgana and Arthur determine a proposition from ϕ = ρ(si, ai) by playing a “sub-
game” on ϕ: If ϕ = ψ1 ∧ψ2, Arthur chooses either ψ1 or ψ2; if ϕ = ψ1 ∨ψ2, Morgana
chooses. The subgame continues with the chosen subformula. In that fashion Arthur
and Morgana will eventually select a proposition (d, s).

(3) The state of the next position is then si+1 = s. The next node vi+1 is (i) the parent
node of vi if d = −1; (ii) vi if d = 0; or (iii) the d-th child of vi if d > 0.

If the position is of the form (si, root(T)) – this includes, in particular, the initial position
– and a proposition (d, s) with d = −1 is selected, the game ends. Morgana wins the
play π if it ends because ρ(si, ai) = > holds for the last position in π. Otherwise, she
looses and Arthur wins. We can always assume that a play is finite: If a positions repeats,
Morgana can either win with fewer moves or she cannot win at all. In other words, if
(si, vi) = (sj , vj) for some j < i, we agree that the game ends (and Morgana looses).

A partial play is a strict, finite prefix of a play. A strategy for Morgana is function which
maps partial plays to moves of Morgana. More precisely, it maps every pair (π, ϕ1 . . . ϕ`)
with ϕ` = ψ1 ∨ ψ2 to either ψ1 or ψ2. Here π is a partial play of the game and ϕ1 . . . ϕ`

is a partial play of the subgame, i.e. ϕj is a conjunction or disjunction of ϕj+1 with
another formula, for all j ∈ [1, `]. Strategies for Arthur are defined analogously. Together,
a strategy for Morgana and a strategy Arthur uniquely determine a play. A winning
strategy for Morgana is a strategy of hers such that, no matter the strategy of Arthur,
Morgana wins the resulting play.

An alternating two-way tree automaton A accepts a tree T if Morgana has a winning
strategy for the game A× T . The tree language recognized by A is

TA = {T ∈ TΓ | A accepts T}.

Cost Automata. Cost automata are an extension of “classical” automata. Instead of
just accepting (or rejecting) trees they also assign a cost to trees. For that purpose they
are equipped with counters which can be incremented, checked, and reset (but, unlike
for Minsky machines, there is no decrement operation). In this thesis we only require –
and, hence, define – a very simple kind of cost automata: Namely, automata with only

Page 24

I Automata and Machine Models for Upper and Lower Bound Proofs

one counter that can only be incremented (and is implicitly checked).6 We refer to the
articles of Colcombet and Löding [CL10], and Benedikt et al. [Ben+15] for more general
definitions which allow for more counters as well as more variations of cost assignments
and acceptance conditions.

Our definition of alternating two-way tree cost automata is almost the same as for
alternating two-way tree automata. The only difference is that every proposition in a
transition formula comes with an action: Either increment the counter (Inc) or leave the
counter value unchanged (Noop).

Definition 2.5.3 (Alternating Two-Way Tree Cost Automaton). An alternating two-way
tree cost automaton A is a tuple (S,Γ, ρ, s0) where
I S is a (finite) set of states;
I Γ = Γk ∪ . . . ∪ Γ1 ∪ Γ0 is a (ranked) alphabet;
I ρ : S×Γ→ L+({−1, 0, . . . , i}×S×{Inc,Noop}) is the transition function which maps,

for all i ∈ [0, k], each pair from S × Γi to a formula in

L+({−1, 0, . . . , i} × S × {Inc,Noop}); and

I s0 ∈ S is the initial state.

The semantics of our cost automata are also very similar to the semantics of alternating
two-way tree automata. Here the positions of a game A× T are triples (s, v, c) where s
and v are as before the current state of A and node of T , respectively; and c is the current
value of the counter. A play is a sequence π = (s0, v0, c0), (s1, v1, c1), . . . where the initial
configuration is (s0, v0, c0) = (s0, root(T), 0). The successor of a position (si, vi, ci) in π
is determined as before, but every time Morgana and Arthur select a proposition of
the form (d, s, Inc), the counter is incremented, i.e. ci+1 = ci + 1. Otherwise, it is left
unchanged. The cost assigned to a play is ∞ if the game ends because there are i, j
with j < i such that si = sj and vi = vj , that is, if Morgana looses because Arthur
could prolong the game indefinitely. Otherwise, the cost is the largest counter value ci
occurring in π.

The notions of (winning) strategies, acceptance, and recognition carry over from
alternating two-way tree automata. A c-winning strategy of Morgana is a winning
strategy such that, no matter the strategy of Arthur, the cost of the resulting play is at
most c. The cost assigned to a tree T ∈ TA by A is the smallest non-negative integer c
such that Morgana has a c-winning strategy for A × T . In other words, Morgana has
the additional objective to keep the counter value as small as possible, while Arthur’s
objective is to maximize the counter value.

An alternating two-way tree cost automaton A is limited if there is some constant d
such that, for each T ∈ TA, the cost assigned to T by A is at most d. That is, if Morgana
has a winning strategy, she always has a d-winning strategy. The limitedness problem
Limitedness for alternating two-way tree cost automaton is defined as follows.

6This is also known as “distance automaton” or “automaton with distance objective” in the literature
[cf. e.g. Ben+15].

Page 25

Chapter 2 I Preliminaries

Limitedness
Given: Alternating two-way tree cost automaton A

Question: Is A limited?

The following result by Benedikt et al. [Ben+15] is crucial for our main results in
Section 4.4.

Proposition 2.5.4 [Ben+15, Theorem 12]. The limitedness problem for alternating
two-way tree cost automata with a single counter that is never reset, is decidable in
exponential time.

We note that Benedikt et al. [Ben+15] state Proposition 2.5.4 for alternating two-
way tree cost automata on infinite, unranked trees, and for the boundedness problem.
The encoding of finite trees within infinite tree structures is straightforward, and the
universal player Arthur can be given the option to claim and prove encoding errors. The
boundedness problem asks whether the counter stays below a constant, for any input
tree (where the limitedness problem only asks this for input trees which are accepted).
By giving the existential player the option to “resign” (in exchange for never increasing
the counter), the seemingly stricter condition for boundedness can always be met, if the
original automaton is limited.

Page 26

Chapter 3

Work-Efficient Query Evaluation with
Parallel Random Access Machines

In this chapter we investigate work-efficient O(1)-time parallel algorithms for evaluating
queries from various query classes. As mentioned in the introduction, we will do so in
three settings: The general setting, the ordered setting, and the dictionary setting – where
the latter will be our main setting. The main results of this chapter are summarized
in Table 3.1. We emphasize that we are concerned with the data complexity of query
evaluation in this chapter. In particular, the query itself is never part of the input.

Outline. This chapter is roughly divided into three parts. In the first part we introduce
the PRAM models we use in this chapter formally (Section 3.1.1), and discuss some
essential lower and upper bound results for these models (Section 3.1.2). We then
introduce our three settings in Section 3.2, which differ in how PRAMs can access and
store databases and (intermediate) results in their memory.

In the second part we will present algorithms for operations which we will use as
building blocks for our constant-time query evaluation algorithms. We will first introduce
algorithms for some basic operations, notably including a search operation, in Section 3.3,
and based on that algorithms for the relational operators in Section 3.4.

In the third part, we then study O(1)-time parallel algorithms for evaluating queries of
the semi-join algebra, (structurally simple) conjunctive queries, and natural join queries.
For the latter we present almost worst-case optimal evaluation algorithms. We first
present evaluation algorithms in Section 3.5 for our main setting. For the other two
settings we will derive evaluation algorithms by translating them into the main setting in
Section 3.6.

We conclude this chapter with a discussion of our results and further related literature
in Section 3.7.

Publication and Contributions. This chapter is based on a conference paper [KSS23]
authored by my advisor Prof. Dr Thomas Schwentick, my colleague Dr Jens Keppeler,
and me. To somewhat live up to its title, it has been written in parallel to a full version
of the conference paper.1

In comparison with the conference paper, this chapter and the full version draw a more
complete and improved picture of O(1)-time parallel algorithms for query evaluation. In

1My co-authors and I intend to submit it for publication.

Page 27

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

Query class Work bound in the …
general setting ordered setting dictionary setting

Semijoin Algebra O(IN2) O(IN1+ε) O(IN)
Theorem 3.6.2 Theorem 3.6.2 Theorem 3.5.1

Acyclic CQs O((IN + IN · OUT)1+ε + IN2) O((IN + IN · OUT)1+ε)
Corollary 3.6.4 Corollary 3.6.4 Theorem 3.5.4

CQs with GHW k
O((INk + INk · OUT)1+ε + IN2) O((INk + INk · OUT)1+ε)

Corollary 3.6.4 Corollary 3.6.4 Theorem 3.5.5

Free-Connex
Acyclic CQs

O((IN + OUT)1+ε + IN2) O((IN + OUT)1+ε)
Corollary 3.6.5 Corollary 3.6.5 Proposition 3.5.6

CQs with
Free-Connex GHW k

O((INk + OUT)1+ε + IN2) O((INk + OUT)1+ε)
Corollary 3.6.5 Corollary 3.6.5 Corollary 3.5.7

Natural Join Queries O((
∏m

i=1 |Ri|xi + IN)1+ε + IN2) O((
∏m

i=1 |Ri|xi + IN)1+ε)
Corollary 3.6.6 Corollary 3.6.6 Theorem 3.5.8

Table 3.1: Work bounds for various query classes. Here CQ is short for “conjunctive
query”, GHW is short for “generalized hypertree width”, natural join queries
have the form R1 on . . . on Rm, and x1, . . . , xm constitute a fractional edge
cover. In the ordered setting the algorithms require suitably ordered input
arrays.

the conference paper the evaluation of queries of the semi-join algebra and structurally
simple conjunctive queries was only considered in two settings – the general and the
dictionary setting – while the (almost) worst-case optimal evaluation of natural join
queries was only considered in the ordered setting. Here (and in the full version) the
evaluation of all these queries is considered within all three settings. Furthermore, the
work and space bounds for evaluating conjunctive queries presented in Section 3.5.2
can be arguably deemed work-efficient, while the bounds presented in the conference
paper cannot. These improvements are mainly thanks to the compaction technique of
Goldberg and Zwick [GZ95, Theorem 4.2], the padded integer sorting algorithm presented
here as Proposition 3.1.11, and the translations into the dictionary setting presented in
Section 3.6.

The results presented in this chapter have been developed and were evolved in several
joint research sessions. Therefore, it is fair to say that all authors contributed equally to
all these results. All results are also included in the full version of the conference paper.
Their presentation, however, differs.

3.1 PRAMs and Constant-Time Parallel Algorithms

In this section, we define PRAMs and recall some known results on O(1)-time parallel
algorithms for PRAMs from the literature. The latter will include lower bounds that

Page 28

I PRAMs and Constant-Time Parallel Algorithms

reveal some obstacles for designing O(1)-time parallel algorithms. On the other hand,
we also discuss quite powerful tools to tackle these obstacles.

In addition, we present a O(1)-time parallel algorithm for padded integer sorting
– applicable to sequences of integers of polynomial size – that will be useful for our
purposes.

3.1.1 Parallel Random Access Machines (PRAMs)

A Parallel Random Access Machine (PRAM) consists of a number of processors which
operate in parallel2 and can use a shared memory. The processors are consecutively
numbered from 1 to pmax. Each processor can access its processor number and freely
use it in computations. For instance, a common application is to use it as an index
for an array. The memory consists of memory cells which are consecutively numbered
as well, starting with 1. The number of a memory cell is called its address. An input
for a PRAM is a sequence of n numbers, whose binary encodings have length O(logn)
each, and which are initially stored in the first n memory cells. We presume that the
word size, that is, the number of bits that can be stored in a memory cell, is of the form
O(logn+ log pmax). Thus, a single memory cell can hold an (arbitrary) input number,
and it is always possible to store a processor number in a memory cell.

A processor can access any memory cell in O(1)-time, given its address. Each processor
is also equipped with a constant number of local registers which it can use for computations.
These registers are essentially memory cells but, unlike them, registers are not shared.
Furthermore, we assume that the usual arithmetic and bitwise operations can be performed
in O(1)-time by a single processor.

We mostly use the Concurrent-Read Concurrent-Write (CRCW) model which allows
processors to read and write concurrently from and to the same memory cell. More
precisely, we mainly assume the arbitrary CRCW PRAM model: In case multiple
processors concurrently write to the same memory cell, exactly one of them, “arbitrarily”,
succeeds. This is our standard model, and we often refer to it simply by CRCW PRAM.

For some algorithms the weaker common model would suffice. In this model all
processors need to write the same value, if they attempt to write into the same memory
cell. On the other hand, some of the lower bounds which we recall below even hold
for the stronger priority model, where always the processor with the smallest processor
number succeeds in writing into a memory cell. We note that all these models are equally
expressive in the sense that they can simulate each other. However, the simulation of
a stronger model by a weaker one comes at a cost: It takes ω(1) time, or it requires
additional processors [Rag92].

We sometimes also use the weaker Exclusive-Read Exclusive-Write (EREW) model
(EREW PRAM), where concurrent access is forbidden. Cook et al. [CDR86, Theorem 7]
showed that EREW PRAMs are strictly less “powerful” than the concurrent-write models
defined above when it comes to constant-time algorithms, because they cannot compute
certain functions, like for instance the logical or of n bits, in O(1) time.

2More precisely, the processors operate synchronously, that is, there is a global clock.

Page 29

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

The work of a PRAM computation is the sum of the number of all computation steps
of every processor made during the computation. We note that, for O(1)-time parallel
algorithms, asymptotically the work concurs with the number of processors pmax. Let m
be the maximal address of any memory cell accessed during a computation of a PRAM.
Then the space required by this PRAM computation is m+cpmax where c is the (constant)
number of local registers available to a processor. For most of our algorithms m ≥ pmax
holds trivially, and we will hence focus on m to determine asymptotic space bounds.

For more details on PRAMs, we refer to the book of JáJá [JáJ92], and to the discussion
of Emde Boas [Emd90, Section 2.2.3] on alternative space measures.

Arrays. Many algorithms for PRAMs, including our algorithms, operate on arrays –
a very natural data structure for (P)RAMs. An array A is a sequence of consecutive
memory cells. The length |A| of A is the number of memory cells it consists of. By A[i],
for 1 ≤ i ≤ |A|, we refer to the i-th cell of A, and to the (current) content of that cell.
We call i the index of cell A[i], and 1, . . . , |A| the indices of A. Furthermore, we assume
that the length of an array is always available to all processors (for instance, it might
be stored in a “hidden” cell with index 0). Given an index i, any processor can access
cell A[i] in O(1) time on its own.

We will also use arrays whose cells correspond to c underlying memory cells each, for
some constant integer c > 0. In terms of some programming languages this corresponds
to an array of structs (or records). Since a single processor can read and write c memory
cells in constant time, we blur the distinction. For instance, if we write A[i] we actually
refer to c underlying memory cells and an array of length n actually consists of cn
underlying memory cells.

3.1.2 Lower and Upper Bounds for Constant-Time CRCW PRAM Algorithms

Next, we recall some known results on PRAM algorithms from the literature. The first
result implies that we cannot expect, in general, that query results can be stored in a
compact fashion. A bit more precisely, the result Q(D) of a query Q over a database D
cannot be stored in an array of length |Q(D)|. This follows from the following lower
bound for computing the parity function on CRCW PRAMs.

Proposition 3.1.1 [JáJ92, Theorem 10.8]. Any algorithm that, given an array A of
length n whose cells contain either 0 or 1, outputs whether the number of cells containing 1
is even (or not) and uses a polynomial number of processors requires Ω

(logn
log logn

)
time on

a priority CRCW PRAM.

Next, we make the term “compact” precise. We consider arrays which may have empty
cells.3 An array without empty cells is compact. Furthermore, we say that an algorithm
compacts an array A with k non-empty cells, if it computes a compact array B of length k
that contains the same values as A. Here two arrays A and B contain the same values

3In terms of some programming languages an empty cell corresponds to a cell containing a special null
value.

Page 30

I PRAMs and Constant-Time Parallel Algorithms

if they have the same number of non-empty cells and there is a bijection f between
the indices of these non-empty cells such that B[f(i)] = A[i] holds for every non-empty
cell A[i] of A.

Proposition 3.1.1 implies that an algorithm that compacts arrays cannot run in constant
time on our PRAM models. Indeed, given an array A whose cells contain either 0 or 1,
even the exact number of cells containing 1 can be determined by (1) interpreting all
cells containing 0 as empty and (2) compacting the array – the length of the resulting
array is then the number of cells of the original array containing 1.

Corollary 3.1.2. Any algorithm that compacts an array of length n, and uses a polynomial
number of processors, requires Ω

(logn
log logn

)
time on a priority CRCW PRAM.

Proposition 3.1.1 also implies a lower bound for sorting arrays. Here it suffices to sort
the given array A. The number of cells containing 1 can then be determined from the
index of the first cell containing 1. This index can easily be found by |A| − 1 processors
in constant time: Processor i simply checks cells A[i] and A[i+ 1].

Corollary 3.1.3. Any algorithm that sorts an array of length n containing natural
numbers and uses a polynomial number of processors requires Ω

(logn
log logn

)
time on a

priority CRCW PRAM. This holds even if all numbers in the array are from {0, 1}.

Of course, the lower bounds stated in Corollaries 3.1.2 and 3.1.3 also apply to the
arbitrary and common CRCW PRAM models, since they are weaker than the priority
model [cf., e.g., JáJ92]. We will see in Section 3.4.1 that these lower bounds transfer to
query evaluation algorithms in the sense that they cannot output the query result in a
compact array. This is because, in a nutshell, even very simple queries can effectively
ask for the indices of all cells containing 1. In the remainder of this section we have
a closer look at further lower bounds as well as at almost matching upper bounds for
approximate compaction and sorting.

Approximate Compaction. Corollary 3.1.2 rules out any constant-time algorithms for
compacting arrays (for our PRAM models). Therefore, the best we can hope for is
approximate compaction, that is, compaction procedures that guarantee some maximum
size of the result array in terms of the number of non-empty cells.

An accuracy function is a function that maps natural numbers to positive real numbers.
Let, in the following, λ denote such an accuracy function. An array A of length n with k
non-empty cells is λ-compact if n ≤ (1+λ(n))k holds. We say that an algorithm achieves
λ-compaction, if it, given an array A, computes a λ-compact array B that contains
the same values as A. We call it order-preserving, if the relative order of values does
not change. That is, if there is a bijection f between the indices of non-empty cells
of A and B such that (1) B[f(i)] = A[i] holds for every non-empty cell A[i] of A, and
(2) f(i) < f(j) whenever i < j and i, j are indices of non-empty cells of A.

Note that, for accuracy functions λ with λ(n) ≤ 1
n+1 for all positive integers n, a

λ-compact array is always (perfectly) compact. Indeed, for such λ and λ-compact arrays

Page 31

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

of length n with k non-empty cells we have that

n ≤ (1 + λ(n))k ≤
(
1 +

1

n+ 1

)
k = k +

k

n+ 1
= k + ε

for ε = n
n+1 < 1, because k ≤ n. But then we have k = n since n is an integer. In other

words, the array is compact. We thus always assume that λ(n) > 1
n+1 holds. In fact, in

this chapter λ will either be a constant or of the form (logn)−c, for some constant c.
We will see that approximate compaction can be done quite well, but the following

result implies a trade-off between time and number of processors.

Proposition 3.1.4 [Cha96, Theorem 5.3]. Any algorithm that achieves λ-approximate
compaction, for an accuracy function λ, and uses µ(n)n processors on a priority CRCW
PRAM, for some function µ, requires time Ω

(
log logn

log (µ(n)λ(n)+2)

)
.

Corollary 3.1.5. Any algorithm that achieves λ-approximate compaction for a constant
λ > 0 within constant time requires Ω(n1+ε) processors, for some constant ε > 0.

Proof. Consider an algorithm that achieves λ-compaction in constant time t using µ(n)n
processors. Due to Proposition 3.1.4 there is a constant c such that t ≥ c log logn

log (µ(n)λ+2)

holds. Therefore, we get the following chain of inequalities.

2t ≥
(logn

log (µ(n)λ+ 2)

)c ⇒ 2t/c ≥ logn
log (µ(n)λ+ 2)

⇒ log (µ(n)λ+ 2) ≥ 1

2t/c
logn

Consequently, we have µ(n)λ+2 ≥ nε, where ε = 1
2t/c

is a constant. Since we assumed λ
to be constant, we can conclude that µ(n) ∈ Ω(nε), and thus, µ(n)n ∈ Ω(n1+ε) holds. �

As a consequence of Corollaries 3.1.2 and 3.1.5, our main data structures are λ-compact
arrays that (possibly) have empty cells. In particular, our algorithms use such arrays to
represent query results – and, maybe more importantly, intermediate results. The latter
means that our algorithms also have to deal with λ-compact input arrays. Furthermore,
the best work bounds we can expect for algorithms that output λ-compact arrays are of
the form O(n1+ε), for some ε > 0.

The good news is that there are algorithms that achieve λ-compaction and match the
lower bound of Corollary 3.1.5, even order-preserving ones, and for λ ∈ o(1).

Proposition 3.1.6 [GZ95]. For every ε > 0 and c > 0 there is a O(1)-time parallel
algorithm that achieves order-preserving λ-approximate compaction for λ(n) = (logn)−c.
The algorithm requires work and space O(n1+ε) on a common CRCW PRAM.

Proposition 3.1.6 is not stated in this form by Goldberg and Zwick [GZ95], but it
readily follows from their result on consistent (approximate) prefix sums, which we discuss
next.

Definition 3.1.7. Let A be an array of length n whose cells contain integers. An array B
of the same length contains λ-consistent prefix sums for A, if, for each i ∈ [1, n], the
following two conditions hold.

Page 32

I PRAMs and Constant-Time Parallel Algorithms

(a)
∑i

j=1 A[j] ≤ B[i] ≤ (1 + λ(n))
∑i

j=1 A[j]

(b) B[i]−B[i− 1] ≥ A[i], if i > 1

Condition (a) ensures that each B[i] is an approximation of the exact prefix sum∑i
j=1 A[j] and Condition (b) ensures consistency.
Goldberg and Zwick [GZ95] proved the following result. We note that they did not

state the space bound explicitly, and therefore, we revisit their proof in Appendix A.

Proposition 3.1.8 [GZ95, Theorem 4.2]. For every ε > 0 and c > 0 there is a O(1)-time
parallel algorithm that, given an array A of length n with (logn)-bit integers, computes an
array containing λ-consistent prefix sums for A, where λ(n) = (logn)−c. The algorithm
requires work and space O(n1+ε) on a common CRCW PRAM.

Indeed, Proposition 3.1.6 follows by using an array A with A[j] = 1 if the j-th cell of
the array that is to be compacted is not empty and 0, if it is empty. The λ-consistent
prefix sums then yield the new indices for the contents of the non-empty cells.

We emphasize that thus the size of the cell contents does not matter in Proposition 3.1.6.

Padded Sorting. Another notorious obstacle for O(1)-time parallel algorithms is pointed
out by Corollary 3.1.3: They cannot sort (compactly) in constant time, at all. And
similarly to Corollary 3.1.5 linearly many processors do not suffice to sort in a (slightly)
non-compact fashion. The λ-padded integer sorting problem asks, given an array A of
length n whose cells contain integers, to sort the integers in A into an array of length
(1+ λ)n. The cells of the result array that do not contain an integer from A are required
to be empty.

Proposition 3.1.9 [Cha96, Theorem 5.4]. Solving the λ-padded sorting problem on a
priority CRCW PRAM using µ(n)n processors requires Ω

(
log logn

log((λ(n)+2)(µ(n)+1))

)
time.

The following corollary follows from Proposition 3.1.9 analogously to how Corollary 3.1.5
follows from Proposition 3.1.4.

Corollary 3.1.10. Any constant-time algorithm for the λ-padded sorting problem, for a
constant λ, requires Ω(n1+ε) processors, for some constant ε > 0.

Thus, we cannot rely on sorting in constant time with a linear number of processors.
However, with the help of the algorithms guaranteed by Propositions 3.1.6 and 3.1.8,

it is possible to sort n numbers of polynomial size in constant time with O(n1+ε) work.
We will see later that this is very useful for our purposes since we will often have to deal
with fixed-length tuples of numbers of linear size, which can be viewed as numbers of
polynomial size.

Proposition 3.1.11. For all constants ε > 0, λ > 0, and c > 0 there is a O(1)-time
parallel algorithm that solves the λ-padded integer sorting problem for integers in the
range [0, nc − 1], where n is the length of the input array. It requires work and space
O(n1+ε) on a common CRCW PRAM.

Page 33

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

Proof. Let a1, . . . , an be the sequence of integers stored in the input array A of length n.
In a preliminary step, each number ai is replaced by ai(n+ 1) + i to guarantee that all
numbers are pairwise distinct. We also choose δ as min{13 ,

ε
3}.

The algorithm proceeds in two phases. In the first phase, it computes numbers b1, . . . , bn
of size at most O(n1+δ) such that, for all i, j, it holds bi < bj if and only if ai < aj . These
numbers are then used in the second step to order the original sequence a1, . . . , an.

Towards the first phase, we can assume that nc > n1+δ holds, since otherwise, the first
phase can be skipped.

The algorithm performs multiple rounds of a bucket-like sort, reducing the range by
applying a factor of (1 + λ) 1

nδ in each round.
In the following, we describe the algorithm for the first round. More precisely, we

show that in constant time with work O(n1+δ) numbers b1, . . . , bn can be computed (and
stored in an array B), such that, (1) for all indices i, j, we have bi < bj if and only if
ai < aj and, (2) for each index i ≤ n, we have bi ≤ (1 + λ)nc−δ.

First, for each i ≤ n, the algorithm determines ci, di such that ai = cin
c−1−δ + di and

0 ≤ di < nc−1−δ. Since, ai ≤ nc − 1, we have ci ≤ n1+δ − 1. Here ci is the “bucket” for
integer ai.

Next, each ci is replaced by a number of size at most (1 + λ)n. To this end, let C be
an array of length n1+δ, all of whose cells are initially empty. For each i, the number ci
is stored in cell C[ci]. Next, the array C is compacted into an array of length at most
(1+λ)n− 1 using Proposition 3.1.6 with a suitable λ′ < λ. Let C′ denote this compacted
version of C. Each ci is then assigned to its index in C′ as follows: For each index j of C′,
if the C′[j] is not empty and contains ci, then j is stored in C[ci]. We note that, since
Proposition 3.1.6 guarantees order-preserving compaction, we have that C[ci] < C[ck] if
and only if ci < ck.

Finally, for each i ≤ n, we define bi as C[ci]n
c−1−δ+di. Since C only contains numbers

of size at most (1 + λ)n− 1 and di < nc−1−δ, we have that

bi ≤ ((1 + λ)n− 1)nc−1−δ + nc−1−δ = (1 + λ)nc−δ.

By repeating this procedure for at most O(c) times, we obtain an array B with numbers
b1, . . . , bn of size at most O(n1+δ) such that, for each i ≤ n, it holds bi < bj if and only if
ai < aj . This concludes the first phase of the algorithm.

In the second phase, a new array D of size O(n1+δ) is allocated and initialized by
setting, for each i ≤ n, D[bi] = i. Every other cell of D, i.e. cells for which no such i
exists, is empty. Compacting D with the algorithm guaranteed by Proposition 3.1.6
yields an array D′ of size (1+λ)n. Since the compaction is order-preserving, the sequence
i1, . . . , in of numbers stored in the non-empty cells of D′ fulfils ai1 < · · · < ain .

It remains to analyse the required work and space. The work in the second phase is
dominated by the compaction. Compacting an array of size O(n1+δ) can be done with
work and space O(n(1+δ)2) thanks to Proposition 3.1.6. Since we chose δ such that δ ≤ 1
and δ ≤ ε

3 hold, we have

n(1+δ)2 = n1+2δ+δ2 ≤ n1+3δ = n1+ε.

Page 34

I PRAMs Meet Databases: Settings and Representations

Thus, the second phase requires work and space O(n1+ε). This is also an upper bound
for each of the constantly many rounds of the first phase. �

3.2 PRAMs Meet Databases: Settings and Representations
In this section, we first discuss how PRAMs can interact with (input) databases. Besides
a very general setting, we consider two more specific settings, namely the ordered and
the dictionary setting.

In the second part of this section, we explain how (database) relations can be represented
by arrays. While the concrete representation will depend on the setting, this will provide
us with a unified interface which allows us to, for instance, represent (intermediate)
results and compose database operations.

Throughout this chapter, we always assume a fixed named schema S, and therefore a
fixed maximal arity ar(S). In particular, there is a fixed maximal arity of tuples occurring
in a database over S. Recall that, thanks to the linear order on the set att of attributes,
we can refer to the j-th attribute of a relation R, for every j ∈ [1, ar(R)].

Settings. In the most general setting we consider in this chapter, we do not specify how
databases are actually stored. Rather we only assume that the tuples in every database
relation R are numbered, from 1 to |R|, and that, for all R,S ∈ S, the following elemental
operations can be carried out in constant time by a single processor.
I #TuplesR returns |R|, that is the number of tuples in relation R.
I EqualR,S(i1, j1, i2, j2) tests whether the j1-th attribute of the i1-th tuple of relation R

has the same value as the j2-th attribute of the i2-th tuple of relation S.
I OutputR(i1, j1, i2, j2) outputs the value of the j1-th attribute of the i1-th tuple of R

as the value of the j2-th attribute of the i2-th output tuple.
The second setting we consider is the ordered setting. Here we assume that there is

a linear order on the active domain adom(D) of the given database D, and that the
following additional elemental operation is available to access this order.
I LessThanR,S(i1, j1, i2, j2) tests whether the j1-th attribute of the i1-th tuple of re-

lation R is less or equal than the value of the j2-th attribute of the i2-th tuple of
relation S.
The third and main setting that we consider is in the spirit of dictionary-based

compressed databases [see, e.g., CGK01]. In a nutshell, such a database has a dictionary
that maps domain values to natural numbers and internally stores and manipulates
tuples over these numbers to improve performance. Such dictionaries are often defined
attribute-wise, but for our purposes this does not matter. Query evaluation then does
not need to touch the actual dictionary, it only works with the numbers.

For our purposes, we are interested in dictionaries that yield small numbers. More
precisely, we are interested in an injective mapping key : adom(D)→ [1, cS |D|], for some
constant cS that may depend on the fixed database schema S but, of course, not on the
database.

Page 35

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

In the dictionary setting we assume the presence of such an injective mapping key, and
that a single processor can, in addition to the elemental operations of the general setting,
carry out the following two elemental operations for every relation R of the database in
constant time.
I KeyOfR(i, j) returns key(a) where a is the value of the j-th attribute of the i-th tuple

of relation R.
I KeyOutput(k, i, j) outputs the value key−1(k) as the value of the j-th attribute of the
i-th output tuple.

Here key−1 : [1, cS |D|]→ adom(D) denotes the inverse of key on its range, which exists
because key is injective. We note that, for relation symbols R,S ∈ S and indices
i1, j1, i2, j2, the invocations KeyOfR(i1, j1) and KeyOfS(i2, j2) return the same value if
and only if EqualR,S(i1, j1, i2, j2) returns true, that is, if i1, j1 and i2, j2 with respect
to R and S, respectively, refer to the same value.

Moreover, let us emphasize that the dictionary setting is a specialization of the ordered
setting, because the mapping key induces a linear order on the domain values. Namely,
the linear order where, for all pairs a1, a2 of domain values, a1 is smaller or equal than a2,
if key(a1) ≤ key(a2) holds. Here ≤ is the natural, linear order on the natural numbers in
[1, cS |D|]. Furthermore, there is a straightforward, constant-time implementation of the
operation LessThanR,S . Indeed, a single processor can simply obtain key(a1) and key(a2)
in constant time using KeyOfR and KeyOfS , and then test whether key(a1) ≤ key(a2)
holds.

We will see in Section 3.6 that, in the general and the ordered settings, it is possible to
compute a data structure which allows constant-time, single processor implementations
of KeyOfR and KeyOutput in these settings. This effectively yields a translation from
these settings into the dictionary setting. And while computing this data structure comes
at a cost, this cost will turn out to be somewhat reasonable.

Next, we will explain how domain values, tuples, and relations can be represented by a
PRAM in its memory. This is, in particular, intended for storing (intermediate) results
and having an interface for composing (database) operations.

Representing Databases. We first discuss the representations in the general and ordered
setting. Since it is not possible to access the domain values directly, we represent domain
values by tokens which are triples of the form (R, i, j), where R is a relation symbol,
i ∈ [1, |R|], and j ∈ [1, ar(R)]. More precisely, a token (R, i, j) represents the value of
the j-th attribute of the i-th tuple of relation R. We emphasize that different tokens
(R, i1, j1) and (S, i2, j2), with possibly R = S, can represent the same domain value. Note
that a single processor can test in constant time whether two such tokens represent the
same domain value using the operation EqualR,S(i1, i2, j1, j2). In the ordered setting the
domain values represented can also be compared using LessThanR,S(i1, i2, j1, j2).

This encoding extends to tuples in the natural fashion. Furthermore, such tokens
can be stored in the memory cells of a PRAM. We will refer to this encoding as token
representation of a domain value or tuple.

Page 36

I PRAMs Meet Databases: Settings and Representations

Example 3.2.1. Consider the ternary relation R over the set {X1, X2, X3} of attributes
given by

R =
{
(“Hello”, 3.14, blob1), (“World”, 6000, blob2), (“Hello”, 3.14, blob3)

}
.

Here we assume that, for each j ∈ [1, 3], Xj is the j-th attribute of R. For instance,
(“Hello”, 3.14, blob1) corresponds to the named tuple

ã1 =
{
X1 7→ “Hello”, X2 7→ 3.14, X3 7→ blob1

}
.

From the perspective of a PRAM, the tuples of R can be represented by the token
sequences

((R, 1, 1), (R, 1, 2), (R, 1, 3)), ((R, 2, 1), (R, 2, 2), (R, 2, 3)),

and ((R, 3, 1), (R, 3, 2), (R, 3, 3)).

Observe that (R, 1, 1) and (R, 3, 1) as well as (R, 1, 2) and (R, 3, 2) represent the same
domain values, namely, “Hello” and 3.14, respectively. Thus, the third tuple could also
be represented by ((R, 1, 1), (R, 1, 2), (R, 3, 3)).

It is also possible to represent tuples not in R. For instance, ((R, 3, 1), (R, 2, 1))
represents the tuple (“Hello”, “World”). C

In the dictionary setting a PRAM can simply work with the (small) numbers guaranteed
by the underlying mapping key. That is, instead of representing a domain value a by a
token of the form (R, i, j), a PRAM can invoke KeyOfR(i, j) and use the return value,
which is small enough to be stored in a memory cell, in place of a. In fact, we can
view a database in the dictionary setting as a database whose active domain consists of
small numbers, i.e. key(adom(D)). After an initial lookup phase, a PRAM can just work
with the return values of the KeyOfR operations. In particular, it can evaluate queries
over key(D). Thanks to the KeyOutput operation, the final query result can always be
“translated” back into the original domain. We note that, for this purpose, it is also not
necessary to keep track of the origin of these small numbers.

Example 3.2.2. Consider the relation R from Example 3.2.1 and suppose key maps the
values occurring in R as follows.

“Hello” 7→ 1 “World” 7→ 2 3.14 7→ 6 6000 7→ 7

blob1 7→ 20 blob2 7→ 26 blob3 7→ 42

A PRAM can then operate on

key(R) =
{
(1, 6, 20), (2, 7, 26), (1, 6, 42)

}
.

Since the numbers in the range of key are small enough, i.e. in O(|D|), they can be stored
in one memory cell each, and each tuple in three memory cells. C

Page 37

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

As mentioned before, we represent relations by one-dimensional arrays, whose cells
contain tuples – or token representations thereof – and might be augmented by additional
data. For this purpose, a cell of an array might actually consist of a constant number of
memory cells, depending only on the fixed database schema.

Due to the limitations of O(1)-time parallel algorithms imposed by the impossibility
results for (perfect) compaction and sorting discussed in Section 3.1.2, our algorithms
will often yield result arrays, in which not all cells contain result tuples.

Therefore, a cell can either be inhabited, if it represents a “useful” tuple, or uninhabited,
indicated by some Boolean flag.4 In the dictionary setting, an inhabited cell A[i] of
an array A always contains a named tuple ã (over some relation schema) whose values
are small numbers, i.e. the image of a tuple under key. In the other two settings, an
inhabited cell contains a token representation of a tuple. We blur the distinction between
these representations as well as the represented tuples, and write A[i].t for both, the
representation stored in A[i] and the represented tuple. As discussed before, we assume
in the dictionary setting that the values occurring in A[i].t are small numbers.

Note that operations like setting A[i].t[X] = B[j].t[Y] or testing whether A[i].t[X]
equals B[j].t[Y] can be performed by a single processor in constant time (and space), in
any setting. In the dictionary setting these kinds of operations can be performed directly.
In the other two settings, the former kind of operation can be achieved by changing
the token representation accordingly, and the latter using the elemental operations
EqualR,S . Since the arity of tuples is always fixed in this chapter, this is not limited to
single attributes but extends to tuples. In the ordered setting, comparing values w.r.t.
the underlying linear order is, of course, also possible. For instance, testing whether
A[i].t[X] < B[j].t[Y] holds can be done by a single processor in constant time. In the
same spirit we say that a tuple occurs in a cell or a cell contains a tuple when the cell
actually contains a token representation of the tuple.

There might be additional data stored in a cell, for instance, further Boolean flags
and pointers to other cells of (possibly) other arrays. However, the number of items is
always bounded by a constant. Thus, the contents of a cell can still be read or written in
constant time.

We say that an array represents a relation R, if for each tuple ã in R, there is some
inhabited cell that contains ã, and no inhabited cell contains a tuple not in R. This
definition allows that a tuple occurs more than once. An array represents R concisely, if
each tuple occurs in exactly one inhabited cell. To indicate that an array represents a
relation R we usually denote it by R, R′, etc.

We adapt the compactness notions and call an array representing a relation compact if
it has no uninhabited cells. We call it λ-compact, for some λ > 0, if it has at length at
most (1 + λ)k where k is the number of inhabited cells.

Remark 3.2.3. Observe that, for each relation R of the input database, an array R
4In difference to an empty cell, an uninhabited cell contains data, at the very least the Boolean flag

indicating that it is, in fact, uninhabited. Our algorithms will always be able to initialize arrays
accordingly without affecting their work and space bounds. That being said, sometimes it will be
convenient to interpret uninhabited cells as empty cells.

Page 38

I PRAMs Meet Databases: Settings and Representations

representingR concisely can easily be compiled with |R| processors in constant time: In the
general setting and the ordered setting, processor i simply writes the token representation
((R, i, 1), . . . , (R, i, ar(R))) into cell R[i]. The number of required processors can be
obtained by invoking #TuplesR.

In the dictionary setting the numbers returned by KeyOfR(i, 1), . . . , KeyOfR(i, ar(R))
are written instead. Although the arrays obtained in this fashion are even compact, we
will actually only assume λ-compactness, for some constant λ, for the arrays representing
the relations of the input database. Indeed, this does not affect our algorithms or their
work (and space) bounds. It has, however, the advantage that our algorithms are still
applicable if the arrays have been obtained by other means. In particular, our translations
from the general and ordered settings into the dictionary setting in Section 3.6 do not
guarantee that the arrays representing the (translated) database are (perfectly) compact.

We often consider the induced tuple sequence ã1, . . . , ãn of an array A of length n.
Here, for each index i ∈ [1, n], ãi = A[i].t is either a proper tuple, if the cell A[i] is
inhabited, or otherwise, ãi is the empty tuple, which we denote by ⊥.

Example 3.2.4. The tuple sequence (1, 5),⊥, (3, 4), (8, 3), (1, 5),⊥,⊥, (7, 3) of an array R
of length eight consists of five proper tuples and the empty tuple occurs three times. The
second, sixth, and seventh cell of R are hence uninhabited. It represents the relation
R = {(1, 5), (3, 4), (8, 3), (7, 3)}, but not concisely, because (1, 5) occurs twice in R.

The sequence (1, 5), (3, 4), (7, 3),⊥, (8, 3) represents R concisely. The corresponding
array is not compact but it is 1

4 -compact. C

Ordered Arrays. In the ordered and dictionary setting we consider (lexicographically)
ordered arrays. Recall that in these two settings a linear order on the domain values
is available. We consider the extension of this order to the lexicographical order on
tuples. To be precise, for an (ordered) sequence X = (X1, . . . , Xk) of attributes5, and
two named tuples ã and b̃ over X we have ã <X b̃ if, for some j ∈ [1, k], ã[Xj] < b̃[Xj]
and ã[X`] = b̃[X`] holds for all ` ∈ [1, j − 1]. We often omit the subscript X if it is clear
from the context.

An array R that represents a relation R is X -ordered, for some sequence X of attributes
from attr(R), if i < j implies R[i].t[X] ≤X R[j].t[X], for all indices i, j. Thus, tuples
that agree on the attributes of X might occur in any order. We call R fully ordered, if it
is X -ordered, for a sequence X that contains all attributes in attr(R). In this case, the
relative order is uniquely determined for all tuples.

We will primarily use ordered arrays to search efficiently for tuples in relations. In the
sequential settings, various kinds of index structures – for instance, based on search trees
– are used for purposes like this; particularly, if multiple orders of the same relation play
a role. We chose to use ordered arrays because for almost all our algorithms one order
suffices, and it lead to a simpler presentation of our PRAM algorithms. We will discuss
some alternatives in Section 3.7.

5We note that the order of attributes in X does not necessarily agree with the linear order on the set att
of all attributes.

Page 39

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

3.3 Algorithmic Techniques and Basic Array Operations

In this section, we present some basic operations on arrays which we will use as building
blocks to implement database operations and the translation from the general and ordered
settings into the dictionary setting. For some of these operations it will suffice to apply
the results discussed in Section 3.1.2 appropriately. However, to obtain work-efficient
algorithms for our search and deduplication operations, which will turn out to be essential,
we require some setting-dependent algorithmic techniques.

We will proceed as follows. We start with an introduction of the basic operations and
related terminology. In Section 3.3.1 we will present the setting-dependent algorithmic
techniques, before we present our algorithms for the basic operations in Section 3.3.2.

Operations and Pointers. Before we define our basic operations we illustrate some
aspects by means of examples.

Example 3.3.1. We sketch a naive algorithm for evaluating the semi-join R n S of
two binary relations R,S over attributes {X1, X2} and {X2, X3}, respectively. Let R
be given by the array R induced by the tuple sequence (1, 5), (3, 4), (7, 3),⊥, (8, 3) from
Example 3.2.4. Moreover, let S be given by the array S induced by the tuple sequence
(3, 2), (3, 6), (5, 5). Note that R and S represent R and S concisely, respectively.

The algorithm proceeds in three steps to compute an array representing RnS concisely.
In the first step, it computes not necessarily concise arrays R′ and S′ that represent the
projections of R and S to the common attribute X2.

Indeed, R′ can be easily computed using |R| processors: It is initialized as an array
of the same length as R. For each i ∈ [1, |R|], processor i then reads ãi = R[i].t and
writes ãi[X2] into cell R′[i], if R[i] is inhabited. We stress that the number and indices of
uninhabited cells of R are not known, in the general case, and we thus assign a processor
to each cell of R – inhabited or not. The array S′ can be obtained analogously. In
this example, R′ and S′ correspond to the sequences 5, 4, 3,⊥, 3 and 3, 3, 5, respectively.
Overall this step takes O(|R|+ |S|) work and space.

In the second step, the algorithm searches for every proper tuple of R′ in the array S′

in parallel. This can be done using |R′| · |S′| processors as follows. To each cell R′[i]
of R′ the algorithm assigns |S′| processors which check, in parallel, each cell S′[j] of S′.
If R′[i].t = S′[j].t and R′[i] is inhabited, then a pointer from R′[i] to S′[j] is inserted.
We note that multiple processors might attempt to insert a tuple in parallel, but due
to the semantics of an arbitrary CRCW PRAM only one will succeed. For instance,
for R′[5].t = 3, the processors for S′[1].t = 3 and S′[2].t = 3 assigned to R′[5] find a
“match”. Thus, R′[5] is augmented by a pointer, either to S′[1] or to S′[2], depending on
which processor succeeds in writing. In our case, all inhabited cells of R′ are augmented
by a pointer, except for R′[2], since R′[2].t = 4 does not occur in S′.

In the last step, the algorithm uses |R′| processors to mark every cell R[i] as uninhabited
for which R′[i] is not augmented by a pointer to S′. The resulting array, with the induced
tuple sequence (1, 5),⊥, (7, 3),⊥, (8, 3), represents Rn S concisely.

The work and space required by this naive algorithm are dominated by the search step,

Page 40

I Algorithmic Techniques and Basic Array Operations

which requires O(|R′| · |S′|) = |R| · |S| work and linear space. We will see that, given an
{X2}-ordered array S for S, this step can be done with work O(|R| · |S|ε), for arbitrary
but fixed ε > 0. In the dictionary setting it can even be done with work O(|R|+ |S|). C

We note that the first two steps of the algorithm sketched in Example 3.3.1 could
be condensed into a single step by checking for R′[i].t[X2] = S′[j].t[X2] instead of
R′[i].t = S′[j].t in the second step. However, this would unnecessarily lead to a more
involved interface for our search operation, which is why we refrain from doing so.
Furthermore, it would suffice to mark cells of R′ if there is a match in S′. But for our
purposes it is often useful to have pointers to such matches.

We model a pointer to a cell A[i] of an array A as a pair (m, i) where m is the
address of the first memory cell of A. Given a pointer, a processor can thus not only
determine the contents of A[i] but also (properties of) the array A, in particular, its
length. Furthermore, a pointer can be stored in two memory cells, and we can hence
assume that a constant number of pointers can be stored in each cell B[j] of an array B
whose cells correspond to multiple (but constantly many) memory cells. If a cell B[j]
is inhabited and contains a pointer to an inhabited cell A[i], we also say that B[j].t is
linked to A[i].t. If A[i] also contains a pointer to B[j], we say that the tuples A[i].t
and B[j].t are mutually linked.

We will often “chain” pointers. In Example 3.3.1, for instance, the cells R[i] and R′[i]
can easily be augmented by pointers to each other, for each inhabited cell R[i]. The same
is true for the cells of S and S′. It is then possible to follow the chain of pointers from R
to matching tuples in S. For example, R[1].t = (1, 5) is mutually linked to R′[1].t = 5,
which is in turn linked to S′[3].t = 5. Since S′[3].t = 5 is linked to S[3].t = (5, 5), a
single processor can obtain the matching tuple (5, 5) in S for (1, 5) in three steps.

The next example illustrates that it is desirable that our search operations links all
occurrences of a proper tuple in an array A to the same occurrence in the “target”
array B.

Example 3.3.2. We sketch a “high-level” O(1)-time parallel algorithm to evaluate
the projection πX2(R) where R is again the relation from Example 3.2.4. As in Exam-
ple 3.3.1 we assume that R is given by the array R with the induced tuple sequence
(1, 5), (3, 4), (7, 3),⊥, (8, 3).

First, the algorithm computes the array R′ with induced tuple sequence 5, 4, 3,⊥, 3
which represents πX2(R). This can be done exactly as in the first step of the algorithm
sketched in Example 3.3.1.

While R′ represents πX2(R), it does not do so concisely. To get an array that represents
πX2(R) concisely, the algorithm has to eliminate duplicates. For this purpose, we will
utilize a search operation that, given two arrays A and B, links all occurrences of a
proper tuple ã in A to the same occurrence of ã in B, if it occurs at all. Invoking this
search operation with both input arrays set to R′, yields pointers from the inhabited cells
of R′ to inhabited cells of R′. More precisely, R′[1].t = 5 and R′[2].t = 4 are linked to
themselves, since they occur exactly once in R′. The tuples R′[3].t = 3 and R′[5].t = 3
are either both linked to R′[3].t or both linked to R′[5].t.

Page 41

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

To complete the deduplication, it then suffices to flag all cells of R′ as uninhabited that
do not contain pointers to themselves. Depending on the output of the search operation
the induced tuple sequence of the resulting array is either 5, 4,⊥,⊥, 3 or 5, 4, 3,⊥,⊥. In
either case, it represents πX2(R) concisely.

We observe that the cells flagged as uninhabited by this deduplication procedure still
contain pointers to the cell containing the “representative”, that is, a cell with the same
tuple as previously stored in the now uninhabited cell. This allows us to effectively
“redirect” incoming pointers. Suppose that the resulting array has the induced tuple
sequence 5, 4,⊥,⊥, 3. Thanks to the search operation R′[3] contains a pointer to R′[5].
Thus, all incoming pointers to R′[3] can be “redirected” to R′[5], which contains the
same tuple, namely R′[5].t = 3, as R′[3] did before the deduplication step. C

Our search operation will satisfy the requirement in Example 3.3.2. Indeed, it will be
a convenient feature for other procedure besides deduplication as well, and it is “free” in
the sense that it does not affect our work and space bounds negatively.

Basic Array Operations. We now describe our basic array operations which we will use
as building blocks in the remainder of this chapter for query evaluation algorithms.

Just as in Examples 3.3.1 and 3.3.2, the input for our operations usually consists of
arrays representing relations, and the output is again an array whose cells are augmented
by pointers. In fact, each time a tuple of an output array results from some tuple of an
input array, they are linked.

We emphasize that the input (and output) arrays of the following operations do
not necessarily have to represent relations concisely, some operations are even only
meaningful if they do not. Moreover, in this section, we do not make any assumption on
the compactness of arrays.

In the following the parameter λ > 0 is always a constant. Furthermore, we say that
an array B contains all proper tuples of an array A if there is a bijection f between the
inhabited cells of B and A such that A[i].t = B[f(i)].t holds for all inhabited cells A[i].
We call B[f(i)] the cell of B corresponding to A[i].

I Compactλ(A) computes a λ-compact array B that contains all proper tuples of A.
Pointers are added – in both directions – between each inhabited cell A[i] and the
corresponding cell of B. Furthermore, this operation preserves the relative order of
proper tuples.

I Sortλ(A,X) returns an X -ordered array B of length (1 + λ)|A| which contains all
proper tuples of A. Here X is an ordered list of attributes from the relation represented
by A. Pointers are added – in both directions – between each inhabited cell A[i] and
the corresponding cell of B.

I SearchRepresentatives(A,B) augments every inhabited cell A[i] by a pointer to
an inhabited representative cell B[j], such that B[j].t = A[i].t holds, if such a cell
exists. Furthermore, for all indices i1, i2 with A[i1].t = A[i2].t 6= ⊥, both A[i1] and
A[i2] are augmented by a pointer to the same representative.

Page 42

I Algorithmic Techniques and Basic Array Operations

We stress that B does not have to represent its relation concisely, and, in fact, the
operation is used to remove duplicates.

Moreover, we note that it is not required that the computed representatives are the
same for different arrays representing the same relation.6

I Deduplicate(A) determines, for each maximal set I of indices of inhabited cells of A
with A[i1].t = A[i2].t for all i1, i2 ∈ I, a representative j ∈ I. It adds pointers
from each cell A[j] with j ∈ I to A[i] and flags every cell A[j] with j ∈ I, j 6= i as
uninhabited.

3.3.1 Algorithmic Techniques

In this section, we describe some important algorithmic techniques which we will use to im-
plement algorithms for our basic array operations, in particular, SearchRepresentatives.

Here and in the remainder of this chapter, D always denotes the underlying database.
Note that the size of an input relation R (or array) and D can vary drastically. For
instance, D may contain another relation besides R whose size is exponential in |R|.

Array Hash Tables. In the dictionary setting we use array hash tables which associate
each inhabited cell of A with an integer from [1, |A|], such that two cells A[i],A[j] get
the same number if and only if A[i].t = A[j].t holds. They follow a similar idea as
the injective mapping key, which associates every domain value with an integer in the
dictionary setting. However, their range depends on the array, not necessarily on the
database, and even for arrays representing unary relations, the associated values are
independent of the mapping key. Array hash tables can be efficiently computed.

Lemma 3.3.3. For every ε > 0, there is a O(1)-time parallel algorithm that, in the
dictionary setting, computes an array hash table for a given array A. It requires work
O(|A|) and space O(|A| · |D|ε) on an arbitrary CRCW PRAM.7

We note that due to the “arbitrary” resolution of concurrent write, the result of the
algorithm guaranteed by Lemma 3.3.3 is not uniquely determined by in the input array A.

Recall that, in the dictionary setting, we understand all domain values as small numbers
of size at most cS |D|, for some constant cS .

Proof. We first present the algorithm for ε ≥ 1 and, afterwards, discuss how it can be
adapted for the case ε < 1.

Let X1, . . . , X` be the attributes of the relation R represented by A in an arbitrary
but fixed order and let Xj = {X1, . . . , Xj}, for all j ∈ [1, `]. The algorithm inductively
computes hash values for proper tuples in R[Xj] for increasing j from 1 to `.

6In the dictionary setting with arbitrary CRCW PRAMs it is even possible that different applications
for the same input arrays yield different representatives.

7We note that the constant hidden by the asymptotic bounds depends on the arity of the relation
represented by A.

Page 43

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

The idea is to assign, to each tuple ã ∈ R[Xj], a processor number in the range [1, |A|]
as hash value and augment each cell of A containing a proper tuple ã′ with ã′[X] = ã
by this hash value. Since the same (projected) tuple ã ∈ R[Xj] might occur in multiple,
pairwise different, cells of A, it does not suffice to load all tuples in A to |A| processors
and let each processor augment the tuple loaded to it by its processor number: Multiple
(different) numbers might get assigned to the same tuple (in different cells of A). To
resolve these conflicts, the algorithm utilizes that the domain values in the dictionary
setting are small numbers and the hash values for tuples in R[Xj−1].

For the base case j = 1 the algorithm allocates an auxiliary array of size cS |D|, where
cS is the constant guaranteed in the dictionary setting such that every domain value is
smaller or equal to cS |D|. For each i ∈ [1, |A|], processor i is assigned to the tuple ãi
in cell A[i]. The projection ã[X1] is a domain value that can be used as index for the
auxiliary array. Thus, each processor i with a proper tuple ãi can write its processor
number i into cell ãi[X1] of the auxiliary array. Then it assigns to ãi the value actually
written to the cell with index ãi[X1]. Note that, for each value a, all processors i with
ãi[X1] = a will assign the same value to their tuple ãi, since precisely one processor
among the processors with ãi[X1] = a succeeds in writing its number to the cell with
index ãi[X1] on an arbitrary CRCW PRAM. This can be done with work O(|A|) and
space O(|A|+ |D|).

For j > 1 the algorithm proceeds similarly but also takes, for a tuple ã, the hash
value hj−1(ã[Xj−1]) for ã[Xj−1] into account, in addition to ã[Xj]. For this purpose, the
algorithm first computes the hash values for R[Xj−1]. It then allocates an auxiliary array
of size |A| · cS |D| which is interpreted as a two-dimensional array and each processor i
writes its number into the cell with index (hj−1(ãi[Xj−1]), ãi[Xj]) of the auxiliary array,
if ãi is a proper tuple. The number in this cell is then the hash value for ãi[Xj].

Writing and reading back the processor numbers requires work O(|A|) and the auxiliary
array requires space O(|A|·|D|). We note that it is not necessary to initialize the auxiliary
array, since all cells read are written to before. The same bounds hold for the recursive
invocations. Since the recursion depth is `, the procedure requires work O(`·|A|) = O(|A|)
and, because the space for the auxiliary arrays can be reused, space O(|A| · |D|) in total.
Since we assumed ε ≥ 1, this implies the statement of the lemma for this case.

For the case ε < 1, the algorithm replaces each attribute X by multiple attributes in
a preprocessing phase. To this end, we observe that every domain value ã[X] can be
written as a sum

∑k
i=0 bi · |D|iε, where k = d1εe and the bi have size at most cS · |D|ε.

Therefore, the attribute X can be replaced by a sequence Y0, . . . , Yk of attributes and
the values for X in A by values of size at most O(|D|ε) for Y0, . . . , Yk. Doing this for
every original attribute yields tuples that can be understood as tuples from a database
with domain values of size O(|D|ε). Applying the procedure to compute hash values as
detailed above, then yields an array hash table, which is also an array hash table for the
original array X. Since k is a constant, the procedure operates within the desired work
and space bounds. �

In the dictionary setting, array hash tables will provide the means for an efficient
implementation of SearchRepresentatives. Alternatively, searching in ordered arrays

Page 44

I Algorithmic Techniques and Basic Array Operations

is also possible quite efficiently, and they are also available in the ordered setting.

Search in Ordered Arrays. To deal with uninhabited cells our search algorithm for
ordered arrays requires pointers from each cell to the next and previous inhabited cell.
We refer to those pointers as predecessor and successor links, respectively, and say that
an array is fully linked if all its cells are augmented by predecessor and successor links.

Proposition 3.3.4. For every ε > 0, there is a O(1)-time parallel algorithm that
computes, for an array A, predecessor and successor pointers with work and space
O(|A|1+ε) on a common CRCW PRAM.

Proof. We describe the computation of predecessor links. Successor links can be com-
puted analogously. Let n = |A| and δ = ε

2 . In the first round, the algorithm considers
(non-overlapping) subarrays of length at most nδ and establishes predecessor links within
them. To this end, it uses, for each subarray, a two-dimensional auxiliary array of length
nδ×nδ. For each pair (i, j) with i < j the cell at (i, j) in the auxiliary array is initialized
with value 1, if A[i] is inhabited and, otherwise, by 0. Next, for each triple i, j, k, the cell
at (i, j) is set to 0 if i < k < j and A[k] is inhabited. It is easy to see that afterwards
the cell at (i, j) still carries value 1 if and only if i is the predecessor of j. Therefore, for
all such pairs (i, j), the cell A[j] is augmented by a pointer to A[i].

For every subarray, (nδ)3 = n3δ processors suffice for this computation, i.e. one
processor for each triple i, j, k. Since there are d n

nδ e = dn1−δe subarrays, the first round
requires overall work O(n1−δ · n3δ) = O(n1+2δ) = O(n1+ε). Similarly, the algorithm uses
dn1−δe many auxiliary arrays of length n2δ each. Thus, it requires space O(n1+δ) which
is bounded by O(n1+ε).

In the next round, subarrays of length n2δ are considered and each is viewed as an
array of nδ smaller subarrays of length nδ. The goal in the second round is to establish
predecessor pointers for the minimum cells of each of the smaller subarrays. This can be
done similarly with the same asymptotic work and space as round 1. After d1δ e rounds,
this process has established predecessor links for all cells (besides for the minimum cells
without a predecessor). �

To search for a single tuple in an ordered array in constant time, we will employ a
generalization of the classical binary search. Instead of dividing the search space in
half in every step, our generalization will divide it by a magnitude of nε, which yields a
constant recursion depth.

Proposition 3.3.5. For every ε > 0, there is a O(1)-time parallel algorithm that
computes, for a given tuple ã over some ordered list X of attributes, and an X -ordered,
fully linked array A, the largest index i with A[i].t[X] ≤ ã (or the smallest index j with
A[j].t[X] ≥ ã). It requires work and space O(|A|ε) on a common CRCW PRAM.

Proof. Let n = |A|. In the first round, using nε processors, the algorithm tests for
all cells with indices k = in1−ε for 0 ≤ i < nε whether A[k], or its predecessor if it is
uninhabited, contains a tuple b̃ such that b̃[X] ≤ ã holds, and whether this does not hold

Page 45

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

for index (i+ 1)n1−ε or its successor. The search then continues recursively in the thus
identified subarray of length n1−ε. After at most

dlognε ne =
⌈

logn
lognε

⌉
=

⌈
logn
ε logn

⌉
=

⌈
1

ε

⌉
rounds it terminates. Since, in each round, nε processors are used, the statement
follows. �

We note that analogously it is possible to search for m tuples in parallel with work
and space O(m|A|ε).

3.3.2 Algorithms for Basic Array Operations
We are now ready to present algorithms for our basic array operations.

For SearchRepresentatives(A,B) we present four algorithms, depending on the
setting and, for ordered array, whether A or B is suitably ordered. This operation is
crucial for deduplication, semi-join and join; and the upper bounds impact the bounds for
those operations as well. We stress that ordered arrays are not available in the general
setting.

Lemma 3.3.6. For every ε > 0, there are O(1)-time parallel algorithms for SearchRep-
resentatives that, given arrays A and B, have the following bounds on an arbitrary
CRCW PRAM.
(a) Work O(|A|+ |B|) and space O((|A|+ |B|) · |D|ε) in the dictionary setting.

(b) Work O(|A| · |B|ε) and space O(|A| · |B|ε + |B|), if B is fully ordered and fully
linked.

(c) Work O((|A|+ |B|) · |A|ε) and space O((|A|+ |B|) · |A|ε), if A is fully ordered.

(d) Work O((|A|+ |B|) · |B|) and space O(|A|+ |B|) in the general setting.

Proof. For Statement (a), first an array hash table for (the concatenation of) A and B
is computed. The concatenation of can easily be constructed by copying the cell contents
with |A|+ |B| processors in parallel. Thanks to Lemma 3.3.3 the array hash table can
thus be computed with work O(|A|+ |B|) and space O((|A|+ |B|) · |D|ε) in total.

For a proper tuple ã, let h(ã) denote the hash value in the range [1, |A|+ |B|] assigned
to ã. The algorithm then allocates an auxiliary array of length |A|+ |B| and, for each
inhabited cell B[j], it writes, in parallel, j into cell h(B[j].t) of the auxiliary array. Other
processors might attempt to write an index to cell h(B[j].t) as well, but only one will
succeed. This requires work O(|B|), and space O(|A|+ |B|).

For each inhabited cell A[i] of A it is then checked in parallel, if cell h(A[i].t) contains
an index j of B. If it does, then A[i] augmented by a pointer to cell B[j], since
B[j].t = A[i].t. If not, then A[i].t does not occur in B, and thus is not augmented by a
pointer.

Towards Statement (b), the algorithm identifies, for each inhabited cell A[i] of A,
the smallest index j of B such that A[i].t ≤ B[j].t. If A[i].t = B[j].t holds, A[i] is

Page 46

I Algorithmic Techniques and Basic Array Operations

augmented by a pointer to the cell B[j]. For each inhabited cell of A, this can be done
with work and space |B|ε, thanks to Proposition 3.3.5 and these searches can be done in
parallel by assigning |B|ε processors per cell of A.

For Statement (c), the algorithm first computes predecessor and successor pointers
for A, if necessary. In this case this can be done within the stated bounds, thanks to
Proposition 3.3.4. The algorithm then determines, for each inhabited cell B[j] of B,
the smallest index i of A with A[i].t ≥ B[j].t. If A[i].t = B[j].t then the cell A[i] is
augmented by a pointer to the cell B[j]. We note that, if B is not concise, multiple
processors might attempt to write a pointer to a cell A[i]. However, only one processor
succeeds and thereby determines the representative of A[i].t in B. If A is guaranteed to
be concise, that’s all. Otherwise, for each inhabited cell A[i] of A the smallest index i′ of
an inhabited of A with A[i′].t = A[i].t is determined. If it was augmented by a pointer
to B, then A[i] is also augmented by this pointer. The work and space bounds are again
thanks to Proposition 3.3.5.

For Statement (d), the naive algorithm can be used. Since B is possibly not concise
the algorithm first determines representatives for the tuples in B. For that purpose, it
uses one processor for each pair (i, j) of indices of B to flag duplicates in B: If i < j and
B[i].t = B[j].t, then B[j] is flagged. It then uses one processor for each pair (i, j) of
indices for A and B, respectively, to establish pointers from A[i] to B[j] if A[i].t = B[j].t
and B[j] is not flagged. �

As suggested in Example 3.3.2, SearchRepresentatives can be used to implement
Deduplicate.

Lemma 3.3.7. For every ε > 0, there are O(1)-time parallel algorithms for Deduplicate
that, given an array A, have the following bounds on an arbitrary CRCW PRAM.
(a) Work O(|A|) and space O(|A| · |D|ε) in the dictionary setting.

(b) Work O(|A|1+ε) and space O(|A|1+ε), if A is fully ordered.

(c) Work O(|A|2)) and space O(|A|) in the general setting.

Proof. In all three cases, SearchRepresentatives(A,A) is invoked and afterwards all
inhabited cells that were augmented by a pointer to a different cell are made uninhabited,
leaving exactly one cell for each tuple that occurs in A inhabited. For Statement (b),
predecessor and successor pointers can be computed, if necessary, thanks to Propo-
sition 3.3.4. Incoming pointers can be redirected using the pointers established by
SearchRepresentatives(A,A). The bounds follow with Lemma 3.3.6. �

The algorithm for Compactλ and Sortλ are implied by the results already discussed in
Section 3.1.2.

Lemma 3.3.8 [GZ95, implied by Theorem 4.2]. For every constant λ > 0, there is a
O(1)-time parallel algorithm for Compactλ that, given an array A, requires work and
space O(|A|1+ε) on a common CRCW PRAM.

Page 47

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

Lemma 3.3.8 follows from Proposition 3.1.6 by observing that for any constant λ > 0
there is an integer c such that λ < (logn)−c holds for all n > 2. We should, however,
explain how the pointers are established: Instead of compacting A directly, the algorithm
allocates an array A′ of the same length as A and sets A′[i] = i if A is inhabited, and
leaves A′[i] empty otherwise. Then A′ is compacted using Proposition 3.1.6. Let B′ be
the resulting array. Using |B′| many processors the desired output array B can then
be compiled as follows: Processor j checks whether B′[j] contains an index i. If yes, it
sets B[j] = A[i] and establishes pointers – in both directions – between B[j] and A[i].
This procedure requires only work and space O(|A|) in addition to the compaction. The
bounds are therefore inherited from Proposition 3.1.6.

For the Sortλ we only provide an algorithm for the dictionary setting. We discuss the
situation for sorting in the ordered setting in Section 3.7. In short, we are not aware of a
constant-time, comparison-based sort algorithm for PRAMs.

Lemma 3.3.9. For every constant λ > 0, there is a O(1)-time parallel algorithm
for Sortλ that, given an array A and list X of attributes, requires work and space
O((|A|+ |D|)1+ε) on a common CRCW PRAM in the dictionary setting.8

Proof. Let ã1, . . . , ãn with n = |A| be the induced tuple sequence of A. We assume
that X = (X1, . . . , Xk) contains all attributes of the tuples in A. Otherwise, X can be
extended arbitrarily. Recall that we denote the lexicographic order induced by X on the
tuples occurring in A by ≤X .

For each proper tuple ãi, the algorithm computes its characteristic number

ci = (|A|+ 1)

k∑
j=1

ãi[Xj]m
k−j + i

where m = cS |D|+1. Here, the purpose of the factor |A|+1 and the addend i is to keep
track of the original index i. Observe that, since domain values in the dictionary setting
are small numbers, m is larger than any value in A. Thus, a processor can derive ãi
from ci in constant time. Furthermore, we have ãi ≤X ãj if and only if ci ≤ cj for all
i, j ∈ [1, n]. For uninhabited cells, we can just fix ci = 0.

Thanks to Proposition 3.1.11 an array B of length (1 + λ)max{|A|, |D|} containing
the ci in order can be computed in constant time with work and space O((|A|+ |D|)1+ε).
The length depends on D because to apply Proposition 3.1.11 the ci have to be bounded
by a polynomial in the length of the input array. Thus, it might be necessary to pad A
with zeros to yield an array of length |D|, since the ci depend on |A| and |D|. If
necessary, B can be compacted using Compactλ′ for a sufficiently small λ′ to yield an
array of the desired length.

In a finishing step, the algorithm replaces every ci > 0 in B with the tuple ãi it encodes.
Furthermore, it can derive i from ci and thus establish pointers between A[i] and the
cell of B containing ãi = A[i].t. �

8Like for the algorithm for computing array hash tables, the constant hidden in the asymptotic bounds
depends on the number of attributes.

Page 48

I Database Operations

3.4 Database Operations
In this section, we proceed similarly as in Section 3.3. We start by defining array-based
operations for the operators of the relational algebra. The main contribution of this
section is the presentation of O(1)-time parallel algorithms for these operations and the
analysis of their complexity with respect to the work and space they require. Before we
do that in Sections 3.4.2 and 3.4.3, we will first present some lower bounds in Section 3.4.1
that are consequences of the impossibility results of Section 3.1.2.

Array-Based Database Operations. For database operations, unlike for the basic
array operations, we require that input relations are given by arrays representing them
concisely. Likewise, all algorithms produce output arrays which represent the result
relation concisely. However, neither for input nor for output relations we make any
assumptions about the compactness of the representations.

More precisely, we actually present O(1)-time parallel algorithms for the following
operations (on arrays) which correspond to the operators of the relational algebra (on
relations).9 Similar to the basic array operations, some operations establish pointers
which will be convenient when using the operations as building blocks for query evaluation
algorithms.

Recall that we denote the arrays representing relations R, S, etc. by R, S, etc.

I SelectX=Y (R) returns a new array R′ that represents σX=Y (R) concisely. Here X
and Y are attributes of R. Every inhabited cell R′[i] is augmented by a pointer to a
cell R[j] with R[j].t = R′[i].t.

I ProjectX (R) returns a new array R′ that represents πX (R) concisely. Here X is
a set or sequence of attributes from R. Every inhabited cell R′[i] is augmented
by a pointer to a cell R[j] with R[j].t[X] = R′[i].t. Conversely, every inhabited
cell R[j] is augmented by a pointer to an inhabited representative cell R′[k] such that
R′[k].t = R[j].t[X] holds.

I Difference(R,S) returns a new array that represents R \ S concisely. Here R and S
are relations over the same set of attributes.

I Union(R,S) returns a new array that represents R ∪ S concisely. Here R and S are
relations over the same set of attributes.

I SemiJoin(R,S) returns a new array R′ that representsRnS concisely. Every inhabited
cell R′[i] is augmented by a pointer to a cell S[j] such that S[j].t[X] = R′[i].t[X]
holds where X is the set of common attributes of R and S.

I Join(R,S) returns a new array that represents R on S concisely.

We note that for the rename operator ρX→Y (R) of the relational algebra, of course,
no parallel algorithm is required.

9We believe that distinguishing between operations on arrays and operations on relations also improves
the readability of algorithms and proofs.

Page 49

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

3.4.1 Lower Bounds

Before we present our algorithms, we first derive some lower bounds for our database
operations from the results discussed in Section 3.1.2.

On the one hand our lower bounds state that there is no O(1)-time parallel algorithm
using a polynomial number of processors, that computes the semi-join of two unary
relations R and S, and stores the result in an array of length |Rn S|.

Hence, it is required that the output arrays of algorithms for SemiJoin have length
(1 + λ)|R n S|, for some λ. But, if we want to guarantee such a length, then any
constant-time algorithm requires Ω(n1+ε) processors for any ε ≥ 0. The same applies to
the (natural) join of two unary relations R and S.

Theorem 3.4.1. Let c ≥ 1 and λ > 0 be constants. For every CRCW PRAM algorithm
for the operation SemiJoin (or Join), the following statements hold.

(a) If the algorithm uses a polynomial number of processors and the output array is
compact, for every possible input, then it has running time Ω

(logn
log logn

)
.

(b) If the algorithm only needs constant time and the output array is λ-compact, for
every possible input, then it requires Ω(n1+ε) processors, for some constant ε > 0.

Here n is the size of the input arrays. The lower bounds hold even if the input relations
R and S are unary relations, the arrays representing R and S are compact and fully
ordered, and in the dictionary setting.

Proof. The lower bounds rely on the lower bounds for (exact) compaction and approxi-
mate compaction, and basically use the same reduction.

We first prove Statement (b). Suppose that there is a CRCW PRAM algorithm for
SemiJoin (or Join) that guarantees a λ-compact output array and runs in constant time
using µ(n)n processors, where µ(n) = o(nε), for every ε > 0. We show how this algorithm
can be used to achieve approximate compaction with µ(n)n processors in constant time.

Let A be the input array of length n with k non-empty cells. An algorithm that
achieves λ-approximate compaction can proceed as follows.

In the first step it creates an array R of length n for the unary relation R that consists
of the even numbers from 2 to 2n. This can be easily done in parallel in constant time
with n processors.

In the second step, it initializes an array S of length n as follows. For every i ∈ [1, n],
it stores the value 2i in S[i], if B[i] is not empty, and otherwise the value 2i+ 1. Hence,
the relation defined by R n S and R on S consists of exactly all even numbers 2i, for
which A[i] is not empty.

Note that, by construction, the arrays for the relations R and S are concise, compact,
and fully ordered.

From the λ-compact array representing Rn S a λ-compact array containing all values
from B can be obtained by replacing every value 2i by A[i]. Indeed, the length of the
array is at most (1 + λ)|Rn S| = (1 + λ)|R on S| = (1 + λ)k.

Page 50

I Database Operations

All in all, the algorithm takes constant time and uses µ(n)n processors to achieve linear
approximate compaction. Hence, due to Proposition 3.1.4 it holds µ(n)n ∈ Ω(n1+ε), for
some ε > 0.

By the same construction, an algorithm for SemiJoin (or Join) according to State-
ment (a) yields an algorithm achieving (perfect) compaction that works in constant time
with polynomially many processors, contradicting Corollary 3.1.2. �

The next result states that the best we can hope for in the general setting are quadratic
work bounds.

Lemma 3.4.2. Any O(1)-time parallel algorithm for SemiJoin or Join in the general
setting requires Ω(|D|2) work for infinitely many input databases on a priority CRCW
PRAM.

Proof. We define a family of databases Dn and show that the elemental operation
EqualR,S has to be invoked at least n2 times to evaluate R n S (or R on S) correctly.
For any n > 0, let Rn = {2, . . . , 2n} be the set of all even numbers from 2 to 2n and
Sn = {1, . . . , 2(n− 1) + 1} be the set of all odd numbers from 1 to 2(n− 1) + 1. Note
that |Rn| = |Sn| = n and let Dn be the database over schema {R,S} with Dn(R) = Rn

and Dn(S) = Sn. The query result of Rn S on Dn is empty.
Assume for the sake of a contradiction that there is a O(1)-time parallel algorithm for

the general setting that evaluates RnS on Dn with less than n2 invocations of EqualR,S .
Then there are i1, i2 such that EqualR,S(i1, 1, i2, 1) is never invoked. Furthermore,
by construction any invocation of EqualR,S returns false on Dn, and invocations
EqualR,R(i

′
1, 1, i

′
2, 1) or EqualS,S(i

′
1, 1, i

′
2, 1) return true if and only if i′1 = i′2. Now

consider the database D′
n that is defined like Dn except that the i1-th value of Rn and

the i2-th value of Sn are set to 2n+ 1.
Since every invocation of EqualR,S(R,S) except EqualR,S(i1, 1, i2, 1) still returns false,

and the output for #TuplesR and #TuplesS is also the same on D′
n as for Dn, we can

conclude that the computation on D′
n does not diverge from the computation on Dn. In

other words, EqualR,S(i1, 1, i2, 1) is never invoked, and the algorithm outputs the empty
query result. This is a contradiction because the query result of R n S on D′

n is the
singleton set {2n+ 1}. �

3.4.2 Algorithms for the Operations of the Semi-Join Algebra

In this subsection we present our algorithms for the operations that correspond to the
operators of the semi-join algebra. They are essentially simple combinations of the
algorithms of Section 3.3. The algorithms for the Join operation are more involved and
are deferred to Section 3.4.3.

To be a bit more precise, we present “high-level” algorithms for the operations of
the semi-join algebra which are built upon the basic array operations introduced in
Section 3.3. Plugging in the concrete algorithms for the basic operations then yields
different algorithms depending on the setting and whether the input arrays are suitably
ordered. Therefore, we also state complexity bounds for the ordered setting and the

Page 51

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

Table 3.2: Complexity bounds for the operations of the semi-join algebra in the general
setting.

Operation Result Work bound Space bound

SelectX=Y (R) Proposition 3.4.3 O(|R|) O(|R|)
ProjectX (R) Proposition 3.4.4 O(|R|2) O(|R|)
SemiJoin(R,S) Proposition 3.4.5 O((|R|+ |S|) · |S|) O(|R|+ |S|)
Difference(R,S) Proposition 3.4.6 O((|R|+ |S|) · |S|) O(|R|+ |S|)
Union(R,S) Proposition 3.4.7 O((|R|+ |S|) · |S|) O(|R|+ |S|)

Table 3.3: Complexity bounds for the operations of the semi-join algebra in the dictio-
nary setting.

Operation Result Work bound Space bound

SelectX=Y (R) Proposition 3.4.3 O(|R|) O(|R|)
ProjectX (R) Proposition 3.4.4 O(|R|) O(|R| · |D|ε)
SemiJoin(R,S) Proposition 3.4.5 O(|R|+ |S|) O((|R|+ |S|) · |D|ε)
Difference(R,S) Proposition 3.4.6 O(|R|+ |S|) O((|R|+ |S|) · |D|ε)
Union(R,S) Proposition 3.4.7 O(|R|+ |S|) O((|R|+ |S|) · |D|ε)

general setting, although we will not utilize the algorithms we present here for building
query evaluation algorithms for these settings.10 We stress again that the algorithms
assuming ordered input arrays and their bounds do not apply to the general setting,
since we simply do not have access to an order in this setting.

An overview of the work and space bounds of our algorithms for the general, the
dictionary, and the ordered setting is given in Table 3.2, Table 3.3, and Table 3.4,
respectively.

Let us point out that some of our results in this section state a linear upper bound for
the work, in particular for the dictionary setting. These bounds do not contradict the
lower bounds stated in Theorem 3.4.1 because the results state only trivial constraints
on the length (and hence compactness) of the output arrays. Indeed, compacting the
output arrays yields the bounds to be expected given Theorem 3.4.1.

Our algorithm for SelectX=Y is very simple and does not depend on the setting at all.

Proposition 3.4.3. For all attributes X,Y there is a O(1)-time parallel algorithm for
SelectX=Y that, given an array R, requires work and space O(|R|) on an EREW PRAM.
The output array has length |R|. If R is X -ordered, then the output array is X -ordered.

Proof. The algorithm simply initializes a new array R′ of length |R|, and then, using |R|
processors, copies R[i].t to R′[i] if R[i].t[X] = R[i].t[Y] holds. Furthermore, it is trivial
to augment every inhabited cell R′[i] by a pointer to R[i]. Clearly, this takes work and
space O(|R|), and preserves the order of tuples. �

10We will instead opt for a translation into the dictionary setting.

Page 52

I Database Operations

Table 3.4: Complexity bounds for the operations of the semi-join algebra in the ordered
(and dictionary) setting. In the conditions for the SemiJoin operation, X is
the set of common attributes of R and S.

Operation Result Work bound Space bound

SelectX=Y (R) Proposition 3.4.3 O(|R|) O(|R|)

ProjectX (R) Proposition 3.4.4 O(|R|1+ε) O(|R|1+ε)
↪→ if R is X -ordered

SemiJoin(R,S) Proposition 3.4.5 O(|R| · |S|ε) O(|R| · |S|ε + |S|)
↪→ if S is X -ordered and fully linked

O((|R|+ |S|) · |R|ε) O((|R|+ |S|) · |R|ε)
↪→ if R is X -ordered

Difference(R,S) Proposition 3.4.6 O(|R| · |S|ε) O(|R| · |S|ε + |S|)
↪→ if S is fully ordered and fully linked

O((|R|+ |S|) · |R|ε) O((|R|+ |S|) · |R|ε)
↪→ if R is fully ordered

Union(R,S) Proposition 3.4.7 O(|R| · |S|ε + |S|) O(|R| · |S|ε + |S|)
↪→ if S is fully ordered and fully linked

Proposition 3.4.4. For every ε > 0 and every set or sequence X of attributes, there are
O(1)-time parallel algorithms for ProjectX that, given an array R, have the following
bounds on an arbitrary CRCW PRAM.
(a) Work O(|R|) and space O(|R| · |D|ε) in the dictionary setting.

(b) Work O(|R|1+ε) and space O(|R|1+ε), if R is X -ordered.

(c) Work O(|R|2) and space O(|R|) in the general setting.
The output array has length |R|. If R is Y-ordered, for some subsequence Y of X then
the output array is Y-ordered, too.

Proof. The algorithm first allocates an array R′ of length |R|. It then sets R′[i].t =
R[i].t[X] and augments R′[i] by a pointer to R[i], for every inhabited cell R[i], using
|R| processors, one for each cell of R. Clearly, this requires work and space O(|R|).

The array R′ represents πX (R), but not concisely, which is a requirement. Thus, the
algorithm invokes Deduplicate(R′) to remove multiple appearances of a tuple in R′, and
returns the resulting array. The work and space bounds are dominated by the invocation
of Deduplicate in any case, and therefore the bounds follow from Lemma 3.3.7.

In the ordered case it is crucial that R is X -ordered. It implies that R′ is fully ordered
(with respect to X). �

Proposition 3.4.5. For every ε > 0, there are O(1)-time parallel algorithms for
SemiJoin that, given arrays R and S have the following bounds on an arbitrary CRCW

Page 53

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

PRAM. Here, X denotes the joint attributes of the relations R and S represented by R
and S, respectively.
(a) Work O(|R|+ |S|) and space O((|R|+ |S|) · |D|ε) in the dictionary setting.

(b) Work O(|R| · |S|ε) and space O(|R| · |S|ε + |S|), if S is X -ordered and fully linked.

(c) Work O((|R|+ |S|) · |R|ε) and space O((|R|+ |S|) · |R|ε), if R is X -ordered.

(d) Work O((|R|+ |S|) · |S|) and space O(|R|+ |S|) in the general setting.
The output array has length |R|. If R is Y-ordered, then the output array is Y-ordered.

Proof. We will first describe the “high-level” algorithm for Statements (a), (c) and (d).
Afterwards, we discuss how it can be adapted for Statement (b).

The algorithm first computes arrays R′ and S′ which represent R′ = πX (R) and
S′ = πX (S), respectively, but possibly not concisely.11 This can be done as detailed in
the proof for Proposition 3.4.4, using |R| and |S| processors, respectively. In a nutshell,
it sets R′[i].t = R[i].t[X], for every inhabited cell R[i]. The same applies to S′ and S.
Moreover, if S (or R) is X -ordered then S′ (resp. R′) is fully ordered (with respect to X).

The algorithm then uses SearchRepresentatives(R′,S′) to augment every inhabited
R′[i] by a pointer to an inhabited cell S′[j] with S′[j].t = R′[i], if there is such a cell.
Finally, using |R| processors, the algorithm augments an inhabited cell R[i] by a pointer
to S[j], if R′[i] was augmented by a pointer to S′[j]. If not, R[i] is flagged uninhabited.12

Afterwards, each inhabited cell R[i] is equipped with a pointer to an inhabited cell S[j]
with S[j].t[X] = R[i].t[X]. In particular, R represents Rn S concisely.

For Statements (a), (c) and (d), the overall work and space are dominated by the
invocation of SearchRepresentatives. Hence, the bounds follow from Lemma 3.3.6.

For Statement (b), the array S′ cannot be computed within the stated work bound
O(|R| · |S|ε). Thus, the algorithm invokes SearchRepresentatives(R′,S) instead of
SearchRepresentatives(R′,S′). Thereby, it intercepts every read instruction to a cell
S[i] and replaces S[i].t with S[i].t[X] “on-the-fly”. �

Proposition 3.4.6. For every ε > 0, there are O(1)-time parallel algorithms for
Difference that, given arrays R and S have the following bounds on an arbitrary CRCW
PRAM.
(a) Work O(|R|+ |S|) and space O((|R|+ |S|) · |D|ε) in the dictionary setting.

(b) Work O(|R| · |S|ε) and space O(|R| · |S|ε+ |S|), if S is fully ordered and fully linked.

(c) Work O((|R|+ |S|) · |R|ε) and space O((|R|+ |S|) · |R|ε), if R is fully ordered.

(d) Work O((|R|+ |S|) · |S|) and space O(|R|+ |S|) in the general setting.
The output array has length |R|. If R is Y-ordered, then the output array is Y-ordered.
11While it seems natural to compute R′ and S′ using ProjectX this is not possible for Statements (b)

and (c) in general because R′ or S′ might not be X -ordered.
12To preserve the input array, the algorithm may actually create a copy of R first.

Page 54

I Database Operations

Proof. The algorithm uses SearchRepresentatives(R,S) to augment every inhabited
cell R[i] by a pointer to an inhabited cell S[j] with S[j].t = R[i].t, if there is such a cell.
The tuples that belong to the difference R − S are then precisely the tuples stored in
inhabited cells of R that were not augmented by a pointer. Thus, the algorithm allocates
an output array R′ and, using one processor for each cell R[i], copies R[i].t to R′[i] if
R[i] is inhabited and is not augmented by a pointer.

In every case, the work and space for invoking SearchRepresentatives dominates
the overall work and space. Thus, the bounds follow from Lemma 3.3.6. We note that
the algorithm effectively just removes tuples from R. It is therefore order-preserving. �

Proposition 3.4.7. For every ε > 0, there are O(1)-time parallel algorithms for Union
that, given arrays R and S have the following bounds on an arbitrary CRCW PRAM.
(a) Work O(|R|+ |S|) and space O((|R|+ |S|) · |D|ε) in the dictionary setting.

(b) Work O(|R| · |S|ε + |S|) and space O(|R| · |S|ε + |S|), if S is fully ordered and fully
linked.

(c) Work O((|R|+ |S|) · |S|) and space O(|R|+ |S|) in the general setting.
The output array has length |R|+ |S|.

The algorithms basically concatenate the arrays representing R− S and S. We note
that thanks to the symmetry of union, the algorithm for Statement (b) can also be
applied if R is fully ordered.

Proof for Proposition 3.4.7. The “high-level” algorithm uses Difference to compute
an array R′ representing R′ = R − S, concisely. In a second step it concatenates R′

and S. For that purpose, it allocates an output array of length |R′| + |S| = |R| + |S|,
and then copies the proper tuples from R′ and S into the output array using |R′|+ |S|
processors. To be precise, for each inhabited cell R′[i], the tuple R′[i].t is copied to the
i-th cell of the output array and, for each inhabited cell S[j], the tuple S[i].t is copied to
the cell with index |R′|+ j.

For Statements (a) and (c), the required work and space for Difference dominate
the work and space required for the second step. Thus, the bounds are inherited from
Proposition 3.4.6 in these cases. For Statement (b) the additional addend |S| is due to
the concatenation in the second step which requires work and space O(|R|+ |S|), since
|R′| = |R|. �

3.4.3 Algorithms for the Join Operation

In this section, we present our algorithms for the computing the join R on S of two
relations R and S. In a nutshell, they group the tuples in S according to the values of the
common attributes of R and S, and then join each tuple ã in R with the group for ã[X].

If the input array S for S is X -ordered, then the tuples in S are already grouped and
it suffices to find the first and last index of each group. For a tuple ã ∈ R, we denote by
Gã the subarray of S which contains all tuples b̃ of S with b̃[X] = ã[X], i.e. the tuples

Page 55

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

matching ã. Observe that multiple tuples from R might be associated with the same
subarray, i.e. if they have the same values for the attributes in X .

Given ã and the associated group array Gã, the output tuples resulting from ã can be
written into the output array using |G| processors. However, if Gã is not λ-compact w.r.t.
its own length |Gã|, this can result in undesirable work bounds (and a large output array).
Indeed, even if S is λ-compact, there might be a group array Gã with λ|S| uninhabited
cells and two inhabited cells. Assuming that every tuple in R has to be joined with every
tuple in this group array Gã, writing the output array naively as described above then
requires |R|(2 + λ|S|) = 2|R|+ λ|R||S| processors. That is, the work of this procedure is
quadratic, even though there are only 2|R| output tuples.

To obtain a better work bound, our algorithm compacts each group array Gã in S
in parallel. Since the number of groups is, in general, not bounded by a constant, the
underlying obstacle for this objective is processor allocation: Each processor has to be
assigned to a group it then helps to compact. This entails that a single processor has
to be able to determine its group in constant time. All while not allocating too many
processors in total. Let us point out that our algorithms for the Join operation has to
resolve processor allocation twice: Once to compact each group as discussed above and
then a second time to copy, for each ã ∈ R, the output tuples {ã} on {b̃ ∈ S | b̃[X] = ã[X]}
into the output array.

Processor allocation can be formalized as follows. A task description d = (m, x̄) consists
of a number m specifying how many processors are required for the task, and a constant
number of additional numbers x̄ = (x1, . . . , xk) serving as “input” for the task, e.g. x̄ may
contain pointers to input arrays or a number that indicates which algorithm is used to
solve the task. A task schedule for a sequence d1, . . . , dn of task descriptions is an array C
of length at least

∑n
i=1mi such that, for every i ∈ [1, n], there are at least mi consecutive

cells C[ji], . . . ,C[ji +mi − 1] with content di and each of these cells is augmented by a
pointer to C[ji], i.e. the cell with the smallest index in the sequence. The tasks specified
by d1, . . . , dn can then be solved in parallel using |C| processors: Processor j can lookup
the task it helps to solve in cell C[j], and using the pointer it can also determine its
relative processor number for the task. If a cell C[j] is empty, processor j does nothing.

The processor allocation problem is closely related to the prefix sums and the interval
allocation problems. We believe the following lemma is folklore. The relationship of these
problems and an analogous result for randomized PRAMs and time O(log∗ n) are, for
instance, discussed by Hagerup [Hag92b, Section 2]. For the sake of completeness we
provide a proof for the deterministic constant-time case here.

Lemma 3.4.8. For every ε > 0 and λ > 0 there is a O(1)-time parallel algorithm that,
given an array T that contains a sequence of task descriptions d1 = (m1, x̄1), . . . , dn =
(mn, x̄n), computes a task schedule C for d1, . . . , dn of size (1 + λ)

∑
i=1mi. It requires

work and space O(|T|1+ε + |C|1+ε) on a common CRCW PRAM.

Proof. We assume in the following that the input array T is compact. If not, a task
description (0, ()) asking for zero processors can be written to the empty cells. These
placeholders can also easily be removed from the computed task schedule.

Page 56

I Database Operations

The algorithm first determines, for each task, a “lead processor”, which will be the
processor with the lowest processor number assigned to the task.

For this purpose, it computes consistent λ-approximate prefix sums s1, . . . , sn for
the sequence m1, . . . ,mn using Proposition 3.1.8. It then assigns the first task d1 to
processor 1, and, for i ∈ [2, n], task di to processor si−1 +1. Consequently, the algorithm
allocates an array C of size sn for the task schedule and sets C[0] = d1, and C[si−1+1] =
di, for i ≥ 2. All remaining cells are initially empty. Since sn ≤ (1 + λ)

∑n
i=1mi, the

array C has the desired size. Thanks to Proposition 3.1.8 computing the prefix sums
requires work and space O(|T|1+ε).

To assign the remaining mi − 1 processors to task di, we observe that, for each i,
there are at least mi − 1 empty cells in C between the cell containing di and the cell
containing di+1, because the prefix sums s1, . . . , sn are consistent. Thus, it suffices to
compute predecessor pointers for C and then copy, with |C| processors in parallel, the
task description di to a cell C[j] if C[j] is empty and di is stored in the non-empty
cell C[k] with maximal k that precedes C[j], i.e. cell the predecessor pointer of C[j]
points to. Due to Proposition 3.3.4 this requires work and space O(|C|1+ε). �

We are now ready to present algorithms for the Join operation in the dictionary and
the ordered setting.

Proposition 3.4.9. For every ε > 0 and every λ > 0, there are O(1)-time parallel
algorithms for Join that, given arrays R and S, have the following bounds on an arbitrary
CRCW PRAM. Here, X denotes the common attributes of R and S.
(a) Work and space O((|S|+ |D|)1+ε + |R|1+ε + |R ./ S|1+ε) in the dictionary setting.

(b) Work and space O(|S|1+ε + |R|1+ε + |R ./ S|1+ε) if S is X -ordered.
The length of the output array is bounded by (1 + λ)|R ./ S|.

Proof. For Statement (a) the algorithm first sorts S w.r.t. X . Due to Lemma 3.3.9, this
takes work and space O((|S|+ |D|)1+ε). The remainder of the algorithm is the same as
for Statement (b), which we describe next. We set δ = min{13 ,

ε
3} and λ′ = min{13 ,

λ
3}.

The algorithm proceeds in three phases: The grouping phase, the pairing phase, and
the join phase.

Towards the grouping phase, we observe that, since S is X -ordered, the tuples in S
are, in particular, grouped by X . In the grouping phase, the algorithm determines, the
boundaries of these groups within S, and λ-compacts each group.

For this purpose, it first establishes predecessor and successor links for S, and then
searches for each inhabited cell S[k] in parallel, the smallest index i and largest index j
with i ≤ k ≤ j such that S[i].t[X] = S[k].t[X] = S[j].t[X] holds, and augments S[k] by
respective pointers. Thanks to Propositions 3.3.4 and 3.3.5 this requires overall work
and space O(|S|1+ε).

For each tuple ã ∈ πX (S), let Gã denote the subarray of S that contains the group
for ã. Because there are up to |S| many groups, the algorithm uses Lemma 3.4.8 to
allocate processors for compacting the groups. To obtain proper task descriptions, the

Page 57

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

algorithm computes an array T representing πX (S) concisely using Proposition 3.4.4.
Thanks to S being X -ordered this can be done with work and space O(|S|1+ε).

Note that each proper tuple ã in T is linked to Gã – via pointers from T to S, and from
each inhabited cell of S to the group boundaries – and a single processor can determine
the length of Gã in constant time. The task description for a proper tuple ã consists of
mã = |Gã|1+δ and pointers to Gã. The task schedule guaranteed by Lemma 3.4.8 has
length at most

(1 + λ)
∑

ã∈πX (S)

mã = (1 + λ)
∑

ã∈πX (S)

|Gã|1+δ ≤ (1 + λ)

(∑
ã∈πX (S)

|Gã|

)1+δ

∈ O(|S|1+δ)

and computing it, thus, requires work and space O(|S|1+ε) because (1 + δ)2 ≤ (1 + ε).
Since mã = |Gã|1+δ processors suffice to λ′-compact the group array Gã due to

Lemma 3.3.8, all groups can be λ′-compacted using work and space O(|S|1+ε) in total.
This concludes the grouping phase.

In the pairing phase, the algorithm computes an array R′ representing the relation
R′ = RnS concisely by invoking SemiJoin(R,S). This has two effects. First, the proper
tuples in R′ are exactly those tuples from R that have at least one matching tuple in S.
Second, each proper tuple ã in R′ is (indirectly) linked to the λ′-compact group array for
ã[X]. Since S is X -ordered and fully linked this phase can be done with work O(|R| · |S|ε)
and space O(|R| · |S|ε + |S|), thanks to Proposition 3.4.5. Note that the work and space
bounds of this phase are dominated by O(|S|1+ε + |R|1+ε).

In the join phase, the algorithm uses |Gã[X]| processors for each proper tuple ã in R′

to write ã on ã′, for all proper tuples ã′ from Gã, into the output array. Since there may
be up to |S| groups of pairwise different length, we again employ Lemma 3.4.8 to assign
processors.

The task description for a proper tuple ã from R′ consists of the length |Gã[X]|
of its λ′-compact group array, a pointer to its cell in R′, and pointers to its group
Gã[X]. The length of the task schedule guaranteed by Lemma 3.4.8 can be bounded by
M = (1 + λ′)

∑
ã∈RnS |Gã[X]|.

The algorithm then uses M processors to assemble the output array of length M : If
processor j is the i-th processor assigned to a proper tuple ã in R′, it writes ã on Gã[X][i].t
into the j-th cell of the output array, if Gã[X][i] is inhabited.

It remains to show that the output array has the desired size and the join phase can
be carried out within the desired bounds. Let nã be the number of proper tuples in Gã,
for each ã ∈ πX (S), and let R′ = Rn S denote the relation represented by R′. Thanks
to the group arrays being λ′-compact, we can deduce that

M = (1 + λ′)
∑
ã∈R′

|Gã[X]| ≤ (1 + λ′)
∑
ã∈R′

(1 + λ′)nã[X]

= (1 + λ′)2
∑
ã∈R′

nã[X] = (1 + λ′)2|R on S|

where the last equality holds because R′ contains exactly those tuples ã from R that
match with all tuples proper tuples in Gã[X]. Since further |R′| ∈ O(|R|), the task

Page 58

I Query Evaluation in the Dictionary Setting

schedule for this phase can be computed with work and space O(|R|1+ε + |R on S|1+ε).
The output array can then be assembled with work and space O(|R on S|).

Lastly, the output array has the desired length of (1 + λ)|R on S| because we have
(1 + λ′)2 ≤ (1 + λ) thanks to our choice of λ′. �

Since ordered arrays are not available in the general setting, the “high-level” algorithm
for Proposition 3.4.9 does not apply to the general setting as is. Indeed, for the grouping
phase, the algorithm relies on S being X -ordered. Recall that an algorithm for the Join
operation in the general setting requires at least quadratic work due to Lemma 3.4.2.
Since our translation into the dictionary setting can also be done with quadratic work,
we refrain from presenting a dedicated algorithm for the Join operation in the general
setting, and instead refer to the translation which we will present in Section 3.6.

3.5 Query Evaluation in the Dictionary Setting

After studying algorithms for basic array operations and operators of the relational algebra,
we are now prepared to investigate the complexity of O(1)-time parallel algorithms for
query evaluation. In this section we will focus on query evaluation in the dictionary
setting – the results are summarized in the right-hand column of Table 3.1. For the other
two settings, we will derive algorithms and bounds by means of a translation into the
dictionary setting in Section 3.6.

Although every query of the relational algebra can be evaluated by a O(1)-time parallel
algorithms with polynomial work, the polynomials can be arbitrarily bad. In fact,
that a graph has a k-clique can be expressed by a conjunctive query with k variables.
Namely, the Boolean conjunctive query Qk with body(Qk) = {E(xi, xj) | 1 ≤ i < j ≤ k}.
Rossman [Ros08, Theorem 1.2] proved a ω(nk/4) lower bound on the size of constant-
depth, unbounded fan-in circuit families for the k-clique decision problem. This implies
that any O(1)-time parallel algorithm that evaluates Qk requires work ω(nk/4).

With this in mind, we rather study O(1)-time parallel algorithms for fragments of query
languages, for which efficient sequential algorithms are known. Concretely, we consider
queries of the semi-join algebra (Section 3.5.1) and various subclasses of conjunctive
queries, notably acyclic conjunctive queries (Section 3.5.2). Furthermore, we present
algorithms for conjunctive queries with work (and space) bounds depending on their
generalized hypertree width – effectively yielding evaluation algorithms for all conjunctive
queries. Lastly, in Section 3.5.3, we present a O(1)-time parallel version of worst-case
optimal algorithms for natural join queries.

Conventions and Assumptions. For convenience and notational simplicity we use the
following notation and conventions for the input arrays representing the database relations.
By IN we always denote the maximum number of tuples in any relation of the underlying
database that is addressed by the given query. Note that we have |D| ∈ O(IN) for any
database D. Similarly, OUT denotes the number of tuples in the query result. We assume
that, for some constant λ, every relation R of the input database is given by a λ-compact

Page 59

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

array R that represents R concisely. In particular, we have |R| ∈ O(IN) for all database
relations.

3.5.1 Evaluation of Semi-Join Algebra Queries

Recall that the semi-join algebra is the fragment of the relational algebra that uses
only selection, projection, rename, union, set difference and, not least, semi-join. It is
well-known that query results of semi-join algebra queries have size O(IN) [cf. LV07,
Corollary 16]. This is also reflected by our results for the dictionary setting in Section 3.4:
The output arrays have length O(IN), if the input array has length O(IN). Since they
further do not require the input arrays to be λ-compact, we can conclude the following.

Theorem 3.5.1. For every ε > 0, λ > 0, and each query Q of the semi-join algebra
there is a O(1)-time parallel algorithm that, given λ-compact arrays representing the
database relations concisely, evaluates Q, and requires work O(IN) and space O(IN1+ε)
on an arbitrary CRCW PRAM in the dictionary setting. The output array has length
O(IN).

Note that this result does not contradict our lower bounds stated in Theorem 3.4.1,
since it does not make any assertions on the compactness of the output array. Indeed,
compacting the output array using Compactλ yields the expected work bound O(IN1+ε).

Leinders et al. [Lei+05, Theorem 19] proved that semi-join algebra queries can be
evaluated in time O(IN). We emphasize that the work bound stated by Theorem 3.5.1
matches this time bound. Moreover, Theorem 3.5.1 states, in particular, that there are
work-optimal O(1)-time parallel algorithms for evaluating semi-join algebra queries in
the dictionary setting.

3.5.2 Evaluation of Conjunctive Queries

In this section we present O(1)-time parallel algorithms for evaluating (subclasses of)
conjunctive queries. Since conjunctive queries are rule-based queries defined from the
unnamed perspective, but our databases operations from Section 3.4 are defined in terms
of the named perspective, we briefly discuss how they fit together.

First, we assume, in this section, that there are no variable repetitions in any atom
of the query, that is the variables x1, . . . , xk of an atom R(x1, . . . , xk) are pairwise
distinct. Indeed, this requisite can always be established by proper applications of
Select operations to the arrays representing the database relations, which only requires
linear work and space, thanks to Proposition 3.4.3. We further associate each variable xi
with a distinguished attribute Xi. A full conjunctive query Q is then equivalent to
joins R1 on R2 on · · · on Rm of relations R1, . . . , Rm where each relation Ri is obtained
by renaming attributes according to an atom R(x1, . . . , xk) ∈ body(Q) of the database
relation R. In case the conjunctive query is not full, an additional projection to the
attributes that correspond to the head variables of the query is applied. By free(Q) we
denote the set of attributes associated to the head variables of the conjunctive query Q.

Page 60

I Query Evaluation in the Dictionary Setting

We proceed as follows. First we represent O(1)-time parallel algorithms for evaluating
acyclic conjunctive queries. Then we will show that, as in the sequential setting, the
evaluation of conjunctive queries with bounded generalized hypertree width can be
reduced to evaluating acyclic conjunctive queries, over a likely larger database. Since
every conjunctive query has some generalized hypertree width, this effectively yields
O(1)-time parallel algorithms for evaluating any conjunctive query. The work and space
bounds depend on the generalized hypertree width. Lastly, we show that better bounds
can be achieved for conjunctive queries with small free-connex generalized hypertree
width.

Acyclic Conjunctive Queries. We implement the well-known Yannakakis algorithm
[Yan81] using our database operations from Section 3.4. The algorithm evaluates an
acyclic conjunctive query Q along a join tree TQ for Q. For that purpose, it associates,
with each node v ∈ nodes(TQ), a relation Sv. Initially, Sv = D(Rv), where Rv is the
relation symbol of v.13 The algorithm then proceeds in three phases.

(1) bottom-up semi-join reduction: All nodes of TQ are visited in bottom-up traversal
order. Upon visiting a node v, Sv is iteratively updated by setting Sv = Sv n Sw, for
every child w of v in TQ.

(2) top-down semi-join reduction: All nodes of TQ are visited in top-down traversal
order. Upon visiting a node v, the relation Sv is updated by setting Sw = Sw n Sv,
for every child w of v in TQ.

(3) All nodes of TQ are visited in bottom-up traversal order. Upon visiting a node v,
the relation Sv is iteratively updated by setting Sv = πfree(Q)∪attr(Rv)(Sv on Sw), for
every child w of v in TQ.

After Phase (3), the query result can be obtained by evaluating πfree(Q)(Sv) for the root
node v = root(TQ). Bernstein and Goodman [BG81, Sections 2.4 and 3] proved the
following.

Proposition 3.5.2 [BG81, Implied by Theorem 1]. Let Q be an acyclic conjunctive
query and TQ be a join tree for Q. After Phase (2) of the Yannakakis algorithm,
|πfree(Q)(Sv)| ≤ OUT holds for every node v of TQ.

Proposition 3.5.2 implies the following invariants.

Corollary 3.5.3. Let Q be an acyclic conjunctive query and TQ be a join tree for Q.
During Phase (3) of the Yannakakis algorithm, the following invariants hold, for every
node v of TQ.

(a) |Sv| ≤ IN · OUT

(b) |Sv| ≤ OUT, if Q is a full query.
13Recall that the nodes of TQ are the atoms from the body of Q.

Page 61

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

Proof. Statement (b) follows immediately from Proposition 3.5.2, since, for full queries,
we have attr(Sv) ⊆ free(Q) and thus πfree(Q)(Sv) = Sv, for every node v.

For Statement (a) we observe that initially, after Phase (2), |Sv| ≤ IN holds, and
that Proposition 3.5.2 implies OUT ≥ 1, if |Sv| ≥ 1. Moreover, each tuple ã derived
by an expression of the form πfree(Q)∪attr(Rv)(Sv on Sw) can be partitioned into subtu-
ples ã[attr(Rv)] and ã[free(Q)]. The former is a tuple of the input relation Rv and the
latter is contained in πfree(Q)(Sv) after the update. Thus, there at most IN · OUT tuples
in Sv after each update step. �

We are now prepared to implement our parallel version of the Yannakakis algorithms,
with the help of our database operations from Section 3.4.

Theorem 3.5.4. For every ε > 0, λ > 0, and each acyclic conjunctive query Q there
are O(1)-time parallel algorithms that, given λ-compact arrays representing the database
relations concisely, evaluate Q, and have the following bounds on an arbitrary CRCW
PRAM in the dictionary setting.
(a) Work and space O((IN + IN · OUT)1+ε), and

(b) Work and space O((IN + OUT)1+ε), if Q is a full acyclic conjunctive query.

Proof. The algorithms for Statements (a) and (b) are almost identical – both are a
parallel version of the Yannakakis algorithm. We present the algorithm for Statement (a)
first.

For each node v of a join tree TQ, let Sv be the array representing the relation Sv
associated with v concisely. These arrays are initialized with copies of the input arrays
representing the database relations – with their attributes properly renamed.

Phases (1) and (2) of the Yannakakis algorithm can be done with work O(IN) and
space O(IN1+ε) thanks to Theorem 3.5.1.

In Phase (3), the algorithm maintains |Sv| ∈ O(IN · OUT) for all nodes v of TQ.
Initially this holds, since the arrays have length O(IN) after the first two phases, thanks
to Theorem 3.5.1.

We describe the procedure for an update step of a node v and one of its child nodes w.
Let Y = (free(Q) ∪ attr(Rv)) ∩ attr(Sw) be the set of all attributes of Sw that are also
attributes of Rv or correspond to free variables. Observe that

Sv on πY(Sw) = πfree(Q)∪attr(Rv)(Sv on Sw),

since the attributes of Sv are guaranteed to be free variables or to originate from the
database relation Rv. The algorithm uses this observation and first computes an array
S′
w representing S′

w = πY(Sw) concisely using ProjectY . ProjectY can be carried
out with work O(IN · OUT) and space O(IN1+ε · OUT) thanks to Proposition 3.4.4 and
|Sw| ∈ O(IN · OUT). Furthermore, the array S′

w has length O(IN · OUT).
It then remains to compute Sv on S′

w to complete the update step. Thanks to
Proposition 3.4.9 this requires work and space

O((|S′
w|+ |D|)1+ε + |Sv|1+ε + |Sv ./ S′

w|1+ε).

Page 62

I Query Evaluation in the Dictionary Setting

Thanks to Statement (a) of Corollary 3.5.3 we have |Sv on S′
w| ∈ O(IN · OUT) because

Sv on S′
w is the new relation associated with v after the update step. Furthermore, the

new array has length O(IN · OUT). Overall, the algorithm therefore requires work and
space O((IN + IN · OUT)1+ε).

For Statement (b) the algorithm is essentially the same. However, since Q is a
full query, it is not necessary to compute arrays S′

w for the projections πY(Sv), since
πY(Sv) = Sv. Furthermore, the algorithm can maintain |Sv| ∈ O(OUT) in Phase (3),
thanks to Statement (b) of Corollary 3.5.3. Together with the bounds for Phases (1)
and (2) this yields the claimed work and space bound O((IN + OUT)1+ε).

For further details on the correctness we refer to the primordial paper of Yannakakis
[Yan81]. �

Generalized Hypertree Width. In the sequential setting the evaluation of any conjunc-
tive query can be reduced to the evaluation of an acyclic conjunctive query [GLS02,
Section 4.2]. Overall, the time it takes for evaluating the query then depends on the
generalized hypertree width. As it turns out, the reduction can also be computed on a
PRAM in constant time, yielding the following result.

Theorem 3.5.5. For every ε > 0, λ > 0, and each conjunctive query Q with generalized
hypertree width k there is a O(1)-time parallel algorithm that, given λ-compact arrays
representing the database relations concisely, evaluates Q, and requires work and space
O((INk + INk · OUT)1+ε) on an arbitrary CRCW PRAM in the dictionary setting.

Proof. Let T be a generalized hypertree decomposition witnessing that Q has generalized
hypertree width k. Thanks to Lemma 2.4.4 we can assume that T is complete. Following
the reduction in the sequential setting [GLS02, Section 4.2], the algorithm computes an
acyclic conjunctive query Q′ and arrays representing the relations of a database D′ such
that Q′(D′) = Q(D), where D denotes the input database. It then invokes the algorithm
guaranteed by Statement (a) of Theorem 3.5.4 to compute the query result Q′(D).

For every v ∈ nodes(T), we define a new relation Rv by means of the conjunctive
query Qv with vars(head(Qv)) = bagT (v) and body(Qv) = coverT (v). The database D′

consists of all these relations Rv. More precisely, the schema of D′ is {Rv | v ∈ nodes(T)}
and D′(Rv) = Qv(D), for all v ∈ nodes(T).

The query Q′ is the conjunctive query with

head(Q′) = head(Q) and body(Q′) = {head(Qv) | v ∈ nodes(T)}.

It is straightforward to verify that Q(D) = Q′(D′) holds by inlining the definitions of
the queries Qv and observing that every atom of Q occurs in one of the Qv thanks to the
decomposition being complete. Moreover, Q′ is acyclic because the generalized hypertree
decomposition T ′ for Q′ obtained from T by setting coverT ′(v) = {Rv}, for every node v,
has width 1.

Arrays Rv representing the relations Rv concisely can be computed using at most
|coverT (v)| many Join operations, followed by a ProjectY operation, where Y = free(Qv).
The arrays representing the database relations in coverT (v) have length O(IN) and, thanks

Page 63

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

to Proposition 3.4.9 and T having width k, the arrays representing the (intermediate)
results have length O(INk). The Join operations can thus be carried out with work and
space O(IN(1+ε)k). Afterwards the projection can be computed with work O(INk) and
space O(INk+ε) thanks to Proposition 3.4.4.

The overall statement then follows thanks to Theorem 3.5.4. �

Free-Connex Conjunctive Queries. It turns out that the bounds from Theorem 3.5.5
can be improved, if the queries have a small free-connex generalized hypertree width.

We first consider the case of free-connex acyclic conjunctive queries. Evaluation of
such a query can be reduced to the evaluation of a full acyclic conjunctive query [BGS20,
Implicit in the proof of Theorem 4.1]. Again, we show that this reduction can be done in
constant time by a PRAM.

Proposition 3.5.6. For every ε > 0, λ > 0, and each free-connex acyclic conjunctive
query Q there is a O(1)-time parallel algorithm that, given λ-compact arrays representing
the database relations concisely, evaluates Q, and requires work and space O((IN +
OUT)1+ε) on an arbitrary CRCW PRAM in the dictionary setting.

Proof. Thanks to Proposition 2.4.5 there is a free-connex generalized hypertree de-
composition T of Q that has width 1. Further, let U ⊆ nodes(T) be the set with
vars(head(Q)) =

⋃
w∈U bagT (w) that induces a connected subtree of T . Let w be an

arbitrary node in U , and orient the nodes in T such that w becomes the root in T . We
can assume that T is complete thanks to Lemma 2.4.4 and adding new nodes to T not
affecting U .

Since T has width 1, for each node v ∈ nodes(T), the set coverT (v) contains exactly
one atom Av which we call the guard of v. As in the proof for Theorem 3.5.5, let, for
every node v of T , Qv be the conjunctive query with vars(head(Qv)) = bagT (v) and
body coverT (v). Note that Qv is a projection of the database relation for (the only)
relation symbol in coverT (v) to the variables in bagT (v). We associate every node v
with the relation Rv defined by Qv; that is, Rv = Qv(D). An array representing Rv

concisely can be computed using ProjectX with linear work and space O(IN1+ε) thanks
to Proposition 3.4.4.

In a second phase, the algorithm performs a bottom-up semi-join reduction, similar
to Phase (1) of the Yannakakis algorithm. Upon visiting a node v, Rv is updated to
Rv nRw, for every child w of v in T . This can be computed with linear work and space
O(IN1+ε), thanks to Proposition 3.4.5. The resulting arrays have length O(IN).

Let D′ be the database that consists of the relations Rw with w ∈ U after the second
phase. Further, let Q′ be the conjunctive query with

head(Q′) = head(Q) and body(Q′) = {head(Qw) | w ∈ U}.

Recall, that U induces a connected subtree of T with vars(head(Q)) =
⋃

w∈U bagT (w).
Thus, the heads of the queries Qw contain only head variables of Q, and Q′ is therefore
a full query. Consider the generalized hypertree decomposition T ′ for Q′ that consists
of the subtree of T induced by U , and for which bagT ′(w) = bagT (w), and coverT ′(w) =

Page 64

I Query Evaluation in the Dictionary Setting

{head(Qw)} hold, for all w ∈ U . This generalized hypertree decomposition has width 1.
Thus, Q′ is a full acyclic conjunctive query.

It is straightforward to verify that Q(D) = Q′(D′) holds. Thus, applying the algorithm
for Statement (b) of Theorem 3.5.4 yields the desired outcome. For more details we refer
to Claims 1 and 2 in the proof for the sequential version [BGS20, Theorem 4.1]. �

The evaluation of conjunctive queries with free-connex generalized hypertree width k
can be reduced to the evaluation of free-connex acyclic conjunctive queries [BGS20,
Lemma 4.4]. In fact, the reduction is the same as we utilized for Theorem 3.5.5: If the
generalized hypertree decomposition T of the original query is free-connex, then so is the
derived generalized hypertree decomposition T ′ of Q′ with width 1, since the underlying
tree decomposition does not change. Thanks to Proposition 2.4.5 the query Q′ is thus
free-connex acyclic, which allows us to draw the following conclusion.

Corollary 3.5.7. For every ε > 0, λ > 0, and each conjunctive query Q with free-connex
generalized hypertree width k there is a O(1)-time parallel algorithm that, given λ-compact
arrays representing the database relations concisely, evaluates Q, and requires work and
space O((INk + OUT)1+ε) on an arbitrary CRCW PRAM in the dictionary setting.

3.5.3 Weakly Worst-Case Optimal Work for Natural Joins
This section is concerned with the evaluation of natural join queries14

Q = R1 on . . . on Rm

over some schema S = {R1, . . . , Rm} with attributes attr(Q) =
⋃m

i=1 attr(Ri). Atserias
et al. [AGM13] proved that |Q(D)| ≤

∏m
i=1 |Ri|xi holds for every database D and that

this bound is tight for infinitely many databases. This result is also known as the AGM
bound. Here x1, . . . , xm is a fractional edge cover of Q defined as a solution of the following
linear program.

minimize
m∑
i=1

xi subject to
∑

i:X∈attr(Ri)

xi ≥ 1 for all X ∈ attr(q)

and xi ≥ 0 for all 1 ≤ i ≤ m

In the sequential setting, there are evaluation algorithms for natural join queries which
run in time O(

∏m
i=1 |Ri|xi + IN) [e.g., Ngo+18, Theorem 6.1]. These algorithms are called

worst-case optimal [cf. Ngo+18, Definition 3.2].
We say that a natural join query Q has weakly worst-case optimal O(1)-time parallel

algorithms, if, for every ε > 0, there is a O(1)-time parallel algorithm that evaluates
Q with work O((

∏m
i=1 |Ri|xi + IN)1+ε). Our next result states that natural join queries

indeed have weakly worst-case optimal O(1)-time parallel algorithms in the dictionary
setting.
14We note that natural join queries correspond to full conjunctive queries. However, for this subsection

we decided to use the notation and terminology commonly used in the context of worst-case optimal
algorithms [cf., e.g., AGM13; Are+21].

Page 65

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

Theorem 3.5.8. For every ε > 0, λ > 0, and each natural join query Q = R1 on . . . on
Rm there is a O(1)-time parallel algorithm that, given λ-compact arrays representing
R1, . . . , Rm concisely, evaluates Q, and requires work and space O

((∏m
i=1 |Ri|xi + IN

)1+ε)
on an arbitrary CRCW PRAM in the dictionary setting. Here x1, . . . , xm constitute a
fractional edge cover of Q.

A O(1)-time parallel algorithm can proceed, from a high-level perspective, similarly to
the sequential attribute elimination join algorithm [see, e.g., Are+21, Algorithm 10]. The
core of this algorithm is captured by the following result.

Proposition 3.5.9 [Are+21, Algorithm 10 and Proposition 26.1]. For a natural join
query Q = R1 on . . . on Rm with attributes X = (X1, . . . , Xk) and each database D, let

I L1 =
⋂

i:X1∈attr(Ri)
πX1(Ri) and,

I for each j with 1 < j ≤ k, Lj be the union of all relations

Vã = {ã} ×
⋂

i:Xj∈attr(Ri)
πXj (Ri n {ã})

for each ã ∈ Lj−1.

Then the relation Lk is the query result Q(D).

We will also use the following inequalities in our complexity analysis.

Lemma 3.5.10 [Are+21, pp. 228-229]. Let Q = R1 on . . . on Rm be a natural join
query with attributes X = (X1, . . . , Xk) and x1, . . . , xm be a fractional edge cover of Q.
Furthermore, let L1, . . . , Lk be defined as in Proposition 3.5.9. For every database D it
holds that

(a) mini:X1∈attr(Ri) |Ri| ≤
∏m

i=1 |Ri|xi, and

(b)
∑

ã∈Lj−1
mini:Xj∈attr(Ri) |Ri n {ã}| ≤

∏m
i=1 |Ri|xi for all j ∈ [2, k].

Proof for Theorem 3.5.8. Let X = (X1, . . . , Xk) be a sequence of all attributes oc-
curring in Q, in some arbitrary but fixed order. Furthermore, we assume without loss of
generality that λ < 1

2 . In a nutshell, the algorithm computes iteratively, for increasing j
from 1 to k arrays Lj representing the relations Lj defined in Proposition 3.5.9 concisely
and outputs Lk. The correctness is then implied by Proposition 3.5.9.

Further on, we discuss how the arrays Lj can be computed and that the algorithm can
ensure that |Lj | ≤ (1 + λ)

∏m
i=1 |Ri|xi holds for every j.

Let Xj = (X1, . . . , Xj), for each j ∈ [1, k], be the prefix of X up to attribute Xj .
Furthermore, let, for each i ∈ [1,m] and j ∈ [1, k], Yi,j be the subsequence obtained from
Xj by removing all attributes not in attr(Ri). Note that, for every i, attr(Ri) = Yi,k
and, for every j, Lj is a relation over the set of attributes from Xj .

Let, for each i ∈ [1,m], Ri be the λ-compact array that represents the input relation Ri

concisely. During an initialization phase – outlined in Algorithm 3.1 – the algorithm

Page 66

I Query Evaluation in the Dictionary Setting

Algorithm 3.1: Initialization phase of the algorithm for Theorem 3.5.8.
1 foreach i ∈ [1,m] do // sequential loop
2 Pi,k ← Sortλ(Ri,Yi,k) // Use Lemma 3.3.9
3

4 for j = k downto 2 do // sequential loop
5 if Xj ∈ attr(Ri) then
6 Pi,j−1 ← ProjectYi,j−1

(Pi,j) // Use Proposition 3.4.4
7 else // Yi,j−1 = Yi,j
8 Pi,j−1 ← Pi,j

9 endif
10 endfor
11 endfor

Algorithm 3.2: Computation of L1; part of the algorithm for Theorem 3.5.8.
1 foreach i ∈ [1,m] with X1 ∈ attr(Ri) do // sequential loop
2 if L1 is uninitialized then
3 L1 ← Pi,1

4 else
5 L1 ← SemiJoin(L1,Pi,1) // Use Proposition 3.4.5
6 endif
7 endfor
8

9 L1 ← Compactλ(L1) // Use Lemma 3.3.8

computes Yi,j-ordered, fully linked arrays Pi,j , for each i ∈ [1,m] and each j ∈ [1, k],
which represent πYi,j (Ri) concisely, respectively. This can be done, for each i, by sorting
Ri according to Yi,k, establishing predecessor and successor pointers, and then applying
ProjectYi,j

for up to k values of j. By doing this in decreasing order of j, each proper
tuple in Pi,j can be linked to its projection in Pi,j−1.15

This initial phase requires work and space O(
∑m

i=1 |Ri|1+ε) = O(IN1+ε), for each i,
thanks to Lemma 3.3.9, Proposition 3.3.4, and Proposition 3.4.4. The arrays Pi,j have
length O(IN).

The computation of L1 is outlined in Algorithm 3.2. It suffices to perform semi-joins,
since all πX1(Ri) involved have the same attribute. This requires work O(IN1+ε) and
space O(IN) since the arrays Pi,1 are fully linked and ordered. Furthermore, the output
array L1 has length at most IN. Thus, compacting L1 with Compactλ yields an array
representing L1 of length at most (1 + λ)|L1| and requires work and space O(IN1+ε).
Clearly, |L1| ≤ min1≤i≤m |πX1(Ri)| ≤ min1≤i≤m |Ri|. Thanks to Lemma 3.5.10 we have
that min1≤i≤m |Ri| ≤

∏m
i=1 |Ri|xi . Thus, the length of the compacted array L1 is bounded

by (1 + λ)
∏m

i=1 |Ri|xi .

15If Xj does not occur in Yi,j , then Pi,j−1 is just Pi,j and no computation is necessary.

Page 67

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

To compute Lj , for j > 1, the algorithm operates in two phases: A grouping phase, and
an intersection phase. In these phases only those input relations Ri with Xj ∈ attr(Ri)
participate. Let Rj be the set of all i ∈ [1,m] such that Xj occurs in Yi,j . Note that for
these i ∈ Rj we have, in particular, that Xj occurs in Yi,j but not in Yi,j−1.

Towards the grouping phase, observe that the tuples in the arrays Pi,j are grouped
by Yi,j−1 since they are even Yi,j−1-ordered. Furthermore, note that the group in Pi,j

for a tuple ã ∈ Lj−1 is essentially a list of the values in πXj (Ri n {ã}) annotated with
ã[Yi,j−1]. Similar to the grouping phase of our algorithm for the Join operation, each
group in Pi,j is compacted and each inhabited cell of Lj−1 is augmented by pointers to
(the first and last cell of) the group for Lj−1.t in Pi,j as follows.

(1) Determine the minimum and maximum indices of each group in Pi,j with |Pi,j |
processors: Processor p checks whether Pi,j [p].t is a proper tuple and differs from
its predecessor (resp. successor) w.r.t. to attributes in Yi,j−1. The representative
in Pi,j−1 is augmented with these indices. Since Pi,j is Yi,j-ordered, the proper
tuples between the minimum and maximum assigned to a proper tuple b̃ in Pi,j−1

are then precisely the tuples ã with ã[Yi,j−1] = b̃. Note that in the special case of
Yi,j consisting solely of Xj , there is exactly one group. Then the first cell of, e.g.,
Pi,j−1 can be chosen as representative of this group.
For every proper tuple ã in Pi,j−1 let Gã,i,j denote the (sub)array of the group for ã
in Pi,j , for every i ∈ Rj .

(2) Compact each group Gã,i,j in parallel using Compactλ′ with λ′ = min{13 ,
λ
3} and

parameter δ = min{13 ,
ε
3}. The choice of λ′ is required for the complexity bounds in

the intersection phase. To this end, the algorithm creates, for each proper tuple ã
in Pi,j−1 a task description dã for mã = |Gã,i,j |1+δ processors and with pointers
to Gã,i,j and the tuple ã in Pi,j−1 itself.
Invoking the algorithm guaranteed by Lemma 3.4.8 yields a task schedule of length

(1 + λ)
∑

ã∈Pi,j−1

mã = (1 + λ)
∑

ã∈Pi,j−1

|Gã,i,j |1+δ

≤ (1 + λ)
(∑

ã∈Pi,j−1

|Gã,i,j |
)1+δ

= (1 + λ)|Pi,j |1+δ.

Thus, and due to (1 + δ)2 ≤ (1 + ε) computing the schedule requires work and space
O(IN1+ε). Moreover, the arrays Gã,i,j can be compacted with Compactλ′ , and the
inhabited cells of Pi,j can be augmented by pointers to the λ′-compact arrays within
the same bounds.

(3) Finally, the proper tuples in Lj−1 are linked to their respective cell in Pi,j−1, for every
i ∈ Rj as follows. Since Lj−1 is a relation over Xj−1 which, in general, is a superset
of Yi,j−1, the algorithm first computes a (possibly) non-concise representation of
πYi,j−1(Lj−1) with mutual pointers to/from Lj−1. This can be done with |Lj−1|
processors in a straightforward manner, and requires work and space O(|Lj−1|).

Page 68

I Query Evaluation in the Dictionary Setting

Then, for each i ∈ Rj SearchRepresentatives is applied to link, for each proper
tuple ã in Lj−1, the respective tuple ã[Yi,j−1] in Pi,j−1. Each of the (constantly
many) applications of SearchRepresentatives requires work and space O(|Lj−1| ·
|Pi,j−1|ε) = O((

∏m
i=1 |Ri|xi) · INε), because Pi,j−1 is fully ordered (w.r.t. Yi,j−1) and

fully linked. The pointers established by SearchRepresentatives, together with
the pointers in Pi,j−1 to the λ′-compact group arrays Gã,i,j allow to determine, for
each tuple ã in Lj−1, the smallest group array Gb̃,j where b̃ = t[Yi,j−1] among the
group arrays Gb̃,i,j with work O(|Lj−1|) = O(

∏m
i=1 |Ri|xi). Note that, in general,

multiple tuples in Lj−1 may be linked to the same group.
To ease notation, we will write Gã,i,j and Gã,j for the groups Gb̃,i,j and Gb̃,j ,
respectively, for tuples ã ∈ Lj−1 and where b̃ = ã[Yi,j].

This phase requires work and space O((
∏m

i=1 |Ri|xi + IN) · INε) in total.
Observe that a group array Gã,i,j for some ã ∈ Lj−1 represents πYi,j (Ri)n{ã} concisely.

Since ã determines the values for all attributes except Xj , Gã,i,j can also be viewed
as an array representing πXj (Ri n {ã}) concisely, where every value is annotated with
ã[Yi,j−1]. In particular, a group Gã,j represents the πXj (Ri n {ã}) of minimal length
among all i ∈ Rj .

In the intersection phase, the algorithm computes the union of all Vã in parallel. It
proceeds in two steps. First, it will compute, for all ã ∈ Lj−1, an array for the relation
{ã} × πXj (Ri n {ã}) for the i minimizing the size of πXj (Ri n {ã}). In other words,
each ã is joined with all proper tuples in Gã,j . Then, in the second step, it will perform
semi-joins with all (remaining) group arrays Gã,i,j to effectively compute the intersection
of the sets {ã} × πXj (Ri n {ã}) for all i ∈ Rj .

For the first step, the algorithm has to assign |Gã,j | processors to each tuple ã ∈ Lj−1;
recall that Gã,j is the smallest group array for t.16 To this end, it creates, for each
ã ∈ Lj−1, a task description dã for mã = |Gã,j | processors and, as usual, with pointers to
the group array Gã,j and the cell of ã in Lj−1. Since Lj−1 already contains pointers to
the group arrays, these task descriptions can be computed with work and space linear in
|Lj−1| and stored in an array of length |Lj−1|. Thanks to Lemma 3.4.8 it is then possible
to compute a schedule of length

M = (1 + λ′)
∑

ã∈Lj−1

mã (1)

in constant time and with work and space |Lj−1|1+ε +M1+ε.
To finalize the first step, the algorithm then allocates an array Lj of length M and

uses M processors to write, for all ã ∈ Lj−1, the join of {ã} with all tuples in Gã,j into
Lj : If the m-th processor is the `-th processor assigned to ã, it writes {ã} on Gã,j [`].t
into Lj [m] if Gã,j [`] is inhabited.
16We note that this corresponds (up to a logarithmic factor) to the running time stated by [Are+21,

Claim 26.3] and required for the complexity analysis of [Are+21, Algorithm 10]; an implementation
for the operation described in [Are+21, Claim 26.3] is, e.g., the Leapfrog-Join [Vel14], [Are+21,
Proposition 27.10].

Page 69

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

Algorithm 3.3: Second step of the intersection phase of the algorithm for Theorem 3.5.8.
1 foreach i ∈ [1,m] with Xj ∈ attr(Ri) do //sequential loop
2 Lj ← SemiJoin(Lj ,Pi,j) // Use Proposition 3.4.5
3 endfor

In the second step of the intersection phase, it remains to compute semi-joins with
all remaining group arrays Gã,i,j which are not minimal. Recall that every group array
Gã,i,j originates from Pi,j . More precisely, the proper tuples in Gã,i,j are exactly those
tuples in Pi,j that match ã. Thus, it suffices to compute semi-joins of Lj with Pi,j for all
i ∈ Rj as outlined in Algorithm 3.3.17 Because the arrays Pi,j are Yi,j-ordered and have
length O(IN) the second step requires work O(M · INε) and space O(M + IN) thanks to
Proposition 3.4.5.

To obtain the desired work and space bounds for the intersection phase as well as
upper bounds for the length of Lj , we prove that M ≤ (1 + λ)

∏m
i=1 |Ri|xi . As pointed

out above, an array Gã,i,j represents πYi,j (Ri)n {ã} = πYi,j (Rin {ã}) concisely. Further,
we have that |πYi,j (Ri)n {ã}| = |πYi,j (Ri n {ã})| ≤ |Ri n {ã}|. Since the groups where
compacted using Compactλ′ in the grouping phase, we can conclude that (1+λ′)|Rin{ã}|
is an upper bound for |Gã,i,j |. In particular, for the group arrays Gã,j of minimal length,
we have

|Gã,j | ≤ (1 + λ′) min
i∈Rj

|Ri n {ã}|. (2)

Therefore, we have

M
(1)
= (1 + λ′)

∑
ã∈Lj−1

mã

= (1 + λ′)
∑

ã∈Lj−1

|Gã,j |

(2)

≤ (1 + λ′)
∑

ã∈Lj−1

(1 + λ′) min
i∈Rj

|Ri n {ã}|

(3)

≤ (1 + λ)
∑

ã∈Lj−1

min
i∈Rj

|Ri n {ã}|

(4)

≤ (1 + λ)

m∏
i=1

|Ri|xi

where Inequality (3) holds because (1 + λ′)2 ≤ (1 + λ); and Inequality (4) thanks to
Lemma 3.5.10. Therefore, altogether M = |Lj | ≤ (1 + λ)

∏m
i=1 |Ri|xi . This concludes the

analysis of the arrays Lj . �

17Note that this makes processor allocation straightforward.

Page 70

I Evaluation via Translation

3.6 Evaluation via Translation
The goal for this section is to obtain O(1)-time parallel algorithms for evaluating queries
in the general setting and in the ordered setting. For this purpose, we will first present
translations from these settings into the dictionary setting in Section 3.6.1. In Section 3.6.2
we will then combine these translations with our evaluation algorithms from Section 3.5.

3.6.1 Into the Dictionary Setting
To translate a database D in the general or ordered setting into a representation for the
dictionary setting, the domain values occurring in D have to be mapped to small numbers.
More precisely, we are interested in an injective mapping key : adom(D)→ [1, cS |D|] for
some constant cS that depends only on the fixed schema S. Furthermore, we have to
provide implementations of the operations KeyOfR(i, j) and KeyOutput(k, i, j) such that
a single processor can carry them out in constant time. For that purpose, our translations
yield a dictionary – that is, a data structure which allows determining key(a) and key−1(k)
in constant time, given a token representation of a domain value a. Recall that token
representations are not unique, i.e. there may be multiple token representations for a
domain value a. All these representations have to be mapped to the same key key(a).

Recall that, using KeyOfR an array representing a relation R in the general or ordered
setting, can be translated into an array representing key(R) in the dictionary setting in
constant time with linear work. Thus, it suffices to compute a dictionary to effectively
yield a translation. The following result states that dictionaries can indeed be computed
in constant time.

Lemma 3.6.1. For every ε > 0 and λ > 0, there are O(1)-time parallel algorithms that
compute a dictionary and have the following bounds on an arbitrary CRCW PRAM.

(a) Work O(|D|2) and space O(|D|) in the general setting.

(b) Work O(|D|1+ε) and space O(|D|1+ε) in the ordered setting, given an {X}-ordered,
λ-compact array representing R concisely, for every database relation R and every
attribute X ∈ attr(R).

Proof. For both settings, the idea is to compute an array D of length O(|D|), whose
cells contain all (token representations of) domain values occurring in D. This array will
be the underlying data structure of the dictionary. We note that D is (most likely) not
concise. The key key(a) for a domain value a is then the index of a fixed representative
of a in D. In the following we will detail how to compile D, and how the operations
KeyOfR, and KeyOutput can be implemented on top of it.

We first present the algorithm for the general setting and then show how to adapt
it for the ordered setting. For each input relation R and j ∈ [1, ar(R)] an array Rj of
length |R| is computed using |R| processors as follows: Processor i writes the token
(R, i, j) to cell Rj [i]. Thus, Rj is a compact array that contains (token representations
for) all domain values occurring for the j-th attribute in any tuple of R. Concatenating
all arrays Rj , where R ranges over all database relations and j over [1, ar(R)] yields the

Page 71

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

array D. Note that we can assume that D is compact, since there are only a constant
number of input relations and a PRAM can determine the exact number of tuples
in each database relation R using #TuplesR. The length of D is clearly bounded by∑

R∈S ar(R) · |R| ≤ cS |D| where cS =
∑

R∈S ar(R). This step requires work and space
O(|D|).

Next, the algorithm uses SearchRepresentatives to augment every cell D[`] with a
pointer to a representative cell D[k] with D[k].t = D[`].t. The key for the domain value
a = D[`].t is then key(a) = k, that is, the index of the representative cell. Thanks to
Lemma 3.3.6 this requires work O(|D|2) and space O(|D|) in the general setting.

It remains to show that KeyOfR and KeyOutput can be carried out in constant time
by a single processor given D. For KeyOfR(i, j) we observe that a single processor can
determine the index ` of the token (R, i, j) in D: Indeed, (R, i, j) has been stored in
Rj [i], D is the (compact) concatenation of constantly many Sm, and a single processor
can obtain the size of any relation (and, hence, |Sm|) using #TuplesS . Given ` it is then
easy to determine the representative cell D[k] for D[`] using the pointers established by
SearchRepresentatives. Of course, the special case k = ` can occur. The index k is
then returned as the unique key for the domain value represented by (R, i, j).

The implementation of KeyOutput(k, i, j) is straightforward. Indeed, k is an index
of D and D[k] contains a token representation (R, i1, j1) for the domain value with the
unique key k. Thus, invoking OutputR(i1, j1, i, j) has the desired effect.

In the ordered setting an algorithm can essentially proceed similarly to the algorithm
for the general setting detailed above. For the algorithm to require work O(|D|1+ε) it
would suffice to use the algorithm for SearchRepresentatives for ordered arrays, since
this is the only operation with a non-linear work bound. However, the array D is not
necessarily ordered.

We will show how to construct another array C that, like D, contains all (token
representations of) domain values in D, and is piecewise ordered. It is then possible
to search, for each cell of D, a representative cell in C. We note that the unordered
version D is still required to carry out KeyOfR in constant time (by a single processor).

To construct C, the algorithm first computes ordered arrays R′
j which correspond to

the arrays Rj but are ordered and “only” λ-compact. Since, for every database relation
R and every attribute X of R, a {X}-ordered array is given as input, R′

j can simply be
derived from it with O|R| processors: Processor p reads the token representation for the
j-th attribute Xj of R from the p-th cell of the {Xj}-ordered array and writes it into
cell R′

j [p] if the cell is inhabited. Since the input array for R is {X}-ordered, R′
j is fully

ordered. Furthermore, it has length O(IN). The array C is then the concatenation of
all R′

j . Computing C requires linear work and space.
To determine representatives, fix an arbitrary linear order on the set of all pairs (R, j)

where R is a relation symbol from the schema S and j ∈ [1, ar(R)]. For each pair (R, j)
the algorithm invokes SearchRepresentatives(D,R′

j) to find representatives for all
domain values in the subarray R′

j of C. Since there are only constantly many pairs (R, j)
this can be done in constant time with work and space O(|D|1+ε) thanks to Lemma 3.3.6
and each R′

j being fully ordered. The representative for an inhabited cell D[`] is then

Page 72

I Evaluation via Translation

the representative cell for D[`] of the subarray R′
j for the smallest pair (R, j) for which

such a representative cell exists in R′
j .

The operations KeyOfR and KeyOutput can then be implemented analogously to the
general setting. That is, instead of returning an index of D, KeyOfR(i, j) returns the index
of the representative cell in C for the cell of D containing (R, i, j), and KeyOutput(k, i, j)
can use the token representation in C[k] to output the proper value. �

We note that the work bound for the general setting of Lemma 3.6.1 is optimal in the
sense that a sub-quadratic work bound of the form o(|D|2) would contradict Lemma 3.4.2
because semi-joins can be evaluated with linear work in the dictionary setting thanks to
Proposition 3.4.5.

3.6.2 Query Evaluation in the General and Ordered Setting
In this subsection we finally present algorithm (and bounds) for evaluating queries in the
general setting and the ordered setting.

As for the dictionary setting, we start with algorithms for semi-join algebra queries.

Theorem 3.6.2. For every ε > 0, λ > 0, and each query Q of the semi-join algebra
there are O(1)-time parallel algorithms that evaluate Q, and have the following bounds
and requisites on an arbitrary CRCW PRAM.
(a) Work O(IN2) and space O(IN) in the general setting, given λ-compact arrays repre-

senting the database relations concisely.

(b) Work and space O(IN1+ε) in the ordered setting, given an {X}-ordered, λ-compact
array representing R concisely, for every database relation R and every attribute
X ∈ attr(R).

Statement (a) of Theorem 3.6.2 actually follows from our results for the operators of
the semi-join algebra in Section 3.4. We note that translating into the dictionary setting
and then using the algorithm guaranteed by Theorem 3.5.1 would result in the same
work bound, but a worse space bound. In any case, in light of Lemma 3.4.2 this work
bound is the best we can hope for in the general setting.

Statement (b) of Theorem 3.6.2 is an immediate consequence of Theorem 3.5.1 and
Lemma 3.6.1. It is tempting to also use our results from Section 3.4 to obtain algorithms
to evaluate semi-join algebra queries in the ordered setting – that have less demanding
requirements. However, the following example suggests that this is not straightforward,
because our algorithm for Sortλ is only applicable in the dictionary setting. We discuss
this further in Section 3.7.

Example 3.6.3. Consider the semi-join algebra query Q = πY (π{X,Y }(R)) and the
ternary relation

R =
{
(a, f, b), (a, g, c), (b, d, d), (b, d, e), (d, c, e), (d, h, c), (e, a, h)

}
.

Here the values forX are, as usual, given in the first component, and the values for Y and Z
in the second and third, respectively. To evaluate the subquery Q′ = π{X,Y }(R) with the

Page 73

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

algorithm for the ordered setting guaranteed by Statement (b) of Proposition 3.4.4 we
require a (X,Y)-ordered array representing R. The output array is then (X,Y)-ordered.
But evaluating Q = πY (Q

′) requires an {Y }-ordered array. And indeed, in our example,
the output array for Q′ is not {Y }-ordered – observe that the tuples of R are given in
order w.r.t. (X,Y, Z) above. C

Onwards to the evaluation of conjunctive queries, we obtain the following results by
combining Lemma 3.6.1 with Theorem 3.5.5, and Corollary 3.5.7, respectively. Note that
these results also apply to acyclic and free-connex acyclic queries, respectively.

Corollary 3.6.4. For every ε > 0, λ > 0, and each conjunctive query Q with generalized
hypertree width k there is a O(1)-time parallel algorithm that evaluates Q, and has the
following bounds and requisites on an arbitrary CRCW PRAM.
(a) Work O((INk+ INk ·OUT)1+ε+ IN2) and space O((INk+ INk ·OUT)1+ε) in the general

setting, given λ-compact arrays representing the database relations concisely.

(b) Work and space O((INk+ INk ·OUT)1+ε) in the ordered setting, given an {X}-ordered,
λ-compact array representing R concisely, for every database relation R and every
attribute X ∈ attr(R).

Corollary 3.6.5. For every ε > 0, λ > 0, and each conjunctive query Q with free-connex
generalized hypertree width k there is a O(1)-time parallel algorithm that evaluates Q,
and has the following bounds and requisites on an arbitrary CRCW PRAM.
(a) Work O((INk +OUT)1+ε+ IN2) and space O((INk +OUT)1+ε) in the general setting,

given λ-compact arrays representing the database relations concisely.

(b) Work and space O((INk + OUT)1+ε) in the ordered setting, given an {X}-ordered,
λ-compact array representing R concisely, for every database relation R and every
attribute X ∈ attr(R).

We note that the additional addend for the general setting in Corollaries 3.6.4 and 3.6.5
only matters for k = 1, that is, acyclic and free-connex acyclic queries. For k ≥ 2, it is
swallowed by the other term.

Finally, we also obtain weakly worst-case optimal O(1)-time parallel algorithm for the
ordered setting by combining Theorem 3.5.8 and Lemma 3.6.1. In the general setting,
there is an additional addend of O(IN2) due to the translation. In light of our lower
bound stated in Lemma 3.4.2 this is, however, to be expected.

Corollary 3.6.6. For every ε > 0, λ > 0, and each natural join query Q = R1 on . . . on Rm

there is a O(1)-time parallel algorithm that evaluates Q, and has the following bounds
and requisites on an arbitrary CRCW PRAM. Here x1, . . . , xm constitute a fractional
edge cover of Q.
(a) Work O((

∏m
i=1 |Ri|xi + IN)1+ε + IN2) and space O((

∏m
i=1 |Ri|xi + IN)1+ε) in the

general setting, given λ-compact arrays representing R1, . . . , Rm concisely.

(b) Work and space O((
∏m

i=1 |Ri|xi+IN)1+ε) in the ordered setting, given an {X}-ordered,
λ-compact array representing Ri concisely, for each relation Ri and every attribute
X ∈ attr(Ri).

Page 74

I Discussion and Related Work

3.7 Discussion and Related Work
We conclude this chapter with a discussion of our results and related work.

Parallel Query Evaluation. As stated in the introduction the best known work bounds
for evaluating queries of the relational algebra in constant time with PRAMs resulted –
to the best of our knowledge – from translating queries into first-order formulas [Cod72]
and then into PRAM algorithms [Imm89; Imm99]. The resulting algorithms require
work O(INk) where k is the number of variables that occur in the intermediate first-order
formula. Our results show that better work bounds can be achieved for several queries,
in particular, for classes that are known to allow for efficient query evaluation in the
sequential setting.

For semi-join algebra queries we were able to obtain work-optimal algorithms (Theo-
rem 3.5.1) in the dictionary setting, their work bound matches the running time O(IN) of
the best sequential algorithm [Lei+05, Theorem 19]. However, this relies on intermediate
results to be of size at most O(IN).

For queries that do not satisfy this requirement it seems crucial to keep the size of
intermediate results in check. Using linear approximate compaction techniques for this
purpose leads inevitably to work bounds of the shape O(m1+ε) for some ε > 0, due to
the lower bounds discussed in Sections 3.1.2 and 3.4.1.

An alternative is to use non-linear approximate compaction. Hagerup [Hag92a, Un-
named Theorem] proved that an array of length n with k non-empty cells can be
compacted into an array of length k1+ε in constant time with work O(n).18 In fact, this
technique is utilized in the conference paper [KSS23] this chapter is based on, instead of
Proposition 3.1.6. Although this technique requires less work than linear compaction,
processing an intermediate result of non-linear size nullifies this advantage.19 More
importantly, however, the (non-linear) compaction technique of Hagerup is not order-
preserving. Of course, it can still be utilized to compact the final query result, if it is not
already compact. In particular, this applies to the results of semi-join algebra queries:
Unlike Proposition 3.1.6, non-linear compaction does not increase the required work in
the dictionary setting, while compacting the result array at least somewhat.

Overall, our impression is that O(1)-time parallel algorithms for query evaluation
should be considered work-efficient for a query language, if they require work O(T 1+ε),
for every ε > 0, where T is the best sequential time of an evaluation algorithm. Of course,
it would be nice if this impression could be substantiated by lower bound results which
are independent of the representation of (intermediate) results. But obtaining such lower
bounds seems to be quite challenging.

Let us mention two closely related articles on parallel query evaluation. Recently, Wang
and Yi [WY22] studied query evaluation by circuits. In particular, they also presented
a parallel version of the Yannakakis algorithm. However, the depth of the circuits is
polylogarithmic, and hence they do not correspond to O(1)-time parallel algorithms.
18We note that this corresponds to choosing λ = nε in Corollary 3.1.5, and thus does not contradict the

lower bound, since λ is not a constant.
19In our experience, it also results in more technical complexity analyses.

Page 75

Chapter 3 I Work-Efficient Query Evaluation with PRAMs

Denninghoff and Vianu [DV91] proposed database method schemas as model for studying
parallel query evaluation. While they are defined for object-oriented databases they can
also be applied to relational databases. However, although they consider constant-time
parallel evaluation, they do not study the work of O(1)-time parallel algorithms. Notably,
they prove that PRAMs and database method schemas can simulate each other within a
logarithmic time factor under some (reasonable) assumptions [DV91, Section 5].

Dynamic Complexity. Our study of work-efficient O(1)-time parallel algorithms for
evaluating queries was actually motivated by recent developments in the area of dynamic
complexity theory within the DynFO-framework introduced by Patnaik and Immerman
[PI97] and, similarly, by Dong and Su [DS95].

In this framework the database is subject to change. For instance, facts may be added
or removed. It is then natural to ask whether a previously computed query result can
be updated accordingly efficiently – and thus effectively be maintained. In this context
efficiency usually refers to O(1)-time parallel algorithms.20 Since queries can even be
reevaluated in constant time, the research focused on queries beyond the expressiveness
of the relational algebra, for instance reachability queries [Dat+18]. For more details we
refer to the survey of Schwentick et al. [SVZ20].

Recently, Schmidt et al. [Sch+21] started to investigate the work required by algorithms
for maintaining query results in this framework [cf., also SS23; SST23]. In this case it
then becomes meaningful to consider queries of the relational algebra.

To this end, the research presented in this chapter is meant to lay a foundation, by
studying the work required for evaluation queries of the relational algebra in the static,
i.e. “non-dynamic”, setting.

Comparison-Based Sorting. Our algorithms for the ordered setting all require that at
least one of the input array is suitably ordered. For the query evaluation algorithms in
Section 3.6.2, it is even required that, for all relations R and all attributes X of R, an
{X}-ordered array representing R is available.

These requirements could be lifted, if we had an implementation for Sortλ in the
ordered setting. Since, in this setting, the domain values cannot be directly accessed but
only compared using the operations EqualR,S and LessThanR,S , such an implementation
boils down to an algorithm for comparison-based padded sorting. To the best of our
knowledge it is unknown whether there is such an algorithm for PRAMs. For details on
that matter we refer to the discussion of Chong and Ramos [CR98, Section 1]. We point
out, however, that comparison-based padded sorting in constant time is possible using a
randomized PRAM with work and space O(n1+ε) [HR92, Corollary 3.5]. This matches a
known lower bound [AV87, Corollary 1]. We therefore do not expect a O(1)-time parallel
algorithm for comparison-based padded sorting to yield better work and space bounds
for query evaluation in the ordered setting.

20In the literature, algorithms in this setting are often represented by first-order formulas. But they can
be translated into O(1)-time parallel algorithms for PRAMs [Imm89; Imm99].

Page 76

I Discussion and Related Work

We emphasize that translating into the dictionary setting using the procedure for
the general setting and then applying Sortλ does not yield a sorting algorithm for the
original values. Instead, merely the keys assigned to the domain values by the translation
are sorted.

Data Structures. As mentioned in Section 3.2 we chose ordered arrays for convenience.
In the sequential setting, various kinds of index structures are utilized instead.

One example are index arrays. An index array IR,X for a relation R and a sequence X
of attributes of R is an array whose cells contain each number from [1, |R|] exactly once
such that, for all indices i, j of IR,X with i < j, the IR,X [i]-th tuple is smaller than the
IR,X [j]-th tuple of R w.r.t. the lexicographical order induced by X , if both cells are not
empty. Of course, instead of numbers in [1, |R|] an index array may also refer to the
indices of an array representing R. It is straightforward to derive an ordered array from
an index array: The content of a cell IR,X [i] is simply replaced by the IR,X [j]-th tuple
of R.

In the dictionary setting they can also be computed work-efficiently in constant time.
The algorithm simply invokes Sortλ, and replaces in the output array each tuple with
its index in the input array R. Recall that the index for R can be obtained in constant
time by a single processor thanks to the pointers guaranteed by Sortλ.

It is also not hard to see that other operations like Compactλ can carry over index
arrays for their input array(s) to the output array.

Another alternative are search trees. For instance, a B-tree with page size O(nε) allows
for single tuple insertions and lookups in constant time with O(nε) work [BM72]. However,
inserting multiple tuples in parallel will probably require some kind of scheduling.

Lastly, let us point out that the predecessor and successor pointers established by
Proposition 3.3.4 effectively yield a doubly linked list. Thus, a query result could also be
represented by such a list. In particular, as usually expected from sequential algorithms,
it allows for (trivial) constant-delay enumeration [BGS20].

Page 77

Chapter 4

Distributed Evaluation of Datalog

In this chapter we study the parallel-correctness and the parallel-boundedness problem
for Datalog queries in the MPC model. Recall that we will use the term server rather
than processor, to emphasize the distributed nature of this setting.

Let us emphasize that, in difference to Chapter 3 this chapter is concerned with static
analysis problems. In particular, it is no longer justifiable that the database schema has
a fixed arity.

Outline. We will proceed as follows. In Section 4.1 we will present preliminaries on
distributed databases, formalize the setting, and present our MPC-based framework to
reason about distributed evaluation of Datalog queries. This includes, in particular, the
introduction of the concrete formalisms we employ to specify hash-based distribution
and constraint-based communication policies.

For these kinds of policies, we will study the parallel-correctness and the parallel-
boundedness problems in Section 4.2 and Section 4.4, respectively. In between, in
Section 4.3, we revisit the decision procedure for the containment problem for frontier-
guarded Datalog queries of Bourhis et al. [BKR15a]. In a sense Section 4.3 will conclude
our study of parallel-correctness, because our upper bound results for parallel-correctness
in Section 4.2 rely on a fine graded complexity analysis of this decision procedure.
Moreover, we will build upon it in Section 4.4 to obtain our upper bound results for
parallel-boundedness. Finally, we will discuss related work in Section 4.5.

Although it is technically not a part of this chapter, let us point out that we briefly
present an alternative to constraint-based communication policies – namely hash-based
communication policies – in Appendix B.

Publication and Contributions. This chapter is based on a conference paper [Nev+19]
which I co-authored with my advisor, Prof. Dr Thomas Schwentick, as well as Prof.
Dr Frank Neven and Dr Brecht Vandevoort from the Hasselt University, Belgium. In
difference to this chapter, this paper also contains results on parallel-correctness with
respect to hash-based communication policies and in the “locally restrained setting”.
Results for hash-based communication policies are presented in Appendix B, though, and
the locally restrained setting is briefly discussed in Section 4.5.

My main contributions to this paper were the parallel-correctness results for hash-
based distribution policies and constraint-based communication policies presented here in
Sections 4.2.2 to 4.2.4, the complexity analysis of the containment problem (Section 4.3),

Page 79

Chapter 4 I Distributed Evaluation of Datalog

and the results on parallel-boundedness (Section 4.4). The undecidability result presented
in Section 4.2.1, the simulation of non-transitive (Section 4.2.5), and locally restrained
settings within our framework, and the results on hash-based policies (for communication
and distribution) were mainly contributed by my co-authors. It should be noted that the
proof ideas for our 2ExpTime-completeness results for parallel-correctness are all similar
and the proof for hash-based communication policies, obtained by Dr Brecht Vandevoort,
is the original. The contents of Section 4.1 were derived in an iterative process to which
all have contributed equally.

The reason for presenting also (most of the) main contributions of my co-authors in this
chapter (and in Appendix B) is twofold. Firstly, it results in a coherent representation.
In some cases results of my co-authors are even strict requirements for my own (this is
particularly true for results on hash-based distribution policies). The other motivation is
the publication of full proofs for the results of the conference paper. To better distinguish
the main contributions of my co-authors, they are marked with a star (e.g. Definition?,
Theorem?, etc.) throughout this chapter.

I reworked the proofs of all results, based on (mostly) unpublished proof (sketches).
Notably, for the results in Section 4.2.5, I opted for a slightly different definition of the
semantics in the non-transitive setting (Definition 4.2.30) and more general constructions
for the proofs of Theorem 4.2.31 and Theorem 4.2.33, which allow for a “smoother” integra-
tion into our framework. The 2ExpTime-hardness lower bound stated in Theorem 4.2.31,
the main result of Section 4.2.2 (Proposition 4.2.16), and the 2ExpTime-completeness
result for the parallel-boundedness problem in the non-transitive communication setting
are new, unpublished results.

4.1 Setting and Framework

We adapt the Massively Parallel Communication (MPC) model [BKS17a] and define a
generic framework that allows us to reason about parallel evaluation of Datalog queries
in distributed settings. We start with some basic terminology, namely networks of servers
and distributed databases. Then we will introduce the core of our framework: Policy
pairs (δ, γ), which consist of a (partial) specification of the initial data distribution δ and
a communication policy γ over the same network. In Section 4.1.1 we will then formalize
the distributed evaluation of Datalog queries in our framework. Lastly, we will introduce
our concrete formalisms to specify distribution policies and communication policies in
Sections 4.1.2 and 4.1.3, respectively. For a comparison with the framework of Ketsman
et al. [KAK20] we refer to Section 4.5.

Networks and Distributed Databases. We model a network of database servers as a
finite, non-empty set N of servers. Following Geck et al. [Gec+16] we take a “local-
as-view” approach for the representation of distributed databases and keep track of all
facts via a “global” database, in addition to “local”, per server databases. Formally, a
distributed database D = (G, I) over a network N and a schema S consists of a database G

Page 80

I Setting and Framework

over S and a family I = (Ik)k∈N of databases over S, one for each server of N , such that⋃
k∈N

Ik = G.

We call G the global database of D; and the Ik are called local databases. We write
R(ā)@k for a fact R(ā) in Ik. Particularly, R(ā)@k ∈ D is synonymous with R(ā) ∈ Ik.
For a fact R(ā)@k we also say that R(ā) resides on server k. We emphasize that we do
not allow facts to be “skipped”. That is, every fact in G should occur somewhere as a
local fact, i.e. in at least one local database. In the literature this is not always required
and referred to as a complete distributed database [cf., e.g., Gec19, Section 2.2.1]. For
two distributed databases D = (G, I) and D′ = (G′, I ′) over the same network N we
write D ⊆ D′, if G ⊆ G′ and Ik ⊆ I ′k hold, for every k ∈ N .

Policies. As mentioned before, the core of our framework are policy pairs (δ, γ) consisting
of a distribution policy δ and a communication policy γ over the same network.

Before we define these terms, let us emphasize that we require distribution policies
to describe only the distribution of extensional facts and communication policies to be
restricted to intensional facts.

In general, a distribution policy δ over a network N and a schema S is a function
mapping databases G over S to distributed databases D = (G, I) over N and S. A
distributed databaseD = (G, I) overN and S complies with a distribution policy δ overN
and S if δ(G) ⊆ D holds. Thus, we allow facts to reside on more servers than required
by δ. This is because we do not understand δ as a specification of a communication round
but rather as a constraint that is met at the beginning of the evaluation of a Datalog
query. However, by definition the global database of the distributed database δ(G) is
precisely G. In other words, δ cannot postulate the existence of facts not in G. We define
the specific (hash-based) distribution policies used in this thesis below in Section 4.1.2.

For a networkN , and a schema S, a communicated fact R(ā)@k.` overN and S consists
of an S-fact R(ā) and two servers k and ` from N . It has the intended meaning that R(ā)
is communicated from k to `. A communication policy γ over N and S is a monotone
mapping that assigns, to every distributed database D over N and a schema S ′ ⊇ S, a set
of communicated facts R(ā)@k . ` over N and S with R(ā)@k ∈ D. Here, monotonicity
means that γ(D) ⊆ γ(D′) holds whenever D ⊆ D′ does. The specific (constraint-based)
communication policies studied in this thesis are defined in Section 4.1.3. Another
formalism to specify communication policies in our framework, resulting in hash-based
communication policies, is defined in Appendix B.

As in Chapter 3, we assume a fixed database schema S for the underlying database
and queries throughout the remainder of this chapter. Moreover, we always require
that the schemas of Datalog queries, distribution, and communication policies “match”.
That is, we consider a Datalog query Q = (P,Out) over S only in combination with
distribution policies over S – recall that edb(P) ⊆ S – and communication policies over
the schema idb(P).

Page 81

Chapter 4 I Distributed Evaluation of Datalog

4.1.1 Distributed Evaluation of Datalog Programs
A communication policy γ induces a distributed multi-round evaluation strategy for a
Datalog query Q = (P,Out) over a distributed database D = (G, I) as follows.1 Each
round consists of a computation and a communication phase. By Di = (Gi, Ii) we denote
the distributed database after the communication phase of the i-th round. The initial
distributed database D0 is just D. Then, for i ≥ 1, the following phases are performed.

I Computation phase: Every server computes the local (least) fixpoint of P over its
local database. That is, the intermediate result after this phase is D′ = (G′,J) where
G′ =

⋃
k∈N Jk and, for each k ∈ N , Jk = P (Ii−1

k).

I Communication phase: For each communicated fact R(ā)@k . ` ∈ γ(D′), the fact R(ā)
is copied from k to `. That is, for each ` ∈ N ,

Ii` = J` ∪
{
R(ā) | R(ā)@k . ` ∈ γ(D′)

}
.

Then, Di = (Gi, Ii) where Gi =
⋃

k∈N Iik.

The distributed evaluation terminates when a global fixpoint is reached, i.e. Dr = Dr+1

holds for some r ≥ 0. We denote this fixpoint by [P, γ](D), and note that it always
exists, because Datalog queries are monotone and communication policies only copy facts.
That is, [P, γ](D) = Dr where r is the smallest integer such that Dr = Dr+1 holds. The
parallel query result [Q, γ](D) of Q over D according to γ, is the union of all output facts
occurring in [P, γ](D). More precisely,

[Q, γ](D) =
{

Out(ā) | Out(ā)@k ∈ [P, γ](D) for some server k
}
.

We note that our setting differs slightly from the one of Ketsman et al. [KAK20]. We
provide more details in Section 4.5.

Example 4.1.1. Consider the monadic Datalog query Q = (P,Out) and the database D
from Example 2.4.6 which we briefly recall here for convenience. The query Q asks for
all nodes reachable from a starting node by a path containing only red as well as a path
containing only sea blue edges. Its Datalog program P consists of the following rules.

R(x)← Start(x) S(x)← Start(x) Out(x)← R(x), S(x)

R(x)← R(y), Er(y, x) S(x)← S(y), Es(y, x)

The database D is defined as

D =
{

Start(1), Er(1, 3), Er(1, 4), Es(1, 2), Es(2, 3)
}
.

Let D = (D, I) be the distributed database over the network N = [1, 4] with the local
databases

I1 =
{

Start(1), Er(1, 3), Er(1, 4)
}
, I2 =

{
Start(1), Es(1, 2), Es(2, 3)

}
, and I3 = I4 = ∅.

1We recall that we do not view a distribution policy as a specification of a communication round.

Page 82

I Setting and Framework

That is, Start-facts are duplicated over servers 1 and 2, while red edges reside on server 1
and sea blue edges on server 2.

Let γ be the communication policy that maps a distributed database D′ = (G′, I ′) to
the set of communicated facts{

R(a)@1 . f(a) | R(a) ∈ I ′1
}
∪
{
S(a)@2 . f(a) | S(a) ∈ I ′2

}
where f is the function mapping each value a to ((a− 1) mod 4) + 1. That is, when a
fact R(a) can be derived on server 1, it is sent to server f(a). A fact S(a) derived on
server 2 is also sent to server f(a).

The distributed evaluation then proceeds as follows. Rounds are depicted from left to
right and underlined facts are received through communication.

I11 = I1 ∪ {R(1), R(3), R(4), S(1)}, I21 = I11 ∪ {Out(1)}, I31 = I21 ,

I12 = I2 ∪ {S(1), S(2), S(3)}, I22 = I12 , I32 = I22 ,

I13 = I3 ∪ {R(3), S(3)}, I23 = I13 ∪ {Out(3)}, I33 = I23 ,

I14 = I4 ∪ {R(4)} I24 = I14 I34 = I24

A global fixpoint is reached after the third round. The parallel query result is [Q, γ](D) =
{Out(1),Out(3)}. Thus, for this example, the distributed evaluation according to γ yields
the same result as the classical evaluation of Q on D, i.e. we have [Q, γ](D) = Q(D), cf.
Example 2.4.6. C

We next point out a crucial truth about (our) distributed evaluation strategies. Namely,
that the parallel query results of two equivalent Datalog queries Q1 and Q2 are not
necessarily the same. In other words, the notion of equivalence does not carry over from the
sequential to our distributed setting. This affects, in particular, the relationship between
the query classes MDL and FGDL of monadic and frontier-guarded Datalog queries,
respectively. For every monadic Datalog query an equivalent frontier-guarded Datalog
query can be obtained by adding suitable guard atoms to every rule, cf. Lemma 2.4.9.
The next example illustrates that such a transformation can change the parallel query
result. Therefore, we cannot simply rely on this transformation to deduce results for
monadic Datalog queries from corresponding results for frontier-guarded Datalog queries
(or vice versa, for lower bounds). In fact, we will see in Section 4.2.5 that the relationship
of MDL and FGDL in a distributed setting can be drastically different from the classical
setting.2

Example 4.1.2. Consider the monadic Datalog query Q, the distributed database D,
and the communication policy γ from Example 4.1.1. The rule Out(x)← R(x), S(x) is
not frontier-guarded. Replacing it with the following set of frontier-guarded rules yields
a frontier-guarded Datalog query Q′ = (P ′,Out).

Out(x)← R(x), S(x),Start(x) Out(x)← R(x), S(x), Es(x, z)

Out(x)← R(x), S(x), Er(x, z) Out(x)← R(x), S(x), Es(z, x)

Out(x)← R(x), S(x), Er(z, x)

2For spoilers, see Theorem 4.2.31 and Theorem 4.2.33.

Page 83

Chapter 4 I Distributed Evaluation of Datalog

Then we have Q′ ≡ Q because, for every fact Out(ā) that can be derived by the original
rule Out(x) ← R(x), S(x), the domain value a has to originate from some extensional
fact.

But [Q′, γ](D) 6= [Q, γ](D), since Out(3) ∈ [Q, γ](D) \ [Q′, γ](D). Indeed, as outlined
in Example 4.1.1, the fact Out(3) can be derived on server 3 (and no other server) in
the distributed evaluation of Q. This is not possible in the distributed evaluation of Q′

because no extensional facts reside on server 3. C

4.1.2 Hash-Based Distribution Policies

As mentioned before, we only consider hash-based distribution policies for the specification
of initial distributions. Such a distribution policy is composed of two components: A
tuple H = (h1, . . . , hm) of hash functions over a network N and a hash policy scheme
which describes how these hash functions are applied. We will define these terms next.

We define a hash function h over a network N as a function h : domn → 2N \ {∅} for
some integer n ≥ 0. The integer n is called the arity of h and is also denoted by ar(h).

A hash directive for a relation symbol R is a triple of the form (R, i, ū) where R is a
relation symbol, i ≥ 1 is an integer used to select a hash function, and ū ∈ [1, ar(R)]n
for some n ≥ 0 is a tuple of indices. A hash policy scheme Z over schema S is a finite,
non-empty set of hash directives that satisfies the following two conditions.

(a) For every R ∈ S, there is at least one hash directive for R in Z.

(b) All pairs (R, i, ū), (S, i, v̄) of hash directives from Z agree on the arity of the i-th
hash function. That is, |ū| = |v̄|.

We also refer to Condition (b) by saying that Z is consistent. The size ‖Z‖ of a hash
policy scheme Z is

∑
(R,i,ū)∈Z 1 + ‖i‖+ |ū| where ‖i‖ is the length of the binary coding

of i.
Intuitively, a hash directive (R, i, ū) stipulates that each R-fact R(ā) is hashed using

the i-th hash function. Thereby the indices ū determine which values of ā and in which
order they are “fed” into hi. More precisely, the intent is to invoke hi with arguments
ā[ū] = (au1 , . . . , aun). This is only well-defined if |ū| = ar(hi) holds, however. In the
following we will make this precise.

We say that Z is compatible with a tuple H = (h1, . . . , hm) of hash functions over a
(common) network, if i ≤ m and |ū| = ar(hi) holds for every hash directive (R, i, ū) ∈ Z.
Observe that, for every hash policy scheme Z, there are compatible tuples of hash
functions, thanks to Z being consistent (Condition (b)).

If Z compatible with a tuple H = (h1, . . . , hm) of hash functions, they induce the
distribution policy δZ,H that maps every fact R(ā) to the set of all servers k, for which there
is a hash directive (R, i, ū) ∈ Z such that k ∈ hi(ā[ū]). Let us point out that δZ,H maps
indeed every database G to a distributed database D = (G, I) with global database G,
thanks to Condition (a).

We note that δZ,H is fact-based, in the sense that it maps each fact over schema S to a
set of servers from N , independent of the other facts in a database.

Page 84

I Setting and Framework

Example 4.1.3. Consider the database

G =
{
R(1, 3), R(2, 3), R(2, 4), R(1, 6), S(3, 3), S(4, 6), S(4, 2), S(6, 6), T (3), T (6)

}
and the hash policy scheme

Z =
{
(R, 1, (2)), (S, 1, (1)), (S, 2, (1, 2)), (T, 2, (1, 1))

}
which is compatible with the tuple H = (h1, h2) where h1 and h2 are the hash functions
over the network N = [1, 3] defined by

h1(a) = {(a mod 3) + 1} and h2(a, b) = {((a+ b) mod 2) + 2, (b mod 2) + 2}

for all domain values a, b.
Then δZ,H(G) is the distributed database over N with the local databases

I1 =
{
R(1, 3), R(2, 3), R(1, 6), S(3, 3), S(4, 6), S(6, 6)

}
,

I2 =
{
R(2, 4), S(3, 3), S(4, 6), S(4, 2), S(6, 6), T (3), T (6)

}
, and

I3 =
{
S(4, 2), S(3, 3), T (3)

}
. C

A special case of hash-based distribution policies are value-independent distribution
policies [cf. KAK20, p. 975]. That is, distribution policies which specify the servers for
facts solely based on their relation symbols. In particular, if all hash directives of a
hash policy scheme Z have the form (R, i, ()), it is only compatible with tuples of hash
functions of arity 0. In that case every distribution policy δZ,H is value-independent.
Some of our lower bounds already hold for these families of distribution policies.

Example 4.1.4. Consider the network N = [1, 4] and the database

D =
{

Start(1), Er(1, 3), Er(1, 4), Es(1, 2), Es(2, 3)
}

from Example 4.1.1 and the hash policy scheme

Z =
{
(Start, 1, ()), (Start, 2, ()), (Er, 1, ()), (Es, 2, ())

}
.

Then Z compatible with any tuple H = (h1, h2) of hash functions where both h1 and h2
have arity 0. That is, both hash functions are effectively constants and δZ,H maps facts
to servers solely based on their relation symbol.

For the concrete hash functions h1 and h2 with images {1} and {2}, respectively,
δZ,H(D) coincides with the distributed database D defined in Example 4.1.1. C

4.1.3 Constraint-Based Communication Policies

In this section we introduce the constraint-based formalism to define the communication
policies which we study in this thesis. We present an alternative to this approach, namely
hash-based communication policies, in Appendix B.

Page 85

Chapter 4 I Distributed Evaluation of Datalog

We borrow the formalism of distribution constraint introduced by Geck et al. [GNS20].
It is important to note that the distribution constraints from Geck et al. [GNS20] are far
more general and targeted at specifying classes of distributions (including co-partitionings).
We defer a more detailed comparison to Section 4.5.

Distribution constraints are syntactically very similar to query rules. The major
(syntactical) difference is that they refer to so called distributed atoms instead of (classical)
atoms.

Let svar be an infinite set of server variables (disjoint from the sets var, dom, and att).
To avoid confusion we will often refer to the variables in var as data variables in this
chapter. A distributed atom A@κ consists of an atom A and a server variable κ ∈ svar.
This notation extends to sets A of atoms: A@k denotes the set {A@k | A ∈ A}. A
distribution constraint σ is a rule of the form

A1@κ1, . . . , Am@κm → B@λ.

The set of distributed atoms {A1@κ1, . . . , Am@κm} forms the body and the distributed
atom B@λ is the head of σ. We denote the body and head of σ by body(σ) and head(σ),
respectively. We further require that body(σ) contains a distributed atom of the form
A@λ when head(σ) = B@λ, that is, body(σ) contains a distributed atom with the server
variable λ of the head atom. This will ensure that communication policies cannot “create”
new servers. We define the size ‖σ‖ of a distribution constraint σ of the same form as
above as ‖B‖ + 1 +

∑m
i=1(‖Ai‖ + 1), and the size ‖Σ‖ of a finite set Σ of distribution

constraints as
∑

σ∈Σ ‖σ‖.
A distribution constraint σ is data-moving if the atom occurring in head(σ) also occurs

in a distributed atom in the body. That is, when its head equals B@λ then its body
contains a distributed atom of the form B@κ (possibly κ = λ). This will then imply that
the atom B will be sent from server κ to server λ.

A network aware valuation ϑ over a network N is a partial mapping

ϑ : var ∪ svar⇀ dom ∪N

that maps server variables to servers in N , and data variables to domain values. Given a
distributed database D = (G, I) we write ϑ(A@κ) ∈ D if ϑ(A) ∈ Iϑ(κ) holds.

Each finite set Σ of data-moving distribution constraints induces, for every network N ,
a communication policy γΣ,N as follows: For each distributed database D over N , a
communicated fact R(ā)@k . ` is in γΣ,N (D) if and only if there is a network aware
valuation ϑ and a distribution constraint σ ∈ Σ such that

ϑ(head(σ)) = R(ā)@`, R(ā)@k ∈ ϑ(body(σ)), and ϑ(body(σ)) ⊆ D

hold. Observe that γΣ,N (D) is a communication policy over the schema of all relation
symbols occurring in head atoms in Σ. Since we only consider communication policies
over idb(P), for some Datalog program P , we thus implicitly require that all head
atoms are intensional. On the other hand, we allow extensional atoms in the bodies of
distribution constraint. Contrary to our hash-based distribution policies, communication
policies induced by data-moving distribution constraints are not fact-based.

Page 86

I Parallel-Correctness

Example 4.1.5. Consider the set Σ consisting of the following two data-moving distri-
bution constraints.

R(y)@κ,Er(y, x)@λ→ R(y)@λ S(y)@κ,Es(y, x)@λ→ S(y)@λ

Intuitively, for an arbitrary network N , the induced communication policy γΣ,N sends
each fact R(b) to every server containing a matching fact Er(b, a). Analogously, S(b) is
sent to every server containing at least one fact Es(b, a). C

We conclude this section with the definition of families of policy pairs induced by
hash policy schemes and data-moving distribution constraints. Recall that a policy pair
consists of a distribution policy and a communication policy over the same network.
Let Σ be a finite set of data-moving distribution constraints and let Z be a hash policy
scheme. By F(Z,Σ) we denote the set of all policy pairs (δZ,H , γΣ,N), where H is a tuple
of hash functions over network N and Z is compatible with H. By Hash-Constraints we
denote the class of families F(Z,Σ), where Z is a hash policy scheme and Σ is a set of
data-moving distribution constraints.

4.2 Parallel-Correctness
This section is dedicated to the study of the parallel-correctness problem. We start by
formally defining parallel-correctness and the associated decision problem for Datalog
queries and (families of) arbitrary policy pairs. Our first step is then to show that, to
decide parallel-correctness, it suffices to consider certain combinations of distribution
policies and databases which yield “scattered” distributed databases. Equipped with this
insight, we study the parallel-correctness problem for the hash-based distribution policies
and constrained-based communication policies introduced in Sections 4.1.2 and 4.1.3.
More specifically, we show in Section 4.2.1 that for the fragments of monadic and
frontier-guarded Datalog queries, which both enjoy a decidable containment problem,
parallel-correctness is undecidable. Even for seemingly simple distribution policies. In the
bulk of this chapter, which entails Sections 4.2.2 to 4.2.5, we then study restrictions of our
distribution and communication policies that allow for a decidable parallel-correctness
problem for monadic and frontier-guarded Datalog queries.

As mentioned, we start by formally defining parallel-correctness for Datalog queries
and policy pairs.

Definition 4.2.1 (Parallel-Correctness). A Datalog query Q is parallel-correct w.r.t. a
policy pair (δ, γ) if [Q, γ](D) = Q(G) holds for every distributed database D = (G, I)
that complies with δ.

A Datalog query Q is parallel-correct w.r.t. a family F of policy pairs if it is parallel-
correct w.r.t. every policy pair in F .

Example 4.2.2. Let Σ be the set of data-moving distribution constraints consisting of
the rules

R(y)@κ,Er(y, x)@λ→ R(y)@λ and S(y)@κ,Es(y, x)@λ→ S(y)@λ

Page 87

Chapter 4 I Distributed Evaluation of Datalog

from Example 4.1.5. Furthermore, consider the hash policy scheme

Z =
{
(Start, 1, (1)), (Er, 1, (2)), (Es, 1, (2))

}
,

and let the Datalog query Q = (P,Out) be as in Examples 2.4.6 and 4.1.1. Then Q is
parallel-correct w.r.t. every policy pair (δZ,H , γΣ,N) where N is a network and H is a
tuple consisting of a single unary hash function h over N with which Z is compatible. In
other words, Q is parallel-correct w.r.t. F(Z,Σ).

Notice in particular that Σ does not have a distribution constraint enforcing facts
R(a) and S(a) to end up on the same server, as this already follows from Z and Q.
Indeed, every derivation of a fact R(a) is witnessed by either a fact Start(a) or some fact
Er(b, a), and every derivation of a fact S(a) is witnessed by some fact Start(a) or some
fact Es(b, a). By construction of Z, these facts always reside on the set of servers h(a).
As a result, every R-fact and its corresponding S-fact are always derived on the same set
of servers h(a), if at all. C

For classes Q of Datalog queries, and classes F of families of policy pairs, we write
PC(Q, F) for the parallel-correctness problem which is defined as follows.

PC(Q, F)

Given: Datalog query Q ∈ Q and family F ∈ F of policy pairs

Question: Is Q parallel-correct with respect to F?

Since Datalog queries are monotone and neither distribution policies nor communication
policies can “create” new facts, our distributed evaluation strategies are sound.

Observation 4.2.3. For every Datalog query Q, and communication policy γ over a
network N the distributed evaluation strategy for Q induced by γ is sound. That is,
[Q, γ](D) ⊆ Q(G) holds for all distributed databases D = (G, I) over N .

Thanks to this observation, parallel-correctness can be decided by testing parallel-
completeness: It suffices to test whether Q(G) ⊆ [Q, γ](D) holds for all distributed
databases D = (G, I). In the following we show that for parallel-completeness it is, in
turn, even enough to consider distributed databases where facts are maximally scattered
across all servers. We make the notion of scatteredness precise for our hash-based
distribution policies next.

Definition 4.2.4. A tuple H = (h1, . . . , hm) of hash functions scatters a global database
G if the following two conditions hold.

(a) hi(ā) ∩ hj(b̄) = ∅, for all i, j ∈ [1,m] with i 6= j, and all tuples ā ∈ adom(G)ar(hi),
b̄ ∈ adom(G)ar(hj); and

(b) hi(ā) ∩ hi(b̄) = ∅, for all i ∈ [1,m], and tuples ā, b̄ ∈ adom(G)ar(hi) with ā 6= b̄.

A distribution policy δZ,H scatters G if H scatters G.

Page 88

I Parallel-Correctness

Thus, if δZ,H scatters a global database G, then two facts R(ā) and S(b̄) are in the
same local database of δZ,H(G) if and only if there is some i and triples (R, i, ū) and
(S, i, v̄) such that ā[ū] = b̄[v̄].

Example 4.2.5. Consider the family (Gm)m≥0 of global databases where, for every
m ≥ 0,

Gm =
{
R(i) | i ∈ [0,m]

}
∪
{
S(i) | i ∈ [0,m]

}
∪
{
E(i− 1, i) | i ∈ [1,m]

}
.

Further, let Z be the hash policy scheme

Z =
{
(R, 1, 1), (S, 1, 1), (E, 2, ())

}
.

The tuple Hm = (h1, h2) of hash functions over the network Nm = [0,m + 1] with
h1(i) = {i} for all i ∈ [0,m], and h2(()) = m + 1, scatters Gm. The distributed
database Dm = δZ,Hm(Gm) consists of the global database Gm and the local databases
Ii =

{
R(i), S(i)

}
for all i ∈ [0,m] and Im+1 =

{
E(i− 1, i) | i ∈ [1,m]

}
.

The tuple H ′
m = (h′1, h

′
2) over the same network Nm with h1(i) = {i, i + 1} for

all i ∈ [0,m], and h2(()) = m + 1, does not scatter Gm. However, note that the
distributed database D′

m = δZ,H′
m
(Gm) with the local databases I ′0 =

{
R(0), S(0)

}
,

I ′i =
{
R(i− 1), S(i− 1), R(i), S(i)

}
for all i ∈ [1,m], and I ′m+1 =

{
R(m), S(m)

}
∪ Im+1

complies with the distribution policy δZ,H that scatters Gm. C

We are now ready to state a characterization of parallel-correctness in terms of scattered
databases which we will exploit to prove our main results in this chapter.

Lemma 4.2.6. Let Q be a Datalog query, Z be a hash policy scheme, and Σ be a set
of data-moving distribution constraints. Then Q is parallel-correct w.r.t. F(Z,Σ) if and
only if, for all global databases G, there is a policy pair (δ, γ) ∈ F(Z,Σ) such that δ
scatters G and [Q, γ](δ(G)) ⊇ Q(G) holds.

To prove Lemma 4.2.6 we require three ingredients. The first one is simply that every
database can be scattered.

Lemma? 4.2.7. For every database G and hash policy scheme Z, there is a tuple H of
hash functions compatible with Z such that δZ,H scatters G.

Proof. Let m be the maximum among all integers that occur in the second component
of any hash directive in Z, and n be the maximal arity among all tuples ū occurring in
the third component of any hash directive in Z. That is, for every triple (R, i, ū) ∈ Z we
have i ≤ m and |ū| ≤ n.

We fix the network N = {(i, ā) | i ∈ [1,m], ā ∈ adom(G)j , j ∈ [0, n]}. Furthermore, we
define, for every i ≤ m, a hash function hi of arity ar(hi) = |ū| by setting hi(ā) = {(i, ā)}
for every ā ∈ adom(G)ar(hi) if there is a triple (R, i, ū) ∈ Z. Note that hi is well-defined
due to Z being consistent. If, for some i, there is no matching triple, hi does not play any
role, and we can just define hi as above but with arity 1. The tuple H = (h1, . . . , hm) is
then compatible with Z.

It is easy to see that hi(ā) ∩ hj(b̄) 6= ∅ holds if and only if i = j and ā = b̄. Thus, δZ,H
scatters G. �

Page 89

Chapter 4 I Distributed Evaluation of Datalog

While Lemma 4.2.7 states that every database G is scattered by some distribution
policy δZ,H , it makes no guarantees regarding the size of the underlying network. In fact,
it is evident that the size of the network depends not only on Z but also on the size of G,
in general.

Example 4.2.8. Consider the hash policy scheme Z = {(R, 1, 1)} and the family (Gi)i≥1

of databases with Gi = {R(a) | a ∈ [1, i]} for all i ≥ 1. Every hash function h1 that
scatters Gi is defined over a network with at least i servers. Otherwise, h1 would map
two values a1, a2, a1 6= a2 to a common server by the pigeon-hole principle; violating
Definition 4.2.4 (b). C

This observation leads to the second ingredient: We need a way to relate distributed
databases over different networks. In particular, scattered databases with distributed
databases over arbitrary networks.

For distributed databases D = (G, I) and D′ = (G′, I ′) over networks N and N ′,
respectively, we say that D′ covers D, if for each server k ∈ N , there is a server ` ∈ N ′,
such that Ik ⊆ I ′`.

Example 4.2.9. Let D = (G, I) be the distributed database over the network {1, 2, 3}
with the local databases

I1 =
{
R(1, 2), R(5, 2), E(2, 1)

}
,

I2 =
{
E(2, 1), S(3, 7)

}
, and

I3 =
{
S(1, 5), R(1, 5)

}
;

and D′ = (G′,J) be the distributed database over the network {a, b, c, d} with the local
databases

Ja =
{
R(1, 2), R(5, 2), E(2, 1), S(3, 7)

}
,

Jb =
{
S(1, 5), R(1, 5), E(1, 5)

}
,

Jc =
{
E(2, 1)

}
, and

Jd =
{
S(1, 5), R(1, 5)

}
.

We have that D′ covers D because I1 ⊆ Ja, I2 ⊆ Ja, and I3 ⊆ Jb (or, alternatively,
I3 ⊆ Jd). Moreover, D is also covered by the distributed database D′′ over the network
{a, b} which consists of the local databases Ja and Jb as given above. C

Let us note that for two distributed databases D,D′ over the same network with D ⊆ D′

we always have that D′ covers D. However, the reserve is not true. For instance, if we
identify the servers a, b in Example 4.2.9 with 1 and 2, respectively, then the distributed
database D′′ covers D but D ⊆ D′′ does not hold.

Combined with Lemma 4.2.7, the next lemma states that every database that complies
with some hash-based distribution policy covers a scattered database.

Lemma? 4.2.10. Let Z be a hash policy scheme, D′ = (G′, I ′) be a distributed database,
G ⊆ G′, and H,H ′ be tuples of hash functions compatible with Z. If δZ,H scatters G
and D′ complies with δZ,H′ then D′ covers δZ,H(G).

Page 90

I Parallel-Correctness

Proof. Let H = (h1, . . . , hm), H ′ = (h′1, . . . , h
′
m), and Ik be a local database of δZ,H(G).

We have to show that Ik ⊆ I ′` holds for some local database I ′` of D′. If Ik contains only
one (or no) fact, this is holds trivially, because G ⊆ G′ and every fact resides on some
server. Thus, we can assume that Ik contains at least two facts.

Since δZ,H scatters G there is an i and a tuple ā of domain values such that, for every
fact R(b̄) ∈ Ik, there is a hash directive (R, i, ū) ∈ Z with b̄[ū] = ā. Otherwise, there
would be two tuples ā1, ā2 and i, j such that k ∈ hi(ā1) ∩ hj(ā2) with i = j or ā1 = ā2; a
contradiction to G being scattered by δZ,H .

We can conclude that every fact in Ik also resides on all servers in h′i(ā) because D′

complies with δZ,H′ and G ⊆ G′. Hence, we have Ik ⊆ I ′` for any ` ∈ h′i(ā). �

Finally, the last ingredient is a monotonicity condition on our distributed evaluation
strategies.

Lemma 4.2.11. Let Q = (P,Out) be a Datalog query, and Σ be a set of data-moving
distribution constraints. For all distributed databases D and E over networks N and N ′,
respectively, such that E covers D we have that

[Q, γΣ,N](D) ⊆ [Q, γΣ,N ′](E).

Furthermore, if a fact R(ā) is derived in round r in the distributed evaluation over D,
it is derived after at most r rounds in the evaluation over E.

Proof. Let D and E be distributed databases over networks N and N ′, respectively, such
that E covers D. For each r ≥ 0, we denote by Dr and Er the distributed databases after
the r-th communication phase of the distributed evaluation over D and E , respectively.
We show by induction on the number r of rounds that, for each r ≥ 0, Er covers Dr. The
statement of the lemma then follows immediately.

Initially, E0 = E covers D0 = D by presumption.
For the induction step, we assume that Er−1 covers Dr−1. Let Ir−1 and J r−1 denote

the families of local databases of Dr−1 and Er−1, respectively. Then there is a mapping
s : N → N ′ such that, for every server k ∈ N , we have Ir−1

k ⊆ Jr−1
s(k) . But then we also

have
P (Ir−1

k) ⊆ P (Jr−1
s(k)),

for all servers k, because Datalog queries (and Datalog programs) are monotone.3 In
other words, E ′ covers D′ where D′ and E ′ are the distributed databases obtained from D
and E , respectively, after the r-th computation phase.

For the communication phase, it suffices to show that R(ā)@k . ` ∈ γΣ,N (D′) implies
R(ā)@s(k) . s(`) ∈ γΣ,N ′(E ′), for every communicated fact R(ā)@k . `. For this purpose,
let R(ā)@k . ` be a communicated fact in γΣ,N (D′). Then there is distribution constraint
σ ∈ Σ and a network aware valuation ϑ such that ϑ(body(σ)) ⊆ D′, ϑ(head(σ)) = R(ā)@`,
and R(ā)@k ∈ ϑ(body(σ)) hold. But then we also have ϑ′(body(σ)) ⊆ E ′, ϑ′(head(σ)) =
R(ā)@s(`), and R(ā)@s(k) ∈ ϑ′(body(σ)) for ϑ′ = s ◦ ϑ. Here ϑ′(body(σ)) ⊆ E ′ holds

3We note that s is, in general, neither injective nor surjective.

Page 91

Chapter 4 I Distributed Evaluation of Datalog

because s witnesses that E ′ covers D′. Thus, R(ā)@s(k) . s(`) ∈ γΣ,N ′(E ′), and, overall,
we can conclude that Er covers Dr. �

We note that Lemma 4.2.11 also entails, as special case, a formal proof for Obser-
vation 4.2.3 for constraint-based communication policies. Indeed, every D = (G, I) is
covered by the distributed database D′ = (G, (I1)) with I1 = G over the network {1}
consisting of a single server. Since the communication phases in the distributed evaluation
over D′ cannot change the only local database, we have [Q, γΣ,{1}](D′) = Q(G). Thus,
Lemma 4.2.11 implies [Q, γΣ,N](D) ⊆ Q(G).

Further on, we are now ready to prove Lemma 4.2.6 by combining our ingredients
stated as Lemma 4.2.7, Lemma 4.2.10, and Lemma 4.2.11.

Proof of Lemma 4.2.6. For the only-if direction suppose that Q is parallel-correct
w.r.t. F(Z,Σ) and let G be an arbitrary global database. Thanks to Lemma 4.2.7 there
is a tuple H of hash functions over a network N such that δZ,H scatters G. Since Q is
parallel-correct w.r.t. F(Z,Σ) we can conclude that [Q, γΣ,N](δZ,H(G)) ⊇ Q(G) holds.

For the converse, suppose that for every database G there is policy pair (δ, γ) such that δ
scatters G and [Q, γ](δ(G)) ⊇ Q(G) holds. We have to show that Q is parallel-correct
w.r.t. F(Z,Σ).

Let (δ′, γ′) ∈ F(Z,Σ) and let D = (G, I) be an arbitrary distributed database that
complies with δ′. Thanks to Observation 4.2.3 we have [Q, γ′](D) ⊆ Q(G). Hence, it
suffices to establish parallel-completeness, by showing [Q, γ′](D) ⊇ Q(G).

By assumption there is a policy pair (δ, γ) ∈ F(Z,Σ) such that δ scatters G and
[Q, γ](δ(G)) ⊇ Q(G). Thanks to Lemma 4.2.10, D covers δ(G) because δ scatters G.
Therefore, we have [Q, γ](δ(G)) ⊆ [Q, γ′](D) thanks to Lemma 4.2.11.

Altogether, we get [Q, γ′](D) ⊇ [Q, γ](δ(G)) ⊇ Q(G). �

4.2.1 Undecidability for Hash-Constraints

The following result sharpens the undecidability result for parallel-correctness for Datalog
from Ketsman et al. [KAK20, Theorem 1], since it states undecidability for fragments of
Datalog for which the containment problem is decidable.

Theorem? 4.2.12. PC(FGDL, Hash-Constraints) and PC(MDL, Hash-Constraints) are
undecidable.

The proof is by reduction from the complement of the halting problem for deterministic
Minsky machines MinskyHalt that is well-known to be undecidable. We refer to
Section 2.5.1 for references and the precise model we use.

Proof of Theorem 4.2.12. Let M be a Minsky machine with states s0, . . . , sn for some
n ≥ 1. Without loss of generality, we assume that s0 is the initial state and sn is the
designated halting state. We construct a Datalog query Q, a hash policy scheme Z,
and a set Σ of data-moving distribution constraints such that Q is parallel-correct w.r.t.
F(Z,Σ) if and only if M does not halt.

Page 92

I Parallel-Correctness

Since the Datalog query Q which we define is monadic as well as frontier-guarded, our
construction yields reductions from the complement of the halting problem for Minsky
machines to the parallel-correctness problem for monadic Datalog queries and families
of policy pairs in Hash-Constraints as well as to the parallel-correctness problem for
frontier-guarded Datalog queries and families of policy pairs in Hash-Constraints.

The Idea. Assume a network with ` servers. The fundamental idea is to assign the
i-th configuration of the computation of M to server i. Each server can then derive a
distinguished fact – except if the state of its configuration is the halting state.

For this purpose, it is crucial that distribution constraints can “address” the “i-th
server”. With this in mind, we fix the underlying database schema: It consists of a
binary relation symbol E, two unary relation symbols N and I, and one nullary relation
symbol K. Our intention is for N to be a (continuous) set of numbers, i.e. [0, `] for some
` > 0, and E to be the (direct) successor relation over N . The intention for I is to
identify the server to which the initial configuration gets assigned, and for K to identify
a special auxiliary server whose purpose we will explain later.

More concretely, we are particularly interested in distributed databases D` (for ` ≥ 0),
with global database

G` =
{
K(), I(0)

}
∪
{
N(i) | i ∈ [0, `]

}
∪
{
E(i− 1, i) | i ∈ [1, `]

}
and which are distributed as follows.

I The network N` is [0, `] ∪ {copy} where copy is a special auxiliary server we refer to
as the copy server ;

I the local database of the copy server copy is{
K(), I(0)

}
∪
{
E(i, i+ 1) | i ∈ [0, `− 1]

}
;

I the local database of server 0 contains the facts I(0) and N(0); and,

I for i ∈ [1, `], the local database of server i is {N(i)}.

Considering the local databases, each fact N(i) resides on server i. Thus, they effectively
assign a number to each server that is determined by the successor relation defined by E.
We note that this not only allows us to identify the i-th server but also to increase and
decrease counters.

Configurations will be represented using intensional relations computed by the Datalog
program. More precisely, a configuration (sj , c1, c2) will be represented by three facts Sj(i),
C1(c1), and C2(c2) residing on server i. We emphasize that, to assign the configuration to
server i, it is not only required that Sj(i), C1(c1), and C2(c2) reside on server i, but also
that no other S`-, C1-, or C2-facts reside on i. Proper distribution of these intensional
facts will be handled by the communication policy.

Page 93

Chapter 4 I Distributed Evaluation of Datalog

The Datalog Query. We start with the definition of the Datalog query Q = (P,Out).
As already mentioned, the intensional relations symbols of the Datalog program P include
the unary symbols C1 and C2 for counter values, and, for each j ∈ [0, n], the unary
symbol Sj for state sj . Additionally, Out serves as the output symbol and N ′ serves as a
copy of N . The frontier-guarded, monadic Datalog program P consists of the following
rules.

N ′(x)← N(x)

R(x)← N ′(x), I(x),K() for all R ∈ {Sj | j ∈ [0, n]} ∪ {C1, C2}
R(y)← N ′(y), R(x), E(x, y),K() for all R ∈ {Sj | j ∈ [0, n]} ∪ {C1, C2}

Out(x)← Sj(x), N(x) for all j ∈ [0, n− 1]

Let us briefly discuss the behaviour of P over a (global) database (not necessarily G`).
In general, the binary relation E can be viewed as the edge relation of a graph whose
nodes may be labelled with N or I. If K() is not in the database, no Out-facts can be
derived because no Sj-facts can be derived. If K() is in the database, the first three
rules determine all nodes that are reachable from a I-labelled node via a N -labelled
path. Indeed, the first rule copies N into N ′. The rules of the second kind initialize the
computation from a I- and N -labelled node, while rules of the third kind recursively
traverse over N -labelled edges. The computed vertices are stored in the intensional
relations C1, C2, and Sj for all j ∈ [0, n]. In the following this is stated more formally.

Claim 4.2.13. Let R ∈ {Sj | j ∈ [0, n]} ∪ {C1, C2} and D be a (global) database.
Then R(b) ∈ P (D) if and only if K() ∈ D and there is a sequence of domain values
a0, . . . , a` with ` ≥ 0 such that a` = b, I(a0) ∈ D, {N(ai) | i ∈ [0, `]} ⊆ D, and
{E(ai−1, ai) | i ∈ [1, `]} ⊆ D.

Notably, the relations C1, C2, and Sj computed by P over a global database are
identical and considering the evaluation over G` they end up being copies of N . Finally,
the rules of the last kind “output” every node derived by other rules as described above.
In particular, over G`, the query result is {Out(0),Out(1), . . . ,Out(`)}.

We emphasize that there is no rule Out(x) ← Sn(x), N(x) for the halting state sn.
While this does not matter in the sequential setting – because all the Sj are copies of each
other – it is crucial for the distributed evaluation and the correctness of the reduction. In
a nutshell, on a server to which a Sn-fact but no other Sj-facts get assigned, no Out-facts
can be derived. It will also matter that the rules of the second and third kind refer to the
intensional relation symbol N ′ and the rules of the last kind, on the other hand, to N .

The Hash Policy Scheme. Next, we define the hash policy scheme Z for the distribution
policies. Our intention here is to obtain the distributed databases D` if the global
databases G` is scattered. We set

Z =
{
(E, 1, ()), (I, 1, ()), (K, 1, ()), (I, 2, (1)), (N, 2, (1))

}
.

Indeed, for every tuple H of hash functions that is compatible with Z and scatters a
global database G the following holds. All E-, I-, and K-facts are mapped to a single

Page 94

I Parallel-Correctness

server due to the first three hash directives in Z. Furthermore, due to the last two
hash directives in Z, for all domain values a, the facts N(a) and I(a) are assigned to a
distinguished server for a, if they exist. In particular, for the global databases G` we
have the following.

Claim 4.2.14. For every ` ≥ 0, there is a tuple H` of hash functions compatible with Z
such that δZ,H`

scatters G` and δZ,H`
(G`) = D`.

In fact, a tuple H` attesting Claim 4.2.14 is H` = (h1, h2) where h1 is a nullary hash
function that maps every tuple to the server copy and h2 is a unary hash function that
maps every i ∈ [0, `] to server i. The latter implies that δZ,H`

maps all facts N(i) and
I(i) to server i.

The Distribution Constraints. It remains to construct a set of data-moving distribution
constraints. This is the most involved part of the construction because the distribution
constraints actually simulate the Minsky machine M . A bit more precisely, at the end of
the distributed evaluation we intend for the following conditions to hold.

(a) A fact Cj(c) resides on server i if and only if the value of counter j in the i-th
configuration in the computation of M is c; and,

(b) a fact Sj(i) resides on server i if and only if the state of i-th configuration in the
computation of M is sj .

Recall that the hash policy scheme Z guarantees that all E-, I-facts, and, if present,
the K-fact, reside together on (at least) one server, which we will refer to as the copy
server. The following constraint makes the N ′-facts available to the copy server as well.

K()@κ,N(x)@λ→ N ′(x)@κ

Observe that this allows the copy server to derive all C1-, C2-, and, for all j ∈ [0, n],
Sj-facts that can be derived during the sequential evaluation. If the distributed database
is scattered, the copy server can, however, not derive any output facts, because no N -facts
will reside on it. We always intend for the server variable κ to be mapped to the copy
server.

The following constraints assign the initial configuration of M to a server.

I(x)@λ,N(x)@λ, S0(x)@κ→ S0(x)@λ

I(x)@λ,N(x)@λ,C1(x)@κ→ C1(x)@λ

I(x)@λ,N(x)@λ,C2(x)@κ→ C2(x)@λ

Indeed, in the distributed evaluation over D`, the facts S0(0), C1(0), and C2(0) are
present on the copy server after the second computation phase and the only matching
pair of I-, and N -facts is I(0), N(0) on server 0. Thus, the facts S0(0), C1(0), and C2(0)
are sent to server 0 and no other server.

Page 95

Chapter 4 I Distributed Evaluation of Datalog

We model an instruction Inc(1, sh) of M which transitions from state sj to state sh by
incrementing the first counter by the three constraints

A+, C1(v)@κ→ C1(v)@µ, A+, C2(w)@κ→ C2(w)@µ, A+, Sh(z)@κ→ Sh(z)@µ,

where A+ is

N(y)@λ, Sj(y)@λ,C1(u)@λ,C2(w)@λ,︸ ︷︷ ︸
(1)

N(z)@µ,︸ ︷︷ ︸
(2)

E(u, v)@κ,E(y, z)@κ︸ ︷︷ ︸
(3)

.

Intuitively, A+ expresses that

(1) number y is assigned to server λ, and the y-th configuration in the computation is
(sj , u, w), i.e. M is in state sj and the counters have value u and w, respectively;

(2) number z is assigned to server µ; and,

(3) (the copy) server κ asserts that z = y+1, i.e. server µ is the server for the (y+1)-th
configuration, and the new value of the first counter is v = u+ 1 hold.

Incrementing the second counter can be modelled analogously by swapping C1 and C2.
Modelling a decrement instruction Dec(1, sh, sk) requires constraints for two cases, as

the result depends on whether the first counter is zero or not. Recall that M either
transitions to the state sh and decrements the first counter, if it is non-zero, or transitions
to state sk without changing any counter, otherwise.

The former case is modelled similarly to the increment instruction. We underline the
atom(s) that differ between A+ and A− in the following.

A−, C1(v)@κ→ C1(v)@µ, A−, C2(w)@κ→ C2(w)@µ, A−, Sh(z)@κ→ Sh(z)@µ,

where A− is

N(y)@λ, Sj(y)@λ,C1(u)@λ,C2(w)@λ, N(z)@µ, E(v, u)@κ,E(y, z)@κ.

Note that A− is almost the same as A+; it lets server κ assert v = u − 1 instead of
v = u+ 1. This also implies that u is not zero (in the sense that it has a predecessor).

Finally, we model the latter case with the following constraints. Again we underline
differences to the former case.

A0, C1(v)@κ→ C1(v)@µ, A0, C2(w)@κ→ C2(w)@µ, A0, Sk(z)@κ→ Sk(z)@µ,

where A0 is

N(y)@λ, Sj(y)@λ,C1(v)@λ,C2(w)@λ, N(z)@µ, I(v)@κ,E(y, z)@κ.

Here A0 lets server κ assert that the value v of the first counter is zero and is not changed.
Decrementing the second counter can again be modelled analogously.
We can now prove the following which implies Conditions (a) and (b). As usual Dr

`

denotes the distributed database obtained after the r-th communication phase of the
distributed evaluation over D` induced by γΣ,N`

.

Page 96

I Parallel-Correctness

Claim 4.2.15. For every ` ≥ 0 and i ∈ [0, `], the i-th configuration in the computation
of M is (sj , c1, c2) if and only if Sj(i)@i, C(c1)@i, and C2(c2)@i are in Dr

` for all r ≥ i+2.

The proof of Claim 4.2.15 is by induction on i ≥ 0. For the induction start observe that,
by construction, all facts N ′(i) reside on the copy server after the first round. Further,
the copy server can then derive all facts R(i) for R ∈ {Sj | j ∈ [0, n]} ∪ {C1, C2}. This
follows analogously to Claim 4.2.13 and by the observation that N ′ is a copy of N and
the relevant Datalog rules actually refer to N ′. Note that, up to this point, besides the
communication of the N ′-facts to the copy server, no other facts have been communicated
because no other facts had even been derived. In the second communication phase the
facts S0(0), C1(0), and C2(0) are then communicated to server 0 (and no other server)
thanks to the constraints for the initial configuration and I(0) and N(0) residing on
server 0 (and no other server).

For the induction step it suffices to observe that, as detailed earlier, facts Sh(i), C1(c1),
and C2(c2) are communicated to server i if and only if Sj(i − 1), C1(c

′
1), and C2(c

′
2)

reside on server i− 1 and (sk, c1, c2) is the successor configuration of (sj , c′1, c′2) in the
unique computation of M .

Correctness. It remains to prove that M does not halt if and only if Q is parallel-correct
w.r.t. F(Z,Σ).

Suppose M halts. Then there is an ` > 0 such that the state of `-th configuration in
the computation of M is the halting state sn. To show that Q is not parallel-correct,
we consider the global database G`. Thanks to Claim 4.2.14 there is a tuple H` of
hash functions such that δZ,H`

(G`) = D`. Furthermore, Claim 4.2.13 implies that
Out(`) ∈ Q(G`).

It suffices to show that Out(`) /∈ [Q, γΣ,N`
](D`). Due to Claim 4.2.15 and the state of

the `-th configuration being the halting state sn, there will be no fact Sj(`) with j < n
residing on server ` after the distributed evaluation has reached a global fixpoint. But
then Out(`) cannot be derived on any server because N(i) resides only on server ` and
Out-facts can only be derived with rules of the form Out(x)← Sj(x), N(x) for j < n. We
can conclude Out(`) /∈ [Q, γΣ,N`

](D`), and, thus Q is not parallel-correct w.r.t. F(Z,Σ).
For the converse, suppose M does not halt. To prove parallel-correctness it suffices to

show [Q, γ](D) ⊇ Q(G) for all (δ, γ) ∈ F(Z,Σ) and all distributed database D = (G, I)
that comply with δ, thanks to Observation 4.2.3. For this purpose, pick such δ, γ and
D = (G, I).

Suppose Out(b) ∈ Q(G). By construction P (G) then contains a fact Sj(b). Due to
Claim 4.2.13 this implies that G contains K(), and there is a sequence of domain values
a0, . . . , a` such that a` = b, I(a0) ∈ G, {N(ai) | i ∈ [0, `]} ⊆ G and {E(ai−1, ai) | i ∈
[1, `]} ⊆ G. Let G′ ⊆ G be the database consisting of these facts. Observe that G′ is
isomorphic to G`. Indeed, each ai can just be identified with i.

Further, let δZ,H`
be the distribution policy with δZ,H`

(G`) = D` that scatters G`

guaranteed by Claim 4.2.14. Since M does not halt and thanks to Claim 4.2.15 we can
conclude that after the distributed evaluation, a fact Sj(`) for j < n resides on server `.
Thus, Out(`) ∈ [Q, γΣ,N`

](D`).

Page 97

Chapter 4 I Distributed Evaluation of Datalog

Since G′ is isomorphic to G` and ` can be identified with b = a`, we know that there
is a policy pair (δ′, γ′) ∈ F(Z,Σ) such that δ′ scatters G′ and Out(b) ∈ [Q, γ′](δ′(G′)).
Furthermore, D covers δ′(G′) due to Lemma 4.2.10 because δ′ scatters G′ and G′ ⊆ G.

Finally, thanks to the monotonicity guaranteed by Lemma 4.2.11, we can conclude
that Out(b) ∈ [Q, γ](D). �

4.2.2 Value-Independent Distribution Policies
Theorem 4.2.12 sharpens the undecidability result for parallel-correctness of Datalog
queries from Ketsman et al. [KAK20, Theorem 1] in the sense that it states undecidability
for fragments of Datalog for which the containment problem is decidable. On the other
hand, the undecidability result from Ketsman et al. is stated for value-independent
policies, i.e. policies which map facts to servers solely based on their relation symbol (cf.
Example 4.1.4 and the discussion preceding it).

Recall that, in our setting, a hash policy scheme Z induces a family of value-independent
distribution policies if and only if every triple in Z has the form (R, i, ()), i.e. all
compatible hash functions have arity 0. We call such a hash policy scheme Z primitive.
By Ind-Constraints we denote the class of all families F(Z,Σ) where Z is a primitive hash
policy scheme and Σ is a set of data-moving distribution constraints.

The hash policy scheme and the distribution constraints constructed in the proof of
Theorem 4.2.12 do not induce a family in Ind-Constraints. In fact, the correctness of
the reduction relies on every extensional fact N(i) residing on a distinguished server for
the domain value i. We show next that for (our) fragments of Datalog with a decidable
containment problem and value-independent distribution policies, parallel-correctness is
decidable. The complexity is inherited from the containment problem.

Proposition 4.2.16. PC(FGDL, Ind-Constraints) and PC(MDL, Ind-Constraints) are
2ExpTime-complete.

We prove Proposition 4.2.16 by reductions from and to the containment problems for
frontier-guarded and monadic Datalog queries. We focus on the upper bound first. For
the reduction to the containment problem we will construct a Datalog program that
simulates the distributed evaluation of the original query over a scattered database.

To argue about the correctness of our construction, we will utilize proof trees for facts
derived in the distributed evaluation. We define them in the straightforward way by
combining proof trees for facts with respect to the Datalog program with proof trees for
communicated facts, whose communication is specified by distribution constraints. Recall
that, for a rooted tree T , we denote its set of nodes by nodes(T), its root by root(T),
and, for all nodes v ∈ nodes(T), the set of children of v by childrenT (v).

Definition 4.2.17. A proof tree T over a network N for a fact R(ā)@k with k ∈ N with
respect to a Datalog program P , and a set Σ of data-moving distribution constraints, is
a rooted tree, in which every node v is labelled with a fact S(b̄)@` = fact(v) with ` ∈ N ,
and which has the following properties.

(a) The root node is labelled with fact(root(T)) = R(ā)@k.

Page 98

I Parallel-Correctness

(b) For every inner node v labelled S(b̄)@`, there is either
I a Datalog rule τ ∈ P and a valuation ϑ such that ϑ(head(τ)) = S(b̄) and
ϑ(body(τ))@` = {fact(w) | w ∈ childrenT (v)}, or

I a distribution constraint σ ∈ Σ and a network aware valuation ϑ such that
ϑ(head(σ)) = S(b̄)@` and ϑ(body(σ)) = {fact(w) | w ∈ childrenT (v)}.

(c) Every leaf is labelled with a fact E(c̄)@` where E(c̄) is an extensional fact over
edb(P).

We say that an inner node v of a proof tree is witnessed by a Datalog rule τ and a
valuation ϑ as shorthand for τ and ϑ witnessing v having Property (b). Analogously,
we say that v is witnessed by a constraint σ and a network aware valuation ϑ if they
witness v having Property (b).

A partial proof tree over N for a fact with respect to P and Σ is a rooted, labelled tree
that satisfies Properties (a) and (b) of Definition 4.2.17 but not necessarily Property (c).
In other words, its leaves may be labelled with intensional facts.

A (partial) proof tree T with respect to a distributed database D = (G, I) is a (partial)
proof tree, whose leaves are labelled with facts S(b̄)@` in D.

Analogously to the sequential setting, for a Datalog program P , a set Σ of data-moving
distribution constraints, and a distributed database D, [P, γΣ,N](D) consists of exactly
those facts R(ā)@k for which there is a proof tree over N with respect to P , Σ, and D.

Lemma 4.2.18. Let Q = (P,Out) be a Datalog query, Σ be a set of data-moving
distribution constraints, and D be a distributed database over a network N . For every
fact R(ā)@k there is a proof tree over N with respect to P , Σ, and D if and only
if R(ā)@k ∈ [P, γΣ,N](D).

In particular, R(ā) can be derived in at most r rounds in the distributed evaluation
of P over D according to γΣ,N if and only if there is a proof tree over N with respect
to P , Σ, and D such that, on every root-to-leaf path, at most r nodes are witnessed by a
constraint from Σ.

Proof. The proof for the only-if direction is by induction over the structure of a proof
tree. The induction start is trivial and, for the induction step, it suffices to observe
that a fact fact(v) can be derived by the Datalog rule (or communicated due to a
distribution constraint), and (network aware) valuation witnessing the node v. The
induction hypothesis guarantees that the required facts reside on the proper servers. We
note that, since the computation phase precedes the communication phase and involves
a local fixpoint computation, the evaluation only proceeds to the next round if v is
witnessed by a distribution constraint (this has to be taken into account for the induction
hypothesis).

For the converse, the proof is by induction over the number of rounds. The induction
step involves a nested induction over the number of applications of the immediate
consequence operator for P . The Datalog rule (or distribution constraint) and (network
aware) valuation used to derive (respectively, communicate) a fact are proper witnesses
for the root node of the proof tree. The existence of suitable proof trees for the facts

Page 99

Chapter 4 I Distributed Evaluation of Datalog

required to satisfy the body of the rule (or constraint) is guaranteed by the induction
hypothesis. �

We are now ready to state our reduction for the upper bound of Proposition 4.2.16.

Lemma 4.2.19. For every Datalog query Q, primitive hash policy scheme Z, and set Σ of
data-moving distribution constraints, a Datalog query Q′ can be constructed in exponential
time such that the following holds. For every global database G there is a policy pair
(δ, γ) ∈ F(Z,Σ) such that δ scatters G and [Q, γ](δ(G)) = Q′(G).

The number of variables and the length of rules of Q′ is polynomial in ‖Q‖, ‖Z‖,
and ‖Σ‖; and the number of rules is at most exponential. Furthermore, if Q is frontier-
guarded (or monadic), then Q′ is frontier-guarded (or monadic, respectively).

Proof. Let Q = (P,Out), and m be such that, for every hash directive (R, i, ()) ∈ Z,
we have i ≤ m. We first construct a Datalog query Q′′ = (P ′′,Out) that has the desired
properties except that it may not be frontier-guarded or monadic, even if Q is. We will
rectify this in a second step.

In addition to the output symbol Out, the Datalog program P ′′ uses an intensional
relation symbol Si of arity ar(S) for every S ∈ edb(P) ∪ idb(P) and i ∈ [1,m]. The idea
being that a fact Si(ā) corresponds to a fact S(ā)@i in the distributed evaluation over the
network [1,m]. The Datalog program P ′′ has the following rules for Z, P , Σ, and Out
respectively.4

I For every (R, i, ()) ∈ Z, P ′′ has a rule Ri(x̄)← R(x̄) where x̄ is some tuple of pairwise
different variables.

I For every rule R(x̄)← S1(ȳ1), . . . , Sn(ȳn) of P and i ∈ [1,m], P ′′ has a rule

Ri(x̄)← Si
1(ȳ1), . . . , S

i
n(ȳn).

I For every distribution constraint S1(ȳ1)@κ1, . . . , Sn(ȳn)@κn → R(x̄)@λ in Σ and map-
ping s : svars→ [1,m], P ′′ has a rule

Rs(λ)(x̄)← S
s(κ1)
1 (ȳ1), . . . , S

s(κn)
n (ȳn).

I For every i ∈ [1,m], P ′′ has a rule Out(x̄)← Outi(x̄) where x̄ is some tuple of pairwise
different variables.

The number of variables and length of rules in P ′′ is indeed polynomial in the size of Q, Z,
and Σ. The number of rules constructed for Z, P , and Out is polynomial as well. For Σ
the number of rules is exponential in the number of server variables in Σ.

For the correctness, consider the network N = [1,m] and the tuple H = (h1, . . . , hm)
of nullary hash functions over N with hi(()) = i for all i ∈ [1,m]. Observe that the
distribution policy δZ,H scatters every global database G.

4Strictly speaking, all symbols Si for which no rule is constructed are removed, along with all rules
where Si occurs in the body, and recursively.

Page 100

I Parallel-Correctness

It is straightforward to translate a proof tree for a fact Outi(ā) with respect to P ′′ and G
into a proof tree over N for Out(ā)@i with respect to P , Σ and δZ,H(G); and vice versa.
Indeed, it suffices to replace every label Rk(b̄) of an inner node with R(b̄)@k. The leaves,
which are all labelled with edb(P)-facts, can just be removed, since, by construction, the
parent node of a leaf labelled E(ā) is labelled with Ek(ā) and (E, k, ()) ∈ Z. The latter
implies that E(ā)@k ∈ δZ,H(G). Note that no Out-fact can appear in a proof tree for
Outi(ā) with respect to P ′′ because Out does not occur in the body of any rule in P ′′.

The translation in the other direction is analogous. Here proper leaves have to be
added, which is possible thanks to the rules for Z.

We can conclude that [Q, γ](δ(G)) = Q′′(G) holds thanks to the additional rules for
the output symbol Out in P ′′.

It remains to show that, if Q is frontier-guarded or monadic then we can obtain Datalog
query Q′ – equivalent to Q′′ – that is frontier-guarded or monadic, respectively.

To this end, suppose that Q is monadic. Then every Si with S ∈ idb(P) is unary. But
the symbols Ei with E ∈ edb(P) are, in general, not. However, the only rules where such
a symbol Ei occurs in the head are the rules of the form Ei(x̄)← E(x̄). The monadic
Datalog query Q′ can thus be obtained from Q′′ by removing the rules Ei(x̄) ← E(x̄)
for Z and replacing every occurrence of Ei in the body of any other rule by E.

Next, suppose that Q is frontier-guarded. The rules Ei(x̄) ← E(x̄) of P ′′ for Z are
frontier-guarded because Z only refers to extensional symbols E. In the following we
show how to replace the rules for P , Σ, and Out by frontier-guarded rules step by step.

For the first step, consider a rule τ of the form Ri(x̄)← Si
1(ȳ1), . . . , S

i
n(ȳn) constructed

for a rule R(x̄)← S1(ȳ1), . . . , Sn(ȳn) of P . Since Q is frontier-guarded, there is a j such
that Sj(ȳj) is extensional and ȳj contains all variables from x̄. Hence, there also is a rule
Si
j(z̄) ← Sj(z̄) with z̄ being a tuple of pairwise different variables. A frontier-guarded

replacement of τ can therefore be obtained by replacing the atom Si
j(ȳj) in body(τ)

with Sj(ȳj).
In the second step, rules constructed for a data-moving distribution constraint are

replaced. For every rule τ with head Ri(x̄) constructed for a data-moving distribution
constraint σ, there is an atom Rj(x̄) ∈ body(τ) because σ is data-moving. Since this is
true for every rule constructed for constraints in Σ, we have that in every proof tree for
a fact Ri(ā) there is a node labelled Rk(ā) for some k and it is witnessed by a rule for P .
Thanks to the previous step, there then is also an extensional fact E(b̄) in this proof tree
for some b̄ that contains all values of ā. Therefore, the rule τ can be replaced with the
set of rules defined as follows. For all extensional relation symbols E and tuples z̄ of
variables with |z̄| = ar(E) which contains all variables in x̄, the frontier-guarded rule τE,z̄

is obtained from τ by adding the atom E(z̄) to body(τ). The rule τ is then replaced with
the set of all rules τE,z̄ obtained this way. Note that the number of rules τE,z̄ is at most
exponential in ‖Q‖, ‖Z‖, and ‖Σ‖; and their length is still polynomial. The number of
new variables can be limited by maxE∈edb(P) ar(E).

Finally, every rule of the form Out(x̄)← Outi(x̄) can be replaced by the set of rules
Out(z̄)← body(τ) for every (frontier-guarded) rule τ with head Outi(z̄) constructed in
the previous steps. �

Page 101

Chapter 4 I Distributed Evaluation of Datalog

As a final ingredient, we require a containment test for monadic and frontier-guarded
Datalog queries over global databases. Bourhis et al. [BKR15a, Theorem 7] have shown
that the containment problem Cont(DL, FGDL) is in 2ExpTime. Since the query
guaranteed by Lemma 4.2.19 consists of exponentially many rules, simply combining
these statements results in a triply exponential upper bound. To achieve a doubly
exponential upper bound, we will instead use the following refined statement of the result
by Bourhis et al.

Theorem 4.2.20 [BKR15a, Theorem 7]. The containment problem Cont(DL, FGDL) is
decidable in time
I doubly exponential in the number of variables in P and P ′;
I doubly exponential in the maximal size of a rule of P and P ′; and
I singly exponential in the number of rules of P and P ′

given queries Q = (P,Out) ∈ DL and Q′ = (P ′,Out) ∈ FGDL.

We will prove in Section 4.3 that the procedure of Bourhis et al. [BKR15a] indeed
yields Theorem 4.2.20.

We are now ready to prove that the decision problems PC(FGDL, Ind-Constraints) and
PC(MDL, Ind-Constraints) are 2ExpTime-complete.

Proof of Proposition 4.2.16. We first prove that the parallel-correctness problems for
the classes MDL and FGDL, and Ind-Constraints are in 2ExpTime.

Upper Bound. We first provide the proof for frontier-guarded Datalog queries. Let Q
be a frontier-guarded Datalog query, Z be a primitive hash policy scheme, and Σ a set
data-moving distribution constraints.

Let Q′ be the frontier-guarded Datalog query guaranteed by Lemma 4.2.19. We claim
that Q is parallel-correct w.r.t. F(Z,Σ) if and only if Q v Q′ holds. Suppose Q v Q′

holds and let G be a global database. Thanks to Lemma 4.2.19 there is a policy pair (δ, γ)
such that δ scatters G and [Q, γ](δ(G)) = Q′(G). By assumption we have Q(G) ⊆ Q′(G),
and, thus, Q(G) ⊆ [Q, γ](δ(G)). Thanks to Lemma 4.2.6 we can conclude that Q is
parallel-correct w.r.t. F(Z,Σ).

Conversely, suppose Q is parallel-correct w.r.t. F(Z,Σ). Let G be an arbitrary database
and (δ, γ) be the policy pair satisfying [Q, γ](δ(G)) = Q′(G) due to Lemma 4.2.19.
Since Q is parallel-correct we have Q(G) = [Q, γ](δ(G)). Together we have, in particular,
Q(G) ⊆ Q′(G). We can conclude that Q v Q′ holds.

All in all, parallel-correctness of Q can thus be decided by testing Q v Q′. Since
the number of rules of Q′ is at most exponential and the number of variables and the
maximal length of rules is polynomial, Q v Q′ can be tested in doubly exponential time
in the size of Q, Z, and Σ thanks to Lemma 4.2.19 and Theorem 4.2.20.

The proof for monadic Datalog queries is exactly the same. For the containment test
(over global databases), recall that every monadic Datalog queries can be transformed
into an equivalent frontier-guarded Datalog queries in polynomial time, cf. Lemma 2.4.9.

Page 102

I Parallel-Correctness

Lower Bound. We prove the 2ExpTime-hardness results by polynomial time reduc-
tions from the containment problem monadic Datalog and frontier-guarded Datalog,
respectively. The containment problem Cont(MDL, MDL) is 2ExpTime-hard [BBS12,
Theorem 2], and since monadic Datalog queries can be transformed into equivalent
frontier-guarded Datalog queries in polynomial time [BKR15a], the same is true for
Cont(FGDL, FGDL). The reductions are essentially the same for both cases. Again, we
focus on frontier-guarded Datalog queries first.

Let Q1 = (P1,Out) and Q2 = (P2,Out) be two frontier-guarded Datalog queries. We
construct a frontier-guarded Datalog query Q, a primitive hash policy scheme Z, and a
set Σ of data-moving distribution constraints such that Q1 v Q2 holds if and only if Q is
parallel-correct w.r.t. F(Z,Σ).

Without loss of generality, we assume that idb(P1)∩ idb(P2) = {Out}; that is, the only
intensional symbol P1 and P2 have in common is Out.

The frontier-guarded Datalog query Q is obtained by combining Q1 and Q2 as follows.
Let P ′

1 and P ′
2 be the Datalog programs obtained by replacing Out with Out1 and Out2

in P1 and P2, respectively. The output symbol of Q is Out, which does not occur in P ′
1

or P ′
2; and the Datalog program is

P = P ′
1 ∪ P ′

2 ∪
{

Out(x̄)← Out1(x̄), E(x̄)
}
∪
{

Out(x̄)← Out2(x̄), E(x̄)
}
,

where E is a fresh extensional symbol not appearing in edb(P ′
1) ∪ edb(P ′

2). Clearly, Q is
frontier-guarded if Q1 and Q2 are.

Over a global database G, the query result of Q is the union of Q1(G) and Q2(G)
intersected with the relation E.

The hash policy scheme Z for facts over edb(P) consists of a hash directive (R, 1, ())
for each R ∈ edb(P) \ {E} and an additional hash directive (E, 2, ())). Finally, the set Σ
of distribution constraints consists of exactly one distribution constraint, namely

Out2(x̄)@κ,E(x̄)@λ→ Out2(x̄)@λ.

Let G be a global database and (δ, γ) ∈ F(Z,Σ) such that δ scatters G. Then,
considering the distributed database δ(G), there are two distinct servers k and ` such
that all facts over edb(P) \ {E} reside on k and all E-facts reside on server `. Notably,
there is no local database of δ(G) that contains E-facts and facts over edb(P) \ {E}.

Therefore, the outputs of P ′
1 and P ′

2 can be computed on server k because neither
program refers to E. However, no Out-facts can be derived on k since no E-fact
resides on k. Due to the communication policy γ all Out2-facts computed on k are
sent to `. Hence, the intersection of Out2 with E can be computed on ` thanks to the
rule Out(x̄) ← Out2(x̄), E(x̄). On the other hand, the rule Out(x̄) ← Out1(x̄), E(x̄) is
never used to derive a fact in the distributed evaluation, because Out1-facts cannot be
communicated. Thus, the distributed evaluation yields the intersection of Q2(G) with
the relation E.

It remains to argue that Q1 v Q2 if and only if Q is parallel-correct w.r.t. F(Z,Σ). By
Lemma 4.2.6 it suffices to consider global databases G and distribution policies δ such
that δ scatters G. As argued before [Q, γ](δ(G)) is the intersection of Q2(G) with the

Page 103

Chapter 4 I Distributed Evaluation of Datalog

relation E and Q(G) is the intersection of Q1(G) ∪Q2(G) with the relation E for such
databases and distribution policies. Thus, if Q1 v Q2 does not hold, there is a G such
that [Q, γ](δ(G)) (Q(G) holds for any policy pair (δ, γ) such that δ scatters G. Since
Lemma 4.2.7 guarantees that such a policy pair exists, we can conclude that Q is not
parallel-correct w.r.t. F(Z,Σ).

For the converse suppose Q1 v Q2 holds. Let G be a global database and δ be
the distribution policy guaranteed by Lemma 4.2.7 that scatters G, and γ be the
communication policy such that (δ, γ) ∈ F(Z,Σ). By assumption we have that Q1(G) ⊆
Q2(G) and, hence, Q2(G) = Q1(G) ∪ Q2(G). Therefore, [Q, γ](δ(G)) = Q(G). Then
Lemma 4.2.6 allows us to conclude that Q is parallel-correct w.r.t. F(Z,Σ). �

In principle, Proposition 4.2.16 is arguably good news, because it identifies classes
of Datalog queries and a class of policy pair families for which the parallel-correctness
problem is decidable. On the other hand, the families F(Z,Σ) in Ind-Constraints are not
very interesting because, intuitively, the underlying networks do not “scale” with the size
of the database. Indeed, the proof of Lemma 4.2.19 entails that there is a distribution
policy δ over a network N = [1,m] that scatters every global database. The number m,
and hence the size of N , does only depend on Z. Hence, there is at least one local
database of δ(G) that contains Ω(|G|) many facts for any global database G.

The same is true for all distributed databases that comply with a distribution pol-
icy δZ,H , since according to Lemma 4.2.10 such distributed databases cover δ(G). More-
over, m servers suffice to compute the query result, if the query is parallel-correct. Any
other server is redundant. This contrasts the idea of distributing facts among a massive
amount of servers.

Therefore, we will study restrictions of distribution constraints in the following subsec-
tions, leaving the hash policy schemes unrestricted. Since the distribution policies are
not restricted, the underlying networks may then scale meaningfully. We conclude this
subsection with the observation that the set of distribution constraints constructed in
the proof for the lower bound of Proposition 4.2.16 has a very simple structure. The
2ExpTime-hardness of the parallel-correctness problem will thus carry over.

4.2.3 The Polynomial Communication Property

In this subsection we introduce and study the polynomial communication property. We
show that, for subclasses of frontier-guarded Datalog queries and distribution constraints
having this property, distributed evaluations over scattered databases can be simulated by
Datalog programs – akin to Lemma 4.2.19. As before, in Section 4.2.2, such a simulation
effectively yields a reduction from the parallel-correctness problem to the containment
problem. We note that our construction fails for monadic Datalog queries – we illustrate
this by means of an example at the end of this section.

In Section 4.2.4 we will present a syntactical restriction of data-moving distribution
constraints which guarantees the polynomial communication property, even in combination
with the class DL of all Datalog queries. We will prove that, in combination with the
class FGDL of frontier-guarded Datalog queries, this results in a 2ExpTime-complete

Page 104

I Parallel-Correctness

parallel-correctness problem. Alternatively, the polynomial communication property can
also be asserted semantically, yielding the same outcome for frontier-guarded Datalog
queries. This will be the topic of Section 4.2.5.

The idea behind the polynomial communication property is to bound the number of
rounds it takes for an (already computed) intensional fact to be communicated to every
server that “requires” it. We make this precise with the help of proof trees.

Let P be a Datalog program, N be a network, and Σ be set of data-moving distribution
constraints. A subtree T ′ of a proof tree T over N with respect to P and Σ is a partial
proof tree that consists of a connected subset of nodes(T), and all edges from T between
these nodes. Furthermore, the labels and witnesses are inherited from T ; that is, every
node v of T ′ has the same label in T ′ as in T and every inner node of T ′ is witnessed by the
same rule or constraint as in T . Notably this implies that, for every node v ∈ nodes(T ′),
the subtree T ′ contains either all children of v in T , or none. We call a (subtree of a)
proof tree over N for a fact R(ā)@k with respect to P and Σ computation-free, if all its
inner nodes are witnessed by distribution constraints from Σ. The size of a (partial)
proof tree T is the number of its nodes |nodes(T)|.

Definition 4.2.21 (Polynomial Communication Property). A class Q of Datalog queries
and a class C of sets of data-moving distribution constraints have the polynomial com-
munication property if there is a polynomial p such that the following holds, for each
query Q = (P,Out) ∈ Q, each network N , each finite set Σ ∈ C, and each distributed
database D over N : If a fact has a proof tree over N with respect to P , Σ, and D, then
there is such a proof tree whose computation-free subtrees have size at most p(‖Q‖, ‖Σ‖).

The main contribution of this section is the result that a distributed evaluation over a
scattered database can be simulated by a frontier-guarded Datalog query, if the polynomial
communication property applies. That is, we want to prove the following result.

Lemma 4.2.22. Let Q be a class of Datalog queries and C be a class of sets of data-
moving distribution constraints that have the polynomial communication property. For
every frontier-guarded Datalog query Q ∈ Q, hash policy scheme Z, and set Σ ∈ C of data-
moving distribution constraints, a frontier-guarded Datalog query Q′ can be constructed
in exponential time such that the following holds: For every global database G there is a
policy pair (δ, γ) ∈ F(Z,Σ) such that δ scatters G and [Q, γ](δ(G)) = Q′(G).

The number of variables and the length of rules of Q′ is polynomial in ‖Q‖, ‖Z‖,
and ‖Σ‖; and the number of rules is at most exponential.

Our construction for Lemma 4.2.22 is similar to the one employed for Lemma 4.2.19.
Recall that the Datalog program constructed for Lemma 4.2.19 has, for every symbol R
occurring in the original query, a relation symbol Ri with the same arity as R. The
intended meaning is that a fact Ri(ā) is derived in the simulation, if the fact R(ā) can
be derived on server i in the distributed evaluation. Here this no longer suffices, simply
because the number of servers cannot be bounded by the size of Q, Z, and Σ if Z does
not induce (only) value-independent distribution policies.

Therefore, we use relation symbols Ri with (strictly) higher arity than R instead. A
fact Ri(c̄, ā) then signifies that the fact R(ā) resides on the server identified with (i, c̄).

Page 105

Chapter 4 I Distributed Evaluation of Datalog

Consequently, the Datalog query uses intensional atoms of the form Ri(z̄, x̄). Obtaining
frontier-guarded rules for the simulation of constraints is then more involved.

In fact, instead of constructing dedicated rules for constraints, we will incorporate
constraints into rules for the Datalog programs. To this end, we define the composition of
two data-moving distribution constraints σ and σ′. We assume without loss of generality
that σ and σ′ have disjoint sets of variables. Otherwise, the variables in σ′ can just be
renamed. We say that σ and σ′ are unifiable if there is an atom R(x̄)@κ ∈ body(σ) and
head(σ′) = R(ȳ)@λ.

Let α : vars∪ svars→ vars∪ svars be a mapping that maps variables in x̄, ȳ to variables
in x̄, λ to κ, and any other variable to itself, such that α(R(ȳ)@λ) = α(R(x̄)@κ) holds.5
Then σ and σ′ can be composed into a new data-moving distribution constraint σ ◦α σ′
with head α(head(σ)) and body α(body(σ) \ {R(x̄)@κ}) ∪ α(body(σ′)). In other words,
σ◦ασ′ has the head of σ and its body consists of all atoms in the bodies of σ and σ′ besides
R(x̄)@κ, after application of α. Let us point out that σ◦ασ′ is indeed data-moving: Let A
be the atom occurring in head(σ). If A 6= R(x̄) then A occurs in body(σ) \ {R(x̄)@κ}
and, consequently, α(A) occurs in the body of σ ◦α σ′. If, on the other hand, A = R(x̄)
then α(A) occurs in body(σ′) because, since σ′ is data-moving, there has to be an atom
R(ȳ)@µ ∈ body(σ′).

Example 4.2.23. Consider the two constraints σ and σ′ defined by the rules

σ : E(x1, x3)@κ,R(x2, x3, x3)@κ, S(x1, x2)@µ→ S(x1, x2)@κ and
σ′ : E(y2, y4)@λ,R(y1, y2, y3)@µ′ → R(y1, y2, y3)@λ.

The mapping α with α(y1) = x2, α(y2) = x3, α(y3) = x3, α(λ) = κ, and α(v) = v for any
other variable v yields the composed constraint

E(x1, x3)@κ, S(x1, x2)@µ,E(x3, y4)@κ,R(x2, x3, x3)@µ′ → S(x1, x2)@κ. C

For a set Σ of data-moving distribution constraints, we write Σ∗ for the (possibly
infinite) set of data-moving distribution constraints that can be obtained by iteratively
composing unifiable constraints from Σ. The possibly infinite size of Σ∗ is not problematic
for our application as we will only consider constraints in Σ∗ of size polynomial in Σ of
which there are at most exponentially many.

The next result states that computation-free proof trees can be “condensed” into very
simple proof trees with only one inner node – which is then necessarily the root node.

Lemma 4.2.24. Let P be a Datalog program, Σ be a finite set of data-moving distribution
constraints, and N be a network. A fact R(ā)@k has a (partial) computation-free proof
tree over N with respect to P and Σ if and only if it has a (partial) computation-free
proof tree over N with respect to P and Σ∗ that has the same leaf nodes (including the
same labels) and only one inner node.

5The mapping α is also called a unifier ; if σ and σ′ are unifiable a unifier always exists since constraints
do not contain any constants.

Page 106

I Parallel-Correctness

Proof. For the direction from left to right, we show that, for every partial computation-
free proof tree T with respect to Σ∗ with two or more inner nodes, there is a partial
computation-free proof tree T ∗ with fewer inner nodes. Since Σ ⊆ Σ∗ this implies the
claim.

To this end, let v be an inner node and v′ be a child of v that is an inner node as well. We
prove that v and v′ can be merged into a new node v∗ resulting in the desired partial proof
tree T ∗. The new node v∗ has the same label as v and its children are all children from v
and v′ except for v′. More precisely, childrenT ∗(v∗) = (childrenT (v) \ {v′})∪ childrenT (v′).

We have to argue that the proof tree property of v∗ is witnessed by a constraint
from Σ∗. For this purpose, let σ and σ′ be the distribution constraints, and ϑ and ϑ′ be
the network aware valuations which are the witnesses for v and v′, respectively. We can
assume that σ and σ′ have no variable in common, since otherwise, we could rename all
variables in σ′ (and adapt ϑ′ accordingly).

Since v′ is a child of v, there is a distributed atom S(x̄)@κ ∈ body(σ) such that v′
is labelled with the fact ϑ(S(x̄)@κ) and the head of σ is S(ȳ)@λ for some tuple ȳ of
variables. Thus, σ and σ′ are unifiable. Furthermore, we have ϑ′(S(ȳ)@λ) = ϑ(S(x̄)@κ).
Hence, there is a mapping α that maps variables in x̄, ȳ to variables in x̄, λ to κ, and
any other variable to itself, such that α(S(ȳ)@λ) = α(S(x̄)@κ), ϑ(α(x̄)) = ϑ(x̄), and
ϑ(α(ȳ)) = ϑ′(ȳ) hold.

Let ϑ∗ be the network aware valuation defined as ϑ on variables in σ and as ϑ′ on
variables in σ′. Then we have

ϑ∗(α(head(σ))) = ϑ(head(σ)), ϑ∗(α(body(σ))) = ϑ(body(σ)),
and ϑ∗(α(body(σ′))) = ϑ′(body(σ′)).

We can conclude that σ ◦α σ′ and ϑ∗ witness the proof tree property of v∗.
For the direction from right to left, consider a node v∗ of a partial proof tree with

respect to Σ∗ whose proof tree property is witnessed by a constraint σ∗ ∈ Σ∗ \ Σ and
a network aware valuation ϑ∗. Then σ∗ = σ ◦α σ′ for some mapping α and σ, σ′ ∈ Σ∗.
More precisely, we have that α(head(σ)) = head(σ∗), the body of σ∗ is α(body(σ) \
{S(x̄)@κ}) ∪ α(body(σ′)), head(σ′) = S(ȳ)@λ, and α(S(x̄)@κ) = α(S(ȳ)@λ) for some
relation symbol S, server variables κ, λ, and tuples x̄, ȳ.

Let ϑ = ϑ∗ ◦ α. The node v∗ can then be replaced by a new node v that has the same
label as v∗, i.e. ϑ(head(σ)), all children of v∗ with labels from ϑ(body(σ) \ {S(x̄)@κ}),
and a new child v′ labelled with ϑ(S(x̄)@κ). The children of v′ are all children of v∗ with
labels in ϑ(body(σ′)). The leaves of the subtree with inner nodes v, v′ are then exactly
the children of v∗. Furthermore, the proof tree property for v is witnessed by σ and ϑ,
and the proof tree property for v′ by σ′ and ϑ.

Since every constraint σ∗ ∈ Σ∗ is composed of finitely many constraints from Σ,
applying this procedure finitely often yields the desired (partial) computation-free proof
tree with respect to Σ. �

Note that Lemma 4.2.24 implies that, for a (partial) computation-free proof tree with
respect to Σ of polynomial size, the constraint from Σ∗ witnessing the proof tree property

Page 107

Chapter 4 I Distributed Evaluation of Datalog

for the only inner node in the corresponding proof tree with respect to Σ∗ has polynomial
size. This is because every node in the latter tree is also present in the former.

Equipped with Lemma 4.2.24 we can now prove Lemma 4.2.22.

Proof of Lemma 4.2.22. Let Q = (P,Out) be a Datalog query and Σ be a set of
data-moving distribution constraints that belong to classes having the polynomial
communication property, and Z be a hash policy scheme. We construct a Datalog
query Q′ = (P ′,Out) that simulates the distributed evaluation of Q over scattered
databases in three steps. Similarly to Lemma 4.2.19, we first construct an intermediate
Datalog program P ′′′ whose rules are not necessarily frontier-guarded. However, P ′′′ does
not have any rules for the constraints in Σ. In the second step constraints from Σ∗ are
incorporated into the rules of P ′′′, resulting in a Datalog program P ′′ with the desired
properties – except that its rules are not necessarily frontier-guarded. The third step
then replaces the rules in P ′′ with equivalent frontier-guarded rules.

Construction. The Datalog program P ′′′ uses one intensional relation symbol Ri of
arity |ū|+ ar(R), for every relation symbol R ∈ edb(P)∪ idb(P) and every hash directive
(E, i, ū) – with possibly R 6= E – from Z. It consists of the following rules for Z, P ,
and Out, respectively.6

I For every (E, i, ū) ∈ Z, P ′′′ has a rule Ei(z̄, x̄)← E(x̄), where x̄ is a tuple of pairwise
different variables, and z̄ = x̄[ū].

I For every rule R(x̄)← S1(ȳ1), . . . , Sn(ȳn) of P and triple (E, i, ū), P ′′′ has a rule

Ri(z̄, x̄)← Si
1(z̄, ȳ1), . . . , S

i
n(z̄, ȳn),

where z̄ is a tuple of pairwise different variables not occurring in any of the ȳi or x̄.

I For every hash directive (E, i, ū), P ′′′ has a rule Out(x̄)← Outi(z̄, x̄) where z̄ and x̄
are tuples of pairwise different variables that share no variable, and |z̄| = |ū|.

The rules for Z basically define a scattered instance of a global database G with respect
to Z, where a fact Ri(c̄, ā) corresponds to R(ā) being at server (i, c̄). The rules for P
mimic the local evaluation of P at each such server. The rules for Out allow for the
derivation of output facts.

Let p be a polynomial that bounds the size of computation-free proof trees with respect
to ‖P‖ and ‖Σ‖. The program P ′′ results from P ′′′ by replacing, in all possible ways,
some intensional atoms in bodies of rules with (translated) bodies of constraints from Σ∗

of size at most p(‖P‖, ‖Σ‖). The communication of facts in the distributed evaluation
of P , which can be witnessed by a single constraint from Σ∗ thanks to Lemma 4.2.24, is
thus incorporated into P ′′.

Replacing intensional atoms in a rule τ of P ′′′ is done similarly to composing two
distribution constraints. The main difference is that the server variables occurring in

6As in the construction for Lemma 4.2.19 all symbols Ri for which no rule is constructed are removed,
along with all rules where Ri occurs in the body, and recursively.

Page 108

I Parallel-Correctness

the constraints have to be substituted with tuples z̄ of data variables and a number i.
In the following, we assume that all rules and distribution constraints have pairwise
different variables; that is, the variables in a rule (or distribution constraint) do not
occur in any other rule or distribution constraint. Let Si

1(z̄, ȳ1), . . . , S
i
m(z̄, ȳm) ∈ body(τ)

be intensional atoms of τ that are to be replaced, and σ1, . . . , σm ∈ Σ∗ be distribution
constraints with head atoms S1(x̄1)@κ1, . . . , Sm(x̄m)@κm. Further, let α : var→ var be a
mapping that maps variables in any of the tuples x̄j and ȳj to variables in x̄1, . . . , x̄m
such that α(ȳj) = α(x̄j) holds for all j ∈ [1,m]. On all other variables α is the identity.
Additionally, let s : svar→ {k | (E, k, ū) ∈ Z}. Then each atom Si

j(z̄, ȳj) can be replaced
as follows.
I For every distributed atom S(ȳ′)@κj in body(σj) the atom Si(z̄, α(ȳ′)) is added to

body(τ).

I For every other server variable λ of σj , a fresh variable tuple z̄λ is used and for every
distributed atom F (ȳ′)@λ in body(σj) the atom F s(λ)(z̄λ, α(ȳ

′)) is added to body(τ).
Finally, every original atom Ei(z̄, ȳ) in body(τ) that has not been replaced by a constraint,
is replaced with Ei(z̄, α(ȳ)) and the head Ri(z̄, x̄) of τ is replaced with Ri(z̄, α(x̄)).

Since the length of the resulting rules is bounded by O
(
(‖P‖+ ‖Z‖) · p(‖P‖, ‖Σ‖)

)
,

and the domain of s can be restricted to server variables occurring in Σ, the overall
number of resulting rules is at most exponential in ‖P‖ and ‖Σ‖.

Correctness. Before we show how the rules of P ′′ can be guarded, we prove the
correctness of our construction. That is, we prove that, for every global database G,
there is a policy pair (δ, γ) ∈ F(Z,Σ) such that δ scatters G and [Q, γ](δ(G)) = Q′′(G)
holds for Q′′ = (P ′′,Out). To this end, let G be a global database and N be the network
with servers (i, c̄) for every (E, i, ū) and c̄ ∈ adom(G)|ū|. Clearly, the tuple H consisting
of hash functions hi of arity |ū| defined by hi(c̄) = (i, c̄) for each (E, i, ū) ∈ Z scatters G
and Z is compatible with H. The communication policy is simply γ = γΣ,N .

It suffices to show that there is a proof tree over N with respect to P , Σ, and δ(G)
for a fact R(ā)@(i, c̄) if and only if there is a proof tree for Ri(c̄, ā) with respect to P ′′

and G. In fact, it even suffices to consider proof trees whose root node is witnessed by a
Datalog rule (or is a leaf). Moreover, thanks to Lemma 4.2.24, we can consider proof
trees for R(ā)@(i, c̄) with respect Σ∗ instead of Σ whose computation-free subtrees have
only a single inner node. Both directions can be shown by induction over the structure
of a proof tree.

We prove the direction from left to right by induction over the structure of a proof
tree over N for a fact R(ā)@(i, c̄) with respect to P and Σ∗. Thanks to Lemma 4.2.24
we can assume that all computation-free subtrees have only a single inner node. If the
tree consists of a single leaf node labelled R(ā)@(i, c̄), then there is a hash directive
(R, i, ū) ∈ Z such that ā[ū] = c̄. By construction P ′′ has a rule Ri(z̄, x̄) ← R(x̄) with
x̄[ū] = z̄ and all variables in x̄ are pairwise different. Thus, there is a valuation ϑ with
ϑ(x̄) = ā and ϑ(z̄) = c̄. The tree whose root is labelled Ri(c̄, ā) and which has a single
child node labelled R(ā) is then a proof tree for Ri(c̄, ā) with respect to P ′′ and G.

Page 109

Chapter 4 I Distributed Evaluation of Datalog

For the induction step it suffices, as mentioned above, to consider nodes v whose
proof tree property is witnessed by a Datalog rule τ = R(x̄)← S1(ȳ1), . . . , Sn(ȳn) and a
valuation ϑ. Let v1, . . . , vn be the children of v and ϑ(S1(ȳ1))@(i, c̄), . . . , ϑ(Sn(ȳn))@(i, c̄)
be their labels, respectively. We can assume that v1, . . . , vm, for some m ≤ n, are
witnessed by constraints, and vm+1, . . . , vn by some Datalog rules. Let σ1, . . . , σm ∈ Σ∗

be the constraints and ϑ1, . . . , ϑm be the network aware valuations witnessing the proof
tree property of the nodes v1, . . . , vm. Further, let S1(x̄1)@κ1, . . . , Sm(x̄m)@κm be the
head atoms of σ1, . . . , σm. Note that ϑj(Sj(x̄j)@κ1) = ϑ(Sj(ȳj))@(i, c̄) holds for all
j ∈ [1,m]. Let ϑ∗ be the network aware valuation that maps every variable that agrees
with ϑ on every variable occurring in the Datalog rule τ and with ϑj on every variable
occurring in σj , for all j ∈ [1,m].7 Then there is a variable mapping α such that
α(ȳj) = α(x̄j) and the image under ϑ∗ is preserved. That is, ϑ∗ has the following
properties.

(a) ϑ∗(α(head(τ))) = ϑ(head(τ)),

(b) ϑ∗(α(Sj(ȳj))) = ϑ(Sj(ȳj)) for all j ∈ [1, n], and

(c) ϑ∗(α(body(σj))) = ϑj(body(σj)) for all j ∈ [1,m].

Further, let s be the mapping with s(λ) = k if ϑ∗(λ) = (k, c̄) for some c̄.
Let now τ∗ be the rule obtained from Ri(z̄, x̄)← Si

1(z̄, ȳ1), . . . , S
i
n(z̄, ȳn) by replacing

the intensional atoms Si
1(z̄, ȳ1), . . . , S

i
m(z̄, ȳm) with the bodies of σ1, . . . , σm using α

and s.
We construct a proof tree T ∗ for Ri(c̄, ā) whose root node v∗ is witnessed by τ∗ and

an extension of ϑ∗. First, we observe that the head of τ∗ is Ri(z̄, α(x̄)) and that, by
construction, z̄ shares no variable with τ or any of the constraints σj . Thus, we can
extend ϑ∗ such that we have ϑ∗(z̄) = c̄. Thanks to Property (a) and ϑ(x̄) = ā we then
have ϑ∗(Ri(z̄, α(x̄))) = Ri(c̄, ā), as required.

In the following we extend T ∗ and ϑ∗ such that

{fact(w) | w ∈ childrenT ∗(v∗)} = ϑ∗(body(τ∗))

holds. Altogether, we can then conclude that T ∗ is a proof tree for Ri(c̄, ā) with respect
to P ′′ and G.

I Consider an atom Si
j(z̄, α(ȳj))) ∈ body(τ∗) for j > m that originates from an atom

Sj(ȳj) of the original Datalog rule τ from P . By assumption, there is a proof tree for
ϑ(Sj(ȳj))@(i, c̄) with respect to P and Σ∗ whose root node is witnessed by a Datalog
rule.
Thanks to the induction hypothesis, there is then also a proof tree Tj for Si

j(c̄, ϑ(ȳj)).
Since we already extended ϑ∗ such that ϑ∗(z̄) = c̄ holds, and thanks to Property (b),
we have ϑ∗(Si

j(z̄, α(ȳj))) = Si
j(c̄, ϑ(ȳj)). Thus, appending the root of Tj to v∗ yields,

in particular, a child node of v∗ for Si
j(z̄, α(ȳj)).

7As above we assume here w.l.o.g. that the sets of variables occurring in the constraints and the rule are
pairwise disjoint; and ϑ∗ is thus well-defined. This can always be achieved by renaming variables.

Page 110

I Parallel-Correctness

I Any other atom in body(τ∗) is of the from F s(λ)(z̄λ, α(ȳ
′)) and originates from a

distributed atom F (ȳ′)@λ in the body of some constraint σj . By definition of s,
we have that ϑ∗(λ) = (s(λ), c̄λ) for some c̄λ. Thanks to Property (c), we also have
ϑ∗(F (α(ȳ′))@λ) = ϑj(F (ȳ

′)@λ). Altogether, ϑj(F (ȳ′)@λ) = ϑ∗(F (α(ȳ′))@(s(λ), c̄λ).
Since the constraint σj and ϑj are witnesses for a node in T , there is a proof tree
over N for ϑ∗(F (α(ȳ′))@(s(λ), c̄λ)) with respect to P and Σ∗. Further, since we can
assume that all computation-free subtrees of T have at most one inner node thanks to
Lemma 4.2.24, there is such a proof tree for ϑ∗(F (α(ȳ′))@(s(λ), c̄λ)) where the root
node is witnessed by a Datalog rule.
By induction hypothesis there is then a proof tree for F s(λ)(c̄λ, ϑ

∗(α(ȳ′))) with respect
to P ′′ and G. We attach this proof tree to v∗ and extend ϑ∗ such that ϑ∗(z̄λ) = c̄λ
holds. As in the former case, this then yields a child node of v∗ for F s(λ)(z̄λ, α(ȳ

′)).
Lastly, let us note that ϑ∗ is well-defined because the variables in z̄λ do not occur
outside of z̄λ and z̄λ occurs only in atoms derived from distributed atoms with the
server variable λ.

The direction from right to left can be proved similarly by induction over a proof tree for
a fact Ri(c̄, ā) with respect to P ′′ and G.

In the base case, a proof tree for a fact Ri(c̄, ā) with respect to P ′′ and G consists of
exactly two nodes. The root is labelled with a fact Ri(c̄, ā) and its only child is labelled
with R(ā). Furthermore, the root node is witnessed by a rule of the form Ri(z̄, x̄)← R(x̄)
constructed for some triple (R, i, ū) ∈ Z. Note that, by construction, z̄ = x̄[ū]. Thus,
we also have c̄ = ā[ū]. Since, hi(c̄) = (i, c̄) by definition of hi, we can conclude that
R(ā)@(i, c̄) ∈ δ(G). The proof tree over N with a single node labelled R(ā)@(i, c̄) is thus
a proof tree with respect to δ(G).

For the induction step consider a proof tree for a fact Ri(c̄, ā) with respect to P ′′ and G.
Let τ∗ be rule and ϑ∗ be the valuation which are witnesses for the root node. The rule τ∗
originates from a rule τ ′ : Ri(z̄, x̄) ← Si

1(z̄, ȳ1), . . . , S
i
n(z̄, ȳn) from P ′′′. Without loss of

generality, we can assume that the atoms Si
1(z̄, ȳ1), . . . , S

i
m(z̄, ȳm) have been replaced with

the (translated) bodies of constraints σ1, . . . , σm ∈ Σ∗ using mappings α and s for data
variables and server variables, respectively. Further, let τ : R(x̄)← S1(ȳ1), . . . , Sn(ȳn) be
the rule of P from which τ ′ originates.

We show that there is a proof tree T over N for R(ā)@(i, c̄) with respect to P , Σ∗,
and δ(G). More precisely, we show that the root node v = root(T) is witnessed by τ .
Recall that every atom (including the head atom) of τ∗ is of the form F j(z̄′, α(ȳ′)) where
the variables in ȳ′ originate from the Datalog rule τ or from the body of some constraint
σj while the variables from z̄′ do not. Let ϑ be the valuation that is defined as ϑ∗ ◦ α on
variables from τ or from any constraint; and as ϑ∗ on any other data variable. Then we
have, in particular, ϑ(R(x̄)) = R(ā) for the head R(x̄) of τ , as required for the proof tree
property of v. In the following we extend T to a proof tree over N with respect to δ(G).

I Consider an atom Sj(ȳ) in body(τ) for some j > m, i.e. an atom that was not replaced
by the (translated) body of a constraint. Then Si

j(z̄, α(ȳj)) is in body(τ∗). Let c̄
and ā be such that Si

j(c̄, ā) = ϑ∗(Si
j(z̄, α(ȳj))). Then there is a proof tree for Si

j(c̄, ā)

Page 111

Chapter 4 I Distributed Evaluation of Datalog

with respect to P ′′ and G since v∗ must have a child labelled Si
j(c̄, ā). Thanks to

the induction hypothesis there then is also a proof tree over N for Sj(ā)@(i, c̄) with
respect to P , Σ∗, and δ(G).
Note that, by definition of ϑ, we also have ϑ(Sj(ȳ)) = Sj(ā). Thus, appending the
root of the tree for Sj(ā)@(i, c̄) to v yields, in particular, a child node for Sj(ȳj).

I For an atom Sj(ȳj) in body(τ) whose corresponding atom Si
j(z̄, ȳj) in body(τ ′) got

replaced with the (translated) body of the constraint σj , a new node vj with label
ϑ(Sj(ȳ))@(i, c̄) is attached as a child node for Sj(ȳj) to v.
We next describe the tree below vj . Let F k(z̄λ, α(ȳ

′)) with k = s(λ) be an atom
in body(τ∗) which originates from a distributed atom F (ȳ′)@λ in body(σj). Then
there is a proof tree for F k(c̄′, ā′) = ϑ∗(F k(z̄′, α(ȳ′))) with respect to P ′′ and G. By
induction hypothesis, there is thus a proof tree over N for F (ā′)@(k, c̄′) with respect
to P , Σ∗, and δ(G). We attach the root of this tree to vj as child node for F (ȳ′)@λ.
Indeed, we already have ϑ(ȳ′) = ā′. Extending ϑ by setting ϑ(λ) = (k, c̄′) yields
ϑ(F (ȳ′)@λ) = F (ā′)@(k, c̄′), as required. Note that extending ϑ in this fashion yields
a well-defined network aware valuations ϑj since λ was consistently replaced with
s(λ) = k and a fresh tuple z̄λ of variables.
Finally, observe that we also have ϑj(head(σj)) = ϑ(Sj(ȳ))@(i, c̄) since σj is data-
moving. That is, all data variables and the server variable of head(σj) occur in
body(σj); and, hence, ϑj maps head(σj) properly. We can conclude that σj and ϑj
are proper witnesses for vj .

This concludes the correctness proof. It remains to show how the rules of P ′′ can be
replaced by frontier-guarded rules, yielding the desired frontier-guarded Datalog query
Q′ = (P ′,Out).

Guarding. The rules for Z of the form Ei(z̄, x̄) ← E(x̄) are already frontier-guarded
because E is extensional and, by construction, all variables in z̄ occur in x̄.

The second kind of rules can replaced with frontier-guarded rules as follows. Let τ∗
be a rule in P ′′ obtained from a rule Ri(z̄, x̄) ← Si

1(z̄, ȳ1), . . . , S
i
n(z̄, ȳn) by replacing

atoms with (translated) bodies of constrains using a variable mapping α. Pick j such
that Sj is extensional. Such a j exists, because Ri(z̄, x̄) ← Si

1(z̄, ȳ1), . . . , S
i
n(z̄, ȳn) was

itself obtained from a rule R(x̄) ← S1(ȳ1), . . . , Sn(ȳn) in P ; and all rules in P are
frontier-guarded. Then Si

j(z̄, α(ȳj)) is in body(τ∗), since there is no constraint for any
extensional Sj-atom. Further, the head of τ∗ is Ri(z̄, α(x̄)), and every variable in α(x̄)
appears in α(ȳj). The latter holds because we know that every variable of x̄ appears in ȳj
since Sj(ȳj) is the guard atom of the original rule in P . Recall that, by construction, the
variables in z̄ do not occur elsewhere, i.e. they only occur as part of z̄.

Then, for each hash directive (Sj , i, ū) ∈ Z, a frontier-guarded rule can be constructed
by replacing every occurrence of z̄ in τ∗ with α(ȳj [ū]), and adding the extensional atom
Sj(α(ȳj)) to body(τ∗). Note that this corresponds to inlining the rule Si

j(z̄
′, ȳ′)← Sj(ȳ

′)
with z̄′ = ȳ′[ū] constructed for (Sj , i, ū) into τ∗. In particular, the new head is then

Page 112

I Parallel-Correctness

Ri(α(ȳj [ū]), α(x̄)). All its variables occur in the guard atom Sj(α(ȳj)). Hence, the new
rule is frontier-guarded. The rule τ∗ is then replaced with all frontier-guarded rules
obtained in this fashion.

A rule Out(x̄)← Outi(z̄, x̄) can be replaced by frontier-guarded rules as in the proof
for Lemma 4.2.19. That is, it is replaced with the set of rules Out(x̄′)← body(τ) for all
frontier-guarded rules τ with a head of the form Outi(z̄′, x̄′). �

Towards the end of this section, let us briefly point out why our construction for
Lemma 4.2.22 fails for monadic Datalog queries by means of an example.

Example 4.2.25. Consider the monadic Datalog query Q = (P,Out) with the following
two rules.

R(x)← S(x), N(x) Out(x)← T (y), N(y), R(x)

The extensional symbols of P are S, T and N . Therefore, P is not frontier-guarded
because the rule for the output symbol Out is not.

The set modest Σ of data-moving distribution constraints consists of the single con-
straint

R(x′)@κ,N(y′)@λ→ R(x′)@λ.

We prove in Section 4.2.4 that Q and Σ belong to classes which enjoy the polynomial
communication property, because, in a nutshell, the atoms R(x′)@κ and N(y′)@λ do
not share any variable. In this case, it also follows easily from the observation that all
atoms in the body, except for the atom R(x′)@κ, which witnesses the constraint being
data-moving, are extensional.

Finally, the hash policy scheme is just Z = {(S, 1, (1)), (T, 1, (1)), (N, 1, (1))}.
Following the construction in the proof for Lemma 4.2.22, the Datalog program P ′′′

has the following rules.

S1(x, x)← S(x) R1(z, x)← S1(z, x), N1(z, x)

T 1(x, x)← T (x) Out1(z, x)← T 1(z, y), N1(z, y), R1(z, x)

N1(x, x)← N(x, x) Out(x)← Out1(z, x)

The Datalog program P ′′ has the additional rule

τ : Out1(z, x′)← T 1(z, y), N1(z, y), N1(z, y′), R1(z′, x′)

that results from replacing R1(z, x) in Out1(z, x)← T 1(z, y), N1(z, y), R1(z, x) with the
(translated) body of the constraint.8 We claim that the last step of the construction
does not yield a frontier-guarded Datalog query equivalent to Q′′ = (P ′′,Out). For
this purpose, consider the global database G = {S(1), T (2), N(1), N(2)}. We have that
Out1(2, 1) ∈ P ′′(G). A proof tree for Out1(2, 1) is illustrated in Figure 4.1. Its root node

8It is not hard to see that this additional rule suffices to obtain the desired query that simulates the
distributed evaluation. In fact, to derive an output fact it suffices to send the corresponding R-fact
once to a server with a T - and a matching N -fact.

Page 113

Chapter 4 I Distributed Evaluation of Datalog

Out1(2, 1)

T 1(2, 2)

T (2)

N1(2, 2)

N(2)

N1(2, 2)

N(2)

R1(1, 1)

S1(1, 1)

S(1)

N1(1, 1)

N(1)

Figure 4.1: Proof tree for Out1(2, 1) with respect to the Datalog program P ′′ and the
database G from Example 4.2.25.

is witnessed by τ . No matter which extensional atom is added to body(τ), the resulting
rule cannot derive Out1(2, 1) because there is no extensional fact in G containing the
values 2 and 1.

Lastly, it is not hard to see that just removing τ is not an option either. Indeed, the
proof tree in Figure 4.1 can easily be extended to a proof tree for Out(1), thanks to the
rule Out(x)← Out1(z, x); and this is the only possible proof tree for Out(1) with respect
to P ′′ and G. C

4.2.4 Modest Communication Policies

In this section we define a syntactical restriction of data-moving distribution constraints
that guarantees the polynomial communication property, even in combination with the
class DL of all Datalog queries. The restriction is twofold.

First, we require that to test whether a fact R(ā) should be communicated from a server
to another server, no other domain values than those in ā need to be communicated.9 In
particular, for a constraint with only two server variables κ and λ, for the sending and
the receiving server, we want to enable κ and λ to test “their” atoms independently, only
communicating the domain values in ā. This leads to the following definition.

Definition 4.2.26 (Guarded Communication). A data-moving distribution constraint σ
has guarded communication if all distributed atoms A@κ,B@λ ∈ body(σ) with κ 6= λ,
satisfy vars(A) ∩ vars(B) ⊆ vars(head(σ)).

Secondly, we require that to test whether a fact R(ā) should be communicated, every
server can only consult facts it computed itself; except for R(ā), of course. As a
consequence, computation-free proof trees will adhere to a kind of linearity conditions.
Formally, this part of the restriction is not imposed on single distribution constraints but
rather on sets of data-moving distribution constraints.

Definition 4.2.27 (Modest). A set Σ of data-moving distribution constraints is modest
if all constraints in Σ have guarded communication and, for every σ ∈ Σ, there is exactly

9It may still be required to send bits indicating which servers can send the fact or contains facts required
to satisfy the body of a constraint.

Page 114

I Parallel-Correctness

one distributed atom10 in body(σ) whose relation symbol occurs in the head of some
constraint in Σ.

By Hash-MConstraints we denote the class of families F(Z,Σ), where Z is a hash policy
scheme and Σ is a modest set of data-moving distribution constraints.

We can now state the main result of this section.

Theorem 4.2.28. PC(FGDL, Hash-MConstraints) is 2ExpTime-complete. The lower
bound even holds for instances with a primitive hash policy scheme.

The lower bound will be implied by (the proof for) Proposition 4.2.16. The first
step towards a proof for the upper bound is to show that modest sets of data-moving
distribution constraints indeed have the polynomial communication property.

Lemma 4.2.29. The class DL of Datalog queries and the class of modest sets of
data-moving distribution constraints have the polynomial communication property.

Proof. Let Q = (P,Out) be some Datalog query, Σ be a modest set of data-moving
distribution constraints, and D be a distributed database.

Let now R(ā)@k be a fact that has a (partial) computation-free proof tree T with
respect to P Σ, and D. It suffices to show that there is such a partial proof tree for
R(ā)@k that has size polynomial in ‖Q‖ and ‖Σ‖.

Thanks to Σ being modest, the branching structure of T is almost linear: Each inner
node has at most one child node that is an inner node, every other child node is a leaf.
Let v0, . . . , vm be the nodes on the unique path from a leaf v0 to the root vm = root(T).
Since all constraints in Σ are data-moving, all nodes vi are labelled with some fact
R(ā)@`i for some server `i. That is, the labels of v0, . . . , vm form a sequence of head facts
R(ā)@`1, . . . , R(ā)@`m with `m = k. Furthermore, let, for each i > 0, σi be the constraint
and ϑi be the network aware valuation which are the witnesses for the node vi.

We argue that if m > |Σ|, then there is a partial proof tree for R(ā)@k of smaller
depth. To this end, suppose m > |Σ| holds. Then there are i, j with 0 < i < j such
that σi = σj . Let R(x̄)@κ be the head of σi and let R(x̄)@λ be the distributed atom in
body(σi) witnessing that σi is data-moving. Note that we have ϑi(R(x̄)@κ) = R(ā)@`i
and ϑj(R(x̄)@κ) = R(ā)@`j . That is, ϑi and ϑj agree on all head variables x̄. Further,
we can assume that κ 6= λ, because otherwise, vj could just be replaced with vj−1.

Let ϑ be the network aware valuation that is defined as ϑj for the variables occurring
in head(σi) or in a distributed atom in body(σi) with server variable κ. In particular,
ϑ(κ) = ϑj(κ). For any other (server) variable ϑ is defined as ϑi. In particular, ϑ(λ) =
ϑi(λ). The valuation ϑ is well-defined because (1) every variable that occurs in an atom
with server variable κ and in another atom with another server variable is a head variable
since σi has guarded communication; and (2) ϑi and ϑj agree on all head variables x̄.

Given the valuation ϑ the nodes vi, . . . , vj can be merged together into a new node v
as follows. The new node v is labelled with ϑ(R(x̄)@κ) = R(ā)@`j . It has the children
of vj with labels S(b̄)@`j induced by distributed atoms with server variable κ and the
10Clearly, this is the atom A@λ required by the definition of data-moving.

Page 115

Chapter 4 I Distributed Evaluation of Datalog

children of vi labelled with facts which are not induced by an atom with server variable κ.
Since ϑ agrees with ϑj on the former atoms and with ϑi on the latter by construction, σi
and ϑ are witnesses for the proof tree property of v. Thus, the new tree is again a partial
proof tree.

Thus, if a fact has a partial computation-free proof tree, it has one of depth at most
|Σ|+ 1. Clearly, such a tree has size polynomial in ‖Q‖ and ‖Σ‖. �

Together, Lemmas 4.2.22 and 4.2.29 allow us to reduce the parallel-correctness problem
to the containment problem for frontier-guarded Datalog queries.

Proof of Theorem 4.2.28. The proof is almost identical to the proof of Proposi-
tion 4.2.16. We first argue that PC(FGDL, Hash-MConstraints) ∈ 2ExpTime. Let Q be
a frontier-guarded Datalog query, Z be a hash policy scheme, and Σ be a modest set of
data-moving distribution constraints.

Thanks to Lemmas 4.2.22 and 4.2.29 there is a frontier-guarded Datalog query Q′

such that, for every global database G, we have that Q′(G) = [Q, γ](δ(G)) for some
(δ, γ) ∈ F(Z,Σ) with δ scattering G.

We claim that Q is parallel-correct w.r.t. F(Z,Σ) if and only if Q v Q′ holds. Suppose
Q v Q′ holds and let G be a global database. Let (δ, γ) be the policy pair guaranteed by
Lemma 4.2.22 such that δ scatters G and [Q, γ](δ(G)) = Q′(G) holds. By assumption
we have Q(G) ⊆ Q′(G), and, thus, Q(G) ⊆ [Q, γ](δ(G)). Thanks to Lemma 4.2.6 we can
conclude that Q is parallel-correct w.r.t. F(Z,Σ).

Conversely, suppose Q is parallel-correct w.r.t. F(Z,Σ). Let G be a global database
and (δ, γ) be the policy pair satisfying [Q, γ](δ(G)) = Q′(G) due to Lemma 4.2.22.
Since Q is parallel-correct we have Q(G) = [Q, γ](δ(G)). Together we have, in particular,
Q(G) ⊆ Q′(G). We can conclude that Q v Q′ holds.

All in all, parallel-correctness of Q can thus be decided by testing Q v Q′.
The upper bound for the complexity of the parallel-correctness now follows in the same

way as in the proof for Proposition 4.2.16 with the help of Theorem 4.2.20.
The 2ExpTime-hardness of PC(FGDL, Hash-MConstraints) is implied by the lower

bound proof of Proposition 4.2.16. Indeed, the set Σ of data-moving distribution
constraints constructed in the proof consists of a single constraint, namely

Out2(x̄)@κ,E(x̄)@λ→ Out2(x̄)@λ.

The constraint has guarded communication because all variables from its body also
appear in its head. And, since Out2 is the only relation symbol occurring in the head of
a constraint, the set Σ is modest. �

4.2.5 The Non-Transitive Communication Setting

In this section we consider a variant of our setting where the polynomial communication
property is ensured by the (distributed) evaluation semantics. In the non-transitive
communication setting each server can only consult facts derived in the computation phase
on the server itself and extensional facts to determine whether a fact is communicated. In

Page 116

I Parallel-Correctness

particular, a server can only send facts it derived itself through a local computation. For
hash-based communication policies this means that, in the non-transitive communication
setting, the intensional atoms in the body of a distribution constraint have to be satisfied
by facts derived locally on the server their server variable is mapped to.

For frontier-guarded Datalog queries and sets of data-moving distribution constraints,
we will obtain the expected result, namely that parallel-correctness for these classes is
2ExpTime-complete in the non-transitive communication setting. Interestingly, however,
we will see that parallel-correctness for monadic Datalog queries remains undecidable in
the non-transitive communication setting.

Before we state this formally, we first define the semantics of the non-transitive
communication setting. We use adorned relation symbols to do so within our framework
and standard semantics defined in Section 4.1. In general, an adorned relation symbol
is a relation symbol augmented by labels [cf., e.g., GMT13]. For our purposes, we only
require one label that indicates whether a fact has been derived in a local computation.
Consequently, a fact whose relation symbol does not have this label has then been
received from another server. For a relation symbol R we write R• for the adorned
symbol augmented by this label. Furthermore, for an atom A = R(x̄), we write A•

for R•(x̄). We call R•-facts and R•-atoms adorned facts and atoms, respectively. The
semantics of the non-transitive communication setting are defined as follows.

Definition? 4.2.30. Let Q = (P,Out) be a Datalog query and Σ a set of data-moving
distribution constraints. The non-transitive translation of the query Q is the Datalog
query Q• = (P •,Out) where P • is the Datalog program that consists of all rules of P ,
and, for each rule τ ∈ P , has an additional adorned rule head(τ)• ← body(τ).

The non-transitive translation of a data-moving distribution constraint σ ∈ Σ of the
form

R(x̄)@κ,R1(ȳ1)@κ1, . . . , Rm(ȳm)@κm, E1(z̄1)@µ1, . . . , En(z̄n)@µn → R(x̄)@λ

with intensional symbols R,R1, . . . , Rm, and extensional symbols E1, . . . , En is the data-
moving distribution constraint σ• defined by

R(x̄)@κ,R•(x̄)@κ,R•
1(ȳ1)@κ1, . . . , R

•
m(ȳm)@κm, E1(z̄1)@µ1, . . . , En(z̄n)@µn → R(x̄)@λ.

The non-transitive translation of the set Σ is then Σ• = {σ• | σ ∈ σ}.

Note that a non-transitive translation P • can derive every fact that P can derive,
since it has all rules of P . Additionally, it derives, for every fact that P derives, the
corresponding adorned fact. Over a global database a query Q is thus equivalent to its
non-transitive translation Q•.

Thanks to the adorned atoms in the body of a non-transitive translation σ• and the
head of σ• not being adorned, it is ensured that the body is indeed satisfied by facts
derived locally. Note that σ• still has the atom R(x̄)@κ to comply with the definition of
data-moving. However, since R•(x̄)@κ is also present, it is ensured that these R-facts
can be derived locally, too.

Page 117

Chapter 4 I Distributed Evaluation of Datalog

Let Q be a Datalog query, Z be a hash policy scheme, Σ be a set of data-moving
distribution constraints, and γΣ,N be a communication policy for some network N . We
define the parallel query result of a Datalog query Q on a distributed database D according
to γΣ,N in the non-transitive communication setting as [Q•, γΣ•,N](D).

Accordingly, we say that Q is parallel-correct in the non-transitive communication
setting w.r.t. a policy pair (δZ,H , γΣ,N) ∈ F(Z,Σ) if [Q•, γΣ•,N](D) = Q(G) holds for every
distributed database D = (G, I) that complies with δZ,H . Observe that [Q•, γΣ•,N](D) =
Q(G) holds if and only if [Q•, γΣ•,N](D) = Q•(G) holds, because Q and Q• are equivalent
(over global databases). Hence, Q is parallel-correct w.r.t. a family F(Z,Σ) in the
non-transitive communication setting if Q• is parallel-correct w.r.t. F(Z,Σ•).

We slightly abuse notation and write “PC(Q, Hash-Constraints) in the non-transitive
communication setting” for the decision problem that asks, given a query Q ∈ Q, a
hash policy scheme Z, and a set Σ of data-moving distribution constraints, whether Q is
parallel-correct w.r.t. F(Z,Σ) in the non-transitive communication setting.

As for Datalog queries and policies in general, we always assume that non-transitive
translations of queries Q and sets Σ of data-moving distribution constraint “match”. In
particular, adorned symbols in Q• do not occur in Σ and adorned symbols in Σ• not
in Q.

The main result of this section concerning frontier-guarded Datalog queries is the
following.

Theorem 4.2.31. In the non-transitive communication setting the parallel-correctness
problem PC(FGDL, Hash-Constraints) is 2ExpTime-complete. The lower bound even
holds for instances with a primitive hash policy scheme.

The proof approach is the same as for modest sets of data-moving distribution con-
straints. We first show that non-transitive translation Q• and Σ• have the polynomial
communication property.

Lemma 4.2.32. The class of Datalog queries Q• and sets Σ• of data-moving distribution
constraints which are non-transitive translations have the polynomial communication
property.

Proof. Let Q• = (P •,Out) be a Datalog query, and Σ• a set of data-moving distribution
constraints which are the non-transitive translations of a Datalog query Q and set Σ.
Furthermore, let T be a proof tree over some network N for some fact with respect to P •,
and Σ•.

Consider a computation-free subtree of T whose root node v is labelled with some
fact R(ā)@k and witnessed by a constraint σ•. By Definition 4.2.30 body(σ•) consists
of two atoms of the form R(x̄)@λ and R•(x̄)@λ, and (possibly) further atoms with
extensional or adorned relations symbols. Consequently, all but one child node of v are
labelled with extensional or adorned facts. Since no constraint in Σ• has a head with an
adorned relation symbol, all child nodes labelled with adorned facts are witnessed by
Datalog rules.

The only exception is possibly the child node w for R(x̄)@λ labelled with R(ā)@` for
some ` ∈ N . Observe that there also is a node w′ labelled with R•(x̄)@λ because R•(x̄)@λ

Page 118

I Parallel-Correctness

occurs in the body of the constraint σ•. Then the subtree below w can be replaced with
the subtree below w′. Furthermore, w can then be witnessed by a Datalog rule (and the
same valuation). This is true since w′ is witnessed by a Datalog rule with a head of the
form R•(ȳ), and by Definition 4.2.30 there then also is a Datalog rule with the same
body and head R(ȳ).

Applying this procedure iteratively yields a proof tree whose computation-free subtrees
have depth at most 1. In particular, the size of such a computation-free subtree is
polynomial in ‖Q•‖, and ‖Σ•‖. �

Given Lemma 4.2.32, Theorem 4.2.31 can now be proved analogously to Theorem 4.2.28.

Proof of Theorem 4.2.31. As usual, we first argue that, in the non-transitive com-
munication setting, the parallel-correctness problem PC(FGDL, Hash-Constraints) is in
2ExpTime. To this end, let Q be a frontier-guarded Datalog query, Z be a hash policy
scheme, and Σ be a set of data-moving distribution constraints.

By definition, deciding whether Q is parallel-correct w.r.t. F(Z,Σ) in the non-transitive
communication setting boils down to testing whether the non-transitive translation Q•

is parallel-correct w.r.t. F(Z,Σ•) (in our standard setting). Due to Lemma 4.2.32 non-
transitive translations have the polynomial communication property. Moreover, Q• is
frontier-guarded because the body and the head variables of any rule of Q• are the same
as for some rule of Q. Thus, there is a frontier-guarded Datalog query Q′ such that, for
every global database G, we have that Q′(G) = [Q, γ](δ(G)) for some (δ, γ) ∈ F(Z,Σ•)
with δ scattering G.

We then have that Q• is parallel-correct w.r.t. F(Z,Σ•) if and only if Q• v Q′

holds. The proof is exactly the same as in Theorem 4.2.28 (and Proposition 4.2.16),
as is the complexity analysis for testing Q• v Q′ in doubly exponential time utilizing
Theorem 4.2.20.

The 2ExpTime-hardness is also implied by the reduction from the containment problem
for the lower bound proof for Proposition 4.2.16. To see this, recall that the constructed
Datalog query is Q = (P,Out) where

P = P ′
1 ∪ P ′

2 ∪
{

Out(x̄)← Out1(x̄), E(x̄)
}
∪
{

Out(x̄)← Out2(x̄), E(x̄)
}
,

and neither the output symbol Out nor the extensional symbol E occur in the Datalog
programs P ′

1 and P ′
2. Furthermore, Out1 occurs only in P ′

1, Out2 only in P ′
2, and the

sets idb(P ′
1) and idb(P ′

2) of intensional symbols are disjoint. The constructed set of
data-moving distribution constraints consists of a single distribution constraint σ, namely

σ : Out2(x̄)@κ,E(x̄)@λ→ Out2(x̄)@λ.

Intuitively, the non-transitive translations Q• and σ• of Q and σ do not change the
outcome of distributed evaluations. More precisely, we claim that [Q•, γ{σ•},N](D) =
[Q, γ{σ},N](D) holds for every network N and distributed database D over N . Then Q
and σ can be replaced with Q• and σ• in the lower bound proof for Proposition 4.2.16,
yielding a reduction from the containment problem for frontier-guarded Datalog queries,

Page 119

Chapter 4 I Distributed Evaluation of Datalog

which is 2ExpTime-hard, to the parallel-correctness problem in the non-transitive com-
munication setting.

It suffices to show that, if there is a proof tree for a fact R(ā)@` with respect to P
and {σ}, then there is also a proof tree for R(ā)@` with respect to P • and {σ•}. The
proof is by induction on the structure of a proof tree T with respect to P and {σ} with a
slightly stronger induction hypothesis: We require that if the root node of the tree with
respect to P and {σ} is witnessed by a Datalog rule, then so is the root node of the tree
with respect to P • and {σ•}.

For leaves there is nothing to show. For nodes witnessed by a Datalog rule the claim is
immediate by the induction hypothesis, and because we have P ⊆ P • by Definition 4.2.30.

It remains the case that a node v is witnessed by σ. Then v is labelled with Out2(ā)@`,
and has two children, one of which is labelled with E(ā)@`. Moreover, since σ is data-
moving, there is a node below v which is labelled with Out2(ā)@k for some k, and
witnessed by a Datalog rule. By the induction hypothesis, there is then also a proof tree
for Out2(ā)@k with respect to P • and {σ•}. The same is trivially true for Out2(ā)@k
since it is extensional. Furthermore, there then is a proof tree for Out•2(ā)@k because P •

has a rule head(τ)• ← body(τ) for every rule τ ∈ P , and we can assume that the root
node of the tree for Out2(ā)@k is indeed witnessed by a rule, thanks to the induction
hypothesis.

It is now straightforward to combine the proof trees for Out2(ā)@k, Out•2(ā)@k, and
E(ā)@` into a proof tree for Out2(ā)@` whose root node is witnessed by

σ• : Out2(x̄)@κ,Out•2(x̄)@κ,E(x̄)@λ→ Out2(x̄)@λ.

Overall, we can conclude that, in the non-transitive communication setting, the parallel-
correctness problem PC(FGDL, Hash-Constraints) is 2ExpTime-complete. �

We now turn to parallel-correctness for monadic Datalog queries. As mentioned
earlier, the parallel-correctness problem for monadic Datalog query in the non-transitive
communication setting is undecidable.

Theorem? 4.2.33. In the non-transitive communication setting the parallel-correctness
problem PC(MDL, Hash-Constraints) is undecidable.

Let us emphasize that Theorem 4.2.31 and Theorem 4.2.33 together imply that it is,
in general, not possible to transform a monadic Datalog query into a frontier-guarded
Datalog query that yields the same parallel query results.

The reason for this drastic difference to the parallel-correctness problem for frontier-
guarded Datalog queries is actually quite simple. It is due to “copy rules” that have the
form R(x)← R(x) and allow to circumvent the restricted semantics of the non-transitive
communication setting (cf. Example 4.1.2). In particular, such copy rules can be added to
the monadic Datalog query constructed in the undecidability proof for Theorem 4.2.12.

The following result makes precise how copy rules can be used to circumvent the
restricted semantics of the non-transitive communication setting.

Page 120

I Parallel-Correctness

Lemma 4.2.34. For every monadic Datalog query Q′ there is an equivalent monadic
Datalog query Q such that [Q•, γΣ•,N](D) = [Q′, γΣ,N](D) holds for every set Σ of
data-moving distribution constraints, network N , and distributed database D over N .

Proof. Let Q′ = (P ′,Out) be a monadic Datalog query. The Datalog program P of the
monadic Datalog query Q = (P,Out) consists of all rules in P ′ and rules R(x)← R(x)
for all R ∈ idb(P ′).

We first observe that Q′ and Q are equivalent. In fact, every proof tree with respect to
Q′ is a proof tree with respect to Q, since we have P ′ ⊆ P . Conversely, nodes witnessed
by a rule R(x)← R(x) in a proof tree with respect to Q, can be iteratively replaced by
their (single) child node to yield a proof tree with respect to Q′.

Now, let Σ be a set of data-moving distribution constraints, N be a network, and D
a distributed database over N . Using the same reasoning as above we obtain that
[Q, γΣ,N](D) = [Q′, γΣ,N](D) holds. Thus, it suffices to prove

[Q•, γΣ•,N](D) = [Q, γΣ,N](D).

For [Q•, γΣ•,N](D) ⊆ [Q, γΣ,N](D), we observe that every proof tree with respect to P •

and Σ• can be turned into a proof tree with respect to P and Σ by removing the nodes for
the atoms R(x̄)@κ occurring in the body of constraints σ• to comply with the definition
of data-moving, and then replacing every adorned symbol R• with R.

For the inclusion [Q•, γΣ•,N](D) ⊇ [Q, γΣ,N](D), consider a proof tree with respect
to P and Σ. We show by structural induction over the tree structure how to obtain a
proof tree with respect to P • and Σ•. For leaves there is nothing to show, since they
are just labelled with extensional facts. Similarly, nodes whose proof tree property is
witnessed by a Datalog rule can just be inherited, because we have P ⊆ P • and there
are proof trees for all children thanks to the induction hypothesis.

Lastly, consider the case that the proof tree property of a node v is witnessed by a
constraint σ from Σ. Let w1, . . . , wm be the children of v, and R1(ā1)@k1, . . . , Rn(ān)@kn
their labels. By the induction hypothesis there are then proof trees for the facts
R1(ā1)@k1, . . . , Rn(ān)@kn with respect to P • and Σ•. Without loss of generality, we
can assume that R1, . . . , Rm for some m ≤ n are intensional and Rm+1, . . . , Rn are
extensional symbols. Moreover, we can assume that R1 is the symbol occurring in the
head of the constraint σ.

Since P contains a rule Ri(x) ← Ri(x) for every i ∈ [1,m], the non-transitive trans-
lation P • contains rules R•

i (x)← Ri(x) for all i ∈ [1,m]. Thus, it is straightforward to
obtain proof trees for R•

1(ā1)@k1, . . . , R
•
m(ām)@km.

A proof tree for fact(v) with respect to P • and Σ• can now be assembled as follows.
The root is labelled with fact(v). Its children are the root nodes for the trees for the facts

R1(ā1)@k1, R
•
1(ā1)@k1, . . . , R

•
m(ām)@km, Rm+1(ām+1)@km+1, . . . , Rn(ān)@kn.

Since the proof tree property of v is witnessed by σ, it follows by Definition 4.2.30 that the
proof tree property of the new root node is witnessed by σ• (and the same valuation). �

Page 121

Chapter 4 I Distributed Evaluation of Datalog

It remains to conclude that the parallel-correctness problem for monadic Datalog
queries in the non-transitive communication setting is undecidable.

Proof of Theorem 4.2.33. Lemma 4.2.34 yields a straightforward reduction from the
parallel-correctness problem PC(MDL, Hash-Constraints) to its counterpart in the non-
transitive communication setting. Since the former is undecidable due to Theorem 4.2.12,
the same is true for PC(MDL, Hash-Constraints) in the non-transitive communication
setting. �

4.3 The Containment Problem for Frontier-Guarded Datalog

In this section we prove Theorem 4.2.20 which states an upper bound for the complexity
of the containment problem Cont(DL, FGDL). Recall that we require the upper bound
to be at most singly exponential in the number of rules of the two given Datalog queries.
This bound is, however, only implicit in the proof11 given by Bourhis et al. [BKR15a,
Theorem 7]. Another reason why we provide a proof here is, that we will build upon the
construction used in the proof to obtain an upper bound for the parallel-boundedness
problem in Section 4.4.

We start with an outline of the proof approach. Each Datalog query Q = (P,Out)
induces a (possibly infinite) set U(Q) of conjunctive queries in a natural way by finite
“unwindings” of P . It is well-known that for two Datalog queries Q,Q′ it holds Q v Q′ if
and only if each conjunctive query from U(Q) is contained in some conjunctive query
from U(Q′).12 This is in turn equivalent to the existence of a homomorphisms from every
query in U(Q′) to some query from U(Q) [cf. CM77, Proof of Lemma 13].

The proof idea from Bourhis et al. [BKR15a], going back to Cosmadakis et al. [Cos+88],
is to use alternating two-way tree automata to test the existence of such homomorphisms.
This approach requires to encode conjunctive queries by trees over a finite alphabet, even
though the number of variables in the queries from U(Q) and U(Q′) can be unlimited.

In the following, we define symbolic proof trees to represent (and formally define) the
queries in U(Q) and U(Q′). We note that our definition does not immediately yield a
finite alphabet; we will discuss that this can be achieved afterwards.

Symbolic Proof Trees. A rule application for a Datalog rule τ is a variable substitution
α : vars(τ) → vars. The rule instantiation α(τ) of τ induced by α is the (query) rule
α(head(τ))← α(body(τ)). Clearly, α(τ) is frontier-guarded, if τ is frontier-guarded.

Definition 4.3.1 (Symbolic Proof Tree). A symbolic proof tree for a Datalog program P
is a rooted tree T in which every node v is labelled with a rule instantiation, denoted
head(v)← body(v), of some rule of P , and which has the following properties for every
node v.
11A more detailed proof is also available in an extended technical report [BKR15b, Theorem 9].
12This is, for instance, stated for finite sets of conjunctive queries by Sagiv and Yannakakis [SY80,

Theorem 3], but their proof also applies to countable unions.

Page 122

I The Containment Problem for Frontier-Guarded Datalog

(a) The children of v are labelled with rules for the intensional atoms of body(v):{
R(x̄) ∈ body(v) | R ∈ idb(P)

}
=
{

head(w) | w ∈ childrenT (v)
}
.

(b) All variables that occur in body(v) but not in head(v), do not occur in the label of
the parent of v.

We note that, in particular, for every leaf v of T , body(v) only contains extensional atoms.
A symbolic proof tree for a query Q = (P,Out) is a symbolic proof tree for P whose root
node is labelled with a rule for Out.

Let v1, v2 be two nodes of a symbolic proof tree for some Datalog program P , and v
their lowest common ancestor. Then v1, v2 are x-connected if the variable x occurs in
head(w) for every node v on the shortest path between v1 and v2, except possibly v.

With each symbolic proof tree T we associate a conjunctive query q(T) which is
obtained from T as follows. For all variables x and maximal x-connected components V ,
all occurrences of x in V are replaced by a distinct fresh variable xV . Then q(T) is the
conjunctive query with head head(root(T)) and whose body consists of all extensional
atoms occurring in T , after the variable replacement. Observe that different, unconnected
occurrences of the same variable in a symbolic proof tree hence represent different
variables in the associated conjunctive query.

Example 4.3.2. Consider the Datalog query Q = (P,Out) where P consists of the
following rules.

R(x1, x2)← E(x1, x2) Out(x2)← S(x1), R(x1, x2)

R(x1, x2)← R(x1, x3), R(x3, x2)

It asks for all nodes reachable from a starting node in S via edges in E. Figure 4.2 shows
a symbolic proof tree T for Q. To obtain an associated conjunctive query q(T) it suffices
to replace all occurrences of x4 in the right subtree with a fresh variable x′4. The rule
defining the conjunctive query is then

Out(x2)← S(x1), E(x1, x4), E(x4, x3), E(x3, x
′
4), E(x′4, x2). C

Further on, we associate with a set T of symbolic proof trees a (possibly infinite)
set q(T) of conjunctive queries via q(T) = {q(T) | T ∈ T }.

For a Datalog query Q we denote by T ?
Q the set of all symbolic proof trees for Q. Each

subset T ⊆ T ?
Q induces a query that maps each global database G to the query result⋃

T∈T q(T)(G).13 Slightly abusing notation we denote this query also by q(T).
We believe the following to be folklore. Nevertheless we will provide a proof for the

sake of completeness.
13This definition indeed yields a well-defined query, because, for all T ∈ T ?

Q , q(T)(G) is a set of Out-facts.
Hence, a union of such results forms a relation.

Page 123

Chapter 4 I Distributed Evaluation of Datalog

Out(x2)← S(x1), R(x1, x2)

R(x1, x2)← R(x1, x3), R(x3, x2)

R(x1, x3)← R(x1, x4), R(x4, x3)

R(x1, x4)← E(x1, x4)

R(x4, x3)← E(x4, x3)

R(x3, x2)← R(x3, x4), R(x4, x2)

R(x3, x4)← E(x3, x4) R(x4, x2)← E(x4, x2)

Figure 4.2: Symbolic proof tree for the Datalog query defined in Example 4.3.2. There
are two maximal x4-connected components, namely the left and the right
subtree, respectively.

Lemma 4.3.3 (Folklore). Every Datalog query Q is equivalent to the query q(T ?
Q).

Proof. Let Q = (P,Out) be a Datalog query. We first show Q v q(T ?
Q). To this end,

let G be a global database, and Out(ā) ∈ Q(G). Then there is a proof tree for Out(ā)
with respect to P and G. This proof tree can be transformed into a symbolic proof tree
in two steps as follows. We introduce, for every domain value a that occurs in G, a
variables xa. For every inner node v, let τv and ϑv be the Datalog rule and the valuation
witnessing v. Let αv be the application that maps each variable y ∈ vars(τv) to xϑ(y).
Changing the label of every inner node to αv(τv) and removing all leaves (originally
labelled with extensional facts), yields a tree that satisfies Property (a) of Definition 4.3.1,
but not necessarily Property (b). Property (b) can be established in a second step by
replacing variables in a top-down fashion: If a variable xa occurs in some body(v) and the
label of the parent of v, but not in head(v), it is replaced with a fresh variable in body(v)
and in the labels of all nodes below v.

Let now T be the symbolic proof tree obtained this way, and ϑ be the valuation that
maps a variable x to a, if x = xa or x is a variable introduced as a replacement for xa in
the second step. Then every atom in q(T) is mapped to an extensional fact in the original
proof tree for Out(ā) and the head of q(T) is mapped to Out(ā). Thus, Out(ā) ∈ q(T ?

Q).
For the inclusion q(T ?

Q) v Q, consider a fact Out(ā) ∈ q(T)(G) for some T ∈ T ?
Q and

global database G. Then there is a valuation ϑ that maps the head of q(T)(G) to Out(ā)
and its body into G. Let T ′ be the tree obtained by replacing variables as required by
the definition of q(T). Then every variable of q(T) appears in some label of T ′. The
converse is true as well: Thanks to Property (a) of symbolic proof trees and Datalog
rules being safe, every variable occurs in some extensional atom in some label of T ′; and,
hence, in q(T).

A proof tree for Out(x̄) can then be obtained by replacing the label of every node v
of T ′ with the fact ϑ(head(v)), and adding a leaf labelled ϑ(A) as child to v, for every
extensional atom in body(v). A node v is then witnessed by τv and ϑ◦αv where τv and αv

are the Datalog rule and the application that induced the original label head(v)← body(v).
We can conclude Out(ā) ∈ Q(G). �

Page 124

I The Containment Problem for Frontier-Guarded Datalog

Query Containment and Automata. As mentioned earlier, T ?
Q cannot be understood as

a tree language over a finite alphabet, because the number of variables that can occur in a
symbolic proof tree is unbounded. However, thanks to the following result by Chaudhuri
and Vardi [CV97], we can restrict attention to symbolic proof trees over a finite pool of
variables.

Lemma 4.3.4 [CV97, Section 5.1]. Let Q be a Datalog query with n variables. For every
T ∈ T ?

Q there is a symbolic proof tree T ′ ∈ T ?
Q with at most 2n variables and q(T ′) ≡ q(T).

For every Datalog query Q = (P,Out) we fix a set {x1, . . . , x2n} of 2n variables,
where n is the number of variables occurring in Q. By TQ we denote the set of all
symbolic proof trees for Q over the set {x1, . . . , x2n} of variables. Thanks to Lemma 4.3.3
and Lemma 4.3.4 we then have Q ≡ q(TQ). Furthermore, TQ is a tree language over
a (finite) alphabet. More precisely, the alphabet ΓP consists of all rule instantiations
α(head(τ))← α(body(τ)) with τ ∈ P and α : vars(τ)→ {x1, . . . , x2n}. The rank of such
a rule instantiation is the number of intensional atoms in its body. Its size is at most
polynomial in the number and length of rules in P and exponential in the number of
variables occurring in P .

The main step of the proof for Theorem 4.2.20 involves the construction of two automata
for the given Datalog queries Q and Q′. The first automaton AQ is simply for TQ. The
second automaton AQvQ′ is for the tree language

TQvQ′ =
{
T ∈ TQ | there is a tree T ′ ∈ TQ′ such that q(T) v q(T ′)

}
.

To decide whether Q v Q′ holds it then suffices to test for TQ ⊆ TQvQ′ . The latter can be
done, as usual, by testing whether the intersection of TQ with the complement of TQvQ′

is empty. Chaudhuri and Vardi [CV97, Proposition 5.9] proved that a non-deterministic
bottom-up tree automaton14 AQ for TQ can be constructed in time and has size at
most (singly) exponential in ‖P‖. Moreover, Bourhis et al. [BKR15a] proved that an
alternating two-way tree automaton AQvQ′ for TQvQ′ can be constructed in exponential
time, if Q′ is frontier-guarded. Thanks to Cosmadakis et al. [Cos+88, Theorem A.1],
a non-deterministic bottom-up tree automaton for the complement of TQvQ′ can then
be obtained in time (and has size) exponential in the size of AQvQ′ ; that is, doubly
exponential in ‖P‖+ ‖P ′‖. Given the two non-deterministic automata, constructing an
automaton for the intersection and checking for emptiness can be done in polynomial
time [cf., e.g., Com+08, Proof of Theorem 1.3.1 and Theorem 1.7.4]. Altogether this
then implies that Q v Q′ can be tested in doubly exponential time.

To obtain the refined complexity bounds stated in Theorem 4.2.20, it suffices to argue
that the size of AQvQ′ is only polynomial in the number of rules of P and P ′ (and at
most singly exponential in the number of variables and size of rules). The automaton
for the complement has then size doubly exponential in the number of variables and
maximal size of a rules in P and P ′, but only singly exponential in the number of rules.
Thus, yielding Theorem 4.2.20.
14For a formal definition of this well-known automata model we refer to [Com+08, Section 1.1].

Page 125

Chapter 4 I Distributed Evaluation of Datalog

Since TQvQ′ is a subset of TQ, the construction of AQvQ′ naturally builds upon AQ.
Therefore, we require that AQ also has polynomial size in the number of Datalog rules.

As mentioned earlier, the following result has been proven by Chaudhuri and Vardi
[CV97], but we state it here with the more refined complexity bounds we need, and, for
convenience, in terms of alternating two-way tree automata.15

Proposition 4.3.5 [CV97, Proposition 5.9]. For every Datalog query Q = (P,Out) there
is an alternating two-way tree automaton AQ recognizing TQ. It has size (and can be
constructed in time)
I exponential in the number of variables in P ;
I polynomial in the maximal size of a rule of P ; and
I polynomial in the number of rules of P .

For a formal definition of alternating two-way tree automata we refer to Section 2.5.2,
and just recall here that the semantics are defined in terms of a two-player games between
the existential player, Morgana, and the universal player, Arthur, on the input trees.

Proof of Proposition 4.3.5. First, we note that the alphabet ΓP satisfies the size
bounds, because its size is at most polynomial in the number and size of rules in P and
exponential in the number of variables occurring in P .

We describe how the automaton AQ verifies Properties (a) and (b) of Definition 4.3.1 in
a top-down fashion by means of the underlying game semantics. At every node v Arthur
either ascertains that one of the properties does not hold, or chooses an intensional atom
from body(v). Morgana then chooses a child w of v and the game continues with the
next round and w being the new node. For Arthur to make his next move, the rule
instantiation of v and the atom he chose are “stored” in the state upon descending from v
to w.

More precisely, AQ has states (τ, A) for every τ ∈ ΓP and intensional atom A from
body(τ). Intuitively, τ is the rule instantiation of the parent node and A the atom Arthur
chose in the previous round. To verify the root node it also has states (ε,Out(x̄)) for all
atoms Out(x̄) occurring as head atom of some rule instantiation in ΓP . Here, ε is just a
placeholder indicates that there is no parent node. Finally, it has an initial state s0, and
a failure state sf .

Initially, Morgana selects a state (ε,Out(x̄)) and the game remains at the root node.
That is, the transition function ρ maps (s0, τ) to the disjunction of all (0, (ε,Out(x̄))), for
all τ . In a state (ε,Out(x̄)) Arthur then checks whether the head of the rule instantiation
of the root node is indeed Out(x̄). If this is not the case, the automaton enters the failure
state. Formally, ρ((ε,Out(x̄)), τ) = (0, sf), for all τ with head(τ) 6= Out(x̄). Similarly,
ρ((τ ′, A), τ) = (0, sf) if head(τ) 6= A or τ and τ ′ witness a violation of Property (b).
15It is not hard to see that the construction can easily be modified to yield a non-deterministic bottom-

up tree automaton. For proving Theorem 4.2.20 it would even be acceptable to convert it into a
non-deterministic bottom-up automaton using the black-box method of Cosmadakis et al. [Cos+88,
Theorem A.2]. This leads to an exponential blow-up, but the resulting automaton is not (asymptoti-
cally) larger than AQvQ′ .

Page 126

I The Containment Problem for Frontier-Guarded Datalog

For any other (τ ′, A) and τ , Arthur selects an intensional atom B ∈ body(τ). As
described above, Morgana then chooses a child node. Her choices can be expressed as
ϕB =

∨
1≤i≤|body(τ)|(i, (τ,B)). Overall, ρ((τ ′, A), τ) is the conjunction of all the ϕB. We

note that, if body(τ) does not contain any intensional atoms, then the game arrived at a
leaf and we have ρ((τ ′, B), τ) = >. Hence, Morgana wins in this case, as intended.

Of course, ρ(sf , τ) = (0, sf), for all τ , and consequently, Morgana cannot win any
more, once Arthur asserts a violation.

We observe that the size of AQ is within the claimed size bounds. Indeed, the number
of states is polynomial in the size of the alphabet ΓP and the maximal size of a rule
in P . This is also the case for the size of any formula in the image of ρ, and hence, the
transition function. �

In the remainder of this section we argue that the following result, which states the
refined complexity bounds for AQvQ′ , does indeed hold.

Proposition 4.3.6 [BKR15a, Implicit in the proof of Theorem 6]. For each Datalog query
Q = (P,Out) and frontier-guarded Datalog query Q′ = (P ′,Out) one can construct an
alternating two-way tree automaton AQvQ′ for TQvQ′ . It has size (and can be constructed
in time)
I exponential in the number of variables in P and P ′;
I exponential in the maximal size of a rule of P and P ′; and
I polynomial in the number of rules of P and P ′.

Bourhis et al. [BKR15a] actually derive Proposition 4.3.6 from their proof of an
analogous result for the more general Guarded Queries (which yields a triple exponential
time upper bound for the containment problem for these queries). We present here a
direct construction of the automaton AQvQ′ for frontier-guarded Datalog queries, thereby
avoiding some technical complications caused by the more general queries.

In the following, we first provide a high-level description of the semantics of AQvQ′ in
terms of the underlying two-player games on symbolic proof trees T (for P).

The Game. Recall that Morgana is the existential player, and Arthur the universal
player. Morgana’s task is to show that T is in TQvQ′ , while Arthur’s task is to challenge
her proof. Initially, Arthur can choose to play the game AQ × T , which he wins if and
only if T /∈ TQ. For this purpose, AQvQ′ has all the states (and transitions) of AQ. If
Arthur decides not to play AQ × T , it is safe to assume that indeed T ∈ TQ holds. In
that case, Morgana builds up a tree T ′ ∈ TQ′ with the intention to prove q(T) v q(T ′).
During the game, both players can traverse the tree T in a two-way fashion but T ′ is
only “traversed” top-down along a single path. To prove q(T) v q(T ′) Morgana attempts
to establish the existence of a homomorphism from q(T ′) to q(T).16

After each round, there is a current node v and a pair (h,A) where h is a partial
mapping h : vars(τ ′)⇀{x1, . . . , x2|vars(P)|} and A ⊆ body(τ ′), for some rule instantiation τ ′

16Recall that q(T) v q(T ′) holds if and only if there is homomorphism from q(T ′) to q(T) [cf. CM77,
Proof of Lemma 13].

Page 127

Chapter 4 I Distributed Evaluation of Datalog

of P ′ with vars(τ ′) ⊆ {y1, . . . , y2|vars(P ′)|}. Intuitively, τ ′ is the label of the (implicit)
current node v′ of T ′, A consists of the atoms of q(T ′) that are induced by τ ′ and still
have to be mapped into q(T), and h is a partial homomorphism that has to be extended
by Morgana to do so. Although, let us emphasize that A might contain intensional atoms.
If Arthur demands from Morgana to prove that such an intensional atom A ∈ A can be
“mapped” into q(T), Morgana replaces A with the body of a rule instantiation for A. In
other words, she appends a node for A to v′ and the game descends to this new node
in T ′.

To be exact, the game is played as follows. In the first round, Morgana chooses a rule
instantiation τ ′ of a rule in P ′ and a (partial) mapping h which maps the head of τ ′ to
the head of root(T), i.e. the head of q(T). Consequently, A = body(τ ′). In all further
rounds, there are three possible cases.

Case 1: |A| > 1. If there is a subset B (A such that vars(B) ∩ vars(A \ B) ⊆ dom(h),
i.e. if h is defined for all variables occurring in B and its complement, Arthur chooses
B or A \ B and the new state is (h′,B) or (h′,A \ B) where h′ is the restriction of h to
vars(B) or vars(A \ B), respectively.

Otherwise, Morgana has to extend the mapping h to another variable x in A as follows.
She has to choose a (possibly new) current node w of the input tree T such that all
nodes on the path from v to w contain all variables17 of dom(h) ∩ vars(A). Then she
has to choose a variable appearing in the label of w for h(x).

Case 2: |A| = 1 and vars(A) 6⊆ dom(h). Morgana needs to extend the mapping h to all
variables in the remaining atom A ∈ A. To this end, she has to choose a node w such
that all nodes on the path from v to w contain all variables of dom(h)∩ vars(A). Then
she has to extend h such that it maps all remaining variables of A to variables at w.

Case 3: |A| = 1 and vars(A) ⊆ dom(h). Morgana chooses a node w such that all nodes
on the path from v to w contain all variables of h(A) where A is the remaining atom
in A.

Case 3.1: A is extensional. Morgana wins if the image h(A) is in the label of w,
otherwise she loses.

Case 3.2: A is intensional. Morgana has to choose a rule instantiation τ ′ of a rule in
P ′ whose head equals A and a guard atom B of τ ′. Then she extends, if necessary,
h to all variables occurring in B (but not in A). If h(B) is not at w, Morgana
loses. Otherwise, the game continues at w with the homomorphism h′ that is the
restriction of h to all variables in B, and the set body(τ ′) of atoms.

Note that Morgana constructs the symbolic proof tree T ′ by choosing new rule instantia-
tions and Arthur determines a path through T ′ by, eventually, choosing an atom of a
rule instantiation. Before we move on to the correctness and formal construction, we
illustrate the game by means of an example.
17Recall that non-connected occurrences of a variable in T correspond to different variables in q(T).

Page 128

I The Containment Problem for Frontier-Guarded Datalog

Out(x2)← S(x1), R(x1, x2)

R(x1, x2)← R(x1, x3), S(x3, x2)

R(x1, x3)← E(x1, x3) R(x3, x2)← E(x3, x2)

Out(y2)← Out(y1), E(y1, y2)

Out(y1)← S(y3), E(y3, y1)

Figure 4.3: Symbolic proof trees T (on the left) and T ′ (on the right) discussed in
Example 4.3.7.

Example 4.3.7. Consider the Datalog query Q = (P,Out) from Example 4.3.2 and the
frontier-guarded Datalog query Q′ = (P ′,Out) where P ′ consists of the following rules.

Out(y2)← S(y1), E(y1, y2) Out(y2)← Out(y1), E(y1, y2)

Furthermore, consider the symbolic proof trees T and T ′ for P and P ′ depicted in
Figure 4.3. Observe that q(T) is Out(x2) ← S(x1), E(x1, x3), E(x3, x2), and q(T ′) is
Out(y2)← E(y1, y2), S(y3), E(y3, y1). Clearly these queries are equivalent and Morgana
should win the game AQvQ′ × T , if she plays with the tree T ′ in mind, thanks to
q(T) v q(T ′).

Indeed, she has a winning strategy, which we describe in the following. Initially,
Morgana chooses the rule instantiation Out(y2)← Out(y1), E(y1, y2) and the mapping
h = {y2 7→ x2}. Thus, A = {Out(y1), E(y1, y2)}.

In the second round, Morgana has to extend h, since Case 1 applies and there is no
atom in A such that h is defined for all variables in that atom. To this end, she can
move to the rightmost leaf of T and extend h by y1 7→ x3.

In the next round, Case 1 applies again but this time Arthur has to choose a (strict)
subset of A. If he chooses {E(y1, y2)} he looses because then Case 3.1 applies and
h(E(y1, y2)) = E(x3, x2) is in the label of the current node, i.e. the rightmost leaf of T .
The other choice is the set {Out(y1)}. The new mapping is then {y1 7→ x3}.

Now Case 3.2 applies and Morgana can move to the leftmost child, choose Out(y1)←
S(y3), E(y3, y1) as τ ′, guard atom E(y3, y1), and extend the mapping by y3 7→ x1. The
new atom set is {S(y3), E(y3, y1)}. She does not loose because E(y3, y1) is mapped to
E(x1, x3) which occurs in the label of the leftmost child.

Arthur can now choose either {S(y3)} or {E(y3, y1)} according to Case 1. In both cases
Morgana wins because Case 3.1 applies: If Arthur chose {E(y3, y1)} she wins immediately.
Otherwise, she can move to the root node of T , since S(y3) is mapped to S(x1). C

Correctness. Let us briefly discuss the correctness. Suppose Morgana has a winning
strategy for the game AQvQ′ × T . Then there is a symbolic proof tree T ′ for Q′ such
that Morgana can map every atom in any label of T ′ to an atom occurring in T , because
Arthur alone determines the path “traversed” in T ′. Moreover, if a variable x occurs in
two atoms A,B in T ′, and these atoms occur in labels of x-connected nodes, Morgana
has to map x for these occurrences of A and B to the same occurrence of a variable in T .

Page 129

Chapter 4 I Distributed Evaluation of Datalog

This is because Arthur will separate those two atoms only, if the mapping is defined
for x, according to Case 1. But then the images of A and B are also connected by the
image of x in T . Thus, by renaming variables in T and T ′ in the same manner as in the
definition of q(T) and q(T ′) yields a homomorphism from q(T ′) to q(T). Therefore, we
have q(T) v q(T ′).

The other way around, any homomorphism from q(T ′) to q(T) for some T ′ induces
a winning strategy for Morgana. A bit more precisely, Morgana maps an occurrence
of a variable x in T ′ to an occurrence of a variable y in T , if x′ is mapped to y′ by the
homomorphism, where x′ and y′ are the variables in q(T ′) and q(T) corresponding to
the occurrences of x and y, respectively.

For Cases 1 and 2 it is crucial that Morgana can map all variables occurring in a rule
instantiation of T ′ to variables in T without leaving the connected component spanned
by the images of already mapped variables. This is indeed ensured because Q′ is frontier-
guarded: Every variable in such a rule instantiation τ that occurs in an intensional
atom R(x̄) in body(τ), also occurs in the guard atom of the label for the child node
for R(x̄). Therefore, all variables of τ occur in extensional atoms connected with respect
to all of these variables in T ′. This is then also the case for the corresponding atoms (and
variables) in q(T ′). The homomorphism guarantees that they can be mapped to q(T),
and thus, to connected occurrences in T .

The Automaton. It remains to show that the game defines indeed the semantics of an
alternating two-way tree automaton AQvQ′ whose size is polynomial in the number of
rules and at most exponential in the maximal size of a rule and the number of variables.

Every pair (h,A) constitutes a state of AQvQ′ where h is a partial mapping h : vars(τ ′)⇀
{x1, . . . , x2|vars(P)|} and A ⊆ body(τ ′), for some rule instantiation τ ′ of P ′ with vars(τ ′) ⊆
{y1, . . . , y2|vars(P ′)|}. Furthermore, AQvQ′ has a distinct initial state s0, a distinct “failure”
state sf , and, as mentioned earlier, all states (and transitions) of AQ.

The number of partial mapping h is exponential in the number of variables occurring
in Q and Q′. The number of possible sets A is exponential in the maximal size of a rule
in Q′, and polynomial in the number of rules of Q′. Therefore, the number of possible
pairs (h,A) is polynomial in the number of rules and at most exponential in the number
of variables and the maximal size of a rule. The same upper bound applies to the states
inherited from AQ, thanks to Proposition 4.3.5.

In the following we define the transition function ρ step by step, following the game
semantics. For a set Φ of formulas we write

∧
Φ and

∨
Φ for the conjunction and

disjunction of all formulas in Φ, respectively. Given a mapping h and set B we write
h|B for the restriction of h to vars(B). Further, we write h[x 7→ y] for the mapping with
domain dom(h) ∪ {x}, h[x 7→ y](x) = y, and h[x 7→ y](x′) = h(x′) for all x′ ∈ dom(h).

Recall that, in the first round, Arthur can decide to play the game AQ × T to prove
that the input tree T is not in TQ, and hence, not in TQvQ′ . If he does not, Morgana
has to choose a rule instantiation τ ′ of a rule in P ′ and a partial mapping such that the
image of head(τ ′) is head(root(T)). This is modelled by the transitions

ρ(s0, τ) = (0, s′0) ∧
∨{

(0, (h, body(τ ′))) | h(head(τ ′)) = head(τ)
}

Page 130

I The Containment Problem for Frontier-Guarded Datalog

for all τ . Here s′0 is the initial state of AQ, and it is implicit that the τ ′ are rule
instantiations, the h are defined for all variables in head(τ ′), and the pairs (h, body(τ ′))
constitute states.18

Next, we model Morgana’s ability to “move” from a node v to another node w, as long
as all variables in h(dom(h)∩A) occur in all nodes along the path. To this end, we observe
the following. Arthur cannot “traverse” T himself, nor can he extend h. He can only force
Morgana to do so. Thus, a situation where not all variables in h(dom(h)∩ vars(A)) occur
at the current node, can only arise if Morgana “cheats” – by violating here movement
restriction or extending h such that h(x) does not occur at the current node, for some
variable x. Therefore, by setting ρ((h,A), τ) = (0, sf) for every state (h,A) and rule
instantiation τ with h(dom(h)∩vars(A)) 6⊆ vars(τ) ensures that Morgana will not “cheat”,
because then she will lose: Recall that sf is the “failure” state and, of course, we have
ρ(sf , τ) = (0, sf) for all τ . With this in mind, we can simply use the following kind of
auxiliary formulas to model Morgana’s movements.

ϕmove((h,A), τ) =
∨{

(i, (h,A)) | i ∈ {−1, 1, . . . , |body(τ)|}
}

Of course, these transitions are only defined for states (h,A) and rule instantiations τ
with h(dom(h) ∩ vars(A)) ⊆ vars(τ). We will call such combinations of states (h,A) and
rule instantiations τ legal.

Further on, the moves of Arthur in Case 1 are modelled by the transitions

ρ((h,A), τ) =
∧{

(0, (h|B,B)) | B (A, vars(B) ∩ vars(A \ B) ⊆ dom(h)
}

which are defined for all legal (h,A) and τ such that there is at least one set B (A with
vars(B) ∩ vars(A \ B) ⊆ dom(h). Note that these transitions also allow Arthur to pick
A \ B instead of B.

Morgana’s moves in Case 1 are defined for all remaining legal (h,A) and τ , namely by

ρ((h,A), τ) = ϕmove((h,A), τ) ∨∨{
(0, (h[x 7→ y],A)) | x ∈ vars(A) \ dom(h), y ∈ vars(τ)

}
.

The transitions for Case 2 are similar. That is,

ρ((h, {A}), τ) = ϕmove((h, {A}), τ) ∨∨{
(0, h′, {A})) | dom(h′) = vars(A), h′(x) = h(x) for all x ∈ dom(h)

}
for all legal (h, {A}) and τ with vars(A) * dom(h).

It remains to provide transitions for Cases 3.1 and 3.2. That is, for legal (h, {A}) and τ
with dom(h) = vars(A). We first consider the case that A is extensional, i.e. Case 3.1
applies. If h(A) ∈ body(τ) then Morgana wins. Consequently, ρ((h, {A}), τ) = > for
such (h, {A}) and τ . Otherwise, Morgana can move to another node:

ρ((h, {A}), τ) = ϕmove((h, {A}), τ).
18The intention is to avoid clutter and improve readability.

Page 131

Chapter 4 I Distributed Evaluation of Datalog

Finally, we model Case 3.2 as follows.

ρ((h, {A}), τ) = ϕmove((h, {A}), τ) ∨∨{
(0, (h′, body(τ ′))) | head(τ ′) = A, h′(x) = h(x) for all x ∈ dom(h), and

there is a guard atom B of τ ′ such that dom(h′) = vars(B), h′(B) ∈ body(τ)
}

Clearly, all transition formulas have size polynomial in the number of states. Thus,
altogether, the size of AQvQ′ is bounded as stated in Proposition 4.3.6. We can conclude
that Proposition 4.3.6, and hence, Theorem 4.2.20 hold.

4.4 Parallel-Boundedness
In this section, we study parallel-boundedness of Datalog queries and our distributed
evaluation strategies.

Definition 4.4.1 (Parallel-Boundedness). A Datalog query Q is parallel-bounded w.r.t.
a family F of policy pairs if there is an integer r > 0 such that, for all policy pairs
(δ, γ) ∈ F and all distributed databases D complying with δ, no new output facts are
derived on any server after r rounds in the distributed evaluation of Q over D induced
by γ.

We note that our definition of parallel-boundedness w.r.t. families of policy pairs
embraces a uniform bound r for all policy pairs. At the same time, our definition is more
generous than the one of Ketsman et al. [KAK20, Definition 5] regarding the derivation
of facts: Our notion only demands that no new output facts are derived after r rounds,
while their notion requires that no new facts whatsoever are derived any more.

We study parallel-boundedness only for queries Q and families F for which Q is
parallel-correct w.r.t. F . Parallel-boundedness for queries that are not parallel-correct
does not appear meaningful. For classes Q of Datalog queries, and classes F of families
of policy pairs, we write PBound(Q, F) for the following decision problem.

PBound(Q, F)

Given: Datalog query Q ∈ Q and family F ∈ F of policy pairs such that Q is
parallel-correct w.r.t. F

Question: Is Q parallel-bounded w.r.t. F?

Our objective in this section is to obtain decision procedures for parallel-boundedness.
As for parallel-correctness, we focus on classes of frontier-guarded Datalog queries and
sets of data-moving distribution constraints that enjoy the polynomial communication
property. In particular, we will obtain the following result as well as a similar result for
parallel-boundedness in the non-transitive communication setting.

Theorem 4.4.2. PBound(FGDL, Hash-MConstraints) is 2ExpTime-complete.

Page 132

I Parallel-Boundedness

Similarly to the lower bound proof for parallel-correctness, cf. Theorem 4.2.28, we will
prove the lower bound of Theorem 4.4.2 by a reduction from the containment problem.

Our proof for the upper bound builds upon the ingredients for deciding parallel-
correctness. This involves, in particular, the Datalog queries from Lemma 4.2.22 which
simulate distributed evaluations over scattered databases, and the construction of the
automaton AQvQ′ in Section 4.3 for testing containment.

The first step towards the upper bound is therefore to show that, for deciding parallel-
boundedness, it suffices to consider scattered databases.

Lemma 4.4.3. Let Q be a Datalog query, Z be a hash policy scheme, and Σ be a set
of data-moving distribution constraints such that Q is parallel-correct w.r.t. F(Z,Σ).
Then Q is parallel-bounded w.r.t. F(Z,Σ) if and only if there is an integer r > 0 such
that for all global databases G there is a policy pair (δ, γ) ∈ F such that δ scatters G and
no new output facts are derived on any server after r rounds in the distributed evaluation
of Q over δ(G) induced by γ.

Proof. For the only-if direction suppose that Q is parallel-correct w.r.t. F(Z,Σ) and
let G be a global database. Thanks to Lemma 4.2.7 there is a tuple H of hash functions
over a network N such that δZ,H scatters G. Since Q is parallel-bounded w.r.t. F(Z,Σ)
there is an integer r such that, for all (δ, γ) ∈ F(Z,Σ) and all distributed databases D
that comply with δ, no new output facts are derived on any server after r rounds in
the distributed evaluation of Q over D induced by γ. In particular, this also applies
to (δZ,H , γΣ,N) and δZ,H(G).

For the converse, let r > 0 be an integer such that for all global databases G there is a
policy pair (δ, γ) ∈ F such that δ scatters G and no new output facts are derived on any
server after r rounds in the distributed evaluation of Q over δ(G) induced by γ.

Consider now any policy pair (δ′, γ′) ∈ F(Z,Σ) and distributed database D = (G, I)
that complies with δ′. We show that r is an upper bound for the number of rounds
required to derive all output facts in the distributed evaluation of Q over D induced
by γ′.

By assumption there is a policy pair (δ, γ) ∈ F(Z,Σ) such that δ scatters G, and no
new output facts are derived on any server after r rounds in the distributed evaluation
of Q over δ(G) induced by γ. Since Q is parallel-correct w.r.t. F(Z,Σ), we have that
[Q, γ](δ(G)) = [Q, γ′](D).

Let Out(ā) ∈ [Q, γ′](D). Then Out(ā) ∈ [Q, γ](δ(G)), and by assumption, Out(ā) is
derived in at most r rounds in the distributed evaluation of Q over δ(G) induced by γ.
Due to Lemma 4.2.10, D covers δ(G). It follows that Out(ā) is derived in at most r rounds
in the distributed evaluation of Q over D induced by γ′, thanks to Lemma 4.2.11. �

In the following, let Q be a frontier-guarded Datalog query, Z be a hash policy scheme,
and Σ be a set of data-moving distribution constraints, where Q and Σ originate from
classes enjoying the polynomial communication property. Thanks to Lemma 4.4.3 it
suffices to consider scattered databases for testing parallel-boundedness. Recall that
we can construct a frontier-guarded Datalog query Q′ which simulates the distributed
evaluation of Q over scattered databases, cf. Lemma 4.2.22. Deciding parallel-correctness

Page 133

Chapter 4 I Distributed Evaluation of Datalog

then boils down to testing whether Q v Q′ holds. This is in turn done by testing whether
each symbolic proof tree in the tree language TQ can be “captured” by a tree in TQ′ using
the automata AQ and AQvQ′ constructed in Section 4.3.

For deciding parallel-boundedness we will extend and integrate these steps more tightly.
In a nutshell, the idea is to assign a “communication cost” to each tree T ′ in TQ′ that
reflects how many rounds are required to derive facts “covered” by q(T ′). The question
then becomes whether all trees in TQ can be “captured” by a subset of trees in TQ′ whose
costs are bounded.

To this end, we first discuss how “communication costs” can be assigned to proof
trees over a network N for a fact R(ā)@k with respect to Q and Σ. Indeed, this is
straightforward, thanks to Lemma 4.2.18. We assign a cost of 1 to nodes witnessed by
distribution constraints and 0 to nodes witnessed by rules (and leaves). The cost of a
path is then the sum of all costs (of nodes) along this path, and the cost assigned to the
tree is the maximal cost over all root-to-leaf paths.

We now turn to symbolic proof trees. Recall that some rules of Q′ incorporate
distribution constraints. Specifically, a body of such a rule might contain both, atoms
that originate from a distribution constraint, and atoms originating from a Datalog rule.
The former represent communication and the latter computation. Thus, assigning cost
to a symbolic proof tree for Q′ node-wise is not as straightforward as for proof trees with
respect to Q. In fact, the following example suggests that assigning costs to edges is
more suitable for symbolic proof trees.

Example 4.4.4. Consider the frontier-guarded Datalog query Q = (P,Out) where P
consists of the following three rules.

Out(x)← Out(y), E(x, y), N(x) Out(x)← E(z, x), T (x), N(x) N(x)←M(x)

We can understand an extensional relation E as the edge relation of a directed graph.
The query Q then asks for all nodes from which there is a path along M -labelled nodes to
a T -labelled node. Note that N just serves as a copy of M which can be communicated.

Let Z = {(E, 1, ()), (T, 1, ()), (M, 2, ())} and Σ be the set consisting of the following
two data-moving distribution constraints.

E(x, y)@λ,N(x)@κ→ N(x)@λ E(y, x)@λ,N(x)@κ→ N(x)@λ

Then Q is parallel-correct and parallel-bounded w.r.t. F(Z,Σ). Indeed, Z asserts that
there is a server on which all E- and T -facts reside, and all M -facts are sent to this server
in the first communication phase due to the distribution constraints. In particular, every
fact, that can be derived at all, can be derived after at most two rounds.

This is also reflected by the proof trees with respect to P , Σ, and a scattered database.
Their shape is illustrated in Figure 4.4. Clearly, the cumulative cost along each root-
to-leaf path is at most 1, which corresponds to the number of rounds required in the
distributed evaluation.

Figure 4.5 depicts the shape of symbolic proof trees with respect to the query Q′

which simulates the distributed evaluation of Q induced by Σ. Here costs are assigned to

Page 134

I Parallel-Boundedness

Out(an)@1
cost 0

Out(an−1)@1
cost 0

.

Out(a0)@1
cost 0

E(a1, a0)@1
cost 0

T (a0)@1
cost 0

N(a0)@1
cost 1

N(a0)@2
cost 0

M(a0)@2
cost 0

E(a1, a0)@1
cost 0

. . .

E(an, an−1)@1
cost 0

N(an)@1
cost 1

N(an)@2
cost 0

M(an)@2
cost 0

E(an, an−1)@1
cost 0

Figure 4.4: Shape of a proof tree with respect to the query and the set of data-moving
distribution constraints from Example 4.4.4. Nodes which are witnessed by
a distribution constraint have cost 1, and every other node has cost 0.

edges: An edge (v, w) has cost 1 if the occurrence of head(w) in body(v) originates from
a distribution constraint. Otherwise, it has cost 0. Observe that this cost assignment
yields the same property as before: The cumulative cost of each root-to-leaf path is at
most 1, and hence, corresponds to the number of rounds. Moreover, if we were to assign
a cost of 1 to each node labelled with a rule obtained by inlining constraints, then the
cost of a path would not be bounded by the number of rounds. In fact, up to a constant,
the cost would be equal the height of the tree. C

We now make our cost assignments more precise. A 0-1-cost function for a symbolic
proof tree T is a function c which maps edges (v, w) of T into {0, 1}. Such a 0-1-cost
function c extends naturally to paths, symbolic proof trees T , and sets of symbolic proof
trees T as follows. The cost of a path π = v0v1 . . . vn is c(π) =

∑n
i=1 c(vi−1, vi). The

cost c(T) of a tree T is the maximal cost c(π), where π ranges over all root-to-leaf paths
of T . Finally, for a set T of symbolic proof trees, we set c(T) = sup{c(T) | T ∈ T }.

Recall that TQ is the set of all symbolic proof trees for Q = (P,Out) with variables
from {x1, . . . , x2|vars(P)|}. Given a 0-1-cost function c, we write

T min
Q,c = {T ∈ TQ | there is no T ′ ∈ TQ such that q(T) v q(T ′) and c(T ′) < c(T)}

for the set of symbolic proof trees with minimal costs (among the trees in TQ). Thanks to
the following refinement of Lemma 4.3.3 and Lemma 4.3.4, we can restrict our attention
to trees in T min

Q,c .

Lemma 4.4.5. For each Datalog query Q and 0-1-cost function c defined on the set TQ,
the equivalence Q ≡ q(T min

Q,c) holds.

Page 135

Chapter 4 I Distributed Evaluation of Datalog

Out(x1)← Out1(x2), E(x1, x2), E
1(x1, x2), N

2(x1), E
1(x1, x3)

Out1(x2)← Out1(x4), E(x2, x4), E
1(x2, x4), N

2(x2), E
1(x2, x5)

. . .
cost 1

. . .

Out1(x1)← E(x2, x1), E
1(x2, x1), T

1(x1), N
2(x1), E

1(x3, x1)

N2(x1)←M(x1),M
2(x1)

M2(x1)←M(x1)

cost 0

cost 1

T 1(x1)← T (x1)

cost 0

E1(x2, x1)← E(x2, x1)

cost 0 E1(x3, x1)← E(x3, x1)

cost 1

cost 0

cost 0
. . .

cost 0
. . .

cost 1

cost 0

N2(x1)←M(x1),M
2(x1)

M2(x1)←M(x1)

cost 0

cost 1

E1(x1, x2)← E(x1, x2)

cost 0 E1(x1, x3)← E(x1, x3)

cost 1

Figure 4.5: Shape of symbolic proof trees for the query Q′ from Example 4.4.4. An
edge (v, w) has cost 1 if the occurrence of head(w) in body(v) originates
from a distribution constraint. Otherwise, it has cost 0.

Proof. Thanks to Lemma 4.3.3 and Lemma 4.3.4 we have that Q ≡ q(TQ). Hence,
it suffices to show q(TQ) ≡ q(T min

Q,c). The inclusion from right to left is immediate by
definition.

Let T0 ∈ TQ \ T min
Q,c . With T0 /∈ T min

Q,c it follows by definition of T min
Q,c that there is a

tree T1 ∈ TQ such that q(T0) v q(T1) and c(T1) < c(T0). Thus, it suffices to show that
q(T1) v q(T min

Q,c), since then q(T0) v q(T1) v q(T min
Q,c).

If T1 ∈ T min
Q,c , we are done. Otherwise, we can apply the same reasoning iteratively

on T1, yielding a sequence T0, T1, T2, . . . with q(Ti) v q(Ti+1) and c(Ti+1) < c(Ti) for all
i ≥ 0. Since the natural numbers are well-ordered, this sequence is finite (the costs are
strictly decreasing). We conclude that there is a j such that q(Tj) v q(T min

Q,c) holds, and
thus, q(T0) v q(T min

Q,c). �

We are now ready to prove that the cost assignment discussed in Example 4.4.4 indeed
leads to the desired outcome. That is, the cost c(T min

Q′,c) is bounded by some d if and
only if Q is parallel-bounded. We note that our construction will, in general, not yield a
bound d for c(T min

Q′,c) which is also a bound for the number of rounds in the distributed
evaluation.

Lemma 4.4.6. Let Q be a class of Datalog queries and C be a class of sets of data-
moving distribution constraints that have the polynomial communication property. For
every frontier-guarded Datalog query Q ∈ Q, hash policy scheme Z, and set Σ ∈ C of
data-moving distribution constraints, such that Q is parallel-correct w.r.t. F(Z,Σ), a
frontier-guarded Datalog query Q′ can be constructed in exponential time and there is a

Page 136

I Parallel-Boundedness

0-1-cost function c such that Q is parallel-bounded w.r.t. F(Z,Σ) if and only if there is
a constant d such that c(T min

Q′,c) ≤ d holds.
The number of variables and the length of rules in Q′ is polynomial in the sizes of Q, Z,

and Σ; and the number of rules is at most exponential. Furthermore, for each pair (v, w)
of nodes with w being a child of v, c(v, w) does solely depend on the labels of v and w.

Proof. Let p be the polynomial such that the size of computation-free proof trees with
respect to Q and Σ can be bounded by p(‖Q‖, ‖Σ‖). The frontier-guarded Datalog
query Q′ = (P ′,Out) is the same as constructed in the proof for Lemma 4.2.22. That
is, Q′ simulates the distributed evaluation of Q induced by some γΣ,N over a scattered
database.

We distinguish two kinds of rules in P ′: Those that resulted by the replacement of an
intensional atom by the (translated) body of a distribution constraint from Σ∗, which
we call communication prone rules, and those which did not. Recall that the idea of
communication prone rules was precisely to simulate the communication of facts.

We define the 0-1-cost function c on symbolic proof trees T ′ for Q′ as follows. Let v
be an inner node labelled head(v)← body(v) and w ∈ childrenT ′(v) be one of its children
labelled head(w) ← body(w). Note that, by definition, we have head(w) ∈ body(v).
If, in the construction of P ′, head(w) ∈ body(v) resulted from the replacement of an
intensional atom by the (translated) body of a constraint from Σ∗, we define the cost for
the edge (v, w) as c(v, w) = 1. Otherwise, if head(w) ∈ body(v) did not result from the
replacement of intensional atoms by constraint bodies, we set c(v, w) = 0. Note that the
cost c(v, w) depends only on (the labels of) v and w.

It remains to show that Q is parallel-bounded w.r.t. F(Z,Σ) if and only if there is a d
such that c(T min

Q′,c) ≤ d.
Suppose that c(T min

Q′,c) ≤ d holds for some d ≥ 0. We have to show that Q is parallel-
bounded w.r.t. F(Z,Σ).

For this purpose, let G be a global database, and (δ, γ) ∈ F(Z,Σ) be the policy pair
guaranteed by Lemma 4.2.22 such that δ scatters G and Q′(G) = [Q, γ](δ(G)). Consider
an output fact Out(ā) ∈ [Q, γ](δ(G)). We prove that Out(ā) can be derived within
r = k · p(‖Q‖, ‖Σ‖) rounds. Since Out(ā) ∈ Q′(G), it also is in q(T min

Q′,c)(G), thanks to
Lemma 4.4.5. Hence, there is a symbolic proof tree T ∈ T min

Q′,c such that Out(ā) ∈ q(T).
Following the proof of Lemma 4.3.3, T can be translated into a proof tree for Out(ā)

with respect to Q′. This proof tree has essentially the same structure as T , the only
deviation being new leaves labelled with extensional facts. Furthermore, the original
label head(v)← body(v) of a node v becomes the witness for that node in the proof tree
for Out(ā). Proof trees with respect to Q′ can in turn be translated into proof trees
with respect to Q and Σ∗ as in the proof of Lemma 4.2.22. Recall that this translation
inserts new inner nodes witnessed by distribution constraints from Σ∗. More precisely,
if a node v is witnessed by a rule head(v) ← body(v) and atoms B1, . . . , Bm ∈ body(v)
resulted from replacing an atom A with the (translated) body of a constraint σ∗ ∈ Σ∗,
then this replacement is reverted and a new node witnessed by σ∗ is inserted as child
of v. The children of this new node are the root nodes of (translated) proof trees for
B1, . . . , Bm. As a consequence, on every root-to-leaf path there are at most c(T) many

Page 137

Chapter 4 I Distributed Evaluation of Datalog

nodes witnessed by distribution constraints. Finally, since a proof tree with respect to Q
and Σ can be obtained by replacing nodes witnessed by constraints from Σ∗ with (partial)
computation-free proof trees, there is such a proof tree for some Out(ā)@` where every
root-to-leaf path has at most p(‖Q‖, ‖Σ‖) ·c(T) many nodes witnessed by constraints. We
can conclude that Out(ā) can be derived in at most p(‖Q‖, ‖Σ‖) · c(T) ≤ p(‖Q‖, ‖Σ‖) · d
many rounds in the distributed evaluation of Q induced by γ over δ(G), thanks to
Lemma 4.2.18. Since δ scatters G and Q is parallel-correct w.r.t. F(Z,Σ), Lemma 4.4.3
implies that Q is parallel-bounded w.r.t. F(Z,Σ).

For the converse, suppose Q is parallel-bounded w.r.t. F(Z,Σ). Let r > 0 be the
upper bound on the number of rounds required to derive all output facts in distributed
evaluations of Q over any distributed database. That is, for all (δ, γ) ∈ F(Z,Σ) and
every distributed database D that complies with δ, all facts in [Q, γ](D) can be derived
in at most r rounds. We claim that c(T min

Q′,c) ≤ r holds.
Let again G be a global database, and (δ, γ) ∈ F(Z,Σ) be the policy pair guaranteed

by Lemma 4.2.22 such that δ scatters G and Q′(G) = [Q, γ](δ(G)). For every output
fact Out(ā) ∈ Q′(G) there thus is a proof tree for Out(ā)@`, where ` is some server, with
respect to Q and Σ. Since Q is parallel-bounded we can assume that, on each root-to-leaf
path of this tree, there are at most r nodes witnessed by a distribution constraint from Σ,
again thanks to Lemma 4.2.18. Analogously to the above, following the constructions
in Lemmas 4.2.22 and 4.3.3, we can obtain a symbolic proof tree T such that c(T) ≤ r
and Out(ā) ∈ q(T). Particularly, note that computation-free subtrees are essentially
merged into a node v witnessed by a rule, the children of the subtree’s leaves become
children of v, and the respective edges are assigned cost 1.

Let TG be the set of symbolic proof trees obtained in this fashion. We have Q′(G) =
q(TG)(G). Furthermore, we can assume TG ⊆ TQ thanks to Lemma 4.3.4. Consider the
infinite union T of all TG where G ranges over all global databases. Clearly, q(T) ≡ Q′

because T ⊆ TQ, q(TQ) ≡ Q′, and TG(G) = Q′(G) for every G. Moreover, we have
c(T) ≤ r.

Now, consider any T ∈ T min
Q′,c . If T ∈ T then c(T) ≤ r is immediate. Hence, we

consider the case T /∈ T . Due to Lemma 4.4.5 and since we have q(T) ≡ Q′, we also
have T min

Q′,c ≡ q(T). Thus, there is a T ′ ∈ T such that q(T) v q(T ′). Since T ∈ T min
Q′,c

and T ′ ∈ T ⊆ TQ, we have that c(T) ≤ c(T ′). Therefore, we can conclude that c(T) ≤ r
holds. �

With Lemma 4.4.6 at hand, deciding parallel-boundedness boils down to testing
whether c(T min

Q′,c) is bounded by some constant d. The starting point for our test procedure
is the alternating two-way tree automaton AQ′vQ′ (not AQvQ′) from Section 4.3. Recall
that an automaton AQ1vQ2 for queries Q1 and Q2 accepts precisely those trees T ∈
TQ1 for which there is a tree T ′ ∈ Q2 such that q(T) v q(T ′) holds. Hence, AQ′vQ′

clearly recognizes just TQ′ . Furthermore, T ′ can always be picked from T min
Q′,c , thanks to

Lemma 4.4.5. The idea is to modify AQ′vQ′ to keep track of the cost c(T ′), and then test
whether all trees T ∈ TQ′ can be accepted by picking trees T ′ whose costs are bounded
by some constant d.

Since d is not known in advance, a “cost counter” cannot be incorporated into the

Page 138

I Parallel-Boundedness

states of AQ′vQ′ . However, there is an extension of tree automata that was invented
for exactly this kind of situation: cost automata. For our purposes, we need a cost
automaton that has one counter which can be incremented but neither be decremented
nor reset to zero. We refer to Section 2.5.2 for the precise definition of the cost automata
model, and just recall here that the semantics (including the cost assignment) are defined
in terms of a two-player game. The existential player, Morgana, has the objective to
minimize the final counter value while the universal player, Arthur, aims to maximize
the value. Furthermore, recall that an alternating two-way tree cost automaton A is
limited if there is some constant d such that Morgana can prevent the counter value from
exceeding d, for all accepted trees.

Proposition 4.4.7. Let Q be a class of Datalog queries and C be a class of sets of
data-moving distribution constraints that have the polynomial communication property.
For each frontier-guarded Datalog query Q ∈ Q, hash policy scheme Z, and set Σ ∈ C
of data-moving distribution constraints, such that Q is parallel-correct w.r.t. F(Z,Σ),
one can construct an alternating two-way tree cost automaton A that uses only a single
counter, which is never reset, such that A is limited if and only if Q is parallel-bounded
w.r.t. F(Z,Σ). Furthermore, A has size (and can be constructed in time) exponential in
‖Q‖, ‖Z‖, and ‖Σ‖.

Proof. Let Q′ = (P ′,Out) be the frontier-guarded Datalog query for Q, Z, and Σ
guaranteed by Lemma 4.4.6. Furthermore, let c be the associated 0-1-cost function. That
is, Q is parallel-bounded w.r.t. F(Z,Σ) if and only if there is a constant d such that
c(T min

Q′,c) ≤ d.
To obtain the alternating two-way tree cost automaton A we modify the automa-

ton AQ′vQ′ constructed for Proposition 4.3.6 in Section 4.3. Recall that the semantics
of AQ′vQ′ are defined in terms of a two-player game. The task of the existential player,
Morgana, in a game on a tree T ∈ TQ′ is to prove that there is a tree T ′ ∈ TQ′ such
that q(T) v q(T ′). The universal player, Arthur, challenges Morgana’s proof. Clearly,
Morgana can always win by choosing T ′ = T .

We extend the game by assigning a value to each play, namely the cost c(T ′) of the
tree Morgana chooses. This can be done by increasing the counter of A each time
the game moves from a node v′ in T ′ to a child w′ of v with c(v, w) = 1. Since T ′ is
traversed along a single root-to-leaf path determined by Arthur (cf. the construction for
Proposition 4.3.6), and Arthur’s goal is to maximize the value, this does indeed yield the
desired value. These counter increments can easily be added to the transition function
because c(v, w) only depends on the labels of v and w. This may involve that Morgana
decides whether to increase the counter or not, and Arthur verifying her choice (this
requires encoding the label of the most recent parent node in the states, but this results
only in a polynomial enlargement of the state space).

The size bounds for A are – asymptotically – the same as for AQ′vQ′ . That is, the size
of A is polynomial in the number of rules in P ′, and at most exponential in the number
of variables occurring in P ′ and the maximal size of a rule in P ′. Thus, combined with
the size bounds for Q′ = (P ′,Out) guaranteed by Lemma 4.4.6, A has size exponential
in ‖Q‖, ‖Z‖, and ‖Σ‖.

Page 139

Chapter 4 I Distributed Evaluation of Datalog

The correctness of our construction is almost immediate, given Lemmas 4.4.5 and 4.4.6.
Indeed, if there is a constant d such that c(T min

Q′,c) ≤ d, then Morgana can always pick a
tree T ′ ∈ T min

Q′,c to win and keep the value of the counter below d+ 1. Thus, A is limited.
For the converse, consider the game on a tree T ∈ T min

Q′,c . Since A is limited, Morgana
can win by choosing a tree T ′ ∈ TQ′ such that q(T) v q(T ′) and c(T ′) ≤ d, for some
constant d. But then, by definition of T min

Q′,c , we also have that c(T) ≤ d. �

The final step for deciding parallel-boundedness is now to test whether A is limited.
Thanks to Proposition 2.5.4, which has been proved by Benedikt et al. [Ben+15], this is
possible in exponential time. We are now ready to prove that the parallel-boundedness
problem for frontier-guarded Datalog queries and families in Hash-MConstraints is 2Exp-
Time-complete.

Proof of Theorem 4.4.2. The upper bound is implied by Proposition 4.4.7 and Propo-
sition 2.5.4, which apply because frontier-guarded Datalog queries and modest sets
of data-moving distribution constraints have the polynomial communication property
according to Lemma 4.2.29.

For the lower bound, we show that the containment problem for monadic Datalog
queries, which is 2ExpTime-hard [BBS12, Theorem 2], can be reduced to the parallel-
boundedness problem PBound(FGDL, Hash-MConstraints), in polynomial time. To this
end, let Q1 = (P1,Out) and Q2 = (P2,Out) be monadic Datalog queries. Without loss
of generality, we assume that idb(P1) ∩ idb(P2) = {Out}, and that Out does not occur
in the body of any rule in P1 and P2. Furthermore, we can assume Q1 and Q2 are
frontier-guarded, thanks to Lemma 2.4.9.

We construct a monadic, frontier-guarded Datalog query Q, a hash policy scheme Z
and a modest set Σ of data-moving distribution constraints such that Q is parallel-correct
w.r.t. F(Z,Σ), and Q is parallel-bounded w.r.t. F(Z,Σ) if and only if Q1 v Q2 holds.

Let P ′
1 and P ′

2 be the Datalog programs obtained by replacing Out in P1 and P2

with fresh symbols Out1 and Out2, respectively. The Datalog program P is defined as
P ′
1 ∪ P ′

2 ∪ Preach where Preach is the Datalog program consisting of the following rules.

S′(x)← Start(x), L()
S′(x)← S(y), E(y, x), L()

S(x)← S′(x),Start(x),K()

S(x)← S′(y), E(y, x),K()

Out(x)← body(τ), for all rules τ ∈ P ′
2 with head(τ) = Out2(x)

Out(x)← body(τ), S(y),Target(y) for all rules τ ∈ P ′
1 with head(τ) = Out1(x)

In the rules for Out, the variable y is a fresh variable that does not appear in body(τ).
Further, E, K, L, Start, and Target are new extensional relation symbols, and S, S′ are
new intensional relation symbols, all of which do not occur in P ′

1 and P ′
2.

We observe that Q is indeed frontier-guarded (and monadic), if Q1 and Q2 are.
Evaluating Q over a global database G always yields all facts in Q2(G), thanks to the
rules Out(x)← body(τ) constructed for all rules τ ∈ P ′

2 with head(τ) = Out2(x) in P ′
2.

Page 140

I Parallel-Boundedness

If G (1) contains the facts K() and L(), and, (2) in the directed graph represented by
the relation E, a Target-labelled node is reachable from a Start-labelled node, then Q(G)
also entails Q1(G). The only other case where this is true is if Q1(G) ⊆ Q2(G) holds. In
summary, we have Q(G) = Q2(G), or Q(G) = Q1(G) ∪Q2(G). If (and only if) Q1 v Q2

holds, these two cases collapse for all global databases.
We next define the hash policy scheme Z.

Z =
{
(R, 1, ()) | R ∈ edb(P ′

1) ∪ edb(P ′
2)
}

∪
{
(K, 1, ()), (E, 1, ()), (Start, 1, ()), (Target, 1, ())

}
∪
{
(L, 2, ()), (E, 2, ()), (Start, 2, ())

}
For every distributed database D = (G, I) that complies with any δZ,H , there are two
servers k and ` such that Ik contains all extensional facts over edb(P ′

1) ∪ edb(P ′
2), the

fact K(), if it is in G, and all E-, Start-, and Target-facts. Furthermore, the local
database I` contains the fact L(), if it is in G, and all E- and Start-facts. If δZ,H
scatters G then k 6= ` and neither server contains any other facts than those described
above.

We observe that, in the first computation phase in any distributed evaluation over D,
all facts in P1(G) and P2(G) can be derived on server k. Next, consider the rules for S
and S′ in Preach. They form a reachability subquery. An evaluation of this subquery
alternates between deriving S and S′-facts. Since deriving S- and S′-facts requires the
presence of K() and L(), respectively, S-facts can only be derived on server k, and S′-facts
can only be derived on server `.

Thus, to correctly derive all S and S′-facts in a distributed evaluation over a scattered
database, it is required (and sufficient) that all S′-facts can be sent from ` to k, and
all S-facts can be sent from k to `. This is indeed ensured by the modest set Σ of
data-moving distribution constraints that consists of the following two rules.

K()@κ,L()@λ, S(x)@κ→ S(x)@λ K()@κ,L()@λ, S′(x)@λ→ S′(x)@κ

From the above it follows that, for every (δ, γ) ∈ F(Z,Σ), in the distributed evaluation
induced by γ over any distributed database D = (G, I) that complies with δ, all Out-facts
in Q1(G) and Q2(G) can be derived on server k. We can conclude that Q is parallel-correct
w.r.t. F(Z,Σ), and, hence, Q, Z, and Σ form a valid instance for the parallel-boundedness
problem.

It remains to argue that Q is parallel-bounded w.r.t. F(Z,Σ) if and only if Q1 v Q2

holds. Suppose Q1 v Q2 holds. As argued above, we then have Q ≡ Q2, i.e. Q(G) =
Q2(G) for all global databases G. Also recall that all facts from P ′

2(G) can be derived on
a single server in the first computation phase. Thanks to the rules Out(x) ← body(τ)
constructed for all rules τ ∈ P ′

2 with head(τ) = Out2(x) in P ′
2, the same is true for

all Out-facts in P2(G). Therefore, all output facts can be derived within the first round.
In other words, Q is parallel-bounded w.r.t. F(Z,Σ).

For the converse, suppose Q1 v Q2 does not hold. Then there is a global database G
and a fact Out(a) such that Out(a) ∈ Q1(G) but Out(a) /∈ Q2(G).

Page 141

Chapter 4 I Distributed Evaluation of Datalog

We show that Q is not parallel-bounded w.r.t. F(Z,Σ) by providing an infinite sequence
of global databases Gn, n > 0, such that in the distributed evaluation of Q induced by γ
over δ(Gn), for some (δ, γ) ∈ F(Z,Σ), at least Ω(n) rounds are required to derive Out(a).

For every n > 0, Gn is obtained from G by adding the facts

I K(), L(),Start(1),Target(n), and

I E(i, i+ 1) for all 1 ≤ i < n.

To see that indeed at least Ω(n) rounds are required to derive Out(a), we fix some
n > 0. Let (δ, γ) ∈ F(Z,Σ) such that δ scatters Gn. Recall that such a pair always exists
due to Lemma 4.2.7. We consider the distributed evaluation induced by γ over δ(Gn).
Since Out(a) is not in Q2(G) – and hence not in Q2(Gn) – it can only be derived by a rule
Out(x)← body(τ), S(y),Target(y) obtained from some rule τ of P ′

1. Since Target(n) is
the only Target-fact in G, Start(1) is the only Start-fact in G, and due to the choice of E,
deriving Out(a) requires the derivation of the sequence S′(1), S(2), . . . , S′(n − 1), S(n)
or S(1), S′(2), . . . , S(n − 1), S(n) of S′ and S-facts. Deriving a fact S(i), for some i,
requires S′(i− 1) and K(). Analogously, deriving S′(j) require S(j − 1) and L(). Since δ
scatters Gn, K() and L() do not reside on the same servers. But then, in every round,
only one of the required S- or S′-facts can be derived, because the required S′- or S-fact,
respectively, has to be communicated first. We conclude that the derivation of Out(a)
takes indeed at least Ω(n) rounds. �

We conclude this section with the assessment that the parallel-boundedness problem
is also 2ExpTime-complete in the non-transitive communication setting. Recall that a
Datalog query Q is parallel-correct w.r.t. a family F(Z,Σ) in the non-transitive commu-
nication setting, if its non-transitive translation Q• is parallel-correct w.r.t. F(Z,Σ•),
cf. Section 4.2.5. Correspondingly, we say that a Datalog query Q is parallel-bounded
w.r.t. a family F(Z,Σ) in the non-transitive communication setting, if its non-transitive
translation Q• is parallel-bounded w.r.t. F(Z,Σ•). We have the following result.

Theorem 4.4.8. PBound(FGDL, Hash-Constraints) is 2ExpTime-complete in the non-
transitive communication setting.

The proof is essentially the same as for Theorem 4.4.2. The upper bound is implied
by Proposition 4.4.7 and Proposition 2.5.4, since non-transitive translations have the
polynomial communication property thanks to Lemma 4.2.32.

The lower bound is implied by the lower bound proof for Theorem 4.4.2. Indeed,
observe that in every distributed evaluation of the constructed query Q induced by a
communication policy γΣ,N , only S- and S′-facts are communicated, and the bodies of
the distribution constraints in Σ contain only extensional atoms, except for the atoms
witnessing the data-moving property, of course. Hence, every (partial) computation-free
proof tree can always be replaced with a such a tree with only a single inner node (cf.
the proof of Lemma 4.2.32). Thus, every proof tree with respect to Q and γΣ,N can be
directly translated into a proof tree with respect to Q• and γΣ•,N . In particular, if a fact
can be derived within r rounds in a distributed evaluation of Q induced by γΣ,N , it can be

Page 142

I Discussion and Related Work

derived within r in a distributed evaluation of Q• induced by γΣ•,N . Clearly, the converse
is true as well. Finally, recall that Q and Q• are equivalent (over global databases).
Therefore, Q and Σ can be substituted by Q• and Σ• in the correctness proof for the lower
bound in the proof for Theorem 4.4.2. This results in a proof for the 2ExpTime-hardness
of PBound(FGDL, Hash-Constraints) in the non-transitive communication setting.

4.5 Discussion and Related Work
We conclude this chapter with a discussion of related work. Particularly, we discuss the
origins of our framework as well as similar frameworks used in the literature.

The MPC Model. As mentioned in the introduction, the MPC model has been intro-
duced by Beame et al. [BKS17a]. In contrast to the adaption utilized in this chapter,
the original definition allows more freedom for distributed evaluation strategies: In the
communication phase servers can communicate any kind of data, and in the computation
phase servers are only restricted by the data available locally. In particular, they are
not limited to just evaluating the query or, in our case, the Datalog program, locally.
Beame et al. studied the load – that is, the maximal number of bits (or facts) – and the
number of rounds required to evaluate conjunctive queries within their MPC model. Here
the more general model allows for stronger lower bound results. They also studied the
tuple-based MPC model that restricts, up to some initial auxiliary data, communication
to facts. While our communication policies effectively yield (only) a communication of
facts, determining which facts are to be sent to which servers, might require additional
data that cannot be computed upfront. For communication policies induced by distri-
bution constraints, in particular, metadata about co-locations of facts is required at a
minimum. To avoid the unnecessary communication of facts which are only used to
determine whether (other) facts are to be communicated, the communication of further
auxiliary data might be desired; notably for distribution constraints that have guarded
communication.

The Hypercube Algorithm. The Hypercube algorithm introduced by Afrati and Ullman
[AU11] can compute any multiway join in a single round. A concise description of it is
given by Beame et al. [BKS17a, Algorithm 1]. Interestingly, the underlying ideas for the
Hypercube algorithm originate from a parallel evaluation algorithm for Datalog programs
by Ganguly et al. [GST90]. Hypercube-like algorithms played a fundamental role in
several research contributions [e.g., BKS14; Afr+17; KS17; BKS17a] on parallel query
evaluation – in particular, but not limited to, evaluation strategies following the MPC
model. The distribution of facts for the Hypercube algorithm is guided by hash functions
– one of our motivations for using hash-based distribution policies in our setting.

Parallel-Correctness. Ameloot et al. [Ame+17] introduced a framework to reason about
Hypercube-like single-round algorithms for conjunctive queries. In this framework the
initial distribution of facts is determined by a distribution policy, which are not necessarily

Page 143

Chapter 4 I Distributed Evaluation of Datalog

hash-based; and, in the (sole) computation phase every server evaluates the given Q on
its local database. Ameloot et al. introduced and studied – among other related notions
– parallel-correctness for conjunctive queries within this framework. Parallel-correctness
and related problems were subsequently studied for (unions of) conjunctive queries (with
and without negation) and under set as well as bag semantics by Ameloot et al. [Ame+17],
Ketsman et al. [KNV18], Geck et al. [Gec+19] and Geck [Gec19]. Sundarmurthy et al.
[SKN21] studied limitations of fact-based distribution policies (sometimes referred to as
oblivious in the literature). Consequently, they also introduced a class of distribution
policies, namely co-hash schemes, and studied parallel-correctness as well as a stronger
variant, which requires that all output facts are disjointly partitioned among the servers,
for conjunctive queries and these policies.

Ketsman et al. [KAK20] extended the framework of Ameloot et al. to study parallel-
correctness and parallel-boundedness for Datalog in a multi-round MPC setting. As
discussed in Sections 4.2.1 and 4.2.2, they proved that the parallel-correctness problem
is undecidable for Datalog queries in general, even for value-independent distribution
policies [KAK20, Theorem 1]. Their proof is by reduction from the containment problem
for Datalog queries, which is well-known to be undecidable [Shm93, Theorem 1]. We
continued from there and proved that it does not necessarily suffice to consider fragments
of Datalog with a decidable containment problem to obtain a decidable parallel-correctness
problem (Theorem 4.2.12). But restricting distribution policies (Proposition 4.2.16) or
communication policies (Theorems 4.2.28 and 4.2.31) as well does.

A positive result proved by Ketsman et al. is that it is possible, given a Datalog query Q,
to construct policies with respect to which Q is parallel-correct [KAK20, Proposition 7].
These policies are hash-based and extend the distribution pattern of the Hypercube
algorithm.

Our framework is based on the framework of Ketsman et al. We provide a more detailed
comparison of these frameworks next.

Economic Policies. Ketsman et al. [KAK20, Definition 2] defined economic policies to
govern distributed evaluation strategies. An economic policy consists of a pair (π, χ) of
fact-based distribution policies. Here, π is referred to as the production policy determining
which servers are allowed to derive and send which intensional facts, whereas χ is the
consumption policy determining which servers can receive and “consume” which intensional
and extensional facts for the local computation. Initially, the facts of the input database
are assumed to be partitioned arbitrarily over all servers. Thus, an economic policy
not only guides the communication of intensional facts, it also reshuffles extensional
facts in the first communication phase, and restricts the computation phases. Our
framework extends the framework of Ketsman et al. in the sense that it allows to specify
initial distributions and communication of facts independently and in different ways.
Furthermore, our framework allows for policies which are not fact-based, as evidenced by
our constraint-based communication policies.

An economic policy (π, χ) induces a policy pair (δ, γ) applicable to our setting. The
distribution policy δ can be obtained by restricting χ to extensional facts. For the

Page 144

I Discussion and Related Work

communication policy γ, each fact R(ā) induces the set

{R(ā)@k . ` | k ∈ π(R(ā)), ` ∈ χ(R(ā))}

of communicated facts. We note that the hash-based communication policies presented
in Appendix B are also of this form, and, in combination with hash-based distribution
policies, they can be understood as instantiation of economic policies in our framework.

Our evaluation strategies differ slightly from the ones of Ketsman et al. because the
local fixpoint computations are not restricted by some kind of production policy. This
kind of restriction can be meaningful in settings where, for instance, servers have access to
all extensional facts. In such a case, the workload of individual servers can be kept under
control.19 In the conference paper [Nev+19, Section 7], which this chapter is based on, we
therefore considered a variant of our setting – called the locally restrained setting – where
every server is only allowed to derive facts that it can communicate to another server
according to the communication policies. We showed that our 2ExpTime-completeness
results on parallel-correctness are not affected by this difference in the setting. In a
nutshell, the locally restrained semantics can be incorporated into the simulation of
distributed evaluations over scattered database, that is, by adapting the construction for
Lemma 4.2.22. Recall that the rules for the query simulating the distributed evaluation
are obtained by replacing atoms in the body of an original rule with (translated) bodies
of distribution constraints. In the same fashion, for each Datalog rule τ with head
atom Ri(z̄, x̄), the (translated) body of a constraint with a head atom of the form R(ȳ)@κ
(excluding the atom witnessing the constraint being data-moving) can be added to the
body of τ . This ensures that every derived fact can be communicated. The construction
of Lemma B.5 for the hash-based communication policies presented in Appendix B can
be adapted similarly.

To conclude the comparison, let us point out that, in contrast to Ketsman et al., we
consider parallel-correctness for families of policy pairs. This makes it, for example,
possible to adapt hash functions and increase (or decrease) the number of servers on
demand and automatically, without testing for parallel-correctness every time.

Parallel-Boundedness. Ketsman et al. [KAK20, Theorem 2] also studied parallel-
boundedness within their framework. As for parallel-correctness they obtained undecid-
ability results, in this case for Datalog queries without constants and variable repetitions
in atoms, even if a bound for the number of rounds is given as parameter. A notable
exception is the positive result that deciding whether such a Datalog queries can be
evaluated within a single round with respect to families of their generalized hypercube
policies is possible in polynomial time. As mentioned in Section 4.4 our definition of
parallel-boundedness diverges slightly from that of Ketsman et al. because we only
demand that no further output facts can be derived.

Our decision procedure for parallel-boundedness makes use of cost automata. This was
inspired by the work of Benedikt et al. [Ben+15] who studied boundedness for guarded
queries – including monadic Datalog. They proved, in particular, that boundedness can
19Recall that distribution policies can only demand the presence of facts, not their absence.

Page 145

Chapter 4 I Distributed Evaluation of Datalog

be decided in doubly exponential time, using cost automata. For this purpose they showed
that the limitedness problem for alternating two-way tree cost automaton is decidable in
exponential time. A result we also rely on and which is stated as Proposition 2.5.4 in
this thesis.

Let us point out that boundedness is somewhat orthogonal to parallel-boundedness:
The former asks, for a Datalog query, whether there is a d such that d applications of
the immediate consequence operator suffice to evaluate the query, over any database.
In contrast, parallel-boundedness does not restrict the local fixpoint computation, but
instead the number of rounds. In fact, the local fixpoint computations may be unbounded,
even if a Datalog query is parallel-bounded with respect to a family of policy pairs.

Distribution Constraints. The formalism for our data-moving distribution constraints
is borrowed from Geck et al. [GNS20]. We emphasize that the notion of distribution
constraints of Geck et al. is far more general (and powerful) than the constraints studied
in this thesis. They encompass, in particular, tuple-, equality-, and server-generating
constraints. Moreover, they can refer to the global database. This allows, for instance,
to mimic hash policy schemes, cf. [GNS20, Section 3.3.1], and to define co-partitionings.
Our notion of data-moving corresponds to data-collecting constraints that do not refer to
the global database.

Geck et al. [GNS20, Corollary 27] proved that parallel-correctness for conjunctive
queries w.r.t. families of distribution policies induced by sets Σ of their distribution
constraints is decidable. The complexity ranges from NP to exponential time, depending
on the distribution constraints allowed.

Abiteboul et al. [Abi+11] introduced the language Webdamlog (or VWL for short)
which, roughly speaking, can be seen as an integration of Datalog queries (possibly
with negation and equality) and distribution constraints. Similarly to the MPC model,
evaluations proceed in rounds which consist of computation phases and communication
steps. However, in a run of such a system, the servers do not operate in parallel but fire
one after another. The evaluation result depends on the order, in general. Moreover, facts
sent to a server are not persistent, i.e. they are deleted if not explicitly specified otherwise.
Abiteboul et al. prove that positive Webdamlog systems always converge, and that this
is a sufficient condition for parallel-correctness [Abi+11, Theorems 5 and 7]. We are
not aware of any further research on parallel-correctness for Webdamlog. Interestingly,
however, Webdamlog systems have been implemented [see e.g. AAS13; Mof+15].

Page 146

Chapter 5

Structurally Simple Rewritings

This chapter is essentially concerned with two questions: When is it guaranteed that a
structurally simple rewriting exists, if any rewriting exists. And what is the complexity to
decide whether such a rewriting exists, and if so to compute one? Table 5.1 summarizes
the answers we give to the second question in this chapter.

We note that, as in Chapter 4, the problems we study in this chapter are static analysis
problems.

Outline. We will start by introducing terminology and some essential, known results
for rewritings and related notions in Section 5.1. Based on this, we present our charac-
terization of rewritability in Section 5.2.

In Section 5.3 we will then focus on acyclic rewritings: We study the existence of acyclic
rewritings as well as the complexity of the acyclic rewriting problem. In Section 5.3.3
we will also briefly discuss the consequences of our NP-hardness results for multi-query
evaluation settings.

Section 5.4 is dedicated to our tractability results for free-connex acyclic conjunctive
queries over fixed database schemas (and a slight generalization thereof). In Section 5.5
we present our results on the existence of hierarchical and q-hierarchical rewritings as
well as the associated decision problems.

Finally, we will discuss related work (not already covered in Section 5.1) and, in
particular, the relationship of our characterization of rewritability with similar notions
from the literature.

Publication and Contributions. This chapter is closely based on a journal article
[Gec+23] authored by my advisor Prof. Dr Thomas Schwentick, my colleagues Dr
Gaetano Geck and Dr Jens Keppeler, and – of course – myself. It has been accepted for
publication in the Logical Methods in Computer Science (LMCS) journal, and is itself
based on a conference paper [Gec+22] written by the same authors. A video presentation
from me has also been published along with the conference paper [Spi+22].

The results (and definitions) presented in the journal article have been refined and
extended multiple times by all authors and in joint research sessions. It is therefore fair
to say that all authors contributed equally.

As mentioned above, this chapter closely follows the journal article [Gec+23], and can
hence be considered a revision of it. In particular, I revised all proofs (to various degrees).
Notable changes in comparison with the journal article are that

Page 147

Chapter 5 I Structurally Simple Rewritings

V
Views

Q
Query

R
Rewriting

Restriction
of views

Rewrk(V, Q, R) for every k ∈ N0
(bounded arity db-schema)

Rewr(V, Q, R)
(unbounded arity db-schema)

CQ ACQ CQ Boolean views NP-complete for k ≥ 3 (Proposition 5.1.15)

ACQ CQ CQ Boolean views NP-complete for k ≥ 3 (Proposition 5.1.15)

ACQ ACQ ACQ no restriction NP-complete for k ≥ 3 (Theorem 5.3.8)

ACQ ACQ ACQ head arity ≤ `
` ∈ N0

in P (Corollary 5.3.6)

ACQ ACQ ACQ weak head arity ≤ `
` ∈ N0

in P (Proposition 5.4.8)

CCQ ACQ ACQ no restriction in P (Theorem 5.4.2) open

HCQ HCQ HCQ no restriction NP-complete for k ≥ 3 (Corollary 5.5.5)

QHCQ HCQ HCQ no restriction in P (Corollary 5.5.4) open

QHCQ QHCQ QHCQ no restriction in P (Corollary 5.5.4) open

Table 5.1: Complexity results for the (acyclic) rewriting problem. Note that the inclu-
sions QHCQ ⊆ CCQ ⊆ ACQ and QHCQ ⊆ HCQ ⊆ ACQ hold. The head arity
of a view V is the arity of its head atom head(V). The weak head arity of
a view is defined in Definition 5.4.3. In a nutshell, a view with weak head
arity ` can be “split” into (multiple) views with head arity at most `.

(i) I proved NP-hardness for the cover description problem for the class QHCQ instead
of “just” HCQ;

(ii) reworked the proofs of Theorem 5.1.3 and Corollary 5.3.13 to no longer rely on the
construction from the proof of Theorem 5.3.9; and

(iii) highlighted whether (and under which circumstances) constructions can be com-
puted efficiently by extending proofs and result statements.

The latter also allowed stating that q-hierarchical rewritings can be computed in poly-
nomial time, if one exists and input query and views are q-hierarchical themselves (cf.
Corollary 5.5.4). I believe that (i) and (ii) helped to flesh out the difference (in the
complexity) of the acyclic rewriting problem and the cover description problem, when it
comes to q-hierarchical queries.

5.1 Views, Rewritings, and the Problem
At the beginning of this section we introduce the rewriting problem and related notions.
Of course, this includes a formal definition of views and rewritings. We will then proceed
by discussing some known results, concepts, and techniques regarding the (classical)
rewriting problem for conjunctive queries. At the end, we obtain our first NP-hardness
result which, intuitively, states that the rewriting problem does not become “easier” if

Page 148

I Views, Rewritings, and the Problem

only some of the input queries have a simple structure. This will serve as a baseline for
the remainder of this chapter.

Views and Rewritings. A view V over a schema S is just a query over the schema S.1 A
finite set V of views induces, for each database D over schema S, the V-defined database

V(D) =
⋃
V ∈V

V (D).

Sometimes it will be useful to understand V as a query whose query result is defined as
above, for all databases D. For convenience, we will make no distinction in the notation.

In this thesis, we only consider finite sets V of views and only views that are conjunctive
queries. Furthermore, we require that all views in V have pairwise distinct relation symbols
in their heads. In other words, each view in V contributes its own relation to V(D).
Lastly, we assume that the head variables of each view are pairwise distinct as well. Note
that this is no restriction, because, if there are multiple occurrences of a variable in the
head of a view, all but one can just be removed – they only lead to duplicated columns
in the V-defined database. We will not state these assumptions explicitly every time.

We denote the schema induced by the heads of the views in V by SV . Let us point out
that, for a set V of views over a schema S, the schemas SV and S are disjoint. This is
because, by definition, the relation symbol in the head of a conjunctive query does not
occur in the underlying database schema. For convenience, we will identify name and
head symbol of views. That is, for a view V ∈ V , we denote its distinguished head symbol
also by V . If we want to emphasize that the relation symbol of an atom is from SV , we
call it a view atom.

In a nutshell, a V-rewriting of a query Q is a query Q′ over SV that is meant to
yield, for every database D, the same query result over V(D) as Q does over D. Recall
that Q′ ◦ V denotes the query over the same schema as V with query result Q′(V(D)),
for every database D.

Definition 5.1.1 (Rewriting). Let Q be a query, and V be a set of views. A query Q′

over SV is a V-rewriting of Q if Q′ ◦ V and Q are equivalent.
We say that Q is V-rewritable if there is a V-rewriting of Q.

In the literature, rewritings are also often defined as queries over the schema SV ∪ S,
where S is the schema of the original query Q [see, e.g. Lev+95]. Rewritings which only
refer to SV are then called complete. Another common variant are rewritings which are
only meant to approximate the original query. In that case, they only have to satisfy a
containment condition [see, e.g., PH01, Definitions 1 and 2]. In this thesis, however, we
are only interested in complete and equivalent rewritings; and this is what Definition 5.1.1
yields. Let us point out, though, that requiring completeness is not a restriction, if one
is – like us – interested in deciding whether a rewriting exists: Every S-relation can be
replicated as a SV -relation by adding a (trivial) view. On the other hand, the answer to

1They are called views due to their special role which distinguishes them from “normal” queries.

Page 149

Chapter 5 I Structurally Simple Rewritings

whether an incomplete rewriting exists, is always trivially yes, because the original query
itself is a rewriting in this case.2

We illustrate the notions introduced so far with an example.

Example 5.1.2. Let V be the set consisting of the following two views over the schema
S = {P,R, S, T}.

V1(x1, w1)← P (v1, v
′
1, x1), R(x1, w1), S(w1)

V2(y2, z2)← S(y2), T (y2, z2)

Furthermore, let Q be the conjunctive query

H(x, y, y′)← P (u, u′, x), R(x,w), S(w), T (w, y), T (w, y′)

over schema S and Q′ be the conjunctive query

H(x, y, y′)← V1(x,w), V2(w, y), V2(w, y
′)

over schema SV = {V1, V2}. For each database D, the query Q yields the same result
over D as the query Q′ over V(D). Therefore, Q′ is a V-rewriting of Q. C

For classes V, Q, and R of conjunctive queries, we write Rewr(V, Q, R) for the
rewriting problem for V, Q, and R which is defined as follows.

Rewr(V, Q, R)

Given: Set V ⊆ V of views and a conjunctive query Q ∈ Q

Question: Is there a V-rewriting of Q in the class R?

We write Rewrk(V, Q, R) for the restriction of Rewr(V, Q, R), where the arity of
each relation symbol in the database schema is bounded by k.

Levy et al. [Lev+95] proved that the most general instantiation of the rewriting problem
for conjunctive queries is NP-complete.

Theorem 5.1.3 [Lev+95, Theorem 3.10]. Rewr(CQ, CQ, CQ) is NP-complete.

The Canonical Candidate. There is a straightforward, albeit in general inefficient,
algorithm to determine whether a rewriting in the class CQ of all conjunctive queries
exists (and if it does, to output one). It proceeds in two steps. In the first step it computes
a candidate, and in the second step it tests whether this candidate is a rewriting. The
correctness of this algorithm relies on the existence of a candidate that is guaranteed to
be a rewriting, if a rewriting exists at all. Indeed, for every query Q and set V of views,
there is such a candidate query over SV .

The canonical candidate canon(Q,V) can be computed as follows.
2For incomplete rewritings, one usually asks for rewritings that satisfy an additional requirement – for

instance, one might ask for a rewriting with less atoms than the original query.

Page 150

I Views, Rewritings, and the Problem

(1) The canonical database canon(Q) is obtained from the input query Q by interpreting
the atoms in body(Q) as facts, in which variables are considered as fresh constants.
More precisely, for each variable x in vars(Q), the active domain of canon(Q) contains
a distinguished value ax, and for every atom R(x̄) ∈ body(Q), canon(Q) contains the
fact R(ā) = ϑ(R(x̄)) where ϑ is the mapping with ϑ(x) = ax, for every x ∈ vars(Q).

(2) The given set V of views is evaluated over canon(Q). The result V(canon(Q)) is a
database over the schema SV .

(3) The canonical candidate canon(Q,V) is the query over SV with the same head
as Q and the body obtained from V(canon(Q)) by interpreting the domain values as
variables again. More formally, the head is head(Q) and the body is ϑ−1(V(canon(Q)))
where ϑ−1 is the inverse of the mapping used in the first step.

An important detail should be mentioned here: The canonical candidate does not always
exist, for example, if ϑ−1(V(canon(Q))) does not contain all head variables of Q, or it is
outright empty. In that case, there is no rewriting. If the canonical candidate turns out
to be a rewriting, then we often call it the canonical rewriting.

Nash et al. [NSV10] showed the following, fundamental result. We note that, for
conjunctive queries without self-joins, this had already been shown by Chekuri and
Rajaraman [CR00, Lemma 7], and implicitly been utilized by Levy et al. [Lev+95, Proof
of Lemma 3.3].

Proposition 5.1.4 [NSV10, Proposition 5.1]. Let Q be a conjunctive query and V a set
of views. If there is a V-rewriting of Q, then the canonical candidate canon(Q,V) is such
a rewriting.

Before we discuss how to decide whether the canonical candidate is a rewriting, we
have a look at an example.

Example 5.1.5. Let us consider the views

V1(u1, v1, w1)← C(u1, v1, w1), and
V2(x2, y2, z2, u2)← R(x2, y2), S(y2, z2), T (z2, u2);

and the conjunctive query Q defined by

H(x, y, z)← C(x, y, z), R(x, y), S(y, z), T (z, x).

The canonical database of Q is

canon(Q) =
{
C(ax, ay, az), R(ax, ay), S(ay, az), T (az, ax)

}
.

Evaluating the views V1 and V2 over canon(Q) of Q yields the result{
V1(ax, ay, az), V2(ax, ay, az, ax)

}
.

Page 151

Chapter 5 I Structurally Simple Rewritings

Thus, the query Q′ defined by

H(x, y, z)← V1(x, y, z), V2(x, y, z, x)

is the canonical candidate.
In this example it not hard to see that the canonical candidate Q′ is a V-rewriting.

Even without considering any (let alone all) databases. In fact, in this particular case,
inlining the bodies of the views into Q′ yields the original query Q. For instance, the view
atom V1(x, y, z) in body(Q′) yields, together with head(V1) = V1(u1, v1, w1), the variable
mapping α = {u1 7→ x, v1 7→ y, w1 7→ z}. It is therefore replaced with

α(body(V1)) = {C(x, y, z)}. C

Expansions. We discuss next, how the approach of inlining view definitions, as illustrated
in Example 5.1.5, can be generalized. The goal is to obtain a conjunctive query over the
same schema as the input query Q, which can then be directly compared to Q by, for
instance, testing containment.

The idea is similar to the approach taken for checking containment of frontier-guarded
Datalog queries in Section 4.3. Recall that every Datalog query is equivalent to a (possibly
infinite) set of conjunctive queries derived from symbolic proof trees, that is, trees labelled
with rule instantiations of the Datalog program, cf. Lemma 4.3.3. We can understand a
query Q′ over SV and V as a Datalog query with the Datalog program {Q′} ∪ V. The
output symbol is the symbol from head(Q′). Note that this Datalog query is already
a query over the same schema as the original query Q, and is equivalent to Q′ ◦ V. It
also has a very simple structure: The body of the rule Q′, which is the only rule for
the output symbol, contains only intensional atoms, and the bodies of every other rule
contain only extensional atoms. Thus, the symbolic proof trees have exactly two levels.
The root node is labelled with a rule instantiation of Q′ and the nodes below the root
node are labelled with rule instantiations of rules in V . Since it always suffices to consider
symbolic proof trees over a finite set of variables, thanks to Lemma 4.3.4, the Datalog
query induced by Q′ and V is equivalent to a finite set of conjunctive queries over the
same schema as the original query Q.

We argue next that, by carefully choosing the rule instantiations, it suffices to consider
a single proof tree, and hence, a single conjunctive query, which we will call an expansion.
To make this precise we employ the following kind of rule applications.

Definition 5.1.6 (View Application). A view application of a view V is a substitu-
tion α : vars(V) → var that does not unify any quantified variable of V with another
variable of V .

In contrast to rule applications in general, view applications can thus not unify
quantified variables. This reflects the fact that rewritings determine the variables in
view atoms, and hence all head variables of the views upon inlining, but not quantified
variables that only occur in the bodies of the views.

Page 152

I Views, Rewritings, and the Problem

Example 5.1.7. Consider the view V (x′)← R(x′), S(y′) and the conjunctive query Q
defined by H(x) ← R(x), S(x). The canonical candidate Q′ is H(x) ← V (x). Inlining
the definition of V according to the (rule) application α with α = {x′ 7→ x, y′ 7→ x} yields
a query equivalent (and, in fact, identical) to Q. However, α is not a view application,
and indeed, there is no view application that yields a query equivalent to Q, because this
requires unifying the quantified variable y′ with x′. This corresponds to the fact that Q′

is not a {V }-rewriting – and due to Proposition 5.1.4 there is hence no {V }-rewriting
at all. Indeed, evaluating V yields a copy of the relation R, if S is non-empty, and the
empty relation, otherwise. The same is true for evaluating Q′ over any database defined
by {V }. The query Q, on the other hand, asks for the intersection of R and S. C

Let us point out that, in difference to our rewriting setting here, the use of the more
general notion of rule applications in the context of checking containment of Datalog
queries is not problematic, because the applications are for the rules of the original query
itself, and the set of all symbolic proof trees encompasses all possible combinations of
applications.3

In the remainder of this chapter we will only consider view applications even though
we sometimes just write “application” for brevity.

Further on, we require one more ingredient to define expansions. The following
corresponds to renaming unconnected occurrences of variables in a symbolic proof tree
upon deriving the associated conjunctive query.

Let α1, . . . , αm be a sequence of view applications for views V1, . . . , Vm from a set V.
Note that the sequence V1, . . . , Vm might contain duplicates. This corresponds to a query
over SV having self-joins. The view applications α1, . . . , αm fulfil quantified variable
disjointness, if for all i, j ∈ [1,m], each quantified variable x from vars(Vi), and each
variable y from vars(Vj) with i 6= j, it holds αi(x) 6= αj(y). That is, beyond what
is already required by the definition of a view application, view applications fulfilling
quantified variable disjointness do not unify quantified variables (with respect to their
view) with any other variable occurring in any of the views. This ensures that, for
all i, j ∈ {1, . . . ,m} with i 6= j, the bodies αi(body(Vi)) and αj(body(Vj)) only share
variables from vars(αi(head(Vi))) ∩ vars(αj(head(Vj))).

An expansion of a V-rewriting Q′ is, intuitively, obtained by inlining the bodies of the
views from V in Q′ according to view applications fulfilling quantified variable disjointness.

Definition 5.1.8 (Expansion). Let V be a set of views over a schema S and let Q′ be a
conjunctive query with body(Q′) = {A′

1, . . . , A
′
m} over the schema SV . Furthermore, for

each i ∈ [1,m], let Vi be the view in V and αi be a view application for Vi such that

(a) A′
i = αi(head(Vi)), for each i ∈ [1,m]; and

(b) the sequence α1, . . . , αm fulfils quantified variable disjointness.

The expansion of Q′ with respect to V and α1, . . . , αm is the conjunctive query that has
the same head as Q′ and body

⋃m
i=1 αi(body(Vi)).

3In fact, the more general notion is required because, to properly model the iterative inlining necessary
for Datalog queries in general, quantified variables might have to be unified.

Page 153

Chapter 5 I Structurally Simple Rewritings

Since the view applications α1, . . . , αm in Definition 5.1.8 are uniquely determined up
to renaming of quantified variables, we usually do not mention them explicitly and just
speak of an expansion of a query Q′ w.r.t. V.

Example 5.1.9 (Continuation of Example 5.1.2). Recall the query Q′ defined by
H(x, y, y′) ← V1(x,w), V2(w, y), V2(w, y

′) from Example 5.1.2. For convenience, let us
also recall the rules for the views V1 and V2.

V1(x1, w1)← P (v1, v
′
1, x1), R(x1, w1), S(w1) V2(y2, z2)← S(y2), T (y2, z2)

Now, consider the view application α1 for V1 which maps x1 to x, w1 to w, and is
the identity on every other variable. Furthermore, let α2 and α3 be view applications
for V2 with α2(y2) = w, α2(z2) = y, α3(y2) = w, and α3(z2) = y′. We have that α1, α2,
and α3 fulfil quantified variable disjointness, and the atoms α1(head(V1)), α2(head(V2)),
α3(head(V2)) form the body of Q′. Therefore, the conjunctive query

H(x, y, y′)← P (v1, v
′
1, x), R(x,w), S(w)︸ ︷︷ ︸
α1(body(V1))

, S(w), T (w, y)︸ ︷︷ ︸
α2(body(V2))

, S(w), T (w, y′)︸ ︷︷ ︸
α3(body(V2))

is an expansion of Q′ w.r.t. {V1, V2}. C

It is not hard to see that the expansion of Q′ in Example 5.1.9 is equivalent to the
original query Q defined in Example 5.1.2. We discuss next that this implies that Q′ is a
rewriting of Q. In fact, this will follow readily from the following result.

Lemma 5.1.10 [see, e.g., AC19]. Let V be a set of views, Q′ be a query over the schema
SV , and Q′′ be an expansion of Q′ w.r.t. V. Then Q′′ is equivalent to Q′ ◦ V.

Lemma 5.1.10 has been proved, for instance, as part of the proof of [AC19, Theorem 3.5].
For the sake of convenience, we provide a proof using our notation in the following.

Proof of Lemma 5.1.10. Following Definition 5.1.8, let {A′
1, . . . , A

′
m} be the body

of Q′, and let V1, . . . , Vm ∈ V be the views and α1, . . . , αm be the applications fulfilling
quantified variable disjointness for these views, and such that, for all i ∈ {1, . . . ,m},
A′

i = αi(head(Vi)) holds and body(Q′′) =
⋃m

i=1 αi(body(Vi)).
We first show Q′′ v Q′ ◦ V . For this purpose, let D be a database and ϑ be a valuation

such that the fact ϑ(head(Q′′)) is in the query result Q′′(D). By the semantics of
conjunctive queries, we then have that D satisfies ϑ(body(Q′′)) = ϑ(

⋃m
i=1 αi(body(Vi)))

under ϑ. By the definition of an expansion, we also have ϑ(head(Q′′)) = ϑ(head(Q′)).
Thus, it suffices to show that ϑ(body(Q′)) ⊆ V(D) holds, since that implies

ϑ(head(Q′)) ∈ Q′(V(D)) = (Q′ ◦ V)(D).

Since ϑ(body(Q′′) ⊆ D, we have ϑ(αi(body(Vi))) ⊆ D, for all i ∈ {1, . . . ,m}. Interpret-
ing ϑ ◦ αi as a valuation, it follows that ϑ(αi(head(Vi))) ∈ Vi(D). But αi(head(Vi)) = A′

i

for all i ∈ [1,m] and, therefore, we can conclude that

ϑ(body(Q′)) = ϑ({A′
1, . . . , A

′
m}) ⊆ V(D).

Page 154

I Views, Rewritings, and the Problem

For the proof of Q′ ◦ V v Q′′ let ϑ be a valuation such that V(D) satisfies body(Q′)
under ϑ. Thus, ϑ(A′

i) ∈ V(D) and therefore ϑ(αi(head(Vi))) ∈ Vi(D) holds, for all
i ∈ [1,m]. The latter implies that there are valuations ϑi such that ϑ(αi(head(Vi))) =
ϑi(head(Vi)) and ϑi(body(Vi)) ⊆ D. That is, the ϑi map body(Vi) into D and agree with
ϑ ◦ αi on all head variables of Vi. Moreover, since the view application αi does not
unify any quantified variables with other variables, the valuation ϑ can be extended to a
valuation ϑ+

i such that ϑ+
i (αi(body(Vi))) ⊆ D holds.

Lastly, thanks to the quantified variable disjointness of the αi, the extended mappings ϑ+
i

can be combined into a valuation ϑ+ which maps all αi(body(Vi)) into D. �

As illustrated in Example 5.1.9, the expansion of a rewriting Q′ can be directly
compared with a query Q since it is over the same schema. In fact, we will frequently
use the following result which follows readily from Lemma 5.1.10.

Proposition 5.1.11 [AC19, Theorem 3.5]. Let Q be a conjunctive query over some
schema S, V be a set of views over S, and Q′ be a conjunctive query over the schema SV .

An expansion Q′′ of Q′ w.r.t. V is equivalent to Q if and only if Q′ is a V-rewriting
of Q.

In Example 5.1.2, the query Q′ is thus a V-rewriting of Q because the expansion of Q′

considered in Example 5.1.9 is equivalent to Q. Up to variable renamings (and duplicated
atoms in the presentation), they are even identical. This applies similarly to the queries
considered in Example 5.1.5. Here the views are even full queries, and, thus, there is only
one (unique) expansion which, in this case, coincides with the original query.

Deciding Rewritability. In general, canonical candidates have one noteworthy disadvan-
tage when it comes to algorithmic applications. If the arity of views is not restricted,
then the size (and even the length) of the canonical candidate can be exponential in
‖Q‖ + ‖V‖. However, Levy et al. [Lev+95] proved that there always is a rewriting of
polynomial size, if there is one at all. Recall that the length of a conjunctive query is the
number of its atoms.

Lemma 5.1.12 [Lev+95, Lemma 3.5]. Let Q be a conjunctive query and V be a set of
views. If there is a V-rewriting of Q then there is one of length |Q| and size polynomial
in ‖Q‖+ ‖V‖.

Example 5.1.13. Consider the conjunctive query H() ← S(x, y), R(x), R(y) and the
views

V1(x1, y1)← S(x1, y1) and V2(x2,1, . . . , x2,n)← R(x2,1), . . . , R(x2,n).

Evaluating the views on the canonical database canon(Q) yields the result

{V1(ax, ay)} ∪ {V2(a1, . . . , an) | a1, . . . , an ∈ {ax, ay}}.

This query result, and thus, the body of the canonical candidate, has exponential size.
There is, however, a simple {V1, V2}-rewriting which has the same length as Q, namely,

H()← V1(x, y), V2(x, . . . , x), V2(y, . . . , y). C

Page 155

Chapter 5 I Structurally Simple Rewritings

Lemma 5.1.12 in combination with the well-known result from Chandra and Mer-
lin [CM77] that the containment problem for conjunctive queries is in NP, yields
that Rewr(CQ, CQ, CQ) is in NP, as stated in Theorem 5.1.3. An NP-algorithm for
Rewr(CQ, CQ, CQ) can “guess” a rewriting of polynomial size, compute an expansion,
and then test whether the expansion is equivalent to the given query.

Canonical candidates have the potential advantage that they can be computed instead
of having to be “guessed”. In cases where they are guaranteed to have polynomial
size, this can sometimes lead to efficient algorithms. For instance, this guarantee is
given if the views have bounded arity. However, note that the algorithm suggested by
Proposition 5.1.4 of computing the canonical candidate, and then testing whether an
expansion of it is equivalent to the given query, is only efficient, if evaluation and testing
equivalence can be performed efficiently as well. For acyclic views of bounded arity and
acyclic input queries all these constraints are satisfied, which lets us derive the following
result. For a class V of views, we write Vk for the restriction to views of arity at most k.

Proposition 5.1.14. For every k ≥ 0, Rewr(ACQk, ACQ, CQ) is in P. Moreover, if a
rewriting exists, one of polynomial size can be computed in polynomial time.

Proof. A polynomial time algorithm for Rewr(ACQk, ACQ, CQ) can proceed in three
steps. Given a set V ⊆ ACQk of views and a query Q ∈ ACQ, it first computes the
canonical candidate canon(Q,V). The second step is to obtain an expansion QE of
canon(Q,V). In the third and final step, the algorithm tests whether QE v Q holds, and
returns the answer. Of course, if the canonical candidate does not exist, the algorithm
aborts after the first step and outputs no.

We first argue that this algorithm runs in polynomial time. Afterwards, we will prove
the correctness, and, particularly, why a containment test suffices.

Thanks to the primordial results on acyclic conjunctive queries of Yannakakis [Yan81,
Theorem 4.1], evaluating the acyclic views in V over the canonical database of Q takes
polynomial time, in the input and the output size [see also Are+21, Theorem 20.4].
Observe that the output size, and hence the size of the canonical candidate canon(Q,V),
is polynomial because the arity of the views is bounded. Obtaining an expansion QE

is mainly a matter of renaming (quantified) variables according to Definition 5.1.8, and
can clearly be done in polynomial time. Lastly, the containment test can be done in
polynomial time because the containment problem Cont(CQ, ACQ) is in P and we have
Q ∈ ACQ. The former is again thanks to Yannakakis [Yan81, Corollary 4.1].4

For the correctness we will show that an expansion QE of canon(Q,V) always obeys
Q v QE , if the canonical candidate exists. Therefore, the algorithm outputs yes if and
only if QE and Q are equivalent. The correctness of the algorithm then follows from
Propositions 5.1.4 and 5.1.11.

It remains to prove that, for an expansion QE of the canonical candidate, we have
Q v QE . To this end, we fix an expansion QE of canon(Q,V) in the following. To

4Testing for QE v Q can be done by deciding whether there is a homomorphism from Q to QE . This
can in turn be determined by testing whether head(QE) is in the query result of Q over the canonical
database of the query QE .

Page 156

I Views, Rewritings, and the Problem

improve readability and avoid technical clutter we identify the variables in Q with their
corresponding constants in canon(Q) in the remainder. Notably, this means that we
identify canon(Q) with body(Q), i.e. we write canon(Q) = body(Q).

Following Definition 5.1.8, let A′
1, . . . , A

′
m be the atoms of canon(Q,V) and, for each

i ∈ [1,m], let αi be a view application and Vi be the view such that A′
i = αi(head(Vi)),

and the α1, . . . , αm fulfil quantified variable disjointness. Furthermore, since the A′
i are

also contained in V(canon(Q)) – by definition of canon(Q,V) – there are valuations ϑi
such that A′

i = ϑi(head(Vi)) and ϑi(body(Vi)) ⊆ canon(Q) holds. In particular, we have
that ϑi(head(Vi)) = αi(head(Vi)) for all i ∈ [1,m]. We fix QE to be the expansion whose
body is the union of all αi(body(Vi)).

To prove Q v QE we construct a homomorphism h from QE to Q. Let y be a variable
occurring in αi(body(Vi)) and x such that y = αi(x) for some i ∈ [1,m]. Then the desired
homomorphism h maps y to ϑi(x). Note that h is the identity on variables occurring in
αi(head(Vi)) because αi(head(Vi)) = ϑi(head(Vi)) and, thus, y = αi(x) = ϑi(x) = h(y).
Hence, h is well-defined, since, if a variable y occurs in αi(body(Vi)) and αj(body(Vj))
with i 6= j then it also occurs in αi(head(Vi)) and αj(head(Vj)) thanks to quantified
variable disjointness. Furthermore, for variables y occurring in a set αi(body(Vi)) but
not in αi(head(Vi)), the preimage x is a quantified variable, and hence, unique because
view applications cannot unify quantified variables.

We have that h is indeed a homomorphism from the expansion QE of canon(Q,V) to
Q, because

h(αi(body(Vi))) = ϑi(body(Vi)) ⊆ canon(Q)

holds for all i ∈ [1,m] and h is the identity on all variables occurring in the head of
canon(Q,V). �

Chekuri and Rajaraman [CR00, Theorem 5] have shown that the rewriting problem
for arbitrary views and acyclic queries without self-joins is in P using a similar idea.

However, even for Boolean views and databases over a small fixed schema, it does not
suffice to restrict only the views or only the query to the class of acyclic queries.

Proposition 5.1.15. Rewrk(ACQ0, CQ, CQ) and Rewrk(CQ0, ACQ, CQ) are NP-
complete, for every k ≥ 3. This even holds for Boolean conjunctive queries, sets of views
with only one Boolean view and a schema with two relation symbols of maximum arity 3.

Proof. The upper bound holds thanks to Theorem 5.1.3. For the lower bound, we first
show, by a reduction from the well-known three-colouring problem, that it is NP-hard to
test, for an acyclic Boolean conjunctive query Q1 and a Boolean conjunctive query Q2,
whether Q1 v Q2 holds.5

To this end, let G be an undirected graph without isolated nodes and self-loops, i.e.
edges of the form (v, v). With each node v of G we associate a variable xv. We define
Q2 to be the Boolean conjunctive query with head H() whose body consists of all atoms
E(xv, xw) such that (v, w) is an edge of G. The Boolean conjunctive query Q1 is defined

5We think that this is folklore but could not find a reference for it.

Page 157

Chapter 5 I Structurally Simple Rewritings

by the rule

H()← E(b, r), E(r, y), E(y, b), E(r, b), E(y, r), E(b, y), C(b, r, y)

where b, r, y are variables representing the colours blue, red, and yellow, respectively.
Observe that Q1 is acyclic, because all variables are contained in the “cover-atom”
C(b, r, y). Hence, there is a simple join tree for Q1 that has only two levels, the root
node is labelled with C(b, r, y).

Towards the correctness of the reduction, if Q1 v Q2 holds, there is a homomorphism h
from Q2 to Q1. This homomorphism represents a valid colouring, since two variables xv
and xw cannot be mapped to the same variable in Q1 if there is an edge (v, w) in G.
Conversely, every valid colouring of G gives rise to a homomorphism from Q2 to Q1 and
therefore witnesses Q1 v Q2.

Let Q1∧Q2 denote the Boolean conjunctive query whose body is body(Q1)∪body(Q2).
Since it is well-known that Q1 v Q2 if and only if Q1 ≡ Q2 ∧Q1, we conclude that the
equivalence problem for Boolean conjunctive queries Q1, Q2 is NP-hard, even if Q1 is
acyclic.

Finally, we reduce the equivalence problem with acyclic Q1 to the rewriting problem.
For this purpose, let Q1 and Q2 be Boolean conjunctive queries. The input instance
(Q1, Q2) for the equivalence problem is mapped to an input instance for the rewriting
problem by assigning Q1 the role of the query and Q2 the role of (the sole) view.

The canonical rewriting, if it exists, consists only of the single atom Q2(), since Q2 is
a Boolean query. Thus, there is a {Q2}-rewriting of Q1 if and only if Q1 is equivalent
to Q2. This reduction establishes that Rewr3(CQ0, ACQ, CQ) is NP-hard. For the
NP-hardness of Rewr3(ACQ0, CQ, CQ), the roles of Q1 and Q2 are simply swapped in
the last reduction. �

5.2 A Characterization
For studying the structure of rewritings, and, in particular, asserting the existence of
structurally simple rewritings, we will employ a characterization of rewritability. The
objective for this section is to introduce this characterization. We note that our charac-
terization is very similar to other such characterizations utilized in the literature [GKC06;
AC19], in particular to the “MiniCon Descriptions” studied by Pottinger and Halevy
[PH01]. However, in its specific form and notation it is tailored for our needs in the
subsequent sections. We will provide a detailed comparison of our characterization with
others in Section 5.6.

Before we start with the formal definitions, let us explain the idea by means of an
example.

Example 5.2.1. Consider the set V of the following views.

V1(x1, y1)← R(x1, y1), S(y1)

V2(x2)← R(x2, y2), S(y2)

V3(y3, z3, w3)← S(y3), T (y3, z3, w3)

Page 158

I A Characterization

Furthermore, let Q be the conjunctive query defined by

H(y)← R(x, y), S(y), T (y, z, z).

Our characterization is in terms of a partition of body(Q), where each set in the partition
can be “covered” by a view from V . We will see that, in this example, a suitable partition
consists of the two sets A = {R(x, y), S(y)}, and B = {T (y, z, z)}. The set A can be
“covered” by V1 quite naturally, since A coincides, up to variable names, with body(V1).
Furthermore, the set B can be “covered” by V3. However, for the T -atoms to match,
it is required to unify the variables z3 and w3. This can be achieved using a view
application because both variables occur in head(V3). We note that the extra atom S(y3)
in body(V3) is not problematic here, because it can be mapped into body(Q), albeit
“outside” of B. This informal description of how the sets A and B can be “covered”
translates directly into the query with body {V1(x, y), V3(y, z, z)} and head H(y). It is
not hard to see that this query is indeed a V-rewriting of Q. Of course, the alternative
partition {R(x, y)}, {S(y), T (y, z, z)} leads to a similar result.

So far we have silently ignored an important aspect: It is crucial that the variable y
occurs in both view atoms (and corresponds to y1 and y3, respectively), for two reasons.
For once it occurs in the head of Q and, hence, contributes to the query result. Secondly,
it is necessary to ensure that the relations R, S, and T are properly “joined”. In other
words, the query result should only contain values that occur in the second component
of relation R, in the set S, and the first component of relation T . For this reason, the
set A cannot be “covered” by V2 instead of V1. C

Formally, the partitions in Example 5.2.1 correspond to cover partitions, and the
relationship between sets in such partitions and views is represented by cover descriptions.
The variable y is (a special case of) a bridge variable.

We define these notions next. Let Q be a conjunctive query. For Q and a set
A ⊆ body(Q) we define bvarsQ(A) as the set of bridge variables of A, that occur in A as
well as “outside of A”. Here “outside of A” means in the head of Q or in some atom of Q
not in A. More formally,

bvarsQ(A) = vars(A) ∩
(
vars(head(Q)) ∪ vars(body(Q) \ A)

)
.

Example 5.2.2. Consider the query Q defined by

H(x, y, z)← R(x, u), S(u, y, w), T (y, w, z).

For the set A = {R(x, u), S(u, y, w)} of atoms from the body of Q, the set of bridge
variables is bvarsQ(A) = {x, y, w} because x and y are head variables of Q and because w,
and also y, occurs in the atom T (y, w, z) that does not belong to A. The variable u in A
is not a bridge variable since it is quantified and does not occur in any atom outside
of A. C

Definition 5.2.3 (Cover Description). A cover description d for a query Q is a tuple
〈A, V, α, ψ〉 where

Page 159

Chapter 5 I Structurally Simple Rewritings

I A is a subset of body(Q),
I V is a view,

I α is a view application of V , and
I ψ is a mapping from vars(α(V)) to vars(Q),

such that the following four conditions hold.

(1) A ⊆ α(body(V))

(2) bvarsQ(A) ⊆ α(vars(head(V)))

(3) ψ is a body homomorphism from α(V) to Q

(4) ψ is the identity on vars(A)

Intuitively, the conditions of Definition 5.2.3 reflect the aspects for V “covering” A
discussed in Example 5.2.1: Condition (1) means that every atom in A has a matching
atom in the body of V . Condition (3) ensures that all atoms in an expansion can
be mapped into the query – in particular, this concerns extra atoms such as S(y3)
in Example 5.2.1. Lastly, Conditions (2) and (4) establish an “interface” to combine
multiple cover descriptions in a straightforward and compatible manner such that, overall,
a rewriting is described. In the following we discuss a slightly more involved example.

Example 5.2.4. Consider the three views

V1(x1, y1, w1)← R(x1, y1, u1), T (x1, v1), F (v1), E(w1), S(w1, u1),

V2(x2, y2, z2)← R(x2, y2, z2), F (v2),

V3(w3, z3)← S(w3, z3), E(w3),

and the conjunctive query Q given by the rule

H(x, y, z)← R(x, y, z), T (x, v), F (v), E(w), S(w, z).

The tuple d1 = 〈A1, V1, α1, ψ1〉 with A1 = {T (x, v), F (v)},

α1 = {x1 7→ x, y1 7→ y′, u1 7→ u′, v1 7→ v, w1 7→ w′}, and
ψ1 = {x 7→ x, y′ 7→ y, u′ 7→ z, v 7→ v, w′ 7→ w}

is a cover description for Q with bvarsQ(A1) = {x}. Although ψ1 could be replaced with
id (if α1 is adapted accordingly), we will see in Example 5.2.7, that this is not always
desirable. C

Now we can characterize rewritability of a conjunctive query Q by the existence of a
partition of body(Q) whose subsets have cover descriptions with views from V.

Definition 5.2.5 (Cover Partition). Let Q be a conjunctive query and V be a set of
views. A collection P = {d1, . . . , dm} of cover descriptions di = 〈Ai, Vi, αi, ψi〉 for Q with
Vi ∈ V is a cover partition for Q over V if the sets A1, . . . ,Am constitute a partition of
body(Q).

Moreover, a cover partition is consistent if, for all i, j ∈ [1,m] with i 6= j,

vars(αi(Vi)) ∩ vars(αj(Vj)) ⊆ bvarsQ(Ai).

Page 160

I A Characterization

In other words, a cover partition is consistent if variables of any αi(Vi) are in the
range of any other αj only if they are bridge variables. This implies quantified variable
disjointness.

Lemma 5.2.6. For every consistent cover partition P = {d1, . . . , dm} of cover descrip-
tions di = 〈Ai, Vi, αi, ψi〉 for a conjunctive query Q, the view applications α1, . . . , αm

fulfil quantified variable disjointness.

Proof. For the sake of contradiction, assume that α1, . . . , αm do not obey quantified
variable disjointness. Then there are i, j ∈ [1,m] with i 6= j such that there is a
quantified variable x ∈ vars(Vi) and a variable y ∈ vars(Vj) with αi(x) = αj(y). Let
z = αi(x) = αj(y). Since z ∈ vars(αi(Vi)) ∩ vars(αj(Vj)) and P is consistent, z is in
bvarsQ(Ai). Therefore, it is also in αi(head(Vi)) due to Condition (2) of Definition 5.2.3.
But this means that αi unifies x with a head variable, which is a contradiction to αi

being a view application. �

Let us point out that, while consistency implies quantified variable disjointness, it asks
for more, namely to unify variables only if necessary. In particular, this also concerns
head variables. We will see that this leads to, intuitively, rewritings whose atoms are as
disconnected as possible – which in turn tends to promote a simple query structure.

Example 5.2.7 (Continuation of Example 5.2.4). Let d1 = 〈A1, V1, α1, ψ1〉 be the cover
description defined in Example 5.2.4. In addition, we consider the cover descriptions d2
and d3 with di = 〈Ai, Vi, αi, ψi〉 for i ∈ {2, 3} where

A2 = {R(x, y, z)}, A3 = {E(w), S(w, z)},
α2 = {x2 7→ x, y2 7→ y, z2 7→ z, v2 7→ v}, α3 = {w3 7→ w, z3 7→ z},

and ψ2 = ψ3 = id.
The cover descriptions d1, d2, d3 constitute a cover partition for Q over {V1, V2, V3}. It

is, however, not consistent, since v is in the range of α1 and α2, but not in bvarsQ(A1).
However, replacing α2 and ψ2 by mappings α′

2 and ψ′
2 with α′

2(v2) = v′ and ψ′
2(v

′) = v
that agree with α2 and ψ2 on all other variables, respectively, yields a consistent cover
partition. Note that there is no consistent cover partition with a cover description of the
form 〈A1, V1, α

′
1, id〉 because necessarily α′

1(w1) = w would hold, and thus, w would be
in the range of α′

1 and α3. C

A cover partition P of cover descriptions di = 〈Ai, Vi, αi, ψi〉 for a conjunctive query Q
over a set V of views induces a query q(P) over SV as follows. We note first that each
variable in head(Q) occurs in at least one of the sets Ai and thus in some set bvarsQ(Ai).
Therefore, Condition (2) of Definition 5.2.3 guarantees that each head variable of Q
occurs in some set αi(head(Vi)), and thus P induces the query q(P) with

head(q(P)) = head(Q) and body(q(P)) = {αi(head(Vi)) | 1 ≤ i ≤ m}.

Page 161

Chapter 5 I Structurally Simple Rewritings

If P is consistent it also induces an expansion of q(P), thanks to quantified variable
disjointness being guaranteed, cf. Lemma 5.2.6. The expansion induced by P is the query
exp(P) with

head(exp(P)) = head(Q) and body(exp(P)) =
m⋃
i=1

αi(body(Vi)).

We stress that there is a one-to-one correspondence between the cover descriptions in P
and the atoms in body(q(P)). A fact which we will often employ. We are now ready to
state and prove the main result of this section: The existence of a cover partition indeed
characterizes rewritability.

Theorem 5.2.8. Let Q be a minimal conjunctive query and V be a set of views. The
following three statements are equivalent.

(a) There is a V-rewriting of Q.

(b) There is a cover partition P for Q over V.

(c) There is a consistent cover partition P for Q over V.

We prove Theorem 5.2.8 by establishing somewhat stronger results which will be useful
in their own right, in particular for designing algorithms. More precisely, Theorem 5.2.8
is a direct consequence of Lemmas 5.2.9 to 5.2.11 stated below.

The following result states that every cover partition can be transformed into a
consistent cover partition. This establishes that Statement (b) implies Statement (c).

Lemma 5.2.9. Let V be a set of views and Q be a conjunctive query. If there is a
cover partition P for Q over V, then there is a consistent cover partition P ′ with the
same underlying partition of body(Q) as P. Moreover, given P, the consistent cover
partition P ′ can be computed in polynomial time.

Proof. Let P = {d1, . . . , dm} be a cover partition for Q over V, where, for each i,
di = 〈Ai, Vi, αi, ψi〉. Let z be a variable violating the consistency condition. That is, z
occurs in some αi(Vi), but not in bvarsQ(Ai), and also in some αj(Vj) with j 6= i. Since
z /∈ bvarsQ(Ai) we have z /∈ vars(Aj) as well. We define α′

j like αj but, for some fresh
variable z′, we set α′

j(x) = z′ whenever αj(x) = z. Accordingly, we define ψ′
j like ψj but

with ψ′
j(z

′) = ψj(z). It is easy to verify that d′j = 〈Aj , Vj , α
′
j , ψ

′
j〉 is a cover description,

which can replace dj . Repeating this process yields a consistent cover partition over V
for Q. Lastly, note that the number of iterations is bounded polynomially in the number
of variables and cover descriptions in P. �

The next result establishes that Statement (c) implies Statement (a).

Lemma 5.2.10. Let P be a consistent cover partition for a conjunctive query Q over a
set V of views. Then q(P) is a V-rewriting of Q. Moreover, q(P) can be obtained from P
in polynomial time.

Page 162

I A Characterization

Proof. Let P = {d1, . . . , dm} be a consistent cover partition for Q over V, where, for
each i, di = 〈Ai, Vi, αi, ψi〉.

We prove that the query q(P) induced by P is a V-rewriting of Q by establishing that
the expansion exp(P) is equivalent to Q. Proposition 5.1.11 then implies that q(P) is
a rewriting. First, since A1, . . . ,Am constitute a partition of body(Q), and thanks to
Condition (1) of Definition 5.2.3, the identity mapping id is a homomorphism from Q
to exp(P). Therefore, we have exp(P) v Q, and it suffices to show Q v exp(P). To this
end, we prove that the union of the mappings ψ1, . . . , ψm is a homomorphism h′ from
exp(P) into Q.

We first show that h′ is well-defined: Let us assume that a variable z occurs in αi(Vi)
and αj(Vj) for some i, j ∈ [1,m] with i 6= j. Thanks to consistency, z is in bvarsQ(Ai) and
bvarsQ(Aj). In particular, it occurs in Ai and Aj . We can conclude that ψi(z) = ψj(z)
holds, thanks to Condition (4) of Definition 5.2.3.

That h′ is a homomorphism follows easily, because each ψi is a body homomorphism
by Condition (3) and h′ is the identity on head(Q) by Conditions (1) and (4).

Given P , computing q(P) is trivial since it suffices to apply the αi to the head(Vi). �

The last step for proving Theorem 5.2.8 is the following result, which states that a
cover partition can be derived from a rewriting. This establishes that Statement (a) of
Theorem 5.2.8 implies Statement (b). We note that the proof of this result relies on
Lemma 5.2.12 which we state after the proof to improve readability.

Lemma 5.2.11. Let V be a set of views and Q be a minimal conjunctive query. If there
is a V-rewriting QR of Q, there also is a cover partition over V for Q. The number of
cover descriptions in the cover partition is bounded by |body(QR)|.

Proof. Let us assume that Q has a V-rewriting QR. Let further QE be an expansion
of QR. Thanks to Proposition 5.1.11, we have that QE and Q are equivalent. Let the
equivalence of QE and Q be witnessed by homomorphisms h from Q to QE and h′

from QE to Q.
Since Q is minimal, we can assume, thanks to Lemma 5.2.12, that h is injective and h′

is the inverse of h on the atoms of h(body(Q)). Since h is injective, we can further assume,
without loss of generality, that h is the identity mapping on the variables in Q and that
we have h′(x) = x for every such variable.6

That is, we have head(Q) = head(QE) = head(QR) as well as body(Q) ⊆ body(QE).
Let α1, . . . , αm be view applications of views V1, . . . , Vm ∈ V that yield the expan-

sion QE . That is, α1, . . . , αm fulfil quantified variable disjointness, and we have

body(QE) =
m⋃
i=1

αi(body(Vi)).

The sequence α1, . . . , αm of view applications induces a partition A1, . . . ,Am of body(QE)
as follows. For every i ∈ [1,m] we define

Ai = {A ∈ body(Q) | i is minimal such that A ∈ αi(body(Vi))}.
6This can easily be achieved by renaming the variables of QR and QE appropriately.

Page 163

Chapter 5 I Structurally Simple Rewritings

We note that, in general, some of the Ai might be empty. In that case, they can just be
removed. For convenience, we assume in the following that all Ai are non-empty.

Let now di = 〈Ai, Vi, αi, h
′
i〉, where h′i is the restriction of h′ to the variables in αi(Vi),

for every i ∈ [1,m]. To show that d1, . . . , dm constitute a cover partition, it only remains
to show that each di is a cover description.

To this end, we show that all four conditions of Definition 5.2.3 are satisfied for di, for
every i ∈ [1,m]. Condition (1) holds by the definition of Ai. Condition (3) is true because
each h′i is a restriction of the body homomorphism h′. Condition (4) follows since h′ is
the identity on all variables in body(Q) and thus also on all variables of Ai ⊆ body(Q).

Hence, it only remains to show that Condition (2) is satisfied. For this purpose, let x
be an arbitrary bridge variable in some Ai. If x occurs in a subset Aj where j 6= i,
then it is a head variable in both αi(Vi) and αj(Vj) because α1, . . . , αm fulfil quantified
variable disjointness. Otherwise, Ai is the only subset containing variable x, which
thus has to be a head variable of Q in order to be a bridge variable in Ai. Because
of head(Q) = head(QR), it is then also a head variable of QR. This, in turn, implies
that x is a head variable of αi(Vi) because the quantified variables of αi(Vi) do not occur
in QR. �

The previous proof used the following lemma. It is similarly stated by Chen et al.
[Che+20a, Proof of Lemma 2], the authors also provide more details in a full version of
their paper [Che+20b, Proof of Lemma 9]. For convenience, we provide a short proof.

Lemma 5.2.12. Let Q1 be a minimal conjunctive query, Q2 be a conjunctive query
equivalent to Q1, and h1 : Q1 → Q2 a homomorphism. Then, there is a homomorphism
h2 : Q2 → Q1 that is the inverse of h1 on h1(body(Q1)).

Proof. Since Q1 and Q2 are equivalent, there is a homomorphism h′2 : Q2 → Q1.
The mapping h′2 ◦ h1 is an automorphism on Q1, because Q1 is minimal. Since the

automorphisms of Q1 constitute a group, there is some k > 0 such that (h′2 ◦ h1)k is the
identity on Q1. We choose h2 = (h′2 ◦ h1)k−1 ◦ h′2. Clearly, h2 is a homomorphism from
Q2 to Q1 and h2 is the inverse of h1 on h1(body(Q1)). �

We observe that the proof for Lemma 5.2.11 is partially constructive. Given homo-
morphisms h and h′ as well as view applications α1, . . . , αm that – together – fulfil the
assumptions made in the proof, it is straightforward to derive a cover partition from
the given rewriting. By carefully combining (and somewhat extending) the proofs for
Proposition 5.1.14 and Lemma 5.2.11 we obtain the following result, which is the core of
all tractability results in the remainder of this chapter.

Lemma 5.2.13. For every k ≥ 0, there is a polynomial time algorithm that, given a
set V ⊆ ACQk of views and a minimal conjunctive query Q ∈ ACQ that is V-rewritable,
computes a cover partition over V for Q.

Proof. The algorithm proceeds in four steps.
The first step is to compute a V-rewriting QR of Q. Thanks to Proposition 5.1.14 this

can be done in polynomial time (and QR is of polynomial size). Let B1, . . . , Bm be the
view atoms constituting the body of QR.

Page 164

I A Characterization

In the second step, the algorithm determines view applications α1, . . . , αm such that
the identity mapping is a homomorphism from Q to the expansion of a rewriting
(not necessarily QR) with respect to α1, . . . , αm. For that purpose, it first fixes view
applications α′

1, . . . , α
′
m for QR according to Definition 5.1.8. That is, each α′

j is a view
application for a view Vj ∈ V such that αj(head(Vj)) = Bj . Furthermore, α′

1, . . . , α
′
m fulfil

quantified variable disjointness. Since, for each j ∈ [1,m], the image of head variables
from Vj under α′

j is uniquely determined by Bj , computing α′
j boils down to simply

renaming quantified variables in body(Vj). Thus, this can be done in polynomial time.
Next, the algorithm determines a homomorphism h from Q to the expansion Q′

E of QR

with respect to α′
1, . . . , α

′
m. As detailed in the proof of Proposition 5.1.14 testing for

the existence of a homomorphism can be done in polynomial time, thanks to Q being
acyclic [Yan81]. Furthermore, there is a homomorphism from Q to Q′

E , since QR is
a rewriting of Q. Such a homomorphism h can thus be determined as follows. Pick
a variable x ∈ vars(Q) and let Rx be a fresh, unary relation symbol for x. For each
variable y ∈ vars(Q′

E), the algorithm adds the atom Rx(x) to body(Q) and the atom Rx(y)
to body(Q′

E), and then tests whether there still is a homomorphism. Observe that adding
unary atoms to an acyclic query always results in an acyclic query again. If the test
succeeds for a variable y, there is a homomorphism that maps x to y. The algorithm
fixes such a variable y as the image h(x) by keeping the respective Rx-atoms. Repeating
this procedure for every variable in vars(Q) yields the desired homomorphism h. We
note that, overall, at most |vars(Q)| · |vars(Q′

E)| tests are required. Thus, this step can
be performed in polynomial time.

Since Q is minimal, the homomorphism h is injective. Thus, renaming variables in the
ranges of the α′

j appropriately yields view applications α1, . . . , αm such that the query
with body α1(body(V1)), . . . , αm(body(Vm)) and head head(Q) is a rewriting of Q, and
the identity mapping is a homomorphism from Q to the expansion QE of this rewriting
with respect to α1, . . . , αm.

The third step is to compute a homomorphism h′ from QE to Q that is the inverse
of h on body(Q) – that is, the identity on body(Q) because we have h = id. Thanks
to Lemma 5.2.12 we know that such a homomorphism exists. In principle, it can thus
be computed analogously to the homomorphism h from Q to Q′

E in the second step.
Here the identity mappings for variables x in h(body(Q)) = body(Q) are fixed a priori
by adding the atom Rx(x) to both queries. We note that, while QE is not necessarily
acyclic, it is semantically acyclic. That is, it is equivalent to an acyclic query, namely Q,
since it is the expansion of a rewriting of Q. Barceló et al. [BRV16, Theorem 2.2] proved
that semantically acyclic conjunctive queries can be evaluated in polynomial time. Thus,
the existence of a homomorphism from QE to Q can be asserted in polynomial time as
well.7

Finally, the last step is to obtain the cover partition using the homomorphisms h and h′,
and the view applications α1, . . . , αm. This step can be done completely analogous as in
the proof for Lemma 5.2.11. It is not hard to see that this procedure, and in particular

7We note that this approach does not yield an efficient procedure to test for the existence of a rewriting,
because in this case it is not guaranteed that the expansion is semantically acyclic.

Page 165

Chapter 5 I Structurally Simple Rewritings

the partitioning of body(Q), runs in polynomial time. �

Remark 5.2.14. We note that the requirement in Theorem 5.2.8 and Lemmas 5.2.11
and 5.2.13 for Q to be minimal is only seemingly a restriction in our setting, since we
apply it only to acyclic queries. If Q is acyclic but not minimal, an equivalent minimal
query Q′ can be computed in polynomial time by iteratively removing atoms from its
body and testing containment [CM77; CR00, Corollary 1]. Moreover, it is guaranteed
that the minimal query Q′ is also acyclic. We believe this to be folklore, it also follows
readily from more general results [cf., for instance, BPR17, Proposition 3].

The same is true for free-connex acyclic queries: Every homomorphism from Q to Q′ is
also a homomorphism from body(Q)∪{head(Q)} to body(Q′)∪{head(Q′)} and vice versa,
since the relation symbol of head(Q) = head(Q′) does not occur in body(Q′). Thus, Q′ is
minimal if and only if the Boolean query whose body is body(Q′)∪{head(Q′)} is minimal.
Therefore, if body(Q)∪{head(Q)} is acyclic, so is body(Q′)∪{head(Q′)}. In other words,
if Q is free-connex acyclic, then Q′ is free-connex acyclic as well.

For hierarchical and q-hierarchical queries the same holds: It is easy to see that removing
atoms does not change the conditions in their respective definitions (cf. Definition 2.4.2).

5.3 Towards Acyclic Rewritings

In this section, we turn our focus to the main topic of this chapter: Acyclic rewritings
and the acyclic rewriting problem – the decision problem that asks whether an acyclic
rewriting exists. We will study the complexity of Rewr(V, Q, ACQ) in Section 5.3.2, for
the case that V and Q are the class of conjunctive queries as well as for various cases
where V and Q are subclasses of acyclic conjunctive queries. For that purpose, we first
study the existence of acyclic rewritings in Section 5.3.1, specifically for the case that the
given query is acyclic, i.e. in case Q = ACQ and V = CQ.

5.3.1 On the Existence of Acyclic Rewritings for Acyclic Queries

We start by discussing some examples to gain some insights into the existence of acyclic
rewritings and their relationship with canonical candidates. The following example
illustrates that, even if an acyclic rewriting exists, the canonical rewriting is not necessarily
acyclic. Furthermore, it may be that an acyclic rewriting cannot be obtained from the
canonical rewriting by removing atoms, because each “subquery” of the canonical rewriting
is cyclic or not a rewriting, and thus none of them is an acyclic rewriting.

Example 5.3.1. Consider the set V consisting of the following three views.

V1(u1, v1)← R1(u1), R2(v1) V2(u2, v2)← S(u2, v2) V3(u3, v3)← T1(u3), T2(v3)

Let further Q be the acyclic conjunctive query given by the rule

H()← R1(x), R2(y), S(x, z), T1(z), T2(y).

Page 166

I Towards Acyclic Rewritings

The canonical candidate QR is H() ← V1(x, y), V2(x, z), V3(z, y). It is a V-rewriting
of Q, but it is cyclic. Each query whose body is a proper subset of body(QR) is not a
V-rewriting of Q. However, there is an acyclic V-rewriting of Q, namely the query Q′

R

defined by
H()← V1(x, y), V2(x, z), V3(z, y

′), V3(z
′, y). C

Example 5.3.1 suggests that an acyclic rewriting may have more atoms than a “general”
rewriting. In particular, there may not be an acyclic rewriting which is “minimal” –
in the sense that there is another rewriting with less atoms. Furthermore, an acyclic
rewriting may have more variables than an arbitrary rewriting and the original query.8

Despite these differences, it turns out that it is always possible to obtain an acyclic
rewriting from an arbitrary rewriting. Furthermore, our proof implies that Lemma 5.1.12
transfers to acyclic rewritings: If there is one at all, there is an acyclic rewriting whose
length is bounded by the length |Q| of the original query Q.

Towards a proof of these claims, we have a closer look at the structure of cover
descriptions, with the aim to determine the circumstances under which a decomposition
of view atoms as in Example 5.3.1 is possible.

Example 5.3.2 (Continuation of Example 5.3.1). We first have a closer look at the V3-
atoms in the rewritings of Example 5.3.1. The V3-atom V3(z, y) in the cyclic rewriting QR

corresponds to a cover description d = 〈A, V3, α, id〉 with A = {T1(z), T2(y)}, α(u3) = z,
and α(v3) = y. We observe that the set A is not connected, the two atoms in A do not
share any variable. This allows us to “split” the cover description into the two cover
descriptions

d1 = 〈{T1(z)}, V3, {u3 7→ z, v3 7→ y′}, {z 7→ z, y′ 7→ y}〉, and
d2 = 〈{T2(y)}, V3, {u3 7→ z′, v3 7→ y}, {z′ 7→ z, y 7→ y}〉.

Indeed, these cover descriptions correspond to the two V3-atoms V3(z, y′) and V3(z′, y)
of the acyclic rewriting Q′

R. It is not hard to see that replacing d with d1 and d2 in any
cover partition for Q yields again a cover partition for Q, as long as y′ and z′ are fresh
variables that do not occur in the original partition.

Such a replacement can also be understood as replacing a view atom in a rewrit-
ing with a set of view atoms which is “equivalent with respect to expansions”. In-
deed, the two V3-atoms in the acyclic rewriting Q′

R constitute a (sub-)query with body
{V3(z, y′), V3(z′, y)} and head variables z, y, whereas the V3-atom in the cyclic rewrit-
ing QR constitutes a (sub-)query with body {V (z, y)} and head variables z, y. The
expansions of these two (sub-)queries are equivalent.

We note that one could also replace the (cover description corresponding to the)
V1-atom instead of the V3-atom in QR to obtain an acyclic rewriting. C

In Example 5.3.1 the acyclic rewriting was obtained by “splitting” cover descriptions,
and thereby effectively refining a cover partition. The refinement in the example is

8We note that, if a conjunctive query Q is rewritable, then it has a rewriting that uses only variables
from Q, namely the canonical rewriting.

Page 167

Chapter 5 I Structurally Simple Rewritings

encouraged by the non-connectedness of the two atoms of Q “covered” by the original
view atom V3(z, y). We note that, given a rewriting alone, it may not always be obvious
which atoms are “covered” by which view atom. A cover partition, on the other hand,
readily provides this information.

One might suspect that it is also important that the body of the view is not connected.
The next example illustrates that this is not the case, and indeed, we will see that, for
the existence of an acyclic rewriting, the structure of the views is not important at all.9

Example 5.3.3. Consider the two views

V1(x1, y1)← E(x1, y1) and V2(x2, y2)← R(x2), E(x2, z2), E(z2, y2), S(y2),

and the acyclic conjunctive query Q defined by

H(z)← R(x), E(x, z), E(z, y), S(y).

The canonical candidate is the cyclic rewriting

H(z)← V1(x, z), V1(z, y), V2(x, y).

The view atom V2(x, y) corresponds to a cover description d = 〈A, V2, α, ψ〉 where
A = {R(x2), S(y2)}. Note that V2 cannot cover the E-atoms because z is a head variable.
Although body(V2) is connected, the cover description d can be “split” because A is not
connected. This yields an acyclic rewriting, for instance

H(z)← V1(x, z), V1(z, y), V2(x, y
′), V2(x

′, y). C

The next – and final – example illustrates that a refinement of the cover partition as
done in Examples 5.3.2 and 5.3.3 is on its own not always sufficient to obtain an acyclic
rewriting. It is also important that the corresponding cover partition is consistent.

Example 5.3.4. Consider the views

V1(x1, y1, w1)← R(x1, y1, v1), E1(x1), S(w1, v1),

V2(x2, y2, z2)← R(x2, y2, z2), E2(y2),

V3(w3, z3)← S(w3, z3), E3(w3),

and the conjunctive query Q defined by

H(x, y, z)← R(x, y, z), E1(x), E2(y), E3(w), S(w, z).

The canonical candidate H(x, y, z)← V1(x, y, w), V2(x, y, z), V3(w, z) is a cyclic rewriting
of Q. It corresponds to a cover partition P = {d1, d2, d3} where the cover descriptions
have the shape di = 〈Ai, Vi, αi, αi〉, and the sets A1, A2, A3 are as follows.

A1 =
{
E1(x)

}
A2 =

{
R(x, y, z), E2(y)

}
A3 =

{
S(w, z), E3(w)

}
9It plays, however, an important role for our tractability results.

Page 168

I Towards Acyclic Rewritings

We note that neither the R-atom nor the S-atom can be in A1 because z is a head
variable but v1 /∈ vars(head(V1)). In contrast to Examples 5.3.2 and 5.3.3, the sets A1,
A2, and A3 are all connected.

We observe that to yield the view atom V1(x, y, z) the variables y and z have to be in
the range of the view application α1. However, they are also in the range of α2, but not
bridge variables of A1, since they do not even occur in A1. Thus, P is not consistent,
because α1 and α2 violate the condition.

The procedure guaranteed by Lemma 5.2.9 to obtain a consistent cover partition yields
the following acyclic rewriting of Q.

H(x, y, z)← V1(x, y
′, w′), V2(x, y, z), V3(w, z) C

We conclude the discussion with the main result of this section.

Theorem 5.3.5. Let V be a set of views and Q be a conjunctive query.

(a) If Q is acyclic and V-rewritable, then there is an acyclic V-rewriting of Q.

(b) If Q is free-connex acyclic and V-rewritable, then there is a free-connex acyclic
V-rewriting of Q.

The rewritings guaranteed by Statements (a) and (b) have length at most |Q|. Moreover,
given a cover partition over V for Q, an acyclic (or free-connex acyclic, respectively)
rewriting of Q can be computed in polynomial time.

Proof. Since Q is acyclic, we can assume that it is minimal, thanks to Remark 5.2.14.
Moreover, it has a join tree TQ, and, thanks to Theorem 5.2.8 and Q being V-rewritable,
there is a consistent cover partition P = {d1, . . . , dm} for Q over V, and the query q(P)
is a V-rewriting of Q. For each i, let di = 〈Ai, Vi, αi, ψi〉.

We show first that q(P) is acyclic if each set Ai is connected in TQ. Afterwards we
show that a consistent cover partition with that property can always be constructed,
given P.

To this end, we construct a join tree TP for q(P): We first cluster, for each j, the
nodes for Aj in TQ together into one node that is labelled with αj(head(Vj)). Since the
Aj are connected in TQ, the resulting graph TP is a tree.

To verify that TP is a join tree, let us consider two nodes v, w of TP labelled
by αi(head(Vi)) and αj(head(Vj)), respectively, and x be a variable that appears in
αi(head(Vi)) and αj(head(Vj)). Thanks to P being consistent, the variable x appears
in bvarsQ(Ai) and bvarsQ(Aj). In particular, this means that x appears in two atoms
A ∈ Ai and A′ ∈ Aj . Moreover, since TQ is a join tree, x appears in every node on
the (shortest) path from A to A′ in TQ. But that means x is in bvarsQ(A`) for every
α`(head(V`)) along the corresponding contracted path in TP from v to w. Thanks to
Condition (2) of Definition 5.2.3, x thus appears in all labels α`(head(V`)) on the path
from v to w. Thus, v and w are x-connected. We conclude that TP is a join tree for q(P).
Hence, q(P) is acyclic, and we have thus established Statement (a).

If Q is also free-connex acyclic, there is a join tree T+
Q for body(Q)∪ {head(Q)}. As we

show later, we can assume that the sets Ai of the cover partition P are also connected

Page 169

Chapter 5 I Structurally Simple Rewritings

in T+
Q. Clustering the nodes10 of T+

Q analogously as for TQ yields a join tree for the
Boolean query with body body(q(P))∪{head(q(P))} since head(q(P)) = head(Q) and all
head variables in a set Ai also occur in the new label αi(head(Vi)), thanks to Condition (2)
of Definition 5.2.3. We can conclude that Statement (b) holds.

It remains to show how, from a consistent cover partition P = {d1, . . . , dm} with cover
descriptions di = 〈Ai, Vi, αi, ψi〉, for all i ∈ [1,m], we can construct a consistent cover
partition P ′ = {d′1, . . . , d′n} such that each set A′

i from P ′ is connected in TQ. To this
end, let us assume that some set Aj is not connected in TQ. Let B ⊆ Aj be a maximally
connected subset and let A′

j = Aj \ B. We observe that each variable x that appears
in B and A′

j , is also in bvarsQ(Aj), since x has to occur in at least one other atom in TQ
(otherwise, Bj and A′

j would be connected in TQ). Thus, bvarsQ(Bj) ⊆ bvarsQ(Aj). We
conclude that dB = 〈B, Vj , αj , ψj〉 is a cover description. Likewise, d′j = 〈A′

j , Vj , αj , ψj〉 is
a cover description. The cover description dj is then replaced by dB and d′j . Repeatedly
applying this modification step, eventually yields a cover partition P ′ = {d′1, . . . , d′n}
in which each set A′

i is connected. If Q is free-connex, then P ′ can be further refined
as described above but along T+

Q instead of TQ. Indeed, refining the cover partition
iteratively along TQ and T+

Q yields a cover partition P ′′ = {d′′1, . . . , C ′′
p} in which each

set A′′
i is connected in TQ and T+

Q. The number of iterations is bounded by the number
of atoms of Q, and thus polynomial.

Thanks to Lemma 5.2.9, P ′′ can be turned into a consistent cover partition without
changing the underlying partition of body(Q) in polynomial time (and the required
renaming of variables does not affect the connectedness). Note that the same can be
done for the original cover partition, if necessary. Finally, observe that P ′′ consists of at
most |body(Q)| cover descriptions, and thus, q(P ′′) has length at most |Q|. �

Theorem 5.3.5 delivers good news as well as bad news. The good news is that, in
combination with Proposition 5.1.14, it yields that Rewr(ACQk, ACQ, ACQ) is in P, for
every k ≥ 0. Since it is possible to efficiently compute a cover partition in this case,
thanks to Lemma 5.2.13, we get the following corollary.

Corollary 5.3.6. For every k ≥ 0, Rewr(ACQk, ACQ, ACQ) is in P, and an acyclic
rewriting can be computed in polynomial time, if it exists.

The bad news is that, because Rewr(V, ACQ, CQ) and Rewr(V, ACQ, ACQ) are
essentially the same problem, lower bounds for Rewr(V, ACQ, CQ) also apply to
Rewr(V, ACQ, ACQ). Particularly, we get the following, since Rewrk(CQ, ACQ, CQ)
is NP-hard due to Proposition 5.1.15.11

Corollary 5.3.7. For every k ≥ 3, the problem Rewrk(CQ, ACQ, ACQ) and, therefore,
also Rewrk(CQ, CQ, ACQ) is NP-hard.

10The node labelled head(Q) is not clustered with any other node, since it does not occur in any Ai.
11We note that Corollary 5.3.7 also follows from the proof of Proposition 5.1.15, since the canonical

candidate constructed in that proof is trivially acyclic. Indeed, NP-hardness of Rewr(ACQ, CQ, ACQ)
is also implied.

Page 170

I Towards Acyclic Rewritings

Corollaries 5.3.6 and 5.3.7 leave the complexity of the problems Rewr(ACQ, ACQ, CQ)
and Rewr(ACQ, ACQ, ACQ) as well as their restrictions to fixed database schemas open.
In the next subsection we will resolve this.

5.3.2 The Complexity of the Acyclic Rewriting Problem

It may be tempting to assume that, since acyclic queries are so well-behaved in general,
it should be tractable to decide whether for an acyclic query and a set of acyclic views
there exists an acyclic rewriting. However, as we show next, this is (probably) not the
case, and this surprising finding even holds for the even better behaved hierarchical
conjunctive queries as well.

Theorem 5.3.8. Rewrk(ACQ, ACQ, CQ) and Rewrk(ACQ, ACQ, ACQ), as well as
Rewrk(HCQ, HCQ, CQ) and Rewrk(HCQ, HCQ, ACQ) are NP-complete, for k ≥ 3.
The lower bounds even hold for instances with a single view.

Of course, Theorem 5.3.8 immediately implies NP-hardness of Rewrk(V, Q, ACQ) and
Rewr(V, Q, ACQ), for all pairs V,Q of classes with HCQ ⊆ V ⊆ CQ and HCQ ⊆ Q ⊆ CQ.
All of these problems are also in NP, thanks to Theorem 5.1.3 and Theorem 5.3.5.

In Section 5.5 we will prove an analogue of Theorem 5.3.5 for hierarchical conjunc-
tive queries. Consequently, this will let us conclude that Rewrk(V, Q, HCQ) and
Rewr(V, Q, HCQ), for V, Q as above, are also NP-complete, cf. Corollary 5.5.5.

Towards a proof for Theorem 5.3.8, recall that deciding whether a rewriting exists is
the same as deciding whether a cover partition exists, thanks to our characterization,
stated as Theorem 5.2.8. We show next that even deciding whether a single cover
description exists is NP-hard, given a query, a set of atoms, and a single view as input.
The lower bound proof of Theorem 5.3.8 is then by reduction from the cover description
problem CovDesc(V, Q) which is defined as follows, for classes V ⊆ CQ and Q ⊆ CQ of
conjunctive queries.

CovDesc(V, Q)

Given: View V ∈ V, conjunctive query Q ∈ Q, subset A ⊆ body(Q)

Question: Are there mappings α and ψ such that 〈A, V, α, ψ〉 is a cover description?

Again, we denote by CovDesck(V, Q) the restriction of CovDesc(V, Q), where the
arity of each relation symbol in the database schema is bounded by k.

At the first glance CovDesck(V, Q) may appear simpler than the corresponding
acyclic rewriting problem Rewrk(V, Q, ACQ). However, as it turns out the cover
description problem is NP-hard not only for hierarchical queries but even for q-hierarchical
conjunctive queries. In fact, our reduction from the cover description problem to the
rewriting problem will not preserve q-hierarchical queries, and we will prove that the
acyclic rewriting problem for q-hierarchical queries is in P, if the arity of the relations in
the database schema is bounded, cf. Corollary 5.5.4.

Page 171

Chapter 5 I Structurally Simple Rewritings

Theorem 5.3.9. CovDesck(QHCQ, QHCQ) is NP-hard, for k ≥ 2. This holds even
for instances with minimal Boolean queries Q and A = body(Q).

Proof. We reduce the satisfiability problem Sat for propositional formulas12 to the
cover description problem CovDesck(QHCQ, QHCQ).

For a propositional formula f in conjunctive normal form with at least one literal per
clause, we describe how a query Q and a view V can be derived in polynomial time such
that
I Q and V are q-hierarchical, and
I f is satisfiable if and only if there are mappings α and ψ such that 〈body(Q), V, α, ψ〉

is a cover description for Q.
In this proof we will use the term proposition for propositional variables of a formula f
in order to easily distinguish them from variables occurring in queries and views.

Construction. Let f = c1 ∧ · · · ∧ cm be a propositional formula in conjunctive normal
form over propositions X1, . . . , Xn with clauses c1, . . . , cm, for some m ≥ 1. Without loss
of generality we assume that no constants occur in f , i.e. each clause is a (non-empty)
disjunction of literals. The database schema consists of a relation symbol Cj , for each
clause cj , and a “special” relation symbol TruthMap, all of which have arity 2.

The Query. We start with the construction of the q-hierarchical conjunctive query Q.
This query is Boolean, say with head H(), and is defined over only two variables w0

and w1, which are intended to represent the truth values false and true, respectively.
The body of Q is defined as the union{

TruthMap(w0, w1)
}
∪ C0 ∪ C1

of the following sets of atoms.

I The set C0 consists of the atoms Cj(w0, w1), for each clause cj of the formula f .
Intuitively, these atoms represent unsatisfied clauses as opposed to the next atoms
that represent satisfied clauses. Note that the variables w0 and w1 are swapped in
these atoms (and this is the only difference).

I The set C1 consists of the atoms Cj(w1, w0), for each clause cj of f .

The purpose of the TruthMap-atom is to “fix” the truth values represented by w0 and w1.
We observe that Q is minimal, because unifying w0 and w1 does not yield an equivalent

query. Moreover, Q is indeed q-hierarchical: It is hierarchical because both variables w0

and w1 occur in all atoms, and hence we have atoms(w0) = atoms(w1). The additional
condition imposed on q-hierarchical queries is trivially satisfied for Boolean conjunctive
queries.
12As one of the problems originally considered by Karp [Kar72, Main Theorem, Problem 11] it is NP-hard.

Page 172

I Towards Acyclic Rewritings

The View. We now proceed with the construction of the view V . Like for the query Q,
we use the variables w0 and w1, with the same intended meaning as before, but also
additional variables for the propositions X1, . . . , Xn of the formula f . More precisely, for
each proposition Xi, we use two variables xi and x̄i, intended to represent the positive
literal Xi, and the negated literal ¬Xi, respectively.

In contrast to the Boolean query Q, the view V is a full query. That is, its head is
head(V) = V (w0, w1, x1, x̄1, . . . , xn, x̄n). The body of V is defined as the union{

TruthMap(w0, w1)
}
∪ C0 ∪

(
X +
1 ∪ X−1

)
∪ · · · ∪

(
X +
n ∪ X−n

)
of sets of atoms. The sets {TruthMap(w0, w1)} and C0 are the same as for Q. Notably,
the set C1 is not part of body(V).

The new sets are defined as follows.

I For each positive literal L = Xi and each clause cj of f that contains L, the set X +
i

contains the atom Cj(xi, x̄i).

I For each negated literal L = ¬Xi and each clause cj of f that contains L, the set X−i
contains the atom Cj(x̄i, xi).
Note that, in comparison with X +

i , the variables xi and x̄ are swapped.

The intention for X +
i and X +

i is to be mapped to C0∪C1 in body(Q), effectively yielding a
truth assignment that satisfies every clause. Note that, by construction, such a mapping
will always be consistent in the sense that each (xi, x̄i) is mapped to either (w0, w1)
or (w1, w0), that is, x̄i is mapped to the complementary truth value “assigned to” xi.
Further, since each proposition Xi occurs – positively or negated – in f , all xi and x̄i
occur in V .

Before we prove the correctness of our construction, we show that V is q-hierarchical.
Every atom in body(V) contains either w0 and w1 or xi and x̄i, for some i ∈ [1, n], but
no other variable. We thus have atoms(w0) = atoms(w1), and atoms(xi) = atoms(x̄i), for
all i ∈ [1, n], as well as atoms(y) ∩ atoms(z) = ∅ for every other pair y, z of variables
with y 6= z in vars(V). Therefore, V is hierarchical because every pair of variables satisfies
(at least) one condition of Definition 2.4.2. Furthermore, V is q-hierarchical because full
conjunctive queries satisfy the additional condition trivially, since every variable is a
head variable.

Clearly, Q and V can be computed in polynomial time, given a propositional formula f
in conjunctive normal form.

Correctness. We now prove that the formula f is satisfiable if and only if there are
mappings α and ψ such that 〈body(Q), V, α, ψ〉 is a cover description for Q.

First, we show that, if f is satisfiable, then there are mappings α and ψ such that
〈body(Q), V, α, ψ〉 is a cover description for Q. To this end, suppose that f is satisfiable,
and let β : {X1, . . . , Xn} → {0, 1} be a truth assignment satisfying f . We define the view
application α of V as follows. We set α(w0) = w0, α(w1) = w1, and, for every i ∈ [1,m],
I α(xi) = w0 and α(x̄i) = w1, if β(Xi) = 0, or

Page 173

Chapter 5 I Structurally Simple Rewritings

I α(xi) = w1 and α(x̄i) = w0, if β(Xi) = 1.
Furthermore, we define ψ to be the identity on the variables of α(V).

We prove that 〈body(Q), V, α, ψ〉 is a cover description for Q by establishing that the
conditions of Definition 5.2.3 hold. Since Q is a Boolean query, the set A = body(Q)
has no bridge variables. Therefore, Condition (2) holds trivially. For Condition (4) it
suffices to observe that vars(A) = {w0, w1}, and, since α is the identity on these variables,
so is ψ, because it is the identity on all variables in the range of α. To establish that
Conditions (1) and (3) hold, we prove next that body(Q) = α(body(V)). Since ψ is
the identity mapping, this indeed implies Conditions (1) and (3). Overall we can then
conclude that 〈body(Q), V, α, ψ〉 is a cover description for Q.

To prove body(Q) = α(body(V)), we show that α sets up the following relationships
between the atoms in body(V) (on the left-hand side) and the atoms in body(Q) (on the
right-hand side).

(i) α(TruthMap(w0, w1)) = TruthMap(w0, w1)

(ii) α(C0) = C0

(iii) α(X +
1 ∪ X−1 ∪ · · · ∪ X +

n ∪ X−n) ⊆ C0 ∪ C1

(iv) α(X +
1 ∪ X−1 ∪ · · · ∪ X +

n ∪ X−n) ⊇ C1

Properties (i) and (ii) hold because α is the identity on vars(C0) = {w0, w1}. Next, let us
consider the set X +

i , for some i ∈ [1, n]. By definition, view application α maps (xi, x̄i)
either to (w0, w1) or to (w1, w0). The atoms in X +

i , which are of the form Cj(xi, x̄i), are
thus mapped to Cj(w0, w1) or Cj(w1, w0), which are contained in C0 and C1, respectively.
Analogously, we get X−i ⊆ C0 ∪ C1, for every i ∈ [1, n]. Thus, Property (iii) holds.

Finally, we show that Property (iv) holds. To this end, let Cj(w1, w0) be an arbitrary
atom from C1. Since the truth assignment β satisfies f , it also satisfies the clause cj .
Hence, there is a literal L in c such that β assigns the truth value 1 to L. Let us
assume L = Xi, for some i ∈ [1, n] is a positive literal; the proof for a negated literal
is analogous. By definition of α, we then have α(xi) = w1 and α(x̄i) = w0. Since
L = Xi is a literal in clause cj , we also have that Cj(xi, x̄i) ∈ X +

i . We can conclude
that Cj(w1, w0) = α(Cj(xi, x̄i)) is indeed contained in α(X +

i).

Correctness, Part II. Now, we show that the formula f is satisfiable if there are
mappings α and ψ such that 〈body(Q), V, α, ψ〉 is a cover description for Q.

Thanks to Definition 5.2.3, we know that

A = body(Q) ⊆ α(body(V)) and ψ(α(body(V))) ⊆ body(Q)

hold, due to Condition (1) and Condition (3), respectively. Since both bodies body(Q)
and body(V) contain exactly one TruthMap-atom, namely B = TruthMap(w0, w1), we

Page 174

I Towards Acyclic Rewritings

have α(B) = B. Therefore, the mappings α and ψ are the identity on {w0, w1}. Hence,
the view application α induces unambiguously a truth assignment β with

β(Xi) =

{
1, if α(xi) = w1

0, otherwise
for every i ∈ [1, n].

It suffices to show that β satisfies the formula f . To this end, let cj be an arbitrary clause
of f . From body(Q) ⊆ α(body(V)), we know that the atom Cj(w1, w0) is in α(body(V))
because it is in C1 and, therefore, in body(Q). Since body(V) does not contain atoms
from C1, it has to contain a different Cj-atom which is mapped to Cj(w1, w0) by α. This
atom cannot be Cj(w0, w1) from C0 because α is the identity on {w0, w1}. Hence, there
has to be an atom Cj(xi, x̄i) ∈ X +

i or Cj(x̄i, xi) ∈ X−i , for some i ∈ [1, n], in body(V) that
is mapped to Cj(w1, w0) by α. Suppose that an atom Cj(xi, x̄i) ∈ X +

i is in body(V) and
is mapped to Cj(w1, w0). By construction Cj(xi, x̄i) is only in X +

i , and thus in body(V),
if the literal L = Xi occurs in clause cj . Furthermore, from α(Cj(xi, x̄i)) = Cj(w1, w0),
we can infer that α(xi) = w1 holds. But then, the truth assignment β assigns the truth
value 1 to the literal Xi. Finally, since Xi is a literal of the clause cj , we can conclude
that β satisfies cj . The case that an atom Cj(x̄i, xi) ∈ X−i is mapped to Cj(w1, w0) is
analogous: In this case, we have that α(Cj(x̄i, xi)) = Cj(w1, w0), and ¬Xi occurs in cj .
From the former we can derive that α(xi) = w0 6= w0, and, hence β(Xi) = 0.

Overall the truth assignment β satisfies every clause of the formula f , and thus, f is
satisfiable. �

The proof of Theorem 5.3.9 does not directly imply NP-hardness of the acyclic rewriting
problems, as illustrated by the next example. In a nutshell, the reason is that, to obtain
a cover partition, one is free to choose the underlying partition of body(Q).

Example 5.3.10. Consider the propositional formula f = X1∧¬X1 with the two clauses
c1 = X1 and c2 = ¬X1, which is obviously not satisfiable. The construction from the
proof of Theorem 5.3.9 yields the query Q defined by

H()← TruthMap(w0, w1), C1(w0, w1), C2(w0, w1)︸ ︷︷ ︸
C0

, C1(w1, w0), C2(w1, w0)︸ ︷︷ ︸
C1

and the view V with

H(w0, w1, x1, x̄1)← TruthMap(w0, w1), C1(w0, w1), C2(w0, w1)︸ ︷︷ ︸
C0

, C1(xi, x̄i)︸ ︷︷ ︸
X+

1

, C2(x̄i, xi)︸ ︷︷ ︸
X−2

.

Note that, in this example, X−1 = X +
2 = ∅. As expected there is no cover partition

〈A, V, α, ψ〉 with A = body(Q) for Q, because, no matter how α is chosen, C1(w1, w0)
or C2(w1, w0) is not in α(body(V)). Thus, Condition (1) of Definition 5.2.3 cannot be
satisfied.

There is, however, a cover partition over V forQ. It consists of the two cover descriptions
〈body(Q) \ {C2(w1, w0)}, V, α, id〉 and 〈{C2(w1, w0)}, V, α′, id〉 where α and α′ are the

Page 175

Chapter 5 I Structurally Simple Rewritings

identity on {w0, w1}, and α(xi) = w1, α(x̄i) = w0, α′(xi) = w0, and α′(x̄i) = w1. Note
that the bridge variables w0 and w1 occur in both heads, α(head(V)) and α′(head(V)).

In terms of propositional formulas, it is possible to choose a different truth assignment
for each clause. C

Despite Example 5.3.10 the cover description problem can be reduced to the acyclic
rewriting problem, using a straightforward reduction. The idea is to “bind” the atoms
in body(Q) together by a quantified variable which makes a “split”, as endorsed in the
example, impossible. This leads us to the proof that Rewr3(HCQ, HCQ, CQ), and hence
all problems stated in Theorem 5.3.8, are NP-complete.

Proof of Theorem 5.3.8. The upper bound follows from Theorem 5.1.3 and Theo-
rem 5.3.5. We prove the lower bound by reduction from CovDesc2(QHCQ, QHCQ),
which is NP-hard due to Theorem 5.3.9, to Rewr3(HCQ, HCQ, CQ). Since we have
HCQ ⊆ ACQ, cf. Proposition 2.4.3, and thanks to Theorem 5.3.5, this immediately implies
NP-hardness of the other problems stated in Theorem 5.3.8.

Construction. For convenience, we introduce the following notation. For an atom
A = R(x1, . . . , xr) and a variable u we denote by Au the atom Ru(u, x1, . . . , xr) resulting
from extending A by the variable u. We lift this notation to sets A of atoms in the
natural way, that is

Au =
{
Ru(u, x1, . . . , xr) | R(x1, . . . , xr) ∈ A

}
.

Let now Q be a q-hierarchical conjunctive query and V be a q-hierarchical view such
that (V,Q, body(Q)) is an instance for CovDesc2(QHCQ, QHCQ). Recall that, thanks
to Theorem 5.3.9, it suffices to consider instances of this form for our purpose. Moreover,
let u be a fresh variable that does not occur in Q or V . We define Q+ as the conjunctive
query with head head(Q) and body body(Q)u. Analogously, we define V + as the view
with the same head variables as V and body body(V)u. Observe that u is a quantified
variable, since it does not occur in the heads of V + and Q+.

We argue next that V + and Q+ are hierarchical, and thus {V +} and Q+ form an instance
for Rewr3(HCQ, HCQ, CQ). Indeed, for pairs of variables y, z ∈ vars(V +)\{u} with y 6=
z, at least one the conditions of Definition 2.4.2 is satisfied because V is q-hierarchical, and
hence hierarchical in particular. More precisely, we have that atomsV +(y) = atomsV (y)u,
for all variables y 6= u, and hence, the construction preserves the relationships – with
respect to containment and disjointness – of these sets. It remains to consider the
relationships of atom sets for the new variable u and a variable y ∈ vars(V). And indeed,
since u occurs in every atom from body(V +), we have atomsV +(y) ⊆ atomsV +(u). We
conclude that V + is hierarchical.13 The proof for Q+ being hierarchical is completely
13We note that V + is not necessarily q-hierarchical even though V is. This is, in particular, true

for the view V constructed in the proof of Theorem 5.3.9. Recall that, for instance, w0 is a head
variable of V . Since it does not occur together with x1 in an atom but u occurs in every atom, we
have atomsV +(w0) (atomsV +(u). This means that V + is not q-hierarchical because u is a quantified
variable. Moreover, it is also not in CCQ because u connects atoms with variables w0, w1 and atoms
with variables xi, x̄i. Together with the head atom they then form a cycle.

Page 176

I Towards Acyclic Rewritings

analogous.
Obtaining Q+ and V + from Q and V is straightforward and can easily be done in

polynomial time.

Correctness. We prove that there are mappings α and ψ such that 〈body(Q), V, α, ψ〉 is
a cover description for Q if and only if there is a cover partition over {V +} for Q+. Since
Theorem 5.3.9 states NP-hardness even for minimal queries and Q+ is minimal if Q is,
this indeed suffices to prove Theorem 5.3.8, thanks to Theorem 5.2.8.

The direction from left to right is trivial. If 〈body(Q), V, α, ψ〉 is a cover description
for Q, for some mappings α and ψ, then 〈body(Q+), V +, αu, ψu〉 is a cover description
which constitutes a cover partition for Q+. Here αu and ψu are the mappings which are
the identity on u and agree with α and ψ on every other variable, respectively. Note
that, in particular, the bridge variables remain the same.

For the converse, let P be a cover partition for Q+ over {V +}. If P consists of only
one cover description, then this cover description has the form 〈body(Q+), V +, α′, ψ′〉 for
some mappings α′ and ψ′. But then 〈body(Q), V, α, ψ〉 is a cover description for Q; the
mappings α and ψ are the same as α′ and ψ′, except that they are not defined for u.
This is again trivial, because the first position (and thus u) is just deleted from every
atom.

It remains to show that this is the only possible case. That is, we show that P
cannot consist of more than one cover description. For the sake of contradiction, suppose
that P consists of at least two cover descriptions. Let d be a cover description from P.
Since V + is the only view and d is not the only cover description in P, d has the shape
d = 〈Au, V, α, ψ〉 with Au (body(Q+). We observe that the variable u is a bridge
variable of Au since it occurs in every atom of Q+, and, thus, in- and outside Au.

Since u occurs precisely at the first position of every atom in Q+ and V +, it follows
from Condition (1) of Definition 5.2.3 that α(u) = u. Furthermore, α maps no other
variable to u, because u is a quantified variable and as such cannot be unified with any
other variable by α. But then bvarsQ(A) * α(vars(head(V +))), since u does not occur in
the head of V +. This contradicts Condition (2) of Definition 5.2.3. Therefore, d cannot
be a cover description.

We can conclude that P consists of a single cover description. �

5.3.3 An Implication for Multi-Query Evaluation

We next discuss the cover description problem from the perspective of another setting –
the multi-query evaluation setting. Theorem 5.3.9 will let us conclude NP-hardness of a
very closely related problem in this setting. Aside from that this perspective will also
allow us to further highlight the underlying reason for the (supposed) intractability of
the cover description problem.

In the multi-query evaluation setting, multiple given queries Q1, . . . , Qm are to be
evaluated. In this setting it may be possible to evaluate a query Qi more efficiently, if the
query results of some of the other given queries have already been computed. The goal is

Page 177

Chapter 5 I Structurally Simple Rewritings

thus to obtain an order in which the given queries can be evaluated most efficiently.14

In this section we consider a very simple variant, where only two queries are given,
one of which is a Boolean query. The question is then whether the Boolean query can
be evaluated using only some basic operators, if the query result for the other query is
available. In terms of the relational algebra we permit the select operator as well as a
full project operator, i.e. a projection to the empty set of attributes, as basic operators.
For consistency and convenience, we state the formal definition in terms of conjunctive
queries. For a class Q of conjunctive queries, the select-full-project equivalence problem
for Q, denoted SelProjEquiv(Q) is defined as follows.

SelProjEquiv(Q)

Given: Query Q′ ∈ Q, Boolean query Q ∈ Q

Question: Is there a Boolean conjunctive query Q′′ which is equivalent to Q and
whose body can be obtained from body(Q′) by unifying head variables
of Q′ within body(Q′).

Example 5.3.11. Consider the conjunctive query Q′ defined by

H ′(y, z, u, v)← R(x), S(y, x, v), S(y, x, w), T (y, z), T (u, x)

and the Boolean query Q defined by

H()← R(x), S(y, x, y), T (y, z), T (z, x).

Unifying the head variables y and v as well as z and u in body(Q′) yields the Boolean
query

H()← R(x), S(y, x, y), S(y, x, w), T (y, z), T (z, x).

It is equivalent to Q, as its body is the same as body(Q) except for a redundant S-atom.
Thus, we have (Q′, Q) ∈ SelProjEquiv(CQ). C

Interpreting the query Q′ in Example 5.3.11 as a view, the unification of head variables
can be realized by a view application α which does not unnecessarily rename variables.
Whether the desired Boolean query Q′′ exists then boils down to whether there is a
{Q′}-rewriting for Q whose body consists of a single view atom, i.e. α(head(Q′)). But
this is just the same as asking whether there is a cover description with atom set body(Q)
for Q.

Example 5.3.12 (Continuation of Example 5.3.11). Recall that the body of the Boolean
query Q′′ in Example 5.3.11 is obtained from body(Q′) by unifying the head variables y
and v as well as z and u. Let α be the view application of Q′ which maps v to y, u to z,
and is the identity on every other variable. Furthermore, let ψ be the variable mapping
14The acyclic rewriting problem can be understood as a subproblem in this setting. If a query Qi has

a (structurally simple) V-rewriting, where V consists of some of the other queries in the sequence
Q1, . . . , Qm, then it might be favourable to evaluate the queries in V before Qi.

Page 178

I Towards Acyclic Rewritings

that maps w to y and is the identity on every other variable. Then 〈body(Q), Q′, α, ψ〉 is
a cover description for Q. In other words, the Boolean query with body{

α(head(Q′))
}
=
{
H ′(y, z, z, y)

}
is a {Q′}-rewriting of Q. C

As suggested by Examples 5.3.11 and 5.3.12, the select-full-project equivalence problem
and the cover description problem are closely related. This lets us conclude the following.

Corollary 5.3.13. SelProjEquiv(QHCQ) is NP-hard, even if all database relations
have arity at most 2.

Proof. The proof is by reduction from CovDesck(QHCQ, QHCQ), which is NP-hard due
to Theorem 5.3.9, even for instances with minimal Boolean queries Q and A = body(Q).
To be exact, the reduction is thus from the restriction of CovDesck(QHCQ, QHCQ) to
such instances.

Let V ∈ QHCQ be a view and Q ∈ QHCQ be a Boolean query such that (V,Q, body(Q))
stipulates an instance for CovDesck(QHCQ, QHCQ). The instance for the select-full-
project equivalence problem is then just (V,Q). That is, V takes the role of the second
query Q′.

If there are mappings α an ψ such that d = 〈body(Q), V, α, ψ〉 is a cover description
for Q, then it constitutes, in particular, a consistent cover partition for Q. Thus, the
Boolean query with body {α(head(V))} is a rewriting of Q, thanks to Lemma 5.2.10.
We conclude that Q is equivalent to the Boolean query Q′′ whose body is obtained from
body(V) by unifying exactly the (head) variables in body(V) which are unified by the
view application α. Indeed, Q′′ coincides with the expansion exp({d}), up to renaming
variables.

Conversely, if Q is equivalent to a Boolean query Q′′ whose body can be obtained from
body(V) by unifying head variables of V in body(V), then there is a view application α
with α(body(V)) = body(Q′′). Since Q is a Boolean query, the Boolean query with body
{α(head(V))} is a {V }-rewriting of Q. Thanks to Lemma 5.2.11 there is a cover partition
over {V } for Q that consists of a single cover description. This cover description has
necessarily the form 〈body(Q), V, α′, ψ′〉. �

Of course, Corollary 5.3.13 implies NP-hardness of SelProjEquiv(Q) for any class Q
with QHCQ ⊆ Q ⊆ CQ. This includes, in particular, SelProjEquiv(ACQ) and
SelProjEquiv(HCQ).

The relationship of the cover description problem and the select-full-project equivalence
problem highlights that one of the difficulties of the former is to decide which head
variables to unify. Given that – as discussed in Remark 5.2.14 – the containment problem
and deciding whether homomorphisms exists is in P for acyclic conjunctive queries
(and hence hierarchical and q-hierarchical queries), it might be the only one. This is
further supported by the fact that restricting the select-full-project equivalence problem to
instances (Q′, Q) where both queries Q′, Q are Boolean, yields the equivalence problem for
Boolean conjunctive queries, which is in P for acyclic queries [cf., e.g., CR00, Theorem 2].

Page 179

Chapter 5 I Structurally Simple Rewritings

5.4 A Tractable Case: Mind your Head!

Roughly speaking, Theorem 5.3.5 states that the existence of a structurally simple
rewriting is guaranteed, if the given query has a simple structure itself.15 However, we
have also proved that, even if queries and views have a simple structure, the acyclic
rewriting problem is not necessarily tractable.

If, in addition to a simple structure, the heads of the views have bounded arity,
the acyclic rewriting problem is in P, thanks to Corollary 5.3.6. Together with our
observations in Sections 5.3.2 and 5.3.3 this suggests that the heads of the views play a
crucial role – when it comes to tractability. This motivates the study of view classes that
impose restriction on the heads of views.

In this section, we primarily study the acyclic rewriting problem for free-connex acyclic
views. And indeed, it turns out the restriction imposed on the heads of free-connex
acyclic views suffices for tractability, at least if the arity of all databases relations is
bounded. Our proof of this statement will reveal that it actually holds for a slightly
larger class of views, and that the bound on the arity of database relations is not always
required.

We prove the tractability result for free-connex acyclic views by reduction from
Rewrk(CCQ, ACQ, ACQ) to Rewrk(ACQk, ACQ, ACQ). The following result is the
core of this reduction.

Proposition 5.4.1. There is a polynomial time algorithm that computes, given a set V
of free-connex acyclic views over a schema S, a set W of acyclic views over S such that

(A) the arity of the views in W is bounded by the arity of S, and

(B) every conjunctive query Q is V-rewritable if and only if it is W-rewritable.

Moreover, given a cover partition over W for Q, a cover partition over V for Q can be
computed in polynomial time.

Similarly to the proof of Theorem 5.3.5, the idea is to refine a cover partition. However,
instead of refining the partition along a join tree for the query, here the refinement is
guided by join trees for body(V)∪{head(V)}, for each view V . A bit more precisely, each
view V is “split” into views of smaller arity, and each of these new views then “covers” a
subset of the atoms covered by the original view.

Proof of Proposition 5.4.1. Let V ⊆ CCQ be a set of free-connex acyclic views over a
schema S, and k be the arity of S. We first describe how the procedure replaces a single
view V ∈ V by views of smaller arity. It consists of two phases – the partitioning and the
splitting phase.

15Concretely, Theorem 5.3.5 states this for acyclic and free-connex acyclic queries, but we will see that
this is also true for hierarchical and q-hierarchical queries.

Page 180

I A Tractable Case: Mind your Head!

Partitioning. Let TV be a join tree for V including its head atom head(V). Such a
join tree exists because V is free-connex acyclic. Since a join tree is undirected, we can
assume that root(TV) is the unique node labelled with head(V). Let v1, . . . , vn be the
children of the root node, and B1, . . . , Bn their respective labels. Furthermore, let, for
each i ∈ [1, n], Bi be the set of atoms in the subtree of TV with root vi.

Since TV is a join tree, each variable that occurs in a set Bi and in head(V) also occurs
in Bi. Furthermore, variables that occur in two sets Bi, Bj , i 6= j, necessarily also occur
in head(V). Thus, the following two properties hold, for all i, j ∈ [1, n] with j < i.

(a) |vars(Bi) ∩ vars(head(V))| ≤ k (b) vars(Bi) ∩ vars(Bj) ⊆ vars(head(V))

Splitting. For each i ∈ [1, n] we define the view Vi as the projection of V to the variables
that occur in Bi and in head(V). That is, the body of Vi is just the body of V and
vars(head(Vi)) = vars(head(V)) ∩ vars(Bi).

The desired setW of views is obtained by replacing each view V ∈ V by views V1, . . . , Vn
as constructed above. It is not hard to see that W can be computed in polynomial time.

Correctness. The constructed views Vi are acyclic since they have the same body
as the view V they were derived from.16 The latter is acyclic because it is even free-
connex acyclic. Furthermore, the constructed views Vi have arity at most k, thanks to
Property (a). Thus, Statement (A) holds.

To establish Statement (B), we prove that, for every conjunctive query Q, there is a
cover partition over V for Q if and only if there is a cover partition over W for Q. Then
Statement (B) follows, thanks to Theorem 5.2.8.

For the direction from right to left, let PW be a cover partition witnessing that Q is
W-rewritable. Consider a cover description 〈A, Vi, α, ψ〉 where Vi is a view constructed
as above, originating from a view V ∈ V. Since the only difference between V and Vi is
that V has more head variables, replacing Vi with V yields a cover description 〈A, V, α, ψ〉.
Analogous replacements in all cover descriptions from PW yield a cover partition over V
for Q. Clearly, this transformation can be done in polynomial time.

For the direction from left to right, let PV be a cover partition over V for Q. Thanks
to Theorem 5.2.8, we can assume that PV is consistent. Again, we replace the cover
descriptions in PV to obtain a cover partition overW . To this end, let d = 〈A, V, α, ψ〉 be
a cover description from PV . Furthermore, let B1, . . . ,Bn and V1, . . . , Vn be the partition
and the views in W for V . For each i ∈ [1, n], let Ai be the set of all atoms in A which
are in α(Bi) but in no α(Bj), for any j < i. Since we have A ⊆ α(body(V)), thanks to
Condition (1) of Definition 5.2.3, this yields a partition of A. We claim that, for each
i ∈ [1, n], di = 〈Ai, Vi, α, ψ〉 is a cover description. Indeed, since Vi and V have the same
body, Conditions (1) and (3) of Definition 5.2.3 hold. Condition (4) of Definition 5.2.3
holds since vars(Ai) ⊆ vars(A).
16We observe that, since all head variables of Vi occur in Bi, each Vi is even free-connex acyclic. However,

we do not require this property and – as we will discuss – the construction can be applied to a slightly
more general class of views as is, but will not guarantee free-connex acyclicity.

Page 181

Chapter 5 I Structurally Simple Rewritings

In the remainder, we prove that Condition (2) of Definition 5.2.3 holds. To this end,
let x ∈ bvarsQ(Ai). Then x is either in bvarsQ(A) or it is a “new” bridge variable that
also occurs in some Aj ⊆ A, for some j 6= i. In the former case, we have x ∈ α(head(V))
since Condition (2) holds for the original cover description d. Thus, there are variables
y ∈ vars(head(V)) and y′ in vars(Bi) such that α(y) = x = α(y′). Since, thanks to
quantified variable disjointness, α maps quantified and head variables disjointly, it follows
that y′ must be from head(V) as well. But then y′ occurs in head(Vi) since it occurs in
head(V) and Bi. Therefore, x = α(y′) ∈ α(vars(head(Vi))).

In the other case, let j 6= i be such that x occurs in Aj and, hence, in α(Bj). Let y, z
be variables from Bi and Bj , respectively, such that α(y) = x = α(z). If y = z, then y
is a head variable of V , since the only variables Bi and Bj have in common are head
variable of V , due to Property (b). If y 6= z, then both y and z occur in head(V) thanks
to quantified variable disjointness. In both cases, we can conclude that x = α(y) occurs
in α(head(Vi)), because x occurs in Bi and head(V). Thus, di satisfies Condition (2) of
Definition 5.2.3.

Since the sets Ai form a partition of A, replacing d in PV with d1, . . . , dn yields a cover
partition over V ∪W. Repeating this process for all cover description from the original
cover partition PV yields a cover partition over W for Q. �

Since Proposition 5.4.1 effectively provides a reduction from Rewrk(CCQ, ACQ, ACQ)
to Rewrk(ACQk, ACQ, ACQ), and the latter is in P due to Corollary 5.3.6, we get the
main result of this section.

Theorem 5.4.2. For every k ≥ 0, the following two statements hold.

(1) Rewrk(CCQ, ACQ, ACQ) is in P, and an acyclic rewriting can be computed in
polynomial time, if it exists.

(2) Rewrk(CCQ, CCQ, CCQ) is in P, and a free-connex acyclic rewriting can be computed
in polynomial time, if it exists.

Proof. Let V ⊆ CCQ be a set of free-connex acyclic views over a schema S with arity at
most k, and Q ∈ ACQ be an acyclic conjunctive query over S. Given V, an “equivalent”
set W of acyclic views of arity at most k can be computed in polynomial time, thanks
to Proposition 5.4.1. Thus, the claim that Rewrk(CCQ, ACQ, ACQ) is in P follows
immediately from Corollary 5.3.6. Rewrk(CCQ, ACQ, ACQ) is then also in P since
CCQ ⊆ ACQ, and thanks to Theorem 5.3.5.

Moreover, a cover partition over W for Q can be computed in polynomial time,
thanks to Lemma 5.2.13. Again thanks to Proposition 5.4.1 this cover partition can be
transformed into a cover partition over V for Q in polynomial time. This cover partition
can be turned into an acyclic rewriting (or even a free-connex acyclic rewriting, if Q is
free-connex acyclic), thanks to Theorem 5.3.5. �

We leave the complexity of Rewr(CCQ, ACQ, ACQ) and Rewr(CCQ, CCQ, CCQ) as
an open problem.

Page 182

I A Tractable Case: Mind your Head!

A closer inspection of the proof for Proposition 5.4.1 reveals that only the partitioning
phase actually requires the views to be free-connex acyclic. For the splitting phase,
and, more importantly, the correctness it suffices that the body of each view V can be
partitioned into sets B1, . . . ,Bm which obey Properties (a) and (b) from the proof of
Proposition 5.4.1. This leads to the following definition. We emphasize that, while we
state and study it for conjunctive queries in general, we will actually only use it for views.

Definition 5.4.3 (Weak Head Arity). The weak head arity of a conjunctive query Q is
the smallest integer k ≥ 0 for which body(V) can be partitioned into sets B1, . . . ,Bn that
have, for all i, j ∈ [1, n] with j < i, the following two properties.

(a) |vars(Bi) ∩ vars(head(Q))| ≤ k (b) vars(Bi) ∩ vars(Bj) ⊆ head(Q)

Observe that, thanks to the partitioning phase in the proof for Proposition 5.4.1, we
know that free-connex acyclic conjunctive queries over a fixed database schema have
bounded weak head arity. The same is obviously true for views with bounded head arity,
i.e. queries from ACQk, for some fixed k. The following example illustrates, in particular,
that bounded weak head arity extends both classes. More precisely, it shows that there
are indeed views over a fixed schema that have bounded weak head arity but are neither
free-connex acyclic nor have bounded head arity.

Example 5.4.4. Let us consider the family
(
Vn
)
n∈N0

of views with

I head(Vn) = Vn(x, y1, . . . , yn, z1, . . . , zn), and

I body(Vn) =
{
R(x, ui, yi), S(x, ui, zi), T (yi) | i ∈ [1, n]

}
.

For n ≥ 1 the view Vn is acyclic but not free-connex acyclic. Furthermore, its arity
is 2n + 1, and thus, the arity of the family is unbounded. It has, however, weak head
arity 3. This is witnessed by the sets Bi = {R(x, ui, yi), S(x, ui, zi), T (yi)} for i ∈ [1, n]
which form a partition of body(Vn) and have Properties (a) and (b) of Definition 5.4.3.

Replacing the atoms T (yi) with atoms Tn(yi, w1, . . . , wn) preserves the weak head
arity and acyclicity. Hence, the notion of bounded weak head arity also captures
views over schemas whose arity cannot be unbounded. If, in addition to replacing the
T -atoms, the R-atoms are removed, the resulting views are free-connex acyclic. Still, the
weak head arity is 3. Thus, some free-connex acyclic queries over unbounded database
schemas (and unbounded head arity) are captured. However, the family of trivial views
V ′
n(x1, . . . , xn) ← R′(x1, . . . , xn) witnesses that not all free-connex acyclic conjunctive

queries are captured. C

In the remainder of this section, we prove that Theorem 5.4.2 can be generalized to
views of bounded weak head arity. For this purpose, we generalize the partitioning phase
in the proof of Proposition 5.4.1. Recall that, in the partitioning phase, the algorithm
uses a join tree (comprising the head atom) to compute a partition that has Properties (a)
and (b) of Definition 5.4.3. Here we cannot assume the existence of such join trees.
Instead, we will employ cover graphs, which are defined as follows.

Page 183

Chapter 5 I Structurally Simple Rewritings

R(x, u1, y1)

S(x, u1, z1)

T (y1) R(x, u2, y2)

S(x, u2, z2)

T (y2) R(x, u3, y3)

S(x, u3, z3)

T (y3)

Figure 5.1: The cover graph G[V3] of the query Vn for n = 3 defined in Example 5.4.4.

Definition 5.4.5 (Cover Graph). The cover graph G[Q] of a conjunctive query Q is the
undirected graph with node set body(Q) and edge relation{

{A,A′} | A,A′ ∈ body(Q), A 6= A′, vars(A) ∩ vars(A′) * vars(head(Q))
}
.

That is, there is an edge between two atoms A and A′ if they share a quantified
variable.

Example 5.4.6. The cover graph of the (unmodified) view V3 from Example 5.4.4 is
depicted in Figure 5.1. C

The following result provides a proper generalization of the partitioning phase in the
proof of Proposition 5.4.1.

Lemma 5.4.7. Let Q be a conjunctive query and C1, . . . , Cn be the connected components
of its cover graph. The weak head arity of Q is the maximal number ` of head variables
from Q that occur in a set Ci.

Moreover, the connected components C1, . . . , Cn witness that Q has weak head arity `,
and can be computed in polynomial time.

Proof. Let Q be a conjunctive query, and let B1, . . . ,Bm be sets forming a partition of
body(Q) and witnessing that Q has weak head arity k. Furthermore, let C1, . . . , Cn be
the connected components of the cover graph G[Q], and ` be the maximal number of
head variables from Q that occur in a set Ci.

We prove that ` = k holds. We first observe that, for i, j ∈ [1, n] with i, j, the two
components Ci and Cj only share head variables, because if they were to share a quantified
variable, there would be an edge between them. Thus, C1, . . . , Cn have Property (b) of
Definition 5.4.3. Furthermore, we have |vars(Ci) ∩ vars(head(Q))| ≤ `. We can conclude
that k ≤ `, thanks to Definition 5.4.3.

To show that ` ≤ k, it suffices to prove that every connected component Ci in G[Q] is
contained in a set Bj , for some j ∈ [1,m]. Towards a contradiction we assume that there
is a connected component Ci which contains atoms from some Bj and another set. That
is, there are atoms A,A′ ∈ Ci with A ∈ Bj and A′ /∈ Bj . Since Ci is connected there is a
sequence A = A1, . . . , Ap = A′ of (pairwise different) atoms such that {As, As+1} is an
edge in G[Q], for all s ∈ [1, p− 1]. Let now s be the smallest index such that As ∈ Bj
but As+1 /∈ Bj . Furthermore, let p 6= j be such that As+1 ∈ Bp.

By definition of the edge relation of G[Q], the atoms As and As+1 share a quantified
variables x, which is then also in vars(Bj) ∩ vars(Bp). But, since x /∈ vars(head(Q)), the

Page 184

I Hierarchical and Quantified-Hierarchical Rewritings

sets Bj and Bp do not obey Property (b) of Definition 5.4.3. This is a contradiction to
B1, . . . ,Bm witnessing that Q has weak head arity k.

We can conclude that every component Ci is contained in a set Bj , and that thus
` ≤ k holds. Moreover, since the C1, . . . , Cn comprise a partition of body(Q) and posses
Property (b) of Definition 5.4.3, they indeed witness Q having weak head arity ` = k.

Obtaining G[Q] from Q is straightforward, and it is well-known that connected compo-
nents can be computed in polynomial time. Consequently, C1, . . . , Cn, and hence `, can
be computed in polynomial time. �

By replacing the partitioning phase in the proof of Proposition 5.4.1 with the algorithm
guaranteed by Lemma 5.4.7, and in combination with the proof of Theorem 5.4.2, we
obtain the following generalization of Theorem 5.4.2.

Proposition 5.4.8. For every k ≥ 0, the acyclic rewriting problem for the classes of
acyclic conjunctive queries and acyclic views with weak head arity k is in P.

5.5 Hierarchical and Quantified-Hierarchical Rewritings

Thanks to Theorem 5.3.5, we know that every acyclic conjunctive query has an acyclic
rewriting, if it has a rewriting at all. The same is true for free-connex acyclic conjunctive
queries. In other words, the structural properties of these queries, which guarantee
– among other benefits – good complexity bounds for query evaluation, transfer to
rewritings. It is natural to ask whether other, stronger structural properties transfer in
the same fashion. In this section, we study this question for hierarchical and q-hierarchical
conjunctive queries.

In Section 5.3.2 we also proved that the cover description problem is NP-hard for
q-hierarchical conjunctive queries. For the acyclic rewriting problem we established
NP-hardness “only” for hierarchical conjunctive queries. Towards the end of this section,
we will address this discrepancy, and conclude some complexity results for deciding the
existence of hierarchical and q-hierarchical rewritings.

On the Existence of Hierarchical and Quantified-Hierarchical Rewritings. As for
acyclic queries and rewritings, the canonical rewriting is not necessarily hierarchical,
even if a hierarchical rewriting exists. The same applies for q-hierarchical queries. We
illustrate this fact by means of an example.

Example 5.5.1. Consider the two views

V1(x1, y1)← R(x1), S(y1) and V2(z2)← T (z2)

and the q-hierarchical conjunctive query defined by H(x, y)← R(x), S(y), T (x), T (y).
The canonical rewriting

H(x, y)← V1(x, y), V2(x), V2(y)

Page 185

Chapter 5 I Structurally Simple Rewritings

is not q-hierarchical, since atoms(x) and atoms(y) are neither disjoint nor subsets of one
another. Thus, it is not even hierarchical. However, there is a q-hierarchical rewriting,
namely

H(x, y)← V1(x, y
′), V1(x

′, y), V2(x), V2(y). C

The main result of this section is an analogue of Theorem 5.3.5 for hierarchical and
q-hierarchical queries.

Theorem 5.5.2. Let Q be a conjunctive query and V be a set of views.

(a) If Q is hierarchical and V-rewritable, then there is a hierarchical V-rewriting of Q.

(b) If Q is q-hierarchical and V-rewritable, then there is a q-hierarchical V-rewriting
of Q.

The rewritings guaranteed by Statements (a) and (b) have length at most |Q|. Moreover,
given a cover partition over V for Q, a hierarchical (or q-hierarchical, respectively)
rewriting of Q can be computed in polynomial time.

Similarly, as for Theorem 5.3.5, the proof idea for Theorem 5.5.2 is to refine cover
partitions by splitting cover descriptions with respect to the structure of the query Q.
However, Example 5.5.1 suggests that it does not suffice to do so with respect to the join
tree of Q: The canonical rewriting in this example is already acyclic, but not hierarchical.

Thus, we employ another strategy for splitting cover descriptions. More concretely, a
cover description 〈A, V, α, ψ〉 is split according to the partitioning of A guaranteed by
the following result.

Lemma 5.5.3. Let Q be a hierarchical conjunctive query and 〈A, V, α, ψ〉 be a cover
description for Q. There is a polynomial time algorithm that partitions A into sets
A1, . . . ,An that have the following properties.

(A) Each variable y /∈ α(vars(head(V))) appears in at most one set Ai.

(B) Each set Ai is a singleton set, or there is a variable x /∈ α(vars(head(V))) that
appears in every atom in Ai.

Proof. We employ an undirected graph G similar to the cover graphs utilized in Sec-
tion 5.4. Let G be the graph whose nodes are the atoms from A, and which has an
edge between two atoms A,A′ ∈ A, if x is a variable that occurs in A and A′ but not in
α(vars(head(V))).17

Let A1, . . . ,An be the connected components of G. We prove that A1, . . . ,An have
Properties (A) and (B). Thus, it suffices to compute the graph G and then its connected
components to obtain the desired partition. Clearly, this can be done in polynomial time.

The sets A1, . . . ,An have Property (A) because, otherwise, there would be an edge
between two different sets Ai and Aj – a contradiction to Ai and Aj being connected
components.
17We note that, in contrast to a cover graph, the edge relation is defined with respect to another query,

namely V , instead of head(Q).

Page 186

I Hierarchical and Quantified-Hierarchical Rewritings

To establish Property (B) we make a case distinction. In case a set Ai contains an
atom A with vars(A) ⊆ α(vars(head(V))), we have that Ai is the singleton set Ai = {A},
because there are no edges for A.

The other case is that every atom A in Ai contains at least one variable y /∈
vars(head(α(V))). We prove that there is a variable x /∈ vars(head(α(V))) such that
atoms(x) = Ai. This then implies Property (B) because atoms(x) is by definition the set
of precisely those atoms in which x occurs.

To this end, observe that, for every variable y /∈ α(vars(head(V))), the set Cy of atoms
from A in which y occurs constitutes a (not necessarily maximal) clique in G. Moreover, y
cannot be a bridge variable, because that would violate Condition (2) of Definition 5.2.3.
Thus, we have atoms(y) ⊆ Ai and Cy = atoms(y).

Recall that, since Q is hierarchical, two sets atoms(x) and atoms(y), for two different
variables x, y, are either disjoint or one contains another, due to Definition 2.4.2. Since Ai

is connected, it readily follows, that there is a variable x /∈ vars(head(α(V))) in vars(Ai)
such that atoms(y) ⊆ atoms(x) holds, for every variable y that occurs in Ai but not
in vars(head(α(V))). Finally, since every atom in Ai contains at least one variable
y /∈ vars(head(α(V))), we can conclude that Ai = atoms(x) holds. �

Now we are prepared to prove Theorem 5.5.2.

Proof of Theorem 5.5.2. Towards Statement (a), let Q be a V-rewritable hierarchical
conjunctive query. We can assume that Q is minimal, thanks to Remark 5.2.14. Since Q
is V-rewritable, there is a cover partition for Q, thanks to Theorem 5.2.8.

We describe how this cover partition can be transformed into a cover partition that
corresponds to a hierarchical rewriting. Let d = 〈A, V, α, ψ〉 be a cover description of
the cover partition for Q. Furthermore, let A1, . . . ,An be sets constituting the partition
of A guaranteed by Lemma 5.5.3. For each i ∈ [1, n], the tuple di = 〈A, V, α, ψ〉 is a
cover description. Indeed, it is easy to verify that di satisfies Conditions (1), (3) and (4)
of Definition 5.2.3 because the original cover description d does. The same is true for
Condition (2) because the sets A1, . . . ,An have Property (A) as stated by Lemma 5.5.3.

Therefore, and since the A1, . . . ,An form a partition of A, the cover description d can
be replaced with d1, . . . , dn. Let P be the cover partition obtained by replacing every
cover description in the original partition as described above. We can assume that P
is consistent because every cover partition can be transformed into a consistent cover
partition with the same underlying partition of body(Q), thanks to Lemma 5.2.9. All of
these transformations can be done in polynomial time thanks to Lemmas 5.2.9 and 5.5.3.

For readability, let R denote the rewriting obtained from P, i.e., R = q(P). In the
remainder of the proof for Statement (a), we show that R is hierarchical; that is, we prove
that every pair x, y of variables from vars(R) satisfies (at least) one of the conditions of
Definition 2.4.2. To this end, let x and y be two variables in vars(R).

If x occurs in only one atom of body(R) then there are two cases: (i) If in the only
atom in which x occurs, y occurs as well, then atomsR(x) ⊆ atomsR(y), and (ii) otherwise,
atomsR(x) ∩ atomsR(y) = ∅ holds. Analogously, if y occurs in only one atom of body(R)
then either atomsR(y) ⊆ atomsR(x) or atomsR(x) ∩ atomsR(y) = ∅ holds.

Page 187

Chapter 5 I Structurally Simple Rewritings

Let us finally assume that both x and y occur in at least two atoms of body(R) each.
Thanks to P being a consistent cover partition and Condition (2) of Definition 5.2.3, x
and y are bridge variables, and occur in atom sets of at least two different cover descriptions
of P each. Since Q is hierarchical we have the following three cases.

Case 1: atomsQ(x) ⊆ atomsQ(y). Let 〈A, V, α, ψ〉 from P be a cover description such
that x ∈ α(head(V)). In particular, x thus occurs in an atom A ∈ A. Therefore, y also
occurs in A, since atomsQ(x) ⊆ atomsQ(y). Since y is a bridge variable by assumption,
it follows that y ∈ α(head(V)) thanks to Condition (2) of Definition 5.2.3. We conclude
that atomsR(x) ⊆ atomsR(y) holds.

Case 2: atomsQ(y) ⊆ atomsQ(x). This case is analogous to the first case.

Case 3: atomsQ(x) ∩ atomsQ(y) = ∅. If there is no cover description in P, in which x
and y occur together, then atomsR(x) ∩ atomsR(y) = ∅ holds. Let us thus assume, for
the sake of a contradiction, that there is a cover description 〈A, V, α, ψ〉 in P in which
both x and y occur. Thanks to atomsQ(x) ∩ atomsQ(y) = ∅, set A contains at least
two atoms. Then there is a variable z /∈ vars(head(α(V))) that appears in all atoms
of A, because A is not a singleton and has Property (B) as stated in Lemma 5.5.3.
Since Q is hierarchical, we must have atomsQ(x) (atomsQ(z). However, this yields
a contradiction, because x occurs in at least two cover descriptions, and therefore
outside A, whereas z does not.

This concludes the proof of Statement (a).
Towards Statement (b), let us assume that Q is q-hierarchical. Our goal is to show

that, for all variables x, y ∈ vars(R), if atomsR(x) (atomsR(y) holds and x occurs in the
head of R, then y occurs in the head of R as well. Note that x and y are both bridge
variables because x occurs in the head of Q – which is the same as the head of R – and y
occurs in at least two atoms of body(R) due to atomsR(x) (atomsR(y). In particular, x
and y both occur in Q. Since the heads of Q and R are the same and Q is q-hierarchical,
whenever atomsQ(x) (atomsQ(y) holds, we can conclude that if x is in the head of R,
then y is also in the head of R.

In the remainder we assume, for the sake of a contradiction, that atomsQ(x) (
atomsQ(y) does not hold. Since Q is hierarchical this means that either atomsQ(x) ⊇
atomsQ(y) or atomsQ(x) ∩ atomsQ(y) = ∅ holds.18

If x also occurs in at least two atoms of body(R), then the preconditions for Cases 2
and 3 in the proof for Statement (a) above are met. Thus, atomsQ(x) ⊇ atomsQ(y) and
atomsQ(x)∩atomsQ(y) = ∅ imply atomsR(x) ⊇ atomsR(y) and atomsR(x)∩atomsR(y) =
∅, respectively. But this is a contradiction to atomsR(x) (atomsR(y).

It remains to consider the case that x occurs in exactly one atom B of body(R). The
variable y then occurs in B and outside B, because atomsR(x) (atomsR(y). Since x and y
are bridge variables, it follows that x occurs in exactly one atom set A of P and y occurs in
and outside A. Hence, atomsQ(x)∩atomsQ(y) = ∅ holds because atomsQ(x) ⊇ atomsQ(y)
cannot. This implies that A consists of at least two atoms, since x and y co-occur
18We note that the case atomsQ(x) = atomsQ(y) is a special case of atomsQ(x) ⊇ atomsQ(y).

Page 188

I Discussion and Related Work

in A. Therefore, there is a non-bridge variable z that occurs in all atoms of A thanks
to Property (B) as stated in Lemma 5.5.3. But then atomsQ(x) (atomsQ(z) holds,
and, since z is a quantified variable, x is a quantified variable as well, because Q is
q-hierarchical. This is a contradiction to x being a head variable.

All in all, we can conclude that atomsQ(x) (atomsQ(y) holds, and therefore, that y is
a head variable. Thus, R is q-hierarchical. �

Complexity Results. Similarly to Theorem 5.3.5, Theorem 5.5.2 delivers good news
as well as bad news. The good news is that, since the inclusions QHCQ ⊆ CCQ and
QHCQ ⊆ HCQ ⊆ ACQ hold (cf. Proposition 2.4.3), the rewriting problem for q-hierarchical
views and hierarchical conjunctive queries over a fixed schema is tractable thanks to
Theorem 5.4.2 and Theorem 5.5.2.

Corollary 5.5.4. For every k ≥ 0, the following two statements hold.

(1) Rewrk(QHCQ, HCQ, HCQ) is in P, and a hierarchical rewriting can be computed
in polynomial time, if it exists.

(2) Rewrk(QHCQ, QHCQ, QHCQ) is in P, and a q-hierarchical rewriting can be com-
puted in polynomial time, if it exists.

The computability of a hierarchical (or q-hierarchical) in polynomial time can be proven
analogously to Theorem 5.4.2, the only difference is that Theorem 5.3.5 is exchanged for
Theorem 5.5.2.

We emphasize that Corollary 5.5.4 contrasts CovDesck(QHCQ, QHCQ) being NP-
hard for k ≥ 2, as stated by Theorem 5.3.9.

The bad news delivered by Theorem 5.5.2 is that Theorem 5.3.8 and Theorem 5.5.2
imply NP-completeness for hierarchical conjunctive queries and views.

Corollary 5.5.5. Rewrk(HCQ, HCQ, HCQ) is NP-complete for every k ≥ 3.

Of course, Corollary 5.5.5 implies NP-hardness of Rewrk(V, Q, ACQ), for all pairs
V,Q of classes with HCQ ⊆ V ⊆ CQ and HCQ ⊆ Q ⊆ CQ.

5.6 Discussion and Related Work
In this section we discuss literature related to our results and techniques. A large
part of this discussion is actually dedicated to a comparison of our characterization
(Theorem 5.2.8) with similar notions utilized in prior work. Notably, this will lead
to another result concerning “minimal” cover descriptions. For (some) applications of
structurally simple queries – which are, of course, also applicable to structurally simple
rewritings – we refer to Section 1.1.3.

The literature on rewritings is vast, even if restricted to conjunctive queries. The
notion of rewritings has been considered for many query languages, database models,
and variations of semantics; including languages relevant in practise, like XML and SQL.
We refer to the surveys of Chirkova and Yang [CY12] and Halevy [Hal01] for an overview

Page 189

Chapter 5 I Structurally Simple Rewritings

on rewritings in general. For rewritings of conjunctive queries, we already covered the
most essential results in Section 5.1. For more details (and results), the book of Afrati
and Chirkova [AC19] is worth reading, if accessible.

Determinacy. A notion closely related to rewritability is determinacy. A set V of views
determines a query Q if, for every database D, the query result Q(D) can be obtained
from V(D). Of course, if Q is V-rewritable, then V determines Q. The converse, however,
does not hold in general – it might be possible to obtain the query result Q(D) from V(D)
by other means than evaluating a rewriting. Nash et al. [NSV10] considered the notion
of completeness for classes of rewritings. More precisely, for classes Q, V, and R of
queries, the class R is called complete for V-to-Q rewritings, if, for each Q ∈ Q and
V ⊆ V, the query Q is V-rewritable, whenever V determines Q. Nash et al. [NSV10,
Theorem 5.2] proved that CQ is not complete for CQ-to-CQ rewritings. In fact, the
query and views they used to prove this result are all acyclic (but neither free-connex
acyclic nor hierarchical). Thus, they actually proved, that CQ is not even complete
for ACQ-to-ACQ rewritings. We emphasize that this obviously implies that no subclass
of CQ is complete for ACQ-to-ACQ rewritings, in particular ACQ. Consequently, the
prerequisite of Theorem 5.3.5 cannot be lifted from rewritability to the more general
notion of determinacy.

Characterizations. We already mentioned that our notion of cover partitions is similar
to various notions from the literature. We briefly discuss three of them here.

I Afrati and Chirkova [AC19] present algorithms for finding exact (or complete) rewrit-
ings with a minimal number of atoms and (maximally) contained rewritings. For this
purpose they consider triples of the form (S, S′, h) which are comparable to cover
descriptions [AC19, Definition 3.12]. Namely, S′ corresponds to the set A in a cover
description, S = body(Q), and h is a homomorphism from S′ into some (implicit)
view V . In our characterization we can always assume h = id (and, thus, omit it in the
specification of a cover description), thanks to the view application α. We note that h
can be assumed to be one-to-one for (equivalent) V-rewritings [AC19, Theorem 3.15].
Furthermore, for (equivalent) rewritings, only candidates whose body is a proper subset
of the canonical rewriting’s body are considered [AC19, Section 3.2.3]. The existence of
a body homomorphism ψ which maps α(V) into Q is guaranteed for such candidates,
and ψ determines the view application α which includes, in particular, the unification
of variables in head(V). However, it does not suffice to consider such candidates, if
one wants to obtain an acyclic rewriting, as we have seen in Example 5.3.1. This is
why α and ψ are part of a cover description.
Let us point out that Condition (2) of Definition 5.2.3 is equivalent to the shared-
variable property [AC19, Definition 3.12]. An analogue of the implication (a) ⇒ (b) of
Theorem 5.2.8 is also proven [AC19, Theorem 3.15] and, based on that, an algorithm
CoreCover for finding (equivalent) rewritings is derived. This algorithm, however,
considers only triples with maximal sets S′ (called tuple cores) and they are allowed to
overlap, i.e. they do not have to form a partition. In contrast, we consider non-maximal

Page 190

I Discussion and Related Work

sets. And indeed, in many cases, our proofs rely on the ability to split sets, and thus
on non-maximal sets.
Afrati and Chirkova also provide a proof for an analogue of (b) ⇒ (a) for (maximally)
contained rewritings [AC19, implied by the proof of Theorem 4.19]. Interestingly, the
proof of this result (and the associated algorithm) exploits triples with minimal sets S′

(that still satisfy the shared-variable property) and a partition property. We discuss
the relation of this minimality constraint with our results below in more detail. An
analogue of (b) ⇒ (a) for (equivalent) V-rewritings, and, therefore, a characterization
for V-rewritability, is not stated (nor implied).

I Gou et al. [GKC06] employ a characterization for V-rewritability to find rewritings
efficiently. It is in terms of tuple coverages and a partition condition corresponding
to cover descriptions and partitions, respectively [GKC06, Theorem 5, Theorem 6].
A tuple coverage, denoted s(tV , Q), is a (non-empty) set G, where tV corresponds
to α(V) and G to the set A of a cover description. Similarly to the notion of Afrati and
Chirkova [AC19], the most crucial difference in comparison with our characterization
is that only rewritings whose body is contained in the canonical rewriting – that is, for
which vars(α(V)) ⊆ vars(Q) holds for every tuple coverage – are considered. Besides,
the mappings ψ and α and their associated conditions are not denoted explicitly;
instead it is required that G is isomorphic to a subset of α(V) and that the analogue
of our Condition (2) holds. This is equivalent to the definitions of Definition 5.2.3, if
restricted to the rewritings considered by Gou et al.

I Lastly, Pottinger and Halevy [PH01] use MiniCon descriptions (MCDs) to compute
(maximally) contained rewritings – which are unions of conjunctive queries, in gen-
eral. A MCD is a tuple of the form (h, V, ϕ,G) which relates to a cover description
〈A, V, α, ψ〉 as follows: (i) h is called a head homomorphism and is basically the re-
striction of a view application α to the head variables of the view V , (ii) G corresponds
to the set A, and (iii) ϕ is a mapping embedding G into h(V). The component ϕ has
no counterpart in a cover description because, thanks to α being able to rename any
variable in V , we can always assume ϕ = id. We note that the view applications αi of
a consistent cover partition P also allow us to conveniently denote the expansion of
the associated rewriting q(P). On the other hand, there is no counterpart for the body
homomorphism ψ in a MCD. However, since the ψi in a consistent cover partition
ensure that the query is contained in the associated expansion of the rewriting, there
is also no need for them if contained rewritings are considered. Condition (2) of
Definition 5.2.3 is stated as [PH01, Property 1] and the idea of a cover partition in
[PH01, Property 2].

Minimal Cover Descriptions. As mentioned above, Afrati and Chirkova [AC19, Defi-
nition 4.16] employ “minimal” triples to construct maximally contained rewritings. In
terms of cover descriptions, an analogous definition of minimality is as follows.

Definition 5.6.1 (Minimal Cover Description). A cover description 〈A, V, α, ψ〉 for
a conjunctive query Q is minimal if A cannot be partitioned into n ≥ 2 non-empty

Page 191

Chapter 5 I Structurally Simple Rewritings

sets A1, . . . ,An such that, for each i ∈ [1, n], there is a cover description of the form
〈Ai, V, αi, ψi〉 for Q.

Let us emphasize that Definition 5.6.1 allows for different mappings αi, ψi, for every
set Ai. The sets of the partition guaranteed by Lemma 5.5.3 are thus not necessarily
minimal, although, they are in some sense “minimal” with respect to fixed mappings α,
and ψ.

Example 5.6.2. Consider the hierarchical view

V (x1, v, x2)← R(u, x1), S(u), R(v, x2), S(v),

and the hierarchical conjunctive query Q defined by

H(x, x′)← R(u, x), S(u), R(u′, x′), S(u′).

Let further 〈A, V, α, id〉 be the cover description with A = {R(u, x), S(u)} and

α =
{
u 7→ u, x1 7→ x, v 7→ u′, x2 7→ x′

}
.

The trivial partition of A that just consists of A itself has Properties (A) and (B) as
stated in Lemma 5.5.3. It also cannot be further refined without changing α because the
variable u /∈ α(vars(head(V))) would then occur in two different sets, and, in particular,
become a bridge variable.

However, 〈A, V, α, id〉 is not minimal. This is witnessed by the cover descriptions
〈{R(u, x)}, V, α′, id〉 and 〈{S(u)}, V, α′, id〉 with

α′ =
{
u 7→ u, x1 7→ x, v 7→ u, x2 7→ x

}
. C

It might be tempting to always make use of minimal cover descriptions. In particular,
they could be exploited to simplify the constructions in the proofs for Theorem 5.3.5 and
Theorem 5.5.2: Instead of partitioning a set A of a cover description “manually”, minimal
cover descriptions could be computed. However, there are potential drawbacks to this
approach. For instance, it might result in larger rewritings. And, more importantly, even
deciding whether a given cover description is minimal is coNP-hard. As a consequence,
using minimal cover descriptions in our construction results in (probably) inefficient
algorithms – in contrast to our “manual” constructions. Formally, for classes V and Q of
views and conjunctive queries, respectively, we consider the following decision problem.

MinCovDesc(V, Q)

Given: View V ∈ V, query Q ∈ Q, cover description 〈A, V, α, ψ〉 for Q

Question: Is 〈A, V, α, ψ〉 minimal?

Proposition 5.6.3. MinCovDesc(HCQ, HCQ) is coNP-hard.

Page 192

I Discussion and Related Work

Proof. We reduce the problem Rewr(HCQ, HCQ, CQ), which is NP-hard due to The-
orem 5.3.8, to the complement of MinCovDesc(HCQ, HCQ). For a hierarchical con-
junctive query Q and a set V of hierarchical views, we describe the construction of a
hierarchical conjunctive query Q′ and a cover description d′ for Q′ such that d′ is not
minimal if and only if there is a V-rewriting for Q.

Similarly to our approach in the proof for Theorem 5.3.8, we use quantified variables
to “bind” atoms together. Recall that, for an atom A = R(x1, . . . , xk) and a variable u,
we write Au for the atom Ru(u, x1, . . . , xk). This notation naturally extends to sets A of
atoms. That is, we have Au = {Au | A ∈ A}. Furthermore, if a set of atoms or a query
consists of atoms extended by (possibly different) variables as described above, we often
signify this with a “+”-symbol in the superscript, e.g. we write A+.

Further on, let V1, . . . , Vn be the views in V. We assume that the views in V and the
query Q refer to distinct variables, which is no restriction since the variables can be
renamed accordingly in polynomial time.

Construction. We start with the construction of the view for the cover description d′.
To define this view (and eventually also the query Q′), we consider views V +

1 , . . . , V
+
n that

are obtained from the input views V1, . . . , Vn by a distinguished variable vi to each atom
of Vi, including the head atom. More precisely, we define V +

1 , . . . , V
+
n as the views with

head(V +
i) = head(Vi)vi and body(V +

i) = body(Vi)vi where v1, . . . , vn are pairwise distinct
variables that do not occur in the query Q or in any of the views in V. In the same
fashion, we derive a set of atoms from body(Q), but we add a fresh atom whose relation
symbol does not occur in Q or in any of the views in V. That is, for a fresh variable u
and a fresh relation symbol S, we set A+

Q = body(Q)u ∪ {S(u)}.
We are now ready to define the view W for the cover description d′. Its body is

body(W) = A+
Q ∪

n⋃
i=1

body(V +
i) ∪

{
S(vn+1)

}
where vn+1 is again a fresh variable that does not occur anywhere else. The head of W
contains all the head variables from Q and Vi, for all i ∈ [1, n], as well as the variables
v1, . . . , vn, vn+1, but not u. Hence, W is a “super view” that encompasses all the V +

i

and the extended version of Q. In particular, for each view V +
i , we have that the set

body(V +
i) is contained in body(W).

The query Q′ is defined by the rule head(Q)← body(W), that is Q′ has the same head
as the original query Q and its body coincides with the body of W .

Finally, we define the cover description d′ as 〈A+
Q,W, id, id〉. Note that the only bridge

variables of A+
Q are the variables in head(Q), since A+

Q does not share any variable with
any of the (extended) views. Thus, d′ fulfils Condition (2) of Definition 5.2.3, because all
head variables from Q also occur in head(W). The other conditions of Definition 5.2.3
are satisfied trivially. Thus, d′ is indeed a cover description for Q′.

We observe that the views V +
i are hierarchical since, for the new variables vi, we

have that atomsV +
i
(vi) ⊇ atomsV +

i
(y) for all y ∈ vars(Vi), and the given views in V are

hierarchical. The same is true for the set A+
Q (interpreted as a Boolean query here).

Page 193

Chapter 5 I Structurally Simple Rewritings

We can conclude that W and Q′ are hierarchical as well, since the views and the query,
and, hence, the V +

i and A+
Q do not share any variable. Clearly, W and Q′ can be obtained

from Q and V in polynomial time.

Correctness. In the following, we prove that Q has a V-rewriting if and only if d′ is not
minimal.

For the only-if direction assume that Q has a V-rewriting. Then there is a consistent
cover partition P over V for Q, thanks to Theorem 5.2.8. By construction each cover
description 〈A, Vj , α, ψ〉 in P can be turned into a cover description

〈Au, V +
j , α ∪ {vj 7→ u}, ψ ∪ {u 7→ u}〉

for Q′ and, furthermore into a cover description 〈Au,W, α′, ψ′〉 for Q′ where α′ and ψ′

coincide with α ∪ {vj 7→ u} and ψ ∪ {u 7→ u} on their domain, respectively, and are the
identity on all other variables. Let P ′ be the collection of cover descriptions obtained by
transforming every cover description in P as described above, and the additional cover
description 〈{S(u)},W, {vn+1 7→ u}, id〉 for Q′.

Since P is a cover partition for Q and Q does not contain an S-atom, the atom sets
of the cover descriptions in P ′ form a partition of A+

Q = body(Q)u ∪ {S(u)}. But then
〈A+

Q,W, id, id〉 is not minimal because P ′ consists of at least two cover descriptions.
For the other direction, suppose that d′ is not minimal for Q′. Let

P ′ =
{
〈A+

1 ,W, α1, ψ1〉, . . . , 〈A+
k ,W, αk, ψk〉

}
be a collection of cover descriptions witnessing that d′ = 〈A+

Q,W, id, id〉 is not minimal.
From P ′ we will derive a cover partition P for Q witnessing that Q is indeed V-rewritable.
For this purpose, we first analyse to which atoms in αi(W) the atoms of a set A+

i are
mapped to and then associate views V +

j with (subsets of) the sets A+
i .

We can assume that the αi fulfil quantified variable disjointness. Moreover, we note
that k ≥ 2, since d′ is not minimal. Therefore, u is a bridge variable of each set A+

i since
it occurs in every atom of A+

Q. Hence, no atom from A+
i can be mapped into the copy

of αi(A+
Q) in αi(W) because the variable u is not a head variable of W . Hence, A+

i is a
subset of

αi(body(V1)v1) ∪ . . . ∪ αi(body(Vn)vn) ∪ {αi(S(vn+1))}.

Since the sets αi(body(Vj)vj) do not share any variable that is not in head(αi(W)),
each cover description in P ′ can be partitioned into cover descriptions

〈B+
i,1,W, αi, ψi〉, . . . , 〈B+

i,n,W, αi, ψi〉

for Q′ where B+
i,j = A+

i ∩ αi(body(Vj)vj) and, in case S(u) ∈ A+
i , a cover description

〈{S(u)},W, αi, ψi〉. For the sake of readability we assume that B+
i,j 6= ∅ holds for all i, j.

If not, the respective cover descriptions can just be removed from the sequence.
We further observe that the view W in each cover description 〈B+

i,j ,W, αi, ψi〉 can
be replaced by V +

j , because we have B+
i,j ⊆ αi(body(V +

j)) by definition. More pre-
cisely, each cover description 〈B+

i,j ,W, αi, ψi〉 can be transformed into a cover description

Page 194

I Discussion and Related Work

〈B+
i,j , V

+
j , αi,j , ψi,j〉 where αi,j and ψi,j are the restrictions of αi and ψi on vars(V +

j),
respectively.

Every cover description 〈B+
i,j , V

+
j , αi,j , ψi,j〉 can, in turn, be transformed into a cover

description 〈Bi,j , Vj , α′
i,j , ψ

′
i,j〉 for Q where Bi,j is the atom set with Bvji,j = B

+
i,j , and the

mappings α′
i,j and ψ′

i,j are the restrictions of αi,j and ψi,j on vars(Vj), respectively.
Let now P be the collection of cover descriptions we obtain by applying the transfor-

mations described above to all cover descriptions in P ′ and removing cover descriptions
with atom set {S(u)}. By construction, the atom sets in P ′ form a partition of body(Q).
Thus, we can conclude that P ′ is a cover partition for Q, and hence, Q is V-rewritable,
thanks to Theorem 5.2.8. �

Page 195

Chapter 6

Conclusion

We conclude this thesis by recalling our main results, pointing out open problems, and
discussing further prospects.

In Chapter 3 we designed O(1)-time parallel algorithms for evaluating queries. For
acyclic conjunctive queries we derived parallel versions of the Yannakakis algorithm with
work bound O((IN + IN · OUT)1+ε), for every fixed ε > 0. Since the original, sequential
algorithm runs in time O(IN + IN · OUT) these algorithms are not work-optimal. On the
other hand, as we have discussed in Section 3.7, it seems reasonable to consider O(1)-time
parallel algorithms with a work bound of O(T 1+ε), where T is the running time of the
best sequential algorithm, as work-efficient. Of course, it would be preferable to sustain
this with matching lower bounds – but this seems to be quite challenging, in particular,
if we do not insist on a compact representation of the query result.

We obtained similar results for free-connex acyclic and semi-join algebra queries, as
well as weakly worst-case optimal work algorithms for natural join queries. Furthermore,
we could lift our algorithms for (free-connex) acyclic conjunctive query to conjunctive
queries – recall that the work bound then depends on the (free-connex) generalized
hypertree width. Interestingly, for queries with width at least 2, the work bounds for the
general and the dictionary setting collapse.

We have already discussed in Section 3.7 that the motivation for studying work-efficient
O(1)-time parallel algorithms originated from the dynamic setting, where databases can
be updated, and algorithms have to update query results accordingly, thus maintaining
them. Pursuing work-efficient O(1)-time parallel algorithms for this setting seems to be
a sensible next step. Since it is also possible to maintain reachability queries [Dat+18;
SVZ20], it might even be feasible to consider algorithms for maintaining Datalog queries
in the dynamic setting.

It could also be worthwhile to study work-efficient constant-time versions of (the
preprocessing phase of) enumeration algorithms [see, e.g., BGS20], and to consider
succinct representation systems for relational databases, e.g., factorized databases [OZ15].

In Chapter 4 we proved that the parallel-correctness problem for frontier-guarded
Datalog queries, hash-based distribution policies, and communication policies defined
by modest sets of data-moving distribution constraints is 2ExpTime-complete. We also
established an analogous result for the parallel-boundedness problem.

Whether similar results hold for monadic Datalog queries remains open. For the
non-transitive communication setting we were able to draw a more complete picture:
Here deciding parallel-correctness is 2ExpTime-complete for frontier-guarded Datalog

Page 197

Chapter 6 I Conclusion

queries but undecidable for monadic Datalog queries.
Although we know that the parallel-correctness problem for frontier-guarded Datalog

queries, hash-based distribution policies, and communication policies defined by sets of
data-moving distribution constraints, which are not necessarily modest, is undecidable
(in the “normal” setting), it remains open where the exact border of decidability lies,
even for frontier-guarded Datalog queries. To this end, it might be worth considering
other Datalog fragments, and formalism to specify policies. In fact, it would also be
interesting to study whether there are sensible formalisms for distribution policies which
are not hash-based, and yield a decidable parallel-correctness problem.

Regarding distribution constraints, it is open how and in what manner they can
be efficiently evaluated. Since any meaningful constraint refers to at least two server
variables – for the “sender” and the “receiver” – we expect that evaluating them involves
communication. Indeed, it would be interesting to know how the load – that is, the
number of bits a server can send and receive in each round – for evaluating constraints
compares to the load required for sending the actual facts for the query evaluation.

Finally, in Chapter 5 we studied structurally simple rewritings for conjunctive queries.
We proved that, if an acyclic conjunctive query has any rewriting, then it is guaranteed
to have an acyclic rewriting as well. The same is true for free-connex acyclic, hierarchical,
and q-hierarchical conjunctive queries. More precisely, for each of these classes, our
characterization of rewritability allowed us to refine a given rewriting along the structure
of the query to obtain a rewriting with the same structural properties.

Concerning the complexity of the associated rewriting problems we showed that it is
NP-complete to decide whether an acyclic rewriting exists, even if the input query and
the views are hierarchical. It turned out that the rewriting problem becomes tractable if
the arity of the database schema is bounded, and the views are free-connex acyclic, or
q-hierarchical – that is, if they are from one of the classes whose structural property takes
the head atom into account. The same applies for acyclic, and hence hierarchical, views
if the arity of their head atoms is bounded. In this case, it is not necessary that the arity
of the database schema is bounded. The cases of free-connex acyclic and q-hierarchical
views over unbounded database schemas remain open.

Another open question is the complexity of rewriting problems Rewr(V, Q, R) with
R (Q, for instance Rewr(ACQ, ACQ, QHCQ). So far we have only NP-hardness results
for the variants Rewr(V, Q, ACQ) and Rewr(V, Q, HCQ) where V and Q encompass
all acyclic, or all hierarchical queries, respectively.

It would also be interesting to study whether our results can be extended to the query
classes we studied in Chapters 3 and 4: Conjunctive queries with bounded (free-connex)
generalized hypertree width, but also semi-join algebra queries and Datalog queries.

Finally, our approach of refining rewritings yields, in general, structurally simple
rewritings with self-joins. But for some applications queries without self-joins play an
important role, for instance, hierarchical queries in the context of probabilistic databases
[FO14; DS07]. Therefore, it seems worthwhile to investigate the existence of structurally
simple rewritings without self-joins – and the complexity of the associated decision
problem(s).

Page 198

Bibliography

[AAS13] Serge Abiteboul, Émilien Antoine and Julia Stoyanovich. “The Web-
damlog System Managing Distributed Knowledge on the Web”. In: CoRR
abs/1304.4187 (2013).
External-Link-Alt 10.48550/ARXIV.1304.4187.
External-Link-Alt cs.DB/1304.4187.
Cited on page 146.

[Abi+11] Serge Abiteboul, Meghyn Bienvenu, Alban Galland and Émilien Antoine.
“A rule-based language for web data management”. In: Proceedings of the
thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. ACM, 2011, pp. 293–304.
External-Link-Alt 10.1145/1989284.1989320.
Cited on page 146.

[AC19] Foto N. Afrati and Rada Chirkova. Answering Queries Using Views, Second
Edition. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2019.
External-Link-Alt 10.2200/S00884ED2V01Y201811DTM054.
Cited on pages 154, 155, 158, 190, 191.

[Afr+17] Foto N. Afrati, Manas R. Joglekar, Christopher Ré, Semih Salihoglu and
Jeffrey D. Ullman. “GYM: A Multiround Distributed Join Algorithm”. en. In:
International Conference on Database Theory, ICDT 2017. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany,
2017, 4:1–4:18.
External-Link-Alt 10.4230/LIPIcs.ICDT.2017.4.
Cited on page 143.

[AGM13] Albert Atserias, Martin Grohe and Dániel Marx. “Size Bounds and Query
Plans for Relational Joins”. In: SIAM Journal on Computing 42.4 (2013),
pp. 1737–1767.
External-Link-Alt 10.1137/110859440.
Cited on page 65.

[AHV95] Serge Abiteboul, Richard Hull and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995. isbn: 0-201-53771-0.
GLOBE http://webdam.inria.fr/Alice/.
Cited on pages 16, 20, 21.

Page 199

https://doi.org/10.48550/ARXIV.1304.4187
https://arxiv.org/abs/1304.4187
https://doi.org/10.1145/1989284.1989320
https://doi.org/10.2200/S00884ED2V01Y201811DTM054
https://doi.org/10.4230/LIPIcs.ICDT.2017.4
https://doi.org/10.1137/110859440
http://webdam.inria.fr/Alice/

Bibliography

[Ajt93] Miklós Ajtai. “Approximate Counting with Uniform Constant-Depth Cir-
cuits”. In: Advances In Computational Complexity Theory, Proceedings of
a DIMACS Workshop, New Jersey, USA, December 3-7, 1990. Ed. by Jin-
Yi Cai. Vol. 13. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. DIMACS/AMS, 1993, pp. 1–20.
External-Link-Alt 10.1090/dimacs/013/01.
Cited on page 219.

[Ame+17] Tom J. Ameloot, Gaetano Geck, Bas Ketsman, Frank Neven and Thomas
Schwentick. “Parallel-Correctness and Transferability for Conjunctive
Queries”. In: Journal of the ACM 64.5 (2017), 36:1–36:38.
External-Link-Alt 10.1145/3106412.
Cited on pages 6, 143, 144.

[Apaa] Apache Software Foundation. Apache Hadoop.
GLOBE https://hadoop.apache.org/ (visited on 01/02/2023).
Cited on page 5.

[Apab] Apache Software Foundation. Apache Spark.
GLOBE https://spark.apache.org/ (visited on 01/02/2023).
Cited on page 5.

[Are+21] Marcelo Arenas, Pablo Barceló, Leonid Libkin, Wim Martens and Andreas
Pieris. Database Theory. Preliminary Version, August 19, 2022. Open source
at https://github.com/pdm-book/community, 2021.
Cited on pages 3, 11, 13, 14, 20, 21, 65, 66, 69, 156.

[AU11] Foto N. Afrati and Jeffrey D. Ullman. “Optimizing Multiway Joins in a
Map-Reduce Environment”. In: IEEE Transactions on Knowledge and Data
Engineering 23.9 (2011), pp. 1282–1298.
External-Link-Alt 10.1109/TKDE.2011.47.
Cited on page 143.

[AV87] Yossi Azar and Uzi Vishkin. “Tight Comparison Bounds on the Complexity
of Parallel Sorting”. In: SIAM Journal on Computing 16.3 (1987), pp. 458–
464.
External-Link-Alt 10.1137/0216032.
Cited on page 76.

[BBS12] Michael Benedikt, Pierre Bourhis and Pierre Senellart. “Monadic Datalog
Containment”. In: International Colloquium on Automata, Languages, and
Programming, ICALP 2012. Springer Berlin Heidelberg, 2012, pp. 79–91.
External-Link-Alt 10.1007/978-3-642-31585-5_11.
Cited on pages 103, 140, 234.

[BCO12] Vince Bárány, Balder ten Cate and Martin Otto. “Queries with Guarded

Page 200

https://doi.org/10.1090/dimacs/013/01
https://doi.org/10.1145/3106412
https://hadoop.apache.org/
https://spark.apache.org/
https://github.com/pdm-book/community
https://doi.org/10.1109/TKDE.2011.47
https://doi.org/10.1137/0216032
https://doi.org/10.1007/978-3-642-31585-5_11

Negation”. In: Proceedings of the Very Large Database Endowment 5.11
(2012), pp. 1328–1339.
External-Link-Alt 10.14778/2350229.2350250.
Cited on page 6.

[BCS11] Vince Bárány, Balder ten Cate and Luc Segoufin. “Guarded Negation”.
In: International Colloquium on Automata, Languages, and Programming,
ICALP 2011. Springer Berlin Heidelberg, 2011, pp. 356–367.
External-Link-Alt 10.1007/978-3-642-22012-8_28.
Cited on page 6.

[BDG07] Guillaume Bagan, Arnaud Durand and Etienne Grandjean. “On Acyclic
Conjunctive Queries and Constant Delay Enumeration”. In: Computer Sci-
ence Logic, 21st International Workshop, CSL 2007, 16th Annual Conference
of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings.
Ed. by Jacques Duparc and Thomas A. Henzinger. Vol. 4646. Lecture Notes
in Computer Science. Springer, 2007, pp. 208–222.
External-Link-Alt 10.1007/978-3-540-74915-8_18.
Cited on pages 8, 17, 19.

[Ben+15] Michael Benedikt, Balder Ten Cate, Thomas Colcombet and Michael Vanden
Boom. “The complexity of boundedness for guarded logics”. In: 2015 30th
Annual ACM/IEEE Symposium on Logic in Computer Science. IEEE, 2015,
pp. 293–304.
External-Link-Alt 10.1109/LICS.2015.36.
Cited on pages 25, 26, 140, 145.

[BG81] Philip A. Bernstein and Nathan Goodman. “Power of Natural Semijoins”.
In: SIAM Journal on Computing 10.4 (1981), pp. 751–771.
External-Link-Alt 10.1137/0210059.
Cited on page 61.

[BGS20] Christoph Berkholz, Fabian Gerhardt and Nicole Schweikardt. “Constant
delay enumeration for conjunctive queries: a tutorial”. In: ACM SIGLOG
News 7.1 (2020), pp. 4–33.
External-Link-Alt 10.1145/3385634.3385636.
Cited on pages 8, 19, 64, 65, 77, 197.

[BKR15a] Pierre Bourhis, Markus Krötzsch and Sebastian Rudolph. “Reasonable
Highly Expressive Query Languages”. In: International Joint Conference on
Artificial Intelligence, IJCAI 2015. 2015, pp. 2826–2832.
Cited on pages 6, 22, 79, 102, 103, 122, 125, 127.

[BKR15b] Pierre Bourhis, Markus Krötzsch and Sebastian Rudolph. Reasonable Highly
Expressive Query Languages: Extended Technical Report. Technical Report.
TU Dresden, May 2015.
GLOBE https://iccl.inf.tu-dresden.de/web/Techreport3020.
Cited on page 122.

Page 201

https://doi.org/10.14778/2350229.2350250
https://doi.org/10.1007/978-3-642-22012-8_28
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1109/LICS.2015.36
https://doi.org/10.1137/0210059
https://doi.org/10.1145/3385634.3385636
https://iccl.inf.tu-dresden.de/web/Techreport3020

Bibliography

[BKS14] Paul Beame, Paraschos Koutris and Dan Suciu. “Skew in parallel query
processing”. In: Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS’14, Snowbird, UT,
USA, June 22-27, 2014. Ed. by Richard Hull and Martin Grohe. ACM, 2014,
pp. 212–223.
External-Link-Alt 10.1145/2594538.2594558.
Cited on page 143.

[BKS17a] Paul Beame, Paraschos Koutris and Dan Suciu. “Communication Steps for
Parallel Query Processing”. In: Journal of the ACM 64.6 (2017), 40:1–40:58.
External-Link-Alt 10.1145/3125644.
Cited on pages 5, 80, 143.

[BKS17b] Christoph Berkholz, Jens Keppeler and Nicole Schweikardt. “Answering
Conjunctive Queries under Updates”. In: Proceedings of the 36th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2017, Chicago, IL, USA, May 14-19, 2017. Ed. by Emanuel Sallinger,
Jan Van den Bussche and Floris Geerts. ACM, 2017, pp. 303–318.
External-Link-Alt 10.1145/3034786.3034789.
Cited on pages 8, 17.

[BM72] Rudolf Bayer and Edward M. McCreight. “Organization and Maintenance
of Large Ordered Indices”. In: Acta Informatica 1 (1972), pp. 173–189.
External-Link-Alt 10.1007/BF00288683.
Cited on page 77.

[BPR17] Pablo Barceló, Andreas Pieris and Miguel Romero. “Semantic Optimization
in Tractable Classes of Conjunctive Queries”. In: ACM SIGMOD Record
46.2 (2017), pp. 5–17.
External-Link-Alt 10.1145/3137586.3137588.
Cited on page 166.

[Bra13] Johann Brault-Baron. “De la pertinence de l’énumération : complexité en
logiques propositionnelle et du premier ordre”. Theses. Université de Caen,
Apr. 2013.
GLOBE https://hal.archives-ouvertes.fr/tel-01081392.
Cited on pages 17, 20.

[BRV16] Pablo Barceló, Miguel Romero and Moshe Y. Vardi. “Semantic Acyclicity on
Graph Databases”. In: SIAM Journal on Computing 45.4 (2016), pp. 1339–
1376.
External-Link-Alt 10.1137/15M1034714.
Cited on page 165.

[CDR86] Stephen A. Cook, Cynthia Dwork and Rüdiger Reischuk. “Upper and Lower
Time Bounds for Parallel Random Access Machines without Simultaneous
Writes”. In: SIAM Journal on Computing 15.1 (1986), pp. 87–97.
External-Link-Alt 10.1137/0215006.
Cited on page 29.

Page 202

https://doi.org/10.1145/2594538.2594558
https://doi.org/10.1145/3125644
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.1007/BF00288683
https://doi.org/10.1145/3137586.3137588
https://hal.archives-ouvertes.fr/tel-01081392
https://doi.org/10.1137/15M1034714
https://doi.org/10.1137/0215006

[CGK01] Zhiyuan Chen, Johannes Gehrke and Flip Korn. “Query Optimization In
Compressed Database Systems”. In: Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, Santa Barbara, CA, USA,
May 21-24, 2001. Ed. by Sharad Mehrotra and Timos K. Sellis. ACM, 2001,
pp. 271–282.
External-Link-Alt 10.1145/375663.375692.
Cited on page 35.

[Cha96] Shiva Chaudhuri. “Sensitive Functions and Approximate Problems”. In:
Information and Computation 126.2 (1996), pp. 161–168.
External-Link-Alt 10.1006/inco.1996.0043.
Cited on pages 32, 33.

[Che+20a] Hubie Chen, Georg Gottlob, Matthias Lanzinger and Reinhard Pichler.
“Semantic Width and the Fixed-Parameter Tractability of Constraint Satis-
faction Problems”. In: Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020. Ed. by Christian Bessiere.
ijcai.org, 2020, pp. 1726–1733.
External-Link-Alt 10.24963/ijcai.2020/239.
Cited on page 164.

[Che+20b] Hubie Chen, Georg Gottlob, Matthias Lanzinger and Reinhard Pichler.
“Semantic Width and the Fixed-Parameter Tractability of Constraint Satis-
faction Problems”. In: CoRR abs/2007.14169 (2020).
External-Link-Alt cs.CC/2007.14169.
Cited on page 164.

[CL10] Thomas Colcombet and Christof Löding. “Regular cost functions over finite
trees”. In: 2010 25th Annual IEEE Symposium on Logic in Computer Science.
IEEE, 2010, pp. 70–79.
External-Link-Alt 10.1109/LICS.2010.36.
Cited on pages 24, 25.

[CM77] Ashok K. Chandra and Philip M. Merlin. “Optimal Implementation of
Conjunctive Queries in Relational Data Bases”. In: Proceedings of the 9th
Annual ACM Symposium on Theory of Computing, May 4-6, 1977, Boulder,
Colorado, USA. Ed. by John E. Hopcroft, Emily P. Friedman and Michael A.
Harrison. ACM, 1977, pp. 77–90.
External-Link-Alt 10.1145/800105.803397.
Cited on pages 3, 8, 16, 122, 127, 156, 166.

[Cod70] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks”. In:
Communications of the ACM 13.6 (1970), pp. 377–387.
External-Link-Alt 10.1145/362384.362685.
Cited on page 3.

[Cod72] E. F. Codd. “Relational Completeness of Data Base Sublanguages”. In:
Database Systems. Ed. by R. Rustin. Prentice-Hall, 1972, pp. 33–64.
Cited on pages 3, 75.

Page 203

https://doi.org/10.1145/375663.375692
https://doi.org/10.1006/inco.1996.0043
https://doi.org/10.24963/ijcai.2020/239
https://arxiv.org/abs/2007.14169
https://doi.org/10.1109/LICS.2010.36
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/362384.362685

Bibliography

[Com+08] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis
Lugiez, Christof Löding, Sophie Tison and Marc Tommasi. Tree Automata
Techniques and Applications. 2008, p. 262.
GLOBE https://inria.hal.science/hal-03367725.
Cited on page 125.

[Cos+88] Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis and Moshe Y.
Vardi. “Decidable Optimization Problems for Database Logic Programs
(Preliminary Report)”. In: Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA. 1988,
pp. 477–490.
External-Link-Alt 10.1145/62212.62259.
Cited on pages 122, 125, 126.

[CR00] Chandra Chekuri and Anand Rajaraman. “Conjunctive query containment
revisited”. In: Theoretical Computer Science 239.2 (2000), pp. 211–229.
External-Link-Alt 10.1016/s0304-3975(99)00220-0.
Cited on pages 8, 151, 157, 166, 179.

[CR98] Ka Wong Chong and Edgar A. Ramos. “Improved Deterministic Parallel
Padded Sorting”. In: Algorithms - ESA ’98, 6th Annual European Symposium,
Venice, Italy, August 24-26, 1998, Proceedings. Ed. by Gianfranco Bilardi,
Giuseppe F. Italiano, Andrea Pietracaprina and Geppino Pucci. Vol. 1461.
Lecture Notes in Computer Science. Springer, 1998, pp. 405–416.
External-Link-Alt 10.1007/3-540-68530-8_34.
Cited on page 76.

[CV97] Surajit Chaudhuri and Moshe Y. Vardi. “On the Equivalence of Recursive
and Nonrecursive Datalog Programs”. In: Journal of Computer and System
Sciences 54.1 (1997), pp. 61–78.
External-Link-Alt 10.1006/jcss.1997.1452.
Cited on pages 125, 126.

[CY12] Rada Chirkova and Jun Yang. “Materialized Views”. In: Foundations and
Trends® in Databases 4.4 (2012), pp. 295–405.
External-Link-Alt 10.1561/1900000020.
Cited on pages 7, 189.

[Dat+18] Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick and
Thomas Zeume. “Reachability Is in DynFO”. In: Journal of the ACM 65.5
(2018), 33:1–33:24.
External-Link-Alt 10.1145/3212685.
Cited on pages 76, 197.

[DS07] Nilesh N. Dalvi and Dan Suciu. “The dichotomy of conjunctive queries on
probabilistic structures”. In: Proceedings of the Twenty-Sixth ACM SIGACT-

Page 204

https://inria.hal.science/hal-03367725
https://doi.org/10.1145/62212.62259
https://doi.org/10.1016/s0304-3975(99)00220-0
https://doi.org/10.1007/3-540-68530-8_34
https://doi.org/10.1006/jcss.1997.1452
https://doi.org/10.1561/1900000020
https://doi.org/10.1145/3212685

SIGMOD-SIGART Symposium on Principles of Database Systems, June
11-13, 2007, Beijing, China. Ed. by Leonid Libkin. ACM, 2007, pp. 293–302.
External-Link-Alt 10.1145/1265530.1265571.
Cited on pages 8, 17, 198.

[DS95] Guozhu Dong and Jianwen Su. “Incremental and Decremental Evaluation of
Transitive Closure by First-Order Queries”. In: Information and Computation
120.1 (1995), pp. 101–106.
External-Link-Alt 10.1006/inco.1995.1102.
Cited on page 76.

[DV91] Karl Denninghoff and Victor Vianu. “The Power of Methods With Parallel
Semantics”. In: 17th International Conference on Very Large Data Bases,
September 3-6, 1991, Barcelona, Catalonia, Spain, Proceedings. Ed. by Guy
M. Lohman, Amílcar Sernadas and Rafael Camps. Morgan Kaufmann, 1991,
pp. 221–232.
GLOBE http://www.vldb.org/conf/1991/P221.PDF.
Cited on page 76.

[Emd90] Peter van Emde Boas. “Machine Models and Simulation”. In: Handbook
of Theoretical Computer Science, Volume A: Algorithms and Complexity.
Ed. by Jan van Leeuwen. Elsevier and MIT Press, 1990, pp. 1–66.
Cited on page 30.

[FO14] Robert Fink and Dan Olteanu. “A dichotomy for non-repeating queries
with negation in probabilistic databases”. In: Proceedings of the 33rd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS’14, Snowbird, UT, USA, June 22-27, 2014. Ed. by Richard Hull and
Martin Grohe. ACM, 2014, pp. 144–155.
External-Link-Alt 10.1145/2594538.2594549.
Cited on pages 8, 198.

[FO16] Robert Fink and Dan Olteanu. “Dichotomies for Queries with Negation in
Probabilistic Databases”. In: ACM Transactions on Database Systems 41.1
(2016), 4:1–4:47.
External-Link-Alt 10.1145/2877203.
Cited on page 8.

[Gec+16] Gaetano Geck, Bas Ketsman, Frank Neven and Thomas Schwentick.
“Parallel-Correctness and Containment for Conjunctive Queries with Union
and Negation”. en. In: International Conference on Database Theory,
ICDT 2016. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH,
Wadern/Saarbruecken, Germany, 2016, 9:1–9:17.
External-Link-Alt 10.4230/LIPIcs.ICDT.2016.9.
Cited on pages 6, 80.

Page 205

https://doi.org/10.1145/1265530.1265571
https://doi.org/10.1006/inco.1995.1102
http://www.vldb.org/conf/1991/P221.PDF
https://doi.org/10.1145/2594538.2594549
https://doi.org/10.1145/2877203
https://doi.org/10.4230/LIPIcs.ICDT.2016.9

Bibliography

[Gec+19] Gaetano Geck, Bas Ketsman, Frank Neven and Thomas Schwentick.
“Parallel-Correctness and Containment for Conjunctive Queries with Union
and Negation”. In: ACM Transactions on Computational Logic 20.3 (2019),
18:1–18:24.
External-Link-Alt 10.1145/3329120.
Cited on page 144.

[Gec+22] Gaetano Geck, Jens Keppeler, Thomas Schwentick and Christopher Spinrath.
“Rewriting with Acyclic Queries: Mind Your Head”. In: 25th International
Conference on Database Theory, ICDT 2022, March 29 to April 1, 2022,
Edinburgh, UK (Virtual Conference). Ed. by Dan Olteanu and Nils Vortmeier.
Vol. 220. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022,
8:1–8:20.
External-Link-Alt 10.4230/LIPIcs.ICDT.2022.8.
Cited on pages 10, 147.

[Gec+23] Gaetano Geck, Jens Keppeler, Thomas Schwentick and Christopher Spinrath.
“Rewriting with Acyclic Queries: Mind Your Head”. In: Logical Methods in
Computer Science 19.4 (2023).
External-Link-Alt 10.46298/LMCS-19(4:17)2023.
Cited on pages 10, 147.

[Gec19] Gaetano Geck. “Reasoning about distributed relational data and query
evaluation”. PhD thesis. Technical University of Dortmund, Germany, 2019.
External-Link-Alt 10.17877/DE290R-21704.
GLOBE https://hdl.handle.net/2003/39813.
Cited on pages 81, 144.

[GKC06] Gang Gou, Maxim Kormilitsin and Rada Chirkova. “Query evaluation
using overlapping views: completeness and efficiency”. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, Chicago,
Illinois, USA, June 27-29, 2006. Ed. by Surajit Chaudhuri, Vagelis Hristidis
and Neoklis Polyzotis. ACM, 2006, pp. 37–48.
External-Link-Alt 10.1145/1142473.1142479.
Cited on pages 158, 191.

[GLS01] Georg Gottlob, Nicola Leone and Francesco Scarcello. “The complexity of
acyclic conjunctive queries”. In: Journal of the ACM 48.3 (2001), pp. 431–
498.
External-Link-Alt 10.1145/382780.382783.
Cited on page 8.

[GLS02] Georg Gottlob, Nicola Leone and Francesco Scarcello. “Hypertree Decompo-
sitions and Tractable Queries”. In: Journal of Computer and System Sciences
64.3 (2002), pp. 579–627.
External-Link-Alt 10.1006/jcss.2001.1809.
Cited on pages 19, 63.

Page 206

https://doi.org/10.1145/3329120
https://doi.org/10.4230/LIPIcs.ICDT.2022.8
https://doi.org/10.46298/LMCS-19(4:17)2023
https://doi.org/10.17877/DE290R-21704
https://hdl.handle.net/2003/39813
https://doi.org/10.1145/1142473.1142479
https://doi.org/10.1145/382780.382783
https://doi.org/10.1006/jcss.2001.1809

[GMT13] Sergio Greco, Cristian Molinaro and Irina Trubitsyna. “Logic program-
ming with function symbols: Checking termination of bottom-up evaluation
through program adornments”. In: Theory and Practice of Logic Program-
ming 13.4-5 (July 2013), pp. 737–752.
External-Link-Alt 10.1017/S147106841300046X.
Cited on page 117.

[GMV93] Michael T. Goodrich, Yossi Matias and Uzi Vishkin. “Approximate Parallel
Prefix Computation and its Applications”. In: The Seventh International
Parallel Processing Symposium, Proceedings, Newport Beach, California,
USA, April 13-16, 1993. IEEE Computer Society, 1993, pp. 318–325.
External-Link-Alt 10.1109/IPPS.1993.262899.
Cited on pages 221, 222.

[GMV94] Michael T. Goodrich, Yossi Matias and Uzi Vishkin. “Optimal Parallel
Approximation for Prefix Sums and Integer Sorting”. In: Proceedings of the
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. 23-25 January
1994, Arlington, Virginia, USA. Ed. by Daniel Dominic Sleator. SODA ’94.
Society for Industrial and Applied Mathematics, 1994, pp. 241–250. isbn:
0898713293.
Cited on pages 221, 222.

[GNS20] Gaetano Geck, Frank Neven and Thomas Schwentick. “Distribution Con-
straints: The Chase for Distributed Data”. In: 23rd International Conference
on Database Theory, ICDT 2020, March 30-April 2, 2020, Copenhagen,
Denmark. Ed. by Carsten Lutz and Jean Christoph Jung. Vol. 155. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 13:1–13:19.
External-Link-Alt 10.4230/LIPIcs.ICDT.2020.13.
Cited on pages 86, 146.

[Got+16] Georg Gottlob, Gianluigi Greco, Nicola Leone and Francesco Scarcello.
“Hypertree Decompositions: Questions and Answers”. In: Proceedings of the
35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016.
Ed. by Tova Milo and Wang-Chiew Tan. ACM, 2016, pp. 57–74.
External-Link-Alt 10.1145/2902251.2902309.
Cited on page 19.

[GST90] Sumit Ganguly, Avi Silberschatz and Shalom Tsur. “A Framework for the
Parallel Processing of Datalog Queries”. In: Proceedings of the 1990 ACM
SIGMOD international conference on Management of data. ACM, 1990,
pp. 143–152.
External-Link-Alt 10.1145/93597.98724.
Cited on page 143.

[GZ95] Tal Goldberg and Uri Zwick. “Optimal deterministic approximate parallel
prefix sums and their applications”. In: Third Israel Symposium on Theory

Page 207

https://doi.org/10.1017/S147106841300046X
https://doi.org/10.1109/IPPS.1993.262899
https://doi.org/10.4230/LIPIcs.ICDT.2020.13
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1145/93597.98724

Bibliography

of Computing and Systems, ISTCS 1995, Tel Aviv, Israel, January 4-6, 1995,
Proceedings. IEEE Computer Society, 1995, pp. 220–228.
External-Link-Alt 10.1109/ISTCS.1995.377028.
Cited on pages 4, 28, 32, 33, 47, 219, 221.

[Hag92a] Torben Hagerup. “On a Compaction Theorem of Ragde”. In: Information
Processing Letters 43.6 (1992), pp. 335–340.
External-Link-Alt 10.1016/0020-0190(92)90121-B.
Cited on page 75.

[Hag92b] Torben Hagerup. “The Log-Star Revolution”. In: STACS 92, 9th Annual
Symposium on Theoretical Aspects of Computer Science, Cachan, France,
February 13-15, 1992, Proceedings. Ed. by Alain Finkel and Matthias Jantzen.
Vol. 577. Lecture Notes in Computer Science. Springer, 1992, pp. 259–278.
External-Link-Alt 10.1007/3-540-55210-3_189.
Cited on page 56.

[Hal01] Alon Y. Halevy. “Answering queries using views: A survey”. In: The Inter-
national Journal on Very Large Data Bases 10.4 (2001), pp. 270–294.
External-Link-Alt 10.1007/s007780100054.
Cited on pages 7, 189.

[HR92] Torben Hagerup and Rajeev Raman. “Waste Makes Haste: Tight Bounds
for Loose Parallel Sorting”. In: 33rd Annual Symposium on Foundations
of Computer Science, Pittsburgh, Pennsylvania, USA, 24-27 October 1992.
IEEE Computer Society, 1992, pp. 628–637.
External-Link-Alt 10.1109/SFCS.1992.267788.
Cited on page 76.

[HY19] Xiao Hu and Ke Yi. “Instance and Output Optimal Parallel Algorithms for
Acyclic Joins”. In: Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2019, Amsterdam,
The Netherlands, June 30 - July 5, 2019. Ed. by Dan Suciu, Sebastian
Skritek and Christoph Koch. ACM, 2019, pp. 450–463.
External-Link-Alt 10.1145/3294052.3319698.
Cited on page 17.

[Imm89] Neil Immerman. “Expressibility and Parallel Complexity”. In: SIAM Journal
on Computing 18.3 (1989), pp. 625–638.
External-Link-Alt 10.1137/0218043.
Cited on pages 3, 75, 76.

[Imm99] Neil Immerman. Descriptive Complexity. Graduate texts in computer science.
Springer, 1999. isbn: 978-1-4612-6809-3.
External-Link-Alt 10.1007/978-1-4612-0539-5.
Cited on pages 3, 75, 76, 220.

Page 208

https://doi.org/10.1109/ISTCS.1995.377028
https://doi.org/10.1016/0020-0190(92)90121-B
https://doi.org/10.1007/3-540-55210-3_189
https://doi.org/10.1007/s007780100054
https://doi.org/10.1109/SFCS.1992.267788
https://doi.org/10.1145/3294052.3319698
https://doi.org/10.1137/0218043
https://doi.org/10.1007/978-1-4612-0539-5

[IUV17] Muhammad Idris, Martín Ugarte and Stijn Vansummeren. “The Dynamic
Yannakakis Algorithm: Compact and Efficient Query Processing Under
Updates”. In: Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May
14-19, 2017. Ed. by Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun
Yang and Dan Suciu. ACM, 2017, pp. 1259–1274.
External-Link-Alt 10.1145/3035918.3064027.
Cited on page 17.

[JáJ92] Joseph F. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley,
1992. isbn: 0-201-54856-9.
Cited on pages 3, 30, 31, 221.

[KAK20] Bas Ketsman, Aws Albarghouthi and Paraschos Koutris. “Distribution
Policies for Datalog”. In: Theory of Computing Systems 64.5 (2020), pp. 965–
998.
External-Link-Alt 10.1007/s00224-019-09959-3.
Cited on pages 6, 80, 82, 85, 92, 98, 132, 144, 145.

[Kar+20] Ahmet Kara, Milos Nikolic, Dan Olteanu and Haozhe Zhang. “Trade-offs
in Static and Dynamic Evaluation of Hierarchical Queries”. In: Proceedings
of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020.
Ed. by Dan Suciu, Yufei Tao and Zhewei Wei. ACM, 2020, pp. 375–392.
External-Link-Alt 10.1145/3375395.3387646.
Cited on pages 8, 17.

[Kar72] Richard M. Karp. “Reducibility Among Combinatorial Problems”. In: Pro-
ceedings of a symposium on the Complexity of Computer Computations,
held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA. Ed. by Raymond E. Miller and James W.
Thatcher. The IBM Research Symposia Series. Plenum Press, New York,
1972, pp. 85–103.
External-Link-Alt 10.1007/978-1-4684-2001-2_9.
Cited on page 172.

[Kep20] Jens Keppeler. “Answering Conjunctive Queries and FO+MOD Queries
under Updates”. PhD thesis. Humboldt University of Berlin, Germany, 2020.
External-Link-Alt 10.18452/21483.
GLOBE http://edoc.hu-berlin.de/18452/22264.
Cited on page 8.

[KNV18] Bas Ketsman, Frank Neven and Brecht Vandevoort. “Parallel-Correctness
and Transferability for Conjunctive Queries under Bag Semantics”. In: 21st
International Conference on Database Theory, ICDT 2018, March 26-29,
2018, Vienna, Austria. Ed. by Benny Kimelfeld and Yael Amsterdamer.

Page 209

https://doi.org/10.1145/3035918.3064027
https://doi.org/10.1007/s00224-019-09959-3
https://doi.org/10.1145/3375395.3387646
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.18452/21483
http://edoc.hu-berlin.de/18452/22264

Bibliography

Vol. 98. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH,
Wadern/Saarbruecken, Germany, 2018, 18:1–18:16.
External-Link-Alt 10.4230/LIPIcs.ICDT.2018.18.
Cited on pages 6, 144.

[KS11] Paraschos Koutris and Dan Suciu. “Parallel evaluation of conjunctive queries”.
In: Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS 2011, June 12-16, 2011, Athens,
Greece. Ed. by Maurizio Lenzerini and Thomas Schwentick. ACM, 2011,
pp. 223–234.
External-Link-Alt 10.1145/1989284.1989310.
Cited on page 8.

[KS17] Bas Ketsman and Dan Suciu. “A Worst-Case Optimal Multi-Round Algo-
rithm for Parallel Computation of Conjunctive Queries”. In: Proceedings
of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems. ACM, 2017, pp. 417–428.
External-Link-Alt 10.1145/3034786.3034788.
Cited on page 143.

[KSS23] Jens Keppeler, Thomas Schwentick and Christopher Spinrath. “Work-
Efficient Query Evaluation with PRAMs”. In: 26th International Conference
on Database Theory, ICDT 2023, March 28-31, 2023, Ioannina, Greece. Ed.
by Floris Geerts and Brecht Vandevoort. Vol. 255. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2023, 16:1–16:20.
External-Link-Alt 10.4230/LIPIcs.ICDT.2023.16.
Cited on pages 9, 27, 75.

[Lei+05] Dirk Leinders, Maarten Marx, Jerzy Tyszkiewicz and Jan Van den Bussche.
“The Semijoin Algebra and the Guarded Fragment”. In: Journal of Logic,
Language and Information 14.3 (2005), pp. 331–343.
External-Link-Alt 10.1007/s10849-005-5789-8.
Cited on pages 60, 75.

[Lev+95] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv and Divesh Srivastava.
“Answering Queries Using Views”. In: Proceedings of the Fourteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
May 22-25, 1995, San Jose, California, USA. Ed. by Mihalis Yannakakis
and Serge Abiteboul. ACM Press, 1995, pp. 95–104.
External-Link-Alt 10.1145/212433.220198.
Cited on pages 149–151, 155.

[LV07] Dirk Leinders and Jan Van den Bussche. “On the complexity of division
and set joins in the relational algebra”. In: Journal of Computer and System
Sciences 73.4 (2007), pp. 538–549.
External-Link-Alt 10.1016/j.jcss.2006.10.011.
Cited on page 60.

Page 210

https://doi.org/10.4230/LIPIcs.ICDT.2018.18
https://doi.org/10.1145/1989284.1989310
https://doi.org/10.1145/3034786.3034788
https://doi.org/10.4230/LIPIcs.ICDT.2023.16
https://doi.org/10.1007/s10849-005-5789-8
https://doi.org/10.1145/212433.220198
https://doi.org/10.1016/j.jcss.2006.10.011

[Min61] Marvin L. Minsky. “Recursive Unsolvability of Post’s Problem of ”Tag” and
other Topics in Theory of Turing Machines”. In: Annals of Mathematics 74.3
(1961), pp. 437–455. issn: 0003-486X.
External-Link-Alt 10.2307/1970290.
Cited on page 23.

[Mof+15] Vera Zaychik Moffitt, Julia Stoyanovich, Serge Abiteboul and Gerome Mik-
lau. “Collaborative Access Control in WebdamLog”. In: Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data,
Melbourne, Victoria, Australia, May 31 - June 4, 2015. Ed. by Timos K.
Sellis, Susan B. Davidson and Zachary G. Ives. ACM, 2015, pp. 197–211.
External-Link-Alt 10.1145/2723372.2749433.
Cited on page 146.

[Nev+19] Frank Neven, Thomas Schwentick, Christopher Spinrath and Brecht Van-
devoort. “Parallel-Correctness and Parallel-Boundedness for Datalog Pro-
grams”. In: 22nd International Conference on Database Theory, ICDT 2019,
March 26-28, 2019, Lisbon, Portugal. Ed. by Pablo Barceló and Marco
Calautti. Vol. 127. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2019, 14:1–14:19.
External-Link-Alt 10.4230/LIPIcs.ICDT.2019.14.
Cited on pages 10, 79, 145.

[Ngo+18] Hung Q. Ngo, Ely Porat, Christopher Ré and Atri Rudra. “Worst-case
Optimal Join Algorithms”. In: Journal of the ACM 65.3 (2018), 16:1–16:40.
External-Link-Alt 10.1145/3180143.
Cited on page 65.

[NSV10] Alan Nash, Luc Segoufin and Victor Vianu. “Views and queries: Determinacy
and rewriting”. In: ACM Transactions on Database Systems 35.3 (2010),
21:1–21:41.
External-Link-Alt 10.1145/1806907.1806913.
Cited on pages 9, 151, 190.

[OZ15] Dan Olteanu and Jakub Závodný. “Size Bounds for Factorised Representa-
tions of Query Results”. In: ACM Transactions on Database Systems 40.1
(2015), 2:1–2:44.
External-Link-Alt 10.1145/2656335.
Cited on page 197.

[PH01] Rachel Pottinger and Alon Y. Halevy. “MiniCon: A scalable algorithm for
answering queries using views”. In: The International Journal on Very Large
Data Bases 10.2-3 (2001), pp. 182–198.
External-Link-Alt 10.1007/s007780100048.
Cited on pages 149, 158, 191.

Page 211

https://doi.org/10.2307/1970290
https://doi.org/10.1145/2723372.2749433
https://doi.org/10.4230/LIPIcs.ICDT.2019.14
https://doi.org/10.1145/3180143
https://doi.org/10.1145/1806907.1806913
https://doi.org/10.1145/2656335
https://doi.org/10.1007/s007780100048

Bibliography

[PI97] Sushant Patnaik and Neil Immerman. “Dyn-FO: A Parallel, Dynamic Com-
plexity Class”. In: Journal of Computer and System Sciences 55.2 (1997),
pp. 199–209.
External-Link-Alt 10.1006/jcss.1997.1520.
Cited on page 76.

[Rag92] Prabhakar Ragde. “Processor-Time Tradeoffs in PRAM Simulations”. In:
Journal of Computer and System Sciences 44.1 (1992), pp. 103–113.
External-Link-Alt 10.1016/0022-0000(92)90006-5.
Cited on page 29.

[Ros08] Benjamin Rossman. “On the constant-depth complexity of k-clique”. In:
Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
Victoria, British Columbia, Canada, May 17-20, 2008. 2008, pp. 721–730.
External-Link-Alt 10.1145/1374376.1374480.
Cited on page 59.

[Sap15] Mark V. Sapir. “Minsky Machines and Algorithmic Problems”. In: Fields
of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the
Occasion of His 75th Birthday. Ed. by Lev D. Beklemishev, Andreas Blass,
Nachum Dershowitz, Bernd Finkbeiner and Wolfram Schulte. Vol. 9300.
Lecture Notes in Computer Science. Springer, 2015, pp. 273–292.
External-Link-Alt 10.1007/978-3-319-23534-9_17.
Cited on page 23.

[Sch+21] Jonas Schmidt, Thomas Schwentick, Till Tantau, Nils Vortmeier and Thomas
Zeume. “Work-sensitive Dynamic Complexity of Formal Languages”. In:
Foundations of Software Science and Computation Structures - 24th Inter-
national Conference, FOSSACS 2021, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg
City, Luxembourg, March 27 - April 1, 2021, Proceedings. Ed. by Stefan
Kiefer and Christine Tasson. Vol. 12650. Lecture Notes in Computer Science.
Springer, 2021, pp. 490–509.
External-Link-Alt 10.1007/978-3-030-71995-1_25.
Cited on page 76.

[Shm93] Oded Shmueli. “Equivalence of DATALOG Queries is Undecidable”. In:
Journal of Logic Programming 15.3 (1993), pp. 231–241.
External-Link-Alt 10.1016/0743-1066(93)90040-N.
Cited on page 144.

[SKN21] Bruhathi Sundarmurthy, Paraschos Koutris and Jeffrey F. Naughton.
“Locality-Aware Distribution Schemes”. In: 24th International Conference on
Database Theory, ICDT 2021, March 23-26, 2021, Nicosia, Cyprus. Ed. by
Ke Yi and Zhewei Wei. Vol. 186. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021, 22:1–22:25.
External-Link-Alt 10.4230/LIPIcs.ICDT.2021.22.
Cited on page 144.

Page 212

https://doi.org/10.1006/jcss.1997.1520
https://doi.org/10.1016/0022-0000(92)90006-5
https://doi.org/10.1145/1374376.1374480
https://doi.org/10.1007/978-3-319-23534-9_17
https://doi.org/10.1007/978-3-030-71995-1_25
https://doi.org/10.1016/0743-1066(93)90040-N
https://doi.org/10.4230/LIPIcs.ICDT.2021.22

[Spi+22] Christopher Spinrath, Gaetano Geck, Jens Keppeler and Thomas Schwentick.
Rewriting with Acyclic Queries: Mind your Head. International Conference
on Database Theory (ICDT). Recorded video presentation. 2022.
External-Link-Alt 10.5446/57486.
Cited on pages 10, 147.

[SS23] Jonas Schmidt and Thomas Schwentick. “Dynamic Constant Time Parallel
Graph Algorithms with Sub-Linear Work”. In: 48th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2023, August
28 to September 1, 2023, Bordeaux, France. Ed. by Jérôme Leroux, Sylvain
Lombardy and David Peleg. Vol. 272. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023, 80:1–80:15.
External-Link-Alt 10.4230/LIPICS.MFCS.2023.80.
Cited on page 76.

[SST23] Jonas Schmidt, Thomas Schwentick and Jennifer Todtenhoefer. “On the
Work of Dynamic Constant-Time Parallel Algorithms for Regular Tree
Languages and Context-Free Languages”. In: 48th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2023, August
28 to September 1, 2023, Bordeaux, France. Ed. by Jérôme Leroux, Sylvain
Lombardy and David Peleg. Vol. 272. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023, 81:1–81:15.
External-Link-Alt 10.4230/LIPICS.MFCS.2023.81.
Cited on page 76.

[SVZ20] Thomas Schwentick, Nils Vortmeier and Thomas Zeume. “Sketches of Dy-
namic Complexity”. In: ACM SIGMOD Record 49.2 (2020), pp. 18–29.
External-Link-Alt 10.1145/3442322.3442325.
Cited on pages 76, 197.

[SY80] Yehoshua Sagiv and Mihalis Yannakakis. “Equivalences Among Relational
Expressions with the Union and Difference Operators”. In: Journal of the
ACM 27.4 (1980), pp. 633–655.
External-Link-Alt 10.1145/322217.322221.
Cited on page 122.

[Vel14] Todd L. Veldhuizen. “Triejoin: A Simple, Worst-Case Optimal Join Algo-
rithm”. In: Proc. 17th International Conference on Database Theory (ICDT),
Athens, Greece, March 24-28, 2014. Ed. by Nicole Schweikardt, Vassilis
Christophides and Vincent Leroy. OpenProceedings.org, 2014, pp. 96–106.
External-Link-Alt 10.5441/002/icdt.2014.13.
Cited on page 69.

[Vol99] Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 1999.
isbn: 978-3-540-64310-4.
External-Link-Alt 10.1007/978-3-662-03927-4.
Cited on page 221.

Page 213

https://doi.org/10.5446/57486
https://doi.org/10.4230/LIPICS.MFCS.2023.80
https://doi.org/10.4230/LIPICS.MFCS.2023.81
https://doi.org/10.1145/3442322.3442325
https://doi.org/10.1145/322217.322221
https://doi.org/10.5441/002/icdt.2014.13
https://doi.org/10.1007/978-3-662-03927-4

Bibliography

[WY22] Yilei Wang and Ke Yi. “Query Evaluation by Circuits”. In: PODS ’22:
International Conference on Management of Data, Philadelphia, PA, USA,
June 12 - 17, 2022. Ed. by Leonid Libkin and Pablo Barceló. ACM, 2022,
pp. 67–78.
External-Link-Alt 10.1145/3517804.3524142.
Cited on page 75.

[Xin+13] Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott
Shenker and Ion Stoica. “Shark: SQL and Rich Analytics at Scale”. In:
Proceedings of the 2013 ACM SIGMOD International Conference on Man-
agement of Data. ACM, 2013, pp. 13–24.
External-Link-Alt 10.1145/2463676.2465288.
Cited on page 5.

[Yan81] Mihalis Yannakakis. “Algorithms for Acyclic Database Schemes”. In: Very
Large Data Bases, 7th International Conference, September 9-11, 1981,
Cannes, France, Proceedings. IEEE Computer Society, 1981, pp. 82–94.
Cited on pages 8, 61, 63, 156, 165.

Page 214

https://doi.org/10.1145/3517804.3524142
https://doi.org/10.1145/2463676.2465288

Index of Definitions

Symbols

0-1-cost function, 135
O(1)-time parallel algorithm, see CRCW

PRAM

A

accuracy function, 31
active domain, 12
acyclic rewriting problem, 166, see also

acyclic & rewriting problem
alphabet, 23
alternating two-way tree automaton, 23
alternating two-way tree cost automaton,

25, 26
limited, 25, 139

array, 30
compact, 30, 31
empty cell, 30
fully ordered, 39
index, 30
inhabited cell, 38
length, 30
ordered, 39
uninhabited cell, 38, see also inhabited

cell
array hash table, 43
atom, 15

guard, 22
attribute, 12

B

bridge variable, 159

C

canonical candidate, 150

canonical database, 151
canonical rewriting, 151
communicated fact, 81
communication phase, 82
communication policy, 81
composition (of functions), 11
computation phase, 82
concise, 38
conjunctive query, 15

acyclic, 17
arity, 16
body homomorphism, 16
Boolean, 16
free-connex, see free-connex

generalized hypertree width
free-connex acyclic, 17
full, 16
generalized hypertree width, 19

free-connex, 19
hierarchical, 17
homomorphism, 16
minimal, 16
q-hierarchical, 17
result, 16
self-joins, 16
weak head arity, 183

consistent, 32, 33
cover description, 159

minimal, 191
cover description problem, 171
cover graph, 184
cover partition, 160

consistent, 160

D

database, 12

Page 215

Index of Definitions

Datalog program, 20
output, 20
proof tree, 21, 98, 99

computation-free, 105
partial, 99
size, 105

Datalog query, 20
frontier-guarded, 22
monadic, 22
result, 20
size, 20

Datalog rule, 20, see safe
dictionary, 71
dictionary setting, 36
distributed atom, 86
distributed database, 80

complies, 81
covers, 90

distribution constraint, 86
body, 86
data-moving, 86
guarded communication, 114
head, 86
modest, 115
polynomial communication property,

105
unifiable, 106
valuation, 86

distribution policy, 81
fact-based, 84, 227
value-independent, 85

domain values, 11

E

extensional, 20

F

fact, 12
fractional edge cover, 65
fully linked, 45

G

general setting, 35

generalized hypertree decomposition, 19
complete, 19
free-connex, 19
width, 19

global database, 81

H

hash directive, 84
hash function, 84

arity, 84
hash policy scheme, 84

consistent, 84
primitive, 98

head variable, 16

I

immediate consequence operator, 20
intensional, 20

J

join tree, 17

L

letter, 23
rank, 23

local database, 81
local fact, 81

M

Minsky machine, 22
computation, 23
configuration, 23
instruction, 22

MPC, 5, 80

N

named database schema, 12
named fact, 12
named relation schema, 12
named tuple, 12
natural join query, 65
network, 80
non-transitive communication, 117

Page 216

Index of Definitions

non-transitive translation, 117

O

ordered setting, 35
output symbol, 20

P

padded integer sorting problem, 33
parallel query result, 82
parallel-bounded, see parallel-boundedness
parallel-boundedness, 132
parallel-completeness, 88
parallel-correct, see parallel-correctness
parallel-correctness, 87
pointer, 41
policy pair, 81
PRAM, 29

address, 29
arbitrary, 29
common, 29
CRCW, 29
EREW, 29
priority, 29
processor number, 29
space, 30
work, 30

prefix sum, 32
proper tuple, 39

linked, 41
mutually, 41

Q

quantified variable, 16
query, 13

containment, 13
equivalence, 13
monotone, 13
result, 13

R

relation, 12, see also relation symbol
relation schema, 11

relation symbol, 11
adorned, 117
arity, 12

relational algebra, 13
rewriting, 149

expansion, 153
rewriting problem, 150
round, 82, see MPC
rule, 15

body, 15
head, 15
length, 15
recursive, 15
safe, 15, 233
size, 15

rule application, 122
rule instantiation, 122

S

schema, 11
semi-join, 13
semi-join algebra, 14
server, 79, 80
server variable, 86
symbolic proof tree, 122

T

task description, 56
task schedule, 56
token, 36
tree decomposition, 19
tree language, 23

V

valuation, 15
variables, 15
view, 149
view application, 152

quantified variable disjointness, 153
view atom, 149

W

weakly worst-case optimal, 65

Page 217

Appendix A

Revisiting Consistent Approximate Prefix
Sums

The purpose of this section is to revisit the proof (chain) for Proposition 3.1.8 by Goldberg
and Zwick [GZ95] and analyse the space requirements of the algorithm.

Since we consider only consistent λ-approximate prefix sums we will omit the term
“consistent” from here on out. We will also refrain from specifying the accuracy function λ
if it is clear from the context or not important.

To prove Proposition 3.1.8, Goldberg and Zwick proceed in three major steps. Based
on an algorithm for approximate counting by Ajtai [Ajt93], they first show that the sum
of n integers can be approximated in constant time with polynomial work and space. In
the second step this is used to compute approximate prefix sums with polynomial work
and space. The third step is then to reduce the required work and space to O(n1+ε). We
will proceed analogously.

For an array A whose cells contain values from {0, 1}, we write #1(A) for the number
of cells of A containing 1. The required result on approximate counting is the following.

Proposition A.1 [Ajt93, Theorem 2.1]. For every integer a > 0 there is a O(1)-time
parallel algorithm that, given an array A whose cells contain either 1 or 0, computes
a number k satisfying #1(A) ≤ k ≤ (1 + λ(|A|))#1(A) where λ(n) = (logn)−a. The
algorithm requires polynomial work and space on a common CRCW PRAM.

Let us point out that Proposition A.1 is phrased with our application in mind. Ajtai
actually stated it in terms of first-order formulas over the signature (+,×,≤) where
+,×,≤ are binary relation symbols with the usual intended meaning. For every n letMn

be the structure over (+,×,≤) with universe Mn = [0, n−1] and the usual interpretation
of the arithmetic relations +,×, and ≤. Ajtai proved the following.

For every a′ > 0 there is a formula ϕ(x, Y) over (+,×,≤) with a free variable x and a
free unary relation variable Y , such that for every integer n > 0, m ∈Mn, and A ⊆Mn

the following holds.

(a) If |A| ≤ (1− λ′(n))m then Mn 6|= ϕ(m,A); and

(b) if |A| ≥ (1 + λ′(n))m then Mn |= ϕ(m,A).

Here λ′(n) is of the same form as λ(n) in Proposition A.1, that is, λ′(n) = (logn)−a′ .

Page 219

Appendix A I Revisiting Consistent Approximate Prefix Sums

We will briefly discuss how this implies Proposition A.1 as stated above. Let A be an
array with entries from {0, 1}. We fix n = |A| and the interpretation

A = {i ∈Mn | A[i+ 1] = 1}

for Y . Further, we assume that n > 2. Otherwise, it is trivial to determine #1(A)
exactly.

It is well-known that first-order queries can be computed by a PRAM in constant time
with a polynomial number of processors and space [cf., e.g., Imm99, Lemma 5.12, the
space bound is stated in the proof]. Thus, it is possible to test, for all 0 ≤ m ≤ n− 1 in
parallel, whether Mn |= ϕ(m,A) holds, and write the results into an array C of size n.

Observe that Mn |= ϕ(0, A) holds and let m1 be the largest number from Mn such
thatMn |= ϕ(m,A) holds for all m ≤ m1. Given the array C, the number m1 can easily
be determined with quadratic work and linear space.

We claim that k = (1 + λ′(n))(m1 + 1) satisfies |A| ≤ k ≤ (1 + 3λ(n))|A|, where λ(n)
is as in Proposition A.1. We note that the factor 3 in the term (1 + 3λ(n))|A| is of
no consequence for our purposes, since we can always choose λ(n) = (logn)−a for a
sufficiently large a. We first show that |A| ≤ k holds. If m1+1 = n then |A| ≤ n ≤ k holds
trivially. Otherwise, m1+1 ≤ n−1 and we haveMn 6|= ϕ(m1+1, A) due to the choice of
m1. Thus, by contraposition of Statement (b) we know that |A| < (1+λ′(n))(m1+1) = k.

Towards k ≤ (1 + λ(n))|A|, note that the contraposition of Statement (a) yields
|A| > (1 − λ′(n))m1 since Mn |= ϕ(m1, A) holds. Because 1 − λ′(n) < 1, this implies
|A| ≥ (1− λ′(n))(m1 + 1). Therefore, we can conclude

k = (1 + λ′(n))(m1 + 1) =
(1 + λ′(n))(1− λ′(n))(m1 + 1)

1− λ′(n)
≤ 1 + λ′(n)

1− λ′(n)
|A|.

It remains to show that we can choose a′ such that 1+λ′(n)
1−λ′(n) ≤ 1 + λ(n) holds (for all

n > 2). We choose a′ such that λ′(n) ≤ λ(n)
2 holds for all n > 2. Note that this can be

done by choosing a sufficiently large a′. Further note that λ′(n) ≤ 1
2 because λ(n) ≤ 1 for

all n > 0. We claim that then 1
1−λ′(n) ≤ 1 + λ(n) holds for every n > 0. Indeed, we have

1

1− λ′(n)
≤ 1 + λ(n)

⇔ 1 ≤ (1 + λ(n))(1− λ′(n))
⇔ 1 ≤ 1 + λ(n)− λ′(n)− λ(n)λ′(n)

where the last inequality holds because λ′(n) ≤ λ(n)
2 and λ(n) ≤ 1. Overall, we thus have

k ≤ (1 + λ′(n))(1 + λ(n))|A| ≤ (1 + 3λ(n))|A|

where the last inequality holds because λ′(n) ≤ λ(n) ≤ 1.
This concludes the proof sketch for Proposition A.1.
We now turn towards the first step of the proof for Proposition 3.1.8. It is captured by

the following result.

Page 220

Proposition A.2 [GZ95, Theorem 3.1]. For every fixed integer a > 0, there is a O(1)-
time parallel algorithm that, given an array A containing a sequence a1, . . . , a|A| of
natural numbers of size at most O(log |A|), computes an integer s satisfying

|A|∑
i=1

ai ≤ s ≤ (1 + λ(|A|))
|A|∑
i=1

ai

where λ(n) = (logn)−a. The algorithm requires polynomial work and space on a common
CRCW PRAM.

For a number ai, we denote by ai,j the bit at position j of the binary representation
of ai. The idea for Proposition A.2 is to approximate, for each position j, the number
of ai with ai,j = 1. That is, for each j, the algorithm computes an approximation of
kj =

∑|A|
i=1 ai,j using Proposition A.1. For this purpose, an algorithm can write the

binary representations of the numbers a1, . . . , an into a two-dimensional array of size
O((logn) · n) where n = |A|, filling up empty cells with 0. Assuming the numbers are
written row-wise into the array, Proposition A.1 can be applied to each column in parallel.
Overall this requires polynomial work and space.

The resulting numbers k′0, . . . , k′m with m ∈ O(logn) satisfy kj ≤ k′j ≤ (1 + λ(n))kj
and have size O(logn). Note that

∑n
j=1 kj · 2j =

∑n
i=1 ai, and, consequently, for s =∑n

j=1 k
′
j ·2j we have that

∑n
i=1 ai ≤ s ≤ (1+λ(n))

∑n
i=1 ai. Since there are only O(logn)

many numbers k′j their exact sum s can be computed with polynomial work and space
on a common CRCW PRAM in constant time.1

The next step is to show that approximate prefix sums can be computed in constant
time (with polynomial work and space). Note that this mainly involves establishing
consistency.

Proposition A.3 [GZ95, Theorem 3.2]. For every fixed a > 0, there is a O(1)-time
parallel algorithm that, given an array A containing a sequence a1, . . . , a|A| of natural
numbers of size at most O(log |A|), computes consistent λ-approximate prefix sums of
a1, . . . , a|A| where λ(n) = (logn)−a. The algorithm requires polynomial work and space
on a common CRCW PRAM.

The algorithm for Proposition A.3 uses approximate summation trees which were
originally introduced by Goodrich et al. [GMV94; GMV93] for computing prefix sums
using randomization.

Definition A.4 [GMV94; GMV93, Sections 2 and 3, respectively]. Let λ be an accuracy
function. A λ-approximate summation tree T for a sequence a1, . . . , an of integers is a
complete, ordered binary tree with n leaves where every node v is labelled with an integer
s̃(v) such that

1This has been proved for polynomial-size, constant-depth circuits by, e.g., Vollmer [Vol99, Theorem 1.21]
and these circuits can be simulated by a common CRCW PRAM in constant time with polynomial
work and space [see, e.g., JáJ92, Theorem 10.9, the space bound is implicit in the proof].

Page 221

Appendix A I Revisiting Consistent Approximate Prefix Sums

I the i-th leaf is labelled with ai, for all 1 ≤ i ≤ n; and

I s(v) ≤ s̃(v) ≤ (1 + λ(n))s(v) holds for each node v. Here s(v) is the sum
∑j

k=i ak
where ai, . . . , aj are the leaf labels of the subtree rooted at v.

A λ-approximate summation tree is consistent if s̃(v) ≥ s̃(v`) + s̃(vr) where v` and vr
denote the children of v holds for all inner nodes v.

To compute λ-approximate prefix sums the algorithm first constructs a consistent
λ-approximate summation tree and then derives the prefix sums from it.

Indeed, given a λ-approximate summation tree T for a sequence a1, . . . , an, consistent
prefix sums can be derived as follows. For each i let Vi be the set of nodes in T that are
left siblings of nodes on the path from the leaf for ai to the root. That is, a node v is in
Vi if and only if

(1) v is the left child of a node w;

(2) v does not occur on the path from the node for ai to the root; but

(3) w does occur on the path from the node for ai to the root.

Observe that the subtrees rooted at the nodes in Vi induce a partition of a1, . . . , ai−1.
Thus, for bi =

∑
v∈Vi

s̃(v) + ai we have

i∑
j=1

aj ≤ bi ≤ (1 + λ(n))

i∑
j=1

aj .

Since Vi contains at most logn nodes, the exact sum bi can be computed with polynomial
work and space, cf. the proof of Proposition A.2. For a proof that the sequence b1, . . . , bn
is consistent, we refer to [GMV94, Lemma 3.2].

It remains to revisit how a PRAM can construct a consistent λ-approximate summation
tree. Thanks to Proposition A.2, for any integer b > 0, a λ′-approximate summation
tree T ′ where λ′ = (logn)−b can be constructed with polynomial work and space, by
computing the labels for each node in parallel. To obtain a consistent λ-approximate
summation tree T the label of every inner node of T ′ is multiplied with (1 + λ′(n))h

where h is the height of the node. More precisely, s̃(v) = (1+λ′(n))hs̃(v′) where v′ is the
corresponding node of v in T ′ and h is the height of v in T (or, equivalently, the height
of v′ in T ′).

We follow the proof given by Goodrich et al. [GMV93, Lemma 2.2]2 to show that T is
a consistent λ-approximate summation tree. We start by proving that T is consistent.

Let v be an inner node of T , h its height, v`, vr its children, and v′, v′`, v
′
r the corre-

sponding nodes in T ′. As in Definition A.4 we denote by s(w) the exact sum of all leaf

2We note that the proof by Goodrich et al. [GMV93, Lemma 2.2] uses a slightly different factor since
their summation trees assert (1− λ(n))s(v) ≤ s̃(v) instead of s(v) ≤ s̃(v).

Page 222

labels of the subtree rooted at w. We have that

s̃(v`) + s̃(vr) = (1 + λ′(n))h−1s̃(v′`) + (1 + λ′(n))h−1s̃(v′r)

≤ (1 + λ′(n))hs(v′`) + (1 + λ′(n))hs(v′r)

= (1 + λ′(n))hs(v′)

≤ (1 + λ′(n))hs̃(v′)

= s̃(v)

where the inequalities hold because T ′ is a λ′-approximate summation tree. Thus, T is
consistent.

We now argue that T is a λ-approximate summation tree. Indeed, for any inner node v
of T we have s(v) ≤ s̃(v) ≤ (1+ λ′(n))log(n)+1s(v) since T ′ is an approximate summation
tree (and all nodes have height at most logn). The claim then follows by the following
observation, since for “small” n the algorithm can just compute the exact prefix sums.

Observation A.5. For all integers a > 1 there is an integer b > 1 such that for sufficiently
large n the inequality

(1 + λ′(n))logn ≤ (1 + 2(logn)λ′(n)) ≤ 1 + λ(n)

holds where λ(n) = (logn)−a and λ′(n) = (logn)−b.

The last step to prove Proposition 3.1.8 is to show that the work and space bounds
can be improved to O(n1+ε).

Proof of Proposition 3.1.8. Due to Proposition A.3 there is a O(1)-time parallel
algorithm that computes approximate prefix sums with polynomial work and space. Let
n = |A| and c be a constant such that this algorithm requires work and space O(nc).
Furthermore, let ε > 0 be arbitrary but fixed, and define δ = ε

c .
Let λ′(n) be an accuracy function of the form λ′(n) = (logn)−b such that (1+λ′(n))2 ≤

(1 + λ(n)) holds for all n > 2. Note that this can be done by choosing a large enough b
which only depends on a.

The algorithm operates as follows in three steps. It first divides the given array A
into m = n1−δ subarrays A1, . . . ,Am of length at most nδ. Then, for each subarray
Ak in parallel, arrays Bk containing consistent λ′-approximate prefix sums for Ak are
computed using the algorithm guaranteed by Proposition 3.1.8. This step requires work
and space O(n1+ε) because(

nδ
)c
· n1−δ = n

ε
c
c · n1−

ε
c = n1+ε− ε

c ≤ n1+ε.

In the second step, the algorithm initializes an array C of length n1−δ by setting
C[1] = 0 and, for every index k > 1, C[k] to the largest prefix sum computed for
Ak−1, i.e. Bk−1[n

δ]. It then invokes itself recursively to compute an array D containing
consistent λ′-approximate prefix sums for C.

Page 223

Appendix A I Revisiting Consistent Approximate Prefix Sums

Finally, in the third step, the prefix sums for the Ak and C are combined to prefix sums
for A. For an index i ∈ [1, n] let ki ∈ [1,m] and i′ ∈ [1, nδ] be such that nδ ·(ki−1)+i′ = i.
That is, the i-th cell of A is the i′-th cell of subarray Aki . Let B be the array of length n
with B[i] = Bki [i] + D[ki]. The algorithm returns the array B.

The last step can easily be performed with linear work and space. The recursive call in
the second step thus requires O(n1+ε) work and space as well. Note that the recursion
depth is at most lognδ(n) ∈ O(1δ). Therefore, the algorithm runs in constant time and
requires work and space O(n1+ε) as claimed.

In the following we prove that the algorithm is correct. That is, we prove that B
contains consistent λ-approximate prefix sums for A.

Let i ∈ [1, n] and let i′ and ki be as before. We first show that B contains (not
necessarily consistent) approximate prefix sums for A. Indeed, we have

i∑
j=1

A[j] =

ki−1∑
`=1

nδ∑
j=1

A`[j] +

i′∑
j=1

Aki [j]

≤
ki−1∑
`=1

B`[n
δ] + Bki [i

′]

=

ki−1∑
`=1

C[`+ 1] + Bki [i
′]

=

ki∑
`=1

C[`] + Bki [i
′]

≤ D[ki] + Bki [i
′]

= B[i]

where the first inequality holds because the B` contain prefix sums for the A`, the
second and third equalities hold by definition of C (in particular, C[1] = 0), and the last
inequality holds because D contains prefix sums for C.

Conversely, we have

B[i] = D[ki] + Bki [i
′]

≤ (1 + λ′(n))

ki∑
`=1

C[`] + Bki [i
′]

= (1 + λ′(n))

ki−1∑
`=1

B`[n
δ] + Bki [i

′]

≤ (1 + λ′(n))

ki−1∑
`=1

(1 + λ′(n))
nδ∑
j=1

A`[j] + (1 + λ′(n))
i′∑

j=1

Aki [j]

≤ (1 + λ′(n))2
[ki−1∑

`=1

nδ∑
j=1

A`[j] +
i′∑

j=1

Aki [j]
]

Page 224

= (1 + λ′(n))2
i∑

j=1

A[j]

≤ (1 + λ(n))

i∑
j=1

A[j]

where the first inequality holds because D contains λ′-approximate prefix sums for C,
the following equality holds by definition of C, and the second inequality holds because
the B` contain λ′-approximate prefix sums for the A`. The final inequality holds by
choice of λ′.

It remains to show consistency for i ≥ 2. That is, we have to assert that B[i]−B[i−1] ≥
A[i] holds. We make a case distinction. If i and i− 1 both map to the same subarray, i.e.
if ki = ki−1 holds, then

B[i]−B[i−1] = (Bki [i
′]+D[ki])−(Bki [i

′−1]+D[ki]) = Bki [i
′]−Bki [i

′−1] ≥ Aki [i
′] = A[i]

where the inequality holds because Bki contains consistent approximate prefix sums for
Aki .

Otherwise, we can conclude that i is mapped to the first cell of Aki and i−1 is mapped
to the last cell of Aki−1. Thus, we have

B[i]−B[i− 1] = (Bki [1] + D[ki])− (Bki−1[n
δ] + D[ki − 1])

= D[ki]−D[ki − 1]−Bki−1[n
δ] + Bki [1]

≤ C[ki]−Bki−1[n
δ] + Bki [1]

= Bki [1]

≤ Aki [1] = A[i]

where the first inequality holds because D contains consistent approximate prefix sums
for C, the first equality holds because we have C[ki] = Bki−1[n

δ] by definition, and the
last inequality holds because Bki contains approximate prefix sums for Ak−1. �

Page 225

Appendix B

Parallel-Correctness for Hash-Based
Distribution and Communication Policies

In this appendix we briefly discuss an alternative to constraint-based communication
policies that fits within our framework presented in Section 4.1. The idea is to reuse the
hash functions from the distribution policy for the communication policy. We make this
concrete next.

Hash-Based Communication. Let Z1, Z2 be hash policy schemes that refer to intensional
relation symbols of a Datalog query, and H be a tuple of hash functions over a network N
such that Z1 ∪ Z2 is consistent and compatible with H. Then Z1, Z2, and H induce the
communication policy γZ1,Z2,H which maps a distributed database D = (G, I) over N to
the set of all communicated facts R(ā)@k . ` with R(ā)@k ∈ D, R(ā)@k ∈ δZ1,H({R(ā)}),
and R(ā)@` ∈ δZ2,H({R(ā)}). That is, if a fact R(ā) resides on server k, and δZ1,H

“permits” server k to communicate it, it is communicated to all servers determined by
δZ2,H . We note that these hash-based communication policies are – like hash-based
distribution policies and in contrast to constraint-based communication policies – fact-
based in the sense that they map facts R(ā) to sets of communicated facts R(ā)@k . `,
independent of other facts.

Let now Z be a hash policy scheme that refers to the extensional relations symbols of
a Datalog query Q, and Z1, Z2 be hash policy schemes that refer to intensional relation
symbols of Q. If Z ∪ Z1 ∪ Z2 is consistent, then F(Z,Z1, Z2) denotes the set of policy
pairs (δZ,H , γZ1,Z2,H), where H is any tuple of hash functions with which Z,Z1, and Z2

are compatible. We denote by Hash-Hash the class of families that are defined in this
way by triples Z,Z1, Z2 of hash policy schemes.

Example B.1. Consider, once more, the monadic Datalog query Q = (P,Out) from
Example 2.4.6 whose rules we repeat in the following for convenience.

R(x)← Start(x) S(x)← Start(x) Out(x)← R(x), S(x)

R(x)← R(y), Er(y, x) S(x)← S(y), Es(y, x)

Recall that Q asks for all nodes reachable from a starting node by a path containing only
red as well as a path containing only sea blue edges.

Page 227

Appendix B I Parallel-Correctness for Hash-Based Policies

Furthermore, let

Z =
{
(Start, 1, ()), (Start, 2, ()), (Er, 1, ()), (Es, 2, ())

}
,

Z1 =
{
(R, 1, ()), (S, 2, ())

}
, and

Z2 =
{
(R, 3, (1)), (S, 3, (1))

}
.

Note that Z ∪ Z1 ∪ Z2 is consistent. Further, consider the tuple H = (h1, h2, h3) of hash
functions, where h1 and h2 have arity 0 and map all facts to {1} and {2}, respectively, and
h3 is a unary hash function mapping each value a onto {((a−1) mod 4)+1}. Then Z, Z1

and Z2 are compatible with H, and γZ1,Z2,H = γ, where γ is as defined in Example 4.1.1.
That is, in a nutshell, if a fact R(a) is derived on server 1 and a matching fact S(a) is
derived on server 2, then both are sent to the same server, which can then derive Out(a).
As discussed in Example 4.1.4 the distribution policy δZ,H ensures that all Start-facts
initially reside on servers 1 and 2, all Er-facts on server 1, and all Es-facts on server 2.

Clearly, we thus have that Q is parallel-correct w.r.t. (δZ,H , γZ1,Z2,H). In fact, this
even holds for every tuple H of hash functions with which Z, Z1, Z2 are compatible. Or
equivalently, Q is parallel-correct w.r.t. F(Z,Z1, Z2). C

The main result of this appendix is the following.

Theorem? B.2. PC(FGDL, Hash-Hash) and PC(MDL, Hash-Hash) are 2ExpTime-
complete. The lower bounds even hold for instances with primitive hash policy schemes.

The proof approach is similar to the ones for Proposition 4.2.16 and Theorem 4.2.28.1
The lower bound is, in both cases, by a reduction from the containment problem for
monadic Datalog queries. For the upper bound, we show that it suffices to restrict
attention to scattering policies to establish parallel-correctness, and then construct a
Datalog program that simulates the distributed evaluation over a scattered database.

The following is the analogue of Lemma 4.2.6.

Lemma? B.3. Let Q be a Datalog query, and Z, Z1, and Z2 be hash policy schemes
such that Z ∪ Z1 ∪ Z2 is consistent. Then Q is parallel-correct w.r.t. F(Z,Z1, Z2) if and
only if for all global databases G there is a policy pair (δ, γ) ∈ F(Z,Z1, Z2) such that δ
scatters G and [Q, γ](δ(G)) ⊇ Q(G) holds.

Recall that, for any global database, there always is a distribution policy that scatters it,
and every distributed database covers a scattered database. This is thanks to Lemma 4.2.7
and Lemma 4.2.10, respectively. To prove Lemma B.3 we also require the following
monotonicity condition, which is the analogue of Lemma 4.2.11.

Lemma? B.4. Let Q be a Datalog query, Z, Z1, and Z2 hash policy schemes such that
Z ∪ Z1 ∪ Z2 is consistent, G be a global database, and D′ be a distributed databases. For
all policy pairs (δ, γ), (δ′, γ′) ∈ F(Z,Z1, Z2) such that δ scatters G, and D′ complies with
δ′, we have

[Q, γ](δ(G))) ⊆ [Q, γ′](D′).

1Historically correct is that result and proof for hash-based communication policies were there first.

Page 228

Proof. Let (δ, γ), (δ′, γ′) ∈ F(Z,Z1, Z2) such that δ scatters G, and D′ complies with δ′.
For each r ≥ 0, we denote by Dr = (Gr, Ir) and (D′)r = ((G′)r, (I ′)r) the distributed
databases after the r-th communication phase of the distributed evaluation over D = δ(G)
and D′, respectively. Similar to the proof for Lemma 4.2.11, it suffices to show by induction
on the number of rounds r, that for each r ≥ 0, (D′)r covers Dr. The statement of the
lemma then follows immediately.

However, here we require a stronger induction hypothesis. Let H = (h1, . . . , hm)
and H ′ = (h′1, . . . , h

′
m) be the underlying tuples of hash functions of (δ, γ) and (δ′, γ′),

respectively. That is, we have δ = δZ,H , γ = γZ1,Z2,H , δ′ = δZ,H′ , and γ = γZ1,Z2,H′ .
Further, let N and N ′ be the networks over which H and H ′ are defined, respectively.
Since δ scatters G, by definition so does H. We define a mapping s : N → N ′ of servers
as follows. For a server k ∈ N , let i ∈ [1,m] and c̄ be a tuple of domain values in
adom(G) such that k ∈ hi(c̄). We can assume that such an i and c̄ exist for every server k;
otherwise the server does not play any role in the evaluation and can be removed. More
importantly, note that i and c̄ are unique, since H scatters G. Pick an arbitrary but
fixed ` ∈ h′i(c̄). We set s(k) = `.

We show by induction over r ≥ 0 that Irk ⊆ (I ′s(k))
r holds for every server k ∈ N . This

then implies that (D′)r covers Dr.
For the induction base, recall that D0 = δZ,H(G). Let k ∈ N be a server, and i and c̄

such that k ∈ hi(c̄). Since H scatters G, we have that for every fact R(ā) ∈ I0k there is a
hash directive (R, i, ū) such that ā[ū] = c̄, because δ scatters G. Consequently, all these
facts are in (I ′s(k))

0 because (D′)0 = D complies with δZ,H′ and s(k) ∈ hi(c̄) by definition
of s.

For the induction step, we assume that Ir−1
k ⊆ (I ′s(k))

r−1 holds for all servers k ∈ N .
Let E and E ′ be the distributed databases with families of local databases J and J ′

obtained from Dr−1 and (D′)r−1, respectively, after the r-th computation phase. In
particular, we have Jr

k = P (Ir−1
k) and (J ′

s(k))
r = P ((I ′s(k))

r−1) for every k ∈ N where P
is the Datalog program of the query Q. Since Datalog queries (and Datalog programs)
are monotone, Jr

k ⊆ (J ′
s(k))

r holds for all servers k.
For the communication phase, it suffices to show that, for every communicated fact

R(ā)@k .` ∈ γ(E), we have that R(ā)@s(k).s(`) ∈ γ(E ′). For this purpose, let R(ā)@k .`
be a communicated fact in γ(E). Then R(ā)@k ∈ E , R(ā)@k ∈ δZ1,H({R(ā)}), and
R(ā)@` ∈ δZ2,H({R(ā)}). Then there are hash directives (R, i, ū) ∈ Z1 and (R, j, v̄) ∈ Z2

such that k ∈ hi(ā[ū]) and ` ∈ hj(ā[v̄]). By our definition of s, we then also have
s(k) ∈ h′i(ā[ū]) and s(`) ∈ h′j(ā[v̄]). In other words, R(ā)@s(k) ∈ δZ1,H′({R(ā)}), and
R(ā)@s(`) ∈ δZ2,H′({R(ā)}). Moreover, R(ā)@s(k) ∈ E ′ because Jr

k ⊆ (J ′
s(k))

r. We can
conclude that R(ā)@s(k) . s(`) is in γZ1,Z2,H′(E ′) = γ′(E ′). �

We are now ready to prove that it suffices to consider scattering distribution policies.
The proof is analogous to the one for Lemma 4.2.6.

Proof of Lemma B.3. For the only-if direction suppose that Q is parallel-correct w.r.t.
F(Z,Z1, Z2) and let G be a global database. Thanks to Lemma 4.2.7 there is a tuple H of

Page 229

Appendix B I Parallel-Correctness for Hash-Based Policies

hash functions such that δZ,H scatters G. Since Q is parallel-correct w.r.t. F(Z,Z1, Z2),
we can conclude that [Q, γZ1,Z2,H](δZ,H) = Q(G) holds.

For the converse, suppose that for every database G there is policy pair (δ, γ) ∈
F(Z,Z1, Z2) such that δ scatters G and [Q, γ](δ(G)) ⊇ Q(G) holds. We have to show
that Q is parallel-correct w.r.t. F(Z,Σ).

Let (δ, γ) ∈ F(Z,Z1, Z2) and let D be an arbitrary distributed database that complies
with δ. Thanks to Observation 4.2.3 we have [Q, γ](D) ⊆ Q(G). Hence, it suffices to
establish parallel-completeness, by showing [Q, γ](D) ⊇ Q(G).

By assumption there is a policy pair (δ′, γ′) ∈ F(Z,Z1, Z2) such that δ′ scatters G and
[Q, γ′](δ′(G)) ⊇ Q(G). Thanks to Lemma 4.2.10, D covers δ′(G) because δ′ scatters G.
Therefore, we have [Q, γ′](δ′(G)) ⊆ [Q, γ](D) thanks to Lemma B.4.

Altogether, we get [Q, γ](D) ⊇ [Q, γ′](δ′(G)) ⊇ Q(G). �

Next we show that there always is a scattered database such that the distributed
evaluation of monadic and frontier-guarded Datalog queries can be simulated by frontier-
guarded Datalog queries over the global database. This is similar to Lemmas 4.2.19
and 4.2.22.

Lemma? B.5. For every monadic or frontier-guarded Datalog query Q, and hash policy
schemes Z, Z1, and Z2 such that Z ∪ Z1 ∪ Z2 is consistent, a frontier-guarded Datalog
query Q′ can be constructed in exponential time such that the following holds: For every
global database G there is a policy pair (δ, γ) ∈ F(Z,Z1, Z2) such that δ scatters G and
Q′(G) = [Q, γ](δ(G)).

The number of variables and the length of the rules of Q′ is polynomial in ‖Q‖, ‖Z‖,
‖Z1‖, and ‖Z2‖; and the number of rules is at most exponential.

Proof. Let Q = (P,Out) be a monadic or frontier-guarded Datalog query, and Z, Z1,
and Z2 be hash policy schemes such that Z ∪ Z1 ∪ Z2 is consistent. We first construct a
Datalog query Q′′ = (P ′′,Out) that has the claimed equivalence property and afterwards
we “guard” it.

Construction. The Datalog program P ′′ uses one intensional relation symbol Ri of
arity |ū| + ar(R), for every relation symbol R ∈ edb(P) ∪ idb(P) and hash directive
(R, i, ū) ∈ Z ∪ Z1 ∪ Z2. It has four kinds of rules.2

I For every (E, i, ū) ∈ Z, P ′′ has a rule Ei(z̄, x̄)← E(x̄), where x̄ is a tuple of pairwise
different variables, and z̄ = x̄[ū].

I For every rule R(x̄)← S1(ȳ1), . . . , Sn(ȳn) of P and hash directive (E, i, ū), P ′′′ has a
rule

Ri(z̄, x̄)← Si
1(z̄, ȳ1), . . . , S

i
n(z̄, ȳn),

where z̄ is a tuple of pairwise different variables not occurring in any of the ȳi or x̄.
2As in the construction for Lemma 4.2.19 all symbols Ri for which no rule is constructed are removed,

along with all rules where Ri occurs in the body, and recursively.

Page 230

I For every hash directive (R, j, v̄) ∈ Z1 and every hash directive (R, i, ū) ∈ Z2, P ′′ has
a rule

Ri(z̄, x̄)← Rj(ȳ, x̄),

where x̄ is a tuple of pairwise different variables with |x̄| = ar(R), z̄ = x̄[ū], and
ȳ = x̄[v̄].

I For every hash directive (E, i, ū), P ′′ has a rule Out(x̄)← Outi(z̄, x̄) where z̄ and x̄
are tuples of pairwise different variables that share no variable, and |z̄| = |ū|.

Correctness. Let G be a global database, and N be the network of all servers (i, c̄) for
which there is a triple (R, i, ū) ∈ Z ∪ Z1 ∪ Z2, and where c̄ ∈ adom(G)|ū|. Furthermore,
let H = (h1, . . . , hm) be the tuple of hash functions, where hi has arity |ū| and maps
every tuple c̄ to hi(c̄) = (i, c̄), if there is a hash directive (R, i, ū) in any of the hash
policy schemes. Clearly, Z ∪ Z1 ∪ Z2 is compatible with H, and H scatters G.

It suffices to show that a fact R(ā) resides on server (i, c̄) after the distributed evaluation
of Q over δZ,H(G) induced by γZ1,Z2,H if and only if Ri(c̄, ā) can be derived in the
evaluation of Q′′ over G. Thanks to the rules Out(x̄)← Outi(z̄, x̄) of the fourth kind we
can then conclude that Q′′(G) = [Q, γZ1,Z2,H](δZ,H(G)) holds.

The direction from left to right can be shown by induction over the number r ≥ 0 of
rounds of the distributed evaluation. If an extensional fact E(ā) resides on server (i, c̄) in
the initial distributed database D0 = δZ,H(G), then there is a hash directive (E, i, ū) ∈ Z
such that c̄ = ā[ū]. Consequently, Ei(c̄, ā) can be derived by the rule Ei(z̄, x̄) ← E(x̄)
constructed for (E, i, ū).

For the computation phase in round r ≥ 1 on a server (i, c̄), we have that, for all
facts S(b̄) residing on server (i, c̄) after the previous round, facts Si(c̄, b̄) can be derived
in the evaluation of Q′′ thanks to the induction hypothesis. Thus, if a fact R(ā) can
be derived by a rule R(x̄)← S1(ȳ1), . . . , Sn(ȳn) and a valuation ϑ on server (i, c̄), then
Ri(c̄, ā) can be derived by the rule Ri(z̄, x̄) ← S1(z̄, ȳ1), . . . , Sn(z̄, ȳn) and ϑ′; where ϑ′
is the valuation with ϑ′(z̄) = c̄ and ϑ′(x) = ϑ(x) for all variables in x̄ or any of the ȳj .
Note that ϑ′ is well-defined because z̄ shares, by construction, no variables with x̄ or any
of the ȳj .

It remains to consider the communication phase. Observe that, for each communicated
fact R(ā)@(j, c̄′).(i, c̄), there are hash directives (R, j, v̄) ∈ Z1 and (R, i, ū) ∈ Z2 such that
c̄′ = ā[v̄] and c̄ = ā[ū]. Furthermore, R(ā) resides on server (j, c̄′) after the computation
phase. Therefore, Rj(c̄′, ā) can be derived thanks to the induction hypothesis or the
previous reasoning on the computation phase. Then, Ri(c̄, ā) can be derived by the rule
Ri(z̄, x̄) ← Rj(ȳ, x̄) and the valuation ϑ with ϑ(x̄) = ā (recall that then also ϑ(z̄) = c̄
and ϑ(ȳ) = c̄′, since we have z̄ = x̄[ū] and ȳ = x̄[v̄] by construction).

The direction from right to left can be shown similarly by structural induction over
a proof tree for Ri(c̄, ā). In the base case the root node is labelled with a fact Ei(c̄, ā)
where E is an extensional symbol. Furthermore, it is witnessed by a rule Ei(z̄, x̄)← E(x̄)
and a valuation ϑ with ϑ(x̄) = ā and ϑ(z̄) = c̄. By construction, there is a hash directive
(E, i, ū) ∈ Z and z̄ = x̄[ū]. Thus, ā[ū] = c̄ and we have hi(ā) = (i, c̄). We can conclude
that E(ā)@(i, c̄) ∈ δZ,H(G).

Page 231

Appendix B I Parallel-Correctness for Hash-Based Policies

For the induction step, let Ri(c̄, ā) be the label of the root node. We consider two cases.
The first case is that the root node is witnessed by a ruleRi(z̄, x̄)← Si

1(z̄, ȳ1), . . . , S
i
n(z̄, ȳn)

obtained from a rule R(x̄)← S1(ȳ1), . . . , Sn(ȳn) from P . Let ϑ be the matching valuation.
In particular, that means we have ϑ(x̄) = ā and ϑ(z̄) = c̄. Thanks to the induction
hypothesis, all facts ϑ(Sj(ȳj)) then reside on server (i, c̄). Hence, R(ā) can be derived on
server (i, c̄) by R(x̄)← S1(ȳ1), . . . , Sn(ȳn) and ϑ.

The second case is that the root node is witnessed by a rule Ri(z̄, x̄) ← Rj(ȳ, x̄)
constructed for hash directives (R, j, v̄) ∈ Z1 and (R, i, ū) ∈ Z2. Again, let ϑ be the
matching valuation with, in particular, ϑ(x̄) = ā and ϑ(z̄) = c̄. By construction, we
also have z̄ = x̄[ū] and ȳ = x̄[v̄]. Therefore, ā[ū] = c̄, and we have hi(ā) = (i, c̄). In
other words, R(ā)@(i, c̄) ∈ δZ2,H({R(ā)}). Analogously, R(ā)@(j, ϑ(ȳ)) ∈ δZ1,H({R(ā)})
because ϑ(x̄) = ā and ȳ = x̄[v̄].

Moreover, thanks to the induction hypothesis, we have that R(ā) resides, from some
point on, at server (j, ϑ(ȳ)) because the (only) child of the root node is labelled with
ϑ(Rj(ȳ, x̄)). Altogether, we can conclude that the communication policy γZ1,Z2,H yields,
in some round, the communicated fact R(ā)@(i, c̄). (j, ϑ(ȳ)). Thus, R(ā) resides at server
(i, c̄) from some round onwards.

Guarding. It remains to explain how Q′′ = (P ′′,Out) can be transformed into an
equivalent frontier-guarded Datalog query Q′ = (P ′,Out).

We first consider the case thatQ is frontier-guarded. Rules Ei(z̄, x̄)← E(x̄) constructed
for hash directives (E, i, ū) are already frontier-guarded, since we have z̄ = x̄[ū].

Next, consider a rule τ : Ri(z̄, x̄)← Si
1(z̄, ȳ1), . . . , S

i
n(ȳn) obtained from a rule R(x̄)←

Si
1(ȳ1, . . . , ȳn) in P . Since Q is frontier-guarded, there is a j such that Sj is extensional,

and every variable in x̄ occurs in ȳj . Thus, the only rules for Si
j in P ′′ are of the form

Si
j(z̄

′, ȳ′)← Sj(ȳ
′) where every variable in z̄′ occurs in ȳ′, i.e. rules constructed for Z. We

describe how such a rule Si
j(z̄

′, ȳ′)← Sj(ȳ
′) can be “inlined” to obtain a frontier-guarded

rule. The original rule τ is then replaced with all rules obtained in this fashion. Let
α : var→ vars(τ) be a mapping such that α(ȳ′) = ȳj . Note that such a mapping always
exists because, by construction, ȳ′ is a tuple of pairwise different variables. The new
rule is then Ri(α(z̄′), x̄)← Sj(α(ȳ

′)), Si
1(α(z̄

′), ȳ1), . . . , S
i
n(α(z̄

′), ȳn). Note that the new
atom Sj(α(ȳ′)) is indeed a guard atom because all variables in x̄ occur in α(ȳ′) = ȳj , and
all variables in α(z̄′) occur in α(ȳ′). The number of rules obtained in this fashion is at
most exponential. The number of variables and their size is, however, still polynomial
in ‖P‖, ‖Z‖, ‖Z1‖, and ‖Z2‖.

To “guard” rules of the form τ : Ri(z̄, x̄) ← Rj(ȳ, x̄), we recall that every variable
in z̄ or ȳ occurs in x̄ by construction. Furthermore, we have already shown that, if
a fact Ri(c̄, ā) can be derived by τ , then a fact R(ā) can be derived by some rule
R(x̄′) ← S1(ȳ1), . . . , Sn(ȳn) of Q. Since Q is frontier-guarded there is a guard atom
Sm(ȳm) such that all variables of x̄′ occur in ȳm. Then, for every tuple ȳ′ that contains
all variables in x̄, a frontier-guarded variant of τ can be obtained by adding the guard
atom Sm(ȳ′) to its body. Again, τ can then be replaced by all frontier-guarded rules
obtained in this fashion. And, again, the number of rule is at most exponential, and

Page 232

their size and the number of variables is polynomial.
Finally, rules Out(x̄)← Outi(z̄, x̄) can again be replaced by rules Out(x̄′)← body(τ)

for all (frontier-guarded variants of) rules τ with head Outi(z̄′, x̄′).
Let us now suppose that the original query Q is monadic. Again, Rules Ei(z̄, x̄)← E(x̄)

constructed for hash directives (E, i, ū) are already frontier-guarded, since we have
z̄ = x̄[ū].

To “guard” the other rules of P ′′ we exploit the following observation, which we will
prove below.

Claim B.6. Every proof tree for an intensional fact Ri(c̄, ā) with respect to P ′′ contains
a node which is labelled with an extensional fact E(b̄) such that all values in ā and all
values in c̄ occur in b̄.

Based on this observation, P ′ is constructed as follows. Let τ be a rule of P ′′ with
a head Ri(z̄, x̄) for some intensional relation symbol R. For each extensional relation
symbol E and for each tuple ȳ of arity ar(E) which contains all variables of x̄, we add
a new rule to P ′ that results from τ by adding the guard atom R(ȳ). The observation
guarantees that, for each fact that is derived by some rule of P ′′, there is a rule in P ′ that
derives it as well, since a valuation can map the guard atom to the “covering” extensional
atom.

As usual, the rules of the form Out(x̄)← Outi(z̄, x̄) can then be substituted by rules
Out(x̄′)← body(τ) for all (frontier-guarded variants of) rules τ with head Outi(z̄′, x̄′).

It remains to prove Claim B.6. We do so by induction over the structure of a proof
tree with respect to P ′′ and any global database.

In the base case, the proof tree property is witnessed by a rule Ei(z̄, x̄)← E(x̄) where
all variables in z̄ occur in x̄. Thus, our claim holds.

For the induction step, let Ri(c̄, a) be the label of the root node. We make a case
distinction. First, we consider the case that the root node is witnessed by a rule of
the form Ri(z̄, x)← Si

1(z̄, ȳ1), . . . , S
i
n(z̄, ȳn). Pick an atom Si

j(z̄, ȳj) such that x occurs
in ȳj . Since every Datalog rule is safe, such an atom always exists. Thanks to the
induction hypothesis, there is an extensional fact E(b̄) that contains all values that occur
in ϑ(Si

j(z̄, ȳj)), where ϑ is the valuation witnessing the root node. Since x occurs in ȳj ,
c̄ = ϑ(z̄), and a = ϑ(x), we can conclude that all values in c̄ and a occur in b̄.

The second case is that the root node is witnessed by a rule of the form Ri(z̄, x)←
Rj(ȳ, x). By construction, z̄ and ȳ consist of (zero or more) repetitions of x. Hence, c̄
consists of repetitions of a as well. Thus, the claim follows by induction, because a has
to occur in the label of the (only) child node. �

Altogether, we can now prove that the parallel-correctness problem for hash-based
distribution policies and hash-based communication policies is 2ExpTime-complete.

Proof of Theorem B.2. The proof for the upper bound is again almost identical to the
proofs of Proposition 4.2.16 and Theorem 4.2.28. Let Q be a monadic or frontier-guarded
Datalog query, and Z, Z1, and Z2 be hash policy schemes such that Z ∪ Z1 ∪ Z2 is
consistent.

Page 233

Appendix B I Parallel-Correctness for Hash-Based Policies

Thanks to Lemma B.5 there is a frontier-guarded Datalog query Q′ such that, for every
global database G, we have that Q′(G) = [Q, γ](δ(G)) for some (δ, γ) ∈ F(Z,Σ) with δ
scattering G.

We claim that Q is parallel-correct w.r.t. F(Z,Z1, Z2) if and only if Q v Q′ holds.
Suppose Q v Q′ holds and let G be a global database. Let (δ, γ) be the policy pair
guaranteed by Lemma B.5 such that δ scatters G and [Q, γ](δ(G)) = Q′(G) holds.
By assumption we have Q(G) ⊆ Q′(G), and, thus, Q(G) ⊆ [Q, γ](δ(G)). Thanks to
Lemma B.3 we can conclude that Q is parallel-correct w.r.t. F(Z,Z1, Z2).

Conversely, suppose Q is parallel-correct w.r.t. F(Z,Z1, Z2). Let G be a global
database and (δ, γ) be the policy pair satisfying [Q, γ](δ(G)) = Q′(G) due to Lemma B.5.
Since Q is parallel-correct we have Q(G) = [Q, γ](δ(G)). Together we have, in particular,
Q(G) ⊆ Q′(G). We can conclude that Q v Q′ holds.

All in all, parallel-correctness of Q can thus be decided by testing Q v Q′.
The upper bound for the complexity of the parallel-correctness now follows in the

same way as in the proofs for Proposition 4.2.16 and Theorem 4.2.28 with the help of
Theorem 4.2.20 and the size constraints guaranteed by Lemma B.5.

It remains to prove 2ExpTime-hardness. The proof is by a reduction from the
containment problem for monadic Datalog queries, which is known to be 2ExpTime-
hard [BBS12, Theorem 2]. Let Q1 = (P1,Out) and Q2 = (P2,Out) be two monadic
Datalog queries. Thanks to Lemma 2.4.9, we can assume that Q1 and Q2 are frontier-
guarded as well. Moreover, we can assume that Out is the only intensional symbol P1

and P2 have in common; that is, idb(P1) ∩ idb(P2) = {Out}.
We construct a monadic frontier-guarded Datalog query Q = (P,Out) and hash policy

schemes Z, Z1, and Z2 such that Q is parallel-correct w.r.t. F(Z,Z1, Z2) if and only if
Q1 v Q2.

The query Q is the same as constructed in the lower bound proof for Proposition 4.2.16.
For convenience, we recall the construction here. Let P ′

1 and P ′
2 be the Datalog programs

obtained by replacing Out with Out1 and Out2 in P1 and P2, respectively. The output
symbol of Q is Out, which does not occur in P ′

1 or P ′
2; and the Datalog program is

P = P ′
1 ∪ P ′

2 ∪
{

Out(x)← Out1(x), E(x)
}
∪
{

Out(x)← Out2(x), E(x)
}
,

where E is a fresh extensional symbol not appearing in edb(P ′
1) ∪ edb(P ′

2). Clearly, Q is
monadic and frontier-guarded if Q1 and Q2 are.

On a global database G, the query result of Q is the union of Q1(G) and Q2(G)
intersected with the relation E.

We next define the three primitive hash policy schemes as follows.

Z =
{
(R, 1, ()) | R ∈ edb(P1) ∪ edb(P2)

}
∪
{
(E, 2, ())

}
Z1 =

{
(Out2, 2, ())

}
Z2 =

{
(Out2, 1, ())

}
Let G be a global database and (δ, γ) ∈ F(Z,Z1, Z2) such that δ scatters G. Then,
considering the distributed database δ(G), there are two distinct servers k and ` such

Page 234

that all facts over edb(P) \ {E} reside on k and all E-facts reside on server `. Notably,
there is no local database of δ(G) that contains E-facts and facts over edb(P) \ {E}.

Therefore, the outputs of P ′
1 and P ′

2 can be computed on server k because neither
program refers to E. However, no Out-facts can be derived on k since no E-fact resides
on k.

Due to the communication policy γ all Out2-facts computed on k are send to `.
Hence, the intersection of Out2 with E can be computed on ` thanks to the rule
Out(x̄)← Out2(x̄), E(x̄). On the other hand, the rule Out(x̄)← Out1(x̄), E(x̄) is never
used to derive a fact in the distributed evaluation, because only Out2-facts can be
communicated. Thus, the distributed evaluation yields the intersection of Q2(G) with
the relation E.

It remains to argue that Q1 v Q2 if and only if Q is parallel-correct w.r.t. F(Z,Z1, Z2).
By Lemma B.3 it suffices to consider global databases G and distribution policies δ such
that δ scatters G. As argued before [Q, γ](δ(G)) is the intersection of Q2(G) with the
relation E and Q(G) is the intersection of Q1(G) ∪Q2(G) with the relation E for such
databases and distribution policies. Thus, if Q1 v Q2 does not hold, then there is a G
such that [Q, γ](δ(G)) (Q(G) holds for any policy pair (δ, γ) such that δ scatters G.
Since Lemma 4.2.7 guarantees that such a policy pair exists, we can conclude that Q is
not parallel-correct w.r.t. F(Z,Z1, Z2).

For the converse suppose Q1 v Q2 holds. Let G be a global database and δ be
the distribution policy guaranteed by Lemma 4.2.7 that scatters G, and γ be the
communication policy such that (δ, γ) ∈ F(Z,Z1, Z2). By assumption we have that
Q1(G) ⊆ Q2(G) and, hence, Q2(G) = Q1(G) ∪Q2(G). Therefore, [Q, γ](δ(G)) = Q(G).
Then Lemma B.3 allows us to conclude that Q is parallel-correct w.r.t. F(Z,Z1, Z2). �

Page 235

	Abstract
	Contents
	Introduction
	Settings and Main Results
	Work-Efficient Constant-Time Parallel Evaluation
	Parallel-Correctness of Distributed Query Evaluation
	Structurally Simple Rewritings

	Structure and Outline
	Publications

	Preliminaries
	Relational Databases
	Query Basics
	Relational Algebra
	Rule-Based Query Languages
	Conjunctive Queries
	Datalog

	Automata and Machine Models for Upper and Lower Bound Proofs
	Minsky Machines
	Two-Way Alternating Tree Automata

	Work-Efficient Query Evaluation with PRAMs
	PRAMs and Constant-Time Parallel Algorithms
	Parallel Random Access Machines (PRAMs)
	Lower and Upper Bounds for Constant-Time Algorithms

	PRAMs Meet Databases: Settings and Representations
	Algorithmic Techniques and Basic Array Operations
	Algorithmic Techniques
	Algorithms for Basic Array Operations

	Database Operations
	Lower Bounds
	Algorithms for the Operations of the Semi-Join Algebra
	Algorithms for the Join Operation

	Query Evaluation in the Dictionary Setting
	Evaluation of Semi-Join Algebra Queries
	Evaluation of Conjunctive Queries
	Weakly Worst-Case Optimal Work for Natural Joins

	Evaluation via Translation
	Into the Dictionary Setting
	Query Evaluation in the General and Ordered Setting

	Discussion and Related Work

	Distributed Evaluation of Datalog
	Setting and Framework
	Distributed Evaluation of Datalog Programs
	Hash-Based Distribution Policies
	Constraint-Based Communication Policies

	Parallel-Correctness
	Undecidability for Hash-Constraints
	Value-Independent Distribution Policies
	The Polynomial Communication Property
	Modest Communication Policies
	The Non-Transitive Communication Setting

	The Containment Problem for Frontier-Guarded Datalog
	Parallel-Boundedness
	Discussion and Related Work

	Structurally Simple Rewritings
	Views, Rewritings, and the Problem
	A Characterization
	Towards Acyclic Rewritings
	On the Existence of Acyclic Rewritings for Acyclic Queries
	The Complexity of the Acyclic Rewriting Problem
	An Implication for Multi-Query Evaluation

	A Tractable Case: Mind your Head!
	Hierarchical and Quantified-Hierarchical Rewritings
	Discussion and Related Work

	Conclusion
	Bibliography
	Index of Definitions
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W

	Revisiting Consistent Approximate Prefix Sums
	Parallel-Correctness for Hash-Based Policies

