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Abstract

Data Quality represents an essential yet complex aspect of data management. At its
core, it aims to support the provisioning of high-quality data to business operations.
The availability of high-quality data is vital for organizations and can facilitate accurate
decision-making, build competitive advantages, and promote inter-organizational collab-
orations. The realization of these benefits is complicated by the multi-dimensionality and
subjectivity of data quality, resulting in cumbersome and time-consuming procedures.
Numerous data quality tools aim to support data quality work by offering automation
for different activities, such as data profiling or validation.
Despite the importance of data quality and a long history of tools and research, en-

gineers regularly have to work with erroneous data. Data quality tools face several
obstacles that complicate the provisioning of high-quality data. These obstacles rest
upon changes in the organizational and technical environment that raise new require-
ments that data quality tools must address. Organizationally, data quality tools must
comprehend changing data architectures and the rising importance of data products and
domain-driven design. Technically, they need to incorporate big data and operate within
heterogeneous system landscapes. Established data quality tools cannot fully compre-
hend these changes, resulting in tools unfit for modern systems and data architectures.
However, there has been little research on the design of such tools, and comprehensive
knowledge guiding their creation is missing, which motivates our research.
This thesis addresses the lack of prescriptive design knowledge for creating success-

ful data quality tools. To inform their design, we adopted a design science research
approach and conducted nine individual studies throughout this dissertation. Our find-
ings revealed that Automation, Integrability, Standards, and Usability are the four main
gaps in current data quality tools, and we formulated adequate meta-requirements. We
addressed these gaps with four case studies concerned with implementing data quality
tools in real-world scenarios. In each case, we designed and implemented a separate data
quality tool and abstracted the essential design elements from the case. A subsequent
cross-case analysis helped us accumulate the available design knowledge, resulting in the
proposal of 13 generalized design principles. This set of design principles represents the
main result of this dissertation. A separate action guideline and reference architecture
for data quality tools support the accessibility of our results.
With the proposal of empirically grounded design knowledge, we contribute to the

managerial and scientific communities. Managers and practitioners can use our results
as a framework for creating successful data quality tools in their individual contexts.
Scientifically, we address the lack of prescriptive design knowledge for data quality tools
and offer many opportunities to extend our research. Researchers can seize these oppor-
tunities and advance our results in multiple directions. The continuous work on data
quality tools will help them become more successful in ensuring data fulfills high-quality
standards for the benefit of businesses and society.

Keywords: Data Quality, Data Quality Tools, Data Management, Data Engineering,
Design Principles, Design Science Research
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1. Introduction

“You can’t do anything important in your company without high-quality data” [100, p.1].
As summarized by Redman [100], data quality (DQ) is a critical success factor for any
organization and an essential part of data management. Despite its importance, many
organizations struggle with DQ and fail to provide business processes with high-quality
data [109, 100]. This problem is grounded in the changing environment DQ and data
management currently face [48, 56]. Trends like big data, decentralization, and increased
awareness of data as a strategic resource raise new requirements [38, 109, 24]. Established
DQ tools cannot keep up with these changes and fail to provide DQ practitioners with
the support they need [10]. In this chapter, we introduce our research by delving into
the following three questions: Why is DQ an essential topic for organizations?, What
are the problems of established DQ tools?, and How can we address these problems with
our research?.

1.1. The Importance of Data Quality

DQ has long been incorporated into organizational data and information systems (IS)
strategies to enable accurate decision-making and seamless operations [83, 81]. It is
widely accepted as an essential building block for organizational success [35, 90], and a
lack of DQ can incur costs of 8 to 12% of an organization’s revenues [99]. Lately, the
importance of DQ has shifted from a business-oriented perspective to various influencing
factors. Today, four main topics are driving the need for DQ.
First, the prevalence of automated decision-making in the forms of artificial intel-

ligence (AI) and machine learning (ML) increases the need for DQ, as multiple studies
have shown [27, 13, 56]. Providing high-quality data sets that are unbiased and free
of unlabeled or erroneous data for training is vital for the success of any data science
project and can increase the business value [36, 35]. At the same time, most data sets
face significant quality issues. For instance, Redman [99] analyzed DQ at the field level
and observed that 1 to 5% of all entries were erroneous. Consequently, data usually
go through a cumbersome and expensive pre-processing before being used in industrial
data science projects [62]. Since this is a time-consuming process, data scientists tend to
focus on widespread and reoccurring problems and neglect other data errors, although
this approach can impair organizational performance [8].
Second, to face increasing uncertainties and remain successful in a changing environ-

ment, businesses must be able to adapt to new situations quickly. This capability is often
referred to as organizational agility (OA) and has developed into an indispensable
component of corporate strategies [93, 35, 111, 81]. DQ is a prerequisite for realizing OA,
as it forms the basis for all data-related operations and well-informed decision-making
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1. Introduction

[90, 32]. An organization operating on high-quality data can use business intelligence [93]
or big data [35] to utilize internal processes and resources more efficiently and increase its
performance [35, 61]. On the contrary, a lack of DQ can negatively affect organizations,
leading to inaccurate decision-making and a loss of competitive advantages [90, 32].
Third, the growing use of automated and data-based decision-making has put DQ

on the political agenda and led to new regulatory requirements [83]. Especially
within the European Union, AI systems trained on low-quality data are considered a
threat to the ethical use of data and the fundamental rights and Union values [42,
43]. In this context, biased data sets are a major concern, as their use can lead to
discrimination against ethnic minorities, older people, and other groups [43]. Several
studies demonstrated how low-quality data leads to discrimination in language models
[23], facial recognition systems [31], or AI systems trained on sociocultural data in general
[71]. To address this issue, the European Union proposed the AI Act, which sees it as
the due diligence of organizations to avoid errors and bias in data sets and ensure the
creation of trustworthy AI systems [42].
Fourth, organizations increasingly strive to complement their internal data sources

with external sources to operate on a more extensive and diverse data basis and pro-
mote data-based business models [59, 81]. As a result, data ecosystems emerged and
promised to simplify inter-organizational data sharing by providing common data ser-
vices, architectural patterns, and governance mechanisms [88, 56]. A concrete example
is the International Data Spaces Association (IDSA), which specifies data space pro-
tocols, architectural guidelines, and information models for creating interoperable data
ecosystems [67]. Breaking data silos and sharing data for mutual benefit can help foster
data-driven innovation, exploit new business opportunities, and overcome typical data
challenges such as data governance or data democratization [104, 56]. A critical suc-
cess factor for the adoption of data ecosystems is DQ. Exchanging low-quality data can
mitigate the trust between a data provider and consumer and hinder partners from ex-
ploiting the benefits offered by data ecosystems [20, 88]. A joint understanding of DQ,
adequate tooling, and suitable metadata are required to ensure that data of sufficient
quality is shared with ecosystem partners [6].

1.2. Problem Statement

Although DQ is of paramount importance for organizations, many practitioners, such as
data engineers or data scientists, are confronted with DQ issues on a regular basis [100,
62]. Deng et al. [39] quantified the typical DQ work by stating that data scientists spend
up to 98% of their time on ’grunt work’, including identifying and resolving data errors.
In addition, Tebernum et al. [112] empirically investigated data engineering practices
and found that DQ is inadequately considered throughout the data life cycle, causing
additional manual efforts.
Since humans are usually bad at detecting data errors [75], numerous DQ tools

emerged and promised to support DQ management [83]. Today, the market for DQ
tools makes up an estimated $1.77 billion [37]. However, despite decades of previous re-

2



1. Introduction

search and many available tools, DQ remains an important issue and is still considered
a problem in industrial practice [56, 109]. The urging question of why existing DQ tools
cannot fulfill the need for high-quality data remains and requires new answers.
The obstacles DQ tools face are manifold. Most importantly, the technological and

organizational environment in which DQ tools operate is changing, and established DQ
solutions cannot fully comprehend these changes [109]. Most of these DQ solutions rely
on processes and algorithmic bases unsuited for modern data architectures [10]. For
instance, the trend for ubiquitous and big data forces organizations to reorganize their
data architecture by shifting from a centralized to a decentralized approach [56, 38].
This development breaks with the concepts of established DQ tools that solve quality
issues using a centralized data platform and center of expertise (cf. section 2.2).
A closer investigation of this changing environment revealed that practitioners per-

ceive the centralized approach as cumbersome, time-consuming, and error-prone, thus
hindering businesses from fully exploiting their data assets [12, 113, 10]. Centralized DQ
teams often lack the required data domain knowledge to resolve data errors efficiently,
which leads to lengthy data-cleaning processes [100, 12]. Employees at the data source
understand the business context better and can solve DQ issues before feeding them
into other business processes [100, 113]. Yet, these employees are typically no data engi-
neers and do not have thorough technical and algorithmic knowledge, raising a need for
better accessibility and usability of DQ tools [8]. Moreover, DQ tools must be able to
operate in different technical contexts, which requires the implementation of standards
and integrative capabilities [10, 48]. In summary, we identified automation, integrability,
standards, and usability as the four main problems of DQ tools (cf. section 4.1).
Successful DQ tools must accommodate the changing environment and address the

identified gaps to overcome the problems in industrial practice. However, there has been
little research on the design and implementation of such tools in concrete socio-technical
contexts. Current DQ research focuses on improving single aspects of DQ tools (e.g.,
automation [106] or validation [110]) and has a rather technical scope. Comprehen-
sive research that consolidates multiple requirements and derives the prescriptive design
knowledge necessary for building and adapting adequate DQ tools within an organi-
zation is missing. As a result, designing successful DQ solutions remains difficult for
practitioners. This lack of knowledge motivates our research, which we specify in the
following section.

1.3. Research Goal

In response to the described problem, this thesis aims to overcome the lack of prescriptive
design knowledge for DQ tools and offer practitioners actionable knowledge for building
solutions that overcome current limitations. Specifically, we aim to provide practical
design knowledge for addressing the identified problems of DQ tools in industrial practice
and create more successful solutions. The research goal of this thesis reads as follows:

What is the design knowledge required
for creating successful data quality tools?

3



1. Introduction

Tackling this research goal calls for investigation into two directions: its problem
and solution space. For the problem space, we need to understand and concretize the
requirements organizations pose on DQ tools. To gain these insights, we investigate
the handling of DQ in real-world settings and understand why many organizations still
struggle to cope with DQ (RQ 1 ). To populate the solution space, we want to capture
the design principles (DPs) that organizations need to build successful DQ tools from
real-world implementations (RQ 2 ). These DPs should address the needs of industrial
practice identified in the first step.
Deriving DQ design knowledge is particularly challenging as the ’fitness for use’ [118]

of DQ usually leads to customized DQ solutions, and their design is subject to influences
of their socio-technical contexts. This means we need to abstract the research findings
from multiple individual case studies to the higher class of problem, namely the design
of DQ tools. By combining the individual results, we can infer generalized and multi-
grounded design knowledge and reach theoretical saturation [41, 50, 105]. To achieve
the proposed research goal, we answer the following two research questions.

RQ1: What are the objectives for successful data quality tools?

The awareness of DQ in science and practice has proliferated over the past decades, and
a large variety of tools and management frameworks emerged supporting organizations
in their DQ efforts [83, 40]. Nevertheless, companies face constantly changing technical
(e.g., the rise of big data [109, 24]) and organizational (e.g., the value seen in data [90, 38])
environments, creating a need for a new kind of DQ tool [83, 64]. In the first step towards
more successful DQ tools, we need to understand what DQ problems organizations face
based on theoretical and practical insights. The result motivates our research and serves
as the problem-centered entry into the Design Science Research (DSR) process guiding
this dissertation [95, 64].
We conducted three studies to inform the proposed research question, which applied

different research methods (Paper I [12], V [113], and VI [10]). Paper I describes the
results of a qualitative case study in an automotive company. We identified several
challenges in the areas of data governance and DQ. In paper V [113], we conducted
a Systematic Literature Review (SLR) on data engineering processes described in the
scientific literature. Using the SLR result, we developed a reference model that structures
data engineering activities and identified the need for improved DQ in different layers of
the model. Paper VI [10] presents a taxonomy of functional and non-functional DQ tool
capabilities. We applied the taxonomy to commercial DQ tools available in the market
and derived gaps and current trends.
The studies revealed Automation, Integrability, Standards, and Usability as the four

main problems of DQ tools. Given these problems, we derived four meta-requirements for
DQ tools that provide a general description of the desired tool and specify functionalities
not yet available [95]. It is vital that these meta-requirements are generally applicable to
avoid producing narrow theories too close to a case [41]. The meta-requirements guide
the creation and presentation of design knowledge in this thesis. We present our results
in more detail in section 4.1.
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RQ2: How to design successful data quality tools?

To help organizations build successful DQ tools, we need to offer prescriptive design
knowledge addressing the previously identified problems [95]. We captured this design
knowledge from four case studies concerned with the implementation of four individual
DQ tools (Papers III [4], IV [8], VII + II [11, 5], and VIII [6]). Each case features a
different empirical setting and addresses one or more of the problems identified in RQ1.
We formalized the design decisions and our experiences and abstracted these from the
specific case to the class of problem to allow for generalization [95].
In a subsequent cross-case analysis, we aggregated the design knowledge generated in

the four cases and identified regularities and irregularities [17]. As a result, we obtained
empirically valid and evidence-based design knowledge [64, 103]. We present the accu-
mulated design knowledge in section 4.2 in detail. It consists of concrete DPs that help
practitioners build successful DQ tools and enable the provisioning of high-quality data.
Furthermore, we provide concrete examples and organizational implications that help
the design knowledge become more actionable and applicable.
In addition to the DPs, we created two contributions to improve their accessibility and

usage. In paper IX [7], we followed the framework by Angelov et al. [14] and created a
software reference architecture for DQ tools based on our findings and related DQ tools.
We evaluated the reference architecture qualitatively using the adapted Architecture
Tradeoff Analysis Method (ATAM) [15]. Finally, in section 4.3, we offer an action
guideline that the target group of this thesis (i.e., DQ system designers) can use to
inform their individual DQ tool design by following a systematic guideline.

1.4. Organization

The organization of this thesis follows the guidelines for presenting DSR results by
Gregor and Hevner [54] and the recommendations for presenting empirical research by
Kitchenham et al. [73].
The following chapter 2 introduces the theoretical foundations of DQ and its tooling.

The chapter describes the concept of DQ against its data management background and
presents the historical evolution of DQ tools, leading up to the need for a new type of
DQ tool addressed in this thesis. We also present related studies and summarize their
contributions to DQ design knowledge.
Chapter 3 outlines the research methodology we followed in this thesis. We describe

the adopted DSR process and specify how the different papers of this dissertation fit into
the overarching DSR method. Moreover, we summarize the four case studies concerned
with developing DQ tools and outline our approach for accumulating design knowledge
from multiple cases.
In chapter 4, we present the accumulated design knowledge deduced from our case

studies. Representing our core result, we communicate the design knowledge in three
sections. First, we specify the problems DQ tools face and derive the meta-requirements
a successful DQ tool should fulfill. Second, we formulate concrete DPs and structure
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these along the identified meta-requirements. Third, we present an action guideline for
creating DQ tools to make our findings more actionable.
Chapter 5 describes the process and results of our two-tiered approach for evaluating

the presented design knowledge, consisting of a scenario-based demonstration and a
group discussion on its reusability.
Lastly, chapter 6 concludes this thesis by answering our research questions, critically

reflecting on our results, specifying the scientific and managerial contributions, and
outlining paths for future work.
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Before continuing with the research methodology and our results, it is beneficial to
gain a shared understanding of data management and quality and review the historical
development of these fields. For this purpose, we briefly summarize the data management
and DQ research and highlight established frameworks and current trends. Afterward,
we look closer at the evolutionary developments of DQ tools, leading up to the need for
a new, more successful kind of tool. Finally, we present studies related to the design of
DQ tools and describe how they can extend our findings.

2.1. Data Management & Data Quality

To grasp the concept of DQ, we start by explaining what data is and what forms it can
take on. From an information management perspective, data is often referred to as the
unprocessed building block of information, which puts it at the center of any business
activity [66, 89]. We can separate data into two classes: relational and non-relational
data [90]. Relational data is held in relational databases consisting of sets of tuples
[33]. Each tuple contains logically related attributes describing particular objects. A
company usually represents its core business objects, such as products or customers, in
this form [90]. Non-relational data comprises data that exists in an unstructured or semi-
structured format and cannot be organized in tabular form (e.g., images, documents,
or audio) [49]. Compared to relational data, non-relational data schemata offer more
flexibility, and databases are less rigid regarding consistency [28].
The increased variety of data is part of the ’Big Data’ paradigm, which is often defined

using the four V’s of data [49]. Besides a larger variety, big data also encompasses an
increased volume, velocity, and veracity (i.e., believability) of data. Quality concerns
both traditional and big data but is much more difficult for the latter. The four V’s
make it harder to analyze, identify, and correct quality issues efficiently [24, 109].
Data is nowadays widely accepted as vital for organizational success and, consequently,

treated as a strategic resource [81, 90]. The ability to efficiently work on data and lever-
age adequate management capabilities can lead to competitive advantages and increase
a firm’s performance [60, 61]. For example, data is the source of many digital inno-
vations [58], can be used to optimize business processes [99], or support organizational
decision-making [36, 60].
However, to effectively realize organizational benefits, data needs to be ”fit for use by

data consumers” [118, p.6]. Wang & Strong [118] introduced this definition for DQ in
a groundbreaking paper that changed the prevailing view on DQ by taking on a user
perspective. Up to that point, DQ was often defined as the accurate representation of
its properties and identified via intuition [29, 46, 83]. In the scientific literature, data
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quality (DQ) and information quality (IQ) are sometimes difficult to differentiate and
used interchangeably. Following Madnick et al. [83], DQ comprises technical problems
with data, while IQ summarizes organizational and non-technical data issues. In this
thesis, we use the term DQ, as the case studies we conducted focused on the technical
aspects of DQ, resulting in design knowledge that is more relevant for DQ than IQ
tools. Moreover, the term DQ is more common than IQ and thus better suited for
communicating our research results to the relevant audience [54].
The ’fitness for use’ principle of DQ implies a context sensitivity, meaning its inter-

pretation can vary between stakeholders [118]. For example, the completeness metric of
a data set might be sufficient and considered reasonable from a data scientist’s perspec-
tive. At the same time, it might be insufficient from a sales representative’s perspective.
This subjectivity of DQ makes it challenging to establish shared definitions and mea-
surements [96, 25]. Moreover, DQ has no single measure but is a multi-dimensional
concept, and several scholars have come up with different conceptual frameworks (e.g.,
[46, 118, 47]). The framework of Wang & Strong [118] is the most popular one. Their
work describes 15 DQ dimensions organized into the following four categories. Intrin-
sic DQ encompasses the data’s correctness, reputation, and believability. Contextual
DQ specifies dimensions such as timeliness that aim to measure DQ within the context
of the task at hand. Representational DQ comprises aspects that measure the format
and meaning of data. Finally, Accessibility DQ specifies the simplicity and security of
accessing data.
Extending the established DQ concepts, a new research stream recently emerged

around the term ’data smells’. Following the definition of Foidl et al. [45], data smells
are not obvious data errors but problems that arise from bad design decisions in the
underlying data architecture. Examples include using synonyms (e.g., New York and
NY) and intermingled data types (e.g., differently formatted dates). Although we are
not explicitly addressing data smells, our results can inform the design of corresponding
tools as they are subject to the same meta-requirements, which emerge from changes in
the overall data management.
Research suggests that humans are not good at detecting data errors, and ever-growing

amounts of data led DQ to become a daunting task [75, 109]. The complexity of error
detection and data validation increased significantly, and assuring high-quality data
has become cumbersome and expensive [83, 39]. Consequently, numerous DQ tools
emerged from science and practice to support and automate the different activities of
DQ management [40, 10].

2.2. Data Quality Tools

Historically, the need for a high level of DQ and adequate tooling are not new. Re-
searchers and practitioners have long known that DQ was a prerequisite for organiza-
tional success and used management frameworks and tools to address this need [82, 81].
We can distinguish three general types of DQ tools specializing in different tasks: data
preparation tools [62], measuring and monitoring tools [40], and general-purpose tools
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[10]. Data preparation tools focus on the pre-processing steps of data analysis and of-
fer data cleaning, validation, and error correction functionalities [62]. Measuring and
monitoring tools use various data profiling capabilities (e.g., cardinalities or value distri-
butions) and continuously apply these to data sets to identify potential inconsistencies
[40]. General-purpose tools combine features of both former types and offer the most
comprehensive set of functionalities [10]. Commercial DQ tools usually fall into this last
category.
A clear separation of DQ tools is not always easy and gets even more complicated

when comparing them to related solutions, such as data catalogs or data management
suites. Since these tools are closely related, many vendors have several solutions in their
product portfolio that offer functionalities regarding DQ and combine them into tool
suites [10, 40]. For example, a vendor might offer a data catalog, which conducts data
profiling tasks, and a separate DQ tool that uses the profiling results for data validation.
The design knowledge presented in this thesis addresses meta-requirements relevant to
all types of DQ tools, as they are subject to the same changes in the data management
landscape. This thesis is, therefore, not limited to specific DQ tasks or a kind of tool.
It can instead inform design decisions for DQ tools in general.
All types of DQ tools have been subject to several evolutionary developments in data

management over the last few decades. Two developments had a significant impact on
their functional and non-functional designs: (1) the value organizations see in data and
how they manage it (Evolution of Data Management Maturity) [81], and (2) the way data
is stored and organized technically [38, 56] (Evolution of Data Architecture Concepts).
Surviving in a rapidly changing environment shaped by data-based business models and
big data requires organizations to develop in these directions [81, 48]. The developments
in both areas directly influence the organizational scope, functional capabilities, and
architectural positioning of DQ tools [9]. We differentiate three generations of DQ tools
shaped by the abovementioned developments (see Figure 2.1).

First Generation: Data Quality Checks
In the early stages of data management, lasting until the 1990s, organizations leveraged
data to automate business operations (e.g., inventory management) and managed it
primarily from a functional perspective [81]. Consequently, data management focused
on individual and disconnected databases and the quality and accuracy of the respective
data models [81]. In this phase, DQ was concerned with the ’content’ of data and focused
on the correctness of database entries [109]. To ensure data correctness, DQ was realized
as simple accuracy checks in database management systems (DBMS) [29]. These checks
were part of the corresponding data models and implemented as integrity constraints
in the DBMS. An exemplary constraint might be that data fields containing zip codes
must comprise five numbers.
In this sense, the first generation of DQ tools aimed at enabling internal business

processes by providing correct data and allowing for data reuse [81]. However, both
DQ and data architectures lacked coordinated approaches, resulting in the emergence of
data silos [38].
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Figure 2.1.: Evolution of DQ tools in relation to data management [81] and data archi-
tecture [38] advancements (adapted from [9]).

Second Generation: Quality-oriented Data Management
To avoid inaccessible and siloed data, organizations created centralized data platforms
with centralized teams owning and managing data starting in the 1990s. Integrated in-
formation systems and monolithic business analytics platforms, such as data warehouses,
became popular in this data management phase [83]. At the same time, the research
around DQ accelerated and established as a new scientific field [83]. Most importantly,
Madnick & Wang [82] introduced a research program dedicated to DQ called ”The To-
tal Data Quality Management” (TDQM), leading organizations toward quality-oriented
management of data resources. These developments helped data become an enabler of
enterprise-wide business processes and improved organizational decision-making [81].
In response to these developments, DQ turned into a task involving the entire organiza-

tion and was no longer solely technical. Organizational capabilities like data governance
joined long-established technical tasks such as data integration and integrity constraints
[21, 83]. Organizations began to implement integrated DQ management tools, offer-
ing assistance with data governance, defining DQ rules, and data validation to support
enterprise-wide DQ management. These solutions comprise the second generation of DQ
tools [81, 83].

Third Generation: Cooperative Data Quality
A third data management phase emerged in the 2010s, viewing data as a strategic
resource. In this new perspective, data was a central object in strategic management
and enabling data-driven innovation [81]. Simultaneously, organizations observed that
centralized data architectures lacked the necessary scalability and flexibility to handle
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big data [109]. Instead, architectures that provide locally owned data products became
popular to meet the new demands for flexibility and consumer orientation [38].
These so-called ’Data Mesh’ architectures operate on polyglot persistent and dis-

tributed data stores, embracing the principles of domain-driven design and encouraging
the creation of high-quality ’Data Products’ at the source [38, 56, 63]. These architec-
tures offer high scalability and help overcome typical big data problems, such as support
for real-time data analytics and high complexity in data management and quality [56,
38]. They, furthermore, shift the responsibility for DQ from the data consumer to the
provider side, leading to decentralized and unraveled DQ work [7, 63]. A viable so-
lution for realizing such data mesh architectures is the implementation of an internal
data ecosystem comprising a self-service data infrastructure, shared data services, and
standards for interoperability [59, 58, 56].
Although the third generation of DQ management emerged, most established DQ

tools remain stuck in the second generation and follow centralized approaches to DQ [10,
48]. However, in increasingly decentralized data architectures, a centralized approach to
DQ is not feasible, resulting in data not meeting the necessary quality standards and
cumbersome data cleaning efforts [8]. These developments raise a need for a new, third-
generation DQ tool. This third generation sees DQ tools as suites that assess DQ in
several application scenarios or ’contexts’ [109]. They facilitate solving quality issues at
the ’source’ and creating valuable data products in the business domains [100, 63, 90].
At the data source, employees have the necessary domain knowledge and can solve DQ
issues more efficiently than centralized teams or users from other domains could [48].
Considering big data and inter-organizational data sharing, these new DQ tools must
support joint DQ efforts and be accessible to people from different backgrounds [8, 12].
With this dissertation, we want to understand the requirements for such third-generation
DQ tools and inform their design to assist practitioners in realizing successful DQ tools.

2.3. Existing Design Principles for Data Quality Tools

Practitioners who want to realize this new type of DQ tool are confronted with a lack of
prescriptive design knowledge. It is difficult for people designing DQ system designers
(e.g., DQ managers or solution architects) to define the functional and non-functional
capabilities of a DQ tool. Today, the research around DQ tools mainly focuses on the
managerial and computer science perspectives. The former studies the impact of DQ
tools and how they are managed and positioned in the organizational context. The latter
includes research on DQ algorithms and how they can be improved for better results.
Consequently, the body of literature concentrates on these two aspects, and there is little
research covering both fields [83, 10].
To identify studies related to our work in an unbiased and repeatable fashion, we

conducted an SLR following the guidelines of Kuhrmann et al. [79] and Kitchenham [72].
Our goal is to identify studies proposing different forms of design knowledge for creating
DQ tools and inform our own study and design recommendations. We formulated the
following search term to find relevant articles:
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(”data quality” OR ”information quality”) AND ”design”

Since design knowledge is often framed differently, such as DPs, theories, or features,
we decided to only use the term ’design’ alongside DQ and IQ. We limited our search to
the study’s title to avoid producing numerous results. As Kuhrmann et al. [79] suggested,
we selected established sources in the domains of computer science and IS to collect
relevant studies. This selection yielded in the databases IEEE Xplore, ACM Digital
Library, ScienceDirect, AISeL, and Scopus as a meta-search engine. Using the proposed
search term on these databases produced 137 results. Subsequently, we screened these
studies for relevance and removed duplicates and our own studies from the result set.
The screening process included filtering studies that are too narrow and focus on a
specific industry (e.g., medical DQ tools) and removing studies that do not specifically
address DQ tools but other kinds of artifacts (e.g., DQ as an aspect of surveys).
As a result of this procedure, we identified three papers that specifically communicate

design knowledge for DQ tools and relate to this dissertation (see Table 2.1). A following
forward and backward search, as suggested by Webster & Watson [119], revealed no
further relevant studies.

Table 2.1.: Overview of related work.

Authors Title Source

Westin & Sein
The Design and Emergence of a Data/Information
Quality System

[120]

Walter et al.
Deploying machine learning based data quality con-
trols - Design principles and insights from the field

[116]

Alhamadi et al.
Data Quality, Mismatched Expectations, and Mov-
ing Requirements: The Challenges of User-Centred
Dashboard Design

[3]

The paper by Westin & Sein [120] describes a five-year Action Design Research (ADR)
study concerned with developing and implementing a DQ assessment tool. The authors
formulate a set of five DPs, which they derived by analyzing literature and interviews
conducted throughout the research project. The described DPs concentrate on improving
the assessment and reporting of DQ within a single information system. In contrast to
our study, they neglect DQ design requirements that arise in data-sharing scenarios, for
example, within data ecosystems. Similar to our findings, they also describe the need
for a robust DQ tool that can handle difficulties like inconsistencies or incompleteness.
Walter et al. [116] present the implementation of ML-based DQ checks in an ADR

case study. As a result, they propose eight DPs for realizing ML-based quality controls
organized into three categories: model development, model deployment, and process
integration. Tallied with our results, they present DPs addressing the need for more
automation and integration in established processes and tools. Unlike our study, they
go into more detail regarding the use of ML models for automating DQ work. Their
findings can extend our work in this direction.
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The research of Alhamadi et al. [3] proposes design recommendations for dashboards
that support the handling of data sets. This study does not explicitly target DQ tools,
but we still consider it relevant as it investigates the user experience of data-intensive
applications. The findings result from 17 interviews that the authors held with dashboard
developers. In line with our findings, the authors describe the need for a high degree
of customization and usability to avoid an information overload and ensure perspicuity.
Similar to the study by Walter et al. [116], this paper can extend our results as it delves
deeper into the usability aspect.
None of the related studies offers the design knowledge necessary for creating successful

DQ tools. Instead, they focus on single aspects or trends of DQ tools and offer in-depth
design knowledge in this area. Additionally, all presented studies draw their findings from
single cases and are of limited generality. This lack of comprehensive and generalizable
design knowledge that organizations need to create successful DQ tools motivates our
research. The following chapter outlines the research methodology we followed to obtain
this design knowledge and accomplish our research goal.
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The lack of comprehensive design knowledge for DQ tools is an important problem for
businesses [8, 116]. To create such knowledge, we must move from the undesirable prob-
lem state described in Section 1.2 to a more desirable solution space [97, 55]. We can
reach this goal by incrementally creating new artifacts in concrete socio-technological
contexts, which aim for the solution space [55]. These increments can take on different
perspectives on the research problem under investigation and embrace the interdisci-
plinary nature of DQ. Moreover, they help to create a generalized understanding of the
complexity that arises from the interactions of various actors involved in socio-technical
information systems [107]. In this thesis, we abstract the findings of a multiple-case
study and formulate generally applicable design knowledge that benefits the class of ar-
tifact, namely DQ tools [54]. Specifically, we theorize on the design of four DQ artifacts
created in four case studies and formulate the accumulated design knowledge that sup-
ports the creation of DQ tools in general [52]. This way, we can ensure that our results
are not tailored to a specific case but are instead applicable to a class of problem and
relevant to a wider audience.
This chapter outlines the qualitative approach to obtaining an empirical answer to

the proposed research questions. An empirically grounded perspective is essential for
software engineering solutions to ensure the results are impactful and evidence-based
[72, 50]. We start with an introduction to the overarching DSR process that shaped the
research design of this dissertation. We continue by describing the details of the case
studies concerned with designing and implementing DQ tools. Finally, we outline the
adopted cross-case data analysis process that helped us accumulate and structure the
design knowledge we generated in the multiple-case study [64, 95].

3.1. Overarching Design Science Research Approach

DSR is a rigorous approach to creating artifacts that address a ”heretofore unsolved and
important business problem” [64, p.84]. At its core, it tries to come up with innovative
solutions in areas lacking existing theories [64]. It is thus well-suited for guiding research
on building new DQ tools and creating contributions based on the design of such artifacts
[95, 54].
In this thesis, we applied the DSR methodology as an overarching framework to or-

ganize and structure the individual research contributions created throughout this dis-
sertation. Figure 3.1 outlines how the nine papers, which are part of this thesis, fit into
the DSR methodology and contribute to our research process. The figure also shows to
which DSR stage each paper belongs, thus indicating their primary research focus. Most
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importantly, we conducted four case studies representing four iterations of the DSR pro-
cess (cf. Section 3.2). Although we used DSR as a framework, the individual papers can
feature different research methodologies more appropriate for their respective settings
or publication outlets.

Problem 

Identification

Lack of 

prescriptive 

design knowledge

Literature review 

and expert 

interviews

Expert Interviews 

and lessons 

learned from case 

A

Expert Interviews 

and lessons 

learned from case 

B

Expert Interviews 

and lessons 

learned from case 

C

Objectives of a 

Solution

Deriving meta-

requirements from 

theory and practice

Focus on 

automation

Focus on usability 

and integrability

Focus on 

automation, 

integrability, and 

standards

Focus on 

integrability, 

standards, and 

usability

Design and 

Development

Development of 

design knowledge

Development of 

initial design

knowledge

Extension of design 

knowledge

Extension of design 

knowledge

Extension of design 

knowledge

Demonstration

Instantiation of the 

design knowledge as 

a prototype

Console application

Full-grown 

application

App in data 

ecoystem 

(consumer)

App in a data 

ecosystem 

(provider)

Evaluation

Qualitative and 

quantitative 

evaluation

Quantitative 

measurements

Qualitative group

discussion

Qualitative group

discussion

Qualitative group

discussion

Communication

Dissemination of the 

requirements, 

design knowledge, 

and descriptions of 

the prototypes.

Meta-

Requirements
Design Principles Prototypes

Evaluation 

Results

Case A

(Paper III)

Case B

(Paper IV)

Case C

(Papers 

VII + II)

Case D

(Paper VIII)

Problem-centered entry

(Papers I, V, VI) Process Iteration

Research Outputs: Paper IX

Figure 3.1.: Overarching design science research approach (adapted from Peffers et al.
[95]).

Following Peffers et al. [95], the DSR process consists of six steps that can be repeated
in multiple cycles to refine artifacts incrementally.

1. Problem Identification: Specifies the research problem under investigation. In our
case, the primary problem is the lack of prescriptive design knowledge for building
third-generation DQ tools. Organizations struggle with adapting to a changing
data landscape, leading to insufficient DQ tooling (cf. Section 4.1).

2. Objectives of a Solution: Based on the identified problems, the solution objec-
tives describe a desirable solution in the form of meta-requirements. We specified
the problems we identified throughout our research as four meta-requirements:
automation, integrability, standards, and usability (cf. Section 4.1).

3. Design and Development: Comprises the search process for designing and building
the actual artifact [64]. Throughout this dissertation, we designed four new DQ
artifacts addressing one or more of the previously identified meta-requirements and
accumulated the design knowledge in the form of DPs (cf. Section 4.2).
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4. Demonstration: Demonstrates the applicability of the inferred design knowledge.
We have realized each DQ artifact as a software prototype and present examples
for implementing the derived DPs (cf. Section 4.2).

5. Evaluation: Measures if an artifact successfully achieves its purpose and is prac-
tically relevant using adequate evaluation strategies [114]. We evaluated each DQ
tool individually during the respective case study. Moreover, we evaluated the
accumulated design knowledge using a scenario-based demonstration and a group
discussion on the DPs’ reusability (cf. Chapter 5).

6. Communication: Is concerned with publishing the results of the DSR process and
contributing to relevant scientific and managerial communities. This thesis aims to
summarize individually published research results and communicate accumulated
design knowledge to the relevant user groups. We also offer an action guideline that
assists practitioners in creating successful DQ tools (cf. Section 4.3) and propose
a software reference architecture for DQ tools in paper IX [7].

A common problem of DSR studies is finding the right balance between scientific rigor
and addressing the ’street level’ of problems practitioners face [78]. To ensure abstracted
design knowledge becomes applicable in practice, researchers often rely on prescriptive
DPs [77]. Such DPs offer the required know-how to create solutions in practice and
help practitioners tackle the complexity of systems [53]. The formulation of DPs has
gained prominence within the IS community in recent years. Today, numerous articles
communicate codified DPs on all kinds of DSR artifacts.
Searching the meta-search engine Scopus using the search term ”design principles”

AND ”design science” on the article’s title and abstract yields 362 relevant papers. The
results comprise studies reporting DPs for various tools, such as UIs in AI-based decision
support systems [84] or energy market applications [101]. However, most of these studies
draw their findings from single DSR projects. Deriving design knowledge from multiple
cases with a shared interest is less common and lacks adequate methodological support
[17]. Searching Scopus again using the search term (”design principles” OR ”design
theory”) AND ”multiple case study” produces only nine relevant papers.
Consequently, there is a need for more studies that generate design knowledge from

multiple cases. These would help gain a broader perspective on the phenomenon under
investigation, generate more robust and profound results, and formulate DPs that are
relevant in practice [121, 53]. Generally, the scientific community should try to bridge
the methodological frameworks for conducting multiple case studies (e.g., Eisenhardt
[41] and Yin [121]) and formulating design knowledge (e.g., Lee [80] and Gregor and
Hevner [54]). Avdiji et al. [17] made a first attempt in this direction by abstracting
design knowledge on the results of a comparative cross-case data analysis. However,
this area of design science is still in its infancy and requires further attention. With our
thesis, we try to address this gap and contribute to the proliferation of DPs grounded
in multiple cases and the use of suitable methodologies. The following chapter outlines
the details of our multiple-case study.
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3.2. Multiple-Case Study

Case studies are well-suited for investigating complex phenomena within a natural setting
and provide answers to the ’why’ and ’how’ questions of research [26]. They can help to
unravel convoluted organizational problems and produce testable and empirically valid
results [41, 121]. Consequently, case studies are a good fit for achieving our research goal
and creating empirically grounded design knowledge in the domain of DQ tools. This
thesis draws its findings from four cases that were part of a multiple case study (see
Table 3.1). In contrast to single case studies, multiple cases are beneficial for producing
more robust research findings, thus allowing better generalizability [121]. Consequently,
a multiple case study is well-suited to foster the standardization of modern DQ tools
and support practitioners with their design and development.

Table 3.1.: Overview of conducted case studies.

Case A B C D

Paper III [4] IV [8] VII, II [11, 5] VIII [6]

Use Case
DQ checks in
data migrations

Cleaning master
data sets

DQ checks in AI
pipelines

DQ checks for
data sharing

Duration 3 months 3 months 12 months 6 months

DQ Task [10]
Definition, Mea-
surement

Definition, Mea-
surement, Inte-
gration

Measurement,
Analysis

Measurement, In-
tegration

DQ Dimen-
sion [118]

Accuracy
Accuracy, Con-
sistency

Accuracy, Com-
pleteness, Valid-
ity

Accuracy, Com-
pleteness, Valid-
ity

Primary
Methodology

Case Study [26]
Action Design
Research [108]

Action Research
[18]

Design Science
Research [64, 95]

Design
Knowledge

Solution Descrip-
tion

6 Design Princi-
ples

11 Lessons
Learned

9 Design Princi-
ples

Primary
Data Source

Literature Regular feedback Regular feedback Expert interviews

Instantiation Console App Full-grown App
Component in AI
pipeline

Data ecosystem
App

Evaluation
Accuracy mea-
surement

Two focus group
discussions

Focus group dis-
cussion

Focus group dis-
cussion

We carried out a different case study in each of the four DSR cycles (see Figure 3.1).
All cases were concerned with designing and implementing a DQ tool, representing the
respective unit of analysis [121]. The cases are described in papers III [4], IV [8], VII
[11], and VIII [6] in detail. To investigate phenomena in their real-life contexts, we
collaborated with companies from manufacturing and pharmaceutical business domains
between 2020 and 2022 [103]. The partnering companies experienced that their estab-
lished DQ solutions could not keep up with a rapidly changing environment, resulting in
the provisioning of low-quality data. While each case features a different organizational
setting, their common denominator is the need for a new DQ tool that addresses the
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meta-requirements of modern, third-generation DQ tools.
Following Eisenhardt [41, p.537], the goal of theoretical sampling is to select cases that

are ”likely to replicate or extend the emergent theory”. To extend the design theory for
DQ tools with new insights, we selected cases focusing on one or more of the DQ tool
meta-requirements (cf. section 4.1). After we successfully completed four case studies
and addressed all identified meta-requirements in multiple cases, we reached theoretical
saturation. At this point, no further case studies were necessary as we were able to
inform the problems of established DQ tools with suitable DPs, and additional learning
would have been minimal [41, 26].
Figure 3.2 demonstrates the localization of the implemented DQ tools in an exem-

plary system architecture to differentiate the four case studies better. The DQ tools
address different aspects of organizational data architectures, thus incorporating various
requirements in their design. The following subsections briefly describe the four cases
by highlighting the DQ problems under investigation (marked in italics) and specifying
our solution design.
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Figure 3.2.: Localization of implemented DQ tools in an exemplary system architecture
(adapted from paper VIII [6]).

Case A: Automated Derivation of DQ Rules [4]
The first case was a three-month project aiming to develop a DQ tool for automating a
manual data validation process. The partnering company experienced DQ issues when
migrating external data from affiliated companies into their centralized databases. The
DQ issues prolonged the migrations as the errors required manual correction, causing
substantial financial costs. There were multiple reasons for quality problems, but they
mainly resulted from inconsistencies in database schemata.
To support data migrations and improve DQ, the company’s goal was to automatically

derive DQ rules from their central database and validate incoming data against these
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rules. This way, they can avoid introducing new errors and ensure the integrity and
correctness of their internal database. The biggest challenges of this approach were the
complexity and high dimensionality of the data sets. To overcome these problems, we
implemented a support vector machine (SVM) based algorithm to identify DQ rules at
the schema level and the Apriori algorithm for generating DQ rules at the instance level.
In combination, the algorithms could handle varying data sets subject to real-world
characteristics, such as high dimensionality.
We combined quantitative and qualitative methods to evaluate the prototype. The

quantitative part included an evaluation of the accuracy of the applied algorithms using
test data. For the qualitative measurement, we conducted a workshop on the design
and suitability of the application with data migration experts. We contributed the
description of our solution design and highlighted potentials for further automating the
DQ work.

Case B: User-friendly Data Cleaning [8]
In the second case, we conducted a three-month ADR project in cooperation with
Boehringer Ingelheim, a large German pharmaceutical company. To deal with DQ,
Boehringer Ingelheim followed a ’consulting approach’ [117] in which a specialized DQ
team manually reviewed important internal data sets and corrected errors in collabo-
ration with data domain experts. They experienced this approach as time-consuming
and expensive. Moreover, a usually large number of data errors forced the DQ team to
focus on specific data sets and attributes, resulting in a low DQ coverage and potentially
unidentified errors.
Boehringer Ingelheim envisioned a DQ tool that uses ML techniques to automatically

identify data errors and generate DQ rules. With this tool, they aimed to reduce the
amount of manual DQ work and save costs. During the ADR project, we developed
a prototypical solution capable of identifying outliers, pattern violations, and rule vi-
olations. To create an impactful solution, we worked on the material master data set
provided by Boehringer Ingelheim. Specifically, we extended our developments from the
first case with interfaces for better integration with established data management tools.
Moreover, we realized a user interface (UI) offering improved usability. The UI allowed
users to optimize algorithms for different use cases and improved the presentation of
data errors, making it easier to follow up on DQ issues and solve the underlying data
problems.
At the end of the ADR project, we conducted a qualitative group discussion with

14 participants, including the ADR team and data domain experts, for evaluation. We
received positive feedback for our developments from all participants, and Boehringer
Ingelheim planned to continue working on the prototype. By reflecting on our learnings
during the case, we derived six DPs that abstract our design decisions.

Case C: Embedding DQ in AI Pipelines [11]
The goal of the third case was to include DQ checks in a collaborative AI pipeline
to ensure high-quality data is used for training an AI model. To achieve this goal,
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we conducted a twelve-month Action Research (AR) project together with Mondragon
Corporation, a manufacturing company from Spain. Mondragon wanted to quality-
check sensor data streams to predict potential problems during production processes
and reach the goal of zero-defect manufacturing. Since Mondragon lacked the necessary
technologies and know-how to conduct quality checks in-house, they aimed to outsource
this task to an external DQ service provider.
During the project, we designed and implemented a data-sovereign AI pipeline be-

tween Mondragon (i.e., the data provider) and a research institute (i.e., the DQ service
provider). The pipeline comprised three main software components: a dataspace con-
nector realizing data sovereignty, a software component at Mondragon used for data
collection and preparation, and the AI-based DQ solution offered by the research facil-
ity. Using this pipeline, Mondragon sent batches of sensor data, which the DQ service
provider analyzed for quality issues and returned a DQ report. We faced several ob-
stacles in designing and implementing the DQ service. The biggest challenge was the
automated measurement of DQ along several dimensions in a limited time. Another
difficulty was establishing a trail between batches of sensor data and the corresponding
DQ reports, enabling data lineage. We extended the developments from the second case
and implemented multiple algorithms for identifying DQ issues along the dimensions of
accuracy, completeness, and validity. To detect potential concept drifts, we measured
the accuracy with an algorithm we specifically developed for data stream analysis and
presented in paper II [5]. We also developed a standardized metadata model and ensured
the integrability of our solution with the remaining software components.

To evaluate our developments, we conducted a qualitative focus group discussion with
nine members of the AR team. Overall, introducing a new DQ component was well-
received and enabled Mondragon to exploit its data sets more effectively. In a separate
workshop meeting, the core development team reflected on the project’s design decisions,
success factors, and downsides, resulting in ten lessons learned. Not all lessons learned
specifically target the DQ service, but abstract learnings regarding the integration and
interaction of the different components of our solution. These learnings are, nevertheless,
important for designing DQ tools and supporting their integration with existing tools
and processes.

Case D: DQ and Data Ecosystems [6]
We investigated the use of DQ tools in data ecosystems as part of a six-month DSR
project in the fourth case. In this project, we cooperated with a large manufacturing
company, which we called MCo for anonymization. To promote inter-organizational
data sharing, MCo took part in a data ecosystem based on the guidelines of the IDSA
[92]. They experienced that sharing faulty data with external organizations entails a
labor-intensive data cleaning process as data consumers lack the necessary data domain
knowledge for efficient data cleaning. Consequently, they envisioned a solution ensur-
ing they only share high-quality data with business partners. This solution required
introducing a technically enforced DQ check prior to data sharing and connecting the
currently disjunct processes for DQ analysis and data sharing. Concretely, MCo shared
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sensor data streams with an external company offering data analysis services. Oper-
ating on high-quality data was vital to ensure accurate analytical results and avoid
data-cleaning efforts.
Over three DSR cycles, we incrementally designed and implemented a DQ solution

that meets the goals of MCo. The implemented solution follows the guidelines for In-
ternational Data Spaces (IDS) ’Data Apps’ [92] to enable its integration into the data
ecosystem. We, therefore, built on our previous developments from the third case and
extended and standardized the DQ tool for operation in the data ecosystem. One of the
biggest obstacles with this was the development of generally applicable DQ metrics that
can be applied to various use cases and offer high usability.
We evaluated our developments qualitatively in a group discussion, including the DSR

team members and members of MCo’s management. Both the design of our solution and
its instantiation received positive feedback and can contribute to leveraging the benefits
of data sharing. We formalized the generated design knowledge in the form of nine DPs.

3.3. Cross-Case Data Analysis

To accumulate the design knowledge generated during our four case studies, we theorize
on real-world designs and develop a nascent design theory by ”reflecting upon what has
been done” [52, p.7]. Using the case studies as the primary knowledge base, we aim
to elicit meta-requirements and formulate design principles that support the design of
future DQ tools [85]. However, as previously noted by Avdiji et al. [17], there is no
dedicated method for generating design knowledge from multiple DSR studies. We thus
followed their example and conducted a comparative analysis of the design knowledge
generated throughout our cases. We argue that the cases are similar and comparable
as they focus on the same business problem, namely an insufficient DQ tooling [64]. By
systematically comparing the generated design knowledge, we can search for cross-case
patterns [41]. Integrating different perspectives on the same business problem leads to
a robust and profound solution [121].
For the cross-case analysis, we aim to identify regularities and irregularities across the

different case designs. We consider a single design item (i.e., a DP, design decision, or
lesson learned) a regularity if it appears similarly in at least two cases. The occurrence
in multiple cases suggests that the design item is relevant to the phenomenon under
investigation and should become part of the accumulated design knowledge [17]. In
addition to the regularities, irregularities represent design elements appearing in only one
case. Using secondary data sources (e.g., related studies or literature), we can subdivide
the irregularities into considered irregularities and unconsidered irregularities.
The former category contains elements that only appear in a single case but are still
included in the result, as they are highlighted in other studies or literature as well. We
reason their reference in other studies supports their inclusion in the accumulated design
knowledge. The latter category comprises irregularities of no relevance, which describe
the design of other software artifacts. Figure 3.3 visualizes our conceptual approach for
analyzing and accumulating design knowledge from multiple cases.
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Figure 3.3.: Conceptual approach for the cross-case analysis.

In our case, the design knowledge presented in the case papers forms the primary data
source. Depending on the case, it takes on different forms, including DPs (cases B and
D), lessons learned (case C), and a design description (case A). In each case, the design
knowledge emerged from the interplay between researchers and practitioners, taking the
requirements of the socio-technical environment into account [64, 108]. Since case A
(paper III [4]) does not offer formalized design knowledge, we reviewed the presented
design description and derived four design decisions. These decisions abstract essential
design features of the implemented prototype and allow us to better compare the design
knowledge with the remaining cases. In addition to the case studies, we used the results
from papers II [5] and VI [10] as secondary data sources. These two papers do not
describe the realization of a DQ tool per se but describe a DQ algorithm (paper II) and
inform about the functional composition of DQ tools in general (paper VI). With this,
they contribute additional knowledge to the design of DQ tools.
We initialized the cross-case analysis by aggregating the design knowledge from our

primary data sources to identify regularities and irregularities. To systematically com-
pare different design descriptions, we coded the design items using Grounded Theory
Methodology (GTM) as an example. GTM is a widely established approach for ana-
lyzing different kinds of qualitative data [34]. We initialized the coding procedure with
an open coding of the available design items. Subsequently, we grouped similar design
items together and repeated this step multiple times until a sound and rigorous structure
emerged [121]. This procedure yielded in the identification of ten regularities comparable
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to 2nd-order concepts in GTM [34]. We moreover identified seven irregularities appear-
ing in only one case. We further subdivided these irregularities into three considered
and four unconsidered irregularities by considering secondary data sources.
Throughout the data analysis process, we followed the concept of investigator trian-

gulation to ensure the reliability of our results [94, 17]. Specifically, three independent
researchers familiar with the applied research methodologies and DQ tools scrutinized
the results of our data analysis. They reviewed our results for their soundness, con-
sistency, and comprehensibility. Moreover, they helped us review the irregularities and
decide on their inclusion in our results.
We continued our cross-case analysis by formulating a new DP for the ten regularities

and the three considered irregularities. The new DP abstracts the design elements
from the individual cases to become universally applicable. To formulate prescriptive
DPs, we followed the structured approach by Kruse et al. [77]. As a result, we obtained
accumulated design knowledge in the form of 13 DPs. We finally categorized each DP by
assigning it to the DQ problem and meta-requirement. This way, our design knowledge is
’multi-grounded’ as it is based on real-world instantiations (’empirical grounding’) and
contributes to fulfilling the identified DQ meta-requirements (’value grounding’) [50].
The prescriptive accumulated design knowledge can inform the design of successful DQ
tools and constitutes the main result of this dissertation. We describe our results in
more detail in the next chapter.
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Formulating the prescriptive design knowledge necessary for building successful DQ tools
is the main contribution of this dissertation. The presented design knowledge emerged
from accumulating the design knowledge generated in four case studies throughout this
dissertation. To gradually build up the design knowledge, we need to answer the following
questions: What are the problems organizations face regarding DQ, and what are the
corresponding objectives for successful DQ tools?, What are the DPs to address these
objectives?, and How can these DPs be applied in an organization?.

The following four subsections will answer these questions and help other researchers
follow our conclusions and results [54]. We created two figures summarizing our results.
Figure 4.1 provides a holistic view of the accumulated design knowledge derived from
the four case studies. In Figure 6.1, we offer our consolidated results, comprising the
problem space, made up of DQ problems and meta-requirements, and the solution space
in the form of DPs.

4.1. Problem Identification & Meta-Requirements

Eliciting impactful design knowledge requires defining a specific research problem and
formulating objectives that future solutions should fulfill [64, 103]. A concretely de-
fined research problem helps to justify the value of our findings and makes it easier for
other researchers and practitioners to follow our line of reasoning [95]. Given a specific
research problem, we can further substantiate the problem space by formulating meta-
requirements that describe the objectives for successful DQ tools [55]. Following Peffers
et al. [95, p.55], the meta-requirements offer ”... a description of how a new artifact is
expected to support solutions to problems not hitherto addressed.”
We conducted three studies (papers I [12], V [113], and VI [10]) to investigate the DQ

problems organizations face more closely and understand the downsides of established
DQ tools. Paper I [12] presents the results of a case study in collaboration with an
automotive company. Our goal was to gain an in-depth view of the data management
problems at the process level and understand why established solutions fail to address
these problems. In response to this question, we conducted seven qualitative interviews
and uncovered six significant challenges for DQ and data governance. In paper V [113],
we investigated the deficiencies of DQ solutions from a general data engineering perspec-
tive. Using an SLR as the methodological basis, we created a data engineering reference
model comprising six phases and four layers and identified areas lacking support for DQ.
With a taxonomy of DQ functionalities and a systematic review of 18 commercial DQ
tools in paper VI [10], we derived emerging capabilities and highlighted current trends.
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The results showed that novel functional areas of DQ tools, such as automation, are
underdeveloped and require new solutions.
The three studies helped us reveal four main problems of DQ tools, which served as the

problem-centered entry to our research [64]. Throughout this dissertation, we confirmed
and addressed the identified problems in multiple cases. In the following subsections,
we describe the four main problems of DQ tools in detail and define the resulting meta-
requirements. We formulated the meta-requirements using ’should’ phrases, as suggested
by Offermann et al. [86], to indicate that DQ tools should fulfill these requirements to
become more successful. Table 4.1 summarizes our results and highlights the studies
and cases in which we observed the respective problem.

Table 4.1.: DQ problems and corresponding meta-requirements.

Identified In
DQ Problem Meta-Requirement Papers Cases

Automation
MR1 : DQ tools should automate tasks to ensure
that data of different formats and sizes can be
quality-checked.

V, VI A, C

Integrability
MR2 : DQ tools should enable integration in dif-
ferent contexts to be usable in a distributed data
architecture.

I, VI B, C, D

Standards
MR3 : DQ tools should apply standards to en-
sure a common understanding of DQ is in place.

I C, D

Usability
MR4 : DQ tools should offer high usability to
become accessible for users from various back-
grounds.

I B, D

Automation
Rationale: The findings presented in paper VI [10] revealed that DQ tools face a need
for more automation, and the implementation of intelligent algorithms is a major trend.
Without automation, DQ tools cannot efficiently evaluate the quality of big and diverse
data sets, a capability that is vital for organizational success [36, 100, 109]. Commercial
DQ tools started to adapt to this need and increasingly incorporate AI and ML methods.
Automated error correction, DQ rule generation, or record linkage are examples of this
functional area [10]. However, despite big data becoming increasingly important, most
DQ tools focus on simple data errors and specific data sets or have limited options
for configuration. Automation and intelligent solutions are only partly supported and
often used for marketing purposes without clear documentation [10]. There is a need
for additional knowledge on how automation can be achieved in DQ tools and tackle
big data [109]. We confirmed the need for improved automation in all four case studies.
In particular, cases A and C dealt with handling big data and implementing new DQ
algorithms to overcome typical real-world data problems, such as sparsity and high
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dimensionality [4, 11]. As a result, we realized novel DQ solutions that helped the
partnering companies automate previously manual DQ tasks.
MR1: DQ tools should automate tasks to ensure that data of different formats and

sizes can be quality-checked.

Integrability
Rationale: The insufficient integration of DQ tools with associated tools and processes
is a problem we identified in almost all of our studies. In paper I [12], we observed that
DQ tools operating within a heterogeneous system landscape often remain detached and
insular. Consequently, users were frustrated as they faced the same errors multiple times
and spent much time with recurring DQ work. Generally, we observed that a central DQ
tool is no longer sufficient in increasingly decentralized data architectures (e.g., Data
Mesh). A centralized solution cannot comprehend the large variety of requirements
raised by different business domains and stakeholders, failing to provide users with the
support they need [6]. As a result, the DQ work unravels, and each domain takes
care of its DQ. Naturally, this affects the design of DQ tools, which need to become
easily integrable and adaptable to various technical environments [38, 56, 10]. This
way, organizations can avoid operating several different DQ tools and, at the same
time, ensure that DQ work follows shared guidelines and rules. As a concrete example,
Geisler et al. [48] suggest the creation of knowledge-driven data ecosystems that support
quality checks in multiple data domains. The DQ tools in case studies B, C, and D
were confronted with different application landscapes and realized various aspects of the
integrability requirement.
MR2: DQ tools should enable integration in different contexts to be usable in a dis-

tributed data architecture.

Standards
Rationale: The aforementioned decentralization of data architectures and DQ tools raises
a need for suitable and commonly agreed standards. Standards can help to establish
a shared understanding of quality metrics and how they are measured [48, 56]. Other-
wise, it would be difficult for users without data domain knowledge to understand what
certain DQ scores mean and how these should be interpreted. Following Geisler et al.
[48], standards must be flexible and combine global guidelines with domain-specific DQ
definitions to be accepted by all stakeholders. In paper I [12], we observed a lack of
standardization regarding DQ definitions and data governance practices, which resulted
in high data-cleaning efforts. Some companies tackle this complexity by applying a
’consulting approach’ to DQ [117]. In this approach, a team of internal or external DQ
experts validates data sets against manually derived DQ rules. However, this method
is of limited scalability, time-consuming, and expensive [8]. Throughout case studies C
and D, we experienced that standards are vital for the success of inter-organizational
collaborations and data exchanges. In these scenarios, all partners must share the same
DQ definitions to avoid a significant communication overhead in resolving quality issues
and allow for efficient cooperation.
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MR3: DQ tools should apply standards to ensure a common understanding of DQ is
in place.

Usability
Rationale: The trend for data products that are managed and engineered in a distributed
fashion led DQ to become less IT-centric and, instead, a joint effort involving stakehold-
ers from various parts of the organization [38, 10]. This means DQ is no longer solely
achieved by a highly skilled team but is a concern for everyone offering data, raising a
need for improved usability of DQ tools. In paper I [12], we witnessed how low usability
can impair the success of DQ tools. The users were missing transparent and clearly
defined DQ workflows in their current tool, which led to a low responsibility for DQ
among the workforce [8, 6]. Moreover, in cases B and D, we observed that users without
data science expertise had difficulties comprehending DQ scores and taking adequate
action [8, 6]. We reasoned that DQ tools must become accessible to a much larger user
group and offer a suitable UI, including suggestions for improving DQ, algorithmic ex-
planations, and feedback mechanisms [10]. So far, there is little research on the usability
of DQ tools in the scientific literature. However, such features can lower the barrier to
DQ and facilitate the tool’s long-term success.
MR4: DQ tools should offer high usability to become accessible for users from various

backgrounds.

4.2. Design Principles

Building DQ tools that address the described meta-requirements is a complex issue, as
the prescriptive know-how to build such tools is currently missing. This section tries to
close this research gap by proposing 13 DPs based on the design decisions and experiences
we made in four industrial case studies that were concerned with building DQ tools (see
Table 3.1). The presented design knowledge accumulates the findings presented in these
case studies by following the cross-case analysis approach described in section 3.3. Figure
4.1 depicts the final result of the cross-case analysis and summarizes the accumulated
design knowledge. The figure shows similar design elements in the same row alongside
the corresponding DP in the accumulated design knowledge. Please note that the figure
contains DP3 of Case D twice, as the DP described two different design elements. We
highlighted the relevant aspect of the DP in bold.
Using the identified meta-requirements as a basis, we structured the DPs into four

subsections. For each DP, we provide a definition and an explanation. To better op-
erationalize the DPs and decouple them of their high level of generalizability, we offer
concrete usage examples based on our case studies and a description of organizational
implications. The findings can serve as a guide for implementing customized solutions
and help practitioners evaluate offerings in the market.
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Figure 4.1.: The accumulated design knowledge for data quality tools.
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4.2.1. Automation

The first meta-requirement addresses the need for more intelligent and automated ap-
proaches to DQ, for example, using AI or ML algorithms. Considering the growing
importance of big data, it has become necessary to automate parts of the DQ life cycle
to cope with more extensive and diverse data sets [109, 24]. Otherwise, companies would
be overwhelmed by the amount of manual DQ work, which often results in insufficient
DQ coverage [4, 8]. To address this meta-requirement, we formulate four DPs that DQ
tools should realize (see Table 4.2).

Table 4.2.: Design principles for automation in DQ tools.

Aspect Design Principle / Application Example

Efficiency

DP1: Provide the DQ tool with intelligent algorithms for users
to identify DQ issues efficiently, given that the training data and
know-how to train such algorithms are available [4, 8, 11, 6].
Example: We used an SVM-based concept drift analysis to identify
inconsistencies that occur over time in semi-structured sensor data
(Case C).

Robustness

DP2: Provide the DQ tool with robust algorithms for users to
conduct DQ validations on data sets varying in size and format,
given that different data sets are in use [4].
Example: We implemented the Apriori algorithm, which is capable
of handling high-dimensionality and free texts and could maintain
a short execution time (Case A).

Coverage

DP3: Provide the DQ tool with multiple algorithms for users to
find different data errors and DQ rules, given that the error types
in the data set are unknown [4, 8, 6].
Example: We used multiple algorithms to identify several kinds of
data errors at the schema and instance level of data at once (Case
A).

Real-Time

DP4: Provide the DQ tool with a real-time error detection func-
tionality for users to be automatically informed of DQ issues, given
that the data set is volatile [8, 11].
Example: The case did not offer native real-time support. Instead,
we received batches of data over HTTPS in regular intervals, trig-
gering the DQ analysis (Case C).
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DP1 - Efficiency
Provide the DQ tool with intelligent algorithms for users to identify DQ issues

efficiently, given that the training data and know-how to train such algorithms are
available.

Explanation: There is a clear trend for DQ tools to become more efficient by imple-
menting intelligent AI and ML algorithms [10]. Using such methods can help automate
the DQ life cycle, reduce the amount of manual DQ work, and increase the DQ coverage.
For instance, DQ tools can learn from past errors and improve the error detection rates
in new data. The results can be further enhanced when multiple data sources are com-
bined, as in contextual ML [2]. Although relevant in all cases, only case A mentioned
efficiency explicitly. The reference in case A and the trend for efficient algorithms in DQ
tools described in the literature (e.g., [10, 116]) convinced us to include the DP in our
result.

Example: Generally, intelligent algorithms can be separated into supervised and unsu-
pervised approaches, depending on whether they require training data. In all four cases,
we used unsupervised algorithms as no training data was available in the respective in-
dustrial context. For instance, in case C, we implemented a concept drift analysis based
on an algorithm developed in paper II [5]. Our proposed algorithm extends established
concept drift approaches by incorporating an SVM-based classifier, making the concept
drift analysis available to high-volume data streams [5].

Organizational Implication: On a general level, several studies derived data-related
challenges organizations should address to boost the success of data science initiatives
(e.g., [56, 13, 113]). Regarding DQ, organizations need to gain an understanding of
their AI/ML capabilities and match them to their DQ requirements. For example, using
supervised error detection methods requires an adequate amount of labeled training
data. Moreover, the success of intelligent DQ relies on the availability of employees with
the required expertise. Besides DQ experts and data scientists, this includes several
other roles along the data engineering pipeline [113].

DP2 - Robustness
Provide the DQ tool with robust algorithms for users to conduct DQ validations
on data sets varying in size and format, given that different data sets are in use.

Explanation: The data landscape within organizations diversifies and can feature
relational databases, data streams, unstructured logs, and many more data sources [38].
Each data type poses new requirements on DQ tools and requires different handling
[109]. It is critical for a DQ tool to handle diverse data sets of varying size, complexity,
and format [24]. The robustness can be achieved by offering multiple scalable algorithms
for different kinds of data [4].
Example: In case A, we faced high-dimensional data sets that combined tabular and

free text data. We conducted a systematic review of suitable algorithms for generating
DQ rules and decided to implement the Apriori algorithm. It can handle such data and
does not require prior training [4].
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Organizational Implication: To realize robust DQ tools, organizations should review
and categorize their data sets and select suitable DQ algorithms. As a prerequisite,
organizations must understand what their data looks like and what DQ tasks they want
to achieve. For typical data profiling tasks, Abedjan et al. [1] offer a survey that can
act as a starting point for categorization. A human-in-the-loop approach to DQ can
be beneficial in more complex situations, such as many different data sets or a lack of
suitable algorithms [10]. Hereby, simple issues can be automatically corrected, while
complex problems are remediated for manual review.

DP3 - Coverage
Provide the DQ tool with multiple algorithms for users to find different data errors

and DQ rules, given that the error types in the data set are unknown.

Explanation: DQ tools must cope with varying data sets and offer broad coverage to
address multiple use cases and stakeholders [91]. For this purpose, they must implement
several algorithms to automatically assess the quality of a data set along multiple quality
dimensions (e.g., completeness, accuracy, timeliness, etc.) [118]. This allows users to
obtain a comprehensive view of the DQ and derive suitable actions.
Example: We combined the Apriori algorithm with an SVM-based algorithm in case

A to identify quality issues on the schema and instance level of the data simultaneously
[4]. This combination was necessary to fulfill the needs of two different data consumers
interested in DQ rule compliance and completeness scores.
Organizational Implication: Building up DQ coverage implies that organizations de-

velop an understanding of their DQ problems. For example, Rahm and Do [98] distin-
guish between single and multi-source and schema and instance-level DQ problems. Ge
and Helfert [47] take a different perspective and differentiate between context-dependent
and context-independent DQ issues. With a classification of relevant DQ problems, or-
ganizations can identify and implement algorithms that address these problems and offer
a DQ tool valuable for different users [91]. Moreover, it is essential to carefully review
the internal functioning of DQ tools, as the steps in which a DQ analysis and curation
take place can influence the results [2]. For example, a preceding deduplication can affect
the completeness analysis of a data set [4].

DP4 - Real-Time
Provide the DQ tool with a real-time error detection functionality for users to be

automatically informed of DQ issues, given that the data set is volatile.

Explanation: Real-time data streams are on the rise and are leveraged by organizations
for real-time data analytics [27]. According to Dehghani [38], a unification of batch and
data stream processing is currently taking place that will further increase the importance
of data streams for organizations. These developments invoke a need for integrating data
streams into organizational data architectures and include them in DQ management
efforts [56].
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Example: We experienced the growing importance of data streams in cases B and C.
Although no real-time data stream was present in either case, both partnering companies
mentioned the need for real-time DQ checks in the future. Consequently, we argue
that DQ tools should offer real-time error detection capabilities such as real-time data
profiling and validation [8, 110].

Organizational Implication: Organizations should evaluate the need for real-time DQ
checks based on their use cases. If there is a need, they must ensure that integration
with the DQ tool is possible (e.g., using messaging bus technologies) and implement suit-
able real-time error detection algorithms. Especially when organizations realize AI/ML
pipelines and related concepts such as MLOps, they should pay attention to real-time
DQ concepts. However, real-time DQ and data management are still in their infancy
and viable solutions are part of future work [27].

4.2.2. Integrability

To avoid isolating DQ work from established data management tools and processes and
effectively apply DQ tools in decentralized data architectures, they need to integrate
with different environments seamlessly [56, 48]. Improving the integrability of DQ tools
will support their use in different organizational and technical contexts. Integrable
solutions furthermore help democratize DQ work by making DQ tools available to more
stakeholders within and across organizational borders and dispersing the responsibility
for high-quality data [12]. Specifically, DQ tools should allow an integration on three
architectural layers: business processes, metadata, and technical (see Table 4.3).

DP5 - Business Process
Provide the DQ tool with capabilities that enable its integration with established
business processes for users to provide high-quality data to various processes, given

that multiple DQ-relevant processes are in place.

Explanation: Decentralized data architectures that connect different data domains are
becoming increasingly popular within and across organizational boundaries [38, 6]. This
trend implies that DQ tools need to integrate with different technical and organizational
contexts seamlessly, enabling their connection with the business processes of various data
providers [87, 44]. For instance, sharing high-quality data products is vital for successful
data ecosystems. Otherwise, data consumers could receive erroneous data, which can
deteriorate dependent business processes and mitigate trust [20, 12].
Example: In case D, we integrated our DQ solution into the data-sharing process of

the partnering company by offering suitable interfaces and data models [6]. As a result,
we embedded DQ in the data-sharing process, which helped avoid disjunct processes and
reduced manual DQ efforts as part of the sharing process.
Organizational Implication: To offer high-quality data internally and across organiza-

tional boundaries, organizations must include a DQ perspective in their business process
management and re-design efforts [87]. Specifically, organizations should develop crite-
ria to assess which business processes need DQ tool support based on factors such as
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Table 4.3.: Design principles for integrability in DQ tools.

Aspect Design Principle / Application Example

Business Process

DP5: Provide the DQ tool with capabilities that enable its in-
tegration with established business processes for users to provide
high-quality data to various processes, given that multiple DQ-
relevant processes are in place [6].
Example: We used Apache Camel as an integration framework to
closely integrate the DQ tool with a dataspace connector used for
data sharing (Case D).

Metadata

DP6: Provide the DQ tool with methods to store the DQ result
as metadata for users to establish a trail between the data set and
the DQ result, given that such a trail can be established [11, 6].
Example: Together with the project partner, we negotiated and
implemented a new metadata model to enable lineage between data
and the corresponding DQ result (Case C).

Interfaces

DP7: Provide the tool with well-documented and standardized
interfaces for users to integrate the tool in different technical envi-
ronments, given that a heterogeneous system landscape is present
[8, 6].
Example: Integrating with a data management suite already in
place was a crucial requirement. We thus reviewed the overall
system landscape to identify requirements and create suitable in-
terfaces in our DQ solution (Case B).

process costs or number of data flows [12]. Subsequently, they can conduct tests to
guarantee that integrating DQ tools in different data engineering processes is feasible
and contributes to their success [116].

DP6 - Metadata
Provide the DQ tool with methods to store the DQ result as metadata for users to
establish a trail between the data set and the DQ result, given that such a trail

can be established.

Explanation: Metadata management is among the common data management chal-
lenges, and a lack of it can impair the success of AI initiatives [56]. Moreover, the success
of data engineering in heterogeneous data landscapes and data ecosystems relies on the
availability of adequate metadata [48]. The metadata should include information on
the quality of a data set to assist data consumers in finding and selecting high-quality
data sets [11]. Especially when data consumers and providers are unfamiliar, quality
metadata is vital for data consumers to evaluate the usefulness of data efficiently.
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Example: To provide a common understanding of DQ metrics and their interpretation,
we negotiated and implemented a shared metadata model in case C. This was important
to create lineage between a data set and its quality scores and allow users to follow up
on data errors.
Organizational Implication: For organizations, it is crucial to ensure that the results

of DQ tools are compatible with their internal data models. Consequently, the DQ
metadata will not remain isolated but can help estimate data preparation efforts and
build trust in data sharing [6, 20]. Since metadata is often stored in a data catalog,
organizations might need to create possibilities for integration between the DQ and data
catalog solutions. Providers of commercial DQ tools identified the same requirement
and often offer DQ and data catalog solutions combined into a single tool suite [10].

DP7 - Interfaces
Provide the tool with well-documented and standardized interfaces for users to
integrate the tool in different technical environments, given that a heterogeneous

system landscape is present.

Explanation: The integration of business processes in DP5 necessitates the technical
integration of DQ tools with other tools. Nowadays, most organizations operate in a
heterogeneous system landscape featuring many different data stores and a variety of
software solutions [38]. New tools must integrate with the existing system landscape to
avoid being isolated from established processes and remain segregated [8]. A common
approach to meet this requirement is implementing a (micro) service-oriented architec-
ture and operating standardized and well-documented APIs. These enhance the agility
and flexibility of applications, allowing them to operate in a changing environment [8,
44]. Moreover, standardized interfaces are easier to operate and enable a seamless data
transfer [12].

Example: It was an essential requirement in case B to connect our DQ solution to
an established data management tool. Without the integration, users would have to
manually transfer quality results to the data management tool, resulting in a laborious
and cumbersome solution. To address this requirement, we reviewed the system land-
scape and implemented interfaces that adhere to the data models and communication
protocols specified by the data management tool.
Organizational Implication: Using the overview of DQ-relevant business processes de-

scribed in DP5 as a basis, organizations can review possibilities for integration between
the DQ tool and other applications it needs to communicate with. Application integra-
tion frameworks are suitable for simplifying the technical integration of different tools.
For example, Apache Camel [16] implements established enterprise integration patterns
and is suitable for realizing technical process integration.

4.2.3. Standards

While decentralized DQ work is increasingly common, DQ tools must still follow global
governance schemes and standards [38, 6]. These help DQ tools become more compre-
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hensible and adaptable to varying contexts. To improve standardization in DQ tools,
they need to address two requirements. First, the standardization of the DQ tool, and
second, the standardization of DQ definitions. Organizations can meet these require-
ments by realizing the DPs shown in Table 4.4.

Table 4.4.: Design principles for standards in DQ tools.

Aspect Design Principle / Application Example

Compatibility

DP8: Provide the DQ tool in a compatible format for users from
different contexts to benefit from DQ capabilities, given that the
DQ tool has users in various domains [11, 6].
Example: We prepared our DQ tool as an IDS Data App to ensure
its compatibility among participants of the IDS data ecosystem in
place (Case C).

Definitions

DP9: Provide the DQ tool with DQ standards for users to have
an agreed definition of DQ metrics, given that existing definitions
are ambiguous [6, 8].
Example: We extended the existing information model with DQ
metrics that we based on the DQV (Case D).

DP8 - Compatibility
Provide the DQ tool in a compatible format for users from different contexts to

benefit from DQ capabilities, given that the DQ tool has users in various domains.

Explanation: Trust is an essential building block for the success of any data collab-
oration [104, 20]. High-quality data is indispensable for creating this level of trust as
it ensures the accuracy of data-based decisions and avoids data preparation efforts [11].
Especially for data consumers who do not always have the necessary data domain knowl-
edge, it could otherwise be challenging to resolve data errors efficiently [6]. Technically
enforced quality checks are a means for realizing this functionality and can guarantee
that data meets the agreed standards in form and content [48, 6]. For this purpose, all
data providers need access to adequate DQ tooling, and the DQ tool must be compatible
with different organizational and technical contexts [116].
Example: We prepared our DQ tool in case C as an IDS data app, which defines

standards for software solutions participating in an IDS-based data ecosystem. These
standards include implementing specific interfaces, security measures, and deployment
options. Preparing our solution as a data app allowed its distribution over an ecosystem-
internal app store, making the tool available to all participants and supporting its pro-
liferation [92].
Organizational Implication: To provide compatible DQ tools, organizations need to

establish a global guideline for DQ tools as part of their data governance and manage-
ment activities. Especially when multiple stakeholders are involved, negotiating such
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standards can be difficult. In such cases, it can be beneficial to participate in an estab-
lished data ecosystem initiative (e.g., the IDSA [67]) and leverage the available standards.
However, even within a single organization, data ecosystems might be valuable to ensure
compatibility across business domains and overcome common data challenges [56].

DP9 - Definitions
Provide the DQ tool with DQ standards for users to have an agreed definition of

DQ metrics, given that existing definitions are ambiguous.

Explanation: The lack of harmonized information models and incompatible data sets
represent typical data management problems [27, 48]. They complicate data integration,
the operation of shared AI pipelines, and hinder data reuse. As a result, manual data
preparation work is usually high and causes significant costs [56]. The same applies to
DQ definitions, which are often ambiguous and interpreted differently by various stake-
holders. This makes it challenging to address DQ issues adequately and can damage
trust in the data. To avoid ambiguity and vague DQ definitions, organizations must
negotiate common DQ standards acceptable to all DQ stakeholders [48]. We only iden-
tified the need for definitions in case D, but its reference in other studies (e.g., [48, 56])
motivated us to add it to our results.
Example: In case D, we extended the metadata model in place with DQ metrics based

on the Data Quality Vocabulary (DQV) offered by the W3C. Using an open DQ stan-
dard helped all parties involved in the DQ life cycle to interpret quality measurements
correctly and create trust in the DQ solution.
Organizational Implication: Organizations must ensure that their DQ tools follow

standardized DQ vocabularies and information models. For example, the W3C [115]
and the ISO [69] offer frameworks to describe the quality of a data set in a structured
and commonly agreed way. Users can advance and customize these standards for the
intended purposes and use cases. For some industries (e.g., medical or automotive),
it can be valuable to refine these standards further and create an industry-wide DQ
standard.

4.2.4. Usability

Providing high-quality data is no longer a task for a specialized data management team
but rather a joint effort of data owners across the organization [38, 48]. Naturally, this
affects the design of DQ tools, which need to become accessible to a wider audience and
usable for people from different backgrounds [10, 8]. As a consequence, it is vital for
DQ tools to reduce their inherent complexity and offer an understandable and easy-to-
use UI. DQ tools should realize the following four DPs to address the need for better
usability (see Table 4.5).
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Table 4.5.: Design principles for usability in DQ tools.

Aspect Design Principle / Application Example

Comprehensibility

DP10: Provide the DQ tool with adequate DQ scores for users to
get an easily interpretable result, given that multiple DQ measure-
ments exist [6].
Example: We combined DQ scores for the DQ dimensions com-
pleteness, accuracy, and validity to a single score between zero and
one, which is easy to interpret by other users (Case D).

Convenience

DP11: Provide the DQ tool with a process-based user interface for
users to follow a structured DQ approach, given that no process
is in place [8].
Example: The DQ tool featured a single page application that real-
izes a process-based UI to restrain users from incorrect usage (Case
B).

Transparency

DP12: Provide the DQ tool with transparent descriptions of the
algorithms used for users to gain trust and understand their func-
tionality, given that there are users without data science knowledge
[6].
Example: We ensured that the implemented AI/ML algorithms are
well-documented and offered use case-specific exemplary outputs
and their possible interpretations (Case D).

Perspicuity

DP13: Provide the DQ tool with explanations of identified DQ
issues for users to understand and resolve DQ problems, given
that there are users without the necessary data domain knowledge
[8, 6].
Example: In discussions with the project partners, we selected DQ
methods that are semantically easy to interpret (e.g., DQ rules)
and favored these over black-box methods that are difficult to grasp
and can damage the trust in the results (Case B).

DP10 - Comprehensibility
Provide the DQ tool with adequate DQ scores for users to get an easily

interpretable result, given that multiple DQ measurements exist.

Explanation: DQ is a multi-dimensional concept and can be hard to comprehend for
users [118]. Data consumers who are unfamiliar with DQ definitions or lack data domain
knowledge can have trouble interpreting a low DQ score and deducing adequate actions
[48, 8]. In addition to detailed quality scores for different metrics, a DQ tool should
offer a simple and aggregated DQ score. This score abstracts the complexity and multi-
dimensional nature of DQ and is easy to interpret by data consumers [6]. It helps DQ
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to become more accessible, and consumers without in-depth data knowledge can quickly
evaluate the quality of a data set.
Example: The project partners in case D posed the requirement to combine DQ

metrics for completeness, accuracy, and validity to a single score between zero and one.
The single score helped users without the necessary expertise obtain an impression of
the DQ and inform them about potential data issues. In addition to the single score, we
included the three individual metrics in the DQ result so users can identify the origin of
a low DQ score.
Organizational Implication: Numerous DQ tools are available on the market, but they

often lack simple functionalities for defining DQ properties and rules, validating data,
and following up on data errors [110, 10]. For organizations, it is crucial to overcome
these downsides by identifying the relevant stakeholders and developing DQ metrics
that address the needs of the different users. They should include users from diverse
backgrounds in the tool design or review process and retrieve early feedback.

DP11 - Convenience
Provide the DQ tool with a process-based user interface for users to follow a

structured DQ approach, given that no process is in place.

Explanation: For any software tool, particularly for data-intensive tools, user accep-
tance is vital and significantly influenced by its UI [13, 110]. Since DQ used to be a
highly specialized task, the UIs of DQ solutions are often inconvenient, with high se-
mantic and syntactic barriers [110, 8]. Some solutions do not provide UIs at all and
offer their functionalities as application programming interfaces (APIs) that users can
integrate into their source code (e.g., Great Expectations [51]). This combination leads
to mixed code bases comprising DQ and application code, which are harder to main-
tain. Moreover, users must learn new APIs and invoke them to define DQ dimensions
and conduct evaluations [110]. These API-based DQ approaches make it difficult for
inexperienced users to get involved and contribute high-quality data. Consequently, a
DQ tool should offer easy-to-use functionalities for all steps of the DQ life cycle and
support established user workflows [8]. Only in case B did we experience the need for a
convenient UI. However, we still included the DP in the accumulated design knowledge
as the study of Alhamadi et al. [3] supports its importance.
Example: In case B, we implemented the DQ tool as a single-page application, which

ensures users follow a specific DQ pipeline. With the structured approach, we guarantee
that DQ tasks are executed in a given order. We also included functionalities for filtering
DQ issues to avoid users getting overwhelmed by the sheer number of quality problems
in their data sets. This feature offered the possibility to focus on specific problems and
proved to be a key success factor for the DQ tool.
Organizational Implication: The democratization of DQ work raises the need to inte-

grate DQ tools in established processes (see also DP5). It is crucial to ensure that DQ
tools have user-friendly UIs and follow established procedures to promote user adoption
and reduce training needs. Organizations could, for instance, implement low-code DQ
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tools that follow data-flow programming concepts. In a recent paper [74], we made a
first attempt in this direction. Generally, organizations should gather user requirements
and conduct usability tests with different user groups to realize convenient and suitable
DQ tools.

DP12 - Transparency
Provide the DQ tool with transparent descriptions of its algorithms for users to
gain trust and understand their functionality, given that there are users without

data science knowledge.

Explanation: Commercial DQ tools offered in the market often lack sufficient docu-
mentation and explanation of the algorithms used. In particular, AI and ML algorithms
are often used for marketing purposes, and vendors offer little information about their
internal functioning [10]. This lack of information makes it difficult for users to fine-tune
DQ tools for application in different scenarios [6]. Moreover, the results of black-box
algorithms are nontransparent and can damage users’ trust in the DQ results and impair
the tool’s success [27].

Example: The DQ tool we developed in case D featured detailed documentation and
usage examples based on data used in that case. With this, we helped the users of the
DQ tool to understand how DQ metrics were derived and reproduce results.
Organizational Implication: The need for transparency causes organizations to en-

sure that the algorithmic basis of DQ tools is understandable for its users. Offering a
DQ tool with sufficient and legible documentation can help users reproduce DQ results
and resolve the underlying data errors. The reproducibility of DQ scores is crucial for
resolving complex data errors that require remediation or cooperation of multiple busi-
ness domains. Moreover, organizations should follow the trend for explainable AI and
implement established concepts and approaches [22].

DP13 - Perspicuity
Provide the DQ tool with explanations of identified DQ issues for users to

understand and resolve DQ problems, given that there are users without the
necessary data domain knowledge.

Explanation: Following the previous DP, it is not only important to understand the
internals of the algorithms but also to ensure that users can interpret and understand
the results. Otherwise, it can be difficult to deduce suitable actions, and DQ problems
might not be adequately addressed [8]. For example, Swami et al. [110] realized this
requirement by offering a data validation report describing the results and essential
evaluation details. Such explanations are, furthermore, necessary for the remediation of
DQ issues to data domain experts as they can quickly grasp the DQ problems and come
up with possible solutions.
Example: The DQ solution in case B comprised several algorithms for data profiling

and quality rule generation. To derive DQ rules, we implemented the association rule
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learning algorithms Apriori and TANE. Of all implemented algorithms, these were best
received as their results are semantically easy to interpret and do not necessarily require
deep statistical or algorithmic knowledge.
Organizational Implication: Organizations should ensure that identified DQ issues are

well-explained and interpretable by the relevant stakeholders. Realizing this requirement
calls for conducting user acceptance tests and retrieving feedback on the perspicuity of
DQ issues by users from various backgrounds early on. Moreover, when applying AI-
based algorithms, it can be beneficial to include established guidelines for human-AI
interaction (e.g., by Amershi et al. [13]) in the DQ tool design process.

4.3. Action Guideline

DQ is a concern for any organization, and the presented DPs are valid for a class of
problem [64]. However, not all organizations are equal, and each organization must
become aware of its characteristics and DQ requirements to create impactful solutions.
With this knowledge, they can focus their resources on developing a design that fits their
operational context and implementing relevant DPs [73]. This is considerably important
for DQ tools as their design depends on the surrounding socio-technical context and usu-
ally requires a high degree of customization [10]. For example, an automotive company
might use high-velocity data streams, while a company from the food industry uses a
static set of product data. Real-time error detection capabilities are valid for both, but
it is presumably more critical for the automotive company. In designing and building
DQ tools, there will be few one-size-fits-all solutions, and organizations must prioritize
their efforts to address the business’ need for action. The prioritization helps them de-
sign and implement the DQ tools the organization needs and realize more successful DQ
initiatives.
The DPs we presented above can help build customized tools and enable the provi-

sioning of high-quality data to data consumers. To support practitioners with the design
and development of DQ tools, we follow the example of Azkan et al. [19] and aim to
translate our DPs into an action guideline. The action guideline comprises a set of rules
in a given sequence that practitioners can easily follow [30]. To create the action guide-
line, we rearranged, subdivided, and related the DPs to each other. This approach led
to an action guideline of six steps to help identify the DPs relevant to a specific case
(see Figure 4.2). We evaluated the proposed action guideline and our overall results by
applying it to an exemplary scenario (cf. Section 5.1).
To create the action guideline, we formulated statements that organizations can use to

describe their DQ requirements and assess their individual situation. If a statement ap-
plies, the corresponding DPs are likely relevant to the organization. The action guideline
also highlights cases where one DP raises the need to implement another. Such depen-
dent DPs are shown as second or third-level DPs in the figure. After running through
all steps an organization can make an informed decision about the DQ tool design and
implement a customized solution.
The action guideline serves as a simplified model for selecting the DPs most impor-
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tant to an organization. In any case, reviewing all proposed DPs and evaluating their
usefulness is valuable. In the following, we describe each step of the action guideline in
more detail and elaborate on our rationale.

DP1: Efficiency

DP2: Robustness

DP3: Coverage

DP4: Real-Time

DP5: Business Process

DP6: Metadata

DP7: Interfaces

DP8: Compatibility

DP9: Definitions

DP10: Comprehensibility

DP11: Convenience

DP12: Transparency

Action Guideline

DP13: Perspicuity

Step 1: Our data sets are too large to 

review manually  

Step 2: We have many different data 

sets and quality definitions  

Step 3: We use high-velocity data

streams  

Step 4: We share data outside our 

business domain  

Step 5: We have established 

processes and tools relevant for DQ    

Step 6: Our DQ tool has users from 

various backgrounds  

Design Principles

Figure 4.2.: Action guideline for designing DQ tools.

Step 1. In step one, the organization can differentiate on the volume of the data sets
they want to quality check. Once a company experiences that it fails to review data
manually and starts focusing on specific data sets, it requires automated and intelligent
solutions (we had a similar experience in case B). When facing high-volume data, effi-
cient curation and quality management are practically impossible for humans [109]. For
instance, a data scientist cannot review millions of images to assess potential inaccura-
cies or biases in the data. Efficient algorithms such as AI-supported data profiling or
deduplication become necessary DQ capabilities (DP1). However, using intelligent algo-
rithms comes with the need for transparency in the algorithms used (DP12). Following
up on DQ problems can be difficult without transparent algorithms, and other users will
have trouble replicating the results.
Step 2. Step two covers two DPs, which classify an organization based on the number

of different data sets and DQ metrics they want to address. If an organization wants to
assess the quality of different data types (e.g., tabular, text, images, etc.), the robust-
ness of a DQ tool becomes relevant (DP2). Often, varying data types require different
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algorithms or configurations. For example, our concept drift algorithm is suitable for
profiling sensor streams but is of no use for profiling images [5]. Moreover, if an organiza-
tion aims to analyze data along multiple DQ dimensions, a DQ tool should feature a high
DQ coverage (DP3), which requires different algorithms. Naturally, a high DQ coverage
implies that the different DQ dimensions are concretely defined (DP9). In other words,
organizations need to determine their DQ requirements and find the optimal algorithmic
basis. In this way, they can fully protect their data sets and contribute significantly to
the success of data-intensive applications [113].
Step 3. In step three, an organization can indicate the use of high-velocity data

streams. The continuous monitoring of quickly changing data can be vital for businesses
for various reasons, including identifying machine failures or spotting changes in the
accuracy of ML models [27]. If an organization aims to quality-check such data, it
requires real-time DQ capabilities (DP4).
Step 4. Step four includes deciding what data domains take part in data engineering.

When multiple data domains (e.g., cooperative data engineering [11] or data repurposing
[48]) are involved, they need access to the DQ tool to conduct DQ tasks at the source
[38]. To address this requirement, the DQ tool should come in a compatible format to
allow its efficient use by data providers (DP8). However, this decentralization of DQ
work raises the need to negotiate shared metadata models that feature DQ information
and are feasible for different types of stakeholders (e.g., SMEs, enterprises) [48]. Without
a DQ-enhanced metadata model, data consumers would have difficulties finding high-
quality data sets. Since users from other data domains lack the data domain knowledge
of the data provider, it is crucial to offer an explanation of DQ issues for a high level of
perspicuity (DP13). A high perspicuity allows other users to understand the composition
and rationale of a DQ score.
Step 5. The fifth step delves into an organization’s system and process landscape.

The success of a DQ tool relies on its capability to integrate with established tools and
processes as an integration avoids the isolation of DQ work. To approach these two
aspects, step 5 comprises two DPs. First, an organization should evaluate the need to
connect a DQ tool with established business processes (DP5). Business process manage-
ment and re-design initiatives are suitable for solving this task [87, 38]. The integration
in different business processes calls for offering a convenient UI that supports and in-
tegrates with established user workflows (DP11). Otherwise, the DQ tool creates new
barriers in the process execution, and user acceptance might be impaired. Second, the
DQ tool must allow technical integration with existing tools and databases by applying
standardized technologies and integration frameworks (DP7) [12].
Step 6. In the sixth and final step, the organization should review the homogeneity

of the intended DQ tools user base. DQ tools are typically designed for a small team of
highly-skilled employees having deep technical knowledge [10, 116]. This knowledge is
often absent in other parts of the organization, such as at the data source or in external
data domains [38, 48]. A DQ tool must provide DQ results that are comprehensible and
easy to interpret by various users to tackle this issue (DP10).
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The evaluation represents an essential component of rigorous DSR initiatives [114].
Given the goal of design science to address an ”unsolved and important business prob-
lem” [64, p.84], DSR results must be impactful and relevant for practice. The practical
relevance ensures that DSR results can inform the design of real-world solutions and
help organizations overcome business problems [95]. To evaluate the accumulated de-
sign knowledge presented in this thesis, we followed the example of Janiesch et al. [70]
and conducted a two-tiered evaluation by combining artificial and naturalistic evaluation
strategies [114]. Our evaluation approach consists of (1) a scenario-based demonstration
using a representative setting and (2) a group discussion on the reusability of the DPs.
The summative evaluation of our overall results extends the individually evaluated case
studies and helps us ensure our accumulated DPs are complete, valid, and impactful.
The two-tiered evaluation process furthermore secures that practitioners and DQ system
designers can reuse our DPs to create new DQ tools in their contexts [68].
The scenario-based demonstration shows that our results can support the creation

of new DQ artifacts and helps us identify potential improvements [114]. We selected a
descriptive evaluation technique as it is well-suited for demonstrating the applicability of
our DPs in a representative case. The group discussion on reusability offers insights
into the practical relevance and value of our DPs for DQ system designers. For this
evaluation step, we relied on the framework by Iivari et al. [68], who suggest the following
five criteria for assessing the reusability of DPs: (1) accessibility, (2) importance, (3)
novelty and insightfulness, (4) actability and guidance, and (5) effectiveness.

5.1. Scenario-Based Demonstration

Since the design knowledge we present in this thesis aims to address new and emerging
DQ requirements, we decided to base the demonstration on an artificial scenario instead
of an implemented prototype [114]. Although the described scenario is artificial, we
informed it with insights gathered from recurring real-world cases and throughout our
DQ research. As a result, the scenario is typical for organizations experiencing problems
with their DQ work and represents their line of thought.
For the evaluation scenario, we investigate the exemplary case of a company operating

an electrical network infrastructure called ECo. ECo controls the local power grid system
and ensures that the power supply is distributed evenly across the network. To work
efficiently, ECo relies on accurate relational master data containing information about
customers, suppliers, and devices, among others. Based on the historical build-up of the
company, ECo has several distributed and heterogeneous master data sets in place that
complicate efficient data management. Table 5.1 shows an exemplary material data set
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for the case of ECo. Additionally, ECo operates numerous sensors that help maintain
the safety and security of the network. The sensors provide numerical values in different
time intervals. To benefit from their data sets and promote data-based business models
and innovation, ECo takes part in an IDSA-based energy data space and shares master
data on the operated energy grid with a few external companies. In the future, ECo
wants to promote data sharing and exchange real-time data streams with a larger and
more diverse set of partnering companies.

Table 5.1.: Exemplary, artificial data of the ECo material master data set.

ID Description Type Size Weight Location Unit

0001 Container 18x20 1122 Other 20 1kg W1 Each
0002 Thermostat (NEW) 5633 Safety W1 Each
0003 Flow sensor (ctrl) 4561 CtrlSys 5 10g W1 Each
0004 10 CABLE 40MM 1234 Assembly 40 500g W2 PCS
0005 Heater M12 1122 Other 10kg W1 Each
0006 Screw 100pcs 1234 Assembly 5 1.5kg W2 PCS

ECo operates a centralized data management suite that supports general data man-
agement and governance tasks but only covers a fraction of ECo’s data sets. Whenever
data scientists or engineers use data sets, they perform manual quality checks, resulting
in a reactive approach to DQ. ECo noticed this approach is time-consuming, expensive,
and error-prone. To overcome these downsides, ECo envisions a universal DQ tool that
supports different employees (e.g., data owners, scientists, or DQ experts) in ensuring a
high level of DQ. The intended DQ tool must address the heterogeneous data landscape
at ECo and allow different teams to model their DQ requirements while following global
guidelines. Consequently, ECo aims to distribute the tool using an internal applica-
tion marketplace. Despite being a fictitious company, we argue that ECo is a typical
case of an organization afflicted by insufficient DQ tooling and, thus, well-suited for the
scenario-based demonstration of our results.
To create a high-level DQ tool for the described scenario, we applied the action guide-

line described in section 4.3. Following the action guideline helps us consider all aspects
relevant to DQ tools and structure the design process. Moreover, it allows us to evalu-
ate the action guideline by reflecting on its usefulness and accessibility. In the following,
we describe each step of the action guideline by applying it to ECo’s scenario. We
highlight necessary architectural components and the corresponding DPs in italics. The
architectural components represent an exemplary realization of the DPs.

Design Process
Step 1. Our data sets are too large to review manually. In ECo’s case, we can differen-
tiate two types of data sets: relational master data and sensor data streams. Although
a manual DQ review of master data sets is possible, this process would be cumbersome
and lead to significant overhead for the data management team. Given the high velocity
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and number of sensors, a manual review is impossible for the sensor data streams. We
look closer at the implications of sensor data streams for DQ tools in step 3. To qual-
ity check the master data sets, ECo should implement algorithms that automatically
derive contextual and content-based DQ rules for the data sets in place (DQ Rule Gen-
eration, DP1 ) (e.g., Apriori algorithm, Cardinalities). The algorithms should generate
rules based on the form and content of the data and allow for configuration to different
settings. For instance, a rule could specify that materials of type ’1234 Assembly’ must
feature location ’W2’ and unit ’PCS’. Moreover, ECo’s employees should be able to
define custom rules and import/export DQ rules for reuse and collaborative work (DQ
Rule Definition, DQ Rule Repository, DP1 ) [74]. In addition to reusing DQ rules, ECo
must ensure the transparency of the algorithms used to help employees understand the
results and customize the algorithms. ECo can realize this requirement by offering hints
and textual explanations of the algorithms, including exemplary results (Explanation,
DP12 ).
Step 2. We have many different data sets and quality definitions. As a company with

a heterogeneous data landscape, ECo uses various data sets, and many stakeholders are
involved in data management activities. As a result, ECo must ensure that the applied
DQ algorithms are not limited to specific data sets and can address different require-
ments. For instance, since ECo aims to quality-check master data sets, the algorithms
should work on material and customer data, which vary in terms of dimensionality,
volume, and data types. Even within single data sets, there might be obstacles, such
as missing data or different value categories (e.g., different weights in Table 5.1). The
DQ algorithms must be able to comprehend such typical real-world data problems [8].
Furthermore, the algorithms should be able to identify quality problems in multiple DQ
dimensions as ECo aims to obtain a holistic view of their data sets. Consequently, the al-
gorithmic stack must feature a variety of algorithms to cover the DQ dimensions relevant
to ECo, while being able to work with heterogeneous data sets (DQ Measurement, DP2
and DP3 ). Possible algorithms include SVMs, Outlier Analysis, or the Apriori algo-
rithm [4]. However, operating a variety of DQ algorithms can lead to unclear and vague
definitions, thus requiring the establishment of shared and standardized DQ definition
DQ Definitions, DP9.

Step 3. We use high-velocity data streams. Managing numerous data streams, ECo
has to consider two aspects in the design of its DQ tool. First, integrating sensor
data streams requires using suitable interfaces to allow for a DQ analysis of the data
streams (Real-Time API, DP4 ). Implementing message bus and broker technologies
(e.g., Apache Kafka, Message Queuing Telemetry Transport (MQTT)) are suitable for
addressing this requirement. Second, ECo must extend the algorithmic stack with al-
gorithms that can handle data streams. These algorithms should be highly scalable to
identify quality issues and enable the continuous validation of data streams (Real-Time
Validation, DP4 ). For instance, to assess the accuracy of their sensor data streams,
ECo could conduct a concept drift analysis [5]. Continuous data monitoring helps de-
tect quality issues early and avoid potential service interruptions, such as power outages.

Step 4. We share data outside our business domain. Since ECo shares data in
an IDSA-based data space, they must ensure that DQ information is accessible and
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understandable for all potential data consumers, who might be unknown at the time
of designing the tool. Consequently, the intended DQ tool should offer compatibility
by adhering to ecosystem-wide standards and guidelines. Most importantly, the DQ
tool requires integration with a data space connector, representing the gateway to the
data ecosystem. To fulfill this requirement, ECo must review and implement suitable
interfaces and metadata models that effectively communicate DQ results (Connector
Interface, DP8; Shared DQ Metadata Model, DP6 ). For the IDSA-based energy data
space ECo participates in, this implies that ECo must follow the information models,
data space protocols, and data app definitions offered by the IDSA [91, 67]. Additionally,
ECo should clarify identified DQ issues in a way that is understandable to data consumers
who may be unfamiliar with the data domain, so that they can take appropriate actions.
To realize this requirement, ECo can extend the algorithmic explanations (cf. Step 1)
and provide details on identified DQ issues (Explanations, DP13 ).

Step 5. We have established processes and tools relevant to DQ. In addition to the
inter-organizational perspective offered by the data space, ECo must consider internal
data consumers and DQ-relevant business processes. In ECo’s case, this requires integra-
tion with the established data management suite and implementing suitable interfaces
(REST API, DP7 ). Storing DQ information in multiple systems (i.e., data space con-
nector and data management suite) calls for harmonizing the different metadata models.
The harmonization allows making the same DQ information available to internal and ex-
ternal data consumers (Shared DQ Metadata Model, DP5 ). Integrating a DQ tool with
multiple business processes necessitates a simple and seamless UI accessible to people
of various backgrounds. For instance, correcting data errors in the exemplary material
master (see Table 5.1) requires knowledge of the material domain and is easiest for ma-
terial experts. ECo can approach this requirement by implementing low-code UIs that
enable the specification of enterprise-wide DQ workflows, for example, by leveraging
data-flow programming frameworks such as Node-RED (DQ Workflows, DP11 ) [74].
Step 6. Our DQ tool has users from various backgrounds. At ECo, heterogeneous

teams, including members from various organizational units, are responsible for data
management and analysis tasks. This diverse user group has varying interpretations of
DQ metrics and measurements. Consequently, ECo must develop adequate DQ metrics
comprehensible for the users of the DQ tool (DQ Scoring, DP10 ). In its simplest form,
this can be a normalized DQ score on a scale of 0 to 1, which abstracts the measurements
of multiple DQ dimensions. For this purpose, ECo must develop weightings for the
individual DQ metrics and determine how these contribute to an overall score. A detailed
DQ report can summarize different DQ results and offer potential solutions and hints
for resolving quality problems (Reporting, DP10 ).

Reflection
The high-level software architecture displayed in Figure 5.1 summarizes the identified
architectural components necessary for realizing the described DQ tool. We based the ar-
chitecture on the reference architecture for DQ tools proposed in paper IX [7]. Evaluating
our accumulated design knowledge and the proposed action guideline with a scenario-
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Figure 5.1.: High-level DQ tool architecture based on the requirements by ECo (adapted
from paper IX [7]).
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based demonstration revealed the benefits and shortcomings of our results, which should
be considered in future research.
We identified the following benefits. First, the proposed DPs are complete and suitable

for designing a full-featured DQ tool, as shown in Figure 5.1. The DPs offer insights
into the different architectural layers of software applications and help address the meta-
requirements of DQ tools, thus enabling the creation of successful tools. Second, the
action guideline offers a structured process for designing DQ tools. The staggered ap-
proach helps consider the relevant aspects of DQ tools and can support the tool designer
in developing a suitable solution. Third, the DPs are well-balanced as they offer flexi-
bility for application to new use cases (e.g., the scenario of ECo) but provide concrete
hints for potential implementation options.
In addition to the described benefits, we revealed the following shortcomings. First,

we observed that the action guideline has multiple dependencies, and different steps can
address the same architectural components. For example, steps 4 and 5 call for establish-
ing a metadata model. In response, it might benefit an organization to consider the DPs
individually or in a different order. We extended the description of the action guideline
in section 4.3 accordingly. Second, in ECo’s case, integration with various systems and
data sources posed a crucial requirement. Our design knowledge addresses the technical
integration in DP7 (Interfaces). However, the DP focuses on documentation and might
not offer enough detail to design a technically viable solution. Future research should in-
vestigate the aspect of technical integration more closely. Third, organizations like ECo
are confronted with DQ work in several scenarios. The described DQ tool summarizes
our response to the requirements raised by ECo. It can be beneficial to design multiple
DQ tools specializing in certain DQ aspects (e.g., DQ scoring or validating data streams)
and apply these on different architectural levels (e.g., centralized or at the Edge). We
aim to conduct further research on distributing DQ tools and varying their design based
on specific use cases as part of future work.

5.2. Group Discussion on Reusability

The practical relevance of design knowledge generated in DSR studies is vital for their
success [114]. Since practitioners are usually responsible for designing and implement-
ing the intended artifacts, securing the reusability of DPs is crucial [68]. To ensure the
reusability of our DPs, we conducted a focus group discussion with five practitioners
working in different roles of DQ management. To assess the perceived reusability, we
relied on the light reusability framework by Iivari et al. [68]. We selected the framework
as it offers a lightweight approach to getting practitioner feedback and can offer first
insights before performing more in-depth evaluations, such as prototypical implemen-
tations [114]. Moreover, we conducted a focus group discussion as they are generally
well-suited for quickly gathering information while mirroring the social interactions and
conversations of the participants [76, 65]. As a result, focus groups are high in external
validity and can offer in-depth insights into complex phenomena [65].
Table 5.2 provides an overview of the participants who took part in the group discus-
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sion. The participants sufficiently represent the target community of our DPs (i.e., DQ
system designers) and can offer valuable feedback on the usefulness of our DPs. The
group discussion took place as part of an on-site workshop in April 2023 and lasted three
hours. During the discussion, we explained each DP described in section 4.2 and pro-
vided an exemplary instantiation from one of our cases. Afterward, we put the DP up
for discussion and used the template questionnaire offered by Iivari et al. [68] as a basis
for structuring the conversation. In the following, we present the summative results for
each reusability criterion.

Table 5.2.: Participants of Group Discussion.

ID Role Industry Experience

A Senior Consultant IT Consultancy > 10 years
B Data Management Public Sector 5 years
C System Architect Public Sector > 10 years
D Junior Consultant IT Consultancy < 2 years
E Data Engineer Manufacturing 8 years

Accessibility. The accessibility criterion relates to whether the target community
can understand and comprehend the DPs individually and collectively [68]. Some par-
ticipants received the proposed DPs as ”vague” or ”too abstract”. One participant
highlighted DP2 (Provide the DQ tool with robust algorithms for users to conduct DQ
validations on data sets varying in size and format, given that different data sets are
in use) as a concrete example, asking what ’robust algorithms’ are. A wording that
is not specific risks that the DP might remain unnoticed by the target community.
We addressed this issue by offering concrete examples and highlighting potential imple-
mentation options and organizational implications for each DP. For the broad field of
general-purpose DQ tools, it is challenging to formulate more specific DPs while still
addressing the general class of problem. Future research could develop more specific
DPs for particular industries or application scenarios, using our set of DPs as a basis.
Importance. A DP is considered important when the real-world business problem it

addresses is essential and acts as a starting point for a possible solution [68, 102]. Con-
sidering that we based our DPs on real-world case studies, we can assume they address
business problems important to the partnering companies. In the focus group discussion,
we aimed to assess whether the participants perceived the accumulated set of DPs as
important. We received mostly positive feedback, and the participants considered all
DPs necessary for creating successful DQ tools. Nevertheless, there was some contro-
versy about the relative importance of certain DPs when compared to each other. Some
participants (B and E) weighted the DPs related to automation (DPs 1-4) as more sig-
nificant than the remaining ones. A different participant (D) stated that ”DQ is mostly
a standardization problem” and valued the corresponding DPs as more important.

Novelty & Insightfulness. Novelty and insightfulness assess whether the DPs can
convey new ideas and insights to the practitioners’ daily practice [68]. Asking the par-
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ticipants if the proposed design knowledge sheds new light on handling DQ issues, we
received mixed feedback. Most participants agreed that, individually, the DPs are of
limited novelty and instead represent a current state of the art. However, all partici-
pants confirmed that, in combination, the DPs offer novel insights into the field of DQ
tools. The combination of functionalities and capabilities from various scientific disci-
plines (e.g., human-computer interaction and data management) is unique and offers an
interdisciplinary approach to creating DQ tools. This approach is new to a field that
has been predominantly technical or organizational and tackled by multiple teams si-
multaneously. Future research should deepen the interdisciplinary aspect of DQ tools
and develop new and innovative approaches.
Actability & Guidance. The actability and guidance criterion specifies whether a

practitioner can effectively and realistically implement a DP in practice [68]. All partic-
ipants noted that the DPs often offer limited guidance for realizing a DP in real-world
scenarios, and further work and creativity are necessary to make a DP ”implementa-
tion ready”. For example, DP1 (Efficiency) specifies the use of ’intelligent algorithms’
without defining what these are. This lack of concrete guidance results from the broad
application field for DQ tools, and more specific DPs would be too restrictive. We ad-
dressed the balance between generalizability to the high class of DQ tools and concrete
guidelines by providing implementation examples for each DP. Future work could im-
prove the actability by extending the abstract DPs into more specific design patterns,
offering concrete implementation guidelines for certain aspects of DQ tools (e.g., real-
time data validation). In contrast to the individual DPs, the participants agreed that
the accumulated design knowledge offers guidance for designing DQ tools in general.
Moreover, the participants noted that the proposed design knowledge is actable as it
helps consider essential functional aspects during the design process. For instance, par-
ticipant A stated, ”the DP overview is well-suited as a checklist for the functionalities a
DQ tool should have”.
Effectiveness. The effectiveness relates to the effects or consequences of reusing a set

of DPs in practice. A rigorous assessment of the efficacy requires naturalistic approaches
and measuring the performance of a tool over a longer period [68, 114]. Tallied with the
approach of Iivari et al. [68], we rather asked the participants to estimate if our DPs could
lead to a more successful DQ tool compared to their current DQ tooling. All participants
agreed that the proposed DPs address relevant meta-requirements and their DQ tools
in place could not adequately handle trends such as distributed data landscapes or big
data. In this regard, all participants believed the DPs could contribute to creating more
effective DQ tools. In particular, the participants liked the idea of our action guideline,
as it helps organizations come up with the DQ tool most effective in their respective
contexts.
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Operating on high-quality data is vital for organizational success [100]. Among others,
it is a prerequisite for automated decision-making, enables seamless business operations,
and helps build competitive advantages [100, 35, 36]. DQ tools play an essential role in
supporting the DQ work in light of ever-growing amounts of data [109]. However, the
organizational (e.g., locally managed data products [38]) and technical (e.g., the rise of
big data [109, 24]) environment changes, posing new requirements on DQ tools. In this
thesis, we addressed the lack of prescriptive design knowledge for creating successful DQ
tools by outlining the problems and meta-requirements DQ tools face (problem side) and
formulating DPs to address these requirements (solution side). To populate the solution
side, we accumulated the design knowledge generated in four case studies concerned with
implementing DQ tools in real-world contexts.
To conclude this thesis, we cover three aspects. First, we answer the initially proposed

research questions and point out limitations in our results. Second, we summarize our
contributions to the relevant managerial and scientific communities. Finally, we present
an outlook on how our research on DQ tools can continue and lay out potential paths
for future work.

6.1. Answers to Research Questions

Using the presented research results, we can now conclude this thesis by answering the
research questions raised in section 1.3. For both questions, we will recap the research
approach, summarize our results, and highlight their limitations. Figure 6.1 summarizes
our results for both research questions. The consolidated data structure comprises the
DQ problems and meta-requirements on the problem side (RQ1) and the corresponding
DPs on the solution side (RQ2).

RQ1: What are the objectives for successful data quality tools?

We answered this research question with three studies (papers I [12], V [113], and VI
[10]). In combination, the three studies offered us an in-depth view of the downsides of
current DQ approaches based on practical and scientific insights. We increased the ro-
bustness of our findings by applying different research methods to the same phenomenon
[41]. Paper I [12] describes the DQ problems a single organization experiences in its daily
business operations. We observed that the heterogeneity of system architectures and the
lack of standards are the main obstacles to a higher level of DQ. For a higher-level view
of DQ, we reviewed the literature on data engineering and derived DQ aspects requiring
further research attention in paper V [113]. Following the trend for automated data
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engineering, we identified a need for improved automation in DQ processes. In paper
VI [10], we developed a functional taxonomy of DQ tools and applied it to commer-
cial DQ tools. This study revealed that DQ tools increasingly implement integrative
functionalities, facilitating collaborative DQ work.
We noted that these developments are symptoms of a technically and organizationally

changing environment, resulting in the need for a new kind of DQ tool (cf. section 2.2).
Established DQ tools fail to address new requirements, which leads to DQ initiatives
that fall short of their promises in industrial practice. In summary, we uncovered that
DQ tools are confronted by four main problems Automation, Integrability, Standards,
and Usability, and formulated corresponding meta-requirements (cf. section 4.1).
Despite conducting different studies, our answer to RQ1 is limited, pertaining to the

number of data sources and the potential subjectivity during data analysis. DQ is an
inherently complex and subjective matter that users define differently. This makes es-
tablishing a shared understanding of DQ difficult and threatens our construct validity.
Moreover, the analysis of DQ problems is likely incomplete and does not offer an ex-
haustive overview. For example, the functional DQ taxonomy presented in paper VI
[10] focuses on commercial DQ tools and neglects other tools (e.g., open-source tools).
Nevertheless, our answer to RQ1 indicates the main problems of DQ tools, which we
also confirmed in our cases. However, further studies will be beneficial for generating
additional insights and disclosing more meta-requirements.

RQ2: How to design successful data quality tools?

The development of prescriptive design knowledge for successful DQ tools is the main
objective of this dissertation and allows us to achieve the proposed research goal. Our
answer to the second research question consists of two elements. First, we presented an
accumulated set of 13 DPs in section 4.2. The DPs are ’multi-grounded’ [50] as they
emerged from four case studies concerned with implementing DQ tools in real-world
contexts (cf. section 3.2) and address the previously identified meta-requirements. We
aggregated the generated design knowledge by performing an iterative cross-case anal-
ysis using the design knowledge from our case studies as the primary data source. By
theorizing on the individual case designs, we were able to accumulate and abstract the
available design knowledge onto a broader class of problem (i.e., the design of DQ tools)
[17]. After we conducted four case studies, we addressed all meta-requirements and
reached theoretical saturation where additional learning would have been minimal [41,
26]. Second, to promote the accessibility and application of our findings in industrial
practice, we described each DP with a concrete usage example and organizational im-
plications. We also developed an action guideline for practitioners to identify relevant
DPs (cf. section 4.3) and proposed a DQ reference architecture in paper IX [7].
However, although we followed a rigorous research approach, our design knowledge has

several limitations based on the empirical nature of our case studies. These pose a threat
to the external validity of our results [121, 103]. Most importantly, the implemented DQ
tools operate on single organizational processes and contexts, which may have introduced
a bias in the design knowledge. DQ tools in other application areas (e.g., different
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processes or data sets) might require different designs. Additionally, we conducted our
case studies in large, traditional organizations in the manufacturing and pharmaceutical
industries. The solution design might vary in other types of organizations, such as
startups. We tried to avoid this organizational bias by triangulating our findings [103].
Specifically, we realized each meta-requirement in multiple cases and only included DPs
in our result that have multiple sources. Similar to RQ1, there is a threat to the reliability
of our results grounded in the subjectivity during data analysis [103]. Other researchers
might deduce different DPs and reach different conclusions. To address this threat,
we involved people from various backgrounds in evaluating the DQ tool design in each
case study. Moreover, we combined artificial and naturalistic strategies for evaluating
the accumulated design knowledge, which helped us secure the practical relevance and
reusability of our DPs. Finally, the design knowledge for DQ tools will likely change as
new requirements emerge, raising the need to review and update our results continuously.

6.2. Summary of Contributions

As an empirical study that investigates a socio-technical phenomenon, this thesis offers
both managerial and scientific contributions [95]. These can help practitioners design
impactful solutions and advance the current body of literature on DQ tools [73]. As
depicted in Figure 3.1, our research offers five main contributions to the field of DQ and
one methodological contribution:

Data Quality

- Meta-Requirements (cf. Section 4.1 and papers I [12], V [113], VI [10])

- Design Principles (cf. Sections 4.2 and 4.3, and papers III [4], IV [8], VII [11], and
VIII [6])

- Prototypes (cf. papers III [4], IV [8], VII [11], II [5], and VIII [6])

- Evaluation Results (cf. papers III [4], IV [8], VII [11], II [5], and VIII [6])

- Software Reference Architecture (cf. Section 5.1 and paper IX [7])

Methodological

- Conceptual approach and visualization of the design knowledge accumulation pro-
cess (cf. Section 3.3)

In the following, we will discuss these contributions from a managerial and a scientific
perspective and highlight potential implications.

Managerial Contributions
DQ system designers can use the proposed design knowledge to inform the functional
and non-functional composition of DQ tools and create successful solutions. The design
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knowledge comprises 13 DPs that contribute to lowering the high uncertainty designers
of interdisciplinary information systems usually face [107]. We generalized and codified
the DPs, which means that users from other domains can use our findings to inform the
DQ tool design and ease the instantiation of artifacts in their contexts [85].
Our design knowledge is grounded in four industrial case studies, which we described in

four research papers. Each paper outlines our course of action and the interplay between
individuals, organizations, and technology [108]. Practitioners can use the insights into
our development process, including the system design choices and considerations, as a
guiding example for translating design knowledge into impactful software solutions [73].
Besides their interdisciplinary nature, the individuality and subjectivity of DQ further

increase the complexity of building DQ tools [118, 10]. There are no one-size-fits-all so-
lutions, and every organization must create a tool that fits its requirements. To support
organizations in this process, we offer three contributions that help practitioners design,
create, and find the right DQ solution. First, we propose an action guideline, which
acts as a simple entry point to our research results, supports organizations in identifying
relevant DPs, and illustrates potential implications and relations among the DPs. Sec-
ond, we contribute an initial reference architecture for creating state-of-the-art DQ tools
in paper IX [7]. DQ system designers can use the reference architecture to inform the
architectural design and technical capabilities of their individual DQ tool development
projects. Decision-makers can leverage the reference architecture to assess available so-
lutions and support their customization. Third, to inform make-or-buy decisions, we
offer a comprehensive overview of commercial DQ tools available in paper VI [10]. In
combination with our design knowledge, the overview can help assess the applicability
of DQ tools available on the market.
DQ is, without question, an important issue for organizations, and the ones that

succeed in DQ can benefit in several ways. We hope that the practice-oriented and
hands-on presentation of our research results can lower the barriers to our work for IT
managers and help them build successful DQ tools, raise awareness for DQ, and spark
new discussions.

Scientific Contributions
Despite the importance of DQ for organizations and a long history of research, there is
a lack of prescriptive design knowledge to build DQ tools. Several studies identified this
need and formulated research calls for advancing DQ and related solutions (e.g., [109,
62, 24, 48]). Most importantly, this thesis contributes to the scientific knowledge base
on two DSR abstraction levels, as defined by Gregor & Hevner [54].
On a semi-abstract level, we contribute codified prescriptive DPs on designing and

implementing DQ tools. The DPs address the meta-requirements of DQ tools, thus
adding knowledge on designing DQ tools in previously unexplored areas. We derived
the DPs from four case studies and generalized our findings by abstracting our design
decisions to the class of problem [95]. Hence, the proposed design knowledge is not only
relevant for the case studies but serves as a nascent design theory for building DQ tools
in general and contributes to answering the aforementioned research calls [54].
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On a more specific or ’street level’, [78] we contribute the descriptions of situated DSR
artifacts [54]. In each case study, we outline the instantiation of a DSR artifact as a
software prototype, which is considered a knowledge contribution in itself [54]. Imple-
menting these artifacts in concrete socio-technical contexts helped us derive theoretically
grounded and practically relevant design knowledge [95, 107]. Researchers from the DQ
and adjacent research communities can use our findings and extend these in various
directions. For example, we mentioned the need for more convenient DQ solutions that
are easily usable and follow a standardized procedure. Researchers from the human-
computer interaction domain could follow up on this aspect and develop novel interfaces
or investigate gamification approaches for DQ improvement.
Methodologically, we took inspiration from the process of design knowledge accumu-

lation described by Avdiji et al. [17]. Generally, the scientific community lacks guidance
for theorizing on multiple DSR projects that follow similar goals and define a less situated
class of problem. Most DSR-related articles instead focus on describing DSR processes
(e.g., [95, 64]) or abstracting the findings of single DSR projects (e.g., [80]). To overcome
these limitations, Avdiji et al. [17] developed a process for conducting an iterative, ret-
rospective analysis of the design requirements and knowledge generated in multiple case
studies. We contribute to the scientific community by offering a conceptual visualization
of the process for design knowledge accumulation and describing its application in the
cross-case analysis of our cases. Against this background, we hope our work promotes
conducting and accumulating the findings of multiple case studies using cross-case data
analysis techniques to create more profound and practically relevant results [107].
While the contribution of prescriptive design knowledge is at the heart of this disserta-

tion, we add further knowledge to the DQ community. First, we empirically investigated
the problems of industrial data management and identified challenges for data collabo-
rations that other researchers could pursue (paper I [12]). Second, we contributed a new
algorithm for detecting concept drift in sensor data that maintains high accuracy and
minimizes resource usage (paper II [5]). Third, we propose a data engineering reference
model, which points out areas in data engineering that have received limited research
attention (paper V [113]). Fourth, we offer a taxonomy for DQ tools other scholars can
use to analyze and classify DQ tools systematically (paper VI [10]).

6.3. Outlook

Although the concept of DQ and its research are long established, they are receiving
more attention grounded in the rise of automated decision-making and new regulatory
requirements. These developments imply a growing need for adequate DQ tooling. The
design knowledge offered in this thesis can only be a step towards modern DQ tooling,
and further research in multiple directions is required. Most importantly, future work
should aim to acquire data from further case studies to obtain more profound design
knowledge and overcome limitations based on the organizational settings. Applying our
design knowledge in additional industries and different types of organizations (e.g., small
enterprises) could help assess the validity of our findings and lead to further learning.
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6. Conclusion

In addition to gathering insights from more domains, integrating DQ tools in different
system architectures and observing changes in the DQ tool design is another promising
research avenue. Depending on the use case, DQ tools will operate at various architec-
tural levels, ranging from operation at the machine level to DQ tools monitoring data
lakes. Each architectural layer poses different functional and non-functional require-
ments on DQ tools, affecting the corresponding design knowledge. We plan to extend
the proposed design knowledge with another conceptual layer representing the vary-
ing architectural levels and offer more concrete DP descriptions. The enhanced design
knowledge supports organizations in identifying the DQ tool that best suits their use
case and provides better accessibility for the different target communities.
We experienced the need for less abstract and more concrete guidance during the eval-

uation multiple times. Finding the right balance between generalized design knowledge
applicable to a class of problem and effective and actable guidelines can be difficult. In
this regard, future research should aim to extend the design principles into more con-
crete design patterns, outlining specific implementation details. For developing these
design patterns, it might be necessary to divide the current class of problem (i.e., DQ
tools) into more specific sub-classes, like real-time data validation tools. Investigating
particular functional aspects of DQ tools opens a way to create specific guidelines and
would be a valuable extension to the general design knowledge offered in this thesis.
Future research should also look closely at data ecosystems as a new architectural

paradigm. Data ecosystems can offer a fresh start for DQ tools, which often reside as
insular solutions in a heterogeneous system landscape [56, 48]. By providing standard-
ized and interoperable solutions, DQ tools can become accessible for many more data
providers and consumers and much less of a specialized task [11, 6]. The induced shift
of responsibility from a centralized team to the individual data owner will simplify data
cleaning and is a promising research field. Another crucial aspect in this regard is the
development of universally applicable and standardized DQ scores. These scores must
work for all kinds of data sets and be easy to understand for data consumers unfamiliar
with the data domain. We made a first attempt in this direction in a recent paper [57].
Apart from the organizational perspective, it would be interesting to investigate what

requirements non-profit institutions such as governments or non-governmental organiza-
tions pose on DQ tools and advance the DPs in this direction. For instance, to make
informed decisions, policymakers rely on high-quality data. Research on the peculiari-
ties of political decision-making can help design and implement tailored DQ solutions.
Researchers should also pay attention to regulations’ influence on the DQ tool design.
The European Union currently works on new laws (e.g., the European AI Act [42]) tar-
geting data-intensive applications. These new regulations will lead to additional DQ
requirements for organizations that offer a plethora of research opportunities.
Taking on a societal perspective, DQ is among its grand challenges. Problems of ut-

most importance, like the spread of misinformation or biased AI algorithms, can be ap-
proached with DQ. Researchers have many opportunities to create new interdisciplinary
DQ solutions and ensure sustainability, inclusivity, and transparency in data-intensive
applications [71].
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Abstract

The issue of concept drift describes how static machine-learning models build on historical data can become unreliable over time and pose
a significant challenge to many applications. Although, there is a growing body of literature investigating concept drift existing solutions are
often limited to a small number of samples or features and do not work well in Industry 4.0 scenarios. We are proposing a novel algorithm that
extends the existing concept drift algorithm FLORA3 by utilizing support vector machines for the classification process. Through this combination
of dynamic and static approaches the algorithm is capable of effectively analyzing data streams of high volume. For evaluation, we tested our
algorithm on the publicly available data set ’elec2’, which is based on the energy market in Australia. Our results show that the proposed algorithm
needs less computational resources compared to other algorithms while maintaining a high level of accuracy.

© 2020 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the FAIM 2020.

Keywords: concept drift; SVM; FLORA3; machine learning; energy data

1. Introduction

Commonly referred to as ’Industry 4.0’ or ’Smart Manu-
facturing’ the fourth industrial revolution is gaining popularity.
The revolution encompasses the shift towards fully-connected
manufacturing facilities based on sensor data streams and the
Internet of Things (IoT) [1]. These facilities and the exchange
of data among connected devices leverages the automation of
production and helps the manufacturer to sustain competitive
advantages [2].

With the foundation of Industry 4.0 new paths for qual-
ity control and Zero-Defect-Manufacturing (ZDM) opened up.
ZDM refers to minimizing the number of defects and errors in
a production process and aims at reducing the number of defec-
tive products to zero. Although ZDM was initially established
in the 1960s, many of its concepts like autonomous quality, sup-
ply chain optimization or predictive maintenance are even more

∗ Corresponding author. Tel.: +49-231-97677-461 ; fax: +49-231-97677-0.
E-mail address: marcel.altendeitering@isst.fraunhofer.de (Marcel Al-

tendeitering).

important nowadays [3]. A vital component of ZDM is the con-
tinuous assessment of process and product quality supported
by the concept of Autonomous Quality (AQ). AQ is targeted
at reducing or even eliminating the human actions in the qual-
ity control process [4]. Through gathering product and process
data and mining quality relevant features, it becomes possible
to automate decision-making and increase the overall process
and product quality [5, 6].

In manufacturing environments the accuracy and reliability
of predicted values is an important quality feature [7, 8]. For
example, in the context of predictive maintenance an inaccurate
prediction could hint at an upcoming machine failure. In such
cases it is necessary to distinguish between an actual failure and
the possible change of an underlying variable (e.g. temperature
on the shopfloor), which does not necessarily imply a machine
failure. The latter is referred to as ’Concept Drift’ [9]. For data
streams concept drift is detected by predicting new values using
machine-learning and comparing these estimations with sensed
values. An increasing prediction error hints at a drifting concept
[7]. Since machine-learning classifiers are usually trained on
historical data, concept drift is difficult to detect and a challenge
for the goals of AQ and ZDM.

Gama et al. [10] define concept drift as the conditional distri-
bution of a target variable while the distribution of the input fea-2351-9789© 2020 The Authors. Published by Elsevier Ltd.
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tures remain unchanged. Following Gama et al. [10] and Webb
et al. [9] we define a concept at time t as:

Pt(X,Y) (1)

X is a set of input features, while Y is a set of target variables.
Therefore, having two concepts P(X,Y) at times [t,u] concept
drift is defined as:

Pt(X,Y) , Pu(X,Y) (2)

In light of Industry 4.0 and larger amounts of data edge de-
vices are becoming increasingly popular [1]. However, existing
concept drift detectors are often not capable of efficiently ana-
lyzing fast growing data sets on small computational resources
and in a limited amount of time [7, 11]. For this, literature of-
fers adaptive algorithms or windowing methods to find the op-
timal balance of computational resources and predictive accu-
racy [10]. For applying our solution in an industrial context as
a means towards AQ and ZDM it should furthermore be capa-
ble of handling real numbers as these are common in Industry
4.0 scenarios (e.g. machine temperature or deterioration values)
[7].

To meet these requirements we present a novel windowing
algorithm for concept drift detection in data streams based on
Support-Vector-Machines (SVMs). We therefore extended the
existing concept drift detector FLORA3 [12, 13] and evalu-
ated our solution on the publicly available and established data
set ’elec2’ [14, 15]. In comparison to other solutions presented
in literature our algorithms maintains a high level of accuracy
while requiring less computational resources.

The remainder of this paper is structured as follows. In sec-
tion 2 we briefly discuss different approaches for concept drift
detection. We continue by presenting the algorithm we devel-
oped (Section 3) and continue by describing the methodologi-
cal approach we followed for evaluation and the results we ob-
tained (Section 4). We conclude this study by discussing the
results and limitations and highlight paths for future work (Sec-
tion 5).

2. Detecting Concept Drift in Data Streams

In general there are three different approaches for detecting
concept drift [8]. Put simply, these can be described as alter-
ing the algorithm (adaptive algorithms), altering the data (win-
dowing techniques) and combining multiple solutions (ensem-
ble technique). In the following we will provide an overview of
solutions with regard to detecting concept drift in data streams
for each principle.

2.1. Adaptive algorithms

A common method in the area of adaptive algorithms is the
use of decision trees [16]. One of the most popular algorithms
is the ’Very Fast Decision Tree’ (VFDT). This algorithm can
derive a tree-structure from a subset of the data and predict if
the same tree-structure is suitable for the whole data set. With
this information it is possible to check if the distribution of the
last k events equals the remaining data set [17]. If not a concept
drift has occurred and a new tree will be created.

Another well-established algorithm is the k-Nearest Neigh-
bour (kNN) algorithm. Alippi and Roveri [18] developed an
adoption of the kNN algorithm for detecting concept drift in
data streams. Whenever concept drift occurs their solution de-
creases the value of k to exclude data that is falsifying the pre-
diction for new data. If, however, the distribution of data is con-
stant k is increased until the optimal value for k has been found.

As adaptive algorithms constantly adjust their processing
method to the current environment they are limited in detect-
ing recurring patterns within the data and cannot profit from
repetitive concept drifts as efficiently as other solutions.

2.2. Windowing methods

The assumption behind windowing methods comes from
data management and states that the most recent data is the
most informative for a prediction [10]. This means a windowing
method only uses the last n values for calculating a predictive
model. Hereby, the key challenge is to decide on a suitable value
for n. A larger window reacts to concept drift more slowly, but a
smaller window can result in a large number of false positives.
In order to cope with these challenges the FLORA algorithms
were developed [12, 13]. For instance, FLORA3 constantly ad-
justs the window size to find the optimal value of n [13]. Addi-
tionally, each data-point can be weighted to represent its impor-
tance for the prediction. By selecting an appropriate window-
size and weights the FLORA3 algorithm is capable of detecting
concept drift in different scenarios.

Windowing methods are generally fast and easy to build.
However, since only a certain amount of data is taken into con-
sideration these techniques disregard some potentially useful
information in the data.

2.3. Ensemble techniques

Ensemble techniques combine several classifiers to an over-
all prediction. The advantage of using ensemble techniques is
that they are able to combine the advantages of adaptive and
windowing methods. For example, different classifiers can be
built for older and more recent data and weighted according to
their importance. This way no information is lost as compared
to windowing methods. This leads to a good performance of
ensemble techniques. However, the combination of multiple al-
gorithms can lead to complex solutions, which results in a slow
execution [11]. Famous solutions based on this principle are, for
example, ’AdaBoost’ [19] or ’XGBoost’ [20]. Recent reviews
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Altendeitering, M. and Dübler, S. / Procedia Manufacturing 00 (2019) 000–000 3

of current research around ensemble techniques are provided by
Krawczyk et al. and Brzezinski and Stefanowski [8, 11].

3. SVM-based windowing method

In this section we present our ’SVM-based windowing
method’, which consists of a core algorithm and an optional
algorithmic extension. Depending on the use case and available
computing power the user can either only utilize the core of the
algorithm or implement the full version for more exact results.
We decided to use a windowing method because it offers the
possibility for the user to determine when concept drift has oc-
curred in the past. The knowledge of the time frames concept
drift has occurred in leads to a better understanding of repeti-
tive patterns within the data. Furthermore, no extensive compu-
tational resources are needed to execute the algorithm, making
it suitable for execution on edge or cloud devices.

3.1. Approach

In order to develop a scalable concept drift detector for In-
dustry 4.0 scenarios we started by analyzing the FLORA3 algo-
rithm as it is the most prominent windowing method [12, 13].
As we implemented the FLORA3 algorithm on the publicly
available data set ’Sensor Stream’ [21] we noticed that the al-
gorithm suffers from long execution times in its original form.
Table 1 exemplary shows the execution times for calculating the
concepts for different blocks of training data.

Table 1. execution time of calculating concepts for different settings.

Interval size Sensors (#) Block size execution time

1000 1 100 15s
1000 1 200 73s
1000 1 300 21min
1000 2 100 17s
1000 5 100 39s
1000 3 200 27min
2000 3 200 24min
3000 3 300 22min
1000 54 100 17min

The interval size determines the tolerances for the possible
concepts, meaning a large interval size results in faster pro-
cessing but makes the concepts imprecise. A smaller interval
size leads to the opposite effect. We observed that the execution
times increase significantly with larger amounts of data, which
makes it impractical for high volume data streaming use cases.
Another problem is that FLORA3 was designed for boolean at-
tributes but cannot work with real numbers in its original form.
However, analyzing data with real numbers as input features is
an important requirement we derived. This lead us to extend
the algorithm with checks whether an attribute is in an inter-
val of real numbers and based on this information defines the
concepts.

We concluded that the FLORA3 algorithm is a useful
method to handle streaming data, with the ability to analyze

new data as it comes in based on distributions of the past. It is
capable of detecting concept drift and to react on it. However,
it also comes with a number of limitations that need to be ad-
dressed. We therefore built on the general idea of the algorithm
and extended it in order to create an intelligent method for in-
dustrial streaming data.

When new data comes in the task of predicting the classes
for a batch of input features is static for a short period of time.
We thus decided to apply an established method from the field
of static data analysis and chose to use SVMs as they are well
suited for basic categorization tasks. Specifically, we used the
established ’caret’ package for ’R’ [22] for building an SVM
that handles the categorization task for a single block. As SVMs
are a static tool for data analysis we rely on our own adaptive
system, inspired by FLORA3, for working on streaming data.

3.2. Settings

The algorithm for analyzing data streams is suited for data
inputs comprised of a finite number of features. Since we are
using a SVM for classification, these classes must be separable
in two distinct categories (i.e. a two-class problem). For creat-
ing static prediction tasks from a larger data stream the algo-
rithm uses small batches of data, called windows. The window
size (i.e. time interval) is set by the user and used by the al-
gorithm as data input. A shorter window usually leads to more
exact results, and a larger one to faster processing. For selecting
the window size it should be considered that the window forms
a closed block of analysis. This means that concept drift can
only be detected between windows, but not within a window.
For very short windows the aspects of constant attributes and
underrepresented classes come in to play more often. We will
discuss a way of overcoming these problems later on.

Additionally, it is necessary to define at what level a pre-
diction is considered sufficient, which again forms a trade-off

between accuracy and execution time. In the following, we will
refer to the time interval as T and the threshold to a sufficient
prediction as p ∈ [0, 1].

The task is to predict the class of the data input based on its
features. By observing the predictive error our algorithm is ca-
pable of detecting concept drift, adapting to it, and report when
and in what direction it occurred.

3.3. Core algorithm

After the algorithm has been trained on a static data set with
the minimum size of T it can be used to make predictions for
streaming data with the same structure. Therefore, the training
data set gets partitioned in blocks of length T. The first block,
which we call B1, gets preprocessed according to the type of
data and a SVM model is trained on it. After that the SVM
model is used to make predictions about the class distributions
of the following block B2 of size T. As the actual class labels
become available the accuracy of predictions for B2 are calcu-
lated and saved in q2 ∈ [0, 1]. If
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q2 ≥ p (3)

holds, a new model is not necessary and the current one is
reused for the next block. After the predictions for B3 are cal-
culated the system reevaluates whether

q3 ≥ p (4)

is true and decides accordingly. At this point there is still
the possibility to train a new model on B2 even if the previous
model has been reused. If the predictions for the third block
were not accurate enough a new SVM model is trained on B2.
This process is repeated on every block, which is coming in
through the data stream, and forms the core our solution. Algo-
rithm 1 shows the core algorithm in pseudo code.

Algorithm 1 Core algorithm
partition data set in blocks of size T
preprocess B1
train SVM on B1
preprocess B2
predict classes for B2 using trained SVM and calculate q2
if q2 ≥ p then

preprocess B3; use current SVM on B3
calculate q3
if q3 < p then

train SVM on B2, continue with B3
else

continue with B4

else
train SVM on B2, continue with B3

proceed with following Bi in the same way

In order to make this algorithm smarter, a method to rec-
ognize previous patterns is implemented. Since making predic-
tions with an existing model is faster than training a new one,
the possibility to reuse existing models makes it more efficient
and creates room for a finer analysis. Every time the algorithm
attempts to train a new model it first checks if the currently
used one makes predictions better than p for at least 3 peri-
ods. The number of periods taken into consideration can be
changed by the user. If that is the case, the current SVM model
is saved for later use. Afterwards, the previously saved models
are used to make predictions for the next block of data. In case
there is more then one, the one with the best accuracy is cho-
sen and reused for further analysis. If all previous models fail to
make accurate predictions for the upcoming block a new one is
trained as the last possible option. Our tests have shown that this
method leads to a significant difference in efficiency, especially
when the algorithm has been running for a while. It is more

likely to recognize a pattern if it has already seen a wider range
of distributions in the past. We will take a closer look at this idea
when discussing the experimental results. Finally, this enables
us to identify class distributions that stayed relatively constant
for a while because in that case the corresponding SVM was
used for multiple periods. Based on this, we are able to detect
and quantify concept drift in the incoming data stream.

3.4. Extension

Building on the previously developed pattern we want to
improve our algorithm for more accurate predictions. If the
predictions for the next block are sufficient the used model is
reused for the next block, if not the following procedure applies:

Accuracy<p

save SVM model if sustained

set next block for testing

conditions hold?

set current block for training

conditions hold?

make predictions with saved models

Accuracy<p

train new model

batch selection

make predictions

continue with next block

Accuracy≥p

select best model

continue with next block

Through enhancing the method with a batch selection mech-
anism inspired by [23] it is possible to recognize patterns that
have been in the data stream before. It also enables us to learn
from them and build models considering all the data featur-
ing similar distributions and reduce overfitting. Furthermore, a
mechanism to enlarge the used block for training successively
such that there is a representative data set to base the predictions
on is available.

When aiming for an accurate result it is reasonable to reduce
the value of T. However, this creates the problem of constant
attributes within a block and of underrepresented classes (i.e.
all data in one block belongs to one class). Both of these oc-
currences make a SVM far less effective. To overcome these
issues we can step-by-step enlarge the current block with pre-
vious data until none of those problems are present any longer.

Let 1 and 2 be the two classes a data-point dt (t ∈
{1, 2, ...,T }), being part of the currently viewed block Bs, can
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belong to and at,i be the i-th attribute of data-point dt then the
following condition is part of the algorithm (see Algorithm 2).

Algorithm 2 Extension of the training set

while ∀dt ∈ Bs : dt ∈ 1 or∀dt ∈ Bs : dt ∈ 2 or∃i∀dt ∈
Bs : at,i is constant do

add d0 to Bs ( d0 is the last data-point before Bs)
T← T+1

end

After this process has been completed the batch selection
comes in. The new SVM model gets trained on the (possibly
enhanced) data set, only if a new model is needed in the first
place. Subsequently, this model is used to make predictions for
previous blocks in the data set. Let the number of already ana-
lyzed blocks be s-1 then the SVM model is trained on block s-1
and after that predictions for block s-2, s-3, etc. are made. Let
Bi be the i-th block with i ∈ {1, 2, ..., s− 1} and qi the predictive
accuracy for this block. If for a given i

qi ≥ p (5)

holds then the concept in Bi is considered to be similar to the
current concept in Bs. It is remembered for having this property
and to be combined later on with all blocks featuring similar
concepts.

This procedure repeats until either all previous blocks have
been analyzed or the maximum amount for blocks in a training
data set has been reached. This upper limit exists to stop the data
set from becoming too big as this would cause long execution
times. Also, it prevents very old data from becoming part of
the data set because this data has potentially become irrelevant
for ongoing predictions. We call this limit m. Once m has been
reached the threshold for a similar block gets raised to p̃ with

p̃ ≥ p (6)

as there is enough data available to make a meaningful se-
lection. This allows the batch selection to have higher standards
for selecting as soon as there is enough data available such that
there is room for a big enough selection of similar blocks.

When this step has finished all those blocks considered to
be similar to the current one are combined to one big data set
for training. This newly created data set is then used for train-
ing a new model. This method is described in pseudo code in
Algorithm 3.

This process is repeated whenever there is need for a new
model, meaning neither the current nor any of the previous
models produces an accuracy that meets p.

Algorithm 3 Training a new SVM model
train SVM model on Bs

for all i ∈ {1, 2, ..., s − 1} do
make predictions for Bi using trained model
calculate qi

if qi ≥ p then
save i

if m has been reached then
p← p̃

end
M :=

⋃
i saved

Bi

train new SVM model on M

A full implementation of the proposed solution is available
on GitHub 1

4. Evaluation

For evaluating our solution we conducted an experiment on
a real-world data set. Both, the experimental setting and the re-
sults are presented below.

4.1. Experimental Setting

Providing an appropriate test scenario for concept drift de-
tection in industrial data streams is a difficult task. There is little
data available that is suited for benchmarking and approved for
publication [7]. In order to retrieve comparable results we de-
cided to use the publicly available data set ’elec2’ [14] even
though it is not coming from an industrial context. The ’elec2’
data set has been used in many concept drift studies and is well-
established in the scientific community [15].

The data set features information about the electricity market
in New South Wales, Australia over a period of 2.6 years (135
weeks) and contains a data-point for every half hour in this time
period. Each data-point consists of 5 features about the demand
and supply of electricity in New South Wales itself and nearby
areas. It contains either one of the two classes ’up’ or ’down’
depending on whether the electricity price has risen or fallen
in the respective time period. The data set is subject to concept
drift as the patterns in energy consumption change over time
due to changing habits or seasonality [14]. Out of those 135
weeks the last 82 weeks are getting used for testing as the earlier
measurements do not include all variables. In our experimental
setting we have set

T = 24h, p = 0.8 (7)

because a day is the shortest period of repeated concept drift
in this data set. Also, we considered a certainty of 80% about

1 https://github.com/stephan421/Concept-Drift-Detection

5

A. Papers

85
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the outcome as sufficient under these circumstances. As the
’elec2’ data set is static we simulated streaming data through
successively working on the batches of data-points starting
from the beginning of the viewed time window. This method
is similar to analyzing the data live and therefore making the
electricity pricing more predictable.

For testing our algorithm we executed the implementation in
R using different settings on a local computer with the following
configuration: Intel Core i7-7500U 2.9 GHz, 16GB Memory,
500GB SSD.

4.2. Experimental Results

We conducted several experimental runs on the data set us-
ing different subsets of the data. Table 2 features the average
accuracies and execution times over a five week period respec-
tively.

Table 2. Accuracies for different data subsets.

Weeks Accuracy (ø) execution time

5 88% 24min
10 88% 1h 29min
15 88% 2h 2min
20 88% 2h 37min
25 86% 4h 50min
30 86% 5h 40min

Based on this data we can conclude that the analyzing
method is suitable for this use case and produces constant and
reliable results with an average predictive accuracy of 87.33%.
From our measurements we derived that the execution time for
a time period depends on the amount of concept drifts occur-
ring and on average a decreased execution time correlates with
a higher amount of data that has been analyzed. As described in
the ’Comment on applicability’ published by Harris regarding
the ’elec2’ data set [14], a naive method that always predicts the
next class to be the same as the current class achieves an accu-
racy of 85.3% on this data set. This is based on the fact that the
labels are not independently distributed; there are long consec-
utive periods of ’up’ and long consecutive periods of ’down’.
As one can see in Table 2 our classifier produces significantly
better results then this and therefore is a valid tool to make pre-
dictions on this data set. Table 3 compares the accuracy of our
algorithm with different algorithms using the ’elec2’ data set
[14, 15].

Our proposed solution is among the most accurate tested on
this data set. In comparison to other solutions, which achieve
high accuracy at the cost of high complexity [25, 26], our solu-
tion does not require extensive computational resources. Specif-
ically, it delivers accurate results whilst being more efficient in
terms of execution time and hardware demands. Most compet-
ing algorithms on this data set proceed by analyzing data point
by data point in order to achieve a high accuracy (e.g. [29, 31]).
In contrast. our method analyzes a full day of 48 data points
at once making it faster on high-volume data streams. Further-
more, many of the reported results, as shown in Table 3, were

Table 3. Comparison of our algorithm with other solutions (based on [14, 15]).

Algorithm Accuracy (%) Reference

DDM 89.6* [24]
Learn++.CDS 88.5 [25]
KNN-SPRT 88.0 [26]
GRI 88.0 [27]
our algorithm 87.3*
FISH3 86.2 [28]
EDDM-IB1 85.7 [29]
naive classifier 85.3
ASHT 84.8 [30]
bagADWIN 82.8 [30]
DWM-NB 80.8 [31]
Local detection 80.4 [32]
Perceptron 79.1 [33]
ADWIN 76.6 [34]
Prop. method 76.1 [35]
AUE 74.9 [36]
Cont. λ-perc. 74.1 [37]
CALDS 72.5 [38]
TA-SVM 68.9 [39]
* tested on a subset

achieved using ensemble techniques [31], which provide a high
accuracy at the cost of complexity. The proposed algorithm is
more suitable for application in Industry 4.0 scenarios, which
often requires edge processing and offers only little computa-
tional resources.

A shortcoming we encountered while evaluating our algo-
rithm is that for a small number of blocks the predictive accu-
racy drops significantly as shown in Figure 1. This can most
likely be explained with the data itself, as the respective blocks
do not fit into the remaining data.

5. Conclusion

In this study we developed a novel tool for dynamic data
analysis on streaming data, combining one of the most effec-
tive static approaches with a dynamic one. This way, the bene-
fits of SVMs become available for use cases on streaming data
and lead to the ability of reusing previously discovered results
in the static data analysis for dynamic analysis. Through this
combination we were able to build a concept drift detector that
meets our requirements and works with limited computational
resources, executes in a limited amount of time and handles
real numbers. Our solution offers scalability and flexibility as it
is adaptable to different settings of computational resources.

In addition to the field of concept drift we are contributing
to the research of ZDM and AQ by lowering the threshold for
operating a concept drift detector on edge devices. This could
cause a more wide-spread adoption of drift detectors and sim-
plify the utilization of concept drifts as a potential quality at-
tribute for industrial data streams. Such a data quality attribute
would not only help to easily discover concept drifts but also
assist data management in inter or intra-organizational data ex-
changes and achieve the goal of ZDM.
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Fig. 1. Accuracy of prediction for different blocks.

However, our study is subject to a few limitations. Most im-
portantly, our solution lacks a deeper evaluation with additional
real-world and artificial data sets. We therefore want to apply
our algorithm to public and non-public use cases in order to
gain a deeper understanding of its accuracy and applicability in
different scenarios. Since we are particularly interested in the
role of concept drifts in the AQ and ZDM paradigms, we are
planning to implement the algorithm in an Industry 4.0 context
and assess its usefulness in industrial settings.

Furthermore, we intend to proceed our research by extend-
ing and optimizing the algorithm. Towards this end, we want
to embed our algorithm in an ensemble of several solutions in
order to benefit from other methods such as decision trees. This
could further improve the accuracy but may lead to slower exe-
cution times. We thus need to find the optimal balance between
execution time and accuracy. Another possible extension of our
algorithm is the capability of distinguishing different kinds of
drifts. So far we are able to discover if any drift occurred. How-
ever, it might be useful to investigate if drifts manifest in certain
forms (e.g. recurring or gradual). This would be a valuable input
for deriving what caused a drift and how it should be handled.
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[28] I. Žliobaitė, Combining similarity in time and space for training set forma-
tion under concept drift, Intelligent Data Analysis 15 (4) (2011) 589–611.
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Abstract

Organizations crave to succeed in the ongoing
digital transformation, and central to this is the quality
of data as a major source for business innovation.
Data quality tools promise to increase the quality of
data by managing and automating the different tasks
of data quality management. However, established
tools often lack support for the fundamental changes
accompanying an ongoing digital transformation, such
as data mesh architectures. In this paper, we propose
a software reference architecture for data quality tools
that guides organizations in creating state-of-the-art
solutions. Our reference architecture is based on
the knowledge captured from ten data quality tools
described in the scientific literature. For evaluation, we
conducted two qualitative focus group discussions using
the adapted architecture tradeoff analysis method as a
basis. Our findings reveal that the proposed reference
architecture is well-suited for creating successful data
quality tools and can help organizations assess offerings
in the market.

Keywords: Data Quality Tools, Software Reference
Architecture, Digital Transformation, Systematic
Literature Review

1. Introduction

“You can’t do anything important in your company
without high-quality data” (Redman, 2020, p.1). For
several reasons, a high level of data quality (DQ) is vital
for organizations. It is required to secure organizational
agility and avoid harmful societal effects of automated
decision-making (Gröger, 2021; Marjanovic et al.,
2021). Moreover, ensuring correct and high-quality data
sets creates trust in data ecosystems and is becoming
part of legislation (Geisler et al., 2021). For example,
the proposed European AI Act sees it as organizations’
due diligence to avoid errors in data sets and AI systems
based on them (European Union, 2021).

Despite the paramount importance of DQ, many

organizations struggle to provide data of adequate
quality to business processes, thus impeding the success
of digital transformations (Gröger, 2021; Legner et al.,
2020). Most significantly, the context in which DQ
tools operate is changing. The proliferation of big
data uncovered a lack of scalability in centralized
data management tools and efforts (Gröger, 2021).
Consequently, organizations started to decentralize their
data architectures (e.g., data mesh), leading to a
distribution of the DQ work and DQ tools being
used at the source (Dehghani, 2019; Redman, 2020).
Additionally, the emergence of data ecosystems led
to varying data consumers and called for new data
management standards that DQ tools must incorporate
(Geisler et al., 2021; Guggenberger et al., 2020).
Finally, DQ is an inherently complex topic grounded
in the subjective and multi-dimensional nature of
DQ issues (Wang & Strong, 1996). This led
to cumbersome and time-consuming processes for
resolving DQ problems.

Established DQ tools fail to comprehend these
changes fully as the new requirements break with their
centralized concept (Altendeitering & Tomczyk, 2022).
As a result, there is a need for a new kind of DQ tool
that acts as an enterprise-wide framework and supports
the creation of high-quality data products. The new tool
should support the data owners across an organization in
identifying, assessing, and correcting quality problems
of heterogeneous data sources (Geisler et al., 2021). Yet,
there is a lack of guidance and standardization on the
functional composition and architectural design of such
state-of-the-art DQ tools. This lack of guidance leads to
data analytics and artificial intelligence initiatives that
fall short of their promises, and DQ issues prevail in
industrial practice (Geisler et al., 2021; Gröger, 2021).
Our study addresses this research gap and proposes
a software reference architecture that practitioners can
use to create successful DQ tools. We formulated the
following question that guided our research:

Research Question: What does a reference
architecture for successful data quality tools look like?
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In response to the research question, we propose
a software reference architecture outlining essential
functional components of DQ tools. Significant
to our research was to support organizations in
building state-of-the-art DQ tools and incorporating
a vision and strategy for the future (Cloutier et al.,
2010). For developing the reference architecture,
we followed the design guideline by Angelov et al.
(2012). Specifically, we informed our reference
architecture by conducting a comparative analysis of ten
concrete DQ tool architectures, which we identified in a
systematic literature review (SLR). We used the adapted
Architecture Tradeoff Analysis Method (ATAM) by
Angelov et al. (2008) as a basis to evaluate the proposed
reference architecture with experts from science and
practice.

The remainder of this article is structured as follows.
In section 2, we reason why there is a need for a new
kind of DQ tool and present how a reference architecture
can guide organizations. Section 3 outlines the SLR
we conducted to develop the reference architecture.
In section 4, we present and describe the proposed
reference architecture for DQ tools and continue by
describing the evaluation process in section 5. Finally,
in section 6, we conclude our study by specifying
contributions, limitations, and paths for future work.

2. Background

2.1. The History of Data Quality Tools

For a long time, researchers and practitioners have
recognized the importance of high-quality data and
developed various approaches to address this need
(Madnick et al., 2009). However, the functional
and non-functional composition of DQ tools has
evolved over the past few decades based on two
significant developments. First, the increasing
maturity of data management as a response to a
rapid digital transformation (Legner et al., 2020).
Second, increasingly decentralized data architectures
grounded in big data and trends such as ’Data Mesh’
(Dehghani, 2019) and ’Data Products’ (Hasan &
Legner, 2023). Both developments directly influence
the organizational scope, functional capabilities, and
architectural positioning of DQ tools, which established
solutions cannot always fulfill (Altendeitering &
Tomczyk, 2022; Gröger, 2021).

Before the 1990s, data was primarily used to
facilitate business operations, such as customer or
inventory management. Data management involved
dealing with single, unconnected databases and ensuring
the correctness of data models (Legner et al., 2020).

In this stage, DQ focused on the ’content’ of data
and was realized as conformity checks in database
management systems (Shankaranarayanan & Blake,
2017). In this first generation, DQ tools aimed
to promote internal business processes by supplying
accurate data and allowing for data reuse. Neither DQ
nor data architectures followed coordinated approaches,
leading to data silos (Dehghani, 2019).

In the 1990s, organizations established centralized
data management suites to prevent inaccessible and
siloed data. Monolithic business analytics tools
such as data warehouses gained popularity and led
to the emergence of DQ as a novel research area
(Madnick et al., 2009). Total quality management for
data (TDQM), conceptualized by Madnick and Wang
(1992), resulted in the quality-oriented management
of data resources within organizations. Consequently,
high-quality data facilitated organizational business
processes and decision-making. Organizations utilized
a second generation of integrated DQ tools that
help coordinate data governance, define DQ rules,
and measure DQ, thereby providing a comprehensive
solution for these tasks (Legner et al., 2020; Madnick
et al., 2009).

2.2. The Need for New Data Quality Tools

As the digital transformation accelerated in the
2010s, a third generation of data management emerged,
in which data became central for strategic management
(Legner et al., 2020). Organizations soon realized
that centralized data architectures lacked scalability and
were insufficient in light of continuous and big data.
Consequently, locally-owned data products became
more popular, providing a flexible solution to the new
demands of data management (Hasan & Legner, 2023).

These data products are often organized in data
mesh architectures, which rely on polyglot persistence
and distributed data stores (Dehghani, 2019; Gröger,
2021). They follow the concepts of domain-driven
design and incentivize the creation of high-quality
data at the source, shifting the responsibility for DQ
from the demand to the supply side (Hasan & Legner,
2023; Redman, 2020). By offering high scalability,
data mesh architectures help overcome typical big data
problems such as support for real-time data analytics
and high complexity in data management (Geisler et al.,
2021; Gröger, 2021). To realize such architectures,
an internal data ecosystem can be established that
relies on a self-service data infrastructure and standards
for interoperability and portability (Gröger, 2021;
Guggenberger et al., 2020).

However, established DQ tools often face difficulties
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operating in this new environment (Altendeitering &
Tomczyk, 2022). Their reliance on centralized data
architectures prevents them from comprehending the
requirements of the changing environment, raising the
need for a new kind of DQ tool. Additionally,
established DQ tools often fail to address the induced
shift of responsibility for DQ. In a data mesh
architecture, where the data supplier takes care of DQ, a
DQ tool must be capable of analyzing different data sets
and be accessible to a diverse user group. Several studies
(e.g., Altendeitering and Tomczyk (2022), Geisler et al.
(2021), and Gröger (2021)) identified the need for new
DQ tooling and called for research efforts and new
approaches to DQ management. The new kind of
DQ tool should support collaborative DQ efforts, thus
empowering the ethical use of data-intensive systems
(Marjanovic et al., 2021; Shankaranarayanan & Blake,
2017). It also helps perform DQ tasks at the source
and offers portability and scalability to cope with big
data generated in various sources (Geisler et al., 2021;
Gröger, 2021).

3. Research Approach

With our study, we aim to provide a software
reference architecture that guides the creation of new
DQ tools. The reference architecture can contribute to
standardizing DQ tools and reduce uncertainties in their
functional design. Following the definitions of Bass
et al. (2003) and Angelov et al. (2012), a reference
architecture is essentially a generic description of the
minimum architectural elements that should be used in
designing a concrete software architecture. In this sense,
a reference architecture captures the essence of existing
architectures and guides the development of software
artifacts ”by applying the new product mission, vision,
and strategy to the wisdom of the past” (Cloutier et al.,
2010, p.19). A viable reference architecture facilitates
the development of solutions in different contexts
and organizations by offering product-independent
descriptions and supports the communication between
domain professionals (Kazman et al., 1998).

Using the classification framework of Angelov et al.
(2012), we can classify our reference architecture as a
Type 3 Reference Architecture. This type of reference
architecture aims to facilitate software architectures
and is proposed by an independent organization to
multiple organizations. It should define the main
components and interfaces in a ’semi-detailed’ way and
be comprehensible and accessible to users from various
contexts. A reference architecture that is too detailed
or formal would impair its facilitation purpose. We
argue that this type of reference architecture aligns most

with our research setting and forms a suitable base for
achieving our research goal.

To develop the intended software reference
architecture, we followed the guidelines of
design-oriented research in information systems
(Hevner et al., 2004). We initialized our study by
identifying the architectural building blocks essential
to DQ tools and conducted an SLR following the
guidelines of Kuhrmann et al. (2017) and Webster and
Watson (2002). Our goal was to identify scientific
studies reporting on the architecture and the functional
and non-functional design of DQ artifacts. Since
DQ artifacts are often framed differently, including
tools or solutions, we only searched for ’data quality’.
Consequently, we devised the following search term:

”data quality” AND (”design” OR ”architecture”)

Following the suggestion of Kuhrmann et al. (2017),
we selected established sources in computer science
and information systems domains to collect relevant
studies. This selection comprised the databases: IEEE
Xplore, ACM DL, ScienceDirect, AISeL, and Scopus
as a meta-search engine. To avoid producing a very
large result set, we limited our search to the study’s title.
Querying the selected databases using the proposed
search term resulted in the identification of 168 studies.

We continued the reviewing process by eliminating
any duplicates from the result set. Afterward, we
manually screened the remaining papers to fit our
research goal. Since we aimed to investigate standalone,
general-purpose DQ tools, we filtered studies that
were too specialized, such as those solely focused
on domain-specific tools. Furthermore, we discarded
studies that were too generic or did not directly describe
DQ tools but analyzed other types of artifacts, like DQ’s
role in business processes, machine learning, or surveys.
Lastly, we ensured that the selected studies describe
state-of-the-art DQ artifacts affected by trends, such as
big data, and thus only considered papers published
from 2010. This way, we ensured that the reviewed
DQ tools were influenced by the third-generation of
data management (Legner et al., 2020). The screening
procedure yielded in the identification of eight relevant
papers. Subsequently, we conducted a forward and
backward search, as suggested by Webster and Watson
(2002), which revealed three more relevant studies.

To inform the design of our reference architecture,
we conducted a comparative analysis of the architectural
descriptions available in the papers identified during
the SLR. In this step, we compared the concrete
architectural designs to each other and derived
similarities that form architectural patterns. We
considered the appearance of an architectural
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component in at least three studies a hint towards
its inclusion in our reference architecture (Cloutier
et al., 2010). We assigned these components IDs
to cross-reference them in the reference architecture
description and indicate data flows between them.
The concept matrix in Table 1 displays the identified
architectural components and the corresponding papers.
We ordered the studies by their publication date in
descending order.

4. A Software Reference Architecture for
Data Quality Tools

This section presents the contents of our software
reference architecture. We organized this section into
four subsections, one for each architectural layer shown
in Table 1. Each subsection describes the architectural
patterns essential to DQ tools and the relationships
and data flows to other architectural components in a
semi-detailed way (Angelov et al., 2012).

4.1. Interaction Layer

Seamless user interaction is vital for the success
of any software tool. In the past, DQ was a
highly technical task conducted by a team of DQ
experts, leading to complex user interfaces with high
semantic and syntactic barriers (Swami et al., 2020).
Moreover, several DQ tools do not provide visual
user interfaces and instead offer their functionalities
solely as programming interfaces that can be integrated
into source code (e.g., Great Expectations (2022)).
Considering the trends for data democratization and
decentralized DQ tools, the user interface must become
accessible to various users.

DQ Workflow. Several studies describe the need
for workflow functionalities on the interaction layer
of a DQ tool. Often DQ tools realize the workflow
using a process-based user interface, in which users can
combine and connect different DQ checks or assertions
(Swami et al., 2020). Altendeitering and Guggenberger
(2021) describe a DQ workflow containing additional
steps, such as data import or data pre-processing (F7). A
significant challenge when designing a DQ workflow is
the combination of opposing views on usability between
users and developers (Alhamadi et al., 2022). This
implies that DQ tools must be flexible to support DQ
and data domain experts in their daily work.

Rule Definition. The rule definition component
describes the capability to create custom DQ rules,
checks, or assertions for validating data sets (F3). These
custom DQ rules usually extend generally applicable
DQ rules and express domain-specific DQ constraints
(D4) (Swami et al., 2020). They can, for instance,

be realized as user-defined functions on top of the
underlying algorithmic stack (F6).

Explanation. A majority of the DQ artifacts
we reviewed offer functionalities for explaining (1)
the DQ algorithms in use and (2) the DQ issues
identified. The former offers insights into the
algorithmic stack (F7), which helps adjust tools to
specific scenarios and increase trust in DQ metrics
(Walter et al., 2022). The latter addresses the
comprehensibility of DQ measurements (F1). Detailed
explanations for low-quality scores can help unravel the
multi-dimensional concept of DQ and assist users in
taking adequate actions (Altendeitering, Dübler, et al.,
2022).

4.2. Functional Layer

The functional layer contains core DQ
functionalities and is central to the tool’s success.
Overall, big data plays an important role in the
functional composition of DQ tools and shapes current
trends. For instance, automation has become essential to
cope with huge data sets, and a broad algorithmic basis
is vital to conduct quality measurements on different
data sets (Altendeitering & Tomczyk, 2022).

DQ Measurement. Measuring the quality of a data
set along several DQ dimensions (e.g., completeness,
accuracy, timeliness, etc.) is a key capability of DQ
tools (Wang & Strong, 1996). It is featured in almost
every tool we reviewed. In addition to different DQ
dimensions, the measurement functionality must handle
different kinds of data (D1, D2) and include the result as
metadata (D3) (Blechinger et al., 2010).

DQ Rule Generation. In addition to manually
defining DQ rules (I2), a DQ tool should provide
functionality for automatically deriving DQ rules, for
example, in the form of integrity constraints (Walter
et al., 2022). The automated approach can help tackle
ever-growing amounts of data and avoid a low DQ
coverage in monitoring data (F3) (Altendeitering &
Tomczyk, 2022). The generated rules are stored in the
DQ rule repository to allow their reuse (D4).

Monitoring. The continuous monitoring of data sets
is another critical component of DQ tools (Ehrlinger &
Wöß, 2022). Its purpose is to validate data against DQ
rules (D4) in a one-time (D1) or ongoing (D2) manner.
This helps identify data errors early on and take actions
(Gerloff & Cleophas, 2017; Swami et al., 2020). In
fully automated data management pipelines, automated
error correction and data manipulation can follow
the monitoring step (Altendeitering & Guggenberger,
2021).

Reporting. The reporting component assembles the
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Table 1. Comparative Analysis on the Studies Identified during the SLR.
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Interaction

DQ Workflow I1 x x x x x x
DQ Rule Definition I2 x x x x
Explanation I3 x x x x x x x x
Tutorial x x
Search x x
Custom Dashboard x

Functional

DQ Measurement F1 x x x x x x x x x
Data Cleaning x x
DQ Rule Generation F2 x x x
Monitoring F3 x x x x x x x x x
Reporting F4 x x x x x x x
Interfaces F5 x x x x x x x x
Algorithmic Stack F6 x x x x x x x x x
Data pre-processing F7 x x x x x

Data

Master Data D1 x x x x x x x
Continuous Data D2 x x x x x x x x x
Metadata D3 x x x x x
Conceptual Model x
DQ Rule Repository D4 x x x x x

Non-Functional

Interoperability G1 x x x x x
Ecosystem Support G2 x x x
Process Integration G3 x x x x x x
Availability x x

DQ results from measurement (F1) and monitoring (F3)
data. Afterward, it creates an easy-to-understand report
containing details about the identified DQ issues and
potential ways to fix them and stores it as metadata
(D3) (Westin & Sein, 2015). For example, Swami et al.
(2020) describe a DQ report that combines a current
with a historic view on the monitoring results of a data
set, thereby allowing to derive trends.

Interfaces. Seamless integration with the
established system landscape within an organization
is vital for DQ tools to avoid being isolated from
existing processes and remaining segregated (G3).
For integration, a DQ tool should offer standardized
interfaces and connect with message broker or
ecosystem technologies (G2) in place (Altendeitering
& Guggenberger, 2021; Walter et al., 2022). The
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interfaces component acts as the gateway to access
the main DQ functionalities (F1-F4) internally and
externally, thus allowing for interoperability (G1).

Algorithmic Stack. A DQ tool needs a suitable
stack of DQ algorithms to conduct its core DQ
functions (F1-F4). Since organizations are confronted
with a heterogeneous data landscape (D1, D2) and
a proliferation of stream processing, DQ tools must
offer a broad algorithmic basis (Gröger, 2021). The
algorithms must be flexible and robust to handle data
differing in size, complexity, and format and address the
multi-dimensionality of DQ at the same time (Olbrich,
2010; Pradhan et al., 2023).

Data Pre-Processing. In several studies, we
identified a data pre-processing component that
precedes DQ analysis. When the algorithmic stack
comprises AI algorithms (F6), data pre-processing
can help improve the accuracy and execution
time (Altendeitering & Guggenberger, 2021).
The pre-processing can furthermore support data
normalization and prepare heterogeneous data sources
for a standardized quality analysis (Walter et al., 2022).
For instance, textual data can be converted to numeric
data using word embeddings to allow the usage of
neural networks.

4.3. Data Layer

To overcome common data challenges, organizations
move from centralized data landscapes towards
a distributed approach, consisting of individually
managed data products (Gröger, 2021; Hasan & Legner,
2023). As a result, DQ tools are confronted with diverse
data sets, and to become successful, they must be
capable of adapting to different contexts and embracing
a variety of data sources. The data layer realizes the
connection between the DQ tool and the data sources
while ensuring that data is only temporarily held for
data security.

Master Data Relational master data sets represent
an important organizational asset as they contain
information critical to business operations (Legner et al.,
2020). Consequently, many DQ initiatives and tools
focus on analyzing master data sets and ensuring that the
essential data sets remain accurate and of high quality
(Altendeitering & Guggenberger, 2021). Given the
importance of master data, DQ tools must integrate with
master data sets and management suites.

Continuous Data Continuous data streams are on
the rise and play an increasingly important role in
the organizational data landscape to facilitate real-time
analytics and decision-making (Gröger, 2021). The new
type of data source raises new requirements for DQ

tools, which must offer suitable endpoints for including
data streams and enabling DQ management on data
streams (Gerloff & Cleophas, 2017).

Metadata DQ tools should integrate with a metadata
repository (e.g., data catalogs) and store two pieces of
DQ information. First, the history of DQ measurements
(F1) and validations (F3), which data consumers can use
to identify high-quality data sets and build trust in data
products (Hasan & Legner, 2023). Second, the quality
requirements of a data set in the form of DQ rules,
manually specified by experts (I2) or automatically
generated (F2) (Blechinger et al., 2010).

DQ Rule Repository The DQ rule repository
is a component that stores standardized, generally
applicable DQ rules, such as the ’not null’ rule (Swami
et al., 2020). These rules are usually available for all
users of the DQ tool. It can be beneficial to subdivide
the rule repository and define DQ rules for specific
functional domains (e.g., for material data) (Blechinger
et al., 2010).

4.4. Non-Functional Layer

On the non-functional layer, we describe
architectural considerations and aspects that are
important for the success of DQ tools. These shape the
general functioning of the tools and set boundaries and
considerations for the functionalities of the remaining
architectural layers.

Interoperability In a decentralized data
architecture, stakeholders and users from different
domains must have access to data management tools.
A DQ tool must be interoperable and applicable
to different organizational and technical contexts
(Altendeitering, Dübler, et al., 2022). To realize
this requirement, a DQ tool can be offered in a
self-service application marketplace that supports
simple deployment and customization (Gröger, 2021).

Ecosystem Support The proliferation of
decentralized data management and data ecosystems
raised new requirements for DQ tools (Altendeitering,
Dübler, et al., 2022; Gröger, 2021). To operate
in the new environment, a DQ tool must integrate
with ecosystem-specific technologies, such as data
space connectors, using suitable interfaces (F5)
(Altendeitering, Pampus, et al., 2022). Moreover, to
provide data consumers with quality information, the
DQ tool should adapt existing metadata models and
protocols (D3).

Process Integration The need for interoperability
(G1) requires DQ tools to seamlessly integrate with
the business processes of various data providers and
consumers (Swami et al., 2020). Moreover, integrating
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DQ tools with established data management processes
is necessary to follow up on low DQ results and fix
underlying data errors (Walter et al., 2022). For the
efficient use of DQ tools, organizations must include a
DQ perspective in their business process management
and re-design efforts.

5. Evaluation

We evaluated our reference architecture qualitatively
using the adapted ATAM introduced by Angelov
et al. (2008) as a basis. The method adapts
the well-established practice for evaluating concrete
architectures by Kazman et al. (1998) to reference
architectures. It consists of three phases and considers
the unique requirements for evaluating reference
architectures, such as their general applicability.

Phase 1. The first phase identifies the stakeholders
relevant to the evaluation process, representing potential
users of the software reference architecture. The
evaluation procedure combines scientific (phase 2) and
organizational (phase 3) feedback, which we gathered
in two focus group discussions. A focus group
discussion is well-suited for gaining in-depth insights
into a phenomenon under investigation and can spark
discussions among the participants (Hollander, 2004).
The first discussion involved three researchers working
on data management and DQ and lasted 90 minutes.
The second discussion comprised six professionals
working in consultancy and the public domain who
experienced the downsides of established DQ tools
regarding scalability and usability and shared a vision
for a new kind of DQ tool. The professionals worked in
solution architecture, data management, or data science
roles and have longtime experience in DQ and its
tooling. The second meeting lasted three hours.

Phases 2a and b. In the second phase, we elicited
the quality attributes of a DQ reference architecture
and used these to evaluate our proposed solution.
Angelov et al. (2008) differentiate between system
and architectural qualities a reference architecture
must fulfill. During the SLR, we identified two
system qualities relevant to DQ tools: integrability
and interoperability. To determine the architectural
qualities, we used Kazman et al. (1998) as a basis
and identified security, flexibility, performance and
modifiability as relevant qualities.

We discussed the identified qualities and potential
architectural approaches with the first focus group.
For this purpose, we defined each quality among the
participants and discussed architectural considerations
and implementations. In subsequent discussions, we
clarified the potential impacts on other architectural

components. For example, we positioned the interfaces
component outside the Functional layer to allow for
better integrability and offer the functionalities of the
DQ tool to external Services. We also highlighted this
aspect in the Users layer of the architecture. Moreover,
one researcher highlighted the need for simple DQ
scores to support the interoperability of DQ tools and
results. We added this aspect to the explanation
component on the Interaction layer. To fulfill the need
for security, we decoupled the Data Sources from the
DQ tool, ensuring that data access is limited to quality
analyses.

Phase 3. The third phase adds an organizational
perspective to the reference architecture by verifying
and extending the results from phase two. To gain
organizational insights, we conducted another focus
group discussion. We initiated the focus group
discussion by presenting the current status of our
reference architecture and describing its use in two
exemplary scenarios. The first scenario encompasses
the generation of DQ rules from master data sets,
and the second scenario is about DQ measurement
on data streams. Subsequently, we asked the experts
for feedback on our reference architecture’s functional
composition and architectural style.

Overall, the proposed reference architecture was
well received by the participants, and we received only
minor feedback. One participant advised us to decouple
the DQ algorithms from the DQ functionalities as this
would support the modifiability of the tool. For instance,
conducting DQ measurements might require different
algorithms based on the data sets used and changing
performance requirements. Several other participants
highlighted the need to include the delivery mode of a
DQ tool. Tallied with current research, we envisioned
the tools to be available from an internal or external
application marketplace to support its integrability and
availability. To highlight this aspect, we included an
Application Marketplace layer in the architecture.

Since we received only minor feedback in phase
three, we concluded the evaluation process. A more
detailed evaluation, including additional participants
and application scenarios, is part of future work. Figure
1 shows the final version of the reference architecture,
offering a consolidated view of the scientific and
practical insights of DQ tools.

6. Conclusion

The ongoing digital transformation causes changes
in the technological and organizational environment in
which DQ tools operate, thus raising the need for new
tools. At the same time, little knowledge about the
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Figure 1. Proposed Software Reference Architecture for Data Quality Tools

functional composition and architectural design of DQ
tools is available. This leads to a high degree of
uncertainty around their development and deteriorated
data initiatives. To address this research gap, we
propose a reference architecture for DQ tools consisting
of 16 architectural patterns on four architectural layers.
We based our findings on a review and comparative
analysis of ten concrete DQ tool architectures, which
we identified in an SLR. Our proposed reference

architecture incorporates a vision for the future and
addresses topics that likely become more important in
the future, such as the prevalence of data streams.

Our research offers the following managerial
contributions. Most importantly, our proposed reference
architecture guides software architects and DQ experts
in designing high-quality solutions and can ’safeguard’
DQ implementation projects (Angelov et al., 2012).
The reference architecture offers a comprehensive and
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holistic understanding of DQ tools that lowers the
uncertainties involved in DQ initiatives. Moreover,
practitioners can use the reference architecture to inform
make-or-buy decisions and systematically assess tools
available in the market.

Besides managerial contributions, our work has
several scientific implications. First, by following a
rigorous research method, we created a sound reference
architecture that extends the existing body of literature
on DQ. Second, our work can act as a basis for
developing research agendas and guide the future
development of the different architectural components
of DQ tools. Third, scientists can use the reference
architecture as a conceptual framework for classifying
DQ tools and systematically analyzing their capabilities.

Despite applying a high level of rigor, our research
is subject to multiple limitations, which offer paths
for future work. We cannot rule out subjectivity
during the SLR and the qualitative evaluation of
the reference architecture. Our selection criteria
for including architectural elements in the reference
architecture can be challenged, and other researchers
might reach other conclusions. Moreover, the evaluation
can and should be extended with professionals working
in different roles and industries. In future work,
we plan to conduct a more exhaustive review of DQ
tools and apply the reference architecture to real-world
implementation projects to evaluate its usability and
validity. Furthermore, DQ tools will likely evolve,
and new requirements and functionalities will emerge.
The reference architecture should thus be critically
scrutinized and updated to new developments regularly.

Acknowledgment

This research was partly supported by the German
Federal Ministry of Education and Research (BMBF)
and the research project ”FAIR Data Spaces” (FAIRDS).

References

Alhamadi, M., Alghamdi, O., Clinch, S., & Vigo, M.
(2022). Data quality, mismatched expectations,
and moving requirements: The challenges
of user-centred dashboard design. Nordic
Human-Computer Interaction Conference.
https://doi.org/10.1145/3546155.3546708
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