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Abstract

In this thesis, a novel approach to Monte Carlo event generator tuning, grounded
in Bayesian reasoning, is presented. The Bayesian Analysis Toolkit (BAT.jl) is
introduced as a modern tool for performing Bayesian inference. A numerical test
suite that verifies the validity and performance of the BAT.jl package is developed.
The test suite is used to evaluate the performance of the Markov chain Monte Carlo
(MCMC) sampling algorithms implemented in BAT.jl, utilizing a selection of test
functions and different metrics to quantify the quality of the samples. The results
show that the MCMC algorithms are able to sample the posterior distributions of
the test functions accurately. Utilizing the BAT.jl toolkit, two hadronization models
within the Herwig Monte Carlo event generator (MCEG) are successfully tuned
to data from the LEP experiments. Several aspects of the tuning procedure are
investigated, such as parameter and observable selection and parametrization quality.
Samples generated using the tuned parameters, obtained from the global mode of
the posterior, are compared to data through a 𝜒2 test. The resulting 𝑝-values for the
tuned simulations significantly outperform those from the nominal MCEG samples,
indicating a successful tune and an improved description of the data. The posterior
is also used to present a method for propagating the parameter uncertainties to the
realm of the observables, providing a measure for the tuning uncertainty. Studies
on the impact of assigning weights to the observables and the impact of correlations
between measurements on the tuning are also presented. These show that weights
can alter the tuning results, especially in cases with multiple modes in the posterior.
However, their influence on the quality of the tune is minimal in this case. The
correlation of measurements has less of an impact on the position of the global
mode but substantially affects the associated parameter uncertainties estimates.
Finally, a comparison of the two tuned hadronization models is presented, which
indicates that the Lund string model describes the data slightly better than the
cluster hadronization model for this set of observables.
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Kurzfassung

In dieser Arbeit wird ein neuartiges Konzept für das Monte-Carlo-Ereignisgenerator-
Tuning auf Grundlage des Bayes’schen Ansatzes präsentiert. Das Bayesian Analysis
Toolkit (BAT.jl) wird als modernes Werkzeug zur Durchführung von Bayes’schen
Inferenzen vorgestellt. Das Toolkit wird verwendet, um eine numerische Testsuite
zu entwickeln, mit der die Gültigkeit und Leistung des Toolkits überprüft wird. Die
Testsuite basiert auf ausgewählten Testfunktionen und verschiedenen Metriken zur
Quantifizierung der Qualität der Stichproben und wird verwendet, um die Funk-
tionsweise der in BAT.jl implementierten Markov-Chain-Monte-Carlo-(MCMC)-
Verfahren zu überprüfen. Die Ergebnisse zeigen, dass die MCMC-Algorithmen
in der Lage sind, die a-posteriori-Verteilungen der Testfunktionen genau abzu-
bilden. Unter Verwendung des BAT.jl-Toolkits werden zwei Hadronisierungsmodelle
mit dem Herwig Monte-Carlo-Ereignisgenerator erfolgreich an Daten der LEP-
Experimente angepasst (Tuning). Verschiedene Aspekte des Tuning-Verfahrens, wie
die Auswahl von Parametern und Observablen und die Qualität der Parametrisierung,
werden untersucht. Die mit den angepassten Parametern erzeugten Monte-Carlo-
Simulationen, die aus der globalen Mode der a-posteriori-Verteilung erhalten werden,
werden mittels eines 𝜒2-Test mit Daten verglichen. Die resultierenden 𝑝-Werte
der angepassten Simulationen übertreffen deutlich die der nominalen Simulationen,
was auf eine erfolgreiche Anpassung und eine verbesserte Beschreibung der Daten
hindeutet. Die a-posteriori-Verteilung wird zusätzlich verwendet, um eine Meth-
ode zur Fortpflanzung der Parameterunsicherheiten in den Raum der Observablen
vorzustellen, welche als Maß für die Unsicherheit des Tunings dient. Studien über
die Auswirkungen der Gewichtung von Observablen und den Einfluss von Korre-
lationen zwischen Messungen auf das Tuning werden ebenfalls präsentiert. Diese
zeigen, dass die Gewichte die Ergebnisse des Tunings ändern können, insbesondere
bei Verteilungen mit mehreren Moden, jedoch ist ihr Einfluss auf die Qualität des
Tunes in diesem Fall minimal. Die Korrelation der Messungen hat einen geringeren
Einfluss auf die Position der globalen Mode, beeinflusst jedoch die zugehörigen
Parameterunsicherheitsschätzungen erheblich. Schließlich wird ein Vergleich der
beiden angepassten Hadronisierungsmodelle vorgestellt, aus dem hervorgeht, dass
das Lund-String-Modell die Daten für die gewählten Observablen etwas besser
beschreibt als das Cluster-Hadronisierungsmodell.
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1 Introduction

The fundamental objective of scientific research is to deepen and expand our
knowledge of the complex world around us. To achieve this goal, science relies
on two core elements. First, theoretical models are developed to encapsulate
existing knowledge and to propose new hypotheses. These models offer testable
predictions that provide a way for empirical validation. Second, experiments are
conducted to gather data, which is then compared with the prediction from these
models. This comparison between theoretical predictions and experimental data is
a crucial step and is made possible through the use of statistical methods. Through
statistical inference, meaningful conclusions about both the model’s parameters and
its overall compatibility with the experimental data can be drawn. One approach
for this type of statistical inference is the application of Bayesian statistics. In this
approach, Bayes’ theorem is employed to update the prior knowledge about the
model’s parameters using experimental data. As a result, this knowledge update
directly provides the probability distributions of the model’s parameters. Although
interpreting these posterior distributions is straightforward, their computation in
complex real-world scenarios demands specialized numerical techniques. To tackle
this, the Bayesian Analysis Toolkit (BAT.jl) [1] has been developed, which provides
a collection of tools and a user-friendly interface for the application of Bayesian
statistics. This thesis will introduce the toolkit in detail, as well as the development
of a numerical test suite designed to validate the functionality of the package.

A field of research that extensively utilizes computational methods is the field of
particle physics. In this domain, the Standard Model of particle physics (SM) has
been established as the leading theoretical model to describe fundamental particles
and their interactions. However, the complexity and high-dimensional nature of
the calculations involved necessitates the use of Monte Carlo event generators
(MCEG) to obtain predictions based on the SM. While parton interactions — those
involving quarks and gluons — can be calculated from first principles, MCEGs
employ phenomenological models to account for the non-perturbative nature of
the hadronization process and the evolution of the parton shower at low energy
scales. These models introduce a set of free parameters that need to be fine-
tuned to best describe the experimental data. This process of aligning model
parameters with data is known as Monte Carlo tuning. The current state-of-the-
art in Monte Carlo tuning is the Professor procedure [2], which systematically
evaluates multiple event samples with varying parameter settings to refine the
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1 Introduction

model’s alignment with experimental data. It parametrizes the MCEG response and
employs minimization techniques to find the optimal parameter values that best
align the model with experimental data. The Professor procedure has been effectively
used in various applications to fine-tune MCEGs, resulting in improved alignment
between theoretical predictions and experimental results [3–10]. Nonetheless, the
Professor framework has some limitations that have motivated the development
of tools like Apprentice [11], which aim to address some of these shortcomings.
Additionally, alternative approaches to Monte Carlo tuning have been explored, such
as Bayesian optimization [12] and the use of machine learning algorithms [13, 14].
In the scope of this thesis, a novel Monte Carlo tuning methodology grounded in
Bayesian reasoning is presented. This procedure is implemented in the EFTfitter.jl
package [15], a specialized extension built upon BAT.jl. By applying numerical
algorithms like Markov chain Monte Carlo, the full posterior distribution of the
MCEG parameters is obtained. This posterior serves multiple purposes: it identifies
optimal parameter values while offering a comprehensive overview of the parameter
space, potentially revealing limitations in the model. Furthermore, this procedure
enables precise estimation of both uncertainties and correlations among model
parameters and facilitates the propagation of these uncertainties to the model’s
predictions. In this approach, the tune uses data from LEP experiments [16–18],
examining two different hadronization models implemented in the Herwig7 [19]
MCEG. To investigate the impact of different factors on the tuning process, the tune
is repeated under varying conditions: first, by incorporating different correlations
between the experimental data, and second, by applying alternative weighting
schemes to the observables.

This thesis is structured as follows: In Chapter 2, the Standard Model of particle
physics is introduced, and the role of QCD in collider experiments is discussed. An
overview of the Monte Carlo event generation process with a focus on hadronization
models is provided in Chapter 3. In Chapter 4, foundational concepts of Bayesian
statistics are explored alongside numerical techniques like Markov Chain Monte
Carlo and the Metropolis-Hastings algorithm. The BAT.jl framework is presented
in Chapter 5, including descriptions of the implemented numerical algorithms.
Chapter 6 covers the development of a numerical test suite for BAT.jl. There, the
selection of test functions and test metrics is discussed, and the results of the test
suite are presented. In Chapter 7, the development of a novel Monte Carlo tuning
procedure based on Bayesian statistics is presented. The implementation of this
approach in the EFTfitter.jl package is discussed, and both the parameterization
process and the tuning results are examined. The influences of different correlation
and weighting schemes on the tune are investigated, and the impact of error
propagation of the tune on the predictions of the model is discussed. Furthermore,
a comparison between two hadronization models is presented. Finally, Chapter 8
summarizes the results of this thesis and provides an outlook on future work.
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2 The Standard Model of elementary
particle physics

The goal of particle physics is to describe the properties and interactions of ele-
mentary particles. Throughout the history of particle physics, this description has
undergone multiple iterations, becoming increasingly sophisticated over time. As of
now, the Standard Model of particle physics (SM) represents the state-of-the-art
in theoretical models [20–24]. It is a relativistic quantum field theory describing
the fundamental particles and their interactions. The mathematical description of
the Standard Model follows a compound SU(3)C × SU(2)L × U(1)Y symmetry. A
visual representation of the particles described by the Standard Model can be seen
in Figure 2.1. These particles can generally be categorized based on properties like
spin, charge, or mass. When sorted by spin, they fall into three distinct groups.
Particles with spin 1⁄2 are called fermions, those with spin 1 are known as vector
bosons, and those with spin 0 are termed scalar bosons.

2.1 Fermions

Fermions, with half-integer spin, are often referred to as ’matter’ particles since they
constitute the matter around us. They can be categorized into two groups: leptons
and quarks. Leptons can be paired into tuples consisting of a charged lepton and a
corresponding neutrino. Charged leptons, which include the electron (𝑒), muon (𝜇),
and tau (𝜏) leptons, carry an electric charge of −1𝑒. In contrast, their corresponding
neutrinos — electron neutrino (𝜈𝑒), muon neutrino (𝜈𝜇), and tau neutrino (𝜈𝜏) —
are electrically neutral.

Quarks are organized in a manner similar to leptons, forming tuples that consist of
an up-type and a down-type quark. Up-type quarks have an electric charge of +2/3𝑒,
while down-type quarks have a charge of −1/3𝑒. Like the leptons, quarks also come
in three distinct tuples: the up-quark (𝑢) and down-quark (𝑑), the charm-quark (𝑐)
and strange-quark (𝑠), as well as the top-quark (𝑡) and bottom-quark (𝑏). Unlike
leptons, all quarks possess a color charge, leading to additional interactions.

Finally, all fermions in the Standard Model have corresponding anti-fermions, which
are identical in all quantum numbers except for charge.

3



2 The Standard Model of elementary particle physics

Figure 2.1: Scematic representation of the Standard Model and their interactions.
The picture is based on [25] while the values of the particle properties are taken
from [26].

2.2 Bosons and fundamental forces

Vector bosons, particles with a spin of 1, serve as the gauge bosons for the three
fundamental forces described by the Standard Model, with the photon being the
most prominent as it mediates the electromagnetic force. Each fermion and boson
with an electric charge can interact through this force, a behavior described by
quantum electrodynamics (QED).

The charged 𝑊 ± bosons and the electrically neutral 𝑍0 boson serve as the gauge
bosons for the weak interaction and are unique among gauge bosons for having
non-zero mass. The associated charge for this interaction is the weak isospin carried
by all fermions in the Standard Model.
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2.3 Quantum Chromo Dynamics in collider experiments

The last force accounted for in the Standard Model is the strong interaction governed
by quantum chromodynamics (QCD). The gauge boson mediating this force is the
gluon, and the charge associated with QCD is termed color charge. In contrast to
QED, this quantum number is carried not only by the affected fermions (i.e., the
quarks) but also by the mediating vector boson, the gluon. This attribute stems
from the non-abelian symmetry of the associated SU(3)C symmetry group. As a
result, gluons are capable of interacting with themselves. An additional property
of QCD is the so-called confinement. While particles with non-zero electric charge
and weak isospin have been observed as free particles, the same does not hold for
color charge. Particles possessing color charge, like quarks and gluons, immediately
form bonds with other color-charged particles to create color-neutral composite
particles. These composite particles, known as hadrons, can be observed freely,
whereas quarks and gluons cannot. The process by which quarks and gluons form
these color-neutral hadrons is called hadronization. Finding a precise description
of the confinement phenomenon remains one of the major unresolved questions in
particle physics. Understanding this confinement is critical for experiments like
the LHC, where quarks are generated and hadronization is inevitable. Given the
significance of QCD, further details will be discussed in Section 2.3.

Finally, the Standard Model includes one more boson: the Higgs boson. Unlike other
bosons, the Higgs is a scalar boson with spin 0. The Higgs boson was introduced to
the Standard Model through the Higgs mechanism [27, 28]. This mechanism adds a
new field, the Higgs field, which has a non-zero vacuum expectation value. This
leads to the spontaneous symmetry breaking of the SU(2)L × U(1)Y group. As a
result, the massless electroweak bosons mix to form the observed massive vector
bosons of the weak force and the photon. In addition to the massive vector bosons,
fermions also acquire mass through coupling with the Higgs field.

2.3 Quantum Chromo Dynamics in collider
experiments

In current high-energy collider experiments, such as the Large Hadron Collider (LHC)
at CERN [29], QCD plays a crucial role. The way protons collide is intrinsically
linked to how they are described by QCD. Thus, understanding the initial state
of the collision relies on factors like the proton’s parton distribution function. On
the other hand, QCD is also important for the description after the collision, as
processes like particle showering and hadronization of the final state products and
proton remnants need to be accurately modeled. The description of QCD in collider
experiments is complicated by the running of the strong coupling constant 𝛼𝑠. While
the coupling constant is small at high energy scales, resulting in asymptotically
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2 The Standard Model of elementary particle physics

free quarks and gluons, it increases with decreasing energy scale, neccesiating a
non-perturbative description of the low energy regime.

In this thesis, data collected from experiments carried out at the Large Electron-
Positron Collider (LEP) are utilized [16–18]. Since electrons have no substructure,
the initial state is independent of QCD effects, which will hence only impact the
final-state shower and hadronization processes. This is beneficial as the main focus
of Monte Carlo tuning is the optimization of these shower and hadronization models.
In general, the influence of QCD can be divided into three parts based on the energy
scale of the processes.

This division is possible due to the QCD factorization theorem. It enables the
separation of the hard scattering process from the hadronization step, as QCD
operates on vastly different time scales in these two domains. Between these two
domains lies an evolutionary step where additional partons are generated. These
partons are part of both initial and final state parton showers and also contribute
to the hadronization process. An overview of the steps involved in Monte Carlo
event generation can be seen in Figure 2.2. The procedure of Monte Carlo event
generation will be discussed in more detail in Section 3. More details about the
foundation of QCD and factorization can be found in Ref. [30].

Figure 2.2: An overview of the steps involved in Monte Carlo event generation.
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3 Monte Carlo event generation in particle
physics

This chapter will discuss the event generation process in particle physics. The aim
of Monte Carlo event generation is to accurately represent the production rate
and the kinematic distribution of particles, thereby offering theoretical predictions
for experiments. As briefly discussed in Section 2.3, Monte Carlo generation in
high-energy physics can be separated into three steps. These are the hard process,
the parton shower, and the hadronization. First, the evaluation of the hard process
and the showering of quarks and gluons will be briefly discussed. The main focus
will be on the different hadronization models, which are particularly relevant as
tunable models in this thesis. These models are the default hadronization models for
Herwig7 [19] and Pythia8 [31].The parameters that will be tuned in the subsequent
chapters will be introduced and briefly described during this discussion. Finally, a
brief introduction to Rivet [32] will be provided, as it supplies the data and analysis
code for the tuning, followed by a discussion of the TheP8I [33] package.

3.1 Hard process

The hard process involves the highest momentum transfers in particle collisions,
creating heavy particles and high-transverse-momentum hadrons, typically observed
as collimated sprays of particles, referred to as jets. Therefore, accurately describing
this process is crucial for creating Monte Carlo simulations of collider experiments.
Due to the large momentum transfers, the QCD particles become asymptotically
free, allowing their interactions to be described using perturbation theory. As a
result, the hard scattering process can be represented using Feynman diagrams, for
instance. There are several ways to implement the calculation of the matrix element.
Pre-computed matrix elements are useful for simple processes involving only a few
final-state particles. Alternatively, automated processes to calculate matrix elements
can be used. A more in-depth look at how Herwig7 implements the hard process
generation will be provided in 3.4. Other techniques that are commonly used, as
well as more details, are provided in Ref. [34].

7



3 Monte Carlo event generation in particle physics

3.2 Parton Shower

The hard process, outlined in Section 3.1, allows for an adequate description of
outgoing jet momenta using fixed order calculations as the high-momentum final state
particle mostly determines the jet momentum. However, higher-order calculations
are needed to describe the internal structure of the jets and to obtain a complete
picture of the produced hadrons. As a result, parton shower algorithms serve as an
alternative to perturbative calculations for simulations. These algorithms evolve
the momentum transfers from the typically high scales of the hard process down to
low scales, around 1 GeV, where confinement leads to the hadronization of partons
into hadrons.

One crucial free parameter in the parton shower is the cutoff for transverse mo-
mentum, 𝑄. This cutoff is essential because the possibility of collinear emission of
partons is divergent, resulting in an infinite number of partons. However, a minimum
distance is required at which partons must be physically distinguishable as separate
particles. This concept is somewhat equivalent to QED, where a high-energy photon
splitting into a boosted 𝑒+𝑒− pair does not ionize an atom as their proximity leads to
the atom only seeing the combined, electrically neutral state. Therefore, a distance
measure must be introduced to generate only physically meaningful processes. One
such choice is the relative transverse momentum between the partons. A thresh-
old value 𝑄 is then set, below which partons are not considered in the showering
process.

In Herwig7, the implementation of this parameter has different variations de-
pending on the possible color-connected particles. For the scope of this thesis,
only the final state particles are color-connected. As such, the relevant parame-
ters for massless and massive splitting are FFMassiveKinematics:IRCutoff and
FFLightKinematics:IRCutoff, respectively. Going forward, these will be treated
as a single parameter, denoted as IRCutoff.

Another critical parameter of the parton shower is the strong coupling constant
𝛼𝑠. This parameter is particular as it affects both the hard scattering and shower
process. In the generator, different instances of 𝛼𝑠 are present for different parts of
the event generation loop. For the purpose of tuning, all 𝛼𝑠 implementations are
treated the same and will be collectively referred to as AlphaQCD .

3.3 Hadronization

The next step in Monte Carlo event generation after the parton shower process is
hadronization. Its goal is to combine the generated final state partons into hadrons,

8



3.3 Hadronization

representing a collision event’s measurable final state. As the QCD coupling increases
in these low-energy regimes, perturbative QCD calculations become unreliable.
Currently, there is no established method to calculate or simulate these hadronization
processes from first principles accurately. Therefore, hadronization simulations rely
on heuristic models, which are inspired by QCD principles. There are two commonly
used models in Monte Carlo event generators. One of these models is the string
model, specifically implemented through the Lund model, which will be discussed in
more detail in Section 3.3.2. The other approach is the cluster model, which will be
described in more detail in Section 3.3.1.

3.3.1 Cluster model

The cluster model, the default hadronization used by the Herwig7 package, is based
on the concept of preconfinement, which states that the resulting color singlets
following hadronization follow a universal mass distribution that is independent of
the scale of the hard process 𝑄. For more details, see Ref. [35]. An example of the
hadronization process in the cluster model is shown in Figure 3.1. As a first step,

Figure 3.1: A schematic overview of the hadronization process for a 𝑒+𝑒− →
𝑍 → 𝑞 ̄𝑞 event in the cluster hadronization model [36]. The grey areas represent
clusters, while the yellow dots represent the hadrons.

all final state gluons are split isotropically into quark anti-quark pairs. This process
is performed in a non-perturbative fashion, and as such, the quarks and gluons are
assigned a mass quantity referred to as constituent mass. These constituent masses
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3 Monte Carlo event generation in particle physics

are essential model parameters and will be the subject of tuning. After the decay
of gluons, clusters are formed with the remaining quarks and anti-quarks. The
momentum of these clusters follows the sum of the momentum of the constituent
partons. These clusters are treated like mesonic resonances, further decaying into
lighter resonances and, finally, stable hadrons. The decay of a heavy cluster with
the mass 𝑀 follows the condition

𝑀Clpow ≥ Clmax
Clpow + (𝑚1 + 𝑚2)Clpow (3.1)

with the masses of the constituent partons 𝑚1,2. The parameter Clmax defines the
maximum cluster mass while the parameter Clpow determines whether a cluster
undergoes fission. In cases where a cluster splits, a new 𝑞 ̄𝑞 pair is taken out of
the vacuum. These quarks can either be up, down, or strange quarks, with their
respective probability being manually adjustable. The mass distribution of the
resulting clusters, 𝑀1 and 𝑀2, is given by

𝑀1 = 𝑚1 + (𝑀 − 𝑚1 − 𝑚𝑞)ℛ1/𝑃
1 (3.2)

𝑀2 = 𝑚2 + (𝑀 − 𝑚2 − 𝑚𝑞)ℛ1/𝑃
2 (3.3)

with the mass of the parton popped from vacuum 𝑚𝑞 and a random number ℛ.
The parameter 𝑃, referred to as PSplit, regulates the mass distribution of the new
clusters. Furthermore, a requirement is set on the sum of the clusters to be greater
than their constituent parton and smaller than the mass of the original cluster. It
is worth noting that clusters containing partons from the hard scattering process
are treated differently. For these, a soft distribution is used to calculate the new
mass of the cluster.

The next step in the cluster hadronization process pertains to the selection of the
decay products for the clusters into hadrons. The main challenges for this step are
determining appropriate rates for the flavor distribution and meson-to-baryon rates
for the hadrons. Further details on this process are available in Ref. [37].

At last, after selecting the decay products, the clusters are decayed. Generally, these
decays are carried out isotropically. However, when the hadrons contain partons
from the perturbative scattering process, their general direction is preserved. In
addition, Gaussian smearing is applied to the angle of the hadron, resulting in an
angle 𝜃smr as given by

cos(𝜃smr) = 1 + Clsmr log ℛ . (3.4)

Here, ℛ is a random number, and Clsmr is a free parameter. Clusters with insufficient
masses to decay into the selected hadrons are decayed into the lightest possible
hadrons based on their flavor. Their energy and momentum are reshuffled to allow
for such a decay. For more details, see Ref. [37].
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3.3 Hadronization

All free parameters mentioned for the cluster hadronization model are listed in
Table 3.1. The parameters Clmax, Clpow, Clsmr, and PSplit have different variations
for light, charm, and bottom quarks. In the context of tuning, these variations
will be treated equally, significantly reducing the number of tunable parameters.
It is worth noting that the model has additional parameters, e.g., flag variables,
which enable different settings, such as varying the cluster mass distributions. These
parameters will be left to their default values. The complete list of parameters used
for tuning can be found in Section 7.2.

Table 3.1: Free parameters relevant to the cluster hadronization model in
Herwig7 including their flavor-specific variations and a short description. The
parameter names listed in the variations reflect the internal parameter names in
the Herwig7 and the tuning framework.

Parameter Parameter variations Description

Clmax ClMaxLight, ClMaxCharm, ClMaxBottom Maximum cluster mass
Clpow ClPowLight, ClPowCharm, ClPowBottom Cluster fission threshold
Clsmr ClSmrLight, ClSmrCharm, ClSmrBottom Angle smearing in decays
PSplit PSplitLight, PSplitCharm, PSplitBottom Mass distribution in decays

𝑚𝑔 g:ConstituentMass Gluon constituent mass

3.3.2 Lund string model

The Lund string model is the default hadronization model of the Pythia event
generator and is based on the Lund string fragmentation framework [38, 39]. It is
based on the linear confinement principle present in QCD. One can imagine, for
example, the production of a 𝑞𝑞 pair in a collider, moving along an axis 𝑧. The
color charge of these particles creates a color flux tube connecting both quarks, as
seen in Figure 3.2a. This connection tube can be imagined to be a massless string
with a constant, linear energy density 𝜅. Consequently, given the distance between
the quarks 𝑟, the potential energy stored by the flux tube is given as 𝑉 (𝑟) = 𝜅𝑟.
This linear potential is also present in other low-energy descriptions of QCD, such
as lattice QCD and hadron mass spectroscopy [38].

As the quark and anti-quark move farther apart, the potential energy of the string
increases. A schematic of this process is shown in Figure 3.2b. This allows for
the creation of a new 𝑞𝑞 pair within the string, effectively splitting the string into
two separate systems. This addition of quark anti-quark pairs, splitting the color
connection flux tube, effectively screens the color charge from the outside, leaving
color singlets in the final state. As the distance of the quarks increases further,
additional quark anti-quark pairs are generated. For each breaking of the string,
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Figure 3.2: A sketch of the Lund string model [36]. Figure 3.2a shows a flux
tube connecting a quark and anti-quark. Figure 3.2b illustrates the motion of a
quark anti-quark pair and the corresponding string system. The horizontal lines
represent the connecting string, while the diagonal lines represent (anti-)quarks.

only a fraction 𝑧 of the energy and longitudinal momentum can be transferred to
the newly created hadron. The choice for a probability distribution for this fraction
𝑓(𝑧) is generally arbitrary. However, due to symmetry requirements with respect
to either beginning the splitting process with the 𝑞 or 𝑞, the choice is reduced, as
shown in Ref. [40], to

𝑓(𝑧) ∝ 1
𝑧

(1 − 𝑧)aL exp (−bL𝑚2
⊥

𝑧
) , (3.5)

with the transverse mass of the original system 𝑚⊥ and the free parameters aLund
(aL) and bLund (bL). Although bLund is universal, the parameter aLund can
be modified using the aExS and aExDi parameters, which will increase the value
of aL in case of strange quark or diquark production during the fragmentation,
respectively.

In addition to the fragmentation along the 𝑧 axis, fragmentation in the perpendicular
direction 𝑝T has to be considered. The quark anti-quark pairs follow a Gaussian
spectrum and have opposing 𝑝𝑇, as the string is not expected to have transverse
momentum. As such, the distribution of 𝑝𝑥 and 𝑝𝑦 components follows

𝑃(𝑝𝑥, 𝑝𝑦) ∝ exp (−
𝑝2

𝑥 + 𝑝2
𝑦

𝜎pt
2 ) . (3.6)

The parameter 𝜎pt is a free parameter and determines the width of this distribution.
As the hadron momentum will be impacted by the transverse momentum from two
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3.4 Event simulation with Herwig

separate quark pairs, the width of their transverse momentum is given by

⟨𝑝2
T⟩Had = 2𝜎pt .

A table listing the parameters for the Lund string hadronization model, along with
brief descriptions, can be found in Table 3.2. Further details of the Lund string
hadronization model and its implementation in Pythia can be found in Ref. [41].

Table 3.2: List of free parameters relevant for the Lund string hadronization
model implemented in Pythia, the internal parameter name, and a short descrip-
tion.

Parameter Internal parameter Description

aL aLund Longitudinal momentum fragmentation parameter
bL bLund Longitudinal momentum fragmentation parameter

aExS aExtraSQuark Additional aLund for strange quark produciton
aExDi aExtraDiQuark Additional aLund for diquark produciton
𝜎pt sigmaPT Width of transverse momentum distribution

3.4 Event simulation with Herwig

The generation of hard processes in Herwig7 is based on the ThePEG [42] tool.
For the hard process calculations, ThePEG provides three main mechanisms. Some
processes, such as lepton collisions, have hard-coded and pre-calculated matrix
elements. Alternatively, a generic matrix element calculator can be employed for,
for example, 2 → 2 processes. Lastly, ThePEG provides interfaces to read events
produced from external sources. For this thesis, the hard process is computed
at next-to-leading order precision. To accomplish this, Herwig7 interfaces the
generation of the hard process to the MadGraph5 matrix element generator [43]
in conjunction with the OpenLoops one-loop library [44]. Using this setup, the
𝑒+𝑒− → 𝑍/𝛾 → 2, 3, 4, 5 partons process which will be studied in this thesis is
produced. The generation of the process with two partons is performed at next-to-
leading order, while processes with higher multiplicities are generated at leading
order.
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3 Monte Carlo event generation in particle physics

3.5 TheP8I - A Pythia8 interface for ThePEG MC
event generator

For the scope of this thesis, two different hadronization models are used. By default,
Herwig7 provides the option to use the cluster hadronization model described in
Section 3.3.1. The Lund string hadronization model, described in Section 3.3.2, is
implemented in Pythia8. Therefore, an interface is needed to combine the hard
process and shower from the default Herwig7 workflow to the Pythia8 hadronization
model. This is provided by TheP8I package [33], a C++ framework specifically
designed for this task. For more details on the application of this package, see
Ref. [10].

3.6 Rivet - The event generator validation system

In order to perform Monte Carlo tuning on Herwig7 and Pythia8, data for the
observables of interest is needed. For that purpose, the framework Rivet is used.
The Rivet (Robust Independent Validation of Experiment and Theory) toolkit
serves as a validation system for Monte Carlo event generators [32, 45]. It provides
a wide range of experimental analyses, containing and preserving data and analysis
code.

The primary objective is to compare user-generated Monte Carlo predictions with
actual experimental data. However, the complexity of measured observables at
particle colliders can vary significantly, ranging from relatively simple event counts
to sophisticated differential measurements of composite variables such as hadronic
event shapes. Usually, these measurements are performed in a specific fine-tuned
fiducial phase space. Additionally, detector effects such as efficiency, acceptance, and
resolution have to be considered. To address this, one can either apply unfolding
corrections to data or, alternatively, fold these detector effects into the Monte Carlo
predictions. The calculation of variables and the handling of kinematic bounds of
the fiducial phase space are accounted for by the analysis scripts provided by the
experiments through Rivet.

In summary, Rivet provides a database of measurements and a straightforward
and lightweight application of analysis code to directly compare Monte Carlo event
generator output to particle collider experiments. As such, Rivet is widely used
in Monte Carlo tuning efforts such as [3, 5–8]. It should also be noted that the
reference data for Rivet is connected to the HEPData database [46], which will be
useful when discussing correlations in Section 7.8 as it provides the statistical and
systematic uncertainties separately.
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4 Introduction of Bayesian statistics in data
analysis

In this chapter, the concepts of Bayesian analysis, as well as the usage of numerical
Monte Carlo methods in Bayesian inference, are discussed. Section 4.1 introduces
the concept of probability in a Bayesian framework and the derivation of Bayes’
theorem. The next Sections 4.2 and 4.3 cover the inference of information using a
Bayesian ansatz, as well as its implications, interpretation, and possible difficulties.
In the last Section 4.4, numerical methods for Bayesian inference and Monte Carlo
methods such as Markov chain Monte Carlo and the Metropolis-Hastings algorithm
are discussed.

4.1 Bayesian probability and Bayes theorem

There are several theories on the description and interpretation of probabilities.
These theories generally employ axiomatic systems along with rules for calculating
probabilities [47]. One such set of axioms, first formulated by Kolmogorov in 1933,
remains fundamental in the field of probability theory to this day [48]. Given a
set of elementary events 𝐸 and a subset of this space 𝐴, a number 𝑝(𝐴) can be
assigned, called the probability of the event 𝐴. The following three axioms apply to
the probability measure 𝑝:

First Axiom - non-negativity

The probability 𝑝 of the event 𝐴 is a non-negative real number that is greater or
equal to zero

𝑝(𝐴) ∈ R, 𝑝(𝐴) ≥ 0 . (4.1)

Second Axiom - unity

The probability that at least one of the elements of 𝐸 occurs is one

𝑝(𝐸) = 1 . (4.2)

15



4 Introduction of Bayesian statistics in data analysis

Third Axiom - additivity

For any disjoint sets of 𝐸, for example, 𝐴 ∈ 𝐸,𝐵 ∈ 𝐸 with 𝐴∩𝐵 = ∅, the probability
of either event occurring is equal to the sum of their probabilities:

𝑝(𝐴 ∪ 𝐵) = 𝑝(𝐴) + 𝑝(𝐵) . (4.3)

From these axioms, some immediate properties of probabilities can be inferred. One
of these is, for example, the rule for the complementary set of 𝐴, ̄𝐴, of which the
probability has to follow 𝑝( ̄𝐴) = 1 − 𝑝(𝐴).

Bayes’ Rule

Rules for the conditional probability of an event 𝐴 occurring after the event 𝐵, given
by 𝑝(𝐴|𝐵), can be inferred from these axioms. Given 𝑝(𝐵) > 0 the conditional
probability is defined as

𝑝(𝐴|𝐵) = 𝑝(𝐴𝐵)
𝑝(𝐵)

, (4.4)

where 𝑝(𝐴𝐵) = 𝑝(𝐴∩𝐵) is the probability of both events occurring. This implies

𝑝(𝐴 ∩ 𝐵) = 𝑝(𝐴|𝐵)𝑝(𝐵) . (4.5)

The equality 𝑝(𝐴 ∩ 𝐵) = 𝑝(𝐵 ∩ 𝐴) can be used to substitute the left side, which
can then be divided by 𝑝(𝐵), resulting in the equation

𝑝(𝐴|𝐵) = 𝑝(𝐵|𝐴)𝑝(𝐴)
𝑝(𝐵)

(4.6)

which is known as Bayes’ theorem. The first concepts of a Bayesian approach to
probability were discussed by Thomas Bayes in Ref. [49]. In addition, the law of
total probability

𝑝(𝐵) =
𝑁

∑
𝑖=1

𝑝(𝐵|𝐴𝑖)𝑝(𝐴𝑖), (4.7)

where 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for 𝑖 ≠ 𝑗 and ∑𝑁
𝑖=1 𝐴𝑖 = 𝐸, can be used to derive:

𝑝(𝐴|𝐵) = 𝑝(𝐵|𝐴)𝑝(𝐴)
∑𝑁

𝑖=1 𝑝(𝐵|𝐴𝑖)𝑝(𝐴𝑖)
. (4.8)

This modified version is often referred to as the Bayes-Laplace theorem and is
generally used as the basis of knowledge inference in a Bayesian context. Additional
information on the implications of Kolmogorov’s axioms in the field of statistics can
be found in Ref [48].
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4.2 Bayesian inference

4.2 Bayesian inference

In Section 4, Bayes’ theorem was derived as shown in Equation (4.6). While
this equation serves as the foundational principle of Bayesian inference, some
modifications are needed to apply this formalism to specific models and data. First,
Bayes’ theorem is rewritten in terms applicable to model-based analyses:

𝑝( ⃗𝜃|𝐷⃗, 𝑀) = 𝑝(𝐷⃗| ⃗𝜃, 𝑀)𝑝( ⃗𝜃|𝑀)
𝑝(𝐷⃗|𝑀)

(4.9)

given the model 𝑀, the parameters ⃗𝜃 , and the data 𝐷⃗.

The resulting term 𝑝( ⃗𝜃|𝐷⃗, 𝑀) is the so-called posterior probability distribution,
often referred to as posterior, and is the desired quantity. Given the model and
data, it describes the distribution of the model parameters. Its result depends on
the prior probability density 𝑝( ⃗𝜃|𝑀), which is also referred to as prior. The prior
describes the distribution of the model parameters ⃗𝜃 before the data 𝐷⃗ is taken
into account. The term 𝑝(𝐷⃗| ⃗𝜃, 𝑀) represents the probability of the data 𝐷⃗ being
measured given the model 𝑀 with the parameters ⃗𝜃. This term is commonly referred
to as likelihood. Lastly, there is the denominator of the fraction 𝑝(𝐷⃗|𝑀), also called
marginal likelihood or evidence. This term is described by

𝑍 = 𝑝(𝐷⃗|𝑀) = ∫
⃗𝜃
𝑝(𝐷⃗| ⃗𝜃, 𝑀)𝑝( ⃗𝜃|𝑀)𝑑 ⃗𝜃 (4.10)

and represents the probability of measuring the data 𝐷⃗ under the assumption of
the model 𝑀. In Bayesian inference, where the focus is the estimation of model
parameters, the treatment of this integral is critical. The dimensionality of the
parameters and the complexity of the likelihood can vary greatly depending on the
model. This may lead to a high computational burden, so the direct calculation of
the integral is often avoided. Typically, this is feasible when the desired quantities are
independent of the normalization, such as the mode or mean from the posterior.

Model comparisons

Certain applications, such as limit setting, fitting, and phase space exploration,
are independent of normalization. However, when comparing models in a Bayesian
context, normalization serves as a measure itself. In such cases, proper evaluation
of this evidence becomes essential. Different models 𝑀1 and 𝑀2 can be compared
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using the so-called Bayes factor given by

𝐾 = 𝑝(𝐷⃗|𝑀1)
𝑝(𝐷⃗|𝑀2)

=
∫ ⃗𝜃1

𝑝(𝐷⃗| ⃗𝜃1, 𝑀1)𝑝( ⃗𝜃1|𝑀1)𝑑 ⃗𝜃1

∫ ⃗𝜃2
𝑝(𝐷⃗| ⃗𝜃2, 𝑀2)𝑝( ⃗𝜃2|𝑀2)𝑑 ⃗𝜃2

= 𝑍1
𝑍2

. (4.11)

A value of 𝐾 > 1 suggests that the first model is more compatible with the data.
Although the scheme for classification based on the Bayes factor is clear-cut, the
interpretation of its strength can vary, as discussed, for example, in Ref. [50].

Marginalization

Given the posterior distribution 𝑝( ⃗𝜃|𝐷⃗, 𝑀), one might be interested in the probability
distribution of a single parameter 𝜃𝑖. In order to calculate the corresponding
distribution, the posterior is integrated over all other parameters. Consequently,
the resulting probability distribution is described by

𝑝(𝜃𝑖|𝐷⃗, 𝑀) = ∫
𝜃𝑗

𝑝( ⃗𝜃|𝐷⃗, 𝑀) ∏
𝑗≠𝑖

𝑑𝜃𝑗 . (4.12)

This distribution is referred to as marginalized posterior distribution. The application
of marginalization can be extended to the concept of nuisance parameters. In general,
nuisance parameters ⃗𝜈 are additional model parameters that are not parameters
of interest. As such, the posterior distribution can be integrated over the nuisance
parameters with

𝑝(𝜃|𝐷⃗, 𝑀) = ∫ 𝑝( ⃗𝜃|𝐷⃗, ⃗𝜈, 𝑀)𝑑 ⃗𝜈 (4.13)

to obtain the posterior for the parameters of interest.

4.3 Applications and difficulties of Bayesian inference

The central aspect of Bayesian inference is the evaluation of the posterior probability
in Equation (4.9). It should be noted that the analytical calculation of the posterior
is only applicable in very few and, oftentimes, simple cases. As discussed in
Section 4.2, the likelihood can be arbitrarily complex, and the dimensionality of the
parameter space can be large. Historically, the computational challenge of Bayesian
inference had an impact on Bayesian modeling for a long time. Certain prior types,
so-called conjugate priors that lead to a posterior that itself is from a predicable
family of functions, were heavily favored until numerical methods that allowed the
sampling of arbitrary functions were adopted, see Refs. [51, 52]. As a result of using
such numerical methods, the posterior is usually represented by a set of samples
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rather than a functional expression. These samples can then be used to obtain the
desired information. Values of interest often include the position of the mean and
the maximum, also referred to as the mode, of the distributions. For these cases,
the mode of the full distribution, the so-called global mode, and the modes of the
marginalized distributions, the so-called marginal modes, can be of interest. Other
quantities, such as estimates of the uncertainties, for example, using the variance or
credible intervals, can also be inferred from the posterior distribution. Generally,
deriving these properties using the sampled posterior distribution is straightforward.
Therefore, the main challenge lies in the computational effort needed to sample the
posterior.

There are several numerical approaches to explore the posterior distribution in
Bayesian inference. The simplest form of numerical exploration is the grid-based
evaluation of the posterior. In that approach, for each parameter 𝜃𝑖, the correspond-
ing axis is split into 𝑛 points. The dimensionality of the parameter space 𝑑 equals
the number of parameters. Afterward, the product of the likelihood and prior is
evaluated on each point. While this approach is straightforward, it quickly runs
into the so-called curse of dimensionality. As the number of dimensions increases,
the number of evaluation points will increase exponentially with 𝑁 = 𝑛𝑑. Typically,
this results in unfeasible grid-based sampling for dimensions above 𝑑 > 5. This
scalability issue of multidimensional spaces leads to other concepts of sampling,
which will be discussed in Section 4.4.

4.4 Monte Carlo Methods as a numerical tool for
Bayesian inference

As discussed in Section 4.3, numerical methods are essential in Bayesian inference
in data analyses. Several techniques can be applied for sampling the posterior
distribution and simulation-based inference. Many of them rely on the concept
of Monte Carlo integration, which will be explained in the following. In general,
Monte Carlo techniques use randomly drawn numbers to derive integrals or solve
optimization problems. Usually, the foundation of these techniques relies on uniform
random numbers that are independently identically distributed, in short, IID samples.
The set of uniform IID random numbers between zero and one will be referred to as
𝒰[0,1].

Transform Methods

Given a probability distribution 𝑓, the set of random numbers 𝒰[0,1] can be directly
transformed to follow 𝑓, if its cumulative distribution function (CDF) is invertible
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(𝐹 −1). This method effectively generates IID random numbers but is limited to
distributions with invertible CDFs. Other transformation methods also apply in cases
where a function 𝑓 is linked to a function that can be sampled easily. As an example,
sets of two numbers 𝑈1 and 𝑈2 that both follow 𝒰[0,1] can be transformed into
two numbers that follow the unit normal distribution 𝒩(0, 1). This transformation
method is known as the Box-Muller transform, as detailed in Ref. [53]. While these
methods are beneficial for efficiently generating IID samples, their applicability is
very limited. As such, more general methods are described in the following.

Accept-Reject Methods

While the transformation method is efficient yet restrictive, the accept-reject method
is universally applicable but can suffer from low efficiency. Let 𝑓(𝑥) be the target
distribution and 𝑔(𝑥) a distribution that is easy to sample and satisfies 𝑓(𝑥) ≤ 𝑀𝑔(𝑥)
for a constant 𝑀 ≥ 1. Then, one can generate two random numbers 𝑋 from 𝑔 and
𝑈 from 𝒰[0,1]. The point 𝑋 is accepted under the condition that 𝑈 ≤ 𝑓(𝑋)/𝑀𝑔(𝑋).
Otherwise, the point is rejected. One can imagine selecting random points from a
distribution that covers the target distribution and accepting values within the target.
This procedure is repeated and results in the set of 𝑋 following the distribution
𝑓(𝑥). Here, the constant 𝑀 scales the sample distribution 𝑔(𝑥) to cover the area
under the function 𝑓(𝑥). As such, 𝑀 and the efficiency depend on the similarity of
the two functions. Hence, much optimization has been put into further methods
such as envelope accept-reject sampling [52].

4.4.1 Markov Chain Monte Carlo

As discussed in the previous Section, several methods exist to sample from arbitrary
functions or arbitrary posterior distributions in the case of Bayesian inference. The
novelty of Markov chain Monte Carlo (MCMC), compared to simple accept-reject
methods, is the inclusion of the already drawn samples to approximate the target
distribution better. Samples 𝑋𝑡 are drawn in an iterative procedure (𝑋1, 𝑋2, ...).
The defining feature of a Markov chain is the so-called Markov property, which
states that for any 𝑡, the sample 𝑋𝑡 only depends on the previous sample 𝑋𝑡−1. It
follows that the transition probability distribution is given as

𝑝(𝑋𝑡|𝑋𝑡−1) = 𝜋 ∀ 𝑡 (4.14)

where 𝜋 represents the equilibrium distribution. Defining 𝜋 so that the Markov
chain follows the desired distribution is the main challenge of constructing an
MCMC algorithm. In Section 4.4.2, one such approach, the Metropolis-Hastings
algorithm, is discussed. The Markov chain can be started once the appropriate
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4.4 Monte Carlo Methods as a numerical tool for Bayesian inference

transition probability is constructed. However, it must be considered that the
Markov chain only represents the desired distribution in the limit of many samples.
The initial sequence in which the Markov chain is not yet converged is called
burn-in phase. Based on specific criteria, samples generated before convergence are
usually discarded. The length of the burn-in and the criterion used to check for the
convergence of the Markov chain is a crucial point of the implementation of MCMC
samplers and will be discussed further in Chapter 5.

4.4.2 Metropolis-Hastings algorithm

One of the first algorithms to generate Markov chain Monte Carlo samples was the
so-called Metropolis algorithm [54], which adapts a random walk with an accept-
reject criterion to converge to a target distribution. In the case of the Metropolis
algorithm, the distribution to propose a new sample point must be symmetric. The
Metropolis-Hastings algorithm generalized this aspect by also allowing asymmetric
proposal functions and will be described in the following [55].

Algorithm 1 The Metropolis-Hastings algorithm
Require: Desired function 𝑓(𝑥)

1: Draw a random starting point 𝑋1 from the parameter space
2: for 𝑖 in 1 ∶ 𝑁 do
3: Propose a new point 𝑋∗ from 𝑔(𝑋∗|𝑋𝑖)
4: Calculate 𝐴(𝑋∗, 𝑋𝑖) = min (1, 𝑓(𝑋∗)

𝑓(𝑋)
𝑔(𝑋|𝑋∗)
𝑔(𝑋∗|𝑋))

5: Generate a random number 𝑢 from 𝒰[0,1]
6: if 𝑢 ≤ 𝐴(𝑋∗, 𝑋𝑖) then
7: Set 𝑋𝑖+1 = 𝑋∗ ▷ Accept the proposed sample
8: else if 𝑢 > 𝐴(𝑋∗, 𝑋𝑖) then
9: Set 𝑋𝑖+1 = 𝑋𝑖 ▷ Reject the proposed sample

10: end if
11: Increment 𝑖 = 𝑖 + 1
12: end for
13: Return the samples [𝑋1, … , 𝑋𝑁+1]

The algorithm starts from a random point in the parameter space 𝑋 and proposes
a new point 𝑋∗ according to a proposal function 𝑔(𝑋∗|𝑋). This new point is either
accepted or rejected with the probability given by

𝑝accept(𝑋∗, 𝑋) = min (1, 𝑓(𝑋∗)
𝑓(𝑋)

𝑔(𝑋|𝑋∗)
𝑔(𝑋∗|𝑋)

) (4.15)
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where 𝑓(𝑥) is the target distribution. A pseudocode implementation of the algorithm
can be found in Algorithm 1.

In order to show that there is a stationary distribution, that is, the distribution
of interest, the so-called detailed balance criterion can be used. In simple words,
detailed balance describes the property of an algorithm that the flow of probability
mass from any point A to any point B is equal to the flow of point B to point A. In
the case of the Metropolis-Hastings algorithm, this condition is satisfied as

𝑓(𝑋𝑖) 𝑝(𝑋𝑗|𝑋𝑖) = 𝑓(𝑋𝑗) 𝑝(𝑋𝑖|𝑋𝑗) . (4.16)

While the theoretical concepts of the Metropolis-Hastings algorithms are straightfor-
ward, the actual algorithmic implementation has additional nuisances. For example,
to ensure an efficient convergence, the proposal distribution must be tuned dynami-
cally for the algorithm. As part of the complete sampling algorithm, the burn-in
and chain initialization processes and the check for convergence also need efficient
implementation. The next chapter will discuss a software package for Bayesian
inference and its implementation of these features.
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Chapter 4 introduced the theoretical concepts of data analysis in a Bayesian context.
However, the real-world application of these concepts requires a robust, modern,
and effective implementation of these methods. This chapter presents the Bayesian
Analysis Toolkit (BAT) as a possible software package for Bayesian inference. The
main ideas and software considerations of the package are discussed in Section 5.1.
The rewrite of the original toolkit to the modern BAT.jl package and the workflow
of the toolkit are discussed in Section 5.2. Different sampling algorithms, as well as
basic features of BAT.jl, will be elaborated in Section 5.3.These concepts provide the
basis for designing and executing performance tests, which evaluate the package’s
functionalities and will be covered in Chapter 6.

5.1 The Bayesian Analysis Toolkit

In several scientific applications, such as Bayesian inference, complex models often
necessitate computations beyond conventional approaches, resulting in a demand
for robust numerical algorithms. However, these methods require fine-tuning several
parameters to achieve high efficiency and reliability. Several tools provide such
automated implementations in the field of Bayesian analysis [56–59]. Usually, these
frameworks are specialized to fulfill the specific needs of analyses within a particular
research field. The Bayesian Analysis toolkit (BAT) [60] has been designed for the
field of high-energy particle physics. It is a C++ library that provides numerical
algorithms for optimization, integration, hypothesis testing, and posterior sampling
with a focus on the implementation of the Metropolis-Hastings algorithm.

The toolkit has found wide usage within the field of particle physics, including model
fitting [61–64], kinematic fitting [65] and limit setting [66–70]. However, its usage
extends towards other fields of research as well with applications in astrophysics [71],
cosmology [72] and nuclear physics [73].

As the toolkit is designed for particle physics applications, it relies on specific
software like the data analysis framework ROOT [74]. In order to remove these
domain-specific dependencies and expand and modernize the toolkit, a software
re-design was started, which will be discussed in the following section.
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5 BAT.jl - A Julia-based toolkit for Bayesian data analysis

5.2 BAT.jl - The workflow of the modern rewrite in
Julia

Since 2017, BAT.jl has been in development as a rewrite of the BAT software package
in the Julia programming language [1]. One of the primary design considerations
is portability, as there are no requirements on external, particle physics-specific
software packages such as ROOT.

The Julia programming language was chosen as it allows for performant imple-
mentations while allowing a user-friendly script-like syntax similar to Python [75].
In addition, Julia offers automatic differentiation of code with few additional re-
quirements [76]. This enables using, e.g., gradient-based sampling or optimization
without needing user-defined gradients for likelihoods and prior densities. Further-
more, Julia supports parallelization and distributed computing and interfaces with
C, C++, Python, FORTRAN, and many other languages. This allows users with
pre-existing workflows in other languages to interface their models and likelihoods
directly to BAT.jl with little to no performance loss. These features make Julia a
great candidate language for numerical and scientific applications. A report on the
performance of Julia in the context of high energy particle physics analyses can be
found in Ref. [77].

BAT.jl is a registered package within the Julia package infrastructure that simplifies
the installation procedure.

using Pkg
Pkg.add("BAT")
using BAT

The BAT.jl package is centered around probability densities that can be normalized
or unnormalized. These densities are defined by the user, for example, by providing
a likelihood of a model. The likelihood is then combined with a prior density in
order to derive the posterior of interest.

posterior = BAT.PosteriorMeasure(likelihood, prior)

In these cases, the likelihood can be any model or function that returns a value
for the (log)-likelihood for a given set of parameters. Priors, however, have to be a
sub-type of AbstractMeasureOrDensity and are required to be IID sampleable. For
commonly used distributions, the Julia package Distributions.jl [78] can be directly
interfaced to the required type with BAT.jl. In all cases, the resulting posterior must
provide boundaries for the parameters. These are relevant for sampling purposes,
e.g., for initializing a grid of points to sample from. Usually, these bounds are set by
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the bounds of the prior. However, if needed, the object containing the likelihood can
also contain boundaries. In cases where both provide information on the bounds,
the intersection of the sets of boundaries is used.

Following the posterior definition, BAT.jl allows users to integrate, sample, or
optimize the posterior for mode finding.

integral = BAT.bat_integrate(posterior, integrator)
samples = BAT.bat_sample(posterior, sampler)
mode = BAT.bat_findmode(posteiror, estimator)

The sampling algorithms in BAT.jl, which will be described in Section 5.3, are
implemented with a set of default settings, which should be sufficient for most use
cases. However, all samplers, estimators, and integrator settings can be accessed
and changed to fit user-specific needs.

5.3 Sampling Algorithms

The BAT.jl software package has implementations of several different sampling
algorithms. These algorithms can be categorized by their approaches and serve
different use cases. For instance, pseudo-random number samplers produce con-
sistent results but are inefficient for problems in higher dimensions. In these use
cases, MCMC-based samplers and nested samplers perform better. Other sampling
algorithms, such as partitioned samplers, can perform very well in high-dimensional
use cases with the trade-off of additional computation time due to integration. The
following sections will describe the types of samplers and their implementations in
BAT.jl, while integration and optimization will be discussed in Section 5.4.

5.3.1 Pseudo Monte Carlo samplers

As discussed in Section 4.3 it is reasonable to sample a function by evaluating the
target distribution on a grid. However, this approach is only feasible in low numbers
of dimensions 𝑑, typically 𝑑 < 5. One of the main benefits of such an approach is
the independence of the algorithm from the target distribution. Furthermore, such
an algorithm is reliable and simplistic, as there is no need for convergence or tuning.
These algorithms are called pseudo Monte Carlo samplers (PMC samplers).

There are three different PMC algorithms implemented in BAT.jl. The conceptually
simplest is the GridSampler
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sampling_algorithm = GridSampler(ppa=100)

which creates a point grid by splitting each axis into equidistant steps. The user
can set the number of points per axis via the ppa arguments. However, one should
consider the total number of samples 𝑁 as it increases exponentially with the number
of dimensions 𝑑 to be 𝑁 = ppa𝑑. The sampler returns the grid points as samples
with the weight of the sample point set to the corresponding posterior value.

Another PMC sampling algorithm is the so-called SobolSampler algorithm.

sampling_algorithm = SobolSampler(nsamples=10^5)

It is based on the concept of Sobol sequences, which are constructed so that
the estimation of the integral using the Sobol sample points converges as fast as
possible1 [79]. This is achieved by minimizing the gaps in the phase space in both
the entire phase space and, most importantly, in lower-dimensional projections of the
parameter space. This strongly contrasts with a point grid, where projections usually
contain multiple points in the same space. In order to generate Sobol sequences, the
Julia package Sobol.jl2 is interfaced, which is an independent implementation of the
algorithms for Sobol sequences found in Ref. [80, 81]. Contrary to the grid sampler,
any arbitrary number of samples can be created using the SobolSampler.

The last PMC sampling algorithm is the PriorImportanceSampler.

sampling_algorithm = PriorImportanceSampler(nsamples=10^5)

In this case, IID samples are derived from the prior distribution using methods
discussed in Section 4.4. As these samples follow the distribution of the prior
rather than the posterior, these sample points are reweighted by multiplying the
likelihood value of the sample by its corresponding weight. This sampling method
can yield efficient results with fewer samples if the prior can be chosen to resemble
the posterior closely.

5.3.2 Markov Chain Monte Carlo based samplers

The basic idea of Markov chain Monte Carlo was discussed in Section 4.4. However,
details about the implementation, such as the burn-in process and the convergence
criteria, will be discussed in the following.

1While integration with Sobol sequences outperforms classical Monte Carlo integration, the
convergence of adaptive MC methods might be faster depending on the specific problem.

2https://github.com/JuliaMath/Sobol.jl
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Burn-in process

Different MCMC samplers have different tuning parameters, so the specific burn-in
processes differ but follow the same general procedure. The goal of the burn-in
process is to create chains that follow the target distribution and are tuned to sample
in an efficient manner. For that, multiple chains are initialized using a random
sample drawn from the prior distribution. Each chain can be run independently in
parallel on multiple threads in order to speed up the sampling process. After the
initialization, each tuning step is performed in cycles. During each cycle, 10% of
the total number of samples requested by the user are sampled. The sampling and
algorithm-specific adjustment of the tuning parameters are performed iteratively
for each chain. At the end of each cycle, a convergence check of each MCMC chain
is performed. The burn-in process terminates when all chains have converged and
the algorithm-specific tuning requirements are fulfilled. Per default, the tuning
requires the acceptance ratio of samples to lie within 0.15 and 0.35. The convergence
criteria will be discussed in the following section. If tuning and convergence are
unsuccessful, the user can decide to either continue the sampling (displaying a
warning) or interrupt the sampling with an error. If the sampling continues, points
generated during the burn-in process are discarded, and the chains start the MC
generation with the user-specified number of steps.

burnin = MCMCMultiCycleBurnin(
nsteps_per_cycle = 10000
max_ncycles = 30

)

The number of samples per chain per tuning cycle, as well as the total number of
cycles, can be chosen by the user.

Convergence criteria

In order to ensure the chains of the MCMC sample the target distribution, a
convergence test is employed. One convergence criterion implemented in BAT.jl
is the Gelman-Rubin test [82]. The concept is based on analyzing the distances
between the different Markov chains. Given 𝑀 parallel chains with 𝑁 samples per
chain of a parameter 𝜃 then each chain 𝑖 contains the sequence 𝜃1𝑖, … , 𝜃𝑁𝑖. This
allows the per-chain variance 𝑊 and the between-chain variance 𝐵 to be calculated
as

𝑊 =
𝑀

∑
𝑖=1

𝑁
∑
𝑗=1

(𝜃𝑖𝑗 − ̄𝜃𝑖)2

𝑀(𝑁 − 1)
, 𝐵

𝑁
=

𝑀
∑
𝑖=1

( ̄𝜃𝑖 − ̄𝜃)2

𝑀 − 1
(5.1)
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where ̄𝜃𝑖 is the mean of the 𝑖-th chain and ̄𝜃 is the overall mean. These variances
are used to estimate the target variance 𝑉 with

𝑉 = (𝑁 − 1)𝑊
𝑁

+ 𝐵
𝑁

. (5.2)

Using Equation (5.1) and (5.2), the so-called potential scale reduction factor (PSRF)
is constructed

𝑅̂ = 𝑉
𝑊

. (5.3)

Generally, given that the chains are initialized from an overdispersed distribution, 𝑉
will overestimate the target variance, while 𝑊 will underestimate the target variance
as the individual chains do not yet cover the entire range of the target distribution.
As such, during the initialization 𝑅̂ will have a value greater than one while in
the limit of 𝑁 → ∞ both values converge to the same target variance, making 𝑅̂
approach one. Hence, the distance of 𝑅̂ to one can be used to measure convergence.
This approach was generalized to the multivariate case by Brooks and Gelman [83].
Per default, BAT.jl uses this criterion with a cut-off value 𝑅̂ < 1.1 to test for
convergence.

convergence = BrooksGelmanConvergence(threshold=1.1)

Metropolis Hastings

One of the MCMC algorithms implemented in BAT.jl is the Metropolis-Hastings,
which was introduced in Section 4.4.2.

sampling_algorithm = MCMCSampling(
mcalg = MetropolisHastings(),
nsteps = 10^6,
nchains = 4
)

The default proposal distribution is a multivariate Student’s t distribution, which
is tuned by modifying its scale matrix 𝛴. During the burn-in process, after each
cycle, 𝛴 is updated according to the correlation of the newly sampled points to
represent the parameters’ correlation more accurately. In addition, a scale factor 𝑐
is applied to 𝛴, which modifies the range of the proposal distribution. The scale
factor 𝑐 is updated during each cycle according to the current acceptance rate of
the chain 𝛼. Per default, 𝑐 is limited to 𝑐min = 10−4 < 𝑐 < 𝑐max = 100 while the
desired acceptance rate is 𝛼min = 0.15 < 𝛼 < 𝛼max = 0.35.
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Effective sample size

A drawback of samples obtained from MCMC methods is that they are correlated.
This means that the samples are not independent, so the effective sample size (ESS)
is smaller than the actual number of samples. BAT.jl provides an estimator for
the ESS, which calculates which number of IID samples would provide equivalent
information to the number of correlated samples [84]. The estimation is based on
the autocorrelation of the samples.

ess = bat_eff_sample_size(samples).result

Hamilton Monte Carlo

The BAT.jl package includes Hamilton Monte Carlo (HMC) sampling, formerly
referred to as Hybrid Monte Carlo, which, like Metropolis-Hastings, falls under the
category of MCMC samplers [85–87]. As dimensionality increases, random-walk
Monte Carlo samplers, such as Metropolis-Hastings, become more inefficient as
fewer directions lead to the region of interest. HMC mitigates this problem by
utilizing gradient information to guide the sampler’s movement, keeping it within
the relevant phase space. This results in HMC usually yielding higher acceptance
rates, faster convergence, and a larger effective sample size. These benefits, however,
come at the cost of additional computational effort in each sampling step.
The main concept of HMC is based on the application of Hamiltonian dynamics.
To facilitate this, the 𝑑-dimensional parameter space is expanded to a 2𝑑 space by
introducing additional parameters 𝑝, called momentum. As such, the phase space is
changed to ⃗𝑞 → ( ⃗𝑞, ⃗𝑝). Consequently, the target distribution 𝜋( ⃗𝑞) is lifted onto the
phase space using conditional probabilities over ⃗𝑝

𝜋( ⃗𝑞, ⃗𝑝) = 𝜋( ⃗𝑝| ⃗𝑞)𝜋( ⃗𝑞) = 𝑒𝐻( ⃗𝑞,𝑝⃗) (5.4)

where it can then be rewritten in terms of the Hamiltonian 𝐻( ⃗𝑞, ⃗𝑝). The Hamiltonian
can then be decomposed

𝐻( ⃗𝑞, ⃗𝑝) = − log 𝜋( ⃗𝑞, ⃗𝑝) = − log 𝜋( ⃗𝑝| ⃗𝑞) − log 𝜋( ⃗𝑞) (5.5)

and used in order to formulate the Hamilton equations of motions

d𝑞𝑖
d𝑡

= ∂𝐻
∂𝑝𝑖

, d𝑝𝑖
d𝑡

= −∂𝐻
∂𝑞𝑖

. (5.6)

These equations are then solved for a certain time 𝑇 to calculate the new point
( ⃗𝑞∗, ⃗𝑝∗). In order to obtain the proposal ⃗𝑞∗, the solution is marginalized over the
momenta. Analogously to the Metropolis-Hastings algorithm, this proposal is either
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accepted or rejected by calculating an acceptance ratio. However, since HMC
proposal points are calculated using the information on the target distribution, the
acceptance rates are significantly higher compared to sampling with non-specific
proposal functions.
While there are several benefits to HMC, its implementation is not straightforward,
as gradient information is needed. In addition, multiple hyperparameters related to
the momenta and times are introduced in the numerical integration of Equation (5.6).
For single-sample steps, BAT.jl uses an interface to the AdvancedHMC.jl [88] package,
which provides adaptive techniques like the No-U-Turn sampler (NUTS) [89]. Higher-
level operations, such as the construction of the posterior and the burn-in process,
are handled by BAT.jl. With the efficient capabilities of automatic differentiation in
Julia, for example, through the ForwardDiff.jl [76] and Zygote.jl [90] packages, the
derivation of the gradient needed for HMC can often be automated, which greatly
benefits the usage of HMC in BAT.jl.

sampling_algorithm = MCMCSampling(
mcalg = AdvancedHMC(),
nsteps = 10^6,
nchains = 4
)

5.3.3 Partitioned sampling

Another approach to solving the problem of sampling in a high number of dimensions
is called partioned sampling [91] and is performed by dividing the phase space
into multiple sections and using Monte Carlo sampling on each space partition
individually. At first, an exploration sampler with a large number of separate chains
and a low number of steps is used. This step does not require tuning or convergence
but is merely used to derive an initial image of the phase space, like discovering
multiple modes or clusters. These exploration samples are then used to divide the
space into separate partitions in which sampling is performed independently. As
such, the sampling can easily be distributed across multiple threads or working
nodes for parallel processing. Since samples from different sections have different
normalizations, the samples must be reweighted with the value of the integral of
the corresponding subspace. The integral estimation, per default, is calculated
using Adaptive Harmonic Mean Integration (AHMI), which will be discussed in
Section 5.4. After the reweighting, the samples are merged and returned. Besides
the possibility of sampling the subspaces in parallel, partitioned sampling has the
benefit of converging more quickly as the separate spaces can be chosen to be
unimodal. In addition, due to the weighting using the integral, the relative heights
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of modes in multimodal distributions can be estimated correctly in contrast to the
ordinary Metropolis-Hastings algorithm. In order to use partitioned sampling, the
PartitionedParallelSampling.jl package has to be loaded.

sampling_algorithm = PartitionedParallelSampling.PartitionedSampling(
sampler = mcmc, npartitions=4,
exploration_sampler=mcmc_exp, integrator = ahmi,
nmax_resampling=5
)

5.3.4 Nested sampling

An alternative to MCMC-based samplers implemented in BAT.jl is the so-called
nested sampling [92]. First, a number of samples, so-called live points, are drawn
from the prior and are assigned a volume. For 𝑁 live point, each of these points
represents 1/𝑁 of the total volume. In the next step, the live point with the lowest
likelihood value, 𝐿1, is removed. This results in the shrinkage of the total volume
by 𝛿𝑉 = 1/𝑁 to the reduced volume 𝑉 = 1 − 1

𝑁 . Next, a new live point is sampled
from the prior with the requirement of the likelihood to be larger than 𝐿1, which
is referred to as likelihood-restricted prior sampling (LRPS). After this step, there
is again a total of 𝑁 live points, each representing 1/𝑁 of the remaining volume.
The live point removal and LRPS steps are repeated with the volume shrinking by
a constant factor while the likelihood threshold increases for each step. Sampling
is stopped when the remaining volume 𝑉𝑖 = (1 − 1

𝑁)𝑖, for 𝑖 iterations, becomes
negligibly small. This process allows estimating the integral of the phase space 𝑍
as

𝑍 ≈ ∑
𝑖

𝛥𝑉𝑖 ⋅ 𝐿𝑖 with 𝛥𝑉𝑖 = 𝑉𝑖 − 𝑉𝑖−1 = (1 − 1
𝑁

)
𝑖

⋅ 1
𝑁

. (5.7)

In order to get samples that represent samples from the posterior distribution, the
removed live points are weighted by 𝛥𝑉𝑖 ⋅ 𝐿𝑖 and returned.

BAT.jl provides two different implementations of nested sampling, which interface
to different specialized packages. The first is the Ultranest3 package [93], which is
a python package that is accessible using the UltraNest.jl4 Julia wrapper.

sampling_algorithm = ReactiveNestedSampling(min_num_live_points=400)

3https://johannesbuchner.github.io/UltraNest/
4https://github.com/bat/UltraNest.jl
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It uses the MLFriends algorithm [94, 95] for the LRPS step, which comes with the
benefit of being parameter-free. The other package is NestedSamplers.jl [96], which
is natively implemented in Julia. It provides implementations for both single- and
multi-ellipsoidal nested sampling.

sampling_algorithm = EllipsoidalNestedSampling(num_live_points=400)

Both packages generally provide efficient nested sampling implementations, allowing
for simultaneous sampling and integration estimation.

5.4 Numerical integration and optimization

In Bayesian inference, the integral of the posterior as well as the point of the
highest posterior value, the so-called global mode, are of particular interest. While
Section 5.3 describes the sampling of the posterior, which can be used to estimate
these quantities, BAT.jl provides numerical methods to derive these quantities
directly, which will be discussed in the following.

Adaptive Harmonic Mean Integration

In order to calculate the integral of a posterior distribution, i.e., the evidence, in
BAT.jl, the so-called Adaptive Harmonic Mean Integration (AHMI) algorithm can be
used, which is provided by the AHMI.jl package [97]. AHMI uses already generated
samples to estimate the integral using the harmonic mean estimator (HME) [98]
in multiple subregions of the phase space. Given the full space 𝐸 and some finite
region 𝐴 ⊂ 𝐸, the HME for the integral in that subspace is

𝐼𝐴 = 𝑁𝐴𝑉𝐴
∑𝑥𝑖∈𝐴

1
𝑓(𝑥𝑖)

, (5.8)

where 𝑁𝐴 is the number of samples in the subregion, 𝑉𝐴 is the volume of the
subregion, 𝑥𝑖 are the samples and 𝑓 is the target distribution, i.e. the posterior. The
total integral 𝐼 can be estimated by dividing 𝐼𝐴 by 𝑟 = 𝑁𝐴/𝑁 where 𝑁 is the total
number of samples. While the HME method converges to the correct values for an
infinite amount of samples, further improvements are needed to provide a usable
estimate using finite sample sizes in actual use cases. This is achieved by splitting
the initial sample into two exclusive subsets, which are both used individually to
create subregions in which HME is performed. However, these regions are then
swapped so that the first sample subset is used in the HME for the regions defined
by the second set and vice versa. This leads to two estimates for the total integral
after combining the HME of the subregions, which are combined to give an overall
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integral estimate with a smaller variance. More details and discussion on possible
biases are found in Ref. [97].

integral = bat_integrate(posterior, AHMI.AHMIntegration()).result

In addition to AHMI, BAT.jl provides an interface to the CUBA library [99]. It
implements several integration algorithms using both Monte Carlo and deterministic
methods. One such example is the VEGAS algorithm [100, 101], which uses
importance sampling in order to reduce the variance of the integral estimate.

integral = bat_integrate(posterior, VEGASIntegration()).result

Optimization algorithms

In addition to methods for evidence estimation, BAT.jl also offers algorithms for
phase space exploration aimed at finding the global mode of the posterior distribution.
For this purpose, the Optim.jl [102] package is interfaced, which provides different
optimization algorithms. As an example of a gradient-free optimization, the Nelder-
Mead [103] algorithm can be used.

mode = bat_findmode(sampleable, NelderMeadOpt()).result

In cases where the gradient of the posterior is known or can be derived automatically
using Julia’s autodifferentiation features, the LBFGS method [104] can be used for
optimization.

mode = bat_findmode(sampleable, LBFGSOpt()).result

While the global mode of the posterior can be determined using optimization algo-
rithms to find the maximum, the mode of the marginal distribution is also of interest
in some instances. Since integrating the posterior, as shown in Equation (4.12), is
computationally expensive, the marginal mode can be estimated by binning the
samples and selecting the center of the bin with the highest weight. By default, the
optimal bin number is chosen using the Freedman-Diaconis rule [105]. In addition
to these quantities, BAT.jl allows the estimation of statistical measures like the
mean, standard deviation, quantiles, and other custom intervals using samples from
the posterior.
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6 Implementing a numerical test suite for
BAT.jl

In order to ensure the quality and efficiency of the numerical algorithms in BAT.jl,
a robust testing framework is indispensable. This chapter elaborates on the design
choices and the implementation of such a test suite. First, Section 6.1 will discuss
the functions on which performance tests are conducted. Next, the figures of merit
used to evaluate the sampling algorithms are introduced in Section 6.2. Last, in
Section 6.3, the performance test results will be discussed for both the sampling
and integration algorithms for low- and high-dimensional test functions. Beyond
providing an ad hoc assessment of the quality of the numerical algorithms, the
numerical test suite plays a crucial role in sustaining, or even enhancing, the quality
and reliability of these methods during future developments. This is ensured by
re-running the tests for every major BAT.jl release.

6.1 Defining test functions for benchmarking

Selecting test functions is a crucial step when establishing a testing framework for
MC sampling. These test functions must meet specific criteria in order to serve as
an adequate basis for testing. Firstly, IID sampling methods for these distributions
are required as they allow the generation of sample sets that are guaranteed to
reflect random points from the test functions. These can then be used as a baseline
for evaluating the quality of the samples obtained from BAT.jl. Furthermore, test
functions should be easily expandable into multiple dimensions. This, together with
the presence of both uni-modal and multi-modal distributions, allows for enough
complexity to represent the difficulties of real-world data analysis scenarios. Finally,
it is helpful to normalize the distributions, as knowing the integral values helps to
assess the sampling quality using integration methods.
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6.1.1 Normal distribution

One baseline function used for testing is the normal distribution 𝒩

𝒩(𝑥|𝜇, 𝜎) = 1√
2𝜋𝜎

𝑒− 1
2 ( 𝑥−𝜇

𝜎 )2
(6.1)

with the mean 𝜇 and standard deviation 𝜎. In the multivariate case, for 𝑛 dimensions,
this extends to

𝑓( ⃗𝑥) = 1
√(2𝜋)𝑛|𝛴𝛴𝛴|

exp (−1
2

( ⃗𝑥 − ⃗𝜇)T𝛴𝛴𝛴−1( ⃗𝑥 − ⃗𝜇)) (6.2)

where 𝛴𝛴𝛴 is the 𝑛 × 𝑛 covariance matrix and ⃗𝜇 the 𝑛-dimensional mean vector.
In order to move the mode of the multivariate normal distribution and vary the
variance and correlations, the mean vector and covariance matrix are dynamically
changed for each dimension added to the distribution. The elements of the mean
vector ⃗𝜇 for 𝑛 dimensions are given by

𝜇𝑖 = 5 ⋅ (1 + 𝑖) with 𝑖 ∈ {1, ..., 𝑛}

and the elements of the covariance matrix can be calculated with

𝛴𝑖,𝑖 = (4 ⋅ (1 + 𝑖
𝑛

))
2

with 𝑖 ∈ {1, ..., 𝑛}

𝛴𝑘,𝑖 = 𝛴𝑖,𝑘 = 0.2 (1 + 𝑖
10

) √𝛴𝑖,𝑖𝛴𝑘,𝑘 with 𝑖, 𝑘 ∈ {1, ..., 𝑛} ∧ 𝑖 ≠ 𝑘 .

However, these calculations are only performed in test cases for more than two
dimensions. For the two-dimensional tests, the values are set manually and are
found in the corresponding part in Section 6.3. An example of a four-dimensional
multivariate Gaussian can be seen in Figure 6.1. The samples have been generated
using 107 IID points and visualized using the plotting functions of BAT.jl, which
show the one and two-dimensional marginalized distributions for each parameter.

6.1.2 Multi modal Cauchy distribution

A more complex function compared to the normal distribution is the Cauchy
distribution, which is a notoriously difficult function for numerical applications due
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Figure 6.1: Four-dimensional multivariate normal distribution obtained using
IID sampling. The diagonal shows the one-dimensional marginalized distributions,
while the off-diagonal contains the two-dimensional marginal distributions. The
green, yellow, and red areas represent the smallest intervals containing 68%, 95%,
and 99% of the probability, respectively.

to its long tails. Its probability density function is given as

Cauchy(𝑥|𝜇, 𝜎) = 1
𝜋𝜎 [1 + (𝑥−𝜇

𝜎 )2]
. (6.3)

In order to increase the complexity of the test function, four shifted Cauchy distribu-
tions are used in the first two dimensions, creating multiple modes. Any additional
dimension is represented by a single Cauchy distribution at 𝜇𝑖 = 0, leading to a
functional form of the test function of

𝑓( ⃗𝑥) =
2

∏
𝑖=1

[Cauchy(𝑥𝑖|𝜇𝑖, 𝜎𝑖) + Cauchy(𝑥𝑖| − 𝜇𝑖, 𝜎𝑖)] ⋅
𝑛

∏
𝑗=3

Cauchy(𝑥𝑗|0, 𝜎𝑗) (6.4)

for 𝑛 dimensions with the mode positions ⃗𝜇. The scale parameters 𝜎⃗ determine the
spread of the distribution, with larger values producing a wider outcome. Similar
to the multivariate normal, the coefficients of the multi-modal Cauchy distribution
are changed dynamically during testing. However, the individual elements within ⃗𝜇
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and 𝜎⃗ for 𝑛 dimensions are identical and are set by

𝜇𝑖 = 5 ⋅ 𝑛 ∧ 𝜎𝑖 = 0.2 ⋅ 𝑛 with 𝑖 ∈ {1, ..., 𝑛}. (6.5)

The four-dimensional multi-modal Cauchy distribution is shown in Figure 6.2. The
samples have been generated using 107 IID samples and visualized using the plotting
functions of BAT.jl.

Figure 6.2: Four dimensional multi-modal Cauchy distribution obtained using
IID sampling. The diagonal shows the one-dimensional marginalized distributions,
while the off-diagonal contains the two-dimensional marginal distributions. The
green, yellow, and red areas represent the smallest intervals containing 68%, 95%,
and 99% of the probability, respectively.

6.1.3 Funnel distribution

The third test function is the so-called Funnel distribution. It is built using the
product of one normal distribution with several additional normal distributions,
which have a standard deviation dependent on the first parameter. Its functional
form is given as

𝑓( ⃗𝑥) = 𝒩(𝑥1|0, 𝑎2)
𝑛

∏
𝑖=2

𝒩(𝑥𝑖|0, exp (2𝑏𝑥1)) (6.6)
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where 𝑎 and 𝑏 are free coefficients that are set to a fixed value of 𝑎 = 𝑏 = 0.5. The
𝑎 parameter sets the variance of the first normal distribution while 𝑏 determines the
increase in the spread of the distribution while moving along 𝑥1, effectively setting
the width along the parameters 𝑥2,...,𝑛. The four-dimensional Funnel distribution is
shown in Figure 6.3. The samples have been generated using 107 IID samples and
visualized using the plotting functions of BAT.jl.

Figure 6.3: Four-dimensional Funnel distribution obtained using IID sampling.
The diagonal shows the one-dimensional marginalized distributions, while the
off-diagonal contains the two-dimensional marginal distributions. The green,
yellow, and red areas represent the smallest intervals containing 68%, 95%, and
99% of the probability, respectively.

6.2 Figures of merit for evaluation of sampling
performance

In order to determine the quality of the numerical algorithms of BAT.jl, some
measurable criteria have to be defined that reflect the goodness of the desired
quantities of the samples. Since the sampling is performed in many dimensions, an
evaluation per eye becomes unfeasible. Hence, other metrics and statistical tests are
used to compare to known quantities, i.e., mean and mode positions, or to compare
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to the results of IID sampling. The following sections will introduce the different
metrics and tests used in this work.

6.2.1 Characteristic metrics of sampling

Several metrics are derived from the sampled data that can be directly compared
to the known quantities of the test functions. These are the position of the mode,
i.e., the maximum of the distribution, the mean of the distribution, as well as the
variance. In addition, the integral of the distribution is calculated using AHMI. See
Section 5.4 for more details. As the estimation of the integral is performed using the
sampled points, deviations of the integral from the expected value can be used as a
metric for the sampling quality. In addition, for tests up to two dimensions, the pulls
between the binned samples and the analytical values are calculated and visualized.
The pulls are defined as the difference between the binned samples and the analytical
values divided by the uncertainty of the binned samples. These uncertainties are
calculated using the square root of the number of samples in each bin. Given a
large enough number of samples, the pulls are expected to be distributed like a unit
normal distribution. Lastly, a Kolmogorov-Smirnov test is performed using samples
obtained from the MCMC and IID samples. The test is described in Section 6.2.3
and is used to determine if the samples are drawn from the same distribution.

6.2.2 Modification of metrics for tests in higher dimensions

While testing one and two dimensions can be visualized easily, evaluating higher
dimensional distributions is more difficult. In order to still be able to compare the
results of the sampling, the metrics are modified to be able to be used in higher
dimensions. This is most obvious in the case of the KS test, which is only performed
on one-dimensional distributions. As such, the test has to be performed on each
one-dimensional marginalization of the 𝑛-dimensional multivariate distribution.
This, however, leads to 𝑛 different results for the KS test. Since it is expected for
the 𝑝-values of the KS test to be distributed uniformly between zero and one, the
test result can be evaluated using the distribution of these 𝑝-values.

6.2.3 The Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) is a statistical test that can be used to determine if
two samples are drawn from the same distribution [106, 107]. It is based on the
KS statistic 𝐷, which is defined as the maximum distance between the empirical
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cumulative distribution functions (CDF) of the two samples. The CDF is the
probability that a random variable 𝑋 is less than or equal to 𝑥 and is given by

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫
𝑥

−∞
𝑓(𝑡)𝑑𝑡 (6.7)

where 𝑓(𝑡) is the probability density function of 𝑋. The KS statistic is then defined
as the maximum distance 𝐷 which is calculated as

𝐷 = sup
𝑥

|𝐹1(𝑥) − 𝐹2(𝑥)| (6.8)

where 𝐹1 and 𝐹2 are the empirical CDFs of the two samples. Given two samples
with size 𝑛 and 𝑚 and a significance level 𝛼 the value of the test statistic 𝐷 can be
compared to the critical value 𝑐𝛼

𝑐𝛼 = √−1
2

ln (𝛼
2

) ⋅ √𝑛1 + 𝑛2
𝑛1𝑛2

(6.9)

which results in the rejection of the hypothesis if 𝐷 > 𝑐𝛼. The test statistic 𝐷
can also be used to determine the 𝑝-value of the test by either using pre-calculated
tables or by using the asymptotic approximations. In this work, the 𝑝-value
calculation is performed using the HypothesisTests.jl1 package which uses a numerical
approximation based on Ref. [108].

6.3 Evaluating the performance of BAT.jl

Using the metrics and tests introduced in the previous section, the performance
of the different sampling algorithms implemented in BAT.jl is evaluated. The test
focuses on the performance of the MCMC algorithms implemented in BAT.jl, i.e.
the Metropolis-Hastings (MH) algorithm and the Hamilton Monte Carlo (HMC)
algorithm. First, in Section 6.3.1, tests in lower dimensions are performed to verify
the accurate sampling of the distributions. Then, in Section 6.3.2, the performance of
the algorithms in higher dimensions is evaluated in order to compare the performance
of the MH and HMC sampler.

1https://github.com/JuliaStats/HypothesisTests.jl/

41

https://github.com/JuliaStats/HypothesisTests.jl/


6 Implementing a numerical test suite for BAT.jl

6.3.1 Two dimensional tests

In order to test the performance in two dimensions, the test functions introduced in
Section 6.1 are used. The parameter values for the test functions are summarized in
Table 6.1. Testing is performed using the MH algorithm with eight chains and 106

sample steps. All other parameters are set to their default values. The resulting
samples are visualized using the default BAT.jl plotting functionalities and are
shown in Figures 6.4-6.6.

Figure 6.4: BAT.jl default plot for the two-dimensional normal distribution.
The plots on the diagonal show the marginalized distributions for each dimension.
The off-diagonal plots show the full two-dimensional distribution. The lower left
plot shows the probability intervals, while the plot on the top right highlights the
shape and contours of the distribution. The dashed lines and the dot represent
the position of the global mode of the sample. The green, yellow and red areas
represent the smallest intervals containing 68%, 95% and 99% of the probability,
respectively. The distributions are normalized to unity.

The results of the mean, variance, KS test and integral are summarized in Table 6.2.
For all test functions, the values for the mode position are in good agreement
with the expected values. The largest deviation observed is 4.1% for the Cauchy
distribution. The mean and variance values are also in good agreement with the
analytical values for the normal and Funnel distribution showing at most a deviation
of 1.1% for the variance of the Funnel distribution. Since the Cauchy distribution
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Figure 6.5: BAT.jl default plot for the two-dimensional Cauchy distribution.
See the caption on Figure 6.4 for a detailed explanation.

does not have a defined mean and variance, these values are not used for this
distribution. However, the KS test and AHMI integral values can be used. For the
KS test, the 𝑝-values for the marginals are close to one in most cases, with one
exception for one marginal of the normal distribution, which results in a 𝑝-value of
0.256. While this is significantly lower than the other 𝑝-values, it is still well above
the typical threshold for the significance level of 0.05. As such, the null hypothesis
that the samples are drawn from the same distribution cannot be rejected. Next,
the AHMI integral values are compared to their expected values of one. Given the
uncertainty provided by AHMI, all integral estimates are in agreement with unity
for all distributions.

In order to calculate the pull distribution, an analytical value of a given bin is
required. These are calculated by evaluating the analytical function at the center
of the bin and scaling it by the bin area and the total number of samples of the
function. Visual comparisons of the two-dimensional distributions to the analytical
functions are shown in Figures 6.7-6.9. The pulls are calculated for each bin using
the difference between the analytical and sampled values, in standard deviation units.
The resulting pull distributions are shown in Figure 6.10. The pull distributions for
the normal, Cauchy, and Funnel distributions are compatible with the expectation,
which, for reference, is indicated in the plots by the orange line. In summary, given
the results of the tests in this two-dimensional test case, the performance of the MH
algorithm is considered to be satisfactory.
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Figure 6.6: BAT.jl default plot for the two-dimensional Funnel distribution.
See the caption on Figure 6.4 for a detailed explanation.

Table 6.1: Coefficients used for the testfunctions in the two dimensional tests.

Name Parameters

Normal 𝜇 = (15
10), 𝜎 = (2.25 1.5

1.5 6.25)

Cauchy 𝜇 = (5
5), 𝜎 = (4

4)

Funnel 𝑎 = 1, 𝑏 = 0.5
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Table 6.2: Perfomance test results for the two-dimensional test functions.

Name
Normal Multi Cauchy Funnel

Target Test Target Test Target Test

Mode ⎛⎜
⎝

15.0
10.0

⎞⎟
⎠

⎛⎜
⎝

15.0
9.997

⎞⎟
⎠

⎛⎜
⎝

5.0
5.0

⎞⎟
⎠

⎛⎜
⎝

4.806
4.796

⎞⎟
⎠

⎛⎜
⎝

−1.0
0.0

⎞⎟
⎠

⎛⎜
⎝

−0.998
−0.0

⎞⎟
⎠

Mean ⎛⎜
⎝

15.0
10.0

⎞⎟
⎠

⎛⎜
⎝

15.001
9.996

⎞⎟
⎠

⎛⎜
⎝

−
−

⎞⎟
⎠

⎛⎜
⎝

−5.687
0.715

⎞⎟
⎠

⎛⎜
⎝

0.0
0.0

⎞⎟
⎠

⎛⎜
⎝

0.001
−0.001

⎞⎟
⎠

Variance ⎛⎜
⎝

2.25
6.25

⎞⎟
⎠

⎛⎜
⎝

2.253
6.257

⎞⎟
⎠

⎛⎜
⎝

−
−

⎞⎟
⎠

⎛⎜
⎝

15765.2
15050.4

⎞⎟
⎠

⎛⎜
⎝

1.0
7.407

⎞⎟
⎠

⎛⎜
⎝

0.997
7.326

⎞⎟
⎠

KS test
p-value

⎛⎜
⎝

0.988
0.256

⎞⎟
⎠

⎛⎜
⎝

1.0
1.0

⎞⎟
⎠

⎛⎜
⎝

0.914
0.997

⎞⎟
⎠

AHMI
integral 1.001 ± 0.002 1.0 ± 0.002 1.002 ± 0.002
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x1

0

5

10

15

20

x 2

Figure 6.7: Two-dimensional normal distribution using the analytical function
(left) and the sampled distribution using MH (right). The green, yellow and
red areas represent the smallest intervals containing 68%, 95% and 99% of the
probability, respectively.
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Figure 6.8: Two-dimensional Cauchy distribution using the analytical function
(left) and the sampled distribution using MH (right). The green, yellow and
red areas represent the smallest intervals containing 68%, 95% and 99% of the
probability, respectively.
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Figure 6.9: Two-dimensional Funnel distribution using the analytical function
(left) and the sampled distribution using MH (right). The green, yellow and
red areas represent the smallest intervals containing 68%, 95% and 99% of the
probability, respectively.
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(a) Normal distribution
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Figure 6.10: Pull distributions for the two-dimensional test functions. The
pull distributions are calculated using the difference between the analytical and
sampled values, in units of the standard deviation. The orange line represents
the expected normal distribution with a mean of zero and a variance of one.
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6.3.2 Higher dimensional tests

For the tests in higher dimensions, some settings are changed compared to the
two-dimensional tests. These settings are shown in Table 6.3. Most notably,
the threshold for the Brooks-Gelman criteria is relaxed in order to probe higher
dimensional cases more easily. While this might lead to chains that are not fully
converged, the following tests provide a higher sensitivity to verify correct sampling.
The KS test and AHMI integration are performed for the MH algorithm from 2 up
to 20 dimensions.

Table 6.3: Non-default settings used for the performance tests in 𝑛 dimensions.

Parameter Values

Brooks Gelman Convergence threshold 1.6
Brooks Gelman Convergence corrected False

Init tries per chain 64..1024
Number of steps per chain 10, 000
Number of steps per cycle 100, 000

Maximum number of cycles 300

The results of the integration tests are shown in Figure 6.11. The multivariate
normal distribution can be integrated up to 20 dimensions with the target value of
one within the uncertainty provided by AHMI up to 18 dimensions. In contrast, the
Funnel and Cauchy distributions can only be integrated up to 18 and 12 dimensions,
respectively. This is due to the fact that the AHMI algorithm cannot create
appropriate subvolumes for the integration. In these cases, the AHMI algorithm
will report this error and not provide an estimate for the integral. Considering
the colored areas in Figure 6.11, the uncertainty provided by AHMI increases
with the dimensionality. This increase is especially noticeable in the case of the
Cauchy distribution for dimensionalities close to the integration limit at 10 and
12 dimensions. Overall, in most cases where the AHMI algorithm can estimate
the integral value, the result is compatible with the expected value of one when
considering the uncertainty.

The distribution of the KS test 𝑝-values of the test functions between 2 and 20
dimensions are shown in Figure 6.12. As the test is performed for each marginal
distribution, the number of tests, and hence 𝑝-values, increases with the dimension-
ality. It is expected that the 𝑝-values are uniformly distributed between zero and
one. While the values spread throughout the whole range, the distribution tends
to be distributed closer to one. This behavior is mostly likely explained by the
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Figure 6.11: Estimaiton of the integral using AHMI for the normal, Cauchy,
and funnel distributions from 2 to 20 dimensions. The colored areas represent
the uncertainties provided by AHMI.

estimation of the effective sample size slightly underestimating the true value, which
leads to larger 𝑝-values. However, the KS test 𝑝-values are all above the threshold
of 0.05, supporting the conclusion that the MH algorithm is sampling the correct
distribution.

In addition to the MH algorithm, the performance of the HMC algorithm is tested
in higher dimensions in a side-by-side comparison. The KS tests are repeated for
both algorithms using the Funnel distribution and are performed from 20 to 35
dimensions in order to compare the performance in a high dimensional use case.
The results are shown in Figure 6.13. In general, both algorithms have 𝑝-values
above the threshold of 0.05. However, the 𝑝-values of the HMC algorithm have a
larger spread and more closely follow the expected uniform distribution. This is
most likely because the estimation of the effective sample size performs better with
the HMC algorithm, as the autocorrelation time for this algorithm is smaller.

In conclusion, following the consistent performance of the MH algorithm in the two-
dimensional tests as well as the higher-dimensional tests, the algorithm is considered
to be working correctly. In addition, as the HMC algorithm performs similarly to the
MH algorithm, it is also considered to be able to sample distributions accurately.
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Figure 6.12: KS test 𝑝-values for each marginal distribution of the test functions
between 2 and 20 dimensions. The horizontal axis shows the number of dimensions,
split into the three different test functions, while the vertical axis indicates the
𝑝-value.
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Figure 6.13: KS test 𝑝-values for each marginal distribution of the Funnel
distribution between 20 and 35 dimensions. The horizontal axis shows the
number of dimensions split between the MH and HMC algorithms, while the
vertical axis indicates the 𝑝-value.
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7 Monte Carlo tuning using EFTfitter.jl

In this chapter, the use of a Bayesian approach in the Monte Carlo tuning procedure
will be explored. A workflow for tuning Monte Carlo generators in high-energy
physics is developed using the numerical tools described in previous chapters. The
Herwig7 cluster hadronization model and the Pythia8 Lund string model, which
are described in Section 3.3, are tuned to LEP data using the BAT.jl toolkit. First,
a general description of Monte Carlo tuning is given in Section 7.1. The Monte Carlo
event generation is described in Section 7.2, where the parameters, their settings, the
analyses used, and the observables are presented. The parametrization procedure
of the observables is described in Section 7.3 followed by a comparison to the
pseudoinverse method in Section 7.3.1. Then, the goodness of the parametrization is
evaluated in Section 7.4. Multiple tests, such as the reduced 𝜒2 statistics and grid
reevaluations, are performed and presented. The EFTfitter.jl library is described in
Section 7.5 and is used with the BAT.jl toolkit to tune the Monte Carlo generators.
The tuning results are presented in Section 7.6 followed by a discussion of the
influence of the correlation of uncertainties in Section 7.8 and the effects of the
weighting of observables to the tune in Section 7.9. Finally, the results of the tuning
of the Herwig7 cluster hadronization model and the Pythia8 Lund string model
are compared in Section 7.10.

7.1 Monte Carlo tuning

As described in Section 3, Monte Carlo generators are used to simulate particle
collisions. The ability of the Monte Carlo generators to describe data is crucial
for interpreting experimental results. While perturbative QCD can describe the
interaction between partons, the hadronization process is non-perturbative and
cannot be calculated from first principles. Therefore, the hadronization process
is described by phenomenological models, which require sets of free parameters.
These parameters are tuned to data to improve the description of the hadronization
process. This procedure is known as Monte Carlo tuning.

There are several approaches to Monte Carlo tuning, which can be categorized into
three types [2]. The first type is the manual tuning, performed by individually
changing the parameters and comparing the results to data. However, this approach
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requires a lot of expertise and is very time-consuming. Additionally, the complexity
increases dramatically for larger parameter spaces. The second type is the brute force
tuning. Here, the parameter space is scanned directly by generating Monte Carlo
events and comparing them to data. The parameter values are updated when the
proposed parameter set improves the data description. While this approach requires
no additional assumptions and benefits from the automation of the tuning procedure,
its computational cost is very high due to the event generation in each iteration.
The third type is the parametrization-based tuning, which is the state-of-the-art
approach using the Professor framework [2]. A schematic of this tuning procedure is
shown in Figure 7.1. Parametrization-based tuning operates on the premise that the
Monte Carlo generator response can be parametrized as a function of the tunable
parameters. In order to obtain such a parametrization, the Monte Carlo generator
is used to obtain samples for some, usually hundreds, of reference points in the
parameter space. With the obtained data, a function is fitted to each bin of each
observable. The resulting function is computationally cheap to evaluate and is used
to tune the parameters to data.

Parameters p⃗ MC generator Observables O
Analysis Bin-wise interpolation

to parameters f (b,O)(p⃗)

Data Measurements of observables O
Analysis

Fit f (b,O)(p⃗) to data Best estimate p⃗ ∗

Figure 7.1: Schematic overview of parameter-based Monte Carlo generator
tuning.

7.2 Data generation

As mentioned in Section 7.1, samples for some reference points in the parameter space
are needed to obtain a parametrization of the Monte Carlo generator response. The
samples are generated separately for the two different hadronization models using the
Herwig7 Monte Carlo generator. Per default, Herwig7 uses the cluster hadronization
model, referred to as the Herwig7-H7 model in this work. Alternatively, Herwig7
can be used with the Pythia8 Lund string hadronization model using the TheP8I
interface. This model will be referred to as Herwig7-P8 model.

For both models, the tuning is performed using data from 𝑒+𝑒− annihilation, which
has the advantage of avoiding additional ambiguities from the choice of the parton
distribution functions, which is inherent in proton-proton or proton-lepton collisions.
Since the focus of this thesis is the tuning of the hadronization models of the
Monte Carlo event generators, measurements that are sensitive to the hadronic
final state modeling are chosen [109–113]. The Rivet [32, 45] framework provides
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Table 7.1: Rivet codes of the analyses used for tuning with a short description
of the contained observables and their references.

Rivet code Type of observables Reference

ALEPH_1996_S3486095 Event shapes, [109]
particle spectra

ALEPH_2001_S4656318 𝑏 quark [110]
fragmentation functions

DELPHI_1996_S3430090 Event shapes [111]

JADE_OPAL_2000_S4300807 Event shapes, [112]
differential jet rates

PDG_HADRON_MULTIPLICITIES Multiplicities [113]

these measurements, and the corresponding Rivet analysis modules are listed in
Table 7.1. The Rivet modules from ALEPH, DELPHI, JADE and OPAL provide
event shape variables such as sphericity, thrust, aplanarity, etc. which are sensitive
to AlphaQCD . This also applies to the differential jet rate from the analysis
module by JADE and OPAL. Observables related to the multiplicities are obtained
from the Rivet module by the PDG, while ALEPH provides the spectra of particles
and the 𝑏 quark fragmentation functions. Both these observables show sensitivities
to AlphaQCD and fragmentation parameters, which will be discussed in more detail
in Chapter 7.4.5.

In this thesis, the samples are generated using Herwig version 7.2.2 [19] with the
MENLOPS method [114] using the MadGraph5 matrix element generator [43] with
the OpenLoops library [114]. This allows for the generation of 𝑒+𝑒− → (𝑍/𝛾∗) →
2, 3, 4, 5 parton final states with the two-parton final states being generated at
next-to-leading order (NLO) in perturbative QCD. For the usage of the Lund
string hadronization model, the TheP8I interface is used with Pythia 8.306. The
generation is performed at a center-of-mass energy of

√
𝑠 = 91.2 GeV using both

the Herwig7-H7 and Herwig7-P8 hadronization models.

In order to choose the parameter values of the different hadronization models for
each reference point, a parameter space is defined for each model. A lower and upper
bound is defined, and the parameter values are chosen randomly from a uniform
distribution within these bounds.

The parameter space for the Herwig7-H7 model is shown in Table 7.2 together
with the default values of the parameters, which are obtained from the default
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tune settings for the cluster hadronization model provided in the source code of
Herwig7. The ranges for the parameters are chosen to cover a wide range of
physically meaningful parameters while fulfilling the constraints imposed by the
models and Monte Carlo generator code. Hence, the ranges for most parameters are
selected to be symmetric within a ±50% interval around the default value with some
exceptions, which will be discussed in the following. The parameter AlphaQCD
is chosen to be within a smaller range due to hardcoded minimum and maximum
values in the Monte Carlo generator code of 0.1 and roughly 0.142, respectively. In a
similar fashion, the parameters for the gluon constituent mass 𝑚(𝑔) and the strange
quark constituent mass 𝑚(𝑠) are linked in the Monte Carlo generator, leading to
constraints. In order to satisfy these constraints, the condition 𝑚(𝑔) > 𝑚(𝑠)

2 has to
be fulfilled. A lower bound of 𝑚(𝑠) > 𝑚(𝑢, 𝑑) = 0.35 can be inferred as the strange
quark constituent mass is expected to be larger than the constituent mass of the up
and down quarks. Using these constraints, the parameter space for 𝑚(𝑠) is chosen
to be expressed in terms of 𝑚(𝑔) with the lower bound of the fraction being set to
the default ratio of 𝑚(𝑠)

𝑚(𝑔) = 0.47 which imposes a lower bound of 𝑚(𝑔) > 0.74.

Table 7.2: Parameters for the Herwig7-H7 tune, their ranges and default values.
See Table 3.1 for a description of the parameters.

Parameter Range Default

AlphaQCD [0.1000, 0.1417] 0.1181
IRcutoff (GeV) [0.5004, 1.5012] 1.0080

m(g) (GeV) [0.7445, 1.1400] 0.9500
m(s) (GeV) [0.4734, 0.5000]𝑚(𝑔) 0.4500

ClMax (GeV) [1.9334, 5.8000] 3.8667
ClPow [0.8295, 2.4885] 1.6590
ClSmr [0.1719, 0.8593] 0.3437
PSplit [0.3450, 1.0348] 0.6899

The parameter space for the Herwig7-P8 model is shown in Table 7.3 with the
default values for the parameters which are obtained from the Monash tune [3]. The
ranges have been chosen in a similar way to the ranges of the Herwig7-H7 model,
with most ranges being determined by the allowed scope of the Pythia8 framework.
While the parameters aExtraDiQuark and aExtraSQuark have also been varied and
fitted, a lack of sensitivity to these parameters has been observed. Hence, they have
been fixed to their default values for the tuning.

In total, 500 randomly chosen parameter sets are selected for the Herwig7-H7 model
and 700 for the Herwig7-P8 model. The additional samples for the Pythia8 model

56



7.3 Parametrization of observables

have been generated as a resampling due to the setting of the shower cutoff variable
was necessary. The samples have been generated for each parameter set with 106

events.

Table 7.3: Parameters for the Herwig7-P8 tune, their ranges and default values.
The parameters marked as fixed are set to their default values for the tuning
process. See Table 3.2 for a description of the parameters.

Parameter Range Fixed Default

AlphaQCD [0.1000, 0.1417] x 0.1181
IRcutoff (GeV) [0.2002, 1.8014] x 1.0080
SigmaPT (GeV) [0.000, 1.000] x 0.335

aLund [0.20, 2.00] x 0.68
bLund (GeV−2) [0.00, 2.00] x 0.98
aExtraDiQuark [0.00, 2.00] ✓ 0.97
aExtraSQuark [0.00, 2.00] ✓ 0.00

YODA parsing

Using the settings from the previous section, samples can be generated for each
reference point. The Rivet analysis modules are used to calculate the observables
for each sample, and the results are stored in so-called YODA files1. These files
contain the relevant information for each observable, such as the binning, the bin
centers, the bin widths, the bin contents, and the bin errors in a standardized
text format. In order to use the data from the YODA files, a parser has been
implemented in the Julia programming language in the scope of this thesis, which
is called YodaFiles.jl2. The YodaFiles.jl package reads the YODA files and stores
the information in histograms provided by the StatsBase.jl3 package, allowing these
files to be used seamlessly in this framework.

7.3 Parametrization of observables

Using the samples generated with the parameters defined in the previous section, the
parametrization of the observables can be performed. This parametrization is one of
the crucial steps as it serves both as an interpolation of the Monte Carlo generator

1https://gitlab.com/hepcedar/yoda/
2https://github.com/salvolc/YodaFiles.jl
3https://github.com/JuliaStats/StatsBase.jl
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response in the parameter space as well as a computationally cheaper alternative
to the Monte Carlo generator. There are different approaches to solving such a
parametrization problem. In this case, it is assumed that the change within a bin of
an observable is a smooth function of the parameters. Hence, the parametrization
is performed for each bin of each observable independently.

In this thesis, a multidimensional cubic polynomial is used to parametrize the
observables:

𝑓𝑐𝑢𝑏𝑖𝑐
𝑏 (𝜆⃗) = 𝛼(𝑏)

0 + ∑
𝑖

𝛽(𝑏)
𝑖 𝜆𝑖 + ∑

𝑖
∑
𝑗≤𝑖

𝛾(𝑏)
𝑖𝑗 𝜆𝑖𝜆𝑗 + ∑

𝑖
∑
𝑗≤𝑖

∑
𝑘≤𝑗

𝛿(𝑏)
𝑖𝑗𝑘𝜆𝑖𝜆𝑗𝜆𝑘 (7.1)

Here, 𝛼(𝑏)
0 , 𝛽(𝑏)

𝑖 , 𝛾(𝑏)
𝑖𝑗 and 𝛿(𝑏)

𝑖𝑗𝑘 are the coefficients of the polynomial for the bin 𝑏
of the observable with the parameters 𝜆⃗. The total number of coefficients for a
polynomial of order 𝑛 in 𝑑 dimensions is given by

𝑁 (𝑛)
𝑑 = 1 +

𝑛
∑
𝑖=1

1
𝑖!

𝑖−1
∏
𝑗=0

(𝑑 + 𝑗) . (7.2)

In order to determine the best values for the coefficients, the Julia package LsqFit.jl4
is used. This package provides a least squares fitting routine that minimizes the 𝜒2

of the fit using the Marquardt–Levenberg algorithm [115, 116].

In addition to an estimate of the coefficients, the fitting routine also provides an
estimate of the covariance matrix of the coefficients, which is used to estimate the
uncertainty of the parametrization. The evaluation of the polynomial given the
coefficients can be expressed as a linear equation system in the form of:

𝑓𝑐𝑢𝑏𝑖𝑐
𝑏 (𝜆⃗) = ⃗𝑐 𝑇 𝜆⃗ =
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⎠

(7.3)

4https://github.com/JuliaNLSolvers/LsqFit.jl
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Then, given the covariance matrix of the coefficients 𝛴, the uncertainty of the
parametrization can be estimated by:

𝜎2
𝑓𝑐𝑢𝑏𝑖𝑐

𝑏
(𝜆⃗) = 𝜆⃗𝑇𝛴 𝜆⃗ =
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(7.4)

7.3.1 Comparison to Professors pseudoinverse method

An alternative approach to the parametrization using least squares is the pseudoin-
verse method, which has been implemented in the Professor package [2]. Using the
notation of Equation 7.3, the fit problem for any individual bin can be written as:
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Here, ⃗𝑦 contains the bin contents for each MC sample while ⃗𝑐 contains the coefficients
of the polynomial. The matrix 𝛬 is constructed using the parameter sets 𝜆⃗𝑖 of the
corresponding MC sample and, as such, contains as many rows as there are MC
samples which is equal to the dimensionality of ⃗𝑦. The first numerical subscript
of 𝛬 denotes the parameter index, while the second numerical subscript denotes
the MC sample index. Given the degree of the polynomial 𝑛 and the number of
parameters 𝑑, the number of coefficients 𝑁 is given by Equation (7.2). Hence, the
matrix 𝛬 has the dimensions 𝑁 × 𝑁MC. Using the equation above, the coefficients
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can be obtained by solving the linear equation system:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝛼0
𝛽0
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= 𝛬−1 ⃗𝑦 (7.5)

One way to solve this equation is to generate an equal number 𝑁 of MC samples as
there are coefficients and solve the equation using the inverse of the square 𝑁 × 𝑁
matrix 𝛬. While this approach is straightforward and produces an ”exact” solution,
it fails to reproduce the complexity of the Monte Carlo generator response, as
additional samples would show deviations from this parametrization. Consequently,
it is beneficial to use a larger number of MC samples and calculate coefficients that
best describe the MC sample points in a least-squares sense. This can be achieved
by using the pseudoinverse of the matrix 𝛬 [117].

In order to compare the parametrization results of the least-squares method to the
pseudoinverse method, both methods have been applied to the same set of MC
samples. The resulting coefficients are then compared, calculating the norm of the
relative difference of the coefficients:

𝛥𝑐𝑖 =
∣ ⃗𝑐𝑖

(lsq) − ⃗𝑐𝑖
(prof)∣

1
2 ∣ ⃗𝑐𝑖

(lsq) + ⃗𝑐𝑖
(prof)∣

. (7.6)

Here, ⃗𝑐𝑖
(lsq) and ⃗𝑐𝑖

(prof) are the coefficients of the least-squares and the pseudoinverse
method respectively for the 𝑖-th bin. As an example, this difference is calculated
for each observable for the Herwig7-H7 model. On average, the distance between
the coefficients is 1.5 ⋅ 10−5 with the highest difference being 1.1 ⋅ 10−4. In order
to translate the difference in the coefficients to a difference in the parametrization
function, the parametrization is evaluated using the coefficients of both methods
and the default parameter values. For the observable with the highest difference in
the coefficients, the relative difference in the parametrization function is calculated
to be 0.0049, which is negligible compared to the statistical uncertainty of the MC
samples of around 3 to 4%.

In general, it can be concluded that both methods produce equivalent parametriza-
tion of the Monte Carlo generator response. However, for this thesis, the least-squares
method is preferred over the pseudoinverse method as it allows for a more flexible
choice of the parametrization function for future applications as well as a direct
estimation of the uncertainty of the parametrization.
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7.4 Evaluating the parametrization

In order to evaluate the goodness of the parametrization described in the previous
sections, several tests are performed. During the parametrization, the 𝜒2

red of the fit
is calculated for each parametrized bin. In addition, the pulls of the MC-generated
points to the parametrization function are calculated. These two metrics can be
used to determine bins that are difficult to parametrize. For the purpose of further
evaluation, additional Monte Carlo samples were generated following a grid pattern
in the parameter space. These samples are used to evaluate the parametrization for
bins that suggest a poor performance following the other metrics while providing a
visual representation of the parametrization function. Next, the parametrization is
compared to the MC response and the data using the range of the parameter space.
Lastly, the sensitivity of the parametrization to the parameters is evaluated using
the autodiff functionality of the Julia programming language.

7.4.1 The reduced 𝜒2 statistics

One of the metrics used to evaluate the goodness of the parametrization is the
reduced 𝜒2 statistics. It is calculated for each fitted bin using

𝜒2
red = 1

𝑁MC − 𝑁coeff

𝑁MC

∑
𝑖=1

(𝑦𝑖 − 𝑓𝑖)2

𝜎2
𝑖

(7.7)

where 𝑁MC is the number of MC samples, 𝑁coeff is the number of coefficients of
the polynomial. The sum runs over all MC samples 𝑖, where 𝑦𝑖 is the bin value of
the bin, 𝑓𝑖 is the value of the parametrization function for that bin, and 𝜎𝑖 is the
uncertainty of the corresponding MC sample 𝑖. It is expected for the 𝜒2

red statistics
to be close to one for a good parametrization.

The distribution of the 𝜒2
red values for the Herwig7-H7 model is shown in Figure 7.2.

It shows a peak at 𝜒2
red ≈ 1 with a tail towards higher values. While this behavior

suggests an acceptable parametrization for a large number of bins, the tail towards
higher values indicates that there are bins that are difficult to parametrize. In order
to further identify these bins and benchmark their performance, further metrics are
applied in the following.

7.4.2 The pull distribution of the parametrization

In addition to the 𝜒2
red statistics, the pulls of the MC-generated points to the

parametrization function are analyzed. The pulls are calculated for each MC sample
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Figure 7.2: Distribution of the 𝜒2
red values between the parametrization and

the MC samples of the Herwig7-H7 model. Each fitted bin contributes one value
to the histogram.

in each parameterized bin using

p = 𝑓(𝜆) − 𝑦MC
𝜎𝑟

(7.8)

where 𝑓(𝜆) is the parametrization function for the bin, 𝑦MC is the bin value of
the MC sample. 𝜎𝑟 is the expected uncertainty of the residual which is calculated
using

𝜎𝑟 = √𝜎2
MC − 𝜎2

fit (7.9)

with the uncertainty of the MC prediction 𝜎MC and the uncertainty of the fit model
𝜎fit. It should be noted that the uncertainty of the fit model can be larger than
the uncertainty of the MC prediction, resulting in a negative value for 𝜎2

𝑟 . This
can be caused by multiple effects, such as the fit model not being able to fully
describe the shape of the MC prediction and the uncertainties of the MC prediction
being underestimated. For these cases, the pulls are discarded, however, these
bins are considered for further evaluation as they might indicate areas that are
difficult to parameterize. The distributions of the resulting pulls for the Herwig7-H7
and Herwig7-P8 models are shown in Figure 7.3. In general, the shape of the
distribution follows a normal distribution, however, the width of the distribution is
larger than expected. In an ideal case, the distribution would be centered around
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Figure 7.3: Distribution of the pulls between the parametrization and the MC
samples of the Herwig7-H7 model on the left and for the Herwig7-P8 model on
the right. Each fitted bin contributes one value to the histogram.

zero with a width of one. In order to determine the mean and standard deviation of
the distribution, a Gaussian fit is performed. The fit is represented in Figure 7.3 by
the orange line. The Herwig7-H7 model shows a mean of −0.008 and a standard
deviation of 1.662 while the Herwig7-P8 model shows a mean of −0.01 and a
standard deviation of 1.696. While both models show a mean close to zero, the
standard deviation is larger in both cases. This indicates that the fitted models do
not give a perfect description of the MC samples which leads to deviations that are
larger than expected from statistical fluctuations.

7.4.3 Grid reevaluations

Since the parametrizations of the Herwig7-H7 and Herwig7-P8 models are based
on a random sample of points in the parameter space, which is 8 and 5 dimensional,
respectively, it is challenging to visualize the parametrization function. In order to
obtain a visual representation of the parametrization function, additional samples are
generated following a grid pattern in the parameter space. Hence, only one parameter
is varied at a time in eleven equidistant steps while the other parameters are fixed
to their default values according to Tables 7.2 and 7.3. The resulting samples are
then used to evaluate the parametrization function for each bin. As an example, the
first bin of the sphericity variable from the DELPHI_1996_S3430090 analysis module
is shown in Figure 7.4. The black markers indicate the MC samples and their
statistical uncertainties, while the red line represents the parametrization function.
The red band represents the uncertainty of the parametrization function, which is
propagated from the uncertainty of the fitted coefficients following Equation 7.4.
The blue band represents the range of values of the fitted model obtained by shifting
the default values of the parameters by ±5%. This is done to account for an
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unfavorable choice of the default values of the parameters, which might lead to
systematic deviations between the parametrization function and the MC samples.
Generally, the parametrization function is able to describe the MC samples within
the described uncertainties.

Figure 7.4: The content of the first bin of the sphericity distribution from
the Rivet module DELPHI_1996_S3430090 as a function of AlphaQCD, ClSmr,
ClMax and ClPow with parameter sets from the grid samples. The parametrized
model is shown in red in comparison to the MC grid sample predictions. The red
band represents the uncertainty on the fitted model obtained by propagating the
uncertainty of the fitted coefficients. The blue band represents variations caused
by shifting the default values for the evaluation of the parametrized model by
±5%.

The grid samples are also used to evaluate the goodness of the fit by calculating
the 𝑝-values of the 𝜒2 statistics for each fitted bin. These 𝑝-values are shown in
Figure 7.5 for the Herwig7-H7 and Herwig7-P8 models. In both cases, the 𝑝-values
are distributed mostly towards lower values, with most bins showing 𝑝-values below
0.25 and about 30% of the bins resulting in 𝑝-values below 0.05. It should be noted
that the 𝜒2 test is performed without taking into account systematic biases due
to the choice of the default values of the parameters. Furthermore, the number of
degrees of freedom can only be approximated due to the number of free parameters
being dependent on the correlation of the parameters. For these tests, the number
of degrees of freedom is estimated by 𝑁MC − 4 as the projection of the polynomial
into one dimension should result in four degrees of freedom for the model. However,
as the fit is performed in multiple dimensions using a different set of MC samples,
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Figure 7.5: The 𝑝-values obtained from performing 𝜒2 test between the predic-
tion of the parameterized model and the MC test samples, which were generated
in a grid. The left plot shows the 𝑝-values for the Herwig7-H7 model, while the
right plot shows the 𝑝-values for the Herwig7-P8 model. The test is performed
independently for each bin of each observable and for each parameter of the
model.

the number of degrees of freedom can vary. Nonetheless, bins with 𝑝-values below
0.05 are considered to be more difficult to parametrize and are hence considered for
further evaluation.

In addition to 𝜒2 test and visualization purposes, the grid samples are used to
evaluate the goodness of fit by calculating the pulls of the MC samples to the
parametrization function in a similar fashion to the pulls described in Section 7.4.2.
However, as the uncertainty of the grid samples is uncorrelated to the uncertainty
of the parametrization function, as they were not used in the fitting process, the
equation for the pulls is modified to:

p = 𝑓(𝜆) − 𝑦MC

√𝜎2
MC + 𝜎2

fit

. (7.10)

The distribution of the pulls for the Herwig7-H7 and Herwig7-P8 models are
shown in Figure 7.6. Both distributions closely follow a normal distribution with
means of −0.003 and −0.006 and standard deviations of 1.182 and 1.254 for the
Herwig7-H7 and Herwig7-P8 models, respectively. Similar to the pulls of the MC
samples used for the fitting, the standard deviations are larger than one, indicating
a larger deviation of the model than expected from statistical fluctuations. However,
the distribution is closer to a unit normal distribution, indicating an overall good
performance of the parametrization function.
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Figure 7.6: Distribution of the pulls between the parametrization and the MC
grid samples of the Herwig7-H7 model on the left and for the Herwig7-P8 model
on the right. Each fitted bin contributes one value to the histogram.

Combination of goodness of fit metrics

As described in the previous sections, various metrics are used to evaluate the
goodness of the fit. The 𝜒2

red statistics and the pulls of the MC samples to the
parametrization function are calculated during the fit. In addition, grid samples
that are not used for the fit are used for 𝜒2 tests and calculating pulls. These
tests vary in their sensitivity to different aspects of the fit, however, as a general
statement, it can be said that a large amount of the bins show a good performance
of the parametrization function while a significant amount of bins show a poor
performance in at least one of the metrics.
In order to further quantify the performance of bins that show a poor performance
in at least one of the metrics, these bins were collected and visualized using the
grid samples similar to Figure 7.4. This allows for a visual inspection of the
parametrization function on difficult-to-model bins. The check reveals that some of
the bins are systematically under or overestimated by the parametrization model,
while the shape of the fitted function represents the MC samples well. For a minority
of bins, the parametrization function is not able to fully describe the shape of the
MC samples. However, in all of these instances, the deviations are well within the
ranges covered by the variation of the default values of the parameters. As such, the
parametrization model is considered to describe the Monte Carlo generator response
reasonably well for the purpose of this thesis. However, it should be noted that
while the focus of this thesis is on the tuning process itself, a high-precision tune
should address the parametrization in more detail and consider different options
and techniques to improve the parametrization.
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7.4.4 Further parametrization checks

While the tests described in the previous sections test the parametrization model
against the MC samples, it is also important to test the parametrization model
against the data. Hence, the ranges provided by the parametrization functions are
compared to the data and the MC samples using the full range of the parameter space.
This test allows to check if the parametrization is flexible enough to describe the
data points given the bounds of the parameter space. For each bin of each observable
𝑏, the maximum and minimum values of the corresponding parametrization function
𝑓𝑏 are calculated using

max(𝑓𝑏) = max𝜆⃗𝑖
(𝑓𝑏(𝜆⃗𝑖)) and min(𝑓𝑏) = min𝜆⃗𝑖

(𝑓𝑏(𝜆⃗𝑖)) (7.11)

where 𝜆⃗𝑖 are the parameter sets of each MC sample 𝑖. The ranges for the MC
prediction are simply obtained by the minimum and maximum values reached by
the MC samples for each bin. Since the goal of MC tuning is to obtain a parameter
set that describes the data as well as possible, the data points should be contained
within the ranges of the parametrization function. In addition, the overlap of

Figure 7.7: Distribution of the sphericity variable from DELPHI [111]. The red
and blue bands represent the minimum and maximum ranges of the MC samples
and the parametrization, respectively. The black data points include statistical
and systematic uncertainties provided by DELPHI using the Rivet framework.

the ranges of the MC samples with the ranges of the parametrization function can
be used as an indicator of the quality of the parametrization. As an example, the
distribution of the sphericity variable is shown in Figure 7.7 for the Herwig7-H7
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model. The red and blue bands represent the ranges of the MC samples and of
the parametrization, respectively. Notably, these areas largely overlap, suggesting
that the fitted model and the MC samples cover a similar range of values for the
observable within the parameter space. In addition, it is shown that the data points
are contained within the ranges of the parametrization function. This indicates that
the parametrization function is sufficiently flexible to account for the data points,
at least within individual bins, based on the confines of the parameter space.

7.4.5 Parameter sensitivity to observables

In addition to the goodness of the fit, the sensitivity of the parametrization to the
parameters is evaluated. This is done by calculating the partial derivatives of the
parametrization function with respect to the parameters. The partial derivatives are
calculated using the autodiff functionality of the Julia programming language with
the ForwardDiff.jl package [76]. This method is compared to the partial derivatives
calculated using the finite differences with the available MC samples on the grid.
These derivatives are used to create a sensitivity score according to Ref. [111] using

𝑆𝑏
𝑖 = 𝛿𝑀𝐶𝑏( ⃗𝑝)

𝑀𝐶𝑏( ⃗𝑝)
∣
𝑝𝑖

(𝛿𝑝𝑖
𝑝𝑖

)
−1

≈ ∂𝑀𝐶𝑏(𝑝)
∂| ln (𝑝𝑖)|

∣
𝑝𝑖

. (7.12)

Here, 𝑀𝐶𝑏 is the parametrization or MC sample value for the bin 𝑏, and 𝑝𝑖 is the
parameter value. As an example, the sensitivity scores of the sphericity variable are
shown in Figure 7.8 for the Herwig7-H7 model. The top plot shows the sensitivity
calculated using the parametrization function with automatic differentiation, while
the bottom plot shows the sensitivity calculated using the MC samples generated
on a grid with finite differences. In both cases, the sensitivity follows a similar
pattern. However, due to the continuous nature of the parametrization function,
the sensitivity is smoother compared to the one using the MC samples. Overall, the
sensitivity is largest for the AlphaQCD parameter followed by the constituent mass
parameters. The parameters related to the cluster hadronization as well as IRCutoff
and PSplit show a smaller sensitivity. To better quantify the sensitivities of the
parameters, the score is averaged over all bins of each observable. The full results
are shown in Tables A.4-A.9 in Appendix A. Most observables show sensitivities of
the parameters that are in agreement with the discussion in Section 7.2. Overall,
it is observed that the sensitivity of the parameters is largest for the AlphaQCD
parameter followed by the constituent mass parameters. While other parameters
show a smaller sensitivity score overall, they can still show a large sensitivity
for specific observables, such as the Clmax parameter for certain multiplicity and
particle spectra observables. In addition, it can be seen that the sensitivity of the
parameters aExS and aExDi is very small for most observables for the Herwig7-P8
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Figure 7.8: Sensitivity of the parameters for the Herwig7-H7 model with respect
to the sphericity observable. The top plot is calculated using the parametrization,
while the bottom plot uses the MC samples generated on a grid.

model. This effect was also observed in tunes of preliminary studies, which led
to the decision to fix these parameters to their default values. In summary, all
of the parameters exhibit sensitivity to at least a few different observables. This
suggests that the choice of observables for the given set of parameters is reasonable
for performing a tune.

7.5 The EFTfitter.jl library

Using the parametrization of the Monte Carlo generator response described in the
previous sections together with the data, the statistical model used for the tuning is
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constructed. For this purpose, the EFTfitter.jl framework is used [15]. This software
package is written in the Julia programming language and serves as a framework
for constructing statistical models in a Bayesian context. It is designed for tasks
like fitting effective field theory models and combining measurements, however,
the likelihood function is generally applicable to all cases where the underlying
uncertainties are described by a normal distribution. Thus, it is used in this thesis
to construct the statistical model for the tuning of the MC generator parameters.
The likelihood function is a multivariate Gaussian in the form of:

ln 𝐿(𝐷⃗|𝜆⃗) = −1
2

[𝐷⃗ − ⃗𝑓(𝜆⃗)]𝑇 ⋅ 𝑀−1 ⋅ [𝐷⃗ − ⃗𝑓(𝜆⃗)] . (7.13)

The vector 𝐷⃗ contains the data points ordered by the bins of the observables while
⃗𝑓(𝜆⃗) contains the parametrization functions for each bin ordered corresponding to

the data vector evaluated at the parameter set 𝜆⃗. The matrix 𝑀 is the covariance
matrix of the data points, which is constructed using the statistical and systematic
uncertainties of the data points provided by the Rivet framework. In order to
construct the covariance matrix 𝑀, the correlation between the data points is
needed. Since these values are not provided by the Rivet framework, the correlation
is assumed to be zero. However, studies on the impact of the correlation on the tuning
results were performed and are described in Section 7.8. Using the parametrization
functions, the data, and the covariance matrix, the EFTfitter framework creates the
likelihood function, which can be interfaced with the BAT.jl framework, where the
posterior can be generated by adding a prior for the parameters.

7.6 MC tuning results using EFTfitter

Using the EFTfitter framework described in the previous section, the tuning of the
Herwig7-H7 and Herwig7-P8 models is performed. The prior distribution of the
parameters is chosen to be a uniform distribution within the range of the parameter
space defined in Tables 7.2 and 7.3. However, in the case of the Herwig7-H7 model,
the parameters 𝑚(𝑔) and 𝑚(𝑠) are dependent on each other with the condition
𝑚(𝑔) > 𝑚(𝑠)

2 . Hence, without any additional constraints, this could result in
sample values that lead to an invalid parameter set. In order to avoid this, the
BAT.jl framework allows for the usage of so-called hierarchical priors that guide the
sampling process by defining priors as a function of the other parameters. In this
case, the prior for 𝑚(𝑠) is defined to be a uniform distribution with a lower limit
of 0.28, which results from the lowest possible value of 𝑚(𝑔) and an upper limit
of 𝑚(𝑔)

2 . Using these priors and the likelihood function, the posterior distribution
of the parameters is sampled using the BAT.jl framework. For both models, the
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sampling is performed using the Metropolis-Hastings algorithm by running six chains
with 106 steps. It should be noted that the distance 𝑅 for the convergence of the
Brooks-Gelman test is loosened to 1.3 from its default value of 1.1 to account for
the larger number of chains. All other parameters for the sampling are set to their
default values.

As a result, the global mode of the posterior distribution is used as the tuned
parameter set. Furthermore, the marginal mode, as well as the 68% intervals of the
one-dimensional marginalized posterior distributions, are shown as the individual
parameter estimates. For the purpose of evaluating the goodness of the tune,
an additional sample is created using the tuned parameter set. Then, for each
observable, the 𝑝 value of the 𝜒2 test between the data and the MC sample is
calculated. This procedure is repeated for the so-called nominal MC sample, which
uses the default parameter set of the model. The resulting 𝑝 values can then be
compared with higher values, indicating a better description of the data.

7.6.1 Tuning results for the Herwig7-H7 model

The global mode, as well as the marginalized mode and the 68% intervals of the
posterior distribution for the tuning of the Herwig7-H7 model, are shown in Table 7.4.
For most parameters, the global mode is within the 68% interval of the marginalized
posterior distribution. The largest deviation is observed for the parameter Clmax
where the global mode is outside of the 68% interval but within the 95% interval.
This effect can be explained by the correlation of the parameters, as can be seen in
the plot of the posterior distribution in the following. When comparing the default
values of the parameters to the intervals of the tuned parameters, it can be seen
that these values are in agreement with each other, considering the uncertainties for
all parameters except Clsmr . This parameter has a default value of 0.3437, which
is within the 95% interval of the tuned parameter.

The posterior distribution for the tuning of the Herwig7-H7 model is shown in
Figure 7.11. The marginalized posterior distributions of the parameters are shown
in the diagonal of the plot, while the two-dimensional posterior distributions are
shown in the off-diagonal. The green, yellow, and red areas contain the smallest
68, 95, and 99% intervals of the marginalized probability distributions, respectively.
At first glance, it is apparent that none of the one-dimensional distributions of
the parameters follow a normal distribution. The distributions of the parameters
AlphaQCD , IRCutoff , and PSplit have a slight asymmetry, while the parameters
Clmax and Clsmr show a more pronounced asymmetry in their distributions. The
asymmetry is even more pronounced in the distributions of the constituent masses
𝑚(𝑔) and 𝑚(𝑠) that are mostly one-sided, with a sharp increase at lower values
and a slow drop-off towards higher values. Most parameter distributions display
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Table 7.4: Tuning results for the Herwig7-H7 model. Values of the global and
marginalized mode of the posterior samples, along with the smallest intervals
containing 68% of the probability, are presented.

Parameter Global Marginal Smallest
mode mode 68% interval

AlphaQCD 0.115 0.115 [0.112, 0.118]
IRCutoff (GeV) 0.879 0.755 [0.580, 1.020]

𝑚(𝑔) (GeV) 0.709 0.738 [0.700, 0.955]
𝑚(𝑠) (GeV) 0.353 0.375 [0.346, 0.470]

ClMax (GeV) 2.591 4.025 [3.200, 4.750]
ClPow 0.823 0.910 [0.740, 1.260], [1.540, 2.260]
ClSmr 0.675 0.725 [0.480, 0.885]
PSplit 0.868 0.728 [0.615, 0.865]

a single peak with the exception of Clpow , which shows a multimodal behavior.
The first peak of the distribution corresponds with the global mode of the posterior,
while the second peak is located closer to the default parameter set. The two-
dimensional distributions show a weak correlation between most parameters. The
most notable exceptions are the parameters 𝑚(𝑔) and 𝑚(𝑠) , which show a very
strong correlation, and the distribution between Clmax and Clpow , which has a
highly non-gaussian shape with a strong correlation. This correlation, together with
the multimodal Clpow distribution, can explain the deviation of the global mode of
the parameter Clmax from the 68% interval of its marginalized posterior distribution.
As the first peak of Clpow distribution corresponds to the global mode, it shifts
the global mode of Clmax towards lower values, resulting in the observed deviation.
The full correlation matrix of the parameters can be found in Figure A.1 in the
Appendix A. Using the parameter set defined by the global mode of the posterior
distribution, an additional MC sample is generated in order to compare the tuned
model to the nominal model.

The resulting 𝑝-values of the 𝜒2 test between the data and the MC samples are
shown in Figure 7.9. It should be noted that the 𝑝-values are generally lower than
expected from a good description of the data. This could be caused by multiple
effects, such as an underestimation of the uncertainties of the MC prediction or
missing parameters of the model, which require tuning. However, since the 𝑝-values
are used to compare two different models, the absolute value is less crucial than the
difference between the 𝑝-values of the nominal and tuned model. In this case, the
𝑝-values of the tuned model are generally higher than the 𝑝-values of the nominal
model, increasing from an average of 0.095 to an average value of 0.133. Since
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Figure 7.9: Histogram of the 𝑝-values for the 𝜒2 test between data and MC
predictions for each observable using the nominal and tuned parameter sets
with the Herwig7-H7 model. The bottom histogram shows the 𝑝-values in a
logarithmic scale for 𝑝 > 10−4.

the scale of the 𝑝-values is generally low, it is useful to compare the 𝑝-values on a
logarithmic scale which is shown on the bottom of Figure 7.9. For better visualization
𝑝-values below 10−4 are cut from these distributions. Using the logarithmic plot,
the improvement of the 𝑝-values can be seen more clearly, together with a reduction
of the number of observables with 𝑝-values below 10−4 for the tuned MC sample.

To illustrate the effect of the tuning process, the distributions of two observables
are shown in Figure 7.10 as an example. The left plot shows the distribution of the
sphericity variable while the right plot shows the distribution of the 𝐵+

𝑢 multiplicity
for both the tuned and nominal MC samples, including the data points. The
uncertainty band for the nominal MC sample contains the statistical uncertainty
while the uncertainty band for the tuned MC sample contains both the statistical
uncertainties as well as a so-called tuning uncertainty. This tuning uncertainty is
calculated by propagating the posterior distribution of the parameters through the
parametrization model and is further explored in Section 7.7. These two sources
are added in quadrature to obtain the total uncertainty of the tuned MC sample.
Hence, the uncertainty bands of the tuned MC sample are generally larger than
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Figure 7.10: Distribution of the sphericity from DELPHI [111] on the left and
the 𝐵+

𝑢 multiplicity [113] on the right. The black data points include statistical
and systematic uncertainties provided by the Rivet framework. The uncertainty
band for the nominal MC sample contains the statistical uncertainty while
the uncertainty band for the tuned MC sample contains both the statistical
uncertainties as well as a so-called tuning uncertainty. The bottom panels show
the ratio of the data points to the MC samples. The samples were generated
using the Herwig7-H7 model.

the ones of the nominal MC sample. Overall, it is observed that the tuned MC
sample is able to describe the data points equally or better than the nominal MC
sample. This is a trend in the majority of the other observables, as can be inferred
by the distribution of the 𝑝-values. It should also be noted that the fluctuations of
the tuned MC sample seem to be described more accurately by the added tuning
uncertainty, as most data points are contained within the uncertainty band of the
tuned MC sample.
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Figure 7.11: The one and two-dimensional marginalized posterior distributions
of the parameters for the tune of the Herwig7-H7 model. The one-dimensional
marginals are shown in the diagonal plots, while the two-dimensional marginals
are shown in the lower triangle plots. The green, yellow, and red areas contain the
smallest 68, 95, and 99% intervals of the marginalized probability distributions,
respectively. The heat maps of the two-dimensional marginals are shown in the
upper triangle plots. The dashed lines and dots represent the position of the
global mode, which is the point with the highest probability.
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7.6.2 Tuning results for the Herwig7-P8 model
The tuning of the Herwig7-P8 model is performed in a similar fashion to the
Herwig7-H7 model. The values for the global mode, the marginal modes, and the
68% intervals of the posterior distribution are listed in Table 7.5.

Table 7.5: Tuning results for the Herwig7-P8 model. Values of the global and
marginalized mode of the posterior samples, along with the smallest intervals
containing 68% of the probability, are presented. The fixed values are set to their
default values for the tuning process.

Parameter Global Marginal Smallest Fixed
mode mode 68% interval

AlphaQCD 0.120 0.120 [0.117, 0.122] x
IRCutOff (GeV) 1.079 1.079 [0.730, 1.390] x
SigmaPT (GeV) 0.303 0.311 [0.284, 0.336] x

aLund 1.287 1.435 [0.950, 1.760] x
bLund (GeV−2) 1.302 1.325 [0.940, 1.720] x
aExtraDiquark 0.970 0.970 - ✓
aExtraSQuark 0.0 0.0 - ✓

For the AlphaQCD, IRCutoff, StringPT, and bLund parameters the default values
are within the 68% interval of the posterior distribution. The only exception is the
parameter aLund , which has a significantly lower default value of 0.68 compared
to the marginal mode value of 1.435. However, the default value is still within the
95% interval of the posterior distribution.

The distributions of the one and two-dimensional marginalized posterior of the tuned
parameters of the Herwig7-P8 model are shown in Figure 7.12. Similar to the results
of the Herwig7-H7 model, the parameters are not distributed according to normal
distributions. However, in contrast to the Herwig7-H7 model, the distributions
show an overall unimodal behaviour. The parameters AlphaQCD, IRCutoff and
StringPT seem to be well constrained by the data as the distributions are sufficiently
narrow to be contained within the prior boundaries. Also, the correlation between
these parameters is relatively weak, with only the parameters AlphaQCD and
StringPT showing a medium correlation. By comparison, the parameters aLund
and bLund are strongly correlated with each other. This is expected, as the two
parameters both influence the probability distribution of the momentum transfer,
see Equation 3.5 in Section 3.3.2, in a similar fashion. Furthermore, compared
to the other parameters, aLund and bLund are constrained rather weakly as
their distribution has a larger width, which results in a cut-off of the probability
distribution at the prior boundary towards higher values.
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Figure 7.12: The one and two-dimensional marginalized posterior distributions
of the parameters for the tune of the Herwig7-P8 model. The green, yellow,
and red areas contain the smallest 68, 95, and 99% intervals of the marginalized
probability distributions, respectively. The dashed lines and dots represent the
position of the global mode, which is the point with the highest probability.
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While it is possible to increase the prior ranges to avoid such a cut-off, the points
outside of the prior range would result in invalid parameter sets for the Herwig7-P8
model. The full correlation matrix of the parameters can be found in Figure A.2 in
the Appendix A.

Figure 7.13: Histogram of the 𝑝-values for the 𝜒2 test between data and the
MC predictions for each observable using the nominal and tuned parameter sets
with the Herwig7-P8 model. The bottom histogram shows the 𝑝-values in a
logarithmic scale for 𝑝 > 10−4.

Using the parameter set defined by the global mode of the posterior distribution,
an additional MC sample is generated in order to compare the tuned model to the
nominal model analogously to the evaluation of the tune of the Herwig7-H7 model.
The 𝑝-values of the comparison between the data and the MC samples are shown
in Figure 7.13. Again, an increase in the average 𝑝-value from 0.096 to 0.143 is
observed together with a lower number of observables with 𝑝-values below 10−4 for
the tuned MC sample. Both these observations indicate an improvement in the
description of the data by the tuned MC sample.

The distributions of the sphericity and the 𝐵+
𝑢 multiplicity are shown in Figure 7.14

as an example of the effect of the tune. The uncertainties are treated in the same
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way as for the Herwig7-H7 model with the tuning uncertainty being added for the
tuned MC sample. In this case, while the tuned MC sample shows an increased
agreement with the data points for the sphericity observable, the agreement for
the 𝐵+

𝑢 multiplicity is unchanged. However, overall, the agreement of the tuned
MC sample with the data points is improved as seen by the increase of the average
𝑝-value.

Figure 7.14: Distribution of the sphericity from DELPHI [111] on the left and
the 𝐵+

𝑢 multiplicity [113] on the right. The black data points include statistical
and systematic uncertainties provided by the Rivet framework. The uncertainty
band for the nominal MC sample contains the statistical uncertainty while
the uncertainty band for the tuned MC sample contains both the statistical
uncertainties as well as a so-called tuning uncertainty. The bottom panels show
the ratio of the data points to the MC samples. The samples were generated
using the Herwig7-P8 model.

7.7 Uncertainty propagation

A major advantage of the Bayesian approach in conjunction with a fast parametriza-
tion is the ability to propagate the uncertainty from the parameter space to the
observable domain. This uncertainty estimate is reflective of the uncertainty of the
tuning procedure due to the limited knowledge of the parameters. To calculate this
estimate, 106 samples of parameters ⃗𝑝 are generated by resampling the posterior
distribution. Using the parametrization function, the corresponding observable
values ⃗𝑦𝑏,𝑂 are calculated for each sample:

⃗𝑦𝑏,𝑂 = 𝑓𝑏,𝑂( ⃗𝑝) . (7.14)
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The resulting values ⃗𝑦𝑏,𝑂 represent the statistical distribution for the value of the
bin content of that bin 𝑏 of the observable 𝑂 caused by the statistical uncertainty
of the parameters from the tuning process. As such, the spread of the distribution
reflects the uncertainty of the tuning process.

Figure 7.15: Distribution of the bin content of the first bin of the sphericity
observable on the top and the 𝐵+

𝑢 multiplicity on the bottom. The distributions
are obtained by propagating 106 samples of the posterior of the Herwig7-H7
tune through the parametrization of the model.

As an example, using the tuned parameter set of the Herwig7-H7 model, the
distribution of bin values for the first bin of the sphericity observable and the
𝐵+

𝑢 multiplicity are shown in Figure 7.15. Usually, uncertainties are assumed to
be distributed according to a normal distribution. In this case, the distribution
of the first bin of the sphericity observable is reasonably well described by a
normal distribution, as the distribution is unimodal and symmetric. However, the
distribution of the 𝐵+

𝑢 multiplicity has two modes and is not symmetric and can
therefore not be described by a normal distribution. In such a case, the uncertainty
should be taken into account by quoting the full distribution instead of a single value.
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Unfortunately, this greatly increases the complexity of treating and displaying the
uncertainty. As such, in order to provide a single value, which reflects the tuning
uncertainty, the standard deviation of the distribution is calculated and used as the
measure of the uncertainty.

7.8 Influence of correlation of uncertainties to the
tune

As mentioned in Section 7.5, the correlation between the data points is an impor-
tant aspect when constructing the statistical model. For the tunes presented in
the previous sections, the correlation between the data points is assumed to be
zero. However, it is generally expected that especially systematic uncertainties are
correlated between different bins and observables. When introducing a correlation
between the data points, the covariance matrix 𝑀 of the likelihood function in
Equation (7.13) is modified to no longer be diagonal. Since the covariance matrix
has a dimensionality of 𝑁bins × 𝑁bins, in the case of the observables used in this
thesis, the covariance matrix is roughly a 1000 × 1000 matrix. As manually setting
the correlation between all bins results in a large number of parameters, the corre-
lation is assumed to be the same for all bins of a single observable. This creates
a correlation matrix that is block diagonal, which is greatly beneficial for runtime
and memory usage while still allowing the study of the impact of the correlation on
the tuning results.

For each block of the correlation matrix, the off-diagonal elements are set to the
value 𝑟 ⋅ 𝜎𝑖 ⋅ 𝜎𝑗 where 𝜎𝑖 and 𝜎𝑗 are the systematic uncertainties of the data point of
bin 𝑖, and 𝑗, and 𝑟 is the correlation coefficient. Since the actual correlation between
the data points is unknown, the correlation coefficient 𝑟 is varied to account for
different levels of correlation by using the values 𝑟 = [0.0, 0.4, 0.6, 0.8, 0.9]. While
these values are somewhat arbitrary, they cover a wide range of possible scenarios
with low, medium, and high correlations.

Using these different correlation coefficients, the tuning of the Herwig7-H7 and
Herwig7-P8 models is repeated. As an example of the effect of the correlation, the
two-dimensional posterior distribution of the parameters Clmax and Clpow for the
Herwig7-H7 model is shown in Figure 7.16 for different correlation coefficients. It
is observed that the smallest area containing 68% of the probability shrinks with
an increasing correlation coefficient. In addition to this effect, for high correlation
coefficients, such as 𝑟 = 0.8 and 0.9, the area splits into two distinct areas, indi-
cating the presence of a second local mode within the parameter space. While the
introduction of a correlation has a significant impact on the width of the posterior
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and, as such, on the uncertainty estimation of the parameters, the effect on the
global mode is relatively small. Table 7.6 shows the value for the global mode and
the standard deviation of the parameters for the case without correlation and for the
case with a correlation coefficient of 0.9. While the standard deviation decreases for
all parameters with correlation, the global mode is stable within these uncertainties.
In summary, it can be concluded that the tuning result in terms of its parameter
values is unaffected by the correlation of the data points. However, it is imperative
for the interpretation of their uncertainty to take the correlations into account.
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Figure 7.16: The two-dimensional marginalized posterior distribution of the
Clmax and Clpow parameter for the Herwig7-H7 model. The green, yellow, and
red areas represent the smallest intervals containing 68, 95, and 99% of the
posterior distribution respectively. This is shown for the case without correlation.
The other contoured areas represent the 68% intervals for the same distribution
for different correlation coefficients. The dot represents the location of the global
mode
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7.9 Influence of weighting of observables to the tune

Table 7.6: The position of the mode along with the standard deviation for
the tuned parameters of the Herwig7-H7 model. The results are shown for the
scenario without correlation and a correlation of 𝑟 = 0.9.

Correlation
𝑟 = 0.0 𝑟 = 0.9

Parameter Mode 𝜎 Mode 𝜎

AlphaQCD 0.114 0.0032 0.115 0.0018
𝑚(𝑔) (GeV) 0.716 0.129 0.780 0.106
𝑚(𝑠) (GeV) 0.357 0.062 0.390 0.050

IRCutoff (GeV) 0.810 0.221 0.730 0.126
ClMax (GeV) 2.543 0.872 2.081 0.742

ClPow 0.800 0.560 0.667 0.545
ClSmr 0.662 0.194 0.461 0.148
PSplit 0.916 0.128 1.050 0.101

7.9 Influence of weighting of observables to the tune

In conventional MC tuning, weights are used to either stabilize the tuning process
or give more importance to specific observables [2, 10]. However, the usage of
weights affects the statistical interpretation of the resulting uncertainties and also
may bias the outcome of the tune. The impact of weights on the tuning process is
studied by repeating the tune of the Herwig7-H7 and Herwig7-P8 models using
different, non-unity weighting schemes. In order to include weights in the Bayesian
tuning framework, the statistical model is modified. The weights are applied to
the likelihood function in Equation (7.13) by including an additional factor using a
weight vector 𝑤⃗𝑖=1,...,𝑁bins

which is normalized using the total sum of weights. As
weights are defined on the level of observables, all bins of a single observable are
weighted equally.

To explore the influence of weights on the tuning process, the weights are varied in
two distinct schemes 𝑤1 and 𝑤2 which are listed in Tables A.1, A.2 and A.3 in the
Appendix A. The results of the tune are then compared to each other as well as to
the tune without weights. The first weighting scheme 𝑤1 is designed to give more
importance to the observables related to the multiplicities of particles while leaving
most other observables unchanged. In contrast, the second weighting scheme 𝑤2
sets the weights of the multiplicity-related observables to zero while increasing the
weights of event shape variables and drastically increasing the weight of the mean
charged multiplicity observables.

83



7 Monte Carlo tuning using EFTfitter.jl

Table 7.7: The values for the mode and the standard deviation of the parameters
for the different weighting schemes for the tune of the Herwig7-H7 model.

Weighting scheme
none 𝑤1 𝑤2

Parameter Mode 𝜎 Mode 𝜎 Mode 𝜎

AlphaQCD 0.115 0.003 0.113 0.004 0.115 0.003
𝑚(𝑔) (GeV) 0.709 0.128 0.706 0.136 0.708 0.13
𝑚(𝑠) (GeV) 0.353 0.062 0.352 0.066 0.346 0.063

IRCutoff (GeV) 0.879 0.223 0.859 0.245 0.837 0.214
ClMax (GeV) 2.591 0.871 3.187 0.911 3.761 0.832

ClPow 0.823 0.561 0.847 0.567 2.147 0.541
ClSmr 0.675 0.193 0.501 0.228 0.806 0.213
PSplit 0.868 0.130 0.867 0.141 0.776 0.137

The posterior distributions of the parameters for the different weighting schemes are
shown in Figures 7.19 and 7.20 for the Herwig7-H7 model. In contrast to the effects
of different correlation scenarios, the shape of the posterior distribution is largely
unaffected by the weighting scheme. However, the position of the global mode and,
as such, the tuned parameter set can be affected by the weighting scheme. This
effect can be seen most prominent in the one-dimensional marginalized distribution
of the Clpow parameter as the mode shifts from the lower peak to the higher peak
when comparing the two weighting schemes. This shift is also visible in the two-
dimensional distribution of Clpow and Clmax where the global mode changes from
the lower left region to the upper right region. The values for the global mode and
the standard deviation of the parameters for the different weighting schemes are
shown in Table 7.7. As indicated by the behavior of the posterior distribution, the
AlphaQCD, 𝑚(𝑔), 𝑚(𝑠), and IRCutoff parameters are largely unaffected, while the
Clmax, Clpow, Clsmr, and PSplit parameters show a shift in the global mode.

In order to study the impact of the weights on the quality of the tune, samples are
generated using the tuned parameter sets for each weighting scheme and compared
to data analogously to Section 7.6. The distribution of the resulting 𝑝-values are
shown in Figure 7.17. The tune seems to benefit from the first weighting scheme
as a slight improvement of the average 𝑝-value from 0.133 without any weights to
0.151 is observed. The second weighting scheme, however, decreases the quality of
the tune as the average 𝑝-value is lowered to 0.099.

In a similar fashion, the tuning of the Herwig7-P8 model is repeated using the
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Figure 7.17: Histogram of the 𝑝-values for the 𝜒2 test between data and MC
predictions for each observable using the nominal and tuned parameter sets with
the Herwig7-H7 model. The histograms on the right side show the 𝑝-values in a
logarithmic scale for 𝑝 > 10−4. The top pair of histograms shows the 𝑝-values
for the first weighting scheme, while the bottom pair shows the 𝑝-values for the
second weighting scheme.

different weighting schemes. The posterior distributions of the parameters for the
tunes using weights are shown in Figures 7.21 and 7.22. Similar to the Herwig7-H7
model, the shape of the posterior distributions is largely unaffected by the weighting
scheme. However, as the Herwig7-P8 model is generally unimodal, the position
of the global mode is only slightly affected by the weighting scheme. This can be
confirmed by analyzing the values for the global mode and the standard deviation
of the parameters which are listed in Table 7.8. Each mode value for the parameter
only changes by a small fraction of the standard deviation. These small changes
are also reflected in the 𝑝-values of the tuned MC samples, which are shown in
Figure 7.18. The average 𝑝-value for the tuned MC sample without weights is 0.143
while the average 𝑝-values for the tuned MC samples using the weighting schemes
𝑤1 and 𝑤2 are 0.144 and 0.147, respectively. Hence, only a small improvement in
the tune is observed for the second weighting scheme.

In conclusion, the effect of weights in the tuning process is highly dependent on the
model. In cases where the model is multimodal, such as the Herwig7-H7 model,
the weights can have a significant impact on the position of the global mode and
as such stabilize the convergence of the tuning process, which is one of the main
reasons for using weights in conventional MC tuning. In other cases, such as the
Herwig7-P8 model, the effect of the weights is rather small, and the tuning process
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Table 7.8: The values for the mode and the standard deviation of the parameters
for the different weighting schemes for the tune of the Herwig7-P8 model.

Weighting scheme
none 𝑤1 𝑤2

Parameter Mode 𝜎 Mode 𝜎 Mode 𝜎

AlphaQCD 0.120 0.003 0.120 0.004 0.120 0.003
IRCutOff (GeV) 1.079 0.313 1.135 0.363 1.115 0.339

aLund 1.287 0.376 1.380 0.416 1.381 0.396
bLund (GeV−2) 1.302 0.359 1.369 0.379 1.393 0.363
aExtraDiquark 0.97 - 0.97 - 0.97 -
aExtraSQuark 0.0 - 0.0 - 0.0 -

SigmaPT (GeV) 0.303 0.026 0.304 0.031 0.302 0.027

is largely unaffected by the weights. However, as most full MC tunes are performed
on a larger number of parameters and observables, it is more likely to encounter
models with a multimodal behavior that would benefit from the usage of weights. It
should be noted that in the Bayesian context of this work, the usage of weights to
target specific areas of the parameter space to be prioritized could be circumvented
by using all local modes of the posterior distribution as different tuned parameter
sets, which can then be compared to each other. Although, further studies on the
feasibility of this approach in the context of MC tuning are needed.
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Figure 7.18: Histogram of the 𝑝-values for the 𝜒2 test between data and MC
predictions for each observable using the nominal and tuned parameter sets with
the Herwig7-P8 model. The histograms on the right side show the 𝑝-values in a
logarithmic scale for 𝑝 > 10−4. The top pair of histograms shows the 𝑝-values
for the first weighting scheme, while the bottom pair shows the 𝑝-values for the
second weighting scheme.
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Figure 7.19: The one and two-dimensional marginalized posterior distributions
of the parameters for the tune of the Herwig7-H7 model for the first weighting
scheme. The green, yellow, and red areas contain the smallest 68, 95, and 99%
intervals of the marginalized probability distributions, respectively. The dashed
lines and dots represent the position of the global mode, which is the point with
the highest probability.
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Figure 7.20: The one and two-dimensional marginalized posterior distributions
of the parameters for the tune of the Herwig7-H7 model for the second weighting
scheme. The green, yellow, and red areas contain the smallest 68, 95, and 99%
intervals of the marginalized probability distributions, respectively. The dashed
lines and dots represent the position of the global mode, which is the point with
the highest probability.
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Figure 7.21: The one and two-dimensional marginalized posterior distributions
of the parameters for the tune of the Herwig7-P8 model for the first weighting
scheme. The green, yellow, and red areas contain the smallest 68, 95, and 99%
intervals of the marginalized probability distributions, respectively. The dashed
lines and dots represent the position of the global mode, which is the point with
the highest probability.
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Figure 7.22: The one and two-dimensional marginalized posterior distributions
of the parameters for the tune of the Herwig7-P8 model for the second weighting
scheme. The green, yellow, and red areas contain the smallest 68, 95, and 99%
intervals of the marginalized probability distributions, respectively. The dashed
lines and dots represent the position of the global mode, which is the point with
the highest probability.

91



7 Monte Carlo tuning using EFTfitter.jl

7.10 Comparison of different hadronization algorithms

In addition to the comparison of the tuned MC samples to the nominal MC samples,
the results of the different hadronization models can also be compared to each other.
As the Herwig7-H7 and Herwig7-P8 models rely on a different set of parameters,
a direct comparison of the tuned parameter values is not possible. However, the
quality of the tune can still be compared using the observables as well as the 𝑝-values
of the 𝜒2 test to data. As an example, the distribution of the sphericity and the
𝐵+

𝑢 multiplicity are shown in Figure 7.23 for both models. In these examples, the

Figure 7.23: Distribution of the sphericity from DELPHI [111] on the left and
the 𝐵+

𝑢 multiplicity [113] on the right. The black data points include statistical
and systematic uncertainties provided by the Rivet framework. The uncertainty
band for the MC samples contains the statistical uncertainty as well as the
tuning uncertainty. The bottom panels show the ratio of the data points to
the MC samples. The MC samples were generated using the Herwig7-H7 and
Herwig7-P8 models.

Herwig7-P8 model seems to describe the data points for the sphericity observable
slightly better while the Herwig7-H7 model seems to better describe the data
points for the 𝐵+

𝑢 multiplicity. For further comparison, the 𝑝-values are shown in
Figure 7.24. Overall, the 𝑝-values of the Herwig7-P8 model are slightly higher than
the 𝑝-values of the Herwig7-H7 model, averaging at 0.143 and 0.133 respectively,
while having 5 less observables with 𝑝-values below 10−4.

In order to further quantify the difference between the two models, the observables
are split into categories, i.e., event shape variables, multiplicity variables, and so
on, and the average 𝑝-value for each category is calculated. The resulting average
𝑝-values for each category are shown in Table 7.9 together with the total number
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Figure 7.24: Distribution of the 𝑝-values of the 𝜒2 test between data and
MC predictions for each observable using the tuned parameter sets with the
Herwig7-H7 and Herwig7-P8 models. The right histogram shows the 𝑝-values
in a logarithmic scale for 𝑝 > 10−4.

and the number of observables which are better described by the Herwig7-P8 model
in each category.

The first category of observables features the 𝑏 quark fragmentation variables, which
seem to be better described by the Herwig7-P8 model according to the 𝑝-values.
However, the number of observables in this category is rather small, with only
2 observables. The second category consists of the event shape variables, which
show an average 𝑝-value of 0.0380 for the Herwig7-H7 model and 0.0003 for the
Herwig7-P8 model. While the 𝑝 values indicate a significantly better description of
the data by the Herwig7-H7 model, the number of observables that are described
better by the Herwig7-P8 model is higher with 15 observables compared to 13
observables for the Herwig7-H7 model. This occurrence can be explained, as in
this case, the Herwig7-H7 model has an outlier with a 𝑝-value of 0.9794 for one of
the observables, significantly increasing the average 𝑝-value. Without this outlier,
the average 𝑝-value for the Herwig7-H7 model is 0.0004, which is only slightly
higher than the Herwig7-P8 model. Hence, both models seem to describe the
event shape variables equally well, with the Herwig7-P8 model describing more
observables better. In contrast, in cases where the Herwig7-H7 model describes the
data better, the difference is more pronounced. The third category is made up of
the multiplicity variables, which are described equally well by both models with a
similar average 𝑝-value and a similar number of observables that are described better
by each model. The fourth category comprises the jet rates observables, which
favor the description by the Herwig7-P8 model. However, similar to the 𝑏 quark
fragmentation variables, the number of observables in this category is rather small,
with only 4 observables. Lastly, the fifth category includes the particle spectra,
which also favor the Herwig7-P8 model with an average 𝑝-value of 0.1340 compared
to 0.1042 for the Herwig7-H7 model and a higher number of observables that are
described better by the Herwig7-P8 model.
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Table 7.9: Mean 𝑝-values for the tune of the Herwig7-H7 and Herwig7-P8
model for the different categories of observables. The total number of observables
in each category is shown along with the number of observables for which the
𝑝-value of the Herwig7-P8 model is larger than the one of the Herwig7-H7
model.

Category Herwig7-H7 Herwig7-P8
Number of 𝑝P8 > 𝑝H7Observables

𝑏 quark fragmentation < 10−4 0.2224 2 2
Event shape 0.0380 0.0003 28 15
Multiplicity 0.1681 0.1755 54 27

Jet rates 0.4276 0.6484 4 4
Particle spectra 0.1042 0.1340 15 10

In summary, both models seem to describe the data equally well for most observables,
especially in the case of the event shape variables and the multiplicity variables,
which are the majority of the observables used in this thesis. The particle spectra
seem to be better described by the Herwig7-P8 model. While this is also the case
for the 𝑏 quark fragmentation and the jet rate observables, the lower number of
observables in these categories makes it difficult to draw a qualitative conclusion. In
conclusion, both models show very similar performance in describing the data, with
the Herwig7-P8 model having a slight advantage given the selection of observables
used in this thesis.
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In this thesis, the development and capabilities of the Bayesian Analysis Toolkit
(BAT.jl) were presented. The underlying theory of Bayesian inference and the
design principles behind the toolkit were discussed, alongside a detailed overview
of state-of-the-art numerical algorithms for posterior exploration and integration
included in the package. To ensure the validity and performance of these algorithms,
a comprehensive numerical test suite was designed and implemented. This suite
serves as a quality check, verifying that the package functions as intended across
various scenarios and use cases. Tests were conducted for both low- and high-
dimensional scenarios, with a particular focus on the Metropolis-Hastings (MH)
algorithm. Various quality measures, including pulls, mode, mean, and variance,
as well as Kolmogorov-Smirnov tests and integral estimates, were used to compare
samples generated by BAT.jl with independent and identically distributed samples.
Additionally, the performance of the Hamilton Monte Carlo sampler was evaluated
against the MH algorithm in a high-dimensional test case. The results affirm that
BAT.jl can generate samples that accurately represent the target distribution and
is well-suited for high-dimensional problems.

Building on the foundation of BAT.jl, a novel Monte Carlo tuning procedure based
on Bayesian reasoning was presented in this thesis. The procedure was applied to
the Herwig Monte Carlo event generator (MCEG) using two different hadronization
models, the cluster and Lund string model. Data from the LEP experiments
served as the basis for the tuning process and included event-shape and jet-rate
distributions, charged hadron momentum spectra, and multiplicities from the process
𝑒+𝑒− → (𝑍/𝛾) → hadrons. Using the analysis source code provided by the Rivet
toolkit, the observables from the MCEG samples were derived and subsequently
parameterized bin-wise using a third-order polynomial. To interface with the YODA
file format generated by Rivet, a new package called Yodafiles.jl was developed and
incorporated into the tuning procedure. The quality of the parametrization was
evaluated using the reduced chi-squared statistic and pull distributions calculated
from the reference points of the MCEG samples. Additionally, the robustness of
the parametrization was verified through tests on grid-generated samples that were
not part of the original fitting process. It was found that the majority of bins
are accurately represented by the parametrization. However, some bins exhibited
systematic deviations and low 𝑝-values, posing challenges for the fit. Despite these
challenges, the parametrization was deemed sufficiently accurate for the purpose of
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tuning. Further checks on the choice of parameters and observables were conducted.
These confirmed that the observables are sensitive to different model parameters and
that the parametrization is flexible enough to cover the data points within the chosen
parameter ranges. The EFTfitter.jl package was employed to generate a posterior
by combining the established parametrization and the data. This posterior was
then sampled using the MH algorithm in BAT.jl, which had been previously tested.
The global mode of the posterior was used to define the tuned parameter values.
Their uncertainties were determined from the smallest interval of the marginalized
posterior containing 68% of the probability. MC samples were generated using the
tuned parameters and then compared to data through a 𝜒2 test. The resulting
𝑝-values from the tuned simulations significantly outperform those from the nominal
MC samples, indicating a successful tune and an improved description of the data.
Additionally, the posterior was used to propagate the parameter uncertainties to
the realm of the observables, providing a measure for the tuning uncertainty. This
uncertainty was found to be substantial in size. However, it should be noted that it
is correlated to the uncertainties of the data. Furthermore, the impact of assigning
weights to the observables was investigated. While these weights can alter the
tuning result, their influence on the tune’s quality was found to be minimal in this
case. The impact of the correlation between measurements on the tuning was also
studied. It was observed that, although the position of the global mode is stable,
the associated parameter uncertainties estimates are affected substantially. Hence,
it is strongly recommended to take the correlation between measurements into
account when performing future tunes. Lastly, the two tuned hadronization models
were compared to each other. For the chosen set of observables in this thesis, the
Lund string model was found to describe the data slightly better than the cluster
hadronization model.

In conclusion, this thesis has presented the development of a novel Monte Carlo
tuning procedure rooted in Bayesian reasoning. The Bayesian Analysis Toolkit
was introduced and validated through a numerical test suite. Its practical utility
and effectiveness were demonstrated with its application in successfully tuning two
hadronization models to LEP data. Investigations into aspects of the tuning process,
such as the importance of weights, the impact of correlation between measurements,
and the propagation of parameter uncertainties, demonstrate the feasibility and
capabilities of Bayesian-based tuning. As Monte Carlo tuning remains at the
forefront of research, with its methodologies being actively pursued in diverse fields,
such as tuning for air shower simulations and forward physics experiments, the
insights gained from the tuning procedure presented in this thesis provide valuable
contributions to the field and can be used to improve future tunes.
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Appendix to Tuning of Monte Carlo event generators
using EFTfitter.jl

Figure A.1: Correlation matrix of the paramters for the tune of the Herwig7-H7
model.
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Figure A.2: Correlation matrix of the paramters for the tune of the Herwig7-P8
model.
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Table A.1: List of the Rivet analyses used in the tune of the Herwig7-H7 and
Herwig7-P8 models including their code, description and weights for the two
different weighting schemes, part one.

Rivet analysis and bin code Description Weight scheme
𝑤1 𝑤2

ALEPH_1996_S3486095 [109]
d01-x01-y01 Sphericity, 𝑆 (charged) 1 5
d02-x01-y01 Aplanarity, 𝐴 (charged) 2 10
d03-x01-y01 1-Thrust, 1 − 𝑇 (charged) 1 5
d04-x01-y01 Thrust minor, 𝑚 (charged) 2 10
d07-x01-y01 𝐶 parameter (charged) 1 5
d08-x01-y01 Oblateness, 𝑀 − 𝑚 (charged) 1 5
d09-x01-y01 Scaled momentum, 𝑥𝑝 = |𝑝|/|𝑝beam| (charged) 1 5
d11-x01-y01 In-plane 𝑝𝑇 w.r.t. sphericity axes (charged) 1 5
d12-x01-y01 Out-of-plane 𝑝𝑇 w.r.t. sphericity axes (charged) 1 5
d17-x01-y01 Log of scaled momentum, log(1/𝑥𝑝) (charged) 1 5
d18-x01-y01 Charged multiplicity 2 10
d19-x01-y01 Mean charged multiplicity 150 750
d25-x01-y01 𝜋± spectrum 1 1
d26-x01-y01 𝐾± spectrum 1 1
d29-x01-y01 𝜋0 spectrum 1 1
d30-x01-y01 𝜂 spectrum 1 1
d31-x01-y01 𝜂′ spectrum 1 1
d32-x01-y01 𝐾0 spectrum 1 1
d33-x01-y01 𝛬0 spectrum 1 1
d34-x01-y01 𝛯− spectrum 1 1
d35-x01-y01 𝛴±(1385) spectrum 1 1
d36-x01-y01 𝛯0(1530) spectrum 1 1
d37-x01-y01 𝜌 spectrum 1 1
d38-x01-y01 𝜔(782) spectrum 1 1
d39-x01-y01 𝐾∗0(892) spectrum 1 1
d40-x01-y01 𝜙 spectrum 1 1
d43-x01-y01 𝐾∗±(892) spectrum 1 1

ALEPH_2001_S4656318 [110]
d01-x01-y01 𝑏 quark fragmentation function 𝑓(𝑥weak

𝐵 ) 7 35
d07-x01-y01 Mean of 𝑏 quark fragmentation function 𝑓(𝑥weak

𝐵 ) 3 15
JADE_OPAL_2000_S4300807 [112]

d26-x01-y01 2-jet Durham diff. rate 2 10
d26-x01-y02 3-jet Durham diff. rate 2 10
d26-x01-y03 4-jet Durham diff. rate 2 10
d26-x01-y04 5-jet Durham diff. rate 2 10
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Table A.2: List of the Rivet analyses used in the tune of the Herwig7-H7 and
Herwig7-P8 models including their code, description and weights for the two
different weighting schemes, part two.

Rivet analysis and bin code Description Weight scheme
𝑤1 𝑤2

PDG_HADRON_MULTIPLICITIES [113]
d01-x01-y03 Multiplicity of 𝜋+ 10 0
d02-x01-y03 —"— 𝜋0 10 0
d03-x01-y03 —"— 𝐾+ 10 0
d04-x01-y03 —"— 𝐾0 10 0
d05-x01-y03 —"— 𝜂 10 0
d06-x01-y03 —"— 𝜂′(958) 10 0
d07-x01-y03 —"— 𝐷+ 10 0
d08-x01-y03 —"— 𝐷0 10 0
d09-x01-y03 —"— 𝐷+

𝑠 10 0
d10-x01-y01 —"— 𝐵+, 𝐵0

𝑑 10 0
d11-x01-y01 —"— 𝐵+

𝑢 10 0
d12-x01-y01 —"— 𝐵0

𝑠 10 0
d13-x01-y03 —"— 𝑓0(980) 10 0
d14-x01-y01 —"— 𝑎+

0 (980) 10 0
d15-x01-y03 —"— 𝜌0(770) 10 0
d16-x01-y01 —"— 𝜌+(770) 10 0
d17-x01-y02 —"— 𝜔(782) 10 0
d18-x01-y03 —"— 𝐾∗+(892) 10 0
d19-x01-y03 —"— 𝐾∗0(892) 10 0
d20-x01-y03 —"— 𝜙(1020) 10 0
d21-x01-y03 —"— 𝐷∗+(2010) 10 0
d23-x01-y02 —"— 𝐷∗+

𝑠 (2112) 10 0
d24-x01-y01 —"— 𝐵∗ 10 0
d25-x01-y02 —"— 𝐽/𝜓(1𝑆) 10 0
d26-x01-y01 —"— 𝜓(2𝑆) 10 0
d27-x01-y01 —"— 𝛶 (1𝑆) 10 0
d28-x01-y01 —"— 𝑓1(1285) 10 0
d29-x01-y01 —"— 𝑓1(1420) 10 0
d30-x01-y01 —"— 𝜒𝑐1(3510) 10 0
d31-x01-y03 —"— 𝑓2(1270) 10 0
d32-x01-y01 —"— 𝑓 ′

2(1525) 10 0
d34-x01-y02 —"— 𝐾∗0

2 (1430) 10 0
d35-x01-y01 —"— 𝐵∗∗ 10 0
d36-x01-y01 —"— 𝐷+

𝑠1 10 0
d37-x01-y01 —"— 𝐷+

𝑠2 10 0
d38-x01-y03 —"— 𝑝 10 0
d39-x01-y03 —"— 𝛬 10 0
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Table A.3: List of the Rivet analyses used in the tune of the Herwig7-H7 and
Herwig7-P8 models including their code, description and weights for the two
different weighting schemes, part three.

Rivet analysis and bin code Description Weight scheme
𝑤1 𝑤2

PDG_HADRON_MULTIPLICITIES [113]
d40-x01-y02 —"— 𝛴0 10 0
d41-x01-y01 —"— 𝛴− 10 0
d42-x01-y01 —"— 𝛴+ 10 0
d43-x01-y01 —"— 𝛴± 10 0
d44-x01-y03 —"— 𝛯− 10 0
d45-x01-y02 —"— 𝛥++(1232) 10 0
d46-x01-y03 —"— 𝛴−(1385) 10 0
d47-x01-y03 —"— 𝛴+(1385) 10 0
d48-x01-y03 —"— 𝛴±(1385) 10 0
d49-x01-y02 —"— 𝛯0(1530) 10 0
d50-x01-y03 —"— 𝛺− 10 0
d51-x01-y03 —"— 𝛬+

𝑐 10 0
d52-x01-y01 —"— 𝛬0

𝑏 10 0
d54-x01-y02 —"— 𝛬(1520) 10 0

DELPHI_1996_S3430090 [111]
d01-x01-y01 In-plane 𝑝⟂ w.r.t. thrust axes 1 5
d02-x01-y01 Out-of-plane 𝑝⟂ w.r.t. thrust axes 1 5
d03-x01-y01 In-plane 𝑝⟂ w.r.t. sphericity axes 1 5
d04-x01-y01 Out-of-plane 𝑝⟂ w.r.t. sphericity axes 1 5
d07-x01-y01 Scaled momentum, 𝑥𝑝 = |𝑝|/|𝑝beam| 1 5
d08-x01-y01 Log of scaled momentum, log(1/𝑥𝑝) 1 5
d09-x01-y01 Mean out-of-plane 𝑝⟂ w.r.t. thrust axes vs. 𝑥𝑝 1 5
d10-x01-y01 Mean 𝑝⟂ vs. 𝑥𝑝 1 5
d11-x01-y01 1 − Thrust 1 5
d12-x01-y01 Thrust major, 𝑀 1 5
d13-x01-y01 Thrust minor, 𝑚 2 10
d14-x01-y01 Oblateness = 𝑀 − 𝑚 1 5
d15-x01-y01 Sphericity, 𝑆 1 5
d16-x01-y01 Aplanarity, 𝐴 2 10
d17-x01-y01 Planarity, 𝑃 1 5
d18-x01-y01 𝐶 parameter 1 5
d19-x01-y01 𝐷 parameter 1 5
d33-x01-y01 Energy-energy correlation, EEC 1 5
d35-x01-y01 Mean charged multiplicity 150 750
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Table A.4: Sensitivity of the Rivet analyses used in the tune of the Herwig7-H7
model to the parameters of the model.

Rivet analysis and bin code AlphaQCD m(g) m(s) IRCutoff ClMax ClPow ClSmr PSplit
ALEPH_1996_S3486095 [109]

d01-x01-y01 81.0 31.0 40.0 0.0 2.0 4.0 1.0 2.0
d02-x01-y01 241.0 18.0 1.0 1.0 11.0 7.0 4.0 6.0
d03-x01-y01 42.0 6.0 8.0 1.0 1.0 2.0 0.0 8.0
d04-x01-y01 140.0 67.0 102.0 2.0 1.0 12.0 0.0 11.0
d07-x01-y01 136.0 4.0 3.0 2.0 3.0 4.0 1.0 1.0
d08-x01-y01 28.0 60.0 55.0 0.0 8.0 8.0 2.0 10.0
d09-x01-y01 44.0 10.0 13.0 5.0 7.0 3.0 5.0 13.0
d11-x01-y01 71.0 37.0 45.0 1.0 6.0 12.0 1.0 9.0
d12-x01-y01 205.0 77.0 127.0 7.0 2.0 39.0 5.0 13.0
d17-x01-y01 0.0 6.0 4.0 4.0 7.0 1.0 2.0 2.0
d18-x01-y01 32.0 75.0 123.0 72.0 12.0 6.0 15.0 32.0
d19-x01-y01 36.0 1.0 4.0 6.0 6.0 2.0 1.0 14.0
d25-x01-y01 6.0 13.0 9.0 6.0 10.0 0.0 1.0 8.0
d26-x01-y01 50.0 6.0 5.0 8.0 20.0 1.0 2.0 6.0
d29-x01-y01 49.0 11.0 15.0 2.0 13.0 4.0 2.0 17.0
d30-x01-y01 107.0 130.0 169.0 8.0 26.0 5.0 7.0 30.0
d32-x01-y01 44.0 20.0 14.0 8.0 21.0 2.0 0.0 1.0
d33-x01-y01 40.0 23.0 54.0 6.0 155.0 35.0 1.0 4.0
d34-x01-y01 40.0 449.0 398.0 22.0 281.0 94.0 6.0 3.0
d35-x01-y01 77.0 25.0 36.0 11.0 157.0 41.0 0.0 9.0
d36-x01-y01 13.0 243.0 298.0 0.0 345.0 111.0 5.0 1.0
d37-x01-y01 4.0 45.0 45.0 4.0 5.0 1.0 1.0 11.0
d38-x01-y01 3.0 1.0 0.0 1.0 4.0 1.0 1.0 5.0
d39-x01-y01 74.0 66.0 76.0 15.0 5.0 1.0 1.0 10.0
d40-x01-y01 79.0 45.0 57.0 14.0 8.0 3.0 2.0 6.0
d43-x01-y01 73.0 106.0 108.0 15.0 0.0 0.0 1.0 9.0

ALEPH_2001_S4656318 [110]
d01-x01-y01 51.0 27.0 29.0 5.0 5.0 7.0 6.0 27.0
d07-x01-y01 81.0 28.0 12.0 6.0 16.0 9.0 3.0 47.0

JADE_OPAL_2000_S4300807 [112]
d26-x01-y01 211.0 192.0 83.0 11.0 97.0 7.0 13.0 49.0
d26-x01-y02 91.0 85.0 72.0 10.0 25.0 11.0 7.0 44.0
d26-x01-y03 22.0 110.0 236.0 14.0 26.0 26.0 21.0 70.0
d26-x01-y04 115.0 163.0 87.0 21.0 16.0 40.0 1.0 49.0
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Table A.5: Sensitivity of the Rivet analyses used in the tune of the Herwig7-H7
model to the parameters of the model.

Rivet analysis and bin code AlphaQCD m(g) m(s) IRCutoff ClMax ClPow ClSmr PSplit
PDG_HADRON_MULTIPLICITIES [113]

d01-x01-y03 29.0 6.0 1.0 8.0 9.0 1.0 1.0 14.0
d02-x01-y03 27.0 6.0 1.0 8.0 10.0 1.0 1.0 14.0
d03-x01-y03 85.0 5.0 13.0 11.0 14.0 1.0 1.0 9.0
d04-x01-y03 85.0 5.0 4.0 11.0 14.0 1.0 2.0 9.0
d05-x01-y03 12.0 13.0 10.0 13.0 28.0 1.0 1.0 16.0
d06-x01-y03 28.0 80.0 144.0 1.0 30.0 10.0 0.0 12.0
d07-x01-y03 60.0 20.0 10.0 9.0 17.0 10.0 2.0 2.0
d08-x01-y03 68.0 20.0 30.0 12.0 10.0 5.0 2.0 2.0
d09-x01-y03 18.0 66.0 90.0 2.0 21.0 17.0 2.0 0.0
d10-x01-y01 9.0 3.0 4.0 0.0 10.0 14.0 0.0 0.0
d11-x01-y01 11.0 30.0 21.0 0.0 11.0 15.0 0.0 0.0
d12-x01-y01 30.0 113.0 200.0 11.0 73.0 79.0 1.0 2.0
d13-x01-y03 41.0 101.0 63.0 7.0 51.0 7.0 0.0 27.0
d14-x01-y01 35.0 169.0 162.0 12.0 24.0 0.0 1.0 30.0
d15-x01-y03 28.0 63.0 63.0 11.0 8.0 2.0 1.0 24.0
d16-x01-y01 27.0 70.0 69.0 11.0 9.0 2.0 0.0 23.0
d17-x01-y02 28.0 64.0 63.0 11.0 12.0 1.0 0.0 24.0
d18-x01-y03 112.0 108.0 121.0 15.0 5.0 2.0 0.0 17.0
d19-x01-y03 110.0 80.0 94.0 14.0 4.0 1.0 0.0 17.0
d20-x01-y03 99.0 45.0 56.0 12.0 8.0 4.0 1.0 10.0
d21-x01-y03 75.0 101.0 108.0 14.0 3.0 2.0 1.0 5.0
d23-x01-y02 16.0 36.0 67.0 1.0 21.0 17.0 3.0 0.0
d24-x01-y01 12.0 2.0 3.0 1.0 7.0 11.0 0.0 1.0
d25-x01-y02 29.0 36.0 54.0 2.0 2.0 1.0 1.0 8.0
d26-x01-y01 16.0 54.0 66.0 1.0 1.0 1.0 9.0 10.0
d28-x01-y01 11.0 15.0 7.0 21.0 39.0 11.0 3.0 32.0
d29-x01-y01 83.0 95.0 88.0 4.0 141.0 31.0 2.0 13.0
d30-x01-y01 6.0 672.0 570.0 11.0 88.0 91.0 5.0 10.0
d31-x01-y03 10.0 29.0 28.0 21.0 122.0 29.0 3.0 25.0
d32-x01-y01 48.0 119.0 99.0 12.0 186.0 42.0 4.0 16.0
d34-x01-y02 75.0 33.0 15.0 3.0 117.0 28.0 3.0 16.0
d35-x01-y01 69.0 31.0 34.0 5.0 177.0 182.0 2.0 6.0
d36-x01-y01 64.0 137.0 120.0 6.0 175.0 82.0 2.0 4.0
d37-x01-y01 80.0 88.0 120.0 9.0 292.0 114.0 1.0 8.0
d38-x01-y03 36.0 100.0 108.0 18.0 76.0 28.0 0.0 21.0
d39-x01-y03 84.0 8.0 17.0 9.0 140.0 48.0 1.0 12.0
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Table A.6: Sensitivity of the Rivet analyses used in the tune of the Herwig7-H7
model to the parameters of the model.

Rivet analysis and bin code AlphaQCD m(g) m(s) IRCutoff ClMax ClPow ClSmr PSplit
PDG_HADRON_MULTIPLICITIES [113]

d40-x01-y02 88.0 47.0 74.0 7.0 126.0 43.0 0.0 13.0
d41-x01-y01 88.0 45.0 68.0 8.0 125.0 34.0 0.0 15.0
d42-x01-y01 89.0 74.0 95.0 6.0 119.0 39.0 1.0 14.0
d43-x01-y01 88.0 60.0 82.0 7.0 122.0 37.0 1.0 15.0
d44-x01-y03 38.0 479.0 436.0 32.0 280.0 89.0 11.0 5.0
d45-x01-y02 5.0 24.0 33.0 30.0 112.0 25.0 1.0 21.0
d46-x01-y03 73.0 134.0 120.0 16.0 158.0 33.0 1.0 9.0
d47-x01-y03 73.0 49.0 62.0 10.0 148.0 44.0 2.0 8.0
d48-x01-y03 73.0 35.0 22.0 13.0 153.0 38.0 1.0 8.0
d49-x01-y02 15.0 404.0 445.0 20.0 319.0 105.0 6.0 3.0
d50-x01-y03 245.0 1099.0 752.0 73.0 508.0 142.0 19.0 29.0
d51-x01-y03 95.0 134.0 133.0 0.0 199.0 126.0 3.0 5.0
d52-x01-y01 36.0 209.0 198.0 9.0 410.0 339.0 7.0 9.0
d54-x01-y02 69.0 71.0 94.0 7.0 249.0 191.0 6.0 7.0

DELPHI_1996_S3430090 [111]
d01-x01-y01 68.0 45.0 46.0 1.0 7.0 12.0 2.0 10.0
d02-x01-y01 184.0 4.0 22.0 6.0 6.0 20.0 2.0 8.0
d03-x01-y01 59.0 73.0 82.0 1.0 12.0 14.0 2.0 12.0
d04-x01-y01 197.0 6.0 43.0 7.0 5.0 30.0 4.0 10.0
d07-x01-y01 31.0 4.0 6.0 4.0 5.0 2.0 5.0 11.0
d08-x01-y01 15.0 1.0 2.0 6.0 7.0 1.0 4.0 4.0
d11-x01-y01 133.0 59.0 32.0 1.0 1.0 2.0 0.0 0.0
d12-x01-y01 29.0 43.0 31.0 2.0 12.0 6.0 3.0 20.0
d13-x01-y01 72.0 11.0 15.0 1.0 0.0 6.0 1.0 11.0
d14-x01-y01 49.0 48.0 47.0 1.0 9.0 9.0 1.0 7.0
d15-x01-y01 116.0 37.0 49.0 0.0 3.0 5.0 2.0 4.0
d16-x01-y01 288.0 3.0 26.0 2.0 13.0 10.0 4.0 8.0
d17-x01-y01 99.0 45.0 50.0 1.0 2.0 8.0 1.0 0.0
d18-x01-y01 117.0 15.0 22.0 2.0 2.0 3.0 1.0 1.0
d19-x01-y01 235.0 0.0 18.0 2.0 9.0 3.0 3.0 7.0
d33-x01-y01 101.0 0.0 10.0 0.0 3.0 2.0 1.0 5.0
d35-x01-y01 36.0 1.0 4.0 6.0 6.0 2.0 1.0 14.0
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Table A.7: Sensitivity of the Rivet analyses used in the tune of the Herwig7-P8
model to the parameters of the model.

Rivet analysis and bin code AlphaQCD IRCutoff a b aExtraDiQ aExtraSQ StringPT
ALEPH_1996_S3486095 [109]

d01-x01-y01 85.0 1.0 0.0 2.0 0.0 0.0 6.0
d02-x01-y01 148.0 8.0 1.0 4.0 1.0 1.0 21.0
d03-x01-y01 5.0 7.0 6.0 6.0 1.0 0.0 2.0
d04-x01-y01 11.0 21.0 14.0 11.0 0.0 1.0 1.0
d07-x01-y01 81.0 5.0 4.0 2.0 1.0 1.0 5.0
d08-x01-y01 18.0 10.0 9.0 14.0 0.0 0.0 7.0
d09-x01-y01 41.0 7.0 13.0 9.0 0.0 0.0 4.0
d11-x01-y01 46.0 7.0 14.0 15.0 0.0 0.0 16.0
d12-x01-y01 191.0 1.0 16.0 19.0 1.0 0.0 52.0
d17-x01-y01 25.0 1.0 1.0 3.0 1.0 0.0 10.0
d18-x01-y01 955.0 110.0 21.0 21.0 320.0 38.0 171.0
d19-x01-y01 87.0 8.0 10.0 15.0 1.0 0.0 22.0
d25-x01-y01 49.0 4.0 6.0 9.0 1.0 0.0 16.0
d26-x01-y01 58.0 7.0 6.0 10.0 4.0 0.0 26.0
d29-x01-y01 70.0 8.0 13.0 12.0 0.0 0.0 16.0
d30-x01-y01 138.0 17.0 27.0 26.0 1.0 0.0 18.0
d31-x01-y01 280.0 27.0 42.0 36.0 3.0 2.0 7.0
d32-x01-y01 44.0 4.0 2.0 5.0 3.0 0.0 19.0
d33-x01-y01 39.0 2.0 6.0 7.0 3.0 0.0 19.0
d34-x01-y01 96.0 8.0 11.0 21.0 2.0 0.0 18.0
d35-x01-y01 78.0 8.0 13.0 19.0 2.0 0.0 21.0
d36-x01-y01 75.0 8.0 10.0 21.0 0.0 0.0 17.0
d37-x01-y01 26.0 2.0 4.0 6.0 0.0 0.0 16.0
d38-x01-y01 11.0 1.0 0.0 1.0 1.0 0.0 7.0
d39-x01-y01 46.0 5.0 4.0 7.0 1.0 0.0 14.0
d40-x01-y01 44.0 5.0 3.0 6.0 2.0 0.0 12.0
d43-x01-y01 44.0 6.0 5.0 8.0 0.0 0.0 10.0

ALEPH_2001_S4656318 [110]
d01-x01-y01 62.0 9.0 13.0 11.0 0.0 0.0 2.0
d07-x01-y01 22.0 12.0 15.0 10.0 4.0 1.0 8.0

JADE_OPAL_2000_S4300807 [112]
d26-x01-y01 608.0 110.0 144.0 2.0357e8 18.0 1.0 100.0
d26-x01-y02 505.0 54.0 72.0 160.0 24.0 3.0 107.0
d26-x01-y03 2.7587e10 120.0 148.0 297.0 43.0 1.0 166.0
d26-x01-y04 633.0 86.0 1.23876e8 82.0 12.0 6.0 96.0
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Table A.8: Sensitivity of the Rivet analyses used in the tune of the Herwig7-P8
model to the parameters of the model.

Rivet analysis and bin code AlphaQCD IRCutoff a b aExtraDiQ aExtraSQ StringPT
PDG_HADRON_MULTIPLICITIES [113]

d01-x01-y03 88.0 8.0 11.0 15.0 1.0 0.0 22.0
d02-x01-y03 88.0 8.0 11.0 15.0 1.0 0.0 22.0
d03-x01-y03 80.0 9.0 8.0 12.0 1.0 0.0 16.0
d04-x01-y03 80.0 9.0 8.0 12.0 2.0 0.0 17.0
d05-x01-y03 97.0 9.0 13.0 18.0 1.0 0.0 27.0
d06-x01-y03 78.0 8.0 9.0 14.0 1.0 0.0 21.0
d07-x01-y03 49.0 9.0 3.0 0.0 3.0 1.0 0.0
d08-x01-y03 46.0 9.0 3.0 0.0 3.0 1.0 0.0
d09-x01-y03 22.0 3.0 2.0 0.0 3.0 1.0 1.0
d10-x01-y01 13.0 0.0 0.0 0.0 0.0 0.0 0.0
d11-x01-y01 13.0 1.0 0.0 0.0 0.0 0.0 0.0
d12-x01-y01 5.0 1.0 1.0 0.0 0.0 0.0 1.0
d13-x01-y03 26.0 1.0 2.0 1.0 1.0 1.0 6.0
d14-x01-y01 2.0 4.0 10.0 14.0 7.0 0.0 3.0
d15-x01-y03 97.0 8.0 13.0 17.0 1.0 0.0 27.0
d16-x01-y01 97.0 8.0 13.0 17.0 1.0 0.0 27.0
d17-x01-y02 96.0 8.0 13.0 17.0 1.0 0.0 26.0
d18-x01-y03 86.0 9.0 9.0 14.0 1.0 0.0 20.0
d19-x01-y03 86.0 9.0 9.0 13.0 2.0 0.0 19.0
d20-x01-y03 71.0 8.0 6.0 10.0 2.0 0.0 14.0
d21-x01-y03 41.0 9.0 2.0 0.0 3.0 0.0 0.0
d23-x01-y02 22.0 3.0 2.0 0.0 3.0 0.0 0.0
d24-x01-y01 12.0 0.0 0.0 0.0 0.0 0.0 0.0
d25-x01-y02 90.0 10.0 6.0 4.0 2.0 1.0 5.0
d26-x01-y01 2.0 3.0 0.0 4.0 5.0 1.0 5.0
d27-x01-y01 47.0 33.0 10.0 9.0 14.0 7.0 15.0
d28-x01-y01 72.0 21.0 8.0 5.0 16.0 1.0 2.0
d29-x01-y01 254.0 7.0 2.29543e8 17.0 0.0 5.0 25.0
d30-x01-y01 22.0 3.0 6.0 6.0 6.0 1.0 1.0
d31-x01-y03 88.0 9.0 5.0 0.0 6.0 0.0 4.0
d32-x01-y01 10.0 5.0 2.0 20.0 0.0 6.0 9.0
d34-x01-y02 43.0 5.0 2.0 4.0 2.0 0.0 4.0
d35-x01-y01 Inf Inf Inf Inf Inf Inf Inf
d36-x01-y01 38.0 3.0 1.0 3.0 1.0 0.0 0.0
d37-x01-y01 10.0 1.0 7.0 15.0 7.0 0.0 4.0
d38-x01-y03 95.0 7.0 14.0 19.0 1.0 0.0 27.0
d39-x01-y03 89.0 8.0 13.0 18.0 0.0 0.0 24.0
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Table A.9: Sensitivity of the Rivet analyses used in the tune of the Herwig7-P8
model to the parameters of the model.

Rivet analysis and bin code AlphaQCD IRCutoff a b aExtraDiQ aExtraSQ StringPT
PDG_HADRON_MULTIPLICITIES [113]

d40-x01-y02 93.0 7.0 14.0 18.0 1.0 0.0 26.0
d41-x01-y01 93.0 7.0 15.0 21.0 0.0 0.0 27.0
d42-x01-y01 85.0 8.0 15.0 19.0 1.0 0.0 26.0
d43-x01-y01 89.0 7.0 15.0 20.0 0.0 0.0 27.0
d44-x01-y03 89.0 7.0 11.0 18.0 0.0 0.0 21.0
d45-x01-y02 102.0 6.0 16.0 22.0 1.0 0.0 31.0
d46-x01-y03 91.0 8.0 15.0 21.0 0.0 0.0 28.0
d47-x01-y03 98.0 8.0 14.0 19.0 1.0 0.0 25.0
d48-x01-y03 94.0 8.0 14.0 20.0 0.0 0.0 26.0
d49-x01-y02 66.0 5.0 9.0 16.0 3.0 0.0 19.0
d50-x01-y03 77.0 4.0 7.0 16.0 4.0 1.0 17.0
d51-x01-y03 38.0 7.0 1.0 1.0 2.0 0.0 0.0
d52-x01-y01 12.0 0.0 1.0 1.0 2.0 0.0 1.0
d54-x01-y02 8.0 7.0 0.0 1.0 1.0 3.0 1.0

DELPHI_1996_S3430090 [111]
d01-x01-y01 48.0 6.0 13.0 14.0 0.0 0.0 13.0
d02-x01-y01 186.0 2.0 10.0 12.0 1.0 0.0 39.0
d03-x01-y01 32.0 11.0 22.0 20.0 0.0 0.0 19.0
d04-x01-y01 193.0 1.0 12.0 15.0 1.0 0.0 48.0
d07-x01-y01 31.0 5.0 10.0 7.0 0.0 0.0 4.0
d08-x01-y01 5.0 1.0 5.0 0.0 1.0 0.0 7.0
d11-x01-y01 59.0 5.0 3.0 1.0 1.0 1.0 5.0
d12-x01-y01 218.0 26.0 28.0 37.0 4.0 1.0 36.0
d13-x01-y01 33.0 17.0 13.0 12.0 2.0 1.0 1.0
d14-x01-y01 14.0 6.0 7.0 10.0 0.0 0.0 5.0
d15-x01-y01 119.0 2.0 0.0 2.0 1.0 0.0 8.0
d16-x01-y01 174.0 13.0 2.0 4.0 1.0 2.0 24.0
d17-x01-y01 91.0 1.0 2.0 3.0 0.0 0.0 2.0
d18-x01-y01 83.0 3.0 3.0 2.0 1.0 0.0 5.0
d19-x01-y01 182.0 1.0 1.0 5.0 2.0 1.0 17.0
d33-x01-y01 123.0 5.0 2.0 4.0 1.0 0.0 7.0
d35-x01-y01 87.0 8.0 10.0 15.0 1.0 0.0 22.0
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